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CHAPTER VI

Non-Jeans Instabilities of
Gravitating Systems

In the previous chapters, we have faced mainly instabilities of a “Jeans”
nature (cf. Introduction) or instabilities similar to those occurring in rapidly
rotating systems of incompressible liquid.

This chapter deals with some non-Jeans instabilities of gravitating systems
investigated so far. The various mechanisms of excitation of similar in-
stabilities are well studied in plasma physics and in the mechanics of con-
tinua.

First of all, there are the beam instabilities, to which we devote §1. In §2
we study the gradient instabilities. Section 3 deals with the theory of “hydro-
dynamical” instabilities (Kelvin-Helmholtz instabilities and flutelike in-
stability) with a growth rate much greater than the Jeans one. In the last
section (§4), the general approach to the problem of kinetic instabilities in the
collisionless gravitating systems is considered, and also, briefly, the question
of the original “cone” instability at the central regions of systems with baled
out stars of small angular moments (for example, due to a fall onto a “black
hole”). Most frequently, consideration is given to the framework of the
simplest models, such as the uniform cylinder with an infinite generatrix or a
uniform flat layer.



2 VI Non-Jeans Instabilities of Gravitating Systems

§ 1 Beam Instability of a Gravitating Medium [88]

1.1 Theorem of a Number of Instabilities of the
Heterogeneous System with Homogeneous
Flows [64a%]

Let us consider first of all the simplest case of the system, consisting of an
arbitrary number n of moving homogeneous components. Recall that the
analogous problem for the components at rest was solved in the Intro-
duction, where we showed that the instability (Jeans) may occur only on
one branch of oscillations while all remaining branches are the branches
of “combined sound.”

The picture described above changes qualitatively in presence of relative
motions of components with velocities which exceed corresponding sound
velocities. Then nonincreasing (“sound”) oscillations occur on the wave-
lengths smaller than Jeansonian ones (see Table I, Introduction, case 1). In
the opposite case (point 4 in Table I), when the wavelength of the perturba-
tion exceeds the Jeansonian wavelengths, the combined sound oscillations
are absent. All the roots may be complex: then n different instabilities are
developed in the system.

If the undisturbed velocity of the cold component is v,,., and of the hot
component is vy, then the disturbed densities of these components are

_ k*®
Pe = Poc ((D - kUOC)2 - kzcszc,

_ k0
o= P o = kg — Kk,

and the corresponding dispersion equation is
2 2
Wy, + Won _
2 2.2 2 2,2 —
((,O - kvOc) -k Csc ((,O - kth) -k Csh

Similarly, for n components we have

n 2
WDp;

i; (0 — kl’o.')2 - kzcszi T

Roots of this equation determine in general form the solution of the problem.

Let us consider first of all the simplest example, when the densities and
pressures of the cold and hot components are identical: w3, = wg, = w?/2;
cZ = c% = c2. In the inertial coordinate system where vy, = — v, = vy WE
have the following dispersion equation:

2 2
Wy (O

@ ko — K T o+ kg =Ko~
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Solution of this equation is

w3 W}

w? = k*v3 + ¢2) - —29 + \/4k4v(2,csz — 2wik*v3 + TO'
Let us choose three limit cases: (a) w3 > k203, k%c2; (b) w3 < k*v3,
k2cZ; (c) k*v3 » w? » k2c2. In case (a) we obtain two roofs: w? = —w},
w? = —k*(v3 — c2). The first root describes the Jeans instability; the second

root, the beam instability provided |vy| > c,. As we see, the necessary
condition of the beam instability for the heterogeneous gravitating medium
coincides with the analogous plasma condition [31].

In case (b) both roots are positive, which corresponds to the oscillatory
regime.

In case (c) we have

w? = k303 + ¢2) + iy/2wpkv,.

Here, two roots describe increasing solutions, and two other roots damping

solutions.
We can represent the dispersion equation obtained above for the case of

two beams with identical densities and velocities in the form

f@)= -2

The function f(w) is depicted in Figs. 86(a) and 86(b) for the cases v3 < c?
and v3 > cZ, respectively.

As it follows from the Fig. 86(a), in the case v3 < c¢Z, only the Jeans
instability is possible [provided that w} > k*c? (dotted line): two roots on the
real axis  (w, and w,) are then absent]. For w3 < k2c? we have four real
roots.

In the case v3 > c2, as is seen from the Fig. 86(b), for w3 < 2k3c? all the
roots are real, and for w3 > 2k*c? all the roots are imaginary. In the last case
the beam instability occurs in the system (apart from Jeans instability).

The general dispersion equation for n moving beams may be graphically
investigated similarly to the above investigation for the components at rest.
Let us try to formulate the theorem of the number of unstable roots in the
general case.

First of all we enumerate the components of the heterogeneous system in
order of decreasing values of (v, + c,);:

(Vo + ¢ > (vg + €2 > -++ > (Vg + oy

Each of these numbers defines the flow. We shall speak of two arbitrary flows
iandj (i > j) to be connected if

AUUE v; — Uj< Ci+cj'

We agree to mark such connected flows by curved lines: for example,

1 2 4 5 oo e G —
N \\//3 l\\_\/‘] (/n\_l)/n



4 VI Non-Jeans Instabilities of Gravitating Systems
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Figure 86. Determination of a number of unstable roots for two homogeneous bounded
(a) and nonbounded (b) flows.

We cross out the curved lines which are completely covered by other
curved lines (1-2, 2-3, i—j in the given example). The remaining curved lines
determine the independent elements. To the independent elements we attribute
also the unconnected flows (flow 5 in this example).

Theorem (of a number of instabilities of the heterogeneous system with
moving homogeneous flows): The number of the unstable roots of the
heterogeneous system with moving homogeneous flows equals the number of
independent elements.

The theorem may be proved by the method of mathematical induction.

Let us perform further investigation of the beam instability by using, as
the basis of the self-consistent model of the collisionless gravitating system,
a model of a rotating cylinder cold in the plane of rotation (x, y). This model
has already been considered in Chapter II for “nonbeam” distribution
functions of the particles in longitudinal velocities (Maxwell and Jackson).
In addition, we show in Section 4.3 that the beam instability is obtained in
the model of a flat gravitating layer.
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1.2 Expression for the Growth Rate of the Kinetic Beam
Instability in the Case of a Beam of Small Density
(for an Arbitrary Distribution Function)

As follows from the results of Chapter II, the Jeans instability of a uniformly
rotating cylinder (with circular orbits of the particles) with the Maxwellian
distribution function in longitudinal velocities, develops with an exponen-
tially small growth rate if the thermal dispersion is sufficiently large: vy > v,.
Therefore, the rearrangement of the initial spatial distribution of particles (the
formation of “sausages”) will occur very slowly. Under these conditions,
one may speak of the quasistationary state of the Maxwellian subsystem
and consider the excitation of nondamping oscillations of this subsystem by
a group of fast particles.

Further, we assume that the particle distribution in the longitudinal
velocities fo(v,) can be split into two parts:

fO(Uz) = f(O)(Uz) + f(l)(vz)7 (1)

where f©)(v,) is the Maxwellian function with the dispersion vy while f(v,)
is a certain function nonzero for v, > vr. An example of such a function is
given in Fig. 87.

In other words, we assume that the system of gravitating particles under
consideration consists of two subsystems: a slow one and a rapid one. Assume
that the slow subsystem has a larger density than the fast one, so that

(2o [V d,
120 f© dv,

By making use of the smallness of the parameter a, the solution of the
dispersion equation may be found by the method of subsequent approxima-
tions by defining in the next order the growth rates of these oscillations due
to the interaction of the latter with the particles of the fast component.
Such a settlement of the problem is characteristic for the theory of inter-
action of a beam of charged particles with a dense plasma.

=a <l )

74

f(o)

0 UZ

Figure 87. An illustration of the beam distribution function.
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Using Eq. (24) and formulae (10) and (11), §2, Chapter II, we have the
following dispersion equation:

(1)0 ® ki k2
1+~ 2 f [(w ~ kv,)? — 402 (a) "k, z)z]fo(v,) dv, =0, (3)

where k? = k? + k2 ~ k3, since from the inequalities k,R < 1and k, R 2 1
it follows that k2 < k3. For the sake of concreteness we represent formula (1)
in the form

v? 1o v, — V)?
folv) =01 — oz) exp(—v—) +a— p exp[ (’—uzT—)—] 6]
Here vy and uq are the particle thermal velocities of the cylinder and of the
beam, respectively; V is the velocity of the beam.

According to the results of Chapter II (§2), the long-wave (k,R < 1),
short-scale (k, R 2 1) perturbations of high frequency (w? » kZv?) practically
do not damp (the decrement of damping is exponentially small). This
means that if the cylinder has a small portion of the beam particles, the
dispersion equation is composed of two parts. The first (main) part de-
termines the nondamping (rotational) oscillatory branch of the cylinder
(see §2, Chapter II), and the small addition connected with the presence of
the beam is interesting to us in its imaginary part only.

Substituting (4) into (3), we obtain, taking into account the above, the
following dispersion equation:

1
1 + wo( 4{;‘3 + (nz?)ol/z {sz (0 — k,v,)7? exp[ v, — = V) ]dUz
+ f ” [(w — k,v,)* — 4Q2]72 exp[— (L—TV)—] dv,} =0. 5
— 00 uT

Due to inequality (2), we can solve Eq. (5) by the method of successive
approximations. Let us assume that

w=wy+iy, |7 <, ©)
Setting the imaginary part of Eq. (5) equal to zero, we find y:

2
_ wg k,V— w, wo — k,V
r= o‘wo{kzu% k,ur W( k,ur

Q, 34Q, — k,V 0.6, + k, V
T Wur [W( otz ) W( keur )]} -0
From formula (39), §2, Chapter II, it is clear that in (5) we neglected the
exponentially small terms (provided that Q, > k,vy) describing a damping
of the rotational oscillatory branch. Now we are interested in the possibility
of the excitation of this branch by the beam with a small density, which is the
case when increments of beam instability exceed decrements of damping.
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This is obviously true if at least one of the following conditions,’
|sz_w0' <kzuT, V>7(_—’ (8)
z

|34QO - szl < kzuT’ (9)

is fulfilled. One can see that in the case (8) it is also necessary that the beam
velocity be larger than the phase velocity of oscillations with the frequency
. The increments of the beam instability are equal to

2 pe—
~ Jrawg 20 KV = @0 (10)

kK*ui  kur

if the conditions in (8) are satisfied, and

2 L gy B0 ay

oWy ——
4 k,ur

in the case (9).
The increment (10) due to Cherenkov resonance w = k,v,, and the
increment (11) due to rotational resonance: w + 2Q, = k,v,.

1.3 Beam with a Step Function Distribution

The beam instability is associated above all with the velocity asymmetry
of fast particle distribution f(v,) # f(—v,), rather than with the presence
of a second maximum on the total distribution function. In order to make
sure that this is the case consider the asymmetric distribution of particles
of the beam in the form of a step

1, O<up, <y
0, v,<0,v,>v,.

o
I =,

In this case, the single contribution into the increment yields the resonance
of the type w + 2Q, = k,v,, so that

T w3
8\/5 !kzlvl.

This expression is valid for |k,|v, > 4Q,, from which follows the estimate

Imow=

Im o < aw,,

coincident with (10) at v =~ vp,.

! We assume here that k, > 0.
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1.4 Hydrodynamical Beam Instability. Excitation of the
Rotational Branch

If the directed velocity of the beam is high in comparison with the scatter of
particles of the beam in longitudinal velocities, v > vy, then, apart from the
kinetic instability as considered, in the two-beam gravitating medium,
there may develop a hydrodynamical beam instability. Let us show that by
assuming that the thermal scatter of the beam is, nevertheless, finite:
v}, > avd, so that the development of the Jeans instability in the beam is
impossible (within an exponential accuracy).

We follow from Eq. (3) with the function f of the form of (4) and assume that
o + 2Q4 — k,v| > |k,|vy;. Then, from (3), follows

(1 - W} awd B
0® —4Q%  4Qy(w — kv + 2Q,)

Assuming that k,v = w, + 2Q,, we find that oscillations with Re w = w,
are excited with the growth rate

1+ 0.

a1/2
Imow = 3574 Wy.

This instability is similar to the cyclotron excitation via a monoenergetic
beam of charged particles of cyclotron oscillations of plasma in the magnetic
field.

If one compares the gravitational kinetic instabilities with those of the
plasma [86], then one notices that, in case of gravitation, the region of in-
stability is much narrower than that in the plasma. For example, the beam
instability in the plasma with the distribution function

noA 1 o
o) = 7[(1 —9 02 + A? + (v, — u)® + Az]’

as follows from [240], takes place for all velocities 4 > A within a broad
interval of the wave numbers, while here instability takes place only for a
definite relation between the velocity and the wave number, in the vicinity of
the value y = u?*k?/Q? = %. It is probable that the conditions of equilibrium
in the gravitating medium impose tighter links on the parameters of the
system, which makes the region of the existence of unstable equilibrium
solutions narrow also.

For the beams in the plane of rotation of the system, a similar inference is
made below.

1.5 Stabilizing Effect of the Interaction of Gravitating
Cylinders and Disks

It is also possible to analyze a heterogeneous system consisting of two
cylinders rotating with respect to each other, of the kind of (2), §1, Chapter II,
with the densities a;p, and a, pg (2; + a, = 1) [111, 113]. Such a system
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turns out to be stable with respect to perturbations k, = 0. For the mode
n=4m=27y, =0,y, = 1(rotation of a cold cylinder in a hot one at rest),
the spectrum has the form w? — 14w + 8a, = 0. The condition of the
stability

1602 — (42)* <0

is always valid since o, < 1.

From the exact spectra of small perturbations of gravitating disks (cf.
Section 4.4, Chapter V) it follows that the maximum growth rates of in-
stability take place at y = 1. This case corresponds to the cold disk model, all
the particles of which rotate in circular orbits in the same direction. If a cold
disk is composed of two subsystems rotating in opposite directions, then
the growth rates of instability decrease. Thus, the effect of the “beam nature”
can exert a stabilizing influence. However, in the case of the density increasing
toward the edge, the effect of “beam nature” is destabilizing [20] (cf. next
subsection).

1.6 Instability of Rotating Inhomogeneous Cylinders with
Oppositely Directed Beams of Equal Density [20]

To begin with, consider a uniform dust cylinder consisting of two mutually
penetrating cold, in the plane of rotation, beams with velocities +v,, and
identical density p,/2. In the stationary state

1d [ do, b2 dd,
Upo = 0, ;E (r 7) = 477:Gp0, —r— = —d'r— (12)

The dispersion relation for the case of oscillation of the flute type (k, = 0)
can be obtained in the following way. Write first of all, for each beam, the
system of linearized equations of hydrodynamics:

—i(w$m%>vﬁ$2v%vfl=—é%, (13)
+@+%vi—iw$m&9 pE=—i"® (14)
“\r ar | * r )] ro
pol2  dpol2\ + . pom o Vg s . Podvi _
(—r—+ dr v”+12 rv"'1 lw+mr p1+2 dr =09
Hence, for v,,,/r = Q, = const, we find (o7 = p{"?)
oV
L1402 — (0 — mQy)*] = AD,, (16)
Po/2
o
LL 1402 — (0 + mQ,y)*] = AD,. an

Po/2
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Comparing (16) and (17) with the Poisson equations
1d{ dp 2
Mw-“o 7_%®=%aw+ﬁm (18)

Trdr\ @

we find
1 1 1

K (0 —mO) T rma) o

(19)

where the condition of equilibrium of (12) is employed; for w? we obtain the

expression
0* = tod(m? + 3 + 2./3m* + 3). (20)

The value w? is minimal for m = 2, when w? = 0, i.e., indifferent? equi-
librium takes place; w* > 0 for m # 2.

When the cylinder is nonuniform (and again consists of two identical
rotating flows), from the system of equations in (13)-(15), one can obtain
the equation [(1), §7, Chapter II, in a new form):

AD
— =K, +K_, (21)
Wo
where
1 . 2mQ Q
K,=- 72 [A(Dl + 4,0 + TO (A1 + ﬁi)ol]’

yV=xr—20Q,, a=2Q,+rQ, x=mQ, — o,
Qo(a + 2'Q/Qfy — mx) Q

x? — 20Q, Q,’
and the quantity K_ ensues from K, by substituting Q for —Q, in all

expressions of (22).
At m/kr < 1, we find

1 i 2
200 — (0 —mOg) | 220 — (@ + MOy 2

K0=_—r A1=K0+2 (22)

(23)

One can easily make sure that Eq. (23) transforms to (19) for p, = Q = 0.
Making use of (22), we get from (23) the dispersion equation in the form

o* — 20%[(4 + m)Q2 — 1wl + 2rQy Q]
+ [(4 — m»)QE + 2Q,Q,r]?
— w3[(4 - m*)Q3 + 2Q,Qyr] = 0. (24)
The discriminant of Eq. (24), biquadratic with respect to w, is positive;

therefore, the instability described by this equation may be only aperiodical,
ie., the growth rate y = iw. The above investigation of the stability of a

2 1f the densities of two beams are different, the dispersion equation becomes more complex;
however, it may be shown that it has real roots only.
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uniform cylinder with oppositely directed beams shows that the maximum
growth rate in the case of a nonuniform cylinder should be sought for at
m = 2. Indeed, under the condition of smallness of the density gradient,
instability takes place only when m = 2:

Wy
8Q% — 0§’
8Q? > w}/2 for small p, and Q. As is seen from (25), the necessary con-

dition of the beam instability in this case is the condition of the growth of the
angular velocity of rotation from the center of the cylinder.

w0? = —rQyQp 25)

§ 2 Gradient Instabilities of a Gravitating Medium[28, 114]

In plasma physics, we know of a vast class of the so-called gradient (drift)
instabilities due to the spatial plasma inhomogeneity, which frequently
play a decisive role. Gradient instabilities involve, in particular, the in-
stability due to temperature inhomogeneity [89]. The cause of it lies in the
transfer of longitudinal energy of particles across the magnetic field due to
their drift in the crossed fields.

The question arises of the possibility of development of similar instabilities
in a gravitating medium, which, as the plasma, refers to the number of
systems with Coulomb interaction.

2.1 Cylinder of Constant Density with Radius-Dependent
Temperature. Hydrodynamical Instability

The theoretical possibility of gradient instabilities in the gravitating media
was proved in [28, 114] independently.

To begin with, consider the simplest model: a cylinder, uniform in density
with the radial temperature gradient. The general equation (14), §3, Chapter
11, describing small perturbations of the nonuniform cylinder with circular
orbits of particles, in this case becomes somewhat simplified :

1d dd m? 5 4m dl

- B — - —— 1

v dr <r£l dr) r2 8_]_(1) kzgn v ar o= 0 ( )
=142 [1% 142 f"d" e
Il (.0’2

_ Jo dv, 2 )
I= fw’[w’z a7 Qi = 2nGp,.

The local dispersion equation corresponding to (1) is of the form (below we
assume Q, = 1)
4m dl

slki+8||kf+73;=0, )]
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where k? = k? + m?/r?. Calculating the integrals in (2) for the Maxwellian
distribution function f, = exp( —vf/v%)/ﬁvT, we obtain instead of (3) for

W, =0 —m>k,vp 4

(i.e., in the hydrodynamical limit)

k2+kfwi_2+gﬁf——ﬁ kZv2 : k_i k2v2 :
Tt S T T @, v 4 (@, -2
m kZv% ovp 1 1 2
- P& ovr = 5
2 vr O @, 127 (0, -2 ©)

For low-frequency oscillations satisfying the condition w, < 1, i.e., close to
the frequency of the rotational (“cyclotron”) resonance, we have from (5)

k2 2m k202 1 ov
34472 T 7T . 6
Dy + kiw*+r k? vy or ©

Under condition 4w, < (m/2r)vy 0vr/0r, dispersion equation (6) describes
unstable oscillations with the growth rate

V3 |2m k202 1 évg
===t

1/3

)

On the limit of the applicability of this approximation, we obtain the growth
rate

m  dvr\'3
y~(7v17j> : ®

It should be noted that these results are coincident with the results known
from plasma physics: dispersion equation (6) can be obtained directly from
the respective plasma equation (cf. [89]) by substituting k, — m/r, wg — 2.
The physical meaning of the obtained instability is also similar to the case of
plasma. The drift of particles leading to convection of heat in the radial
direction is caused by Coriolis acceleration due to the appearance of perturba-
tions of the azimuthal velocity.

It is important to emphasize that the gradient-temperature instability
may evidently exist also under conditions when the Jeans instability is
practically suppressed (for which it is necessary that there be vy > v,).

The instability considered above has a hydrodynamical character [cf.
condition (4)].> There is also kinetic instability; however, it turns out that,
in order to obtain it, the WKB approximation is insufficient. The simplest
model in which one can most simply make sure that there is kinetic instability
is treated in the following subsection.

® Accordingly, this instability could have been obtained [28] by using the equations of
anisotropic hydrodynamics for a rotating gravitating medium.
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2.2 Cylinder of Constant Density with a Temperature Jump.
Kinetic Instability

One is able to get an answer in explicit form only in the case when the
temperature jump (from T, at 0 < r < roto T} at r, < r < R) is experienced
by only a small part of particles with the density ap,, a < 1. As far as the
remaining part is concerned, we shall assume that it has a fixed temperature T.
Let the temperature jump be sufficiently great: T, > T,, so that there are
such k, for which the condition (4) is valid only for the cold medium, while
the inverse inequality takes place in a hot one, i.e.,

k,vry < 0, < k,vr,. (&)

Under such conditions, the hot medium should be considered kinetically
(while the cold one, again hydrodynamically).

Using the inequality Q > k,vr,, for low-frequency perturbations
(w, < Q), we obtain ¢, = 3. Let us seek solutions localized near the tem-
perature jump and decreasing according to the law

D~ e (3 > 0). (10)

Substituting (10) into Eq. (1), we find, under condition m? > 2kZrj w3/wz,
2

el k=2 (11)
o To
We now use the boundary conditions on the jump:
DLl = (12)
dd 2md (‘ fo ro+0
&€ E._ Yo Wy ) a),l:a),2—_4(2(2)]dl) o = 0. (13)

In calculating the integral in (13) for the cold medium, it is enough to
restrict oneself to the basic term, while, for the hot medium, let us write the
integral completely. As a result, we obtain the dispersion equation

[ dv, 1\ m
1 +angnk¢<J Py — o, =0 kq,—;; . (14)
If w, < k,vr,, then (14) takes the form
oQ sgn k [ inw ( )]
1 — 0 Dy (2 = 0. 15
" Tl 70 Ik, (1)

3

We write o, = 0@ + iy. At w, < k,vr,, the inequality '@ > y is valid.
Therefore, we find the solution in the form

(0)
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i.e., there is kinetic instability. The oscillations are low-frequency ones
(w, <), if « < 1. To have the condition (9), it is necessary that

szTl <oQ < szTZ’
and for the validity of (11) it is necessary that
m? > dokZri.

2.3 Cylinder with Inhomogeneous Density and
Temperature [28]

The density gradient dp,/dr exerts, as we shall see, a stabilizing effect on in-
stability whenever it is sufficiently large and coincides in direction with the
temperature gradient, but per se for T = const and in the absence of Jeans
instability does not lead to gradient instability.

Instability arises for k, -0, m#0 and kr> 1 (perturbation
~ gikztmethkr—on) e  perturbations with a large wavelength along the
z-axis, depending on angle, and with a small wavelength on r, are unstable;
therefore, quasiclassical consideration is possible for k,r > 1. We shall
be interested in low-frequency (w, < Q) oscillations without restricting
ourselves beforehand to perturbations of the hydrodynamical type with
o, » k,vr. Then we obtain the following dispersion equation:

2 2 2
2 W g‘i’g J‘ Jodv, Wy W7
o (1 +292) 7 [“’ o — kv, T3
(U* 1__ Cl)i f fO dvz
% I:kzv2 + (2 kzuz) w, — kv,

Qza’o fo
m dvT
- rer 18
o1 =0 (18
_[dinp (0§ —2Q%)] 07
On = k“’[d nr 4 | (19

In the absence of Jeans instability vr > RQ, one can neglect the second
term in (17) (as in the uniform cylinder). To define the instability boundary,
let us proceed in the following manner (similarly to the corresponding case
in the plasma [89]). Assume in (17) * to be real and then equate the real and
imaginary parts to zero; then on the stability boundary we have

w3 or (1 202 1\Y? wr
Ikzlcr =372 1\5 - s n= s
Ur kJ_ 2

202 + win o,
o = wior (1 202 1\ s 1 202 1\1?
vik? 207 + win) e\ 202 + Wi

(20)
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The condition that w, be real may be satisfied if

402

Consider the case of “weak ” inhomogeneity when the density variations
are small, but large gradients p are admissible.
In this case

dlnp v dIn v%
2 202 = e =
@o ’ ©n ®dlnr rQ’ " dlnp’
2,2 1/2
|kzlcrvT k-szT = 1 (1 - l) . (22)
wtor = A\ T

Then the conditions of (21) will take the form
n<0 or n>1. 23)

In a similar plasma case [89], the second instability boundary lies at
n = 2. The cause of the difference is in the fact that in the gravitating medium,
due to the equilibrium conditions, the angular velocity of rotation is
uniquely linked with the density, and therefore it is variable. This yields the
contribution to the criterion of (21) and (23) even for weak inhomogeneity,
because it is necessary to take into account the second derivatives d2Q/dr?,
which in their order of magnitude are coincident with dp/dr.*

The stability boundaries on the plane x, n, where
_, Kukktot

T oiwd

owT

) 4

for the case of (22) are given in Fig. 88 (x = 1 — 1/i). From (20), it follows
that on the stability boundary

o (122 1y,
kop \2 2Q% + wiy

“In [28], attention is paid to the fact that one gradient of density does not lead to instability.
A contrary statement is contained in the papers of M. N. Maksumov [80-83]. In spite of the
fact that the correctness of the approximations used in [80-83] is dubious, the question itself
of the possibility of development of drift instabilities in gravitating systems, advanced by
Maksumov, is, of course, of interest.

instability

stability

AQ: instability

1 n

Figure 88. Stability and instability regions of the temperature- and density-inhomo-
geneous collisionless cylinder [28].
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for n # 4Q2/2Q?* + w3). Therefore, it was impossible, for its determination,
to restrict oneself to the hydrodynamical consideration and expand in
parameter w*/k,vy; a general consideration with arbitrary w*/k,vy is
needed.

§ 3 Hydrodynamical Instabilities of a Gravitating Medium with
a Growth Rate Much Greater than that of Jeans [98-100]

All the instabilities considered by us so far, have their growth rates less than,
or of the order of that of Jeans. A typical feature of instabilities of the non-
Jeans type (beam, gradient types) is the difficulty of their application to real
objects. Indeed, these instabilities considered in an infinitely long cylinder
exist under condition that the limiting wavelength of the perturbation
greatly exceeds the radius of the cylinder, 4, > R.

Such a situation stimulates the search for instabilities of a gravitating
medium qualitatively different from those mentioned. Of great interest are
instabilities, whose development may proceed with a growth rate much
greater than the Jeans growth rates, as well as instabilities not subjected (like
those of Jeans) to the stabilizing influence of thermal dispersion or lacking
such exotic conditions of existence, unlike the beam and gradient types.

Such instabilities involve the Kelvin-Helmholtz (KH) instability and the
flute-like instability [98-100].

3.1 Hydrodynamical Instabilities in the Model
of a Flat Parallel Flow

The simplest model for the investigation of the KH and flutelike instabilities
is provided by the flat-parallel flow of gravitating fluid with varying (in the
direction perpendicular to the flow velociiy) values of velocity and density.
Here it should be mentioned that the most general criteria of stability of the
model described were obtained in [129, 186] in the approximation of an
idealized noncompressible liquid. The need to account for compressibility
complicates significantly the analysis and does not allow the general stability
criteria to be obtained.

Stability of a flat tangential discontinuity has earlier been investigated
in the approximation of incompressible fluid in the external gravitational
field [67, 186], in compressible fluid and in the MHD approximation [126]
in the absence of a gravitational field.

In [99], the effect of the gravitating properties of the medium on the
stability of a flat tangential discontinuity (Fig. 89) is investigated.
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¥4
N
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Figure 89. The plane tangential discontinuity.

><"

1. Write the initial system of linearized equations in the form

v dv vp
Ff + V)V, + v, d—z" = — —p~0—1 - VO, (1)

1 6P, p,dP, o®,

0
g (Vo = —— L BT T @

o po 0z  p4dz 0z’

d 0

% + (VoV)p1 + Po(V¥1) + = (pot:1) = 0, 3)
z
Os ds

a_tl + (VOV)81 + Uzl d_ZO = 09 (4)

oo
A2(D1 + _‘Tl— = 47[Gp1- (5)

0z

Here the vector notations are two-dimensional (for the x, y components), the
surface of the discontinuity coincides with the z = 0 plane, G is the gravita-
tional constant, s, = Po/p} and s, = (P, — ¢*p,)/p} are the unperturbed
and perturbed entropies, and c2 = yP,/p, is the speed of sound. In consider-
ing perturbations of the type exp[i(kr — wt)], we reduce the system (1)—(5)
to the following:

k* (P, P, + &P,

(-1 (I) _-r 90
é wi ( R + 1) Czpo ’ (6)

Py Popo |, Po Py P,
2L+ = 5[(»2 — + + , 7
po *pd T pic| T pic @
P, + &P,

o] = k*®, + 47:6[‘75" - épb], ®)

where 0, = @ — kvy(z), £ = iv,;/w,, and the prime denotes differentiation
over z.
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Let p, and v, be discontinuous in the z = 0 plane. The boundary con-
ditions on the discontinuity are readily obtained from (6)—(8) by the familiar
procedure of integration over the layer:

[E1=4z=+0)-¢(z=-0)=0, ®

[@}] = —4nG¢[pol, 10

[@,]=0, 11

[P,] = &glpo) 12)

Here [g = d®,/dz|,-,], while (10) denotes that, in the z = 0 plane,
a simple layer is formed of surface density ¢ = —&[p,].

Let us assume that, within the ranges z > 0 and z < 0, the unperturbed
densities and velocities are constant (though different). Solving then the
system (6)—(8) separately for z > 0 and for z < 0 and matching the solutions
thus obtained according to (9)-(12), we obtain the dispersion equation
for the frequencies of small oscillations. The coefficients of the system (6)-(8)
may be assumed to be independent of z only for sufficiently short-wave

perturbations
A < min(lla '12)3 (13)
where A, = g/4nGp,, A, = c*/g or (for g = 0) for the wavelengths
2 2 c?
A= . 13
<4 4nGp, (13)
With these limitations, the dispersion equation has the form
k, k, wilkod; + (F — k) (ki — o)),
i + kg, kg — w3, wiwd (1101 + k*g),
o} + 0f; + kg, ©} + wj, — kg, kg (1101 + k*g),
0, 0, —porciwi(ni — k) (0t + k*g),

03[K2d, + O — k)0 — 0d)]
w3y (kg — x2@3)
kgowdy(k*g — 2, ®3)
Po2 €3 0315 — k*) (1203 — k?9)
=0 (14)

Here the index “1” denotes the quantities referring to the range z > 0,
while the index “2,” the range z < 0; @, , = ® — kvg,; 5, @} = 4nGp,,

2 2 2,2
Wy, 2 + 05y, 2 k*g

xa2=k - » Rey;2>0. (15

C%,z w%,ch,z

2. To begin with, consider the effects connected with the velocity dis-
continuity (Kelvin—-Helmbholtz instability, Fig. 90), assuming in (14) that
Poi = Poz> C2 = C3, Vo1 = — Vo2 = Vo, g = 0, and we describe the solution
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Im(w/kc)

0.5

0.3

0.1

Figure 90. The dependence of the instability growth rate of the plane tangential dis-
continuity on “Mach number” M = v,/c as well as on the direction of the wave vector a.
Solid lines show the growth rates for v> = wj/k?*c?* = 0 (incompressible fluid); dotted
lines mark the growth rates for v2 = 0.2.

with the aid of the following dimensionless parameters:

[vol

k
M=T’ B = M cos a, cosa=(v°) _ %o

—_— y =
[k[vol ke

In the limit of short-wave perturbations w, < kc, in the zeroth approximation
from (15) we have

[(1 + 4%V — (1 + )]

Y= .
B

From (16), it is seen that the tangential discontinuity in this approximation

is unstable for any M # 0; however, for M < \/f perturbations with
arbitrary direction of the wave vector (apart from the purely transversal

ones), are unstable, and for M > \/5 perturbations prove to be unstable
only when cos® o < 2/M?. The growth rate is maximal

(o = ike[(1 + 4MH'2 — (1 + M?)]'?)

(16)

w = ikcfy,

forM < \/%for purely longitudinal (k| v,) perturbations, while, for M > \/%,
the maximum of the growth rate (w = ikc/2) is reached at cos? a = 3/4M>.
In the following approximation with respect to v = wq/kc we have

A=A +y)2y + (1 + )]
41 + )G —9?)

It is easy to see that A(y) > 0 and is a monotonically increasing § function.
Thus, perturbations of the discontinuity surface with increasing wavelength
suffer additional stabilization connected with taking into account the gravitat-
ing properties of the medium. However, one should bear in mind that
according to (13'), the results of (17) are applicable only to wavelengths
A <€ A; = c/w,. Here, as seen from (17), the growth rate of instability proves
to be much greater than that of Jeans: Im w > w,.

3. Consider now the effects due to density discontinuity. By assuming in

w = ikcB[1 — vA(y)], AQy) = ey
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(14) that vy, = 7y, = 0 and assuming the value of density discontinuity
to be not very small in comparison with p,, we obtain

- (kg Po2 — Pm)l/2
Poz t+ Poy

nG P01P029(Po1ct + Po2c3)
* [1 * kg (Po1 = poz) + keic3(por — po2)(por + Poz)z]. 18)
In the approximation ¢ — oo, from (18), we obtain the result known in
incompressible fluid theory (10).

4. Thus, the growth rates of hydrodynamical instabilities of the gravitating
medium can essentially exceed the growth rate of Jeans instability.

Jeans instability is stabilized by thermal dispersion within the range of
short (k*c? 2 w?)wavelengths (a critical wavelength exists). Hydrodynamical
instabilities, unlike the gravitational instability, are not stabilized by thermal
dispersion in the short-wave range.> Moreover, according to (16) and (18),
the growth rates of hydrodynamical instabilities increase with decreasing
wavelength of perturbation.® This unique property of instabilities of KH
and the flutelike instability distinguish them from the hydrodynamical
instabilities of the gravitating medium investigated earlier.

It is easy to see that gravitation does not exert any influence at all on the
short-wave part of the oscillation spectrum. If one assumes the gravitating
medium to be in equilibrium, VP, + p,V®, = 0, then from the initial system
of equations, by taking into account the gradients of unperturbed values,
it is easy to see that |VP, | is kL times larger than | p, V®,| (L is the character-
istic size of the inhomogeneity, kL > 1), while | p,V®, | is less than | p,V®,|
also kL times. Thus, the influence of the “external” gravitational field may
be considered as a small correction to the hydrodynamical effects. The
influence of “self-gravitation” is even more negligible.

As is seen from expressions (16) and (18), compressibility has different
influences on each of the instabilities considered. In case of the tangential
discontinuity of the velocities, with increasing parameter M, the oscillations
excited at small angles toward the direction of the velocity of the medium
are stabilized, and the maximum growth rate of instability is displaced
toward the region of larger angles between the direction of the velocity of the
medium and the wave vector.

The growth rate of the flutelike instability increases with due regard for
compressibility (as well as with due regard for “self-gravitation”), which is
especially essential for long-wave oscillations.

5 This fact becomes obvious if one remembers that the model of discontinuity considered in
item 2 is unstable also in the approximation of incompressible fluid [67], where the value of
thermal dispersion is, according to definition, infinite.

6 This statement is valid, at least, for wavelengths greater than, or of the order of, the size
of the transition layer ka < 1.
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3.2 Hydrodynamical Instabilities of a Gravitating Cylinder

In the previous section, the hydrodynamical instabilities were dealt with in
the case of flat geometry, when the gravitating system is nonstationary. Since
the growth rates of KH and flutelike instabilities, as already mentioned, are
much larger than the Jeans growth rate, such a consideration is correct be-
cause the deviation from the stationary state occurs for the time 1/w (@, is the

Jeans frequency, wy = /4nGp,, po is the density of the medium, G is the
gravitational constant), which is much more than the time of instability
development 1/y.

Nonetheless, the theory of gravitational instabilities presents many
examples, when the gravitational instability investigated in flat geometry
does not develop in a stationary gravitating system. This is due to the stabiliz-
ing role of the centrifugal forces (or forces of pressure). Below, we treat the
possibility of development of hydrodynamical instabilities with the growth
rate much more than that of Jeans, in the simplest gravitating system of
cylindrical geometry.

1. Consider the cylindrical tangential discontinuity (Fig. 91) assuming
that equilibrium is provided by equality of the centrifugal and gravitational
forces (P, = const; Q% = w?/2 is the square of the angular velocity of rota-
tion of the cylinder, and R is the radius of discontinuity):

Q(r > R)= —-Q@r < R).

To investigate perturbation stability of the discontinuity surface of the
form expli(me + kz — wt)], it is easy to obtain the following dispersion
equation:

det (a,-k) = 0. (1)
Here
a; =1, az = Ji, asp=pf — 1+ a,,,
J, = 2m/(x — m)
ay,, =V, m (=13,
i+ 2mi(x + m) _
Ga1= Vo T g (=24,
Vo = —Qr

Figure 91. The cylindrical tangential discontinuity.
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where
V’%=2B2+,u;%—l,

L(xpy,3)
Im(%ul 3)’

J K%y, 4)
2,4 = XUy, 4_—‘——K (”/«‘2 D

2 _ p2)2 32ﬂ2
u1,3 - 5 |:(1 + & ) + \/(1 ) ( m)2]9

3282
24=%[(1+e§)¢\/(1—s%)2—(x—+’3m—)2],
4

- Bl Fm)* — 2],

Ji,3=2Uy,3

C(x Fm)y

w M QR
=, % = kR, =— M=—
Q 4 % c
Here, I, is the Bessel function of the imaginary argument, K,, is the
MacDonald function, and the prime denotes differentiation over the argu-
ment.

Consider a series of limiting cases for the most interesting modes m > 2.
In the limit of incompressible fluid from (1) we have

o=09=Q-1+i/m*-1). 2

In a weakly compressible case (M < 1) and in the long-wave (kR < m)
approximation

2 ; 2
#°Q iQ %
o=09+ - + m*M? ). 3
m2—1 /m2_1m2—1 " ()
We see that compressibility, as in the flat case, partly stabilizes instability.
In the inverse limiting case (kR > m; no restrictions are imposed on M),
by using the asymptotics of the Bessel I,, and K, functions, it is easy to obtain
the stability condition for such perturbations:
m*M? 4

PR T @

X =

coinciding for m > 1 with the stability condition of perturbation of a flat
tangential discontinuity (in the same approximation k; < k,)

k?
Br=pagM 2 )
In the limit of very short waves (kR > m), the instability growth rate
tends asymptotically to the quantity Q./m? — 2.
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Im(w/)

Im(w/Q)

1.5

| + 1
2 logkR -2 -1 0 1 2 logkR
(@ (b)

Figure 92. The dependence of the instability growth rate of the cylindrical tangential
discontinuity on “Mach number” M (the number is written near each curve) and
wavelength (kR) for the modes m = 2 (a) and m = 3 (b).

The investigation of dispersion equation (1) for the largest-scale modes
m = 2 and m = 3 has been undertaken numerically. The results are: the
dependence of the instability growth rate (in Q units) on the Mach number
M and the dimensionless wavelength kR are depicted in Fig. 92(a) and (b).
One should emphasize a rather complicated dependence of the instability
growth rate in the region 1 < kR < 10 for supersonic discontinuities.

2. Investigate now the possibility of excitation of the flutelike instability
in a gravitating cylinder. For that purpose, let us consider the model of an
infinitely long cylinder with the discontinuity of the p,(r) density at a distance
R from the cylinder axis, by assuming that equilibrium is provided by the
resulting action of the centrifugal and gravitational forces and pressure
force, so that g = d®,/dr — Q*r # 0. Considering the short-wave (in
comparison with the Jeans scale) oscillations, for which the influence of the
perturbed gravitational potential is negligible, we obtain the following
equations for perturbations of the pressure P and the displacement { =
iv,/(w = mQ) of the discontinuity surface (the prime denotes differentiation
over r):

2mQ P, + &P,
Py = Py — g[—l_ci“_o - épo] — (¢ — 0})po s (6)
*
P, (0, +2mQ P, + P,
él - 1 ( * )é _ -1 g O’ (7)

2
Wy Po Wy T Poc

where o, = 0 — mQ, x* = 4Q*(1 + rQ/2Q), k? = k> + m¥r?, and ¢* =
yPy/p, is the speed of sound. From (6) and (7) follows the boundary con-
ditions for matching of solutions at r = R:

[E]=¢R+0)—-&4R-0)=0, (®)
[P,] = glpol )
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In solving the systems (6)-(9) in the limit m®> > k*R?, we obtain the
following dispersion equation

z [(—1)a, + (0, + 2mQ)/w, R — g/c;]
-1y —gr=0, (10
oD { /ot = 1/c) 9p="0 (0
where
2 2
2 _ 12 g 0y g Ot 4mQ  2mQ(w, + 2md) 1

Since we are interested only in principal possibility of excitation of
the flutelike instability, consider the case of a sufficiently hot medium. Then
from (10), for py; = po (r > R) # por = po(r < R), we obtain the growth
rate of instability

2 202\ 1/2
)~ (kgA ; (-z—jﬁR)ZLQ) g 12)
where
_ Po1 — Poz'
Po1 t+ Po2
As follows from expression (12), the necessary condition of instability is
gA > 0. (13)

This implies that for g = 0®,/dr — Q*r > 0, the flutelike instability develops
for po; > po2, While, in the case g < 0, for py, < po;. The second summand
in (12) is much less than the first one and plays a role of small correction on
account of the cylindrical symmetry. Since |4| < 1, the effect of curvature
exerts a destabilizing action on the flutelike perturbations. Note that the
same effect of curvature, as follows from formula (2), in the case of tangential
discontinuity of the velocity, exerts a stabilizing influence.

Now, we consider the case opposite to that considered above [cf. (12)]
A < a. For perturbations of the type exp[i(kr + mo — wt)], instead of (12),
we obtain the following growth rate of the flute instability:

dlnp, m?
=a e s

Of course, the instability condition is similar to (13). The instability growth
rate in (14) is much greater than the Jeans growth rate at m/kr > 1.

For the simplest model of a gaseous uniformly rotating cylinder of
radius R, having at r = 1 (R » 1) density discontinuity (p = p,, if r < 1;
p = p,, if r > 1), it is possible to obtain the following expression for the
oscillation frequencies (m > 0):

o — mQ

_Up2—-p)t V% p, — p1)* + m((1/po) dPo/dr), - 1(p2 — p1) (P2 + py)
(p1 + p2) '
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Hence, in particular, it follows also that the necessary condition of instability
is the inequality (Vpo)(VP,) < 0.

§ 4 General Treatment of Kinetic Instabilities [35*/]

The problem of kinetic instabilities in a collisionless gravitating system
appears if parameters of the system (density, velocity dispersion of stars,
rotation, etc.) are such that the main “hydrodynamical” instabilities are
absent.” Below we shall mainly speak of instabilities of the “beam” type,
which are connected with the composite (“heterogeneous™) character
of the system, say, with the presence of a “beam” in the velocity distribution
of particles. Accordingly, in this case one assumes also that the beam in-
stability of the hydrodynamical type produced by all particles of the beam is
suppressed too. Then there is only the possibility of kinetic instability
connected with the interaction of certain resonance groups of particles with
the waves.

In Section 4.1, the heterogeneous system is considered, which consists
of a spherical component at rest and of a rotating disk component. Such
systems have earlier been treated by a number of authors [84, 109] as a
model of the Galaxy; also some possible kinetic instabilities of the “beam”
type in such models have been studied in {84]. However, the finite character
of the movement of the particles was disregarded (cf. Section 4.1 [35%]);
this has led to incorrect expressions for the growth rate of the kinetic beam
instability. In this connection it should be noted that the simple models
of real systems used in the investigation of the kinetic instabilities may be
divided into two classes. The models of the flat layer of finite thickness
or a cylinder with an infinite generatrix (Section 4.3) are not limited in at
least one direction. These models have much in common with the homo-
geneous plasma. In particular, the different kinetic effects in such systems
usually have the respective plasma analogies to be found easily. On the
other hand, in the models of disks, spherical systems, or ellipsoids, the
movement is finite in all directions. The kinetic effects in such systems are
due to the resonances between the waves and the orbital movement of the
particles.®

The solution of the problem under Section 4.1 as well as similar
problems for the systems with a different geometry (Section 4.3) may
be given in the general form, and it is separated into two independent stages:
(1) derivation of the formulae describing the effect of the interaction of the
resonance particles with the wave and (2) calculation of the wave energy.
For a qualitative solution (i.e., to answer the question whether either in-
stability takes place or the wave damps) it is sufficient to solve two simpler

7 As “hydrodynamical” we understand instabilities in whose excitation all the particles
take part and not a certain singled-out group of particles.

8 Recently, in plasma physics, such effects have also begun to be studied in connection with
investigations of the plasma instabilities in closed traps: tokamaks, Earth’s magnetosphere, etc.
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problems: to determine the sign of the wave energy and the sign of the varia-
tion rate of this energy due to the interaction with resonance stars.

For the heterogeneous model described above, one may, in the investiga-
tion of the beam instability, use the results attained by Lynden-Bell and
Kalnajs, who have derived general formulae for the wave energy and its
variation rate in the disk system [289].

Similar formulae for other systems are derived [35%] in Section 4.2
(sphere) and Section 4.3 (cylinder, flat layer). Section 4.3 investigates the
beam instability. It has already been treated earlier on the simplest model
of the cylinder with circular orbits of particles (in §1, [88]). Below we suggest
the most general approach to the investigation of this point, and, in addition,
we consider the beam instability in a gravitating layer.

In Section 4.2, on the basis of the general formulae to be derived therein,
we briefly consider the effects connected with a possible presence in the
center of the stellar system of a massive formation of the black hole type.
Interaction with the excited waves leads in this case to falling of part of
resonance stars onto “the black hole.” Such a process may in principle serve
as one of the possible mechanisms of luminosity of such objects. Excitation
of the waves in the systems with stellar orbits rather extended in radius may be
due to, say, Jeans instability (cf. §5-7, Chapter I1I).

It should be noted that the problem of the stars falling on the black hole,
due to diffusion of stars caused by collisions, has earlier been considered in a
number of papers; note here, for instance, the theory of Dokuchaev and
Ozernoy [8°]. We shall (under section 3) briefly discuss the role of some
collective effects; further (§8, Chapter IX) we shall again turn to this problem
and investigate it in some detail.

4.1 Beam Effects in the Heterogeneous Model of a Galaxy

In this subsection we shall use, as given, some formulae and conclusions
which were obtained by Lynden-Bell and Kalnajs in their work [289],
devoted to analysis of resonance interactions between the stars of a disk
galaxy and a spiral density wave. A detailed account of this important work
can be found below, in §2, Chapter XI.

Let us consider the galactic model in the form of superposition of the flat
and spherical subsystems. We shall assume that dispersion properties of
disturbances are determined by the flat component. In this case, as was
shown by Lynden-Bell and Kalnajs [289], the wave energy in epicyclic
approximation is given by the formula

Q © 4Pm2Q,(Q, — Q) (—0F,/0I,)

0E ~ — — L fdldl i M it
1672 ! 2,; 1PQ} — m*(Q, — Q,)*?

in which F,(I,, I,) is the star distribution function of the flat component.

The remaining notations and other details are given in §2, Chapter XI;
here it is only important for us that in the case when the corotation radius

AYml® (D)




§ 4 General Treatment of Kinetic Instabilities 27

(Q, = Q,) lies on the galactic periphery, the sign of the wave energy is
negative: 0E < 0. The rate of wave energy change due to the resonance inter-
actions with stars is given by formula (16), §2, Chapter XI (for the deriva-
tion, see the same place), which we write in the following convenient form:

dE _ dE,  dE,
dt  dt = dt
dEdL oF oF
= f Q, ; (w2 ap +om i)é(w —1Q, —mQy)- Yl ()

where F = F + F,is the total distribution function of the system in the disk
plane and L is the angular moment.

We may separately consider the interaction of the wave with stars of the
spherical component (dE,/dt). In particular, for the case of the isotropic
distribution of these stars (0F,/0L = 0) under the natural condition
OF JOE < 0 we get dE/dt < 0. This corresponds to the “beam” instability
of the wave with negative energy (we assume so far that |dE,/dt| < |dE /dt|).

Note that the solution of the problem in the local approximation leads to
the resonance of the kind w = kv where k is the radial wave number (kr > m)
and v is the radial velocity of stars. In reality, however, the interaction of
stars of the spherical component with the wave has a nonlocal character,
and the correct condition of the resonance @ = IQ; + mQ, [cf. (1')] involves
the frequencies Q,(E, L) and Q,(E, L) rather than velocities. The expression
for the growth rate of instability y = —E,/20E may be obtained from
formulae (1) and (1'). The local growth rate y(r) can be derived in a natural
way only in the description of the interaction of a tightly twisted wave with
the stellar subsystems, whose orbits are close to circular (cf. [290a]). Namely
for such subsystems it is easy to determine, as in [290a], the local density
of energy sources (apart from the local density of the wave energy).

The fact of instability (or damping) of the wave is defined not only by the
wave resonance with the stars of the spherical component but also with stars
of the flat constituent. The resonance interactions of the wave and stars of the
disk subsystem in the epicyclic approximation are comprehensively®
investigated by Lynden-Bell and Kalnajs [289] (see above). The main
resonances in usual galaxies are of two types: the inner Lindblad resonance
(w =1Q, + mQ, for | = —1; in the epicyclic approximation Q, = (r)
is the angular rate of rotation, Q, = x = 2Q(1 + rQ/2Q)"/? is the
epicyclic frequency), and the corotational resonance w = m{Xr). The waves
of negative energy are amplified at the corotational resonance and damping
at the inner Lindblad resonance. The wave-star interaction effects of
spherical and flat subsystems should, generally speaking, be considered
jointly; moreover, the resulting effect may be of any sign. In this respect, the
situation here is essentially different from that to be discussed below (under

 Note in particular that the kinetic “ drift " instabilities which are treated by M. N. Maksumov
(e.g., [81]) are nothing other than a result of the wave-star interaction in the region of the
corotation resonance.
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section 3), where the resonance effects in the main subsystem may be made
negligible (so that the effects of the “beam-likeness” are manifested in the
pure form) if the velocity of the beam is high as compared to the thermal
velocity of the stars of the “background.”

Nevertheless, even in case, say, the eigenoscillations in the heterogeneous
system, with due regard for the joint influence of the resonance particles of
both subsystems, are damping, the effect of the wave amplified by the stars
of the spherical subsystem may be of some interest, if the wave itself is
originally excited by some external action. For example, it may be initiated,
in the region of the corotational radius, by a bar or barlike excitation at the
galactic center. With its further propagation toward the center, such a wave
is amplified by giving out its energy to the stars of the spherical component
of the galaxy. For the system of the type of our Galaxy, the conditions of
amplification of the wave appear to be too artificial: it is more probable
that the influence of the inner Lindblad resonance of the disk component
would be decisive and the wave would damp in its propagation. It is pos-
sible that here it is necessary, as suggested in [72%, 79%%], to take into
account the dissipative phenomena in the gaseous layer of the Galaxy.
The effect of the wave—star interaction of the spherical constituent is of real
interest in case of colder flat systems, with very narrow resonance regions,
or in those cases close to the uniform rotation of the galaxy when the inner
resonance is absent (here, however, the role of the corotational resonance in
the disk subsystem should be of importance).

The conclusion on excitation of the waves by the stars of the spherical
constituent is obtained above, strictly speaking, only for the isotropic
distribution (0F,/0L = 0). In the case F, = Fy(E, L), one needs a more
detailed investigation, which is impossible to make in the general form and
should be performed for concrete distribution functions or their series (one
can simply write only some sufficient conditions of instability). No principal
difficulties are presented in this, but one has to do a considerable amount
of technical work. The same is valid for different generalizations of the
consideration given above (for the investigation of the “open” waves in
the disk system, for an accurate quantitative analysis of the wave interaction
effect with resonance stars in the Galaxy with due regard for the competition
between the spherical and disk subsystems, etc.).

Let us concern ourselves with the problem of the nonlinear generaliza-
tion of the theory. The quasilinear theory may be constructed in the standard
way; this theory gives the answers to the standard questions. This is first of all
the question of the relaxation of the resonance stars’ distribution function.
The resonance conditions, i.e., the equalities w = IQ(E, L) + mQ,(E, L),
determine (at I = 0, +1,---) at the plane E, L, some family of curves. It
was to be expected that in the statement of the problem!° usual for the

10 The problem of the self-consistent relaxation of distribution functions of both subsystems,
taking into account the nonlinear drift of barlike disturbances’ frequency in the galactic center,
which may serve as the source of spiral waves, is more interesting to our minds.
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quasilinear theory, “a plateau” will form in the vicinity of these curves so
that the expression in the brackets in formula (1') goes to zero.

Probably the most interesting question from the point of view of possible
applications is the second question—on the adiabatic relaxation of non-
resonance stars’ distribution function of the flat subsystem under an influence
of the instability [21*]. In the paper [21], which was specially devoted
to the problem of relaxation under acting the spiral structure, in reality, an
influence onto the star distribution (“adiabatic heating”) of the gravitational
noises with an isotropic spectrum, but not of the spiral density waves, was
considered. The latter are most probably narrow one-dimensional wave
packets (m = 2, k, € [k, k.o + Ak,], Ak, < k,q). A deformation of the distri-
bution function (which has a more complicated character) under the in-
fluence of such spiral disturbances may be determined from the formulae
given in the work [32%] (see Section 1.3, Chapter VII).

4.2 Influence of a “Black Hole” at the Center of a
Spherical System on the Resonance Interactions Between
Stars and Waves

Derive first of all the general formulae for the variation rate of the angular
momentum and the stellar energy of a spherically symmetrical stellar system,
due to their resonance interaction with the waves of a given frequency w
[34, 35“]. These formulae are quite similar to the respective disk formulae
(1) and (1') and may be derived by the “Lagrange” method used in [289] (see
§2, Chapter XI). We shall obtain them, however, by a somewhat different
method (more formal). By writing the linearized kinetic equation in the
action-angle variables [cf. (7) in §4, Appendix] and integrating it along the
path of the unperturbed movement of the particle, we readily find the
perturbation of the distribution function (formula (10), §4, Appendix):

1 ei(11w1+12wz+l3W3)

fl - — (7753- Z (I)lllzh w — (llgl + IZQZ + 1393)

Lilals

o o o
X ( 611 + L, = a, + 5 al, + cc.,

@

where fy(I, I,, I3) is the distribution function of stars, I,, I,, I, are the
actions due to the coordinates r, 0, ¢, respectively, Q; = 0E/0I; are the
frequencies, and

2r p2m p2n
®111213(11’ 12, 13) = J f dwl dWZ dW3 (Dl(Iia Wi)e—i(l1w1+lzwz+13w3).
0 0 0

®@, is the perturbed potential; w,, w,, w; are the angular variables.
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Using the equation of motion of the particle, we find

dL d d

e [ — 3
di <6w2 T 6w3)®1’ ®)
dE d (v? 0D,

Z-L(Lie)= -, 4
dt dt( * ) ot @

where ¢ = sgn(I5). For the angular momentum variation average over time,
as well as for energy, we have

d<L> dL d<E>
= fars 5 = [ar 1.5, ©

where dI” = dI, dI, dI; dw, dw, dwj is the element of the phase volume of
the system. By Egs. (2)-(5) one may obtain the sought-for expressions:

d(L> J ofo
N dl, dl, dl I, —
dt (2 )3 2 z;l< oI,
1Dy, 12
l l 1l2l3 , 6
X(2+03)|1191+IZQZ+I3Q3—CU|2 ()
dEY 2y ., J %
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|l Q + LQ, + ,Q; — 0’

where y = Im(w). In case the instability growth rate is small, y — 0, from (6)
and (7) we get

d{L) _ 1 [ o
o - T @a? dl, dl, dlsmzzhl al, (I + ol3)
X |(I),1,2,3|25(a) - LQ, - LQ, - 1,Q,), )]
d{E> 0 J
N dl, dl, dl l,
dt Qn?) 1T 3,1,22,3 oI,
X |(I)z,tzl3|25(w — 1LQ; = 1,Q; — 13Q,). ©

From (8) and (9) it is easy to see that the exchange of energy and moment
between the particles and the wave occurs on the resonances w = [,Q, +
[,Q, + 13Q;. We turn now to the variables E, L, L from the action variables
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I,, I,, I in Eq. (8), then for the distribution function F = F(E, L) we
obtain

d{L> _ 1 J‘J’ dE dLdL, 5_F , OF
o =T G a, mzﬂa 0= (5 + ol3) + (I, + oly) L

X |(D1,1213|25(0~’ - 1LQ; — L, — 15Q;). (10)

With respect to the frequency spectrum of waves, which may be excited in the
system, one may make some assumptions which appear to be natural. We
deal with the spherically symmetrical stellar systems (galaxies of the type
E0'! or spherical clusters of stars) in which, according to observations the
stellar orbits are very much elongated in the radial direction. Such a system
may easily be unstable “by Jeans” with respect to “merging” of the neighbor-
ing nearly radial orbits of stars: the velocity dispersion in the tangential
directions, which make the system stable, in this case may turn out to be
insufficient. It is clear that the development of this instability will “heat up”
the system in the transversal (toward the radius) directions, so that finally we
probably will have a spherical system brought to the stability boundary with
the waves excited in it with the frequencies'? w ~ 0. Assuming in formula
(10) that w = 0, we have

KLy 1 H dE dL dL, L OF
i X (2 +aly)* o7

Ql 111213

. OF
X 1@, PO + bR + 1,Q) >0 if=-> 0. (1)

The location of the resonances for w = 0'3 is determined by the frequencies
Q, , 3(E, L), ie, by the equilibrium model of the system; the values @,,,,;,
may be found by the formulae derived in §4, Appendix.

Let us now take into account the effects caused by the presence of a “black
hole” at the system center. Let us suppose that a “hole” has really formed at
the center of a galaxy. It must be formed by stars with small angular momenta,
which leave the system of stars in the vicinity of the central body. As a
result, the immediate vicinity of the “hole” is enriched with stars with near-
circular orbits; i.e., in the vicinity, in the region of sufficiently small stellar
angular momenta, we have 0F/0L > 0. The latter condition is the necessary
condition for the kinetic loss-cone instability (of course, for waves with nega-
tive energy, the necessary condition of the instability has an opposite

1 The qualitative conclusions are valid also for other galaxies of the elliptical type, as well
as for spherical components or nuclei of spiral galaxies.

2 In the general case, the eigenfrequencies of a spherically symmetrical system should be
determined by the numerical solution of dispersion equation (23), §4, Appendix.

13 Note that in the Coulomb potential Q,(E) = Q,(E)so that in this case all the stars formally
are resonant (for corresponding I, 15, I3).
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sign), leading to an abnormally rapid (compared with collisions) filling
of the loss cone in momentum space. This means that a stellar flow onto
the “black hole” can considerably exceed a similar flow caused by star—star
collisions. Since the accretion stellar flow onto the central body is responsible
for the observed radiation flux from the central region, the existence of a
loss-cone instability imposes an upper limit on the central body mass.
Readers interested in more detail of the physics of the kinetic loss-cone
instability, its consequences, and in some figures connected with applications
are referred to the paper [39°4].

4.3 Beam Instability in the Models of a Cylinder
and a Flat Layer

It is easy to show (for example, by the method described in §4, Appendix)
that the variation rate of the energy of resonance particles in a gravitating
cylinder with an infinite generatrix is given by the formula

0 oF oF
= __Jffdll dIsz <1611 6_2+kzgl;)

X |¢k,l,m'25(w — kv, = 1,Q — 1,Q,), (12)

where the wave with a frequency w and the wave number k, along the
generatrix (z) is considered; F = F(I,, I,, v,) is the distribution function;
the remaining notations have the same meaning as those in Section 4.2.
On the other hand, the wave energy

oF OF  OF
dl, dl, d L
H Iy dl, dv, (1611 012+kzau,>

1
o — kv, — IQ; — mQ,|*"

X |(Dk,l,m|2 (13)

Formulae (12) and (13) are valid for arbitrary cylindrical models; as k, — 0,
(12) and (13) coincide with the respective formulae in Section 4.1. On the
basis of (12) and (13), the kinetic instabilities in these models may be in-
vestigated in the general form (the instability growth rate or the wave damping
decrement is y = — E/25E).

The case of axially symmetrical perturbations (m = 0) of a cylinder with
stellar orbits close to circular (epicyclic approximation) is very simple.
Then, considering the perturbations with sufficiently small k,, the wave
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energy may be calculated approximately by omitting in (13) the term pro-
portional to k,, i.e., by assuming the perturbations to be “flutelike”:

w? o, 41°Q
Ez—é}?z—fj-dlldlz ol(DkIM|2|__—2_:j—l—2_;_i§?7
(14)

fo = fF dv,.

With the natural requirement that 0f,/0I; < O from (14) it follows that
OE > 0. Consequently, the wave will be unstable only when the resonance
stars, on the average, lose their energy in their interaction with it, i.e., if
E < 0. The distribution function is F = F, + F,, where F,, corresponds to
the basic plasma (“background ) and F,, to the beam. It is evident that if the
velocity of the beam V is high as compared to the thermal velocity of the
stars of the background Vi, then the contribution to E of the resonance
interaction of the waves with the phase velocities w/k, ~ V!* with the stars
of the background may be neglected (because there are practically no stars
of this kind). After that, there remains only the effect of the interaction with
the stars of the beam, and it is evident that such a situation appears to be
possible only due to the formally infinite extension of the cylinder along the
z-axis; in case of finite systems, the situation is quite different, cf. Section
4.2.

Consider, for the sake of simplicity, the case of a sufficiently narrow beam
in the velocity space, k,|Av,| < max(Q,).!° In this case, any one resonance
practically “works,” with a fixed | (dependent on the value k). For the
Cherenkov resonance [ = 0 (w = k,v,) we get

1

E = 271; ( )k2 J‘J\ dI dIz dl)z a |(Dk 0, 0|25((D vz)’ (15)

so that E < 0 (which means instability) under the condition that for the wave
in question (0F,/0v,)|,,=ox, > 0. For other resonances (I # 0), a definite
contribution is made by the term [in (12)] proportional to 6F/dl,, and the
calculation gets somewhat complicated; in the general case, one has to specify
the distribution function of the beam F,, to know the equilibrium state
determining Q,, Q,(E, L) and the values of the frequency w of the flutelike
mode in question.

14 Note that among the eigenfrequencies w of flutelike oscillations of cylindrical models
there is always w ~ Q, (cf. §5, Chapter II). For such waves, the phase velocity w/k, may be
arbitrarily high (for respectively small k,).

15 The Jeans instability in both subsystems may here be practically completely suppressed
(cf. §2, Chapter II).
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For the model of a flat gravitating layer the formulae similar to (12) and
(13) have the form

. bt OF oF
E = —wffdldvxngo (na + kza_ux)

X Iq)k,nlzé(w - kxvx - nQ), (16)
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where the distribution function F = F(I, v,), I is the action associated with
the coordinate perpendicular with the layer, Q = 0E/dI, the wave ~e™**.
The analysis of the beam instability for dF/0I < 0 in this case is performed
(very simply for the Cherenkov resonance n = 0) practically in the same way
as for the cylinder, and the same results are obtained. Therefore, we shall
not consider this point separately but consider, on the basis of formulae
(16) and (17) a somewhat distinguished case of a homogeneous flat layer ; for
the case of a homogeneous cylinder with circular orbits of all particles
(§1) one may consider by the analogy.

The distribution function of a homogeneous layer with the thickness
h = 1 and density p, = 1 may be represented in the form (§1, Chapter I)

Fo = @o(v:)X(1 — 2 — 03)—1/29(1 - z% - Uzz),

where 0 is the unit step function, 4nGp, = 1, G is the gravitational constant;
for the homogeneous cylinder with circular orbits Fo = ¢o(v,)0(E — LQ), Q
is the angular velocity of rotation of the particles. The derivative F ,/0E
in both cases does not have a definite sign everywhere; in case of the layer,
moreover, the integrals in formulae (16) and (17) are formally divergent and,
for example, formula (17) for the oscillative energy at k, = 0 should be
written in the form

o © 40 9|0,
5E——é;defo(E)n§0 Py (18)

Since, below, in the consideration of the wave-beam interaction we restrict
ourselves by the Cherenkov resonance (n = 0), formula (16) again yields

. F
E=— (I?)ki f dI dv, | ®, |2 ‘ZU” 8w — ko). (19)

The sign of the wave energy from formula (18) is not determined without
calculations; however, from (19) it is easy to see that instability is present for
any sign of JE: if 6E > 0, then all the waves with such k., for which
(OF/00,) |y, = o, > O, are unstable; if SE < 0, then those k, are unstable for
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which (6F,|0v,) . =wi, < 0. By the way, in the simple case in question, we
know (cf. Problem 2, Chapter I) all the eigenfrequencies and eigenfunctions
for all “perpendicular” oscillations (k, = 0): ®{’(z) = P, ,(z) — P,(2) and
P,(z) are the Legendre polynomials, n = 0, 1, 2,---. Therefore, analytical
calculations here may be performed to an end, and, for example, the growth
rates of the beam instability may be obtained. The values of ®,(E) involved
in (18) and (19) are defined as the coefficients at ™ (w is the angular variable)

in the expansion of the potential @,(z). Since z = \/2E cos w, E = I, and
according to the addition theorem for the Legendre polynomials [42],

P,(\/2E cos w) = P,(i/1 — 2E)P,(0) + ZIF((n+ ::11))

x P /1 = 2E)PXO)e™ + e~ ™**), (20)

(the Pj are the associated functions), then

o, = L3 =P p 0Pt /T-2D)

I'h+3+k)

Tn—k+1)
F(+k+1)P(0)P(«/ 2E), k#0,

@y = Pyy2(y/1 = 2E)P,.5(0) — P,(/1 — 2E)P,(0), (21)

where |k| < n + 2. Take, for example, the case n =0 (k =0, +2) cor-
responding to homogeneous extensions—compressions of the layer o= ﬁ,

and determine the sign of the wave energy. Since ®, = —3(1 — E) and
@, = 3E, then
| 1 1 2
~% - =—-=-54>0.
OE ~ w de EF(E)((w 7 @+ 2)2) 73 >

The beam instability in the model of the homogeneous cylinder with
circular orbits of all the particles was earlier considered in §1. So we calculate,
for comparison, by the method described above, the increment of the beam
instability for this case. As the disturbed potential ®; = Jo(k;R) and

R=./a—bcosw, a=1,+2l, b=2/I,I, + 1} then, using the
addition theorem for cylindrical functions [42],

Jo(k R) = Jokyip)olkir) + ) Jikop) (kor)(e™ + e™ ™),
I=1

where r = (\/a + b + /a — b)/2 and p = ((Ja + b — \/a — b)/2, we ob-

tain®, = ®_, = J(k, p) - Jy(k_r). In the limiting case of the cylinder with the
circular orbits

I,-0, a»1I,, b-0, r—>\/5—>\/7_, and p—0.
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In the sum for SE (as well as for E), then there is only one term (we consider
Cherenkov resonance | = 0):

40)2 1
OF = pomhd oy oy [l TG /T 22)
1
E= — 4peFilucon, | dlI3ki/To) @3
0

Consider some rotational oscillatory branch with k, 2 1. Fork, —» 0, k, is
determined from Jy(k,) = O (see §2, Chapter II). In this case the integrals in
(22) and (23) are identical [ =J2(k,)] [42], so that the increment of instability
is equal to

_E_ da/n LKV 2=k V)?
VETBET TR\ 2)T K

(w? = 2, vy is the thermal velocity of the beam with Maxwellian particle

distribution, and « is the ratio of densities of the beam and the main system),

which is coincident with the results of calculations in §1.



CHAPTER VII

Problems of Nonlinear Theory

Either the well was very deep,

or she fell very slowly, for she had plenty of time
as she went down to look about her

and to wonder what was going

to happen next. ..

L. CARROLL, Alice in Wonderland.

In this chapter we shall touch upon some important problems of nonlinear
theory of density wave evolution in a gravitating medium. Nonlinear theory
is in its first stage only. It faces, for example, the development of gravitating
medium turbulence theory, and now the tasks set forth in this chapter are
its unfinished foundation.

§ 1 Nonlinear Stability Theory of a Rotating, Gravitating Disk

1.1 Nonlinear Waves and Solitons in a Hydrodynamical
Model of an Infinitely Thin Disk with Plane
Pressure [90a, 20, 89a, 31%¢]

1.1.1. Statement of the Problem and Initial Equations. The question of the
possibility of stationary solutions in the form of solitons travelling in the
gravitating disk plane is extremely interesting in itself and possibly as one
bearing a relation to the galactic spiral structure problem (cf. Chapter XI).

In this section we shall investigate nonlinear processes in the infinitesimally
thin, rotating disk near its stability boundary [|w?| < Q3, where w is a
frequency of the perturbation wave and Qq(r) is an angular disk velocity].
For the sake of simplicity we restrict ourselves to consideration of a short-
wavelength range of spectrum.

37
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Let us proceed from the system of equations commonly used in the analysis
of perturbation located at the plane of a gravitating disk (v, = 0) (see
Chapter V):

O Zo%r Yo o ¥ _ - °F
at+’6r+r6(p r or aor’ M
Wy y O L Uve_ 10V _10p @
ot "or r dp r rdp rodg
do 10 10
Fn + ;E(rv,a) + ;5(;(1)(,0) =0, 3)

2 2
120 ( ad)> 100 09 = 4nGad(z). “4)

rar\"or) TR e T
® = ®(r, ¢, z,t) is the gravitational potential, ¥ = ¥(r,¢,0,t) is the
gravitational potential at the disk plane, and p is the plane pressure (a usual
pressure we denote by a letter P). We shall consider the oscillations (and the
process of instability itself) to be adiabatic. Then for a thin disk, as was
shown by Hunter [233] (see Section 1.3), one may write

c? ag\* 2 p, 2
== go|— =x—, =3—-- 5
P xao(%, GExgl  x=3-- ©®)

where y is an adiabatic index (P/p” = K = const). Stationary quantities
have an index 0.
Let us represent quantities X = (v,, v, ¥, 0) in the form

X =X°+ X,

where X© describes a slowly varying part of X and X corresponds to a
quickly varying part. Assuming that |X| < |X°| (20 = 0) and also that
rd1n X/0r > m? (the last inequality corresponds to tightly wound spirals,
where m is a number of an azimuthal mode), we obtain from (2) and (3)

b, = — ;; Lp,, 6)
_ %0 %,
- %0 ar ’ (7)

where the operator L = 6/t + Q,8/0¢ [x, = (l/r)(a/ar)(rvg)] is intro-
duced. Substituting (5)-(7) into (1), we get

~

o o ) oy
L*p, = (csz pi 2Q, x0>v¢ + %5

x—2 ,0[(00,\* =—3(0D,\° v2
+ 2%, G or [(ar) + 3%, \Or %o r’ ®)
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In deriving this equation we have used the condition of a slow change in the
values X in comparison with the disk rotation frequency Q,: 0 In X/ot
< Q,. On the basis of the last inequality, the nonlinear term v, dv,/0r in (1)
is omitted. The appearance of nonlinear summands in square brackets is
associated with the term describing the pressure force.

1.1.2. Nonlinear Dispersion Equation Near the Stability Boundary. Restricting
ourselves in (8) only to linear terms and taking into account the relation
between 7, and ¥,

- 27Go, k

y=—i o, sgn k, sgnk = —, )
%o ° k|
for perturbations of the form

By(r, 1), (1, 1) co e iortik, (10)

we arrive at the local Toomre dispersion equation
(0 — mQy)* = > — 2nGo,|k| + c2k>. (11)

Let us consider,' first of all, the range of disk equilibrium parameters
corresponding to dispersion curves close to the curve which touches the
abscissa axis (see Fig. 93). Obviously, the two following conditions, w?(k,,)
= 0 and dw?(k,)/0k = 0, are satisfied at the touching point k = k. Hence
one may obtain k, = x/c; and % = nGoy/c,.

We shall investigate nonlinear evolution of the small-amplitude wave with
the wave number k, near k,, |(k, — k,)/k,| < 1. Deformation of such a
wave is due as is known to the production of multiple harmonics, i.c., of
waves with wave number nky (n = 0, 1, - - -). Consequently, let us represent
disturbed quantities in the form of Fourier expansions:

7 =Y v,explinkor), =Y W, exp(ink,r). (12)

Substituting (12) into (8), taking into account (9), and introducing the
notation

o = 2Qy%, + Pk3c2 — 21Ga°l|k,|, (13)

! The general case is considered at the end of this subsection and in Problem 1.

0 PR \K k

/\ k = k§
3 ~

~

Figure 93, Dispersion curves for rotating collisionless disks; 1 and 2—for nearly mar-
ginally-stable disks, 3—for a “cold” disk. Pointed lines correspond to different be-
havior of v?(k) for gas disks at large k.
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we obtain the equation

Y. L2u(t, p) exp(ilkor) = — 3 wiv(t, @) explilkor)
1 1

x -2
2%,

21: lko cf{i Y nki(l + myt, @)v(t, @) expli(l + n)kor]

Y k3nm(l + n + mv(t, @)v,(t, @)ou(t, @)

n,m

®x—3
3x,

xaﬂm+n+mmﬂ}+?zmmwMaquW+mm4
Ln
(14)

Equation (14) may be written in the form Y| 4, exp(ilk,r) = 0. The equation
A, = 0 describes the linear approximation considered by Toomre [333].
The equations 4, = 0 and A, = 0 are the following:

%_

2 .
%, k3 c2[4iv,(t, @)v_ (2, @)

z:2”10’ (P) = _wlfovl(t’ (P) +

x—3 X

= kolvs(t, )Pt )] + 2=2 0200, @) (5 9), (15)

72 2 *¥—=2 3 3. o -
L?v,(t, 9) = — w3, v2(t, @) — 7 ks cs2ivi(t, @) + Tvl(t, ®), (16)

0
where
W, = #3, (17)
1 2—u X

t, Q) = i k3c2 + 221, o). 18
v,(t, @) fo+w%ko (l %o 0Cs T+ r)vl( ®) (18)

Taking into account that y* < w},,, #3 = k3cZ, kor > 1, let us transform
(18) into the form

22 — %Q
ko

2ko

v(t, @) = (. ¢). (19)

Substituting this expression into (15), we finally obtain the following non-
linear equation of velocity oscillations of a gaseous gravitating rotating disk
with a small but finite amplitude:

Q2 — %)k3Q, [8(2 —0)QKo 3 %):I

L2,(t, ) = &, v,(t, 0) + -

0 W32k,

X |oy(t, @) Pvs(t, @).  (20)
The nonlinear dispersion equation corresponding to (20) has the form

(@ = mQo)* = —7f, — 332 — 0G — 0)v, I* @1
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From (20) or (21) it is seen that the growth of the perturbed velocity
amplitude due to instability stops at the level

oy |? = Vig¥o 22)
32 — 02k — 3’

while the amplitude of the perturbed density increases up to the value

loy? _ k7 Vio

63 K332 — 0)Qoxelx — 3) (23)

1.1.3. Solitons. Let us show that Eq. (20) has a stationary solution of the
soliton type [90a].

Let a narrow wave packet be excited in the vicinity of the point kg,
Ak/ky, < 1. Taking into account the dispersion of wave numbers, it is not
difficult to represent the function y2(k) in the form of a series in the vicinity
of the point k,, where this function has a maximum

2 2 1 0%y, 5
Yk=3’ko+§a€7k=k(k"ko) + e (24)

As follows from (11), 1 8%y, /ok* = —c2, k — ky = k, — ko, = k,, since
k, > k, = m/r. Hence, instead of (24) we have

Yo = Vi — KirCl. (25)

Substituting in (20) 92, for y; and making use of the expansion (25),
proceed in (20) to the coordinate representation. For this purpose, we multiply
term by term (20) by exp(ik,r) and integrate over k,, assuming that

f vy, ) expliker) dky = oy, 0).

As a result, we obtain the equation
2 = k3 Qo

0

L?oy(r, 1) = Oy + c2A)vy(r, 1) + 3

x G =)oy, )P0y, t), (26)

where A, = 6%/0r2.

We turn now to the local rotating frame of reference and select the co-
ordinate-temporal dependence v,(r, t) in the form v, (r, t) = V(&) = V(r — ut).
In (26) we proceed to the variable £. Finally, we obtain the equation

o’ d’V
2 T VBV @)

where

o =ut—c, B=32-xx- %)& k3. (28)
Xo
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The solution of Eq. (27) is

V() = /220 sec —y—o—é—.
() = /275 sech NI (29)

Thus, as is seen from relations (27)-(29), in a rotating gravitating disk,
the existence of two types of solitons is possible.

(1) The supersound solition,«* > 0, which can be produced and propagated
in a weakly unstable disk, y7, > 0 (Fig. 93). Here the equation of state of the
disk must satisfy the condition 2 > 0. The condition f? > 0 corresponds
to the adiabatic index y, which lies in the range 2 < y < 2.

(2) The subsonic soliton, a> < 0, that can propagate in a stable (according
to Jeans; cf. Fig. 93) disk, y,fo < 0. Then, the equation of state of the disk
must satisfy the condition g% < 0, which corresponds to the adiabatic index
y <3

1.1.4. Nonlinear Dispersion Equation in the General Case. In concluding let
us note that in Problem 1, in the same model we shall derive [31*/] the non-
linear equation generalizing (21) for the case of an arbitrary location of the
wave number k (not necessarily corresponding to the minimum of the curve
w? = w?(k)and not necessarily to the system being at the stability boundary).
The derivation is performed by another, possibly simpler and more obvious
method (in the Lagrange approach by using an accompanying locally
Cartesian coordinate system x, y). Let us write here this equation for the
Fourier image £,(f) of one-dimensional displacements of particles

E(xos 1) = 2 &ilt)e™
k

(x, is the Lagrange coordinate of the particle)

d2

S+ 0 ) =i Y Forninbabiot 2 Qiokikaks kil Cesr  (30)

dt ki, k2 ki, ka, k3
where w? = %3 + k*c? — 2nGay k|, %, is the epicyclic frequency, ¢, is the
sound velocity, ¢ is the surface density, G is the gravity constant, and

klk
Fikn, = 5k,k1+kz[27tG"o<— % + k1|k1|)

k> _2
+ c§<? K+ % kklkz)],

Okokr ko ks = Ok kg +ka+ks {Z”Gao(—%k2|k| + 3lky + ko P — 31k, )

w—2 ®—2
Ly kk,(k, + k3)3 - Wkk1k2k3

e [ék“ +

H —

— 4k + k)t + Bkt -
V4

2 ks + k2>2k1k2]}
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Hence, in particular, we find the following generalization of Eq. (21): the
nonlinear dispersion equation which can be used in the consideration of one-
dimensional wave packets located near the arbitrary wave number &:
k2
2 2
0= 0f - 55—
* w2 (w3 — 4w})

{8[(2% = DcZk? — xnGo,y|k|])?
= [(@x = 1)(Sx — 2)cik? — 4’nGoo | k|(w}, — 4wf)}|ék|2-

Let us point out the simplest partial case of a nonrotating disk at the stability
boundary:

c2k*
w? =~ 2~ Dl = 2)1&l*

Here one also can construct a solition of the envelope, with an arbitrary
wave number of “filling” k,. For real w(k,), these solitons must evidently
displace along the disk (in the radial direction) with a group speed ¢, =
(dw/dk),, . For k, corresponding to the curve minimum w? = w?(k), we arrive
(by continuity) at solitons at rest (c, = 0), which are a partial case of the above-
treated soliton solutions (for u = 0). For dw/dk = 0, there is degeneration:
there are solutions with arbitrary velocities of propagation wu.

1.2 Nonlinear Waves in a Gaseous Disk [31%]

In the previous section we described some results of the basic work [90a],
which for the first time considers the effects of weak nonlinearity in a rotating
gravitating medium. The model of an infinitely thin disk (kh < 1;h is
the thickness) adopted in this work is justified in the consideration of a
gaseous layer, which is within a more massive (stellar) constituent?: the
dispersion curve w? = w?(k) has a minimum at kh ~ p,/ps (p, and pg are
the volume densities of gas and stars). However, for purely gaseous systems
(for example, the protoplanetary cloud of the Solar system) being at the
stability boundary, the infinitesimally thin disk model is not valid: from the
equilibrium condition in the vertical direction it follows that 4nGpyh?
= 2nGoyh ~ . Since at the stability boundary the wave number k =
ko ~ nGay/c?, then it turns out that kh ~ 1.

The construction of the consistent theory of nonlinear oscillations of a
gaseous disk with a finite thickness presents a significantly more complex

2 For detail see §5.1, Chapter VII. One may also consider that the infinitesimally thin disk with
plane pressure (p, = 0, p, # 0) leads to a model description of a real strongly flattened stellar
system of the type of spiral galaxy. Here, however, the question arises of the magnitude of the
“effective” adiabatic index y (cf. Section 1.3). Finally it is necessary to say that, in accordance with
the notation of Churilov and Shukhman, for the gas disk immersed into more massive halo, the
relation between the plane (x) and volume (y) adiabatical exponents changes: % = 3 — 4/(y + 1).
This formula may be obtained from the dimension analysis if we take into account that the
gravitational constant G must occur in the given case only in the combination (Gp,).
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task, which must be solved by numerical methods. Analytical solution
happens to be possible only for some partial values of the adiabatic index 7,
for example, for y = 1 and y = 2 (for more detail, cf. Problems 2-4).

Consider now small oscillations of a flat gaseous layer with the adiabatic
index y. Corresponding equilibrium models as well as linear oscillations for
three partial values of the adiabatic index y = 1, 2, oo are considered analyti-
cally by Goldreich and Lynden-Bell [210]. Below we construct, now basically
by numerical methods, a nonlinear theory of oscillations of these models for
any values of 7.

Initially we have the system of hydrodynamical equations and the Poisson
equation

op

o + div(pV) = 0,

v
5 T (VVV = 2vQ] = -4,

A=¢+ R, A¢=4nGp,

(1

2 y—1
(A =const)  quantity R = 4 p = G (ﬁ) , y>12
Y= y—1\p.
p. and ¢, are the density and the sound velocity in the middle plane of the
layer.

Let the 0z axis be directed perpendicularly to the plane of the layer and all
the values be dependent on x and z (in the stationary state, however, only on
z). We introduce the dimensionless quantities, &, {, 1, o, ¢, ®, %, A, v in the
following way: z = a(, x = af, T = wgt, 6 = p/p,, ¢* = c2/a*w}, ¢ = p/a’w},
% = 2Q/wo, A = Aa*wi, v = (u, v, w) = V/wya, where o? = 4nGp,, ais the
semi-thickness of the layer. In the stationary state, from the z-component of
the Euler equation and the Poisson equation, we obtain the equation [210]:

2 d*ey !

y—1 d¢?

+O'0=0,

whose integration, with due regard for the fact that, at { =0, g, = 1,
doo/d¢ = 0, yields [T(x) is the gamma function]

d ., 9=1 [ —— TG -1p
EEO'OI___T\/; 1 0'0, C——\/:r—(iT/y) (2)

Since, as follows from (2), asymptotically, as { - +1, g5 ~ (1 — {307,
o, may be represented in the form o, = f({)(1 — ()Y, where f({) is
the function regular on the segment [ — 1, 1] together with its derivatives.

3 For y < 1, the thickness of the disk is infinite; note also that the adiabatic link between the
equilibrium pressure and density is generally not necessary and is assumed (same as, e.g., in
[210]) for the sake of simplicity.
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Let us consider the perturbations symmetrical with respect to the plane
z = 0 (of Jeans type) near the stability boundary w ~ 0* (w is the perturba-
tion frequency). Assuming that 6® ~ ¢ d/0t ~ ¢* (6@ is the potential
perturbation, ¢ is the small parameter),’ we shall obtain from (1) the following
estimates of the orders of magnitudes: 6o ~ ¢, u ~ €3, v ~ ¢, w ~ &3, the
displacement of the disk boundary n, ~ & System (1) then gets simplified:

v (06  O(ou) 0o d(ou) n? [0%c  0*(ou)
fo”’c(éﬁ % ) * ”(W % ); ?(Faﬁ o )c =
(3)
1 [3%A 0’A oA
u= ";(61654'“6—52‘), g=0, (4)
0’0 9*d

6_52 + a—cz = 0, (5)

do o’ 2=9 2t-pa AN

6o ((I)_A)-{_Zc4 o (@ =N
-GN 0w - Ay, ©)

We derive the boundary conditions for the values of jumps of the potential
® and its derivative d®/0z at the unperturbed boundary z = a. We deal here
with a common—for such a kind of problem—representation of the total
perturbed potential as due to, first, “local” density changes p,(x, z) =
p(x, z) — po(z) within unperturbed boundaries (|z| < a) and, second,
by induced, at the old boundary z = a (and, symmetrically, at z = —a), a
simple and double layers. In essence, we determine below the powers of the
latter. We write for that purpose the total (dimensionless) density o with due
regard for perturbation symmetry, in the form

=00+ 1+n—-0C—-1-n)], ()

where 6 is unit step, 5 is the boundary displacement. Expanding the 6
function near z = 1 in a series in degrees # up to third order inclusively and
then substituting ¢ into the Poisson equation, we obtain

ol IR

37 T m = O - 6= D+ 03¢ - D — P - D)

+ 310" = D1, (%)

where 6, &', " are the é function and its derivatives.

4 Goldreich and Lynden-Bell in [210] have shown that «? is real for the system of (1).

5 Derivative 8/dt c> w, where w is the “full” (taking into account nonlinear correction)
frequency; the ordering scheme assumed here suggests that w? is a value of greater order of
smallness than ¢? (for example, one may assume @ ~ &2).
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The first boundary condition (for the jump 0®/d() will be found by inte-
grating (5') over { within the limits from (1 — ¢) to (1 + &), —» +0:

62 =pnlo + 1 @ + }. 2 ?ig

| =M T A
Multiplying (5) by ({ — 1) and integrating within the same limits, we easily
find also the second boundary condition

®)

t=1

_ 20 N0
(@] = ”<2+3ac>

The continuity condition of the pressure on the boundary of the disk [p] = 0
can be written in the form

)

t=1

o 10 12

Sinceas|{| = 1,00,/00 ~ (1 — ()2707D,5%6,/00% ~ (1 — (2372071,
and 0%0,/003 ~ (1 — (1)@ 30~1 then within the interval of interest to
us 1 < y < 2 the right-hand sides of (8)-(10) tend to infinity as |{]| — 1
(correspondingly for y > % and y > %). To climinate these fictitious diver-
gents (they result from the displacement of the boundaries of the disk),
one may, for example, use the following approach. Assume that there is a
small pressure P, of the “halo” surrounding the disk. Then the right-hand
side of (3) becomes

— 0,(0n/0t + udn/od)|,=, [o, = (yP,/(y — D)c)Vo=1],

the right-hand side of (10) will be substituted for ¢, and ¢, will be presented
in the form oy = f(O(1 + a — {HYO™Y o = y[ f(1)]' ""P,/(y — 1)c?. Then
one has to perform all calculations and in the final formulae put that P, = 0
(by preliminarily reducing them to the such form when this limiting process

makes sense).
The perturbation periodical in¢ may be presented in the form (c.c. means

complex conjugate)

= 0. (10)

{=1

A = (AWe*e=iot 4 o) + [(APeke~2iot L cc) + AO] + .-,

where A©, AV, A are the constants (since dA/0{ = 0). We choose A as
the amplitude of perturbation and seek the solution using the perturbation
theory within an accuracy of (A")3.

1. Linear approximation. Expressing from (6) o'V’ through (@) — A®),
we find the solution for the Poisson equation (5) with the boundary conditions
of (8) and (9):

O = ¢, (HAM. (11)
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S

T/x?

T /n?

Figure 94. Nonlinear shift of the stability boundary determined by the linear problem
(1): 2—stabilization ; 3—destabilization.

Then, substituting (11) into (3), we obtain the linear dispersion equation
(for @ = 0) in the form

i g : 7
Fom 3800 Fo= [ @%@ -0 Zo=[odt= [C
»® 0 C Y

0
(12)

The behavior of the function f(k) = F,/k? is qualitatively identical for all
values of y [210] and is shown in Fig. 94. From this figure it is seen that
Eq. (12) [f(k) = Zo/%*] has solutions only for fairly small » (angular
velocities of rotation). If (12) has two solutions, then the region k, < k < k,
corresponds to instability (w? < 0), and the regions k < k, and k > k,,
to stability, * > 0. At some critical value of x = x,, there is only one solution
of (12) k = k,, which corresponds to the minimum f(k).

2. Nonlinear corrections. In taking into account the nonlinear terms (up
to cubic), instead of (12), we have the nonlinear dispersion equation of the

form
2

k
Fi = = Zo = AIAVP, (13)

and the stability boundaries will be somewhat shifted. Nonlinearity exerts a
destabilizing action if the equation f, (k) = F/k* — A|AW[*/k? = X/
has two real solutions and a stabilizing action, if there are no real roots.
Due to the smallness of A", one can write near k = k,

F, %, 13 2 A e
k2 w: T 20K k=k*(‘5k) _E'A I
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Figure 95. Dependence of the critical wave number k. (dotted line) and the coefficient 4
in the nonlinear correction—see Eq. (13) (solid line) on the adiabatic exponent y.

Since (6%f/0k?); —;+ > 0, then the sign (6k)? is defined by the sign of A4: for
A > 0, nonlinearity plays a destabilizing role, while for A < 0, a stabilizing
one.

The system of equations (2)-(10) was solved numerically. First of all, the
stationary density distribution ¢, was found. Then, in each order with respect
to A (up to third order inclusively) the solution to the Poisson equation
(5) was found with the right-hand side of (6), and with boundary conditions
of (8) and (9). Then, by using (6), the corresponding density perturbation was
calculated and, together with the velocity perturbation u found from (4),
was substituted into (3). As a result, we have the following equations:

First order:

kz
Fk—?20=0. (14)

Solving this equation, we find k, and s, (for results, cf. Fig. 95):
Second order:

(Fyi, — 4F, )A® = BAW, (15)

(The value A is not necessary in further calculations.)
Third Order:

kz
(Fk - 20) = DA® — CA"’, (16)

The right-hand sides of (15) and (16) are calculated at k = k, (note that in all
problems of this type D = 2B). Solving (15) with respect to A® and substi-
tuting into (16), we obtain the nonlinear dispersion equation in the form (13),
where A = BD/(F,,, — 4F, ) — C. Computations (cf. Fig. 95) showed that
in the range 1 <y <2 for 1 <y <y, there is destabilization (4 > 0),
while for y, < y < 2, stabilization (4 < 0 and y, ~ 1.404 ~ 1).°

6 Note that numerically this value proved to be close to the value y, = 3 obtained in the
previous subsection, where the case of an infinitely thin disk is considered.
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The cases y = 1 and y = 2 are peculiar ones for the numerical method
described above. However, in these cases it is possible to investigate analyti-
cally, which was just performed with the aim of control (cf. Problems 2—4),
For y = 2, the nonlinear correction is expressed through elementary func-
tions while for y = 1 the answer is in quadratures (by the way, being rather
cumbersome so that their computation demanded more computer time than
the complete calculation described above). As was to be expected (cf. Fig. 95),
nonlinearity has a destabilizing character for y = 1; for y = 2 stabilization
takes place, so that the nonlinear correction changes sign (a second time
after y = y,) for y > 2.

For a nonrotating layer (at its stability boundary) the calculations are
performed for y = 1 and y = 2 (in more detail, cf. also Problems 2-4). In
the first case, the nonlinear correction (~ A"?) happened to be zero. In the
second case, stabilization takes place. It should be expected that also within
thewholeregion 1 < y < y, (y, > 2)thecharacter of the nonlinear correction
remains stabilizing.

The main result of the investigation performed above is the determination
of the critical value of the adiabatic index y, ~ 1.404 for the rotating gaseous
layer. Only for sufficiently low y < y,, perturbations may increase up to
large values. Note the closeness of y, to the value of the adiabatic index of
the biatomic gas (y = 7/5 in normal conditions). Some possibilities of
applications of the results attained above are discussed in Chapter XI.

1.3 Nonlinear Waves and Solitons in a Stellar Disk [32%¢]

1.3.1. Derivation of the Equation for Nonlinear Waves. Consider an in-
finitesimally thin stellar disk, which rotates with an angular velocity Q. Assume
for the sake of simplicity that rotation is uniform: Q = const # Q(r), r is
the radius of the point in the disk plane (x, y). The distribution function of
stars in a rotating reference system is assumed to be Maxwellian

o = %0 o _ v 2_ 2 .2 1
7T p 2T ) v = vy + vy, 1)

where T is the temperature. The linear dispersion equation describing small
perturbations is conveniently written in the form of (23) of Section 4.1,
Chapter V,

kT - 1 _ Vi i " —x(1+coss)

= (1 smva2n ). e COS Vs ds). )
We recall the definition of the values involved in (2): k; = %?/2nGo,, is the
Toomre critical wave number, » = 2Q is the epicyclic frequency, v =
(w — mQ)/x is the dimensionless frequency, m is the azimuthal number, k is
the wave number that is assumed to be large, kr > 1, x = k*T/»? = k?p?,
and p? = T/»? is the square of the epicyclic linear size. The dispersion equa-
tion in the form of (2) is normally used in the theory of spiral structure of
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galaxies similar to our Galaxy [270, 271]. The qualitative behavior of the
curves v(k), defined by Eq. (2) is given in Fig. 93 for two different pairs of
parameters kr, T characterizing the equilibrium state. The disk is stable if

the parameter z = 2nGa,y\/2/T /x does not exceed the critical value z* ~ 2.652
(cf. Section 4.1, Chapter V). As z > z*, there appears the instability region
(cf. Fig. 93). If z = z*, the dispersion curve touches the abscissa axis at a
certain point k = k¥. The value k% can be determined from (2): k§ =
1.377%//2T.

The goal of further calculations is to obtain the nonhnear equation for the
potential harmonic ®,. To begin with, we derive the nonlinear dispersion
equation that generalizes Eq. (2), and this is done for an arbitrary value of the
wave number k. The situation is considered in more detail when the disk is in
the state close to the stability boundary, i.e., at z ~ z* either in a stable
(z < z*) or in an unstable (z > z*) region. Moreover, we shall mainly be
interested in the wave numbers k close to the wave number k, corresponding
to the minimum of the dispersion curve. In this case the small parameter of the
problem may be considered the value |w,, |*/#* = |v,|* < 1. At such
assumptions, we have the nonlinear equation of the form (20), Section 1.1.

In the local approximation used by us it is convenient to introduce
[210, 334] the locally Cartesian system of coordinates with the origin at the
center of the region of the disk under consideration rotating with an angular
velocity Q. The orientation of the axes (x, y) is arbitrary; for certainty one
may, for example, assume that the x-axis is directed along the radius r,
with the y-axis across the radius.

Let the potential perturbation have the form

D(x, 1) = Y, (D)™™ (@ = D*)).
k
Substituting ® into the kinetic equation
o 8f o of 0P of
a Tt ( vou,  "*dn,) ~ ax ov, )

(where it is assumed that in the x-direction, the potential ® changes much
more rapidly than along y), we can calculate the distribution function by the
iteration method. Assume that

F=fO+Y i (i=1%) (C)]
then ‘
o=+ 12+ 12, ©)

where the values f{!, f?, and f{> are linear, quadratic, and cubic in @,
respectively. Equation (3) is readily solved by the method of integration over
angle, by transforming to the variables v and ¢: v, = v cos @, v, = v sin @.

Integrating then (5) over velocities, we obtain the surface density perturba-
tion

o = o) + 0@ + o, ©6)
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where o), 6, o> are connected with ®, via relations of the form

1
0'1(< )= 00 Ay Dy, @)
2) _
o-l(‘ ) - 60 Z Bk,k;,k2®qu)k25k,kl+k2 (8)
ki, k2
3) _
o) = 0o Z Ck,kl.kz.ksd)kxd)kzq)k;‘sk,kl+kz+k3- ®

ki k2, k3

Ak, By ki ky> Cuokyiokaoks are the notations of the corresponding coefficients.
This expression for o, is further to be substituted into the Toomre relation
following from the Poisson equation (in the short-wave approximation) and
connecting the values o, and ®,:

O, = —(2nG/|k|)oy. (10)
We have
2nGo
k= — u (Akq)k + z By ky ko Pu, Do, O iy + 4
|k| kika
+ Z Ck,kl,kz,kgq)qu)kzq)kgék,k;+k2+k3)- (11)
ki, k2, k3

For the harmonic k = k, (arbitrary so far) we have from (11) within an
accuracy of cubic terms

2nGo,
o, =——F
o ko

+ (Cko,ko,ko, —ko + Cko, ko, —ko,ko + Cko, —ko,ko,ko)Qfo q);fo] (12)
Eliminating the value @,,, with the help of Eq. (11), written for k = 2k,,
_ (2nGoao/| 2k, DB ko, ko,

[Aio @i, + Bro, 260, ~k0 T Bro, - ko, 2k0) P 210 Py

o — ko (I)2

2ko 1 + (27'CGO'0/[2k0 l)AZko ko> (13)
we obtain [32%]

2nGo
(Dko = lk IO (Akoq)ko + Rkoq)kolq)kolz)' (14)
0
Here
R —C 2nGoy By, Dy
ko™ Mo 4 (2nGayo/|2ko Ak,
Bko = B2ko,ko,k0’ Dko = Bko, 2ko, —ko + BkOy —ko, 2ko>

(15)
Cro = Cig ko,k0, k0 T Cho,ko, ~ko,ko T Cho, ~ko, ko, ko*
Equation (14) (if it is divided by @, ) is the sought-for nonlinear dispersion
equation.
Some details of the derivation (rather cumbersome) of this equation are
given in §8, Appendix; also given are the expressions for the coefficients
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A, ..., D. Below, we shall need only their values at z = z* and k, = k¥ =
1.377 (we assume the units in which 2T = 1, ¥ = 1). To calculate them, one
has in the general formulae to switch to the limit v — 0, opening the un-
certainties to be presented. The expressions thus obtained are also given in
§8, Appendix. The integrals in them are computed, which result in the
following values for the coefficients of the nonlinear dispersion equation of

interest:
Ay, = —1.574, B,, = 0.230, D,, = 2B,,, 16)
Cy, = 0.206, R;, = —0.002, 2nGo, = 1.326.

From dispersion equation (14), one can switch to the corresponding non-
linear differential equation for @, with /0t # 0. This is easily done if one
bears in mind that, in the linear approximation, the equation has the form
62
Ewi (Dk -+ vf(Dk = 0, (17)
ot
where v} is the square of the dimensionless frequency

" 1 — I (k*/2)e "% — |k|/4nGa,

= = 1
Vi (n2/6)10(k2/2)e_k2/2 — jg e P Fes 2y fy o (18)
Finally, we obtain [32%] the following equation:
*P
sz + V0 = | O [ Dy, 19)

where

e % [n_; I()(%é)e_kg/z B 517—;J1te_k(2,(1-H:osx)/2x2 dx] (20)
0

The numerical value of the quantity g, turns out to be small: y, ~ 0.002.
Hence it follows that the essential role may be played even by a comparatively
small in mass, gaseous component. Since the velocity dispersion of gaseous
clouds in the Galaxy is small in comparison with the velocity dispersion of
stars, it may be suggested that the gaseous disk is “cold.” In this case, the
coefficients A,;, By, D,, and C;, for the gas similar to that used earlier for
stars, are
4k? 12v2k*
2=gz—p  Be=Di= 0 — D2 - 1)

21
6v2kS (1)

@ =D} - 1)
On the stability boundary B = D = C = 0, therefore, the role of the gas is

reduced mainly to the change of the critical wave number k¥, which now
must be determined from the equation

_ 2nGay, K2\ i 2 Oy

Ck=
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where o, and o, are the surface densities of stars and gas, respectively. The
nonlinear correction R, is determined by the expression (15), in which the
substitution A4,, - A,, — 4k*(g,/0,) must be done. For ¢ = o,/0, = 0.1,
we have R,, = —0.45. For the arbitrary ¢ < 0.05, we have k§ = 1.377 + 2,
(4nGa,)~ ! ~ 0.377 + 0.7¢, Ry, = —(0.002 + 0.85¢).

Equation (19) coincides in shape with the corresponding nonlinear equa-
tion derived in Section 1.1, where waves have been considered for an in-
finitesimally thin disk. For collisionless systems interesting to us, the “hydro-
dynamical” description is, of course, unfit. The reason is that, asis well known,
the approximate hydrodynamical description of a stellar system (of the Chu-
Goldberger-Low type,—see, for example, [46°4]) is correct only for kp < 1
(p is the radius of epicycle), whereas in our region of interest kp ~ 1.

The correct inclusion in the theory of gas is nontrivial, if arbitrary wave-
lengths are considered. The fact is that at wavelengths less than or com-
parable to the thickness h, the approximation of a gaseous infinitely thin
disk is no longer valid. But just that very case is realized in a purely gaseous
disk (see Section 1.2). Corresponding theory was constructed in Section
1.2 [314].

At the same time, for the description of gaseous subsystems in a galaxy,
the approximation of an infinitely thin disk is good since the wavelengths
A = 2n/k ~ 2n/k¥ of interest are much greater than the thickness of this
subsystem. For instance, for the Galaxy A4 >~ 2.5 kps and h ~ 200 pc. How-
ever, for the application of the theory to the Galaxy one must also take
account of the finite thickness of the stellar component.

1.3.2. Soliton-like Solutions. The most interesting class of solutions which
follow from Eq. (19) are solitons of the envelope. To obtain these solutions, we
assume, similarly to Section 1.1, that this equation is valid in some vicinity of
the wave numbers k near k = k,. In order not to deal with the complex values,
we can, without loss of generality, assume that ®, = ®_, = /2, where
¥, are the expansion coefficients of the potential in the Fourier series in
cos(kx). We have, near k = ko: v} = vi, + c¢Zu?,c2 =042k — kg =, =
(%, %), |%| < ko. Integrating (19) over x with the weight cos(xr), we obtain
the equation for the envelope ¥(x, y, t) (®(r, t) = Y(r, t) cos ko x]:

o’y - LY "

R ViU — ¢} el VP, = (20)% (23)
Let us seek the solution for Eq. (23) in the form:

¥ = Y(x cos o + ysin o — ut) = Y(z — u).

The solutions of the soliton type are possible if vZ, > 0, u> — ¢ cos> a < 0.
We denote:

v 1 i
= g (24)

2
/(cf cos? o — u?) = A
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Then the solution has the form:
2
ol ) = 2= Mo

cosh[(z — ut)/A] T Oh

(25

1.3.3. Stability of the Solitons. Investigate the stability of the soliton obtained.
For that purpose, turn to the frame of reference, in which the soliton is at rest.
In this system, Eq. (23) has the form
0? 0*
o(-a—g — (c? cos? a — u?) 7=

We linearize this equation assuming that

¥ = Po(2) + y(2)e M Hiv,

where w is the coordinate in the direction perpendicular to z. For iy, we
obtain the equation:

Y, 6 2\,
N [coshz D (1 - v_,fo)]‘”‘ = 0. @7

We make in (27) the substitutions { = tanh(z/A) and m? = 1 — A2/v};
then we have

<
Jkl'tl

Vko ¥ (26)

¥

oy m? )
1-H) 2+ —— ¥, =0. 28
Sa-»% ( g @9
Equation (28) must be solved with the boundary conditions: |{,(+1)| < co.
The solution has the form

¥1(0) = P30, (29)

where P# is the associated Legendre function. The boundary conditions are
satisfied by solutions of two types: (1) m*> < 0;(2) m} , = 1,4. The solutions
of the first type correspond to a continuous spectrum A? = vZ (1 — m?) and
describe nonincreasing perturbations. The solutions of the second type
correspond to discrete frequencies

=i —md)=0, (30a)
A2 =vi(1—mj) = 3. (30b)
It is clear that the mode (30a) corresponds to the displacement of the soliton

as a whole along the z-axis. The mode (30b) describes perturbations increas-

ing with the growth rate Im(4,) = \/gvko small in comparison with the

angular frequency of rotation of the disk. The spatial structure of this mode
eiqw

For solitons obtained in this section, the consideration just performed
completely solves the question of their stability. In gaseous systems (Sections
1.1 and 1.2) for values of the adiabatic index y, < y < 7y, there are soliton
solutions of another type (“supersonic” according to the terminology of

¥y = e"PI0) ~ (31)
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Section 1.1). The problem of the stability of these solitons is solved by the
same formulae as above, but in this case one must assume that vz < 0.
Therefore, “supersonic” solitons are unstable with the growth rate

[V |/1 — m*(m? < 0).

1.3.4. Influence of the Finite Disturbance Amplitude on the Jeans Instability
in Homogeneous Systems. Consider briefly nonlinear generalizations
of the criterion of Jeans instability in the simplest homogeneous collisionless
systems: (1) in an infinite homogeneous space (Jeans’ classic problem), (2) in
an infinitely thin homogeneous nonrotating layer (the two-dimensional
analog of the Jeans problem), and (3) of an infinitesimally thin “thread” (the
one-dimensional analog). If, as the unperturbed distribution function, we
assume for the sake of simplicity’ the “step”

f@) = (57%) [6(0x + vo) — 000, — vo)]
0

[6(x) is the Heaviside function], so by the method similar to that used above
we may obtain

(1) k= ko(l *3 'QJZ)’ 2
3 vy
2
@ k= ko(l n @), (33)
Vo
2
3 ko = ko(l + I(%I), (34)

where kg is the critical wave number (separating the stability region for
k > ki and instability region for k < kg), k, corresponds to an infinitely
small amplitude of perturbation, ¢ = 81n2(Gp’)?, and p’ = npR? is the
linear density of the “thread.” Thus including the nonlinearity leads here to
the destabilizing effect: to an expansion of the instability zone in the space of
wave numbers k. Note that formulae (32) and (33) were earlier obtained by
another method in [26%] {more exactly, in [26*], general formulae are
derived, from which, in particular, one may obtain also (32) and (33)}.

1.4 Explosive Instability [20]

Since nonlinear equations for the stellar and gaseous disks for corresponding
values of parameters have an identical form, both cases can be considered
simultaneously. We take, for the sake of concreteness, the “gaseous” equa-
tion (26) of Section 1.1 and show that, under the condition

%<3, (1)

7 For continuous distribution functions, of the Maxwellian type, there are some complica-
tions due to the appearance of trapped particles.
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the value v,(t, @) for a finite time may become arbitrarily large. From (5),
subsection 1.1, it follows that the condition (1) corresponds to the inequality
y <%

By using expression (1), Section 1.1, we rewrite equation (20), in a simpler
form:

62
T _ 12, 4 3G - 06 - Dkl PIos() @

We multiply, term by term, Eq. (2) by dv,/0t and integrate twice over t.
Omitting further the index 1 in the v letter, we obtain

f o J‘” dv
) Vwolr) + 3,07 + Av*

where 4 = 3(2 — %)(3 — %)k, v, is the initial perturbation of the velocity
at the time ¢, and wy(r) is the arbitrary function of r.

In the general case, the integral in (3) is expressed through the elliptical
integral. To clear up the character of the solution, let us consider some partial
case, in which the integral in (3) is easily taken. Let, for example, wq(r),
V8, V6 < Avg. Then

©)

v 1
01— JAvolt — to) @)

From (4), it is seen that for a finite time t — ¢, > 1 /\/;1- vy the velocity
perturbation tends to infinity. Such an impetuous growth of perturbation
characterizes the so-called “explosive” instability [20*].

1.5 Remarks on the Decay Processes

The investigation of non-one-dimensional (in particular, isotropic®) spectra
of perturbation encounters, in the case of interest of flat gravitating systems,
an additional difficulty. It is associated with a possibility, in principle, of a
decay instability. The decay instability for the waves with parallel wave
vectors is considered in [70%]. Of more interest, however, is the following
possibility of a more general decay. It is easy to make sure that, for example,
the 3-waves, whose wave vectors lie in the vicinity of the touching point of the
dispersion curve and the k-axis (cf. Fig. 93) and form configurations close
to the equilateral triangle may be connected via the decay conditions
o, = w, + w3, k; = +ky + k,.° This leads to the necessity to modify
the very statements of the problems in such cases: for example, in an attempt
to seek nonlinear corrections to the frequency of some radial perturbation in
the way used above, divergent expressions ensue. Note, however, that at

8 The partial case of which in turn are the radial perturbations.
° In more detail, the 3-wave decay processes are investigated in §4, Chapter VIL
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least in two interesting cases, the consideration performed by us has a
meaning. First, these are localized small-scale perturbations (for example,
ring-shaped); second, there are global, including radial, modes in nonuniform
systems, where as is shown by the simplest examples (for example, of uni-
formly rotating disks), the satisfaction of the resonance conditions is difficult.

1.6 Nonlinear Waves in a Viscous Medium [52%]

Below we describe a scheme of deriving the nonlinear equation describing
stationary waves of finite amplitude in a rotating gravitating disk in the
presence of viscosity.

In Section 1.1 it was shown that when the rotating gravitating disk is near
the stability boundary, two types of solitons may form and propagate in it:
subsonic and supersonic. The type of soliton is dependent on whether the
disk is stable or not. The medium, in which solitons propagate, was assumed
to be dissipationless.

In a plasma medium, as shown by R. Z. Sagdeev [46*], taking dissipation
into account causes solitons to be transformed into shock waves [Fig. 96(a),
96(b)]. Solitons considered in [46*] are described by the Korteweg-de Vries
equation (if the amplitude of these solitons is small: the Mach number
M = 1), the solution of which has the form =1/cosh? a¢, where o is a constant
and ¢ = r — ut. Solitons in a gravitating disk are described by the function
of the form ~sin kyr/cosh f&, where § is a constant and ky > f. Such a
structure has received the name of the “envelope™ soliton [Fig. 97(a)]
in the plasma physics literature.

The Sagdeev collisionless shock wave [Fig. 96(b)] remains the basic
property of the hydrodynamical shock wave: the jumps of the main character-
istics of the medium on the wave front are not equal to zero. If one assumes
that the envelope soliton [Fig. 97(a)] in a viscous medium is transformed
into a structure similar to the Sagdeev one [Fig. 97(b)] but with small-scale

14
| 4
|
0 :
@ 0 (b) ¢

Figure 96. Soliton (a) and oscillatory profile of a shock’s front (b).
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Figure 97. Envelope soliton (a) and corresponding profile of a shock’s front (b).

oscillations, then the “classical ” definition of the shock wave does not match
such a structure: we shall not obtain a jump of the first moments (of density
and velocity) on the front width.

Derive the nonlinear equation for density waves in a rotating, infinitesi-
mally thin disk (the model of Section 1.1) with due regard for viscosity. In
the initial system of equations used in the analysis of perturbations located in
the plane of the gravitating disk, the continuity and Poisson equations have
a standard form, while the Navier—-Stokes equations will be written as [67]:

v, o, v,0n 2 od 10P
—+v__ _— —_— = . —
ot "or  r oo r or o or
1%, 1%, 1,
TN 0p® ropor r* o
( 4\o[1o 16%],
= —_ PR +_—’ 1
* (p *3 v) or [r or (o) * do M
0,y Py 2 bV 100 1 0P
E+v'6r+r6<p r  rdp rodep

orr raor r* rordp 1o

{ 4 \18[1d 1 dv,

N v(azvq, N lov, v, 10%, 1 av,)

We solve the initial set of equations by the method of perturbation theory
in the same way as done in Section 1.1, where the nonlinear theory of stability
of a gravitating, rotating disk is developed without taking account of dissipa-
tion. From Eq. (2), in the assumption rd/dr > m, we find the perturbed value
of the radial velocity ,

. 1 .. v 0°D,

b, = — %—OLv,p + o O’

0 v 0v,,
+QO%’ %0=—¢9+——L (3)

L r or’

9
ot
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(%, is the epicyclic frequency and Qg = v,/r), and, after substitution of (3)
into the continuity equation, we obtain the expression for the perturbed
value of the surface density:

0, 07, vV o._, 0%

0o ’ 4

0= .
%y Or % or?

By using thefamiliar expression of the link between the perturbed quantities
of surface density, potential, and pressure [cf. formula (5) in 2.2, Chapter V]

’ 2nGé e 2 [oy+ &\
= - ) =—0a ’
k, Do TP 2 00 o
2
cszzxpi), x=3-=, (5)
Oo Y

and, performing all the subsequent calculations, as made in Section 1.1,
instead of Eq. (22), we obtain the expression [52%]

L2, = (2, + 2B, — 32 — 9 (¢ — k3o, o,
— (u — 403vEG K3 Lo, ©)

where u = $v + {/o,; ko is the wave number corresponding to the maximum
value of the growth rate of instability y, (9y,/0k = 0) or in the absence of
Jeans instability, the value of the argument of the function w?(k) at the point
of its minimum; v, = v, (3, and %, should be distinguished from the
adiabatic index y and x!).

In the derivation of Eq. (6), we used the assumption about the smallness
of the second summands on the right-hand sides of expressions (3) and (4) in
comparison with the first summands. In fact, this means that the inequality

Vk(z) < '))ko (7)

holds true. Make sure in the example of a flat gaseous subsystem of the
Galaxy that inequality (7) is satisfied with a large reserve. The viscosity
coefficient

Ur
v~ , @®)
SoMo
where &, is the effective cross section of collisions of gas molecules, n, is
the number of particles in 1 cm?, and vy is the thermal velocity. Assume for
estimate koh ~ 3 (h is the layer thickness); then vk3 ~ 10 2/, ngh?%. Substi-
tuting the characteristic parameters for the hot component of the gas

(T ~ 10* °K)vy ~ 10® cm/c, &y ~ 107 1% cm?, ny ~ 0.1 cm™3,

and h ~ 200 pc, we obtain vk3 ~ 2 x 10718 + 2 x 1071% ¢~ !, This value
is at least by 3 orders of magnitude less than the galactic rotation frequency
Q, ~ 10713 ¢7 1. If one assumes that y, /Q, ~ 107, then the inequality (8)
is fulfilled at least with a 2-order-of-magnitude accuracy. The last circum-
stance allows one to take into account the “viscous” summands only in the
third order of perturbation theory (in the parameter 5,/v,, < 1), which was
used in the derivation of Eq. (6).
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Figure 98. Potential energy W(£) (a), structure of the phase plane for Eq. (12) without
the viscous term (b), and trajectory of particle’s gradual sliding down into the potential
well in the presence of viscosity (c).

In the case when the coefficient of the first viscosity is by far more than the
coefficient of the second viscosity, we obtain from (6) the following equation
[52%47:

2

L(L2 -y +32 —x)(x — 3% 5) ko

|U1'2)Ul = 2Qo%vkgv;. (9)

In the opposite limiting case we have from (6) the equation!® [52%¢]

Q. k32 ék"' -
= (O + A0, — 32 — )0 — "2 |v, %, — =2 Lv,. (10)
Xo 0o

Turning to the local rotating coordinate system (r, ¢, t) = (r, ¢, t), where
@ = ¢ — Qut, and then introducing the variable ¢ = r — ut, we have,
instead of Egs. (9) and (10),

v (i 3, wyvkdV
W——(&T——V a:+7‘0’ 11

v LAV W

W"aooﬂ”"E:-@—V’ (12)
where
W= —1aV? + LpV*, V=0,),
2 2
BB el - Role
a=gp b= Ao F=30-0k-9—

1% More exactly, provided that &/ag > vQq #o/y2,-
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Figure 99. Soliton-like solution without the viscosity (a) and with the viscosity for the
cases: u < 0 (b)and u > 0 (c).

In the derivation of Egs. (11) and (12), we used the inequality
Q> vie,- (13)

Equation (12) without the “viscous” term has the solution describing the
soliton [90a, 89a]:

V(E) = /22 sech 1% (14)

B
in the case when the coefficients a and b are positive, which corresponds to
two types of solitons: (1) subsound (u* < ¢, y3 < 0, f* < 0) and (2) super-
sound (u? > c2,y% > 0, B2 > 0).

Equation (12) without the “viscous” term is Duffing’s equation, which is
well known in the theory of nonlinear oscillations. The structure of the phase
plane for Duffing’s equation is represented in Fig. 98(b). The separatrix which
separates a region of periodical motions from other ones corresponds to the
solution of the soliton-like wave [Fig.99(a)]. Let us assume, for the sake of
definition, u > 0. Then, considering the coordinate £ as the time t, one can
interpret Eq. (12) as the equation of the nonlinear pendulum with damping.

The analogy considered may be used for the construction of the solution
in all the region ¢ (Kadomtsev [15%9]). If, in the absence of damping, the
“particle” is at some level of the potential well (in the case of the soliton
this level passes through the point 0), then, in the presence of damping, the
“particle” falls down to the bottom of the potential well. If the coefficient of
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the viscosity is sufficiently small, the “particle” has time for several oscilla-
tions during the fall [Fig. 98(c)]. This corresponds to deformation of the
symmetrical profile of the soliton [Fig. 99(a)] into the nonsymmetrical
oscillatory profile of the shock front [Fig. 99(b), (c)]. As the viscous co-
efficient v increases, the number of oscillations decreases and finally for a
certain value v,,, the “particle” falls down to the bottom of the potential
well without reflections, which corresponds to the usual monotonically
increasing profile of the shock wave.

The fact of the variation of the medium’s state after the passage of the wave
with the oscillatory profile (behind the wave front the medium moves with

the velocity ¥, = \/(%) means that the wave is a shock.

In the case u < 0 one obtains the profile of the shock wave depicted in
Fig. 99(c). Figures 99(b) and 99(c) correspond to a fall of the “particle” into
the right potential well W(V) [Fig. 98(a)]. Under a fall into the left potential
well the pictures in Figs. 99(b) and 99(c) must be turned over the angle .

All the above-mentioned corresponds to the envelope since the gravita-
tional soliton is the “envelope” soliton. In this it differs, for example, from
the ion-sound soliton in the plasma which bears, in the presence of dissipa-
tion, the oscillatory profile of the shock front (Sagdeev, [46*]). The oscil-
latory profile of the shock front of the envelope is filled with high-frequency
oscillations with the wave number ky, ko A > 1, where A is the width of the
soliton. Generally speaking, it is not necessary that we obtain a large-scale
density jump under the averaging over the small-scale density oscillations
(the latter supposition demands more detailed test) while in considering in
terms of energy we understand that we are dealing with the shock wave. In
this meaning, the gravitational shock waves produced by the gravitational
soliton in the viscous medium principally differ from the shock waves in a
gas and a plasma investigated earlier.

Here we do not touch upon the question of collisionless shock waves.
Paper [63*] was the first to describe the model of a stellar system, in which
collisionless shock waves can originate. In more detail, the problem of the
existence of collisionless shock waves in stellar systems is considered in
[64°].

§2 Nonlinear Interaction of a Monochromatic Wave with
Particles in Gravitating Systems

2.1 Nonlinear Dynamics of the Beam Instability in a
Cylindrical Model [85]

In real astrophysical objects, the distribution functions of particles (of stars,
gas), with respect to their velocity, have sometimes a beam character. These
involve all galaxies with heterogeneous structure, where the flat subsystems
are rotating with respect to elliptical and spherical subsystems; regions of
active centers characterized by ejections of large masses of gas, etc.
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In §1, Chapter VI, the possibility was shown of excitation of the beam
instability in gravitating systems, which leads to the growth of the amplitude
of density waves of interacting subsystems. This effect was studied in the
example of a gravitating cylinder. In [108a, 93], the role of beam effects
was investigated in more complex systems of two interacting disks, a sphere
and an ellipsoid of Freeman [201-204]. Of most importance here is the
question whether the nonlinear stabilization of such a growth of the ampli-
tude occurs or the instability process advances, leading to collapse of different
clusters of density. Note that, for the problem of the galactic spiral structure, of
particular interest is the interaction with the particles (stars) of the mono-
chromatic density wave.

In this paragraph, we pay attention to the fact that in gravitating systems,
an important role may be played by the nonlinear stabilization mechanism
of the monochromatic density wave similar to that investigated in the col-
lisionless plasma by Mazitov [78a] and O’Neill [295a]. The causes of the
analogy between the mechanisms of collective processes in a gravitating
and plasma medium are investigated in [87, 88, 100]. In particular, it is noted
that the kinetic equation for small oscillations in a simple model of the
gravitating system (rotating cylinder) by redetermining the characteristic
parameters, proves to coincide with the kinetic equation for the collisionless
magnetized plasma. With this is connected the fact that, in a gravitating
cylinder, there may develop a beam instability described by the same
relations as the beam instability in the plasma with a magnetic field (§1,
Chapter VI).

Replacing the double frequency of rotation of the cylinder by the cyclotron
frequency, 2Q — wg, and the square of the Jeans frequency, by the negative
square of the Langmuir frequency, w} - — w2, let us consider the upper
hybrid branch of oscillations, w? = w? + w}. In the case of a gravitating
cylinder, this branch was called rotational. Here, it is characterized by
the frequency w? = w}, which, due to the equilibrium condition w2 = 2Q?,
may be represented also in the form w? = 2Q2.

In the presence of a beam moving along the generatrix of the cylinder, the
rotational branch is excited with the linear growth rate

2 2
n~alz) () o m

where « is the ratio of the beam density to the density of the medium, v, vy are
the directed and the thermal velocities of the beam, and k,, k are the longi-
tudinal and full wave numbers. Expression (1) is valid if the Cherenkov
resonance ® =~ k,v dominates over the cyclotron one w + 2Q ~ k_v,
i.c., under condition 2Q/k, > vr. An estimate for the growth rate similar
to (1) takes place also in case of the beam instability in a plasma. It remains
in force also in the absence of the magnetic field, i.e., in the limit wg — 0,
when the upper hybrid branch transforms to the branch of electron plasma
oscillations. In the case of a gravitating cylinder, such a limiting transition is
prohibited by the above conditions of equilibrium.
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From the plasma theory, it is known that (cf. [39]) one may use the expres-
sion of the form of (1) for the linear growth rate in the problem of excitation
via a beam of plasma oscillations only for small amplitudes of the wave,
namely, for

Ty > 1, )

where t2 = m/ek?y (m and e are the mass and charge of the electron).
This condition means that the inverse action of the wave field on the resonant
particles is negligible. Otherwise, ie., for 7y, < 1, the wave field leads to
trapping of the resonant particles, due to which the expression for the
growth rate of the form of (1) is replaced for

o) ~ vFC) )

where F(t/t) is the function, whose explicit form is given in [295a]. Then

[eo]
Bdt ~ y,t.
[ rwar~ @

It was shown earlier that excitation of the plasma waves via a beam
ceases as the amplitude of the field reaches the values corresponding to 7,
such that

~ L ©)

These results refer to the plasma without a magnetic field, wg — 0, and to
perturbations propagating along the beam k ~ k,.

However, it may be shown that both for the plasma with a magnetic field
and for a gravitating medium for wz ~ w, and k, < k (just this case is
interesting for the problem in question of a gravitating cylinder) the ordinal
relations (1)-(5) remain in force. This allows one to continue the analogy
between the plasma and gravitating media onto the region of nonlinear
phenomena.

This section deals with the investigation of the nonlinear stage of in-
stability in a gravitating cylinder and a disk. In Section 2.1.1, we give the
necessary results of linear theory. Section 2.1.2 studies the movement of the
particles in a gravitation field corresponding to the eigen (monochromatic)
mode of oscillations of the cylinder. In the frame of reference of a rotating
cylinder, the action of inertial forces on the gravitating particle is similar to the
action of the longitudinal magnetic field on the probe charge. Then the
particles of the cylinder turn out to be “magnetized,” due to which (ap-
proximately) they retain their distance from the cylinder axis. For that reason,
as shown in Section 2.1.2, the equation of the longitudinal movement of the
particles is reduced to the equation of the type of the mathematical pendulum,
which is solved similarly [78a, 295a], in elliptical functions.

Section 2.1.3 treats the nonlinear evolution of the distribution function of
particles, while Section 2.1.4 finds the densities of kinetic energy of the
particles and the energy of the monochromatic wave (averaged over the
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cylindrical layer). Using the method of energy balance (after averaging
over the radius), we define the time dependence of the nonlinear growth
rate. Section 2.1.5 shows the region of applicability of the theory constructed.
Section 2.1.6 makes estimates of the steady-state amplitude of oscillations
for different values of the parameters of the configuration.

2.1.1. Statement of the Problem. Consider the stationary collisionless system
of gravitating particles in the form of a rotating uniform-in-density cylinder
of infinite length, of radius R. In the frame of reference rotating along with the
cylinder (at the angular frequency Q = ,/2nGp where G is the gravitational
constant and p is the density) the particles are moving only along the axis,
which we assume to be the axis of the cylindrical frame of reference, (r and @)
will denote respectively the radial and angular coordinates).

Thus, the stationary radial and azimuthal velocities for all particles are

Zero,
v, =, =0.

The distribution in longitudinal velocities f*(v,), which is not restricted
by the equilibrium conditions, will be assumed to have a beam form

ff@) = Mw) + f(v),

with the Maxwellian distribution of the basic component f™(v,)

A = 2 eV ©)

Vv

and the distribution function of the beam f(v,)

o v, — v\?
f) = ‘\/‘;‘;;GXP[— < o ) :|, @)

where the conditions

a <1, ®)
v > UT’ (9)
[lv] —vr| > Vr (10)

are adopted.
Let us assume, in addition, that the thermal dispersion Vr of the basic

component is sufficiently large
V> V=0QR (11)

Under these conditions, according to Section 2, Chapter II, in the system,
there can propagate the axial-symmetrical oscillations of the structure

B(r, 2, 1) = Do olk r)e ot Hikerere0, ¢ <R, (12)
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(inside the cylinder) and
O(r, z,t) = By Ky(k, r)e oot tikszrr®) ¢ > R (13)

(outside). Here ®(r,z,t) denotes the perturbation of the gravitational
potential, t is the time variable, and ®,, ®, are the constants satisfying the
conditions of matching on the boundary of the cylinder, in particular the
continuity condition of the potential

@ Jo(k, R) = Bo Ko(k: R), (14)
where J, and K, are conventional notations (cf. [42, 157]) of cylindrical

functions; w, is the Jeans frequency linked with the angular frequency Q
via the equilibrium condition

0 = 202, (15)
and the longitudinal wave parameter k, must satisfy the conditions
k,R < 1 (16)
and
k,Vr < w,, 17
while the transversal one k| , to the conditions
Jo(kyR) ~0, Kk, Rz 1 (18)

The quantity y, in (12) and (13) is equal to the sum
YVFP=VYmt+ 7

of the decrement y,, of wave damping interacting with the basic component
of the medium and the increment y of instability caused by excitation of the
waves via a beam. In turn, y consists of the sum of two summands:

Y=V + Ve (19)
Here v, is the consequence of the Cherenkov resonance
3
T Wy @y
=—-—If k, |, 20
’))b 2 k2 |:f (ksz) sgn z] ( )

where k? = kZ + k3, while the prime denotes the derivative with respect to
the argument; y, is the consequence of the cyclotron resonance,

3
_ T wp wo—ZQ_ Wy + 2Q
e = 4|k,|n[f( kvr ) f( kor )] @)

Apart from the beam instability (19), in the conditions described there is
only the Jeans instability with an exponentially small (if ¥} > V2) growth
rate yg,

Vr _va
R AR @)
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As will be shown below, the parameters of the configuration may be chosen
to be such that the beam growth rate y will be the largest and, moreover, due
mainly to the Cherenkov resonance

VEXEY XYy, Ve R Vpy (23)
M<K, (24)
Vg <. (25)

We shall restrict ourselves just to this case.

2.1.2. Particle Motion in the Wave Field. At some initial time moment
t, = 0,inthe above system, let the gravitational potential of the form [cf. (12)
and (13)]

O, z,t) = —Dy(t)J o(k 1) cos(—wgt + k,z), r <R, (26)
O(r, z, t) = —Dy(t)Ko(k,r) cos(—wot + k,z), r>R, (27)

be “switched-on.”

In a similar way [86], for the determination of the movement of the
particles, we shall restrict ourselves to the zero order of perturbation theory
in the small parameter 6®,/®,, i.c., assume that

D, (t) = const = @, (28)
@, (1) = const = @,. (29)

Let us assume that the potential in (26) and (27) satisfies the conditions in
(14), (16)—(18).

Within the range of the wave vectors, where y ~ y,....., the condition of the
Cherenkov resonance may be represented in the form

w — kv~ k,vr. (30)

Let us study the movement of the particles arising due to the “switch-on”
of the potential, in the frame of reference moving along with the wave on z
(again rotating with a frequency Q). In such a system, the potential of (26)
and (27) has the form

O(r, z) = —®yJo(k,r) cos(k,z), r <R, (31

and the corresponding form for r > R.
The movement of the particles obeys the law
d
& o] - v, (32)
dt
where © = Q2and 2is the ort along the axis of the cylinder. Such a movement
would have been performed by a particle with a single charge and a mass in
the constant and uniform magnetic field H = 2€ and in the electric potential
@ (the speed of light, via the selection of the system of units, is reduced to
unity).
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All the particles of the cylinder can be divided into three groups according
to the value of their stationary velocity v,:

(1) “slowly” moving (in the wave system) particles, which for the
“cyclotron” period T = 27/2Q = n/Q are displaced on z by a distance
much less than the longitudinal wavelength A = 2xn/k,,

20
|v,| < m; (33)

(2) particles with a displacement of the order of the wavelength,

2Q

~— 34
A (34)

0,

(3) “fast” particles,

2Q

k.|
The transversal movement of “slow” particles is similar to the movement

of a charged particle under the action of a longitudinal constant “magnetic”

field and slowly varying radial “electric” field i.e., is the drift in azimuth;
the radial size of the orbit then is of the order of the “cyclotron” radius

k, @y
rot ™ W

(35)

lv,| >

r (36)
For a comparatively weak potential @, the particle displaces little in radius;
the corresponding condition r., € R can be, with due regard for (18),
written in the form

0]
7% <1 (37

and denotes the smallness of perturbation of the particles, which of course,
also is suggested, with necessity, by linear theory. For the developed non-
linear theory, let us also assume the inequality (37) to be satisfied; below
it will be seen that the condition of applicability of the nonlinear theory
gives a restriction of the potential from below, but this constraint may not
contradict (37).

Taking into account that the initial transversal velocity is zero, we find
that the trajectory of a slow particle has the shape of an epicycloid, while the
longitudinal movement occurs thus if the particle remained all the time at
the same distance r from the axis (7 is the coordinate of the particle before
the switch-on of the additional gravitational field).

The transversal movement of fast particles is the movement in a rapidly
oscillating (with a frequency much higher than the frequency of rotation,
lk,v,| > Q) gravitational field. The oscillation in r with the amplitude

ki@ _ kuD

A~ oy <

(38)

~r

rot
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will not lead, however, to a significant change in the radial position of the
particle. Thus, the change in the radial location of fast particles is still less than
the slow ones, and, in the study of their longitudinal movement, their radial
coordinate can the more be considered as constant.

One should not neglect the change in radial coordinate only for the
rotational-resonant particles (34). But the portion Af of such particles can be

estimated as
2Q 20\ Q
Af ~ fo<’k‘z‘>AUz ~ fo(k_,) k_z’

and is exponentially small, if
2

kr

(39

This last condition is easily satisfied ; therefore, we eliminate these particles
from consideration. Thus, in the study of the longitudinal movement we
assume the radial coordinate of each particle to be fixed in its initial value.

2.1.3. Nonlinear Evolution of the Distribution Function. Consider now the
evolution of the distribution function in its longitudinal velocity.
The longitudinal field of the potential (31) is

E,(r,z) = — %(D(r, z) = —g,(r) cos(k,z), (40)

where the amplitude ¢, is given by the expression
&, =k, @oJ ok ). (41)

It is seen that the amplitude ¢, is dependent only on the radial variable
(remaining, as established above, at the longitudinal movement of the
particle). The amplitude changes from its maximum value on the cylinder
axis to zero on the edge [cf. (18)].

The field (40) leads to the equation of longitudinal movement (cf. [295a]).

b, =% = —g,r)sink,z. 42)

Conservation of energy of the longitudinal movement is written in the form
v e
-2 — Zcos(k,z) = const = W. (43)
2k,
In a similar way [39], by the method of integration over trajectories, we
arrive at the following distribution functions.
The distribution function of the particles trapped by the wave in its longi-

tudinal movement has the form (in the wave system)

e, 20 1) = 10) + 5 £ \/ [W(r fo)+ z(’>]

Z

X cn{ [C(z) e )] —%,%}, x> 1. (44)
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For the transit particles, the distribution function is of the form

et = 10 + 2 500, w509 + 22

k,
kz t
— - 1.
X dn{F[2 , #(z, v,):| o x}, x < 45)
The notations here are as follows:
2
o=sgnuv, W z0v,)= % _ szlf’) cos(k, ), (46)

F(p, k) = [8 du/\/1 — k* sin® « is the elliptical integral of the first kind,
cn(u, k) is the elliptical cosine, and dn(u, k) is the delta of the amplitude—the

function defined by the relation dn[F(o, k), k] = /1 — k* sin? ¢;

_ 2¢,(r)
) = W) + D @7
Uz, v,) = sin (arcsin k;z), (48)
N ! 49)

" T ke KdgJok.r)

1.€.,
2
2 To
T, = , 50
Tok) (50)
where
1

Similarly to [39], we arrive at the conclusion that, in the region of the
phase space (z, v,), corresponding to the trapped particles, a plateau is pro-
duced, and one can write the distribution function of nontrapped particles
averaged over time. The difference from the evolution in problems [38, 78a]
is in the fact that the evolution of our configuration proceeds at a variable rate
at different distances from the axis. The oscillation period of the particles
trapped by the wave, according to (50), increases from 7, on the axis up to
(formally) an infinite quantity on the edge of the cylinder.

2.1.4. Nonlinear Evolution of the Monochromatic Wave. To find the growth
rate of the field variation in the method applied here we make use of the
equation of energy balance

dQ

Pl Al (52)
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where Q is the average (over the volume of the cylinder) density of kinetic
energy of the particles and W is the mean density of the wave energy {i..,
the sum of the field energy and the energy of the nonresonance particles
(cf,eg, [10])}.

Equation of motion (42) coincides with the corresponding equation,
found by O’Neill [295a]; therefore, for the variation rate of density Q, of the
kinetic energy of the particles in a circular cylinder (r, r + dr), averaged over
the volume of the circular cylinder, we obtain (cf. (30) in [295a])

dQ, nwo 8 & 64J’ .

a2k 4nG,, 0 T
2nn? sin(nnt/xKt,) (2n + Dr?xsin[(2n + D)nt/2K7,]
XSKZ(I + q2n)(1 + q—Zn) K2(1 + q2n+1)(1 + q~2n—1) ’
(53)

where

K(
q= exp(nK >, K = F(g, x), K = F(g’ - %2)1/2).

This expression has to be further averaged over the radii of annular cylinders

g R dQ, 2ar dr
dt ), dt =mR*’

(54)

Note that the radius dependence in (53) enters only through e,(r) and ,.

To calculate the value W entering into (52), one should take the integral
[the external field is very small, according to (14), (18) even on the edge of
the cylinder and drops rapidly with increasing r, so that we neglect its contri-
bution to the energy]:

1 (Rek 4 ¢
R f e 2nr dr. (5%
Here, similarly to (41)
e(r) = k @y J (k. R), (56)
so that the radial field intensity E (z, r) is
0P
_ gr D B r) = —6(r) cos(h,2) (57)

Taking into account (56) and (41), the calculation of the integral in (55) is
reduced to taking the integrals
2

Il F

2 R
f Jik rdr, I, = 2 fo J3(k r)r dr. (58)
Using the familiar formula [157]

2
foﬁ(ocx) dx = x? [J2(ax) — J, -y (0x)J 4 1 (0x)]
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and taking into account (18), we find that

I, =1, = Ji(k,R). (59)
Finally, the mean energy density of the wave is
1 242 12
W—8 de)J(klR) (60)

where k? = k? + k2. We shall not explicitly write the cumbersome general
expression for the growth rate y(¢). We show only that, in the limiting case
t < 14, there ensues an accurately linear growth rate. Indeed, in this case,
following [295a], we have from (53)

g, = a)o LeX(r) [64 (! 272 sin(nt/xK1,) t
T 4nG [_f " WK1+ ¢H(A - ¢%) +0 To

_mwy L, ki@ J5(k.r) t
271+ 0(—]) | 61
2 k2 A 4nG Ty (1)

Hence, averaging according to (54), we find

d nw ®ikZ[2 (R
d? Of 4;)rG l:i_zf Ji(k, r)r dr]

=g f J2(k R). (62)

In the derivation of this last equation, we have used the relations (58) and
(59).
Finally, by formula (52), making use of (62) and (60), we find

dQ n w3
dr T2k

which in fact is coincident with the linear growth rate [cf. (23) and (20)].
Make now an estimate of the amplification factor of the wave .
According to (52),

_ (7 _ L4y, _ A9
f_foy(t)dt_mfo( dt)dt— =t (64)

Following [295a], we find

R 2nr dr R , 2rdr
—-AQ = —fo AQr_n'RTz__ 0[[ Ptk an GJo(ki N —

L= =/ (63)

R2

(I)2 @32
= OI:')'Lk —° J‘ Js/z(klr)r dr] = O(‘}'Lkz 4—G T0> (65)

Since in accordance with (60)
k*®2

2W ~
4G’

(66)
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then from (64) and (65) we get

[0t = 06,70) (67)
0

From this last equation follows the condition of validity of the approxima-
tion of constantness with time of the amplitude of the wave adopted in the
study of the movement of the particles:

YT < L. (68)

2.1.5. Range of Applicability of the Theory. The theory constructed above
has its region of applicability at simultaneous fulfilment of all the assumptions
adopted, i.e., (68), the condition of smallness of the “cyclotron” radius (37)
and the condition of domination of the Cherenkov resonance (23)—(25).
These also involve the condition of smallness of the growth rate of the
hydrodynamical beam instability

T an, (69)
v
Denote v;/V = br, v/V = &, Vy/V = Vy, etc. Take k, R ~ 1,
or ~ 1, (70)
1 Uy 1/2.
R oae (71)
then taking into account (8)-(10), and (30), we arrive at the inequalities
(DO Tty
77 <1 (?‘ < 1), (72)
D2
> 1 (uto > 1), (73)
1 > ﬁe.—az (yb > yc)’ (74)
1 ~ 72
7> Z 0> ) (75)
1 ﬁ _~2/172
57> e 0 > vm)- (76)

If now, leaving the quantity ¥ ~ vy to be fixed, one increases ¥y and increases
# according to the law § ~ V2, by simultaneously decreasing « according to
the law of (71) and k, according to the law [cf. (30)]

R~ Y2

’

v

then the right-hand sides of (74)-(76) decrease exponentially, while the
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left sides are not stronger except in a power way. Consequently, beginning
with some rather large V; and v, all the inequalities (74)—(76) will be satisfied.
Inequality (73) is also satisfied for a sufficiently high velocity of the beam, v,
whatever the amplitude @, satisfying (72).

2.1.6. Estimations of the Resulting Amplitude of a Monochromatic Wave.
From the relations given above it follows that the beam instability of a gravi-
tating cylinder is saturated at

v o [Vov)?
Vo (kR)* (TT> ’ N

where V), is the equilibrium gravitational potential. It is seen that the ratio
W/¥,, as the function of kR, is maximal at kR ~ 1, then

V. 2

This ratio grows with decreasing thermal scatter of the beam; on the limit of

applicability of the concepts of the kinetic instability, i.e., for (vy/v) ~ a!/3
(cf. [86]),
2
Yimax ~ o3 (Kg) . 79)
Yo v

It is interesting to note that under the interaction of a rotating gravitating
medium with the beam of a comparable density, « ~ 1, and a comparable
velocity, v ~ V,, the perturbed gravitational potential y turns out to be
the same as the equilibrium potential 4 in order of magnitude.

2.2 Nonlinear Saturation of the Instability at the Corotation
Radius in the Disk [22%1]

This section investigates the Mazitov—O’Neill effect in the stellar disk.
Unlike the cylinder, where the wave resonance occurs with a small group
(beam) of particles in the velocity space, in the disk with orbits close to cir-
cular, the resonance of a spiral wave with stars takes place with almost all
the particles of the velocity space located, however, near some definite radii
defined by the relation Q(r) — w/m = —Ix/m (m is the number of the azi-
muthal mode, lis the “number” of the resonance, x is the epicyclic frequency,
Qis the angular frequency of rotation of the disk, and w is the wave frequency).
| = 0 corresponds to the resonance of “corotation.”!! Lynden-Bell and
Kalnajs [289] in the linear approximation show a possibility of amplifica-
tion of the density wave at the corotation radius. The question of the wave

1 Refer to Section 2, Chapter XI, for more detail regarding resonances and results of [289].
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stabilization level under its nonlinear interaction with stars in the vicinity
of the corotation radius is natural. This section is devoted to the clarification
of this question. In Section 2.2.1, equations are derived and expressions are
obtained for the steady-state distribution function of stars near the corota-
tion radius, and the energy and angular moment transferred to stars are
calculated. The estimates of the wave amplitude and the regions of applica-
bility of the results attained are contained in Section 2.2.2.

2.2.1. Stellar Distribution Function Near the Corotation Radius of a Disk.
We turn now to the frame of reference rotating with an angular velocity of a
spiral pattern Q,. In the epicyclic approximation, the Hamiltonian of the
star in this system has the form [60%]:

H = Vo(R) + V1 + 3Q*(R)R* + »(R) £, — Q,QR)R* +---. (1)

Here ¥, and V; are the potential of background and the spiral potential,
respectively, R is the radial coordinate of the epicycle center, Q(R) is the
angular velocity, and »(R) is the epicyclic frequency; the value H should be
considered as a function of the variable angle-action (¢, wy, #,, W,):
F1 = E/2%, E is the energy of the epicyclic movement, ¢, = Q(R)R? is
the angular moment,

r — R = Q24 ,/%)"*sin w,,
© = w, + 2Q/%)(2¢ /xR*)? cos w,,

r, @ are the coordinates of the cylindrical system of coordinates, while the dots
in (1) denote the terms of higher order of magnitude in the epicyclic ap-
proximation.

Let the radius of corotation be the coordinate R = R, where Q(R) = Q,.
With interest in the star behavior near the corotation, assume that x =
1,/(0.92/0R)r=r, = 2Q,1,/Ro%5 < Ry and I, = ¢, — Q,R}, where the
index O denotes the quantity taken at R = R,. The equations of motion of a
star will be derived from the Hamiltonian equation d ¢,/dt = —0H/dw;
and dw;/dt = 0H/0,#;. Restricting ourselves to the range of small x, we
obtain

dl, oV,

e @
dl;  (Roxg dx oW 3)
de\2Q,)dt~  ow,’

dw, , oV

E*—-%O-i-%ox-i-a—lz, @)
dw, 20,/ ov,

T_K%g(%?]l +2bx+‘a;), (5)

where b = Q4 Rox3/4Q,and I, = ¢,.
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From (3) and (5) it is evident that the equation of corotational resonance
in phase space (x, I,) has the form 2bx + x, I, = 0. In particular, for “cold”
particles (I, = 0) the condition of resonance x = 0 means that the radius
of the circular orbit coincides with R,. In a system with stellar dispersion
over I, the stars from some vicinity R = R, prove to be resonant.

Equations (4) and (5) show that w, > w,. This allows one to simplify
the system of (2)-(5) by making use of the method of averaging over a
“fast” phase w, (cf, e.g., [2°/]). We represent the variables in the form of i =
L+T, w=w+ w;. Retaining in the subsequent formulae instead of
the mean quantities (with overbar), the previous notations (without overbar),
we obtain, instead of (2)-(5),

I, = const, 6)
Rox3\. . v,
() -1 = - 20, o
) 2Q, N
=72 (¥ b -— )
W, Ryl (z011+2 X + 0x) ®)

The system of (6)-(8) describes the movement of the epicycle center
(x(£), wa(2)). For the spiral potential of the form V; = y(r) cos{m[D(r) + ¢]}
one easily obtains

Vi(R, I, w,) = Y(R) Jo(k'a) cos{m[w, + D(R)]}, ®

where k2 = k* + (2mQ/%xR)?; k = m(d®/dr),-, and a = (21,/x)"/? is the
size of the epicycle. Near the resonance, one may assume that k' = k3(R,)
+ 2mQy/Rox0)?, a = (211/x0)'%, Y(R) ~ Y(Ro) = Yo, mO(R) ~ m®(R,)
+ kx; Jo is the Bessel function of zero order. For a tight spiral, tan i =
m/kR < 1, and we assume that k' = k, by assuming for certainty that m = 2.
We denote the phase of the spiral wave 6 = w, + ®(R,) + kx/2. Without
any restrictions on generality, one may assume that ®(R,) = 0. Then we
shall obtain finally:

4Q, €,

0= Ry Yo Jo(ka) sin 26, (10)

where x and ¢ are connected with 6 via the relations

1 [ 2Qgx, _ kx
x——dg<9—- ROJ{(Z) 11), QO—O 7 (11)

Thus, the problem of the movement of the epicycle center is reduced to the
one-dimensional problem (10) of the nonlinear pendulum. Equation (10)
has the integral of “energy” e:

. 6’ N w; [sin’ g for Jo(ka) > 0,
T2 2 cos?h for Jo(ka) < 0,
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where

ok = 238 ko (12
oX
The phase plane (6, §) is separated by the separatrix into the regions of
trapped (¢> = w}/2e > 1) and transit (¢> < 1) particles. The parameter
q* runs through the values from 0 to . The trajectories of trapped particles
(epicycles) on the plane R, ¢ describe a closed curve resembling a banana.!?
The possibility of reducing the problem to the one-dimensional one allows
one to make use of the results concerning the evolution of the distribution
functions familiar from plasma physics [78a, 295a]. As a result of stellar
intermixing in the phase space, there occurs formation of “plateau” of the
distribution function for the characteristic time of the order of

2n 2m xg

fidd “Y2(tan i)~ Y2 ~ =
o Qo ZQOf (tan i) T(f tan i)

Tb=

Here T is the period of rotation of a galaxy on the corotational radius;
f = kyo/Q?R is the amplitude of the gravitational force.

Lynden-Bell and Kalnajs [289] show that the spiral wave, being a wave of
negative energy, may amplify at the corotational radius due to the transfer to
the stars of the moment and energy. The rate of such transfer, calculated in
linear theory, is

L= - L =Q,%,. (13)

myd (Roxé) OF(F, = 7o)
11\ 2Q °f,

Here F is the distribution function of stars in angular moments,

Fsry) = 2n)? fFo(fl, £ A Fo= QR

where Fy(#,, #,) is the initial distribution function. As a result of the
exchange of the moment and a production of the “plateau” the amplifica-
tion of the wave will cease. One may estimate the full moment A% and the
energy A& transferred by the wave to the resonance stars. For that purpose,
let us calculate the finalized distribution function.

Let the initial distribution function be F, = Fy(I,, I,(R)) = F(I,, R).
In the vicinity of the resonance R = Ry — (x/2b)], we write

%y 0F, ol
F ~ F =5 - )
0B 0<Il’ fo 2b1 ) (‘3R )R=Ro—>tbl1/2b ( T (9

!2 “Bananas” as considered by Kontopolos [60°*] are drawn by the stars themselves with
I, = 0, while in our case, these are the orbits of the epicycle center.
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Figure 100. Final star distribution function; (a) ¢ = 0, (b) ¢ = 7/4, (c) ¢ = n/2. The
origin of the system of reference (R, I1/%) is at the corotation radius.

As a result of phase mixing, the distribution function will take on the form

uol .
\ Ft,=F0(11,Ro— ;jb‘), if g% > 1,
f=
1 nw,o OF
F.=Fy(I,Ry —np =) - ——2 -2 if g2 15
c 0(1 0 %Ozb) qu(q)IQIIaR, lfq <15 ( )

where F, and F,, are finalized distribution functions of the transit and
trapped particles, respectively, K(q) is the total elliptic integral of the first
kind, ¢ = —sgn(x + %o1,/2b).

Figure 100 shows the form of the final distribution function F (I, R, ¢)
near the corotational radius for three different directions: (a) ¢ = 0;
(b) ¢ = n/4; (c) @ = n/2. The origin of the angle ¢ is chosen so that V' ~
cos[2¢ + k(R — R,)]. Each figure gives the behavior of the spiral potential
as a function of r. The figures are made by computer according to (15) for the
initia] distribution function of the form

2Q(R) 0o(R) ul,
#(R) 2nc*(R) e""(‘ ?@)

where Q(R) = Q,Ry/R, 0o(R) = 6, exp(—R/L).

The parameters are chosen so that f = kyo/RoQ2 = 0.05, L/R, = 0.5,
tan i = 2/kR = 1/7, ¢/RyQo = 0.17. To estimate the angular moment trans-
fer, one has to calculate the integral

Fi(Il’ R) =

AY = f&F 4, 2ndw, dl, dl,,

where ¢, = I, + Fo and
J1 — ¢*sin? 6, ifg> > 1,
wyo OF
qIY1 GR " e
- = J1 —¢*sin? 0, ifg* < 1.
2K(q)
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Neglecting the deviation of the resonance line from R = R, which is valid
for a sufficiently small thermal dispersion of stars, we obtain

_ _ 640 Y3 (R*\ OF (S, = Fo)
8 ==t () T a

where Q = Q. + Q,, and

_((da|E@_ _m ]
Q. = fo q4[ . 4K(q)] ~ 0028,

Oy = f %ﬂ [E(g) + (¢* — DK(q)] ~ 0.071.

0

The quantities Q,, and Q. characterize the contributions to the moment
transfer and energy transfer of the trapped and transit stars, respectively.
It is interesting to note that, although the portion of the untrapped particles
in the moment and energy transfer is less than the portion of the trapped
particles, nevertheless it is rather significant: Q./Q,, ~ 0.4. Comparing (17)
and (13), we obtain

AL ~ 0321, %,. (18)

2.2.2. Estimates of the Wave Amplitude and of the Range of Applicability of
the Theory. Formula (18) shows that for typical values of the parameters
S~ 005, tan i ~ 1/7, the mechanism of wave amplification, due to the
moment and energy transfers to the particles, works approximately during
three rotations of the galaxy. For longer time scales, formation of “plateau”
leads to the fact that the resonance particles cease to play any role in the energy
balance.

Let us estimate the wave amplitude by assuming that this amplification
mechanism is the single mechanism of generation of the spiral pattern (i..,
we neglect the influence of damping at the inner Lindblad resonance, the
influence of the barlike structure in the central region of the galaxy, dissipa-
tion in the gas-dynamical shock waves, etc.). Then the upper boundary of the
amplitude of resulting spiral pattern can be estimated by equating the moment
transferred to the resonance stars and the wave moment. The angular moment
of the wave Z,, (cf, e.g., [251]) is &, = 2n j RL(R) dR, where L(R) is the
density of the angular moment: L = (|k|my*/4Gx) dD/dv while D = D(k, v)
is the “dielectric” permittivity of the stellar disk, v = m(Q, — Q)/x. By
neglecting the thermal dispersion one may assume that D ~
2nGay|k|/(1 — v*)x2. In this case, in order of magnitude

L., ~ 2n)*Y3(tan i)~ 2a/%°.

Comparing with (17), we obtain the estimate of the value of the saturation
amplitude:

f~n*tan®i~tan’i~3 x 1073, (19)
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where n = (d In p/d In R)g, ~ 1 and u(R) is the mass per unit square of the
angular moment
aM dR Qo
u= i 27wRdj2 a
Such a low level of saturation indicates the extreme noneffectiveness of the
resonance stars in the dynamics of the spiral pattern.

In conclusion, we make some remarks. As is known (cf. e.g., [39]), the
results of the problem of the wave increasing up to the finite amplitude,
unlike the results of the problem of the wave damping of finite amplitude,
may be considered only as an estimate, because in the calculation of the
movements of the particles we neglect the growth of the potential. In the
case considered by us, another problem arises—the necessity of a self-
consistent consideration. Unlike the plasma, where the resonance involves
a small portion of particles in the velocity space, which does not “spoil”
the spatial distribution of the potential, here we in fact deal with the reson-
ance in a coordinate space. Therefore, in order to conserve the imposed
spiral form of the potential, it is required that the width of the region of
plateau in the radius be less than the wavelength of the spiral. The ratio
of the width of the region of plateau Ax to the wavelength A = 2n/k is of the
order Ax/A ~ (2f/tan i)'?/n. The model with the parameters f = 0.05,
tan i = 0.14 yields Ax/A < 0.3.

§ 3 Nonlinear Theory of Gravitational Instability of a Uniform
Expanding Medium'?

We have so far treated the stability of stationary systems. This section will
deal with an expanding uniform medium.

Of most importance in astrophysical applications is the approximate
solution of the nonlinear problem of the development of perturbations of
arbitrary amplitude in a gravitating uniform (on the average) medium without
pressure, as found by Zeldovich [48]. This solution generalizes the results of
the perturbation theory and describes the evolution of the increasing mode
of potential perturbations at the nonlinear stage.

The solution is constructed on the background of a uniform isotropically
expanding medium without pressure, whose evolution is described by
hydrodynamical equations with gravity (using the iterating indices—
summing):

Ou; ou; o0
ot il ox, ox;

1

op
5% 5;(,0 u,) = M

P\
a 2

13 This section, on request of the authors, is written by A. G. Doroshkevich.

= 4znGp,
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where p, ®, and u are the density, gravitational potential, and the velocity of
the medium and G is the gravity constant. The solution corresponding to the
isotropic expansion with conservation of uniformity (A. A. Fridman’s model)
has the form

;= H@®r;, p=p(t)=const/a®>, a=exp(— [H dt),

dH 47
— + H*= — —Gp.
dt+ 3 p

In the simplest case [48]

1 H 2 )23
p= 6162 =3 a= (g) . 2

This solution is known to be unstable. According to the approximate
nonlinear theory suggested by Zeldovich, the movement of an individual
element of the matter obeys the relation

r(q, ) = a(t)[q — B()S(q)], A3)

where r and q are the Euler and Lagrange coordinates of the particles,
S(q) is the initial displacement of the particle from the equilibrium location,
a(t) describes the general expansion of the medium, and B(t) describes the
growth of perturbations. In the simplest case of (2), a ~ t/® and B ~ ?/3,
By using these relations, it is easy to find both velocity and density in the
particle
S O N Jpey. S— @
dt ’ D(r)/D(q) 4|3y — B dS;/0q|
where B = dB/dt, D(r)/D(q) is the Jacobian of transform r = r(q, t). As
is well known, in the increasing perturbation mode, the velocities are
potential. Therefore, also the approximate theory deals with the potential
vector S(q). Thus, the tensor 3S,/0q, is symmetrical and at each point may be
reduced to the principal axes. In a corresponding frame of reference

Po

P = a1 = Bi)( — Bi,)(1 - Biy)’ )
where A; = 4, = A3 are the main values of the deformation tensor 95;/0g.
If at the point 4; > 0, then, according to this solution, for a finite time, the
density will tend to infinity at the time B = 1/4,. It is typical that the infinity
arises due to the vanishing of one factor (1 — B4,), i.e., due to the compres-
sion in the only direction determined by the largest principal value of the
deformation tensor 0S;/0q,. The movement in the plane orthogonal with
respect to this direction leads merely to the finite density change. This is the
general property of the smooth initial velocity distribution of the particles. In
the general, nongenerated case, their intersection occurs on the so-called
caustic surface. Only in the degenerated cases (4; = 4, > A;0ord; = 4, = A3)

is there focusing, either cylindrical or spherical.
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The quantities 4, 4,, 45 are the functions of coordinates. Infinite density
is reached first of all in the particle in which 4, > 0 and is maximal in the
region under consideration. Further, infinite density is attained in the neigh-
boring particles located in the plane orthogonal to the direction of the
principal axis corresponding to 4,. A very flattened cloud of compressed gas
is thus produced.

In a compressed gas one should not neglect the pressure, which would
stop compression at a finite density. Therefore, in the direction of the main
axis corresponding to 4,, the flow running over the compressed matter
stops and gets compressed in the shock wave. In more detail, the shape and
structure of the compressed gas clouds is studied by Ya. B. Zeldovich with
co-workers and in the monograph [48a].

Consider in some detail the question of the region of applicability of the
theory advanced. The movement of the matter in accordance with (3) leads
to the density distribution described by (4) and (5). On the other hand, in
order that the movement might occur in accordance with (3), it is necessary
that the acceleration —0®/dx; in (1) be generated by the density distribution
p* = —(4nG)~1(8/0x;)[0u;/dt + u, 0u;/0x,]. If p* = p, then the problem is
self-consistent and (3) is an exact solution. Otherwise, the deviation p* — p
may serve as a measure of approximateness of (3). It is easy to calculate the
quantity

*
A=""_1=[—(3GB + 2dB + aB) ¢, + B(3dB + 44B + 2aB) ¢,
p

— 3B%(GB + 24B + aB) #£,137d™ !, (6)
where the dot denotes time differentiation and
F1=A + 1 + 43, Fr=Mhy + 4 + L4, F3=Aidds
are the invariants of the deformation tensor. In expression (3), the dependence
B(t) is chosen so that
3dB + 2aB + aB =0, ()

and is coincident with the expression for the rate of growth of perturbations
in linear theory. Therefore, by using (7), we reduce (6) to the form

A=Bg, + 2B 4,. @)

This yields two important results.

(1) The approximate theory is accurate for small perturbations since (8)
in this case is quadratic with respect to the amplitude of perturbations.

(2) The theory is accurate for one-dimensional perturbations since for
Ay=1243=0, #, = ¢, =0, and A = 0. Substituting B = 1/4, (the con-
dition of reaching infinite density), we obtain,

A=221o5m, ©)
1



§ 4 Foundations of Turbulence Theory 83

and within the range 4, » 1, = A; we have again A < 1. The corrections
for the solutions are of the order of the ratio 4,/4, (or 15 4,/4%) which can just
be considered as a small parameter of the problem. Thus, the approxi-
mate theory provides a good accuracy within the ranges 4, > 4, > 4, ie,,
in the vicinity of the region of maximum compression.

Verification of the approximate theory by constructing numerical models
has confirmed both good accuracy of the approximate theory (not lower
than 20%) in the neighborhood of compressions and the one-dimensional
character of compression and the production of flat structures [45a].

§ 4 Foundations of Turbulence Theory'*[53%¢]

In this section, we shall treat, in application to gravitating systems, some
questions of the theory of weak turbulence. It is well known that, in hydro-
dynamics, under turbulence there is understood to be a set of a large number of
whirls moving a little in space and therefore interacting for a long time
(and, consequently, strongly) with each other. The development of the
physical theory, in particular, plasma physics, has shown that such an
understanding is too narrow. At the present time, under turbulence there is
understood to be the movement in which a large number of collective (not
necessarily whirls) degrees of freedom are excited, for example, a large number
of modes of eigenoscillations of the medium. The study of the latter is just
the subject of the weak turbulence theory [39, 15*].

As far as the wave movement is concerned, individual wave packets are
moving in the medium with a group speed and for their lifetime are able to
drift apart up to rather great distances. Owing to this, the interaction of each
individual pair of the wave packets with each other turns out to be weak,
which allows one, in particular, to consider the waves as being nearly linear,
i.e., having dispersion properties close to the properties of the linear waves.
An essential advantage of the theory of weak turbulence is the possibility of
application of the disturbance theory, i.e., expansion of the equations in a
small parameter of the ratio of the interaction energy to the total energy,
which in many cases is reduced to the expansion with respect to powers of
small amplitudes of waves.

The theory of weak turbulence has two aspects: the study of the nonlinear
interaction of the waves with each other and the study of the wave-
particle interaction. We shall restrict ourselves to the former.

4.1 Hamiltonian Formalism for the Hydrodynamical Model
of a Gravitating Medium

It is convenient to place in the basis of our analysis the general method
allowing one to at once include the nonlinear wave theory in gravitating
systems into the general theory of wave phenomena in nonlinear dispersive

14 This section, on request of the authors, is written by S. M. Churilov and I. G. Shukhman.
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media. Such a method is the Hamiltonian formalism developed by Zakharov
and his successors (cf. [10, 114]).

It allows one in a uniform way to describe the nonlinear wave interaction;
it also provides a simple algorithm for writing “shortened” equations and
calculating the relevant matrix elements which immediately possess the
needed symmetry, a fact that with other methods of calculation is achieved
only by painstaking efforts and requires great inventiveness. In essence, the
Hamiltonian formalism is a method of subsequent expansion of equations
with respect to the powers of wave amplitudes.

It is evident that, as in mechanics, the Hamiltonian formalism may be
constructed only in neglect of dissipation, i.e., for conservative media pos-
sessing, moreover, a translation-invariant Hamiltonian. In addition, the
dispersion properties of the waves in the linear approximation must be such
that the square of the frequency is w?(k) > 0, apart possibly from the value of
the wave vector k, where w?(k) = 0.

We shall analyze the application of the Hamiltonian formalism in the
example of the nonlinear wave processes in an infinitely thin rotating gravi-
tating gaseous layer, restricting ourselves to Jeans oscillations that do not
deform the plane of the layer. The case without rotation passes beyond the
method since then there is a wide range of wave vectors, for which w?(k) < 0
(the region of Jeans instability; cf. Chapter I).

4.1.1. Statement of the Problem and Basic Equations. Consider an infini-
tesimally thin gravitating gaseous layer uniformly rotating at an angular
velocity Q and lying in the plane z = 0. Assume that the centrifugal force is
compensated for by some external force, for example, the gravity force
acting from the halo surrounding the layer. The hydrodynamical equations,
in the frame of reference rotating at an angular velocity Q, are of the form

Jo )
a + divav = 0, 1)
ov 1
— 4+ (VWW)v + [wv] = — — VP — VO, 2)
ot o
2
AD + (337? = 4nGaod(2), 3

where ¢ is the surface density, v is the velocity of gas, and @ is the gravitational
potential; all vector values and operators refer to the (x, y) plane, x = 2Q.
The solution for the Poisson equation (3) can be written in the form
' 3 d / /
(I)(r,z)=-—Gf a(r)é(z") dr' dz .
JE =17+ (- 2)

Integrating over z', owing to the é function, is trivial, while for the potential
in the plane of the layer z = 0 which is only of interest for us, we obtain

o) = -G J’ o(r’) dr’

Ir—r|

)
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For the barotropic medium, when the pressure is only dependent on the
density, p = p(0), one can express the right-hand side of (2) in the form of the
gradient from the variational derivative of a certain functional

ov OE
o + (WV)v + [#v] = =V 5o )

where

= js(a) dr — g J‘M,

Ir —r'|

ds(a) J‘dp J‘ 1 dp do.

cdo

(6)

Multiplying Eq. (1) by v2/2, and Eq. (5) by ov, we obtain, with the aid of
continuity Eq. (1),

aﬂ]i+div a_vzv —div aéEv _9Ede
o oo o ot

Integration over the whole area, taking into account the Gaussian theorem,
provides the law of conservation of energy:

0 ov?
a( —d +E)=0. ©)

In further development, an essential role will be played by the energy
functional, or the Hamiltonian, of the system

ov? _ av a(r)a(r)dr dr’

Specify the (o) function. Adopt the polytropic law of the dependence of
the pressure on the density p = Ao?(y > 1).'* Then, from (6), it is easy to
get that

&(o) = a’. 9)

y—1

4.1.2. Transition to Canonical Variables. Introduce, in analogy with hydro-
dynamics, the canonical variables [11%]:

V= g Vu+ Ve — A, A=3i[xnr] (10)

The transform (10) resembles very much the expression for the generalized
impulse of a charged particle in a magnetic field, where A is similar to the
vector potential, and %, to the magnetic field vector. This is still another

'S For the connection of the “surface” and “volume” adiabatic index cf. Section 1.3,
Chapter V. For y = 1, in (9), instead of the power function, there will be a logarithm; however,
one can readily show via direct expansion that all formulae containing y, beginning with (18),
hold true also for y = 1.
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manifestation of the analogy mentioned in Chapter II between equations
describing the rotating gravitating medium and equations describing the
plasma in a magnetic field.

Substitution of (10) into (5), taking into account that (vW)v = V(v?/2)
— [v rot v], yields the equation

dp v* OE A A_[ou Vulor . _
Vl:a—t + 5 + 5—0_ - ;(VV)#:I + ; VI:E; + (VV)#] + p [6t + diviv| = 0,
which is obviously satisfied if ¢, 4, and yu satisfy the equations:
dp v OE
@275
oA

. u
E+dlv,1v-0, E+(VV)H_O'

Via direct differentiation, it is easy to show that [cf. (1), (8)]
do_oX 29 X
ot oo’ o dg’
A_oX m_ oA
a ou’ o A’

_Aovm=no,
g
(1)

(12)

Thus, the pairs of variables o, ¢ and A, u are canonically conjugate. For
each spatial velocity profile v, using formula (10), it is possible (moreover,
nonuniquely) to determine the functions A, u, and ¢, and since Eq. (5) is
identically satisfied by Eq. (11), the description via v and the description
via A, u, @ are equivalent.

The next step, in analogy with the theory of mechanical oscillations, is
the introduction of normal variables, in which, in the linear approximation,
each mode of oscillation is described only by its own pair of canonical
variables. However, there is a difficulty here similar to that presented in the
description of the plasma in a constant magnetic field [cf. remark after formula
(10)]: the function A is the linear function of coordinates, and the reduction
of the Hamiltonian to the needed form (diagonalization) requires an ad-
ditional canonical transform, which we shall perform in two stages [10%].
To begin with, perform “symmetrization” of the variables,

12 2
- U

g ., ’ _1 ' - ' i—
,1=f5(/1+u), u—ﬁ(u Ay o= +— (13)

and then eliminate A:

A=A+ /xoy, =y — . /nox,

! " % ”n "
o =¢" - /;‘—(xl + yu').
g

(14)
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It is easily verified that the two sets of variables are canonical. The relevant
equations are readily derived from (11) and (10):

oA
= + 1WA + 1dividv =0,

o .
_6% + 3OV + 2 div v =0,

6(p’ Uz oE 1 , ’ ’ ’
2 T3t 5 T KOV = AWl =0,

(15)

v _ llvﬂl - ﬂIVA/

Vo' —
g + Vo' — A

and for the second set of variables,

"

A
o+ V/Hov + WA + L div Af’v =0,

a "
—;t— — Jrov, + 2(vWp' + L div u'v = 0,

aw” vz 6E 1 7" 7" 7" " % " "
74‘34‘5&4‘%[# WA = A"(vWu'] + IZ‘—U-(U’CA +o,u ) =0,

AHV“’/ . “IIVAN x
— _ _ " " " 16
Ve S (e, + w'e) + Vo, (16)

where e, and e, are the unit-vectors on the x and y axes. Further, we utilize

the variables 1", u”, ¢”, omitting, for the sake of brevity, the primes.
Consider the waves on the background of the layer of homogeneous

density a,. It is convenient to introduce, instead of o, a new variable 1

g =0l + 7). a7n

The quantity & = ¢, ¢ seems obviously to be canonically conjugate to 7.
Now, in the unperturbed state, the canonical variables 7, @, 4, u all are
equal to zero. We expand the Hamiltonian (8) in powers of canonical
variables. We start with the functional E. According to (6) and (9),

E= f ad (i)ydr G [o9®) 40 e

y — 1\og 2 r —r|

Expressing ¢ by 7 and taking into account that

(L0 = L7+ 90 = DE2+ -,
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we obtain

E- Go} [‘ dr dr' 915 (r) + =(r')

_ dr dr’

2 Jir=r| 2 r—r|
GZ

_ Gag ’C(l‘)‘t(l‘) » Aao J‘ ir
> Je-r —1

2 — (v —
+6°2c fdr[rz+y3 T+(y )b —3) 4+---],

12
where ¢2 = yAc} ! is the square of the sound velocity

As is known, it is possible to eliminate the constants and subintegral
terms (which have a divergent form in Eq. (7)) from the Hamiltonian

ax
dt
—div(l + t)vands=r -r

jL”(')d d'—zf-di [Qfdr,
al) r—r| J Isl

then, in E, there remain only the terms in the second and higher powers
over 1:

Since dt/0t =

Ee _ G_a(z) (r)t(r’)

0'0 'y—2
d 34
KU P fr( 3r+>(18)

The Hamiltonian appears in the form of a series in powers of canonical
variables

H=HP 4+ HD D ..
where

(19)

Gao} [ t(r)r(r) dr dr’
#O — ﬂf 2 4 2.2y gy — 290
y JOrt ey dr == r—r]
3 _ %o 2 4
H =7J Wi + 2(v,v,) +51 (y —2)|dr,

HPD = 70 f |:v§ + 21(v,v,) + 2(vyv3) + =26 =3 c214] dr,

12
”
vy = V(P - [a_(lex + .uey)’
0
AVy — uVi [
v, = T + r‘o w(de, + pe,),

_ T 3 (% ,
V3 = 20_0 (ﬂ‘vﬂ - l"'V'l) g E;_ T (Aex + ,uey)‘ (20)
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Consider now the Fourier representation by the formulae

1 . 1 .
A(r) = e J.Ake"“ dk, A, = > J‘A(r)e_lkr dr.

In the expression for %), the transition to the Fourier components in the
first integral is easy; let us consider the second integral

/ 1 ! !
7(r)z(r’) I dv' = i J‘dr dr dk,dk
Ir —r'| (2m) lr —r|
Since integration over r and r’ is performed over the whole plane, we may
turn to the variables r' and s = r — r’. We obtain

1 J‘ dk dk’ ds dr’

(2n)* Is|

T Ty ei(kr + k’r’)‘

i(kr' +k'r’) +iks

Tk Tk €
iks
Is|

= (—2—711? fdk dk'ty 7 f% ds fe“"*""" dr'.

The last integral yields é(k + k'), which eliminates integration over k'
while in the integral over s, it is convenient to turn to the polar coordinates
sand i choosing k as the polar axis. We obtain, bearing in mind that t_, = tj,

2n o =)
~f|1.',¢|2 dk f ay f ellklseos¥ gg — 2n f|1k|2 dk f Follk|s) ds.
0 0 0

The last integral, owing to normalization of the Bessel function, is 1/|k|
and finally we have

[ 27[GO'
2) __ 70 * 2 0
H > fdk[(vkvk) + (C — k| )

where v, is the Fourier component of v,.

Tk Tl?:la (21)

4.1.3. Derivation of the Basic Equation of the Theory in Normal Variables.
Following the general method [10*], we introduce the wave amplitudes
a;, where the index s enumerates the types of oscillations. It is convenient to
employ also the negative values of s, by assuming (w;, are frequencies):

a; * = a’%,, wp* = —w;. (22)
For the Fourier component of any real quantity 4,, we have
Ac= ) Aia, A0 =AY,
s

We linearize Egs. (1)-(3), taking into account that a; ~ exp(—iw;t):

—iwity + itkey) =0,

- 2”G°°)ri ~ Dl 23)

k|
Here we have used the solution for the Poisson equation given in §2, Chapter
I:

—iwjv} = — ik(c2

27[60'0 s
- T

o; = .
k |k| k
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Equating to zero of the determinant of the system (23) provides two branches
of oscillations:
1. Jeans branch (s = 1)

(08)? = #? + k?c? — 2nGo,|K|. 24)

2. Entropic branch (s = 2)
w? =0.

The entropic branch dropped out of the region of applicability of the
formalism (cf. beginning of the section); therefore, it should be eliminated,
i.e., one should assume that a? = 0. For the Jeans branch, one may express
the velocity through t:

1
v = i (wpk — i[xk])tl. (25)

Substitution of (25) into Hamiltonian (21) reduces the latter to a diagonal form
2
w2 f e X0 ciisglape,
We choose the normalization of a} so that

HD = fw,%a,%a,i* dk, (26)

then it is evident that
. k|

Ty = _,m

With such normalization, the quantity alal* acquires the meaning of
“density ” of the number of “quanta” of a given frequency w}. The quantities
ai are called by the normal variables.

Further, the upper index will be omitted, for the sake of brevity.

We express via (16) and (25) the Fourier components 7, @, 4, 4, and
vy, through a,:

T = L (a + a%p),
V2040
. a)k — %2 «
= — a. ,
Px 20, |k|w3/2 ay K)
W= — \/; {(xky - iwk kx)ak - (%ky + iwkkx)atk}s (27)

\/Elklw,?/z

A ____\/;_
2kl

1
Uy = |k|\/_—200:wk {onk(a, — a*,) — i[xk](ax + a%p)}.

{(%kx + iwk ky)ak - (%kx - iwkky)a’tk}
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Write now the equation of motion (16) through a, . The variables'® 7, @, 4,
are canonical; therefore, in the Fourier components (16) can also be written
in the canonical form of (12):

o, O O

ot 8¢, o o’

(" k (28)
A T T
o ow’ o oA

As is seen from (27), all the canonical variables are the linear functions of
a, and a*,, and they can be presented in the form

_ * % ~ o~ =k sk
T = T10y + T10 g, Qr = Qq1a; + Q1A g,
= * — * 4%
Ae = A — Aqaty, M = PG — H10° .

Multiplying the first equation (28) by ¢¥, the second by (—1%), the third
by (—u*), and the fourth by 4%, and summing, we obtain

Mk sk * * Oay
(18T — @477 — At + 1Y) e

H ., SH , O , O . OF

* % * *

=5—%‘¢‘+6—n11—5—m“‘_5—h 1= 5

By means of direct calculation, it is easy to make sure that the coefficient
at da, /ot is i; however, it is seen also from (26). Thus

da, x4
E— _l_—(saik' (29)

This equation is the basic equation of the theory. Using expansion (19) and
formulae (20), it is easy to obtain from (29) the so-called shortened equations
describing the wave dynamics in any order with respect to the amplitude a,.

4.2 Three-Wave Interaction

Consider the first nonlinear approximation, i.e., restrict ourselves to the cubic
part of the Hamiltonian 3#®. Simple but cumbersome calculations (for more
detail, cf. §9, Appendix) yield
Wﬂ) - Jdk dkl dkz[%l/;‘klkzakaklakz(i(k + kl + kz)
+ kalkzafaklakzé(k h kl - kz) + C.C.], (1)

16 Recall that ¢ = g, .
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where c.c. denotes the terms complex conjugate to the written ones and
Vikikr = Ukiika + Uiy + Uik

1
161/ 20, wiwd o}, | k| |k, | [k, |

Ukk,kz =

X Qo oy, 0, W2 [k 1k 1? + 2%*wy([kk ] [kk,])

+ 2w, 0F 0w}, k2 (kik,) + 3(y — 2)Pk*kik: o 0,004,

+ 1 {wi o, [(kk,)(kky) + 3(kky) (k3 — k> — kD)]

+ wian,[(kky) (kiky) + F(kky) (k] — K — k3)1}

= 2iwtwy, Wy, (x[kik 1) (k2 — k3)

— i*{(0F, — op,) ok k1) (k ky)

+ 0,0, Oelk k1)K — k3))). )]

The matrix element ¥, ., possesses the needed transformation properties:
It is symmetrical with respect to kk,k,

Vok-ki=k2 = Vit
Equation (29) (Section 4.1) in this approximation has the form

0
% + iwkak = —l fdkl dkz[l/;‘t1k2aklak25(k - kl - k2)

+ 2Verie e, 6k + kg — k3)
+ Vi arar, ok + ki + ky)]. 3)
It describes the processes of interaction of three waves with the wave vectors
k, k;, and k,. We determine the limits of applicability of (3).
For that purpose, we introduce the new amplitudes

a, = Age 9%, @

In neglecting the wave interaction, the solution of (3) may be taken in the
form

AL = A5k ~ ko).
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Allowance for interaction provides corrections. In the first approximation

24
= = — 1Vl A expli(oy — 20,)13(k ~ 2ko)
+ 2Wieoko AA* explicn, 1)3(k)
+ Voo A*? expli(ey + 2w,,)10(k + 2ko)},
*
AD = — Vot 42 expLi(wa, — 2004, )t]0(k — 2ko)

2V,
— - Okoko | 412 exp(iwg t) S(k)
Wo

*
_ V“Zkokoko A*?

o + 200, 4 OXPL2s + 200}t 10k + 2o

Since all w, are positive, the coefficients at the  functions in the last two terms
are small as compared to |A| (] 4] itself is also small). Therefore, the con-
dition of applicability of (3) has the form

v,
I Zkokoko, . |A| < 1
|@wa — 2wk,,|

In our problem, the spectrum is far from the linear one [cf. (24), Section
4.1]; therefore, the denominator can be small only for a special choice of
ko. In the general case, the condition of applicability of (3) has, as a rule,
the form

[V]-|A] < 1.
4.2.1. Decay Instability. Consider now the problem of the evolution of a small

(but finite) perturbation. As seen from (3), the wave with the wave vector
k can interact with two waves satisfying one of the conditions

k=k; +k,, k=k,-k, k=-k —k,. 4)
For concreteness, we restrict ourselves to one of them. Assuming that
A, = Agdlk — ko) + A0k — ki) + A, 0(k — k)

and that |A,| > |4,], |4,|, we obtain, in the linear approximation with
respect to Ay, A,

d4, ; * iyt
W = —2ll/lcok1k2A0A2ey9

S
dA, | | &)
dr = =2V, Ao ATe",

where

Y= wkl + wk; - wko'
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Equation (5) is easily reduced to the one

d{ _ da .
Ei (e A d—tl) = 4| I/koklkzlzlAOlze ﬂAl’

the solution of which is A; = ce®, where

i
9=57 £ VWP 140 = 377, ©

If the subroot expression (6) is positive, then we are dealing with the so-
called decay instability [39], when the wave of “large” amplitude A, decays
into two other waves.

In order that the decay instability might occur for any A4,, it is necessary
that, apart from the triangle condition

also the synchronism condition
Wy = Wy, + @y, or =0 (7b)

be satisfied.

The spectra, for which these two conditions may be satisfied, are called the
decay spectra [39]. It is readily shown, from dispersion equation (24),
Section 4 that we are dealing with a decay spectrum. Decay instability
map proceed also with violation of (7b), but then a rather large excitation
(pumping) wave amplitude A4, is required. The maximum instability growth
rate is

?max = 2] Vkoklkzl IAO ' (8)

The decay instability in a gravitating rotating layer for the case of the
one-dimensional spectrum in k is dealt with in [70*]. Our consideration,
however, fits also the general case of a two-dimensional spectrum, where the
possibilities of decay are much richer: As a rule, the infinite number of
pairs (k,, k;) corresponds to a given k. Let us investigate these possibilities.

The dispersion equation shows that for k = k, = nGa,/c* the frequency
has the minimum: o} = c*k3(Q* — 1), Q@ = x¢/nGa, > 1. Due to this, k,
may not be arbitrary: at least the inequality @, > 2w, must be fulfilled.
For w, < 4% (Q* < %) it provides two regions of variation for k, :

0<k <k and k, >k* k* =[1+ /3(0% = D)Iko.

For wo > 3%/(Q* > %) there is only one region. The condition of a triangle
prohibits the decay w; — 2w, (since wy, = # < 2w,), and now the bound-
ary of the region is determined by the inequality k, > k* = 3Q%,.

For decays from the short-wave region (k, = k¥ or k; > k™) k; > k,,
ky,and 0, = w, — w3 < c(k; — k3) < ck, or w,/k, < ¢, then it yields the
lower asymptotics of the variation range of k, > k, = koQ?/2 and the upper
one
wofe, QF <2 (ky < ko),

k2 < k - k*, k* = {k;, Q2 2 2 (k; 2 ko).
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ky

ky

(b)

Figure 101. Pairs (k,, k,) which may take part in the decay [(a) 0 < wo < #/2(1 <
0% < %), (b) wy > %/2(Q? > $)] for positive energy waves (V. 1. Korchagin and P. 1.
Korchagin have noted that taking part of negative energy waves essentially widens the
range of allowed decays).

The variation range of kj is the same due to the symmetry. For wy > /2
waves with k < k do not take part in decays (dashed regions). Correspond-
ing k; and angles between the wave vectors are determined from (23).
Formulae describing the boundaries of regions are given in §10, Appendix
(see also Fig. 101).

It is evident that Eqs. (5) describe only the initial stage of decay instability.
In the course of time, the amplitudes 4, and A4, will grow such that they
will begin to influence A, and there will be the so-called parametric inter-
action of three waves [39]. In order to describe this process, let us ignore
the inequality |A,| > |A,|, |4,|. By assuming that the conditions (7) are
satisfied, we obtain from (3)

dA, .

7 = —21V:‘0k1k2A1A23

dA

Ttl = —ZiI/koklszOA;9 (9)
dA .

d—tz - —211/;0,“,‘2/1014?.

We single out in the quantities in (9) the moduli and phases:
Aj = bj exp[i(pj(t)]’ V;coklkz = Vei'll’
0=0o—0,— ¢+ ¥
Then (9) will take on the form

db .

th = —2Vb1b2 sin 0,

db .

6_t1 = 2Vb,b, sin 6, o
a

db .

_dti = 2Vbyb, sin 6,

ig = 2V<b°b2 bobs blbz) cos 6.

a b, " b, by
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Multiplying the last equation by tan § and using the first three equations,
substituting the fractions on the right-hand side, we obtain

bybib, cos 8 = T' = const. (10)

We denote n; = b}. Taking into account the decay condition (7b), we obtain
the first integral of the remaining three equations

No Wy, + Ny, + Ny, = CONSst, (10a)

expressing the law of conservation of energy in the 3-wave interaction (the
values n; have the meaning of the “number of quanta” of a given frequency).
In a similar manner, we obtain further three conserving quantities,

m; = ng + n; = const,
m, = ny + n, = const, (10b)
my = n; — N, = const,

the meaning of which is easily understood if one notes that, with the vanishing
of one quantum with frequency w,,, quanta with frequencies w,, and w,,
appear while the quanta w,, and w,, may vanish only together, producing a
quantum ay,. Thus, if Any = +1, An; = An, = F1.

By using the integrals of (10), we obtain from the third equation (9a)

1 (dn,\?
3 (#) = 8Vi(non,n, — I'?)

= 8V2[n,(m, — ny)(my + n;) — I']. (1)

The solution of this equation is expressed through the elliptical functions
(cf., e.g., [39]); however, it would be more obvious if one investigates the
solution qualitatively. The equation obtained has the form of the “law of
conservation of energy” of a particle moving in the field with the potential

U = 8V2n,(n, — my)(n, + my) (12)
and having negative “energy”
E = —-8V°T?,

and the role of the “coordinate” is played by n,. The potential is presented
in Fig. 102.

From the figure it is seen that n, (and together with it, according to relation
(10b), n, and n,) oscillates between the maximum and minimum values.
There also occurs periodical pumping of energy from one mode of oscillations
to the others. It is interesting that if at the initial time moment one of the
modes has not been excited (I' = 0), then the process proceeds with alternat-
ing disappearance of one of the oscillation modes.

When n; =n, (my =0) and I’ =0, Eq. (11) has a simple analytical
(“soliton ™) solution:

m,

_ 2 _ 2
= 2 — 1)) o =4m, V- (13)
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I | /nz%/

n
2 ———=m, \I/mz M5

(2) (®) (c)

Figure 102. Effective potential; (a) m; > 0, (b) m; = 0, (¢)y m; < 0.

The process described by the solution of (13) is the following: the wave
of a frequency w,, with the energy m,w,, starts to decay into the waves
with the frequencies w,, and w,,, and at the time t = t, decays completely,
and there begins a process of merging that finishes in the complete dis-
appearance of quanta with frequencies w,, and w,,. The whole cycle is then
performed for an infinite time.

We have restricted ourselves to the case, when the first of the conditions
in (4') is satisfied. We write the decay conditions

k+ky=ky, — op+ o, =y,
k+k +ky=0, o, + o, + 0, =0, (7¢)

corresponding to the two other relations in (4'). The last condition is never
satisfied, since we have w, > 0; therefore, in the future, under the decay
condition either conditions (7a, b) or (7c) are everywhere understood.

4.2.2. Kinetic Equation for Waves. We have dealt with the three-wave
interaction in the case when only a few oscillation frequencies are excited and
the interaction has a regular character. If simultaneously a wide frequency
spectrum is excited, then since the resonance conditions may be satisfied for
a multitude of sets of three waves, their interaction does not usually have
a character of a regular process. If the frequencies of different oscillation
modes are not comparable, then after some time, even if at the beginning
there was a regular spectrum, the phase shifts between them may be con-
sidered as occasional. In this case it is convenient to make use of a statistical
description with the aid of the so-called kinetic equation for the waves [39].
It is based on the suggestion that the oscillation phases are chaotic ie.,
that oscillations with different k do not correlate with each other. The cor-
relation function

(aaf,y = mok — ky) (14)

is introduced, which is the “number of quanta” with a given wave vector k



98 VII Problems of Nonlinear Theory

[cf. remark after formula (26), Section 4.1)] and obeys the equation (for
details of the derivation, cf. §10, Appendix):

dn

d_tk= 4n fdkx dklekk,sz[("klnkz — My, — meny,)

X 5(wk h wkl - wkz)a(k e kl - kz) + 2(nklnk2 + nknk2
= M )0, + @y, — @, )0k + ky — ky)], (15)

which is just the kinetic equation for waves. The obvious stationary solution
for this equation is

n, = N/, (16)

which corresponds to the equipartition of energy in the “degrees of free-
dom.” Indeed [cf. (26), Section 4.1], the value of energy in the given oscillation
mode

E, = wyn, = N = const,

and each wave number & has equal energy.

Comparison of (15) with (18) reveals the connection of the kernel of the
kinetic equation for waves with the growth rate of decay instability [note that,
in (15), there are only waves satisfying the decay conditions (7)] and allows
one to make an estimate of the applicability limits of the kinetic equation
[10°4].

In a medium let a narrow wave packet propagate, which has a maximum
width Ak in the vicinity of k,. Then

Oy = wko + (’aa% Ak),

which with the equality k = k, + k, or k + k; = k, accounted for, yields

1/
|y — 0y, = O, | ~ |0y + @, — 0, | ~ Ak,
where
(1), = a('Ok
3k =,

Replacing in (15) the matrix element by V, , ., = V and the J function
of w by

1
w' Ak’
we obtain the estimate of the characteristic time of the evolution of the
spectrum

1 |V|2f
. w’Ak,nkdk'
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As Ak - 0, T —» 0. However, the time of the nonlinear interaction must
event at all be greater than the inverse maximum growth rate of decay
instability (8). For the monocromatic wave, one may formally introduce

me = [Ao?o(k — ko).

1/2
Foe = 2(|V|2 fnk dk) .

From the requirement 1/7 < J,,,,, We obtain the restriction on the packet’s
width required for the applicability of the kinetic equation (15):

Ak 1 12
7>m(|V|2 fnkdk> . 17)

Thus, kinetic equation (15) may be applied only to the study of the
interaction of wave packets fairly wide in k-space.

Then

4.3 Four-Wave Interaction

If only such waves, for which the decay condition in (7) are not satisfied,
are excited, the three-wave interaction is not effective and it is necessary
to consider the four-wave interaction. For this purpose, we retain in expan-
sion (19), Section 4.1, the terms up to #“. Proceeding in the same way
as in the calculation of #®, we shall obtain the matrix element of the four-
wave interaction

HY = [[Mklkzkgakaklakzakgé(k + ki +k; + ky)
+ AW ks OO, Oy, O Ok — kg — ky — k3)
+ 3Wakskoks Ak O O, A, Ok + ky — ky — k3) + c.c]
x dk dk, dk, dks. (1)

The matrix element W possesses the properties of symmetry similar to the
symmetry properties of the matrix element V. We will not give here its
explicit expression.

Equation (29), Section 4.1, in this approximation has the form:

% +iwa, = —i [dkl de[kalkzaklakzé(k —ky - k,)

+ 2V, i, 0k + ky — k) + Vil p,aial, 0k + ki + k)]
- lJ‘dkl dk2 dk3[4W,?klk2k3aklak2ak36(k - kl - k2 - k3)

+ 6(Wikiaks + Wikikoks) i, i, 0k + ky — ky — ks)
+ 12W ki, O, a1, i 0k — Ky + ko + k)
+ AWE s ar.af, a0k + kg + ky + k3)). @)
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4.3.1. Nonlinear Parabolic Equation. We consider with the aid of (2) the
evolution of waves close to linear ones [ 13*]. We divide g, into fast oscillating
and slowly varying parts:

@ = (A + fi)e ',
where the fast oscillating part is much less than the slowly varying one
[ fel < Al

Restricting ourselves, in the equation for f;, only to the terms quadratic
with respect to A,, we obtain

A . .

T = i [k Vs A A, exLiC0, — 1, — 1]
X 6(k - kl - k2) + ZKCklszrlAkz exp[i(wk - wkl - wkz)t]
X 5(k + kl - k2) + V’?klszl?lA;ckz exp[i(wk + wkl + wkz)t]
ok + ki + ky)}.

We integrate this equation by assuming that, for the time of the variation
of f,, A, does not change:

Vi, A A .
f;‘ = - fdkl dkz{#ﬁ_;;kz eXp[l(wk - a),“ - wkz)t]
2I/kk1sz;(k1Ak2

Wy + W, — Oy,

x 8k —ky — ky) + expli(wy + oy, — oy )t]

ok +k k,) + Vs 4, AL, expli(w, + o, + o )t]
X &( 1 2 Wy + wp, + O, PLUWy k1 k2
X ok + ky + kz)}. 3)

Let us, in the equation for A4, take into account the slowest exponents,
i.e,, the terms of the form A*AA. Taking into account (3), we have

04, ) .
E_ = —1 T;(klkzk;;A;rlAszk:; exp[l(wk + wkl - wkz - wkg)t]
X 80k + ky — ky — k) dky dk dks, @
where
*
T, =_2 th(—k‘kl)V(-kz‘ks)kzks
kkikaks —
Wy, +k3 + Wy, + wk;
_ 2 I/kklk"'kl V;::'*kskzks _ 4 V;Ckkzk"kz I/kg—klklk;;
C0"2'*"‘3 - wkz - wkg wkl—k;; + wkl - wkg

*
_4 V;Ckgkg—kal—kzklkg
wkl—kz + wkz - COk

+ 6(Wiyoks + Whkikors)

1
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If the spectrum contains waves for which the decay conditions are satisfied,
then singularities will appear in T. Such a difficulty is not encountered for
the wave packets narrow in k-space. Consider such a “packet” with the
“carrier” wave number k, and with a width Ak, such that

[k — ko| < kg.
We expand the frequency w, with respectto g = k — kg:
W, = oy, + (qv) + %Dijqiqj + -
where

8wk awk
VD= —— 5 i == .
72l N R
Replace Ty ian; DY W = Tigook, 10 (4) and put
by = Ay exp{—il(qv) — 3Dy;q;q;1t} = Aye @™,

Then we obtain from (4)

ob,
8t + 1[(‘117) + 2Duqlqj]bk

= 2w (bbb 3k + i = by — k) ke d d

(the temporal exponents are subtracted).
We perform the inverse Fourier transform:

b(r, 1) = % que‘i“' dq.

The quantity b(r, ) has the meaning of the envelope of the wave packet.
We obtain
“iarp*p b

91792743

ob i 0%b iw
—+( Vb - "‘6 0%, 27rf

X (g + q; — q2 — q43)dq, dq, dq5 dq

- % qul dqz dq3bq1 qubqs et(a: q2—q3)r

—(2m)%iw|b|?b.
We have obtained the nonlinear parabolic equation

ob i %
o OV =5 Dy

which describes such important effects as the nonlinear correction for the
monochromatic wave frequency

Aw = (2m)*w|b|%,

+ 2n)%iw|b|*b = )
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and self-focusing and self-compression (modulational instability) of the
wave packets, leading to the production of envelope solitons and “wave-
guides” and other phenomena. Some of them have already been considered
in the previous sections. We refer the reader for a detailed discussion of these
effects to the literature [15%].

§ 5 Concluding Remarks

5.1 When Can an Unstable Gravitating Disk be Regarded as
an Infinitesimally Thin One? [39*/]

5.1.1. Formulation of the Problem. The disk is incorporated as the main part
in many models of astrophysical objects. Indeed, flat subsystems of spiral
galaxies, a later stage of evolution of the protoplanetary cloud, the rings of
Saturn, and, finally, pancakes and accreting disks around compact masses—
this is an incomplete list of objects represented in the form of gravitating
disks. Definition of the stability of such objects, as the simplest investigation
of one of the possible ways of their evolution, is inevitably associated with
further simplifications of the model. The simplest and, therefore, of course,
the most popular model was found to be that of an infinitesimally thin disk,
i.e., a disk, the thickness # of which is many times less than the perturbation
wavelengths 1, 4 <€ A in question.

However, already in [209] it was shown'” that the maximum of instability
ofa gravitating disk (with a not very large temperature anisotropy « = T,/Tj,
where T, and T are the temperatures across and along the rotation axis,
respectively) lies in the range of wavelengths comparable to the disk thickness,
A ~ h. The last condition means that the collisionless disk model in the form
being used is found to be inapplicable for the most unstable wavelengths,
i.e., just for those developing with a maximum growth rate so that with
necessity we must use only a disk model of finite thickness, the stability
study of which is an essentially more labor consuming task [31%¢].

The aim of this section is to point out conditions under which in the
infinitesimally thin disk model one can investigate correctly the stability
and related fundamental questions: nonlinear density wave evolution
[90a, 90, 20%, 32%] and weak turbulence [53°4]. The study of these problems,
as we shall make sure, is possible in the approximation of an infinitesimally
thin disk if the latter is immersed in a massive halo. Thus, at what ratios
between the basic parameters of these two subsystems can disk stability
be investigated by assuming it to be infinitesimally thin?

7 Goldreigh and Lynden-Bell in [209] have given the proof for the case when the disk is
near the stability boundary, w? ~ 0. In the present example, this statement is proved in the
general case [see formula (20)].
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5.1.2. Vertical Density Distribution of a Light Gaseous Component and a
Massive Stellar Halo. For the sake of concreteness let us consider a gaseous
disk immersed in a stellar halo. In addition, we shall denote stellar values by
the asterisk subscript and gaseous values by the “g” index. Let the stellar
halo density be many times greater than the gas density. Thus, the first
condition

Pox 5 4 1)
pOg
allows one in the Poisson equation for steady-state values to neglect the
gaseous component density. Assume the system to be so much extended
along the z = 0 plane that the gravitational potential along z changes far
more abruptly than along r so that |8°®,/0z%| > |3*®,/0r?|. Due to the
last remarks, the Poisson equation takes on the form:

2
)
—62—2° = 4nGpy,. Q)
Write the equilibrium equation of the stellar component along the z-axis as
0D 1 0P
_6_.9 = 0% A3)
V4 Posx 0z

For the “barotropic” stellar component
PO* = PO*(pO*)- (4)
Rewrite condition (3) in the form

9 _ _ Ciix %Pox

= , 5

0z Pox 0z )
where cf, = 0P, /0po, is the square qf stellar velocity dispersion along the
z-axis. We assume further that ¢}, is little dependent on z (as compared to

density p,,) so that

2
L(’Bcu*/_l_ap& <1 (6)

cty 0z [poy 0z

Differentiating (5) over z and making use of condition (6) and Poisson equa-
tion (2), we obtain the Emden equation

u” + be* = 0. @)
Here, the primes denote differentiation in z,

4nG
u(z) = In p,, b=—2". @)

Clix
We seek solution of Eq. (7) in the form

A

u(Z) =In m,

)
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where A, a are two constants [Eq. (7)—of second order] which we find by
substituting (9) into (7):

A= Po*(O), a= i 7\/271Gp0*(0) (1())

h, Clix
Ultimately from (8), (10) we have [209]
pO*(o)
= 11
Pox(®) = Cosh?(z/hy) (1
For the barotropic gas component
POg = POg(pOg)
the equilibrium condition along z has the form
Do oo 200 (12)
oz Pog 0z~

where ¢ = 0P,,/0p,, is the square of sound velocity in gas.
The left-hand sides of Egs. (5) and (12) are equal; by making the right-
hand sides equal, we obtain

Pos(2) _ [Poxl2) |1/
= , 13
00,0) [po*(O)] )
or, taking into account (11),
Po(2) = Pos(0) (14)
Og [COShZ(Z/h*)]CIZH/‘:ZJ .

In a partial case, cf, = ¢Z, the gas density distribution precisely repeats
the star density distribution. Usually, the stellar halo has a temperature
greater than the gas temperature, i.c., cﬁ* > cj. In this case, the character-
istic thickness of the gaseous disk h, is found to be less than the stellar one,
h, < h* [see formula (23) below].

5.1.3. Why One Gaseous Disk Cannot Be Regarded as an Infinitesimally
Thin One. Let us now make sure that in the absence of a massive stellar halo
the most unstable modes in a gaseous disk (or in a stellar disk with not very
large temperature anisotropy) corresponds to wavelengths comparable to
the disk thickness, 4 ~ h,. The most unstable mode k, is obtained from
the dispersion curve minimum condition [333] dw?/0k = 0,where w? = »? +
kzcz — 2nGog,k,

ko = 29700, (15)

2
Cg
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where

o0 = | poo)d (16)

In the case wherein there is no stellar halo, the potential @, is determined
only by the gas component, and hence, similarly to (11)

pOg(O)

Pog(2) = M, an
where
c
h, = m. (18)
Substituting (17) into (16), we obtain
Gog = 2h,p,(0). (19)
Using (15), (18), and (19), we find [209]
koh, = 1. (20)

From the last relation it is evident that the infinitesimally thin disk repre-
sentation turns out to be inapplicable in the vicinity of the wave vector
k = kg, corresponding to the most unstable mode.

5.1.4. What Does the Presence of the Stellar Halo Change? If the stellar halo
surrounding the stellar disk is taken into account, the situation changes. We
determine in this case the surface density of the gaseous disk, for which
purpose let us make use of formula (14):

dx
cosh®' x’

00 = os O | Q1)

Here we have introduced the dimensionless variables x = z/h,; v = cf,/c2.
The integral in (21) is easily calculated by using the relation of [42]
J‘“’ dx B v) = I'AHre)

e )

Next, at v > 1 the asymptotic formula of [42] can be used
T(az + p) = /2ne” “(az)**?~ 12,

Finally we obtain

5, = /7o O, % 22)

*
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(at c¢4lc, > 1). From the last formula it is seen that the characteristic
thickness of the gaseous disk'® is

h,=h,—2. 23)

*
Clix

With due regard for (10), (15), (23) we obtain [31%]

_ [mp0
kohg_\/;p0*(0)<1. (24)

Thus, if the stellar density exceeds the density of the gas component, for
the stability study of the gaseous disk it will be correct to regard the latter as
infinitesimally thin, provided some additional condition is satisfied, the
derivation of which we are now attempting to determine.

5.1.5. The Basic Theorem. In calculating inequality (24) we have made use of
expression (15) which has been derived from the dispersion equation
describing small oscillations of a gaseous disk (see Section 2.2, Chapter V) in
the absence of the influence of the stellar component. Consequently, we have
to obtain the condition of negligible contribution by the stellar component
to the perturbed gravitational potential ®,.

Let us write the ratios between the perturbed surface density and the
unperturbed one for the gaseous and stellar disks:

o1\ _ k*®,

(o(,)g T w? - — kY (25)
o\ _ k*®, I,
<0'o)* - w? — x? — kch*' (26)

According to Eq. (24), we consider the gaseous disk as thin. Therefore, the
reduced factor I, that provides the correction for thickness is taken into
account only for the stellar disk.

It is appropriate to note here that, although in the works of Shu [323]
and Toomre [333] the reduced factors had been obtained on the assumption
kh < 1, one can, by direct calculation, make sure that they provide a true

18 Note that the estimate in (23) is valid at the arbitrary value of the parameter v = ¢2,/cZ.
Let us obtain (23) directly from (14) [formulae (14) and (21) are true at any v!]

1 2\
chx \ef+e*

N { 1 2v N 1 2 R
T+l T\ T ¢

With 1 > x 2 1/2v by using (21') we obtain (23).
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asymptotic also in the opposite limiting case kh > 1. Indeed, let us make
use of the coupling between @, and o, (Chapter V)

2nGo,
D, = — . 27
Atkh > 1
2
=—. 2
1 i (28)

Substituting (27) and (28) into (26) and using the fact that p, = o,/h, we
obtain

w? =x%* + k*c¢Z — v}, 29)

where w} = 4nGp,. Equation (29) is the dispersion equation describing
small oscillations in a rotating gravitating cylinder in the plane perpendicular
to the generatrix (Chapter II).

In connection with the above, the reduction factor in (26) can be used in
two opposite cases: (1) kh, < 1;(2) kh, > 1. We examine the first case. In
the lowest (zero) order in kh,, the reduction factors of Shu and Toomre
I, =11

For a two-component medium of gas and stars, the relationship between
the perturbed potential and density has the form (in accord with (27))

2nG
®1 = — T(o-l* + O'Ig). (30)

From (30) it is evident that the contribution to the perturbed potential of
the star component can be neglected, provided that

O1y> 01y 31
or, using formulae (25) and (26) and by taking into account I, = 1 [84],

O.Og 3 00*

— > = 32

¢t~ o, (32)

By introducing the coefficient of stellar disk anisotropy
c
o =% (33)

using (23), we shall ultimately obtain the following conditions of negligible
contribution by the stellar component to the perturbed gravitational
potential:
Poy(0) h
1> "y 0 for kh, < 1). 34
pou® a0 <D ey

19 In the following (first) order of expansion of I, over kh, < 1 the reduction factors of [323]
and [333] differ by a factor of 2.
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As with the case of (2) (kh, > 1), by restricting ourselves to the first term
of expansion over 1/kh,,, being equal for reduction factors of the two types
of [323] and [333], we have

2
I* - kT*’ (35)

and the condition in (31) takes the form

2 2
Pox(0) = ahy

From the above, there follows:

(for kh, > 1). (36)

Theorem. The necessary and sufficient condition for the existence of an
infinitesimally thin disk approximation for the region of unstable wave
vectors is the presence of a stellar halo with parameters satisfying inequalities
(34) and (36).

5.1.6. Constraints of the Model. It is obvious that if & ~ 1, inequality (36)
follows automatically from the right-hand inequality in (34.) Therefore, for
models with stellar halo anisotropy not very much different from 1, in
terms of the theorem, the requirement of satisfying inequality (36) can be
omitted.

Despite the fact that this section is devoted to the correctness of an
infinitesimally thin gaseous disk approximation the same problem exists
also for a stellar disk with not very great anisotropy a,2° of star velocity
dispersions. Of course, it is solved by a similar requirement of a massive
stellar halo, and conditions (34) and (36) will further incorporate the param-
eter o, that facilitates their fulfillment at a; > 1.

We propose the reader makes sure that the fulfillment of conditions (34)
and (36) for many models is problematic.

5.2 On Future Soliton Theory of Spiral Structure

From applications of the above developed theory of nonlinear density waves
in gravitating disks to galaxies two possibilities can be discussed. The former
consists in the representation of the flat component of a spiral galaxy in the
form of the envelope soliton, the filling of which are the spiral arms. The
latter is to represent a separate spiral arm as a soliton if one assumes the
existence of inner structure of the arm.?*

20 1t is easy to make sure that for the stellar disk ko h,; ~ 1/a; < 1 ata, > 1(do not confuse
a, and h,, with « and h, of stellar halo).

2! Inner structure of the arm of the Galaxy was investigated, for example, in works by 1. V.
Gosachinsky [41a].
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Let us examine the first possibility. By representing the flat component of
the spiral galaxy in the form of a soliton we thereby assume the absence in
the soliton of the group velocity, ¢, = dw/dk = 0 (for certainty, we shall
bear in mind the stable case—see Fig. 93). In this case there appears an
interesting relationship between the radial extent of the spiral structure of the
galaxy (which is then simply just a size of the soliton) and the equilibrium
parameters of the disk (in particular, the stability reserve Q). Indeed, the
characteristic spatial scale of the soliton is, according to (29), of Section 5.1
equal to

cS

Yo

But from the dispersion equation, provided that ¢, = dw/dk = 0, it follows
that

A 1)

1
V6 = %3(1 - @), (2
where Q = x,c,/nGa, is the Toomre stability reserve. Therefore, instead of
(1) we get for the characteristic size of the global picture of the spiral structure

c

A=— S
®o/1 — 1/Q?

The fundamental question for the possibility of applications to real systems
is that of how the various inhomogeneities (density and velocity dispersion
inhomogeneities, differentiality of rotation) will affect even the very existence
of the soliton structure at rest.>> The point is that if the condition ¢, = 0
is satisfied at some one point of the inhomogeneous system, then at another
point it generally will not be satisfied. One may, however, suggest that dis-
turbances that possess a required property are automatically chosen from
initial disturbances by the system itself (the galaxy): the wave groups having
a nonzero group velocity leave the system??; at the same time disturbances
with ¢, = 0 remain in it for ever.

The above remark follows from linear theory. If, however, a wave packet
having a group velocity c,(r) = 0 is provided (in the framework of linear
theory), then the effects of nonlinearity in turn will ensure (for corresponding
values of the effective adiabatic exponent y) nonspreading of the wave
packet: the influences of the dispersion and nonlinearity will compensate
for each other.

In reality, however, one has to require that simultaneously two con-
ditions, rather than one should be satisfied: (1) the above condition of the

€)

22 The applicability of the theory that deals, for example, with a single soliton moving along
the radius, is limited by the passage time to the nearest point of reflection. Indeed, in an in-
homogeneous system there occur reflections, refractions, and transformations of (long-wave
into short-wave and inversely) waves when these arrive at some special circumferences: reson-
ances, nontransparency region boundaries, etc.

23 Of course, in the future full theory one will have to take into consideration both the
possibility of wave reflection and the effects of wave amplification or damping.
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absence of radial drift of the wave packet and (2) weakness (or still better
the absence) of angular twisting of the disturbance by differential rotation
of the galaxy. The latter condition means

Q,= 2 ~ const # f(r). 4
m

If the two conditions are satisfied, we shall have a packet of spiral waves not
subjected to either drift or twisting and therefore not needing any generator
for its regeneration. The nonlinearity will stabilize this packet also from
dispersion spreading.

Condition (4) leads to a definite dependence of the spiral tilt angle to the
circumferences r = const:

2 ;Y
O(r):nGaoQ\/l Q, 6<l.

)

Another possibility—the representation of a separate spiral arm or ring
in the form of a soliton—was discussed in [90a, 89a, 50%, 52°/]. In contrast
to the picture stated above (soliton—the entire flat subsystem) this model
suggests the motion of the soliton arm (or ring) either at subsonic or super-
sonic velocity.

The spiral structure theory should account for both the formation of ring
galaxies and the existence of ring structures in normal galaxies. The theor-
etical and observational aspects of this problem, as well as the necessary
references can be found in [50%] and [47%].

Problems

1. Derive the nonlinear equation for density waves in a rotating infinitesimally thin
disk [cf. (30), Section 1.1] by using the Lagrange description.

Solution. By introducing the local Cartesian coordinates x = r, y = r¢, and assuming
for the sake of simplicity the rotation to be uniform (x, = 2Q,), write the equation of

motion
a 2 x—1
% =200y = — = [cbl st (3) } M
ox x — 1 \g,

7+ 200% = 0, Q)

where @, is the perturbed potential and ¢ is the full surface density that satisfies the
continuity equation

o(x) dx = 64 dx,. ©)]

Introducing the displacement ¢ through the relation & = x — x,, rewrite the system of
(1) and (2) in the form of one equation:

. a ‘,2 Vs x—1
£ 2E = — — s — . 4
¢ 4403 ax[¢,+%_l<ao) } @
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Use the Fourier expansions

. T
=Taew g=g | emwea, 6

ikx 1 JL —ikx ( )d Oo fL —ikx (6)
= = -— e ag(xX =T (4 )
¢ Zk: o, on=5r . x =57 . 0

with the help of which the relation between o, and &, is established (the relation between
¥, and o, is known from the Poisson equation: y, = —2nGo,/|k|). Calculating then
the Fourier components from the right-hand side of (4) up to the third order of magnitude
over ¢, inclusively, write (4) for the kth harmonic:

1 {d?
(h + wk)Ck =i Z fklsz(ka kyka kakl)

ki k2

~ ~ k3
+ Z I:kRTc,kl,kz,kg —(k - ka)ZQE—k,.k,.kz + ‘2—1Pk|]£klék26k3‘ @)

ki k2, k3

Here the notations

2|k
=4Qé+k2c3(1 2 °'>, ol = 7972, ®)
k| !
kol
P, =kl1—-2—],
k ( k| ) )]
k (x —2)
Qi ks = Ok kg +hy | 5 Pt ———kika |, (10)
2 T2
K? (x 2) (o — 2)(x — 3
Rikikoks = 5k.k1+k2+k3|:6 P+ ———ki(k;, + k3)* + _—%klkﬂ(s]

amn
are introduced.
As in Section 1.1, we assume that only the harmonics k = +k, are excited and
BF, < QF (then &3, ~ kic? ~4Q}). Then calculating the amplitudes of excited
overtones,

Cako = Tk ffg (= 1),
€0 ="C4i=0=0, (12)
we obtain the nonlinear equation of oscillations for perturbations

& 22 2
el @iy )k = kg - Alko &yy1*Eis (13)

where
A = 1(3x? — 11x + 10). (14)

Equation (13) is the sought-for oscillation equation that takes into account nonlinear
terms up to the third order of magnitude in amplitude, inclusively.
2. Determine for the nonrotating isothermal layer the nonlinear correction for the
critical wavelength that corresponds to the stability boundary [3144].
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Solution. The equilibrium density p,, pressure Py, and gravity force F, in this case are

1 1 oD
Fo= — —= —tanh z, (1)

=, Py=—,
Po = Cosh? z 97 2cosh? z 0 0z

where units are assumed, in which po(0) = 1,47Gp,(0) = 1, and the “semithickness” of
the layer a = 1 (the usual dimensional vertical coordinate z' = za). The system of
equations describing the isothermic layer on the stability boundary is the following:

1
—-VP+ VD =0, 03]
p
AD = p, 3)
P
P="L. 4
3 )

Equations (2)-(4)are readily reduced to a single equationfor & = dp/po [p = po(1 + &)]:
within the values of third order with respect to & it may be written in the form

2 3
A<é_%+%> =2cosflzz' )
Substituting the variable z — g = tanh z, we obtain
[(%(1—uz)%+1_—llf-£€—2]<é—§;+%§)+25=0 6)
By representing & as
E=¢§ + (E16™ + cc) + (&3 +ce) + -1, @)
where c.c. denoted a complex conjugate quantity, then in the linear approximation from
(6) we find
Hence it follows that
EV=A/1 -y’ k=1 (4 = const). )

In second order (7) yields two equations. One of them, for &, , is

d d & 4 ., &
-5 (62 —g) + (z -1 M)(c% —7‘) = —AN1 - ), (10)

while the second equation is for &,

0 0
= (1 =) —+2[& = =201 = 3u)|4)% 11
au ou
From (10) we find for the combination ¢, = &, — £2/2:
@, = AN — p)/4;
therefore

& = 34°%(1 — ). (12)
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The solution of Eq. (11) is

&o = —341PA = 3u?). (13)
The equation for the “full” ¢, = &Y + &2 is as follows:
k _
[ﬂ( - #2) a, _](51 = &8P - LI+ e + 26, =0 (14)
Represent it in the symbolical form
LiE, = —LOGENED — &0 & — &,8Y) = — LR(), (15)
where
0 0 k?
Lk =—(1-p)— - —— 16
W)= 2= = (16)
E(1)£2 (1) (1) AlAP / 2(5,,2
R(u) = &&= &, & _5251 =T 1 —pw?(Sp* = 1), 17
— Lk)R(u) = 341 A /1 — 2 (5u* — 1), (18)
Therefore, we get
Lk, = 341 AP/1 — p2(5p® — 1) = 8(u)é,, (19)
where
&) = 3|APGp? - 1), (20)

Find now from (19) and (20) the nonlinear correction 6k to k3 = 1 from perturbation
theory. We have

Lkgyoe + Eékzé“” Bue®, & =4A/1- @n

Multiply (21) on the left by £ and integrate over u from (—1) to (+1):

1 1
[ dwtotago + o [ auweo % £
-1 -1

1
= | aueongze, @)

But the first of the integrals in (22) is zero due to self-conjugateness of the operator
L(k2); therefore,

JLy 82" dy
JL 1 EOOLIOK?E® dp

ok? =

- Mlzf 3AU - kXK — 1 du = 0. 23)

Consequently, in lower order with respect to the amplitude of perturbation the nonlinear
correction for the critical wavelength of the nonrotating isothermic layer is absent.

3. Same as in Problem 2, for the rotating isothermic layer [31%4].
Solution. The dependence of equilibrium values p,, P,, F, on the vertical coordinate
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z remains the same [cf. formulae (1) in the previous problem]. For the ordering usually
taken by us, 8/0t ~ %, u ~ w ~ &3, 0~ ¢ 0p ~ & 60 ~ g(cf §1.2 of main text), we get
the following system of equations of motion (x is the epicyclic frequency) :

10P 0@
el Wil 1
" p 0x * ox’ M
0
U = (610 U ) )
1 oP L2 oo 3
p 9z 6z
p 0 i,
6_t+ 5}(0“) +E(PW)— 0, C))
p
P== 5
5 %)
A® = 47Gp. (6)
Assuming that p = p, + dpand @ = (I)O + 60, we find from (3)-(5)
1010 0 1 (op\? 06D
—p—— o), L —”) + 220 )
20z 2\ po 3 \po 0z
Denote 8 = dp/py; then from (7) it follows that
1 > 03
0—— D = —Ax).
3 ( 2 3) + 0 A(x) ®)
Equation (1) becomes
_laa
v= )]
% 0x’
while Eq. (2) yields
iy = 0 04 tu 0%A
ot dx ox?’ (10)
We have further the continuity equation (4), which is written in the form
pwlZ, =
or
® 08 0
[ 0% + 2 pon+ potid [ dz =0, a1
—ol Ot Ox

and will be used below as the boundary condition. By adding to the written equations the
Poisson equation and turning from z to the new variable y = tanh z, we finally have
the following system:

2y = 3% + 6_21 o)
U= G T e 12)
AS® = p,0 = 6(1 — p?), (13)

|
(9 LA ) + 60 = —A(x), (14)

1
f dy[ + -(u + Ou)] =0. (15)
1
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Let us solve the system of equations (12)-(15) by successive approximations.
1. Linear approximation was investigated [209] by Goldreich and Lynden-Bell, and
we first follow their work. We have, instead of (12)-(15),

0 ¢ k? o 2k?
2 = ) — __* = .
therefore [209],

0, = A¥dw), 17

_k 1—p\M2 o (k—v) (14 v\¥?
'//k(”)_l—rk_z[(k+“)(l+u) f_l(l_vz)<1_v> &

1+y"/21(k+v) l_vk/2 N 2k2
+ (k — u)( ) ’. dv| =L . (18)
L—p) L, =) \1+v L VI
The boundary condition (15) yields the equation
2k2
P

where

1
[ wwa 19

for the determination of the critical wave number k, (and the corresponding parameter
%?). Write (19) in the form
F(k) = A(k), 20)

where the notations
2k2 1
Fo="7 A= [ s el
-1
are introduced. The behavior of the curve, determined by Eq. (19), is qualitatively the

same as that in Fig. 94. At the point of contact k = k, = 0.47, and 1/x? ~ 4.38.
2.Second order. For the second harmonic, from (12)-(14) one can obtain the equation

. 2(2k?)?A - 6?
L0, = ?ﬂfz + Ly — 2)71 ; @2
therefore,
F—1v,2 'lf
0y = Ay + (1 = 2L Wi 5 (23)
Substituting (23) into the boundary condition of (15), we find
B(k)
Ay= —A3———
2 L AQK) — 4A4(k)’ 24
where
1 rt -
B =3 [ (1 - 2Lz dn 25)
-1

In the second order, however, we also get the equation for the zero harmonic 8,:

- - 0 0
L6y = (Lo — 216, (Lo = b‘#—(l - ¥ T 2), (26)
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with the solution
0o = (1 — 2L )10, = [4,1%(1 — 2L5 "YWi. 27

Here the boundary condition
1
-1
is satisfied automatically. The operator L ! acts in the following manner:

1 u
L5 X() = %[u f YOXG) dv + ¥(4) f V() dv
" -1

m 1
i | X0V - 00 [ vxo dv], 28)
where
g lEe
) =i 29)

It is easy to see that the solution of (27) is even and has no singularitiesat p = +1.

3. Third order. Somewhat more cumbersome than those written above but in principle
similar to them, calculations finally lead to the following equation for the determination
of the nonlinear correction for the critical wave number kg:

2k? B(k)D(k)
A(k) — == (4, |2[C(k) - m], (30)
where
1 k? -
cw=-[ alS-3+aus + o
+ (1= 207 Y — L) — 205 Wil 31)
1 k2 8k2
o= | L— ('/’21( - x—z) (- 2E;‘)~//2k¢k] du (32)
-1

The computation made by these formulae has shown that the nonlinearity in this case
plays a destabilizing role: it somewhat broadens the region of unstable wave numbers
(6k? > 0).

4. Same as in Problem 2, for the rotating incompressible layer®* (the adiabatic index
y = oo) and for the rotating layer with y = 2.

Solution. In both cases, the solutions of equations ensuing in the scheme of successive
approximations, are expressed in elementary functions. Since the schemes of calcula-
tions largely repeat the ones already repeatedly used by us earlier (for example, in
Problem 2), we shall give only the final form of nonlinear dispersion equations (on the
stability boundary) and determine the sign k2.

2+ The solution is obtained by S. M. Churilov.
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1. Incompressible layer. To determine 6k? in this case, we obtain a system of two
equations:

[ 1 1] Aw 2 (e

k(1— 2k + e 2% 2 (1= 2k + e 2

AWDA@)

K 3(k2 + %) — k(1 — e~ %k
2 (1= 2k + e 2

[ 1 _I_:IA(Z) = K _(W;k)z/\(l)z. Q

A (1)

k(1 — 4k + e %) 2 T8l —dkte *

Here A™ and A'? are the expansion coefficients of the value y = P/p, — ® = A(x, t) in
the series

A = AO 4 (AWekxior o ¢ o) 4 (APD2ikx=2i0t 4 ooy ..o 3)

units are used, in which the half-thickness of the layer ¢ = 1, 4nG = 1, and the density
po =1
The minimum of the function
1
F,b=————
ETk(1 = 2k + e

is reached at 2k = 2k, = 0.607.%° Here it is easy to see that 1 — 2k, + e~ 2% > 0; the
calculation shows, in addition, that also 1 — 4k, + e~ ** ~ 0.05 > 0. Since

1 1
k(1 =2k + e 20 52

and
1 1

>
2k(1 — 4k + e *) " k(1 — 2k + e %y’
then, according to (2), A® > 0. The equation for (dk)? will be reduced to the form
1 2k (1 + e )2
L ouyry, = 2o Qe
2 ® 1 =2k + e o

k§ 3(k3 + #?) — ko(1 — e~ %)
28 1 — 2kq + e %k

A2

AW, @

The first term on the right-hand side of (4) is positive owing to A® > 0, just proved.
Since #? = 1 @x? = 1.75), therefore,

3k + #2) — ko(1 — e *9) > 3(k2 + x2) — ko ~ 0.15,

and the second term is also positive. If one takes into account that F;, > 0 (cf. Fig. 94),
we arrive at the conclusion about the destabilizing character of the nonlinear correction:
(6k)* > 0.
In the limiting case of a nonrotating layer from (1) and (2), one may obtain
2k(1 — tanh 2k)2k — %)
1 — 2k(1 + tanh 2k)

[1 — k(1 + tanh k)] = [ — kGk - 1)]IA‘”I2, )

2> This and subsequent values of the required quantities are taken from a paper of Goldreich
and Lynden-Bell [209].
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where A" is the amplitude of the perturbed potential
(@M = A cosh kz/cosh k).

Here also 6k > 0,i.e., the nonlinearity effect is destabilizing.
2. Polytropic layer for y = 2. The equation for the nonlinear correction (6k)* has
the form:

$Fy(0k)* = DAY, 6)
where
CZ
D=’ — 4,
2Fy — F)

R [ktan(uly2) + 1]* 1 L 2tan(al2) 0

= 228 [l tan(i2) — k| 200 tan(alpy2) — 2k] © k tan(aly2) + )’
C= k  (ktan(zl/2) + l,‘)2 2k tan(mly/2) + Ly ®

= o\l tan(aly2) — k) 1y tan(mlyy2) — 2k°
F, 4 tan(nl,/2) Pe1-k

=20t B Gl 2) — K

In the unperturbed state, the density p, = p, cos z; the pressure is P = p?/2; the
angular velocity is = %, 4nG = 1; the half-thickness of the layer is a = m/2. The
numerical calculation at the stability boundary yields

ko = 0.39,
Fi, =562,  Fa, = 5379, ©)
A=00054, C=0500, D= —00028

Since D < 0 and Fj, > 0, therefore, (k)* < 0, i.c., stabilization takes place.
On the stability boundary of the nonrotating layer with y = 2 we get the following
equation replacing (6):
k(l % cot nl,,) _ A" (8Kk* — 1) cosh(nl,/2) + 4l k sinh(xl,/2)
, 2] 2p? I, sinh(nl,/2) + 2k cosh(nl,/2)

, (10

where 2 = 4k? — 1, I? =1 — k?, and I2 > 0; since the equation for }, I, =
ko cot(xnl /2) (or, what is the same, | = cos(nl/2)), has the solution [ = 0.6 (k ~ 0.8).
On the right-hand side of (10), a positive value stands which we shall denote by B2
Expanding the left-hand side of (10) near k = k,, we obtain

1 1 s
_51+H5k=3; an

therefore, 6k < 0. This means that the region of unstable k is somewhat reduced with
due regard for nonlinearity (stabilization).

5. Derive the nonlinear equation for disturbances conserving the surface density in the
fastly rotating homogeneous gas layer (the density p,, the thickness 2c, the angular
velocity of rotation Q; Q2 » 4nGp,). Obtain the solutions of the soliton-like type.
Investigate the modulation instability of the layer and the collapse of two-dimensional
nonlinear waves [30%].
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Solution. This problem in terms of one and the same equilibrium model (item 1)
similar to the Goldreich and Lynden-Bell model [209] will deal with: solitary waves
(solitons), in item 2; modulational instability of nonlinear monochromatic waves
(leading to their division into individual packets), in item 3; and finally, collapse of two-
dimensional nonlinear waves which is formally manifested in the appearance of a
singularity in the solution of the basic equation after some marginal time (item 4).

1. Equilibrium model and derivation of the basic equation. Consider a homogeneous
gaseous layer of density p, and thickness 2c, maintained in equilibrium along the z-axis
as a result of the balance of forces of gravitation and pressure P, = Q2 p,(c? — 22).
In order to avoid Jeans instability in the (x, y) plane, let us assume the layer to be rotating
with an angular velocity Q in an external field with the potential ®, = Q2(x2 + y?)/2.2¢
The maximum growth rate of Jeans instability for Q = 01is of the order Q,. For Q%2 Q3,
this instability stabilizes. Further, we are interested in oscillations of the layer with a
frequency of the order wy = \/4nGp, ~ €. For the sake of simplicity, let us assume
that Q2 » Q2 ~ »? and make use of the dimensionless variables, in which p, = 1,
¢ =1, and 4nGp, = 1.

Find now the spectrum of small, long-wave oscillations of the layer in the plane (x, y).

In the frame of reference rotating with an angular velocity Q, the linearized equations
have the form

) ov,
R R AR )
ovy, ,

a 2[Qv,,] — k. (P, + D), 9]
ov, 0 ,

6t1= —a_z(P1+d)1)+PxP0’ ©)
d ,
= (Py —yPopy) + v, Py =0, @
ot
0%
?21 —ki®, =p,, ®)

where k, = (k,, k,), y is the adiabatic index, and the prime denotes the derivative with
respect to z. From Eq. (2), one can find v, ;. Omitting 4/t in comparison with Q(Q > )
and multiplying this equation vectorially by £, we obtain
v - i [©k,]
T2
Substituting (6) into (1), we see that the term with k, v, is eliminated from the latter
equation. Introducing the quantity ¢ (vertical displacement along the z-axis), via the

(P; + @y). ©

relation v,; = —iw¢, we obtain the following simplified system of equations:
p1+¢ =0, Q)
-0’ = -0 - P, - pyz, ®
P, = %(1 — )py + 26, ©)
@] — k*®, = p,. (10)

26 A similar model was applied by Goldreich and Lynden-Bell [210] in the construction of the
regenerative theory of spiral arms in galaxies.
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Differentiating (8) over z and substituting into the equations thus obtained (7), (9),
(10), we arrive at the following equation for the perturbed potential @, :

@ &y d? aty
{wz s + 17 I:E (a-2z? d—zi]}(bl = (0? — Dk*®; + k? WE(I - z)0,. (11
In the case k, = 0, the order of Eq. (11) is lowered:

&0,
dz?

@0, +%(1 B putint ) 12)

It may be easily tested that this equation has eigenfunctions

O = (1 = 2°)P,44(2) ~ Ppia(2) — P(2) (13)

and eigenfrequencies
of = + Dn +2), (14)
wheren =0, 1,2,---; P,(z) are the Legendre polynomials. In particular, for the mode

n = 0, corresponding to uniform extensions—contractions of the layer along the z-axis,
®? = y. We shall be interested just in this mode since it is most convenient to obtain the
nonlinear dispersion equation for it.

Calculate now the corrections of the order of k? for the eigenfrequencies, assuming
that k* < 1.

Represent Eq. (11) in the form

R(@")®, = k0, 1s)
where
a2 &y a2
D= — +— |+ -22)— 16
R(?) wdzz+dzz[2( )| (16)
d
P=—-(@p+1)—2yz—. an
dz
In the zero order of perturbation theory
R0} =0, (18)

where @Y and 0@ are defined by expressions (13) and (14). Assume that ® =
®F) + o,; then

(n)
10

R@®p, + KO

w7 b0t = kK. (19)

Define the scalar product
1
D% = f DY dz. (20)
-1

Multiply (39) on the left scalarly by ®}:

OR
(D7, R oy + 5w2<®(n) 202 d"f‘<’>> = k*OR, 107 @n

10> awz
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Hence we find [taking into account (18) and also the self-conjugateness of the
operator R(®, R¥) = (¥, R®>]:

O3, PO
2 =k? = . 22
2" =K o, (0Rjow?0 @
Since
R & d*® R
30? ~ dz’ <q” F> = —(@, ), (D, 70) = —(y + IO, ®)
d
= —2v<<l>, ZE®> = —(y + XD, D) + KD, D) = —<(D, D),
we obtain
(073, @8>
20n = K 2o, oy e
Finally, since
o, oy = 4 Lt D L2
’ @2n+ D@2n + 3)2n + 5)°
ey (n + D*(n + 2)?
((1)(1&,(1)(1()) = 22'14”,
we finally find the following expression for the correction to the frequency:
2k?
24

2 _
0O = A DN+ )

In particular, for n = 0, the correction is dw? = 2k?/5.

Calculate now the nonlinear correction for the frequency w? = y. Assuming that the
nonlinearity is sufficiently small, the nonlinear correction may be calculated at k;, = 0.
But such oscillations, as one may easily ascertain, are described by the equation

i=—1+c7, 5)

which remains true at arbitrary amplitudes. Assuming that ¢ = 1 + h, h < 1, we find
from (25)

h+ wih = —ah? — ph3, (26)
where
a=-Hr+1), B=tO+Dy+2) @7

Equation (26) has a standard form {69] of the equation for oscillations of the anharmonic
oscillator. Therefore, one can immediately write the expression for the nonlinear cor-

rection to the frequency
3 5o
sw= 2L _ 3 Yp (28)
8w 12w

or

dw = —wolhl?, A =FK2y-D@+1). (29)
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Combining (24) and (29), we obtain the sought-for nonlinear dispersion equation
o® = of(1 + 3k3/5y — 222 |h]?). 30)

2. Solitons. Assuming now in (30) k? = k2 — %/0x?, we arrive at the differential
equation
2% o[l + Sk — o
Syox? o}

h — 22 |K?|h. (31)

Multiplying (31) by dh*/0x and adding with the complex conjugate equation, we obtain

2 0 |on)? _op[l + (2/5v)k2] _wzilhlz 22 0 m
Syox|ox| w? ox ox
Integrating over x, we find
2 (oln]\? 2 w?
—|—=—) =91 +—kZ——|h|> — A% |n)* t. 32
5y<6x) +5yy wéll |h|* + cons 32)
The soliton solution corresponds to the case: const = 0. Denote
5yA? 1 2 ?
2 = , A2 =— 1+ = Kk2 -
q ) /12( +5y v Wl (33
then
10|h|
——— =+ /A% - K~
g - T h (34)
The solution for this equation is
A
h|= ———— 35
1A cosh(A4gx)’ ©3)

the width of the soliton

(36)

1 2 1 12
T g [s_y 1+ /Sy — wZ/wé] ’

and the amplitude | h|,,,, = A. The minimum size of the soliton (on the limit of applica-
bility of the theory) has the order of the layer thickness.

Note that the soliton solutions, similar to that obtained above, are easily found also
in the model of a uniform gaseous cylinder.

It is, however, interesting that for the collisionless layer and cylinder, there are no
similar solitons (the nonlinear correction for the frequency w, and the correction for k2
have the same sign).

The solution of (35) describes a soliton being at rest. However, it is easy to construct
a solution also for a running soliton.

Let h = L(ae™ ™" + a*e™°"), and b = ae™***; then for b, we have the equation

ob
ia—a)ob+aAb+ﬂb|b|2=0. 37

We seek the solution in the form b = C(x, t)e™*"'** and for C we obtain the equation

aCc ac
i(?: + 20k, a‘) + (@ — 0o + k)C + aAC + BC|C|* = 0. (8)
X
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One may assume C to be a real function, C = C(&) = C(x — v,t), where v, = 2ak, is the
group velocity. Then from (38), for C(¢), we obtain

o*C 5 3
aé?+(w—wo—ak)C+BC =0; (39)
therefore,
Cinax
c= cosh ko &’ (40)
where

kO = \/2E Cmax’ O = Wy + akz - g Cl'znax = Wp + a(kz - kfz))
o

This solution is coincident with (35)if in (40) it is assumed that k, = 0. The perturbation h
has the form

C
max (41)

h = t —kr)———————.
cos(@ ) cosh ko (x — v,t)

3. Modulation instability. We are investigating the problem of the stability of nonlinear
monochromatic waves in the above adopted model of a uniform gaseous layer. Write the
dispersion equation (30) in the form

o = wy + ak? — B|h|?, 42)

where o = wo/5y, B = woA? Let h = YHae " + a*e'®”'), where a = a(r,, t) is the
envelope. For it we have the equation

0
i§+ma+ﬁ|a|2a=o. @3)
This equation admits a solution in the form of a plane monochromatic wave
a= boe—iwkwikj_r’ (44)
where
o = ok} — Blbol*. 4%)

We investigate the stability of this solution. For this purpose write a = be”®, b =
bo+ b, 0 =0¢¢+ @, 0o = —ant + k,r,. Then

a, = (by + byig,)e®,  a¥ = (by — byigp;)e” . (46)
We linearize Eq. (43):
Oay

: 5tl + aAa; + 2B|ao|*a; + Pagat = 0. 47
Substituting into (47) expressions (46), we obtain

ob 0
i 5 = bo 2+ wyfby + ipibo) + o8y + iboAgy) + 2u(Vby — iboVe )V,

+ a(by + ibo@,)iApo — a(by + ibo®;) (Vo)
+ 2Bb¥(by + ibyp,) + P(by — ibo,)bs = 0. 4R)
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Separate the real and imaginary parts

ob
5 T ©cbops + aboAey + 20kVh, — ak’bogy + fbigy =0, (49)

0
—b, % + b, + aAb, — 20bykVo, — ak?h; + 3fbob> = 0. (50)
Taking into account (45), egs. (49) and (50) will be rewritten in the form

7
(67 + 2akV>b1 + abyA@, =0,

d o
-+ 2akV>(p — —Ab, — 28byb, =0,
(3{ 1 by 1 091
or
0 2
(& + ZakV) b, + oa?A%b, + 2upb2Ab, = 0. (51)

Substituting b, in the form of b, ~ e™*** into (51), we obtain?’
(Q — 20kw)? = ax®(axe® — 2pb2). (52)
This yields the instability condition
2Bb3 > ax®. (53)

Thus, for sufficiently large b3, there will be instability with respect to long-wave modula-
tions.

Note in conclusion that the self-modulation leading to the division of the wave into
individual packets, as is well known, always is the case if the general Lighthill criterion

[265a]
Fol| o _, (54)
2 |, _, on2

is satisfied.

In our case, this criterion is just identical to the requirement that the correction for the
frequency of linear oscillations ~k2 # 0 and those proportional to the square of the
finite amplitude h? have different signs.

4. Collapse of nonlinear waves. Consider the case of two-dimensional waves, whose

amplitude is dependent only on ./x* + y? = r. Equation (37) will take the form

b po ob ,
i+ = r e+ blbf =0, (55)

Equation (65), as may be shown, has the integrals of motion

I, = J rdr|b|?, (56)
0

) (57

27 Note that (52) coincides with Eq. (27.13) in Karpman’s book [55a].

ob
I, = f rdr <2vlb|“ -
0 a
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Let us show that under definite conditions, in the solution of (55) for a marginal time,
singularity appears. For that purpose, let us introduce the quantity

A= fmr3 dr|b]* > 0. (58)
0
It may be shown that
dz—f = —8ul, %9
dt
so that
A= —dul,t*> + C;t + A(0). (60)

Since A > 0, then under condition I, > 0, for a marginal time, singularity arises. The
condition I, > 0 qualitatively coincides with the condition of the modulational in-
stability in (53) [30*].

6. Show that instability criterion of a uniform-density circular cylinder and Maclaurin
disk are universal with respect to the amplitude of nonradial oscillations (V. A. Antonov
and S. N. Nuritdinov) [12a].

Solution. Let us show that the instability criterion obtained earlier for perturbations
of small amplitude of a circular cylinder (2), §1, Chapter II, and of the “Maclaurin disk ”
(6), §1, Chapter V, remain unchanged in the case of the finite amplitude. We shall per-
form the proof with the aid of the energy principle, following [12a].

Consider only oscillations of a special kind which keep the system spatially homo-
geneous (p = const) and also in the perturbed state.

The connection of the perturbed system with the unperturbed one is expressed via a
certain affine transformation of the phase coordinates. For the velocities one may
write (cf. similar formulae in Problem 3, Chapter I, etc.)

v, = U, = o1)x + By, 6))
v, — vl = 8(t)x + d(t)y, )

where v, v}, are the components of the peculiar velocity, a, 8, J, d are some unknown
time functions.
One may make sure that the quantities

Cy = X302 + Y22 + (B — 622, ©)
C, = ¥y A} — (W), @
Cy = 0x ~ By? ®)

are invariant. The overbar denotes the averaging over the phase density of the perturbed
system. The quantity C, is proportional to the square of the phase volume of the system,
Cs; = L/M, where L = M(Xv, — yv,) is the total angular moment, and M is the mass of
the system. It is more difficult to ascribe a definite physical meaning to the quantity C,.

Calculate the values of C,, C,, C; for the cylinder and the disk. For the cylinder, we
first of all have

=i, V=i ©)

where a and b are, respectively, the large and small semiaxes of the elliptical cross
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section of the perturbed cylinder. From the form of the argument of the é-functional
distribution in this case it is easy to notice that

R A DN A (D) @

Inthe stationarystatea = b= 1,0 =y = —f, E: 0. Therefore, for the case of the
cylinder we obtain

{1+, G=g(l-7)%  Ci=4h ®)
For the disk
A=dad, = =), =R )

Taking into account the stationary values of g, b, 8, f and v, v/, 1» we find the following
values of the invariants for the Maclaurin disk:

C, =41 +9%, C, = ghs(1 — %)%, Cs =% (10)

Note that in both cases, C2 = C, — 2\/6;

Turn now to the study of the stability of the models in question with respect to non-
radial oscillations of the “affine” type. The task is to minimize the total energy under
condition of conservation of the invariants C,, C,, C3.

The kinetic energy of a two-dimensional system is

T = M2 + 02) = IM[(2? + 89)x? + (B2 + )% + vZ + oF]. (1)
From (3) and (5), it follows
f = x? (Ez _ (G- f)

x2 y2

s_ V(G [ci-¢
_P—?P 2y )

where the quantity & = x v’2 + y v'’2 is introduced, the values of which in the statlonary

state for the cylinder and the dlSk are coincident: ¢ - &, = 2,/C,. Let p = x v’2
y v’2 From (4), it follows that

&2 -t = axI o 2 4C,, < /& -4C,. (13)

Then the total energy satisfies the inequality

(12)

T3\2 T2\2 .
E>L{(C2+Cl)(x +y)+i[ ) +(yf)—3(x2+y2)]
2x* = yH) ¥y x
(x ” =28 4, - 4c, P?(cl—é)}+vv, (14)

where W is the potential energy. In the derivation of (14), it is assumed that & = d = 0,
for a®x* + d?y? > 0 and « and d themselves are not connected with the invariants at all.

Thus, we have taken into account all the invariants, and the function being minimized
depends on the three remaining independent variables: x?, y 2 and ¢, Further, for the sake
of certainty, we assume that x* > )7 ie.,a > b. Note also that 2\/_ <é<C,.
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1. Cylinder. The potential energy in this case is
W = 1M In(a + b) + const = M ln(\/)? + \/y:Z) + const. (15)

Make use of the following relations:

-2
C, —fﬁcs-é—*@ (C3=VCy —2\/6—2), (16)

2,

min(ué — pay/E7 = 4C;) = 2/CVE - > we>0. (D)
Then, introducing the notations
m=Je+ N n=JE - m=n), (18)
we obtain
1+3% 1-—92 8n?

1 11
16m* ~ 16m’ It g tylnmzs 4o Inm=Eym) (19)

ify < 1. Thestationary valuesm, = 1and n, = 0. Asis seen, E,(m) = E,(my). Therefore,
for y < 1, there is nonlinear stability of the cylinder.
2. Disk. Rewrite inequality (14) in the form

E _(C3+JC =% (C3—/C =&
= 4m? + 4n?

M_.

2m? + n? 4 w
LA ), dme B —4C, + = F. 0)

(mz _ n2)2 (m2 _ n2)
Introduce a new notation of ! in the following manner:
C3 - \/Cl — c = lznz. (21)

With the aim to find the local minimum, expand the function F over n® within an
accuracy of n%:

F(m, n, 1) = Fy(m) + nFa(m, ) + O(n"), @)
where
4 4 2
F =52 = /= = —
)= sz = 2 Fam ﬁ)’
B 6 6T =oD 1201 — 2 1 23)
Fam =&+ 2 p 160 =0, (-7)

It is evident that regarding m, there is a minimum for the arbitrary y, and in F,, instead
of m, one may substitute its stationary value my = 2/ﬁ.

Either stability or instability of the model depends on the sign F,. The critical point
corresponds to F,(mg, I) = 0 for a certain L. At this point, there appear multiple roots,
and (OF ,/0l),y=m, = 0. An investigation combining the last two equations gives the
critical value y, = ./125/486, the same as in linear theory.

In the paper [12a], a proof is given of the absolute character of the minimum thus
found. We do not consider this point here.

In conclusion we note that the analytical consideration given above may be easily
generalized on the case of a disk immersed into the massive halo if we suppose that the
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latter has also an uniform volume density and, consequently, creates the quadratic
potential

@, = Q%r?/2 + const.
The expansion of function F(n, m, [) with an accuracy up to n* has the following form:

F =F, + n®F, + n*F;,

4 1-QY) Q’m? 6
2_4( )+ m’ F2=_+_yle

120 =3 O’m*  16/y(1 — yz)l (1-9%) F 504
25./5 4 5/5m? 5/5m > 16
1—y? 1583 5y%) 4501 — Q?
;[5( v)+3ylz_l4]+ (1 +5)_ 4501 - @)
2 8 8./y(1 — y?) 512

The investigation above says nothing about nonlinear stage of the barlike in-
stability in the disk systems unstable according to linear theory. This question is con-
sidered (by the numerical method) in the next problem. In the same place we investigate
nonlinear evolution of disturbances in the elliptical disks of Freeman.

F, =

29

7. Investigate the nonlinear evolution of the barlike perturbations on the example of
Freeman’s disk models.

Solution. Write the connection between the current x, y, v,, v, and initial x,, y,,
Uxy» Uy, COOrdinates and velocities of the particle in. the form

X =uXg + Uy Yo + UzVy, + UaVy,,
Y =01Xg + 030 + U305, + U0y,

M

Ur = X =l Xo + Uy Yo + Usty, + Uavy,,

i

Uy -)} 1x0 + v2y0 + U3vxo + D4Uyo’

where v, = v, + V¥, V), = v,, — VX0, 7 is the angular velocity of a disk, and u;, v; are
unknown time functions, i = 1,2, 3, 4. The total kinetic energy of a disk is

= 1 [ dyo dus,dis, Folxo vo,tr 5067 + 57, @
where the equilibrium distribution function

FO [(1 - )’2)(1 - xO - yo) xo - U;:f,]-llz’ (3)

go
2n /1 — y?
o, being the surface density at the center of a disk [a(r) = 6./1 — r?/R?]. Assuming
the angular velocity of a particle in the circular orbit and the radius of a disk to be
unit, = 1and R = 1, we obtain, after calculations of simple integrals in (2),

oo

T T [} + 6% + a3 + 03 + (1 — v + 63 + a2 + 62)]. )]
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The potential energy W of the elliptical disk may be expressed through the values of semi-
axesa, b: W = W(a, b).?® The Lagrangian of the system L = T — W, and the Lagrange
equations are

Cilj=———=——— 7 — 7 > )

D= — o= = = ©)
wherei = 1,2, 3,4; C; = 2n6,/15, D; = C(1 — y*). Now we describe how one may ex-
press a and b by u; and v;. Determining xo, Vo, U, U}, from Eq. (1), we obtain

Xo = 01X + oy + a3ty + A4y,
Yo = B1x + B2y + Bsvx + Bavy,

Vo = 71X + 72V + V3Ux + Yaby,

™

U;,o = 51x + 62y + 530)( + 641)},,

where «;, B;, 7;, 6; denote the corresponding coefficients which are the time functions.
Now, substituting (7) into the equation for the boundary of the system’s phase region

(1 =93 =1 — y)x3 + y3) + vi2 + v}2, ®)
we find

A —7®) = A;x* + A,¥* + 243xy + 2D xv, + 2D, xv, 4+ 2D;yv,
+ 2D, yv, + B,v2 + B,v; + 2B3v,0,, o)

where the coefficients A;, D;, and B; may be defined through «;, §;, y;, 9; by the symmet-
rical formulae

Ar=0 =)0+ D+ (43 +4dd)
Ay = (1 =93 + B + (03 + ) (10)
Ay = (1 — yH(o2; + B1B3) + (y173 + d1d5) and so on.

From Eq. (9) one may find, for the boundary of the elliptical disk, the following equation:

1
(1 — 9% = A;x* + A,)* + 24;5xy — B—(Dlx + D3y)
1

_ [(D,B; — B3D)x + (D4B; — B3 D;)y)?

B,(B,B; - B) (an

Now the semiaxes a, b may be easily determined from Eq. (11).

28 Note the conventional representation of W, suggested by Antonov and Nuritdinov (see
Problem 6) in a form of the seria

W= 4 © c (n)Zi (4,)
5\/—5-"’ = i+1 m ’

where n = (a — b)/\/5,m = (a + b)//5,C; = 1, Ciyy = Ci[(2i — 1)/2i]%



130 VII Problems of Nonlinear Theory

The set of eight two-order equations (5), (6) can be simply solved with the help of a
computer. In the equilibrium state

u; = cost, u, = —ysint, uy = sin t, u, =0,
, (12)
vy =ysint, v, = COS t, vy =0, v, =sint.

Accordingly, if we substitute the following, as the initial values, into the equation of
motion,

uy =1, u, =0, uy =0, u, =0,
v, =0, v, =1, vy =0, v, =0,
_ (13)
u = 0, 112 = -7, 123 = 1, 114 = 0,
l}1=}', l}2=0, lj3=0, 134:1,

then, as it must be, the solution shows that a and b do not depend on the time (remaining
as const = 1). Now, we shall use the values u;, v;, #;, 9; corresponding to the linear
barlike disturbances as the initial values, and then we shall follow the evolution of these
disturbances in the nonlinear regime. Corresponding corrections Au;, Av;, Ai;, Av; to
the equilibrium values (13) may easily be found from the solution already known to us
(see, for example, the end of Section 4.4, Chapter V).

Let us describe the obtained results. As was to be expected, the manner of the evolution
of the initial disturbance depends essentially on whether the concrete model under
consideration was stable or unstable (according to the linear theory). Let us recall that
the models are stable for y < 0.507 and unstable for y > 0.507. For the stable models
there are the oscillations with the amplitudes of the order of initial disturbance ampli-
tude. In the unstable (according to the linear theory) region of y, for the given initial
amplitude, the oscillation amplitudes in the nonlinear regime are greater for larger 7.
This is seen from Fig. 103, where we present typical graphs a(t) and b(¢) for y = 0.6 and
y = 0.7. From the figure one may see also that the major a and minor b semiaxes
oscillate (with different frequencies) near some mean values (@~ 14, b ~ 0.68 for
y=0.6 and @ ~ 1.65, b = 0.55 for y = 0.7). The picture of evolution for y sufficiently
far from y = y, is weakly dependent on a value of the initial disturbance &. For y near
7.y 2 7.) the oscillation amplitude remains small (for small ¢), but quickly increases
with growth of y.

Thus, it is seen that, as a result of development of the barlike instability, we obtain
the elliptical disk with a greater degree of the mean flatness the more quickly the system
rotates in the initial state. With the aim of controling the accuracy of counting, we
checked, at each integration step, conservation of the total energy and total angular
moment

E=T+ W, (14)
L, = xb, — yb, = C,, (15)
and also of the following values which must be the integrals of the movement:
Cy = X302 + §02 + 2X) 0,0, — X2 — Y02 — 2X0, 70y, (16)
C, = (F§ — XPN020; — 0307) — X*0,90; — X*07 7,
+ 2gz.y_vayi)x—v; + zyzfﬁxi—vym - yzvgﬂyz' -y Ui—vi
+ 2x_y(WxU§ﬁx - y_Ux')Tl;yUny - Wyﬂxm + ml}zx_v;) (17)
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Figure 103. Dynamics of the bar-like mode for Freeman’s circular disks with y = 0.6
(1)and y = 0.7 (2), in the nonlinear regime; solid line—a(r), dotted line—b(s).

The second momenta involving (15)-(17) may be easily expressed through u;, v;, #;, v;;
for example,
2

X2 =30uf +ui + (1 — )03 + ud)],

0.0, = $[iyd; + 0, + (1 ~ 2y 03 + ti46,)], and so on. 18)
If the initial small disturbance can be obtained by a continuous deformation of the
Freeman’s circular disk, then the corresponding values of integrals C; proved to be the
following (see previous problem):

Ci=51+7), Ci=gsl-9 C,=%

In fact, for all the cases investigated, these values practically do not change (for example,
the accuracy of the conservation of total energy was better than 0.1%)).

Elliptical disks. Recall that, according to the linear theory, elliptical disks are un-
stable in the triangular region of parameters (b/a, Q2/A%)—see Fig. 49. The nonlinear
theory in this case is constructed approximately in the same manner as for the circular
disks (item 1). Let us write by analogy with (1)

X(t) = UyXg + uZyO + u3c~xo + u45y99

(19)
W) = vyxg + V20 + U3Cs, + Vsl
where u; and v; are the time functions, ¢,, = v,, + 8y,/b,, &, = v,, — 0x,/a?, and the
expressions for 6 and other values we meet with below (see in §1, Chapter IV). The

calculation of kinetic energy T gives

Ml[a® , ., b keki
T=-§—[g(u§+l’f)+’§("2+U§)+5Azlf2(u§+l}§)+

1
W(ﬁ + f’i)], 20)

where M is a disk mass. For the potential energy W(a, b) one may use, for example, a
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previous expression (4'). The initial values of the invariants C,, C,, C; = L, are now the

following:
k2k2q? b? 0 0\?
Cl = %[—A-z—ﬂzz— + Xz‘a—z + (ZQ - -b—z - ?) azbz], (21)
k2k§
_ K C. =1 — 0n? — Ob2).
2= gapar O3 =3(20 — Qa® — Qb7); @

at the same time the expressions (15)-(17) for its current values remain without changes.
Similarly, mainly “the equations of motion” do not change—they have the form (5),
(6), with slightly different values of the effective masses C; and D, which are determined
according to (20). The equilibrium state of the elliptical disk corresponds to the following
initial values of u;, v;, ;, ;:

u; =1, v, =0, u, =0, 131=_Q+£2;
a
. 0 -
=0 n=l dh=-5+0 6 =0 (23)
uz =0, vy =0, uy =1, Uy =0;
u, =0, v =0, i, =0, Uy = 1.

In the initial moment (¢t = 0) we assumed the certain small perturbations from the
equilibrium values (23); moreover, we considered the perturbations of two types. For
the perturbations of the first type the initial u; and v; (“velocities”) were supposed to be
equal to their equilibrium values, and small corrections to “coordinates” du; and dv;
were determined so that the initial values of invariants C,, C,, C; calculated according to
(15)-(17), were equal to their equilibrium values (21) and (22). Then one might assume
duy = duy = ovy; = év, = 0, and, putting the amplitude of disturbance vy = ¢,
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Figure 104. Initial parts of evolution of the major a(z) (solid line) and the minor b(z)
(dotted line) for perturbations of first type (1) and second type (2).
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determine the remaining disturbances du,, dv,, duy from the conditions 6C, = 6C, =
6C; = 0 (in the linear approximation). For the disturbances of the second type (where
at the moment ¢ = 0 we introduced small corrections only to the “velocities” é1; and 65;)
one might assume 6w, = dit, = 60, = dv3 = 0, put 89, = ¢, and determine &u,,
iy, 60, from the same conditions 6C, = 6C, = 6C; = 0.

The character of the perturbation evolution is essentially dependent on whether the
parameters of a model b/a and Q?/A4? correspond to stable or unstable solution (in the
linear theory, see again Fig. 49). Here, as in the case of the circular disks, oscillations with
the amplitude ~ ¢, but with deepening into the region of the unstable models (within
the triangle in Fig. 49), the amplitude of oscillations increases. In Fig. 104 we present, for
illustration, the typical initial parts of graphs a(t) and b(¢) for the elliptical disk with
Q?%/A% = 0.85and b/a = 0.99 for the disturbances of first and second types with e = 0.01
(we note that, according to the linear theory, this model is slightly unstable).

The accuracy control of the evolution computation we perform in the same manner as
for the circular disks, i.e., we check the conservation of the total energy, angular moment,
and invariants C, and C, (for the example in Fig, 104 the exactness of conservation of the
energy was ~1075),
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CHAPTER VI

General Remarks

A gentleman went out for

a walk along a street,

he was struck on the skull:

a flower-pot had dropped on him,
thrown down by some hooligans!

But, to tell the truth there were no
hooligans anywhere around,

as today all hooligans

were sitting in Prevel’s Hall
listening to Mozart.

Therefore it was the wind.

But that again is not true,

as the wind is abominably inert
and calm today and could not
topple the flower-pot.

But nevertheless

the gentleman going for a walk
has been struck on the skull.
How! Apropos of nothing?

How! Without the slightest cause?

It was incomprehensible, and the
profundity of this problem no one
could measure.

The gentleman applies
an antiseptic plaster
to his bruised skull
and does not believe
in anything since. . .

RemoN CENO

Translated by T. G. Galenpolskii
with M. E. Fridman and F. Ya. Shanebaum
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§ 1 Oort’s Antievolutionary Hypothesis

The study of equilibrium and stability of different gravitating systems must
evidently play an important role in the construction of the picture of their
evolution. The instants when the system loses its stability are defined by the
critical points of the line of evolutionary development, when the smooth
evolution of the system should be replaced by a rapid reconstruction.
Some authors [195] indeed observe some traces of jumplike transformations
which have occurred in our Galaxy. On the other hand, the smooth evolution
must evidently follow the sequence of quasistationary states. On the line of
evolutionary development, the quasistationary states present such points,
to which all the stellar systems observed in sufficient abundance must
correspond. This is similar to the situation in the world of stars [ 1507, where
the spectrum-luminosity diagram shows the presence, in appreciable
quantities, of only stars in the regions of the diagram familiar in its station-
arity (above all, on the Main Sequence): the regions corresponding to strongly
nonstationary states are very rapidly “rushed” by the evolving system.

As is well known, the theory of stellar evolution was constructed on the
basis of numerous calculations of their equilibrium configurations with
different values of parameters (mass, chemical composition, etc., see, e.g.,
[150]). The major role in the stellar evolution is played, as is now obvious,
by burning out the nuclear fuel which produces a slow increase in molecular
weight of the stellar matter. It prescribes the direction of the evolution. The
rate of this process is determined by the luminosity of the star, which may be
calculated at each given instant from its quasiequilibrium configuration. Thus
one may trace the evolution of the star along the sequence of the quasi-
equilibrium states (with consistently changing chemical composition) up
to the exhaustion time of nuclear fuel, after which must follow a “disruption”
with the rapid transition to the next quasiequilibrium phase, etc. At the
present time, the evolutionary “tracks” of stars with different masses have
been restored up to very advanced stages of evolution.

Such a way of constructing the stellar system evolutionary theory is, in
principle, possible. However, in this case, we do not yet know the real cause
of evolution, which would be, in its degree of reliability, to some extent similar
to the burning out of hydrogen in stars of the Main Sequence. For example,
evolution has been studied in great detail, which is due to stellar dissipation
from galaxies. It is not quite obvious, however, that this dissipation does
indeed occur at a sufficient rate. A similar mechanism suggests a constant
restoration of the high-energetic ‘“tail”” of the distribution of particles in
velocities—a process which is quite natural only in a collisional system.

More frequently, when speaking about galactic evolution, the possibility
of evolution along the “tuning-fork ” Hubble sequence (Fig. 105) was implied,
with conversion of elliptical galaxies to spiral galaxies, or vice versa. Recently,
the question of such an evolution of the present-day shapes of galaxies (of its
real effectiveness) is again under consideration. It should be noted, however,
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Figure 105. “Tuning-fork” diagram of galaxies by Hubble.

that as a result of prolonged discussions about the evolution of present-day
galactic shapes, most investigators were inclined to a quite unexpected,
“antievolutionary” point of view, in all likelihood first suggested by Oort
[297]. According to Oort, the mean characteristics, say, of spherical and
elliptical galaxies (such as mass, specific angular momentum, etc.) are so
different that their mutual conversion is practically impossible. This is again
quite similar to the causes of the rejection of old ideas of stellar evolution
along the Main Sequence, which would require too great a mass loss. The
above, of course, does not prohibit evolution inside each of the shapes.
It is also not excluded that the collisionless evolution (relaxation) of the
system may, at certain times, lead to instability—*disruption”.

§ 2 Is There a Relationship Between the Rotational Momentum
of an Elliptical Galaxy and the Degree of Oblateness?

The antievolutionary point of view of Oort agrees well with the current view
of the nature of elliptical galaxies and, primarily, with the reason for their
oblateness. Until recently (about 1975) there have been no systematic measure-
ments of the rotation velocity of elliptical galaxies. Nevertheless, the observed
oblateness of each E-galaxy was attributed to the quantity of its rotation
momentum. In this we see the traditional relationship between oblateness
and rotation in liquid or gaseous configurations with isotropic pressure.
In addition, the rotation-produced dynamical form of self-consistent models
(Gott [95*], Larson [96*], and Wilson [351]) matched well the surface
brightness distribution in E-galaxies and it was believed that the models
correctly predicted the oblateness of the galactic figure, depending on the
value of the ratio of the maximum rotation velocity v,,, to {v>—the velocity
dispersion of chaotic motions of stars. However, when it became possible
to measure rotation in a great number of E-galaxies (see Illingworth [97°1]
and the references therein) a surprising fact was found—the value (v,)max/<V>
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was, on average, one-third of that predicted by the models. For example, for
the galaxies NGC 4406, 4621 and 4697, the theory predicted this ratio to be
0.5, 0.8, and 0.8. Observations, however, give 0.12, 0.20 <+ 0.36, and 0.30 +
0.45, respectively.

A question arises: if not rotation, what then plays the determining role in
the formation of the figures of elliptical galaxies? Perhaps the oblateness is
due to sufficiently strong anisotropy of stellar “pressures”: the velocity
dispersion in the equatorial plane must be more than the velocity dispersion
in the direction of the minor axis. The first phase models of the simplest
(homogeneous) ellipsoidal systems, the shape of which is determined pri-
marily by pressure anisotropy (so that, for example, the stellar ellipsoid at rest
may have an arbitrary degree of oblateness) were constructed [117]. As
far as the question of the (evolutionary) origin of elliptical galaxies (and, in
particular, their oblateness) is concerned, there may presently be several
different points of view, but we shall deal with only one here.

As will be shown below (in §5); the fundamental difference of elliptical
(and other) galaxies from liquid and gaseous gravitating configurations
consists in the fact that the former (with a good approximation) are collision-
less. The originally available anisotropy in the velocity dispersion of stars
(at the time of birth of such systems) cannot be canceled completely as a
result of their evolution (by collective processes, see Chapter X). Therefore,
it is natural that Binney’s theory follows, advanced by him in 1976 [58%],
which states that the reason for compression of elliptical galaxies is due
to residual anisotropy of velocity dispersion of stars." By applying the
tensor virial theorem to systems, the density of matter is constant on
ellipsoidal surfaces similar to each other, i.e., has the form p(m?), where m* =
x%/a® + y?/b® + z%/c? < 1, Binney [98*] studied the influence of the
anisotropy on the oblateness of the models of the oblate and prolate spheroids.
Comparing the conclusions of the theory with observational results, he
concluded that the oblateness of elliptical galaxies is not directly associated
with their rotation, but is due to some anisotropy of velocity dispersion.
Schechter and Gunn [94“‘] measured rotation of another twelve elliptical
galaxies and, comparing their observational data with Binney’s models,
arrived at similar conclusions: observations rule out all the models with
isotropic pressure (both axisymmetric—oblate spheroid, and nonaxi-
symmetric—prolate spheroid or the three-axis ellipsoid).

Despite the above serious arguments we are not inclined to think that
the problem of rotation, in view of the question of the value of oblateness of
elliptical galaxies, should be buried in oblivion.? The models of Binney

! We have already pointed out that such a possibility is not the only one. For example, to
some extent a contrary point of view [118%] is, generally speaking, not prohibited, which assumes
expansion out of a strongly oblate stellar “pancake”. In this case, the evolution also ceases at a
finite value of velocity anisotropy of stars. Below, in §5, Chapter IX, a possibility is pointed out of
forming the elliptical galaxies due to large-scale instability in a spherical stellar cluster, which is
compressed out of a state being far from equilibrium.

2 Due to the dependence of the value v,,,/<{v)> on the form of the models; for example, for
models with incompressible density v,,,/{v) = 0at any v,,,; see also below.
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[98““] have one difference from real galaxies which looks insignificant on the
face of it but, however, provided accurate calculation, can give an additional
numerical factor of the order of 3. The point is that Binney [98] restricted
himself to considering a special case, where the layers of equal density are
ellipsoids similar to, and concentric with, the boundary ellipsoid. It may be
shown that in models with such layers of equal density, the ratio of the
rotational energy and the gravitational energy is independent of the law of
matter density distribution. For example, for axisymmetric models with
similar layers and an arbitrary density distribution, this ratio coincides
precisely with a similar ratio for the classical uniform spheroid of Maclaurin.
If, however, the layer oblateness is changed, this ratio depends on concentra-
tion of matter density toward the center. In E-galaxies, the oblatenesses of
isophotes, as shown by observations, are not constant but vary with distance
from the center of the systems.® The observed change of the isophotes’ oblate-
nesses means that layers of equal density in E-galaxies are not similar to each
other. Recognizing the fact that taking into account this latter fact should lead
to some numerical result, which however may turn out to be qualitatively
decisive, Binney in his next paper [99“] applied the tensor virial theorem
to the subsystem of elliptical configuration for taking into account the
oblateness profile effect on the rotation curves of the axisymmetric model.
Without going into details of calculations which were later made by B.
Kondrat’ev note also that the influence of the deviation of layers of equal
density from the similar and concentric ellipsoids on the values of mass and
gravitational energy proves to be more effective in the prolate spheroid
model than in the axisymmetric model. Further detailed numerical analysis
will probably allow one to come to know the particulars of the question of
primary importance for the understanding of the whole picture of the evolu-
tion of elliptical galaxies.

§ 3 General Principles of the Construction of Models of
Spherically Symmetric Systems

The models of collisionless systems get, with time, still more complicated
since finer details are taken into account and attempts are made to provide
an explanation of the new observational data. In particular, a very large
number of papers is devoted to the construction of models of spherically-
symmetrical stellar systems. Therefore, quite a few models of such systems
are known at present (cf. review [32]).

It is clear that in the future most of the models will be of academic interest
only. Direct observations do not yet give unambiguous information re-
garding the velocity distribution of particles. On the other hand, as we have
already noted, the problem of the construction of the distribution functions
from the given density distribution is ambiguous. In reality, the problem

3 The same effect is observed in globular clusters [73].
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under consideration must be solved in parallel with the problem of the
evolution and origin of these systems. This may lead to an essential re-
striction of numerous stationary possibilities or even to an unambiguous
solution. In the case of spherical star clusters such work as was performed
by Michie [293], King [260], Henon [214] and others, has already led to
essential progress. The difficulty is, however, that we have not yet obtained
a detailed solution of the fundamental problem of evolution.

Therefore the real settlement of the problem of the theoretical description
of quasistationary systems admits at present a very significant arbitrari-
ness. In the construction of the models, only some “evolutionary considera-
tions” of the qualitative character are employed. It may be said that now
nearly any distribution function safisfying only some natural “criteria of
reasonableness ” is suitable. Among them, the stability condition is of course
necessary.

Very frequently, the observed data on the distribution of brightness and the
number of “particles” in different spherically-symmetrical systems are
compared with simple theoretical models of the type considered in §l,
Chapter IIL. For example, Kamm [180] obtained quite a good coincidence
of some generalized polytropes of his (25), §1, with the observed data for the
globular clusters M5, M 15, M92. The isothermic model, somewhat corrected
on the system periphery, describes well, according to Zwicky, some clusters
of galaxies. These questions are dealt with in more detail in Veltmann’s
review [32].

The “most probable” distributions are also constructed [101], often
without indicating a specific statistical mechanism, which must lead to their
formation in a real collisionless system.

§ 4 Lynden-Bell’s Collisionless Relaxation

In this respect, the paper by Lynden-Bell [286], who had considered the
problem of the collisionless relaxation in a vigorously nonstationary process
of formation of the equilibrium state, differs advantageously from other
papers. Qualitatively, the course of Lynden-Bell’s considerations is as
follows. Assume that initially we have a very nonequilibrium configuration,
i.e., the system “starts” sufficiently far from equilibrium (for example, the
virial theorem is strongly violated). In the phase space, some regions are
occupied by particles while some are vacant. As a result of the interaction
via the self-consistent field, a chaotic intermixing of the elements in the phase
space will occur. The suggestion about the violent character of relaxation is
necessary to Lynden-Bell in order that he might assume that the system, by
reaching the final equilibrium, has indeed been well intermixed so that any
typical element is, with the same probability, to be found in any place of the
phase space (with some general limitations). In this case, one may perform a
corresponding statistical calculation (such calculations are always based on
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the assumption about the equal probability of certain states): the equilibrium
state must be the most probable with the limitations mentioned.

Any final equilibrium state, attainable in principle by the system, must
have the same total energy E, mass M (or the total number of particles N), the
total angular momentum L and the total impulse P. If only these limitations
are imposed, the statistical mechanics will give the Maxwellian distribution
(in a respectively moving and rotating coordinate system).

But the collisionless character of the systems under consideration imposes
an additional constraint, since it means the conservation of one more value—
the phase density. The flow of the phase “fluid ” is incompressible, and there-
fore must occasion the “exclusion principle”: the distribution function in the
given element of the phase space is either zero, if a cell without particles has
arrived there, or is equal to the original value in that cell, which after inter-
mixing has arrived at a given point. If at the initial time the distribution
function was unity throughout the region, where the particles were present,
then we obtain Pauli’s exclusion principle. In this case, the final equilibrium
function must coincide exactly with the Fermi-Dirac distribution:

- 1
S =g

In this formula, f and y are the constants determined by the total number of
particles N and the energy E of the system (here they play the same role as
the reverse temperature 1/T and the chemical potential y in a “usual” Fermi
distribution), while the bar over f means that this form must not indeed be
tended to the exact distribution function (which in the course of time becomes
still more “cut”) but the one averaged over the small energy intervals.
Lynden-Bell believes that his new statistics must explain the remarkable
regularity which we observe in the light distribution of spherical and elliptical
galaxies. Note, however, that Lynden-Bell’s mixing mechanism itself is
effective only provided that instabilities are absent in the evolving system
(for details, see §7, Chapter IX).

§ 5 Estimates of “ Collisionlessness’ of Particles in Different
Real Systems

By using the observed data, consider, first of all, in what degree all the systems
described below are really collisionless.

The problem of collisions in stellar systems was studied in detail by many
authors, beginning with Chandrasekhar [147]. The time of establishment of
the quasi-Maxwellian distribution due to collisions of particles of one sort
(the time of collisonal relaxation) may be written in the form (see, e.g., [101])

T ~ To/d 0y
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The value 1, in this formula has the meaning of a mean time between close
collisions of particles, leading to an essential change in the direction of motion
(scattering by an angle § ~ 1):

03

To ~ =5
G*nym?*’

@

where v is the mean velocity of “thermal” motion of particles, n, is their
mean density, and m is the mass of one particle.* The second value in (1),
A, is the so-called “Coulomb logarithm”, taking into account the fact that in
systems with far-acting forces (gravitational and electrical) the main role is
played by far passages of the particles. To make estimates in application to
such objects as galaxies, it is generally assumed that A ~ 20. Since the
Coulomb logarithm 4 is a slow function of v, n,, the quantity A ~ 20 also
changes little in the transition to other objects which are considered here.

We have already given the parameters typical for galaxies: the number of
stars N ~ 10'1, the radius R ~ 10 kps, therefore the density of the number
of stars must be n, ~ 10737 cm ™3, Since according to the virial theorem it
would be v> ~ GM/R, thus we obtain v ~ 200 km/s. Since finallym ~ My =
2. 10%3 g, then by substituting all these values into (2), we shall find  ~ 10'3
years. Accordingly, 7, ~ 10'” years.

The estimates obtained for the time between the pair collisions of stars
may be compared with the lifetime of the Universe T ~ 10'° years, and we
arrive at the conclusion that for each star, during the lifetime of the Universe,
none of the collisions are likely to have occurred, so that the relaxation of the
distribution of stars in velocities could not be collisional. In this they differ
from globular clusters, which are essentially denser formations. For a
typical spherical cluster, the number of stars N ~ 10°, while the radius
R ~ 10 ps, so that by formula (1) for t we have the value of only an order of a
billion years. Therefore for the lifetime of spherical clusters, (4 < 8) - 10°
years, a sufficient number of collisions might have occurred, and as a result
the phase distribution of these systems could have relaxed toward the
most probable (quasi-Maxwellian) distributiorr in the “usual way”. In
reality, however, the situation here is not so simple, due to a strong non-
homogeneity of spherical clusters (the other complicating factor is the
possibility of stellar dissipation from the system). Therefore it would be more
correct to determine the local times between the collisions dependent on the
radius. Then the system turns out to be collisional (and consequently,
Maxwellian) in its central part, but collisionless (and therefore with an
a priori unknown distribution function) on its periphery. The distribution
function on the periphery must transform smoothly to the Maxwellian
function at the center, which in this case is the boundary condition lacking
in the case of galaxies, which are “purely” collisionless systems.

4 Similar expressions in plasma physics ensue by substituting the effective gravitational
“charge” m\/a by the electric charge e.
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It should be stressed here that the “collisionness™ (at least partial) of
globular clusters manifest itself only on long time intervals of the order
of the lifetime of this system. For example, as far as small oscillations of
these systems are concerned, they are characterized by quite other times:
by the periods of orbital revolutions (or radial oscillations) of the stars,
which have the order t ~ R/v ~ 10° years. This value, on the contrary, is
much less than the time between the collisions, so that in the study of collec-
tive oscillations or stability (and this is just the problem of most interest
to us) the spherical clusters may be considered as collisionless: no collisions
occur in the course of many periods of oscillations.

The requirement of the dependence of the stationary collisionless distri-
bution function on the single-valued integrals of motion, together with the
above boundary condition of matching with the Maxwellian distribution at
the center, in the case of spherical clusters, greatly restricts the class of ad-
missible distribution functions. In any event, we do not have such an a priori
arbitrariness as in the case of galaxies.

However, for the problem of interest, the difference is probably not so
deep. Indeed, observed distribution functions of even collisionless systems,
like galaxies, are by no means arbitrary functions of integrals of motion.
The mechanisms, which have not yet been established unambiguously,
lead to the form which closely resembles the same Maxwellian distribu-
tion function (or Schwarzschield’s one, i.e., anisotropic Maxwellian as in our
Galaxy). However, in principle, the number of possibilities here remains
large. In addition, in different cases, various mechanisms of establishment of
an equilibrium distribution (of collisionless relaxation) may operate.

In case of a system of globular clusters, similar estimates of the average
time of pair collisions yield © ~ 10'! = 10'3 years. This time, in any event,
significantly exceeds the average time of oscillations 7;, which equals
a value of the order of 10® years.

For compact clusters of galaxies, these times are respectively © ~ 101° +
10'? years, T, ~ 10° years. Therefore, such systems are also described
by the collisionless kinetic equation and only near the center will this approxi-
mation become inapplicable. But the latter is already evident from the
description of such clusters [146], as formations, at whose center the galaxies
are in contact with each other.

Thus, all the systems described may with sufficient accuracy be assumed to
be collisionless and to be described in the framework of the proper mathe-
matical formalism of the physical kinetics.



CHAPTER IX

Spherical Systems

§ 1 A Brief Description of Observational Data

As already noted (see beginning of Chapter I1I), under spherical collisionless
gravitating systems we understand the following objects: (1) globular clusters
of stars; (2) spherical galaxies (or, roughly, elliptical galaxies with not very
great oblateness); (3) systems of globular clusters (for example, in our
Galaxy); (4) compact clusters of galaxies.

1.1 Globular Star Clusters

The list of globular clusters belonging to our Galaxy is about 200, although in
reality their number may be much greater (according to estimates of Saar up
to 500, according to other estimates up to 2000 [122]). They form a system
with a strong concentration toward the center of the Galaxy and with approxi-
mately spherical density distribution.

The counts of the number of stars in globular clusters show that the
density n is a rather decreasing function with a radius of approximately
n ~ 1/r3. The typical dimensions of the globular clusters are R ~ 10 ps,
the masses lie in the region of several hundred thousands of solar masses.
For example, the mass of M3, estimated by Sandage, is 2.45 - 10° Mg [122].
Johnson [243] has derived the lower limit for the mass of globular clusters
from a rough model of the tidal equilibrium it also proved to be of the order
of 10° M.

146
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1.2 Spherical Galaxies

Let us now describe (also very briefly) some observed data which refer to
spherical and elliptical galaxies. The number of stars in giant galaxies of this
type are, as in giant galaxies of other types, N ~ 10! (up to 10'?), the radius
R ~ 10 kps. It is typical that they completely lack any structural details,
except for small very condensed nuclei. It is believed that for all elliptical
galaxies there is a common law of surface brightness distribution, and accord-
ingly, stellar density distribution. In this connection the suggestion appears
to be very natural that all elliptical galaxies are constructed according to the
same general model, while individual objects differ only in their size, density,
and degree of oblateness. The law of surface brightness distribution was found
by Hubble; it has a very simple appearance:

B = Bo/(r + a)?, (1)
or
log B/B, = —2 log(r/a + 1). Q)

These formulae describe very well the observations within the range 0.3 <
r/a < 15 and are satisfactory up to r/a = 30 (the brightness within this
interval alters 1000 times).

1.3 Compact Galactic Clusters

According to Zwicky [146], all clusters of galaxies may be divided into three
classes, from which the compact clusters reveal a nearly accurate spherical
symmetry. Examples may be given for giant galactic clusters in Veronica’s
Hair and in the Northern Corona. Their observable dimensions are
R ~ 1 mps, while the virial' masses are M 2 10'* M. The observed radial
velocity dispersions of galaxies reach 2 - 10° km/s in giant clusters. The most
abundant clusters account for N = 10* members. The density distribution
according to Zwicky is well represented by the isothermic model in (12), §1,
Chapter III; other authors suggest some different models (see [32]).

§ 2 Classification of Unstable Modes in Scales

Rephrasing slightly the known expression by A. Eddington one can say that
there is nothing simpler than spherical star clusters. Therefore it is natural
that theoretical models of spherically-symmetrical systems are most numerous
compared with flat or elliptical systems. With the accumulation of the

! That is, estimated by the formula M ~ v?R/G.



148 IX Spherical Systems

observational data these models get more complicated. As their components
one uses astrophysical objects of a novel nature (for example: in the center
of a spherical galaxy one places a black hole with a large mass [86%]),
introducing high anisotropy in the stellar velocity dispersion [61%*],and so on.
With such complications of models, it is sometimes a feat to achieve satis-
factory agreement with observational data. However, at times one forgets to
satisfy the main condition—namely: the condition that the system may exist
at all or, in other words, that the model be stable. The stability investigation
of the models of spherical systems (Chapter III) shows that many of them are
really unstable.

Possible instabilities may be conditionally (and roughly) divided in two
classes—large-scale (with the characterizing scales A having the order of the
system size R) and small-scale (4 < R). Instabilities of these two classes act
completely differently. The instabilities of most large scales may cause the
visible alteration of the system’s geometrical form. For example, it may turn
an initially spherical system into an elliptical one. Small-scale instabilities
cause such effects as, for example, smoothing of temperatures in different
directions provided the high temperature anisotropy is originally present.
At the same time these instabilities do not have any considerable influence on
the form of the system.

The stability criteria for the small-scale perturbations obviously depend
on many details of the equilibrium state. On the other hand, for large-scale
perturbations, which include the system as a whole, stability or instability must
depend only on some integral characteristics averaged over the system. Which
are these characteristics? They are, for example, the total kinetic energy
of the system T, potential (gravitational) energy W, the energy of rotation
T,..» and so on.

I

§ 3 Universal Criterion of the Instability

For global instabilities it is therefore possible to formulate universal stability
criteria—that is so that the criteria remain valid for different models,
including models vastly different each from other (for example: with com-
pletely different distribution functions over velocities, different densities
po(r), and so on). It is natural to look for these universal stability criteria in
energy terms. At any rate, Peebles and Ostriker [301] formulated the universal
stability criterion for highly flattened (disklike) systems with respect to
elliptical deformations in such a way (see §5, Chapter IX).

The large-scale modes correspond to the widest instability region. Indeed,
if the trajectories of all stars in the sphere are purely radial this sphere is
unstable according to Jeans, with respect to the perturbations of any scale
which are transverse to the radius (§5, Chapter III). If there is some thermal
dispersion in the transversal velocities of particles v, , this means the appear-
ance of corresponding transversal Jeans size R, ~ v,/w, (w, is some
average Jeans frequency), and consequently all the disturbances with
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transversal scales A, < Rj, become stabilized. With an increase of v, the
value R, increases too so that more large scales become stable. It is clear
that stabilization of the largest scales (A, ~ R) is the most difficult: for this
the highest transversal velocities are necessary. If the velocity dispersion
increases so that the system becomes isotropic over the velocities, one
simultaneously gets complete stability (§2, Chapter III). All the systems with
v, > v, are also stable (besides some special cases—§3, Chapter III); at the
limit v, — 0 we obtain here systems with purely circular orbits.

The stability boundary lies between isotropic systems and systems with
purely radial motions of stars. Quantitatively this boundary is determined in
§7 of Chapter III, where we summed up stability investigations of the
spherically-symmetrical collisionless systems (see Fig. 40). The main result
consistsin the formulation of the universal stability criterion which is probably
valid for the very wide class of spherical systems:

&= TAT2) < & = 1.70 + 0.25, )

where T,, T, are, respectively, total kinetic energies of the radial and trans-
versal motions of particles, ¢ is a global anisotropy.

§ 4 Specificity of the Effects of Small-Scale and Large-Scale
Perturbations on the System’s Evolution

Let us assume that we have a slightly unstable system, e.g., £ 2 £.. We may
then ask how such a system will evolve? Which perturbations begin to grow
first of all? Possible forms of perturbations can be simply enumerated. First
of all these perturbations must correspond to the most large-scale modes,
¢.g., those with the minimal number of radial nodes (or even those without
nodes) and with maximally smooth angle dependence. This last is determined
by an index | of spherical harmonics Y76, ¢); | = 0 corresponds to radial
perturbations; [ = 1 and [ = 2 correspond to perturbations with the sym-
metry of dipole and quadrupole types, respectively. But radial perturbations,
for the distributions, decreasing with the energy (which are only interesting)
are always stable. Therefore only two types of perturbations compete with
each other: the elliptical deformation of the sphere (e.g., the mode of the
quadrupole symmetry without nodes) and perturbations with | = 1 having
a minimal number of radial nodes. But the nodeless perturbation with / = 1
is trivial—this is simply displacement of the sphere as a whole; all the
remaining perturbations must have radial nodes. In all the cases con-
sidered in §6, Chapter III, the instability began from the elliptical deformation
of the sphere (I = 2).

Note that solutions of the problem of small perturbations of the sphere,
which corresponds to the stability boundary (w? = 0), determine neighboring
equilibrium states—collisionless ellipsoidal systems with small oblateness.
It is possible to construct in this manner a large number of various stellar
stationary ellipsoidal models from the results obtained in §6, Chapter IIL
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(One similar model was suggested by Hunter [69].) In this connection we
must note that even those galaxies which are usually considered as purely
spherical (EQ), in reality show a visible ellipticity of isophotes, moreover,
the latter is increasing from the center to the periphery. If we assume that the
average ratio of mass/luminosity is approximately constant then it will be
necessary to allow such asymmetry in the mass distribution. All these pe-
culiarities may probably be explained in a natural manner if we construct, by
the method mentioned above, a model which is close to the spherically
symmetrical model. As an initial spherical model one can take, for example,
one of King’s models [76*] which are isotropic at the center but have
considerable anisotropy on the periphery.?

§ 5 Results of Numerical Experiments for Systems with
Parameters Providing Strong Supercriticality

If an anisotropy ¢& is essentially more than a critical one, then more small-
scale perturbations also become instable (apart from the ellipsoidal mode).
The manner of evolution of the system in the case of initial high anisotropy
may be complicated; this evolution cannot be predicted in full by the linear
stability theory. However, the modeling of such systems by computer
shows (see, for example, §5, Chapter IIT) that considerable elliptical distortion
of the system’s form often develops in this case also. It may be understood
as follows. The spectra of initial perturbations include deformations cor-
responding to both the small-scale modes and to most large-scale modes.
Moreover, though the small-scale instabilities develop more quickly, the
heating due to these instabilities is far from sufficient to stabilize the large-
scale modes, and principally to prevent elliptical deformation. Indeed,
roughly speaking, one can assume that the development of the instability
at a certain mode draw the system at the stability boundary of this mode
(the stars get warm, so as to cause the suppression of instability). But we
already noted that the widest region of instability just corresponds to the
ellipsoidal mode (I = 2); hence this mode will increase, even when increasing
of all the other modes has ceased.

In principle, there is the possibility of the formation of highly oblated
configurations due to development of large-scale instabilities, of which the
elliptical deformation of the system is the most apparent. In this connection
we must note that some clusters of galaxies (for example, Coma) show very
considerable oblateness [87°]. The same mechanism may be a cause of
formation of highly oblate elliptical galaxies.

Analytical consideration of the stability problem of contracting col-
lisionless cloud is very complicated. Here methods of statistical modelling

21t is assumed [77*, 86*] that King’s models give a satisfactory description of the main
observational properties for spherical galaxies and for ellipticals with small oblateness.
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(different modifications of N-body methods) are more effective. In the work
of Peebles [83%] he examined the evolution of the initially cold spherical
system with N = 100-300 pointlike masses, which must model the cluster
of galaxies (Coma). In that work, however, the question of the form of the
system obtaining under collapse is not especially considered. From the
figure given in [83*] one can see that the system forming during collapse has
some oblateness. However, the oblateness can also be considerable: one
projection (which is not in all probability most happy) is evidently not
enough on which to judge the form of the system. Further examination of this
interesting question is necessary. We can obtain the answer if we simul-
taneously examine several projections, follow the evolution of a quadrupole
moment of the system, and so on.

In principle, the final picture can depend greatly on a spectrum of initial
perturbation, in particular from the relative amplitude of the initial elliptical
distortion of a system’s form (or from the value of an original quadrupole
moment). Generally, it is necessary to note that the problem of initial
perturbations, and primarily the problem of its amplitudes, are decisive
(and also the most indefinite) for all the considered tasks. In particular, the
following question has principal significance. Is the cause of the initial
deviations from exactly spherical form only purely thermal, statistical
fluctuations, or are these deviations essentially stronger ? (The last possibility,
to our mind, is much more probable.)

If the level of fluctuations is purely thermal we must not expect formation
of considerable ellipticity during the collapse of the future galaxy (when
N ~ 10'° + 10'2).> However, in the case of the formation of galaxy clusters
(the process which was considered by Peebles [83%]) the final oblateness
can be considerable even for the purely statistical nature of the initial fluctua-
tions.

§ 6 Example of Strongly Unstable Model

Thus, at the present time there is already a stability theory of spherically-
symmetrical collisionless systems which is sufficient in order that one could,
with a large degree of confidence, form a conclusion as to its stability or
instability for practically any given model. For this purpose it is necessary
to calculate the value of global anisotropy of the system and then compare
it with critical 1.70. It is clear that strongly unstable models cannot be used
as models of real systems.

Let us give an example of just such a situation. Recently, great interest was
attached to the work of Sargent’s group [86%, 90°%], in which an anomalously

3 Note in this connection the paper by Miller [81%] where it is shown in particular that during
the first phase of the collapse of a quickly rotating cold spherical system of N ~ 10° pointlike
stars, the barlike instability has no time for considerable development. The reason is a rather
small initial amplitude of elliptical deformation of the sphere under purely-statistical playing
for such a number of points.
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quick increase of the luminosity and stellar velocity dispersion at the central
region of spherical galaxy M87 was discovered. An attempt at the explana-
tion of these data within the frame of the standard spherical models (line to
King’s models), which are isotropic near the center, was not a success. After
this the authors suggested that at the center of the above-mentioned galaxy, in
the region the size of ry, < 100 pc, there is a black hole or some other object
with mass M, ~ 5 10° M. Below we will consider some problems appear-
ing in connection with this possibility. It is, however, important that for
the present we do not exhaust the more simple variants which the authors
of other work [61%] brought to our attention. They suggest, for a descrip-
tion of the central region of galaxy M87, the highly anisotropic star velocity
distribution instead of the standard isotropic one. The equilibrium state for
the spherically-symmetrical, anisotropic collisionless system satisfies the
equation (as we know from §1, Chapter III)

GM(r) p<2c,2 - ci)

d 2
)= —p—3 .

(1)

For the isotropic case the last term in (1) vanishes so that we obtain the
equation which was employed by Sargent et al. [86*] under analyses of the
mass distribution near the center of M87. If the tangential velocity dispersion
at finite distances from the center r drops below the radial dispersion, the
last term in Eq. (1) becomes negative. But this has evidently the same qualita-
tive effect as adding a central mass to the first term on the right-hand side
of Eq. (1). The effect is a steepening of the density gradient compared to the
isothermal solution.

The specific computations were performed in [61%/] for anisotropic
Maxwellian distribution

fo(E, L) = const e~ @E+k2LA/2¢;, ?)
The phase density (2) corresponds to the local anisotropy
Nt/ =1+ k*r?, )

so that k™! means the radius at which the anisotropy begins to be con-
siderable.

Substituting the volume density p, = [ f; dv into the Poisson equation,
we obtain

1 d [ ,dy eV

x% dx (x dx) 1+ R @
where we introduced the notation ¥ = ®,/c?, x = r/a for the dimensionless
potential radius, @ = ¢, (4nGp,)”'/? is the scale of length, p, is the center
density,f( = ka.

For the model with k = 0.98, authors of the work under consideration
obtained very good agreement with observational profiles of p(r) and o(r)
up to x ~ 10.

It is easily seen however that in spite of this such a model cannot correspond
to any real system, because the model is very unstable. Indeed, the simple
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computation of the quantity &(r) = 2T,(r)/T,(r) where

1 r
1.0 = [ar [z, am
0

gives the following values

X 2 4 6 8 10

&(x) 2.39 4.23 5.87 7.33 8.67

Hence the instability of the model considered jointly with L. M. Ozernoy is
obvious (recall that the critical value* for the global anisotropy &, < 2).

§ 7 Can Lynden-Bell’s Intermixing Mechanism Be Observed
Against a Background of Strong Instability ?

We talked above about some applications of the stability theory of stationary
spherical collisionless systems. But it is no less interesting to ask which role
possible instabilities may play in the evolution of the system initially far
from the equilibrium. For example, one of the most important problems for
the theory of galaxy formation is the problem of collapse of the spherical
cloud of noncolliding particles. In this case practically all the energy re-
leased during the contraction converts into radial motion. Consequently,
it is possible that strong instability may develop. Lynden-Bell, in the known
work [286] devoted to the collisionless relaxation, probably bore in mind
just such a process of collapse. However, his mechanism of mixing in the
strongly nonstationary system is probably far less effective than the influence
of instabilities which must be present here. The mixing mechanism of Lynden-
Bell, in its pure form, acts effectively only when the instabilities are absent.
(This aspect was emphasized by Kadomtzev [15*].)

§ 8 Is the “Unstable” Distribution of Stellar Density Really
Unstable (in the Hydrodynamical Sense) in the
Neighborhood of a “Black Hole”?

In conclusion we dwell upon effects which could be due to the presence of a
“black hole” or another compact, massive body at the center of the stellar
spherical system (we shall speak of “hole” in both cases for the sake of
brevity).

“ Note here that the scales A < 2 may also be stable although £(2) > 2. Indeed, the stability
criterion for perturbations with small scales must involve the parameter £(x) determined by
some different manner compared to &(x): the contributions into T;, T, from the stars with orbits,
which move far away from the region of perturbation (x,,,, > x), need to be omitted. However, for
perturbations of the larger scales this effect is not essential.



154 IX Spherical Systems

Thus, let us suppose that at the center of the galaxy a “hole” really was
formed. It is clear that a “hole” forms from those stars with small angular
momenta and, hence, these leave the system of stars surrounding the central
body. As a result, the immediate vicinity of a “hole” is filled by stars with
nearly-circular orbits, which, in the region of sufficiently small angular
momenta, leads to the condition df/0L > 0. As noted in §4, Chapter VI, this
circumstance may, at the appropriate sign of the wave energy, cause a kinetic
loss-cone instability (for details see [39%?]). Here we will deal with possible
hydrodynamical effects of the “hole” rather than with the kinetic effects.
Since in the vicinity of the “hole” only stars with orbits close to circular
are left (the rest of them are absorbed by the “hole”), there must appear in
this vicinity a density distribution py(r) with the increasing section near the
“hole”, as shown in Fig. 106(a).

In [106], it is shown that a spherically-symmetrical system with circular
orbits of stars (Einstein’s model, Fig. 2) can be unstable if its macroscopic
density increases towards the edge (see §3, Chapter III), In [20], this instability
was investigated for the first time in the system of two collisionless cylinders
rotating in opposite directions. This instability may be caused by the centri-
fugal force, which, under the condition of density drop towards the system
center, is not compensated by the gravitational force. In this case, it is likely
that the presence of a massive compact body in the system center will stabilize
the instability.

—t
¥
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(b)

Figure 106. Stellar density near the “black hole”: (a) the “initial” model is the homo-
geneous model of the second Camm series; (b) the “initial” model is the system with
purely-circular orbits.
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Thus, we should clear up the question: does a “hole” lead to such a
distribution of density p,(r) in its vicinity which turns out to be unstable in
the sense of [20, 106], or is the “hole” mass sufficient to stabilize this in-
stability? We already investigated this problem in §3, Chapter III. Let us
recall the main results. For the systems with purely-circular orbits the in-
stability of the localized disturbances begin, provided that [20, 106]:

@E;Kl, 1)
X

where x is the epicyclic frequency, »* = 4Q? + r(Q?)’; the criterion (1)
corresponds to mode | = 2 which is the most unstable mode.

In Section 3.4, Chapter III the stability of the mode [ = 2 was also in-
vestigated for the case when there is the finite radial velocity dispersion; then
the picture represented in Fig. 20(a) occurs. The stability boundary p = 1
does not alter; all the scales become unstable for u — 1. More obviously
the instability condition (1) can be formulated as: for the instability of the
perturbation localized near r it is necessary to fulfil the inequality

po(r) > p, @
where the average density
_ M)
p @n/3)3’ 3

M(r) is the total mass within the sphere of radius r. If at the center of the
system the “hole” was absent, then for the density py(r) increasing from the
center we had the instability according to (2). However, it is essential that
mass of the “hole” must be included in M(r). Due to this, those mass distri-
butions which form together with the “hole” are stable. It is especially
evident in two limiting cases:

(1) purely-circular orbits (see Fig. 106(b)): a “hole” is, in this case, formed
by the particles with r < r,; from the figure it is evident that p > p,

(2) nearly radial orbits; in this case a “hole” with a very large mass
must form; the absence of an instability is rather obvious.

It may be shown that in the general case, for the mass distribution forming at
the vicinity of the center, the instability criterion (2) does not satisfy.

We can present some results of the concrete calculations concerning a
structure in the vicinity of the “hole”. Let us take, for example, the simplest
model—the “hole” in the initially homogeneous sphere with the distribution
function (29) §1, Chapter III:

B Po LZ -1/2
fo—ﬁnz[‘f—E—l] : @

where p, is the density, and the radius of the sphere we put to be equal to
unity. The phase region of the system is represented in Fig. 107(a). For our
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Figure 107. Phase region (shaded) for the homogeneous (in a density) model of the
second Camm series: (a) in variables (E, L ); (b) in variables (x,, x,).

aims it is natural to transform from E, L to other variables: x, = r2;,, x, =
ri.., where 1, /r . (E, L) are the minimum and maximum distances of the

max’

particle with given E, L from the center. The distribution function in these

variables
_ 1 - X1 1 - x2
F_2n<\/1—x2_\/1—x1)’ 5

and the phase region of the system transforms into the triangle OAB in
Fig. 107(b).

Suppose now that in this system a “hole” is formed due to falling into the
center of those stars which had r,,, < ro, Or x; < r3 = x,. As a result, all
the stars corresponding to the trapezium OCDB in Fig. 107(b), will form a
“hole” with some mass M, in the center O, and the remaining stars, occupying
the triangle CDA on the phase plane (x;, x,), determine the modified distri-
bution of the volume density p(r).

Let us calculate M, and py(r). In this case the calculation is not complicated
and may be carried out analytically up to the end. For the mass of the “hole”

we obtain
M=% (xo . %) ©
and for the density
o) = T =3l — %0, Q

The latter is presented in Fig. 106(a). The mass M,(r) inside the sphere with
radius r, corresponding to (7), is equal to

Mi) = T % 0 — %o ®
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In this case we can convince ourselves directly that the instability condition
(2), which reduces to the inequality

1 1 2% — X5
;Q/l—xo(rzvxo)1/2>r—3 1_x0(r2_x0)3/2+x_0'3_)&, )

is not valid for any x, and r.

The second numerical example is a “hole” in the sphere which initially is
described by the Idlis model (32) §1, Chapter III. The results of calculations
which are completely analogous to those obtained above are given in the
form of the table in [39%].



CHAPTER X

Ellipsoidal Systems

§ 1 Objects Under Study

When speaking about astrophysical applications of the investigations of
stationary states and stability of collisionless ellipsoids, we have borne in
mind the different galactic systems. A roughly ellipsoidal shape is possessed,
for example, by elliptical galaxies and the bars of the SB-galaxies. Elliptical
galaxies obviously possess an axial symmetry while the bars of the SB-
galaxies are, explicitly, not axially-symmetrical with respect to the axis of
rotation.

All these galactic systems may with good accuracy be considered as
collisionless: estimates given above for spherical galaxies are applicable to
them, with minor modifications. We have in mind here only the stellar
component of these systems (on the contrary, the interstellar gas is
collisional).
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§ 2 Elliptical Galaxies

2.1 Why Are Elliptical Galaxies More Oblate than E7
Absent?

Among the so far unresolved problems regarding the elliptical galaxies,’
we would single out one already old but, in our opinion, very beautiful
problem: that of explaining why there are no elliptical galaxies with an
oblateness exceeding a definite critical value.

This fact was noted and repeatedly emphasized by Hubble, who believed
that a limit type of elliptical galaxy is E6, when the small axis is 40 %, of
the large axis (see [17]). Recall that the Hubble notation for the elliptical
galaxies En means that the ratio of the semiaxes of its meridional cross-
section ¢/a = 1 — n/10, (n = 10[(a — c)/a]). Now it is apparently assumed
that the largest oblateness is possessed by the galaxies of type E7, for which
c/a = 0.3 [35]. Irrespective of a specific number, the fact of the presence of
some critical ratio c/a for elliptical galaxies is itself of some importance.

2.2 Comparison of the Observed Oblatenesses of S- and
SO-Galaxies with the Oblateness of E-Galaxies

Below this limit we already have only spiral (S, SB) and lens-shaped (SO)
galaxies, i.e., objects of a quite different kind which are readily distinguished
from elliptical galaxies (see [35]).

Thus, the oblatenesses g = c/a of elliptical galaxies, on the one hand, and
of usual spirals or the SO-galaxies, on the other, lie in different regions.
Comparatively recently, this has been confirmed in a detailed paper by
Sandage et al. [318], using a very rich material (168E, 267SO + SBO,
254S —altogether 689 galaxies).

Due to this difference, the S- and SO-galaxies seemingly may not be
evolutionarily associated with elliptical galaxies. Usually it is assumed
[318] that the fundamental difference between the E and S (SO) systems lies
in the differences of the original distribution in angular momenta, and pri-
marily in the relative quantity of matter with low values of angular momen-
tum, which may convert to stars already at the beginning of the compression
of the protogalaxy (the rapidly rotating matter precipitates later in a gaseous
form onto the equatorial plane).

2.3 Two Possible Solutions of the Problem

What benefit can be derived from investigations of equilibrium and stability
of the collisionless systems, for the solution of the problem formulated in

! Such as, e.g., the problem of an adequate model, which would satisfactorily describe
observations (in particular, the Hubble law of surface brightness variation).
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Section 2.17? Firstly, it may turn out that the universal equilibrium states of
elliptical galaxies which will be found, exist generally for only slightly oblate
systems.

More probable, however, is another possibility connected with the
stability loss of the system as the critical limit of oblateness is exceeded. We
are aware in any event that such a situation takes place in the case of ellipsoids
(spheroids) of Maclaurin: they become (dynamically) unstable when the
eccentricity of the meridional cross-section exceeds the value e, = 0.95289,i.c.
(c/a).; = 0.31. This result cannot of course be transferred directly to the real
elliptical galaxies; we would like only to stress the possibility in principle of
a similar situation.

At present, one may only speak seriously about the investigation of the
stability of simple, in particular, homogeneous, ellipsoidal models (at least,
by analytical methods). However, the Peebles-Ostriker criterion and some
similar considerations described in Section 3.2, Chapter IV, are indicative of
the fact that the results thus obtained (if they are formulated in relevant
terms) may have a significantly broader region of applicability.

The rotation exerts a destabilizing influence on the system with respect to
perturbations of a “global” character, at which the original axially-sym-
metrical shape of the system is violated, so that it takes on a “barlike” form.
The Peebles—Ostriker criterion provides a quantitative formulation of this
effect. The physical cause is due, as already noted (in Chapter II), to the
decrease in effective gravity force on the system boundary, which facilitates
the reconstruction of its shape. A convenient model for quantitative estima-
tion of the critical value of oblateness and of the influence of the rotation
velocity on stability of axially-symmetrical collisionless systems is the super-
position of the Freeman spheroids rotating in the opposite direction (see
end of Section 3.1, Chapter IV).

2.4 The Boundary of the Anisotropic (Fire-Hose) Instability
Determines the Critical Value of Oblateness

If we propose that the equilibrium in highly oblate ellipticals must be pro-
duced by an anisotropy of star velocity dispersions, then a degree of aniso-
tropy for the systems with maximum oblateness (types E6 and E7) must
be also sufficiently high. It is not unlikely that these systems are just near the
boundary of the anisotropic (fire-hose) instability which was in particular
examined in §3, Chapter IV (for ellipsoidal systems). At any rate it is clear
beforehand that the requirement of stability with respect to bending per-
turbations must lead to some restriction on maximum oblateness of stable
elliptical galaxies (for example, because the infinitesimally-thin hot disks
are obviously unstable—see Section 4.2, Chapter V). Then the following
questions arise. Firstly, what, numerically, are the estimates for (c/a);, ob-
tained from the stability theory; whether these values are sufficiently near the
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observational (c/a)y;,, SO that we could say that in reality the fire-hose
instability had some relation to the problem under consideration?

Secondly, what happens to the system if one has oblateness which is
considerably higher than the critical value?

We have now only preliminary answers to the questions stated which are
based on the analysis of strongly-simplified (homogeneous) models of
elliptical galaxies.

The answer to the first question is positive. In §3, Chapter IV, we showed
that, for example, the model of the ellipsoid of revolution hot at the plane
of symmetry ((64), §1, Chapter IV) becomes unstable just for (¢/a) < 0.3
(for the prolated spheroids at rest we had similar results—see Problem 9,
Chapter 1V). The preliminary results concerning the fire-hose instability of
nonhomogeneous ellipsoidal systems are also in agreement with this esti-
mate. As to the second question stated above, the certain answer is given
in the results of the numerical experiments simulating an evolution of highly-
oblate homogeneous ellipsoids at rest (these simulations are also described
in §3, Chapter IV). These experiments show a rapid increasing of thickness
in such systems, which is due to the excitement of unstable fire-hose modes.
Thus, one can see that the ellipticals with an oblateness exceeding the
critical value could indeed not exist: a growth of initial disturbances would
ultimately draw the system onto the stability boundary.

2.5 Universal Criterion of Instability

It is clearly that extensive investigations of more realistic models are necessary
for definite conclusions.” But the stability criteria relative to the large-
scale disturbances may be universal provided that these criteria are formulated
in some relevant terms. The model, which we used in §3, Chapter 1V, for the
investigation of the fire-hose instability, was composed of the homogeneous
ellipsoid with mass M, and with semiaxes a, ¢ (a > c), rotating with the
angular velocity yQ, in the immovable spherical halo with mass M,. Let us
introduce the parameters:

u=T/W, u,=T,/W, u=T/W t=TW, M

where T, , . is the kinetic energy of the chaotic motion of stars along the
axes r, @, z, respectively, T is the energy of rotation of the galaxy, W =
| W4 + 2U, is the potential energy, where W, is the energy of interaction of
the stars of the galaxy with each other, U, is the energy of interaction of
stars with the halo. For a uniform spheroidal halo U, = 4 [ p,Q2(r* + z*) dV,

2 Besides, the variations described above (which employ the requirements of the stability
theory) do not, of course, exhaust all the possibilities for an explanation of the problem of
maximum oblateness of ellipticals. And, finally, the explanations suggested say nothing about
how in reality the elliptical galaxies are formed.
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integration is over the volume of the galaxy, p, is the stellar density. From
the virial theorem, it follows

AL+ T, + T, + T) =|W| + 2Uy; )
therefore
Uy + Uy + U, + £ =7 3)

The parameters u, , ,;t for our model are uniquely associated with the
values py, c/a, y*, and we may represent the instability regions on the plane
(uy,u,), where u; = u, + u, = 2u, (see Fig. 108).

u;
0.05

0.4
0.3
0.2

0.1

0.01 003 0.05 0.07 u,

Figure 108. Marginal curves in variables (i, u,).

The basis of further applications of the criteria obtained to real systems
serves the hypothesis that the galactic stability boundaries in the variables
u, and u, are dependent only on the parameter u = M,/M, and are weakly
dependent on the model. A similar suggestion was advanced by Ostriker
and Peebles [301] as far as the barlike mode is concerned. In the case of
bendings one can most simply formulate the stability criterion for the mode
m = 0 (“bell”);

Uy + B, > o (). C)

The value a. (1) can be derived from the dispersion equation in the disk
limit, the deviation of which is given in Section 2.1, Chapter V:

(0 — mQ)* = Q347 — 2) — Q%1 — )
x[@n+m—1)2n +m) —m?* — 2] + Q2 (%)

where Q7 = GM,/a*, the expression for I'™ is given in Section 2.1, Chapter V.
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The “bell” mode has m = 0, n = 2. For this mode, from (5) we have
=302 — (1 — y»)Q? + Q2 and for o, = (1 — y?),, we get

_ 31+ 8u/15n
16 1+ 4p/3n°

For the m = 1 and m = 2 modes, the criteria are not written in the form
of a simple linear dependence between u, and u,. A similar dependence is
roughly valid only for small u,.

To confirm the above hypothesis about the universality of the stability
criteria, the computations of the stability of the disklike models with dif-
ferent rotation curves for the bell-shaped mode were performed.

In the first model [227], the surface density of the disk had the form (see
§1, Chapter V)

(©)

o

2]\22 Z b(n)éZk 1 (7)

where ¢ = m, M and R are the mass and the radius of the disk,
b = (2n + 1)/(2n - 1),
b =T[4k — D(n — k + 1)/2k — 1)(2n — 2k — 1)Ib{" ..

The angular velocity of rotation of the disk is

,2n+ 1 nGM
e (L= 2, ®

o=

Q) =

where y? < 1 is defined in the same way as above. In the case where n = 1,
this model coincides with the model considered above, for which the in-
stability criterion with respect to the bell-shaped mode yields u; =
11 —y») > 3, ort < t,, = 0.125. It turns out that for n < 7,

0.101 < ¢, < 0.125. )
For the second model [2057 (cf. (39) in §1, Chapter V)
6 = o, exp(—ar), (10)

Q) = y nGaOa[IO( 2)1(0( 2) 11(32':)1(1(%")], (1)

where I,, K, are the corresponding cylindrical functions. In this case the bell-
shaped mode becomes unstable for

t < t, = 0.120. (12)

Therefore, it is evident that ¢, (or u,) turns out to be approximately identical
for very different models.?

3 Note that the results described were applied [37%, 40*] for estimating the upper boundary
of the halo mass in a galaxy.
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§ 3 SB-Galaxies

The SB-galaxies (intersected spirals, or the galaxies with a bar) have spiral
arms going out from the ends of the bar, at whose center is the nucleus.

3.1 The Main Problem

Achievements of the SB-galaxy theory are so far very modest, especially
when compared with the significant progress in understanding the structure
of normal spiral galaxies (of the S-type) connected with the density wave
theory (cf. next section).

One of the main difficulties consists in the construction of a sufficiently
good collisionless model of the central, obviously not axially-symmetrical,
region of SB-galaxies, first of all of the bar itself. In comparison with this, the
second part of the problem (origin of spiral arms) now seems simpler.

3.2 Detection in NGC 4027 of Counterflows as Predicted
by Freeman

If one deals with the quasistationary theory of spiral galaxies of the SB-type,
one should note some important papers by Freeman and de Vaucouleurs
[203, 206]. In [203], the self-consistent model of the homogeneous three-axis
ellipsoid of stars (see §1, Chapter IV) is suggested as a model of a bar of the
spiral galaxy. We have already noted one interesting characteristic of the
macroscopic velocity field of such systems, namely the presence of *‘counter-
flows” for rather strongly oblate ellipsoids (2b < a?) in the rotation plane
(see Fig. 46).

If the “inverse ” motion is not only the property of the homogeneous models
described, but indeed occurs in the bars of real SB-galaxies, it may be
determined using its influence on the absorption lines in the spectrum of the
stellar component of the bar. Freeman and de Vaucouleurs [206] made an
attempt to perform special observations of the spiral galaxy with the bar,
NGC 4027. The statement of the aims of the observations is as follows.

It is clear that the inverse average motion is possible only because of a high
stellar velocity dispersion. At the same time, the velocity dispersion of the
gaseous clouds, in which the emission lines arise, cannot be so large, since the
time of collisions between the clouds is far less than the period of the bar’s
rotation. Therefore, the gaseous clouds must move only in one direction.
Thus, the inclinations of the emission lines and absorption lines in the
spectra, taken with the position of the spectrograph slit near the small axis
of the bar orientated in an appropriate way, should be opposite: they should
be directed according to rotation for the emission lines, and against the
rotation for the absorption lines.
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Such an effect was revealed in observations of the NGC 4027 galaxy.
True, one seeming misunderstanding arose: in their value of inclination,
the absorption lines proved to be greater (by a factor of approximately 4)
than the inclination of the emission lines, although, one would think, it was
to be expected that approximately equal (but opposite) inclinations would
result. However, there is one simple explanation of this fact which is the
following [344]. The mean velocity v satisfies the equation (§1, Chapter IV)

. o0
Wy = —dive — 2[Qv] — . + Q°R. 1)

For the inverse average motion, the centrifugal force and pressure (the
last and the first terms of the right-hand side of (1)) are directed outwards,
while the gravitational attraction and the Coriolis force are directed inwards.
The resulting force must yield an acceleration directed inward to the system
(the left-hand side of (1)). For a rapid mean motion, the most essential
term in the right-hand side of (1) is the Coriolis force.

Let the curvature radius of the current line in a rotating system near the
small axis of the bar be R,, and the mean velocity v, ; then we have from (1)

vI/R; ~ 2Qu,, v, = 2QR,. #))

But v; ~ 2QR, is far less than the rate of rotation Qb, since R; » b/2 (in a
similar way it is possible to show that the velocity at the ends of the bar is
v, < Qa).

The finding of the counterflows is a strong argument in favor of the
simplest bar model suggested by Freeman. As mentioned in a review by
Freeman and de Vaucouleurs [344], if this fact can be confirmed by observa-
tions in other spirals with bars, then this will mean that the *present rudi-
mentary ideas about the stellar dynamics of the SB-systems, are at least
going in the true direction.” In any event, the presence of the counterflows
imposes strong restrictions on possible theoretical models of the SB-
galaxies.

3.3 Stability of Freeman Models of SB-Galaxies with
Observed Oblateness

Another important argument is obtained in [96] (see §2, Chapter IV), where
the Freeman model is investigated for stability with respect to the largest-
scale types of oscillations. Figure 48 shows that the oblateness of real bars
(and, in particular, of NGC 4027) lies in a “stable” region.*

4 More detailed stability investigation of prolate stellar systems was performed in [36%, 38%].



CHAPTER XI

Disk-like Systems. Spiral Structure

Recently, the development of the equilibrium and stability theory of flat
gravitating systems has occurred, mainly with the aim of understanding
the galactic spiral structure. From the vast material accumulated here we
have selected only some problems! which are, in our opinion, most closely
related to the subject of the book.

Despite the fact that recently some essential progress has been outlined
on the understanding of different mechanisms of the density wave generation
and of the properties of their propagation, the problem of the origin of the
spiral structure is still far even from qualitative solution.

§ 1 Different Points of View on the Nature of Spiral Structure

At present, quantitatively the most elaborate is the representation of spiral
arms in the form of density waves rotating uniformly (as a solid body),
independently of the galactic differential rotation.

This hypothesis was first advanced by Lindblad and then formulated in
the form of linear theory of density waves by Lin and co-workers [267-272],
Kalnajs [250], Contopoulos [187, 189], and others. The principles of the
nonlinear theory (soliton theory) of density waves are stated in the previous
chapter. A point of view on the nature of spiral arms which preceded that

! At the present time there are many reviews ([84, 188, 88°¢], etc.) on this subject.
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(b)

Figure 109. Stretching of the initial compression: (a) AB into the piece of the trailing
spiral; (b) A’B’ in the differentially rotating disk with Qj < 0.

mentioned above, was different: these were presented as compressions of
stars and gas traveling at each point at the local rotation velocity of a galaxy.
Such a point of view was called “material ”—the name appears rather weak,
because density waves consist of the same matter: compressions of stars
and gas. It would be more correct to call such a theory “local”.

It is easy to confirm that the “local” picture of the spiral pattern disappears
for the time of the order of one revolution of the galaxy, ~ 108 years, see
Fig. 109.2 At the same time it is assumed that the age of the galaxies is ~ 10'°
years. It is hardly probable that the galaxies would all “agree” to be spiral
simultaneously in the course of a very short period of time. But then one must
conclude that the spiral structure must continuously or periodically be
renewed in the galaxy.

We emphasize that the above statement is valid for purely gravitational
theories; the presence of a sufficiently strong magnetic field, for example,
may preserve the gaseous spirals from destruction by the differential
rotation.

The most developed attempt to construct the regenerative theory of
gaseous spirals is due to Goldreich and Lynden-Bell [210]. They suggest
that the gaseous layer is rotating in a strong external gravitational field
(which is assumed to be given and not subjected to perturbations). The
theory is based on the local analysis of the hydrodynamical equations and the
Poisson equation. There are then introduced the movable coordinate axes
X, ¥, which are bent together with the differentially-rotating flow. An in-
vestigation is made of the temporal evolution of the perturbation, the spatial
shape of which, e/®*<**%3 s assumed to be unaltered in a movable system.
This evolution resembles the origination, enhancement, and finally, the
decay of spiral arms.?

2 As seen from Fig. 109, any density compression moving together with a “ cold ” differentially
rotating galaxy, would inevitably extend to form segments of trailing spirals and ultimately
disappear by completely dissolving in the galaxy.

3 The theory of Goldreich and Lynden-Bell was, however, subjected to criticism (cf. [233]).
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We have not yet touched upon the question of the generation mechanism
(or regeneration mechanism) of spiral arms. The purpose of Toomre’s
paper [333] was to verify the hypothesis about the formation of the spiral
structure due to gravitational instability. Toomre calculated (see Section 4.1,
Chapter V) the minimum radial velocity dispersion required for the full
suppression of all axially-symmetrical instabilities, equal to 3.36Go/x.
From this expression, by using the observed 6, ~ 50 + 65 M /ps* and
% ~ 27 + 32 km/s - kps one may calculate the minimum for the solar vicinity
of our Galaxy; it proved to be about 35 km/s (a more accurate estimate
was later obtained by Shu). But in the same region, there is also the mean
velocity dispersion of stars, observed in the solar vicinity. In addition, asis seen
from formula (50), Section 4.1 (Fig. 72), most difficult to stabilize are radial
perturbations with wavelengths of the order of 4 ~ 0.55A;, which in the
solar vicinity is equal to 5 + 8 kps. At the same time, the radial perturbations
of the stellar disk with A ~ 4 kps (i.e., with the wavelength of the order of the
observed distance between the arms) must obviously be locally stable.

§ 2 Resonant Interaction of the Spiral Wave
with Stars of the Galaxy

The role of the resonant interaction of the spiral wave with the stars of the
galaxy was investigated in detail by Lynden-Bell and Kalnajs [289]. Below
we describe some results of their paper.

First (in Section 2.1), we give the derivation of exact formulae for the
energy and angular momentum of the quasistationary wave, as well as
expressions for the variation rate of these values. These formulae show the
decisive role of the resonance stars.

Section 2.2 analyses in detail the physical mechanisms of enhancement
(or damping) of the waves on all basic types of resonances in the galaxy.

2.1 Derivation of Expressions for the Angular Momentum
and Energy of the Spiral Wave

We derive first of all an exact expression for the angular momentum (and
energy) of the spiral wave [251, 289]. The calculations leading to this ex-
pression are similar to those which are performed in plasma physics in
the clarification of the physical meaning of Landau damping (see, €.g., [86]).
The details of the derivation of this formula, which we give in view of its
importance, are as follows:

Consider the exchange of the angular momentum and the energy between
the stars and the spiral wave. The equations of motion of a star in the disk
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plane in the cylindrical coordinates r, ¢ have the form

0
r—rp?= — 5((1)0 + @), )
d .. 00,
The system of (1) and (2) has for ®, = 0 the obvious laws of conservation:
1
of energy E= 3 (P + L*/r?) + @, (3)
of angular momentum L =r?¢. 4)

In the consideration of the kinematics and dynamics of the flat gravitating
systems, it is convenient to use, instead of the usual cylindrical coordinates
(r, o, v,, v,), the angle-action variables (J, J,, w;, w,), which take into
account the important property of the stellar orbits in the plane of an axially-
symmetrical system —their double periodicity—and correspondingly, greatly
simplify the description. Bearing in mind a further application of the perturba-
tion theory, we shall denote the full quantities (unperturbed + perturbed) by
primes, leaving the earlier notations (J,, J,, w,;, w,) for the unperturbed
quantities.

If the variables (J', J',, w}, w}) are considered, then the system in (1) and
(2) will be reduced to the following:

. 0 0 .,
Ji= - h@w} (Hy+ @) = — —(?w;- @, (J;, wi, 1), (%)
o a ! a ! !

and the unperturbed motion in these variables is characterized by the
equations

, O0H
Ji=—-—=2"2=0, )
ow;
. OH
W= = QJ,, J)). ®)

Y
The meaning of w;, J; is most easily illustrated in the simple example of
the nearly circular motion (epicyclic approximation). In this case, one easily

obtains the following expression for the perturbed radius of the star (see §1,
Chapter V):

ry=asin(xt + a) + ---.

By using further the definitions of the angle-action variables, one may find
in this approximation: Q; = x is the epicyclic frequency; Q, = Q is the
angular velocity of the circular motion; J, = xa?/2,J, = L.In the general case
the interpretation of these variables is similar: w, is the phase of the radial
oscillation of the star, J, is the function of the amplitude of this oscillation,
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w, is the galactocentric angle of a uniformly moving epicenter (with angular
velocity Q,).

The perturbed orbits of the stars are derived from the perturbation theory.
The orbits of the first order are sought by solving Eqgs. (5) and (6), into the
right-hand side of which (i.e., in the calculation of the forces) we substitute
the unperturbed orbits. For the correction of the first order A,J; for J;,
then we get A,J; = 0y/0w;, where

)

r= Re{(4n2)-1 T Yo7 LA + 10y = wt)]}
ILm

ilQ, + mQ, — w)

and y,,,(J;) are the coefficients of the Fourier expansion

,(Ji wi, 1) = Re{(47t2)"1 . Yin(J5) expli(wy + mw, — wt)]}, (10)
I,m

The expansion in (10) is always possible due to the periodicity of ®,(J;, w;, t)
with respect to angular variables w; (with a period 2m).

Since A, J; is periodical in initial phases w,, w,, the average change of the
angular momentum of the system of stars which originally were uniformly
distributed in phases, is zero: (A;J;> = 0. Thus, the angular momentum
(and energy) exchange between such a stellar group and the wave is of
the second order with respect to the perturbed potential. The orbits of the
second order are calculated, according to the forces in (5) and (6) as calculated
for the orbits of the first order.

The result of the calculation is thus:

. 2n n .
(L) = (2m)~? f f AyJ, dwy dw, = 3 Im(w)
0o Jo
x exp[2 Im(w)t](2m)~*

a “plmlz
X Z ( .t 2) 19, + mQ, — o (1)

The total rate of variation of the angular momentum of stars, which
initially had angular momenta L, < J, = L < L, is

L =4n? sz r<L> folJ 1, Jo)dJy dJ 5. (12)
Ly YO

We integrate in parts. The total L may be split into the “volumetric”
and the “surface” terms:

L=-— ! 5 Im(w) exp[2 Im w - £]

872
{ (afo afo) |Yim|? dJ dJ,
>

a7, " "ar,) e, + mQ, — ol

" r folVml* dJ,
o 11Q; + mQ, — w]?

L>

} =L, +L,. (13)

I,m L
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In this expression, the first integral (L,, “ volumetric” term) corresponds
to the variation in the angular momentum of the stars, which remain in the
region (L,, L,), while the second integral (L,, “surface” or “convective”
term) corresponds to the angular momentum which is convected through
the boundaries of the region under consideration. If one takes the integral
- Ldt and takes into account only the “volumetric” term, we shall
obtain the excess of the angular momentum for the stars in the chosen range
of the values of L over that which they had in the absence of the wave:

oL = ~1 61 5 exp[2 Im(w)t]
f * afO +m a.f‘O I(//lmlz d‘]l dJZ
(’)J1 [1Q, + mQ, — w|*

The expression (14) thus found is the angular momentum, transferred by the
stars to the wave, i.e., the angular momentum of the wave if integration over
J, in (14) is extended to all the angular momenta of stars.

In the limit of a very slowly increasing wave, Im(w) — 0, the variation of
the angular momentum (and energy) of stars occurs, according to (13), only
on resonances, where

(14)

Olm

Q, +mQ, —w-0. (15)
For Im(w) — 0, we have, by using the identity
—lim[Im(w)] - [IQ; + mQ, — w|™? - 1d(IQ, + mQ, — w),

and splitting the velocity L into the sum of the terms from different
resonances:

L_ Zle,

0 0
m N Jf ( 65(1 652>|¢1m|25(191 + sz - (1)) dJ sz (16)

It is easy to see that contributions come only from the resonances, whose
positions in the epicyclic approximation are defined by the formula Q —
Q, = —Ix/m, where Q, = w/m is the velocity of the spiral wave. If one con-
siders any single (m) component of the potential, then the resonances will be
enumerated by one integer index I (positive, negative, or zero). The following
are the three main resonances which have special names (let us recall them):
I = 0 corresponds to the “corotation” resonance, or the “particle” resonance,
on which Q = Q,; the resonances corresponding to |/] = 1 are called
Lindblad resonances. If one moves from the corotation resonance inward,
toward the galactic center, the local angular velocity will increase, and
one may finally (but not always) encounter a ring, on which Q exceeds Q,
by /| m|. This resonance is called the inner Lindblad resonance (for it, | = — 1
for m > 0 and [ = +1 for m < 0). The other resonance |I/| = 1 is located
in the galaxy outwards from the corotation ring (the outer Lindblad resonance).
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The resonances listed above take place where the frequency at which the
star intersects the humps and hollows of the spiral wave potential, | — mQ|,
is either zero (i.e., the star is always in phase with the potential), or equals the
oscillation frequency of the star x near the circular orbit.

Resonances of a higher order are dynamically of less importance, and, in
addition, it seems that all the outer resonances really lie outside the galaxies,
while the inner ones are too close to the galactic nucleus.

For |m| = 1, the inner Lindblad resonance occurs only for the waves
running in the direction opposite to the rotation of the system. For |m| = 2,
the resonances are separated just roughly by the dimension of the galaxy, for
|m| > 3, they are approaching the corotation radius. These facts all explain
the preference of the two-armed pattern in our Galaxy (we have already
discussed them in Section 3.2.).

Let us now clarify how, in a stationary spiral wave with a fixed number of
arms, m, the variations of the angular momentum and energy of the star are
interrelated with each other. In the frame of reference rotating together with
the wave (at a velocity of Q, = w/m), the total potential @, + @, is time-
independent, so that each star conserves the energy in these axes (the so-
called Jacobi integral)

er = 307 + (v, — Q)] + [ + , — 3Q7],

where the velocity of the star (v,, v,) refers to the inertial system. In other
words, e = er — Q,L, where er is the energy in the inertial system, and the last
formula itself is an ordinary relationship between the energies of the particle
in the inertial (¢;) and rotating (¢7) coordinate systems (see, e.g., [69]). Since
der/dt = 0, then der/dt = Q,dL/dt, dey = Q,0L, and if one sums up this
equality over the stellar system with the total energy E and the angular
momentum L, we shall obtain in a similar way

dE dL

= Q, I 0E = Q,0L.

The process of transfer of the angular momentum and energy by the spiral
wave is illustrated in Fig. 110, taken from [289]. From this figure it is easy
to see that the star increasing its angular momentum by 6L at the corotation
radius and, consequently, increasing its energy by Q,6L, does not change
the oscillation energy near the circular motion, since at this resonance
de/dL = Q,. The star losing 6L at the inner Lindblad resonance, also
loses the energy Q,0L, but it comes to the state to which a still lesser value
of circular motion energy would correspond. Consequently, in this case, the
energy d¢ (see Fig. 110) is released into a noncircular motion.

Let us now find the resonances on which the stars increase their angular
momentum and energy, and those on which they lose them. It turns out that
the results may be formulated in a quite general form for the cases when the
epicyclic consideration is applicable.

As is easy to see from (16), for I = 0 (corotation resonance), the resonant
stars increase their angular momentum since 96f,/0J, < 0 for any reasonable
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Figure 110. Transfer of the angular momentum oL and the energy 6E = Q,6L by stars
[289]; & = &(L)—the energy of the circular unperturbed motion with the angular
momentum L ; 1—the inner Lindblad resonance, 2—the corotation radius, 3—the
outer Lindblad resonance.

distribution function, due to the general outward-fall-off of the surface density
in galaxies (the orbits are assumed to be nearly circular, and larger r cor-
respond to larger angular momenta L). For all the remaining resonances, the
sign of the angular momentum and energy exchange between the stars and the
wave is defined by the sign of Im, if it is assumed that |df,/dJ | > |0fo/0J ;|
(i.e., in other words, the validity of the epicyclic approximation; indeed, in
this approximation J, ~ xa?,J, ~ QR?, so that J,/J, ~ (R/a)* » 1). Since
at the inner Lindblad resonance /m < 0, so the stars at this resonance
must give out their energy and the angular momentum.

In a similar way, with the same approximations, the stars at the outer
Lindblad resonance absorb the angular momentum and energy.

Let us now determine the sign of energy of the quasistationary spiral wave.
Transform expression (14) (with Im w — 0) to the form

_ Q, U 2 4Pm*Q(Q, — Q)N(—0fo/dJ ) ,
OF = 167'[2 {1;1 ”29% _ mZ(QZ _ Qp)2|2 le,ml

< afO |lplm|2
— 2 —_—
2 ( an> 0, + m@, —a,ypf 1 1D

In the epicyclic approximation |df,/0J | > |0f,/0J,]|; therefore the first
term in (17) is dominant, so that for Q, > Q, (i.e., inside the ring of corota-
tion) 0E < 0, and for Q, < Q, (outside the ring of corotation) 6E > 0. A
positive contribution to the energy oF is also made by the second term in
(17) (which is nonessential in the epicyclic approximation), both for Q > Q,
and for Q < Q,. This may turn out to be important for the cases when the
epicyclic approximation ceases to be valid, i.e., when the deviations from
circular orbits are large. From the results of theoretical papers [93, 111, 252]
as well as from numerical experiments [294] and especially those of Hohl
[215, 2207 it follows that these deviations should in fact be large for stable
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or nearly stable galaxies without a significant mass concentration toward
the center (and in the absence of a halo).

We return now to the case of waves of negative energy as being more
definite. It is obvious that, in the case 6E < 0, the absolute value of |JE|
grows with increasing amplitude of perturbation (of a spiral wave), i.e., with
the instability. Taking energy from perturbation, we will thereby excite it.
And, on the other hand, by introducing energy we shall damp such perturba-
tions. The waves of negative energy having such an “inverted” behavior,
are well known, for example, in the theory of plasma instabilities (see [86]).
The simplest example* of the medium in which oscillations of negative
energy may exist is the cold moving plasma (with the velocity V). The scalar
dielectric permittivity of such a system is

w2

- r
(0 — kV)¥

so that the oscillation frequencies, which are defined from the equation
Re g, = 0, are w, = kV + w,. Hence it follows that

cOkaReao =2<1 ilc_V),

Ow, w,

R680=1

and therefore for Vk/w, > 1 and for the solutions with the minus sign (see
Fig. 111) the oscillation energy is negative:
dRegy |E)?

awk 8n

< 0.

m=wk

The sign of oscillation energy is of course not invariant with respect to the
change of the frame of reference (the growth rate of oscillations is, for example,
independent of the reference system). However, in some cases, some one
definite frame of reference is distinguished among the others. In the case of

4 This. as well as other simple examples, may be found in the monograph [86], where the
energy classification of slowly increasing perturbations in plasma is given.
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Figure 111. Waves of (a) positive and (b) negative energies for the simplest velocity
distribution of particles [86].
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Figure 112. Illustration for the determination of the sign of energy density of the spiral
wave.

interest, of differentially rotating gravitating systems, the inertial frame of
reference is evidently such a distinctive one. Consider an arbitrary area of the
disk (Fig. 112) at a distance r, from the center inside the radius of corotation
(ry < r.). One easily notices the similarity between the situations presented
in this figure and in Fig. 111.

For our Galaxy, according to Lin et al. [271],Q = Q, at r = r, & 14 kps.
At the same time, the observed spiral pattern in the Galaxy extends up to
r = 14 + 15 kps (from observations at A = 21 cm, i.e., for neutral hydrogen
HI). Therefore, in this case, only the internal region is essential, inside which
the spiral wave has negative energy. Such a situation is normal for most of the
theoretically investigated [204, 240] galaxies: our Galaxy, M31, M51, M81;
however, for the galaxy M33, according to data of [240], the corotation
ring lies rather close to the galactic center (i.e. Q, is rather large), so that in
this case® the internal and external regions may contain a comparable
amount of the matter, and be dynamically equally important.

As a more general example, it is easiest to take the barlike modes of the
uniformly rotating disks, treated in detail in [254]. A direct calculation by
formula (14) leads to the following conclusions. The mode rotating in the
negative direction has positive energy and negative angular momentum.
For “direct” modes, these quantities have the same sign, and for the more
rapid mode they are positive, while for the slower one they are negative,
until y < 0.5072.... At y = 0.5072... these two modes are merging and
then transform into the increasing and decreasing pair of modes, and each of
them has a zero angular momentum and a zero energy.

Consider further the problem of the redistribution of the angular
momentum, which must occur during the period of the growth of the barlike

> And, apparently, also in all cases when the density is not very much concentrated toward
the galactic center, so that the rotation rather resembles a uniform rotation rather than the
strongly differential rotation characteristic of our Galaxy.
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mode, by using the calculations (up to the values of the second order of
smallness), presented above. The marginally-stable y = 0.5072 case is typical.
The equilibrium distribution is the function of the angular momentum L, = J,
and radial action J,, which in this case is (E — |J,|)/2, if one assumes the
origin of reference to be the energy of the star, being at rest at the center. The
boundary between the “suppliers” and “consumers” of energy is the straight
Ji/J, = 04859 .... To determine this boundary, we present the potential
®, = (x + iy)? = r?¢*** in the action-angle variables, i.e.,

1
® =5 ; Wi(J 1, J,) expli(lwy, + mw,) — iwt]. (18)
(m=2)

The action variables

1 dr
Ji =5 $pdr = §IE =20, — LI 5 = HE L))

and J, = (1/2n) [ p,dp = L, have already been given. It is also easy to
calculate the angular variables w, and w,, i.e,, the phase angles in the rth
and ¢th movements of the particles, by the formulae

J' dx ]
w, = ;
! VA x = (x = J,)?

1 (x — J,)dx
p— —_ . 19
" ¢+2J /AT 1x = (x = Jo)" )

Finally, one can obtain

¢0=J1+J2; l//—1= _2\/Jf+-]1-]2; (20)
Yoa=Ju; Yia=¥41 =0
Thereafter, one should make use of formula (11) for the variation of the
angular momentum of the particle; in the given case, this formula is reduced to
the form
(LY = —Imw exp[ -2 Im(w) - t]-2n)"* Y, (21)

1

_ d |‘/’0|2 0 d |‘/’—1|2
L=y t\"a )

(03]
0 0\ W,
—2 4 ) P2l
+( o, T 6J2)(w+2)2

where

I J,
= 4[@_72)2 Twr m] @2)

The boundary between the “suppliers” and “consumers” of the angular
momentum is determined, apparently, from the equality ), = 0. If one
takes y = 0.5072 (w = \/57/6 ~ 0.91) it is then possible to obtain J,/J, ~
0.4859. This relation J, /J, refers to the relation E/J, = 1.972, which implies
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the eccentricity of the orbit e &~ 0.95 or the ratio of the epicycle size
p = (a — b)/2 to the mean radius (a + b)/2 (a and b are the sizes of the major
and minor semiaxes of the elliptical orbit of the particle) equal to 0.5718.
The directly rotating stars with an eccentricity less than that determined
give their angular momentum to other stars, irrespective of their position
on the disk.

There is also another way of distinguishing between the “suppliers” and
“consumers.” Since the rotating torque acting on the star from the side of
the perturbed field is proportional to r?, then it is necessary to calculate
the time-average of its angular velocity ¢ with a weight r?, i.e, Q. = r’¢/r’.
For the disk Q, = L,/E (since r*¢ = L_, r* = E), and the “consumers” are
the stars with Q. > vy, and “suppliers” are the stars with Q, < y. This criterion
is exactly equivalent to the former one (L,/E = y = 0.5072 corresponds to
the value E/L, = 1.972, which we have encountered above).

2.2 Physical Mechanisms of Energy and Angular
Momentum Exchange Between the Spiral Waves
and the Resonant Stars [289]

2.2.1. Lindblad Resonances. Note first of all that, of course, exactly circular
orbits receive none of the gravitational torques. The effect arises under the
action of the perturbed gravitational field on the perturbed orbit (the field
must “catch on” the irregularities of the orbit). Since the torque is small,
of second order, determined by the product of perturbed forces in the
radial g,, and azimuthal g,, directions g,, - g,,, it is sufficient to calcu-
late the displacement from the unperturbed (circular) orbit to first order.
If the perturbed potential is represented in the form

®, = —Ssin(kr; + mo + wt), 0

then the star moving exactly along the resonance orbit will suffer the force at
the epicyclic frequency ». Indeed, the frequency is evidently equal to | — mQ|,
and at the Lindblad resonance |w — mQ| = . If one assumes that S = const,
then the radial (f,) and the transversal (f,) forces will act on the star ap-
proximately in phase, and one may write

f, = F, cos(xt + y), fo = F,cos(xt + ), 2)
where F,, F, are the amplitudes of these forces, and F, > F,. By linearizing

the equations of motion and taking into account the definition of the epi-
cyclic frequency, we shall obtain the following equation of perturbed motion:

2Q
P+ xr = 79 L, + F, cos(xt + y),
0
L, = roF, cos(xt + ), 3)
L
(pl = —21 - ZQO ri
o o
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By integrating (3) with the zero initial conditions, we shall obtain: -
Ly = roF ,»~'[sin(xt + y) + sin y],
ry = —QoF, %%t cos(xt + ) 4)
+ 3F, %" 't sin(xt + ),

and, in the expression for the radial displacement r,, only the time-increasing
(secular) terms are written, which arise due to the resonance between the
free radial oscillations of the star and the perturbing force produced by the
spiral arms. The solution for r, consists of two parts, which are produced
by the radial and tangential forces F, and F .

Consider first the influence of the radial forces, which give in (4) the
dominating term (F, > F,). The time-increasing displacements correspond-
ing to them lag the forces by one-quarter of the period 2x/x, i.e., the major
axis of the perturbed orbit coincides with the azimuth, on which the spiral
structure (the maximum of the density a,, or (—®,)) reaches the reson-
ant circle. We shall further consider the case of the two-armed spiral, m = 2.
For the inner Lindblad resonance (Fig. 113), the major axis is displaced
(from the position on the circle) toward the position outside this circle,
where it slightly leads the arm (if one takes into account the trailing character
of the arms, as well as the additional effect from the tangential forces, see
below). As a result, there the torque arises, which pulls the arm forward,
and the orbit backward. The minor axis (see Fig. 113) is located slightly
behind the region where the arm structure has a “negative density.” Ac-
cordingly, this region repels orbits. In both cases, the angular momentum
and the energy are taken from the orbit and fed into the spiral wave.

1 2 3
7
(a) (b)

Figure 113. Unperturbed resonant orbits at the three main resonances [289]; (a) 1 —the
inner Lindblad resonance; 2—the corotation resonance; 3—the outer Lindblad res-
onance; 4, 5—nearly resonant orbits close to the corotation; (b) the region of the inner
Lindblad resonance r = r;; arrows show the rotation of the major axis for the nearly
resonant orbits: 1—r < rp; 2—r = r;; 3—r > ry; the system of reference rotates
together with the spiral wave.
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(a) (b)

Figure 114. Perturbations of the circular orbit under the action of radial forces (which
are shown by arrows) from (a) the spiral at the inner Lindblad resonance and (b) the
excess transversal forces at the perturbed orbit [289]; plus (+) and minus (—) signs
show the location of the spiral wave (maxima and minima of density).

At the outer Lindblad resonance, on the contrary, the minor axis lags
the positive arms, while the major axis leads the negative arms. Therefore,
here the angular momentum and the energy are transferred from the spiral
wave to the stellar orbits.

Consider now the additional small effect of the tangential forces. In
order to isolate the action of these forces, assume that the radial forces are
not present. Since the tangential forces, according to (3), cause a radial
displacement which is in counter-phase with the force, the major axis due to
these forces alone will tend to lead the spiral structure by /4 (Fig. 114).

Thus, under the combined effect of radial and tangential forces, the major
axis will slightly lead the spiral structure. But the main effect of the tangential
forces consists not in the eccentricity of the orbits, which is produced by them,
but primarily in the slowing down or acceleration of the particles at different
azimuths. In the wave system, the azimuthal angular velocity of the star is

i¢A|=i¢_Qpl=|Lr—2—Qp|' (5)

The secular effects in |¢ 4| occur only due to the secular growth of r.
Therefore, at the inner Lindblad resonance, where Lr~2 > Q,, these effects
give a slowing down, when r is large (apocenter), and a speeding up when r
is small (pericenter). At the outer Lindblad resonance Lr~? < Q,, and,
correspondingly, the situation is reversed. At the inner resonance, the major
axis (corresponding, we recall, to the tangential forces only) lies on n/4 in
front of the spiral structure. The density excess at these azimuths is attracted
backwards, towards the arm. In the same way, the lack of density near the
minor axis is attracted backwards, to the lack of density in the spiral structure.
Therefore, the resulting torque connected with the tangential force reinforces
the torque caused by the increasing (mainly, due to radial forces) eccentricity
of the orbit. It may easily be shown that a similar amplification takes place
also for the outer resonance.
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In conclusion, we pay attention on one apparent contradiction. The
effect following from the calculations made increases with time, while
the effect described by formulae (16) and (17) (Section 2.1) is independent of
time. The paradox is explained, of course, by the fact that we have considered
(for the sake of simplicity) only the exactly resonant stars. In reality, of course,
there is no exact resonance. The stars in near-resonant (but not quite resonant)
orbits, make a contribution of a definite sign during the course of a long time
interval, but, however, the sign of the effect is ultimately reversed. As a
result, if we integrate over all nearly-resonant orbits, we shall obtain exactly
the total effect as in (16) and (17) which is independent of time. The physical
mechanism leading to small (additional) terms in formula (16), dependent on
0fo/0L, is discussed below, after the explanation of the mechanism of ex-
change of the momentum at the corotation resonance. We shall see that these
mechanisms are in many respects similar (in particular, this is due to the fact
that in both cases they are defined by the derivative df,/0L).

2.2.2. Corotation Resonance. The situation here very much resembles the
situation well studied in plasma physics (Landau damping). Therefore we
shall mention first of all the ordinary qualitative explanation of the plasma
wave damping. Consider the monochromatic wave of small amplitude in a
homogeneous plasma. Assume that the wave propagates in the direction of
the positive axis x with a phase velocity vy, = w/k. Itis clear that the particles,
having the velocities close to the wave velocity v, interact strongly with the
wave. This interaction leads to contrary effects for the particles a little faster
than the wave, and the particles somewhat slower than the wave. Take first
of all a uniform (at the initial time ¢ = 0) distribution of the particles which
have a velocity slightly exceeding the velocity of the wave. The particles
trying to climb out of a potential well, lose their energy and are decelerated,
while the particles on the downhill slope are accelerated by the wave.
Therefore in the case of interest, the following statement is true:

(1) There is an excess of particles on the uphill climb (they are accumulated
here in accordance with the continuity equation) and a deficit on the
downhill slope of the potential well.

The particles on the uphill climb of the potential well push the wave in the
direction of its propagation, and, consequently, feed their energy into the
wave, while the particles on the downhill slope, on the contrary, are pushed
by the wave and therefore take energy from the wave. Therefore, the following
statements are also true:

(2) The particles going just faster than the wave, feed their energy into the
wave. In a similar way:

(3) The particles going just slower than the wave, take energy from the
wave. And finally:

(4) If (as, e.g., in the state of thermodynamical equilibrium) the particles
moving more slowly are larger in number than those moving more
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rapidly, the effect of wave damping (3) exceeds the amplification
effect (2) so that the wave energy decreases with the decrement de-
wave, give energy and momentum to the wave. And finally, the
concluding result:

Let us return now to the corotation resonance in the galaxy. We shall
consider the interaction of the wave with the particles, whose orbits are close
to the corotation circle. The unperturbed trajectories of these stars are
schematically depicted in Fig. 113 (in the frame of reference connected with
the rotating spiral wave; this system is coincident with the system of the
particle at the corotation circle). In the system of the wave, the stars with
epicenters lying inside this circle are moving, on the average, with an angular
velocity slightly greater than the angular velocity of the wave, while the stars
whose epicenters lie outside the corotation circle have angular velocities
slightly lesser in comparison with the wave.

At first sight, it appears that it would be quite logical to assume that here
also the statements similar to those in (2) and (3) are valid. Then we shall
immediately obtained that, at the corotation resonance, the energy must be
transferred from the particles to the wave (indeed, in galaxies the density
increases toward the center and, consequently, there is a somewhat larger
number of particles with an angular velocity slightly greater than the velocity
of the wave in comparison with particles with a lower velocity). But this
conclusion would be incorrect: for example, it contradicts the formal con-
clusion following from (16) (Section 2.1) which we already established. The
cause of the error lies in the fact that in this case the statement in (1) is wrong
and, consequently, also the statements in (2) and (3), connected with it. In
order that this might be understood, it is necessary to consider the situation
more carefully. In reality, the following takes place. The unperturbed orbits
close to the corotation circle (cf. Fig. 113) have very small average motions
in the system of the wave: on the internal side, this slow drift is directed
forwards and on the external side, backwards. Under the action of the force
acting from the direction of the spiral arm, the forward moving star will
convert to the epicycle with a slightly larger angular momentum so that its
mean drift motion, on the contrary, will slow down rather than speed up.
According to the expression by Lynden-Bell and Kalnajs [289], the stars in
their motion in the azimuth are acting like donkeys: they slow down when
they are pushed forward, and speed up, when they are pulled backward.
Therefore instead of the statement in (1), in this case another statement
(contrary to (1) in its meaning) takes place:

(1) There is an excess of stars on the downhill slope and a deficit on the
uphill climb; correspondingly, also the statements in (2) and (3)
are reversed;

(2) There will be slightly more stars on the downhill slope with an angular
velocity somewhat larger than the velocity of the wave so that they
will take energy and angular momentum from the wave;
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(3) The stars with angular velocities slightly less than the velocity of the
wave give their energy and momentum to the wave. And, finally, the
concluding result;

(4) Since normally (see above), the number of particles with larger angular
velocities is somewhat larger, then at the corotation resonance both
energy and momentum of the wave are absorbed and transferred to
the stars.

We consider finally the mechanism leading in formula (16) (Section 2.1) to
the terms ~ gf,/0L at the Lindblad resonances. Since this effect disappears for
the circular unperturbed orbits, it is necessary to consider the noncircular
unperturbed orbits, close to the Lindblad resonances (see Fig. 114). We shall
not take into account the effects connected with eccentricity induced by
the spiral wave (these effects are considered above). Only the orbits which
lie exactly at these resonances are strictly closed in the system of the wave
(they intersect the resonant circle). Each orbit near the inner Lindblad
resonance is connected to the density excess near the ends of the major axis
(due to the decrease of the azimuthal velocity of the stars in this region).

The orbits located completely inside (or outside) the resonant circle
are no longer closed. If they are close to the resonant circle, however, then
they may be considered as closed orbits slowly rotating forwards (respec-
tively, backwards). Such a consideration is natural just because of a great
difference in angular velocities: of a rapid rotation of the particles in their
orbit and a slow drift of the orbit itself (see Fig. 114). If the forward rotating
major axis is subjected to the action of the rotating torque also pushing
forward, then the particles in their orbits will slightly increase their angular
momenta, and, as a result, the precession of the orbit itself will slow down.
Thus, the major axes of the orbits will again behave like donkeys (compare
with the discussion above). Therefore, one may literally repeat the statements
under the preceding item, which pertain to the “donkeys-stars™ at the co-
rotation resonance, for this case of density excesses connected with the major
axes.

In the region, where the rotating torque tries to speed up the motion of the
major axis, it does indeed slow down, and vice versa. As a result, we get
that outside the resonant circle there is a slight excess of density of the major
axes on the azimuths slightly lagging the spiral structure, while inside the
resonant circle, the larger axes have a slight excess somewhat ahead of the
spiral structure (see Fig. 114). Therefore, for the density falling outside one may
expect that the mechanism under consideration (~ df,/0L in formulae (16)
and (17), Section 2.1) should lead to absorption of energy and angular mo-
mentum at the inner Lindblad resonance.

In papers dealing with the Landau damping of plasma waves, the effect
of the trapping of particles in the potential wells of the wave is investigated
in detail. In a similar way, one may expect also trapping (“alignment”) of
orientations of the major axes near the resonant orbits (Lindblad). In the
nonlinear consideration, not only the resonant axes should be trapped,
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but also the closely lying axes, if they cannot overcome the hump of the
perturbed potential. This may be true for a wide region of the disk, when the
value Q — »/2 does not vary very rapidly with radius.

The effect of alignment is considered by some workers to be important
in the problem of the origin of bars in galaxies. For example, according to the
opinions of Lynden-Bell and Kalnajs [289], the bars are a quasistationary
standing wave. For that reason, the problem of origin of the bars is associated
with the problems of wave theory. In the internal parts of the galaxy (where the
presence of a bar is possible) the eccentricities of the stellar orbits should be
large to ensure the stability of the axially-symmetrical modes. But the
influence of the resonances becomes small when the stellar orbits are eccen-
tric, while the modes of the system without resonances should satisfy the
antispiral theorem, so that the main “two-arm” perturbation, according to
[289], is a bar.

The trend toward the formation of a bar, which is revealed by a number of
authors in linear theory, may be traced further and developed (already in
nonlinear theory) just by means of considering the trapping of major axes
of the orbits. Following Lindblad, consider a galaxy in which Q — /2
changes insignificantly with radius. Then, the nonlinear potential perturba-
tion may trap the major axes, making them oscillate near the azimuth of the
potential well (a similar influence was found earlier by Contopoulos near the
Lindblad resonance [189]). The density associated with these trapped orbits
will increase the potential and further increase the trapping. The eccentricities
of such trapped orbits are large at the inner Lindblad resonance, so that
nearly circular orbits are rare. Thus, similarly to Lindblad, Lynden-Bell and
Kalnajs [289] believe that the bars “are made” of stars in eccentric orbits with
aligned major semiaxes. The angular velocity of such a bar will increase due to
the action of its gravitation on the stellar orbits, but will remain significantly
less than the angular velocity of the stars composing it.

Note another conclusion [254] following from the considered picture of
the interaction of resonance particles with density waves, and concerning the
boundaries of applicability of such general stability conditions as the
Peebles—Ostriker criterion (see Section 3.2, Chapter IV). It is clear, for
example, that the stable disks 4 and B, from the number of the composite
models considered earlier (Section 4.4, Chapter V) having ¢t = 0.125 and
t = 0.086 may be slightly modified in such a way that they will become slightly
unstable. For example, the stable barlike mode of negative energy rotating
in the direct direction, will obviously become slightly unstable, if we place a
small number of stars on nearly circular orbits around the region of the outer
Lindblad resonance, where these stars act as the absorbers of (positive)
energy and angular momentum [254]. Therefore, one may arrive at the
conclusion that although some simple criterion (of the type of t < 0.14) may
be a sufficient condition of the lack of instabilities with growth rates com-
parable with the orbital frequencies of stellar revolutions, it is question-
able that a strict stability criterion would exist for nonaxially-symmetrical
perturbations.
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§ 3 The Linear Theory of Stationary Density Waves

3.1 The Primary Idea of Lin and Shu of the
Stationary Density Waves

Lin and Shu [267] called attention to the following circumstance. If the
Toomre criterion is applied to the region comparatively close to the center
of the Galaxy, r ~ 3 + 5kps, then the minimum velocity dispersion of
stars, which makes this region locally stable, there will result an unnaturally
large value ¢, ~ 90 km/s. Indeed, such “hot” stars must, during the time
period ~ 10° years, have reached the solar vicinity of the Galaxy, but in
reality, as we are aware, there are no such stars present here (in any ap-
preciable number). Hence, the conclusion should be drawn that the velocity
dispersion near the center is less than c, ,,;, and this region is therefore locally
unstable. At the same time, as shown by Toomre, the solar vicinity of the
galactic disk is locally stable.

The primary idea of Lin and Shu [267] was that in a system with stable and
unstable spatial regions there may exist stationary density waves. Without
discussing the correctness of this statement,® note that the idea itself proved
to be very fruitful. Its elaboration has finally led to some theory of the sta-
tionary density waves in galaxies (based on the analysis of short-wave
perturbations of the disk).

The spiral density waves are collective oscillations of the disk of the form

gy ~ 6, exp{—i(wt — mo + Y(r))}, M

imposed on the stationary background o((r). Here &, is the amplitude, v
is the phase, w is the frequency, m is the azimuthal number equal to the
number of arms. From (1) it is easy to see that the spiral wave rotates with an
angular velocity w/m, without changing its shape with time. Since in this
theory, the wave frequency w is considered as a constant, the local dispersion
equation defines the wave number as a function of radius. For example, for
a cold disk, according to Section 2.2, Chapter V,

_ #2(r) — [0 — mQ(r)]?

Kr) 27Gaq(r)

@)

As we already know from Section 4.1, dispersion Eq. (2) on which the primary
analysis of Lin and Shu [267] was based, was essentially improved in
subsequent papers by introducing various types of “reduction” factors for
stars and by taking into account the gaseous constituent of the system.

® The paper [114°?] contains a statement that in such a system intermediate wavelengths may
be excited. However, the proof of this statement is absent (as is also the statement’s proofin [267]).
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Comparison of the theory with observed data on our Galaxy is performed by
Lin et al. [271] and with data on some other galaxies by Shu et al. [326].
We shall give a brief summary of this comparison somewhat later.

3.2 The Spiral Galaxy as an Infinite System of Harmonic
Oscillators

One may distinguish two aspects in the consideration of the evolution of
initial density perturbations [251]:

(1) kinematic evolution, in whose consideration we neglect those forces
associated with the perturbation itself (in the purely gravitational
theory, this is the neglection of self-gravity);

(2) dynamical evolution, which takes into account the influence of the
perturbed gravitational field.

Let us start with the former, kinematic, aspect of the evolution. As we shall
now see, this evolution in stellar systems may in principle occur in a quite
different way to that in gaseous systems (see Fig. 109). Our intuition, based
on hydrodynamical examples with which we are well accustomed, implies
that any initial perturbation must be twisted and disappear due to the
differentiality of the galactic rotation, for the time of the order of one rotation.
We shall, however, see that the real fate of arbitrary perturbations in a
galaxy is not so evident, and the customary intuition here sometimes fails.

It ignores the following essential difference between the gaseous and
collisionless systems [251]: the viscous forces, for example in a tea cup,
make liquid elements move in circular orbits, while the stars in the galaxy,
apart from rotation about the center, may still oscillate in the radial
direction. The cause of twisting and “dissolution” of the original picture
of motion in the tea cup is of course the difference in angular rates of rotation
of liquid elements at different radii. The same mechanism must have acted
also in the galaxy if there were no radial oscillations. But the presence of
radial oscillations makes the situation in the galaxy more complicated and
also less obvious, despite the fact that the radial velocities in galaxies are
normally an order of magnitude less than the circular velocities. The point is
that for the phenomenon of “twisting,” the velocities are not essential but,
rather, for the oscillation frequencies and, primarily, the full width of the
frequency “spectrum” (different for stars at different distances from the
galactic center, etc.), these values are comparable for radial and circular
unperturbed motions in galaxies. At any fixed point of the galaxy, there
exist all the possible linear combinations of these frequencies, which just
complicates the resulting motions in the galaxy. It turns out that there may
be very diverse and unexpected possibilities. One may, for example, build
up in a galaxy perturbations of a certain type, which have motions opposite
to the galactic rotation, so that the differential rotation makes them leading
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structures. This example is in complete contradiction to our initial intuition,
which “predicts” trailing spirals.

We turn now to the quantitative description of the kinematics, by using the
action-angle variables (see [289]). The action variables are introduced in the

following way:
1 1 / L?
=— = - - —=d 1
Jq o é;p, dr > fﬁ 2E - 2U 2 r, (1)
1

= — =L =L
Ji= 5. prodo =L, @

They are the functions of integrals of motion E, L, and therefore are
themselves integrals of motion. The Hamiltonian is dependent only on J;,
so that the equations for the angular variables w; are thus:

o, = ?.112%1*@ = QJ,, J,) = const. (3)

The angles w; change by 2x for one period of oscillation. If the orbits are
nearly circular (J,/J, < 1), they may be represented by the epicycles [289],
and then Q, ~ x, to the epicyclic frequency, Q, = Q, the angular rate of
rotation.

Any single-valued g function of a point in the phase space must be periodical
in angular variables w;, w, (with periods 27). Consequently, the Fourier
expansion

Gaw) = S gudy) explihws + mwy)] @

2
4“ l,m=—c

is valid, where
2 2
au0) = [ [ a1 expl— iy + mw)] d, dw,.
o Jo

If g(J;, w;) is the perturbation of galaxy at the time t = 0, then the sub-
sequent (kinematic!) evolution is a simple transfer of this perturbation
by the stars along their unperturbed orbits. This inference can be obtained
also as a formal consequence of the kinetic equation, which in this case has
the form df/dt= 0, where d/dt is the Lagrange derivative along the un-
perturbed trajectories of stars. Take the Euler description, i.c., observe the
change of the g(J;, w;, t) function, being at a fixed point of the phase space
and not following the phase trajectories of stars (as with the Lagrange
approach). Then the value g at a selected point at a later time ¢ > 0 will be
equal to the value of g in that element of the phase space at the time ¢ = 0,
which at the time ¢ has arrived at the point considered. From (4) it follows
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that at the time ¢ = 0 this element was at the point (J;, w; — ©;t). Therefore
g(Ji, wi, 1) = g(Jy, wy — Qi)

1
=2 IZ Gim(J) explil(w, — Q) + im(w, — Q0] (5)

Hence it is obvious that a galaxy may be considered as an infinite system
of harmonic oscillators; moreover, with the kinematic description of
the evolution of perturbations, i.e., neglecting self-gravity, these oscillators
are free (the coupling is realized just by means of the self-consistent perturbed
gravitational potential). Oscillators may be “numbered ” by the four numbers
(J1, J3, I. m), from which the two former (J,, J,) may change continuously,
while the latter two are the pairs of integers (positive or negative). The
amplitude and the phase of such an oscillator ((J,, J,, I, m)-oscillator) is
defined by the g,,(J,, J,) function, while the frequency is (IQ; + m€Q,).
The density wave corresponding to the oscillator rotates with an angular
rate (I/m)Q, + Q,; m is the angular periodicity of the wave, while I defines
the radial structure.

3.3 On “Two-Armness”’ of the Spiral Structure

As already noted, the idea of spiral waves of density was advanced by
Lindblad. Recently, however, for a number of reasons, his role in the creation
of the galactic spiral structure theory is frequently understated. Kalnajs
[251] recalls the decisive contribution of Lindblad to the theory and ex-
plains his ideas by using a more sophisticated terminology. In particular,
he notes that the theory (including that of Lin and others) is actually due to
Lindblad for the explanation of the preference of the two-armed structure.

Assume that in the galaxy a certain smooth perturbation is imposed. It is
obvious that in most cases (excepting only very special ones) the presence
of such perturbation is equivalent to excitation of continuum of the oscil-
lators of types described above. The evolution of density will be characterized
by the cuttings of the original smooth picture into still finer scales. “The
dissolution” of the original distribution may be described as the interference
or phase intermixing of different harmonic components (a similar phenome-
non is studied, for example, in plasma physics). The characteristic time of this
process is, roughly, the mean inverse angular velocity of the perturbation in
the region of the phase space in question. The only effect remaining after
the full intermixing from the perturbation is associated with the gy, term
in (5), Section 3.2.

Consideration of the frequency range associated with a typical flat galaxy,
demonstrates that the process of intermixing for most of the perturbations
has, as a rule, the time scale of the order of one period of rotation, which
apparently corresponds exactly with our intuition.

It is however important that this rule has an exception which corresponds
tothe (I = —1,m = 2)-termsin (5), Section 3.2. Lindblad demonstrated [273]
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that the linear combination AQ = » — 2Q remains roughly constant for a
significant part of the Galaxy (moreover, AQ < Q). Therefore, the two-armed
perturbations may exist in the Galaxy in the course of many rotations (unlike
all other perturbations). Thus it is obvious that our intuition in this case has
not taken into account the possibility of a close coincidence of different
harmonics of radial oscillations and the circular rotation of the stars of the
Galaxy. Of course, this remarkable fact would have appeared to us a priori
somewhat occasional, and we should have omitted it. Nevertheless, just such
an “occasional” situation is realized in reality, and the explanation of this fact
is one of the most important (and not yet resolved) problems of the future
theory of the origin and evolution of spiral galaxies. The relative constancy
of AQ = (¥ — 2Q) is due to the corresponding distribution of density in
flat galaxies.

In the now existing theory of the established spiral waves, this fact is in no
way explained and is taken as given. It is likely to provide an explanation of
why the two-armed shapes prevail in these systems. Requirement of the
stability of the galaxy with respect to axially-symmetrical perturbations [333]
limits the effect, which may be exerted by a given force field, especially on the
shortest spatial scales. The decrease in the value of the effect may be com-
pensated for by a longer time, in the course of which it may result in a given
response. Therefore, the stable nature of two-armed perturbations, and their
long-term resistance to differential rotation, makes them to be the most
probable self-consistent perturbations. The self-gravitation of waves in this
case may be comparatively modest in order to overcome the influence of the
remaining weak “shear” and to provide the uniform rotation of the spiral
pattern.

An example which appears to contradict the intuition, is any one-armed
structure formed by the oscillators (I = 1, m = 1). Such a structure rotates
at a velocity of Q, = Q — x ~ —Q, ie, in the “inverse” direction, and is
twisted in the leading direction.

In the Lin and Shu theory, the distinct nature of the two-armed perturba-
tions formally follows from the condition v? < 1, i.e.,

% 4
Q—E<Q”<Q+E )

(Q, = o/m is the angular velocity of the wave), which singles out the “main”
part of the spiral picture. If Q(r), %(r), and Q + /2 from the Schmidt model
[319] (Fig. 115) are used, then for m = 2 the spiral pattern in (1) will occupy
the range from r = 4 kps to r > 20 kps for Q, = 11 km/s - kps. At the same
time,” for all m > 2, the main part of the spiral pattern will have a quite
small spatial extension, moreover, independent of the selection of Q,. It is
evident that this cause of the distinct nature of the m = 2 mode is in essence
the same as in the previous discussion.

7 The one-armed perturbations need special consideration.



§ 3 The Linear Theory of Stationary Density Waves 189

60 -

4l

2OT_ \(\i!-xﬁ

~ e — T

Q, k, Q*k/2, km/s - kps

—_—

0 I S R
4 8 12 16 r,kps

Figure 115. Rotation curve of the Galaxy according to Schmidt’s model [271]; epi-
cyclic frequencies » and Lindblad’s combinations Q + /2 are also presented.

3.4 The Main Difficulties of the Stationary Wave Theory
Of Lin and Shu

3.4.1. Antispiral Theorem. The validity of the gravitational theories of spirals
was questioned by Lynden-Bell and Ostriker [287] who proved the so-called
antispiral theorem, which states that the spiral shape cannot exist as a
neutral mode of oscillations of differentially-rotating and nondissipative
gaseous systems.

The interpretation of this difficulty of the Lin and Shu wave theory is
contained in a paper by Toomre [334] (as well as by Shu [325], see below,
subsection 3.4.2), who has demonstrated that the waves of a spiral form
(both in the gaseous and in the stellar disk) propagate in the radial direction
with a rather high group velocity, so that even the existing spiral waves must
finally disappear.

To begin with, turn to the “direct” derivation of the antispiral theorem
[324] in the case of a stellar disk, similar to the derivation for the gaseous case
[287]. The basic integral equation for normal modes of the stellar disk
(derived by Shu [324] and Kalnajs [249]) is Eq. (38), Section 4.3, Chapter V.
We are further interested in the case of neutral oscillations in the absence
of resonances. In this case, the kernel K, ,(r, a), according to (38) and (39),
Section 4.3, will be real. Then the antispiral theorem of the type proved
by Lynden-Bell and Ostriker [287] will take place. Taking the equation
complexly-conjugate to Eq. (38), Section 4.3, Chapter V, it is easy to show
that if ,(r) is the solution, then also the complexly-conjugate ¢%(r) will
also be a solution. If w is not degenerate, then 6%(r) may differ from &,(r)
only in the complex constant (with the unity modulus): 6%(r) = e~ 2%G,(r),
where y is some real constant. Equating the arguments in this equality,
we shall obtain arg{d,(r)} = x. Since the phase &,(r) is strictly constant,
this normal mode has no spiral shape, it has the appearance of a “cart
wheel.” If, however, ® is degenerate and &,, 6% are linearly independent,
they must correspond to spirals of opposite twisted shape. Therefore, one
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may assume as linearly independent the purely real solutions (and, conse-
quently, nonspiral)
CRT ENCRE ) )

If, however, there are resonant stars, such an analysis is not valid, and
the arguments leading to the antispiral theorem are inapplicable. This is not
surprising. The antispiral theorem is mainly a reflection of the temporal
reversibility of the equations of motion. If we reverse the direction of time
and simultaneously “turn” the galaxy over (reflect all the motions in the
meridional plane), ¢ — — ¢, then we shall arrive at a state where we impose
the perturbation with the opposite direction of spiral twisting on the same
stationary background. The oscillation frequencies in the original and trans-
formed states should be coincident and there are no reasons to give preference
to any one of them. The respective solutions for the equations for normal
modes must be, generally speaking, antispiral, It may be said that for neutral
oscillations there is no “time arrow” and there is no prevailing direction of
spiral twisting with respect to the motion of matter.

With the resonances existing, it should be taken into account that the
effects of the interaction of the wave with the resonant stars began in the past:
this defines the “time arrow.” In a similar way, the instability may also
introduce a difference between the leading and the trailing spirals.

Thus, the “antispiral theorem” similar to the “gaseous” theorem of
Lynden-Bell-Ostriker [287] is applicable in the linear theory to all neutral
modes, for which there are no resonances.

3.4.2. Wave Packet Drift. Here we shall now consider perhaps the most
essential difficulty of the original theory of the spiral density waves of Lin
and Shu, which was indicated by Toomre [334]. He paid attention to the
fact that the Lin and Shu wave packets (with frequencies lying within the
interval o, @ + Aw) must be drifting in the radial direction with a group
velocity ¢, = dw/dk. More specifically, Toomre’s argument is as follows.
Assume that the dispersion equation @ = f(k, r, m) is known. Then, sub-
stituting (as in the geometrical optics) in this equation w — 0®/dt,
k - —0®/0r, where @(r, t) is the WKB phase of the wave packet, we shall
obtain 0®/0t = f(—0d/dr, r, m). Therefore, by differentiating with respect
to t and r we find the equations

ow o\ oo

L. (5,;) Lo ®
ok of\ ok _ of
at <a—k) Fri <6—k> ®

Equations (2) and (3) show that the information, regarding the frequency
and the wave number in a slowly evolving wave packet, propagates along the
radius at a velocity dr/dt = (0f/0k), = c,(r, k, m). The characteristics of
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these equations have at a given point (r, t) an inclination equal to dr/dt = c,.
Along each characteristic curve, according to (2), the frequency w remains
constant.

We introduce, as in [334], the notation |v| = N(|{|, Q) for the functions
whose plots are given in Fig. 75. Then the Lin and Shu dispersion equation
will be written thus

= mQ(r) + sgn(v3(r)N(|L], Q). (4)
Hence
_dr @ _ u(r) ﬂ
¢ == = sgn({v) [kT(r)] Fliak (5)

and the dimensionless wave number { = k/k(r) changes along the charac-
teristic curve according to

A (- w5 ©)
r (r) \dr 0Q dr

In order to obtain representation on the typical characteristic curves,
consider [334] a simple model of the Galaxy, in which Q@) = V/r,
0o(r) = V*/2rGr, V = const. Assume also that the Toomre stability parameter
Qisindependent of the radius: Q # Q(r). For sucha model »«(r)/k (r) = V/\/E
so that the dependence v(r) is linear: v = m[(r/r,) — 1]/\/5 where r, is the
radius of corotation, on which w/m = Q(r). In addition, from Eq. (6) it
follows that in this case the dependence of the dimensionless wave number {
on time ¢ is also linear: { = (w/2)t + const. Therefore, the problem of obtain-
ing the characteristic curves is here reduced simply to the substitution of the
notations of axes v, { in Fig. 75, which shows the dispersion curves for dif-
ferent Q, by r, t.

Figure 116 is a system of characteristic curves, corresponding to @ = 1.2.
The inner Lindblad resonance v = —1 corresponds to rfr, =1 — l/ﬁ
~ 0.293, while the outer one v = +1 corresponds to r/r, = 1.707. Between

wt/n

10r 3\\-

1 L 1 | |
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r/ rC

Figure 116. Some characteristic curves for the disk with Q = 1.2 according to Toomre,
m = 2[334].
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these points, there is the main part of the spiral structure (according to
the Lin and Shu terminology). Outside this region (|v| > 1) there are no
solutions of the WK B type oscillating along the radius. From Figure 116 it is
seen that at Q > 1, there is still one prohibited region, which in this case lies
within the interval 0.69 < r/r, < 1.31. It is, as we have seen, the consequence
of the fact that at Q > 1 the local self-gravitation is not able to reduce |v|
below a certain minimum level (cf. Fig. 75).

We now make a quantitative estimate of ¢, for the solar vicinity of our
Galaxy. Assume, according to Lin and Shu [271], that Q, = w/2 = 12.5
km/s - kps, so that the corotation radius (v = 0) is equal to r, &~ 17 kps,
i.e., the region corresponding to v > 0 lies in fact outside the Galaxy, and
it might remain so without being considered. Since, according to [271],
the dispersion ¢, & 35 km/s roughly corresponds to the stability boundary
(Q ~ 1.0), therefore x/k; ~ (0.2857)™V%(c,/Q) ~ 65 km/s and A; ~ 13 kps.
Since Q, ~ 12.5 km/s - kps corresponds, for the solar vicinity of the Galaxy,
to A = 3 + 4kps, then { = k/ky =~ 4. The inclination of the curve N(|{])
(Fig. 75) at the point { = 4: ON/3|{| ~ 0.15. The data thus obtained allow
one to obtain the required estimate ¢, ¥ — 10 km/s, where the minus sign
means that the wave packet should propagate toward the center of the
Galaxy. -

Thus, for the time ~ 10° years (i.e., only for four revolutions of the Galaxy
about its center—galactic years) the initial spiral perturbation should
be transferred from the periphery to the center, covering a distance of
~10 kps.

For a more detailed treatment of the points discussed above, it is necessary
to solve the kinetic equation and the Poisson equation within an accuracy
of up to two orders of magnitude with respect to small parameters 1/kr and
¢,/rQ, ie., the correct account for the amplitude of perturbation (pre-
exponent in the WKB-method). The necessary work was performed by Shu
{334] and Mark [290].

Let us first of all consider the Poisson equation. Let the perturbed potential
in the disk plane be ®,(r, ¢,z = 0,t) = O@) exp[—i(wt — mp)]. This
potential has a form of a short-wave (tightly wound) spiral, if in the repre-
sentation ®(r) = A(r) exp[iy(r)] (A(r) and Y(r) are the real functions), the
rate of change of the phase y/(r) is high in comparison with the rate of change
of the amplitude A(r). Thus, we require that there be |ry'(¥)| > 1. Then we
may show (detailed calculations, see Section 7.1, Appendix) that within
an accuracy of up to two orders of magnitude with respect to 1/kr, there is
the following relation between the perturbed potential and the surface
density o, (7, @, t) = a(r) exp[ — i(wt — me)]:
| k;:é’) {1 - ki 4 ln[r”ZA(r)]}. 7

rdlnr
In the lowest approximation, from Eq. (7) it follows the old result: maxima of
the surface density correspond to minima of the potential.

o(r) =
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Let us now consider the response of the stellar disk to a given perturbation
of the potential. Calculations [325,290] are rather cumbersome, and
therefore they are shown in Section 7.2 of the Appendix. Below, we re-
stricted ourselves to only a description of the assumed approximations and
the results obtained.

As the distribution function of the unperturbed potential Shu [325]
takes the Schwarzschield modified distribution

Po(ro) exp[ —&/ci(ro)], &< —E(ro),

0, e > —E(ry). ®

fO(Ea L) = {
The “epicyclic” integrals r, and ¢ are defined as a function of E and L from
the equations

r(z) Q(ro) = L, ¢ =E — E(ro), E(ro) = %V%QZ("O) + @(ro)

where rqQ%(rq) = 0®,/0r,. The meaning of E/(r,) is obvious: this is the
energy of the particle on an exactly circular orbit with a radius r,; cor-
respondingly, ¢ is the deviation of the exact energy of the particle E from E,.
The form of the Py(r,)- and cq(ro)-functions may always be selected so that
any reasonable surface density and radial velocity dispersion are satisfied.

In the immediate vicinity of the resonances, where v(r,) is an integer or
zero, there might be essential absorption (or, on the contrary, enhancement)
of the density waves. These effects were considered in detail in §2. Below
we shall restrict ourselves to the “main region” of the spiral structure
roy<r<ry; Mr_y) = —1, v(ry,) =1, assuming the influence of the
resonances inside this region to be negligible [325]. Besides, it is assumed
that the second (after 1/kr) dimensionless parameter of the problem
& = co(ro)/ro#(ry)is also small in comparison with unity (which is equivalent
to the assumption about the smallness of the peculiar velocities as compared
to the circular velocity). Assuming then the hypothesis that ¢ ~ |kr|™* (thus,
for the solar vicinity of the Galaxy ¢ ~ 0.1, while |kr|™! ~ 0.06) one can
obtain (see Section 7.2, Appendix) within an accuracy of up to two orders
of magnitude with respect to the parameters ¢, |kr|™':

Koo® i d ook Z,
= —_——— K _—— D —_ 0Ty 2 ,
o) 21 —v?) FnT kr ) dinr hl( % 1 —v? D,r4
9

where Z,(x) is the reduction factor of (22), Section 4.1, Chapter V,
x = &2k?*r? = k*c%/»*, and
vr

D(x) = —(1 = v*) ——— G(x)/F#(x) =

sin v 0lnx

In[x#(x)],

G,(x) = % f_ cos vs exp[ —x(1 + cos s)] ds. (10)
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We finally take into account the requirement of the self-consistency of the
density waves. Assuming v to be a real number, we equate the real and

imaginary parts in Egs. (7) and (9):

"0 = ) i

2 77
1dingA?) _ o d 1[lkl 7,

2 dinr  dinr |k 12

DvrAZ]. (11)

The former equation is the Lin and Shu dispersion equation, and we
are already aware of it. For a marginally-stable disk, this equation gives the
relation between v and A/A7, shown in Fig. 73.

Equation (11")defines the radial variation of the wave amplitude. Using (11")
it is easy to demonstrate that the density amplitude S(r) of the stationary
wave with the frequency v must satisfy the equation

d [rS3(r) )

— |5~ R(x) | =0, ie,rd?R(x)=

p [ 20 J(x) 0, ie.,rd4°R,(x) = const, (12)
where A is the amplitude of the potential perturbation (4 ~ S/k), R (x) =
—{1 + 20 In #(x)/0 In x} (Fig. 117). The variation of the amplitude of the
perturbed surface density, following from (12), for the marginally-stable disk
is

150)]

= const - r~V2(A; %) 2S (x),
0o

=¥ (13)
F()/ IR (x)]

The value | S| becomes large (formally, according to (13), infinite) near the
corotation (v = 0) and Lindblad (v = +1,...) resonances (Fig. 118). Of
course, in the immediate vicinity of the resonances, the derived relations are
not valid (for more detail, see §2). In particular, the above singularity is
also fictitious.
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Figure 117. The R, function [325]; A, B, C, D correspond to the notations in Fig. 73.
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Figure 118. Amplitude of the perturbation of the surface density; (a) the S, function
[325]; A, B, C, D correspond to the notations in Fig. 73; (b) the dependence of the
quantity o, - Re k on the radius with accounting for the resonant absorption for
Schmidt’s model (@, = 13.5 km/s - kps) [290a].

As noted by Shu [325], Eq. (12) is so expressive that it would be surprising
if it did not admit a simple interpretation. Such an interpretation was obtained
by Toomre [334]. In combination with the dispersion equation and the
expression for the group velocity ¢, = dw/dk, (12) means that

d rcgE
dr (w - mQ) =90 14

where the positive value E is the density of the wave energy for the observer
in a locally rotating system:

~ G, 0 (F(x)
= — ) 15
E=0 "o (1 — 2 (15)
This energy E may be calculated [334] as the work per area unit performed
between t = — oo and ¢t = 0 by some outward, axially-symmetrical and very

slowly increasing (s — 0) mass distribution
a(x, t) ~ Se* cos(kx + vkt),

in the plane of the initially unperturbed infinite stellar disk.

We shall not give here this elementary derivation, but refer to the available
direct analogy between the case in question and similar formulae in plasma
physics (see, e.g., [86]). Expression (15) can be obtained directly by analogy
with the well-known expression for the energy of potential perturbations in
the plasma

0 |E|?
= P — —_— 1
W, wka ) go(wy) Y (16)

which equals the sum of the energy of nonresonant particles (for which,
according to the definition, @’ = w — kv > v, y is the growth rate) and the
electrostatic energy. Here the value ¢, (the scalar dielectric permittivity)
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determines in the following way the response of the system to the potential,
if one considers the electrostatic (electron Langmuir) waves:
2

k
p=en=—0 (e 1) a7)

Equation (16) may be compared to expression (15) for the energy of the
spiral wave used by Toomre and constructed, as is seen, in a quite similar
way. The “reduction” factor %,(x) (more accurately, Z,(x)/(1 — v?)) enters
the expression for the gravitational response of the disk to the potential ®
similarly to (¢, — 1) in (17):

)
S(r)-— —q)?O'O (1_—‘)2). (18)

It is clear that, by knowing the “plasma” expression in (16), we could have
at once written by analogy the corresponding “gravitational ” expression in
(15). The use of the “internal” frequency of the wave v = (v — mQ)/x
instead of w in a “plane” plasma case is also, of course, quite natural.

Formula (14) refers to the case of a single temporal harmonic (the mono-
chromatic wave, @ = const). For the superposition of such harmonics,
from (14) one can derive® also the corresponding statement for the slowly
evolving perturbation

oA 10

a T rar
where A = E/(w — mQ). Hence, it is seen that the density of the “wave
action” A (rather than the wave energy density E itself) propagates with a
group velocity c,. Kalnajs [251] has ultimately clarified the interpretation by
demonstrating that the energy density E and the angular momentum density
L, referring to the inertial system, can be expressed through the “action
density” in the following way (see above, §2):

E = wA, L = mA. (20)

(c 4) = %—f + div(c,4) = 0, (19)

The relationship between E (energy in the system, which rotates at a local
angular velocity ) and E, L is

E=E-QL. 3}

This relation is a usual law of transformation of energy for the transition
from the inertial to the rotating system. The law of conservation of the wave
action in (19) together with Eq. (21) describe therefore the obvious fact
of the conservation of the wave energy and the angular momentum referred
to the inertial system:

rc,E = const, rc,L = const. (22)

8 The integrals of the type j S(r, w) cos[¥(r, w) — wt] dw, arising as a result, are calculated
by the stationary phase method.
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§ 4 Linear Theory of Growing Density Waves

4.1 Spiral Structure as the Most Unstable Mode

This section deals with a different approach to the problem of galactic spiral
structure. It suggests that a more natural and satisfactory explanation of the
origin and existence of the spiral density waves can be obtained if one
assumes them to be unstable modes of flat galaxies (rather than stationary
wave packets). Such an approach was investigated by many authors, in
particular, by Kalnajs [250] (see also, e.g., [96]).

In general, the following picture of excitation and maintenance of the
spiral pattern in galaxies emerges. The central region, with reasonable
assumptions about the amounts of the stellar velocity dispersions, remains
(in the linear approximation) unstable with respect to the “global” (first
of all, the “barlike”) mode (see Section 4.4, Chapter V). An oval distortion
of the shape, a barlike standing wave, is there produced, the frequency of which
Q, is defined by the equilibrium parameters of this region. In turn, the bar
excites, mainly in the flattest and the coldest subsystems of the galaxy, a
trailing spiral density wave, having strong twisting. The established station-
ary amplitude of the spirals is defined, apparently, by the nonlinear or dis-
sipative (for example, the production of shock waves in a gaseous subsystem,
etc.) effects.

It should further be noted that recently there have appeared some
approaches giving a certain synthesis (or versions) of the original picture of
Lin and of the picture described here, see, €.g., Sections 4.2 and 4.3.

Kalnajs [250] studied numerically the stability of some simple model of
galaxy M31. For distances r > 4 kps, the stellar velocity dispersion adopted
by him was sufficient to make the model stable with respect to axially-
symmetrical perturbations. However, for stabilization of the internal part,
large eccentricities of the orbits are required. Instead, to extrapolate the
epicyclic orbits to the eccentricities larger than 0.2, Kalnajs correspondingly
decreases the response by assuming that only a part of the stars takes part
in collective modes. Assuming further that the perturbations are small in
amplitude, he finds the eigenmodes by solving the integral equation in (38),
Section 4.3, Chapter V.

The two-armed perturbations (m = 2) are preferred for reasons which we
have already explained (see §2). Kalnajs investigates numerically [250]
the so-called “largest” mode; by the “largest” mode it is understood that
the gravitational interactions associated with it are “strongest.” In turn,
the “strength” of the interaction is measured by the shift of the angular
velocity of the spiral pattern fromits kinematic value Q — »/2 ~ 10 km/s - kps
(the latter is obtained if one neglects the gravitational effect of the perturba-
tion).
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The amplitude of such a spiral increases by e* times for 10° years. The
energy and the angular momentum of the entire disk are, of course, preserved,
but they redistribute and are carried away outwards: the stars inside the
corotation radius, moving more rapidly than the waves, transfer them to
the stars at the outside.

Since the spiral structure is seen more distinctly in objects with the lowest
velocity dispersions, Kalnajs calculated the response of the density of the
objects with a zero dispersion (see Section 4.5). In the calculations, it was
assumed that the surface density of the gas is constant on the disk; however,
the smooth variation of ¢, with radius will probably not change the picture
to any extent. An interesting result of these calculations is the strong depen-
dence of the perturbed density of the subsystem on its velocity dispersion.

The density wave in a stellar disk is in essence a barlike distortion of the
central galactic region, which acts on the gas. The tightly wound picture of
the spirals and the large contrast of the density in the gaseous constituent
are due, according to Kalnajs, to the presence of resonances. The location
of the resonances is defined by the internal part of the model, while the
growth rate depends mainly on density of the outer resonance. The decrease
in the latter produces a slower growth rate of perturbations.

Since the model is defined by the curve of rotation, the results attained by
Kalnajs [250] for M31 may, in principle, be applicable to our Galaxy also
(the rotational curves of these two galaxies are alike, at least from r ~ 4 kps
outward).

To conclude this section, we sum up the main merits and demerits of the
two approaches to the theory of spiral structure considered so far. The main
advantage of the theory of Lin and co-authors is a good agreement of the
predictions made with its help with observations of galaxies (above all, of
course, our Galaxy). As far as unstable modes (of the type of those calcu-
lated by Kalnajs) are concerned, they now appear to be inconsistent with
observations in the Galaxy.® It should however be noted that this refers
only to the traditional interpretation of observations. In the papers [250,
93, 96] a different interpretation, which will possibly lead to a picture con-
sistent with the theoretical one, was suggested. In any event, it obviously
appears correct that the usual tacit suggestion that the spiral gravitational
potential is coincident with the observed spirals (which are indicated by
young stars, neutral gas, regions of ionized hydrogen HII, etc.) is not a
necessarily needed consequence of the gravitational spiral theory. The
observed tightly wound spirals may also be a response to the more open spiral
gravitational field. The theory of unstable modes is not yet sufficiently de-
veloped, above all in the part concerning the comparison with observed
data. At the same time, a large number of papers is devoted to an “intense”
fitting to observations of the Lin theory.

9 Two *“open” spiral arms result. It should be noted, however, that all the versions of the
galactic spiral arms theories at present available are not complete. For instance, the role of
massive halos (hidden mass) is quite insufficiently clarified so far (see subsequent sections, as
well as the epigraph for this Chapter).
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On the other hand, at least, the original version of the Lin theory encounters
some fundamental difficulties: it is, for instance, the drift of the wave packets
connected with the suggested continuous spectrum of the real frequencies w.

Unstable modes seem not to suffer such a difficulty; the eigenvalues of
such modes are fixed according to definition, and are sufficiently separated
from each other (see Section 4.3, Chapter V).

To “save” the Lin program, a mechanism is needed that generates waves.
A fairly large number of different versions is suggested [272, 289]. We shall
deal with some of them in Sections 4.2-4.5.

4.2 Gravitational Instability at the Periphery of Galaxies

To begin with, we turn to the interpretation of the large-scale spiral structure
suggested by Lin himself [272]. The picture drawn by Lin and described
below seems to be realized in galaxies not having any strong inner Lindblad
resonance. We have already mentioned (e.g., at the end of Section 4.1,
Chapter V) that in the range of the inner Lindblad resonance there is ab-
sorption of the spiral wave, which under definite conditions (as, for example,
in our Galaxy [290]) may become strong decreasing the wave amplitude
to a negligible level. For galaxies not having such a resonance, i.¢., possessing
a comparatively smooth dependence of the surface density g,(r) on the
radius, without any strong concentration toward the center, the short
spiral density wave propagating from the corotation circle inward to the
center, will have near the center a sufficiently increased amplitude (thanks
to conservation of the action, see subsection 3.4.2) to produce an oval
(barlike) distortion of the mass distribution in the central region. In turn,
this oval configuration (rotating at an angular velocity of the spiral pattern
Q,), by acting on the galactic disk by its own gravitational field, will pro-
duce a response reaction, and its influence will be especially strongly felt
in the external regions of the galaxy, where the circular velocity is close to
Q,. Lin [272] believed that just here, on the periphery of galaxies, was the
sources of spiral waves. Thus, the circuit of feedback is closed, which may
lead up to maintenance of a stationary spiral pattern.

Thus is briefly the ideology of the approach to the interpretation of the
spiral structure as suggested by Lin [272]. It is easy to see in what way this
approach is different (with all its obvious similarity) from that considered in
the previous section. Maybe, above all, this is a different location of the wave
source, on the galactic periphery. Another essential difference is the suggestion
(in the Lin picture) about the propagation of a quasi-stationary wave group
inward to the center, unlike the self-excitation of one sole “globally”-
unstable standing wave in the alternative picture.

We shall consider below one of the possible specific mechanisms of
the generation of spirals (also suggested by Lin [272]), the gravitational
instability of the external regions of galaxies. An essential addition to the
general outline of the picture of the theory contained in [272] is the paper by
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Feldman and Lin [199], in which it is shown that the barlike structure rotat-
ing at the galactic center produces in the vicinity of the corotation circle a
trailing spiral wave (for more detail see Section 4.5).

The gravitational instability of the gas on the galactic periphery. As the
mechanism of the initial initiation of the spiral structure, Lin considered
first [272]1° the Jeans instability in external parts of the galactic disk.

The external, peripheral parts of the disk are probably indeed unstable since
the percentage of stars there is lower and the available stellar velocity
dispersion (as well as the degree of turbulence of the gas) is seemingly in-
sufficient to stabilize the Jeans instability. The latter produces structural
irregularities, which, owing to a strong differential rotation of the galaxy,
are extended to form segments of the trailing spiral arms rotating mainly
with an angular velocity of the galaxy (see §1). It is possible that such ir-
regularities do indeed exist. As the observational evidence for this statement,
Lin gives the connecting links between the main spiral arms frequently
observed in the external parts of many galaxies. In particular, the Orion arm
in our Galaxy is, according to Lin, just one of such interarm branches.

The perturbation in the form of a segment of a “corotating” spiral arm
should of course exert an influence on the other parts of the galaxy and can
initiate the density waves. However, in the general case, its influence should
be limited, as is to be expected, if there is no resonance of any form.

We expand the perturbation in a series over angular harmonics ~e™?
(m=0,1, 2, ...) and concentrate attention on any one of them (m). The
stars, being at a distance r from the galactic center, will feel the perturbed
gravitational field (of this harmonic) at an angular frequency

f=m[Qr) — Qo,
where €, is the angular velocity in the place of location of the perturbing
segment of the spiral. There is resonance in the case if this frequency is equal
to the epicyclic frequency »(r); in this event one may expect a strong influence
of the perturbation on a given radius r.
Write the resonance condition as follows:

Q, = 0p) - ) m

Strictly speaking, condition (1) may be satisfied for only one particular
value of r. However, the quasiresonance may take place for a broader range
of the values of r, if the right-hand side of (1) is nearly constant. We already
know that the value Q(r) — x(r)/2, i.e., (1) for m = 2, is really roughly con-
stant throughout the galactic disk (Lindblad). It should therefore be con-
cluded that the perturbation with m = 2 may exert an essential influence on
the whole galaxy provided that it presents at such a distance from the center

10 L ater [1997 he noted that this is only one of the many possible mechanisms. Moreover,
the origin of the spiral structure might have been, for example, simply the initial irregularity of the
galaxy.
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where Q) is equal to the nearly constant value of the quantity Q(r) — »(r)/2.
For our Galaxy this implies that Q, = 11 + 13 km/s - kps and that the
perturbations must be generated near r, ~ 15 kps. In this region, there is
indeed a lesser percentage of stars, and the system therefore can be gravi-
tationally unstable.

Let us have on the periphery a group of trailing spiral waves with an
angular velocity Q, ~ 11 = 13 km/s-kps. What does occur as the group
propagates in the radial direction? Of course, it would be too much to
expect that these short trailing waves would naturally lead to the quasi-
stationary spiral picture. For example, the energy supplied by perturbations,
occasionally produced in the external regions, should be limited. In addition,
it scatters during the time of its propagation.

These difficulties, according to Lin, are, however, resolved if there is
a feedback mechanism, mentioned at the beginning of this section, acting
in the system. In the stationary case, according to the principle of the con-
servatioll of the wave action, rc,A = const, where the density of the action
is A = E/f (see subsection 3.4.2). Near the point of the spiral wave origin,
the angular frequency f is very low (f = 0; roughly “corotating” waves).
Consequently, a small amount of energy E is required in order to produce a
substantial amount of action A. As the wave group is propagating inward to
the galactic center, the energy density must be increasing both as a con-
sequence of the increase of f (since dQ/dr < 0) and due to a decrease in |c,|
and r (an increase in energy density with decreasing r is of course an obvious
consequence of the cylindrical geometry of the system). When the wave group
reaches the center, its very much increased amplitude must be enough to
subject the galactic nucleus to a slight distortion to form a short bar (rotating
with an angular velocity Q).

There is therefore a gravitational field rotating with the same angular
velocity €, and propagating outwards (the long-wave mode). Its influence
will be especially strongly felt in the outer regions of the galaxy, where
the circular velocity is €, i.e., just where the waves become initiated. Thus,
the cycle is closed, and the stationary state may be established even in
the presence of losses, since there is an essential enhancement of the energy
when the short waves are moving inwards but there is no respective energy
loss when the long waves, with a scale of the order of the galactic radius,
are propagating outwards.

In the case of a sharp Lindblad resonance (for example in NGC 5364
or in our Galaxy), the waves cannot penetrate into the center. In [272]
Lin suggests for this case a possibility of the reflection of the spiral waves
already from the resonant circle where the stars may be located in orbits
collectively forming an oval structure [1897], which substitutes the bar in the
preceding discussion of the reflection mechanism. We have seen, however,
that in reality the short waves are absorbed on the inner resonance. For
this case in the next section we shall consider one of the possible mechanisms
of maintenance of the spiral pattern (suggested by Lynden-Bell and Kalnajs
[289].



202 XI Disk-like Systems. Spiral Structure

4.3 Waves of Negative Energy Generated Near the
Corotation Circle and Absorbed at the Inner Lindblad
Resonance — Lynden-Bell-Kalnajs’ Picture of Spiral
Pattern Maintenance

In [289] another possible picture of maintenance of the spiral pattern of the
Galaxy was suggested: the waves of negative energy are emitted near the
corotation circle and are absorbed at the inner Lindblad resonance.

Such an arrangement of the emitters and absorbers of energy at the reson-
ances in galaxies correlates with the picture of Lin and co-workers, if one
takes into account the negativity of the wave energy and assumes the direction
of the group velocity to be toward the center, in accordance with Toomre’s
[334] and Shu’s [325] conclusions.

Lynden-Bell and Kalnajs show that the energy of the system may be
decreased by means of the transfer of the angular momentum from the central
region to the periphery. This may be understood in the following simple
example. Consider the movement of two particles in a fixed potential.
Denote the masses, angular momenta and energies (per 1 g) of particles as
my, my; Ly, Ly; &, &,. The problem is, what is the minimal value of the
energy

E=Y me(L) (1)

for the fixed value of the angular momentum Y m; L;? To answer this question,
one should minimize

E = me(Ly) + mye(L,) 2)
with the limitation
mL, + myL, = L. 3)
It is evident that
dE = my dL&'(Ly) + mydL,€(L,), 4
where my dL, + m, dL, = 0, i.e.,
dE = m,; dL,(¢(L,) — €(L,)) = m; dL(Q; — Q,). )

In transforming the expressions in (5), the equilibrium condition was
used. From (5), it is seen that energy can be reduced by exchanging angular
momentum between the particles, such that the orbit with a lower angular
velocity acquires an additional momentum. This means that dE < 0, if
dL, < 0 (for Q; > Q,). Since for galaxies the angular velocity Q decreases
toward the periphery, the energy decreases if the angular momentum is
transferred from the center outwards.

Although this result has been obtained so far for the system consisting of
only two particles, in reality it has a general meaning since, for example,
introducing friction into any system leads, apparently, to the transfer of
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angular momentum outwards, and to the disappearance of energy due to
dissipation. Thus, the galaxy, in order to transit to lower energy states,
should find a mechanism of transfer of the angular momentum outwards.
This cannot be made by axially-symmetrical motions of a stellar system
since they do not give any gravitational couple between the internal and
external parts. In order to see what form of gravitational disturbance is
necessary, one may introduce the tensor of gravitational tensions by ex-
pressing the force density as minus divergence of the stress tensor. The
force density in case of gravitation is (y = —®)

pVY = —(4nG)” ' AYVy

—(4nG) ™ [div(VY V) — (VY V)(V)]

—(4nG)~ ! div[VyVy — 1(VyVy)]

—div[gg/(4nG) — (¢*/8nG)IT; (6)
ie, pVy = —div T where

I

T = gg/4nG — (&*/8nG); g = Vy.

The gravitational torque, acting on the external part of the system from
the internal part, is calculated in the following way. Divide all the space by a
right circular cylinder of a certain radius (with its center on the axis of the
system). Then the torque is calculated by the formula

M= fR x T-dS, @)

where integration is performed over the surface of the cylinder, dS s directed
along the outward normal of the cylinder, R = R(x, y, 0). The component M,
of interest to us is

M, = (4nG)"! ng¢g, ds. ®

From (8) it is easy to see that M, > 0, i.e., the momentum is transferred
outwards, provided that g,,g;, > 0. Consequently, there must be g,, > 0
(Fig. 119), and the equipotential surfaces corresponding to such a picture
are due to be “trailing.” This, according to the expression of the authors,
determines the “cause” and “purpose” of the existence of the trailing spiral
waves in the galaxy: they promote its evolution.

It would be logical to assume that the wave ceases to increase when the
velocities of the perturbed motions caused by the wave exceed its phase
velocity. The radial displacement of the star, due to the force kS (per
unit mass) is kS[»x* — (w + m€)*] ™, and so the condition of saturation may
be written as

wkS[x? — (0 + mQ)*]™! < (w + mQ)/k. 9)
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Figure 119. Spiral density wave (solid lines) and corresponding gravitational forces
(arrows) [289].

Writing v = (w + mQ)/x we obtain from (9) the following estimate for the
time which is necessary for transfer of a substantial fraction of the total angu-
lar momentum from the central region to the periphery (MR*Q = L):

L 2 1 mRS? 203R* _ 2Q3(kR)* (kR)*
M_MRQ/(Z G )_ S M —v?) Q

Hence it follows that the distribution of the angular momentum will
substantially change after (kR)*/2x rotations. For 100 rotations there must
be kR < 5, i.e., the inclination of the wave i = arctan(m/kR) > 23°. The
“so open” waves may, consequently, greatly change the distribution of the
angular momentum of galaxies. At the same time, the shape of the galaxy
will also change: its external parts will expand, while the internal parts will
contract. The standing waves of large amplitude may arise at the galactic
center (they, according to [289], correspond to bars). The galactic evolu-
tion should follow the scheme SA — SAB — SB (Sc — Sb).

(10)

4.4 Kelvin-Helmbholtz Instability and Flute-like Instability
in the Near-Nucleus Region of the Galaxy as Possible
Generators of Spiral Structure

Spiral waves in galaxies could in principle be maintained by some local
instability of a nongravitational nature, for example, the beam or gradient-
temperature instabilities (Chapter VI). However, for these instabilities, the
“longitudinal” wavelength, as a rule, is improbably large. Therefore, in real
galactic systems, such instabilities are unlikely to develop (except for, say,
needle-like galaxies).
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Since, in spirals, a large percentage of the mass falls on the gas, one may
suggest that the spiral structure appears due to excitation of some hydro-
dynamical instability (see §3, Chapter VI) in a gaseous subsystem of the
galactic disk. This point of view was investigated in [98]-[100]. Unlike
other nongravitational instabilities, the increase in thermal dispersion does
not stabilize the hydrodynamical instabilities but, on the contrary, leads to an
increase of the growth rate. However, these instabilities, unlike the above-
mentioned nongravitational instabilities, do not require any special con-
ditions for their development.

In [93], we paid attention to the region of a sharp drop in the velocity of
rotation of galaxies vy(r) in the near-nucleus region, as found by the recent
astronomical observations [315]. They can be connected with the presence
in spiral galaxies of very flattened nuclear formations (nucleus, bulge, bar).
If for the sake of simplicity one represents the thin nuclear lens of mass M
in the form of a homogeneous spheroid with a large semiaxis a, and eccentricity
e, then the equilibrium gravitational potential @, in the region external
with respect to this lens, in its equatorial plane (z = 0), may be written in
the form [64, 147]

IGM [ r? . ae r
®, = T [(W - 2) aresin —= — - /1 — azez/rz], )}
where r is the distance from the center, r > a. The epicyclic frequency cor-
responding to (1) is x? = 0°®,/dr? + (3/r)(8®,/dr). For example, in the
disk limit (e = 1)

2 30M iarcsing— ! - a _3
"~ 24% a r \/VZ__aZ 2 \/m r
Hence, it is easy to see that near the edge of the disk (r ~ a) »? is a large
negative value (as r — a, ¥> — —o0). In such a situation it is obvious that
for a sufficiently strongly flattened (having a “sharp edge”) nucleus, x>
in its immediate vicinity is defined only by the parameters of this nucleus
and are independent of the mass distribution in other parts of the system
(though most of the total mass is contained in it).

So, the circular orbits near such a nucleus should be unstable (x? < 0).!!
According to [147], for an isolated flattened spheroid, instability takes place
for e > e, where e, ~ 0.834, in the range a < r < ae/e,,, so that the
maximally broad region of instability (for the disk, e = 1)

a<rsla €)

rt— az}. #))

In reality, of course, this near-nucleus region of instability of circular
orbits may be still narrower if one takes into account that real systems are not
isolated. We shall not consider further the estimation of the size of the
instability region, which will inevitably not be very reliable. We restrict

'! The question of the possible linkage of this instability with radial flows of gas in central
regions of galaxies is of interest.
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ourselves only to the indication of a possibility of principle of such a “ general”
explanation of sharp drops in the curves of the rotational velocity of spiral
galaxies, which implies that the property indicated may be inherent to many
systems, and not only to Andromeda nebula (M31), for which it is likely to
be reliably established.

A rapid variation of the velocity of rotation is favorable for excitation of
instability of Kelvin-Helmholtz. A detailed analysis of such a possibility
is performed in [99] and [100] (see §3, Chapter VI).

The gas density in the plane of the Galaxy has a form resembling the
shape of a nonsymmetrical bell. If one assumes that the temperature near
the gas density maximum is a monotonous function of the coordinate, one
can show [98-100] that the necessary condition of excitation of the flute-
like instability, also leading to the formation of spirals, is satisfied.

The hypothetical mechanism of the spiral arm formation, investigated
in the above papers, allows one to explain the nature of multitier spirals
as galaxies with several regions (with respect to the number of spiral tiers)
of a rapid decrease of the rotational velocity or several extrema of gas
density (or both at the same time).

4.5 The “Trailing” Character of Spiral Arms

We have already mentioned (see subsection 3.4.1) the rather general character
of the antispiral theorem. It is valid, in particular, both for collisionless
stellar systems and for the gaseous medium. The cause is not “saved” by, for
example, the radial electric currents in the absence of azimuthal currents (the
latter would lead to the initial asymmetry of the system). In this case, in
proving the antispiral theorem by the method used at the end of subsection
3.4.1, one also needs to add the charge inversion to the ordinary reflection.
In general, the presence of the magnetic field (toroidal or poloidal without
the primordial asymmetry) does not violate the theorem.

The radial gas flows could in principle participate in the formation of
trailing spiral arms, and such a possibility was investigated in the literature.

First of all, it should be said that the “problem” of the antispiral theorem
has a different urgency in the two main versions of the wave theory. In Lin’s
picture, as we are aware, the wave-generating mechanism is required,
which per se may possess a needed asymmetry. In a new interpretation of
Lin considered in Section 4.2 such a mechanism is the local gravitational
instability on the periphery of galaxies, which leads to excitation of
“segments” of trailing spirals. On the other hand, as shown by Feldman
and Lin [199] (see subsection 4.5.1) the response of the system to the bar-
like distortion of the shape of density distribution in the central region
has in the region of the corotation radius an appearance of trailing arms.
Thereby is shown the distinctive nature of the trailing waves at the “extreme”
points of the spiral pattern. At the same time, for the “propagation region”,
i.e. for the main part of the disk galaxy, a simple explanation of the preference
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of trailing spirals is suggested by Mark [290]. Both the leading and the
trailing waves are damped in the direction of their propagation. Since the
trailing wave propagates inward to the center, it must be initiated in the outer
areas, so that it has a sufficiently extended propagation region up to the
inner Lindblad resonance. On the contrary, the leading wave coming out
of the central region will be practically completely absorbed on the inner
resonance, not having reached the region of free propagation.

The antispiral theorem presents serious difficulty in the case when the
spirals are considered as unstable modes of a disk system. Neutral oscil-
lations, according to this theorem, are “antispiral”; therefore very “open”
spirals result in not very strong unstable systems. The problem, thus, is to
find the mechanism that builds up the tightly twisted spirals in systems with
a comparatively weak instability.

We have already mentioned this question in Section 4.1, where it was noted
that the way out may be an analysis of the response to a relatively open spiral
potential of the flattest and coldest subsystems; this response has the ap-
pearance of a much tighter wound spiral. Below, in subsection 4.5.2., this
question is discussed using the example of several simple models, which
allow an exact solution.

4.5.1. Excitation of Trailing Spiral Density Waves by the Rotating Barlike
Structure at the Galactic Center. Feldman and Lin [199] study the influence
of the barlike center in the framework of the model consisting of three com-
ponents: spherically-symmetrical “stellar” nucleus, uniformly rotating
“stellar” bar and “gaseous” disk (or cylinder). The rotation axis of the bar
passes through the center of the nucleus. For the sake of simplicity, it is
assumed that the nucleus and the bar are not perturbed, while the stars and
gas interact only via their gravitational fields.

The consideration of a purely gaseous disk as a model of the real system
consisting of stars and gas, may be justified by the fact that in the vicinity of
the corotation radius (which is of interest to us, above all) the gas and the
stars behave in a similar way.

Assuming that the gaseous flow is stationary in the frame of reference
rotating with the bar, we find that all the physical values (velocities, density,
pressure, gravitational potential) are independent of time if they are expressed
through the coordinates r, @, z, where § = ¢ — Q,t, and r, ¢, z are the
ordinary cylindrical coordinates with the z-axis directed along the rotation
axis of the galaxy, Q, is the angular velocity of the bar.

Without taking into account the influence of the bar the gas flow is assumed
to be axially-symmetrical and circular, i.e.,

v = (v, 0,,0,) = (0, (Q — Q,)), 0), (D)

v,, U,, U, are the cylindrical components of the velocity in the rotating frame

of reference, while rQ(r) is the unperturbed velocity in the inertial system.
Further considered is the two-dimensional gravitating gaseous system,

the behavior of which is defined by the hydrodynamical equations and the
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Poisson equation. The gas is assumed ideal and to satisfy the polytropic
law (“barotropic”) P = Kp?, y > 1. Introduce the enthalpy

n= ))—LIKPY—I (dn =ip€)

as well as the dimensionless variables R, w, w,, u, v, h, Y (@ is the potential):
r=roR, Q=Q0, Q, = Qyw,, v, = (ro Qo)u,

by = (R, 1= (0Q)h, = (re Q) @

where r, is the corotation radius, and Q, is equal to the wave frequency Q,.
By assuming that the bar only slightly changes the initial axially-symmetrical
circular gas flow, the Euler equation may be linearized, which leads them to
the form

(y — Dho(uy + Ruy — imv,) + [rhy'u; — im(w — w,)Rh;]1 =0, (3)
im(w — wyuy, + 200, = hy + Y, 4)
(2w + RoYu; — im(w — w, vy = im/R(hy + ¥,), (5)

where the prime denotes differentiation with respect to R, w? =
(hy + ¥u)/R. Introduce the dimensionless parameters

E? — 1 ) _ 1 dlnh0=d1np0
(y — Dhy’ y—1dlnR  dlnR’
6)
0 (
V= —m—g(w—wp),

where %%/Q% = 4w*(1 + rw'/2w) (note that E is an inverse dimensionless
sound velocity). Eliminating the components of the velocity from the
hydrodynamical equations, we shall find

Ky + AWy + (B + Ohy + Y| + AY; + By =0, @)
where
A) = ;H - %mm — ], ®)
_oom 2w d  [+»*(1 —=v?)
B(r) = — EE + Rz(a)——a),) {H — R d_R IH[T]}, (9)
Cr) = — E2m3(1 — v2)/Q2. (10)

Let us further consider the potential as a sum of two terms, one of them
being due to stars, while the other is due to the gas: y = y + ,, where

Yo = Yo,nucL + Vo, Y=y, + ¥, (11)

Y is due to the bar, while ¥, is due to the perturbation of the gas density.
Determine now the D(r) function:

D(r) = =5 + AY; + Byy), (12)
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then Eq. (7) will be written in the following manner:
hi + Ak + (B + Ohy + Yy + Ay, + By, = D. (13)

The A, B, C functions depend only on the stationary parameters of the
system and the frequency w,, but are independent of perturbations. The
value of D is defined by the bar.

Make an estimate of the order of magnitude of different coefficients in
Eq. (13): ro = 10 kps, Q, = 10 km/s - kps, ¢, & 10 km/s, so that E ~ 10.
Instead of the value E > 1, it is easier to deal with the inverse value:

1 e

O=EDH =, b
then one may write
R
A = a,(R), B = ;Zi ;, C = - %a5(R), D = a,(R)/(R - 1),

(14)

where all g,(R) are of the order of 1, regular and nonzero in the vicinity of
R=1

Determine now a new coordinate ¢ = (R — 1)/6. The coefficients in
Eq. (13) written in terms of £, are regular power series with respect to 8. By
expanding the perturbations in powers of §

R R S (15)
and taking into account that a;(1) = 1, we find

2,1,(0) 21.(0
2O 2p

2 T g T h? =0, (16)
YD PhY I
x dié(h&‘” o) - fl——éi) KO + YO) + Eay(DHO.  (17)

Above, we have assumed that the gas flow is two-dimensional. Accordingly,
one may consider two models: the cylinder and the disk. We shall restrict our-
selves below only to a simple analytical model of the cylinder (in [199]
it is shown that qualitatively the results for the two models are coincident).
In this case 6*y,/0z> = 0, and the Poisson equation yields

., 1 4nGp,
0, gas + —ﬁ lpO,gas = Q(z) ) (18)

14 1 ’ m2
ot RV~ gz Ve = A, (19)
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where
y—1 Jue-b
Po = [réﬂé K ho] , (20)
4nGp, 4nGpyrd 2nre\?
= = = k 2 = e 1
A= T Dh® ™ @ e =l7) @D

A, is the Jeans wavelength, and (c), is the sound velocity in an unperturbed
matter. The estimate of the value A (for the solar vicinity of the Galaxy)
leads [199] to the relation A ~ &2, therefore it is convenient to define the
function L(R): A = 6 2L(R); L is of the order of unity, L(1) > 1. With these
assumptions we find

d2l/,(0)
deg = L(DAY, (22)
Yy () () dy”
= ! - 2
a4’ L(Dhy’ + EL(DhY dc (23)
By combining these equations with (16), (17), we shall obtain
d*h'®
—di; + o?h = 0, (4)
d*h'H 1
g T = L‘é )1 P, (25)
where
(0) , , (0) dyy”
Fcyl = ¢[a5(1) — L'(D]AY + [1 — a,(1)] d—f
dh®  a,(1)
— () e = = D + ), (26)
a = [L(1) — 1]V X))

Equation (25) contains the singular term a,(1)/£. As always in such cases,
the required neutral mode should be considered as the limit of increasing
modes. Let us assume that £, Q,, w, are “slightly complex,”

Q,=Q(l+is)y, w,=1+is (s=0"0ors=0")

and take the perturbation of the form h,(¢)e™ ™@~%e=m%! Then ms < 0
will correspond to the increasing modes. For complex w,, the pole
[w(&) — w,]™* lies at the point ¢ = ie, such that & = s/w'(0). Since in any
reasonable model w'(0) < 0, then ¢ has the sign opposite to s, therefore m and
¢ should have the same sign. Below, we assume that m > 0, so that also ¢ > 0,
i.e., the pole lies above the real £-axis. Accordingly, in the limit s - 07,
¢ — 07, inintegrating over &, one should go round the point ¢ = 0from below.
Consider now, as in [199], the equation

d?y dy 1
d—52+g1d—é+gzy—3 (28)
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Equation (25) is a special case of (28) for g, = 0, g, = a>. Assume that the
roots of the corresponding characteristic equation are purely imaginary
(as in the case of (25)), so that the two solutions of the homogeneous equation
are oscillatory:

y, = eiau:, y, = eiaz§ (29)

(o4, a5 are real). If we integrate in the complex plane over the contour (C)
going along the real axis and bypassing the singularity ¢ = 0 from below,
we find the partial solution of the nonhomogeneous equation

[, 3) — IE )], (30)
2

y=

oy
—iag

1 (*e ,
R et (30)

and the integral is taken along C. From (30') it is clear that I(¢, &) = O(1/¢)
as £ - +oo0. It is also easily proved that, as £ - — oo

k]

0(1/¢), a>0,

1, 0) = {% + 0(1/8),  a=0, (31)
1+01/8), a<O.

For m > 0 and for the solution of the form h,(r) ~ ¢*" the spiral is trailing,

if k < 0 and leading if k > 0. The solution of equations in (24), (25) may be
presented in the form:

hy = ke + kre™™ + okp f(8) + 0(6%), (32)

where the first two terms are the “free” solutions (the indices L and T
denote “leading” and “trailing”), while the last term is due to the action of the
bar,

kp =~ au(1), (33)

fo(§) = e (¢, —a) — €I, w). (34

Since I -0 as ¢ > +00, and I - e ™ as ¢ - — o0, so it may be con-

cluded that kj f;, vanishes at + oo and behaves as the trailing spiral at
— 00 (the “leading” part f;, vanishes as £ - — o0).

4.5.2. Simple Models Which Allow Exact Solutions. Take a model, exactly
calculated in linear theory, of the collisionless ellipsoid (11), §1, Chapter
IV. As is well known, the spirals consist of young stars and gas of the flat
subsystem. In accordance with this, we single out from the whole set of stars,
those being close to the equatorial plane. The partial density of these stars is
Po ~ (1 —r?)~ Y2 From the equations of multifiows hydrodynamics (see,
e.g., [86]), for these stars (i.e., for a “flow” with v, ~ 0) one can obtain the
following partial perturbed density (see (11), Section 2.2, Chapter V):

m2

1 -~ 2m ,
Py~ " (red®’) — 3 ed, — E (eQp) @y, (35)
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where ¢ = fo/(wk — 4Q3); @, is the total perturbed potential, w, = @
—mQ),. Substituting j, ~ (1 — r*)"Y2 into (35), we obtain (assuming

m=1)
B D 1 2
pr~ 1 + m [ﬁ a)*(Tr_z)]q)l' (36)

Represent the partial perturbed density in the form
p1 ~ expliy(r) + ¢)],

so that the equation of spiral
Y(r) + ¢ = const.

Denoting w; = Rew, v, = Im w, 6, = Re §, §, = Im §, for the mode in
(19), Section 3.1, Chapter IV, we obtain

@,(8 + 6, — 5r%) + d,(w, — 2)
0;[6(1 —r*) + 3] — [2 — 0 ) + 62) + 1] — $, 0,

By using the data of calculations, one can verify that the solution with the
amplitude increasing in time always gives the monotonically decreasing
function ¢(r) = —y(r) + const, which corresponds to the trailing spiral.
For the example given above, the twisting of the spiral at a distance of the
disk radius makes up ~25°. At the same time, the total density (and the
potential) in this case have the form of “weakly leading” spirals. The sub-
system of the stars with v, & 0 considered above evidently constitutes only
a small part of all the stars, even in the plane z = 0. It is clear that this con-
sideration also remains valid for all the subsystems having velocities v,
in the plane z = 0, lower than a certain boundary velocity v,, provided that
vy <€ wqc. This boundary velocity corresponds to a certain thickness of the
flat subsystem h (which must be far less than c). The ratio of the mass of the
flat subsystem, defined in this way, to the total mass will be ~h/c. Though
this ratio is small, the “trailing” spirals of the flat subsystem can be observed:
they can be defined physically; for example, due to the luminosity of the
youngest stars being in the flattest subsystems of the Galaxy or from the 21 cm
emission of hydrogen forming the gaseous trailing spirals. Note that the
description of these latter is automatically included in this scheme since the
cold gaseous component at z & 0 may be described with equal validity both
in the framework of hydrodynamics and in kinetic theory.

At each given moment, in the z = 0 plane, there are also stars with high
velocities v,. They pertain to other subsystems, consist of “old” stars of
moderate luminosity and form a background having no spiral shape. As is
shown, only stars and gaseous clouds of the flattest subsystems which are
constantly near the z = 0 plane, get wound to form trailing spirals.

For the disks considered in Section 4.4, Chapter V, the situation is similar:
the partial density of stars of the “coldest” subsystems provides a clear
picture of trailing spirals, while the total density and potential have an “anti-
spiral” shape.

tan y(r) = 37)
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§ 5 Comparison of the Lin—Shu Theory with Observations

Irrespective of any future theory of the origin and evolution of the galactic
spiral structure (it is still to be created) the now available “semi-empirical”
density wave theory of Lin and Shu may prove to be useful in the interpreta-
tion of observations.

As we have seen, the theory contains one free parameter, the velocity of
the spiral wave Q. The observational test of the theory, therefore, consists in
comparison of a large amount of data. Some of them may be used to determine
the angular velocity of the wave, the others provide a test of the predictions
of the theory. Lin et al. [271] make an estimate of the agreement of the theory
and observations within ~209%,.

5.1 The Galaxy

The first rather detailed comparison of the inferences of the Lin and Shu
theory with observed data on our Galaxy was performed in [271]. The
comparison is performed for the following items: (a) the distribution of
atomic hydrogen; (b) the systematic movement of the gas; (c) the distribution
of young stars; and (d) the migration of moderately young stars. It is noted
that there is good agreement in all the cases if the angular velocity of the
spiral pattern is assumed to be of the order of 11-13 km/s - kps, while the
spiral gravitational field is assumed to be equal to approximately 5% from
the axially-symmetrical field.

5.1.1. Main Parameters of the Galaxy. Choice of the Value of the Spiral
Wave Angular Velocity and Estimation of the Velocity Dispersion of Stars. The
application of the density wave linear theory of Lin and Shu to the Galaxy
substantially depends on the adopted (theoretical) equilibrium model. The
point is that direct astronomical observations yield so far rather meager
information, and we have fairly reliable measurements of parameters only
for the solar vicinity of the Galaxy nearest to us. The values commonly used
for estimation of the parameters essential in the Lin and Shu theory are as
follows: the surface density o, ~ 50 <+ 65 M@/psz, the mean velocity dis-
persion of stars in the rotation plane ¢, ~ 30 + 40 km/s, the epicyclic
frequency x ~ 27 + 32 km/s - kps.

At the same time, application of the theory requires full knowledge of the
equilibrium state of the Galaxy: the surface density of stars and gas at
each point of the disk of the Galaxy, the angular velocity Q(r), the epicyclic
frequency x(r), the velocity dispersion of stars and the effective sound velocity
of the gas (also at each point). For this purpose, at first a model is built in
which distributions of mass g,(r) and the rotation velocity Q(r), related to
each other, are calculated. The most elaborate of such models of the Galaxy is
believed to be the familiar model of Schmidt [319], in which the Galaxy is
presented in the form of superposition of several subsystems inserted in each
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other, with different degrees of oblateness (they simulate different real,
physical subsystems of the Galaxy). Lin and Shu [271], as well as many of
their followers, used this Schmidt model.

It should be noted, however, that the use of this or a similar model
does not yet completely determine the equilibrium state of the Galaxy or,
in particular, the velocity dispersion ¢,(r) at each point of the disk, knowledge
of which is also necessary for the application of the Lin and Shu theory. In
[271] it is simply assumed that the velocity dispersion is such as to ensure
the marginal stability of the disk of the Galaxy with respect to radial perturba-
tions (according to Toomre).

The spiral pattern may be calculated by using the dispersion equation in
(21), Section 4.1, Chapter V, if the equilibrium model of the Galaxy is known.
If one assumes the Schmidt model [319], as in [271], then for Q, = 11
+ 13 km/s - kps we have the distances between the arms consistent with
observations. Here one should bear in mind that generally not a single wave is
excited but a whole group of waves with frequencies close to Q,, while the
comparison of observations with theory in [271] is performed, for the sake of
simplicity, for the sole wave. Therefore, it cannot be expected that the agree-
ment will be too accurate, however the ensuing agreement may be considered
as satisfying.!?

An important test of the general concepts of the theory is the investigation
of the velocity dispersions of stars, predicted by the criterion (21), Section 4.1,
Chapter V. In this paper, the disk is assumed to be a purely stellar one and
having no thickness. In such assumptions, the velocity dispersion for the
solar vicinity of the Galaxy ¢, & 52 km/s turns out to be too large (at least
by 259%). The contradiction still increases if the presence of the gaseous
constituent is taken into account. However, Shu [323, 325] showed that this
discrepancy disappears if the finite thickness of the disks of stars and gas is
taken into account. The velocity dispersion in the solar vicinity should then
be ~37 km/s (or somewhat less) for the stability from the local collapse. The
estimate of the velocity dispersion obtained by Shu is in reasonable agreement
with observations. Shu revealed also that the relative contributions of the
gas and stars are roughly identical despite the fact that the mass of stars
greatly exceeds the mass of gas. This is explained by the fact that the gaseous
disk of the Galaxy is far thinner than the stellar disk.

5.1.2. Relationship of Large-Scale Systematic Noncircular Motions of Stars
in the Galaxy with the Gravitational Field of Arms. Observers long ago
noticed the wave-shaped variations on the rotation curves of galaxies, but
at the beginning these variations were thought of as a possible consequence
of the gas loss by the interarm regions. This effect, however, turns out to be
small [271], and the correct interpretation of the variation of the rotation
curve is provided by the density wave theory. It is evident that the component

'2 The details of selection of the velocity of wave Q, are discussed in detail by Yuan [359, 360].
This selection proves to be limited by rather narrow limits.
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of the perturbed velocity of the particles in the azimuthal direction (due to the
presence of spiral arms) should cause changes in the observed curve of rota-
tion of the galaxy. The quantitative study of the systematic movement of the
gas performed by Yuan [359, 360] had led to the required estimates for the
amplitude of variation of the velocity, of the order of 8-10 km/s. This may
be caused by the spiral gravitational field ~59 from the axially-sym-
metrical field acting on the gas with a turbulent velocity of &7 km/s (the
mean square value of one component of velocity) and with the magnetic field
H ~ 5-107° gs. Note also here the natural explanation [271] of the dif-
ference between the northern and southern curves of rotation of the Galaxy
following from the stability theory of flat rotating systems. In all likelihood,
the cause of this difference is the oval (barlike) distortion of the shape of the
Galaxy which, as we have seen (in §4, Chapter V), is especially difficult to
stabilize by the velocity dispersion of stars.

5.1.3. Birth and Migration of Moderately Young Stars. Stars are born in
places of the highest gas density, ie., inside the gaseous arms. Finally,
these stars must migrate from the arms since the stars rotate at the angular
velocity of the matter, which is different from Q, (the angular velocity of
arms). For ten million years (the age of young O- and B-stars), in the solar
vicinity of the Galaxy, such stars must have been separated from the gaseous
arms by approximately 1.2 kps. However, since the inclination of the spiral
branches is small (they are tightly wound in the Galaxy), the radial distances
will constitute only one-tenth of the indicated distance, so that the young
stars must actually lie within the gaseous arms, which is just supported by
observations: the blue bright stars of the O- and B-types are, as is well known,
the optical indicators of the spiral structure clearly outlining the gaseous
branches.

At the present time, the methods for the determination of the ages of the
“moderately young” stars [329] are rather sophisticated, in order that the
problem might be settled of finding out the places of birth of these stars
and the history of their migration might be reconstructed. The present
locations and velocities of stars necessary for calculations are also known
with a good degree of accuracy.

Already a preliminary treatment performed by Lin et al. [271] has shown
that even a small spiral field (~59; of the axially-symmetrical field) can
provide an essential effect. Yuan [359, 360], by experimenting with dif-
ferent choices of the frequencies of the spiral pattern and field strengths,
found that a good choice corresponds to Q, ~ 13.5 km/s -kps and to the
field strength ~ 5 9 of the axial-symmetrical one. He has investigated the paths
of twenty-five stars by using the data of Strodmgren [329]. If the spiral gravita-
tional field is not taken into account, then the positions of these stars at the
time of their birth does not fit into any structure known from radio observa-
tions. At the same time, as the spiral field is switched on, these stars fall on
the locations of the spiral arms. Just such a prediction should of course be
given by a true theory, since the stars are formed inside the gaseous spirals.
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The authors in [271] note that good agreement (probably the most impres-
sive of those considered) in the problem of the migration of moderately
young stars will result, in spite of the presence of a large number of factors
which could have confused the results.

5.2 M33, M51, M8l1

5.2.1. Short Characteristics. In a paper by Shu ez al. [326], on the basis
of the density wave theory, spiral patterns of three galaxies (M33, M51,
and M81) are investigated. In each of these galaxies there is a clear-cut
two-armed spiral. The rotation of M33 is nearly uniform for a significant part
of the disk, while the galaxies M51 and M81 rotate with a nearly constant
linear velocity. Accordingly, the mass distributions also differ. They are
strongly concentrated toward the center in the case of M51 and MSI,
while for M33 the distribution is “smooth.” The main difference between
M51 and M81, apart from their sizes, consists of different relative gas con-
tents. The M51 galaxy (“Whirlpool ™) is also of additional interest since it is
associated by one of its arms with a close satellite which may in principle
play an important role in excitation (or, vice versa, in destruction) of the
spiral structure.

For the sake of simplicity, Shu et al. consider only the stars. The inclusion of
a small amount of gas (~109%) should not strongly alter the determined
characteristics of the spiral patterns.

5.2.2. Models of Equilibrium States of Galaxies. First of all, on the basis of
the given curves of rotation, the mass models of galaxies with a finite, though
small, thickness are constructed. At each point of the system, a modified
Schwarzschield peculiar velocity distribution is assumed. In the vertical
direction, the density varies as sech?(z/z,). Here the parameter zy(r) is the
local scale of the galaxies in the z-axis and is expressed through the mean-
square velocity v? by the usual relation: z, = v2/nGa,, Where o,(r) is the
local surface density. The velocity dispersions in the modified Schwarzschield
distribution should satisfy certain constraints following from the equilibrium
and stability conditions. From the equilibrium condition, as we are aware,
in the epicyclic approximation we have the Lindblad connection between
the velocity dispersions of stars in the radial and tangential directions:
c,/c, = #/2Q The ratio z; = ¢,/c, is probably equal to 1 in central areas
of spiral galaxies, where a “well-mixed” equilibrium state [281] should
prevail. In the outer regions of the galaxy, z; can be essentially less than
unity (for example, z; = 0.5 + 0.6 in the solar vicinity of the Galaxy).
In the models, adopted in [326], z, decreases monotonically from unity
at the galactic center to 0.5 at the most external regions (Fig. 120). The
choice of the rate of decrease is of course rather arbitrary, but the calculated
spiral pattern proved to be insensitive to specific choice.

Thereafter, it remains to determine c, as a function of radius. The minimum
values of ¢, ensues from the requirement that the stellar disk be stable with
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Figure 120. The velocity dispersions and the vertical scale for M33 [326]; the velocity
dispersions are calculated by assuming that they are equal to the minimum level
necessary for the suppression of the Jeans instability. The vertical scale is connected
with the balance between gravitational forces and peculiar motions in the z-axis.

respect to Jeans instability (of radial perturbations). Toomre [333] con-
sidered the case of infinitely thin disks. Figure 121 shows the results of {326]
generalizing the Toomre criterion in (28’) §4.1, Chapter V, on the stellar disks
with a finite thickness zq = zo(r); k7 = ¢, min/* and c,/c, are given as the
kyz, functions (k; = %?/2nGa,). To illustrate the use of data in Fig. 121,
let us take the solar vicinity of the Galaxy. Assume that the level ¢, is the
minimum necessary for stability. Following Schmidt {319], take that
» = 32 km/s - kps. Assume also the following reasonable estimates: o, =
90 M ,/ps® and z, = 300 ps. These estimates correspond to the volumetric
density in the central plane equal to 6,/2z, = 0.15 M,/ps®. Hence we
obtain: k; = 042 kps™! and k;z, = 0.126. From Fig. 121, then we shall
obtain: ¢,/c, = 0.60, ¢, = 042 »/k; = 32 km/s. These two values are in
good agreement with observations [326]. A somewhat more realistic estimate
which takes into account that about 10 9 of the mass falls on the interstellar
gas with an effective speed of sound D ~ 8 kmy/s, raises the estimate just
obtained by about 3 km/s.
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Figure 121. Criterion of the marginal stability [326]; kz, is the dimensionless thick-
ness of the disk.
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The coincidence between the velocity dispersion actually existing in the
solar vicinity, and the minimum one necessary for stability, is advanced by the
authors of [271] and [326] as a decisive argument in favor of the suggestion
that the Toomre stability index Q = ¢,/c, ..;, is unity throughout the disk of the
Galaxy, except for probably the most central areas. For the same reason (and
for the sake of simplicity) they assume that @ = 1 also for the disk models of
all galaxies studied in [326].

The velocity dispersions calculated in agreement with the assumptions
considered above, are decreasing functions of r, such that at the center
¢, = ¢, = ¢,, but everywhere for r # 0, ¢, > ¢, > c,.

5.2.3. Spiral Patterns. After completion of the construction of the equilib-
rium state model, one may start studying the local properties of the density
waves in these galaxies. For the stellar disk which possesses a modified
Schwarzshield distribution, we have already given the local dispersion
equation in Section 4.1, Chapter V. The dependence of the wave ampli-
tude on the radius for an infinitely thin disk was derived in [325, 334]
in the second order of the WK B approximation (vide supra, subsection 3.4.2),
but these calculations have not yet been generalized for the case of a disk of
finite thickness. Qualitatively true results are obtained in the following way
[326]. Denote by g = (g7 + g2)"/* the amplitude of the spiral gravitational
field averaged with the mass weight and express it as a fraction F of the mean
gravitational field rQ?; then we obtain (see Section 4.1, Chapter V):

F = g/rQ* = const(k?r?* + m?)V2(rR,)™ 2 /r*Q2,

In(#, 1 )].

R, = [ Y
One of the problems of the paper under consideration was the test of Lin’s
hypothesis about the formation of spirals under the action of the gravi-
tational collapse in the outer regions of spiral galaxies (cf. Section 4.2).
The two-armed spiral waves may propagate only in the region where the
horizontal line Q = Q, lies above Q — %/2 and below Q + /2 (Fig. 122).
However, if Lin [272] is right then only in the region where (Q — »/2)
< Q, <Q may there exist an organized spiral pattern. Then one may
assume that the velocity of the spiral pattern should be approximately equal
to the velocity of rotation of outermost HII regions (i.e., regions of ionized
hydrogen formed round young stars under the action of their powerful short-
wave emission). The yields for M33, Q, ~ 16 km/s - kps, while for M81,
Q, ~ 21 km/s - kps, so that the corresponding radii are 6.8 and 11.2 kps.
In case of probable destruction of the outer regions of M51 by a nearby
satellite, this method cannot give a correct estimate of the corotation
radius for M51. In such circumstances it is assumed arbitrarily that: Q, = 33
km/s - kps (the corresponding corotation radius is 4.5 kps) as a value not
being in disagreement with Lin’s proposal.

The corotation radius lies slightly outside the most external HII-regions,
if the formation of stars is initiated only by the mechanism of spiral galactic
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Figure 122. Dependences of the angular velocity Q, the epicyclic frequencies x, and the
Lindblad combinations Q + x/2 on the radius raccording to the mass models of (a) M33,
(b) M51, (c) M81 [326].

shock waves [311], and is coincident with these HII-regions, if the collapse
of the interstellar gas itself causes star formation. The spiral pattern associated
with our Galaxy appears to be satisfying Lin’s criterion [326]. It is interesting
to verify whether it is also satisfied for other galaxies. The test consists in
whether the theoretical pattern, with a wave velocity estimated by the tech-
nique thus described, provides a good fitting of the observed spiral structure
inside the corotation radius.

The spiral patterns calculated for such Q, coincide well with the observed
ones. Since Q is nearly constant throughout the disk of M33, the curve
Q — /2 is very flat. Therefore the spiral waves may pass into the very center
of this galaxy (and disturb it by forming thereby a barlike structure). One
may expect that this is a general feature of galaxies which do not possess a
strong concentration of the mass toward the center. At the same time, for the
chosen velocities, the waves in M51 and M81 should encounter “barriers”
at the inner Lindblad resonances.

Connected to these remarks is the trend for galaxies of the type of M33
to have more open spiral arms. The waves in such galaxies should probably
be everywhere far from the Lindblad resonance, the consequence of which is
the fact that the dispersion equation will never yield very short waves for the
self-consistent spirals.
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Figure 123. Dependence of the unperturbed velocity W, and the relative amplitude
of the spiral gravitational field F on the radius r for short waves in M33
(€, = 16 km/s - kps) [326].

The authors of [326] also show the boundaries (Fig. 123) in which the
calculations are adequate, i.e., the conditions of applicability of the WKB
approximation are satisfied. In each case, they cover nearly the whole galaxy,
but of course, they do not include the regions close to the resonances.

Observations do not allow one to construct a single unambiguous galactic
model. In this connection, in [326] two somewhat different models of M51
(and for two different Q,: Q, = 33 and Q, = 43 km/s - kps) are considered.
From this treatment the following conclusions are obtained.

5.2.4. Conclusions. 1. Except for the localization (but not the existence) of
the inner Lindblad resonance, the main features of the spiral pattern, for a
given Q,, are insensitive to the details of the adopted equilibrium model. In
particular, the pitch angle i = arctan(m/|k|r) is finally defined by the main
features of the model.

2. The calculated picture is sensible to the variations in Q, (i.e., to the
localization of the corotation radius); the 309, increase in Q, (from 33 to
43 km/s - kps) for M51 leads up to the pattern with the pitch angle increased
roughly speaking also by 309/, while the radii of corotation and the outer
Lindblad resonance are decreased by about 209 (the curve of rotation at
these distances is nearly Keplerian, Q ~ r~3/2).

The calculated pictures have a tendency toward a somewhat stronger
twisting as compared with the observed one, so that the velocities of waves in
the future might be slightly raised (but probably by not more than 30%).

The general conclusion arrived at in [326] implies that the conception of
Lin of initiation of density waves by the Jeans instability in the outer regions
of normal spiral galaxies agrees with the study of the spiral structures of M33,
MS51, and M81. It is obvious, however, that the described results are of a more
general nature, and also they are not contradicted by any other generation
mechanisms of spiral waves (including those we described above). Thus,
in [326] it is not shown that Lin’s suggestion is the only one consistent
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with observations. In particular, as noted by the authors themselves [326],
the instability mechanism could cause the spiral pattern of the M33 galaxy.

The comparison of the theory of the galactic density waves with observed
data on a more comprehensive material (24 galaxies) was continued by
Roberts and Shu [312]. Moreover, in this paper, an attempt is made to give
a new classification of spiral galaxies based on a small number of observed
characteristics.

The choice of these characteristics is prompted by the density wave theory.
The linear theory of Lin and Shu involves one free parameter, Q, (or r,,
the corotation radius). The strength of the large-scale shock formed in the
gaseous constituent of the galaxy is proportional to (w,/D)?, where D is the
effective speed of sound, w | is the total (unperturbed + perturbed) component
of the velocity of the gas perpendicular to the spiral arm. The latter quantity
oscillates along a streamline due to the action of the spiral gravitational field,
about the unperturbed value w,,. The shock!? is formed in the case where
the accelerating force acting from the side of the spiral arm is large enough
in order that w, could reach supersonic values. For w, o > D, the larger
part of the gas on the streamline moves at a supersonic speed. Strong
shock waves formed in such a situation lead to the formation of narrow
regions of high compression of the gas. Weak shocks formed for w o, < D
provide broad regions with relatively low compression of the gas. These
two cases correspond to the observed narrow and broad arms, so that the
formation of one or the other must critically depend on the value of w, /D,
or (since D probably does not change very much from galaxy to galaxy)
simply on the value w,, = r(Q — Q,) sin i, where i is the angle of inclination
of the wave to the azimuthal direction, which is found for a given Q, from the
dispersion equation.

From the above follows the possibility of classification of spiral galaxies
based on the two parameters, w , and i. The dimensional analysis shows that
the typical values of w,, and i may be expressed as

Wio = (GM/rc)llzf(rO.SM/rc); sini = g(ro.sm/re) M(ro.sm) = M/2,

where f and g are the functions, the form of which should be determined from
the equilibrium conditions, M is the total galactic mass. Hence the con-
clusion [312] follows that the main characteristics and the geometrical shape
of the normal spirals should be determined by the two parameters: M/r, (or
equivalently, M/r( sy) and rg sp/r..

The principles stated above of galactic classification based on the density
wave theory should attach to it, according to the opinion of the authors of the
paper [312], a more objective character. They note a satisfying correlation
between the galactic models in the proposed classification and Hubble’s

types.

13 Note that the shock wave theory of Roberts was however subjected to criticism (see Section
1.6, Chapter VII, and in detail [52%]).
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§ 6 Experimental Simulation of Spiral Structure Generation

6.1 In a Rotating Laboratory Plasma

6.1.1. Formulation of the Problem. In [100], the question of the analogy
between the spiral arm formation process of galaxies and the density waves
in a rotating laboratory plasma is considered. This question is not a new
one: Bostick was the first to draw attention (about 20 years ago) to the
external likelihood of the photographs of galactic spiral arms and the plasma
clusters in laboratory experiment. Pictures taken at the time of collision
of plasma clusters during the injection of these clusters from two or more
injectors to one point of space, really very much resemble the pictures of
galactic spirals. In Bostick’s experiments, the analogy does not extend
farther than a purely surface likelihood at the time of collision of the clusters,
each being identified by Bostick with a “spiral” arm. Thus, the number of
“arms” (according to Bostick) is exactly equal to the number of plasma
injectors. Of course, such an analogy could not provoke a serious dis-
cussion. Nonetheless, if we turn to the question of the analogy between the
variety of galactic spiral structures and more modestly sized objects, then
among the latter attention is drawn by the rotating masses of gas and plasma:
the very familiar satellite photographs of cyclones and anticyclones (Fig. 124),
the “spiral structure” of the funnel of rotating liquid, and photographs

Figure 124. Space photo of a cyclone (negative) over the Pacific.
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Figure 125. Two-armed spiral in a rotating plasma [34].

of density waves in rotating plasma [34] (Fig. 125). Figure 126 shows
characteristic spiral structures of plasma density waves obtained on our
plasma machine.

The similarity of the shapes of the galactic spiral structure and the ro-
tating laboratory plasma, under certain conditions, may be a consequence
of the available analogy between the mechanisms discussed above of the
formation of the spiral structure in the two apparently quite different media.
The scheme of the proof [100] of the existence of such an analogy is suggested
to be the following,

First of all, the existence of such a mechanism among the different possible
mechanisms of the galactic spiral arm formation, which turns out to be free
from the influence of the gravitational effects associated with the presence
of giant gravitating masses in the galaxy. The same instability must lead to
large-scale waves of density in a rotating laboratory plasma. It is evident
that such an “universal” instability responsible for the dynamics of the
rotating continuous medium may be any of the hydrodynamic instabilities
caused by the presence of the velocity gradients and density gradients in a
gaseous disk of the flat subsystem of the spiral galaxy and in the rotating
laboratory plasma. The possibility of the plasma experiment under discus-
sion is provided owing to the fact that, as proved in [100], the dispersion
equations describing the oscillations of the plasma and gravitating media,
are similar in many interesting cases.

The elementary scheme of proof of the existence of such an analogy was
proposed some time ago by one of the authors (A.M.F.)

Astronomical observations of recent years [315] have discovered a
region of sharp decrease of the rotational velocity V,(r) in the disks of flat
galaxies. This fact can be explained by using the results of a calculation of a
stationary model of a spiral galaxy in the form of a heterogeneous “disk
+ nucleus” system [93]. If the nucleus is chosen in the form of a sufficiently



224 XI Disk-like Systems. Spiral Structure

Figure 126. Plasma density waves in the special plasma machine modelling the forma-
tion of galactic spirals (photos a, b, ¢ correspond to different conditions of the experi-
ment) [100].
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thin lens, which completely corresponds to the observed forms of the nuclei
of spiral galaxies [37], then near the edge of the lens the gradient of the
gravitational potential may change rather abruptly (almost discontinuously
when the thickness of the lens tends to zero). It is not difficult to calculate
the critical thickness of the lens at which V, ~ 1/r from the equilibrium
condition. If the thickness of the lens is less than the critical, then the Rayleigh
instability criterion [233] is satisfied in the system; this is the necessary
condition for the development of the Kelvin-Helmholtz instability. It so
happens that the spiral arms extend over the region of radial growth of the
surface density ¢ of atomic hydrogen, ie., the region in which gVo < 0
(g is the acceleration of the force of gravity) [37]. In this connection, it has
been conjectured [98a] (see also [24°]) that the spiral structure of flat
galaxies is formed as a result of excitation of the Kelvin—Helmholtz insta-
bility in the region of rapid variation of V,(r); a second observational fact
determines the necessary condition for excitation of the flute instability (see
subsections 6.1.2, 6.1.4). The growth rates of these instabilities may con-
siderably exceed the Jeans growth rate, and the conditions of development
of these instabilities are not related to a critical size.

In subsection 6.1.3 we show that in a gravitating medium for perturbations
with wavelengths shorter than the Jeans length A, = ¢,/(4nGp,)'/? (in a
galactic spiral structure A/4; ~ 0.2-0.4) the relative influence of perturbations
of the gravitational field on the dynamics of the Kelvin-Helmholtz instability
is rather small—the corrections to the hydrodynamic effects are of order
(A/A;)? (see [98a]). With regard to the unperturbed gravitational field, it
enters only into the condition of radial equilibrium and does not affect the
dynamics of the perturbations [98a, 24°/].

Because the gravitational effects are small, it is natural to consider verify-
ing the hypothesis of A.M.F. under laboratory conditions. However, the use of
a fluid or neutral gas as experimental medium does not enable one to specify
independently the necessary gradients of the rotational velocity, especially
if there is a large ratio of the velocity discontinuity Av to the characteristic
propagation velocity ¢, of perturbations in the medium (for galaxies [116*]
one usually has Av/c, = 5). The fulfillment of these conditions is much
simpler in a rotating (because of drift in crossed E{(r) and B fields)
plasma medium. Here, the role of the fields E‘” and B‘?), like the gravitational
field’s, reduces merely to ensuring that the system is stationary (when
v € CUB:')M-

Depending on the magnitudes of the characteristic particles of the process,
the dynamics of the perturbations of such a plasma can be described either
in the framework of magnetohydrodynamics (w < v;) or in the framework
of Chew—Goldberger-Low hydrodynamics [117%] (v; € @ < wg;).

The simplest models convenient for investigating the Kelvin-Helmholtz
and flute instabilities are: (1) a plane-parallel flow of fluid with velocity
and density that vary in the direction perpendicular to the flow velocity;

14y, and wy; are the collision and the Larmor frequencies of ions, respectively.
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(2) differentially rotating cylindrical configurations of a fluid. Here it is
appropriate to recall that the most general stability criterion of these models
were obtained in [186, 129] in the approximation of an ideal incompressible
fluid. The investigation of these instabilities in a gravitating medium of
necessity requires allowance for compressibility, which significantly compli-
cates the analysis and prevents one obtaining general stability criteria.

For this reason, for the original analysis of the problem (in a gravitational
medium) we have chosen the simplest models: velocity and density shear
layer of the gravitating medium (Subsection 6.1.2) and tangential shear
between two gravitating cylinders rotating in opposite directions, their
equilibrium being provided by the equality of centrifugal and gravitational
forces (Subsection 6.1.4). The stability of a shear layer was investigated earlier
in the approximation of an incompressible fluid in an external gravitational
field [186, 67], or in a compressible fluid and in the magnetohydrodynamic
approximation [126] in the absence of a gravitational field. In subsection 6.5.1
besides proving that the gravitational effects have little influence on the
short-wave part of the spectrum in the framework of the Kelvin-Helmholtz
instability that we investigate, we obtain estimates that characterize the
important role of the Kelvin-Helmholtz instability in the formation of spiral
galactic structure. In subsection 6.1.6, we consider the stability of a plasma
flow with a tangential shear of the velocity in the Chew—Goldberger-Low
approximation [117*]. In subsection 6.1.7, we compare the dispersion
relations that describe the oscillation frequency w as a function of the wave
vector k and the characteristic parameters of the plasma and gravitating media.
We show that under typical conditions of the plasma experiment, the
corresponding dispersion relations are identical, which demonstrates that
the similarity of the spiral patterns of the rotating gravitational and plasma
media is not fortuitous but a consequence of the deep analogy between the
process responsible for the formation of the spiral structure in these two very
different but nevertheless “hydrodynamic” media.

6.1.2. Velocity and Density Shear Layer of a Gravitating Medium. 1. We
consider the stability of a shear layer of the velocity and density in a compres-
sible gravitating medium.

We begin with the effects due solely to the velocity shear (K elvin—-Helmholtz
instability). Suppose’’

Por = Po2> i =c3, Vor = Vo =W, g=0.
We shall describe the solution by means of the dimensionless parameters
M =|Volfe, B=Mcosa,  cosa=(kVy)/(k||V,l),
v = wy/kc.

In the limit of short-wave perturbations, w, < kc, in the first approxima-
tion, we readily obtain from the dispersion relation the well-known result

' Formulae used below were derived in Section 3, Chapter VI.
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of the theory of a compressible fluid [126]
o =ikefy, 7= {(1+4F" = (1 + F}P. )

In the following approximation in v = wg/kc,

1=+ )2y + 1+ 7]
41+ )G -9

It is easy to see that A(y) > 0 and A is a monotonically increasing function
of p. Thus, perturbations of the shear surface are subject to an additional
stabilization at longer wavelengths due to the gravitational properties of the
medium. However, it must be borne in mind that (see Section 3.1, Chapter VI)
the results (2) apply only for wavelengths 1 € 4; = ¢/w,. At the same time,
as can be seen from (2), the growth rate of the instability is much greater than
the Jeans growth rate: Im(w) > w,.

We now consider the effects associated with the change of the density.
Assuming that V,; = V;, = 0 and that the magnitude of the change in the
density is not too small compare with p,, we obtain

1/2
Po2 — Po1 G
w= kg—w) {1+—*(p —

( Poz2 T Poy kg Po2)

P01P029(Po1CT + Po2C3) }
keic3(por — Po2)(Por + Po2)* |

In the approximation k — co, we obtain the well-known result of the theory
of an incompressible fluid.

We give the expressions for the quantities y, , that characterize the
exponential decay of the perturbed pressure along the z-axis (which will be
needed later):

o = ikefy{l — v’ A®Y)},  AQ) =

-

wz +(1)2 k2g2
aia =k L2 W2y P Re(yy,) 2 0. 3)
Ci.2 W712€1,2

Here, the subscript 1 is appended to the variables of the region z > 0; the
subscript 2, to those of the region z < 0; w, , = @ — k¥, ,, w¢ = 4nGp,.

6.1.3. Absence of Influence of Gravitational Forces on the Short-Wave Part
of the Oscillation Spectrum. Thus, we have shown that hydrodynamic insta-
bilities can develop in a gravitating medium. The Jeans instability character-
istic of such a medium is stabilized by thermal spread in the region of short,
k%c? 2 w3, wavelengths. The hydrodynamic instabilities, in contrast to the
gravitational, are not stabilized by the thermal spread in the short-wave
region.!® Moreover, in accordance with (1) and (3), the growth rates of the

16 This result is obvious if one recalls that the shear model considered in subsection 6.1.2 is also
unstable in the approximation of an incompressible fluid, in which the thermal spread is by
definition infinite.
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hydrodynamic instabilities increase with decreasing wavelength of the per-
turbation.!” This unique property of the Kelvin-Helmholtz and flute in-
stabilities distinguishes them from the previously investigated hydrodynamic
instabilities of a gravitating medium.

If one assumes that the gravitating medium is in equilibrium, Vp, + po V¥
= 0, then from the original system of equations with allowance for the
gradients of the unperturbed quantities one can readily see that |Vp| is
greater than |pVy,| by kL times (L is the characteristic inhomogeneity
scale, kL > 1) and |p,Vy/| is smaller than |pVis,|, also by kL times. Thus,
the influence of the “external” gravitational field can be regarded as a small
correction to the hydrodynamic effects. The influence of “self-gravitation”
is even smaller.

6.1.4. Cylindrical Tangential Shear Density of a Gravitating Medium. We
now investigate the possibility of exciting a flute instability in a gravitating
cylinder. For this we consider a model of an infinitely long cylinder with
abrupt change of the density p, at a distance R from the axis of the cylinder,
assuming that equilibrium is established by the resultant effect of the centri-
fugal and gravitational forces and the pressure force, so that g = de,/dr
— Q% # 0. Consider short-wave (compared with the Jeans length) oscilla-
tions, for which the influence of the perturbed gravitational potential is
negligibly small.

Since we are only interested in the basic possibility of exciting the flute
instability, we consider the case of a fairly hot (c> — o0) medium. Then for p,
= po1(r > R) # po, = po(r < R) we obtain the growth rate (m*> < k?R?,
see Section 3.2, Chapter VI):

(2 — AHm*Q?

1/2
YR {kgA + R2 } ) A = (por — po2)/(Po1 + po2)- (4)

As follows from the expression (4), the necessary condition for instability is
gA > 0. %)

This means that for g = (0®,/0r) — Q% > 0 the flute instability develops
if po; > po, while for g < 0 it develops if py, > po;-

Let us consider now a different limiting case: 4 < a. For perturbations of
the type exp[i(kr + m@ — wt)], we obtain instead of (4) the following growth
rate of the flute instability:

dInp, m* |'/?
v= [97”"@] . ®

Naturally, the instability condition is analogous to (18). The growth rate (6)
is much greater than the Jeans growth rate when m/kr > 1.

'7 This assertion is true at least for wavelengths that are greater or of order of the thickness
of the transition layer.
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6.1.5. Spiral Structure of Galaxies as a Possible Consequence of Hydrody-
namic Instabilities. Hitherto, it has been assumed that the maximum growth
rate of instabilities that can develop in gravitating systems is the Jeans
growth rate y & (4nGp,)*/?. The attempt to explain the formation of the
spiral arams in our Galaxy by the Jeans instability led, as is well known [333],
to a contradiction between the critical Jeans wavelength and the separation
of spiral arms. All the remaining hitherto known instabilities of a gravi-
tating medium have growth rates less than the Jeans growth rate.

The investigation in the preceding sections of hydrodynamic instabilities
of gravitating systems with growth rates appreciably greater than the Jeans
rate opens up a new possibility of explaining the origin of the spiral structure
if the conditions observed in spiral galaxies correspond to the conditions of
development of these instabilities. In the present section we bring forward
arguments for the existence in spiral galaxies of the necessary conditions for
the development of the hydrodynamic instabilities.

The recent investigations of the rotation curve of the nearest spiral galaxy
—the Andromeda Nebula [315]—has revealed the presence of a region
of abrupt change of the rotation velocity of the flat subsystem. In the region
0.4 kpc < r < 2 kpc there is a section of rapidly decreasing (from the center)
rotation velocity V,(r), in which (d/dr)(»*/2Q) changes sign. Such a distribu-
tion of the rotational velocity is unstable in accordance with the Rayleigh
criterion [233] in the approximation of an ideal incompressible fluid,
and the finite compressibility of the medium evidently cannot signifi-
cantly alter this result. According to the Rayleigh criterion [233], the Kelvin-
Helmholtz instability can be excited in rotating systems if over a certain
interval Ar the rotation velocity V,(r) decreases faster than r~!. A suf-
ficiently detailed study of the rotation curves of the gaseous subsystems of
flat galaxies has made it possible to find such regions in M31 (see [315]) and
apparently in NGC 7436 (see [37]). The reasons for this behavior of V,(r)
are to be found in the strong oblateness of the dense nuclear regions of flat
galaxies [37]. This may also be the case for barred galaxies. For example, in
NGC 4027 (see [343]) the ratio of the semiaxes of the bar are b/a ~ 0.6,
c/a =~ 0.2 (see [36]) (almost elliptical disk).

We now show how the number of spirals is determined in the case when a
Kelvin—-Helmholtz instability develops in the system. As follows from
Sections 3.1 and 3.2, Chapter VI, the growth rates of the Kelvin~Helmholtz
instability of gravitating systems with cylindrical and plane shears of the
velocity for modes m > 2 have similar dependences on the wave numbers.
Using, for simplicity, the results of subsection 6.1.2 and then making a transi-
tion to cylindrical coordinates (k; — k. k, — k.). we can readily estimate the
number of spiral arms. Indeed, let us set k, = m/R (m is the number of
spirals and R is the radius of the shear), k, = n/h (on the basis of the observa-
tional data, we assume that approximately half a wavelength fits into the
thickness & of the disk). For the Andromeda nebula, the magnitude of the
discontinuity of the rotation velocity (see [315]) Av ~ 150 km/s is much
greater than the turbulent velocities of the gas and gas clouds, v ~ 20 kmy/s,
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and therefore perturbations excited with the maximum growth rate (satisfying
the relation Avk, ~ 3'2vp(kf + k})'/?) necessarily have k; >k (see
Section 3.1, Chapter VI).

Thus, the number m of spiral arms is

m = 3Y27(vy/Av)(R,/h).

Since R, =~ 0.5 kpc, h ~ 0.1 kpc (see [315]), the number of spirals is of the
order of a few units.

It is also easy to establish the direction of winding of the spirals. For this
(see subsection 6.1.2.) we go over to a frame of reference moving in the direc-
tion V,, with velocity V, > V;,sothat Vj, = Vo + V,, V4, = V, — V. Insuch
a reference system, the oscillation frequency is ' = —k | V; + ikcpy (see (1)).
Identifying z > 0 - r > R, (R, is the radius of the velocity shear Av = 2V;)
and substituting w into (3), we find that for perturbations with the maximum
growth rate in the region r > R, the relation Im(y,) < 0 necessarily holds. It
can be seen from this that the equation of constant phase in the (r, ¢) plane,
me — Im(y,)r = const, describes a trailing spiral (m > 0, V,, > 0).

The distribution of the density in the gas disks of the flat subsystems of
spiral galaxies has, as is known from observations, a bell-shaped form (with a
point at which the density is maximum). Therefore, the presence of even a
small radial gradient of the gas temperature (in the neighborhood of the
extremum of the density) may lead to the development of the flute instability.
Indeed, in this region |(1/po)Vpo/(1/po)Vpol| > 1 and, on either side of the
extremum point of the density, Vp,/Vp, < 0.

6.1.6. Tangential Velocity Shear of a Magnetized Plasma Medium. In this
case, we believe it is convenient to use the system of equations of Chew—
Goldberger-Low hydrodynamics [117%],

ov 1, & 1
54- (VW)Y = —;dlvP+m[rotB x B],
B
E = rOt[V X B],
opy : _
*g + VVp“ + Py divV + 2p|| (tV)V = 0, @)
op, . _
o +VVp, +2p,divV — p, t(tV)V = 0,

ap .
— + div(pV) =
ot + div(pV) = 0,

t=B/|B|, divP=Vp, + (p, — p)(V) + tdiv(x(p; — p.))

As was shown in subsection 6.1.3, for a gravitating system in equilibrium,
the influence of the gravitational field on the stability of the system against
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short waves (kL > 1, k is the wave number and L is the characteristic in-
homogeneity scale) is negligibly small.

On the other hand, it is known from the theory of plasma instabilities [86]
that the maximum of the growth rate of the Kelvin—-Helmholtz instability
lies in the short-wavelength part of the spectrum, kL > 1. For a plasma
cylinder of radius R, this condition corresponds to the condition kR > 1;
in this case, to terms ~1/kR, a cylindrical plasma velocity shear can be
replaced by a velocity shear layer in a plasma with homogeneous magnetic
field By, . Assuming that the variation of V;, near the plane z = 0 is smooth
and linearizing Eqgs. (7) for perturbations of the type exp{i(k, x + k,y — wt)},
we obtain

w2 — k2V3)E = c2 p — k23 (c} — 2 [ 4 ]r’ 8)
( *® y All) 1P y l( L J_) wi — ka;(cszﬂ _ Ci) (

= ol 2 — klci(cd, — D)/[wd — k(e — )]
* Wi — k3Vay

2 ci

th wiky(cd) — ¢ 1}’ )
where w, = o — k, V,,(2), £ = iV, /o, is the displacement of the plasma
in the z direction, p = p,/p, is the ratio of the perturbed to the unperturbed
density, Vi) = Vi + (pro — Pjo)/pos Vi = Bo/4mpo, ¢t = pio/po. €3 =
Vi + 2ci, ¢l = 3pyo/po,and the prime denotes differentiation with respect
to z. Integrating Eqgs. (8) and (9) over a narrow surface layer, we obtain the
conditions for matching £ and p at the plane z = 0:

A7) = Beleh — D oyl | (10
[£1=0, [A] = Az = +0) — A(z = —0). (11

Matching, in accordance with (10) and (11), the solutions of the system (8)
and (9) which do not increase away from the velocity shear, we obtain the
dispersion relation

X1(wiz - kai”) + x2(w}; — kﬁszau) =0; (12)

the subscripts 1 and 2 are appended to the variables of the regions z > 0
and z < 0, respectively, and

(ke — wiy )iy 2 — k2VE))
cszJ_[wil,Z - kyz(csz“ - Ci/csﬂ)]

It can be seen from this that in the investigated case we can expect a depen-
dence w = w(k,, k,) like the one observed in ordinary hydrodynamics [98a]
when one of the following two conditions is satisfied:

Vin = Cszu —ct/ed, (14)

Ci < CSZH CSZ_L. (15)

K=k + (13)
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The condition (14) corresponds to a plasma with 8 ~ 1. The solution of the
dispersion relation (12) in this case,

w? > k2VE + k22 — {(k2ck + kZct/cd)? + 4k2VEkic2 )2, (16)
where k%c2 = k2c? + k2c2, shows that instability (w? < 0) will occur for
V& < c2, for perturbations with

2

cos? o = — > cos? q; =

k2

(Cs21| Cszi - C‘D
9
(Cszu ci — D)+ Vi

and, for V} > 2c¢Z,, for perturbations with

(cZcd + D)
(Cs2||cszl + ) + (Vg — 2¢2)

cos? o, < cos?a < cos?a, =

The condition (15) corresponds to a plasma with § < 1. The solution of the
dispersion relation (12) in this case:

0? = k2VE+ k*VE — (kv + 4k2VEKPV Y2, 17)
predicts instability when V3 < 2V7 for perturbations with
cos? o > cos® oy, = VE/(VE + VY,
and when V32 > V7 for perturbations with
cos? o, < cos?a <costa, = Vi(VE— V).
6.1.7. Analogy Between the Dispersion Relations Describing the Kelvin—
Helmholtz and the Flute Instability in a Gravitating Medium and in a Plasma.

For the typical conditions of the plasma experiment, E, < B2/c(4nn, M)'/?,
which corresponds to the inequality

Vi< Vi~cl. (18)
The instability regions described by Eqs. (16) and (17) are shown in Fig. 127.

It can be seen that, under the condition (18), y - y,,., in a neighborhood of
the straight line

ky/k, = 0. (19)

Thus, under the conditions of the plasma experiment, the dispersion relations
of nonelectrostatic oscillations of the plasma with tangential velocity shear
have the form

0 = kIV§ + kicl — (kici + 4kiVici)V?:  B~1,  (20)
w? = K2VE + k2V2 — (k4V4 + a4 V2V)I2 Bl (21)

Since ¢2, ~ V%, the two dispersion relations (20) and (21) are identical
under the condition of instability (19).
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VoV

(k3 /k)?
(b)

Figure 127. Region of the Kelvin—Helmholtz instability in a plasma (hatched). (a) The
case V3 = c3 — ct/el; (b) ¢t < cjci (B <1). The line of the maximal growth
rate is the dashed curve.

In the case of a tangential velocity shear in a gravitating medium, the
following dispersion relation was obtained for short wavelengths in subsection
6.1.2 (see (1)):

w? = k2V3 + k*c? — (k*c? + 4k2VikicH)l 22)
In Fig. 127(a) the dashed curve shows the region where y = y,,,,. In this
region
k, ~2-3712V,k, ;. (23)
In the case V;, < ¢, k, < k,, Eq. (22) is identical with Egs. (20) and (21).
In the case V, > ¢, (which corresponds to the observations of the galaxies)
Y max ~ 3— I/ka VO . (24)

We find a similar dependence of y,,,, on k, from Egs. (20) and (21) under
the condition (18).!®

We now consider a plasma cylinder in which the electrons and ions drift
in crossed electric E, and magnetic B, fields. Suppose that in a plasma with
B <1, w,; > wg, Vo <rowpg (0, and wg; are the plasma and cyclotron
frequencies, respectively, and Vj, is the velocity of rotation of a particle about
the axis) oscillations with w < wpg;, k, = 0 are excited. One can show that in
the case of a radially decreasing plasma density these oscillations are un-
stable and that for [ > 1 the growth rate is

ong 1\'* [k, \'?
= — V e s
’ <n0 or r) B\ k (25)
Vg = cE,/B,, k,=1r.
Denoting Vi/r = g, this growth rate is identical to the growth rate (6).

18 In the framework of two-fluid hydrodynamics one can show that in a plasma with § < 1
and inhomogeneous velocity profile electrostatic oscillations can be excited. If certain conditions
are satisfied, the equation for the perturbed potential is identical to the equation of the oscilla-
tions of a plane-parallel flow of an ideal fluid [89]. Therefore, in a plasma described by the
equations of two-fluid hydrodynamics in the case of a tangential velocity shear, the growth
rate of the instability associated with the excitation of electrostatic oscillations is y = k, V5.
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6.2 In Numerical Experiments

6.2.1. N-Body Simulations of Disk-like Systems. An immense number of
papers have been devoted to computer experiments on the stability and
evolution of flat stellar systems. Therefore, by referring the reader to the
reviews [80%, 88%¢] for more details, we shall consider briefly only the main
results.

Probably, the principal unexpectedness of these experiments was the
impossibility of obtaining rather long-lived spirals in purely stellar disks.
The development of nonaxially-symmetrical instabilities leads to a rapid
heating of the stellar disk, spiral-like structures arise for a short time only, and
ultimately the system becomes a very hot elliptical disk. On the other hand,
the experiments in question show that barlike disturbances develop very easy
in rotating stellar disks; the bars generally are the most typical feature of
evolution, and this, as noted by Toomre [88%], is an important step toward
understanding the nature of the formation of the SB-galaxy bars. The
problem is, however, that normal spirals just do not have apparent bars. At
the same time, N-body simulation shows that in order to stabilize the barlike
instability in a stellar disk, one needs velocity dispersions far more than,
for example, those observed in the solar vicinity of the Galaxy. This was
noted in many works, but a specially detailed study was performed by Miller
[80%]. By carefully studying all the factors which could, in principle, bring
about the heating of computer “stars” (including the causes due to the pe-
culiarities of computation such as approximation, cut-off of the Newton
potential at small distances, roughness of the integration scheme of equations
of motion, etc.) he showed that heating is brought about just by physical
causes. Thus, this fact may be considered as firmly established. What, however,
may this mean ? The first, most obvious, possibility is in the supposition about
the existence of a massive but invisible halo, which, as we know, can effectively
stabilize the barlike instability. Note also here that, according to some authors
[74%, 88%], the barlike instability can actually be not so dangerous, as ensues
from the computer experiments as well as from theoretical studies on the linear
theory of stability of disklike systems. The point is that the latter have so far
been referred to the simplest models, while the former considered only those
systems in which all the stars rotated in the same direction. The situation
must be clarified upon completion of the very much delayed investiga-
tions of large-scale instabilities of the general models of stellar disks, and
when computer experiments are performed for disks with stars rotating
not only in the main but also in the opposite direction (reversely rotating
stars, actively taking part in perturbations, exert a larger stabilizing action
than the passive halo [74%1]).

Finally, to sum up it should be noted that the lame attempts to simulate
spiral galaxies using purely stellar disk systems may be indicative of the
essential role of the gaseous component of the galaxy (energy dissipation,
shocks, etc.).

Here we do not give a review of papers on numerical modelling of spiral
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arms due to the tidal galaxy interaction. Except for the rare cases when the
satellite-galaxy is a continuation of a spiral arm of the neighboring galaxy (as,
for instance, in M51), the role of the tidal interaction in the spiral structure
formation seems to be negligible. In detail, such a point of view on this
problem is presented in [51%].

6.2.2. On the Criterion of Applicability of Numerical Models of Interacting
Galaxies [111°], [50°‘]. The first hypothesis about the decisive role of
gravitational interaction in the process of the spiral structure formation
seems to belong to Chamberlin [100*]. True, he considered the spiral
nebulae produced by a tidal force acting on the rotating star by a neighbor-
ing star. However, such considerations are similar in principle to the well-
known outlines of the hypothetical origin of two galaxies suggested more than
half a century later by Zwicky [107%] in order to illustrate the process of birth
of a spiral structure due to the formation of a bar between two galaxies.

The first numerical calculation to prove this hypothesis was carried out
by Holmberg [101°4] by means of an unsophisticated procedure of graphical
integration proposed by him, and later on, using new computers, by
Pfleiderer and Siedentopf [102%, 103°?]. Then followed numerical experi-
ments revealing details of the mechanism of the spiral structure formation
for a large number of points: Tashpulatov [104*], Toomre [110*], Yabushita
[106°], Kozlov et al. [108*, 109*] and, in particular, for <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>