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CHAPTER VI 

Non-Jeans Instabilities of 
Gravitating Systems 

In the previous chapters, we have faced mainly instabilities of a "Jeans" 
nature (cf. Introduction) or instabilities similar to those occurring in rapidly 
rotating systems of incompressible liquid. 

This chapter deals with some non-Jeans instabilities of gravitating systems 
investigated so far. The various mechanisms of excitation of similar in­
stabilities are well studied in plasma physics and in the mechanics of con­
tinua. 

First of all, there are the beam instabilities, to which we devote §l. In §2 
we study the gradient instabilities. Section 3 deals with the theory of "hydro­
dynamical" instabilities (Kelvin-Helmholtz instabilities and flutelike in­
stability) with a growth rate much greater than the Jeans one. In the last 
section (§4), the general approach to the problem of kinetic instabilities in the 
collisionless gravitating systems is considered, and also, briefly, the question 
of the original" cone" instability at the central regions of systems with baled 
out stars of small angular moments (for example, due to a fall onto a "black 
hole "). Most frequently, consideration is given to the framework of the 
simplest models, such as the uniform cylinder with an infinite generatrix or a 
uniform flat layer. 
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§ 1 Beam Instability of a Gravitating Medium [88] 

1.1 Theorem of a Number of Instabilities of the 
Heterogeneous System with Homogeneous 
Flows [64aad] 

Let us consider first of all the simplest case of the system, consisting of an 
arbitrary number n of moving homogeneous components. Recall that the 
analogous problem for the components at rest was solved in the Intro­
duction, where we showed that the instability (Jeans) may occur only on 
one branch of oscillations while all remaining branches are the branches 
of "combined sound." . 

The picture described above changes qualitatively in presence of relative 
motions of components with velocities which exceed corresponding sound 
velocities. Then nonincreasing (" sound") oscillations occur on the wave­
lengths smaller than Jeansonian ones (see Table I, Introduction, case 1). In 
the opposite case (point 4 in Table I), when the wavelength of the perturba­
tion exceeds the Jeansonian wavelengths, the combined sound oscillations 
are absent. All the roots may be complex: then n different instabilities are 
developed in the system. 

IC the undisturbed velocity of the cold component is VOc , and of the hot 
component is VOh, then the disturbed densities of these components are 

and the corresponding dispersion equation is 

w~c W~h 
(w - kVoJ2 - k2c;c + (w - kVOh)2 - k2c;h 

-1. 

Similarly, for n components we have 

Roots of this equation determine in general form the solution of the problem. 
Let us consider first of all the simplest example, when the densities and 

pressures of the cold and hot components are identical: w~c = W~h = w~/2; 
c;c = C;h = c;. In the inertial coordinate system where. VOc = - VOh == Vo we 
have the following dispersion equation: 
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Solution of this equation is 

Let us choose three limit cases: (a) w~ ~ k2V~, k2c;; (b) w~ ~ k2v5, 
k2c;; (c) k2V~ ~ w~ ~ k2c;. In case (a) we obtain two root's: w2 = -w~, 
w2 = _k2(V~ - c;). The first root describes the Jeans instability; the second 
root, the beam instability provided I Vo I > co. As we see, the necessary 
condition of the beam instability for the heterogeneous gravitating medium 
coincides with the analogous plasma condition [31]. 

In case (b) both roots are positive, which corresponds to the oscillatory 
regime. 

In case (c) we have 

w2 = k2(V~ + c;) ± iJ2wokvo. 

Here, two roots describe increasing solutions, and two other roots damping 
solutions. 

We can represent the dispersion equation obtained above for the case of 
two beams with identical densities and velocities in the form 

few) = -2. 

The functionf(w) is depicted in Figs. 86(a) and 86(b) for the cases v~ ~ c; 
and v~ ~ c;, respectively. 

As it follows from the Fig. 86(a), in the case v~ ~ c;, only the Jeans 
instability is possible [provided that w~ > k2c; (dotted line): two roots on the 
real axis w (W2 and wo) are then absent]. For w~ < k2c; we have four real 
roots. 

In the case v~ ~ c;. as is seen from the Fig. 86(b), for w~ < 2k2c; all the 
roots are real, and for w~ > 2k2c; all the roots are imaginary. In the last case 
the beam instability occurs in the system (apart from Jeans instability). 

The general dispersion equation for n moving beams may be graphically 
investigated similarly to the above investigation for the components at rest. 
Let us try to formulate the theorem of the number of unstable roots in the 
general case. 

First of all we enumerate the components of the heterogeneous system in 
order of decreasing values of (vo + co)i: 

(vo + co)! > (vo + coh > ... > (vo + co),,· 

Each of these numbers defines the flow. We shall speak of two arbitrary flows 
i andj (i > j) to be connected if 

~Vij == Vi - Vj < Ci + Cj. 

We agree to mark such connected flows by curved lines: for example, 

1 2----:J-4 
~'%? 

5 ... i . .. j (n - 1) n 
~....;~-----./~ 
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(a) 

few) 

(b) 

Figure 86. Determination of a number of unstable roots for two homogeneous bounded 
(a) and nonbounded (b) flows. 

We cross out the curved lines which are completely covered by other 
curved lines (1-2, 2-3, i-j in the given example). The remaining curved lines 
determine the independent elements. To the independent elements we attribute 
also the unconnected flows (flow 5 in this example). 

Theorem (of a number of instabilities of the heterogeneous system with 
moving homogeneous flows): The number of the unstable roots of the 
heterogeneous system with moving homogeneous flows equals the number of 
independent elements. 

The theorem may be proved by the method of mathematical induction. 
Let us perform further investigation of the beam instability by using, as 

the basis of the self-consistent model of the collision less gravitating system, 
a model of a rotating cylinder cold in the plane of rotation (x, y). This model 
has already been considered in Chapter II for "nonbeam" distribution 
functions of the particles in longitudinal velocities (Maxwell and Jackson). 
In addition, we show in Section 4.3 that the beam instability is obtained in 
the model of a flat gravitating layer. 
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J.2 Expression for the Growth Rate of the Kinetic Beam 
Instability in the Case of a Beam of Small Density 
(for an Arbitrary Distribution Function) 

As follows from the results of Chapter II, the Jeans instability of a uniformly 
rotating cylinder (with circular orbits of the particles) with the Maxwellian 
distribution function in longitudinal velocities, develops with an exponen­
tially small growth rate if the thermal dispersion is sufficiently large: VT > vo. 
Therefore, the rearrangement of the initial spatial distribution of particles (the 
formation of "sausages") will occur very slowly. Under these conditions, 
one may speak of the quasistationary state of the Maxwellian subsystem 
and consider the excitation of nondamping oscillations of this subsystem by 
a group of fast particles. 

Further, we assume that the particle distribution in the longitudinal 
velocities fo{ v,,) can be split into two parts: 

(1) 

whereJlol(vz) is the Maxwellian function with the dispersion VT whilef(1l(vz) 

is a certain function nonzero for Vz ~ VT' An example of such a function is 
given in Fig. 87. 

In other words, we assume that the system of gravitating particles under 
consideration consists of two subsystems: a slow one and a rapid one. Assume 
that the slow subsystem has a larger density than the fast one, so that 

J~ ao JIll dvz _ 

Jao f(Ol d = 0( ~ 1. (2) 
- ao Vz 

By making use of the smallness of the parameter 0(, the solution of the 
dispersion equation may be found by the method of subsequent approxima­
tions by defining in the next order the growth rates of these oscillations due 
to the interaction of the latter with the particles of the fast component. 
Such a settlement of the problem is characteristic for the theory of inter­
action of a beam of charged particles with a dense plasma. 

f 

Figure 87. An illustration of the beam distribution function. 
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Using Eq. (24) and formulae (10) and (11), §2, Chapter II, we have the 
following dispersion equation: 

1 + ;~ fD!Xl [(ro _ kz:z~2 _ 40~ + (ro _ktVz)2]fo(Vz) dvz = 0, (3) 

where k2 = ki + k~ ~ ki, since from the inequalities kzR ~ 1 and kJ.R ~ 1 
it follows that k; ~ ki. For the sake of concreteness we represent formula (1) 
in the form 

(4) 

Here VT and UT are the particle thermal velocities of the cylinder and of the 
beam, respectively; Vis the velocity of the beam. 

According to the results of Chapter II (§2), the long-wave (kzR ~ 1), 
short-scale (kJ.R ~ 1) perturbations of high frequency (ro2 ~ k;vf) practically 
do not damp (the decrement of damping is exponentially small). This 
means that if the cylinder has a small portion of the beam particles, the 
dispersion equation is composed of two parts. The first (main) part de­
termines the nondamping (rotational) oscillatory branch of the cylinder 
(see §2, Chapter II), and the small addition connected with the presence of 
the beam is interesting to us in its imaginary part only. 

Substituting (4) into (3), we obtain, taking into account the above, the 
following dispersion equation: 

ro2(1 - a) aro2 {k2 f!Xl [ (v - V)2] 
1 + ro~ _ 402 + (1tU~)~/2 k; -!Xl (ro - kzvz)-2 exp - z u~ dvz 

+ f:}(ro -kzvz)2 - 40~r2 exp[ - (vz :~V)2] dVz} = O. (5) 

Due to inequality (2), we can solve Eq. (5) by the method of successive 
approximations. Let us assume that 

ro = roo + iy, (6) 

Setting the imaginary part of Eq. (5) equal to zero, we find y: 

_ { ro~ kz V - roo W (roo - kz V) y - aroo 2"2' . 
k UT kzUT kzUT 

+ ~ [W(3.400 - kz V) _ w(- 0.600 + kz V)]}. (7) 
4kzUT kzUT kzUT 

From formula (39), §2, Chapter II, it is clear that in (5) we neglected the 
,exponentially small terms (provided that 0 0 ~ kzVT) describing a damping 
of the rotational oscillatory branch. Now we are interested in the possibility 
ofthe excitation of this branch by the beam with a small density, which is the 
case when increments of beam instability exceed decrements of damping. 
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This is obviously true if at least one of the following conditions, 1 

(8) 

(9) 

is fulfilled. One can see that in the case (8) it is also necessary that the beam 
velocity be larger than the phase velocity of oscillations with the frequency 
Wo. The increments of the beam instability are equal to 

(10) 

if the conditions in (8) are satisfied, and 

(11) 

in the case (9). 
The increment (10) due to Cherenkov resonance w = k. v., and the 

increment (11) due to rotational resonance: w + 2no = k.v •. 

1.3 Beam with a Step Function Distribution 

The beam instability is associated above all with the velocity asymmetry 
of fast particle distribution f(v.) =1= f( -v.), rather than with the presence 
of a second maximum on the total distribution function. In order to make 
sure that this is the case consider the asymmetric distribution of particles 
of the beam in the form of a step 

f cx {I, ° < Vz < VI 

= 4Vl 0, Vz < 0, Vz > VI. 

In this case, the single contribution into the increment yields the resonance 
of the type w + 2no = kzv., so that 

1t w~ 
Imw = r;;cx-1k-I-. 8y' 2 z VI 

This expression is valid for Ikzlvl > 4no, from which follows the estimate 

coincident with (10) at V ~ VT1-

1 We assume here that kz > o. 
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1.4 Hydrodynamical Beam Instability. Excitation of the 
Rotational Branch 

If the directed velocity of the beam is high in comparison with the scatter of 
particles ofthe beam in longitudinal velocities, v ~ VTl, then, apart from the 
kinetic instability as considered, in the two-beam gravitating medium, 
there may develop a hydrodynamical beam instability. Let us show that by 
assuming that the thermal scatter of the beam is, nevertheless, finite: 
V}l ~ IXV~, so that the development of the Jeans instability in the beam is 
impossible (within an exponential accuracy). 

We follow from Eq. (3) with the function! ofthe form of(4) and assume that 
I W + 200 - kz v I ~ I kz I VTl' Then, from (3), follows 

1 (1 - IX)W~ _ IXW~ = 0 
+ 2 2 • 

W - 400 400(w - kzv + 200) 

Assuming that kz v = Wo + 200 , we find that oscillations with Re w = Wo 
are excited with the growth rate 

IXl/2 

1m W = 25/4 wo. 

This instability is similar to the cyclotron excitation via a monoenergetic 
beam of charged particles of cyclotron oscillations of plasma in the magnetic 
field. 

If one compares the gravitational kinetic instabilities with those of the 
plasma [86], then one notices that, in case of gravitation, the region of in­
stability is much narrower than that in the plasma. For example, the beam 
instability in the plasma with the distribution function 

!(vz) = n:~ [0 - IX) v; ~ L\2 + (vz _ U;2 + L\2 J. 
as follows from [240], takes place for all velocities u > L\ within a broad 
interval of the wave numbers, while here instability takes place only for a 
definite relation between the velocity and the wave number, in the vicinity of 
the value y = u2k2/02 = j. It is probable that the conditions of equilibrium 
in the gravitating medium impose tighter links on the parameters of the 
system, which makes the region of the existence of unstable equilibrium 
solutions narrow also. 

For the beams in the plane of rotation of the system, a similar inference is 
made below. 

1.5 Stabilizing Effect of the Interaction of Gravitating 
Cylinders and Disks 

It is also possible to analyze a heterogeneous system consisting of two 
cylinders rotating with respect to each other, of the kind of (2), §1, Chapter II, 
with the densities IXlPo and 1X2PO (lX l + 1X2 = 1) [111,113]. Such a system 
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turns out to be stable with respect to perturbations kz = 0. For the mode 
n = 4, m = 2, Y1 = 0, Y2 = 1 (rotation of a cold cylinder in a hot one at rest), 
the spectrum has the form w2 - 14w + 80(2 = 0. The condition of the 
stability 

160(~ - e34)3 < 0 

is always valid since 0(2 < 1. 
From the exact spectra of small perturbations of gravitating disks (cf. 

Section 4.4, Chapter V) it follows that the maximum growth rates of in­
stability take place at Y = 1. This case corresponds to the cold disk model, all 
the particles of which rotate in circular orbits in the same direction. If a cold 
disk is composed of two subsystems rotating in opposite directions, then 
the growth rates of instability decrease. Thus, the effect of the" beam nature" 
can exert a stabilizing influence. However, in the case of the density increasing 
toward the edge, the effect of "beam nature" is destabilizing [20] (cf. next 
subsection). 

1.6 Instability of Rotating Inhomogeneous Cylinders with 
Oppositely Directed Beams of Equal Density [20] 

To begin with, consider a uniform dust cylinder consisting of two mutually 
penetrating cold, in the plane of rotation, beams with velocities ± v <po and 
identical density Po/2. In the stationary state 

1 d ( dfl>o) -;: dr r dr = 4nGpo, vro = 0, 
r 

(12) 

The dispersion relation for the case of oscillation of the flute type (kz = 0) 
can be obtained in the following way. Write first of all, for each beam, the 
system of linearized equations of hydrodynamics: 

-i W + m~ v; + 2~ v± = --, ( v) V dfl>l 
r I r <PI dr (13) 

+ ~+~ v± -i w+m~ v± = -i-fl> (V dV) ( v) m 
- r dr <PI r <PI r 1, (14) 

( po/2 + dPo/2)v; + i Po !!!. v ± _ i(W + m v<PO)Pf + Po dVr~ = 0. (15) 
r dr I 2 r <PI r 2 dr 

Hence, for v<pJr = Qo = const, we find (Pf == p\1,2» 

p(l) 
p:12 [4Q~ - (w - mQO)2] = ilfl>l' (16) 

(17) 
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Comparing (16) and (17) with the Poisson equations 

we find 

A<I> _ 1 d (d<l>l) m2 
<I> _ 4 G( (1) (2») 

Ll I - --d r-d - 2 I - n Pi + PI , 
r r r r 

(18) 

111 
~--:---~ + - - (19) 
402 - (w - mOO)2 406 - (w + mOO)2 - or 

where the condition of equilibrium of (12) is employed; for w2 we obtain the 
expression 

(20) 

The value w2 is minimal for m = 2, when w2 = 0, i.e., indifferent2 equi­
librium takes place; w 2 > 0 for m '" 2. 

When the cylinder is nonuniform (and again consists of two identical 
rotating flows), from the system of equations in (13)-(15), one can obtain 
the equation [(1), §7, Chapter II, in a new form): 

where 

Ko = ~ dpo 
Po dr' 

8<1> I 
2-2- = K+ + K_, 

Wo 

a = 200 + rOo, 

(21) 

x = mOo - w, 

(22) 

and the quantity K _ ensues from K + by substituting 0 for - 0 0 in all 
expressions of (22). 

At m/kr ~ 1, we find 

1 1 2 
-:-----=-----,------=--"'"" + - - (23) 
2r:J.Oo - (w - mOO)2 2aOo - (w + mOO)2 - w6· 

One can easily make sure that Eq. (23) transforms to (19) for Po = 0 0 = o. 
Making use of (22), we get from (23) the dispersion equation in the form 

w4 - 2W2[(4 + m2)06 - tW6 + 2rOoOoJ 
+ [(4 - m2)06 + 200 0 0r J2 
- w6[(4 - m2)06 + 200 0 0rJ = o. (24) 

The discriminant of Eq. (24), biquadratic with respect to w, is positive; 
therefore, the instability described by this equation may be only aperiodical, 
i.e., the growth rate y = iw. The above investigation of the stability of a 

2 If the densities of two beams are different, the dispersion equation becomes more complex; 
however, it may be shown that it has real roots only. 
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uniform cylinder with oppositely directed beams shows that the maximum 
growth rate in the case of a nonuniform cylinder should be sought for at 
m = 2. Indeed, under the condition of smallness of the density gradient, 
instability takes place only when m = 2: 

(25) 

8Q2 > w6!2 for small p~ and Q~. As is seen from (25), the necessary con­
dition of the beam instability in this case is the condition of the growth of the 
angular velocity of rotation from the center of the cylinder. 

§ 2 Gradient Instabilities of a Gravitating Medium [28, 114] 

In plasma physics, we know of a vast class of the so-called gradient (drift) 
instabilities due to the spatial plasma inhomogeneity, which frequently 
play a decisive role. Gradient instabilities involve, in particular, the in­
stability due to temperature inhomogeneity [89]. The cause of it lies in the 
transfer of longitudinal energy of particles across the magnetic field due to 
their drift in the crossed fields. 

The question arises of the possibility of development of similar instabilities 
in a gravitating medium, which, as the plasma, refers to the number of 
systems with Coulomb interaction. 

2.1 Cylinder of Constant Density with Radius-Dependent 
Temperature. Hydrodynamical Instability 

The theoretical possibility of gradient instabilities in the gravitating media 
was proved in [28, 114] independently. 

To begin with, consider the simplest model: a cylinder, uniform in density 
with the radial temperature gradient. The general equation (14), §3, Chapter 
II, describing small perturbations of the nonuniform cylinder with circular 
orbits of particles, in this case becomes somewhat simplified: 

1 d ( d<I» m2 2 4m dI 
- - rG.1 - - - G.1 <I> - kZG11<I> - - - <I> = 0, 
r dr dr r2 r dr 

510 dvz 
Gil = 1 + 2 ----;;)'2' 

5 10 dvz 

I = W,[W'2 _ 4]' 

5 10 dvz 
G.1 = 1 + 2 W'2 _ 4 ; 

(1) 

(2) 

The local dispersion equation corresponding to (1) is of the form (below we 
assume Q o = 1) 

(3) 
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where ki = k; + m2 /r2. Calculating the integrals in (2) for the Maxwellian 

distribution function fo = exp( -v;/V})/JnVT, we obtain instead of (3) for 

(4) 

(i.e., in the hydrodynamicallimit) 

(5) 

For low-frequency oscillations satisfying the condition w. ~ 1, i.e., close to 
the frequency of the rotational (" cyclotron") resonance, we have from (5) 

3 4 k; 2m k;v} ~ OVT - 0 
w. + k2 w. + k2 ;) - • 

.1 r.l VT ur 
(6) 

Under condition 4w. ~ (m/2r)vT oVT/or, dispersion equation (6) describes 
unstable oscillations with the growth rate 

Y = J312mk;~} ~ OVTI1/3. (7) 
2 r k.l VT or 

On the limit of the applicability of this approximation, we obtain the growth 
rate 

( m OVT)1/3 
Y"'-' -VT- . 

r or 
(8) 

It should be noted that these results are coincident with the results known 
from plasma physics: dispersion equation (6) can be obtained directly from 
the respective plasma equation (cf. [89]) by substituting ky --+ m/r, WB --+ 2. 
The physical meaning of the obtained instability is also similar to the case of 
plasma. The drift of particles leading to convection of heat in the radial 
direction is caused by Coriolis acceleration due to the appearance of perturba­
tions of the azimuthal velocity. 

It is important to emphasize that the gradient-temperature instability 
may evidently exist also under conditions when the Jeans instability is 
practically suppressed (for which it is necessary that there be VT > vol. 

The instability considered above has a hydrodynamical character [cf. 
condition (4)].3 There is also kinetic instability; however, it turns out that, 
in order to obtain it, the WKB approximation is insufficient. The simplest 
model in which one can most simply make sure that there is kinetic instability 
is treated in the following subsection. 

3 Accordingly, this instability could have been obtained [28J by using the equations of 
anisotropic hydrodynamics for a rotating gravitating medium. 
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2.2 Cylinder of Constant Density with a Temperature Jump. 
Kinetic Instability 

One is able to get an answer in explicit form only in the case when the 
temperature jump (from T2 at 0 < r < ro to Tl at ro < r < R) is experienced 
by only a small part of particles with the density rxpo, rx ~ 1. As far as the 
remaining part is concerned, we shall assume that it has a fixed temperature T. 
Let the temperature jump be sufficiently great: T2 ~ T1, so that there are 
such kz for which the condition (4) is valid only for the cold medium, while 
the inverse inequality takes place in a hot one, i.e., 

(9) 

Under such conditions, the hot medium should be considered kinetically 
(while the cold one, again hydrodynamically). 

Using the inequality Q ~ kz VT2' for low-frequency perturbations 
(w. ~ Q), we obtain 81. = !. Let us seek solutions localized near the tem­
perature jump and decreasing according to the law 

(x> 0). (10) 

Substituting (10) into Eq. (1), we find, under condition m2 ~ 2k~r~w~/w;, 

We now use the boundary conditions on the jump: 

<})I'o+o - 0 '0- 0 - , 

(11) 

(12) 

(13) 

In calculating the integral in (13) for the cold medium, it is enough to 
restrict oneself to the basic term, while, for the hot medium, let us write the 
integral completely. As a result, we obtain the dispersion equation 

_1) = 0 
w. 

(14) 

If w. ~ kz VT2, then (14) takes the form 

1 - rxQ sgn krp [1 + inw. f~2)( w.)] = O. 
w. Ikzl Ikzl 

(15) 

We write w. = w(O) + iy. At w. ~ kz VT2, the inequality w(O) ~ y is valid. 
Therefore, we find the solution in the form 

w(O) = rxQ sgn k"" (0)2 n (2) w ( (0)) 
y = w jkJ f 0 I kz I ' 

(16) 
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i.e., there is kinetic instability. The oscillations are low-frequency ones 
(w* ~ 0 0), if IX ~ 1. To have the condition (9), it is necessary that 

kzvTl ~ IXO ~ kzVT2, 

and for the validity of (11) it is necessary that 

m2 ~ 41X2 k;r6 . 

2.3 Cylinder with Inhomogeneous Density and 
Temperature [28J 

The density gradient dpo/dr exerts, as we shall see, a stabilizing effect on in­
stability whenever it is sufficiently large and coincides in direction with the 
temperature gradient, but per se for T = const and in the absence of Jeans 
instability does not lead to gradient instability. 

Instability arises for kz ..... 0, m"# 0 and krr ~ 1 (perturbation 
'" ei(kzz + mq> + krr - OJ!), i.e., perturbations with a large wavelength along the 
z-axis, depending on angle, and with a small wavelength on r, are unstable; 
therefore, quasiclassical consideration is possible for krr ~ 1. We shall 
be interested in low-frequency (w* ~ 0) oscillations without restricting 
ourselves beforehand to perturbations of the hydrodynamical type with 
w* ~ kzVT. Then we obtain the following dispersion equation: 

k2 (1 W6) 2w6 [ f fo dvz - 1J W6 WT 
1. + + 21'"\2 2 W* k + 2 

U V T w* - z VZ VT 

[ w* (1 w; ) f fo dvz ] 
x k;v} + "2 - k;v} w* - kzvz 

_ 2 02w6 Wn f fo dvz = 0 
202 + w6 v} w* - kz Vz ' 

m dv} 
WT = rOdi' 

= k [d In p (w6 - 202)J v} 
Wn q> d In r + 404 rO· 

(17) 

(18) 

(19) 

In the absence of Jeans instability VT ~ RO, one can neglect the second 
term in (17) (as in the uniform cylinder). To define the instability boundary, 
let us proceed in the following manner (similarly to the corresponding case 
in the plasma [89]). Assume in (17) w* to be real and then equate the real and 
imaginary parts to zero; then on the stability boundary we have 

W2W (1 202 1) (1 202 1)1/2 
W* = - v}k{ "2 - 202 + W617 = -lkzlcrVT "2 - 202 + W6 ~ . 

(20) 
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The condition that w* be real may be satisfied if 

4Q2 
or '7 < O. (21) 

Consider the case of "weak" inhomogeneity when the density variations 
are small, but large gradients p are admissible. 

In this case 

klv} 1 ( 1)1/2 
IkzlcrVT -2- = M 1 - - . 

WOWT V 2 '7 

Then the conditions of (21) will take the form 

IJ < 0 or '7 > 1. 

d In v} 
lJ=dlnp' 

(22) 

(23) 

In a similar plasma case [89], the second instability boundary lies at 
'7 = 2. The cause of the difference is in the fact that in the gravitating medium, 
due to the equilibrium conditions, the angular velocity of rotation is 
uniquely linked with the density, and therefore it is variable. This yields the 
contribution to the criterion of (21) and (23) even for weak inhomogeneity, 
because it is necessary to take into account the second derivatives d2Q/dr2, 
which in their order of magnitude are coincident with dp/dr.4 

The stability boundaries on the plane x, '7, where 

k2v2 k4 v4 
_2 zT .l T 

X - 4 2 ' 
WOWT 

(24) 

for the case of (22) are given in Fig. 88 (x = I - 1/1]). From (20), it follows 
that on the stability boundary 

W* (1 2Q 1) 
kz VT = 2" - 2Q2 + w5;; '" 1 

4 In [28], attention is paid to the fact that one gradient of density does not lead to instability. 
A contrary statement is contained in the papers of M. N. Maksumov [80-83]. In spite of the 
fact that the correctness of the approximations used in [80-83] is dubious, the question itself 
of the possibility of development of drift instabilities in gravitating systems, advanced by 
Maksumov, is, of course. of interest. 

x 

stability 

Figure 88. Stability and instability regions of the temperature- and density-inhomo­
geneous collisionless cylinder [28]. 
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for 1'/ =p 4Q2/(2o.2 + w~). Therefore, it was impossible, for its determination, 
to restrict oneself to the hydrodynamical consideration and expand in 
parameter w* /kz VT; a general consideration with arbitrary w* /kz VT is 
needed. 

§ 3 Hydrodynamical Instabilities of a Gravitating Medium with 
a Growth Rate Much Greater than that of Jeans [98-100] 

All the instabilities considered by us so far, have their growth rates less than, 
or of the order of that of Jeans. A typical feature of instabilities of the non­
Jeans type (beam, gradient types) is the difficulty of their application to real 
objects. Indeed, these instabilities considered in an infinitely long cylinder 
exist under condition that the limiting wavelength of the perturbation 
greatly exceeds the radius of the cylinder, Az ~ R. 

Such a situation stimulates the search for instabilities of a gravitating 
medium qualitatively different from those mentioned. Of great interest are 
instabilities, whose development may proceed with a growth rate much 
greater than the Jeans growth rates, as well as instabilities not subjected (like 
those of Jeans) to the stabilizing influence of thermal dispersion or lacking 
such exotic conditions of existence, unlike the beam and gradient types. 

Such instabilities involve the Kelvin-Helmholtz (KH) instability and the 
flute-like instability [98-100]. 

3.1 Hydrodynamical Instabilities in the Model 
of a Flat Parallel Flow 

The simplest model for the investigation of the KH and flutelike instabilities 
is provided by the flat-parallel flow of gravitating fluid with varying (in the 
direction perpendicular to the flow velocity) values of velocity and density. 
Here it should be mentioned that the most general criteria of stability of the 
model described were obtained in [129,186] in the approximation of an 
idealized noncompressible liquid. The need to account for compressibility 
complicates significantly the analysis and does not allow the general stability 
criteria to be obtained. 

Stability of a flat tangential discontinuity has earlier been investigated 
in the approximation of incompressible fluid in the external gravitational 
field [67, 186], in compressible fluid and in the MHD approximation [126] 
in the absence of a gravitational field. 

In [99], the effect of the gravitating properties of the medium on the 
stability of a flat tangential discontinuity (Fig. 89) is investigated. 
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z 

x 

Figure 89. The plane tangential discontinuity. 

1. Write the initial system of linearized equations in the form 

(1) 

OV:zl + (vo V)V:zl = _ ~ oPI + PI dPo _ O~I, 
ot Po OZ P~ dz OZ 

(2) 

(3) 

(4) 

(5) 

Here the vector notations are two-dimensional (for the x, y components), the 
surface of the discontinuity coincides with the z = 0 plane, G is the gravita­
tional constant, So = Po/Pb and SI = (P 1 - C2 pl)/Pb are the unperturbed 
and perturbed entropies, and c2 = yP 0/ Po is the speed of sound. In consider­
ing perturbations of the type exp[i(kr - wt)], we reduce the system (1)-(5) 
to the following: 

J!I _ k 2 (PI m) _ PI + epo 
., - 2 + .... 1 2' 

w. Po c Po 
(6) 

P~ m' _ ): [ 2 _ Po Po Po] Po PI + .... 1 - ., w. 2 + 2 2 + 2 2' 
Po Po POC POC 

(7) 

(8) 

where w. = w - kvo(z), e = iV:zl/W., and the prime denotes differentiation 
over z. 
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Let Po and Vo be discontinuous in the z = 0 plane. The boundary con­
ditions on the discontinuity are readily obtained from (6)-(8) by the familiar 
procedure of integration over the layer: 

[e] = e(z = +0) - e(z = -0) = 0, 

[<1>'1] = -4nGe[po], 

[<1>1] = 0, 

[P 1] = eg[Po]. 

(9) 

(10) 

(11) 

(12) 

Here [g == d<l>o/dzlz=o], while (10) denotes that, in the z = 0 plane, 
a simple layer is formed of surface density (J = - e[po]. 

Let us assume that, within the ranges z > 0 and z < 0, the unperturbed 
densities and velocities are constant (though different). Solving then the 
system (6)-(8) separately for z > 0 and for z < 0 and matching the solutions 
thus obtained according to (9)-(12), we obtain the dispersion equation 
for the frequencies of small oscillations. The coefficients of the system (6)-(8) 
may be assumed to be independent of z only for sufficiently short-wave 
perturbations 

A. ~ min(A.1' ,1.2), (13) 

where ,1.1 = g/4nGpo, ,1.2 = c2/g or (for g = 0) for the wavelengths 

c2 
,1.2 ~ A.~ = --. 

J 4nGpo 
(13') 

With these limitations, the dispersion equation has the form 

k, k, wf[k2W~1 + (xf - k2)(k2d - wm, 

wf + kg, kg - w~, WiW~1(X1Wf + k2g), 
wf + W~l + kg, w~ + W~2 - kg, kgW~1(X1Wf + k2g), 

0, 0, -Po1dwf(xf - k2)(X1Wf + k2g), 

W~[k2W~2 + (x~ - k2)(k2C~ - w~)] 

w~ w~2(k2g - X2 w~) 

kgW~2(k2g - X2 d>~) 

P02dw~(x~ - k2)(X2W~ - k2g) 

= 0 (14) 

Here the index "1" denotes the quantities referring to the range z > 0, 
while the index "2," the range z < 0; W1,2 = W - kV01 ,2, w~ = 4nGpo, 

2 + 2 k22 2 k2 W1,2 W01 ,2 g 
X1,2 = - 2 + 2 2 ' 

C1,2 W1,2 C1,2 
Re X1,2 > O. (15) 

2. To begin with, consider the effects connected with the velocity dis­
continuity (Kelvin-Helmholtz instability, Fig. 90), assuming in (14) that 
POI = P02, d = d, VOl = -V02 == Vo, g = 0, and we describe the solution 
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Im(wjkc) 

M = 1.0 
0.5 I-__ ------~-~ ...... 

0.3 

0.1 

o 10 30 50 70 

Figure 90. The dependence of the instability growth rate of the plane tangential dis­
continuity on .. Mach number" M = vole as well as on the direction of the wave vector lx. 

Solid lines show the growth rates for v2 = wUk2e2 = 0 (incompressible fluid); dotted 
lines mark the growth rates for v2 = 0.2. 

with the aid of the following dimensionless parameters: 

M= Ivol, 
e 

p = M cos tX, 
(kvo) 

cos ex = Ikllvol' 
Wo 

v=-
kc 

In the limit of short-wave perturbations Wo ~ ke, in the zeroth approximation 
from (15) we have 

w = ikepy, (16) 

From (16), it is seen that the tangential discontinuity in this approximation 

is unstable for any M ¥= 0; however, for M < J2 perturbations with 
arbitrary direction of the wave vector (apart from the purely transversal 
ones), are unstable, and for M > J2 perturbations prove to be unstable 
only when cos2 ex < 21M2. The growth rate is maximal 

(w = ike[(1 + 4M2)1/2 - (1 + M 2)J1/2) 

for M < y1for purely longitudinal (kllvo) perturbations, while,for M > y1, 
the maximum of the growth rate (w = ikel2) is reached at cos2 ex = 314M2. 

In the following approximation with respect to v = wolke we have 

w = ikep[1 - v2 A(y)], A( ) = (1 - y)(1 + y2)[2y + (1 + y)2] 
Y 4y(1 + y)(3 _ y2) 

(17) 

It is easy to see that A(y) > 0 and is a monotonically increasing p function. 
Thus, perturbations of the discontinuity surface with increasing wavelength 
suffer additional stabilization connected with taking into account the gravitat­
ing properties of the medium. However, one should bear in mind that 
according to (13'), the results of (17) are applicable only to wavelengths 
A. ~ A.J = elwo. Here, as seen from (17), the growth rate of instability proves 
to be much greater than that of Jeans: 1m w ~ Wo. 

3. Consider now the effects due to density discontinuity. By assuming in 
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(14) that VOl = V02 = 0 and assuming the value of density discontinuity 
to be not very small in comparison with Po, we obtain 

co = kg P02 - POI ( )
1/2 

P02 + POI 

X [1 + nG ( - ) + P01P02g(POld + P02 cD ] (18) 
k POI P02 k 2 2(P )( )2 • g C1C2 01 - P02 POI + P02 

In the approximation c -+ 00, from (18), we obtain the result known in 
incompressible fluid theory (10). 

4. Thus, the growth rates of hydro dynamical instabilities ofthe gravitating 
medium can essentially exceed the growth rate of Jeans instability. 

Jeans instability is stabilized by thermal dispersion within the range of 
short (k2 c2 ~ co~) wavelengths (a critical wavelength exists). Hydrod ynamical 
instabilities, unlike the gravitational instability, are not stabilized by thermal 
dispersion in the short-wave range.5 Moreover, according to (16) and (18), 
the growth rates of hydrodynamical instabilities increase with decreasing 
wavelength of perturbation.6 This unique property of instabilities of KH 
and the flutelike instability distinguish them from the hydrodynamical 
instabilities of the gravitating medium investigated earlier. 

It is easy to see that gravitation does not exert any influence at all on the 
short-wave part of the oscillation spectrum. If one assumes the gravitating 
medium to be in equilibrium, V P 0 + Po V<I>o = 0, then from the initial system 
of equations, by taking into account the gradients of unperturbed values, 
it is easy to see that IV PI I is kL times larger than I PI V<I>o I (L is the character­
istic size of the inhomogeneity, kL ~ 1), while I Po V<I>ll is less than I PI V<I>o I 
also kL times. Thus, the influence of the "external" gravitational field may 
be considered as a small correction to the hydrodynamical effects. The 
influence of "self-gravitation" is even more negligible. 

As is seen from expressions (16) and (18), compressibility has different 
influences on each of the instabilities considered. In case of the tangential 
discontinuity of the velocities, with increasing parameter M, the oscillations 
excited at small angles toward the direction of the velocity of the medium 
are stabilized, and the maximum growth rate of instability is displaced 
toward the region of larger angles between the direction of the velocity of the 
medium and the wave vector. 

The growth rate of the flutelike instability increases with due regard for 
compressibility (as well as with due regard for "self-gravitation"), which is 
especially essential for long-wave oscillations. 

5 This fact becomes obvious if one remembers that the model of discontinuity considered in 
item 2 is unstable also in the approximation of incompressible fluid [67], where the value of 
thermal dispersion is, according to definition, infinite. 

6 This statement is valid, at least, for wavelengths greater than, or of the order of, the size 
ofthe transition layer ka ~ 1. 
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3.2 Hydrodynamical Instabilities of a Gravitating Cylinder 

In the previous section, the hydrodynamical instabilities were dealt with in 
the case of flat geometry, when the gravitating system is nonstationary. Since 
the growth rates of KH and flutelike instabilities, as already mentioned, are 
much larger than the Jeans growth rate, -such a consideration is correct be­
cause the deviation from the stationary state occurs for the time l/wo (wo is the 
Jeans frequency, Wo = J 4nGpo, Po is the density of the medium, G is the 
gravitational constant), which is much more than the time of instability 
development l/y. 

Nonetheless, the theory of gravitational instabilities presents many 
examples, when the gravitational instability investigated in flat geometry 
does not develop in a stationary gravitating system. This is due to the stabiliz­
ing role of the centrifugal forces (or forces of pressure). Below, we treat the 
possibility of development of hydrodynamical instabilities with the growth 
rate much more than that of Jeans, in the simplest gravitating system of 
cylindrical geometry. 

1. Consider the cylindrical tangential discontinuity (Fig. 91) assuming 
that equilibrium is provided by equality of the centrifugal and gravitational 
forces (Po = const; 0 2 = wU2 is the square of the angular velocity of rota­
tion of the cylinder, and R is the radius of discontinuity): 

O(r > R) = -OCr < R). 

To investigate perturbation stability of the discontinuity surface of the 
form exp[i(m<p + kz - wt)], it is easy to obtain the following dispersion 
equation: 

(1) 

Here 

al,k = 1, 

JI - 2m/(x - m) 
a4,1 = VI ( )2 4 x -m -

(I = 1,3), 

JI + 2m/(x + m) 
a4,1 = Vo (x + m)2 - 4 (l = 2,4), 

Figure 91. The cylindrical tangential discontinuity. 
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where 

v~ = 2p2 + Il~ - 1, 

1~('X.1l1, 3) 
J 1 ,3 = "'Ill, 3 I (",II )' 

m r1,3 

2 1 [2 2 2 32p2 ] 
1l2,4 = 2" (1 + 62) ± (1 - 62) - (x + m)2 ' 

2 4 2 2 
6 1 2 = 1 - ( )2 - P [(x += m) - 2], , x+m 

w M OR 
x = n' '" = kR, P = x' M = c· 

Here, 1m is the Bessel function of the imaginary argument, Km is the 
MacDonald function, and the prime denotes differentiation over the argu­
ment. 

Consider a series of limiting cases for the most interesting modes m ~ 2. 
In the limit of incompressible fluid from (1) we have 

w = w(O) = 0(-1 + iJm2 - 1). (2) 

In a weakly compressible case (M ~ 1) and in the long-wave (kR ~ m) 
approximation 

W = w(O) + 2 - 2 + m2 M2 • 
",20 iO (",2 ) 

m - 1 J m2 - 1 m - 1 
(3) 

We see that compressibility, as in the flat case, partly stabilizes instability. 
In the inverse limiting case (kR ~ m; no restrictions are imposed on M), 
by using the asymptotics of the Bessel 1m and Km functions, it is easy to obtain 
the stability condition for such perturbations: 

(4) 

coinciding for m ~ 1 with the stability condition of perturbation of a flat 
tangential discontinuity (in the same approximation kll ~ k.L) 

(5) 

In the limit of very short waves (kR ~ m), the instability growth rate 
tends asymptotically to the quantity oj m2 - 2. 
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Figure 92. The dependence of the instability growth rate of the cylindrical tangential 
discontinuity on "Mach number" M (the number is written near each curve) and 
wavelength (kR) for the modes m = 2 (a) and m = 3 (b). 

The investigation of dispersion equation (1) for the largest-scale modes 
m = 2 and m = 3 has been undertaken numerically. The results are: the 
dependence of the instability growth rate (in 0 units) on the Mach number 
M and the dimensionless wavelength kR are depicted in Fig. 92(a) and (b). 
One should emphasize a rather complicated dependence of the instability 
growth rate in the region 1 ::5 kR ::5 10 for supersonic discontinuities. 

2. Investigate now the possibility of excitation of the flutelike instability 
in a gravitating cylinder. For that purpose, let us consider the model of an 
infinitely long cylinder with the discontinuity of the po(r) density at a distance 
R from the cylinder axis, by assuming that equilibrium is provided by the 
resulting action of the centrifugal and gravitational forces and pressure 
force, so that g = d(f)o/dr - 02r -::f. O. Considering the short-wave (in 
comparison with the Jeans scale) oscillations, for which the influence of the 
perturbed gravitational potential is negligible, we obtain the following 
equations for perturbations of the pressure P and the displacement , = 
ivr/(w = mO) of the discontinuity surface (the prime denotes differentiation 
over r): 

I 2mO [P 1 + ePa I ] 2 2 P1 = -- P1 - g 2 - epo - (x - w.)poe, 
rw. c 

(6) 

~2 

P _ k P1 _ (w. + 2mO) )< _ P1 + ePa 
.. - 2 .. 2' 

w. Po w. r Po c 
(7) 

where w. = w - mO, x2 = 402(1 + rO'/20), P = k2 + m2 /r2, and c2 = 
yPo/Po is the speed of sound. From (6) and (7) follows the boundary con­
ditions for matching of solutions at r = R: 

[e] = e(R + 0) - e(R - 0) = 0, 

[P1] = eg[po]. 

(8) 

(9) 
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In solving the systems (6)-(9) in the limit ml ~ klRl, we obtain the 
following dispersion equation 

~ n {[( -ltocn + (w* + 2mQ)/w*R - g/e;] _ } _ ° (10) 
L. POn( -1) (kl/Wl _ l/el) g - , 

n= 1 * n 

where 

1 z( gZ) w; g w* + 4mQ 2mQ(w* + 2mQ) (11) oc - k 1 + -- - - - - + ----'---="'-----.---'-
n - eZwz eZ eZ Rw RZwl ' 

n * n n * * 
Since we are interested only in principal possibility of excitation of 

the flutelike instability, consider the case of a sufficiently hot medium. Then 
from (10), for POl = Po (r > R) # POZ = Po(r < R), we obtain the growth 
rate of instability 

(12) 

where 

A = POl - POl. 
POl + POl 

As follows from expression (12), the necessary condition of instability is 

gA > 0. (13) 

This implies that for g = o4>%r - Qlr > 0, the flutelike instability develops 
for POl> Poz, while, in the case g < 0, for POl < POl' The second summand 
in (12) is much less than the first one and plays a role of small correction on 
account of the cylindrical symmetry. Since I A I < 1, the effect of curvature 
exerts a destabilizing action on the flutelike perturbations. Note that the 
same effect of curvature, as follows from formula (2), in the case of tangential 
discontinuity of the velocity, exerts a stabilizing influence. 

Now, we consider the case opposite to that considered above [cf. (12)] 
A ~ a. For perturbations of the type exp[i(kr + mcp - wt)], instead of (12), 
we obtain the following growth rate of the flute instability: 

d In Po mZ 

')' = g~ klrl ' (14) 

Of course, the instability condition is similar to (13). The instability growth 
rate in (14) is much greater than the Jeans growth rate at m/kr ~ 1. 

For the simplest model of a gaseous uniformly rotating cylinder of 
radius R, having at r = 1 (R ~ 1) density discontinuity (p = Pb if r < 1; 
P = Pz, if r > 1), it is possible to obtain the following expression for the 
oscillation frequencies (m > 0): 

w - mQ 

= Q(Pl - Pl) ± JQZ(Pl - Pl)l + m«(1/Po) dP o/dr), = l(PZ - Pl)(Pl + Pl) 
(Pl + Pl) . 
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Hence, in particular, it follows also that the necessary condition of instability 
is the inequality (V Po)(V Po) < O. 

§ 4 General Treatment of Kinetic Instabilities [3Sad] 

The problem of kinetic instabilities in a collisionless gravitating system 
appears if parameters of the system (density, velocity dispersion of stars, 
rotation, etc.) are such that the main "hydrodynamical" instabilities are 
absent. 7 Below we shall mainly speak of instabilities of the "beam" type, 
which are connected with the composite (" heterogeneous") character 
of the system, say, with the presence of a "beam" in the velocity distribution 
of particles. Accordingly, in this case one assumes also that the beam in­
stability of the hydrodynamical type produced by all particles of the beam is 
suppressed too. Then there is only the possibility of kinetic instability 
connected with the interaction of certain resonance groups of particles with 
the waves. 

In Section 4.1, the heterogeneous system is considered, which consists 
of a spherical component at rest and of a rotating disk component. Such 
systems have earlier been treated by a number of authors [84, 109] as a 
model of the Galaxy; also some possible kinetic instabilities of the" beam" 
type in such models have been studied in [84]. However, the finite character 
of the movement of the particles was disregarded (cf. Section 4.1 [3Sad]); 

this has led to incorrect expressions for the growth rate of the kinetic beam 
instability. In this connection it should be noted that the simple models 
of real systems used in the investigation of the kinetic instabilities may be 
divided into two classes. The models of the flat layer of finite thickness 
or a cylinder with an infinite generatrix (Section 4.3) are not limited in at 
least one direction. These models have much in common with the homo­
geneous plasma. In particular, the different kinetic effects in such systems 
usually have the respective plasma analogies to be found easily. On the 
other hand, in the models of disks, spherical systems, or ellipsoids, the 
movement is finite in all directions. The kinetic effects in such systems are 
due to the resonances between the waves and the orbital movement of the 
particles.8 

The solution of the problem under Section 4.1 as well as similar 
problems for the systems with a different geometry (Section 4.3) may 
be given in the general form, and it is separated into two independent stages: 
(1) derivation of the formulae describing the effect of the interaction of the 
resonance particles with the wave and (2) calculation of the wave energy. 
For a qualitative solution (i.e., to answer the question whether either in­
stability takes place or the wave damps) it is sufficient to solve two simpler 

7 As .. hydrodynamical" we understand instabilities in whose excitation all the particles 
take part and not a certain singled-out group of particles. 

8 Recently, in plasma physics, such effects have also begun to be studied in connection with 
investigations of the plasma instabilities in closed traps: tokamaks, Earth's magnetosphere, etc. 
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problems: to determine the sign of the wave energy and the sign of the varia­
tion rate of this energy due to the interaction with resonance stars. 

For the heterogeneous model described above, one may, in the investiga­
tion of the beam instability, use the results attained by Lynden-Bell and 
Kalnajs, who have derived general formulae for the wave energy and its 
variation rate in the disk system [289]. 

Similar formulae for other systems are derived [3Sad] in Section 4.2 
(sphere) and Section 4.3 (cylinder, flat layer). Section 4.3 investigates the 
beam instability. It has already been treated earlier on the simplest model 
of the cylinder with circular orbits of particles (in §1, [88]). Below we suggest 
the most general approach to the investigation of this point, and, in addition, 
we consider the beam instability in a gravitating layer. 

In Section 4.2, on the basis of the general formulae to be derived therein, 
we briefly consider the effects connected with a possible presence in the 
center of the stellar system of a massive formation of the black hole type. 
Interaction with the excited waves leads in this case to falling of part of 
resonance stars onto "the black hole." Such a process may in principle serve 
as one of the possible mechanisms of luminosity of such objects. Excitation 
of the waves in the systems with stellar orbits rather extended in radius may be 
due to, say, Jeans instability (cf. §S-7, Chapter III). 

It should be noted that the problem of the stars falling on the black hole, 
due to diffusion of stars caused by collisions, has earlier been considered in a 
number of papers; note here, for instance, the theory of Dokuchaev and 
Ozernoy [8ad]. We shall (under section 3) briefly discuss the role of some 
collective effects; further (§8, Chapter IX) we shall again turn to this problem 
and investigate it in some detail. 

4.1 Beam Effects in the Heterogeneous Model of a Galaxy 

In this subsection we shall use, as given, some formulae and conclusions 
which were obtained by Lynden-Bell and Kalnajs in their work [289], 
devoted to analysis of resonance interactions between the stars of a disk 
galaxy and a spiral density wave. A detailed account of this important work 
can be found below, in §2, Chapter XI. 

Let us consider the galactic model in the form of superposition of the flat 
and spherical subsystems. We shall assume that dispersion properties of 
disturbances are dete~mined by the flat component. In this case, as was 
shown by Lynden-Bell and Kalnajs [289], the wave energy in epicyclic 
approximation is given by the formula 

fJE ~ - Q p fIdI dI ~ 412m2Q1(Q2 - Qp)( -oFd/oI 1) '1'/' 12 (1) 
16n2 1 21~1 WQi _ m2(Q2 _ Qp)212 'I'lm, 

in which F iI 1> I 2 ) is the star distribution function of the flat component. 
The remaining notations and other details are given in §2, Chapter XI; 
here it is only important for us that in the case when the corotation radius 
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(02 = Op) lies on the galactic periphery, the sign of the wave energy is 
negative: bE < O. The rate of wave energy change due to the resonance inter­
actions with stars is given by formula (16), §2, Chapter XI (for the deriva­
tion, see the same place), which we write in the following convenient form: 

dE dE. dEd 
di=Tt+Tt 

If dEdL (2 of OF) 2 
= ~ ~ w oE + wm oL b(w - 101 - m02) • I "'1m I , (1') 

where F = F. + F d is the total distribution function of the system in the disk 
plane and L is the angular moment. 

We may separately consider the interaction of the wave with stars of the 
spherical component (dEJdt). In particular, for the case of the isotropic 
distribution of these stars (oF./oL = 0) under the natural condition 
of JoE < 0 we get dE./dt < O. This corresponds to the "beam" instability 
ofthe wave with negative energy (we assume so far that I dEJdt I < IdEJdtl). 

Note that the solution of the problem in the local approximation leads to 
the resonance ofthe kind w = kv where k is the radial wave number (kr ~ m) 
and v is the radial velocity of stars. In reality, however, the interaction of 
stars of the spherical component with the wave has a nonlocal character, 
and the correct condition of the resonance w = 101 + m02 [cf. (1')] involves 
the frequencies 01(E, L) and 02(E, L) rather than velocities. The expression 
for the growth rate of instability y = - E./2bE may be obtained from 
formulae (1) and (1'). The local growth rate y(r) can be derived in a natural 
way only in the description of the interaction of a tightly twisted wave with 
the stellar subsystems, whose orbits are close to circular (cf. [290a]). Namely 
for such subsystems it is easy to determine, as in [290a], the local density 
of energy sources (apart from the local density of the wave energy). 

The fact of instability (or damping) of the wave is defined not only by the 
wave resonance with the stars of the spherical component but also with stars 
of the flat constituent. The resonance interactions of the wave and stars of the 
disk subsystem in the epicyclic approximation are comprehensively9 

investigated by Lynden-Bell and Kalnajs [289] (see above). The main 
resonances in usual galaxies are of two types: the inner Lindblad resonance 
(w = 101 + m02 for I = -1; in the epicyclic approximation O2 = O(r) 
is the angular rate of rotation, 0 1 = X = 20(1 + rO'/20)1/2 is the 
epicyclic frequency), and the corotational resonance w = mO(r). The waves 
of negative energy are amplified at the corotational resonance and damping 
at the inner Lindblad resonance. The wave-star interaction effects of 
spherical and flat subsystems should, generally speaking, be considered 
jointly; moreover, the resulting effect may be of any sign. In this respect, the 
situation here is essentially different from that to be discussed below (under 

9 Note in particular that the kinetic "drift" instabilities which are treated by M. N. Maksumov 
(e.g., [81]) are nothing other than a result of the wave-star interaction in the region of the 
corotation resonance. 
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section 3), where the resonance effects in the main subsystem may be made 
negligible (so that the effects of the "beam-likeness" are manifested in the 
pure form) if the velocity of the beam is high as compared to the thermal 
velocity of the stars of the" background." 

Nevertheless, even in case, say, the eigenoscillations in the heterogeneous 
system, with due regard for the joint influence of the resonance particles of 
both subsystems, are damping, the effect of the wave amplified by the stars 
of the spherical subsystem may be of some interest, if the wave itself is 
originally excited by some external action. For example, it may be initiated, 
in the region of the co rotational radius, by a bar or barlike excitation at the 
galactic center. With its further propagation toward the center, such a wave 
is amplified by giving out its energy to the stars of the spherical component 
of the galaxy. For the system of the type of our Galaxy, the conditions of 
amplification of the wave appear to be too artificial: it is more probable 
that the influence of the inner Lindblad resonance of the disk component 
would be decisive and the wave would damp in its propagation. It is pos­
sible that here it is necessary, as suggested in [72ad, 79ad], to take into 
account the dissipative phenomena in the gaseous layer of the Galaxy. 
The effect of the wave-star interaction of the spherical constituent is of real 
interest in case of colder flat systems, with very narrow resonance regions, 
or in those cases close to the uniform rotation of the galaxy when the inner 
resonance is absent (here, however, the role of the corotational resonance in 
the disk subsystem should be of importance). 

The conclusion on excitation of the waves by the stars of the spherical 
constituent is obtained above, strictly speaking, only for the isotropic 
distribution (fJFs/fJL = 0). In the case Fs = FiE, L), one needs a more 
detailed investigation, which is impossible to make in the general form and 
should be performed for concrete distribution functions or their series (one 
can simply write only some sufficient conditions of instability). No principal 
difficulties are presented in this, but one has to do a considerable amount 
of technical work. The same is valid for different generalizations of the 
consideration given above (for the investigation of the "open" waves in 
the disk system, for an accurate quantitative analysis of the wave interaction 
effect with resonance stars in the Galaxy with due regard for the competition 
between the spherical and disk subsystems, etc.). 

Let us concern ourselves with the problem of the nonlinear generaliza­
tion of the theory. The quasilinear theory may be constructed in the standard 
way; this theory gives the answers to the standard questions. This is first of all 
the question of the relaxation of the resonance stars' distribution function. 
The resonance conditions, i.e., the equalities w = 1(>'l(E, L) + mQ2(E, L), 
determine (at I = 0, ± 1, .. -) at the plane E, L, some family of curves. It 
was to be expected that in the statement of the problem10 usual for the 

10 The problem of the self-consistent relaxation of distribution functions of both subsystems, 
taking into account the nonlinear drift of barlike disturbances' frequency in the galactic center, 
which may serve as the source of spiral waves, is more interesting to our minds. 
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quasilinear theory, "a plateau" will form in the vicinity of these curves so 
that the expression in the brackets in formula (1') goes to zero. 

Probably the most interesting question from the point of view of possible 
applications is the second question-on the adiabatic relaxation of non­
resonance stars' distribution function of the flat subsystem under an influence 
of the instability [21 00]. In the paper [21 ad], which was specially devoted 
to the problem of relaxation under acting the spiral structure, in reality, an 
influence onto the star distribution (" adiabatic heating") of the gravitational 
noises with an isotropic spectrum, but not of the spiral density waves, was 
considered. The latter are most probably narrow one-dimensional wave 
packets (m = 2, ky E [kyo, kyo + L1k r ], L1k, ~ kyo). A deformation of the distri­
bution function (which has a more complicated character) under the in­
fluence of such spiral disturbances may be determined from the formulae 
given in the work [32ad] (see Section 1.3, Chapter VII). 

4.2 Influence of a "Black Hole" at the Center of a 
Spherical System on the Resonance Interactions Between 
Stars and Waves 

Derive first of all the general formulae for the variation rate of the angular 
momentum and the stellar energy of a spherically symmetrical stellar system, 
due to their resonance interaction with the waves of a given frequency w 
[34ad, 3Sad]. These formulae are quite similar to the respective disk formulae 
(1) and (1') and may be derived by the" Lagrange" method used in [289] (see 
§2, Chapter XI). We shall obtain them, however, by a somewhat different 
method (more formal). By writing the linearized kinetic equation in the 
action-angle variables [cf. (7) in §4, Appendix] and integrating it along the 
path of the unperturbed movement of the particle, we readily find the 
perturbation of the distribution function (formula (10), §4, Appendix): 

1 
i1 = - (2n)3 

ei(lIWl +12w2 + !JW3) 

11t3 <1\1213 W - (l101 + 12 0 2 + 13 0 3 ) 

( aio aio ai o) 
x 11 all + 12 012 + 13 013 + c.c., (2) 

where ioU 1, 12 , 13) is the distribution function of stars, 11, 12 , 13 are the 
actions due to the coordinates r, e, cp, respectively, OJ = aE/alj are the 
frequencies, and 

Cl>1 is the perturbed potential; W l' W2' W3 are the angular variables. 
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Using the equation of motion of the particle, we find 

(3) 

dE == ~ (V2 + <1» = _ a<1>l 
dt dt 2 at ' 

(4) 

where (1 = sgn(I3). For the angular momentum variation average over time, 
as well as for energy, we have 

d(L) = f drf dL 
dt 1 dt ' 

d(E) = fdr f dE 
dt 1 dt ' 

(5) 

where dr = dl1 dI2 dI3 dW1 dW2 dW3 is the element of the phase volume of 
the system. By Eqs. (2)-(5) one may obtain the sought-for expressions: 

(6) 

(7) 

where y = Im(w). In case the instability growth rate is small, y ~ 0, from (6) 
and (7) we get 

From (8) and (9) it is easy to see that the exchange of energy and moment 
between the particles and the wave occurs on the resonances w = l1n1 + 
12n2 + 13n3. We turn now to the variables E, L", L from the action variables 
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I b 12 , 13 III Eq. (8), then for the distribution function F = F(E, L) we 
obtain 

(10) 

With respect to the frequency spectrum of waves, which may be excited in the 
system, one may make some assumptions which appear to be natural. We 
deal with the spherically symmetrical stellar systems (galaxies of the type 
EOll or spherical clusters of stars) in which, according to observations the 
stellar orbits are very much elongated in the radial direction. Such a system 
may easily be unstable" by Jeans" with respect to "merging" of the neighbor­
ing nearly radial orbits of stars: the velocity dispersion in the tangential 
directions, which make the system stable, in this case may turn out to be 
insufficient. It is clear that the development of this instability will "heat up" 
the system in the transversal (toward the radius) directions, so that finally we 
probably will have a spherical system brought to the stability boundary with 
the waves excited in it with the frequencies 12 w ~ O. Assuming in formula 
(10) that w = 0, we have 

d<L) 

dt 

The location of the resonances for w = 013 is determined by the frequencies 
Qt, 2, iE, L), i.e., by the equilibrium model of the system; the values <1>111213 

may be found by the formulae derived in §4, Appendix. 
Let us now take into account the effects caused by the presence of a" black 

hole" at the system center. Let us suppose that a "hole" has really formed at 
the center of a galaxy. It must be formed by stars with small angular momenta, 
which leave the system of stars in the vicinity of the central body. As a 
result, the immediate vicinity of the "hole" is enriched with stars with near­
circular orbits; i.e., in the vicinity, in the region of sufficiently small stellar 
angular momenta, we have oFjoL > O. The latter condition is the necessary 
condition for the kinetic loss-cone instability (of course, for waves with nega­
tive energy, the necessary condition of the instability has an opposite 

II The qualitative conclusions are valid also for other galaxies of the elliptical type, as well 
as for spherical components or nuclei of spiral galaxies. 

12 In the general case, the eigenfrequencies of a spherically symmetrical system should be 
determined by the numerical solution of dispersion equation (23), §4, Appendix. 

13 Note that in the Coulomb potential Q I (£) = Q2(E) so that in this case all the stars formally 
are resonant (for corresponding II, 12 , 13)' 



32 VI Non-Jeans Instabilities of Gravitating Systems 

sign), leading to an abnormally rapid (compared with collisions) filling 
of the loss cone in momentum space. This means that a stellar flow onto 
the "black hole" can considerably exceed a similar flow caused by star-star 
collisions. Since the accretion stellar flow onto the central body is responsible 
for the observed radiation flux from the central region, the existence of a 
loss-cone instability imposes an upper limit on the central body mass. 
Readers interested in more detail of the physics of the kinetic loss-cone 
instability, its consequences, and in some figures connected with applications 
are referred to the paper [39ad]. 

4.3 Beam Instability in the Models of a Cylinder 
and a Flat Layer 

It is easy to show (for example, by the method described in §4, Appendix) 
that the variation rate of the energy of resonance particles in a gravitating 
cylinder with an infinite generatrix is given by the formula 

• W Iff ( of of OF) E= -2n: dl l dl2 dVzt loll +m ol2 +kzoVz 

(12) 

where the wave with a frequency wand the wave number kz along the 
generatrix (z) is considered; F = F(Il, 12 , vz ) is the distribution function; 
the remaining notations have the same meaning as those in Section 4.2. 
On the other hand, the wave energy 

(13) 

Formulae (12) and (13) are valid for arbitrary cylindrical models; as kz --+ 0, 
(12) and (13) coincide with the respective formulae in Section 4.1. On the 
basis of (12) and (13), the kinetic instabilities in these models may be in­
vestigated in the general form (the instability growth rate or the wave damping 
decrement is y = - E/2(jE). 

The case of axially symmetrical perturbations (m = 0) of a cylinder with 
stellar orbits close to circular (epicyclic approximation) is very simple. 
Then, considering the perturbations with sufficiently small kz, the wave 
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energy may be calculated approximately by omitting in (13) the term pro­
portional to kz, i.e., by assuming the perturbations to be "flutelike": 

(14) 

fo = f F dvz· 

With the natural requirement that ofo/OI 1 < 0 from (14) it follows that 
bE > O. Consequently, the wave will be unstable only when the resonance 
stars, on the average, lose their energy in their interaction with it, i.e., if 
E < O. The distribution function is F = Fo + Fb, where Fo corresponds to 
the basic plasma ("background") and Fb, to the beam. It is evident that if the 
velocity of the beam V is high as compared to the thermal velocity of the 
stars of the background VTO ' then the contribution to E of the resonance 
interaction of the waves with the phase velocities OJ/kz '" V 14 with the stars 
of the background may be neglected (because there are practically no stars 
of this kind). After that, there remains only the effect of the interaction with 
the stars of the beam, and it is evident that such a situation appears to be 
possible only due to the formally infinite extension of the cylinder along the 
z-axis; in case of finite systems, the situation is quite different, cf. Section 
4.2. 

Consider, for the sake of simplicity, the case of a sufficiently narrow beam 
in the velocity space, kzlL\vzl < max(Ql).tS In this case, anyone resonance 
practically "works," with a fixed 1 (dependent on the value kz). For the 
Cherenkov resonance 1 = 0 (OJ = kzvz) we get 

. 1 (OJ) 2 Iff OFb 2 E = - 2n kz kz dl 1 dl2 dvz oVz IWk,o,ol b(OJ - kzvz), (15) 

so that E < 0 (which means instability) under the condition that for the wave 
in question (oFb/ovz)lvz=w/kz > O. For other resonances (I oF 0), a definite 
contribution is made by the term [in (12)] proportional to of/oIl' and the 
calculation gets somewhat complicated; in the general case, one has to specify 
the distribution function of the beam Fb , to know the equilibrium state 
determining Ql' QiE, L) and the values of the frequency OJ of the flutelike 
mode in question. 

14 Note that among the eigenfrequencies w of flutelike oscillations of cylindrical models 
there is always w - 0 1 (cf. §5, Chapter II). For such waves, the phase velocity w/k. may be 
arbitrarily high (for respectively small k.). 

15 The Jeans instability in both subsystems may here be practically completely suppressed 
(cf. §2, Chapter II), 
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For the model of a flat gravitating layer the formulae similar to (12) and 
(13) have the form 

E = - w II dI dV\~o (n ~~ + kz ;:) 

x l<l>k,nI2c5(w - kxvx - nO), (16) 

c5E = 2W fIdI dvx f l<l>k,nl2 
n n=O 

(17) 

where the distribution function F = F(J, vJ, I is the action associated with 
the coordinate perpendicular with the layer, 0 = oE/oI, the wave _eikxx. 
The analysis of the beam instability for of/oI < ° in this case is performed 
(very simply for the Cherenkov resonance n = 0) practically in the same way 
as for the cylinder, and the same results are obtained. Therefore, we shall 
not consider this point separately but consider, on the basis of formulae 
(16) and (17) a somewhat distinguished case of a homogeneous flat layer; for 
the case of a homogeneous cylinder with circular orbits of all particles 
(§1) one may consider by the analogy. 

The distribution function of a homogeneous layer with the thickness 
h = 1 and density Po = 1 may be represented in the form (§1, Chapter I) 

F 0 = CPo(vx)(l - Z2 - v;)-1/2e(1 - Z2 - v;), 

where e is the unit step function, 4nGpo = 1, G is the gravitational constant; 
for the homogeneous cylinder with circular orbits F 0 = CPo(vJc5(E - LO),O 
is the angular velocity of rotation of the particles. The derivative of %E 
in both cases does not have a definite sign everywhere; in case of the layer, 
moreover, the integrals in formulae (16) and (17) are formally divergent and, 
for example, formula (17) for the oscillative energy at kx = ° should be 
written in the form 

(18) 

Since, below, in the consideration of the wave-beam interaction we restrict 
ourselves by the Cherenkov resonance (n = 0), formula (16) again yields 

(19) 

The sign of the wave energy from formula (18) is not determined without 
calculations; however, from (19) it is easy to see that instability is present for 
any sign of c5E: if c5E > 0, then all the waves with such kx, for which 
(oFb/ovx)lvx=o>/kx > 0, are unstable; if c5E < 0, then those kx are unstable for 
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which (OFblovJlvx=w/kx < O. By the way, in the simple case in question, we 
know (cf. Problem 2, Chapter I) all the eigenfrequencies and eigenfunctions 
for all "perpendicular" oscillations (kx = 0): <I>\n)(z) = Pn+2(z) - Piz) and 
P.(z) are the Legendre polynomials, n = 0, 1, 2,·· .. Therefore, analytical 
calculations here may be performed to an end, and, for example, the growth 
rates of the beam instability may be obtained. The values of <l>lE) involved 
in (18) and (19) are defined as the coefficients at eilw (w is the angular variable) 

in the expansion of the potential <l>1(Z). Since z = J2E cos w, E = 1, and 
according to the addition theorem for the Legendre polynomials [42], 

MD 00 r(n - k + 1) 
Piy 2E cos w) = PiJI - 2E)Pn(0) + L r( k 1) 

k= 1 n + + 

x P~(JI - 2E)P~(0)(eikw + e- ikW), (20) 

(the r;: are the associated functions), then 

r(n + 3 - k) k k J 2) 
<l>k = r(n + 3 + k) Pn+2(0)Pn+2( 1 - E 

_ r(n - k + 1) pk(O)Pk(JI _ 2E) 
r(n + k + 1) n n , 

k # 0, 

<1>0 = Pn+2<Jl - 2E)Pn+zCO) - Pn(JI - 2E)Pn(0), (21) 

where I k I < n + 2. Take, for example, the case n = 0 (k = 0, ± 2) cor­

responding to homogeneous extensions-compressions of the layer; OJ = )3, 
and determine the sign of the wave energy. Since <1>0 = -!(1 - E) and 
<1>2 = iE, then 

9f (1 1) 12 bE ~ 40J dE EF(E) (OJ _ 2)2 - (OJ + 2)2 = 211: ."3. 54 > O. 

The beam instability in the model of the homogeneous cylinder with 
circular orbits of all the particles was earlier considered in §l. So we calculate, 
for comparison, by the method described above, the increment of the beam 
instability for this case. As the disturbed potential <1>1 = J 0(k1 R) and 

R = J a - b cos IV l' a = 12 + 211, b = 2J 1112 + Ii, then, using the 
addition theorem for cylindrical functions [42], 

00 

Jo(k1.R) = Jo(k1.p)Jo(k1.r) + L Jlk1.p)JI(k1.r)(eilwl + e- ilW1 ), 

1= 1 

where r = (j"i+b + ~)/2 and p = (j"i+b - ~)/2, we ob­
tain <1>1 = <I> -I = Jlk1.p) . Jlk 1. r). In the limiting case of the cylinder with the 
circular orbits 

11 --+ 0, a --+ 12, b --+ 0, r --+ Ja --+ jI;, and p --+ o. 
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In the sum for ~E (as well as for E), then there is only one term (we consider 
Cherenkov resonance 1 = 0): 

3 2 ~ 2 
A,_,2 11 

~E = pon k1. (co2 _ 4)2 0 dI2 J 1(k1.JT;), (22) 

• 4, 2 11 

E = - 4n POcoFblv=ro/k.· 0 dI2 Jo(k1.A)· (23) 

Consider some rotational oscillatory branch with k1. ~ 1. For kz --+ 0, k1. is 
determined from J o(k1.) = 0 (see §2, Chapter II). In this case the integrals in 
(22) and (23) are identical [ = Ji(k 1.)] [42], so that the increment of instability 
is equal to 

y = _ ~ = _ 4~ (1 _ kzV) exp[- (ji - kz V)2] 
2~E kz ki v} ji k;v} 

(co 2 = 2, VT is the thermal velocity of the beam with Maxwellian particle 
distribution, and rL is the ratio of densities of the beam and the main system), 
which is coincident with the results of calculations in §l. 



CHAPTER VII 

Problems of Nonlinear Theory 

Either the well was very deep, 
or she fell very slowly, for she had plenty of time 
as she went down to look about her 
and to wonder what was going 
to happen next. .. 
1. CARROLL, Alice in Wonderland. 

In this chapter we shall touch upon some important problems of nonlinear 
theory of density wave evolution in a gravitating medium. Nonlinear theory 
is in its first stage only. It faces, for example, the development of gravitating 
medium turbulence theory, and now the tasks set forth in this chapter are 
its unfinished foundation. 

§ 1 Nonlinear Stability Theory of a Rotating, Gravitating Disk 

1.1 Nonlinear Waves and Solitons in a Hydrodynamical 
Model of an Infinitely Thin Disk with Plane 
Pressure [90a, 20ad, 89a, 31 ad] 

1.1.1. Statement of the Problem and Initial Equations. The question of the 
possibility of stationary solutions in the form of solitons travelling in the 
gravitating disk plane is extremely interesting in itself and possibly as one 
bearing a relation to the galactic spiral structure problem (cf. Chapter XI). 

In this section we shall investigate nonlinear processes in the infinitesimally 
thin, rotating disk near its stability boundary [I w 2 1 ~ 06, where w is a 
frequency of the perturbation wave and Oo(r) is an angular disk velocity]. 
For the sake of simplicity we restrict ourselves to consideration of a short­
wavelength range of spectrum. 

37 
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Let us proceed from the system of equations commonly used in the analysis 
of perturbation located at the plane of a gravitating disk (vz = 0) (see 
Chapter V): 

OVr oVr vip oVr v; at/! 1 op 
-+V -+----= -----
at r or r ocp r or u or ' 

oVip oVip vip oVip vrvip _ 1 at/! 1 op 
-+V -+--+-- ------at r or r ocp r r aqJ ru ocp , 

au 1 a 1 a - + --(rvru) + --(v u) = 0, 
at r or r ocp ip 

1 a (0<1» 1 02<1> 02<1> 
-;: or r Tr + r2 Ocp2 + OZ2 = 4nGuo(z). 

(1) 

(2) 

(3) 

(4) 

<I> = <l>(r, cp, z, t) is the gravitational potential, t/! = t/!(r, cp, 0, t) is the 
gravitational potential at the disk plane, and p is the plane pressure (a usual 
pressure we denote by a letter P). We shall consider the oscillations (and the 
process of instability itself) to be adiabatic. Then for a thin disk, as was 
shown by Hunter [233] (see Section 1.3), one may write 

P 
C2 = 'V~ 

S - '" , 

Uo 

2 
'" = 3 --, 

y 
(5) 

where y is an adiabatic index (P/pY = K == const). Stationary quantities 
have an index O. 

Let us represent quantities X = (v" vip' t/!, u) in the form 

X = XO + X, 

where XO describes a slowly varying part of X and X corresponds to a 
quickly varying part. Assuming that I X I ~ I X O I (v~ = 0) and also that 
r a In X/or ~ m2 (the last inequality corresponds to tightly wound spirals, 
where m is a number of an azimuthal mode), we obtain from (2) and (3) 

N 1 LN Vr = - - vip' 
"'0 

Uo oVip 
U=--"'0 or' 

(6) 

(7) 

where the operator L = Ojot + no %cp ["'0 = (1/r)(%r)(r~] is intro­
duced. Substituting (5)-(7) into (1), we get 

L2N ( 2 02 2n)N o.ji vip = c. or2 - uo"'o vip + "'0 Tr 

'" - 2 2 0 [(OVip)2 '" - 3 (OVip)3] v; +--c - - +-- - -"'0-. 
2"'0 • or or 3"'0 or r 

(8) 
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In deriving this equation we have used the condition of a slow change in the 
values X in comparison with the disk rotation frequency no: 0 In X/ot 
~ no. On the basis of the last inequality, the nonlinear term Vr ovr/or in (1) 
is omitted. The appearance of nonlinear summands in square brackets is 
associated with the term describing the pressure force. 

1.1.2. Nonlinear Dispersion Equation Near the Stability Boundary. Restricting 
ourselves in (8) only to linear terms and taking into account the relation 
between v." and l[J, 

. 2nGao N l[J = -1-- vrp sgn k, 
Xo 

for perturbations of the form 

k 
sgn k = ikI' 

v.,,(r, t), l[J(r, t) =e-iwl+ikr, 

we arrive at the local Toomre dispersion equation 

(w - mno)2 = x2 - 2nGao I k I + C;k2. 

(9) 

(10) 

(11) 

Let us consider,l first of all, the range of disk equilibrium parameters 
corresponding to dispersion curves close to the curve which touches the 
abscissa axis (see Fig. 93). Obviously, the two following conditions, w2(k*) 
= ° and ow2(k*)/ok = 0, are satisfied at the touching point k = k*. Hence 
one may obtain k* = x/c. and x = nGao/c •. 

We shall investigate nonlinear evolution of the small-amplitude wave with 
the wave number ko near k*, I(ko - k*)/k*1 ~ 1. Deformation of such a 
wave is due as is known to the production of multiple harmonics, i.e., of 
waves with wave number nko (n = 0, ± 1, ... ). Consequently, let us represent 
disturbed quantities in the form of Fourier expansions: 

v = L Vn exp(inkor), 1f, = L I/In exp(inkor). (12) 
n n 

Substituting (12) into (8), taking into account (9), and introducing the 
notation 

(13) 

1 The general case is considered at the end of this subsection and in Problem 1. 

Figure 93. Dispersion curves for rotating collisionless disks; I and 2-for nearly mar­
ginally-stable disks, 3-for a "cold" disk. Pointed lines correspond to different be­
havior of v2(k) for gas disks at large k. 
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we obtain the equation 

"I £2VI(t, <p) exp(ilkor) = - "I W;VI(t, <p) exp(ilkor) 
I I 

x exp[i(l + n + m)kor]} + "'0 "I VI(t, <p)v,,(t, <p) exp[i(l + n)kor]. 
r I." 

(14) 

Equation (14) may be written in the form "II Al exp(ilko r) = O. The equation 
Ao = 0 describes the linear approximation considered by Toomre [333]. 
The equations A1 = 0 and A2 = 0 are the following: 

£2 2 '" - 2 k2 2[ . ( ) ( ) v1(t, <p) = -WkoV1(t, <p) + -2- oC. 41V2 t, <p V- 1 t, <p 
"'0 

",-3 2 ~ 
---kolv1(t,<p)1 V1(t,<P)] +2--:-vit,<p)v_ 1(t,<p), (15) 

"'0 r 

A2 2 '" - 2 3 2 . 2 "'0 2 ) L V2(t, <p) = -W2koV2(t, <p) - -2-koc.21V1(t, <p) + -v1(t, <p), (16 "'0 r 

where 
£.,2 _ ",2 
UJ2ko - "'0, (17) 

(18) 

Taking into account that y2 ~ W~ko' "'~ = k~c;, kor ~ I, let us transform 
(18) into the form 

(19) 

Substituting this expression into (15), we finally obtain the following non­
linear equation of velocity oscillations of a gaseous gravitating rotating disk 
with a small but finite amplitude: 

£2 ( ) _ 2 ( ) (2 - "')k~Oo [8(2 - ",)00 "'0 - (3 - )] v 1 t, <p - Yko V 1 t, <p + 2 '" "'0 W2ko 

x Iv1(t, <p)12v1(t, <p). (20) 

The nonlinear dispersion equation corresponding to (20) has the form 

(w - mOo)2 = -Y~o - !k~(2 - ",)(i - "')lv1 12• (21) 
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From (20) or (21) it is seen that the growth of the perturbed velocity 
amplitude due to instability stops at the level 

2 
1 V 12 = YkoXO (22) 

t 3(2 - x)k500(x - i), 
while the amplitude of the perturbed density increases up to the value 

l/1tl2 k; Y;o (23) 
/15 = k5 3(2 - x)Ooxo(x - if 

1.1.3. Solitons. Let us show that Eq. (20) has a stationary solution of the 
soliton type [90a]. 

Let a narrow wave packet be excited in the vicinity of the point ko, 
flkjko 4i 1. Taking into account the dispersion of wave numbers, it is not 
difficult to represent the function y2(k) in the form of a series in the vicinity 
of the point ko, where this function has a maximum 

2 2 1 02Yk I 2 Yk = Yko + 2 ok2 _ (k - ko) + .... 
k-ko 

(24) 

As follows from (1). t 02Ykjok2 = -c;, k - ko = k, - ko, == kt, since 
k, ~ kIP = mjr. Hence, instead of (24) we have 

2 _ 2 k2 2 Yk - Yko - t,c •. (25) 

Substituting in (20) Y;o for Y; and making use of the expansion (25), 
proceed in (20) to the coordinate representation. For this purpose, we multiply 
term by term (20) by exp(iktr) and integrate over kt, assuming that 

f vt(k1, t) exp(ik1r) dk1 = vl(r, t). 

As a result, we obtain the equation 

~2 2 2 (2 - x)k5 0 0 
L vt(r, t) = (Yko + c.fl,)vt(r, t) + 3----=~ 

Xo 

x (i - x)lv1(r, t)12v1(r, t), (26) 

where fl, == o2jor2. 
We turn now to the local rotating frame of reference and select the co­

ordinate-temporal dependence vt(r, t) in the form vt(r, t) = V(e) = V(r - ut). 
In (26) we proceed to the variable e. Finally, we obtain the equation 

a.2 d2 V 2 2 3 ----;[f = Yo V - P V , (27) 

where 

p2 = 3(2 - x)(x - i) 0 0 k5. 
Xo 

(28) 
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The solution of Eq. (27) is 

V(~) = ~rY[30 sech yo~ 
Ju 2 - c; 

(29) 

Thus, as is seen from relations (27)-(29), in a rotating gravitating disk, 
the existence of two types of solitons is possible. 

(1) The supersound solition, ry.2 > 0, which can be produced and propagated 
in a weakly unstable disk, y~o > ° (Fig. 93). Here the equation of state of the 
disk must satisfy the condition [32 > 0. The condition [32 > ° corresponds 
to the adiabatic index y, which lies in the range t < y < 2. 

(2) The subsonic soliton, ry.2 < 0, that can propagate in a stable (according 
to Jeans; cf. Fig. 93) disk, y~o < 0. Then, the equation of state of the disk 
must satisfy the condition [32 < 0, which corresponds to the adiabatic index 
y<l 

1.1.4. Nonlinear Dispersion Equation in the General Case. In concluding let 
us note that in Problem 1, in the same model we shall derive [31 ad] the non­
linear equation generalizing (21) for the case of an arbitrary location of the 
wave number k (not necessarily corresponding to the minimum of the curve 
(J)2 = (J)2(k) and not necessarily to the system being anhe stability boundary). 
The derivation is performed by another, possibly simpler and more obvious 
method (in the Lagrange approach by using an accompanying locally 
Cartesian coordinate system x, y). Let us write here this equation for the 
Fourier image ~k(t) of one-dimensional displacements of particles 

~(xo, t) = L ~it)eikXO 
k 

(xo is the Lagrange coordinate of the particle) 

(::2 + (J)~)~k = i L Fk,k"k2~k,~k2 + L Qk,k"k2,k3~k'~k2~k3' (30) 
k"k2 k"k2,k3 

where (J)~ = %6 + k 2c; - 2nGlTo I k I, %0 is the epicyclic frequency, Cs is the 
sound velocity, IT is the surface density, G is the gravity constant, and 
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Hence, in particular, we find the following generalization of Eq. (21): the 
nonlinear dispersion equation which can be used in the consideration of one­
dimensional wave packets located near the arbitrary wave number k: 

w2 = w~ - 2( 2 k
2 

4 2) {8[(2X - 1)c;k2 - xnGuolkl]2 
x W2k - Wk 

- [(2x - 1)(5x - 2)c;k2 - 4x2nGuolkl(w~k - 4wD}I~kI2. 
Let us point out the simplest partial case of a nonrotating disk at the stability 
boundary: 

Here one also can construct a solition of the envelope, with an arbitrary 
wave number of "filling" ko. For real w(ko), these solitons must evidently 
displace along the disk (in the radial direction) with a group speed cg = 

(dw/dk)ko' For ko corresponding to the curve minimum w2 = w2(k), we arrive 
(by continuity) at solitons at rest (cg = 0), which are a partial case ofthe above­
treated soliton solutions (for u = 0). For dw/dk = 0, there is degeneration: 
there are solutions with arbitrary velocities of propagation u. 

1.2 Nonlinear Waves in a Gaseous Disk [31 ad] 

In the previous section we described some results of the basic work [90a] , 
which for the first time considers the effects of weak nonlinearity in a rotating 
gravitating medium. The model of an infinitely thin disk (kh ~ 1; h is 
the thickness) adopted in this work is justified in the consideration of a 
gaseous layer, which is within a more massive (stellar) constituent2 : the 
dispersion curve w2 = w2(k) has a minimum at kh '" piPs (p g and Ps are 
the volume densities of gas and stars). However, for purely gaseous systems 
(for example, the protoplanetary cloud of the Solar system) being at the 
stability boundary, the infinitesimally thin disk model is not valid: from the 
equilibrium condition in the vertical direction it follows that 4nGpo h2 
= 2nGuoh '" c;. Since at the stability boundary the wave number k = 

ko '" nGuo/c;, then it turns out that kh '" 1. 
The construction of the consistent theory of nonlinear oscillations of a 

gaseous disk with a finite thickness presents a significantly more complex 

2 For detail see §5.l, Chapter VII. One may also consider that the infinitesimally thin disk with 
plane pressure (pz = 0, P 1. # 0) leads to a model description of a real strongly flattened stellar 
system of the type of spiral galaxy. Here, however, the question arises of the magnitude of the 
"effective" adiabatic index y (cf. Section 1.3). Finally it is necessary to say that, in accordance with 
the notation of Churilov and Shukhman, for the gas disk immersed into more massive halo, the 
relation between the plane (x) and volume (l')adiabatical exponents changes: x = 3 - 4/(1' + 1). 
This formula may be obtained from the dimension analysis if we take into account that the 
gravitational constant G must occur in the given case only in the combination (Gps). 
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task, which must be solved by numerical methods. Analytical solution 
happens to be possible only for some partial values of the adiabatic index y, 
for example, for y = 1 and y = 2 (for more detail, cf. Problems 2-4). 

Consider now small oscillations of a flat gaseous layer with the adiabatic 
index y. Corresponding equilibrium models as well as linear oscillations for 
three partial values of the adiabatic index y = 1,2,00 are considered analyti­
cally by Goldreich and Lynden-Bell [210]. Below we construct, now basically 
by numerical methods, a nonlinear theory of oscillations of these models for 
any values of y. 

Initially we have the system of hydro dynamical equations and the Poisson 
equation 

~ + div(pV) = 0, 

BV at + (VV)V - 2[VQ] = -VA., 
(1) 

dqJ = 4nGp, 

(A = const) quantity R = ~ pY-l == ~ (!!...)Y-l, 
Y - 1 y - 1 Pe 

y> 1,3 

Pe and c. are the density and the sound velocity in the middle plane of the 
layer. 

Let the Oz axis be directed perpendicularly to the plane of the layer and all 
the values be dependent on x and z (in the stationary state, however, only on 
z). We introduce the dimensionless quantities, ~, " t, 0', C, <1>, x, A, v in the 
following way: z = a" x = a~, t = wot, 0' = PiPe' c2 = c;la2w~, qJ = qJla2w~, 
X = 2Qlwo, A = A.la2w~, v = (u, v, w) = Vlwoa, where w; = 4nGPe' a is the 
semi-thickness of the layer. In the stationary state, from the z-component of 
the Euler equation and the Poisson equation, we obtain the equation [210]: 

whose integration, with due regard for the fact that, at , = 0, 0'0 = 1, 
dO'old' = 0, yields [r(x) is the gamma function] 

d -1 Y - 1 f2 ~Y C __ f2Y r(! - 1/Y). 
d, O't, = - ----c .yy v 1. - 0'0' .y-;- r(l - l1Y) (2) 

Since, as follows from (2), asymptotically, as , -+ ± 1, 0'0 '" (1 _ ,2)1/(Y-l), 
0'0 may be represented in the form 0'0 = f<O(1 - (2)1/(Y-l), where f<O is 
the function regular on the segment [ -1, 1] together with its derivatives. 

3 For}, ;5; 1, the thickness of the disk is infinite; note also that the adiabatic link between the 
equilibrium pressure and density is generally not necessary and is assumed (same as, e.g., in 
[210]) for the sake of simplicity. 
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Let us consider the perturbations symmetrical with respect to the plane 
z = 0 (of Jeans type) near the stability boundary co ~ 04 (co is the perturba­
tion frequency). Assuming that <5<1> '" e, o/iJr: '" e2 (<5<1> is the potential 
perturbation, e is the small parameter), 5 we shall obtain from (1) the following 
estimates of the orders of magnitudes: <5u '" e, U '" e3, v '" e, W '" e3, the 
displacement of the disk boundary '11 '" e. System (1) then gets simplified: 

i1dr(oU O(UU») (au O(UU») I '12 (02U 02(UU) ) I - 0 .. -+-- +'1-+-- +- -+-- -, 
o or o~ or o~ ,=1 2 oro( o(o~ ,=1 

oA 
8[= 0, 

_ (3 - 2y)(2 - y) 3(1-Y)(<I> _ A)3 
6c6 Uo . 

(3) 

(4) 

(5) 

(6) 

We derive the boundary conditions for the values of jumps ofthe potential 
<I> and its derivative o<l>/oz at the unperturbed boundary z = a. We deal here 
with a common-for such a kind of problem-representation of the total 
perturbed potential as due to, first, "local" density changes P1(X, z) = 

p(x, z) - Po(z) within unperturbed boundaries (Izl < a) and, second, 
by induced, at the old boundary z = a (and, symmetrically, at z = -a), a 
simple and double layers. In essence, we determine below the powers of the 
latter. We write for that purpose the total (dimensionless) density u with due 
regard for perturbation symmetry, in the form 

u = u(O[I1«( + 1 + '1) - 11«( - 1 - '1)], (7) 

where 11 is unit step, '1 is the boundary displacement. Expanding the 11 
function near z = 1 in a series in degrees '1 up to third order inclusively and 
then substituting u into the Poisson equation, we obtain 

02<1> 02<1> 0(2 + 0~2 = uW[1 - 11«( - 1) + '1<5(, - 1) - t'12<5'«( - 1) 

+ 1.'13<5"«( - 1)], (5') 

where <5, <5', <5" are the <5 function and its derivatives. 

4 Goldreich and Lynden-Bell in [210] have shown that w2 is real for the system of (1). 
S Derivative iJjOT: CXJ w, where W is the "full" (taking into account nonlinear correction) 

frequency; the ordering scheme assumed here suggests that w2 is a value of greater order of 
smallness than £2 (for example, one may assume w _ £2). 
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The first boundary condition (for the jump 8(1)/80 will be found by inte­
grating (5') over' within the limits from (1 - 8) to (1 + 8), 8 ~ +0: 

(8) 

Multiplying (5') by (' - 1) and integrating within the same limits, we easily 
find also the second boundary condition 

(9) 

The continuity condition ofthe pressure on the boundary of the disk [P] = 0 
can be written in the form 

( 8(1 1 282(1 1 383(1)\ 
(1 + 11 8, + "211 8,2 + "6 11 8,3 ,= 1 = O. (10) 

Since as 1'1 ~ 1,8(10/8, '" (1 - ,2)(2- Y)/(Y-l),82(10/8,2 '" (1 _ ,2)<3-2y)/(y-l), 

and 83(10/8,3 '" (1 - ,2)<4-3y)/(Y-l), then within the interval of interest to 
us 1 < Y ~ 2 the right-hand sides of (8)-(10) tend. to infinity as I' I ~ 1 
(correspondingly for y > t and y > 4). To eliminate these fictitious diver­
gents (they result from the displacement of the boundaries of the disk), 
one may, for example, use the following approach. Assume that there is a 
small pressure Ph of the" halo" surrounding the disk. Then the right-hand 
side of (3) becomes 

the right-hand side of (10) will be substituted for (1h' and (10 will be presented 
in the form (10 = f(O(1 + rx - ,2)1/(y-l), rx = y[f(I)]l-YPh/(y - l)c2. Then 
one has to perform all calculations and in the final formulae put that Ph = 0 
(by preliminarily reducing them to the such form when this limiting process 
makes sense). 

The perturbation periodical in~ may be presented in the form (c.c. means 
complex conjugate) 

A = (A(1)eik~-iror + c.c) + [(N2)e2ik~-2iror + c.c) + A(O)] + "', 

where N°), A(l), N 2 ) are the constants (since 8A/8, = 0). We choose Nl) as 
the amplitude of perturbation and seek the solution using the perturbation 
theory within an accuracy of (A (1)3. 

1. Linear approximation. Expressing from (6) (1(1) through «1)(1) - Nl), 
we find the solution for the Poisson equation (5) with the boundary conditions 
of (8) and (9): 

(11) 
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f(k) 

Figure 94. Nonlinear shift of the stability boundary determined by the linear problem 
(1): 2-stabilization; 3-destabilization. 

Then, substituting (11) into (3), we obtain the linear dispersion equation 
(for w = 0) in the form 

~o = f 0'0 dC = A C. 

(12) 

The behavior of the function f(k) = Fk/k2 is qualitatively identical for all 
values of y [210] and is shown in Fig. 94. From this figure it is seen that 
Eq. (12) [f(k) = ~0/,,2] has solutions only for fairly small " (angular 
velocities of rotation). If (12) has two solutions, then the region kl < k < k2 
corresponds to instability (w2 < 0), and the regions k < kl and k> k2' 
to stability, w2 > O. At some critical value of" = "., there is only one solution 
of (12) k = k., which corresponds to the minimum f(k). 

2. Nonlinear corrections. In taking into account the nonlinear terms (up 
to cubic), instead of (12), we have the nonlinear dispersion equation of the 
form 

(13) 

and the stability boundaries will be somewhat shifted. Nonlinearity exerts a 
destabilizing action if the equation f.,(k) == Fk/k 2 - AINl)1 2/k2 = ~o/"; 
has two real solutions and a stabilizing action, if there are no real roots. 
Due to the smallness of A (1), one can write near k = k. 

F; _ ~i ~ ~ 02~ I (c5k)2 = ~ IA(1)12. 
k ". 2 ok k=k* k. 
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Figure 95. Dependence of the critical wave number k. (dotted line) and the coefficient A 
in the nonlinear correction-see Eq. (13) (solid line) on the adiabatic exponent y. 

Since (fPj/ok2)k=k* > 0, then the sign (c5k)2 is defined by the sign of A: for 
A > 0, nonlinearity plays a destabilizing role, while for A < 0, a stabilizing 
one. 

The system of equations (2)-(10) was solved numerically. First of all, the 
stationary density distribution 0'0 was found. Then, in each order with respect 
to N1) (up to third order inclusively) the solution to the Poisson equation 
(5) was found with the right-hand side of (6), and with boundary conditions 
of (8) and (9). Then, by using (6), the corresponding density perturbation was 
calculated and, together with the velocity perturbation u found from (4), 
was substituted into (3). As a result, we have the following equations: 

First order: 

Solving this equation, we find k* and "* (for results, cf. Fig. 95): 
Second order: 

(The value N°) is not necessary in further calculations.) 
Third Order: 

(14) 

(15) 

(Fk - ~~ LO) = DA(2) - CNl)2. (16) 

The right-hand sides of (15) and (16) are calculated at k = k* (note that in all 
problems of this type D = 2B). Solving (15) with respect to A(2) and substi­
tuting into (16), we obtain the nonlinear dispersion equation in the form (l3), 
where A = BD /(F 2k. - 4F kJ - C. Computations (cf. Fig. 95) showed that 
in the range 1 < Y < 2 for 1 < Y < Yo there is destabilization (A > 0), 
while for Yo < Y < 2, stabilization (A < ° and Yo :::::: 1.404 :::::: !).6 

6 Note that numerically this value proved to be close to the value Yo = ~ obtained in the 
previous subsection, where the case of an infinitely thin disk is considered. 
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The cases y = 1 and y = 2 are peculiar ones for the numerical method 
described above. However, in these cases it is possible to investigate analyti­
cally, which was just performed with the aim of control (cf. Problems 2-4), 
For y = 2, the nonlinear correction is expressed through elementary func­
tions while for y = 1 the answer is in quadratures (by the way, being rather 
cumbersome so that their computation demanded more computer time than 
the complete calculation described above). As was to be expected (cf. Fig. 95), 
nonlinearity has a destabilizing character for y = 1; for y = 2 stabilization 
takes place, so that the nonlinear correction changes sign (a second time 
after y = Yo) for y > 2. 

For a nonrotating layer (at its stability boundary) the calculations are 
performed for Y = 1 and Y = 2 (in more detail, cf. also Problems 2-4). In 
the first case, the nonlinear correction ( ,.,. 1\(1)2) happened to be zero. In the 
second case, stabilization takes place. It should be expected that also within 
the whole region 1 < Y < Yl (Yl > 2) the character of the nonlinear correction 
remains stabilizing. 

The main result of the investigation performed above is the determination 
of the critical value of the adiabatic index Ye ~ 1.404 for the rotating gaseous 
layer. Only for sufficiently low Y < Ye' perturbations may increase up to 
large values. Note the closeness of Ye to the value of the adiabatic index of 
the biatomic gas (y = 7/5 in normal conditions). Some possibilities of 
applications of the results attained above are discussed in Chapter XI. 

1.3 Nonlinear Waves and Solitons in a Stellar Disk [32ad] 

1.3.1. Derivation of the Equation for Nonlinear Waves. Consider an in­
finitesimally thin stellar disk, which rotates with an angular velocity O. Assume 
for the sake of simplicity that rotation is uniform: 0 = const i= O(r), r is 
the radius of the point in the disk plane (x, y). The distribution function of 
stars in a rotating reference system is assumed to be Maxwellian 

f rO) _ a 0 (V2 ) ---exp --
2nT 2T ' 

(1) 

where T is the temperature. The linear dispersion equation describing small 
perturbations is conveniently written in the form of (23) of Section 4.1, 
Chapter V, 

- = - 1 - -.-- - e-x(l+coss) cos vs ds . kT 1 ( vn 1 I" ) 
k x sm vn 2n _" 

(2) 

We recall the definition of the values involved in (2): kT = x2 /2nGa 0 is the 
Toomre critical wave number, x = 20 is the epicyclic frequency, v = 

(w - mO)/x is the dimensionless frequency, m is the azimuthal number, k is 
the wave number that is assumed to be large, kr ~ 1, x = k2 T/x 2 = k2p2, 

and p2 = T/x2 is the square of the epicyclic linear size. The dispersion equa­
tion in the form of (2) is normally used in the theory of spiral structure of 
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galaxies similar to our Galaxy [270, 271]. The qualitative behavior of the 
curves v(k), defined by Eq. (2) is given in Fig. 93 for two different pairs of 
parameters kT' T characterizing the equilibrium state. The disk is stable if 

the parameter z = 2nGaoJ2iT Ix does not exceed the critical value z* ::: 2.652 
(cf. Section 4.1, Chapter V). As z > z*, there appears the instability region 
(cf. Fig. 93). If z = z*, the dispersion curve touches the abscissa axis at a 
certain point k = k6. The value k6 can be determined from (2): k6 = 
l.377xlJIT. . 

The goal of further calculations is to obtain the nonlinear equation for the 
potential harmonic <l>k' To begin with, we derive the nonlinear dispersion 
equation that generalizes Eq. (2), and this is done for an arbitrary value of the 
wave number k. The situation is considered in more detail when the disk is in 
the state close to the stability boundary, i.e., at z ::: z* either in a stable 
(z < z*) or in an unstable (z > z*) region. Moreover, we shall mainly be 
interested in the wave numbers k close to the wave number ko corresponding 
to the minimum ofthe dispersion curve. In this case the small parameter ofthe 
problem may be considered the value 1 Wko 12 Ix2 = 1 Vko 12 ~ 1. At such 
assumptions, we have the nonlinear equation of the form (20), Section 1.1. 

In the local approximation used by us it is convenient to introduce 
[210,334] the locally Cartesian system of coordinates with the origin at the 
center of the region of the disk under consideration rotating with an angular 
velocity Q. The orientation of the axes (x, y) is arbitrary; for certainty one 
may, for example, assume that the x-axis is directed along the radius r, 
with the y-axis across the radius. 

Let the potential perturbation have the form 

<l>(x, t) = I <l>k(t)eikx (<l>k = <l>!k)' 
k 

Substituting <l> into the kinetic equation 

af af (af af ) a<l> af 
at + Vx ax + x Vy avx - Vx avy = ax avx 

(3) 

(where it is assumed that in the x-direction, the potential <l> changes much 
more rapidly than along y), we can calculate the distribution function by the 
iteration method. Assume that 

then 

f = f(O) + I Aeikx 
k 

(4) 

(5) 

where the values fl1), f12 ), and fP) are linear, quadratic, and cubic in <l>k' 
respectively. Equation (3) is readily solved by the method of integration over 
angle, by transforming to the variables v and qJ: Vx = v cos qJ, Vy = v sin qJ. 

Integrating then (5) over velocities, we obtain the surface density perturba­
tion 

(6) 
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where o'p), O'f), 0'13 ) are connected with <l>k via relations of the form 

aF) = aoAk<l>k' 

ai2) = 0'0 I Bk.k,.k2<1>k,<I>k2Dk.k,+k2 
k,.k2 

ap) = 0'0 L Ck.k,.k2.k3<1>k,<I>k2<1>k3Dk.k,+k2+k3· 
k,.k2. k3 

(7) 

(8) 

(9) 

Ak.Bk•k,.k2' Ck.k,.k2.k3 are the notations of the corresponding coefficients. 
This expression for ak is further to be substituted into the Toomre relation 
following from the Poisson equation (in the short-wave approximation) and 
connecting the values ak and <l>k: 

We have 

2nGao ( 
<l>k = - -Ik-I- Ak<l>k + L Bk.k,.k2<1>k,<I>k2Dk.k,+k2 

k,k2 

+ I Ck.k,.k2.k3 <l>k , <l>k2 <l>k3Dk.k, +k2+k3)' 
k,.k2.k3 

(10) 

(11) 

For the harmonic k = ko (arbitrary so far) we have from (11) within an 
accuracy of cubic terms 

_ 2nGao * 
<l>ko - -~ [Ako <l>ko + (Bko• 2ko. -ko + Bko. -ko. 2ko)<I>2ko <l>ko 

+ (Cko.ko,ko. -ko + Cko.ko . -ko.ko + Cko. -ko,ko.ko)<I>~o <1>:0]. (12) 

Eliminating the value <l>2ko with the help of Eq. (11), written for k = 2ko, 

<D2ko = - (2nGao/12kol)B2ko.ko.kO <1>2 
1 + (2nGao/12ko I )A2ko ko' 

(13) 

we obtain [32ad] 

(14) 

Here 

2nGaoBkODkO 
Rko = Cko - 1 + (2nGao/12ko I )A2ko 

(15) 

Equation (14) (if it is divided by <l>ko) is the sought-for nonlinear dispersion 
equation. 

Some details of the derivation (rather cumbersome) of this equation are 
given in §8, Appendix; also given are the expressions for the coefficients 
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A, ... , D. Below, we shall need only their values at z = z* and ko = k~ = 
1.377 (we assume the units in which 2T = 1, x = 1). To calculate them, one 
has in the general formulae to switch to the limit y -+ 0, opening the un­
certainties to be presented. The expressions thus obtained are also given in 
§8, Appendix. The integrals in them are computed, which result in the 
following values for the coefficients of the nonlinear dispersion equation of 
interest: 

A2ko = -1.574, Bko = 0.230, Dko = 2Bko ' 

Cko = 0.206, Rko = -0.002, 2nGuo = 1.326. 
(16) 

From dispersion equation (14), one can switch to the corresponding non­
linear differential equation for <Ilko with %t =F O. This is easily done if one 
bears in mind that, in the linear approximation, the equation has the form 

02 

ot2 <Ilk + V~<Ilk = 0, (17) 

where v~ is the square of the dimensionless frequency 

2 1 - Io(k2/2)e-k2/2 - Ikl/4nGuo 
Vk = (n2/6)Io(k2/2)e-k2/2 _ J~ e k2(1+COsx)/2X2 dx/2n (18) 

Finally, we obtain [32ad] the following equation: 

02 <Ilk 2 2 ot2 + Vk <Ilk = Ilk I <Ilk I <Ilk' (19) 

where 

Ilk = R;o [n; Ioe1)e-ko/2 - 2~fe-kO(1+COSX)/2x2dxJ (20) 

The numerical value of the quantity Ilk turns out to be small: Ilk ~ 0.002. 
Hence it follows that the essential role may be played even by a comparatively 
small in mass, gaseous component. Since the velocity dispersion of gaseous 
clouds in the Galaxy is small in comparison with the velocity dispersion of 
stars, it may be suggested that the gaseous disk is "cold." In this case, the 
coefficients A2k , Bk, Dk, and Ck> for the gas similar to that used earlier for 
stars, are 

6v2k6 

Ck = - (v2 _ 1)3(4y2 _ 1)' 

(21) 

On the stability boundary B = D = C = 0, therefore, the role of the gas is 
reduced mainly to the change of the critical wave number k~, which now 
must be determined from the equation 
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where 110 and I1g are the surface densities of stars and gas, respectively. The 
nonlinear correction Rk is determined by the expression (15), in which the 
substitution A2k --+ A2k - 4k2(l1g/110 ) must be done. For B = l1g/ao = 0.1, 
we have Rko = -0.45. For the arbitrary B ::s 0.05, we have k~ = 1.377 + 2B, 

(4nGao)-1 ~ 0.377 + 0.7B, Rko = -(0.002 + 0.85B). 
Equation (19) coincides in shape with the corresponding nonlinear equa­

tion derived in Section 1.1, where waves have been considered for an in­
finitesimally thin disk. For collision less systems interesting to us, the" hydro­
dynamical" description is, of course, unfit. The reason is that, as is well known, 
the approximate hydrodynamical description of a stellar system (of the Chu­
Goldberger-Low type, -see, for example, [46adJ) is correct only for kp ~ 1 
(p is the radius of epicycle), whereas in our region of interest kp ~ 1. 

The correct inclusion in the theory of gas is nontrivial, if arbitrary wave­
lengths are considered. The fact is that at wavelengths less than or com­
parable to the thickness h, the approximation of a gaseous infinitely thin 
disk is no longer valid. But just that very case is realized in a purely gaseous 
disk (see Section 1.2). Corresponding theory was constructed in Section 
1.2 [31 ad]. 

At the same time, for the description of gaseous subsystems in a galaxy, 
the approximation of an infinitely thin disk is good since the wavelengths 
A = 2n/k ~ 2n/k~ of interest are much greater than the thickness of this 
subsystem. For instance, for the Galaxy A ~ 2.5 kps and h ~ 200 pc. How­
ever, for the application of the theory to the Galaxy one must also take 
account of the finite thickness of the stellar component. 

1.3.2. Soliton-like Solutions. The most interesting class of solutions which 
follow from Eq. (19) are solitons ofthe envelope. To obtain these solutions, we 
assume, similarly to Section 1.1, that this equation is valid in some vicinity of 
the wave numbers k near k = ko. In order not to deal with the complex values, 
we can, without loss of generality, assume that <Dk = <D-k = t/lk/2, where 
t/lk are the expansion coefficients of the potential in the Fourier series in 
cos(kx). We have, near k = ko: v~ = v~o + c;x;, c; = 0.42, k - ko = x, x = 
(xx, Xy), Ixl ~ ko. Integrating (19) over x with the weight cos(xr), we obtain 
the equation for the envelope Ifi(x, y, t) (<D(r, t) = Ifi(r, t) cos koxJ: 

iJ21fi 2 .7: 2 021fi ji .7:3 
ot2 + Vko'l' - Cs ox2 = "4 'I' , 

Let us seek the solution for Eq. (23) in the form: 

Ifi = t/I(x cos Ct. + Y sin Ct. - ut) = Ifi(z - ut). 

(23) 

The solutions of the soliton type are possible if v~o > 0, u2 - c; cos2 Ct. < O. 
We denote: 

fl/( 2 2 2) 2 "4 Cs cos Ct. - U = A 2 ~ 2 • (24) 



54 VII Problems of Nonlinear Theory 

Then the solution has the form: 

A 
l/1o(z, t) = cosh[(z _ ut)/~J (25) 

1.3.3. Stability of the Solitons. Investigate the stability of the soliton obtained. 
For that purpose, turn to the frame of reference, in which the soliton is at rest. 
In this system, Eq. (23) has the form 

02ij1 (2 2 2) 02ij1 jl .7;3 2 .T­
ot2 - Cs cos IX - U OZ2 ="4 'I' - Vko'l" 

We linearize this equation assuming that 

ijI = ijlo(z) + ijl1(z)e- iAt + iqw, 

(26) 

where w is the coordinate in the direction perpendicular to z. For 1/11' we 
obtain the equation: 

~2 021/11 + [ 6 _ (1 _ A2)~1/11 = 0 (27) 
OZ2 cosh2(z/~) v~o IJ . 

We make in (27) the substitutions ( = tanh(z/~) and m2 = 1 - A 2 /v~o; 
then we have 

a 2 01/11 ( m2) 
o( (1 - ( ) 8f + 6 - 1 _ (2 1/11 = O. (28) 

Equation (28) must be solved with the boundary conditions: 11/11(± 1)1 < 00. 

The solution has the form 
(29) 

where P! is the associated Legendre function. The boundary conditions are 
satisfied by solutions of two types: (1) m2 < 0; (2) mi,2 = 1,4. The solutions 
of the first type correspond to a continuous spectrum A2 = vUl - m2) and 
describe non increasing perturbations. The solutions of the second type 
correspond to discrete frequencies 

Ai = v~o(1 - mi} = 0, (30a) 

(30b) 

It is clear that the mode (30a) corresponds to the displacement of the soliton 
as a whole along the z-axis. The mode (30b) describes perturbations increas-

ing with the growth rate Im(A2) = j3 Vko small in comparison with the 
angular frequency of rotation of the disk. The spatial structure of this mode 

iqw 
./, _ iqw p2(Y) '" e 
'I' 1 - e 2 ., -co-s-'-h-;;-2 (-:-z /-,-~:-:-)' (31) 

For solitons obtained in this section, the consideration just performed 
completely solves the question of their stability. In gaseous systems (Sections 
1.1 and 1.2) for values of the adiabatic index Yo < Y < Y1 there are soliton 
solutions of another type (" supersonic" according to the terminology of 
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Section 1.1). The problem of the stability of these solitons is solved by the 
same formulae as above, but in this case one must assume that vfo < o. 
Therefore, "supersonic" solitons are unstable with the growth rate 

IVkol~(m2 < 0). 

1.3.4. Influence of the Finite Disturbance Amplitude on the Jeans Instability 
in Homogeneous Systems. Consider briefly nonlinear generalizations 
of the criterion of Jeans instability in the simplest homogeneous collisionless 
systems: (1) in an infinite homogeneous space (Jeans' classic problem), (2) in 
an infinitely thin homogeneous nonrotating layer (the two-dimensional 
analog of the Jeans problem), and (3) of an infinitesimally thin "thread" (the 
one-dimensional analog). If, as the unperturbed distribution function, we 
assume for the sake of simplicity 7 the" step" 

f(vx) = (~) [8(vx + vo) - 8(vx - vo)] 
2nvo 

[8(x) is the Heaviside function], so by the method similar to that used above 
we may obtain 

(1) k' = k (1 + ~ 1 <I> 12 ) (32) o 0 3 4 ' Vo 

(2) , ( 1<1>12) ko = ko 1 + vt; , (33) 

(3) , ( 1<1>12) ko = ko 1 + 7 ' (34) 

where k~ is the critical wave number (separating the stability region for 
k > k~ and instability region for k < k~), ko corresponds to an infinitely 
small amplitude of perturbation, c2 = 81n 2(Gp')2, and p' = npR2 is the 
linear density of the "thread." Thus including the nonlinearity leads here to 
the destabilizing effect: to an expansion ofthe instability zone in the space of 
wave numbers k. Note that formulae (32) and (33) were earlier obtained by 
another method in [26Ud] {more exactly, in [26Ud], general formulae are 
derived, from which, in particular, one may obtain also (32) and (33)}. 

1.4 Explosive Instability [20ad] 

Since nonlinear equations for the stellar and gaseous disks for corresponding 
values of parameters have an identical form, both cases can be considered 
simultaneously. We take, for the sake of concreteness, the "gaseous" equa­
tion (26) of Section 1.1 and show that, under the condition 

x < i, (1) 

7 For continuous distribution functions, of the Maxwellian type, there are some complica­
tions due to the appearance of trapped particles. 
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the value v1(t, qJ) for a finite time may become arbitrarily large. From (5), 
subsection 1.1, it follows that the condition (1) corresponds to the inequality 
y<!. 

By using expression (1), Section 1.1, we rewrite equation (20), in a simpler 
form: 

82Vl (t) 2 3 )(5 )k21 12] () ~ = [Yko + 2"(2 - x "3 - x 0 Vl Vl t . (2) 

We multiply, term by term, Eq. (2) by 8vd8t and integrate twice over t. 
Omitting further the index 1 in the v letter, we obtain 

Iv dv 
t - t = o 2 2 4' 

Vo Jwo(r) + YkoV + Av 
(3) 

where A = t(2 - x)(i - x)k~, Vo is the initial perturbation of the velocity 
at the time to, and wo(r) is the arbitrary function ofr. 

In the general case, the integral in (3) is expressed through the elliptical 
integral. To clear up the character of the solution, let us consider some partial 
case, in which the integral in (3) is easily taken. Let, for example, wo(r), 
Y~ov~ ~ AV6. Then 

v 1 
(4) 

Vo 1 - JAvo(t - to)' 

From (4), it is seen that for a finite time t - to -+ l/JA Vo the velocity 
perturbation tends to infinity. Such an impetuous growth of perturbation 
characterizes the so-called "explosive" instability [20ad]. 

1.5 Remarks on the Decay Processes 

The investigation of non-one-dimensional (in particular, isotropic8) spectra 
of perturbation encounters, in the case of interest of flat gravitating systems, 
an additional difficulty. It is associated with a possibility, in principle, of a 
decay instability. The decay instability for the waves with parallel wave 
vectors is considered in [70ad]. Of more interest, however, is the following 
possibility of a more general decay. It is easy to make sure that, for example, 
the 3-waves, whose wave vectors lie in the vicinity of the touching point ofthe 
dispersion curve and the k-axis (cf. Fig. 93) and form configurations close 
to the equilateral triangle may be connected via the decay conditions 
Wl = W 2 ± W3' kl = ±k3 + k2·9 This leads to the necessity to modify 
the very statements of the problems in such cases: for example, in an attempt 
to seek nonlinear corrections to the frequency of some radial perturbation in 
the way used above, divergent expressions ensue. Note, however, that at 

8 The partial case of which in turn are the radial perturbations. 

9 In more detail, the 3-wave decay processes are investigated in §4, Chapter VII. 
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least in two interesting cases, the consideration performed by us has a 
meaning. First, these are localized small-scale perturbations (for example, 
ring-shaped); second, there are global, including radial, modes in nonuniform 
systems, where as is shown by the simplest examples (for example, of uni­
formly rotating disks), the satisfaction of the resonance conditions is difficult. 

1.6 Nonlinear Waves in a Viscous Medium [52ad] 

Below we describe a scheme of deriving the nonlinear equation describing 
stationary waves of finite amplitude in a rotating gravitating disk in the 
presence of viscosity. 

In Section 1.1 it was shown that when the rotating gravitating disk is near 
the stability boundary, two types of solitons may form and propagate in it: 
subsonic and supersonic. The type of soliton is dependent on whether the 
disk is stable or not. The medium, in which solitons propagate, was assumed 
to be dissipationless. 

In a plasma medium, as shown by R. Z. Sagdeev [46ad], taking dissipation 
into account causes solitons to be transformed into shock waves [Fig. 96(a), 
96(b)]. Solitons considered in [46 ad] are described by the Korteweg-de Vries 
equation (if the amplitude of these solitons is small: the Mach number 
M ~ 1), the solution of which has the form =1/cosh2 IX~, where IX is a constant 
and ~ = r - ut. Solitons in a gravitating disk are described by the function 
of the form '" sin ko r Icosh f3~, where f3 is a constant and ko ~ f3. Such a 
structure has received the name of the "envelope" soliton [Fig. 97(a)] 
in the plasma physics literature. 

The Sagdeev collisionless shock wave [Fig. 96(b)] remains the basic 
property of the hydro dynamical shock wave: the jumps of the main character­
istics of the medium on the wave front are not equal to zero. If one assumes 
that the envelope soliton [Fig. 97(a)] in a viscous medium is transformed 
into a structure similar to the Sagdeev one [Fig. 97(b)] but with small-scale 

v 

v 

W 00 

Figure 96. Soliton (a) and oscillatory profile of a shock's front (b). 
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v v 

(a) 

(b) 

Figure 97. Envelope soliton (a) and corresponding profile of a shock's front (b). 

oscillations, then the "classical" definition of the shock wave does not match 
such a structure : we shall not obtain a jump of the first moments (of density 
and velocity) on the front width. 

Derive the nonlinear equation for density waves in a rotating, infinitesi­
mally thin disk (the model of Section 1.1) with due regard for viscosity. In 
the initial system of equations used in the analysis of perturbations located in 
the plane of the gravitating disk, the continuity and Poisson equations have 
a standard form, while the Navier-Stokes equations will be written as [67]: 

oVr oVr v", oVr v; o<l> 1 oP 
-+V -+----= ----­
ot r or r o({J r or a or 

( 1 a2vr 1 a2vr 1 av",) 
+ v r2 O<p2 - -;: o<por - r2 o<p 

(' 4) 0 [1 0 1 OV"']. + - + - v - - - (rvr ) + - - , 
p 3 or r or r o<p 

1 o<l> 1 OP 

+ V(02V", + ~ OV'" _ v", _ ~ 02Vr + ~ OVr) 
or2 r or r2 r oro<p r2 o<p 

+ (f + ~ v) ~ ~ [~ ~ (rvr ) + ~ OV"']. 
p 3 r o<p r or r o<p 

(1) 

(2) 

We solve the initial set of equations by the method of perturbation theory 
in the same way as done in Section 1.1, where the nonlinear theory of stability 
of a gravitating, rotating disk is developed without taking account of dissipa­
tion. From Eq. (2), in the assumption r%r ~ m, we find the perturbed value 
of the radial velocity 

(3) 
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(xo is the epicyclic frequency and 0 0 = voir), and, after substitution of (3) 
into the continuity equation, we obtain the expression for the perturbed 
value of the surface density: 

~- ~3-__ O"ovvq> V L~-l V vq> 
0" --- - 0"0- -3-' 

Xo or Xo or (4) 

By using the familiar expression of the link between the perturbed quantities 
of surface density, potential, and pressure [cf. formula (5) in 2.2, Chapter V] 

." = _ 2nGa 
'I' k' 

2 _ Po 
Cs = x-, 

0"0 

r 

_ c; (0"0 + a)" Po + P = - 0"0 --- , 
x 0"0 

2 
x = 3 --, (5) 

Y 

and, performing all the subsequent calculations, as made in Section 1.1, 
instead of Eq. (22), we obtain the expression [52 ad] 

UV1 = (Yro + c;dr )v1 -1(2 - x)(x - i)k~lvlI2V1 
- (J1 - 40~vL(2)k~Lv1' (6) 

where J1 = 1V + (/0"0; ko is the wave number corresponding to the maximum 
value of the growth rate of instability Yko(OYk/ok = 0) or in the absence of 
Jeans instability, the value of the argument of the function w2(k) at the point 
of its minimum; V 1 == vq> (Yko and Xo should be distinguished from the 
adiabatic index Y and x!). 

In the derivation of Eq. (6), we used the assumption about the smallness 
of the second summands on the right-hand sides of expressions (3) and (4) in 
comparison with the first summands. In fact, this means that the inequality 

vk~ ~ Yko (7) 

holds true. Make sure in the example of a flat gaseous subsystem of the 
Galaxy that inequality (7) is satisfied with a large reserve. The viscosity 
coefficient 

VT 
v"'-'--

eono' 
(8) 

where eo is the effective cross section of collisions of gas molecules, no is 
the number" of particles in 1 cm3 , and VT is the thermal velocity. Assume for 
estimate koh "'-' 3 (h is the layer thickness); then vk~ "'-' 10 ?/eonOh2 • Substi­
tuting the characteristic parameters for the hot component of the gas 

(T"'-' 104 °K)VT "'-' 106 cm/c, eo "'-' 10- 16 cm2 , no "'-' 0.1 cm- 3 , 

and h "'-' 200 pc, we obtain vk~ "'-' 2 x 10- 18 -+- 2 X 10- 19 c- 1• This value 
is at least by 3 orders of magnitude less than the galactic rotation frequency 
0 0 "'-' 10- 15 C - 1. If one assumes that Yko/Oo '" 10- 1, then the inequality (8) 
is fulfilled at least with a 2-order-of-magnitude accuracy. The last circum­
stance allows one to take into account the "viscous" summands only in the 
third order of perturbation theory (in the parameter vq>/vq>o ~ 1), which was 
used in the derivation of Eq. (6). 
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Figure 98. Potential energy W(O (a), structure of the phase plane for Eq. (12) without 
the viscous term (b), and trajectory of particle's gradual sliding down into the potential 
well in the presence of viscosity (c). 

In the case when the coefficient of the first viscosity is by far more than the 
coefficient of the second viscosity, we obtain from (6) the following equation 
[52ad] : 

A(A2 2 5 nok~ 2) 2 LL -Yko +3(2-x)(x- 3)----x;;-lv1 1 Vl=2nOXOvkOVI. (9) 

In the opposite limiting case we have from (6) the equation 10 [52ad] 

~2 2 2 5nok~ 2 ~k~A 
L VI = (Yko + Cs~r)Vl - 3(2 - X)(X - 3)--lvll VI - - LVI. (10) 

Xo Uo 

Turning to the local rotating coordinate system (r, cp, t) -+ (r, cp', t), where 
cp' = cp - no t, and then introducing the variable ~ = r - ut, we have, 
instead of Eqs. (9) and (10), 

where 

Y~ a=-z, 
IJ. 

d3 V _ (Y~o _ 3{J2 V2 ) dV +x~ vk~ V = 0 
d~3 1J.2 1J.2 a~ UIJ. 2 ' 

w = -taV2 + ±bV4 , V == vI(O, 

(11) 

(12) 

b _ {32, 
- 1J.2 

(32 = 3(2 - x)(x - i) nok~. 
Xo 

10 More exactly, provided that ~/(Jo ~ vQoxo/yto' 
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Figure 99. Soliton-like solution without the viscosity (a) and with the viscosity for the 
cases: u < 0 (b) and u > 0 (c). 

In the derivation of Eqs. (11) and (12), we used the inequality 

n~ ~ 'do ' (13) 

Equation (12) without the "viscous" term has the solution describing the 
soliton [90a, 89a]: 

V(~) = J2 ~ sech fi (14) 

in the case when the coefficients a and b are positive, which corresponds to 
two types of solitons: (1) subsound (u 2 < c;, y~ < 0, /]2 < 0) and (2) super­
sound (u 2 > c;, y~ > 0, f32 > 0). 

Equation (12) without the "viscous" term is Duffing's equation, which is 
well known in the theory of nonlinear oscillations. The structure of the phase 
plane for Duffing's equation is represented in Fig. 98(b). The separatrix which 
separates a region of periodical motions from other ones corresponds to the 
solution of the soliton-like wave [Fig.99(a)]. Let us assume, for the sake of 
definition, u > 0. Then, considering the coordinate ~ as the time t, one can 
interpret Eq. (12) as the equation of the nonlinear pendulum with damping. 

The analogy considered may be used for the construction of the solution 
in all the region ~ (Kadomtsev [15ad]). If, in the absence of damping, the 
"particle" is at some level of the potential well (in the case of the soliton 
this level passes through the point 0), then, in the presence of damping, the 
"particle" falls down to the bottom of the potential well. If the coefficient of 
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the viscosity is sufficiently small, the "particle" has time for several oscilla­
tions during the fall [Fig. 98(c)]. This corresponds to deformation of the 
symmetrical profile of the soliton [Fig. 99(a)] into the nonsymmetrical 
oscillatory profile of the shock front [Fig. 99(b), (c)]. As the viscous co­
efficient v increases, the number of oscillations decreases and finally for a 
certain value Vmax the "particle" falls down to the bottom of the potential 
well without reflections, which corresponds to the usual monotonically 
increasing profile of the shock wave. 

The fact of the variation of the medium's state after the passage of the wave 
with the oscillatory profile (behind the wave front the medium moves with 
the velocity Vo = Fa/b) means that the wave is a shock. 

In the case u < 0 one obtains the profile of the shock wave depicted in 
Fig. 99( c). Figures 99(b) and 99( c) correspond to a fall of the" particle" into 
the right potential well W(V) [Fig. 98(a)]. Under a fall into the left potential 
well the pictures in Figs. 99(b) and 99(c) must be turned over the angle n. 

All the above-mentioned corresponds to the envelope since the gravita­
tional soliton is the "envelope" soliton. In this it differs, for example, from 
the ion-sound soliton in the plasma which bears, in the presence of dissipa­
tion, the oscillatory profile of the shock front (Sagdeev, [46ad]). The oscil­
latory profile of the shock front of the envelope is filled with high-frequency 
oscillations with the wave number ko, ko L\ ~ I, where L\ is the width of the 
soliton. Generally speaking, it is not necessary that we obtain a large-scale 
density jump under the averaging over the small-scale density oscillations 
(the latter supposition demands more detailed test) while in considering in 
terms of energy we understand that we are dealing with the shock wave. In 
this meaning, the gravitational shock waves produced by the gravitational 
soliton in the viscous medium principally differ from the shock waves in a 
gas and a plasma investigated earlier. 

Here we do not touch upon the question of collisionless shock waves. 
Paper [63 ad] was the first to describe the model of a stellar system, in which 
collisionless shock waves can originate. In more detail, the problem of the 
existence of collision less shock waves in stellar systems is considered in 
[64ad]. 

§2 Nonlinear Interaction of a Monochromatic Wave with 
Particles in Gravitating Systems 

2.1 Nonlinear Dynamics of the Beam Instability in a 
Cylindrical Model [85] 

In real astrophysical objects, the distribution functions of particles (of stars, 
gas), with respect to their velocity, have sometimes a beam character. These 
involve all galaxies with heterogeneous structure, where the flat subsystems 
are rotating with respect to elliptical and spherical subsystems; regions of 
active centers characterized by ejections of large masses of gas, etc. 
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In §1, Chapter VI, the possibility was shown of excitation of the beam 
instability in gravitating systems, which leads to the growth of the amplitude 
of density waves of interacting subsystems. This effect was studied in the 
example of a gravitating cylinder. In [108a,93], the role of beam effects 
was investigated in more complex systems of two interacting disks, a sphere 
and an ellipsoid of Freeman [201-204]. Of most importance here is the 
question whether the nonlinear stabilization of such a growth of the ampli­
tude occurs or the instability process advances, leading to collapse of different 
clusters of density. Note that, for the problem ofthe galactic spiral structure, of 
particular interest is the interaction with the particles (stars) of the mono­
chromatic density wave. 

In this paragraph, we pay attention to the fact that in gravitating systems, 
an important role may be played by the nonlinear stabilization mechanism 
of the monochromatic density wave similar to that investigated in the col­
lisionless plasma by Mazitov [78a] and O'Neill [295a]. The causes of the 
analogy between the mechanisms of collective processes in a gravitating 
and plasma medium are investigated in [87, 88, 100]. In particular, it is noted 
that the kinetic equation for small oscillations in a simple model of the 
gravitating system (rotating cylinder) by redetermining the characteristic 
parameters, proves to coincide with the kinetic equation for the collisionless 
magnetized plasma. With this is connected the fact that, in a gravitating 
cylinder, there may develop a beam instability described by the same 
relations as the beam instability in the plasma with a magnetic field (§1, 
Chapter VI). 

Replacing the double frequency of rotation of the cylinder by the cyclotron 
frequency, 20 --+ WB' and the square of the Jeans frequency, by the negative 
square of the Langmuir frequency, w~ --+ -w;, let us consider the upper 
hybrid branch of oscillations, w2 = w; + wi. In the case of a gravitating 
cylinder, this branch was called rotational. Here, it is characterized by 
the frequency w2 = w~, which, due to the equilibrium condition w~ = 202, 

may be represented also in the form w2 = 202• 

In the presence of a beam moving along the generatrix of the cylinder, the 
rotational branch is excited with the linear growth rate 

YL - a(v:r (~rwo, (1) 

where a is the ratio of the beam density to the density of the medium, v, VT are 
the directed and the thermal velocities of the beam, and kz' k are the longi­
tudinal and full wave numbers. Expression (1) is valid if the Cherenkov 
resonance w ~ kz v dominates over the cyclotron one w ± m ~ kz v, 
i.e., under condition 20/kz ~ VT. An estimate for the growth rate similar 
to (1) takes place also in case of the beam instability in a plasma. It remains 
in force also in the absence of the magnetic field, i.e., in the limit WB --+ 0, 
when the upper hybrid branch transforms to the branch of electron plasma 
oscillations. In the case of a gravitating cylinder, such a limiting transition is 
prohibited by the above conditions of equilibrium. 
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From the plasma theory, it is known that (cf. [39]) one may use the expres­
sion of the form of (1) for the linear growth rate in the problem of excitation 
via a beam of plasma oscillations only for small amplitudes of the wave, 
namely, for 

(2) 

where r2 = m/ek;l/I (m and e are the mass and charge of the electron). 
This condition means that the inverse action of the wave field on the resonant 
particles is negligible. Otherwise, i.e., for rYL ~ 1, the wave field leads to 
trapping of the resonant particles, due to which the expression for the 
growth rate of the form of (1) is replaced for 

yet) '" YLFG)' (3) 

where F(t/r) is the function, whose explicit form is given in [295a]. Then 

L'X) yet) dt '" YL r. 
(4) 

It was shown earlier that excitation of the plasma waves via a beam 
ceases as the amplitude of the field reaches the values corresponding to r, 
such that 

(5) 

These results refer to the plasma without a magnetic field, WB -+ 0, and to 
perturbations propagating along the beam k ~ k z • 

However, it may be shown that both for the plasma with a magnetic field 
and for a gravitating medium for WB '" wp and kz ~ k (just this case is 
interesting for the problem in question of a gravitating cylinder) the ordinal 
relations (1)-(5) remain in force. This allows one to continue the analogy 
between the plasma and gravitating media onto the region of nonlinear 
phenomena. 

This section deals with the investigation of the nonlinear stage of in­
stability in a gravitating cylinder and a disk. In Section 2.1.1, we give the 
necessary results of linear theory. Section 2.1.2 studies the movement of the 
particles in a gravitation field corresponding to the eigen (monochromatic) 
mode of oscillations of the cylinder. In the frame of reference of a rotating 
cylinder, the action of inertial forces on the gravitating particle is similar to the 
action of the longitudinal magnetic field on the probe charge. Then the 
particles of the cylinder turn out to be "magnetized," due to which (ap­
proximately) they retain their distance from the cylinder axis. For that reason, 
as shown in Section 2.1.2, the equation of the longitudinal movement of the 
particles is reduced to the equation ofthe type of the mathematical pendulum, 
which is solved similarly [78a, 295a], in elliptical functions. 

Section 2.1.3 treats the nonlinear evolution of the distribution function of 
particles, while Section 2.1.4 finds the densities of kinetic energy of the 
particles and the energy of the monochromatic wave (averaged over the 
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cylindrical layer). Using the method of energy balance (after averaging 
over the radius), we define the time dependence of the nonlinear growth 
rate. Section 2.1.5 shows the region of applicability of the theory constructed. 
Section 2.1.6 makes estimates of the steady-state amplitude of oscillations 
for different values of the parameters of the configuration. 

2.1.1. Statement of the Problem. Consider the stationary collisionless system 
of gravitating particles in the form of a rotating uniform-in-density cylinder 
of infinite length, of radius R. In the frame of reference rotating along with the 

cylinder (at the angular frequency 0 = J2nGp where G is the gravitational 
constant and p is the density) the particles are moving only along the axis, 
which we assume to be the axis of the cylindrical frame of reference, (r and <p) 
will denote respectively the radial and angular coordinates). 

Thus, the stationary radial and azimuthal velocities for all particles are 
zero, 

vr = vrp = o. 
The distribution in longitudinal velocities fF(v z), which is not restricted 
by the equilibrium conditions, will be assumed to have a beam form 

fF(v z) = fM(vz) + f(vz), 

with the Maxwellian distribution of the basic component fM(v z) 

fM(vz) = _1_ e- vifV } 

JnVT 
and the distribution function of the beam f(v z) 

f(vz ) = __ exp _ _z_ , IX [(v - V)2] 
JnvT VT 

where the conditions 

(6) 

(7) 

IX ~ 1, (8) 

v ~ vT , (9) 

II v I - VT I ~ VT (10) 

are adopted. 
Let us assume, in addition, that the thermal dispersion VT of the basic 

component is sufficiently large 

VT ~ V = OR. (11) 

Under these conditions, according to Section 2, Chapter II, in the system, 
there can propagate the axial-symmetrical oscillations of the structure 

r ::;; "R, (12) 
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(inside the cylinder) and 

<I>(r, Z, t) = &0 Ko(k z r)e-iwot+ik.zeYF(r), r ~ R (13) 

(outside). Here <I>(r, Z, t) denotes the perturbation of the gravitational 
potential, t is the time variable, and <1>0' &0 are the constants satisfying the 
conditions of matching on the boundary of the cylinder, in particular the 
continuity condition of the potential 

(14) 

where 10 and Ko are conventional notations (cf. [42, 157J) of cylindrical 
functions; Wo is the Jeans frequency linked with the angular frequency 0 
via the equilibrium condition 

W~ = 202, 

and the longitudinal wave parameter kz must satisfy the conditions 

kzR ~ 1 

and 

kz VT ~ Wo, 

while the transversal one k 1-, to the conditions 

The quantity YF in (12) and (13) is equal to the sum 

YF = YM + Y 

(15) 

(16) 

(17) 

(18) 

of the decrement YM of wave damping interacting with the basic component 
of the medium and the increment Y of instability caused by excitation of the 
waves via a beam. In turn, Y consists of the sum of two summands: 

Y = Yb + Ye· (19) 

Here Yb is the consequence of the Cherenkov resonance 

Yb = ~ :~ ~'(k~VoJ sgn kzJ (20) 

where k2 = k; + ki, while the prime denotes the derivative with respect to 
the argument; Ye is the consequence of the cyclotron resonance, 

Y = _ ~~ [f(WO - 20) _ f(WO + 20)J (21) 
e 41kzl0 kzVT kzVT' 

Apart from the beam instability (19), in the conditions described there is 
only the Jeans instability with an exponentially small (if V? ~ V2) growth 

rate Y", 

VT -VT2 jV2 y,,-:::::.-e . 
V 

(22) 
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As will be shown below, the parameters of the configuration may be chosen 
to be such that the beam growth rate y will be the largest and, moreover, due 
mainly to the Cherenkov resonance 

YM ~ Y, 

Y" ~ y. 

We shall restrict ourselves just to this case. 

(23) 

(24) 

(25) 

2.1.2. Particle Motion in the Wave Field. At some initial time moment 
to = 0, in the above system, letthe gravitational potential of the form [cf. (12) 
and (13)] 

<I>(r, z, t) = -<I>o(t)Jo(k.lr) cos( -wot + kzz), 

<I>(r, z, t) = -<1>o(t)Ko(kzr) cos( -wot + kzz), 

be "switched-on." 

r < R, 

r> R, 

(26) 

(27) 

In a similar way [86], for the determination of the movement of the 
particles, we shall restrict ourselves to the zero order of perturbation theory 
in the small parameter c5<1>o/<I>o, i.e., assume that 

<l>o(t) = const = <1>0' 

<1>o(t) = const = <1>0' 

(28) 

(29) 

Let us assume that the potential in (26) and (27) satisfies the conditions in 
(14), (16)-(18). 

Within the range of the wave vectors, where Y '" Ymax, the condition ofthe 
Cherenkov resonance may be represented in the form 

(30) 

Let us study the movement of the particles arising due to the" switch-on" 
of the potential, in the frame of reference moving along with the wave on z 
(again rotating with a frequency n). In such a system, the potential of (26) 
and (27) has the form 

<l>(r, z) = -<I>oJo(k.lr) cos(kzz), 

and the corresponding form for r > R. 
The movement of the particles obeys the law 

dv 
dt = 2[ vO] - V<I>, 

r < R, (31) 

(32) 

where 0 = n~ and ~ is the ort along the axis of the cylinder. Such a movement 
would have been performed by a particle with a single charge and a mass in 
the constant and uniform magnetic field H = 20 and in the electric potential 
<I> (the speed of light, via the selection of the system of units, is reduced to 
unity). 
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All the particles of the cylinder can be divided into three groups according 
to the value of their stationary velocity v:: 

(1) "slowly" moving (in the wave system) particles, which for the 
"cyclotron" period T = 2n/2o. = n/o. are displaced on z by a distance 
much less than the longitudinal wavelength A. = 2n/k:, 

20. 
IVzl ~ 1kJ; 

(2) particles with a displacement of the order of the wavelength, 

20. 
Iv:1 "'1kJ; 

(3) "fast" particles, 

(33) 

(34) 

(35) 

The transversal movement of" slow" particles is similar to the movement 
of a charged particle under the action of a longitudinal constant" magnetic" 
field and slowly varying radial "electric" field i.e., is the drift in azimuth; 
the radial size of the orbit then is of the order of the" cyclotron" radius 

(36) 

For a comparatively weak potential <1>0, the particle displaces little in radius; 
the corresponding condition rrot ~ R can be, with due regard for (18), 
written in the form 

<1>0 
V 2 ~ 1, (37) 

and denotes the smallness of perturbation of the particles, which of course, 
also is suggested, with necessity, by linear theory. For the developed non­
linear theory, let us also assume the inequality (37) to be satisfied; below 
it will be seen that the condition of applicability of the nonlinear theory 
gives a restriction of the potential from below, but this constraint may not 
contradict (37). 

Taking into account that the initial transversal velocity is zero, we find 
that the trajectory of a slow particle has the shape of an epicycloid, while the 
longitudinal movement occurs thus if the particle remained all the time at 
the same distance r from the axis (r is the coordinate of the particle before 
the switch-on of the additional gravitational field). 

The transversal movement of fast particles is the movement in a rapidly 
oscillating (with a frequency much higher than the frequency of rotation, 
I kz Vz I ~ 0.) gravitational field. The oscillation in r with the amplitude 

(38) 
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will not lead, however, to a significant change in the radial position of the 
particle. Thus, the change in the radial location of fast particles is still less than 
the slow ones, and, in the study of their longitudinal movement, their radial 
coordinate can the more be considered as constant. 

One should not neglect the change in radial coordinate only for the 
rotational-resonant particles (34). But the portion III of such particles can be 
estimated as 

and is exponentially small, if 
2 VT 
-~-. 
kzr V 

(39) 

This last condition is easily satisfied; therefore, we eliminate these particles 
from consideration. Thus, in the study of the longitudinal movement we 
assume the radial coordinate of each particle to be fixed in its initial value. 

2.1.3. Nonlinear Evolution of the Distribution Function. Consider now the 
evolution of the distribution function in its longitudinal velocity. 

The longitudinal field ofthe potential (31) is 

o 
Eir, z) = - OZ <I>(r, z) = -6z(r) cos(kzz), (40) 

where the amplitude 6z is given by the expression 

6z = kz<l>oJo(k.lr). (41) 

It is seen that the amplitude 6z is dependent only on the radial variable 
(remaining, as established above, at the longitudinal movement of the 
particle). The amplitude changes from its maximum value on the cylinder 
axis to zero on the edge [cf. (18)]. 

The field (40) leads to the equation oflongitudinal movement (cf. [295a]). 

Vz = Z = -6z(r) sin kzz. (42) 

Conservation of energy of the longitudinal movement is written in the form 

v2 6 
; - kZ cos(kzz) = const == W. (43) 

z 

In a similar way [39], by the method of integration over trajectories, we 
arrive at the following distribution functions. 

The distribution function of the particles trapped by the wave in its longi­
tudinal movement has the form (in the wave system) 

o [ 6z(r)] f..(z, VZ , t) = 1(0) + oV
z 

I(O)(J 2 W(r, z, vz) + k; 

x cn{F[(Z), _1_J -~)}, 
x(z, vz ) rr x 

x> 1. (44) 
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For the transit particles, the distribution function is of the form 

a [ ez(r)] !.(z, vz , t) = f(O) + azf(O)a 2 W(r, z, vz) + T 

x dn{F[~' x(z, Vz)] - X:r ' x}. X<l. (45) 

The notations here are as follows: 

a = sgn vz , (46) 

F(qJ, k) = J~ drt./J1 - k2 sin2 rt. is the elliptical integral of the first kind, 
cn(u, k) is the elliptical cosine, and dn(u, k) is the delta of the amplitude-the 

function defined by the relation dn[F(qJ, k), k] = J1 - k2 sin2 qJ; 

i.e., 

where 

2 1 
"0 = k2<f) • 

z 0 

(47) 

(48) 

(49) 

(50) 

(51) 

Similarly to [39], we arrive at the conclusion that, in the region of the 
phase space (z, vz), corresponding to the trapped particles, a plateau is pro­
duced, and one can write the distribution function of nontrapped particles 
averaged over time. The difference from the evolution in problems [38, 78a] 
is in the fact that the evolution of our configuration proceeds at a variable rate 
at different distances from the axis. The oscillation period of the particles 
trapped by the wave, according to (50), increases from "0 on the axis up to 
(formally) an infinite quantity on the edge of the cylinder. 

2.1.4. Nonlinear Evolution of the Monochromatic Wave. To find the growth 
rate of the field variation in the method applied here we make use of the 
equation of energy balance 

dQ 
(it = -2yW, (52) 
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where Q is the average (over the volume of the cylinder) density of kinetic 
energy of the particles and W is the mean density of the wave energy {i.e., 
the sum of the field energy and the energy of the nonresonance particles 
(c.f., e.g., [to])}. 

Equation of motion (42) coincides with the corresponding equation, 
found by O'Neill [295a]; therefore, for the variation rate of density Qr of the 
kinetic energy of the particles in a circular cylinder (r, r + dr), averaged over 
the volume of the circular cylinder, we obtain (cf. (30) in [295a]) 

dQr __ ~ Q)~ f' e;(r) f 64 f1 dx 
dt - 2 k; 4nG n = 0 n 0 

x { 2nn2 sin(nnt/xK 1'r) + (2n + l)n2x sin[(2n + l)nt/2K 1'r]} 
x5K2(l + q2n)(1 + q 2n) K2(l + q2n+1)(l + q 2n 1) , 

(53) 
where 

( nK') 
q = exp K ' 

This expression has to be further averaged over the radii of annular cylinders 

dQ _ fR dQr 2nr dr (54) 
dt - 0 ---;It nR 2 • 

Note that the radius dependence in (53) enters only through ez(r) and 1'r' 
To calculate the value Wentering into (52), one should take the integral 

[the external field is very small, according to (14), (18) even on the edge of 
the cylinder and drops rapidly with increasing r, so that we neglect its contri­
bution to the energy] : 

1 fR 82 + 82 

nR2 Jo z 8nG r 2nr dr. 

Here, similarly to (41) 

erCr) = k.l Cl>oJ 1(k.lR), 

so that the radial field intensity ErCz, r) is 

oCl>(r, z) 
- or = ErCz, r) = -er(r) cos(kzz). 

(55) 

(56) 

(57) 

Taking into account (56) and (41), the calculation of the integral in (55) is 
reduced to taking the integrals 

11 = ~ fR J6(k .lr)r dr, 
R 0 

Using the familiar formula [157] 

(58) 
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and taking into account (18), we find that 

1 I = 12 = Ji(k1R). (59) 

Finally, the mean energy density of the wave is 

1 2 2 2 ) 
W = 8nG k <l>oJI(k.lR, (60) 

where k2 = ki + k;. We shall not explicitly write the cumbersome general 
expression for the growth rate yet). We show only that, in the limiting case 
t ~ To, there ensues an accurately linear growth rate. Indeed, in this case, 
following [295a], we have from (53) 

_ dQr = :: w6 f' s;(r) [64 fl dx 2n2 sin(nt/xKTr) + o(~)J 
dt 2 k; 4nG n 0 x5 K2(1 + q2)(1 - q2) TO 

= :: W6 f' k;<I>oJ6(k.lr) [1 + o(~)J. (61) 
2 k; 4nG To 

Hence, averaging according to (54), we find 

dQ n w3 <l>2k2 [2 fR ] - dt = 2 k! f' 4:d R2 0 16(k.lr)r dr 

n 3f' <1>6 2(k R) 
= 2 Wo 4nG J I .1 . 

(62) 

In the derivation of this last equation, we have used the relations (58) and 
(59). 

Finally, by formula (52), making use of (62) and (60), we find 

dQ/ n w6 , 
YL= -di 2W=2k2 f , (63) 

which in fact is coincident with the linear growth rate [cf. (23) and (20)]. 
Make now an estimate of the amplification factor of the wave off. 
According to (52), 

$" = yet) dt = - - - dt = --. f cc 1 fCC (dQ) dQ 
o 2W 0 dt 2W 

Following [295a], we find 

- [ 2 <1>6 2 fR 3/2 ] _ ( 2 <1>6 ) - 0 YLk 4nG TO R2 0 Jo (k.lr)r dr - 0 YLk 4nG TO . 

Since in accordance with (60) 

2W", k2 <1>6 
4nG' 

(64) 

(65) 

(66) 
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then from (64) and (65) we get 

100 
y(t) dt = O(YL'tO)' (67) 

From this last equation follows the condition of validity ofthe approxima­
tion of constantness with time of the amplitude of the wave adopted in the 
study of the movement of the particles: 

(68) 

2.1.5. Range of Applicability of the Theory. The theory constructed above 
has its region of applicability at simultaneous fulfilment of all the assumptions 
adopted, i.e., (68), the condition of smallness of the "cyclotron" radius (37) 
and the condition of domination of the Cherenkov resonance (23)-(25). 
These also involve the condition of smallness of the growth rate of the 
hydrodynamical beam instability 

vT > rx 1/2 

v 

Denote vTIV = VT, vlV = v, VTIV = VT, etc. Take k.lR '" 1, 

then taking into account (8)-(10), and (30), we arrive at the inequalities 

<1>0 (r;t ~ 1), -~1 
V 2 

v<I>~/2 
(h 'to ~ 1), --~1 

V 

1 ~ ve- iJ2 (Yb ~ ye>, 

1 - V,l 
(y ~ YJ), -2 ~ VTe- T 

v 

1 v _ jj2/V,2 
(y ~ YM)' -~-e T v2 VT 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

If now, leaving the quantity V '" VT to be fixed, one increases VT and increases 
v according to the law v '" V}, by simultaneously decreasing rx according to 
the law of (71) and kz according to the law [cf. (30)] 

kR",J2 
z - , v 

then the right-hand sides of (74)-(76) decrease exponentially, while the 
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left sides are not stronger except in a power way. Consequently, beginning 
with some rather large Vr and v, all the inequalities (74)-(76) will be satisfied. 
Inequality (73) is also satisfied for a sufficiently high velocity of the beam, v, 
whatever the amplitude $0 satisfying (72). 

2.1.6. Estimations of the Resulting Amplitude of a Monochromatic Wave. 
From the relations given above it follows that the beam instability of a gravi­
tating cylinder is saturated at 

1/1 rx2 (VOV)2 
1/10 '" (kR)4 v} , (77) 

where 1/10 is the equilibrium gravitational potential. It is seen that the ratio 
1/1/1/10, as the function of kR, is maximal at kR '" 1, then 

I/Imax '" rx2(V~ V)2. 
1/10 VT 

(78) 

This ratio grows with decreasing thermal scatter of the beam; on the limit of 
applicability of the concepts of the kinetic instability, i.e., for (vTlv) '" rx l/3 

(cf. [86]), 

I/Imax '" rx2/3 (VO)2. 
1/10 v 

(79) 

It is interesting to note that under the interaction of a rotating gravitating 
medium with the beam of a comparable density, rx '" 1, and a comparable 
velocity, v'" Yo, the perturbed gravitational potential 1/1 turns out to be 
the same as the equilibrium potential 1/10 in order of magnitude. 

2.2 Nonlinear Saturation of the Instability at the Corotation 
Radius in the Disk [22ad] 

This section investigates the Mazitov-Q'Neill effect in the stellar disk. 
Unlike the cylinder, where the wave resonance occurs with a small group 
(beam) of particles in the velocity space, in the disk with orbits close to cir­
cular, the resonance of a spiral wave with stars takes place with almost all 
the particles of the velocity space located, however, near some definite radii 
defined by the relation O(r) - wlm = -lxlm (m is the number of the azi­
muthal mode, I is the "number" of the resonance, x is the epicyclic frequency, 
o is the angular frequency of rotation of the disk, and w is the wave frequency). 
1=0 corresponds to the resonance of "corotation." 11 Lynden-Bell and 
Kalnajs [289] in the linear approximation show a possibility of amplifica­
tion of the density wave at the corotation radius. The question of the wave 

11 Refer to Section 2, Chapter XI, for more detail regarding resonances and results of [289]. 
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stabilization level under its nonlinear interaction with stars in the vicinity 
of the corotation radius is natural. This section is devoted to the clarification 
of this question. In Section 2.2.1, equations are derived and expressions are 
obtained for the steady-state distribution function of stars near the corota­
tion radius, and the energy and angular moment transferred to stars are 
calculated. The estimates of the wave amplitude and the regions of applica­
bility of the results attained are contained in Section 2.2.2. 

2.2.1. Stellar Distribution Function Near the Corotation Radius of a Disk. 
We turn now to the frame of reference rotating with an angular velocity of a 
spiral pattern np. In the epicyclic approximation, the Hamiltonian of the 
star in this system has the form [60ad]: 

H = Vo(R) + V1 + tn2(R)R 2 + x(R)f 1 - n pn(R)R2 + .. . . (1) 

Here Vo and V1 are the potential of background and the spiral potential, 
respectively, R is the radial coordinate of the epicycle center, n(R) is the 
angular velocity, and x(R) is the epicyclic frequency; the value H should be 
considered as a function of the variable angle-action (,11' W1, ,12' W2): 
,I 1 = E12x, E is the energy of the epicyclic movement, ,12 = n(R)R2 is 
the angular moment, 

r - R = (2,1 dX)1/2 sin 11'1' 

q; = 11:2 + (2n/x) (2,1 dxR2)1/2 cos w1, 

r, q; are the coordinates of the cylindrical system of coordinates, while the dots 
in (1) denote the terms of higher order of magnitude in the epicyclic ap­
proximation. 

Let the radius of corotation be the coordinate R = Ro, where n(R) = np. 
With interest in the star behavior near the corotation, assume that x = 
/2/(of2/oR )R=Ro = 2np/2lR ox6 ~ Ro and /2 = ,12 - npR6, where the 
index 0 denotes the quantity taken at R = Ro. The equations of motion of a 
star will be derived from the Hamiltonian equation dfJdt = -oHlowi 
and dwJdt = oHlofi' Restricting ourselves to the range of small x, we 
obtain 

(2) 

(3) 

(4) 

(5) 

where b = n~Rox6/4np and /1 = ,I l' 
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From (3) and (5) it is evident that the equation of corotational resonance 
in phase space (x, I d has the form 2bx + "011 = O. In particular, for "cold" 
particles (II = 0) the condition of resonance x = 0 means that the radius 
of the circular orbit coincides with Ro. In a system with stellar dispersion 
over 11, the stars from some vicinity R = Ro prove to be resonant. 

Equations (4) and (5) show that WI ~ w2 • This allows one to simplify 
the system of (2)-(5) by making use of the method of averaging over a 
"fast" phase WI (cr., e.g., [2ad]). We represent the variables in the form of Ii = 

Ii + Ii, Wi = Wi + »\. Retaining in the subsequent formulae instead of 
the mean quantities (with overbar), the previous notations (without overbar), 
we obtain, instead of (2)-(5), 

(6) 

(7) 

(8) 

The system of (6)-(8) describes the movement of the epicycle center 
(x(t), W2(t». For the spiral potential of the form VI = I/I(r) cos{m[W(r) + q>]} 
one easily obtains 

V1(R, 11' W2) = I/I(R) Jo(k'a) cos{m[w2 + <I>(R)]}, (9) 

where k,2 = k2 + (2mQ/"R)2; k = m(d<l>/dr)r=R, and a = (21 ti,,)1/2 is the 
size of the epicycle. Near the resonance, one may assume that k,2 = k2(Ro) 
+ (2mQp/Ro"0)2, a = (211/"0)1/2, I/I(R) ~ I/I(Ro) == 1/10' m<l>(R) ~ m<l>(Ro) 
+ kx; Jo is the Bessel function of zero order. For a tight spiral, tan i = 
m/kR ~ 1, and we assume that k' = k, by assuming for certainty that m = 2. 
We denote the phase of the spiral wave () = W2 + <I>(Ro) + kx/2. Without 
any restrictions on generality, one may assume that <I>(Ro) = O. Then we 
shall obtain finally: 

(10) 

where x and q> are connected with () via the relations 

(11) 

Thus, the problem of the movement of the epicycle center is reduced to the 
one-dimensional problem (10) of the nonlinear pendulum. Equation (10) 
has the integral of "energy" 8: 

for Jo(ka) > 0, 

for J o(ka) < 0, 
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where 

w2 = 80010011 J (ka)I'/' 
b R 2 0 'YO· 

OXO 

(12) 

The phase plane (0, () is separated by the separatrix into the regions of 
trapped (q2 == wt!2e > 1) and transit (q2 < 1) particles. The parameter 
q2 runs through the values from 0 to 00. The trajectories of trapped particles 
(epicycles) on the plane R, cp describe a closed curve resembling a banana.12 

The possibility of reducing the problem to the one-dimensional one allows 
one to make use of the results concerning the evolution of the distribution 
functions familiar from plasma physics [78a, 295a]. As a result of stellar 
intermixing in the phase space, there occurs formation of "plateau" of the 
distribution function for the characteristic time of the order of 

Here T is the period of rotation of a galaxy on the corotational radius; 
f = kt/lo/02R is the amplitude of the gravitational force. 

Lynden-Bell and Kalnajs [289] show that the spiral wave, being a wave of 
negative energy, may amplify at the corotational radius due to the transfer to 
the stars of the moment and energy. The rate of such transfer, calculated in 
linear theory, is 

(13) 

Here F is the distribution function of stars in angular moments, 

where F oCll' ,12) is the initial distribution function. As a result of the 
exchange of the moment and a production of the "plateau" the amplifica­
tIon of the wave will cease. One may estimate the fuB moment Il!l! and the 
energy 118 transferred by the wave to the resonance stars. For that purpose, 
let us calculate the finalized distribution function. 

Let the initial distribution function be F 0 = F 0(11' I iR» = FM 1> R). 
In the vicinity of the resonance R = Ro - (xo/2b)I 1 we write 

( xo) (OFo) (xoI1) FM 1, R) ~ F 0 11, Ro - 2b 11 + oR _ , . x + 2b. (14) 
R-Ro-><oll/2b 

12 "Bananas" as considered by Kontopolos [60l1li] are drawn by the stars themselves with 
11 = 0, while in our case, these are the orbits of the epicycle center. 
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R 

v, 

(a) 
(b) (e) 

Figure 100. Final star distribution function; (a) cp = 0, (b) cp = n/4, (c) cp = n/2. The 
origin of the system of reference (R, nil) is at the corotation radius. 

As a result of phase mixing, the distribution function will take on the form 

1 ( Xoll) Ftr = F 0 11, Ro - ~ , 

FJ = 
F - FIR _ x'!..! _ lWJb G' 8Fo 

e - o( l' 0 °2b) 2qK(q)IQ'1 oR ' 

if q2 > 1, 

if q2 < 1, (15) 

where Fe and F tr are finalized distribution functions of the transit and 
trapped particles, respectively, K(q) is the total elliptic integral of the first 
kind, G' = - sgn(x + Xo I d2b). 

Figure 100 shows the form of the final distribution function F J(ll' R, cp) 
near the corotational radius for three different directions: (a) cp = 0; 
(b) cp = n/4; (c) cp = n/2. The origin of the angle cp is chosen so that V 1 '" 

cos[2cp + k(R - Ron Each figure gives the behavior of the spiral potential 
as a function ofr. The figures are made by computer according to (15) for the 
initial distribution function of the form 

where Q(R) = QpRo/R, G'o(R) = G'o exp( -R/L). 
The parameters are chosen so that f = kl/lo/RoQ~ = 0.05, L/Ro = 0.5, 

tan i = 2/kR = 1/7, c/RoQo = 0.17. To estimate the angular moment trans­
fer, one has to calculate the integral 

fl2= f(jF/2 ·2ndw2 dlo dI 2 , 

where /2 = 12 + io and 

{

Jl - q2 sin2 e, if q2 > 1, 
WbG' of 

(jF = FJ - F; = lQ'I8R' 
q n /1 q2 sin2 e if q2 < 1. - 2K(q) - V - , 

(16) 
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Neglecting the deviation of the resonance line from R = Ro, which is valid 
for a sufficiently small thermal dispersion of stars, we obtain 

(17) 

where Q = Qc + Qtr and 

II dq [E(q) rc ] 
Qc = 0 q4 ----;- - 4K(q) ~ 0.028, 

II qdq 
Qtr = - [E(q) + (q2 - I)K(q)] ~ 0.071. 

o rc 

The quantities Qtr and Qc characterize the contributions to the moment 
transfer and energy transfer of the trapped and transit stars, respectively. 
It is interesting to note that, although the portion of the un trapped particles 
in the moment and energy transfer is less than the portion of the trapped 
particles, nevertheless it is rather significant: Qc/Qtr ~ 0.4. Comparing (17) 
and (13), we obtain 

(18) 

2.2.2. Estimates of the Wave Amplitude and of the Range of Applicability of 
the Theory. Formula (18) shows that for typical values of the parameters 
f ~ 0.05, tan i ~ 1/7, the mechanism of wave amplification, due to the 
moment and energy transfers to the particles, works approximately during 
three rotations of the galaxy. For longer time scales, formation of "plateau" 
leads to the fact that the resonance particles cease to play any role in the energy 
balance. 

Let us estimate the wave amplitude by assuming that this amplification 
mechanism is the single mechanism of generation of the spiral pattern (i.e., 
we neglect the influence of damping at the inner Lindblad resonance, the 
influence of the barlike structure in the central region of the galaxy, dissipa­
tion in the gas-dynamical shock waves, etc.). Then the upper boundary of the 
amplitude of resulting spiral pattern can be estimated by equating the moment 
transferred to the resonance stars and the wave moment. The angular moment 
of the wave !l' w (cf., e.g., [251]) is !l' w = 2rc S RL(R) dR, where L(R) is the 
density of the angular moment: L = (I k ImtjJz /4Gx) dD/dv while D = D(k, v) 
is the "dielectric" permittivity of the stellar disk, v = m(Op - O)/x. By 
neglecting the thermal dispersion one may assume that D ~ 
2rcGO'o I k 1/(1 - V2 )X2 . In this case, in order of magnitude 

!l' w '" (2rc)2tjJ~(tan i)- 20'/X3. 

Comparing with (17), we obtain the estimate of the value of the saturation 
amplitude: 

(19) 



80 VII Problems of Nonlinear Theory 

where IJ = (d In Jl/d In R)Ro '" 1 and Jl(R) is the mass per unit square of the 
angular moment 

dM dR nO" 
Jl = df~ = 2nO"R df~ = ~. 

Such a low level of saturation indicates the extreme noneffectiveness of the 
resonance stars in the dynamics of the spiral pattern. 

In conclusion, we make some remarks. As is known (cf. e.g., [39J), the 
results of the problem of the wave increasing up to the finite amplitude, 
unlike the results of the problem of the wave damping of finite amplitude, 
may be considered only as an estimate, because in the calculation of the 
movements of the particles we neglect the growth of the potential. In the 
case considered by us, another problem arises-the necessity of a self­
consistent consideration. Unlike the plasma, where the resonance involves 
a small portion of particles in the velocity space, which does not "spoil" 
the spatial distribution of the potential, here we in fact deal with the reson­
ance in a coordinate space. Therefore, in order to conserve the imposed 
spiral form of the potential, it is required that the width of the region of 
plateau in the radius be less than the wavelength of the spiral. The ratio 
of the width of the region of plateau I1x to the wavelength A = 2n/k is of the 
order I1x/A ~ (2I/tan i)1/2/n. The model with the parameters 1=0.05, 
tan i = 0.14 yields I1x/A :::S 0.3. 

§ 3 Nonlinear Theory of Gravitational Instability of a Uniform 
Expanding Medium 13 

We have so far treated the stability of stationary systems. This section will 
deal with an expanding uniform medium. 

Of most importance in astrophysical applications is the approximate 
solution of the nonlinear problem of the development of perturbations of 
arbitrary amplitude in a gravitating uniform (on the average) medium without 
pressure, as found by Zeldovich [48]. This solution generalizes the results of 
the perturbation theory and describes the evolution of the increasing mode 
of potential perturbations at the nonlinear stage. 

The solution is constructed on the background of a uniform isotropically 
expanding medium without pressure, whose evolution is described by 
hydro dynamical equations with gravity (using the iterating indices­
summing): 

OU; oUi a<l> -+ Ur -= --, at aXr aX j 

ap + ~(PUr) = 0, at aXr 
(1) 

a2 <1> 
~ = 4nGp, 
uXr 

13 This section, on request of the authors, is written by A. G. Doroshkevich. 



§ 3 Nonlinear Theory of Gravitational Instability 81 

where p, <D, and u are the density, gravitational potential, and the velocity of 
the medium and G is the gravity constant. The solution corresponding to the 
isotropic expansion with conservation of uniformity (A. A. Fridman's model) 
has the form 

Ui = H(t)ri' p = p(t) = const/a3 , a = exp( - JH dt), 

dH 2 4n at + H = - 3 Gp. 

In the simplest case [48] 

1 
P = 6nGt2 ' 

(2) 

This solution is known to be unstable. According to the approximate 
nonlinear theory suggested by Zeldovich, the movement of an individual 
element of the matter obeys the relation 

r(q, t) = a(t)[q - B(t)S(q)] , (3) 

where rand q are the Euler and Lagrange coordinates of the particles, 
S(q) is the initial displacement of the particle from the equilibrium location, 
a(t) describes the general expansion of the medium, and B(t) describes the 
growth of perturbations. In the simplest case of (2), a ~ t2 / 3 and B ~ t2 / 3 • 

By using these relations, it is easy to find both velocity and density in the 
particle 

dr . 
u = dt = Hr - aBS(q), 

where B = dBjdt, D(r)/D(q) is the Jacobian of transform r = r(q, t). As 
is well known, in the increasing perturbation mode, the velocities are 
potential. Therefore, also the approximate theory deals with the potential 
vector S(q). Thus, the tensor as;!(Jqk is symmetrical and at each point may be 
reduced to the principal axes. In a corresponding frame of reference 

(5) 

where ,1.1 ~ ,1.2 ~ ,1.3 are the main values of the deformation tensor aSJaqk. 
If at the point ,1.1 > 0, then, according to this solution, for a finite time, the 

density will tend to infinity at the time B = 1/,1.1. It is typical that the infinity 
arises due to the vanishing of one factor (1 - BA,l)' i.e., due to the compres­
sion in the only direction determined by the largest principal value of the 
deformation tensor OSdOqk. The movement in the plane orthogonal with 
respect to this direction leads merely to the finite density change. This is the 
general property of the smooth initial velocity distribution of the particles. In 
the general, nongenerated case, their intersection occurs on the so-called 
caustic surface. Only in the degenerated cases (,1.1 = ,1.2 > A3 or A1 = A2 = A3 ) 

is there focusing, either cylindrical or spherical. 
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The quantities A1' A2, A3 are the functions of coordinates. Infinite density 
is reached first of all in the particle in which A1 > ° and is maximal in the 
region under consideration. Further, infinite density is attained in the neigh­
boring particles located in the plane orthogonal to the direction of the 
principal axis corresponding to A1' A very flattened cloud of compressed gas 
is thus produced. 

In a compressed gas one should not neglect the pressure, which would 
stop compression at a finite density. Therefore, in the direction of the main 
axis corresponding to A1' the flow running over the compressed matter 
stops and gets compressed in the shock wave. In more detail, the shape and 
structure of the compressed gas clouds is studied by Va. B. Zeldovich with 
co-workers and in the monograph [48a]. 

Consider in some detail the question of the region of applicability of the 
theory advanced. The movement of the matter in accordance with (3) leads 
to the density distribution described by (4) and (5). On the other hand, in 
order that the movement might occur in accordance with (3), it is necessary 
that the acceleration -O<P/iJXj in (1) be generated by the density distribution 
p* = -(4nG)-I(%Xj)[iJui/ot + U,OUj/ox,]. If p* = p, then the problem is 
self-consistent and (3) is an exact solution. Otherwise, the deviation p* - p 
may serve as a measure of approximateness of (3). It is easy to calculate the 
quantity 

A. = p* - 1 = [ - (3iiB + 2aB + aB),11 + B(3iiB + 4aB + 2aB),12 
p 

where the dot denotes time differentiation and 

are the invariants of the deformation tensor. In expression (3), the dependence 
B(t) is chosen so that 

3aB + 2aB + aB = 0, (7) 

and is coincident with the expression for the rate of growth of perturbations 
in linear theory. Therefore, by using (7), we reduce (6) to the form 

(8) 

This yields two important results. 
(1) The approximate theory is accurate for small perturbations since (8) 

in this case is quadratic with respect to the amplitude of perturbations. 
(2) The theory is accurate for one-dimensional perturbations since for 

A2 = A3 = 0, ,12 = ,13 = 0, and A. == 0. Substituting B = 1/ Al (the con­
dition of reaching infinite density), we obtain, 

(9) 
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and within the range A1 ~ A2 ~ A3 we have again Il ~ 1. The corrections 
for the solutions are of the order ofthe ratio A21 A1 (or A3 A21 AD which can just 
be considered as a small parameter of the problem. Thus, the approxi­
mate theory provides a good accuracy within the ranges A1 ~ A2 ~ A3, i.e., 
in the vicinity of the region of maximum compression. 

Verification of the approximate theory by constructing numerical models 
has confirmed both good accuracy of the approximate theory (not lower 
than 20%) in the neighborhood of compressions and the one-dimensional 
character of compression and the production of fiat structures [4Sa]. 

§ 4 Foundations of Turbulence Theory 14 [53Qd] 

In this section, we shall treat, in application to gravitating systems, some 
questions of the theory of weak turbulence. It is well known that, in hydro­
dynamics, under turbulence there is understood to be a set of a large number of 
whirls moving a little in space and therefore interacting for a long time 
(and, consequently, strongly) with each other. The development of the 
physical theory, in particular, plasma physics, has shown that such an 
understanding is too narrow. At the present time, under turbulence there is 
understood to be the movement in which a large number of collective (not 
necessarily whirls) degrees off reed om are excited, for example, a large number 
of modes of eigenoscillations of the medium. The study of the latter is just 
the subject of the weak turbulence theory [39, lSad]. 

As far as the wave movement is concerned, individual wave packets are 
moving in the medium with a group speed and for their lifetime are able to 
drift apart up to rather great distances. Owing to this, the interaction of each 
individual pair of the wave packets with each other turns out to be weak, 
which allows one, in particular, to consider the waves as being nearly linear, 
i.e., having dispersion properties close to the properties of the linear waves. 
An essential advantage of the theory of weak turbulence is the possibility of 
application of the disturbance theory, i.e., expansion of the equations in a 
small parameter of the ratio of the interaction energy to the total energy, 
which in many cases is reduced to the expansion with respect to powers of 
small amplitudes of waves. 

The theory of weak turbulence has two aspects: the study of the nonlinear 
interaction of the waves with each other and the study of the wave­
particle interaction. We shall restrict ourselves to the former. 

4.1 Hamiltonian Formalism for the Hydrodynamical Model 
of a Gravitating Medium 

It is convenient to place in the basis of our analysis the general method 
allowing one to at once include the nonlinear wave theory in gravitating 
systems into the general theory of wave phenomena in nonlinear dispersive 

14 This section, on request of the authors, is written by S. M. Churilov and I. G. Shukhman. 
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media. Such a method is the Hamiltonian formalism developed by Zakharov 
and his successors (cf. [lOad, Had]). 

It allows one in a uniform way to describe the nonlinear wave interaction; 
it also provides a simple algorithm for writing" shortened" equations and 
calculating the relevant matrix elements which immediately possess the 
needed symmetry, a fact that with other methods of calculation is achieved 
only by painstaking efforts and requires great inventiveness. In essence, the 
Hamiltonian formalism is a method of subsequent expansion of equations 
with respect to the powers of wave amplitudes. 

It is evident that, as in mechanics, the Hamiltonian formalism may be 
constructed only in neglect of dissipation, i.e., for conservative media pos­
sessing, moreover, a translation-invariant Hamiltonian. In addition, the 
dispersion properties of the waves in the linear approximation must be such 
that the square of the frequency is w2(k) > 0, apart possibly from the value of 
the wave vector k, where w2(k) = 0. 

We shall analyze the application of the Hamiltonian formalism in the 
example of the nonlinear wave processes in an infinitely thin rotating gravi­
tating gaseous layer, restricting ourselves to Jeans oscillations that do not 
deform the plane of the layer. The case without rotation passes beyond the 
method since then there is a wide range of wave vectors, for which w2(k) < ° 
(the region of Jeans instability; cf. Chapter I). 

4.1.1. Statement of the Problem and Basic Equations. Consider an infini­
tesimally thin gravitating gaseous layer uniformly rotating at an angular 
velocity 0 and lying in the plane z = O. Assume that the centrifugal force is 
compensated for by some external force, for example, the gravity force 
acting from the halo surrounding the layer. The hydrodynamical equations, 
in the frame of reference rotating at an angular velocity 0, are of the form 

oa d. at + IV av = 0, (1) 

ov 1 ;;- + (vV)v + [xv] = - - VP - V<1I, 
ut a 

(2) 

02 <11 
A<1I + OZ2 = 4nGac5(z), (3) 

where a is the surface density, v is the velocity of gas, and <11 is the gravitational 
potential; all vector values and operators refer to the (x, y) plane, x = 20. 

The solution for the Poisson equation (3) can be written in the form 

<I>(r, z) = - G f a(r')c5(z') dr' dz' . 
J(r - r')2 + (z - Z')2 

Integrating over z', owing to the c5 function, is trivial, while for the potential 
in the plane of the layer z = ° which is only of interest for us, we obtain 

f a(r') dr' 
<1I(r) = -G Ir _ r'l· (4) 
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For the barotropic medium, when the pressure is only dependent on the 
density, p = p(o), one can express the right-hand side of (2) in the form of the 
gradient from the variational derivative of a certain functional 

where 

ov (}E 
at + (vV)v + [xv] = -v (}U' 

E = f ( ) d - ~ f u(r)u(r') dr dr' 
eu r 2 I ' , r - r I 

de(u) = f dp = f ~ dp du. 
du u u du 

(5) 

(6) 

Multiplying Eq. (1) by v2/2, and Eq. (5) by uv, we obtain, with the aid of 
continuity Eq. (1), 

a uv2 • (UV2 ) . ( (}E) (}E au 
at T + dlV T v = - dlV U (}U V - (}U at' 

Integration over the whole area, taking into account the Gaussian theorem, 
provides the law of conservation of energy: 

a (f uv2 
) at T dr + E = O. (7) 

In further development, an essential role will be played by the energy 
functional, or the Hamiltonian, of the system 

.u; = f uv2 d E == f (UV2 ) d _ ~ f u(r')u(r') dr dr' 
"" 2 r + 2 + e r 2 Ir _ r'l . (8) 

Specify the e(u) function. Adopt the polytropic law of the dependence of 
the pressure on the density p = Au1(y > 1).15 Then, from (6), it is easy to 
get that 

A 
e(u) = -- u1• 

Y - 1 
(9) 

4.1.2. Transition to Canonical Variables. ·Introduce, in analogy with hydro­
dynamics, the canonical variables [11 ad] : 

;. 
V = - V Jl + V cp - A, 

u 
A = t[xrJ. (10) 

The transform (10) resembles very much the expression for the generalized 
impulse of a charged particle in a magnetic field, where A is similar to the 
vector potential, and x, to the magnetic field vector. This is still another 

15 For the connection of the "surface" and "volume" adiabatic index cf. Section 1.3, 
Chapter V. For y = 1, in (9), instead ofthe power function, there will be a logarithm; however, 
one can readily show via direct exp.ansion that all formulae containing y, beginning with (18), 
hold true also for y = 1. 
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manifestation of the analogy mentioned in Chapter II between equations 
describing the rotating gravitating medium and equations describing the 
plasma in a magnetic field. 

Substitution of (10) into (5), taking into account that (vV)v = V(v2/2) 
- [v rot v], yields the equation 

[ocp V2 bE A ] A [OJ1 ] VJ1 [0..1 . ] 
V at + 2" + ba - ~(vV)J1 + ~ V at + (vV)J1 + -;- ot + dlV AV = 0, 

which is obviously satisfied if cp, A, and J1 satisfy the equations: 

ocp v2 bE A - + - + - - - (vV)J1 = 0, 
ot 2 ba a 

~: + div AV = 0, : + (vV)J1 = 0. 

(11) 

Via direct differentiation, it is easy to show that [cf. (1), (8)] 

oa bY( ocp bY( 
- , , 
ot bcp ot ba 

(12) 
0..1 bY( OJ1 bY( 

ot bJ1 
, 

ot 0..1 . 

Thus, the pairs of variables a, cp and A, J1 are canonically conjugate. For 
each spatial velocity profile v, using formula (10), it is possible (moreover, 
non uniquely) to determine the functions A., J1, and cp, and since Eq. (5) is 
identically satisfied by Eq. (11), the description via v and the description 
via A, J1, cp are equivalent. 

The next step, in analogy with the theory of mechanical oscillations, is 
the introduction of normal variables, in which, in the linear approximation, 
each mode of oscillation is described only by its own pair of canonical 
variables. However, there is a difficulty here similar to that presented in the 
description of the plasma in a constant magnetic field [cf. remark after formula 
(10)]: the function A is the linear function of coordinates, and the reduction 
of the Hamiltonian to the needed form (diagonalization) requires an ad­
ditional canonical transform, which we shall perform in two stages [load]. 
To begin with, perform" symmetrization" of the variables, 

A = A (X + J1'), J1 = _1_ (J1' - X), 
J2a 

and then eliminate A: 

X = A" + Fay, 

cp' = cp" - if (xX' + YJ1")· 

(14) 
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It is easily verified that the two sets of variables are canonical. The relevant 
equations are readily derived from (11) and (10): 

ax 1( V)" 1 d' - + "2 V II. +"2 IV XV = 0, at 

aJi' 1( V)' 1 d' , ° at + "2 v Ji +"2 IV Ji v = , 

aq/ v2 bE 1 
- + - + - + - [Ji'(vV}A.' - X(vV)Ji'] = ° at 2 ba 2a ' 

XV Ji' - Ji'V A' , 
v = + VqJ - A 

2a 

and for the second set of variables, 

aA" 
at + fovy + t(VV)A" + t div A"V = 0, 

(15) 

~ + - + - + - [Ji"(VV)A" - A"(VV)Ji"] + - (v A" + V J1") = ° a" v2 bE 1 if 
at 2 ba 2a 4a x y , 

(16) 

where ex and ey are the unit-vectors on the x and yaxes. Further, we utilize 
the variables A", Ji", qJ", omitting, for the sake of brevity, the primes. 

Consider the waves on the background of the layer of homogeneous 
density ao. It is convenient to introduce, instead of a, a new variable l' 

a = ao(1 + 1'). (17) 

The quantity iP = ao qJ seems obviously to be canonically conjugate to 1'. 

Now, in the unperturbed state, the canonical variables 1', iP, A, Ji all are 
equal to zero. We expand the Hamiltonian (8) in powers of canonical 
variables. We start with the functional E. According to (6) and (9), 

E = J Aa~ (~)Y dr - ~ J a(r)a(r') dr dr' 
,),-1 ao 2 Ir-r'l . 

Expressing (J by r and taking into account that 

(l + 1'F = 1 + F + ')'(')' - 1)1'2/2 + "', 
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we obtain 

E = - GIT~ f dr dr' _ GIT~ f t(r) + t(r') dr dr' 
2 Ir-r'l 2 Ir-r'l 

GIT6 f t(r)t(r') d ' d ' AITt) f d IToC2 f d -- r r +-- r+-- t r 
2 Ir-r'l y-1 y-1 

IToc2 f d [2 Y - 2 3 (y - 2)(y - 3) 4 ] 
+ -2- r t + -3- t + 12 t + ... , 

where c2 = yAITt)-l is the square of the sound velocity. 
As is known, it is possible to eliminate the constants and subintegral 

terms (which have a divergent form in Eq. (7» from the Hamiltonian 

dyt = 0 
dt . 

Since Ot/ot = -div(1 + t)v and s = r - r', 

~ f t(r) + t(r') dr dr' = 2 f ds f Ot dr 
ot I r - r' I I slot ' 

then, in E, there remain only the terms in the second and higher powers 
over t: 

E - GIT~ f t(r)t(r') d d' IToc2 fd (2 Y - 2 3 ) (18) --- r r+-- rt +--t + .... 
2 Ir-r'l 2 3 

The Hamiltonian appears in the form of a series in powers of canonical 
variables 

yt = yt(2) + yt(3) + yt(4) + ... , (19) 

where 

(20) 
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Consider now the Fourier representation by the formulae 

A(r) = 2~ f Akeikr dk, Ak = 21n f A(r)e- ikr dr. 

In the expression for ;r(2), the transition to the Fourier components in the 
first integral is easy; let us consider the second integral 

f 't'(r}r(r') d dr' - _1_ f dr dr' dk dk' i(kr+k'r'} 
Ir - r'l r - (2n)2 Ir _ r'l 't'k't'k,e . 

Since integration over rand r' is performed over the whole plane, we may 
turn to the variables r' and s = r - r'. We obtain 

_1_ f dk dk' ds dr' i(kr' H'r') + iks 
(2n)2 lsi 't'k't'k,e 

= _1_ f dk dk''t' 't' ' f eiks ds fei(k+k')r' dr'. 
(2n)2 k k lsi 

The last integral yields t5(k + k'), which eliminates integration over k', 
while in the integral over s, it is convenient to turn to the polar coordinates 
sand t/! choosing k as the polar axis. We obtain, bearing in mind that 't' -k = 't't, 

fl 't'k 12 dk f" dt/! f'ei'k,scost/l ds = 2n fl 't'k 12 dk {Xl'/o(lkIS) ds. 

The last integral, owing to normalization of the Bessel function, is 1/1 k I 
and finally we have 

(2) Uo f [ * (2 2nGUO) *] ;r = 2 dk (vkvd + c - -Ik-I- 't'k't'k , (21) 

where Vk is the Fourier component of VI' 

4.1.3. Derivation of the Basic Equation of the Theory in Normal Variables. 
Following the general method [10"1, we introduce the wave amplitudes 
a~, where the index s enumerates the types of oscillations. It is convenient to 
employ also the negative values of s, by assuming (w~ are frequencies): 

For the Fourier component of any real quantity Ak , we have 

We linearize Eqs. (1)-(3), taking into account that ak '" exp( -iWkt): 

- iWk't'k + i(kvk) = 0, 

. s s 'k (2 2nGu 0) S [S] -IWkVk = -I C - -Ik-I- 't'k - :;CVk · 

(22) 

(23) 

Here we have used the solution for the Poisson equation given in §2, Chapter 
I: 

2nGuo s 
cDk = - -Ik-I- 't'k' 
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Equating to zero of the determinant of the system (23) provides two branches 
of oscillations: 

1. Jeans branch (s = 1) 

(wD2 = x2 + k2c2 - 2nGO"olkl· 
2. Entropic branch (s = 2) 

wf = O. 

(24) 

The entropic branch dropped out of the region of applicability of the 
formalism (cf. beginning of the section); therefore, it should be eliminated, 
i.e., one should assume that af = O. For the Jeans branch, one may express 
the velocity through t: 

(25) 

Substitution of (25) into Hamiltonian (21) reduces the latter to a diagonal form 

..tP(2) _ 0"0 f dk 4(wD2 1 1* 1 1* 
oft -"2 ~ tktk akak . 

We choose the normalization of a~ so that 

J('(2) = f w~a~a~* dk, (26) 

then it is evident that 
Ikl 

t~ = . 
J20"0wi 

With such normalization, the quantity a~a~* acquires the meaning of 
"density" of the number of" quanta" of a given frequency w~. The quantities 
a~ are called by the normal variables. 

Further, the upper index will be omitted, for the sake of brevity. 
We express via (16) and (25) the Fourier components tk' ({Jk' A.k, Ji.k' and 

Vk through ak: 

_ Ikl ( * ) 
tk - ~ ak + a_ k , 

V 20"0Wk 

wf - x2 

({Jk = -i ~lklwi/2 (ak - a!.k), 

Ji.k = - J2 Jx {(xky - iwkkx)ak - (xky + iWkkx)a!.d, (27) 
2lklwi/2 
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Write now the equation of motion (16) through ak' The variables 16 r, iP, A., Il 
are canonical; therefore, in the Fourier components (16) can also be written 
in the canonical form of (12): 

ark [);jf OiPk [);jf 

at [)iPk' at ark 
, 

(28) 
OA.k [);jf Ollk [);jf 

, -
- [)A.k · ot Ollk ot 

As is seen from (27), all the canonical variables are the linear functions of 
ak and a!b and they can be presented in the form 

Multiplying the first equation (28) by iPT, the second by ( - rt), the third 
by (- Ilt), and the fourth by A.t, and summing, we obtain 

By means of direct calculation, it is easy to make sure that the coefficient 
at oak/ot is i; however, it is seen also from (26). Thus 

oak . [);jf 
-= -I--
at [)a!k' 

(29) 

This equation is the basic equation of the theory. Using expansion (19) and 
formulae (20), it is easy to obtain from (29) the so-called shortened equations 
describing the wave dynamics in any order with respect to the amplitude ak' 

4.2 Three-Wave Interaction 

Consider the first nonlinear approximation, i.e., restrict ourselves to the cubic 
part of the Hamiltonian ;jf(3). Simple but cumbersome calculations (for more 
detail, cf. §9, Appendix) yield 

;jf(3) = f dk dk1 dk2n l'kklk2 akaklak2 [)(k + k1 + k2 ) 

(1) 

16 Recall that ip = 0"0 cp. 
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where c.c. denotes the terms complex conjugate to the written ones and 

+ x2{wlwk,[(kk1)(k1k2) + t(kk2)(k~ - k2 - km 

+ WlWk2[(kk2)(klk2) + t(kk1)(ki - P - kDJ} 

(2) 

The matrix element Vkklk2 possesses the needed transformation properties: 
It is symmetrical with respect to kk 1 k2 

Equation (29) (Section 4.1) in this approximation has the form 

(3) 

It describes the processes of interaction of three waves with the wave vectors 
k, kl' and k2. We determine the limits of applicability of (3). 

For that purpose, we introduce the new amplitudes 

(4) 

In neglecting the wave interaction, the solution of (3) may be taken in the 
form 
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Allowance for interaction provides corrections, In the first approximation 

aA(1) -it- = -i{Vtkoko A2 exp[i(wk - 2Wko)t]t5(k - 2ko) 

+ 2 Y,.koko AA * exp( iWk t )t5( k) 

+ VtkokoA*2 exp[i(w% + 2Wko)t]t5(k + 2ko)}, 

A~l) = - V~kOk~O A2 exp[i(w2ko - 2Wko)t]t5(k - 2ko) 
W2ko - Wko 

- 2VOkoko IAI2 exp(iwot) t5(k) 
Wo 

V!2kOkokO A*2 ['( 2) ]5:(k 2k) - 2 exp 1 WZko + Wko t u + 0 ' 
WZko + Wko 

Since all Wk are positive, the coefficients at the t5 functions in the last two terms 
are small as compared to I A I (I A I itself is also small), Therefore, the con­
dition of applicability of (3) has the form 

JVZkokoko I , I A I ~ 1. 
I wZko - 2Wko I 

In our problem, the spectrum is far from the linear one [cf, (24), Section 
4,1]; therefore, the denominator can be small only for a special choice of 
ko' In the general case, the condition of applicability of (3) has, as a rule, 
the form 

JVI'IAI ~ 1. 

4.2.1. Decay Instability. Consider now the problem of the evolution of a small 
(but finite) perturbation, As seen from (3), the wave with the wave vector 
k can interact with two waves satisfying one of the conditions 

For concreteness, we restrict ourselves to one of them, Assuming that 

Ak = Aot5(k - ko) + A lt5(k - kl) + Azt5(k - kz) 

(4') 

and that IAol ~ lAd, IAzl, we obtain, in the linear approximation with 
respect to A l , Az 

dAl ' 2 'U A A* Iyl ---;[t = - 1"kok1k2 0 2e , 

dA 2 _ _ 2'u A A* iyl 
dt - 1 "kok1k2 0 Ie , 

(5) 

where 
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Equation (5) is easily reduced to the one 

d ( -iyl dA 1 ) _ 41 V. 121A 12 -iY1A dt e Tt - koklk2 0 e 1, 

the solution of which is Al = ceq" where 

q = ~Y ± J41~oklk2121Ao12 - h 2. (6) 

If the subroot expression (6) is positive, then we are dealing with the so­
called decay instability [39], when the wave of "large" amplitude Ao decays 
into two other waves. 

In order that the decay instability might occur for any Ao, it is necessary 
that, apart from the triangle condition 

ko = kl + k2' (7a) 

also the synchronism condition 

Wko = Wk l + Wk2 or Y = 0 (7b) 

be satisfied. 
The spectra, for which these two conditions may be satisfied, are called the 

decay spectra [39]. It is readily shown, from dispersion equation (24), 
Section 4 that we are dealing with a decay spectrum. Decay instability 
map proceed also with violation of (7b), but then a rather large excitation 
(pumping) wave amplitude Ao is required. The maximum instability growth 
rate is 

(8) 

The decay instability in a gravitating rotating layer for the case of the 
one-dimensional spectrum in k is dealt with in [70ad]. Our consideration, 
however, fits also the general case of a two-dimensional spectrum, where the 
possibilities of decay are much richer: As a rule, the infinite number of 
pairs (k2' k3) corresponds to a given k1• Let us investigate these possibilities. 

The dispersion equation shows that for k = ko = nGuo/c2 the frequency 
has t~e minimum: w~ = c2kMQ2 - 1), Q = xc/nGuo > 1. Due to this, kl 
may not be arbitrary: at least the inequality WI ~ 2wo must be fulfilled. 
For Wo ~ tx (Q2 ~ 4) it provides two regions of variation for k1 : 

o ~ kl ~ k- and kl ~ e, k± = [1 ± J3(Q2 - 1)]ko. 

For Wo > tX/(Q2 > 4) there is only one region. The condition of a triangle 
prohibits the decay WI -+ 2wo (since W2ko = x < 2wo), and now the bound­
ary ofthe region is determined by the inequality kl ~ k+ = !Q2ko. 

For decays from the short-wave region (kl2: k+ or kl ~ k+) kl > k2' 
k3' and W2 = WI - W3 < C(kl - k3) ~ Ck2 or W2/k2 < c, then it yields the 
lower asymptotics of the variation range of k2 > k; = ko Q2/2 and the upper 
one 
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Figure 101. Pairs (k1, k2) which may take part in the decay [(a) 0 < Wo < x/2(l ~ 
Q2 ~ !), (b) Wo > X/2(Q2 > !)] for positive energy waves (V. I. Korchagin and P. I. 
Korchagin have noted that taking part of negative energy waves essentially widens the 
range of allowed decays). 

The variation range of k3 is the same due to the symmetry. For Wo > x/2 
waves with k :$ k; do not take part in decays (dashed regions). Correspond­
ing k3 and angles between the wave vectors are determined from (23). 
Formulae describing the boundaries of regions are given in §1O, Appendix 
(see also Fig. 101). 

It is evident that Eqs. (5) describe only the initial stage of decay instability. 
In the course of time, the amplitudes Al and A2 will grow such that they 
will begin to influence Ao, and there will be the so-called parametric inter­
action of three waves [39]. In order to describe this process, let us ignore 
the inequality 1 Ao 1 ~ 1 All, 1 A 21. By assuming that the conditions (7) are 
satisfied, we obtain from (3) 

dAo 
dt - 2iV:ok, k2 A1A2' 

dA 2 -' * dt - -21v,.oklk2 AoAl· 

We single out in the quantities in (9) the moduli and phases: 

Aj = bj exp[iIPit)], v,.Oklk2 = Veil/l, 

e = IPo - CPl - IP2 + 1/1. 
Then (9) will take on the form 

dbo = -2Vb1b2 sin e, at 
db 1 = 2Vbob2 sin e, at 
d:t2 = 2Vbob1 sin e, 

de = 2V(bob2 + bob1 _ b1b2 ) cos e. 
dt b1 b2 bo 

(9) 

(9a) 
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Multiplying the last equation by tan () and using the first three equations, 
substituting the fractions on the right-hand side, we obtain 

bob1b2 cos () = r = const. (10) 

We denote nj = bJ. Taking into account the decay condition (7b), we obtain 
the first integral of the remaining three equations 

(lOa) 

expressing the law of conservation of energy in the 3-wave interaction (the 
values nj have the meaning of the "number of quanta" of a given frequency). 
In a similar manner, we obtain further three conserving quantities, 

ml = no + n1 = const, 

m2 = no + n2 = const, 

m3 = n1 - n2 = const, 

(lOb) 

the meaning of which is easily understood if one notes that, with the vanishing 
of one quantum with frequency Wko' quanta with frequencies Wkl and Wk2 

appear while the quanta wkl and Wk2 may vanish only together, producing a 
quantum Wko' Thus, if L\no = ± 1, L\nl = L\n2 = 1= 1. 

By using the integrals of (l0), we obtain from the third equation (9a) 

1 (dn2)2 2 2 2" -;It = 8V (nonl n2 - r ) 

= 8V2[nim2 - n2)(m3 + n2) - r2]. (11) 

The solution of this equation is expressed through the elliptical functions 
(cr., e.g., [39]); however, it would be more obvious if one investigates the 
solution qualitatively. The equation obtained has the form of the "law of 
conservation of energy" of a particle moving in the field with the potential 

U = 8V2n2(n2 - m2)(n2 + m3) (12) 

and having negative "energy" 

E = -8v2r 2, 

and the role of the" coordinate" is played by n2' The potential is presented 
in Fig. 102. 

From the figure it is seen that n2 (and together with it, according to relation 
(lOb), no and nl) oscillates between the maximum and minimum values. 
There also occurs periodical pumping of energy from one mode of oscillations 
to the others. It is interesting that if at the initial time moment one of the 
modes has not been excited (r = 0), then the process proceeds with alternat­
ing disappearance of one of the oscillation modes. 

When nl = n2 (m3 = 0) and r = 0, Eq. (11) has a simple analytical 
(" soliton") solution: 

(13) 
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Figure 102. Effective potential; (a) m3 > 0, (b) m3 = 0, (c) m3 < O. 

The process described by the solution of (13) is the following: the wave 
of a frequency Wko with the energy m2 Wko starts to decay into the waves 
with the frequencies Wk, and Wk2' and at the time t = to decays completely, 
and there begins a process of merging that finishes in the complete dis­
appearance of quanta with frequencies wk , and W k2 • The whole cycle is then 
performed for an infinite time. 

We have restricted ourselves to the case, when the first of the conditions 
in (4') is satisfied. We write the decay conditions 

(7c) 

corresponding to the two other relations in (4'). The last condition is never 
satisfied, since we have Wk > 0; therefore, in the future, under the decay 
condition either conditions (7a, b) or (7c) are everywhere understood. 

4.2.2. Kinetic Equation for Waves. We have dealt with the three-wave 
interaction in the case when only a few oscillation frequencies are excited and 
the interaction has a regular character. If simultaneously a wide frequency 
spectrum is excited, then since the resonance conditions may be satisfied for 
a multitude of sets of three waves, their interaction does not usually have 
a character of a regular process. If the frequencies of different oscillation 
modes are not comparable, then after some time, even if at the beginning 
there was a regular spectrum, the phase shifts between them may be con­
sidered as occasional. In this case it is convenient to make use of a statistical 
description with the aid of the so-called kinetic equation for the waves [39]. 
It is based on the suggestion that the oscillation phases are chaotic i.e., 
that oscillations with different k do not correlate with each other. The cor­
relation function 

(14) 

is introduced, which is the "number of quanta" with a given wave vector k 
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[cf. remark after formula (26), Section 4.1)] and obeys the equation (for 
details of the derivation, cf. §10, Appendix): 

dnk f 2 (Jt= 411: dk1 dk21~k.k21 [(nk.nk2 - nknk. - nknk2) 

x «>(Wk - Wk. - Wk2)«>(k - kl - k2) + 2(nk.nk2 + nknk2 

- nknk.)«>(Wk + Wk. - Wk2)«>(k + kl - k2)], (15) 

which is just the kinetic equation for waves. The obvious stationary solution 
for this equation is 

(16) 

which corresponds to the equipartition of energy in the "degrees of free­
dom." Indeed [cf. (26), Section 4.1], the value of energy in the given oscillation 
mode 

Ek = Wknk = N = const, 

and each wave number k has equal energy. 
Comparison of (15) with (18) reveals the connection of the kernel of the 

kinetic equation for waves with the growth rate of decay instability [note that, 
in (15), there are only waves satisfying the decay conditions (7)] and allows 
one to make an estimate of the applicability limits of the kinetic equation 
[load]. 

In a medium let a narrow wave packet propagate, which has a maximum 
width tJ.k in the vicinity of ko• Then 

( OWk ) Wk = Wko + ok tJ.k , 

which with the equality k = kl + k2 or k + kl = k2 accounted for, yields 

where 

Wi _/OWk / 
- ok k=ko· 

Replacing in (15) the matrix element by ~okoko = V and the «> function 
ofwby 

1 
w'tJ.k' 

we obtain the estimate of the characteristic time of the evolution of the 
spectrum 



§ 4 Foundations of Turbulence Theory 99 

As Ak ..... 0, 1: ..... 0. However, the time of the nonlinear interaction must 
event at all be greater than the inverse maximum growth rate of decay 
instability (8). For the monocromatic wave, one may formally introduce 

nk = I Aol2b(k - ko)· 
Then 

From the requirement 1/1: ~ Ymax, we obtain the restriction on the packet's 
width required for the applicability of the kinetic equation (15): 

- ~ - IV 12 nk dk . Ak 1 ( f )1/2 
k kw' 

(17) 

Thus, kinetic equation (15) may be applied only to the study of the 
interaction of wave packets fairly wide in k-space. 

4.3 Four-Wave Interaction 

If only such waves, for which the decay condition in (7) are not satisfied, 
are excited, the three-wave interaction is not effective and it is necessary 
to consider the four-wave interaction. For this purpose, we retain in expan­
sion (19), Section 4.1, the terms up to £,(4). Proceeding in the same way 
as in the calculation of £,(3), we shall obtain the matrix element of the four­
wave interaction 

£,(4) = f [l¥"k,k2k3akak,ak2ak3b(k + k1 + k2 + k3) 

+ 4Wtk1k2k3atak1ak2ak3b(k - k1 - k2 - k3) 

+ 3l¥"k,k2k3atat,ak2ak3b(k + k1 - k2 - k3) + c.c.] 

(1) 

The matrix element W possesses the properties of symmetry similar to the 
symmetry properties of the matrix element V. We will not give here its 
explicit expression. 

Equation (29), Section 4.1, in this approximation has the form: 

oak. f at + IWk ak = -i dk1 dk2[Vtk,k2ak,ak2b(k - k1 - k2) 

+ 2Y,.k1k2at,ak2b(k + k1 - k2) + Vtk,k2at,at2b(k + k1 + k2)] 

- i f dk1 dk2 dk3[4Wtk,k2k3ak,ak2ak3b(k - k1 - k2 - k3) 

+ 6(l¥"k1k2k3 + Wtk,k2k3)at,ak2 ak3 b(k + k1 - k2 - k3) 

+ 12l¥"k1k2k3ak1at2at3b(k - k1 + k2 + k3) 

+ 4Wtk,k2k3at,at2at3b(k + k1 + k2 + k3)]. (2) 
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4.3.1. Nonlinear Parabolic Equation. We consider with the aid of (2) the 
evolution of waves close to linear ones [13 ad]. We divide ak into fast oscillating 
and slowly varying parts: 

ak = (Ak + h)e- iwkt, 

where the fast oscillating part is much less than the slowly varying one 

Ihl ~ IAkl· 
Restricting ourselves, in the equation for ik' only to the terms quadratic 

with respect to Ak , we obtain 

Oh 
ot -i f dk 1 dk2{V:ktk2AktAk2 exp[i(wk - Wk t - Wk2)t] 

x c5(k - kl - k2) + 2v"ktk2A:tAk2 exp[i(wk - wkt - Wk)t] 

x c5(k + kl - k2) + V:ktk2AtA:2 exp[i(wk + Wkt + Wk)t] 

c5(k + kl + k2)}' 

We integrate this equation by assuming that, for the time of the variation 
of h, Ak does not change: 

l:(k k k ) V:ktk2A:tA:2 [.( ) ] x u + 1 - 2 + exp I Wk + Wkt + Wk2 t 
Wk + wkt + Wk2 

x c5(k + kl + k2)} (3) 

Let us, in the equation for Ab take into account the slowest exponents, 
i.e., the terms of the form A * AA. Taking into account (3), we have 

(4) 

where 
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If the spectrum contains waves for which the decay conditions are satisfied, 
then singularities will appear in T. Such a difficulty is not encountered for 
the wave packets narrow in k-space. Consider such a "packet" with the 
"carrier" wave number ko and with a width 6.k, such that 

Ik - kol ~ ko· 

We expand the frequency Wk with respect to q = k - ko: 

Wk = Wko + (qv) + tDijqiqj + .. " 
where 

aWki v--
- ak k=ko' 

Replace Tkk'k2k3 by w = 1kokokoko in (4) and put 

bk = Ak exp{ -i[(qv) - !Dijqiqj]t} == Akei(Wko-wk)t. 

Then we obtain from (4) 

abk • 1 at + z[(qv) + Z:DijqiqJbk 

= -2w f br,bk2 bk3 J(k + kl - k2 - k3) dk 1 dk2 dk3 

(the temporal exponents are subtracted). 
We perform the inverse Fourier transform: 

1 f . b(r, t) = 21t bqe-·qr dq. 

The quantity b(r, t) has the meaning of the envelope of the wave packet. 
We obtain 

ab (V)b i D a2b - iw f -iqrb*b b -;- + v - -2 ik -;--;- - - -2 e q, q2 q3 
ut uXiuXk 1t 

x J(q + ql - q2 - q3) dql dq2 dq3 dq 

- - iw f dq dq dq b* b b ei(q,-q2-q3)r - 21t 1 2 3 ql U q3 

= _(21t)2iwlbI2b. 

We have obtained the nonlinear parabolic equation 

ab i a2b - + (vV)b - -2 DiJ -;--;- + (21t)2iwlbI2b = 0, 
at uXiuXk 

(5) 

which describes such important effects as the nonlinear correction for the 
monochromatic wave frequency 
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and self-focusing and self-compression (modulational instability) of the 
wave packets, leading to the production of envelope solitons and "wave­
guides" and other phenomena. Some of them have already been considered 
in the previous sections. We refer the reader for a detailed discussion of these 
effects to the literature [15ad]. 

§ 5 Concluding Remarks 

5.1 When Can an Unstable Gravitating Disk be Regarded as 
an Infinitesimally Thin One? [39 ad ] 

5.1.1. Formulation of the Problem. The disk is incorporated as the main part 
in many models of astrophysical objects. Indeed, flat subsystems of spiral 
galaxies, a later stage of evolution of the protoplanetary cloud, the rings of 
Saturn, and, finally, pancakes and accreting disks around compact masses­
this is an incomplete list of objects represented in the form of gravitating 
disks. Definition of the stability of such objects, as the simplest investigation 
of one of the possible ways of their evolution, is inevitably associated with 
further simplifications of the model. The simplest and, therefore, of course, 
the most popular model was found to be that of an infinitesimally thin disk, 
i.e., a disk, the thickness h of which is many times less than the perturbation 
wavelengths A, A ~ h in question. 

However, already in [209] it was shown 17 that the maximum of instability 
of a gravitating disk (with a not very large temperature anisotropy rx = T.LI1II' 
where T.L and 111 are the temperatures across and along the rotation axis, 
respectively) lies in the range of wavelengths comparable to the disk thickness, 
A '" h. The last condition means that the collision less disk model in the form 
being used is found to be inapplicable for the most unstable wavelengths, 
i.e., just for those developing with a maximum growth rate so that with 
necessity we must use only a disk model of finite thickness, the stability 
study of which is an essentially more labor consuming task [31ad]. 

The aim of this section is to point out conditions under which in the 
infinitesimally thin disk model one can investigate correctly the stability 
and related fundamental questions: nonlinear density wave evolution 
[90a, 90, 20ad, 32ad] and weak turbulence [53"]. The study of these problems, 
as we shall make sure, is possible in the approximation of an infinitesimally 
thin disk if the latter is immersed in a massive halo. Thus, at what ratios 
between the basic parameters of these two subsystems can disk stability 
be investigated by assuming it to be infinitesimally thin? 

17 Goldreigh and Lynden-Bell in [209] have given the proof for the case when the disk is 
near the stability boundary, (})2 ~ O. In the present example, this statement is proved in the 
general case [see formula (20)]. 
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5.1.2. Vertical Density Distribution of a Light Gaseous Component and a 
Massive Stellar Halo. For the sake of concreteness let us consider a gaseous 
disk immersed in a stellar halo. In addition, we shall denote stellar values by 
the asterisk subscript and gaseous values by the "g" index. Let the stellar 
halo density be many times greater than the gas density. Thus, the first 
condition 

Po. ~ 1 
POg 

(1) 

allows one in the Poisson equation for steady-state values to neglect the 
gaseous component density. Assume the system to be so much extended 
along the z = 0 plane that the gravitational potential along z changes far 
more abruptly than along r so that 102<1>O/oz21 ~ 102<1>%r21. Due to the 
last remarks, the Poisson equation takes on the form: 

02<1>0 
OZ2 = 4nGpo.· (2) 

Write the equilibrium equation of the stellar component along the z-axis as 

0<1>0 1 opo. 
= 

- Po. T' oz 
For the "barotropic" stellar component 

po. = P o.(Po.)· 

Rewrite condition (3) in the form 

0<1>0 cn. oPo. 
az= - Po. Tz' 

(3) 

(4) 

(5) 

where cn. = oP o./oPo. is the square of stellar velocity dispersion along the 
z-axis. We assume further that cn. is little dependent on z (as compared to 
density Po.) so that 

--:- ocn. /_1_ oPo. ~ 1. 
cli. oz Po. oz (6) 

Differentiating (5) over z and making use of condition (6) and Poisson equa­
tion (2), we obtain the Emden equation 

u" + be" = O. 

Here, the primes denote differentiation in z, 

u(z) = In Po., 

We seek solution of Eq. (7) in the form 

b _ 4nG 
- 2 • 

cli. 

A 
u(z) = In -h2 ' 

c az 

(7) 

(8) 

(9) 
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where A, a are two constants [Eq. (7)-of second order] which we find by 
substituting (9) into (7): 

1 J2nGpo*(0) a - - - ---'-------'--
- h* - clI* 

(10) 

Ultimately from (8), (10) we have [209] 

(11) 

For the barotropic gas component 

the equilibrium condition along z has the form 

0<1>0 c~ oPog 

GZ - POg T' (12) 

where c~ = oP og/oPog is the square of sound velocity in gas. 
The left-hand sides of Eqs. (5) and (12) are equal; by making the right­

hand. sides equal, we obtain 

Poiz) _ [PO*(Z)]C1T.ICJ 
PoiO) - Po*(O) , 

or, taking into account (11), 

( ) PoiO) 
POg Z = [cosh 2(zlh*)]'rr. 1c§' 

(13) 

(14) 

In a partial case, cTI* = cr;, the gas density distribution precisely repeats 
the star density distribution. Usually, the stellar halo has a temperature 
greater than the gas temperature, i.e., cTI * > c~. In this case, the character­
istic thickness of the gaseous disk hg is found to be less than the stellar one, 
hg < h* [see formula (23) below]. 

5.1.3. Why One Gaseous Disk Cannot Be Regarded as an Infinitesimally 
Thin One. Let us now make sure that in the absence of a massive stellar halo 
the most unstable modes in a gaseous disk (or in a stellar disk with not very 
large temperature anisotropy) corresponds to wavelengths comparable to 
the disk thickness, A '" hg • The most unstable mode ko is obtained from 
the dispersion curve minimum condition [333] ow21ok = 0, where w2 = x2 + 
k2C~ - 2nG(Jogk, 

(15) 
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where 

(16) 

In the case wherein there is no stellar halo, the potential Cl>o is determined 
only by the gas component, and hence, similarly to (11) 

( ) PoiO) 
POg z = cosh2(z/hg)' 

where 

h = cg 

9 J2nGpoiO) 

Substituting (17) into (16), we obtain 

(10g = 2hg Pog(O). 

Using (15), (18), and (19), we find [209] 

kohg = 1. 

(17) 

(18) 

(19) 

(20) 

From the last relation it is evident that the infinitesimally thin disk repre­
sentation turns out to be inapplicable in the vicinity of the wave vector 
k = ko, corresponding to the most unstable mode. 

5.1.4. What Does the Presence of the Stellar Halo Change? Ifthe stellar halo 
surrounding the stellar disk is taken into account, the situation changes. We 
determine in this case the surface density of the gaseous disk, for which 
purpose let us make use offormula (14): 

foo dx 
(10g = PoiO)h. _ 00 cosh2v x· (21) 

Here we have introduced the dimensionless variables x = z/h.; v == cTI./c;. 
The integral in (21) is easily calculated by using the relation of [42] 

foo dx = B(l. v) = f(t)r(v) 
-00 cosh2" X 2, f(v + tr 

Next, at v ~ 1 the asymptotic formula of [42] can be used 

f(az + p) = foe- az(az)az+ p -l/2. 

Finally we obtain 

(22) 



106 VII Problems of Nonlinear Theory 

(at cll*lcg ~ 1). From the last formula it is seen that the characteristic 
thickness of the gaseous disk 18 is 

hg = h*.s.-. 
clI* 

With due regard for (10), (15), (23) we obtain [31 ad] 

ko hg = ~ Pog(O) <a; 1. 
V2 Po*(O) 

(23) 

(24) 

Thus, if the stellar density exceeds the density of the gas component, for 
the stability study of the gaseous disk it will be correct to regard the latter as 
infinitesimally thin, provided some additional condition is satisfied, the 
derivation of which we are now attempting to determine. 

5.1.5. The Basic Theorem. In calculating inequality (24) we have made use of 
expression (15) which has been derived from the dispersion equation 
describing small oscillations of a gaseous disk (see Section 2.2, Chapter V) in 
the absence of the influence of the stellar component. Consequently, we have 
to obtain the condition of negligible contribution by the stellar component 
to the perturbed gravitational potential <1>1' 

Let us write the ratios between the perturbed surface density and the 
unperturbed one for the gaseous and stellar disks: 

(::)g P<I>l 
(25) w2 _ x2 _ k2 c2 ' 

9 

(::t k2<1>l 1* 
(26) w2 _ x2 _ k2c2 • 

.1* 

According to Eq. (24), we consider the gaseous disk as thin. Therefore, the 
reduced factor 1* that provides the correction for thickness is taken into 
account only for the stellar disk. 

It is appropriate to note here that, although in the works of Shu [323] 
and Toomre [333] the reduced factors had been obtained on the assumption 
kh <a; 1, one can, by direct calculation, make sure that they provide a true 

18 Note that the estimate in (23) is valid at the arbitrary value of the parameter v == c~./c:. 
Let us obtain (23) directly from (14) [formulae (14) and (21) are true at any v!] 

I (2 )2' 
ch2 , X = eX + e- X 

With 1 > x <: 1/2v by using (21') we obtain (23). 
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asymptotic also in the opposite limiting case kh ~ 1. Indeed, let us make 
use of the coupling between <1>1 and (J 1 (Chapter V) 

At kh ~ 1 

2nG(J1 
---

Ikl 

2 
1= kh' 

(27) 

(28) 

Substituting (27) and (28) into (26) and using the fact that Po = ao/h, we 
obtain 

(29) 

where w~ = 4nGpo. Equation (29) is the dispersion equation describing 
small oscillations in a rotating gravitating cylinder in the plane perpendicular 
to the generatrix (Chapter II). 

In connection with the above, the reduction factor in (26) can be used in 
two opposite cases: (1) kh* ~ 1; (2) kh* ~ 1. We examine the first case. In 
the lowest (zero) order in kh*, the reduction factors of Shu and Toomre 
1* = I,19 

For a two-component medium of gas and stars, the relationship between 
the perturbed potential and density has the form (in accord with (27)) 

2nG 
<1>1 = - -k- (a h + a 19)' (30) 

From (30) it is evident that the contribution to the perturbed potential of 
the star component can be neglected, provided that 

(31) 

or, using formulae (25) and (26) and by taking into account 1* = 1 [84], 

aOg ao* 
-2 ~ -2-' 
Cg C.L* 

By introducing the coefficient of stellar disk anisotropy 

2 
C.L* ()( = -2-' 

clI* 

(32) 

(33) 

using (23), we shall ultimately obtain the following conditions of negligible 
contribution by the stellar component to the perturbed gravitational 
potential: 

(for kh* ~ 1). (34) 

1 q In the following (first) order of expansion of 1* over kh* ~ 1 the reduction factors of [323] 
and [333] differ by a factor of 2. 
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As with the case of (2) (kh. ~ 1), by restricting ourselves to the first term 
of expansion over 1/kh., being equal for reduction factors of the two types 
of [323] and [333], we have 

(35) 

and the condition in (31) takes the form 

P~g(O) h; 
-- ~ - (for kh. ~ 1). 
P~.(O) (Xh; 

(36) 

From the above, there follows: 

Theorem. The necessary and sufficient condition for the existence of an 
infinitesimally thin disk approximation for the region of unstable wave 
vectors is the presence of a stellar halo with parameters satisfying inequalities 
(34) and (36). 

5.1.6. Constraints of the Model. It is obvious that if (X ~ 1, inequality (36) 
follows automatically from the right-hand inequality in (34.) Therefore, for 
models with stellar halo anisotropy not very much different from 1, in 
terms of the theorem, the requirement of satisfying inequality (36) can be 
omitted. 

Despite the fact that this section is devoted to the correctness of an 
infinitesimally thin gaseous disk approximation the same problem exists 
also for a stellar disk with not very great anisotropy (Xl20 of star velocity 
dispersions. Of course, it is solved by a similar requirement of a massive 
stellar halo, and conditions (34) and (36) will further incorporate the param­
eter (X 1 that facilitates their fulfillment at (Xl > 1. 

We propose the reader makes sure that the fulfillment of conditions (34) 
and (36) for many models is problematic. 

5.2 On Future Soliton Theory of Spiral Structure 

From applications of the above developed theory of nonlinear density waves 
in gravitating disks to galaxies two possibilities can be discussed. The former 
consists in the representation of the flat component of a spiral galaxy in the 
form of the envelope soliton, the filling of which are the spiral arms. The 
latter is to represent a separate spiral arm as a soliton if one assumes the 
existence of inner structure of the arm. 21 

20 It is easy to make sure that for the stellar disk koh. 1 - l/cxl ~ 1 at cx l ~ 1 (do not confuse 
cx I and h. I with cx and h. of stellar halo). 

21 Inner structure of the arm of the Galaxy was investigated, for example, in works by I. V. 
Gosachinsky [41a]. 
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Let us examine the first possibility. By representing the flat component of 
the spiral galaxy in the form of a soliton we thereby assume the absence in 
the soliton of the group velocity, cg = dw/dk = 0 (for certainty, we shall 
bear in mind the stable case-see Fig. 93). In this case there appears an 
interesting relationship between the radial extent of the spiral structure of the 
galaxy (which is then simply just a size of the soliton) and the equilibrium 
parameters of the disk (in particular, the stability reserve Q). Indeed, the 
characteristic spatial scale of the soliton is, according to (29), of Section 5.1 
equal to 

.1 = cs • 

Yo 
(1) 

But from the dispersion equation, provided that cg = dw/dk = 0, it follows 
that 

2 2( 1 ) Yo = Xo 1 - Q2 ' (2) 

where Q = xocs!rcGao is the Toomre stability reserve. Therefore, instead of 
(1) we get for the characteristic size of the glo bal picture of the spiral structure 

(3) 

The fundamental question for the possibility of applications to real systems 
is that of how the various inhomogeneities (density and velocity dispersion 
inhomogeneities, differentiality of rotation) will affect even the very existence 
of the soliton structure at rest. 22 The point is that if the condition cg = 0 
is satisfied at some one point of the inhomogeneous system, then at another 
point it generally will not be satisfied. One may, however, suggest that dis­
turbances that possess a required property are automatically chosen from 
initial disturbances by the system itself (the galaxy): the wave groups having 
a nonzero group velocity leave the system23 ; at the same time disturbances 
with cg = 0 remain in it for ever. 

The above remark follows from linear theory. If, however, a wave packet 
having a group velocity c/r) = 0 is provided (in the framework of linear 
theory), then the effects of nonlinearity in turn will ensure (for corresponding 
values of the effective adiabatic exponent y) nonspreading of the wave 
packet: the influences of the dispersion and nonlinearity will compensate 
for each other. 

In reality, however, one has to require that simultaneously two con­
ditions, rather than one should be satisfied: (1) the above condition of the 

22 The applicability of the theory that deals, for example, with a single soliton moving along 
the radius, is limited by the passage time to the nearest point of reflection. Indeed, in an in­
homogeneous system there occur reflections, refractions, and transformations of (long-wave 
into short-wave and inversely) waves when these arrive at some special circumferences: reson­
ances, non transparency region boundaries, etc. 

23 Of course, in the future full theory one will have to take into consideration both the 
possibility of wave reflection and the effects of wave amplification or damping. 
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absence of radial drift of the wave packet and (2) weakness (or still better 
the absence) of angular twisting of the disturbance by differential rotation 
of the galaxy. The latter condition means 

w np = - ~ const =F f(r). 
m 

(4) 

If the two conditions are satisfied, we shall have a packet of spiral waves not 
subjected to either drift or twisting and therefore not needing any generator 
for its regeneration. The nonlinearity will stabilize this packet also from 
dispersion spreading. 

Condition (4) leads to a definite dependence of the spiral tilt angle to the 
circumferences r = const: 

e(r) ~ nGaoQ2Jl - Q2, 
In - nplrxo 

e ~ 1. (5) 

Another possibility-the representation of a separate spiral arm or ring 
in the form of a soliton-was discussed in [90a, 89a, 5000, 52ad], In contrast 
to the picture stated above (soliton-the entire flat subsystem) this model 
suggests the motion of the soliton arm (or ring) either at subsonic or super­
sonic velocity. 

The spiral structure theory should account for both the formation of ring 
galaxies and the existence of ring structures in normal galaxies. The theor­
etical and observational aspects of this problem, as well as the necessary 
references can be found in [50ad] and [47 ad], 

Problems 

1. Derive the nonlinear equation for density waves in a rotating infinitesimally thin 
disk [cf. (30), Section 1.1] by using the Lagrange description. 

Solution. By introducing the local Cartesian coordinates x = r, Y = rep, and assuming 
for the sake of simplicity the rotation to be uniform (xo = 2Qo), write the equation of 
motion 

X - 2QoY = - - $1 + __ 5 - - , 
a [ c2 ((J)X-l] 

ax x - I (Jo (I) 

(2) 

where $1 is the perturbed potential and a is the full surface density that satisfies the 
continuity equation 

a(x) dx = ao dxo. (3) 

Introducing the displacement ~ through the relation ~ = x - xo, rewrite the system of 
(I) and (2) in the form of one equation: 

.. a [ c; (a)X-l] 
~+4Q~~=-ax $l+x_1 ao ' (4) 
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Use the Fourier expansions 

:< = - e- ikxo :< dx 1 fL 
'>k 2L -L '> 0, 

(5) 

(6) 

with the help of which the relation between 11k and ~k is established (the relation between 
t/lk and 11k is known from the Poisson equation: t/lk = -2nGl1k/lki). Calculating then 
the Fourier components from the right-hand side of (4) up to the third order of magnitude 
over ~k inclusively, write (4) for the kth harmonic: 

4 (/d: + wr)~k = i I ~k, ~k,(kQk.k'.k' - kiPk) 
Cs It k,.k, 

Here the notations 

Ik 1= nGl10 
o 2' 

Cs 
(8) 

P =k(I-2~) 
k Ikl ' (9) 

(II) 

are introduced. 
As in Section 1.1, we assume that only the harmonics k = ± ko are excited and 

wro ~ n~ (then W~ko ~ k~c; ~ 4n~). Then calculating the amplitudes of excited 
overtones, 

~2kO ~ ikoao • (x - 1), 

~o = ~k=O = 0, 

we obtain the nonlinear equation of oscillations for perturbations 

where 

A = !(3x2 - llx + 10). 

(12) 

(13) 

(14) 

Equation (13) is the sought-for oscillation equation that takes into account nonlinear 
terms up to the third order of magnitude in amplitude, inclusively. 
2. Determine for the nonrotating isothermal layer the nonlinear correction for the 
critical wavelength that corresponds to the stability boundary [31 ad]. 



112 VII Problems of Nonlinear Theory 

Solution. The equilibrium density Po, pressure Po, and gravity force F 0 in this case are 

Po = cosh2 Z' 

1 
Po = 2' 2 cosh z 

0<1>0 
Fo = - - = - tanh z 

OZ ' 
(1) 

where units are assumed, in which PoCO) = 1,4nGpo(0) = 1, and the "semithickness" of 
the layer a = 1 (the usual dimensional vertical coordinate z' = za). The system of 
equations describing the isothermic layer on the stability boundary is the following: 

1 
-VP + V<1> = 0, (2) 
P 

.1<1> = p, (3) 

P= ~. (4) 
2 

Equations(2)-(4)arereadilyreducedtoasingleequationfor~ = Dp/po[P = Po(1 + ~)]; 
within the values of third order with respect to ~ it may be written in the form 

( e e) ~ .1 ~--+- =2--. 
2 3 cosh 2 Z 

(5) 

Substituting the variable z -> /1 = tanh z, we obtain 

- (1 - /12) - + ---- ~ - - + - + 2~ = O. [ 0 0 1 02J( ~2 ~3) 
0/1 0/1 1 - /12 ox2 2 3 

(6) 

By representing ~ as 

~ = ~o + (~le;kx + c.c.) + (~2e2;kx + c.c.) + ... , (7) 

where c.c. denoted a complex conjugate quantity, then in the linear approximation from 
(6) we find 

Hence it follows that 

~~I) = AJI=I?, k~ = 1 (A = const). 

In second order (7) yields two equations. One of them, for ~ 2, is 

o (1 2) 0 (,t ~f) (2 4) ("2 ~i) 2 2 - - /1 - '>2 - - + - -- <;2 - - = -A (1 - /1 ), 
0/1 0/1 2 1 - /12 2 

while the second equation is for ~o 

[:/1 (1 - /12 ) :/1 + 2}0 = -2(1 - 3/12)IAI2. 

From (10) we find for the combination ({J2 = ~2 - ~V2: 

({J2 = A2(1 - /12)/4; 

therefore 

(8) 

(9) 

(10) 

(II) 

(12) 
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The solution of Eq. (II) is 

¢o = -tJAJ 2(1 - 3jJ.2). (13) 

The equation for the "full" ¢I = ¢\I) + ¢\3) is as follows: 

[ 0 (I 2) 0 k2 
](): ): ):(1) ): ~(I) "(1»):2) 2): 0 

DjJ. - jJ. ojJ. - I _ jJ.2 <'1 - <'0<'1 - <'2~1 + <;1 <'1 + <'1 = . (14) 

Represent it in the symbolical form 

L(k2)¢1 = -L(k6)(~\1)¢i - ¢O¢\I) - ¢2~\1» == -LR(jJ.), (15) 

where 

2 0 2 0 k2 

L(k ) = ojJ. (1 - jJ. ) ojJ. - I _ jJ.2 ' (16) 

R(jJ.) = ~\I)¢i - ¢O¢\I) - ¢2~\1) = AJ:J 2 
JI="7(5jJ.2 - I), (17) 

- L(k;)R(jJ.) = 3AJAJ2JI="7(5jJ.2 - I). (18) 

Therefore, we get 

(19) 

where 

(20) 

Find now from (19) and (20) the nonlinear correction bk2 to k'5 = 1 from perturbation 
theory. We have 

¢(O) == AF-/l. (21) 

Multiply (21) on the left by ~(O) and integrate over jJ. from (-1) to (+ 1): 

1 I-f djJ. ~(O)L(k'5)b¢ + bk2 f djJ. ~(O) o~ ¢(O) 
-I _1 0k 

= f 1 djJ. ~(O)e(jJ.)¢(O). (22) 

But the first of the integrals in (22) is zero due to self-conjugateness of the operator 
L(k~); therefore. 

(23) 

Consequently, in lower order with respect to the amplitude of perturbation the nonlinear 
correction for the critical wavelength of the nonrotating isothermic layer is absent. 

3. Same as in Problem 2, for the rotating isothermic layer [31ad]. 
Solution. The dependence of equilibrium values Po, Po, F 0 on the vertical coordinate 
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z remains the same [cf. formulae (1) in the previous problem]. For the ordering usually 
taken by us, a/at - e2, u - w - e3 , v - e, bp - e, b<l> - e (cf. §1.2 of main text), we get 
the following system of equations of motion (x is the epicyclic frequency) : 

10P 0<1> 
xv=-- +-, 

P ax ax 

ev ov ov) 
xu = - at + u ax + w oz ' 

1 OP 0<1> -- +- = 0 
paz oz ' 

op a a - + -(pu) +-(pw) = 0, 
at ax oz 

P=~ 
2' 

A<I> = 4ltGp. 

Assuming that p = Po + bp and <I> = <1>0 + b<l>, we find from (3)-(5) 

~~ [bP _ ~ (bP)2 + ~ (bP)3] + ob<l> = O. 
2 oz Po 2 Po 3 Po oz 

Denote 0 = bp/po; then from (7) it follows that 

- 0 - - + - + b<l> = -A.(x). 1 ( 02 0 3
) 

223 

Equation (1) becomes 

while Eq. (2) yields 

2 a OA. 02 A. 
xu=--+u-

at ax ox2 • 

We have further the continuity equation (4), which is written in the form 

pwl~oo = 0, 
or 

foo [ 00 a ] 
-00 Po at + ax (PoU + PoOu) dz = 0, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

and will be used below as the boundary condition. By adding to the written equations the 
Poisson equation and turning from z to the new variable /1 = tanh z, we finally have 
the following system: 

(12) 

(13) 

(14) 

fl [00 a ] 
_ld/1 ot+ox(u+Ou) =0. (15) 
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Let us solve the system of equations (12)-(15) by successive approximations. 
I. Linear approximation was investigated [209] by Goldreich and Lynden-Bell, and 

we first follow their work. We have, instead of(12)-(15), 

[ iJ C ( k2 )] ~ 2k2 
011 (1 - 112) 0/1 + 2 - 1 _ 112 01 == LkOI = 1 _ 112 AI; (16) 

therefore [209], 

(17) 

where 

k [ (1 - /1)k'2f~ (k - v) (1 + V)k12 
,Mil) = 1 _ k2 (k + 11) 1 + 11 -I (I _ v2) 1 _ v dv 

(1 + ll)kl2fl (k + v) (1 - V)k12 ] _ ~_I ( 2P ) 
+ (k - 11) I _ 11 ~ (I _ v2) 1 + v dv = Lk 1 _ 112' (18) 

The boundary condition (15) yields the equation 

2k2 fl 
-2 = ,Mil) dll 
x _ I 

(19) 

for the determination of the critical wave number ko (and the corresponding parameter 
x2). Write (19) in theform 

where the notations 

F(k) = A(k), 

2k2 
F(k) = -2 ' 

X 

(20) 

(21) 

are introduced. The behavior of the curve, determined by Eq. (19), is qualitatively the 
same as that in Fig. 94. At the point of contact k = ko = 0.47, and l/x2 ~ 4.38. 

2. Second order. For the second harmonic, from (12)-(14) one can obtain the equation 

(22) 

therefore, 

~-I 2 Ai 
O2 = A2t/12k + (1 - 2L2k )t/lk 2' (23) 

Substituting (23) into the boundary condition of (15), we find 

A = _,12 B(k) 
2 I A(2k) _ 4A(k) , (24) 

where 

1 fl I' -I 2 
B(2k) = 2 _1(1 - 2L2k )t/lk dll· (25) 

In the second order, however, we also get the equation for the zero harmonic 00 : 

(26) 
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with the solution 

Here the boundary condition 

fl eo d/1 = 0 
-I 

is satisfied automatically. The operator to I acts in the following manner: 

toIX{J1) = ![/1 fY(V)X(V)dV + Y(/1) fIVX(V)dV 

- /1 f /(v)X(v) dv - Y(/1) f vX(v) dv J. 
where 

/1 1+/1 
Y(/1) = -In -- - 1. 

2 1 - /1 

It is easy to see that the solution of (27) is even and has no singularities at /1 = ± 1. 

(27) 

(28) 

(29) 

3. Third order. Somewhat more cumbersome than those written above but in principle 
similar to them, calculations finally lead to the following equation for the determination 
of the nonlinear correction for the critical wave number ko: 

2k2 2[ B(k)D(k) ] 
A(k) - 7 = 1..1.11 C(k) - A(2k) _ 4A(k) , (30) 

where 

(31) 

(32) 

The computation made by these formulae has shown that the nonlinearity in this case 
plays a destabilizing role: it somewhat broadens the region of unstable wave numbers 
(c5k 2 > 0). 

4. Same as in Problem 2, for the rotating incompressible layer24 (the adiabatic index 
y = 00) and for the rotating layer with l' = 2. 

Solution. In both cases, the solutions of equations ensuing in the scheme of successive 
approximations, are expressed in elementary functions. Since the schemes of calcula­
tions largely repeat the ones already repeatedly used by us earlier (for example, in 
Problem 2), we shall give only the final form of nonlinear dispersion equations (on the 
stability boundary) and determine the sign c5k2 • 

24 The solution is obtained by S. M. Churilov. 
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I. Incompressible layer. To determine (jP in this case, we obtain a system of two 
equations: 

[ 1 _ ~JNI) = 2k3 (1 + e- 2k)2 NI)N2) 
k(1 - 2k + e 2k) X2 X4 (1 - 2k + e 2k) 

k8 3(k2 + Xl) - k(1 - e- 4k ) (1)3 

+ 2x6 . (1 - 2k + e 2k) 1\, ( I ) 

[ 1 _ ~JN2) = ~ (1 + e- 2k)2 NI)2 
2k(1 - 4k + e 4k) Xl 8x4 I _ 4k + e-4k . (2) 

Here NI) and N2) are the expansion coefficients of the value X = P/Po - <I> = 1\(x, t) in 
the series 

A = N°) + (A(I)eikx-iwt + c.c) + (N2)e2ikx-2iwt + c.c.) + ... ; (3) 

units are used, in which the half-thickness of the layer c = 1,4nG = I, and the density 
Po = 1. 

The minimum of the function 

Fk = k(1 _ 2k + e- 2k ) 

is reached at 2k = 2ko = 0.607.25 Here it is easy to see that 1 - 2ko + e- 2ko > 0; the 
calculation shows, in addition, that also 1 - 4ko + e- 4ko =::: 0.05 > O. Since 

and 

2k(1 - 4k + e 4k) > k(1 - 2k + e- 2k)' 

then, according to (2), A(2) > O. The equation for «(jk)2 will be reduced to the form 

~«(jk)2F" = 2k6 (l+e- 2kO)2 N2) 
2 ko X4 I - 2ko + e 2ko 

kg 3(k~ + X2) - ko(1 - e- 4kO) (1)2 

+- A 
2x6 I - 2ko + e 2ko . 

(4) 

The first term on the right-hand side of (4) is positive owing to N2) > 0, just proved. 
Since X2 = -+ (tx2 = 1.75), therefore, 

3(k~ + X2) - ko(1 - e- 4kO) > 3(k~ + X2) - ko =::: 0.15, 

and the second term is also positive. If one takes into account that Fko > 0 (cf. Fig. 94), 
we arrive at the conclusion about the destabilizing character of the nonlinear correction: 
«(jk)2 > O. 

In the limiting case of a nonrotating layer from (l) and (2), one may obtain 

[1 - k(1 + tanh k)] = [2k(l - ~~nh 2kX2: ~ t) _ k(!k _ 1)]IA(I)12, 
1-2 I+tan 2) 

(5) 

25 This and subsequent values of the required quantities are taken from a paper of Goldreich 
and Lynden-Bell [209]. 
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where A(I) is the amplitude of the perturbed potential 

(<1>(1) = A(I) cosh kz/cosh k). 

Here also l>k > 0, i.e., the nonlinearity effect is destabilizing. 
2. Polytropic layer for y = 2. The equation for the nonlinear correction (l>k? has 

the form: 

(6) 

where 

c l 

D= - A, 
2(F lk - Fd 

kl [k tan(nlk/2) + IkJ4 {I 2 tan(nlk/2) } 
A = p;lt Ik tan(nlk/2) - k 2[llk tan(nI2k/2) - 2k] + k tan(nlk/2) + Ik ' 

(7) 

k (k tan(nlk/2) + Ik)2 2k tan(nI2k/2) + 12k 
C = Pc 12k If Ik tan(nlk/2) - k 12k tan(nI2k/2) - 2k' 

(8) 

n tan(nIJ2) 
Fk = - + 3 ' 

21k klk[lk tan(nlk/2) - k] 

In the unperturbed state, the density Po = Pc cos z; the pressure is P = p2/2; the 
angular velocity is n = t, 4nG = 1; the half-thickness of the layer is a = n/2. The 
numerical calculation at the stability boundary yields 

ko = 0.39, 

Fko = 5.62, F 2ko = 53.79, (9) 

A = 0.0054, c = 0.500, D = -0.0028. 

Since D <0 and Fko > 0, therefore, (l>k)2 < 0, i.e., stabilization takes place. 
On the stability boundary of the nonrotating layer with y = 2 we get the following 

equation replacing (6): 

( nlk) IfA(!)2 (8k2 - 1) cosh(nik/2) + 41kk sinh(nik/2) 
k Ik - k cot - = --. ---;;----.-------;:---

2 2p; Ik sinh(nik/2) + 2k cosh(nlk/2) , 
(10) 

where If = 4k2 - 1, If = 1 - k2, and Ifo > 0; since the equation for Iko ' Iko = 

ko cot(n1kj2) (or, what is the same, I = cos(nl/2», has the solution I = 0.6 (k ~ 0.8). 
On the right-hand side of (10), a positive value stands which we shall denote by B2. 
Expanding the left-hand side of (10) near k = ko, we obtain 

(11) 

therefore, l>k < O. This means that the region of unstable k is somewhat reduced with 
due regard for nonlinearity (stabilization). 

5. Derive the nonlinear equation for disturbances conserving the surface density in the 
fastiy rotating homogeneous gas layer (the density Po, the thickness 2c, the angular 
velocity of rotation n; n2 ~ 4nGpo). Obtain the solutions of the soliton-like type. 
Investigate the modulation instability of the layer and the collapse of two-dimensional 
nonlinear waves [30"4]. 
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Solution. This problem in terms of one and the same equilibrium model (item 1) 
similar to the Goldreich and Lynden-Bell model [209] will deal with: solitary waves 
(solitons), in item 2; modulational instability of nonlinear monochromatic waves 
(leading to their division into individual packets), in item 3; and finally, collapse oftwo­
dimensional nonlinear waves which is formally manifested in the appearance of a 
singularity in the solution of the basic equation after some marginal time (item 4). 

I. Equilibrium model and derivation of the basic equation. Consider a homogeneous 
gaseous layer of density Po and thickness 2e, maintained in equilibrium along the z-axis 
as a result of the balance of forces of gravitation and pressure Po = tQ~po(e2 - Z2). 

In order to avoid Jeans instability in the (x, y) plane, let us assume the layer to be rotating 
with an angular velocity Q in an external field with the potential «1>0 = Q2(X2 + i)f2. 26 

The maximum growth rate of Jeans instability for Q = ° is of the order Qo. For Q2 ;;: Q~, 
this instability stabilizes. Further, we are interested in oscillations of the layer with a 

frequency of the order Wo = J4nGpo '" Qo. For the sake of simplicity, let us assume 
that Q2 ~ Q5 '" w2 and make use of the dimensionless variables, in which Po = 1, 
e = 1, and 4nGpo = 1. 

Find now the spectrum of small, long-wave oscillations of the layer in the plane (x, y). 
In the frame of reference rotating with an angular velocity Q, the linearized equations 

have the form 

OP1 ov.1 • at + Tz + Ik1.v1.1 = 0, (1) 

OV1.1 • at = 2[Ov1.1] - Ik1.(Pl + «1>1)' (2) 

OVz1 0 , 
Tt = - OZ (PI + «1>1) + P1PO, (3) 

o 
ot (PI - yPOP1) + Vz1P'O = 0, (4) 

02«1>1 
OZ2 - ki«l>l = Ph (5) 

where k1. == (k"" ky), y is the adiabatic index, and the prime denotes the derivative with 
respect to z. From Eq. (2), one can find V1.1. Omitting%t in comparison withQ(Q ~ w) 
and multiplying this equation vectorially by n, we obtain 

i [Oklo] 
V1.1 = - 2Q2(P1 + «1>1)· (6) 

Substituting (6) into (1), we see that the term with k1. V1. is eliminated from the latter 
equation. Introducing the quantity e (vertical displaCement along the z-axis), via the 
relation Vz1 = - iwe, we obtain the following simplified system of equations: 

PI + e' = 0, (7) 

-w2e = -«1>'1 - P'l - P1Z, 

PI = ~(1 - Z2)P1 + ze, 
«1>'1 - k2«1>l = Pl. 

(8) 

(9) 

(10) 

26 A similar model was applied by Goldreich and Lynden-Bell [210] in the construction of the 
regenerative theory of spiral arms in galaxies. 
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Differentiating (8) over z and substituting into the equations thus obtained (7), (9), 
(10), we arrive at the following equation for the perturbed potential <1>1: 

{w2 ~: + ~22 [~(1 - z2) ~22 Jr1 = (w2 - l)k2<1>l + k2 ~22 ~ (1 - z2)<1>l. (11) 

In thecasek.J. = 0, the order ofEq. (11) is lowered: 

2 "I 2 d2<1>l 
W <1>1 + 2 (1 - z) dz2 = o. 

It may be easily tested that this equation has eigenfunctions 

<l>t) = (1 - Z2)p~+1(Z) '" p.+ 2(z) - p.(z) 

and eigenfrequencies 

w; = h(n + lXn + 2), 

(12) 

(13) 

(14) 

where n = 0, 1,2,··· ; p.(z) are the Legendre polynomials. In particular, for the mode 
n = 0, corresponding to uniform extensions-contractions of the layer along the z-axis, 
w2 = y. We shall be interested just in this mode since it is most convenient to obtain the 
nonlinear dispersion equation for it. 

Calculate now the corrections of the order of k2 for the eigenfrequencies, assuming 
that k2 ~ 1. 

Represent Eq. (11) in the form 

k(W2 )<I>l = k2P<1>l' (15) 

where 

d 
P = -("I + 1) - 2yz-. 

dz 

In the zero order of perturbation theory 

k(w~0)2)<1>tb = 0, 

(16) 

(17) 

(18) 

where <l>tb and w~0)2 are defined by expressions (13) and (14). Assume that <l>t) = 

<l>tb + CP.; then 

(19) 

Define the scalar product 

(<I>, 'II) == fl <1>'11 dz. 
-1 

(20) 

Multiply (39) on the left scalarly by <I><rb: 

( flI<') k(w(0)2)m) + ~W2/ .,,(.) ak <1>(')) = k2(<I>(') P<I>\') (21) 10' ...... U \ '&'10' aw2 10 10, 10· 
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Hence we find [taking into account (18) and also the self-conjugateness of the 
operator k,<<I>, kif') = <If', k<l»]: 

Since 

:! = ::2' \<1>, ~z~) = -<<1>', <1>,), <<I>, r<l» = -(y + 1)<<1>, <1» 

= -2Y\ <1>, Z ~ <I> ) = -(y + 1)<<1>, <1» + y<<I>, <1» = - <<I>, <1», 

we obtain 

Finally, since 

2 2 <<I>~b, <I>~b) 
OWn = k <",(n)' ",(n)') > O. 

'"'10, '"'10 

<<I>(n) <I>(n) _ 4 (n + 1 )2(n + 2)2 
10, 10 - (2n + 1)(2n + 3X2n + 5)' 

<<I>(n)' <I>(n)') = 2 (n + 1 )2(n + 2)2 
10, 10 2n + 3 ' 

we finally find the following expression for the correction to the frequency: 

ow2 = 2k2 
• (2n + lX2n + 5) 

In particular, for n = 0, the correction is ow2 = 2k2/5. 

(22) 

(23) 

(24) 

Calculate now the nonlinear correction for the frequency w2 = y. Assuming that the 
nonlinearity is sufficiently small, the nonlinear correction may be calculated at kJ. = O. 
But such oscillations, as one may easily ascertain, are described by the equation 

(25) 

which remains true at arbitrary amplitudes. Assuming that c = 1 + h, h ~ 1, we find 
from (25) 

(26) 

where 

a = -tv(y + 1), P = b(y + 1)(y + 2). (27) 

Equation (26) has a standard form [69] of the equation for oscillations of the anharmonic 
oscillator. Therefore, one can immediately write the expression for the nonlinear cor­
rection to the frequency 

(3 P 5(2 ) 2 OW= ----2 Ihl 
8 Wo 12wo 

(28) 

or 

A,2 == is(2y - 1)(y + 1). (29) 
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Combining (24) and (29), we obtain the sought-for nonlinear dispersion equation 

012 = O1M! + 3ki!5y - 2,A, 21 h 12). (30) 

2. Solitons. Assuming now in (30) k~ = k; - 02/0X2, we arrive at the differential 
equation 

~ o2h = O1~[1 + (2/5y)k;J - 012 h _ 2,A,2Ih2 Ih. 
5y ox2 o1~ 

(31) 

Multiplying (31) by oh*/ox and adding with the complex conjugate equation, we obtain 

~ ~ / oh /2 = O1~[1 + (2/5y)kn - 01
2 ~ Ihl2 _ ,A,2 ~ Ih14. 

5y ox OX o1~ ox ox 

Integrating over x, we find 

The soliton solution corresponds to the case: const = O. Denote 

then 

2 _ 5y,A,2 
q - -2-' A =- I+-k--2 1 ( 2 2 01

2
) 

,A, 2 5y Y o1~' 

~ olhl = +JA2 _ h2. 
q ox -

The solution for this equation is 

A 
Ihl = , 

cosh(Aqx) 

the width of the soliton 

1 [2 I ] 1/2 

~ ~ Aq = 5y 1 + (2/5y)k; - 012/015 ' 

(32) 

(33) 

(34) 

(35) 

(36) 

and the amplitude I h Imax = A. The minimum size of the soliton (on the limit of applica­
bility of the theory) has the order of the layer thickness. 

Note that the soliton solutions, similar to that obtained above, are easily found also 
in the model of a uniform gaseous cylinder. 

It is, however, interesting that for the collisionless layer and cylinder, there are no 
similar solitons (the nonlinear correction for the frequency 010 and the correction for ki 
have the same sign). 

The solution of (35) describes a soliton being at rest. However, it is easy to construct 
a solution also for a running soliton. 

Let h = t(ae- iwot + a*eiwot), and b == ae- iroot ; then for b, we have the equation 

ob 
i ot - O1ob + rx~b + PblW = o. (37) 

We seek the solution in the form b = C(x, t)e-iwt+ikr, and for C we obtain the equation 

( OC OC) 
i at + 2rxkx ox + (01 - 010 + rxk2)C + rx~C + PGI Gl2 = O. (38) 
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One may assume C to be a real function, C = C(~) == C(x - vgt), where Vg = 2rxkx is the 
group velocity. Then from (38), for C(~), we obtain 

02C 2 3. 
rx O~2 + (W - Wo - rxk )C + pC = 0, (39) 

therefore, 

C = _C-"m"".x"----
cosh ko~' 

(40) 

where 

This solution is coincident with (35) if in (40) it is assumed that kx = O. The perturbation h 
has the form 

Cm• x 
h = cos(wt - kr)---,---­

cosh ko (x - vgt) 
(41) 

3. Modulation instability. We are investigating the problem of the stability of nonlinear 
monochromatic waves in the above adopted model of a uniform gaseous layer. Write the 
dispersion equation (30) in the form 

(42) 

where rx = wo/5y, P = wOl 2• Let h = !(ae- iwot + a*eiwot), where a = a(rJ.' t) is the 
envelope. For it we have the equation 

oa 
i at + rxf).a + Plal2a = o. (43) 

This equation admits a solution in the form of a plane monochromatic wave 

(44) 

where 

(45) 

We investigate the stability of this solution. For this purpose write a = beilP, b = 

bo + bl, ({J = ({Jo + ({JI' ({Jo == -wkt + kJ.rJ.. Then 

(46) 

We linearize Eq. (43): 

(47) 

Substituting into (47) expressions (46), we obtain 

i O!l - bo O~l + wk(b l + i({Jlbo) + rx(1!!.b 1 + ibof).({JI) + 2rx(Vb l - ibo V({JI)ZV({JO 

+ rx(b l + ibo({Jl)if).({Jo - rx(b l + ibo({JI)(V({Jo)2 

(48) 
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Separate the real and imaginary parts 

obI 2 3 at + Wk bO({Jl + a.bOL1({Jl + 2a.kVb1 - rxk bO({Jl + PbO({Jl = 0, (49) 

-bo 0:1 + Wkbl + a.L1b 1 - 2a.bokV({Jl - a.k2b1 + 3Pbobf = O. (50) 

Taking into account (45), eqs. (49) and (50) will be rewritten in the form 

(~ + 2a.kV)b1 + a.bOL1({Jl = 0, 

(~ + 2a.kV)({Jl - :0 i1b 1 - 2Pbob1 = 0, 

or 

(~ + 2a.kV r b1 + a.2L12b1 + 2a.Pb~L1bl = O. 

Substituting b1 in the form of b1 ,.., e-iOJ+ixr into (51), we obtain27 

(n - 2a.kx)2 = a.X2(a.X2 - 2Pb~). 

This yields the instability condition 

(51) 

(52) 

(53) 

Thus, for sufficiently large b~, there will be instability with respect to long-wave modula­
tions. 

Note in conclusion that the self-modulation leading to the division of the wave into 
individual packets, as is well known, always is the case if the general Lighthill criterion 
[265a] 

(54) 

is satisfied. 
In our case, this criterion is just identical to the requirement that the correction for the 

frequency of linear oscillations ,.., ki oF 0 and those proportional to the square of the 
finite amplitude h2 have different signs. 

4. Collapse of nonlinear waves. Consider the case of two-dimensional waves, whose 

amplitude is dependent only on J x 2 + y2 = r. Equation (37) will take the form 

job +!!.~rob +vblbI2=0. (55) 
ot ror or 

Equation (65), as may be shown, has the integrals of motion 

11 = {()rdr IW, 

12 = f'r dr (tV lbl4 - III !~ I} 
27 Note that (52) coincides with Eq. (27.13) in Karpman's book [55a]. 

(56) 

(57) 
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Let us show that under definite conditions, in the solution of (55) for a marginal time, 
singularity appears. For that purpose, let us introduce the quantity 

A = f'r3 drlbl 2 > O. (58) 

It may be shown that 

(59) 

so that 

(60) 

Since A > 0, then under condition 12 > 0, for a marginal time, singularity arises. The 
condition 12 > 0 qualitatively coincides with the condition of the modulational in­
stability in (53) [3~]. 

6. Show that instability criterion of a uniform-density circular cylinder and Maclaurin 
disk are universal with respect to the amplitude ofnonradial oscillations (V. A. Antonov 
and S. N. Nuritdinov) [12a]. 

Solution. Let us show that the instability criterion obtained earlier for perturbations 
of small amplitude of a circular cylinder (2), §1, Chapter II, and of the "Maclaurin disk" 
(6), §1, Chapter V, remain unchanged in the case of the finite amplitude. We shall per­
form the proof with the aid of the energy principle, following [12aJ. 

Consider only oscillations of a special kind which keep the system spatially homo­
geneous (p = const) and also in the perturbed state. 

The connection of the perturbed system with the unperturbed one is expressed via a 
certain affine transformation of the phase coordinates. For the velocities one may 
write (cf. similar formulae in Problem 3, Chapter I, etc.) 

Vx - v~ = ex(t)x + P(t)y, 

Vy - v~ = (j(t)x + d(t)y, 

(1) 

(2) 

where v~. v~ are the components of the peculiar velocity, ex, P, 0, d are some unknown 
time functions. 

One may make sure that the quantities 

(3) 

(4) 

(5) 

are invariant. The overbar denotes the averaging over the phase density of the perturbed 
system. The quantity C2 is proportional to the square ofthe phase volume ofthe system, 
C3 = LIM, where L = M(xvy - YVx) is the total angular moment, and M is the mass of 
the system. It is more difficult to ascribe a definite physical meaning to the quantity Ct. 

Calculate the values of C t , C2 , C3 for the cylinder and the disk. For the cylinder, we 
first of all have 

(6) 

where a and b are, respectively, the large and small semiaxes of the elliptical cross 
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section of the perturbed cylinder. From the form of the argument of the <5-functional 
distribution in this case it is easy to notice that 

(7) 

In the stationary state a = b = 1, <5 = Y = - p, v~v~ = 0. Therefore, for the case of the 
cylinder we obtain 

(8) 

For the disk 

(9) 

Taking into account the stationary values of a, b, <5, P and v~v~, we find the following 
values of the invariants for the Maclaurin disk: 

(10) 

Note that in both cases, q = C1 - 2jC;". 
Turn now to the study of the stability of the models in question with respect to non­

radial oscillations of the" affine" type. The task is to minimize the total energy under 
condition of conservation of the invariants C I' C2 , C3 • 

The kinetic energy of a two-dimensional system is 

T = tM(~ + 0;) = tM[((i2 + (52)XZ + (P2 + d2)yz + V~2 + V~2]. (11) 

From (3) and (5), it follows 

(12) 

<5- 7 (C 3 J~) - ~ - yz j? - ~I' 

where the quantity ¢ = XZV~2 + YZV~2 is introduced, the values of which in the stationary 

state for the cylinder and the disk are coincident: ¢ -+ ¢o = 2jC;". Let YJ = X2V~2 -
y2v~2. From (4), it follows that 

;:2 _ ,,2 = 4x2y2 V'2V'2 > 4C '-, " x y - 2, (13) 

Then the total energy satisfies the inequality 

M {2 2 2" ¢ [(X2)2 (7)2 2 2" ] E;:::: (C 3 + C1)(x + y ) + - -=- + -=- - 3(x + y ) 
2(x 2 - l) 2 l Xl 

- Je - 4C2 - 4C3 JX2 y2(C 1 - ¢) + w, (~+ 7)3 } 

2x2 l 
(14) 

where W is the potential energy. In the derivation of (14), it is assumed that (i = d = 0, 
for (i2XZ + d2yz ;:::: ° and (i and d themselves are not connected with the invariants at all. 

Thus, we have taken into account all the invariants, and the function being minimized 
depends on the three remaining independent variables: x 2 , y and ¢. Further, for the sake 
of certainty, we assume that x 2 ;:::: y, i.e., a ;:::: b. Note also that 2jC;" :s; ¢ :s; C I' 
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1. Cylinder. The potential energy in this case is 

W = tM In(a + b) + const = tM In(j~ + #) + const. (15) 

Make use of the following relations: 

min(lll~ - 1l2J~2 - 4C2) = 2FzJIli - Il~ 
~ 

Then, introducing the notations 

we obtain 

(Ill> 112 > 0). 

(m ~ n), 

(16) 

(17) 

(18) 

(19) 

if I' < 1. The stationary values mo = 1 and no = O. As is seen, EzCm) ~ EI(mO). Therefore, 
for I' < 1, there is nonlinear stability of the cylinder. 

2. Disk. Rewrite inequality (14) in the form 

E (C3 + ~)2 (C 3 _ ~)2 
- > + -'-=----'~'----'-
M - 4m2 4n2 

Introduce a new notation of I in the following manner: 

C3 -~ = 12n2• (21) 

With the aim to find the local minimum, expand the function F ovcr n2 within an 
accuracy of n2 : 

(22) 

where 

Fl(m) = 25:2 - 5Jsm ~ Fl(mo = Js} 
F2(m, T) = ~ + ~ 12 _ 16Jy(1 - 1'2) I + 12(1 - 1'2) __ 1_ 

45m2 5fi m3 25m4 5fi m3 

(23) 

It is evident that regarding m, there is a minimum for the arbitrary 1', and in F 2, instead 

of m, one may substitute its stationary value mo = 2/fi. 
Either stability or instability of the model depends on the sign F 2. The critical point 

corresponds to F zCmo, T) = 0 for a certain l. At this point, there appear multiple roots, 
and (oF 2/oT)m=mo = O. An investigation combining the last two equations gives the 

critical value Yc = JI25/486, the same as in linear theory. 
In the paper [12aJ, a proof is given of the absolute character of the minimum thus 

found. We do not consider this point here. 
In conclusion we note that the analytical consideration given above may be easily 

generalized on the case of a disk immersed into the massive halo if we suppose that the 
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latter has also an uniform volume density and, consequently, creates the quadratic 
potential 

The expansion off unction F(n, m, l) with an accuracy up to n4 has the following form: 

(24) 

The investigation above says nothing about nonlinear stage of the barlike in­
stability in the disk systems unstable according to linear theory. This question is con­
sidered (by the numerical method) in the next problem. In the same place we investigate 
nonlinear evolution of disturbances in the elliptical disks of Freeman. 

7. Investigate the nonlinear evolution of the barlike perturbations on the example of 
Freeman's disk models. 

Solution. Write the connection between the current x, y, vx, Vy and initial xo, Yo, 
vXo ' vYO coordinates and velocities of the particle in. the form 

(1) 

where v~o = vxo + YYo, v~o = VYO - yXo, I' is the angular velocity of a disk, and Ui' Vi are 
unknown time functions, i = 1,2,3,4. The total kinetic energy of a disk is 

(2) 

where the equilibrium distribution function 

Fo = h [(1 - 1'2)(1 - x5 - Y5) - v~~ - V~;J-1/2, (3) 
211: 1 - I' 

Uo being the surface density at the center of a disk [uo(r) = uoJI - r2/R2]. Assuming 
the angular velocity of a particle in the circular orbit and the radius of a disk to be 
unit, Q = 1 and R = 1, we obtain, after calculations of simple integrals in (2), 

T = ~~o [ui + vi + u~ + v~ + (1 - y2)(U~ + v~ + u~ + vm. (4) 
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The potential energy W of the elliptical disk may be expressed through the values of semi­
axes a, b: W = W(a, b).28 The Lagrangian of the system L = T - W, and the Lagrange 
equations are 

.. oW oW oa oW ob 
C·u·= --= ------

I I OUi oa OUi ob oui' 
(5) 

.. oW oW oa oW ob 
D·v·= --= ------

I I OVi oa OVi ob OVi' 
(6) 

where i = 1,2,3,4; Ci = 21l110/15, Di = ClI - y2). Now we describe how one may ex­
press a and b by Ui and Vi' Determining xo, Yo, v~o' v~o from Eq. (1), we obtain 

(7) 

V~o = (jIX + (j2Y + (j3 Vx + (j4 Vy, 

where (Xi' Pi' Yi, (ji denote the corresponding coefficients which are the time functions. 
Now, substituting (7) into the equation for the boundary of the system's phase region 

(8) 

we find 

(1 - y2) = AIX2 + A21 + 2A3XY + 2Dlxvx + 2D2XVy + 2D3yvx 

+ 2D4yvy + Blv~ + B2V; + 2B3VxVy, (9) 

where the coefficients Ai' Di, and Bi may be defined through (Xi' Pi' Yi, (ji by the symmet­
rical formulae 

Al = (1 - y2)«(XI + 1m + (yi + di) 

A2 = (1 - y2)«(X~ + PD '+ (y~ + dD (10) 

A3 = (1 - y2)«(XI(X2 + PIP3) + (YIY3 + dld3) and so on. 

From Eq. (9) one may find, for the boundary of the elliptical disk, the following equation: 

[(D2BI - B3DI)x + (D4BI - B3D3)y]2 

B1(B2BI - B~) 

Now the semiaxes a, b may be easily determined from Eq. (11). 

(11) 

28 Note the conventional representation of W, suggested by Antonov and Nuritdinov (see 
Problem 6) in a form of the seria 

4 <Xl (n)2i 
W=- ~ LCi + l - , 

5y 5m i=O m 
(4') 

where n = (a - b)lfi, m = (a + b)lfi, C1 = 1, Ci + 1 = Ci[(2i - 1)/2i]2. 
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The set of eight two-order equations (5), (6) can be simply solved with the help of a 
computer. In the equilibrium state 

UI = cos t, U2 = -Y sin t, U3 = sin t, 

VI = y sin t, V2 = cos t, V4 = sin t. 
(12) 

Accordingly, if we substitute the following, as the initial values, into the equation of 
motion, 

UI = 1, U2 = 0, U3 = 0, U4 = 0, 

VI = 0, V2 = 1, V3 = 0, V4 = 0, 

UI = 0, U2 = -y, U3 = 1, U4 = 0, 
(13) 

VI = y, V2 = 0, V3 = 0, V4 = 1, 

then, as it must be, the solution shows that a and b do not depend on the time (remaining 
as const = 1). Now, we shall use the values Ujo Vi' Ui' Vi corresponding to the linear 
barlike disturbances as the initial values, and then we shall follow the evolution of these 
disturbances in the nonlinear regime. Corresponding corrections L\ujo L\Vi' L\ujo L\Vi to 
the equilibrium values (13) may easily be found from the solution already known to us 
(see, for example, the end of Section 4.4, Chapter V). 

Let us describe the obtained results. As was to be expected, the manner of the evolution 
of the initial disturbance depends essentially on whether the concrete model under 
consideration was stable or unstable (according to the linear theory). Let us recall that 
the models are stable for y < 0.507 and unstable for y > 0.507. For the stable models 
there are the oscillations with the amplitudes of the order of initial disturbance ampli­
tude. In the unstable (according to the linear theory) region of y, for the given initial 
amplitude, the oscillation amplitudes in the nonlinear regime are greater for larger y. 
This is seen from Fig. 103, where we present typical graphs a(t) and b(t) for y = 0.6 and 
y = 0.7. From the figure one may see also that the major a and minor b semiaxes 
oscillate (with different frequencies) near some mean values (a ~ 1.4, b ~ 0.68 for 
y = 0.6 and "if ~ 1.65, 0 = 0.55 for y = 0.7). The picture of evolution for y sufficiently 
far from y = Ye is weakly dependent on a value of the initial disturbance.8. For y near 
Ye(Y <: Ye) the oscillation amplitude remains small (for small e), but quickly increases 
with growth of y. 

Thus, it is seen that, as a result of development of the barlike instability, we obtain 
the elliptical disk with a greater degree of the mean flatness the more quickly the system 
rotates in the initial state. With the aim of controling the accuracy of counting, we 
checked, at each integration step, conservation of the total energy and total angular 
moment 

E = T+ W, 

L z = xv, - yvx == C3 , 

and also of the following values which must be the integrals of the movement: 

(14) 

(15) 

C I = X2V~ + y2ii~ + 2xy vxv, - xv~ - yv~ - 2Xv,YVx, (16) 

C2 = (X2y2 - xy2)(ii~ii~ - v",v~) - x2ii~yv~ - x2ii~yv~ 

+ 2x2yv",yv,v",v, + 2y2xv",xV,VXVy - ,Y2~xv; - Yi;;;xv; 

+ yv;xv; + xv~ yv; - 2xvy yvxxvx yv, 

+ 2XJi(yv",v;xv", - YV",· XV, V'" v, - YVyXVxVxVy + YVyv;Xt9. (17) 
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Figure 103. Dynamics of the bar-like mode for Freeman's circular disks with y = 0.6 
(\) and y = 0.7 (2), in the nonlinear regime; solid line-a(t), dotted line-bet). 

The second momenta involving (15)-(17) may be easily expressed through Uio Vi' UI> Vi; 

for example, 

x2 = ![UI + u~ + (1 - y2Xu~ + um, 

V"Vy = ![utVt + U2V2 + (l - ylXU3V3 + U4V4)], and so on. (18) 

If the initial small disturbance can be obtained by a continuous deformation of the 
Freeman's circular disk, then the corresponding values of integrals C j proved to be the 
following (see previous problem): 

In fact, for all the cases investigated, these values practically do not change (for example, 
the accuracy of the conservation of total energy was better than 0.1 ~,{,). 

Elliptical disks. Recall that, according to the linear theory, elliptical disks are un­
stable in the triangular region of parameters (b/a, Q2/A2)-see Fig. 49. The nonlinear 
theory in this case is constructed approximately in the same manner as for the circular 
disks (item 1). Let us write by analogy with (1) 

(19) 

y(t) = VtXo + V2YO + V3C"o + V4CYO ' 

where Ui and Vi are the time functions, exo = v"o + 8Yo/bl , cYO = VYO - 8xo/a2, and the 
expressions for 8 and other values we meet with below (see in §1, Chapter IV). The 
calculation of kinetic energy T gives 

(20) 

where M is a disk mass. For the potential energy W(a, b) one may use, for example, a 
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previous expression (4'). The initial values of the invariants CI , C2 , C3 = L. are now the 
following: 

CI = ~[k~~!~2 + :2:2 + (2n - ~~ - ~:raWJ 
k;k~ 

C2 = 625A4' 

(21) 

(22) 

at the same time the expressions (15)-(17) for its current values remain without changes. 
Similarly, mainly "the equations of motion" do not change-they have the form (5), 
(6), with slightly different values of the effective masses Cj and Dj which are determined 
according to (20). The equilibrium state of the elliptical disk corresponds to the following 
initial values of Uj, Vj, Uj, Vj: 

UI = 1, VI = 0, UI = 0, 
() 

VI = -n+2"; 
a 

U2 = 0, V2 = 1, U2 = 
0 

- b2 + n, V2 = 0; (23) 

U3 = 0, V3 = 0, u3 = 1, V3 = 0; 

U4 = 0, v4 = 0, u4 = 0, v4 = 1. 

In the initial moment (t = 0) we assumed the certain small perturbations from the 
equilibrium values (23); moreover, we considered the perturbations of two types. For 
the perturbations of the first type the initial Uj and Vj (" velocities") were supposed to be 
equal to their equilibrium values, and small corrections to "coordinates" bU j and bVj 

were determined so that the initial values of invariants C I' C 2, C 3 calculated according to 
(15)-(17), were equal to their equilibrium values (21) and (22). Then one might assume 
bU2 = bU3 = bVI = bV4 = 0, and, putting the amplitude of disturbance bV3 = e, 
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Figure 104. Initial parts of evolution of the major aCt) (solid line) and the minor b(t) 
(dotted line) for perturbations of first type (I) and second type (2). 



Problems 133 

determine the remaining disturbances bUI, bv2 , bU4 from the conditions bC I = bC2 = 
bC3 = 0 (in the linear approximation). For the disturbances of the second type (where 
at the moment t = 0 we introduced small corrections only to the" velocities" bU; and bv;) 
one might assume bUI = bU4 = bV 2 = bV3 = 0, put bV4 = B, and determine bU2' 
(Ju 3 , (Jv I from the same conditions bCI = (JC2 = bC3 = o. 

The character of the perturbation evolution is essentially dependent on whether the 
parameters of a model b/a and 02/A2 correspond to stable or unstable solution (in the 
linear theory, see again Fig. 49). Here, as in the case of the circular disks, oscillations with 
the amplitude - e, but with deepening into the region of the unstable models (within 
the triangle in Fig. 49), the amplitude of oscillations increases. In Fig. 104 we present, for 
illustration, the typical initial parts of graphs a(t) and b(t) for the elliptical disk with 
0 2/A2 = 0.85 and b/a = 0.99 for the disturbances of first and second types with e = 0.01 
(we note that, according to the linear theory, this model is slightly unstable). 

The accuracy control of the evolution computation we perform in the same manner as 
for the circular disks, i.e., we check the conservation of the total energy, angular moment, 
and invariants C I and C2 (for the example in Fig. 104 the exactness of conservation of the 
energy was -10- 5). 



PART II 

ASTROPHYSICAL APPLICATIONS 



CHAPTER VIII 

General Remarks 

A gentleman went out for 
a walk along a street, 
he was struck on the skull: 
a flower-pot had dropped on him, 
thrown down by some hooligans! 

But, to tell the truth there were no 
hooligans anywhere around, 
as today all hooligans 
were sitting in Prevel's Hall 
listening to Mozart. 

Therefore it was the wind. 
But that again is not true, 
as the wind is abominably inert 
and calm today and could not 
topple the flower-pot. 

But nevertheless 
the gentleman going for a walk 
has been struck on the skull. 
How! Apropos of nothing? 
How! Without the slightest cause? 

It was incomprehensible, and the 
profundity of this problem no one 
could measure. 

The gentleman applies 
an antiseptic plaster 
to his bruised skull 
and does not believe 
in anything since ... 

REMON CENO 

Translated by T. G. Galenpolskii 
with M. E. Fridman and F. Va. Shanebaum 
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§ 1 Oort's Antievolutionary Hypothesis 

The study of equilibrium and stability of different gravitating systems must 
evidently play an important role in the construction of the picture of their 
evolution. The instants when the system loses its stability are defined by the 
critical points of the line of evolutionary development, when the smooth 
evolution of the system should be replaced by a rapid reconstruction. 
Some authors [195] indeed observe some traces of jumplike transformations 
which have occurred in our Galaxy. On the other hand, the smooth evolution 
must evidently follow the sequence of quasistationary states. On the line of 
evolutionary development, the quasistationary states present such points, 
to which all the stellar systems observed in sufficient abundance must 
correspond. This is similar to the situation in the world of stars [150], where 
the spectrum-luminosity diagram shows the presence, in appreciable 
quantities, of only stars in the regions of the diagram familiar in its station­
arity (above all, on the Main Sequence): the regions corresponding to strongly 
nonstationary states are very rapidly" rushed" by the evolving system. 

As is well known, the theory of stellar evolution was constructed on the 
basis of numerous calculations of their equilibrium configurations with 
different values of parameters (mass, chemical composition, etc., see, e.g., 
[150]). The major role in the stellar evolution is played, as is now obvious, 
by burning out the nuclear fuel which produces a slow increase in molecular 
weight of the stellar matter. It prescribes the direction of the evolution. The 
rate of this process is determined by the luminosity of the star, which may be 
calculated at each given instant from its quasiequilibrium configuration. Thus 
one may trace the evolution of the star along the sequence of the quasi­
equilibrium states (with consistently changing chemical composition) up 
to the exhaustion time of nuclear fuel, after which must follow a "disruption" 
with the rapid transition to the next quasiequilibrium phase, etc. At the 
present time, the evolutionary "tracks" of stars with different masses have 
been restored up to very advanced stages of evolution. 

Such a way of constructing the stellar system evolutionary theory is, in 
principle, possible. However, in this case, we do not yet know the real cause 
of evolution, which would be, in its degree of reliability, to some extent similar 
to the burning out of hydrogen in stars of the Main Sequence. For example, 
evolution has been studied in great detail, which is due to stellar dissipation 
from galaxies. It is not quite obvious, however, that this dissipation does 
indeed occur at a sufficient rate. A similar mechanism suggests a constant 
restoration of the high-energetic "tail" of the distribution of particles in 
velocities-a process which is quite natural only in a collisional system. 

More frequently, when speaking about galactic evolution, the possibility 
of evolution along the" tuning-fork" Hubble sequence (Fig. 105) was implied, 
with conversion of elliptical galaxies to spiral galaxies, or vice versa. Recently, 
the question of such an evolution of the present-day shapes of galaxies (of its 
real effectiveness) is again under consideration. It should be noted, however, 
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Figure 105. "Tuning-fork" diagram of galaxies by Hubble. 

that as a result of prolonged discussions about the evolution of present-day 
galactic shapes, most investigators were inclined to a quite unexpected, 
"antievolutionary" point of view, in all likelihood first suggested by Oort 
[297]. According to Oort, the mean characteristics, say, of spherical and 
elliptical galaxies (such as mass, specific angular momentum, etc.) are so 
different that their mutual conversion is practically impossible. This is again 
quite similar to the causes of the rejection of old ideas of stellar evolution 
along the Main Sequence, which would require too great a mass loss. The 
above, of course, does not prohibit evolution inside each of the shapes. 
It is also not excluded that the collisionless evolution (relaxation) of the 
system may, at certain times, lead to instability-"disruption". 

§ 2 Is There a Relationship Between the Rotational Momentum 
of an Elliptical Galaxy and the Degree of Oblateness? 

The antievolutionary point of view of Oort agrees well with the current view 
of the nature of elliptical galaxies and, primarily, with the reason for their 
oblateness. Until recently (about 1975) there have been no systematic measure­
ments of the rotation velocity of elliptical galaxies. Nevertheless, the observed 
oblateness of each E-galaxy was attributed to the quantity of its rotation 
momentum. In this we see the traditional relationship between oblateness 
and rotation in liquid or gaseous configurations with isotropic pressure. 
In addition, the rotation-produced dynamical form of self-consistent models 
(Gott [95 ad], Larson [96 ad], and Wilson [351]) matched well the surface 
brightness distribution in E-galaxies and it was believed that the models 
correctly predicted the oblateness of the galactic figure, depending on the 
value of the ratio of the maximum rotation velocity Vrot to (v)-the velocity 
dispersion of chaotic motions of stars. However, when it became possible 
to measure rotation in a great number of E-galaxies (see Illingworth [97 ad] 

and the references therein) a surprising fact was found -the value (vrot)maxl( v) 
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was, on average, one-third of that predicted by the models. For example, for 
the galaxies NGC 4406, 4621 and 4697, the theory predicted this ratio to be 
0.5, 0.8, and 0.8. Observations, however, give 0.12, 0.20 + 0.36, and 0.30 + 
0.45, respectively. 

A question arises: if not rotation, what then plays the determining role in 
the formation of the figures of elliptical galaxies? Perhaps the oblateness is 
due to sufficiently strong anisotropy of stellar "pressures": the velocity 
dispersion in the equatorial plane must be more than the velocity dispersion 
in the direction of the minor axis. The first phase models of the simplest 
(homogeneous) ellipsoidal systems, the shape of which is determined pri­
marily by pressure anisotropy (so that, for example, the stellar ellipsoid at rest 
may have an arbitrary degree of oblateness) were constructed [117]. As 
far as the question of the (evolutionary) origin of elliptical galaxies (and, in 
particular, their oblateness) is concerned, there may presently be several 
different points of view, but we shall deal with only one here. 

As will be shown below (in §5); the fundamental difference of elliptical 
(and other) galaxies from liquid and gaseous gravitating configurations 
consists in the fact that the former (with a good approximation) are collision­
less. The originally available anisotropy in the velocity dispersion of stars 
(at the time of birth of such systems) cannot be canceled completely as a 
result of their evolution (by collective processes, see Chapter X). Therefore, 
it is natural that Binney's theory follows, advanced by him in 1976 [58ad], 

which states that the reason for compression of elliptical galaxies is due 
to residual anisotropy of velocity dispersion of stars. 1 By applying the 
tensor virial theorem to systems, the density of matter is constant on 
ellipsoidal surfaces similar to each other, i.e., has the form p(m2), where m2 = 
x2/a 2 + y2/b2 + Z2/C2 ~ I, Binney [98 ad] studied the influence of the 
anisotropy on the oblateness of the models of the oblate and prolate spheroids. 
Comparing the conclusions of the theory with observational results, he 
concluded that the oblateness of elliptical galaxies is not directly associated 
with their rotation, but is due to some anisotropy of velocity dispersion. 
Schechter and Gunn [94ad] measured rotation of another twelve elliptical 
galaxies and, comparing their observational data with Binney's models, 
arrived at similar conclusions: observations rule out all the models with 
isotropic pressure (both axisymmetric-oblate spheroid, and nonaxi­
symmetric-prolate spheroid or the three-axis ellipsoid). 

Despite the above serious arguments we are not inclined to think that 
the problem of rotation, in view of the question of the value of oblateness of 
elliptical galaxies, should be buried in oblivion. 2 The models of Binney 

1 We have already pointed out that such a possibility is not the only one. For example, to 
some extent a contrary point of view [l18ad] is, generally speaking, not prohibited, which assumes 
expansion out of a strongly oblate stellar" pancake". In this case, the evolution also ceases at a 
finite value ofveIocity anisotropy of stars. Below, in §5, Chapter IX, a possibility is pointed out of 
forming the elliptical galaxies due to large-scale instability in a spherical stellar cluster, which is 
compressed out of a state being far from equilibrium. 

2 Due to the dependence of the value vrot/<v) on the form of the models; for example, for 
models with incompressible density vro'/<v) = 0 at any Vrot ; see also below. 
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[9SadJ have one difference from real galaxies which looks insignificant on the 
face of it but, however, provided accurate calculation, can give an additional 
numerical factor of the order of 3. The point is that Binney [9SadJ restricted 
himself to considering a special case, where the layers of equal density are 
ellipsoids similar to, and concentric with, the boundary ellipsoid. It may be 
shown that in models with such layers of equal density, the ratio of the 
rotational energy and the gravitational energy is independent of the law of 
matter density distribution. For example, for axisymmetric models with 
similar layers and an arbitrary density distribution, this ratio coincides 
precisely with a similar ratio for the classical uniform spheroid of Maclaurin. 
If, however, the layer oblateness is changed, this ratio depends on concentra­
tion of matter density toward the center. In E-galaxies, the oblatenesses of 
isophotes, as shown by observations, are not constant but vary with distance 
from the center of the systems. 3 The observed change ofthe isophotes' oblate­
nesses means that layers of equal density in E-galaxies are not similar to each 
other. Recognizing the fact that taking into account this latter fact should lead 
to some numerical result, which however may turn out to be qualitatively 
decisive, Binney in his next paper [99adJ applied the tensor vi rial theorem 
to the subsystem of elliptical configuration for taking into account the 
oblateness profile effect on the rotation curves of the axisymmetric model. 
Without going into details of calculations which were later made by B. 
Kondrat'ev note also that the influence of the deviation of layers of equal 
density from the similar and concentric ellipsoids on the values of mass and 
gravitational energy proves to be more effective in the prolate spheroid 
model than in the axisymmetric model. Further detailed numerical analysis 
will probably allow one to come to know the particulars of the question of 
primary importance for the understanding of the whole picture of the evolu­
tion of elliptical galaxies. 

§ 3 General Principles of the Construction of Models of 
Spherically Symmetric Systems 

The models of collisionless systems get, with time, still more complicated 
since finer details are taken into account and attempts are made to provide 
an explanation of the new observational data. In particular, a very large 
number of papers is devoted to the construction of models of spherically­
symmetrical stellar systems. Therefore, quite a few models of such systems 
are known at present (cf. review [32J). 

It is clear that in the future most of the models will be of academic interest 
only. Direct observations do not yet give unambiguous information re­
garding the velocity distribution of particles. On the other hand, as we have 
already noted, the problem of the construction of the distribution functions 
from the given density distribution is ambiguous. In reality, the problem 

3 The same effect is observed in globular clusters [73]. 
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under consideration must be solved in parallel with the problem of the 
evolution and origin of these systems. This may lead to an essential re­
striction of numerous stationary possibilities or even to an unambiguous 
solution. In the case of spherical star clusters such work as was performed 
by Michie [293], King [260], Henon [214] and others, has already led to 
essential progress. The difficulty is, however, that we have not yet obtained 
a detailed solution of the fundamental problem of evolution. 

Therefore the real settlement of the problem of the theoretical description 
of quasistationary systems admits at present a very significant arbitrari­
ness. In the construction of the models, only some" evolutionary considera­
tions" of the qualitative character are employed. It may be said that now 
nearly any distribution function satisfying only some natural "criteria of 
reasonableness" is suitable. Among them, the stability condition is of course 
necessary. 

Very frequently, the observed data on the distribution of brightness and the 
number of "particles" in different spherically-symmetrical systems are 
compared with simple theoretical models of the type considered in §1, 
Chapter III. For example, Kamm [180] obtained quite a good coincidence 
of some generalized poly tropes of his (25), §1, with the observed data for the 
globular clusters M5, MIS, M92. The isothermic model, somewhat corrected 
on the system periphery, describes well, according to Zwicky, some clusters 
of galaxies. These questions are dealt with in more detail in Veltmann's 
review [32]. 

The "most probable" distributions are also constructed [101], often 
without indicating a specific statistical mechanism, which must lead to their 
formation in a real collisionless system. 

§ 4 Lynden-Bell's Collisionless Relaxation 

In this respect, the paper by Lynden-Bell [286], who had considered the 
problem of the collisionless relaxation in a vigorously nonstationary process 
of formation of the equilibrium state, differs advantageously from other 
papers. Qualitatively, the course of Lynden-Bell's considerations is as 
follows. Assume that initially we have a very nonequilibrium configuration, 
i.e., the system "starts" sufficiently far from equilibrium (for example, the 
virial theorem is strongly violated). In the phase space, some regions are 
occupied by particles while some are vacant. As a result of the interaction 
via the self-consistent field, a chaotic intermixing ofthe elements in the phase 
space will occur. The suggestion about the violent character of relaxation is 
necessary to Lynden-Bell in order that he might assume that the system, by 
reaching the final equilibrium, has indeed been well intermixed so that any 
typical element is, with the same probability, to be found in any place of the 
phase space (with some general limitations). In this case, one may perform a 
corresponding statistical calculation (such calculations are always based on 
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the assumption about the equal probability of certain states): the equilibrium 
state must be the most probable with the limitations mentioned. 

Any final equilibrium state, attainable in principle by the system, must 
have the same total energy E, mass M (or the total number of particles N), the 
total angular momentum L and the total impulse P. If only these limitations 
are imposed, the statistical mechanics will give the Maxwellian distribution 
(in a respectively moving and rotating coordinate system). 

But the collision less character of the systems under consideration imposes 
an additional constraint, since it means the conservation of one more value­
the phase density. The flow of the phase" fluid" is incompressible, and there­
fore must occasion the" exclusion principle": the distribution function in the 
given element of the phase space is either zero, if a cell without particles has 
arrived there, or is equal to the original value in that cell, which after inter­
mixing has arrived at a given point. If at the initial time the distribution 
function was unity throughout the region, where the particles were present, 
then we obtain Pauli's exclusion principle. In this case, the final equilibrium 
function must coincide exactly with the Fermi-Dirac distribution: 

- 1 
f = eP(E /1) + 1 . 

In this formula, f3 and J.1 are the constants determined by the total number of 
particles N and the energy E of the system (here they play the same role as 
the reverse temperature liT and the chemical potential J.1 in a "usual" Fermi 
distribution), while the bar over f means that this form must not indeed be 
tended to the exact distribution function (which in the course oftime becomes 
still more "cut") but the one averaged over the small energy intervals. 
Lynden-Bell believes that his new statistics must explain the remarkable 
regularity which we observe in the light distribution of spherical and elliptical 
galaxies. Note, however, that Lynden-Bell's mixing mechanism itself is 
effective only provided that instabilities are absent in the evolving system 
(for details, see §7, Chapter IX). 

§ 5 Estimates of "Collisionlessness" of Particles in Different 
Real Systems 

By using the observed data, consider, first of all, in what degree all the systems 
described below are really collisionless. 

The problem of collisions in stellar systems was studied in detail by many 
authors, beginning with Chandrasekhar [147]. The time of establishment of 
the quasi-Maxwellian distribution due to collisions of particles of one sort 
(the time of collisonal relaxation) may be written in the form (see, e.g., [101J) 

(1) 
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The value, 0 in this formula has the meaning of a mean time between close 
collisions of particles, leading to an essential change in the direction of motion 
(scattering by an angle () ~ 1): 

(2) 

where v is the mean velocity of "thermal" motion of particles, no is their 
mean density, and m is the mass of one particle.4 The second value in (I), 
A, is the so-called" Coulomb logarithm ", taking into account the fact that in 
systems with far-acting forces (gravitational and electrical) the main role is 
played by far passages of the particles. To make estimates in application to 
such objects as galaxies, it is generally assumed that A ~ 20. Since the 
Coulomb logarithm A is a slow function of v, no, the quantity A ~ 20 also 
changes little in the transition to other objects which are considered here. 

We have already given the parameters typical for galaxies: the number of 
stars N ~ 1011, the radius R ~ 10 kps, therefore the density of the number 
of stars must be no ~ 10- 57 cm - 3. Since according to the virial theorem it 
wouldbev2 ~ GM/R,thusweobtainv ~ 200km/s.Sincefinallym ~ Mo = 
2· 1033 g, then by substituting all these values into (2), we shall find, '" 1015 
years. Accordingly, '0 ~ 1017 years. 

The estimates obtained for the time between the pair collisions of stars 
may be compared with the lifetime of the Universe T '" lO lD years, and we 
arrive at the conclusion that for each star, during the lifetime of the Universe, 
none of the collisions are likely to have occurred, so that the relaxation of the 
distribution of stars in velocities could not be collisional. In this they differ 
from globular clusters, which are essentially denser formations. For a 
typical spherical cluster, the number of stars N ~ 105, while the radius 
R ~ 10 ps, so that by formula (1) for, we have the value of only an order of a 
billion years. Therefore for the lifetime of spherical clusters, (4 ...;- 8) . 109 

years, a sufficient number of collisions might have occurred, and as a result 
the phase distribution of these systems could have relaxed toward the 
most probable (quasi-Maxwellian) distribution in the "usual way". In 
reality, however, the situation here is not so simple, due to a strong non­
homogeneity of spherical clusters (the other complicating factor is the 
possibility of stellar dissipation from the system). Therefore it would be more 
correct to determine the local times between the collisions dependent on the 
radius. Then the system turns out to be collisional (and consequently, 
Maxwellian) in its central part, but collisionless (and therefore with an 
a priori unknown distribution function) on its periphery. The distribution 
function on the periphery must transform smoothly to the Maxwellian 
function at the center, which in this case is the boundary condition lacking 
in the case of galaxies, which are "purely" collisionless systems. 

4 Similar expressions in plasma physics ensue by substituting the effective gravitational 
"charge" rnJG by the electric charge e. 
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It should be stressed here that the "collisionness" (at least partial) of 
globular clusters manifest itself only on long time intervals of the order 
of the lifetime of this system. For example, as far as small oscillations of 
these systems are concerned, they are characterized by quite other times: 
by the periods of orbital revolutions (or radial oscillations) of the stars, 
which have the order t '" Rlv '" 10° years. This value, on the contrary, is 
much less than the time between the collisions, so that in the study of collec­
tive oscillations or stability (and this is just the problem of most interest 
to us) the spherical clusters may be considered as collision less : no collisions 
occur in the course of many periods of oscillations. 

The requirement of the dependence of the stationary collisionless distri­
bution function on the single-valued integrals of motion, together with the 
above boundary condition of matching with the Maxwellian distribution at 
the center, in the case of spherical clusters, greatly restricts the class of ad­
missible distribution functions. In any event, we do not have such an a priori 
arbitrariness as in the case of galaxies. 

However, for the problem of interest, the difference is probably not so 
deep. Indeed, observed distribution functions of even collisionless systems, 
like galaxies, are by no means arbitrary functions of integrals of motion. 
The mechanisms, which have not yet been established unambiguously, 
lead to the form which closely resembles the same Maxwellian distribu­
tion function (or Schwarzschield's one, i.e., anisotropic Maxwellian as in our 
Galaxy). However, in principle, the number of possibilities here remains 
large. In addition, in different cases, various mechanisms of establishment of 
an equilibrium distribution (of collision less relaxation) may operate. 

In case of a system of globular clusters, similar estimates of the average 
time of pair collisions yield r '" 1011 -;- 1013 years. This time, in any event, 
significantly exceeds the average time of oscillations To, which equals 
a value of the order of 108 years. 

For compact clusters of galaxies, these times are respectively r '" 1010 -;-

1012 years, To '" 109 years. Therefore, such systems are also described 
by the collisionless kinetic equation and only near the center will this approxi­
mation become inapplicable. But the latter is already evident from the 
description of such clusters [146], as formations, at whose center the galaxies 
are in contact with each other. 

Thus, all the systems described may with sufficient accuracy be assumed to 
be collisionless and to be described in the framework of the proper mathe­
matical formalism of the physical kinetics. 



CHAPTER IX 

Spherical Systems 

§ 1 A Brief Description of Observational Data 

As already noted (see beginning of Chapter III), under spherical collision less 
gravitating systems we understand the following objects: (1) globular clusters 
of stars; (2) spherical galaxies (or, roughly, elliptical galaxies with not very 
great oblateness); (3) systems of globular clusters (for example, in our 
Galaxy); (4) compact clusters of galaxies. 

1.1 Globular Star Clusters 

The list of globular clusters belonging to our Galaxy is about 200, although in 
reality their number may be much greater (according to estimates of Saar up 
to 500, according to other estimates up to 2000 [122]). They form a system 
with a strong concentration toward the center ofthe Galaxy and with approxi­
mately spherical density distribution. 

The counts of the number of stars in globular clusters show that the 
density n is a rather decreasing function with a radius of approximately 
n ~ 1/r3. The typical dimensions of the globular clusters are R ~ 10 ps, 
the masses lie in the region of several hundred thousands of solar masses. 
For example, the mass of M3, estimated by Sandage, is 2.45· 105 M0 [122]. 
Johnson [243] has derived the lower limit for the mass of globular clusters 
from a rough model of the tidal equilibrium; it also proved to be ofthe order 
of 105 M 0 . 

146 
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1.2 Spherical Galaxies 

Let us now describe (also very briefly) some observed data which refer to 
spherical and elliptical galaxies. The number of stars in giant galaxies of this 
type are, as in giant galaxies of other types, N '" 1011 (up to 1012), the radius 
R '" 10 kps. It is typical that they completely lack any structural details, 
except for small very condensed nuclei. It is believed that for all elliptical 
galaxies there is a common law of surface brightness distribution, and accord­
ingly, stellar density distribution. In this connection the suggestion appears 
to be very natural that all elliptical galaxies are constructed according to the 
same general model, while individual objects differ only in their size, density, 
and degree of oblateness. The law of surface brightness distribution was found 
by Hubble; it has a very simple appearance: 

B = Bo/(r + a)2, (1) 

or 

log BIBo = -210g(rla + 1). (2) 

These formulae describe very well the observations within the range OJ < 
ria ;:S 15 and are satisfactory up to ria = 30 (the brightness within this 
interval alters 1000 times). 

1.3 Compact Galactic Clusters 

According to Zwicky [146], all clusters of galaxies may be divided into three 
classes, from which the compact clusters reveal a nearly accurate spherical 
symmetry. Examples may be given for giant galactic clusters in Veronica's 
Hair and in the Northern Corona. Their observable dimensions are 
R '" 1 mps, while the viriaF masses are M ~ 1014 Mo. The observed radial 
velocity dispersions of galaxies reach 2 . 103 kmls in giant clusters. The most 
abundant clusters account for N = 104 members. The density distribution 
according to Zwicky is well represented by the isothermic model in (12), §1, 
Chapter III; other authors suggest some different models (see [32]). 

§ 2 Classification of Unstable Modes in Scales 

Rephrasing slightly the known expression by A. Eddington one can say that 
there is nothing simpler than spherical star clusters. Therefore it is natural 
that theoretical models of spherically-symmetrical systems are most numerous 
compared with flat or elliptical systems. With the accumulation of the 

I That is, estimated by the formula M ~ -;}R/G. 
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observational data these models get more complicated. As their components 
one uses astrophysical objects of a novel nature (for example: in the center 
of a spherical galaxy one places a black hole with a large mass [86ad]), 

introd ucing high anisotropy in the stellar velocity dispersion [61 ad], and so on. 
With such complications of models, it is sometimes a feat to achieve satis­
factory agreement with observational data. However, at times one forgets to 
satisfy the main condition-namely: the condition that the system may exist 
at all or, in other words, that the model be stable. The stability investigation 
of the models of spherical systems (Chapter III) shows that many of them are 
really unstable. 

Possible instabilities may be conditionally (and roughly) divided in two 
classes-large-scale (with the characterizing scales A having the order of the 
system size R) and small-scale (A ~ R). Instabilities of these two classes act 
completely differently. The instabilities of most large scales may cause the 
visible alteration of the system's geometrical form. For example, it may turn 
an initially spherical system into an elliptical one. Small-scale instabilities 
cause such effects as, for example, smoothing of temperatures in different 
directions provided the high temperature anisotropy is originally present. 
At the same time these instabilities do not have any considerable influence on 
the form of the system. 

The stability criteria for the small-scale perturbations obviously depend 
on many details of the equilibrium state. On the other hand, for large-scale 
perturbations, which include the system as a whole, stability or instability must 
depend only on some integral characteristics averaged over the system. Which 
are these characteristics? They are, for example, the total kinetic energy 
of the system T, potential (gravitational) energy W, the energy of rotation 
4ot, and so on. 

§ 3 Universal Criterion of the Instability 

For global instabilities it is therefore possible to formulate universal stability 
criteria-that is so that the criteria remain valid for different models, 
including models vastly different each from other (for example: with com­
pletely different distribution functions over velocities, different densities 
po(r), and so on). It is natural to look for these universal stability criteria in 
energy terms. At any rate, Peebles and Ostriker [301] formulated the universal 
stability criterion for highly flattened (disk like) systems with respect to 
elliptical deformations in such a way (see §5, Chapter IX). 

The large-scale modes correspond to the widest instability region. Indeed, 
if the trajectories of all stars in the sphere are purely radial this sphere is 
unstable according to Jeans, with respect to the perturbations of any scale 
which are transverse to the radius (§5, Chapter III). If there is some thermal 
dispersion in the transversal velocities of particles v -L' this means the appear­
ance of corresponding transversal Jeans size RD '" v -Llwo (wo is some 
average Jeans frequency), and consequently all the disturbances with 
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transversal scales A.L < RD become stabilized. With an increase of v.L the 
value RD increases too so that more large scales become stable. It is clear 
that stabilization of the largest scales (A.L '" R) is the most difficult: for this 
the highest transversal velocities are necessary. If the velocity dispersion 
increases so that the system becomes isotropic over the velocities, one 
simultaneously gets complete stability (§2, Chapter III). All the systems with 
V.L > Vr are also stable (besides some special cases-§3, Chapter III); at the 
limit Vr -+ 0 we obtain here systems with purely circular orbits. 

The stability boundary lies between isotropic systems and systems with 
purely radial motions of stars. Quantitatively this boundary is determined in 
§7 of Chapter III, where we summed up stability investigations of the 
spherically-symmetrical collisionless systems (see Fig. 40). The main result 
consists in the formulation ofthe universal stability criterion which is probably 
valid for the very wide class of spherical systems: 

~ == T,./(T.L/2) < ~c = 1.70 ± 0.25, (1) 

where T,., T.L are, respectively, total kinetic energies of the radial and trans­
versal motions of particles, ~ is a global anisotropy. 

§ 4 Specificity of the Effects of Small-Scale and Large-Scale 
Perturbations on the System's Evolution 

Let us assume that we have a slightly unstable system, e.g., ~ ~ ~c. We may 
then ask how such a system will evolve? Which perturbations begin to grow 
first of all? Possible forms of perturbations can be simply enumerated. First 
of all these perturbations must correspond to the most large-scale modes, 
e.g., those with the minimal number of radial nodes (or even those without 
nodes) and with maximally smooth angle dependence. This last is determined 
by an index 1 of spherical harmonics Yi(O, ({J); 1 = 0 corresponds to radial 
perturbations; 1 = 1 and 1 = 2 correspond to perturbations with the sym­
metry of dipole and quadrupole types, respectively. But radial perturbations, 
for the distributions, decreasing with the energy (which are only interesting) 
are always stable. Therefore only two types of perturbations compete with 
each other: the elliptical deformation of the sphere (e.g., the mode of the 
quadrupole symmetry without nodes) and perturbations with 1 = 1 having 
a minimal number of radial nodes. But the nodeless perturbation with 1 = 1 
is trivial-this is simply displacement of the sphere as a whole; all the 
remaining perturbations must have radial nodes. In all the cases con­
sidered in §6, Chapter III, the instability began from the elliptical deformation 
of the sphere (1 = 2). 

Note that solutions of the problem of small perturbations of the sphere, 
which corresponds to the stability boundary (w2 = 0), determine neighboring 
equilibrium states-collisionless ellipsoidal systems with small oblate ness. 
It is possible to construct in this manner a large number of various stellar 
stationary ellipsoidal models from the results obtained in §6, Chapter III. 
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(One similar model was suggested by Hunter [69ad].) In this connection we 
must note that even those galaxies which are usually considered as purely 
spherical (EO), in reality show a visible ellipticity of isophotes, moreover, 
the latter is increasing from the center to the periphery. If we assume that the 
average ratio of mass/luminosity is approximately constant then it will be 
necessary to allow such asymmetry in the mass distribution. All these pe­
culiarities may probably be explained in a natural manner if we construct, by 
the method mentioned above, a model which is close to the spherically 
symmetrical model. As an initial spherical model one can take, for example, 
one of King's models [76ad] which are isotropic at the center but have 
considerable anisotropy on the periphery. 2 

§ 5 Results of Numerical Experiments for Systems with 
Parameters Providing Strong Supercriticality 

If an anisotropy ~ is essentially more than a critical one, then more small­
scale perturbations also become instable (apart from the ellipsoidal mode). 
The manner of evolution of the system in the case of initial high anisotropy 
may be complicated; this evolution cannot be predicted in full by the linear 
stability theory. However, the modeling of such systems by computer 
shows (see, for example, §5, Chapter III) that considerable elliptical distortion 
of the system's form often develops in this case also. It may be understood 
as follows. The spectra of initial perturbations include deformations cor­
responding to both the small-scale modes and to most large-scale modes. 
Moreover, though the small-scale instabilities develop more quickly, the 
heating due to these instabilities is far from sufficient to stabilize the large­
scale modes, and principally to prevent elliptical deformation. Indeed, 
roughly speaking, one can assume that the development of the instability 
at a certain mode draw the system at the stability boundary of this mode 
(the stars get warm, so as to cause the suppression of instability). But we 
already noted that the widest region of instability just corresponds to the 
ellipsoidal mode (l = 2); hence this mode will increase, even when increasing 
of all the other modes has ceased. 

In principle, there is the possibility of the formation of highly oblated 
configurations due to development of large-scale instabilities, of which the 
elliptical deformation of the system is the most apparent. In this connection 
we must note that some clusters of galaxies (for example, Coma) show very 
considerable oblateness [87ad]. The same mechanism may be a cause of 
formation of highly oblate elliptical galaxies. 

Analytical consideration of the stability problem of contracting col­
lisionless cloud is very complicated. Here methods of statistical modelling 

2 It is assumed [77D1l, 86D1l] that King's models give a satisfactory description of the main 
observational properties for spherical galaxies and for ellipticals with small oblateness. 



§ 6 Example of Strongly Unstable Model 151 

(different modifications of N-body methods) are more effective. In the work 
of Peebles [83 ad] he examined the evolution of the initially cold spherical 
system with N = 100-300 pointlike masses, which must model the cluster 
of galaxies (Coma). In that work, however, the question of the form of the 
system obtaining under collapse is not especially considered. From the 
figure given in [83 ad] one can see that the system forming during collapse has 
some oblateness. However, the oblateness can also be considerable: one 
projection (which is not in all probability most happy) is evidently not 
enough on which to judge the form ofthe system. Further examination of this 
interesting question is necessary. We can obtain the answer if we simul­
taneously examine several projections, follow the evolution of a quadrupole 
moment of the system, and so on. 

In principle, the final picture can depend greatly on a spectrum of initial 
perturbation, in particular from the relative amplitude of the initial elliptical 
distortion of a system's form (or from the value of an original quadrupole 
moment). Generally, it is necessary to note that the problem of initial 
perturbations, and primarily the problem of its amplitudes, are decisive 
(and also the most indefinite) for all the considered tasks. In particular, the 
following question has principal significance. Is the cause of the initial 
deviations from exactly spherical form only purely thermal, statistical 
fluctuations, or are these deviations essentially stronger? (The last possibility, 
to our mind, is much more probable.) 

If the level of fluctuations is purely thermal we must not expect formation 
of considerable ellipticity during the collapse of the future galaxy (when 
N '" 1010 + 1012).3 However, in the case of the formation of galaxy clusters 
(the process which was considered by Peebles [83 ad]) the final oblateness 
can be considerable even for the purely statistical nature of the initial fluctua­
tions. 

§ 6 Example of Strongly Unstable Model 

Thus, at the present time there is already a stability theory of spherically­
symmetrical collisionless systems which is sufficient in order that one could, 
with a large degree of confidence, form a conclusion as to its stability or 
instability for practically any given model. For this purpose it is necessary 
to calculate the value of global anisotropy of the system and then compare 
it with critical 1.70. It is clear that strongly unstable models cannot be used 
as models of real systems. 

Let us give an example of just such a situation. Recently, great interest was 
attached to the work of Sargent's group [86ad, 90ad] , in which an anomalously 

3 Note in this connection the paper by Miller [81 ad] where it is shown in particular that during 
the first phase of the collapse of a quickly rotating cold spherical system of N ~ 105 point like 
stars, the barlike instability has no time for considerable development. The reason is a rather 
small initial amplitude of elliptical deformation of the sphere under purely-statistical playing 
for such a number of points. 
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quick increase of the luminosity and stellar velocity dispersion at the central 
region of spherical galaxy M87 was discovered. An attempt at the explana­
tion of these data within the frame of the standard spherical models (line to 
King's models), which are isotropic near the center, was not a success. After 
this the authors suggested that at the center of the above-mentioned galaxy, in 
the region the size of ro ~ 100 pc, there is a black hole or some other object 
with mass M h '" 5 . 109 M 0' Below we will consider some problems appear­
ing in connection with this possibility. It is, however, important that for 
the present we do not exhaust the more simple variants which the authors 
of other work [61ad] brought to our attention. They suggest, for a descrip­
tion of the central region of galaxy M87, the highly anisotropic star velocity 
distribution instead of the standard isotropic one. The equilibrium state for 
the spherically-symmetrical, anisotropic collisionless system satisfies the 
equation (as we know from §1, Chapter III) 

~(pC2) = _P GM(r) _ p(2C; - do). (1) 
dr r r2 r 

For the isotropic case the last term in (1) vanishes so that we obtain the 
equation which was employed by Sargent et al. [86ad] under analyses of the 
mass distribution near the center of M87. If the tangential velocity dispersion 
at finite distances from the center r drops below the radial dispersion, the 
last term in Eq. (1) becomes negative. But this has evidently the same qualita­
tive effect as adding a central mass to the first term on the right-hand side 
of Eq. (1). The effect is a steepening of the density gradient compared to the 
isothermal solution. 

The specific computations were performed in [61 ad] for anisotropic 
Maxwellian distribution 

10(E, L) = const e-(2E+k2L2)/2c~. 

The phase density (2) corresponds to the local anisotropy 

c;/(ci/2) = 1 + k2r2, 

(2) 

(3) 

so that k -1 means the radius at which the anisotropy begins to be con­
siderable. 

Substituting the volume density Po = J 10 dv into the Poisson equation, 
we obtain 

1 d ( 2 d"') e-t/t 
x2 dx X dx = 1 + Px2 ' 

(4) 

where we introduced the notation'" = cf>o/c;, x = ria. for the dimensionless 
potential radius, a. = cr(4nGpc>-1/2 is the scale of length, Pc is the center 
density, k = ka.. 

For the model with k = 0.98, authors of the work under consideration 
obtained very good agreement with observational profiles of p(r) and o{r) 
up to x ~ 10. 

It is easily seen however that in spite of this such a model cannot correspond 
to any real system, because the model is very unstable. Indeed, the simple 
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computation of the quantity e(r) = 21',.(r)/T1.(r) where 

1',.,1.(r) = ~ {dr f V;, 1. dv, 

gives the following values 

x 2 4 6 8 

e(x) 2.39 4.23 5,87 7.33 

10 

8.67 

Hence the instability of the model considered jointly with L. M. Ozernoy is 
obvious (recall that the critical value4 for the global anisotropy ec < 2). 

§ 7 Can Lynden-Bell's Intermixing Mechanism Be Observed 
Against a Background of Strong Instability? 

We talked above about some applications of the stability theory of stationary 
spherical collisionless systems. But it is no less interesting to ask which role 
possible instabilities may play in the evolution of the system initially far 
from the equilibrium. For example, one of the most important problems for 
the theory of galaxy formation is the problem of collapse of the spherical 
cloud of noncolliding particles. In this case practically all the energy re­
leased during the contraction converts into radial motion. Consequently, 
it is possible that strong instability may develop. Lynden-Bell, in the known 
work [286] devoted to the collisionless relaxation, probably bore in mind 
just such a process of collapse. However, his mechanism of mixing in the 
strongly non stationary system is probably far less effective than the influence 
of instabilities which must be present here. The mixing mechanism of Lynden­
Bell, in its pure form, acts effectively only when the instabilities are absent. 
(This aspect was emphasized by Kadomtzev [15ad].) 

§ 8 Is the "Unstable" Distribution of Stellar Density Really 
Unstable (in the Hydrodynamical Sense) in the 
Neighborhood of a "Black Hole"? 

In conclusion we dwell upon effects which could be due to the presence of a 
"black hole" or another compact, massive body at the center of the stellar 
spherical system (we shall speak of "hole" in both cases for the sake of 
brevity). 

4 Note here that the scales ). ~ 2 may also be stable although ~(2) > 2. Indeed, the stability 
criterion for perturbations with small scales must involve the parameter ~(x) determined by 
some different manner compared to ~(x): the contributions into 7;, T.J. from the stars with orbits, 
which move far away from the region of perturbation (xma• ~ x), need to be omitted. However,for 
perturbations of the larger scales this effect is not essential. 



154 IX Spherical Systems 

Thus, let us suppose that at the center of the galaxy a "hole" really was 
formed. It is clear that a "hole" forms from those stars with small angular 
momenta and, hence, these leave the system of stars surrounding the central 
body. As a result, the immediate vicinity of a "hole" is filled by stars with 
nearly-circular orbits, which, in the region of sufficiently small angular 
momenta, leads to the condition aflaL > O. As noted in §4, Chapter VI, this 
circumstance may, at the appropriate sign of the wave energy, cause a kinetic 
loss-cone instability (for details see [39ad]). Here we will deal with possible 
hydrodynamical effects of the "hole" rather than with the kinetic effects. 
Since in the vicinity of the "hole" only stars with orbits close to circular 
are left (the rest of them are absorbed by the "hole "), there must appear in 
this vicinity a density distribution po(r) with the increasing section near the 
"hole", as shown in Fig. 106(a). 

In [106], it is shown that a spherically-symmetrical system with circular 
orbits of stars (Einstein's model, Fig. 2) can be unstable if its macroscopic 
density increases towards the edge (see §3, Chapter III), In [20], this instability 
was investigated for the first time in the system of two collisionless cylinders 
rotating in opposite directions. This instability may be caused by the centri­
fugal force, which, under the condition of density drop towards the system 
center, is not compensated by the gravitational force. In this case, it is likely 
that the presence of a massive compact body in the system center will stabilize 
the instability. 

p 

l-Xo ----r--------~---, 

o Mh fVX v' AO 

(a) 

p 

(b) 

Figure 106. Stellar density near the "black hole": (a) the "initial" model is the homo­
geneous model of the second Camm series; (b) the "initial" model is the system with 
purely-circular orbits. 
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Thus, we should clear up the question: does a "hole" lead to such a 
distribution of density po(r) in its vicinity which turns out to be unstable in 
the sense of [20, 106], or is the" hole" mass sufficient to stabilize this in­
stability? We already investigated this problem in §3, Chapter III. Let us 
recall the main results. For the systems with purely-circular orbits the in­
stability of the localized disturbances begin, provided that [20, 106]: 

20 
-=:J.l< 1, 
x 

(1) 

where x is the epicyclic frequency, x2 = 402 + r(02)'; the criterion (1) 
corresponds to mode 1 = 2 which is the most unstable mode. 

In Section 3.4, Chapter III the stability of the mode 1 = 2 was also in­
vestigated for the case when there is the finite radial velocity dispersion; then 
the picture represented in Fig. 20(a) occurs. The stability boundary J.l = 1 
does not alter; all the scales become unstable for J.l -+ 1. More obviously 
the instability condition (1) can be formulated as: for the instability of the 
perturbation localized near r it is necessary to fulfil the inequality 

po(r) > p, (2) 

where the average density 

_ M(r) 

p = (4n/3)r3 ; 
(3) 

M(r) is the total mass within the sphere of radius r. If at the center of the 
system the "hole" was absent, then for the density po(r) increasing from the 
center we had the instability according to (2). However, it is essential that 
mass of the "hole" must be included in M(r). Due to this, those mass distri­
butions which form together with the "hole" are stable. It is especially 
evident in two limiting cases: 

(1) purely-circular orbits (see Fig. 106(b»: a "hole" is, in this case, formed 
by the particles with r < r 0; from the figure it is evident that p > p, 

(2) nearly radial orbits; in this case a "hole" with a very large mass 
must form; the absence of an instability is rather obvious. 

It may be shown that in the general case, for the mass distribution forming at 
the vicinity of the center, the instability criterion (2) does not satisfy. 

We can present some results of the concrete calculations concerning a 
structure in the vicinity of the "hole". Let us take, for example, the simplest 
model-the" hole" in the initially homogeneous sphere with the distribution 
function (29) §1, Chapter III: 

Po [L2 J- 1/2 
fo = J2 n2 "2 - E - 1 , (4) 

where Po is the density, and the radius of the sphere we put to be equal to 
unity. The phase region of the system is represented in Fig. 107(a). For our 
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Figure 107. Phase region (shaded) for the homogeneous (in a density) model of the 
second Camm series: (a) in variables (E, L); (b) in variables (Xl' X2)-

aims it is natural to transform from E, L to other variables: Xl = r;in, X2 = 

r;ax, where r min/r max(E, L) are the minimum and maximum distances of the 
particle with given E, L from the center. The distribution function in these 
variables 

(5) 

and the phase region of the system transforms into the triangle OAB in 
Fig. l07(b). 

Suppose now that in this system a "hole" is formed due to falling into the 
center of those stars which had r min < ro, or Xl < r~ == Xo. As a result, all 
the stars corresponding to the trapezium OCDB in Fig. 107(b), will form a 
"hole" with some mass M h in the center 0, and the remaining stars, occupying 
the triangle CDA on the phase plane (Xl' X2), determine the modified distri­
bution of the volume density p(r). 

Let us calculate M hand po(r). In this case the calculation is not complicated 
and may be carried out analytically up to the end. For the mass of the "hole" 
we obtain 

and for the density 

8n: ( X2) Mh ="3 Xo - 20 , 

1 
p(r) = - J(1 - xo)(r2 - xo). 

r 

(6) 

(7) 

The latter is presented in Fig. l06(a). The mass M I (r) inside the sphere with 
radius r, corresponding to (7), is equal to 

4n: r;--::- 2 3/2 M I (r) = "3 v 1 - Xo (r - xo) . (8) 
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In this case we can convince ourselves directly that the instability condition 
(2), which reduces to the inequality 

1 ~ 2 1/2 1 ~ 2 3/2 2xo - x~ (9 - ...; 1 - Xo (r - xo) > 3"'; 1 - Xo (r - xo) + 3 ' ) 
r r r 

is not valid for any Xo and r. 
The second numerical example is a "hole" in the sphere which initially is 

described by the Idlis model (32) §1, Chapter III. The results of calculations 
which are completely analogous to those obtained above are given in the 
form of the table in [39Qd]. 



CHAPTER X 

Ellipsoidal Systems 

§ 1 Objects Under Study 

When speaking about astrophysical applications of the investigations of 
stationary states and stability of collisionless ellipsoids, we have borne in 
mind the different galactic systems. A roughly ellipsoidal shape is possessed, 
for example, by elliptical galaxies and the bars of the SB-galaxies. Elliptical 
galaxies obviously possess an axial symmetry while the bars of the SB­
galaxies are, explicitly, not axially-symmetrical with respect to the axis of 
rotation. 

All these galactic systems may with good accuracy be considered as 
collision less : estimates given above for spherical galaxies are applicable to 
them, with minor modifications. We have in mind here only the stellar 
component of these systems (on the contrary, the interstellar gas is 
collisional). 

158 
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§ 2 Elliptical Galaxies 

2.1 Why Are Elliptical Galaxies More Oblate than E7 
Absent? 

Among the so far unresolved problems regarding the elliptical galaxies, 1 

we would single out one already old but, in our opinion, very beautiful 
problem: that of explaining why there are no elliptical galaxies with an 
oblateness exceeding a definite critical value. 

This fact was noted and repeatedly emphasized by Hubble, who believed 
that a limit type of elliptical galaxy is E6, when the small axis is 40 % of 
the large axis (see [17]). Recall that the Hubble notation for the elliptical 
galaxies En means that the ratio of the semiaxes of its meridional cross­
section cia = 1 - n/10, (n = 10[(a - c)la]). Now it is apparently assumed 
that the largest oblateness is possessed by the galaxies of type E7, for which 
cia = 0.3 [35]. Irrespective of a specific number, the fact of the presence of 
some critical ratio cia for elliptical galaxies is itself of some importance. 

2.2 Comparison of the Observed Oblatenesses of S- and 
SO-Galaxies with the Oblate ness of E-Galaxies 

Below this limit we already have only spiral (S, SB) and lens-shaped (SO) 
galaxies, i.e., objects of a quite different kind which are readily distinguished 
from elliptical galaxies (see [35]). 

Thus, the oblatenesses q = cia of elliptical galaxies, on the one hand, and 
of usual spirals or the SO-galaxies, on the other, lie in different regions. 
Comparatively recently, this has been confirmed in a detailed paper by 
Sandage et al. [318], using a very rich material (168E, 267S0 + SBO, 
254S-altogether 689 galaxies). 

Due to this difference, the S- and SO-galaxies seemingly may not be 
evolutionarily associated with elliptical galaxies. Usually it is assumed 
[318] that the fundamental difference between the E and S (SO) systems lies 
in the differences of the original distribution in angular momenta, and pri­
marily in the relative quantity of matter with low values of angular momen­
tum, which may convert to stars already at the beginning of the compression 
of the protogalaxy (the rapidly rotating matter precipitates later in a gaseous 
form onto the equatorial plane). 

2.3 Two Possible Solutions of the Problem 

What benefit can be derived from investigations of equilibrium and stability 
of the collision less systems, for the solution of the problem formulated in 

1 Such as, e.g., the problem of an adequate model, which would satisfactorily describe 
observations (in particular, the Hubble law of surface brightness variation). 
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Section 2.1 ? Firstly, it may turn out that the universal equilibrium states of 
elliptical galaxies which will be found, exist generally for only slightly oblate 
systems. 

More probable, however, is another possibility connected with the 
stability loss of the system as the critical limit of oblateness is exceeded. We 
are aware in any event that such a situation takes place in the case of ellipsoids 
(spheroids) of Maclaurin: they become (dynamically) unstable when the 
eccentricity of the meridional cross-section exceeds the value ecr = 0.95289, i.e. 
(c/a)cr:::::: 0.31. This result cannot of course be transferred directly to the real 
elliptical galaxies; we would like only to stress the possibility in principle of 
a similar situation. 

At present, one may only speak seriously about the investigation of the 
stability of simple, in particular, homogeneous, ellipsoidal models (at least, 
by analytical methods). However, the Peebles-Ostriker criterion and some 
similar considerations described in Section 3.2, Chapter IV, are indicative of 
the fact that the results thus obtained (if they are formulated in relevant 
terms) may have a significantly broader region of applicability. 

The rotation exerts a destabilizing influence on the system with respect to 
perturbations of a "global" character, at which the original axially-sym­
metrical shape of the system is violated, so that it takes on a "bar like" form. 
The Peebles-Ostriker criterion provides a quantitative formulation of this 
effect. The physical cause is due, as already noted (in Chapter II), to the 
decrease in effective gravity force on the system boundary, which facilitates 
the reconstruction of its shape. A convenient model for quantitative estima­
tion of the critical value of oblateness and of the influence of the rotation 
velocity on stability of axially-symmetrical collisionless systems is the super­
position of the Freeman spheroids rotating in the opposite direction (see 
end of Section 3.1, Chapter IV). 

2.4 The Boundary of the Anisotropic (Fire-Hose) Instability 
Determines the Critical Value of Oblateness 

If we propose that the equilibrium in highly oblate ellipticals must be pro­
duced by an anisotropy of star velocity dispersions, then a degree of aniso­
tropy for the systems with maximum oblateness (types E6 and E7) must 
be also sufficiently high. It is not unlikely that these systems are just near the 
boundary of the anisotropic (fire-hose) instability which was in particular 
examined in §3, Chapter IV (for ellipsoidal systems). At any rate it is clear 
beforehand that the requirement of stability with respect to bending per­
turbations must lead to some restriction on maximum oblateness of stable 
elliptical galaxies (for example, because the infinitesimally-thin hot disks 
are obviously unstable-see Section 4.2, Chapter V). Then the following 
questions arise. Firstly, what, numerically, are the estimates for (c/a)min ob­
tained from the stability theory; whether these values are sufficiently near the 
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observational (cla)min' so that we could say that in reality the fire-hose 
instability had some relation to the problem under consideration? 

Secondly, what happens to the system if one has oblateness which is 
considerably higher than the critical value? 

We have now only preliminary answers to the questions stated which are 
based on the analysis of strongly-simplified (homogeneous) models of 
elliptical galaxies. 

The answer to the first question is positive. In §3, Chapter IV, we showed 
that, for example, the model of the ellipsoid of revolution hot at the plane 
of symmetry «64), §1, Chapter IV) becomes unstable just for (cia) ;5 0.3 
(for the prolated spheroids at rest we had similar results-see Problem 9, 
Chapter IV). The preliminary results concerning the fire-hose instability of 
nonhomogeneous ellipsoidal systems are also in agreement with this esti­
mate. As to the second question stated above, the certain answer is given 
in the results of the numerical experiments simulating an evolution of highly­
oblate homogeneous ellipsoids at rest (these simulations are also described 
in §3, Chapter IV). These experiments show a rapid increasing of thickness 
in such systems, which is due to the excitement of unstable fire-hose modes. 
Thus, one can see that the ellipticals with an oblateness exceeding· the 
critical value could indeed not exist: a growth of initial disturbances would 
ultimately draw the system onto the stability boundary. 

2.5 Universal Criterion of Instability 

It is clearly that extensive investigations of more realistic models are necessary 
for definite conclusions.2 But the stability criteria relative to the large­
scale disturbances may be universal provided that these criteria are formulated 
in some relevant terms. The model, which we used in §3, Chapter IV, for the 
investigation of the fire-hose instability, was composed of the homogeneous 
ellipsoid with mass Md and with semiaxes a, c (a > c), rotating with the 
angular velocity yOo in the immovable spherical halo with mass M h' Let us 
introduce the parameters: 

Ur = T,IW, Uz = ~/W, t = 17W, (1) 

where T,,'I',Z is the kinetic energy of the chaotic motion of stars along the 
axes r, cp, z, respectively, T is the energy of rotation of the galaxy, W = 

I Wdl + 2Uo is the potential energy, where Wd is the energy of interaction of 
the stars of the galaxy with each other, U 0 is the energy of interaction of 
stars with the halo. For a uniform spheroidal halo Uo = t S PdO~(r2 + Z2) dV, 

2 Besides, the variations described above (which employ the requirements of the stability 
theory) do not, of course, exhaust all the possibilities for an explanation of the problem of 
maximum oblateness of ellipticals. And, finally, the explanations suggested say nothing about 
how in reality the elliptical galaxies are formed. 
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integration is over the volume of the galaxy, Pd is the stellar density. From 
the virial theorem, it follows 

2(T,. + Ttp + 1'z + T) = 1 »41 + 2Uo; (2) 

therefore 

(3) 

The parameters u',tp,z; t for our model are uniquely associated with the 
values J.l, cia, ')12, and we may represent the instability regions on the plane 
(Ul.' uz), where Ul. = U, + utp = 2u, (see Fig. 108). 

0.01 0.03 0.05 0.07 u. 

Figure 108. Marginal curves in variables (U., U.L)' 

The basis of further applications of the criteria obtained to real systems 
serves the hypothesis that the galactic stability boundaries in the variables 
Ul. and Uz are dependent only on the parameter J.l = MhlMd and are weakly 
dependent on the model. A similar suggestion was advanced by Ostriker 
and Peebles [301] as far as the barlike mode is concerned. In the case of 
bendings one can most simply formulate the stability criterion for the mode 
m = 0 ("bell"); 

(4) 

The value IXcr(J.L) can be derived from the dispersion equation in the disk 
limit, the deviation of which is given in Section 2.1, Chapter V: 

(m - myn)2 = n;(4r:, - 2) - !n2(1 _ ')12) 

x [(2n + m - 1)(2n + m) - m2 - 2] + n~, (5) 

where n~ = GMJa3, the expression for r:, is given in Section 2.1, Chapter V. 
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The "bell" mode has m = 0, n = 2. For this mode, from (5) we have 
w2 = ~Q~ - 13°(1 - y2)Q2 + Q~, and for OCcr = t(1 - y2)cr we get 

3 1 + 8,u/15n 
oc = - -,---:--:::--

cr 16 1 + 4,u/3n . (6) 

For the m = 1 and m = 2 modes, the criteria are not written in the form 
of a simple linear dependence between U 1- and Uz • A similar dependence is 
roughly valid only for small uz • 

To confirm the above hypothesis about the universality of the stability 
criteria, the computations of the stability of the disklike models with dif­
ferent rotation curves for the bell-shaped mode were performed. 

In the first model [227J, the surface density of the disk had the form (see 
§1, Chapter V) 

a = ~ ~ b(n);<2k-1 
2 R2 L. k" , 
n k= 1 

(7) 

where ~ = J1 - r2/R2, M and R are the mass and the radius of the disk, 

b~n) = (2n + 1)/(2n - 1), 

b~n) = [4(k - l)(n - k + 1)/(2k - 1)(2n - 2k - l)JW~l' 

The angular velocity of rotation of the disk is 

Q2(r) = y2 2n4: 1n~~ (1 _ ~2n)/r2, (8) 

where y2 ~ 1 is defined in the same way as above. In the case where n = 1, 
this model coincides with the model considered above, for which the in­
stability criterion with respect to the bell-shaped mode yields U1- = 
!(1 - y2) > i, or t < tcr = 0.125. It turns out that for n ~ 7, 

0.101 ~ tcr ~ 0.125. (9) 

For the second model [205J (cf. (39) in §1, Chapter V) 

a = ao exp( -ocr), (10) 

where In, Kn are the corresponding cylindrical functions. Inthis case the bell­
shaped mode becomes unstable for 

t < tcr = 0.120. (12) 

Therefore, it is evident that tcr (or ucr) turns out to be approximately identical 
for very different models. 3 

3 Note that the results described were applied [37ad• 40ad] for estimating the upper boundary 
of the halo mass in a galaxy. 
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§ 3 SB-Galaxies 

The SB-galaxies (intersected spirals, or the galaxies with a bar) have spiral 
arms going out from the ends of the bar, at whose center is the nucleus. 

3.1 The Main Problem 

Achievements of the SB-galaxy theory are so far very modest, especially 
when compared with the significant progress in understanding the structure 
of normal spiral galaxies (of the S-type) connected with the density wave 
theory (cf. next section). 

One of the main difficulties consists in the construction of a sufficiently 
good collisionless model of the central, obviously not axially-symmetrical, 
region of SB-galaxies, first of all of the bar itself. In comparison with this, the 
second part of the problem (origin of spiral arms) now seems simpler. 

3.2 Detection in NGC 4027 of Counterfiows as Predicted 
by Freeman 

If one deals with the quasistationary theory of spiral galaxies of the SB-type, 
one should note some important papers by Freeman and de Vaucouleurs 
[203,206]. In [203], the self-consistent model of the homogeneous three-axis 
ellipsoid of stars (see §1, Chapter IV) is suggested as a model of a bar of the 
spiral galaxy. We have already noted one interesting characteristic of the 
macroscopic velocity field of such systems, namely the presence of" counter­
flows" for rather strongly oblate ellipsoids (2b 2 < a2 ) in the rotation plane 
(see Fig. 46). 

If the" inverse" motion is not only the property of the homogeneous models 
described, but indeed occurs in the bars of real SB-galaxies, it may be 
determined using its influence on the absorption lines in the spectrum of the 
stellar component of the bar. Freeman and de Vaucouleurs [206] made an 
attempt to perform special observations of the spiral galaxy with the bar, 
NGC 4027. The statement of the aims of the observations is as follows. 

It is clear that the inverse average motion is possible only because of a high 
stellar velocity dispersion. At the same time, the velocity dispersion of the 
gaseous clouds, in which the emission lines arise, cannot be so large, since the 
time of collisions between the clouds is far less than the period of the bar's 
rotation. Therefore, the gaseous clouds must move only in one direction. 
Thus, the inclinations of the emission lines and absorption lines in the 
spectra, taken with the position of the spectrograph slit near the small axis 
of the bar orientated in an appropriate way, should be opposite: they should 
be directed according to rotation for the emission lines, and against the 
rotation for the absorption lines. 
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Such an effect was revealed in observations of the NGC 4027 galaxy. 
True, one seeming misunderstanding arose: in their value of inclination, 
the absorption lines proved to be greater (by a factor of approximately 4) 
than the inclination of the emission lines, although, one would think, it was 
to be expected that approximately equal (but opposite) inclinations would 
result. However, there is one simple explanation of this fact which is the 
following [344]. The mean velocity v satisfies the equation (§1, Chapter IV) 

(vV)v = -div (J - 2[Ov] _ 0<1> + 02R. or (1) 

For the inverse average motion, the centrifugal force and pressure (the 
last and the first terms of the right-hand side of (1» are directed outwards, 
while the gravitational attraction and the Coriolis force are directed inwards. 
The resulting force must yield an acceleration directed inward to the system 
(the left-hand side of (1». For a rapid mean motion, the most essential 
term in the right-hand side of (1) is the Coriolis force. 

Let the curvature radius of the current line in a rotating system near the 
small axis of the bar be R 1, and the mean velocity VI; then we have from (1) 

vi/R 1 ;::; 20VI, VI ;::; 20R 1. (2) 

But VI ;::; 20R 1 is far less than the rate of rotation Ob, since RI ~ b/2 (in a 
similar way it is possible to show that the velocity at the ends of the bar is 
V2 ~ Oa). 

The finding of the counterflows is a strong argument in favor of the 
simplest bar model suggested by Freeman. As mentioned in a review by 
Freeman and de Vaucouleurs [344], if this fact can be confirmed by observa­
tions in other spirals with bars, then this will mean that the" present rudi­
mentary ideas about the stellar dynamics of the SB-systems, are at least 
going in the true direction." In any event, the presence of the counterflows 
imposes strong restrictions on possible theoretical models of the SB­
galaxies. 

3.3 Stability of Freeman Models of SB-Galaxies with 
Observed Oblateness 

Another important argument is obtained in [96] (see §2, Chapter IV), where 
the Freeman model is investigated for stability with respect to the largest­
scale types of oscillations. Figure 48 shows that the oblateness of real bars 
(and, in particular, of NGC 4027) lies in a "stable" region.4 

4 More detailed stability investigation of prolate stellar systems was performed in [36od, 3sod]. 



CHAPTER XI 

Disk-like Systems. Spiral Structure 

Recently, the development of the equilibrium and stability theory of flat 
gravitating systems has occurred, mainly with the aim of understanding 
the galactic spiral structure. From the vast material accumulated here we 
have selected only some problems! which are, in our opinion, most closely 
related to the subject of the book. 

Despite the fact that recently some essential progress has been outlined 
on the understanding of different mechanisms of the density wave generation 
and of the properties of their propagation, the problem of the origin of the 
spiral structure is still far even from qualitative solution. 

§ 1 Different Points of View on the Nature of Spiral Structure 

At present, quantitatively the most elaborate is the representation of spiral 
arms in the form of density waves rotating uniformly (as a solid body), 
independently of the galactic differential rotation. 

This hypothesis was first advanced by Lindblad and then formulated in 
the form of linear theory of density waves by Lin and co-workers [267-272], 
Kalnajs [250], Contopoulos [187,189], and others. The principles of the 
nonlinear theory (soliton theory) of density waves are stated in the previous 
chapter. A point of view on the nature of spiral arms which preceded that 

1 At the present time there are many reviews ([84. 188, 88ad], etc.) on this subject. 
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(a) (b) 

Figure 109. Stretching of the initial compression: (a) AB into the piece of the trailing 
spiral ; (b) A' B' in the differentially rotating disk with Q~ < O. 

mentioned above, was different: these were presented as compressions of 
stars and gas traveling at each point at the local rotation velocity of a galaxy. 
Such a point of view was called "material"-the name appears rather weak, 
because density waves consist of the same matter: compressions of stars 
and gas. It would be more correct to call such a theory" local". 

It is easy to confirm that the" local" picture ofthe spiral pattern disappears 
for the time of the order of one revolution of the galaxy, _108 years, see 
Fig. 109.2 At the same time it is assumed that the age of the galaxies is _1010 

years. It is hardly probable that the galaxies would all "agree" to be spiral 
simultaneously in the course of a very short period of time. But then one must 
conclude that the spiral structure must continuously or periodically be 
renewed in the galaxy. 

We emphasize that the above statement is valid for purely gravitational 
theories; the presence of a sufficiently strong magnetic field, for example, 
may preserve the gaseous spirals from destruction by the differential 
rotation. 

The most developed attempt to construct the regenerative theory of 
gaseous spirals is due to Goldreich and Lynden-Bell [210], They suggest 
that the gaseous layer is rotating in a strong external gravitational field 
(which is assumed to be given and not subjected to perturbations). The 
theory is based on the local analysis of the hydrodynamical equations and the 
Poisson equation. There are then introduced the movable coordinate axes 
X, y, which are bent together with the differentially-rotating flow. An in­
vestigation is made of the temporal evolution of the perturbation, the spatial 
shape of which, ei(kxHkyY), is assumed to be unaltered in a movable system. 
This evolution resembles the origination, enhancement, and finally, the 
decay of spiral arms. 3 

2 As seen from Fig. 109, any density compression moving together with a "cold" differentially 
rotating galaxy, would inevitably extend to form segments of trailing spirals and ultimately 
disappear by completely dissolving in the galaxy. 

3 The theory of Goldreich and Lynden-Bell was, however, subjected to criticism (cf. [233]). 
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We have not yet touched upon the question of the generation mechanism 
(or regeneration mechanism) of spiral arms. The purpose of Toomre's 
paper [333] was to verify the hypothesis about the formation of the spiral 
structure due to gravitational instability. Toomre calculated (see Section 4.1, 
Chapter V) the minimum radial velocity dispersion required for the full 
suppression of all axially-symmetrical instabilities, equal to 3.36GO' ojx. 
From this expression, by using the observed 0'0 '" 50 +- 65 M oIps2 and 
'K '" 27 +- 32 kmjs . kps one may calculate the minimum for the solar vicinity 
of our Galaxy; it proved to be about 35 kmjs (a more accurate estimate 
was later obtained by Shu). But in the same region, there is also the mean 
velocity dispersion of stars, observed in the solar vicinity. In addition, as is seen 
from formula (50), Section 4.1 (Fig. 72), most difficult to stabilize are radial 
perturbations with wavelengths of the order of A '" 0.55AT , which in the 
solar vicinity is equal to 5 +- 8 kps. At the same time, the radial perturbations 
of the stellar disk with A '" 4 kps (i.e., with the wavelength of the order ofthe 
observed distance between the arms) must obviously be locally stable. 

§ 2 Resonant Interaction of the Spiral Wave 
with Stars of the Galaxy 

The role of the resonant interaction of the spiral wave with the stars of the 
galaxy was investigated in detail by Lynden-Bell and Kalnajs [289]. Below 
we describe some results of their paper. 

First (in Section 2.1), we give the derivation of exact formulae for the 
energy and angular momentum of the quasistationary wave, as well as 
expressions for the variation rate of these values. These formulae show the 
decisive role of the resonance stars. 

Section 2.2 analyses in detail the physical mechanisms of enhancement 
(or damping) of the waves on all basic types of resonances in the galaxy. 

2.1 Derivation of Expressions for the Angular Momentum 
and Energy of the Spiral Wave 

We derive first of all an exact expression for the angular momentum (and 
energy) of the spiral wave [251,289]. The calculations leading to this ex­
pression are similar to those which are performed in plasma physics in 
the clarification of the physical meaning of Landau damping (see, e.g., [86]). 
The details of the derivation of this formula, which we give in view of its 
importance, are as follows: 

Consider the exchange of the angular momentum and the energy between 
the stars and the spiral wave. The equations of motion of a star in the disk 
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plane in the cylindrical coordinates r, ep have the form 

2 a 
r - rep = - or (<1>0 + <1>1)' (1) 

d 2. 0<1>1 
dt(r ([J) = - O([J' (2) 

The system of (1) and (2) has for <I> \ = 0 the obvious laws of conservation: 

1 
of energy E = - (f2 + e /r2) + <1>0, (3) 

2 

of angular momentum L = r2cjJ. (4) 

In the consideration of the kinematics and dynamics of the flat gravitating 
systems, it is convenient to use, instead of the usual cylindrical coordinates 
(r, ep, v" vq», the angle-action variables (11' 1 2 , WI' w2 ), which take into 
account the important property of the stellar orbits in the plane of an axially­
symmetrical system-their double periodicity-and correspondingly, greatly 
simplify the description. Bearing in mind a further application of the perturba­
tion theory, we shall denote the full quantities (unperturbed + perturbed) by 
primes, leaving the earlier notations (11' 12, WI' W 2) for the unperturbed 
quantities. 

If the variables (1~, 1~, W'l, w~) are considered, then the system in (1) and 
(2) will be reduced to the following: 

. a a 
1} = - ~ (Ro + <1>\) = - ~ <1>1(1;, W;, t), 

uWj uWj 
(5) 

w} = o~" (Ro + <1>1) = QilD + o~" <1>1(1;, W;, t), 
J J 

(6) 

and the unperturbed motion in these variables is characterized by the 
equations 

(7) 

(8) 

The meaning of Wi' li is most easily illustrated in the simple example of 
the nearly circular motion (epicyclic approximation). In this case, one easily 
obtains the following expression for the perturbed radius of the star (see §1, 
Chapter V): 

r1 = a sin(xt + (1) + .... 
By using further the definitions of the angle-action variables, one may find 
in this approximation: Q 1 = x is the epicyclic frequency; Q 2 = Q is the 
angular velocity of the circular motion; 1 \ = xa 2/2, 12 = L. In the general case 
the interpretation of these variables is similar: WI is the phase of the radial 
oscillation of the star, 11 is the function of the amplitude of this oscillation, 
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W2 is the galactocentric angle of a uniformly moving epicenter (with angular 
velocity n2). 

The perturbed orbits of the stars are derived from the perturbation theory. 
The orbits of the first order are sought by solving Eqs. (5) and (6), into the 
right-hand side of which (i.e., in the calculation of the forces) we substitute 
the unperturbed orbits. For the correction of the first order IllJ j for J j , 

then we get IllJ j = oXlowj, where 

X = Re{(4n2)-1 L ljI'm(Ji) exp.[i(lwl + mW2 - wt)]}, (9) 
I,m l(lnl + mn2 - w) 

and ljI'm(Ji) are the coefficients of the Fourier expansion 

<l>l(Ji, Wi' t) = Re{(4n2)-1 L ljI'm(J;) exp[i(IWl + mW2 - wt)]}, (10) 
I,m 

The expansion in (10) is always possible due to the periodicity of <l>l(Ji , Wi' t) 
with respect to angular variables Wi (with a period 2n). 

Since III J i is periodical in initial phases WI' W2' the average change of the 
angular momentum of the system of stars which originally were uniformly 
distributed in phases, is zero: <lllJj> = O. Thus, the angular momentum 
(and energy) exchange between such a stellar group and the wave is of 
the second order with respect to the perturbed potential. The orbits of the 
second order are calculated, according to the forces in (5) and (6) as calculated 
for the orbits of the first order. 

The result of the calculation is thus: 

<L> = (2n)-2 f" f"1l 2j 2 dW l dW2 = ! Im(w) 

x exp[2Im(w)t](2n)-4 

" (I a a ) IljI'ml 2 
X L.,m -+m-

I,m OJI oJ2 Ilnl + mn2 - w1 2 ' 
(11) 

The total rate of variation of the angular momentum of stars, which 
initially had angular momenta Ll < J 2 == L < L2 is 

(12) 

We integrate in parts. The total L may be split into the "volumetric" 
and the" surface" terms: 

(13) 
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In this expression, the first integral (L l , "volumetric" term) corresponds 
to the variation in the angular momentum of the stars, which remain in the 
region (Ll' L 2), while the second integral (L2 , "surface" or "convective" 
term) corresponds to the angular momentum which is convected through 
the boundaries of the region under consideration. If one takes the integral 
f- co L dt and takes into account only the "volumetric" term, we shall 
obtain the excess of the angular momentum for the stars in the chosen range 
ofthe values of L over that which they had in the absence of the wave: 

1 
~L = - 16n2 exp[2 Im(w)t] 

x rL2fCOLm(lafo+mafo) II/IIml2dJldJ2 
JL1 ° I,m aJl aJ2 Ilnl + mn2 - w1 2' 

(14) 

The expression (14) thus found is the angular momentum, transferred by the 
stars to the wave, i.e., the angular momentum of the wave if integration over 
J 2 in (14) is extended to all the angular momenta of stars. 

In the limit of a very slowly increasing wave, Im(w) -+ 0, the variation of 
the angular momentum (and energy) of stars occurs, according to (13), only 
on resonances, where 

Inl + mn2 - w -+ O. (15) 

For Im(w) -+ 0, we have, by using the identity 

-lim[Im(w)] ·llnl + mn2 - w r 2 -+ n~(lnl + mn2 - w), 

and splitting the velocity i into the sum of the terms from different 
resonances: 

Lim = - sIn II m(1 :;: + m :;:)ll/IlmI2~(lnl + mn2 - w) dJ l dJ2 (16) 

It is easy to see that contributions come only from the resonances, whose 
positions in the epicyclic approximation are defined by the formula n -
np = -ixlm, where np = wlm is the velocity of the spiral wave. If one con­
siders any single (m) component of the potential, then the resonances will be 
enumerated by one integer index I (positive, negative, or zero). The following 
are the three main resonances which have special names (let us recall them): 
I = 0 corresponds to the" corotation" resonance, or the" particle" resonance, 
on which n = np; the resonances corresponding to III = 1 are called 
Lindblad resonances. If one moves from the corotation resonance inward, 
toward the galactic center, the local angular velocity will increase, and 
one may finally (but not always) encounter a ring, on which n exceeds np 
by xii m I. This resonance is called the inner Lindblad resonance (for it, I = - 1 
for m > 0 and i = + 1 for m < 0). The other resonance III = 1 is located 
in the galaxy outwards from the corotation ring (the outer Lindblad resonance). 
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The resonances listed above take place where the frequency at which the 
star intersects the humps and hollows of the spiral wave potential, I w - mQ I, 
is either zero (i.e., the star is always in phase with the potential), or equals the 
oscillation frequency of the star x near the circular orbit. 

Resonances of a higher order are dynamically of less importance, and, in 
addition, it seems that all the outer resonances really lie outside the galaxies, 
while the inner ones are too close to the galactic nucleus. 

For Iml = 1, the inner Lindblad resonance occurs only for the waves 
running in the direction opposite to the rotation of the system. For Iml = 2, 
the resonances are separated just roughly by the dimension of the galaxy, for 
I m I ~ 3, they are approaching the corotation radius. These facts all explain 
the preference of the two-armed pattern in our Galaxy (we have already 
discussed them in Section 3.2.). 

Let us now clarify how, in a stationary spiral wave with a fixed number of 
arms, m, the variations of the angular momentum and energy of the star are 
interrelated with each other. In the frame of reference rotating together with 
the wave (at a velocity of Q p = wlm), the total potential <1>0 + <1>1 is time­
independent, so that each star conserves the energy in these axes (the so­
called Jacobi integral) 

6;" = ![v; + (r<p - Qp r)2] + [<1>0 + <1>1 - 1Q;r2], 

where the velocity of the star (vr , v<p) refers to the inertial system. In other 
words, 6;" = 6T - QpL, where 6T is the energy in the inertial system, and the last 
formula itself is an ordinary relationship between the energies of the particle 
in the inertial (6T) and rotating (e;") coordinate systems (see, e.g., [69]). Since 
de;"ldt = 0, then d6Tldt = QpdLldt, fleT = QpflL, and if one sums up this 
equality over the stellar system with the total energy E and the angular 
momentum L, we shall obtain in a similar way 

dE = Q dL 
dt Pdt' 

The process oftransfer ofthe angular momentum and energy by the spiral 
wave is illustrated in Fig. 110, taken from [289]. From this figure it is easy 
to see that the star increasing its angular momentum by flL at the corotation 
radius and, consequently, increasing its energy by QpflL, does not change 
the oscillation energy near the circular motion, since at this resonance 
deldL = Qp. The star losing flL at the inner Lindblad resonance, also 
loses the energy QpflL, but it comes to the state to which a still lesser value 
of circular motion energy would correspond. Consequently, in this case, the 
energy & (see Fig. 110) is released into a noncircular motion. 

Let us now find the resonances on which the stars increase their angular 
momentum and energy, and those on which they lose them. It turns out that 
the results may be formulated in a quite general form for the cases when the 
epicyclic consideration is applicable. 

As is easy to see from (16), for 1 = 0 (corotation resonance), the resonant 
stars increase their angular momentum since ajolaJ 2 < 0 for any reasonable 
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Br-----------------------, 

L 

Figure 110. Transfer of the angular momentum bL and the energy bE = npbL by stars 
[289]; e = e{L)-the energy of the circular unperturbed motion with the angular 
momentum L; I-the inner Lindblad resonance, 2-the corotation radius, 3-the 
outer Lindblad resonance. 

distribution function, due to the general outward-faIl-off of the surface density 
in galaxies (the orbits are assumed to be nearly circular, and larger r cor­
respond to larger angular momenta L). For all the remaining resonances, the 
sign of the angular momentum and energy exchange between the stars and the 
wave is defined by the sign of 1m, if it is assumed that I oJ%J 11 ~ I oJ%J 21 
(i.e., in other words, the validity of the epicyclic approximation; indeed, in 
this approximation J 1 '" xa2, J 2 '" nR2, so that J 2/J 1 '" (R/a)2 ~ 1). Since 
at the inner Lindblad resonance 1m < 0, so the stars at this resonance 
must give out their energy and the angular momentum. 

In a similar way, with the same approximations, the stars at the outer 
Lindblad resonance absorb the angular momentum and energy. 

Let us now determine the sign oj energy of the quasistationary spiral wave. 
Transform expression (14) (with 1m w -+ 0) to the form 

bE = _ np ff{ ~ 412m2n 1(n2 - np)( -oJ%J 1) 1'/' 12 
161l? 1~1 Wni - m2(n2 - np)212 'l'l,m 

-1=~oom2( - :s:) 110.1 + ~t;212_ np)212}dJ1dJ2. (17) 

In the epicyclic approximation I ~f%J Ii ~ I oJ%J 21; therefore the first 
term in (17) is dominant, so that for 0.2 > np (i.e., inside the ring of corota­
tion) bE < 0, and for 0.2 < np (outside the ring of corotation) bE > O. A 
positive contribution to the energy bE is also made by the second term in 
(17) (which is nonessential in the epicyclic approximation), both for 0. > np 
and for 0. < np. This may turn out to be important for the cases when the 
epicyclic approximation ceases to be valid, i.e., when the deviations from 
circular orbits are large. From the results of theoretical papers [93, 111, 252] 
as well as from numerical experiments [294] and especially those of Hohl 
[215,220] it follows that these deviations should in fact be large for stable 
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or nearly stable galaxies without a significant mass concentration toward 
the center (and in the absence of a halo). 

We return now to the case of waves of negative energy as being more 
definite. It is obvious that, in the case ~E < 0, the absolute value of I ~E I 
grows with increasing amplitude of perturbation (of a spiral wave), i.e., with 
the instability. Taking energy from perturbation, we will thereby excite it. 
And, on the other hand, by introducing energy we shall damp such perturba­
tions. The waves of negative energy having such an "inverted" behavior, 
are well known, for example, in the theory of plasma instabilities (see [86]). 
The simplest example4 of the medium in which oscillations of negative 
energy may exist is the cold moving plasma (with the velocity V). The scalar 
dielectric permittivity of such a system is 

W 2 

Re eo = 1 - (w _ k V)2 ' 

so that the oscillation frequencies, which are defined from the equation 
Re eo = 0, are Wk = kV ± wp. Hence it follows that 

() Re eo _ 2(1 k V) Wk---- +-
(}Wk - wp , 

and therefore for Vk/wp > 1 and for the solutions with the minus sign (see 
Fig. 111) the oscillation energy is negative: 

a Re eo IEI2 ° m = Wk -",-- -8- < . 
uWk 7t 

The sign of oscillation energy is of course not invariant with respect to the 
change of the frame of reference (the growth rate of oscillations is, for example, 
independent of the reference system). However, in some cases, some one 
definite frame of reference is distinguished among the others. In the case of 

4 This. as well as other simple examples, may be found in the monograph [86], where the 
energy classification of slowly increasing perturbations in plasma is given. 

w/k o w/k v 

(a) (b) 

Figure 111. Waves of (a) positive and (b) negative energies for the simplest velocity 
distribution of particles [86J. 
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Figure 112. Illustration for the determination of the sign of energy density of the spiral 
wave. 

interest, of differentially rotating gravitating systems, the inertial frame of 
reference is evidently such a distinctive one. Consider an arbitrary area of the 
disk (Fig. 112) at a distance r 1 from the center inside the radius of corotation 
(r 1 < rc). One easily notices the similarity between the situations presented 
in this figure and in Fig. 111. 

For our Galaxy, according to Lin et al. [271], n = np at r = r p ~ 14 kps. 
At the same time, the observed spiral pattern in the Galaxy extends up to 
r = 14 -;- 15 kps (from observations at A = 21 em, i.e., for neutral hydrogen 
HI). Therefore, in this case, only the internal region is essential, inside which 
the spiral wave has negative energy. Such a situation is normal for most of the 
theoretically investigated [204, 240] galaxies: our Galaxy, M31, M51, M81; 
however, for the galaxy M33, according to data of [240], the corotation 
ring lies rather close to the galactic center (i.e. Qp is rather large), so that in 
this cases the internal and external regions may contain a comparable 
amount of the matter, and be dynamically equally important. 

As a more general example, it is easiest to take the barlike modes of the 
uniformly rotating disks, treated in detail in [254]. A direct calculation by 
formula (14) leads to the following conclusions. The mode rotating in the 
negative direction has positive energy and negative angular momentum. 
For" direct" modes, these quantities have the same sign, and for the more 
rapid mode they are positive, while for the slower one they are negative, 
until y < 0.5072 .... At y = 0.5072 ... these two modes are merging and 
then transform into the increasing and decreasing pair of modes, and each of 
them has a zero angular momentum and a zero energy. 

Consider further the problem of the redistribution of the angular 
momentum, which must occur during the period of the growth of the barlike 

5 And. apparently, also in all cases when the density is not very much concentrated toward 
the galactic center, so that the rotation rather resembles a uniform rotation rather than the 
strongly differential rotation characteristic of our Galaxy. 
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mode, by using the calculations (up to the values of the second order of 
smallness), presented above. The marginally-stable y = 0.5072 case is typical. 
The equilibrium distribution is the function of the angular momentum Lz = J2 

and radial action J 1, which in this case is (E - 1 J 21 )/2, if one assumes the 
origin of reference to be the energy of the star, being at rest at the center. The 
boundary between the" suppliers" and" consumers" of energy is the straight 
J dJ 2 = 0.4859 .... To determine this boundary, we present the potential 
<1>1 = (x + iy)2 = r2e2itp in the action-angle variables, i.e., 

1 
<1>1 = -4 2 I 1/IM 1, J 2) exp[i(lWl + mw2 ) - iwt]. (18) 

11: I 
(m=2) 

The action variables 

J 1 = 2~ ~Prdr = ~J2E - 2<1>0 - e;/r2 ~: = 1<E -ILzl) 

and J 2 = (1/211:) J ptpdlp = Lz have already been given. It is also easy to 
calculate the angular variables WI and W2, i.e., the phase angles in the rth 
and lpth movements of the particles, by the formulae 

fr dx 

WI = J4J1x _ (x - J 2)2; 

1 fr (x - J 2)dx 
W2 = lp + - . 

2 xJ4J 1x - (x - J 2 )2 
(19) 

Finally, one can obtain 

1/10 = J 1 + J 2 ; 

1/I-2=J1; 

1/1-1 = -2JJi + J 1J2; 

1/1+2 = 1/1+1 = o. 
(20) 

Thereafter, one should make use of formula (11) for the variation of the 
angular momentum of the particle; in the given case, this formula is reduced to 
the form 

<L> = -1m w exp[ -2 Im(w)· t]· (211:)-4 I, (21) 
I 

where 

I=2~ 11/1012 +(_~+2~)11/I-112 
I oJ2 (w - 2)2 oJ l oJ2 w 2 

( 2 0 2 0) 11/1_212 
+ - oj 1 + oj 2 (w + 2)2 

_ 4[J 1 + J 2 _ J 2 _ J 1 ] (22) 
- (w - 2)2 w 2 (w + 2)2 . 

The boundary between the "suppliers" and "consumers" of the angular 
momentum is determined, apparently, from the equality II = O. If one 
takes y = 0.5072 (w = j5j6 ~ 0.91) it is then possible to obtain JdJ2 ~ 
0.4859. This relation J dJ 2 refers to the relation EfJ 2 ~ 1.972, which implies 
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the eccentricity of the orbit e ~ 0.95 or the ratio of the epicycle size 
p = (a - b)/2 to the mean radius (a + b)/2 (a and b are the sizes of the major 
and minor semiaxes of the elliptical orbit of the particle) equal to 0.5718. 
The directly rotating stars with an eccentricity less than that determined 
give their angular momentum to other stars, irrespective of their position 
on the disk. 

There is also another way of distinguishing between the "suppliers" and 
"consumers." Since the rotating torque acting on the star from the side of 
the perturbed field is proportional to r2, then it is necessary to calculate 
the time-average of its angular velocity ¢ with a weight r2, i.e., Ot == r2¢/r2. 
For the disk Ot = Lz/E (since r2lP = Lz , r2 = E), and the "consumers" are 
the stars with Ot > y, and" suppliers" are the stars with Ot < y. This criterion 
is exactly equivalent to the former one (Lz/E = y = 0.5072 corresponds to 
the value E/Lz = 1.972, which we have encountered above). 

2.2 Physical Mechanisms of Energy and Angular 
Momentum Exchange Between the Spiral Waves 
and the Resonant Stars [289J 

2.2.1. Lindblad Resonances. Note first of all that, of course, exactly circular 
orbits receive none of the gravitational torques. The effect arises under the 
action of the perturbed gravitational field on the perturbed orbit (the field 
must "catch on" the irregularities of the orbit). Since the torque is small, 
of second order, determined by the product of perturbed forces in the 
radial g1r and azimuthal g1", directions g1",'g1" it is sufficient to calcu­
late the displacement from the unperturbed (circular) orbit to first order. 

If the perturbed potential is represented in the form 

«1>1 = -s sin(kr1 + rn<p + wt), (1) 

then the star moving exactly along the resonance orbit will suffer the force at 
the epicyclic frequency x. Indeed, the frequency is evidently equal to I w - mn I, 
and at the Lindblad resonance I w - rnO I = x. If one assumes that S ~ const, 
then the radial (j,.) and the transversal (f",) forces will act on the star ap­
proximately in phase, and one may write 

j,. = Fr cos(xt + y), j", = F '" cos(xt + y), (2) 

where F" F", are the amplitudes ofthese forces, and Fr ~ F",. By linearizing 
the equations of motion and taking into account the definition of the epi­
cyclic frequency, we shall obtain the following equation of perturbed motion: 

.. 2 200 () r1 + x r1 = - L1 + Fr cos xt + y, 
ro 

£1 = ro F", cos(xt + y), (3) 
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By integrating (3) with the zero initial conditions, we shall obtain: . 

L1 = roF",x- 1[sin(xt + y) + sin y], 

r1 = -QOF",x- 2t cos(xt + y) (4) 

+ !Frx- 1t sin(xt + y), 

and, in the expression for the radial displacement r 1, only the time-increasing 
(secular) terms are written, which arise due to the resonance between the 
free radial oscillations of the star and the perturbing force produced by the 
spiral arms. The solution for r 1 consists of two parts, which are produced 
by the radial and tangential forces Fr and F "'. 

Consider first the influence of the radial forces, which give in (4) the 
dominating term (Fr ~ F ",). The time-increasing displacements correspond­
ing to them lag the forces by one-quarter of the period 2n/n, i.e., the major 
axis of the perturbed orbit coincides with the azimuth, on which the spiral 
structure (the maximum of the density /11' or (-~1» reaches the reson­
ant circle. We shall further consider the case of the two-armed spiral, m = 2. 
For the inner Lindblad resonance (Fig. 113), the major axis is displaced 
(from the position on the circle) toward the position outside this circle, 
where it slightly leads the arm (if one takes into account the trailing character 
of the arms, as well as the additional effect from the tangential forces, see 
below). As a result, there the torque arises, which pulls the arm forward, 
and the orbit backward. The minor axis (see Fig. 113) is located slightly 
behind the region where the arm structure has a "negative density." Ac­
corQingly, this region repels orbits. In both cases, the angular momentum 
and the energy are taken from the orbit and fed into the spiral wave. 

2 3 

OOQ 
(a) (b) 

Figure 113. Unperturbed resonant orbits at the three main resonances [289]; (a) I-the 
inner Lindblad resonance; 2-the corotation resonance; 3-the outer Lindblad res­
onance; 4, 5-nearly resonant orbits close to the corotation; (b) the region of the inner 
Lindblad resonance r = rL; arrows show the rotation of the major axis for the nearly 
resonant orbits: l-r < rL; 2-r = rL; 3-r> rL; the system of reference rotates 
together with the spiral wave. 
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(a) 

o 
(b) 

Figure 114. Perturbations of the circular orbit under the action of radial forces (which 
are shown by arrows) from (a) the spiral at the inner Lindblad resonance and (b) the 
excess transversal forces at the perturbed orbit [289]; plus (+ ) and minus ( - ) signs 
show the location of the spiral wave (maxima and minima of density). 

At the outer Lindblad resonance, on the contrary, the minor axis lags 
the positive arms, while the major axis leads the negative arms. Therefore, 
here the angular momentum and the energy are transferred from the spiral 
wave to the stellar orbits. 

Consider now the additional small effect of the tangential forces. In 
order to isolate th~ action of these forces, assume that the radial forces are 
not present. Since the tangential forces, according to (3), cause a radial 
displacement which is in counter-phase with the force, the major axis due to 
these forces alone will tend to lead the spiral structure by rc/4 (Fig. 114). 

Thus, under the combined effect of radial and tangential forces, the major 
axis will slightly lead the spiral structure. But the main effect ofthe tangential 
forces consists not in the eccentricity ofthe orbits, which is produced by them, 
but primarily in the slowing down or acceleration of the particles at different 
azimuths. In the wave system, the azimuthal angular velocity of the star is 

(5) 

The secular effects in I CPA I occur only due to the secular growth of r. 
Therefore, at the inner Lindblad resonance, where Lr- 2 > np , these effects 
give a slowing down, when r is large (apocenter), and a speeding up when r 
is small (pericenter). At the outer Lindblad resonance Lr- 2 < np , and, 
correspondingly, the situation is reversed. At the inner resonance, the major 
axis (corresponding, we recall, to the tangential forces only) lies on rc/4 in 
front of the spiral structure. The density excess at these azimuths is attracted 
backwards, towards the arm. In the same way, the lack of density near the 
minor axis is attracted backwards, to the lack of density in the spiral structure. 
Therefore, the resulting torque connected with the tangential force reinforces 
the torque caused by the increasing (mainly, due to radial forces) eccentricity 
of the orbit. It may easily be shown that a similar amplification takes place 
also for the outer resonance. 
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In conclusion, we pay attention on one apparent contradiction. The 
effect following from the calculations made increases with time, while 
the effect described by formulae (16) and (17) (Section 2.1) is independent of 
time. The paradox is explained, of course, by the fact that we have considered 
(for the sake of simplicity) only the exactly resonant stars. In reality, of course, 
there is no exact resonance. The stars in near-resonant (but not quite resonant) 
orbits, make a contribution of a definite sign during the course of a long time 
interval, but, however, the sign of the effect is ultimately reversed. As a 
result, if we integrate over all nearly-resonant orbits, we shall obtain exactly 
the total effect as in (16) and (17) which is independent of time. The physical 
mechanism leading to small (additional) terms in formula (16), dependent on 
fJJo/fJL, is discussed below, after the explanation of the mechanism of ex­
change of the momentum at the corotation resonance. We shall see that these 
mechanisms are in many respects similar (in particular, this is due to the fact 
that in both cases they are defined by the derivative fJJo/fJL). 

2.2.2. Corotation Resonance. The situation here very much resembles the 
situation well studied in plasma physics (Landau damping). Therefore we 
shall mention first of all the ordinary qualitative explanation of the plasma 
wave damping. Consider the monochromatic wave of small amplitude in a 
homogeneous plasma. Assume that the wave propagates in the direction of 
the positive axis x with a phase velocity Vph = w/k. It is clear that the particles, 
having the velocities close to the wave velocity Vph' interact strongly with the 
wave. This interaction leads to contrary effects for the particles a little faster 
than the wave, and the particles somewhat slower than the wave. Take first 
of all a uniform (at the initial time t = 0) distribution of the particles which 
have a velocity slightly exceeding the velocity of the wave. The particles 
trying to climb out of a potential well, lose their energy and are decelerated, 
while the particles on the downhill slope are accelerated by the wave. 
Therefore in the case of interest, the following statement is true: 

(1) There is an excess of particles on the uphill climb (they are accumulated 
here in accordance with the continuity equation) and a deficit on the 
downhill slope of the potential well. 

The particles on the uphill climb of the potential well push the wave in the 
direction of its propagation, and, consequently, feed their energy into the 
wave, while the particles on the downhill slope, on the contrary, are pushed 
by the wave and therefore take energy from the wave. Therefore, the following 
statements are also true: 

(2) The particles going just faster than the wave, feed their energy into the 
wave. In a similar way: 

(3) The particles going just slower than the wave, take energy from the 
wave. And finally: 

(4) If (as, e.g., in the state of thermodynamical equilibrium) the particles 
moving more slowly are larger in number than those moving more 
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rapidly, the effect of wave damping (3) exceeds the amplification 
effect (2) so that the wave energy decreases with the decrement de­
wave, give energy and momentum to the wave. And finally, the 
concluding result: 

Let us return now to the corotation resonance in the galaxy. We shall 
consider the interaction of the wave with the particles, whose orbits are close 
to the corotation circle. The unperturbed trajectories of these stars are 
schematically depicted in Fig. 113 (in the frame of reference connected with 
the rotating spiral wave; this system is coincident with the system of the 
particle at the corotation circle). In the system of the wave, the stars with 
epicenters lying inside this circle are moving, on the average, with an angular 
velocity slightly greater than the angular velocity of the wave, while the stars 
whose epicenters lie outside the corotation circle have angular velocities 
slightly lesser in comparison with the wave. 

At first sight, it appears that it would be quite logical to assume that here 
also the statements similar to those in (2) and (3) are valid. Then we shall 
immediately obtained that, at the corotation resonance, the energy must be 
transferred from the particles to the wave (indeed, in galaxies the density 
increases toward the center and, consequently, there is a somewhat larger 
number of particles with an angular velocity slightly greater than the velocity 
of the wave in comparison with particles with a lower velocity). But this 
conclusion would be incorrect: for example, it contradicts the formal con­
clusion following from (16) (Section 2.1) which we already established. The 
cause ofthe error lies in the fact that in this case the statement in (1) is wrong 
and, consequently, also the statements in (2) and (3), connected with it. In 
order that this might be understood, it is necessary to consider the situation 
more carefully. In reality,. the following takes place. The unperturbed orbits 
close to the corotation circle (cf. Fig. 113) have very small average motions 
in the system of the wave: on the internal side, this slow drift is directed 
forwards and on the external side, backwards. Under the action of the force 
acting from the direction of the spiral arm, the forward .moving star will 
convert to the epicycle with a slightly larger angular momentum so that its 
mean drift motion, on the contrary, will slow down rather than speed up. 
According to the expression by Lynden-Bell and Kalnajs [289], the stars in 
their motion in the azimuth are acting like donkeys: they slow down when 
they are pushed forward, and speed up, when they are pulled backward. 
Therefore instead of the statement in (1), in this case another statement 
(contrary to (1) in its meaning) takes place: 

(1) There is an excess of stars on the downhill slope and a deficit on the 
uphill climb; correspondingly, also the statements in (2) and (3) 
are reversed; 

(2) There will be slightly more stars on the downhill slope with an angular 
velocity somewhat larger than the velocity of the wave so that they 
will take energy and angular momentum from the wave; 
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(3) The stars with angular velocities slightly less than the velocity of the 
wave give their energy and momentum to the wave. And, finally, the 
concluding result; 

(4) Since normally (see above), the number of particles with larger angular 
velocities is somewhat larger, then at the corotation resonance both 
energy and momentum of the wave are absorbed and transferred to 
the stars. 

We consider finally the mechanism leading in formula (16) (Section 2.1) to 
the terms", of%L at the Lindblad resonances. Since this effect disappears for 
the circular unperturbed orbits, it is necessary to consider the noncircular 
unperturbed orbits, close to the Lindblad resonances (see Fig. 114). We shall 
not take into account the effects connected with eccentricity induced by 
the spiral wave (these effects are considered above). Only the orbits which 
lie exactly at these resonances are strictly closed in the system of the wave 
(they intersect the resonant circle). Each orbit near the inner Lindblad 
resonance is connected to the density excess near the ends of the major axis 
(due to the decrease of the azimuthal velocity ofthe stars in this region). 

The orbits located completely inside (or outside) the resonant circle 
are no longer closed. If they are close to the resonant circle. however, then 
they may be considered as closed orbits slowly rotating forwards (respec­
tively, backwards). Such a consideration is natural just because of a great 
difference in angular velocities: of a rapid rotation of the particles in their 
orbit and a slow drift of the orbit itself (see Fig. 114). If the forward rotating 
major axis is subjected to the action of the rotating torque also pushing 
forward, then the particles in their orbits will slightly increase their angular 
momenta, and, as a result, the precession of the orbit itself will slow down. 
Thus, the major axes of the orbits will again behave like donkeys (compare 
with the discussion above). Therefore, one may literally repeat the statements 
under the preceding item, which pertain to the "donkeys-stars" at the co­
rotation resonance, for this case of density excesses connected with the major 
axes. 

In the region, where the rotating torque tries to speed up the motion of the 
major axis, it does indeed slow down, and vice versa. As a result, we get 
that outside the resonant circle there is a slight excess of density of the major 
axes on the azimuths slightly lagging the spiral structure, while inside the 
resonant circle, the larger axes have a slight excess somewhat ahead of the 
spiral structure (see Fig. 114). Therefore, for the density falling outside one may 
expect that the mechanism under consideration (",of%L in formulae (16) 
and (17), Section 2.1) should lead to absorption of energy and angular mo­
mentum at the inner Lindblad resonance. 

In papers dealing with the Landau damping of plasma waves, the effect 
of the trapping of particles in the potential wells of the wave is investigated 
in detail. In a similar way, one may expect also trapping ("alignment") of 
orientations of the major axes near the resonant orbits (Lindblad). In the 
nonlinear consideration, not only the resonant axes should be trapped, 
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but also the closely lying axes, if they cannot overcome the hump of the 
perturbed potential. This may be true for a wide region of the disk, when the 
value n - x/2 does not vary very rapidly with radius. 

The effect of alignment is considered by some workers to be important 
in the problem of the origin of bars in galaxies. For example, according to the 
opinions of Lynden-Bell and Kalnajs [289J, the bars are a quasistationary 
standing wave. For that reason, the problem of origin of the bars is associated 
with the problems of wave theory. In the internal parts of the galaxy (where the 
presence of a bar is possible) the eccentricities of the stellar orbits should be 
large to ensure the stability of the axially-symmetrical modes. But the 
influence of the resonances becomes small when the stellar orbits are eccen­
tric, while the modes of the system without resonances should satisfy the 
antispiral theorem, so that the main "two-arm" perturbation, according to 
[289J, is a bar. 

The trend toward the formation of a bar, which is revealed by a number of 
authors in linear theory, may be traced further and developed (already in 
nonlinear theory) just by means of considering the trapping of major axes 
of the orbits. Following Lindblad, consider a galaxy in which n - x/2 
changes insignificantly with radius. Then, the nonlinear potential perturba­
tion may trap the major axes, making them oscillate near the azimuth of the 
potential well (a similar influence was found earlier by Contopoulos near the 
Lindblad resonance [189J). The density associated with these trapped orbits 
will increase the potential and further increase the trapping. The eccentricities 
of such trapped orbits are large at the inner Lindblad resonance, so that 
nearly circular orbits are rare. Thus, similarly to Lindblad, Lynden-Bell and 
Kalnajs [289J believe that the bars" are made" of stars in eccentric orbits with 
aligned major semiaxes. The angular velocity of such a bar will increase due to 
the action of its gravitation on the stellar orbits, but will remain significantly 
less than the angular velocity of the stars composing it. 

Note another conclusion [254J following from the considered picture of 
the interaction of resonance particles with density waves, and concerning the 
boundaries of applicability of such general stability conditions as the 
Peebles-Ostriker criterion (see Section 3.2, Chapter IV). It is clear, for 
example, that the stable disks A and Bo from the number of the composite 
models considered earlier (Section 4.4, Chapter V) having t = 0.125 and 
t = 0.086 may be slightly modified in such a way that they will become slightly 
unstable. For example, the stable barlike mode of negative energy rotating 
in the direct direction, will obviously become slightly unstable, if we place a 
small number of stars on nearly circular orbits around the region of the outer 
Lindblad resonance, where these stars act as the absorbers of (positive) 
energy and angular momentum [254]. Therefore, one may arrive at the 
conclusion that although some simple criterion (of the type of t s 0.14) may 
be a sufficient condition of the lack of instabilities with growth rates com­
parable with the orbital frequencies of stellar revolutions, it is question­
able that a strict stability criterion would exist for nonaxially-symmetrical 
perturbations. 
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§ 3 The Linear Theory of Stationary Density Waves 

3.1 The Primary Idea of Lin and Shu of the 
Stationary Density Waves 

Lin and Shu [267] called attention to the following circumstance. If the 
Toomre criterion is applied to the region comparatively close to the center 
of the Galaxy, r '" 3 -;- 5 kps, then the minimum velocity dispersion of 
stars, which makes this region locally stable, there will result an unnaturally 
large value Cr '" 90 km/s. Indeed, such "hot" stars must, during the time 
period '" 109 years, have reached the solar vicinity of the Galaxy, but in 
reality, as we are aware, there are no such stars present here (in any ap­
preciable number). Hence, the conclusion should be drawn that the velocity 
dispersion near the center is less than Crmin and this region is therefore locally 
unstable. At the same time, as shown by Toomre, the solar vicinity of the 
galactic disk is locally stable. 

The primary idea of Lin and Shu [267] was that in a system with stable and 
unstable spatial regions there may exist stationary density waves. Without 
discussing the correctness of this statement,6 note that the idea itself proved 
to be very fruitful. Its elaboration has finally led to some theory of the sta­
tionary density waves in galaxies (based on the analysis of short-wave 
perturbations of the disk). 

The spiral density waves are collective oscillations of the disk of the form 

tJ1 '" a1 exp{ -i(OJt - m<p + l/t(r»}, (1) 

imposed on the stationary background tJo(r). Here a1 is the amplitude, l/t 
is the phase, OJ is the frequency, m is the azimuthal number equal to the 
number of arms. From (1) it is easy to see that the spiral wave rotates with an 
angular velocity OJ/m, without changing its shape with time. Since in this 
theory, the wave frequency OJ is considered as a constant, the local dispersion 
equation defines the wave number as a function of radius. For example, for 
a cold disk, according to Section 2.2, Chapter V, 

k(r) = x2(r) - [OJ - mQ(r)]2 
2nGtJo(r) 

(2) 

As we already know from Section 4.1, dispersion Eq. (2) on which the primary 
analysis of Lin and Shu [267] was based, was essentially improved in 
subsequent papers by introducing various types of "reduction" factors for 
stars and by taking into account the gaseous constituent of the system. 

6 The paper [114"d] contains a statement that in such a system intermediate wavelengths may 
be excited. However, the proof ofthis statement is absent (as is also the statement's proofin [267]). 
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Comparison of the theory with observed data on our Galaxy is performed by 
Lin et al. [271] and with data on some other galaxies by Shu et al. [326]. 
We shall give a brief summary of this comparison somewhat later. 

3.2 The Spiral Galaxy as an Infinite System of Harmonic 
Oscillators 

One may distinguish two aspects in the consideration of the evolution of 
initial density perturbations [251]: 

(1) kinematic evolution, in whose consideration we neglect those forces 
associated with the perturbation itself (in the purely gravitational 
theory, this is the neglection of self-gravity); 

(2) dynamical evolution, which takes into account the influence of the 
perturbed gravitational field. 

Let us start with the former, kinematic, aspect of the evolution. As we shall 
now see, this evolution in stellar systems may in principle occur in a quite 
different way to that in gaseous systems (see Fig. 109). Our intuition, based 
on hydrodynamical examples with which we are well accustomed, implies 
that any initial perturbation must be twisted and disappear due to the 
differentiality ofthe galactic rotation, for the time of the order of one rotation. 
We shall, however, see that the real fate of arbitrary perturbations in a 
galaxy is not so evident, and the customary intuition here sometimes fails. 

It ignores the following essential difference between the gaseous and 
collisionless systems [251]: the viscous forces, for example in a tea cup, 
make liquid elements move in circular orbits, while the stars in the galaxy, 
apart from rotation about the center, may still oscillate in the radial 
direction. The cause of twisting and "dissolution" of the original picture 
of motion in the tea cup is of course the difference in angular rates of rotation 
of liquid elements at different radii. The same mechanism must have acted 
also in the galaxy if there were no radial oscillations. But the presence of 
radial oscillations makes the situation in the galaxy more complicated and 
also less obvious, despite the fact that the radial velocities in galaxies are 
normally an order of magnitude less than the circular velocities. The point is 
that for the phenomenon of "twisting," the velocities are not essential but, 
rather, for the oscillation frequencies and, primarily, the full width of the 
frequency "spectrum" (different for stars at different distances from the 
galactic center, etc.), these values are comparable for radial and circular 
unperturbed motions in galaxies. At any fixed point of the galaxy, there 
exist all the possible linear combinations of these frequencies, which just 
complicates the resulting motions in the galaxy. It turns out that there may 
be very diverse and unexpected possibilities. One may, for example, build 
up in a galaxy perturbations of a certain type, which have motions opposite 
to the galactic rotation, so that the differential rotation makes them leading 



186 XI Disk-like Systems. Spiral Structure 

structures. This example is in complete contradiction to our initial intuition, 
which "predicts" trailing spirals. 

We turn now to the quantitative description of the kinematics, by using the 
action-angle variables (see [289]). The action variables are introduced in the 
following way: 

J = ~ !p dr = ~ J J2E - 2U _ L2 dr 
1 2n:r r 2n j r2 ' 

(1) 

(2) 

They are the functions of integrals of motion E, L, and therefore are 
themselves integrals of motion. The Hamiltonian is dependent only on 1;, 
so that the equations for the angular variables Wi are thus: 

(3) 

The angles Wi change by 2n for one period of oscillation. If the orbits are 
nearly circular (J tlJ 2 ~ 1), they may be represented by the epicycles [289], 
and then 0 1 ~ X, to the epicyclic frequency, O2 = 0, the angular rate of 
rotation. 

Any single-valued g function of a point in the phase space must be periodical 
in angular variables WI' W2 (with periods 2n). Consequently, the Fourier 
expansion 

1 00 

g(J i , Wi) = 4n2 L glm(J 1) exp[i(lWI + mw2)], (4) 
l,m= -00 

is valid, where 

If g(J i , w;) is the perturbation of galaxy at the time t = 0, then the sub­
sequent (kinematic!) evolution is a simple transfer of this perturbation 
by the stars along their unperturbed orbits. This inference can be obtained 
also as a formal consequence of the kinetic equation, which in this case has 
the form df /dt '= 0, where d/dt is the Lagrange derivative along the un­
perturbed trajectories of stars. Take the Euler description, i.e., observe the 
change of the g(Ji • Wi. t) function, being at a fixed point of the phase space 
and not following the phase trajectories of stars (as with the Lagrange 
approach). Then the value g at a selected point at a later time t > ° will be 
equal to the value of g in that element of the phase space at the time t = 0, 
which at the time t has arrived at the point considered. From (4) it follows 
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that at the time t = 0 this element was at the point (J i , Wi - nit). Therefore 

g(J i , Wi' t) = g(Ji , Wi - nit) 

1 
= -4 2 I g'm(J) exp[il(W1 - n 1t) + im(w2 - n2t)]. (5) 

n 1m 

Hence it is obvious that a galaxy may be considered as an infinite system 
of harmonic oscillators; moreover, with the kinematic description of 
the evolution of perturbations, i.e., neglecting self-gravity, these oscillators 
are free (the coupling is realized just by means of the self-consistent perturbed 
gravitational potential). Oscillators may be "numbered" by the four numbers 
(J l' J 2, I. m), from which the two former (J l' J 2) may change continuously, 
while the latter two are the pairs of integers (positive or negative). The 
amplitude and the phase of such an oscillator «J 1, J 2 , I, m)-oscillator) is 
defined by the glm(J 1, J 2) function, while the frequency is (In1 + mn2). 
The density wave corresponding to the oscillator rotates with an angular 
rate (lIm)n1 + n2 ; m is the angular periodicity of the wave, while I defines 
the radial structure. 

3.3 On "Two-Armness" of the Spiral Structure 

As already noted, the idea of spiral waves of density was advanced by 
Lindblad. Recently, however, for a number of reasons, his role in the creation 
of the galactic spiral structure theory is frequently understated. Kalnajs 
[251] recalls the decisive contribution of Lindblad to the theory and ex­
plains his ideas by using a more sophisticated terminology. In particular, 
he notes that the theory (including that of Lin and others) is actually due to 
Lindblad for the explanation of the preference of the two-armed structure. 

Assume that in the galaxy a certain smooth perturbation is imposed. It is 
obvious that in most cases (excepting only very special ones) the presence 
of such perturbation is equivalent to excitation of continuum of the oscil­
lators of types described above. The evolution of density will be characterized 
by the cuttings of the original smooth picture into still finer scales. "The 
dissolution" of the original distribution may be described as the interference 
or phase intermixing of different harmonic components (a similar phenome­
non is studied, for example, in plasma physics). The characteristic time of this 
process is, roughly, the mean inverse angular velocity of the perturbation in 
the region of the phase space in question. The only effect remaining after 
the full intermixing from the perturbation is associated with the goo term 
in (5), Section 3.2. 

Consideration of the frequency range associated with a typical flat galaxy, 
demonstrates that the process of intermixing for most of the perturbations 
has, as a rule, the time scale of the order of one period of rotation, which 
apparently corresponds exactly with our intuition. 

It is however important that this rule has an exception which corresponds 
to the (l = -1, m = 2)-terms in (5), Section 3.2. Lindblad demonstrated [273J 
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that the linear combination ~n == x - 2n remains roughly constant for a 
significant part ofthe Galaxy (moreover, ~n ~ n). Therefore, the two-armed 
perturbations may exist in the Galaxy in the course of many rotations (unlike 
all other perturbations). Thus it is obvious that our intuition in this case has 
not taken into account the possibility of a close coincidence of different 
harmonics of radial oscillations and the circular rotation of the stars of the 
Galaxy. Of course, this remarkable fact would have appeared to us a priori 
somewhat occasional, and we should have omitted it. Nevertheless,just such 
an" occasional" situation is realized in reality, and the explanation of this fact 
is one of the most important (and not yet resolved) problems of the future 
theory of the origin and evolution of spiral galaxies. The relative constancy 
of ~n == (x - 2n) is due to the corresponding distribution of density in 
flat galaxies. 

In the now existing theory of the established spiral waves, this fact is in no 
way explained and is taken as given. It is likely to provide an explanation of 
why the two-armed shapes prevail in these systems. Requirement of the 
stability of the galaxy with respect to axially-symmetrical perturbations [333] 
limits the effect, which may be exerted by a given force field, especially on the 
shortest spatial scales. The decrease in the value of the effect may be com­
pensated for by a longer time, in the course of which it may result in a given 
response. Therefore, the stable nature of two-armed perturbations, and their 
long-term resistance to differential rotation, makes them to be the most 
probable self-consistent perturbations. The self-gravitation of waves in this 
case may be comparatively modest in order to overcome the influence of the 
remaining weak" shear" and to provide the uniform rotation of the spiral 
pattern. 

An example which appears to contradict the intuition, is anyone-armed 
structure formed by the oscillators (/ = 1, m = 1). Such a structure rotates 
at a velocity of np = n - x ~ - n, i.e., in the "inverse" direction, and is 
twisted in the leading direction. 

In the Lin and Shu theory, the distinct nature of the two-armed perturba­
tions formally follows from the condition v2 < 1, i.e., 

x x 
n--<n <n+-m p m (1) 

(np = w/m is the angular velocity of the wave), which singles out the "main" 
part of the spiral picture. If nCr), x(r), and n ± x/2 from the Schmidt model 
[319] (Fig. 115) are used, then for m = 2 the spiral pattern in (l) will occupy 
the range from r = 4 kps to r ;:::: 20 kps for np = 11 km/s . kps. At the same 
time, 7 for all m > 2, the main part of the spiral pattern will have a quite 
small spatial extension, moreover, independent of the selection of np. It is 
evident that this cause of the distinct nature of the m = 2 mode is in essence 
the same as in the previous discussion. 

7 The one-armed perturbations need special consideration. 
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Figure 115. Rotation curve of the Galaxy according to Schmidt's model [271]; epi­
cyclic frequencies x and Lindblad's combinations Q ± x/2 are also presented. 

3.4 The Main Difficulties of the Stationary Wave Theory 
Of Lin and Shu 

3.4.1. Antispiral Theorem. The validity of the gravitational theories of spirals 
was questioned by Lynden-Bell and Ostriker [287] who proved the so-called 
antispiral theorem, which states that the spiral shape cannot exist as a 
neutral mode of oscillations of differentially-rotating and nondissipative 
gaseous systems. 

The interpretation of this difficulty of the Lin and Shu wave theory is 
contained in a paper by Toomre [334] (as well as by Shu [325], see below, 
subsection 3.4.2), who has demonstrated that the waves of a spiral form 
(both in the gaseous and in the stellar disk) propagate in the radial direction 
with a rather high group velocity, so that even the existing spiral waves must 
finally disappear. 

To begin with, turn to the "direct" derivation of the antispiral theorem 
[324] in the case of a stellar disk, similar to the derivation for the gaseous case 
[287]. The basic integral equation for normal modes of the stellar disk 
(derived by Shu [324] and Kalnajs [249]) is Eq. (38), Section 4.3, Chapter V. 
We are further interested in the case of neutral oscillations in the absence 
of resonances. In this case, the kernel Km. ro(r, a), according to (38) and (39), 
Section 4.3, will be real. Then the antispiral theorem of the type proved 
by Lynden-Bell and Ostriker [287] will take place. Taking the equation 
complexly-conjugate to Eq. (38), Section 4.3, Chapter V, it is easy to show 
that if al(r) is the solution, then also the complexly-conjugate at(r) will 
also be a solution. If w is not degenerate, then at(r) may differ from al(r) 
only in the complex constant (with the unity modulus): at(r) = e- 2iXa l (r), 
where X is some real constant. Equating the arguments in this equality, 
we shall obtain arg{al(r)} = X. Since the phase al(r) is strictly constant, 
this normal mode has no spiral shape, it has the appearance of a "cart 
wheel." If, however, w is degenerate and 0'1, at are linearly independent, 
they must correspond to spirals of opposite twisted shape. Therefore, one 
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may assume as linearly independent the purely real solutions (and, conse­
quently, nonspiral) 

(1) 

If, however, there are resonant stars, such an analysis is not valid, and 
the arguments leading to the antispiral theorem are inapplicable. This is not 
surprising. The antispiral theorem is mainly a reflection of the temporal 
reversibility of the equations of motion. If we reverse the direction of time 
and simultaneously "turn" the galaxy over (reflect all the motions in the 
meridional plane), cp -+ - cp, then we shall arrive at a state where we impose 
the perturbation with the opposite direction of spiral twisting on the same 
stationary background. The oscillation frequencies in the original and trans­
formed states should be coincident and there are no reasons to give preference 
to anyone of them. The respective solutions for the equations for normal 
modes must be, generally speaking, antispiral, It may be said that for neutral 
oscillations there is no "time arrow" and there is no prevailing direction of 
spiral twisting with respect to the motion of matter. 

With the resonances existing, it should be taken into account that the 
effects of the interaction of the wave with the resonant stars began in the past: 
this defines the "time arrow." In a similar way, the instability may also 
introduce a difference between the leading and the trailing spirals. 

Thus, the "antispiral theorem" similar to the "gaseous" theorem of 
Lynden-Bell-Ostriker [287] is applicable in the linear theory to all neutral 
modes, for which there are no resonances. 

3.4.2. Wave Packet Drift. Here we shall now consider perhaps the most 
essential difficulty of the original theory of the spiral density waves of Lin 
and Shu, which was indicated by Toomre [334]. He paid attention to the 
fact that the Lin and Shu wave packets (with frequencies lying within the 
interval w, w + /lw) must be drifting in the radial direction with a group 
velocity cg = dw/dk. More specifically, Toomre's argument is as follows. 
Assume that the dispersion equation w = f(k, r, m) is known. Then, sub­
stituting (as in the geometrical optics) in this equation w -+ o<1>/ot, 
k -+ -o<1>/or, where <1>(r, t) is the WKB phase of the wave packet, we shall 
obtain o<1>/ot = f( -o<1>/or, r, m). Therefore, by differentiating with respect 
to t and r we find the equations 

ow + (Of) ow = 0, 
ot ok , or 

(2) 

~~ + (~), ~~ = - (~t (3) 

Equations (2) and (3) show that the information, regarding the frequency 
and the wave number in a slowly evolving wave packet, propagates along the 
radius at a velocity dr/dt = (of/ok), = cir, k, m). The characteristics of 
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these equations have at a given point (r, t) an inclination equal to drldt = cg • 

Along each characteristic curve, according to (2), the frequency w remains 
constant. 

We introduce, as in [334], the notation Ivl = N(lel, Q) for the functions 
whose plots are given in Fig. 75. Then the Lin and Shu dispersion equation 
will be written thus 

w = mn(r) + sgn(v)x(r)N(IeI, Q). (4) 

Hence 

dr ow [ x(r) ] aN 
Cg = dt = ok = sgn(ev) kT(r) aiel' (5) 

and the dimensionless wave number e = klkT(r) changes along the charac­
teristic curve according to 

de = _ ow = x(r) (dV _ sgn(v) aN dQ). (6) 
dt or kT(r) dr oQ dr 

In order to obtain representation on the typical characteristic curves, 
consider [334] a simple model of the Galaxy, in which nCr) = Vir, 
(J o(r) = V2/2rcGr, V = const. Assume also that the Toomre stability parameter 
Q is independent of the radius: Q =F Q(r). For such a model x(r )lkT(r) = VI J2 
so that the dependence vCr) is linear: v = m[(rlre) - 1]/)2 where re is the 
radius of corotation, on which wlm = nCr). In addition, from Eq. (6) it 
follows that in this case the dependence of the dimensionless wave number e 
on time t is also linear: e = (wI2)t + const. Therefore, the problem of obtain­
ing the characteristic curves is here reduced simply to the substitution of the 
notations of axes v, e in Fig. 75, which shows the dispersion curves for dif­
ferent Q, by r, t. 

Figure 116 is a system of characteristic curves, corresponding to Q = 1.2. 

The inner Lindblad resonance v = -1 corresponds to rlre = 1 - I/J2 
~ 0.293, while the outer one v = + 1 corresponds to rlre ~ 1.707. Between 

rotlx 
10 

6 

o 0.293 0.69 1.0 1.31 I. 707 
rlre 

Figure 116. Some characteristic curves for the disk with Q = 1.2 according to Toomre, 
m = 2 [334]. 
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these points, there is the main part of the spiral structure (according to 
the Lin and Shu terminology). Outside this region (Ivl > 1) there are no 
solutions of the WKB type oscillating along the radius. From Figure 116 it is 
seen that at Q > 1, there is still one prohibited region, which in this case lies 
within the interval 0.69 < r/re < 1.31. It is, as we have seen, the consequence 
of the fact that at Q > 1 the local self-gravitation is not able to reduce Ivl 
below a certain minimum level (cf. Fig. 75). 

We now make a quantitative estimate of cg for the solar vicinity of our 
Galaxy. Assume, according to Lin and Shu [271], that np = ro/2 ~ 12.5 
km/s . kps, so that the corotation radius (v = 0) is equal to re ~ 17 kps, 
i.e., the region corresponding to v > 0 lies in fact outside the Galaxy, and 
it might remain so without being considered. Since, according to [271], 
the dispersion Cr ~ 35 km/s roughly corresponds to the stability boundary 
(Q ~ 1.0), therefore X/kT ~ (0.2857)-1/2(Cr/Q) ~ 65 km/s and A.T ~ 13 kps. 
Since np ~ 12.5 km/s . kps corresponds, for the solar vicinity of the Galaxy, 
to A. = 3 -:- 4 kps, then, = k/kT ~ 4. The inclination of the curve N( I") 
(Fig. 75) at the point' = 4: oN/ol" '" 0.15. The data thus obtained allow 
one to obtain the required estimate cg ~ -10 km/s, where the minus sign 
means that the wave packet should propagate toward the center of the 
Galaxy. 

Thus, for the time'" 109 years (i.e., only for four revolutions of the Galaxy 
about its center-galactic years) the initial spiral perturbation should 
be transferred from the periphery to the center, covering a distance of 
'" 10 kps. 

For a more detailed treatment of the points discussed above, it is necessary 
to solve the kinetic equation and the Poisson equation within an accuracy 
of up to two orders of magnitude with respect to small parameters l/kr and 
cr/rn, i.e., the correct account for the amplitude of perturbation (pre­
exponent in the WKB-method). The necessary work was performed by Shu 
[334] and Mark [290]. 

Let us first of all consider the Poisson equation. Let the perturbed potential 
in the disk plane be <D1(r, cp, Z = 0, t) = <D(r) exp[ -i(rot - mcp)]. This 
potential has a form of a short-wave (tightly wound) spiral, if in the repre­
sentation <D(r) = A(r) exp[il/t(r)] (A(r) and I/t(r) are the real functions), the 
rate of change of the phase I/t(r) is high in comparison with the rate of change 
of the amplitude A(r). Thus, we require that there be I rl/t'(r) I ~ 1. Then we 
may show (detailed calculations, see Section 7.1, Appendix) that within 
an accuracy of up to two orders of magnitude with respect to l/kr, there is 
the following relation between the perturbed potential and the surface 
density (11(r, cp, t) = (1(r) exp[ -i(rot - mcp)]: 

o{r) = - I k I <D(r) {I _ i _d_ In [r1/2 A(r)]}. (7) 
2nG kr dIn r 

In the lowest approximation, from Eq. (7) it follows the old result: maxima of 
the surface density correspond to minima of the potential. 



§ 3 The Linear Theory of Stationary Density Waves 193 

Let us now consider the response of the stellar disk to a given perturbation 
of the potential. Calculations [325, 290] are rather cumbersome, and 
therefore they are shown in Section 7.2 of the Appendix. Below, we re­
stricted ourselves to only a description of the assumed approximations and 
the results obtained. 

As the distribution function of the unperturbed potential Shu [325] 
takes the Schwarzschield modified distribution 

'o(E, L) = {po(ro) exp[ -e/c~(ro)], e < -E(ro), 
J( 0, e > _ E(ro). (8) 

The "epicyclic" integrals ro and e are defined as a function of E and L from 
the equations 

where ro02(ro) = iXP%ro. The meaning of Ee(ro) is obvious: this is the 
energy of the particle on an exactly circular orbit with a radius ro; cor­
respondingly, e is the deviation of the exact energy of the particle E from Ee. 
The form of the Po(ro)- and co(ro)-functions may always be selected so that 
any reasonable surface density and radial velocity dispersion are satisfied. 

In the immediate vicinity of the resonances, where v(ro) is an integer or 
zero, there might be essential absorption (or, on the contrary, enhancement) 
of the density waves. These effects were considered in detail in §2. Below 
we shall restrict ourselves to the "main region" of the spiral structure 
r -1 :< r < r + 1 (v(r -1) = -1, vCr + 1) = 1, assuming the influence of the 
resonances inside this region to be negligible [325]. Besides, it is assumed 
that the second (after 1/kr) dimensionless parameter of the problem 
e = co(ro)/ro x(ro) is also small in comparison with unity (which is equivalent 
to the assumption about the smallness of the peculiar velocities as compared 
to the circular velocity). Assuming then the hypothesis that e '" I kr 1-1 (thus, 
for the solar vicinity of the Galaxy e '" OJ, while I kr 1- 1 '" 0.06) one can 
obtain (see Section 7.2, Appendix) within an accuracy of up to two orders 
of magnitude with respect to the parameters e, I kr 1- 1 : 

where ~(x) is the reduction factor of (22), Section 4.1, Chapter V, 
x = e2k2r2 = k2c;/X2, and 

2 V1l: 'tE 0 
Dv(x) = -(1 - v )-.- Gv(x)/:#'v(x) = ~l In[x~(x)], 

sm V1l: u n x 

1 f" Gv(x) = -2 cos vs exp[ -x(1 + cos s)] ds. 
11: -It 

(10) 
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We finally take into account the requirement of the self-consistency of the 
density waves. Assuming v2 to be a real number, we equate the real and 
imaginary parts in Eqs. (7) and (9): 

k; (1 - v2 ) = 9;,(x), (11) 

~ d In(rA2) = Dv _d_ ln[0J 9;, DvrA2J. 
2 d In r d In r kT 1 _ v2 (11') 

The former equation is the Lin and Shu dispersion equation, and we 
are already aware of it. For a marginally-stable disk, this equation gives the 
relation between v and AjAT , shown in Fig. 73. 

Equation (11 ') defines the radial variation of the wave amplitude. Using (11 ') 
it is easy to demonstrate that the density amplitude S(r) of the stationary 
wave with the frequency v must satisfy the equation 

d [rS2(r) ] . 2 
dr k2(r) Rv(X) = 0, I.e., rA Rv(x) = const, (12) 

where A is the amplitude of the potential perturbation (A ~ S/k), R.(x) = 
- {I + 28 In g;v(x)jO In x} (Fig. 117). The variation of the amplitude of the 
perturbed surface density, following from (12), for the marginally-stable disk 
is 

(13) 

The value lSI becomes large (formally, according to (13), infinite) near the 
corotation (v = 0) and Lindblad (v = ± 1, ... ) resonances (Fig. 118). Of 
course, in the immediate vicinity of the resonances, the derived relations are 
not valid (for more detail, see §2). In particular, the above singularity is 
also fictitious. 

Figure 117. The Rv function [325]; A, B, C, D correspond to the notations in Fig. 73. 
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Figure 118. Amplitude of the perturbation of the surface density; (a) the Sv function 
[325]; A, B, C, D correspond to the notations in Fig. 73; (b) the dependence of the 
quantity (J 1 • Re k on the radius with accounting for the resonant absorption for 
Schmidt's model (Qp = 13.5 km/s . kps) [290a]. 

As noted by Shu [325], Eq. (12) is so expressive that it would be surprising 
if it did not admit a simple interpretation. Such an interpretation was obtained 
by Toomre [334]. In combination with the dispersion equation and the 
expression for the group velocity cg = dw/dk, (12) means that 

- -0 d ( rCgE ) 
dr w - mil - , (14) 

where the positive value E is the density of the wave energy for the observer 
in a locally rotating system: 

E = ~ S2V ~ (~(x) ). (15) 
2kT(r) OV 1 - v2 

This energy E may be calculated [334] as the work per area unit performed 
between t = - 00 and t = 0 by some outward, axially-symmetrical and very 
slowly increasing (s ~ 0) mass distribution 

cr(x, t) '" Sest cos(kx ± vkt), 

in the plane of the initially unperturbed infinite stellar disk. 
We shall not give here this elementary derivation, but refer to the available 

direct analogy between the case in question and similar formulae in plasma 
physics (see, e.g., [86]). Expression (15) can be obtained directly by analogy 
with the well-known expression for the energy of potential perturbations in 
the plasma 

a IEI2 
w,. = W k -a GO( Wk) -8-' 

Wk n 
(16) 

which equals the sum of the energy of nonresonant particles (for which, 
according to the definition, w' == W - kv ~ y, y is the growth rate) and the 
electrostatic energy. Here the value Go (the scalar dielectric permittivity) 
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determines in the following way the response of the system to the potential, 
if one considers the electrostatic (electron Langmuir) waves: 

k2 

p = en = -<I> 4n (80 - 1). (17) 

Equation (16) may be compared to expression (15) for the energy of the 
spiral wave used by Toomre and constructed, as is seen, in a quite similar 
way. The "reduction" factor Sflv(x) (more accurately, g;;,(x)/(l - v2 )) enters 
the expression for the gravitational response of the disk to the potential <I> 
similarly to (80 - 1) in (17): 

k2 g;;,(x) 
S(r) = -<I> x2 (10 (1 _ v2 )" (18) 

It is clear that, by knowing the "plasma" expression in (16), we could have 
at once written by analogy the corresponding" gravitational" expression in 
(15). The use of the "internal" frequency of the wave v = (w - mQ)lx 
instead of w in a "plane" plasma case is also, of course, quite natural. 

Formula (14) refers to the case of a single temporal harmonic (the mono­
chromatic wave, w = const). For the superposition of such harmonics, 
from (14) one can derives also the corresponding statement for the slowly 
evolving perturbation 

vA 1 v vA. 
T + - ~ (cgA) == T + d1V(cg A) = 0, 
ut r ur ut 

(19) 

where A = BI(w - mil). Hence, it is seen that the density of the "wave 
action" A (rather than the wave energy density B itself) propagates with a 
group velocity cg • Kalnajs [251] has ultimately clarified the interpretation by 
demonstrating that the energy density E and the angular momentum density 
L, referring to the inertial system, can be expressed through the "action 
density" in the following way (see above, §2): 

E = wA, L = rnA. (20) 

The relationship between B (energy in the system, which rotates at a local 
angular velocity Q) and E, L is 

B = E - QL. (21) 

This relation is a usual law of transformation of energy for the transition 
from the inertial to the rotating system. The law of conservation of the wave 
action in (19) together with Eq. (21) describe therefore the obvious fact 
of the conservation of the wave energy and the angular momentum referred 
to the inertial system: 

rcgE = const, (22) 

8 The integrals of the type J S(r, w) cos['I'(r, w) - wt] dw, arising as a result, are calculated 
by the stationary phase method. 
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§ 4 Linear Theory of Growing Density Waves 

4.1 Spiral Structure as the Most Unstable Mode 

This section deals with a different approach to the problem of galactic spiral 
structure. It suggests that a more natural and satisfactory explanation of the 
origin and existence of the spiral density waves can be obtained if one 
assumes them to be unstable modes of flat galaxies (rather than stationary 
wave packets). Such an approach was investigated by many authors, in 
particular, by Kalnajs [250] (see also, e.g., [96]). 

In general, the following picture of excitation and maintenance of the 
spiral pattern in galaxies emerges. The central region, with reasonable 
assumptions about the amounts of the stellar velocity dispersions, remains 
(in the linear approximation) unstable with respect to the "global" (first 
of all, the "barlike") mode (see Section 4.4, Chapter V). An oval distortion 
ofthe shape, a barlike standing wave, is there produced, the frequency of which 
Op is defined by the equilibrium parameters of this region. In turn, the bar 
excites, mainly in the flattest and the coldest subsystems of the galaxy, a 
trailing spiral density wave, having strong twisting. The established station­
ary amplitude of the spirals is defined, apparently, by the nonlinear or dis­
sipative (for example, the production of shock waves in a gaseous subsystem, 
etc.) effects. 

It should further be noted that recently there have appeared some 
approaches giving a certain synthesis (or versions) of the original picture of 
Lin and of the picture described here, see, e.g., Sections 4.2 and 4.3. 

Kalnajs [250] studied numerically the stability of some simple model of 
galaxy M31. For distances r > 4 kps, the stellar velocity dispersion adopted 
by him was sufficient to make the model stable with respect to axially­
symmetrical perturbations. However, for stabilization of the internal part, 
large eccentricities of the orbits are required. Instead, to extrapolate the 
epicyclic orbits to the eccentricities larger than 0.2, Kalnajs correspondingly 
decreases the response by assuming that only a part of the stars takes part 
in collective modes. Assuming further that the perturbations are small in 
amplitude, he finds the eigenmodes by solving the integral equation in (38), 
Section 4.3, Chapter V. 

The two-armed perturbations (m = 2) are preferred for reasons which we 
have already explained (see §2). Kalnajs investigates numerically [250] 
the so-called "largest" mode; by the "largest" mode it is understood that 
the gravitational interactions associated with it are "strongest." In turn, 
the "strength" of the interaction is measured by the shift of the angular 
velocity ofthe spiral pattern from its kinematic value 0 - xj2 ~ 10 kmjs· kps 
(the latter is obtained if one neglects the gravitational effect of the perturba­
tion). 
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The amplitude of such a spiral increases by e2 times for 109 years. The 
energy and the angular momentum of the entire disk are, of course, preserved, 
but they redistribute and are carried away outwards: the stars inside the 
corotation radius, moving more rapidly than the waves, transfer them to 
the stars at the outside. 

Since the spiral structure is seen more distinctly in objects with the lowest 
velocity dispersions, Kalnajs calculated the response of the density of the 
objects with a zero dispersion (see Section 4.5). In the calculations, it was 
assumed that the surface density of the gas is constant on the disk; however, 
the smooth variation of 0'0 with radius will probably not change the picture 
to any extent. An interesting result of these calculations is the strong depen­
dence of the perturbed density of the subsystem on its velocity dispersion. 

The density wave in a stellar disk is in essence a barlike distortion of the 
central galactic region, which acts on the gas. The tightly wound picture of 
the spirals and the large contrast of the density in the gaseous constituent 
are due, according to Kalnajs, to the presence of resonances. The location 
of the resonances is defined by the internal part of the model, while the 
growth rate depends mainly on density of the outer resonance. The decrease 
in the latter produces a slower growth rate of perturbations. 

Since the model is defined by the curve of rotation, the results attained by 
Kalnajs [250] for M31 may, in principle, be applicable to our Galaxy also 
(the rotational curves of these two galaxies are alike, at least from r ~ 4 kps 
outward). 

To conclude this section, we sum up the main merits and demerits of the 
two approaches to the theory of spiral structure considered so far. The main 
advantage of the theory of Lin and co-authors is a good agreement of the 
predictions made with its help with observations of galaxies (above all, of 
course, our Galaxy). As far as unstable modes (of the type of those calcu­
lated by Kalnajs) are concerned, they now appear to be inconsistent with 
observations in the Galaxy.9 It should however be noted that this refers 
only to the traditional interpretation of observations. In the papers [250, 
93, 96] a different interpretation, which will possibly lead to a picture con­
sistent with the theoretical one, was suggested. In any event, it obviously 
appears correct that the usual tacit suggestion that the spiral gravitational 
potential is coincident with the observed spirals (which are indicated by 
young stars, neutral gas, regions of ionized hydrogen HII, etc.) is not a 
necessarily needed consequence of the gravitational spiral theory. The 
observed tightly wound spirals may also be a response to the more open spiral 
gravitational field. The theory of unstable modes is not yet sufficiently de­
veloped, above all in the part concerning the comparison with observed 
data. At the same time, a large number of papers is devoted to an "intense" 
fitting to observations of the Lin theory. 

9 Two" open" spiral arms result. It should be noted, however, that all the versions of the 
galactic spiral arms theories at present available are not complete. For instance, the role of 
massive halos (hidden mass) is quite insufficiently clarified so far (see subsequent sections, as 
well as the epigraph for this Chapter). 
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On the other hand, at least, the original version of the Lin theory encounters 
some fundamental difficulties: it is, for instance, the drift of the wave packets 
connected with the suggested continuous spectrum of the real frequencies w. 

Unstable modes seem not to suffer such a difficulty; the eigenvalues of 
such modes are fixed according to definition, and are sufficiently separated 
from each other (see Section 4.3, Chapter V). 

To "save" the Lin program, a mechanism is needed that generates waves. 
A fairly large number of different versions is suggested [272,289]. We shall 
deal with some of them in Sections 4.2-4.5. 

4.2 Gravitational Instability at the Periphery of Galaxies 

To begin with, we turn to the interpretation of the large-scale spiral structure 
suggested by Lin himself [272]. The picture drawn by Lin and described 
below seems to be realized in galaxies not having any strong inner Lindblad 
resonance. We have already mentioned (e.g., at the end of Section 4.1, 
Chapter V) that in the range of the inner Lindblad resonance there is ab­
sorption of the spiral wave, which under definite conditions (as, for example, 
in our Galaxy [290]) may become strong decreasing the wave amplitude 
to a negligible level. For galaxies not having such a resonance, i.e., possessing 
a comparatively smooth dependence of the surface density CTo(r) on the 
radius, without any strong concentration toward the center, the short 
spiral density wave propagating from the corotation circle inward to the 
center, will have near the center a sufficiently increased amplitude (thanks 
to conservation of the action, see subsection 3.4.2) to produce an oval 
(barlike) distortion of the mass distribution in the central region. In turn, 
this oval configuration (rotating at an angular velocity of the spiral pattern 
np ), by acting on the galactic disk by its own gravitational field, will pro­
duce a response reaction, and its influence will be especially strongly felt 
in the external regions of the galaxy, where the circular velocity is close to 
np. Lin [272] believed that just here, on the periphery of galaxies, was the 
sources of spiral waves. Thus, the circuit of feedback is closed, which may 
lead up to maintenance of a stationary spiral pattern. 

Thus is briefly the ideology of the approach to the interpretation of the 
spiral structure as suggested by Lin [272]. It is easy to see in what way this 
approach is different (with all its obvious similarity) from that considered in 
the previous section. Maybe, above all, this is a different location of the wave 
source, on the galactic periphery. Another essential difference is the suggestion 
(in the Lin picture) about the propagation of a quasi-stationary wave group 
inward to the center, unlike the self-excitation of one sole "globally"­
unstable standing wave in the alternative picture. 

We shall consider below one of the possible specific mechanisms of 
the generation of spirals (also suggested by Lin [272]), the gravitational 
instability of the external regions of galaxies. An essential addition to the 
general outline of the picture of the theory contained in [272] is the paper by 
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Feldman and Lin [199], in which it is shown that the barlike structure rotat­
ing at the galactic center produces in the vicinity of the corotation circle a 
trailing spiral wave (for more detail see Section 4.5). 

The gravitational instability of the gas on the galactic periphery. As the 
mechanism of the initial initiation of the spiral structure, Lin considered 
first [272]10 the Jeans instability in external parts of the galactic disk. 

The external, peripheral parts of the disk are probably indeed unstable since 
the percentage of stars there is lower and the available stellar velocity 
dispersion (as well as the degree of turbulence of the gas) is seemingly in­
sufficient to stabilize the Jeans instability. The latter produces structural 
irregularities, which, owing to a strong differential rotation of the galaxy, 
ar~ extended to form segments of the trailing spiral arms rotating mainly 
with an angular velocity of the galaxy (see §1). It is possible that such ir­
regularities do indeed exist. As the observational evidence for this statement, 
Lin gives the connecting links between the main spiral arms frequently 
observed in the external parts of many galaxies. In particular, the Orion arm 
in our Galaxy is, according to Lin, just one of such interarm branches. 

The perturbation in the form of a segment of a "corotating" spiral arm 
should of course exert an influence on the other parts of the galaxy and can 
initiate the density waves. However, in the general case, its influence should 
be limited, as is to be expected, if there is no resonance of any form. 

We expand the perturbation in a series over angular harmonics '" eimq> 

(m = 0, 1, 2, ... ) and concentrate attention on anyone of them (m). The 
stars, being at a distance r from the galactic center, will feel the perturbed 
gravitational field (of this harmonic) at an angular frequency 

f = m[O(r) - 0 0], 

where 0 0 is the angular velocity in the place of location of the perturbing 
segment of the spiral. There is resonance in the case if this frequency is equal 
to the epicyclic frequency x(r); in this event one may expect a strong influence 
of the perturbation on a given radius r. 

Write the resonance condition as follows: 

0 0 = O(r) _ x(r). 
m 

(1) 

Strictly speaking, condition (1) may be satisfied for only one particular 
value of r. However, the quasiresonance may take place for a broader range 
of the values of r, if the right-hand side of (1) is nearly constant. We already 
know that the value O(r) - x(r)/2, i.e., (1) for m = 2, is really roughly con­
stant throughout the galactic disk (Lindblad). It should therefore be con­
cluded that the perturbation with m = 2 may exert an essential influence on 
the whole galaxy provided that it presents at such a distance from the center 

10 Later [199] he noted that this is only one of the many possible mechanisms. Moreover, 
the origin of the spiral structure might have been, for example, simply the initial irregularity of the 
galaxy. 
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where no is equal to the nearly constant value of the quantity nCr) - x(r)/2. 
For our Galaxy this implies that no = 11 -;- 13 km/s . kps and that the 
perturbations must be generated near r 0 ~ 15 kps. In this region, there is 
indeed a lesser percentage of stars, and the system therefore can be gravi­
tationally unstable. 

Let us have on the periphery a group of trailing spiral waves with an 
angular velocity np ~ 11 -;- 13 km/s . kps. What does occur as the group 
propagates in the radial direction? Of course, it would be too much to 
expect that these short trailing waves would naturally lead to the quasi­
stationary spiral picture. For example, the energy supplied by perturbations, 
occasionally produced in the external regions, should be limited. In addition, 
it scatters during the time of its propagation. 

These difficulties, according to Lin, are, however, resolved if there is 
a feedback mechanism, mentioned at the beginning of this section, acting 
in the system. In the stationary case, according to the principle of the con­
servation of the wave action, rcgA = const, where the density of the action 
is A = E/f (see subsection 3.4.2). Near the point of the spiral wave origin, 
the angular frequency f is very low (f ~ 0; roughly "corotating" waves). 
Consequently, a small amount of energy E is required in order to produce a 
substantial amount of action A. As the wave group is propagating inward to 
the galactic center, the energy density must be increasing both as a con­
sequence of the increase of f (since dn/dr < 0) and due to a decrease in I cg I 
and r (an increase in energy density with decreasing r is of course an obvious 
consequence of the cylindrical geometry ofthe system). When the wave group 
reaches the center, its very much increased amplitude must be enough to 
subject the galactic nucleus to a slight distortion to form a short bar (rotating 
with an angular velocity np). 

There is therefore a gravitational field rotating with the same angular 
velocity np and propagating outwards (the long-wave mode). Its influence 
will be especially strongly felt in the outer regions of the galaxy, where 
the circular velocity is np , i.e., just where the waves become initiated. Thus, 
the cycle is closed, and the stationary state may be established even in 
the presence of losses, since there is an essential enhancement of the energy 
when the short waves are moving inwards but there is no respective energy 
loss when the long waves, with a scale of the order of the galactic radius, 
are propagating outwards. 

In the case of a sharp Lindblad resonance (for example in NGC 5364 
or in our Galaxy), the waves cannot penetrate into the center. In [272] 
Lin suggests for this case a possibility of the reflection of the spiral waves 
already from the resonant circle where the stars may be located in orbits 
collectively forming an oval structure [189], which substitutes the bar in the 
preceding discussion of the reflection mechanism. We have seen, however, 
that in reality the short waves are absorbed on the inner resonance. For 
this case in the next section we shall consider one of the possible mechanisms 
of maintenance of the spiral pattern (suggested by Lynden-Bell and Kalnajs 
[289]. 
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4.3 Waves of Negative Energy Generated Near the 
Corotation Circle and Absorbed at the Inner Lindblad 
Resonance- Lynden-Bell-Kalnajs' Picture of Spiral 
Pattern Maintenance 

In [289] another possible picture of maintenance of the spiral pattern of the 
Galaxy was suggested: the waves of negative energy are emitted near the 
corotation circle and are absorbed at the inner Lindblad resonance. 

Such an arrangement of the emitters and absorbers of energy at the reson­
ances in galaxies correlates with the picture of Lin and co-workers, if one 
takes into account the negativity of the wave energy and assumes the direction 
of the group velocity to be toward the center, in accordance with Toomre's 
[334] and Shu's [325] conclusions. 

Lynden-Bell and Kalnajs show that the energy of the system may be 
decreased by means of the transfer of the angular momentum from the central 
region to the periphery. This may be understood in the following simple 
example. Consider the movement of two particles in a fixed potential. 
Denote the masses, angular momenta and energies (per 1 g) of particles as 
ml' m2; L l, L2; el, e2. The problem is, what is. the minimal value of the 
energy 

(I) 

for the fixed value of the angular momentum L mi Li ? To answer this question, 
one should minimize 

with the limitation 

It is evident that 

dE = ml dLle'(L l ) + m2 dL 2e'(L 2), 

where ml dL l + m2 dL 2 = 0, i.e., 

(2) 

(3) 

(4) 

dE = ml dLl(e'(L l ) - e'(L2)) = ml dLl(nl - 0.2), (5) 

In transforming the expressions in (5), the equilibrium condition was 
used. From (5), it is seen that energy can be reduced by exchanging angular 
momentum between the particles, such that the orbit with a lower angular 
velocity acquires an additional momentum. This means that dE < 0, if 
dL l < ° (for 0.1 > 0.2), Since for galaxies the angular velocity 0. decreases 
toward the periphery, the energy decreases if the angular momentum is 
transferred from the center outwards. 

Although this result has been obtained so far for the system consisting of 
only two particles, in reality it has a general meaning since, for example, 
introducing friction into any system leads, apparently, to the transfer of 
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angular momentum outwards, and to the disappearance of energy due to 
dissipation. Thus, the galaxy, in order to transit to lower energy states, 
should find a mechanism of transfer of the angular momentum outwards. 
This cannot be made by axially-symmetrical motions of a stellar system 
since they do not give any gravitational couple between the internal and 
external parts. In order to see what form of gravitational disturbance is 
necessary, one may introduce the tensor of gravitational tensions by ex­
pressing the force density as minus divergence of the stress tensor. The 
force density in case of gravitation is (l/I == -((» 

pVl/I = -(4nG)-1!J.l/IVl/I 

= - (4nG)-1 [div(Vl/IVl/I) - (Vl/IV)(Vl/I)] 

= -(4nG)-1 div[Vl/IVl/I - !I(Vl/IVl/I)] 

= -div[ggj(4nG) - (g2j8nG)j]; 

i.e., pVl/I = -div T where 

T = ggj4nG - (g2 j8nG)j; g = Vl/I. 

(6) 

The gravitational torque, acting on the external part of the system from 
the internal part, is calculated in the following way. Divide all the space by a 
right circular cylinder of a certain radius (with its center on the axis of the 
system). Then the torque is calculated by the formula 

M = f R x T·dS, (7) 

where integration is performed over the surface of the cylinder, dS is directed 
along the outward normal of the cylinder, R = R(x, y, 0). The component M z 

of interest to us is 

(8) 

From (8) it is easy to see that Mz > 0, i.e., the momentum is transferred 
outwards, provided that gl<pglr > o. Consequently, there must be gl<p > 0 
(Fig. 119), and the equipotential surfaces corresponding to such a picture 
are due to be "trailing." This, according to the expression of the authors, 
determines the" cause" and "purpose" of the existence of the trailing spiral 
waves in the galaxy: they promote its evolution. 

It would be logical to assume that the wave ceases to increase when the 
velocities of the perturbed motions caused by the wave exceed its phase . 
velocity. The radial displacement of the star, due to the force kS (per 
unit mass) is kS[x2 - (OJ + mQ)2] - 1, and so the condition of saturation may 
be written as 

(9) 
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Figure 119. Spiral density wave (solid lines) and corresponding gravitational forces 
(arrows) [289]. 

Writing v = (w + mQ)/x we obtain from (9) the following estimate for the 
time which is necessary for transfer of a substantial fraction of the total angu­
lar momentum from the central region to the periphery (MR2Q = L): 

~ _ 2 j(! mRS2) _ 2Q3R4 _ 2Q3(kR)4 ,.... (kR)4 
M z - MR Q 4 G - S2 - x4v2(1 _ v2) Q' (10) 

Hence it follows that the distribution of the angular momentum will 
substantially change after (kR)4/2n rotations. For 100 rotations there must 
be kR < 5, i.e., the inclination of the wave i = arctan(m/kR) > 23°. The 
"so open" waves may, consequently, greatly change the distribution of the 
angular momentum of galaxies. At the same time, the shape of the galaxy 
will also change: its external parts will expand, while the internal parts will 
contract. The standing waves of large amplitude may arise at the galactic 
center (they, according to [289], correspond to bars). The galactic evolu­
tion should follow the scheme SA --+ SAB --+ SB (Sc --+ Sb). 

4.4 Kelvin-Helmholtz Instability and Flute-like Instability 
in the Near-Nucleus Region of the Galaxy as Possible 
Generators of Spiral Structure 

Spiral waves in galaxies could in principle be maintained by some local 
instability of a nongravitational nature, for example, the beam or gradient­
temperature instabilities (Chapter VI). However, for these instabilities, the 
"longitudinal" wavelength, as a rule, is improbably large. Therefore, in real 
galactic systems, such instabilities are unlikely to develop (except for, say, 
needle-like galaxies). 
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Since, in spirals, a large percentage of the mass falls on the gas, one may 
suggest that the spiral structure appears due to excitation of some hydro­
dynamical instability (see §3, Chapter VI) in a gaseous subsystem of the 
galactic disk. This point of view was investigated in [98J-[100]. Unlike 
other nongravitational instabilities, the increase in thermal dispersion does 
not stabilize the hydrodynamical instabilities but, on the contrary, leads to an 
increase of the growth rate. However, these instabilities, unlike the above­
mentioned nongravitational instabilities, do not require any special con­
ditions for their development. 

In [93J, we paid attention to the region of a sharp drop in the velocity of 
rotation of galaxies vo(r) in the near-nucleus region, as found by the recent 
astronomical observations [315]. They can be connected with the presence 
in spiral galaxies of very flattened nuclear formations (nucleus, bulge, bar). 
If for the sake of simplicity one represents the thin nuclear lens of mass M 
in the form of a homogeneous spheroid with a large semiaxis a, and eccentricity 
e, then the equilibrium gravitational potential <1>0 in the region external 
with respect to this lens, in its equatorial plane (z = 0), may be written in 
the form [64, 147J 

3GM [( r2 ) . ae r J 2 2 2J <1>0 = -4- 22 - 2 arcsm - - - 1 - a e /r , 
ae a e r ae 

(1) 

where r is the distance from the center, r > a. The epicyclic frequency cor­
responding to (1) is x2 = 02<1>%r2 + (3/r) (0 <I> %r). For example, in the 
disk limit (e = 1) 

2 3GM {4 . a 1 a2 3 J 2 2} 
X = -2- - arcsm - - - - 2" r - a . (2) 

2a a r J r2 - a2 r2 J r2 - a2 r 

Hence, it is easy to see that near the edge of the disk (r ~ a) x 2 is a large 
negative value (as r -+ a, x 2 -+ - (0). In such a situation it is obvious that 
for a sufficiently strongly flattened (having a "sharp edge") nucleus, x 2 

in its immediate vicinity is defined only by the parameters of this nucleus 
and are independent of the mass distribution in other parts of the system 
(though most of the total mass is contained in it). 

So, the circular orbits near such a nucleus should be unstable (x2 < 0).11 
According to [147J, for an isolated flattened spheroid, instability takes place 
for e > ecn where ecr ~ 0.834, in the range a :s:; r :s:; ae/ecn so that the 
maximally broad region of instability (for the disk, e = 1) 

a :s:; r ~ 1.2a. (3) 

In reality, of course, this near-nucleus region of instability of circular 
orbits may be still narrower if one takes into account that real systems are not 
isolated. We shall not consider further the estimation of the size of the 
instability region, which will inevitably not be very reliable. We restrict 

11 The question of the possible linkage of this instability with radial flows of gas in central 
regions of galaxies is of interest. 
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ourselves only to the indication of a possibility of principle of such a "general" 
explanation of sharp drops in the curves of the rotational velocity of spiral 
galaxies, which implies that the property indicated may be inherent to many 
systems, and not only to Andromeda nebula (M31), for which it is likely to 
be reliably established. 

A rapid variation of the velocity of rotation is favorable for excitation of 
instability of Kelvin-Helmholtz. A detailed analysis of such a possibility 
is performed in [99] and [100] (see §3, Chapter VI). 

The gas density in the plane of the Galaxy has a form resembling the 
shape of a nonsymmetrical bell. If one assumes that the temperature near 
the gas density maximum is a monotonous function of the coordinate, one 
can show [98-100] that the necessary condition of excitation of the flute­
like instability, also leading to the formation of spirals, is satisfied. 

The hypothetical mechanism of the spiral arm formation, investigated 
in the above papers, allows one to explain the nature of multi tier spirals 
as galaxies with several regions (with respect to the number of spiral tiers) 
of a rapid decrease of the rotational velocity or several extrema of gas 
density (or both at the same time). 

4.5 The "Trailing" Character of Spiral Arms 

We have already mentioned (see subsection 3.4.1) the rather general character 
of the antispiral theorem. It is valid, in particular, both for collisionless 
stellar systems and for the gaseous medium. The cause is not" saved" by, for 
example, the radial electric currents in the absence of azimuthal currents (the 
latter would lead to the initial asymmetry of the system). In this case, in 
proving the anti spiral theorem by the method used at the end of subsection 
3.4.1, one also needs to add the charge inversion to the ordinary reflection. 
In general, the presence of the magnetic field (toroidal or poloidal without 
the primordial asymmetry) does not violate the theorem. 

The radial gas flows could in principle participate in the formation of 
trailing spiral arms, and such a possibility was investigated in the literature. 

First of all, it should be said that the" problem" of the antispiral theorem 
has a different urgency in the two main versions of the wave theory. In Lin's 
picture, as we are aware, the wave-generating mechanism is required, 
which per se may possess a needed asymmetry. In a new interpretation of 
Lin considered in Section 4.2 such a mechanism is the local gravitational 
instability on the periphery of galaxies, which leads to excitation of 
"segments" of trailing spirals. On the other hand, as shown by Feldman 
and Lin [199] (see subsection 4.5.1) the response of the system to the bar­
like distortion of the shape of density distribution in the central region 
has in the region of the corotation radius an appearance of trailing arms. 
Thereby is shown the distinctive nature of the trailing waves at the" extreme" 
points of the spiral pattern. At the same time, for the "propagation region ", 
i.e. for the main part of the disk galaxy, a simple explanation of the preference 
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of trailing spirals is suggested by Mark [290]. Both the leading and the 
trailing waves are damped in the direction of their propagation. Since the 
trailing wave propagates inward to the center, it must be initiated in the outer 
areas, so that it has a sufficiently extended propagation region up to the 
inner Lindblad resonance. On the contrary, the leading wave coming out 
of the central region will be practically completely absorbed on the inner 
resonance, not having reached the region of free propagation. 

The antispiral theorem presents serious difficulty in the case when the 
spirals are considered as unstable modes of a disk system. Neutral oscil­
lations, according to this theorem, are" antispiral "; therefore very" open" 
spirals result in not very strong unstable systems. The problem, thus, is to 
find the mechanism that builds up the tightly twisted spirals in systems with 
a comparatively weak instability. 

We have already mentioned this question in Section 4.1, where it was noted 
that the way out may be an analysis of the response to a relatively open spiral 
potential of the flattest and coldest subsystems; this response has the ap­
pearance of a much tighter wound spiral. Below, in subsection 4.5.2., this 
question is discussed using the example of several simple models, which 
allow an exact solution. 

4.5.1. Excitation of Trailing Spiral Density Waves by the Rotating Barlike 
Structure at the Galactic Center. Feldman and Lin [199] study the influence 
of the barlike center in the framework of the model consisting of three com­
ponents: spherically-symmetrical "stellar" nucleus, uniformly rotating 
"stellar" bar and" gaseous" disk (or cylinder). The rotation axis of the bar 
passes through the center of the nucleus. For the sake of simplicity, it is 
assumed that the nucleus and the bar are not perturbed, while the stars and 
gas interact only via their gravitational fields. 

The consideration of a purely gaseous disk as a model of the real system 
consisting of stars and gas, may be justified by the fact that in the vicinity of 
the corotation radius (which is of interest to us, above all) the gas and the 
stars behave in a similar way. 

Assuming that the gaseous flow is stationary in the frame of reference 
rotating with the bar, we find that all the physical values (velocities, density, 
pressure, gravitational potential) are independent of time if they are expressed 
through the coordinates r, cp, z, where cp = cp - Opt, and r, cp, z are the 
ordinary cylindrical coordinates with the z-axis directed along the rotation 
axis of the galaxy, Op is the angular velocity of the bar. 

Without taking into account the influence of the bar the gas flow is assumed 
to be axially-symmetrical and circular, i.e., 

(1) 

Vn v<p' Vz are the cylindrical components of the velocity in the rotating frame 
of reference, while rO(r) is the unperturbed velocity in the inertial system. 

Further considered is the two-dimensional gravitating gaseous system, 
the behavior of which is defined by the hydrodynamical equations and the 
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Poisson equation. The gas is assumed ideal and to satisfy the polytropic 
law ("barotropic") P = KpY, Y > 1. Introduce the enthalpy 

1'/ = -Y- K pY-l 

Y - 1 

as well as the dimensionless variables R, w, wp ' U, v, h, t/I (<D is the potential): 

r = r~R, n = now, np = nowp, Vr = (rono)U, 
Vq> = (rno)V, 1'/ = (rono)2h, <D = (ron o)2t/1, (2) 

where ro is the corotation radius, and no is equal to the wave frequency np. 
By assuming that the bar only slightly changes the initial axially-symmetrical 
circular gas flow, the Euler equation may be linearized, which leads them to 
the form 

(y - l)ho(ul + RUt - imv1) + [rh O'ul - im(w - wp)Rh1] = 0, (3) 

im(w - Wp)Ul + 2WVl = h'l + t/I'1' (4) 

(2w + RW')Ul - im(w - Wp)Vl = im/R(hl + t/ll)' (5) 

where the prime denotes differentiation with respect to 
(h~ + t/I~)/R. Introduce the dimensionless parameters 

E2 _ 1 . H _ 1 d In ho _ d In Po 
- (y - l)ho ' - y - 1 din R - din R ' 

mOo 
v = - -- (w - wp ), 

x 

(6) 

where x2/n~ = 4w2(1 + rw'/2w) (note that E is an inverse dimensionless 
sound velocity). Eliminating the components of the velocity from the 
hydrodynamical equations, we shall find 

h'~ + Ah'l + (B + C)hl + t/I'~ + At/I'l + Bt/ll = 0, (7) 

where 

1 + H d 
A(r) = -R- - dR In[(l - V2)X2], (8) 

B(r) = - m2 + 2w {H _ R ~ In [X2(1 - V2)]} (9) 
R2 R2(W - wp) dR W ' 

C(r) = -E2m2x2(1 - v2)/n~. (10) 

Let us further consider the potential as a sum of two terms, one of them 
being due to stars, while the other is due to the gas: t/I = t/ls + t/I g' where 

t/lo = t/lO,NUCL + t/lo,g, t/ll = t/lb + t/lg, (11) 

t/lb is due to the bar, while t/lg is due to the perturbation of the gas density. 
Determine now the D(r) function: 

(12) 
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then Eq. (7) will be written in the following manner: 

h'{ + Ah'1 + (B + C)h1 + 1/1; + AI/I~ + BI/Ig = D. (13) 

The A, B, C functions depend only on the stationary parameters of the 
system and the frequency wP' but are independent of perturbations. The 
value of D is defined by the bar. 

Make an estimate of the order of magnitude of different coefficients in 
Eq. (13): ro ~ 10 kps, no ~ 10 km/s . kps, Cs ~ 10 km/s, so that E ~ 10. 
Instead of the value E ~ 1, it is easier to deal with the inverse value: 

then one may write 

= _1_ = c.(l) ;:: 1 
1J - E(1) rno ~ , 

B = a2(R) 
R - l' 

D = a4(R)/(R - 1), 

(14) 

where all a;(R) are of the order of 1, regular and nonzero in the vicinity of 
R=l. 

Determine now a new coordinate ~ = (R - 1)/1J. The coefficients in 
Eq. (13) written in terms of ~, are regular power series with respect to 1J. By 
expanding the perturbations in powers of 1J 

(15) 

and taking into account that a3(1) = 1, we find 

d21/1~0) d2h\0) h(O) _ 0 
d~2 + d~2 - 1 - , 

(16) 

d2•1,(1) d2h(l) (1) 
_'I'_g_ __1 _ h(l) - ~ - (1) 
d~2 + d~2 1 - ~ a1 

x :~ (h\O) + I/I~O)) - a2~1) (h\O) + I/I~O)) + ~a3(1)h\0). (17) 

Above, we have assumed that the gas flow is two-dimensional. Accordingly, 
one may consider two models: the cylinder and the disk. We shall restrict our­
selves below only to a simple analytical model of the cylinder (in [199] 
it is shown that qualitatively the results for the two models are coincident). 
In this case 021/1 g/OZ2 = 0, and the Poisson equation yields 

" 1, 4nGpo 
1/I0.gas + Ii 1/10, gas = ~' (18) 

1 m2 

1/1; + Ii I/I~ - R21/19 = Ah 1, (19) 
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where 

(20) 

(21) 

Acr is the Jeans wavelength, and (cs)o is the sound velocity in an unperturbed 
matter. The estimate of the value A (for the solar vicinity of the Galaxy) 
leads [199J to the relation A '" (j - 2, therefore it is convenient to define the 
function L(R): A = (j-2L(R); Lis of the order of unity, L(1) > 1. With these 
assumptions we find 

d2 ljJ(0) 
_9- = L(l)h(O) 
de 2 1 , 

d2,/.(1) d'/'(O) 
_'1'9- = L(l)h(1) + J;L'(l)h(O) __ '1'_9 

de2 1 S 1 de . 

By combining these equations with (16), (17), we shall obtain 

where 

d2h(0) 
1 2h(0) - 0 

de 2 + oc 1 - , 

d2h}l) 2h(1) _ ail) F(O) 
de2 + oc 1 - e + cyl' 

dljJ(O) 

F~~I = e[a~(1) - L'(l)Jh}O) + [1 - al(1)J d~ 

_ (1) dh}O) _ a2(1) [h(O) + ,/,(O)J 
al de e 1 '1'9' 

oc = [L(l) - 1J 1/ 2 • 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Equation (25) contains the singular term a4(1)g As always in such cases, 
the required neutral mode should be considered as the limit of increasing 
modes. Let us assume that e, np , wp are "slightly complex," 

np = no(1 + is), wp = 1 + is (s = 0+ or s = 0-) 

and take the perturbation of the form hl(e)e-im(tp-Qpt)e-msllpt. Then ms < 0 
will correspond to the increasing modes. For complex wp ' the pole 
[w(e) - wpr 1 lies at the point e = ie, such that e = s/w'(O). Since in any 
reasonable model w'(O) < 0, then e has the sign opposite to s, therefore m and 
e should have the same sign. Below, we assume that m > 0, so that also e > 0, 
i.e., the pole lies above the real e-axis. Accordingly, in the limit s -. 0-, 
e -. O+, in integrating over e,one should go round the point e = o from below. 
Consider now, as in [199J, the equation 

d2y dy 1 
de2 + gl de + g2Y = ~. (28) 
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Equation (25) is a special case of (28) for g 1 = 0, g 2 = a 2. Assume that the 
roots of the corresponding characteristic equation are purely imaginary 
(as in the case of (25», so that the two solutions ofthe homogeneous equation 
are oscillatory: 

(29) 

(al' a2 are real). If we integrate in the complex plane over the contour (C) 
going along the real axis and bypassing the singularity ~ = ° from below, 
we find the partial solution of the nonhomogeneous equation 

2n 
y = [ei"2~l(~, a2 ) - ei"l~l(~, a2)], (30) 

a l - a2 

1 r>J e-i"~ 
l(a, ~) = 2ni J~ -~- d~, (30') 

and the integral is taken along C. From (30') it is clear that l(~, a) = O(1g) 
as ~ --+ + 00. It is also easily proved that, as ~ --+ - 00, 

{ O(1/~)' 
l(~, a) = ! + O(1g), 

1 + O(1/~), 

a> 0, 
a = 0, 
a < O. 

(31) 

For m > 0 and for the solution of the form hl(r) '" eikr the spiral is trailing, 
if k < ° and leading if k > O. The solution of equations in (24), (25) may be 
presented in the form: 

hl = kLei"~ + kTe-i"~ + ~kDfD(~) + O(~2), (32) 

where the first two terms are the "free" solutions (the indices Land T 
denote "leading" and "trailing"), while the last term is due to the action of the 
bar, 

(33) 

(34) 

Since I --+ 0 as ~ --+ + 00, and I --+ e-i"~ as ~ --+ - 00, so it may be con­
cluded that kDfD vanishes at + 00 and behaves as the trailing spiral at 
- 00 (the "leading" part fD vanishes as ~ --+ - 00 ). 

4.5.2. Simple Models Which Allow Exact Solutions. Take a model, exactly 
calculated in linear theory, of the collision less ellipsoid (11), §1, Chapter 
IV. As is well known, the spirals consist of young stars and gas of the flat 
subsystem. In accordance with this, we single out from the whole set of stars, 
those being close to the equatorial plane. The partial density of these stars is 
Po'" (1 - r2)-1/2. From the equations of multiflows hydrodynamics (see, 
e.g., [86]), for these stars (i.e., for a "flow" with Vz ~ 0) one can obtain the 
following partial perturbed density (see (11), Section 2.2, Chapter V): 

(35) 
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where e = Po/(w; - 4(6); <1>1 is the total perturbed potential, w* = w 
- mOo. Substituting Po ~ (1 - r2) - 1/2 into (35), we obtain (assuming 
m = 1) 

<1>" <1>'1 [ 1 2 J <I> 
Pl ~ 1 + r(1 _ r2) - r2 - w*(1 _ r2) l' (36) 

Represent the partial perturbed density in the form 

Pl ~ exp[i(ljJ(r) + <p)], 

so that the equation of spiral 

ljJ(r) + <p = const. 

Denoting W 1 = Re w, W 2 = 1m w, 15 1 = Re 15, 15 2 = 1m 15, for the mode in 
(19), Section 3.1, Chapter IV, we obtain 

.1,( ) wz(8 + 15 1 - 5r2) + b2(w2 - 2) 
tan 'I' r = . (37) 

wl[6(1 - r2) + 3] - [(2 - wl)(r + 152) + w 1 ] - b2w2 

By using the data of calculations, one can verify that the solution with the 
amplitude increasing in time always gives the monotonically decreasing 
function <p(r) = -1jJ(r) + const, which corresponds to the trailing spiral. 
For the example given above, the twisting of the spiral at a distance of the 
disk radius makes up ~ 25°. At the same time, the total density (and the 
potential) in this case have the form of "weakly leading" spirals. The sub­
system of the stars with Vz ::;::: 0 considered above evidently constitutes only 
a small part of all the stars, even in the plane z = O. It is clear that this con­
sideration also remains valid for all the subsystems having velocities Vz 

in the plane z = 0, lower than a certain boundary velocity vo, provided that 
Vo ~ Wo e. This boundary velocity corresponds to a certain thickness of the 
flat subsystem h (which must be far less than e). The ratio of the mass of the 
flat subsystem, defined in this way, to the total mass will be ~ hie. Though 
this ratio is small, the "trailing" spirals of the flat subsystem can be observed: 
they can be defined physically; for example, due to the luminosity of the 
youngest stars being in the flattest subsystems ofthe Galaxy or from the 21 cm 
emission of hydrogen forming the gaseous trailing spirals. Note that the 
description of these latter is automatically included in this scheme since the 
cold gaseous component at z ::;::: 0 may be described with equal validity both 
in the framework of hydrodynamics and in kinetic theory. 

At each given moment, in the z ::;::: 0 plane, there are also stars with high 
velocities Vz • They pertain to other subsystems, consist of "old" stars of 
moderate luminosity and form a background having no spiral shape. As is 
shown, only stars and gaseous clouds of the flattest subsystems which are 
constantly near the z = 0 plane, get wound to form trailing spirals. 

For the disks considered in Section 4.4, Chapter V, the situation is similar: 
the partial density of stars of the "coldest" subsystems provides a clear 
picture of trailing spirals, while the total density and potential have an "anti­
spiral" shape. 
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§ 5 Comparison of the Lin-Shu Theory with Observations 

Irrespective of any future theory of the origin and evolution of the galactic 
spiral structure (it is still to be created) the now available" semi-empirical" 
density wave theory of Lin and Shu may prove to be useful in the interpreta­
tion of observations. 

As we have seen, the theory contains one free parameter, the velocity of 
the spiral wave np. The observational test of the theory, therefore, consists in 
comparison of a large amount of data. Some of them may be used to determine 
the angular velocity of the wave, the others provide a test of the predictions 
of the theory. Lin et al. [271] make an estimate of the agreement of the theory 
and observations within '" 20 %. 

5.1 The Galaxy 

The first rather detailed comparison of the inferences of the Lin and Shu 
theory with observed data on our Galaxy was performed in [271]. The 
comparison is performed for the following items: (a) the distribution of 
atomic hydrogen; (b) the systematic movement of the gas ; (c) the distribution 
of young stars; and (d) the migration of moderately young stars. It is noted 
that there is good agreement in all the cases if the angular velocity of the 
spiral pattern is assumed to be of the order of 11-13 km/s . kps, while the 
spiral gravitational field is assumed to be equal to approximately 5 % from 
the axially-symmetrical field. 

5.1.1. Main Parameters of the Galaxy. Choice of the Value of the Spiral 
Wave Angular Velocity and Estimation of the Velocity Dispersion of Stars. The 
application of the density wave linear theory of Lin and Shu to the Galaxy 
substantially depends on the adopted (theoretical) equilibrium model. The 
point is that direct astronomical observations yield so far rather meager 
information, and we have fairly reliable measurements of parameters only 
for the solar vicinity of the Galaxy nearest to us. The values commonly used 
for estimation of the parameters essential in the Lin and Shu theory are as 
follows: the surface density 0'0 '" 50 + 65 MO/pS2, the mean velocity dis­
persion of stars in the rotation plane Cr '" 30 + 40 km/s, the epicyclic 
frequency )( '" 27 + 32 km/s . kps. 

At the same time, application of the theory requires full knowledge of the 
equilibrium state of the Galaxy: the surface density of stars and gas at 
each point of the disk of the Galaxy, the angular velocity n(r), the epicyclic 
frequency x(r), the velocity dispersion of stars and the effective sound velocity 
of the gas (also at each point). For this purpose, at first a model is built in 
which distributions of mass O'o(r) and the rotation velocity n(r), related to 
each other, are calculated. The most elaborate of such models of the Galaxy is 
believed to be the familiar model of Schmidt [319], in which the Galaxy is 
presented in the form of superposition of several subsystems inserted in each 
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other, with different degrees of oblateness (they simulate different real, 
physical subsystems of the Galaxy). Lin and Shu [271], as well as many of 
their followers, used this Schmidt model. 

It should be noted, however, that the use of this or a similar model 
does not yet completely determine the equilibrium state of the Galaxy or, 
in particular, the velocity dispersion cr(r) at each point of the disk, knowledge 
of which is also necessary for the application of the Lin and Shu theory. In 
[271] it is simply assumed that the velocity dispersion is such as to ensure 
the marginal stability of the disk of the Galaxy with respect to radial perturba­
tions (according to Toomre). 

The spiral pattern may be calculated by using the dispersion equation in 
(21), Section 4.1, Chapter V, if the equilibrium model ofthe Galaxy is known. 
If one assumes the Schmidt model [319], as in [271], then for np = 11 
-:- 13 km/s· kps we have the distances between the arms consistent with 
observations. Here one should bear in mind that generally not a single wave is 
excited but a whole group of waves with frequencies close to np , while the 
comparison of observations with theory in [271] is performed, for the sake of 
simplicity, for the sole wave. Therefore, it cannot be expected that the agree­
ment will be too accurate, however the ensuing agreement may be considered 
as satisfying. 12 

An important test of the general concepts of the theory is the investigation 
of the velocity dispersions of stars, predicted by the criterion (21), Section 4.1, 
Chapter V. In this paper, the disk is assumed to be a purely stellar one and 
having no thickness. In such assumptions, the velocity dispersion for the 
solar vicinity of the Galaxy Cr ~ 52 km/s turns out to be too large (at least 
by 25 %). The contradiction still increases if the presence of the gaseous 
constituent is taken into account. However, Shu [323, 325] showed that this 
discrepancy disappears if the finite thickness of the disks of stars and gas is 
taken into account. The velocity dispersion in the solar vicinity should then 
be ~ 37 km/s (or somewhat less) for the stability from the local collapse. The 
estimate ofthe velocity dispersion obtained by Shu is in reasonable agreement 
with observations. Shu revealed also that the relative contributions of the 
gas and stars are roughly identical despite the fact that the mass of stars 
greatly exceeds the mass of gas. This is explained by the fact that the gaseous 
disk of the Galaxy is far thinner than the stellar disk. 

5.1.2. Relationship of Large-Scale Systematic Noncircular Motions of Stars 
in the Galaxy with the Gravitational Field of Arms. Observers long ago 
noticed the wave-shaped variations on the rotation curves of galaxies, but 
at the beginning these variations were thought of as a possible consequence 
of the gas loss by the interarm regions. This effect, however, turns out to be 
small [271], and the correct interpretation of the variation of the rotation 
curve is provided by the density wave theory. It is evident that the component 

12 The details of selection ofthe velocity of wave Qp are discussed in detail by Yuan [359, 360]. 
This selection proves to be limited by rather narrow limits. 
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of the perturbed velocity of the particles in the azimuthal direction (due to the 
presence of spiral arms) should cause changes in the observed curve of rota­
tion of the galaxy. The quantitative study of the systematic movement of the 
gas performed by Yuan [359, 360] had led to the required estimates for the 
amplitude of variation of the velocity, of the order of 8-10 km/s. This may 
be caused by the spiral gravitational field '" 5 % from the axially-sym­
metrical field acting on the gas with a turbulent velocity of ~ 7 km/s (the 
mean square value of one component of velocity) and with the magnetic field 
H '" 5 .10- 6 gs. Note also here the natural explanation [271] of the dif­
ference between the northern and southern curves of rotation of the Galaxy 
following from the stability theory of flat rotating systems. In all likelihood, 
the cause of this difference is the oval (barlike) distortion of the shape of the 
Galaxy which, as we have seen (in §4, Chapter V), is especially difficult to 
stabilize by the velocity dispersion of stars. 

5.1.3. Birth and Migration of Moderately Young Stars. Stars are born in 
places of the highest gas density, i.e., inside the gaseous arms. Finally, 
these stars must migrate from the arms since the stars rotate at the angular 
velocity of the matter, which is different from Q p (the angular velocity of 
arms). For ten million years (the age of young 0- and B-stars), in the solar 
vicinity of the Galaxy, such stars must have been separated from the gaseous 
arms by approximately 1.2 kps. However, since the inclination of the spiral 
branches is small (they are tightly wound in the Galaxy), the radial distances 
will constitute only one-tenth of the indicated distance, so that the young 
stars must actually lie within the gaseous arms, which is just supported by 
observations: the blue bright stars of the 0- and B-types are, as is well known, 
the optical indicators of the spiral structure clearly outlining the gaseous 
branches. 

At the present time, the methods for the determination of the ages of the 
"moderately young" stars [329] are rather sophisticated, in order that the 
problem might be settled of finding out the places of birth of these stars 
and the history of their migration might be reconstructed. The present 
locations and velocities of stars necessary for calculations are also known 
with a good degree of accuracy. 

Already a preliminary treatment performed by Lin et al. [271] has shown 
that even a small spiral field ('" 5 % of the axially-symmetrical field) can 
provide an essential effect. Yuan [359, 360], by experimenting with dif­
ferent choices of the frequencies of the spiral pattern and field strengths, 
found that a good choice corresponds to Q p ~ 13.5 km/s· kps and to the 
field strength", 5 % of the axial-symmetrical one. He has investigated the paths 
of twenty-five stars by using the data of Stromgren [329]. If the spiral gravita­
tional field is not taken into account, then the positions of these stars at the 
time of their birth does not fit into any structure known from radio observa­
tions. At the same time, as the spiral field is switched on, these stars fall on 
the locations of the spiral arms. Just such a prediction should of course be 
given by a true theory, since the stars are formed inside the gaseous spirals. 
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The authors in [271] note that good agreement (probably the most impres­
sive of those considered) in the problem of the migration of moderately 
young stars will result, in spite of the presence of a large number of factors 
which could have confused the results. 

5.2 M33, M51, M81 

5.2.1. Short Characteristics. In a paper by Shu et al. [326], on the basis 
of the density wave theory, spiral patterns of three galaxies (M33, M51, 
and M81) are investigated. In each of these galaxies there is a clear-cut 
two-armed spiral. The rotation of M33 is nearly uniform for a significant part 
of the disk, while the galaxies M51 and M81 rotate with a nearly constant 
linear velocity. Accordingly, the mass distributions also differ. They are 
strongly concentrated toward the center in the case of M51 and M81, 
while for M33 the distribution is "smooth." The main difference between 
M51 and M81, apart from their sizes, consists of different relative gas con­
tents. The M51 galaxy ("Whirlpool") is also of additional interest since it is 
associated by one of its arms with a close satellite which may in principle 
play an important role in excitation (or, vice versa, in destruction) of the 
spiral structure. 

For the sake of simplicity, Shu et al. consider only the stars. The inclusion of 
a small amount of gas ('" 10 %) should not strongly alter the determined 
characteristics of the spiral patterns. 

5.2.2. Models of Equilibrium States of Galaxies. First of all, on the basis of 
the given curves of rotation, the mass models of galaxies with a finite, though 
small, thickness are constructed. At each point of the system, a modified 
Schwarzschield peculiar velocity distribution is assumed. In the vertical 
direction, the density varies as sech2(z/zo). Here the parameter zo(r) is the 
local scale of the galaxies in the z-axis and is expressed through the mean­
square velocity v; by the usual relation: Zo = v;/nGuo, where uo(r) is the 
local surface density. The velocity dispersions in the modified Schwarzschield 
distribution should satisfy certain constraints following from the equilibrium 
and stability conditions. From the equilibrium condition, as we are aware, 
in the epicyclic approximation we have the Lindblad connection between 
the velocity dispersions of stars in the radial and tangential directions: 
c,,/cr = 'X/2n. The ratio zll = cz/cr is probably equal to 1 in central areas 
of spiral galaxies, where a "well-mixed" eqUilibrium state [281] should 
prevail. In the outer regions of the galaxy, z II can be essentially less than 
unity (for example, zll = 0.5 -:- 0.6 in the solar vicinity of the Galaxy). 
In the models, adopted in [326], z II decreases monotonically from unity 
at the galactic center to 0.5 at the most external regions (Fig. 120). The 
choice of the rate of decrease is of course rather arbitrary, but the calculated 
spiral pattern proved to be insensitive to specific choice. 

Thereafter, it remains to determine Cr as a function of radius. The minimum 
values of Cr ensues from the requirement that the stellar disk be stable with 
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Figure 120. The velocity dispersions and the vertical scale for M33 [326]; the velocity 
dispersions are calculated by assuming that they are equal to the minimum level 
necessary for the suppression of the Jeans instability. The vertical scale is connected 
with the balance between gravitational forces and peculiar motions in the z-axis. 

respect to Jeans instability (of radial perturbations). Toomre [333J con­
sidered the case of infinitely thin disks. Figure 121 shows the results of [326J 
generalizing the Toomre criterion in (28') §4.l, Chapter V, on the stellar disks 
with a finite thickness Zo = zo(r); kT = Crmin/X and cz/cr are given as the 
kTZO functions (kT = X2/2nGuO)' To illustrate the use of data in Fig. 121, 
let us take the solar vicinity of the Galaxy. Assume that the level Cr is the 
minimum necessary for stability. Following Schmidt [319J, take that 
x = 32 km/s . kps. Assume also the following reasonable estimates: uo = 
90 M 0/pS2 and Zo = 300 ps. These estimates correspond to the volumetric 
density in the central plane equal to uo/2zo = 0.15 M 0/pS 3. Hence we 
obtain: kT = 0.42 kps-l and kTZO = 0.126. From Fig. 121, then we shall 
obtain: cz/cr = 0.60, Cr = 0.42 X/kT = 32 km/s. These two values are in 
good agreement with observations [326]. A somewhat more realistic estimate 
which takes into account that about 10 % of the mass falls on the interstellar 
gas with an effective speed of sound D ~ 8 km/s, raises the estimate just 
obtained by about 3 km/s. 
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Figure 121. Criterion of the marginal stability [326]; kTzO is the dimensionless thick­
ness of the disk. 



218 XI Disk-like Systems. Spiral Structure 

The coincidence between the velocity dispersion actually existing in the 
solar vicinity, and the minimum one necessary for stability, is advanced by the 
authors of [271] and [326] as a decisive argument in favor of the suggestion 
that the Toomre stability index Q = Cr/Cr min is unity throughout the disk of the 
Galaxy, except for probably the most central areas. For the same reason (and 
for the sake of simplicity) they assume that Q = 1 also for the disk models of 
all galaxies studied in [326]. 

The velocity dispersions calculated in agreement with the assumptions 
considered above, are decreasing functions of r, such that at the center 
Cr = cq> = Cz> but everywhere for r =1= 0, Cr > cq> > Cz • 

5.2.3. Spiral Patterns. After completion of the construction of the equilib­
rium state model, one may start studying the local properties of the density 
waves in these galaxies. For the stellar disk which possesses a modified 
Schwarzshield distribution, we have already given the local dispersion 
equation in Section 4.1, Chapter V. The dependence of the wave ampli­
tude on the radius for an infinitely thin disk was derived in [325, 334] 
in the second order ofthe WKB approximation (vide supra, subsection 3.4.2), 
but these calculations have not yet been generalized for the case of a disk of 
finite thickness. Qualitatively true results are obtained in the following way 
[326]. Denote by g = (g; + g~)1/2 the amplitude of the spiral gravitational 
field averaged with the mass weight and express it as a fraction F of the mean 
gravitational field r02; then we obtain (see Section 4.1, Chapter V): 

F = g/r02 = const(k2r2 + m2)1/2(rRv)-1/2/r202, 

Rv = [ -1 + a l~ k In(~I)l 
One of the problems of the paper unde~deration was the test of Lin's 
hypothesis about the formation of spIrals under the action of the gravi­
tational collapse in the outer regions of spiral galaxies (cf. Section 4.2). 
The two-armed spiral waves may propagate only in the region where the 
horizontal line 0 = Op lies above 0 - %/2 and below 0 + %/2 (Fig. 122). 
However, if Lin [272] is right then only in the region where (0 - %/2) 
< Op < 0 may there exist an organized spiral pattern. Then one may 
assume that the velocity of the spiral pattern should be approximately equal 
to the velocity of rotation of outermost HII regions (i.e., regions of ionized 
hydrogen formed round young stars under the action of their powerful short­
wave emission). The yields for M33, Op ~ 16 km/s· kps, while for M81, 
Op ~ 21 km/s . kps, so that the corresponding radii are 6.8 and 11.2 kps. 
In case of probable destruction of the outer regions of M51 by a nearby 
satellite, this method cannot give a correct estimate of the corotation 
radius for M51. In such circumstances it is assumed arbitrarily that: Op = 33 
km/s . kps (the corresponding corotation radius is 4.5 kps) as a value not 
being in disagreement with Lin's proposal. 

The corotation radius lies slightly outside the most external HII-regions, 
if the formation of stars is initiated only by the mechanism of spiral galactic 
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Figure 122. Dependences of the angular velocity n, the epicyclic frequencies x, and the 
Lindblad combinations n ± x/2 on the radius raccording to the mass models of (a ) M33, 
(b) M51, (c) M81 [326]. 

shock waves [311], and is coincident with these HII-regions, if the collapse 
of the interstellar gas itself causes star formation. The spiral pattern associated 
with our Galaxy appears to be satisfying Lin's criterion [326]. It is interesting 
to verify whether it is also satisfied for other galaxies. The test consists in 
whether the theoretical pattern, with a wave velocity estimated by the tech­
nique thus described, provides a good fitting of the observed spiral structure 
inside the corotation radius. 

The spiral patterns calculated for such Q p coincide well with the observed 
ones. Since Q is nearly constant throughout the disk of M33, the curve 
Q - '1</2 is very flat. Therefore the spiral waves may pass into the very center 
of this galaxy (and disturb it by forming thereby a barlike structure). One 
may expect that this is a general feature of galaxies which do not possess a 
strong concentration of the mass toward the center. At the same time, for the 
chosen velocities, the waves in M51 and M81 should encounter "barriers" 
at the inner Lindblad resonances. 

Connected to these remarks is the trend for galaxies of the type of M33 
to have more open spiral arms. The waves in such galaxies should probably 
be everywhere far from the Lindblad resonance, the consequence of which is 
the fact that the dispersion equation will never yield very short waves for the 
self-consistent spirals. 
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Figure 123. Dependence of the unperturbed velocity W.lO and the relative amplitude 
of the spiral gravitational field F on the radius r for short waves in M33 
(Qp = 16 km/s . kps) [326]. 

The authors of [326] also show the boundaries (Fig. 123) in which the 
calculations are adequate, i.e., the conditions of applicability of the WKB 
approximation are satisfied. In each case, they cover nearly the whole galaxy, 
but of course, they do not include the regions close to the resonances. 

Observations do not allow one to construct a single unambiguous galactic 
model. In this connection, in [326] two somewhat different models of M51 
(and for two different Q p : Q p = 33 and Q p = 43 km/s . kps) are considered. 
From this treatment the following conclusions are obtained. 

5.2.4. Conclusions. 1. Except for the localization (but not the existence) of 
the inner Lindblad resonance, the main features of the spiral pattern, for a 
given Qp, are insensitive to the details of the adopted equilibrium model. In 
particular, the pitch angle i = arctan(m/ I k I r) is finally defined by the main 
features of the model. 

2. The calculated picture is sensible to the variations in Q p (i.e., to the 
localization of the corotation radius); the 30 % increase in Qp (from 33 to 
43 km/s . kps) for M51leads up to the pattern with the pitch angle increased 
roughly speaking also by 30 %, while the radii of corotation and the outer 
Lindblad resonance are decreased by about 20 % (the curve of rotation at 
these distances is nearly Keplerian, Q '" r- 3/2). 

The calculated pictures have a tendency toward a somewhat stronger 
twisting as compared with the observed one, so that the velocities of waves in 
the future might be slightly raised (but probably by not more than 30 %). 

The general conclusion arrived at in [326] implies that the conception of 
Lin of initiation of density waves by the Jeans instability in the outer regions 
of normal spiral galaxies agrees with the study of the spiral structures of M33, 
M51, and M81. It is obvious, however, that the described results are of a more 
general nature, and also they are not contradicted by any other generation 
mechanisms of spiral waves (including those we described above). Thus, 
in [326] it is not shown that Lin's suggestion is the only one consistent 
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with observations. In particular, as noted by the authors themselves [326], 
the instability mechanism could cause the spiral pattern of the M33 galaxy. 

The comparison of the theory of the galactic density waves with observed 
data on a more comprehensive material (24 galaxies) was continued by 
Roberts and Shu [312]. Moreover, in this paper, an attempt is made to give 
a new classification of spiral galaxies based on a small number of observed 
characteristics. 

The choice of these characteristics is prompted by the density wave theory. 
The linear theory of Lin and Shu involves one free parameter, Op (or rC' 
the corotation radius). The strength of the large-scale shock formed in the 
gaseous constituent of the galaxy is proportional to (w 1./D)2, where D is the 
effective speed of sound, w 1. is the total (unperturbed + perturbed) component 
of the velocity of the gas perpendicular to the spiral arm. The latter quantity 
oscillates along a streamline due to the action of the spiral gravitational field, 
about the unperturbed value w1.O' The shock13 is formed in the case where 
the accelerating force acting from the side of the spiral arm is large enough 
in order that w 1. could reach supersonic values. For w 1.0 > D, the larger 
part of the gas on the streamline moves at a supersonic speed. Strong 
shock waves formed in such a situation lead to the formation of narrow 
regions of high compression of the gas. Weak shocks formed for w 1.0 < D 
provide broad regions with relatively low compression of the gas. These 
two cases correspond to the observed narrow and broad arms, so that the 
formation of one or the other must critically depend on the value of w 1.o/D, 
or (since D probably does not change very much from galaxy to galaxy) 
simply on the value w 1.0 = r(O - Op) sin i, where i is the angle of inclination 
of the wave to the azimuthal direction, which is found for a given Op from the 
dispersion equation. 

From the above follows the possibility of classification of spiral galaxies 
based on the two parameters, w 1.0 and i. The dimensional analysis shows that 
the typical values of w 1.0 and i may be expressed as 

w 1.0 = (GM/rc)1/2f(rO.5M/rc); sin i = g(rO.5M/rc), M(rO.5M) = M/2, 

where f and g are the functions, the form of which should be determined from 
the equilibrium conditions, M is the total galactic mass. Hence the con­
clusion [312] follows that the main characteristics and the geometrical shape 
of the normal spirals should be determined by the two parameters: M /r c (or 
equivalently, M/rO.5M) and rO.5M/rc. 

The principles stated above of galactic classification based on the density 
wave theory should attach to it, according to the opinion of the authors of the 
paper [312], a more objective character. They note a satisfying correlation 
between the galactic models in the proposed classification and Hubble's 
types. 

13 Note that the shock wave theory of Roberts was however subjected to criticism (see Section 
1.6, Chapter VII, and in detail [52ad]). 
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§ 6 Experimental Simulation of Spiral Structure Generation 

6.1 In a Rotating Laboratory Plasma 

6.1.1. Formulation of the Problem. In [100], the question of the analogy 
between the spiral arm formation process of galaxies and the density waves 
in a rotating laboratory plasma is considered. This question is not a new 
one: Bostick was the first to draw attention (about 20 years ago) to the 
external likelihood of the photographs of galactic spiral arms and the plasma 
clusters in laboratory experiment. Pictures taken at the time of collision 
of plasma clusters during the injection of these clusters from two or more 
injectors to one point of space, really very much resemble the pictures of 
galactic spirals. In Bostick's experiments, the analogy does not extend 
farther than a purely surface likelihood at the time of collision of the clusters, 
each being identified by Bostick with a "spiral" arm. Thus, the number of 
"arms" (according to Bostick) is exactly equal to the number of plasma 
injectors. Of course, such an analogy could not provoke a serious dis­
cussion. Nonetheless, if we turn to the question of the analogy between the 
variety of galactic spiral structures and more modestly sized objects, then 
among the latter attention is drawn by the rotating masses of gas and plasma: 
the very familiar satellite photographs of cyclones and anticyclones (Fig. 124), 
the "spiral structure" of the funnel of rotating liquid, and photographs 

Figure 124. Space photo of a cyclone (negative) over the Pacific. 
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Figure 125. Two-armed spiral in a rotating plasma [34]. 

of density waves in rotating plasma [34] (Fig. 125). Figure 126 shows 
characteristic spiral structures of plasma density waves obtained on our 
plasma machine. 

The similarity of the shapes of the galactic spiral structure and the ro­
tating laboratory plasma, under certain conditions, may be a consequence 
of the available analogy between the mechanisms discussed above of the 
formation of the spiral structure in the two apparently quite different media. 
The scheme of the proof [100] of the existence of such an analogy is suggested 
to be the following. 

First of all, the existence of such a mechanism among the different possible 
mechanisms of the galactic spiral arm formation, which turns out to be free 
from the influence of the gravitational effects associated with the presence 
of giant gravitating masses in the galaxy. The same instability must lead to 
large-scale waves of density in a rotating laboratory plasma. It is evident 
that such an "universal" instability responsible for the dynamics of the 
rotating continuous medium may be any of the hydrodynamic instabilities 
caused by the presence of the velocity gradients and density gradients in a 
gaseous disk of the flat subsystem of the spiral galaxy and in the rotating 
laboratory plasma. The possibility of the plasma experiment under discus­
sion is provided owing to the fact that, as proved in [100], the dispersion 
equations describing the oscillations of the plasma and gravitating media, 
are similar in many interesting cases. 

The elementary scheme of proof of the existence of such an analogy was 
proposed some time ago by one of the authors (A.M.F.) 

Astronomical observations of recent years [315] have discovered a 
region of sharp decrease of the rotational velocity Vlp(r) in the disks of flat 
galaxies. This fact can be explained by using the results of a calculation of a 
stationary model of a spiral galaxy in the form of a heterogeneous " disk 
+ nucleus" system [93]. If the nucleus is chosen in the form of a sufficiently 
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Figure 126. Plasma density waves in the special plasma machine modelling the forma­
tion of galactic spirals (photos a, b, c correspond to different conditions of the experi­
ment) [JOO]. 



§ 6 Experimental Simulation of Spiral Structure Generation 225 

thin lens, which completely corresponds to the observed forms of the nuclei 
of spiral galaxies [37], then near the edge of the lens the gradient of the 
gravitational potential may change rather abruptly (almost discontinuously 
when the thickness of the lens tends to zero). It is not difficult to calculate 
the critical thickness of the lens at which Vip '" l/r from the equilibrium 
condition. If the thickness of the lens is less than the critical, then the Rayleigh 
instability criterion [233] is satisfied in the system; this is the necessary 
condition for the development of the Kelvin-Helmholtz instability. It so 
happens that the spiral arms extend over the region of radial growth of the 
surface density a of atomic hydrogen, i.e., the region in which gVa < 0 
(g is the acceleration of the force of gravity) [37]. In this connection, it has 
been conjectured [98a] (see also [24ad]) that the spiral structure of flat 
galaxies is formed as a result of excitation of the Kelvin-Helmholtz insta­
bility in the region of rapid variation of Vir); a second observational fact 
determines the necessary condition for excitation of the flute instability (see 
subsections 6.1.2, 6.1.4). The growth rates of these instabilities may con­
siderably exceed the Jeans growth rate, and the conditions of development 
of these instabilities are not related to a critical size. 

In subsection 6.1.3 we show that in a gravitating medium for perturbations 
with wavelengths shorter than the Jeans length AJ = cs/(4nGpo)1/2 (in a 
galactic spiral structure AI AJ ~ 0.2-0.4) the relative influence of perturbations 
of the gravitational field on the dynamics ofthe Kelvin-Helmholtz instability 
is rather small-the corrections to the hydrodynamic effects are of order 
(A/AJ )2 (see [98a]). With regard to the unperturbed gravitational field, it 
enters only into the condition of radial equilibrium and does not affect the 
dynamics of the perturbations [98a, 24ad]. 

Because the gravitational effects are small, it is natural to consider verify­
ing the hypothesis of A.M.F. under laboratory conditions. However, the use of 
a fluid or neutral gas as experimental medium does not enable one to specify 
independently the necessary gradients of the rotational velocity, especially 
if there is a large ratio of the velocity discontinuity L\v to the characteristic 
propagation velocity Cs of perturbations in the medium (for galaxies [116ad] 
one usually has L\v/cs ~ 5). The fulfillment of these conditions is much 
simpler in a rotating (because of drift in crossed E~O)(r) and B~O) fields) 
plasma medium. Here, the role of the fields E(O) and B(O), like the gravitational 
field's, reduces merely to ensuring that the system is stationary (when 

) 14 
Vi ~ WBi . 

Depending on the magnitudes of the characteristic particles of the process, 
the dynamics of the perturbations of such a plasma can be described either 
in the framework of magnetohydrodynamics (w ~ Vi) or in the framework 
of Chew-Goldberger-Low hydrodynamics [117ad] (Vi ~ W ~ WBJ 

The simplest models convenient for investigating the Kelvin-Helmholtz 
and flute instabilities are: (1) a plane-parallel flow of fluid with velocity 
and density that vary in the direction perpendicular to the flow velocity; 

14 Vi and W Bi are the collision and the Larmor frequencies of ions, respectively. 
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(2) differentially rotating cylindrical configurations of a fluid. Here it is 
appropriate to recall that the most general stability criterion of these models 
were obtained in [186, 129] in the approximation of an ideal incompressible 
fluid. The investigation of these instabilities in a gravitating medium of 
necessity requires allowance for compressibility, which significantly compli­
cates the analysis and prevents one obtaining general stability criteria. 

For this reason, for the original analysis of the problem (in a gravitational 
medium) we have chosen the simplest models: velocity and density shear 
layer of the gravitating medium (Subsection 6.1.2) and tangential shear 
between two gravitating cylinders rotating in opposite directions, their 
equilibrium being provided by the equality of centrifugal and gravitational 
forces (Subsection 6.1.4). The stability of a shear layer was investigated earlier 
in the approximation of an incompressible fluid in an external gravitational 
field [186, 67], or in a compressible fluid and in the magneto hydrodynamic 
approximation [126] in the absence of a gravitational field. In subsection 6.5.1 
besides proving that the gravitational effects have little influence on the 
short-wave part of the spectrum in the framework of the Kelvin-Helmholtz 
instability that we investigate, we obtain estimates that characterize the 
important role of the Kelvin-Helmholtz instability in the formation of spiral 
galactic structure. In subsection 6.1.6, we consider the stability of a plasma 
flow with a tangential shear of the velocity in the Chew-Goldberger-Low 
approximation [117ad]. In subsection 6.1.7, we compare the dispersion 
relations that describe the oscillation frequency w as a function of the wave 
vector k and the characteristic parameters ofthe plasma and gravitating media. 
We show that under typical conditions of the plasma experiment, the 
corresponding dispersion relations are identical, which demonstrates that 
the similarity of the spiral patterns of the rotating gravitational and plasma 
media is not fortuitous but a consequence of the deep analogy between the 
process responsible for the formation of the spiral structure in these two very 
different but nevertheless" hydrodynamic" media. 

6.1.2. Velocity and Density Shear Layer of a Gravitating Medium. 1. We 
consider the stability of a shear layer of the velocity and density in a compres­
sible gravitating medium. 

We begin with the effects due solely to the velocity shear (Kelvin-Helmholtz 
instability). Supposel 5 

POI = P02' ci = e~, VOl = - V02 = Vo, g = O. 

We shall describe the solution by means of the dimensionless parameters 

M = IVol/e, f3 = M cos a, cos a = (kVo)/(lkIIVol), 

v = wolke. 

In the limit of short-wave perturbations, Wo ~ ke, in the first approxima­
tion, we readily obtain from the dispersion relation the well-known result 

15 Formulae used below were derived in Section 3, Chapter VI. 
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of the theory of a compressible fluid [126] 

w = ikepy, (1) 

In the following approximation in v = wolke, 

w = ikepy{1 - v2 A(y)} , A( ) = (1 - y)(1 + y2) [2y + (1 + y)2] (2) 
y 4y(1 + y)(3 _ y2) 

It is easy to see that A(y) > 0 and A is a monotonically increasing function 
of p. Thus, perturbations of the shear surface are subject to an additional 
stabilization at longer wavelengths due to the gravitational properties of the 
medium. However, it must be borne in mind that (see Section 3.1, Chapter VI) 
the results (2) apply only for wavelengths A. ~ A.J = elwo. At the same time, 
as can be seen from (2), the growth rate of the instability is much greater than 
the Jeans growth rate: Im(w) ~ Wo' 

We now consider the effects associated with the change of the density. 
Assuming that VOl = V02 = 0 and that the magnitude of the change in the 
density is not too small compare with Po, we obtain 

w = (kg P02 - POI)I/2{1 + nkG (POI - P02) 
P02 + POI g 

+ POIP02g(POld + P02d) } 
kde~(pOI - P02)(POI + P02)2 . 

In the approximation k .... 00, we obtain the well-known result of the theory 
of an incompressible fluid. 

We give the expressions for the quantities XI,2 that characterize the 
exponential decay of the perturbed pressure along the z-axis (which will be 
needed later): 

(3) 

Here, the subscript 1 is appended to the variables of the region z > 0; the 
subscript 2, to those of the region z < 0; W1,2 = W - kVOI ,2' wi; = 4nGpo. 

6.1.3. Absence of Influence of Gravitational Forces on the Short-Wave Part 
of the Oscillation Spectrum. Thus, we have shown that hydrodynamic insta­
bilities can develop in a gravitating medium. The Jeans instability character­
istic of such a medium is stabilized by thermal spread in the region of short, 
k2e2 ~ wi;, wavelengths. The hydrodynamic instabilities, in contrast to the 
gravitational, are not stabilized by the thermal spread in the short-wave 
region. 16 Moreover, in accordance with (1) and (3), the growth rates of the 

16 This result is obvious if one recalls that the shear model considered in subsection 6.1.2 is also 
unstable in the approximation of an incompressible fluid, in which the thermal spread is by 
definition infinite. 
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hydrodynamic instabilities increase with decreasing wavelength of the per­
turbation. 17 This unique property of the Kelvin-Helmholtz and flute in­
stabilities distinguishes them from the previously investigated hydrodynamic 
instabilities of a gravitating medium. 

If one assumes that the gravitating medium is in equilibrium, Vpo + Po Vt/Jo 
= 0, then from the original system of equations with allowance for the 
gradients of the unperturbed quantities one can readily see that IV p I is 
greater than I pVt/Jo I by kL times (L is the characteristic inhomogeneity 
scale, kL ~ 1) and Ipo Vt/JI is smaller than IpVt/Jol, also by kL times. Thus, 
the influence of the "external" gravitational field can be regarded as a small 
correction to the hydrodynamic effects. The influence of "self-gravitation" 
is even smaller. 

6.1.4. Cylindrical Tangential Shear Density of a Gravitating Medium. We 
now investigate the possibility of exciting a flute instability in a gravitating 
cylinder. For this we consider a model of an infinitely long cylinder with 
abrupt change of the density Po at a distance R from the axis of the cylinder, 
assuming that equilibrium is established by the resultant effect of the centri­
fugal and gravitational forces and the pressure force, so that g = dcpo/dr 
- Q2r =1= O. Consider short-wave (compared with the Jeans length) oscilla­
tions, for which the influence of the perturbed gravitational potential is 
negligibly small. 

Since we are only interested in the basic possibility of exciting the flute 
instability, we consider the case of a fairly hot (e2 -+ (fJ) medium. Then for Po 
= POl(r > R) =1= P02 = po(r < R) we obtain the growth rate (m2 ~ k2R2, 
see Section 3.2, Chapter VI): 

{ 
(2 - A2)m2Q2 }1/2 

y ~ kgA + k2R2 ' A = (POI - P02)/(POl + P02)' (4) 

As follows from the expression (4), the necessary condition for instability is 

gA > O. (5) 

This means that for g = (o<l>%r) - Q2r > 0 the flute instability develops 
if POI> P02 while for g < 0 it develops if P02 > POI' 

Let us consider now a different limiting case: A ~ a. For perturbations of 
the type exp[i(kr + mcp - rot)], we obtain instead of (4) the following growth 
rate of the flute instability: 

_ [ d In Po m2 ] 1/2 
Y - g dr k2r2 . (6) 

Naturally, the instability condition is analogous to (18). The growth rate (6) 
is much greater than the Jeans growth rate when m/kr ~ 1. 

17 This assertion is true at least for wavelengths that are greater or of order of the thickness 
of the transition layer. 
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6.1.5. Spiral Structure of Galaxies as a Possible Consequence of Hydrody­
namic Instabilities. Hitherto, it has been assumed that the maximum growth 
rate of instabilities that can develop in gravitating systems is the Jeans 
growth rate}, ::::: (4nGpo)1/2. The attempt to explain the formation of the 
spiral arams in our Galaxy by the Jeans instability led, as is well known [333], 
to a contradiction between the critical Jeans wavelength and the separation 
of spiral arms. All the remaining hitherto known instabilities of a gravi­
tating medium have growth rates less than the Jeans growth rate. 

The investigation in the preceding sections of hydrodynamic instabilities 
of gravitating systems with growth rates appreciably greater than the Jeans 
rate opens up a new possibility of explaining the origin of the spiral structure 
if the conditions observed in spiral galaxies correspond to the conditions of 
development of these instabilities. In the present section we bring forward 
arguments for the existence in spiral galaxies of the necessary conditions for 
the development of the hydrodynamic instabilities. 

The recent investigations of the rotation curve of the nearest spiral galaxy 
-the Andromeda Nebula [315]-has revealed the presence of a region 
of abrupt change of the rotation velocity of the flat subsystem. In the region 
0.4 kpc ;S r ;S 2 kpc there is a section of rapidly decreasing (from the center) 
rotation velocity Vcp(r), in which (d/dr) (x2/2Q) changes sign. Such a distribu­
tion of the rotational velocity is unstable in accordance with the Rayleigh 
criterion [233] in the approximation of an ideal incompressible fluid, 
and the finite compressibility of the medium evidently cannot signifi­
cantly alter this result. According to the Rayleigh criterion [233], the Kelvin­
Helmholtz instability can be excited in rotating systems if over a certain 
interval I1r the rotation velocity Vcp(r) decreases faster than r - 1. A suf­
ficiently detailed study of the rotation curves of the gaseous subsystems of 
flat galaxies has made it possible to find such regions in M31 (see [315]) and 
apparently in NGC 7436 (see [37]). The reasons for this behavior of Vcp(r) 
are to be found in the strong oblateness of the dense nuclear regions of flat 
galaxies [37]. This may also be the case for barred galaxies. For example, in 
NGC 4027 (see [343]) the ratio of the semi axes of the bar are b/a ::::: 0.6, 
cia ::::: 0.2 (see [36]) (almost elliptical disk). 

We now show how the number of spirals is determined in the case when a 
Kelvin-Helmholtz instability develops in the system. As follows from 
Sections 3.1 and 3.2, Chapter VI, the growth rates of the Kelvin-Helmholtz 
instability of gravitating systems with cylindrical and plane shears of the 
velocity for modes m 2': 2 have similar dependences on the wave numbers. 
Using, for simplicity, the results of subsection 6.1.2 and then making a transi­
tion to cylindrical coordinates (k II --4 k"" k 1 --4 k=), we can readily estimate the 
number of spiral arms. Indeed, let us set kcp = m/ Rs (m is the number of 
spirals and Rs is the radius ofthe shear), kz = n/h (on the basis of the observa­
tional data, we assume that approximately half a wavelength fits into the 
thickness h of the disk). For the Andromeda nebula, the magnitude of the 
discontinuity of the rotation velocity (see [315]) I1v ::::: 150 km/s is much 
greater than the turbulent velocities of the gas and gas clouds, VT ::::: 20 km/s, 
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and therefore perturbations excited with the maximum growth rate (satisfying 
the relation i\vk" ~ 31/2VT(kTI + ki)1/2) necessarily have k.l ~ kll (see 
Section 3.1, Chapter VI). 

Thus, the number m of spiral arms is 

m ~ 31/2n(vT/i\v)(Rs/h). 

Since Rs ~ 0.5 kpc, h ~ 0.1 kpc (see [315]), the number of spirals is of the 
order of a few units. 

It is also easy to establish the direction of winding of the spirals. For this 
(see subsection 6.1.2.) we go over to a frame of reference moving in the direc­
tion Vo 1 with velocity V. > Vo, so that V~ 1 = Vo + V., V~2 = V. - Vo. In such 
a reference system, the oscillation frequency is Wi = -kll V. + ikcpy (see (1». 
Identifying z > ° --+ r > Rs (Rs is the radius of the velocity shear i\v = 2 yo) 
and substituting w into (3), we find that for perturbations with the maximum 
growth rate in the region r > Rs the relation Im(Xl) < ° necessarily holds. It 
can be seen from this that the equation of constant phase in the (r, cp) plane, 
mcp - Im(x l)r = const, describes a trailing spiral (m > 0, V", > 0). 

The distribution of the density in the gas disks of the flat subsystems of 
spiral galaxies has, as is known from observations, a bell-shaped form (with a 
point at which the density is maximum). Therefore, the presence of even a 
small radial gradient of the gas temperature (in the neighborhood of the 
extremum of the density) may lead to the development of the flute instability. 
Indeed, in this region I (l/Po),VPo/(l/ Po)V Po I > 1 and, on either side of the 
extremum point of the density, VPo/V Po < O. 

6.1.6. Tangential Velocity Shear of a Magnetized Plasma Medium. In this 
case, we believe it is convenient to use the system of equations of Chew­
Goldberger-Low hydrodynamics [117ad], 

av 1 ...... 1 -a + (VV)V = - - dlV P + -4 [rot B x B], 
t P np 

aB at = rot[V x B], 

apil . at + VVPII + PII dlV V + 2PII t{'tV)V = 0, 

a:t + VVP.l + 2p.l div V - P.l t(tV)V = 0, 

ap d' at + IV(pV) = 0, 

t = B/IBI, div P = VP.l + (PII - P.l)(tV)t + t div(t(PIl - P.l» 

(7) 

As was shown in subsection 6.1.3, for a gravitating system in equilibrium, 
the influence of the gravitational field on the stability of the system against 
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short waves (kL ~ 1, k is the wave number and L is the characteristic in­
homogeneity scale) is negligibly small. 

On the other hand, it is known from the theory of plasma instabilities [86J 
that the maximum of the growth rate of the Kelvin-Helmholtz instability 
lies in the short-wavelength part of the spectrum, kL ~ 1. For a plasma 
cylinder of radius R, this condition corresponds to the condition kR ~ 1; 
in this case, to terms '" l/kR, a cylindrical plasma velocity shear can be 
replaced by a velocity shear layer in a plasma with homogeneous magnetic 
field Boy. Assuming that the variation of Vox near the plane z = ° is smooth 
and linearizing Eqs. (7) for perturbations ofthe type exp{i(kxx + kyY - wt)}, 
we obtain 

(w; - k;V~II)~ = c;J.P' - k;ci(c;J. - cD [2 k2~ 2 2)]" (8) 
w* - y csil - CJ. 

P _ {k2 c;J. - k;ci(c;J. - cD/[w; - k;(c;11 - ci)J 
.." - P x 2 k2v2 

w* - y All 

2 } 2 CJ. 
+ ky 2 k2( 2 2) - 1 , 

w* y Csil - CJ. 
(9) 

where w* = w - kx Vox(z), ~ = iY"dw* is the displacement of the plasma 
in the z direction, p = P d Po is the ratio of the perturbed to the unperturbed 
density, V~II = V~ + (PJ.o - Pllo)/Po, V~ = B6/4npo, ci = PJ.o/Po, c;J. = 
V~ + 2ci, c;11 = 3p II 0/ Po, and the prime denotes differentiation with respect 
to z. Integrating Eqs. (8) and (9) over a narrow surface layer, we obtain the 
conditions for matching ~ and P at the plane z = 0: 

(10) 

[~J = 0, [AJ == A(z = +0) - A(z = -0). (11) 

Matching, in accordance with (10) and (11), the solutions of the system (8) 
and (9) which do not increase away from the velocity shear, we obtain the 
dispersion relation 

(12) 

the subscripts 1 and 2 are appended to the variables of the regions z > ° 
and z < 0, respectively, and 

2 _ k2 (k;c;11 - W;1.2)(W;1,2 - k;V~II) 
Xl,2 - + 2 [2 k2( 2 4/ 2 )J csJ. W*1,2 - y csil - cJ. csJ. 

(13) 

It can be seen from this that in the investigated case we can expect a depen­
dence w = w(kx' ky) like the one observed in ordinary hydrodynamics [98aJ 
when one of the following two conditions is satisfied: 

(14) 

(15) 
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The condition (14) corresponds to a plasma with fJ '" 1. The solution of the 
dispersion relation (12) in this case, 

w2 ~ k; V5 + i(;2c;1. - {(k;c;1. + k;cl/c;II)2 + 4k; V5 k2c;1.} l/2, (16) 

where i(2C;1. = k;c;1. + k;c;II' shows that instability (w2 < 0) will occur for 
V5 < C;1. for perturbations with 

k2 (2 2 4) 
2 x 2 CS II Cs1. - C 1. 

cos ex = k2 > cos exl = 2 2 4 2 2 ' 
(Csil Cs1. - C1.) + VOCsl. 

and, for V5 > 2c;1.' for perturbations with 

( 2 2 4) 
2 2 2 Csil Cs1. + C1. 

cos exl < cos ex < cos ex2 = (2 2 4) 2 (V2 2 2 ) • 
CS II cs1. + C 1. + cs1. 0 - cs1. 

The condition (15) corresponds to a plasma with fJ ~ 1. The solution of the 
dispersion relation (12) in this case: 

w2 = k;V5 + k2V~ - {k!V! + 4k;V5k2V~}l/2, (17) 

predicts instability when V5 < 2V~ for perturbations with 

cos2 ex > cos2 exl = V~/(V~ + V5), 

and when V5 > V~ for perturbations with 

cos2 ex l < cos2 ex < cos2 ex2 = V~/(V~ - V~). 

6.1.7. Analogy Between the Dispersion Relations Describing the Kelvin­
Helmholtz and the Flute Instability in a Gravitating Medium and in a Plasma. 
For the typical conditions of the plasma experiment, Eo ~ B5/c(4nnoM)l/2, 
which corresponds to the inequality 

(18) 

The instability regions described by Eqs. (16) and (17) are shown in Fig. 127. 
It can be seen that, under the condition (18), Y -+ Ymax in a neighborhood of 
the straight line 

(19) 

Thus, under the conditions of the plasma experiment, the dispersion relations 
of nonelectrostatic oscillations of the plasma with tangential velocity shear 
have the form 

(20) 

w2 = k;V5 + k;V~ - (k!V! + 4k!V5V~)l/2, fJ ~ 1. (21) 

Since C;1. '" V~, the two dispersion relations (20) and (21) are identical 
under the condition of instability (19). 
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Figure 127. Region of the Kelvin-Helmholtz instability in a plasma (hatched). (a) The 
case V~II = c;1I - c1!c;~; (b) c1 <{ c;11 c;~ (fJ <{ 1). The line of the maximal growth 
rate is the dashed curve. 

In the case of a tangential velocity shear in a gravitating medium, the 
following dispersion relation was obtained for short wavelengths in subsection 
6.1.2 (see (1»: 

W 2 = k~ vg + k2c; - (ec; + 4k~ vgec;)1/2. (22) 

In Fig. 127(a) the dashed curve shows the region where Y ~ Ymax' In this 
reglOn 

ky~2·3-1/2Vokxlcs' (23) 

In the case Va ~ c., ky ~ kx, Eq. (22) is identical with Eqs. (20) and (21). 
In the case Vo ~ Cs (which corresponds to the observations of the galaxies) 

(24) 

We find a similar dependence of Ymax on kx from Eqs. (20) and (21) under 
the condition (18).18 

We now consider a plasma cylinder in which the electrons and ions drift 
in crossed electric Er and magnetic Bz fields. Suppose that in a plasma with 
f3 ~ 1, wp; ~ WBi' Vo ~ rwB; (wp; and W B; are the plasma and cyclotron 
frequencies, respectively, and Vo is the velocity of rotation of a particle about 
the axis) oscillations with W ~ WB;, kz = 0 are excited. One can show that in 
the case of a radially decreasing plasma density these oscillations are un­
stable and that for I ~ 1 the growth rate is 

Y---- VE -
_ (ana 1) 1/2 (k",) 1/2 

noor r k' 
(25) 

VE = cErlBz, k", = lIr. 
Denoting VVr = g, this growth rate is identical to the growth rate (6). 

18 In the framework of two-fluid hydrodynamics one can show that in a plasma with f3 <€ 1 
and inhomogeneous velocity profile electrostatic oscillations can be excited. If certain conditions 
are satisfied, the equation for the perturbed potential is identical to the equation of the oscilla­
tions of a plane-parallel flow of an ideal fluid [89]. Therefore. in a plasma described by the 
equations of two-fluid hydrodynamics in the case of a tangential velocity shear, the growth 
rate of the instability associated with the excitation of electrostatic oscillations is y ~ kx Va. 
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6.2 In Numerical Experiments 

6.2.1. N-Body Simulations of Disk-like Systems. An immense number of 
papers have been devoted to computer experiments on the stability and 
evolution of flat stellar systems. Therefore, by referring the reader to the 
reviews [80ad, 88ad] for more details, we shall consider briefly only the main 
results. 

Probably, the principal unexpectedness of these experiments was the 
impossibility of obtaining rather long-lived spirals in purely stellar disks. 
The development of nonaxially-symmetrical instabilities leads to a rapid 
heating ofthe stellar disk, spiral-like structures arise for a short time only, and 
ultimately the system becomes a very hot elliptical disk. On the other hand, 
the experiments in question show that barlike disturbances develop very easy 
in rotating stellar disks; the bars generally are the most typical feature of 
evolution, and this, as noted by Toomre [88 ad], is an important step toward 
understanding the nature of the formation of the SB-galaxy bars. The 
problem is, however, that normal spirals just do not have apparent bars. At 
the same time, N-body simulation shows that in order to stabilize the barlike 
instability in a stellar disk, one needs velocity dispersions far more than, 
for example, those observed in the solar vicinity of the Galaxy. This was 
noted in many works, but a specially detailed study was performed by Miller 
[80ad]. By carefully studying all the factors which could, in principle, bring 
about the heating of computer" stars" (including the causes due to the pe­
culiarities of computation such as approximation, cut-off of the Newton 
potential at small distances, roughness of the integration scheme of equations 
of motion, etc.) he showed that heating is brought about just by physical 
causes. Thus, this fact may be considered as firmly established. What, however, 
may this mean? The first, most obvious, possibility is in the supposition about 
the existence of a massive but invisible halo, which, as we know, can effectively 
stabilize the bar like instability. Note also here that, according to some authors 
[74ad, 88ad], the barlike instability can actually be not so dangerous, as ensues 
from the computer experiments as well as from theoretical studies on the linear 
theory of stability of disk like systems. The point is that the latter have so far 
been referred to the simplest models, while the former considered only those 
systems in which all the stars rotated in the same direction. The situation 
must be clarified upon completion of the very much delayed investiga­
tions of large-scale instabilities of the general models of stellar disks, and 
when computer experiments are performed for disks with stars rotating 
not only in the main but also in the opposite direction (reversely rotating 
stars, actively taking part in perturbations, exert a larger stabilizing action 
than the passive halo [74ad]). 

Finally, to sum up it should be noted that the lame attempts to simulate 
spiral galaxies using purely stellar disk systems may be indicative of the 
essential role of the gaseous component of the galaxy (energy dissipation, 
shocks, etc.). 

Here we do not give a review of papers on numerical modelling of spiral 
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arms due to the tidal galaxy interaction. Except for the rare cases when the 
satellite-galaxy is a continuation of a spiral arm of the neighboring galaxy (as, 
for instance, in MSl), the role of the tidal interaction in the spiral structure 
formation seems to be negligible. In detail, such a point of view on this 
problem is presented in [Sl ad]. 

6.2.2. On the Criterion of Applicability of Numerical Models of Interacting 
Galaxies [lllad], [soad]. The first hypothesis about the decisive role of 
gravitational interaction in the process of the spiral structure formation 
seems to belong to Chamberlin [lOoad]. True, he considered the spiral 
nebulae produced by a tidal force acting on the rotating star by a neighbor­
ing star. However, such considerations are similar in principle to the well­
known outlines of the hypothetical origin of two galaxies suggested more than 
half a century later by Zwicky [107ad] in order to illustrate the process of birth 
of a spiral structure due to the formation of a bar between two galaxies. 

The first numerical calculation to prove this hypothesis was carried out 
by Holmberg [101 ad] by means of an unsophisticated procedure of graphical 
integration proposed by him, and later on, using new computers, by 
Pfleiderer and Siedentopf [102 ad, 103ad]. Then followed numerical experi­
ments revealing details of the mechanism of the spiral structure formation 
for a large number of points: Tashpulatov [1 04ad] , Toomre [1 lOad], Yabushita 
[106ad], Kozlov et al. [losad,109ad] and, in particular, for ring structure: 
Toomre [iosad]. 

As is shown below, in the above models of flat galaxies the tidal effects 
analyzed are significantly weaker than the collective effects not regarded 
there. A simple criterion obtained in [40] by Ginzburg et al. is given, accord­
ing to which the above case histories are not related in any way to any of the 
presently known spiral galaxies 19 and they may be related only to systems with 
anomalously large central mass of the type of Saturn's rings. 

The model of interacting galaxies used in the above cited papers is pre­
sented schematically in Fig. 128(a). It is assumed that each point A interacts 
only with centers Band C and not with other points. 

If the disk, as assumed by all the authors, is infinitely thin and there is no 
initial thermal scatter of points over velocities, such a model is absolutely 
unstable and must practically instantaneously20 take the shape of a "cart­
wheel" (Fig. 12S(b). 

Indeed, in this case the dispersion equation for the frequency of small 
oscillations of the disk with a central body of mass M, composed of gravitat­
ing points has the form [40] (see also next section): 

(1) 

19 In some rare cases where the galaxy-satellite is a continuation of the spiral arm of a neigh­
boring galaxy (such as M51). the perturbing center (galaxy-satellite) is responsible only for the 
spiral arm orientation of its giant neighbor but by no means for the fact of their formation. 

20 Time estimate see below. 
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Figure 128. Interacting galaxies: (a) initial moment of interaction; (b) disk's instability. 

where x~, in the case where undisturbed orbits of points are Keplerian, is 
equal to 

(2) 

The instability increment is independent of the mode number (in the 
highest order of the expansion over l/kr; in this case kmax '" 21t/~, where ~ is 
the distance between the points which, at a characteristic number of points 
~ 2000, is very small, i.e., the value kr ~ 1), therefore for the time 

(3) 

(G is the gravity constant, a 0 is the surface density) the disk assumes the shape 
depicted in Fig. 128(b). 

The instability time (3) is so small that any influence of the disturbed 
center C is out of the question. 

Allow for the finite thickness of the disk, h #- O. In order that the model of 
interacting galaxies (Fig. 128(a) may be true, it is required that the perturbed 
motion of the test particle A be determined by the central mass B rather 
than by the remaining particles of the disk. In other words, it is necessary to 
write the condition of neglect of collective effects. 

As is shown in the paper [40] (see also next Chapter) just that condition 
is realized for Saturn's rings. It has the form: 

M/m ~ 2R/h, (4) 

where m = L mi, mi is the mass of the ith particle of the disk, R is the radius 
of the disk. 

It is easy to see that for spiral galaxies criterion (4) is not realized. Indeed, 
spiral galaxies are unknown for which the left-hand side of the inequality 
would be more than 2, while the characteristic values of the right-hand 
side of the inequality are 20 + 30. 
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If we introduce the initial velocity dispersion for particles such that the 
disk becomes stable in the linear approximation, then, as shown in [20] 
(see also Chapter VII), the presence of strong nonlinear effects will not permit 
the model in Fig. 128(a) to be used. 

§ 7 The Hypothesis of the Origin of Spirals in the SB-Galaxies 

According to de Vaucouleurs (see, e.g., in [344]), the structural properties of 
spiral galaxies change very smoothly along the sequence of types, and 
among them one can trace a smooth transition from the usual S-galaxies 
to the SB-galaxies. According to the opinion of Freeman and de Vaucouleurs, 
this fact suggests that the different structural features of spiral galaxies of 
different types are produced under the action of a certain single mechanism. 

Such a mechanism, in particular, may be instability having a "barlike" 
shape at the center of the system and a spiral shape on the periphery (such a 
possibility was discussed in Sections 4.1-4.3, 4.5; see also Section 4.5, Chapter 
V). However, the bar can, of course, be produced also during the time of the 
initial collapse of the protogalaxy, as was shown in the paper by Lin et al. 
[268] and also by Lynden-Bell [282]. 

In some S- and SB-galaxies, large-scale radial motions of the gas have 
been discovered. As far as the SB-galaxies are concerned, it turns out that 
it is quite possible to reproduce the spiral structure, if one assumes [201,344] 
that the matter flowing outwards along the bar takes on a necessary angular 
momentum due to twisting by the gravitational field of the bar and then, 
leaving the bar at its ends, forms the trailing spirals (such a scheme does not 
"work" in case of normal spirals). 

The main component of the velocity of the gaseous clouds leaving the bar 
is the drift along the x-axis with a constant speed (see (14), §1, Chapter IV): 

Vcr = yBi/2n. (1) 

Recall that for the stars constituting the quasistationary bar, this com­
ponent of the velocity should be omitted. For the gaseous clouds, on the 
contrary, we should obviously omit the oscillative constituent of motion, 
since it must be damped by collisions. Provided that A 2 = n2 , from (1) 
we get V = 3.7nyo, which for Yo = a/l0; na = 150 km/s yields v '" 60 km/s, 
the value of the same order as the observed velocity of the gas flowing 
outwards along the bar. Thus, the ejection of gas may, in principle, occur 
under the action of the purely gravitational mechanism described. 

The motion of gaseous clouds outside the bar occurs in a rather complex 
field and must therefore be calculated numerically. The clouds produce the 
spiral trailing arms, and, according to Freeman and de Vaucouleurs, the pic­
ture obtained is in reasonable agreement with observations of the SB(s)­
spirals. 

The matter flowing out of the bar, which carries out the mass and the 
angular momentum, causes a slow evolution of the bar. Freeman [202-204] 
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(as well as Hunter [234J) have calculated the corresponding evolutionary 
pathways. It turns out that the evolution leads, in a typical case, to that 
the ellipsoid of the bar becomes still shorter and denser and rotates more 
rapidly, i.e., the evolution of the SB-systems in the scheme described proceeds 
in the direction SBc -+ SBa. The characteristic time of the evolution is of 
the same order as the galactic lifetime ('" 1010 years). 

The hypothesis of the origin of spirals in the SB-systems suggested by 
Freeman, is not, of course, the sole possibility, although he provides some 
arguments which distinguishes it from the others (see also [344J). One may, 
for example, note the scheme of Antonov [5J (repeated later by Goldreich 
and Lynden-Bell [210J), according to which the matter is lost from the 
neutral points of the potential of the very much elongated bars. 



CHAPTER XII 

Other Applications 

§ 1 On the Structure of Saturn's Rings 

1.1 Introduction 

Theoretical investigations of Saturn's rings (structure, compOSItIon, and 
stability) have a long history which abounds both in great names (Laplace, 
Maxwell, and others) and important results. However, it can be stated that 
the recent flights of Voyager I and II spacecrafts which transmitted to Earth 
the pictures of Saturn's rings (made from such small distances as several 
million kilometers and even less) have opened a new era in studying this 
(to use Maxwell's words) "great space arch." The rings revealed, quite 
unexpectedly, a much more complicated and interesting structure than had 
at first been thought. Particularly, they are actually divided into a huge 
number (thousands) of narrow concentric ringlets.! 

In this connection the very statement of the problems associated, for 
instance, with investigations of the rings' system stability should now be 

1 The first Voyager-Bulletin [124ad] began with the words" Rings within rings, within rings, 
within .... ", which fairly well describes the most striking features of the picture revealed to us. 
However, an insight into the history of observations of Saturn's rings shows that the very 
possibility of the rings' filamentation into narrower ringlets was, for the first time, discussed by 
Kant more than 200 years ago, in 1755. By the middle of the last century many astronomers 
(Vico in Rome, Bond in the United States, Struve in Russia, Dawes and Lassell in England) 
identified ten dark ringlets altogether. Proctor's drawing illustrates the plausible version on the 
fine structure of Saturn's rings (the drawing is taken from Flamarion's book Les Terres du 
Ciel, Paris, 1884 (Fig. 129». 
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Figure 129. Structure of Saturn's rings according to Proctor (1882). 

changed. Actually, theoreticians have so far stated the problem of determin­
ing a critical mass (or a critical density) of Saturn's rings assuming stability 
of the distribution of matter in the system, and this distribution was con­
sidered to be sufficiently smooth. It actually looks so to the Earth's observer, 
which is seen, for example, from graphs of dependence in the rings' surface 
density on the distance from the center (these graphs are presented in a 
great number of monographs, textbooks, and papers-see, for instance, the 
monograph by Bobrov [30]). In these graphs, distinct gaps follow only the 
few remarkable" divisions": that of Cassini, Encke, etc. 2 Observed smooth­
ness of the density distribution, as well as the fact that the rings' system has 
existed for a very long time, has been thought to imply the stability of this 
system. 

Now, however, in a certain sense, a directly opposite problem should be 
stated- on the reasons for the fine structure formation in Saturn's rings due, 
possibly, to some instability. 3 

However, small disturbances induced by satellites (primarily, of course, 
those due to Saturn's nearest satellite, Mimas) could well serve as a "seeding" 
for subsequent apparent filamentation under the influence of some other 
more powerful mechanism - that of instability. Particle- satellite inter­
action can determine the main type of disturbance which is growing 

2 Locations of these divisions are well correlated with resonant circles for which ratios of the 
particles' rotation frequencies Wo to angular velocities of the nearest of Saturn's moons w, 
are rational numbers, wo!w, = p!q, with not very large integers p and q. For example, for the 
main (Cassini's) division one obtains wo!w, :::: 2, for Encke's gap wo!w, :::: 3, etc. 

3 Because of the information obtained by the Voyagers, we had to change completely the 
section on Saturn's rings in the Russian edition of the book (1976) as the corresponding material 
(with discussion of various estimations of the rings' parameters, which follow from the require­
ment of their stability) became rather archaic. It was necessary to change the very title of this 
section because the old one, "One the critical mass of Saturn's rings," suggested a problem that 
is no longer relevant. 
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due to instability. If growth rate of this instability exceeds the angular 
velocity of the satellite, initial disturbances may be regarded mainly as 
annular, since different points of the resonant circles have no distinction in 
this case.4 Besides circular structures, spiral density perturbations may also 
increase due to instabilities. Given below are considerations for circular 
perturbations which are also valid for tightly wound spiral density waves. 

Below we examine possible instabilities of Saturn's rings: Jeans (1.3), 
dissipative (1.4) and modulational (1.5). 

Restricting ourselves to only purely gravitational aspects of explanation 
of the observable structure of Saturn's rings, we put aside, as a result, such 
phenomena as periodically appearing and disappearing dark transversal 
bands (so-called "spokes"). This phenomenon is very likely to be due to 
some electro dynamical processes in a gas of the smallest dust particles (this 
follows from the correlation between the period of evolution of spokes and 
that of Saturn's rotation). 

1.2 Model. Basic Equations 

Recall that the three "classical" rings of Saturn are traditionally denoted 
by the letters A, B, and C. Ring A is the outermost (its inner and outer edges 
are R j = 121.900 km, Ro = 136.600 km). This ring includes a dark gap near 
the outer edge (R = 133.400 km), usually called Encke's gap (or division). 
The brightest ring B is separated from ring A by the well-known Cassini's 
division. R j = 91.000 km and Ro = 117.400 km are the inner and outer 
radii of ring B. The faint ring C (so-called" crepe") is touching the inner side 
of the Bring. 

The thickness of Saturn's rings is at any rate less than 1 km. So we use a 
rotating gravitational disk of finite thickness (which is very small in com­
parison with the disk's radial extension) in the field of the central body as a 
model of Saturn's rings. The most likely constituent of the ring's particles is 
probably (water) ice. 

As the initial set we take the first-order perturbations to Euler's equation 
for a viscous fluid disk [67]: 

0$ 1 oP p oPo -----+--
or Po or p~ or 

_ 0$ _ ~ oP + ~ (~~(r2S ) + ~ OStptp) 
r ocp Po r ocp Po r2 or rtp r ocp 

(2) 

4 Annular perturbations are also selected due to the strong differentiality of rotation of Saturn's 
rings. 
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(where Sik is the viscous stress tensor), the equation of continuity, 

~ + div(pv) = 0, 

the Poisson equation 

d<l> = 4nGp, 

(3) 

(4) 

and some state equation. The latter may differ in different situations; so we 
cannot write this equation. Also we do not write the z-component of Euler's 
equation as we shall consider only plane large-scale motions of a disk. 
Only the Srcp component of Sik will be used below, 

d (Vcp) Srcp = J1 rdr --;: , (5) 

J1 being the dynamical viscosity. 

1.3 Jeans Instability 

Putting J1 = ° in our set of equations and assuming that all perturbations are 
proportional to -exp(ikr), kr ~ 1, %cp = 0, we arrive at the usual Toomre 
dispersion relation 

(6) 

where c2 = oP%Po, c is the sound velocity. The local dispersion relation 
accounting for the stabilizing influence of the ring's finite thickness is 

2 _ 2 2nGO"olki k2 2 
W - x + 1 + Iklh + c, (7) 

where we used conventional notations: wand k are the frequency and 
wave number of a disturbance; x = (402 + r d0 2/dr)1/2 is the epicyclic 
frequency; 0 = O(r), 0"0 = O"o(r), and c = c(r) are respectively the angular 
velocity, surface density, and dispersion of chaotic velocities of the ring's 
particles at a distance r from the system's center; h ~ c/O is the half-thickness 
of the disk. The stability boundary (w 2 = 0,ow 2 /ok = 0) corresponds to the 
value of Toomre's parameter ("stability margin") Q = xc/nGO"o = Qcr ~ 
0.55; the system is stable for Q > Qcr and unstable for Q < Qcn the maxi­
mum growth rate corresponding to the wavelength 

A = 2nh ~ 10h. 
o 0.65 

(8) 

In this case of large central mass, m/M ~ 1 (m is the rings' mass, M is the 
planet's mass), we have the Keplerian rotation of particles in nearly circular 
orbits, so that x = 0 = jGM/r3i2 . Assuming that O"o(r) ~ m/nr2, the 
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instability condition Q < Qcr can be rewritten in the form similar to that 
used by Ginzburg et al. [40] 

H < Hmax = m(r)· riM (9) 

(here we already used Qcr ~ 0.55; H = 2h is the full thickness of the rings). 
An estimate of the maximum possible mass of Saturn's rings system has 

been made in the paper by Null et al. [122ad] by comparison of the real tra­
jectory of the Pioneer 11 spacecraft with its prescribed trajectory (obtained 
without accounting for the influence of Saturn's rings). The authors conclude 
that the m/ M ratio must be less than 1.7 . 10- 6 since the" hea vier" rings would 
have led to appreciable (but actually not observed) deviations of the real 
trajectory from the prescribed trajectory. Assuming (m/M)max ~ 1.7· 10- 6 , 

we obtain an estimate for the maximum possible thickness of a Jeans­
unstable ring: H < H max = 1.7 . 10 - 6 r , i.e., for r = 105 km, H max = 170 m. 
Saturn's rings are likely to have the same or even smaller thickness; so, 
generally speaking, they may be Jeans-unstable. The characteristic scale of 
this instability is A ~ ,1,0 ~ 2 km for m/M = 1.7· 10- 6 (and still less for 
m/M < 1.7· 10- 6 ), and only wavelengths close to ,1,0 are unstable: both 
small-scale and large-scale disturbances are stable. Note that scales A of the 
order of a few kilometers (or even a few hundred meters) correspond to the 
hyperfine structure of Saturn's rings discovered by Voyager II. 

As the parameters of rings A, B, and C essentially differ from each other, 
it is natural to use the local Toomre criterion and, possibly, only the most 
dense ring B may be really unstable according to the Jeans mechanism. 
Indeed, some indirect estimates, obtained in recent papers (Lane et al. [120ad]), 
give Q ~ 2 for ring B (and Q ~ 30 for the Cassini division). However, an 
error in only two times can lead to the appearance of the most powerful 
(Jeans) instability giving both hyperfine (with scales A "" H) and, at the 
nonlinear stage, fine (with scales A ~ H) structures of the rings. (Nonlinear 
theory of Jeans instability is discussed in Chapter VII). 

1.4 Dissipative Instabilities 

Aside from the Jeans solutions considered above (they may also be called 
"adiabatic "), Eqs. (1)-(5) for t1 = 0 have another solution corresponding to 
a new stationary state close to the initial one; this solution can be obtained 
from Eqs. (1)-(5) if we put in these equations w = 0: 

Vr = 0; ik ( P) 
vq> = 2n <I> + Po' etc. (10) 

Actually, solution (10) describes two essentially different types of perturb a­
tions [48a]: "entropic" (local density P is perturbed) and "whirl" (p is 
unperturbed). But in the long-wavelength limit (kh ~ 1) these perturbations 
are determined by one and the same formulae (10). 
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In the case when the adiabatic (Jeans) perturbations are stable, Q ~ 1, 
a quite natural question arises: What is the character of evolution of per­
turbations described by Eq. (to) when dissipative factors (viscosity and heat 
conductivity) are operating? In other words, one should investigate whether 
dissipative instabilities are possible. 

Let us consider the simplest model of Saturn's rings consisting of identical 
particles assumed to be indestructible-imperfectly elastic spheres. Then, 
following Goldreich and Tremaine [114ad], one can perform some simple 
estimates of the conditions when the heat balance is possible. On one hand, 
in any differentially rotating system, the viscous stress converts the kinetic 
energy or orbital rotation into the random kinematic energy ("thermal 
energy"). The velocity dispersion of particles v} increases, owing to this 
mechanism, according to: 

(11) 

Cl being a constant of the order of unity [67]. On the other hand, the "thermal 
energy" is dissipated as the collisions of particles are not perfectly elastic, 

(12) 

where we denotes the collision frequency, 6 is the so-called coefficient of 
restitution (it is supposed that at each collision the tangential component 
of the relative velocity of particles is conserved while the normal component 
is reduced by a factor 6, where 6 :s; 1), C2 is a constant of the order of unity. 
Evidently, the stationary state is possible when 

(dV}) + (dV}) = O. 
dt 1 dt 2 

(13) 

For a ring of thickness h ~ a (a is the particle radius) the collision frequency 
We ~ VT na, n being the volume particle density (cm - 3) and a = 4na2• It 
can readily be shown that We ~ OT, where T = L . na2 is the optical depth, L 
being the surface density of particles (cm - 2). The" hydrodynamical" estimate 
for the kinematic viscosity v is 

(14) 

I ~ I/na ~ vTlwe being a mean free path; this estimate is valid for T ~ 1. 
A quite natural generalization of the formula (14) for arbitrary values of T, 

(15) 
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is analogous to the expression for the plasma conductivity in the magnetic 
field (see [138]). The approximate expression (14) is not very accurate but it 
gives correct asymptotics both for fJ./roc ~ 1 and fJ./roc ~ 1. Then the ex­
pression (15) can be also represented as 

2 ( 1)-1 V~~ T+~ . (16) 

By using the relations just derived, we can rewrite Eq. (13) in the form: 

(17) 

Thus, the heat balance condition requires, for each T, its own equilibrium 
value of e. In particular, if T2 ~ 1 we have, instead of (17), that 

(18) 

or 

(19) 

where (1 is the mass surface density (g cm - 2). The equilibrium condition (17) 
requires, in this case, e being very close to unity, which means that the 
collisions should be almost absolutely elastic. If strong inelasticity actually 
takes place, the equilibrium of the kind considered is not possible: a dense 
layer with properties close to those of incompressible fluid must form. True, 
Goldreich and Tremaine [114ad] showed the possibility of the interesting 
mechanism of automatic regulation. Indeed, generally speaking, the value 
(1 - e2 ) in (17)-(19) is a monotonically increasing function of the thermal 
velocity VT' Hence, when (1 - e2 ) varies, with variation of VT' within suf­
ficiently broad limits, evolution of the disk may lead to the state in which VT 

adjusts so that relation (19) is satisfied. However, possibilities of such self­
regulation are probably restricted. 5 

It means that for the real situation the state of the problem itself on the 
dissipative instability of some equilibrium is not always correct. On the 
contrary, it may easily occur that any stationary state is quite absent; or 
before the system went to a stationary state, perturbations, increasing at the 
unsteady background, will completely break up the initial smooth distribu­
tion. 

Let us, nevertheless, suppose that equilibrium on the (19)-type is present. 
Then, if we are interested only in long-wavelength motions in the ring, the 
equilibrium conditions across the ring's plane (along the z-axis) being 

5 It seems to be evident from the above discussion that the study of the dependence of the 
restitution coefficient e on the impact velocities of (ice) particles at the temperature of the rings 
(",,90 K) would be of great importance. Unfortunately, such data are not available at present. 



246 XII Other Applications 

remained, the relation (19) will play the role of the state equation. Indeed, 
assuming for simplicity the power dependence (Ward [125ad]): 

IX> 0, (20) 

we derive the following relationship for perturbations of a and T: 

(21) 

Equation (2) then gives: 

2Q 1 0 3 dQ 2Q dQ 
Vr ~ - - - r 1'/ - ~ ik - -1'/ r 

px2 r2 or 1 dr px2 dr 1 
(22) 

In the right-hand side of the first equality (22) the term."proportional to v,/, 
was neglected as much smaller at kh ~ 1 than the term remained. The second 
equality (22) is obtained for short-scale perturbations, kr ~ 1. According 
to (14), (21), 

(23) 

Substituting (23) into the equation of continuity (3) gives 

(24) 

i.e., the instability occurs with growth rate (Ward [125 ad]); Lin and Boden­
heimer [121 ad] 

(25) 

From the first equality (22) and the equation of continuity (3) we find the 
general criterion for the long-wavelength instability involved: the "state 
equation" of type (17)-(19) must lead to such a dependence between tempera­
ture T and surface density a that the dynamical viscosity Il[a, T(a)] (i.e., 
in essence the viscous stress) was a decreasing function of a: 

(26) 

Physics of this criterion is as follows. Suppose that some circular perturba­
tions occur at any region of the rings. Then each ringlet of increased density 
(call it b) has neighboring ringlets of decreased density (a and c). The presence 
of the instability means that ringlet b will continue contracting. This feature 
of the evolution is a result of an anomalous diffusion: normal diffusion would 
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tend to smooth density perturbations. Let us assume for definition that the 
ringlet c is inner relative to ringlet b while ringlet a is outer. In the case 
(opposite to (26», when the viscous stress increases with growth of density, 
particles in the boundary area between band c will mainly be carried by the 
more dense ringlet b; so these particles will slow down as the angular velocity 
of ringlet b is less than that of ringlet c). As a result, they will come "falling 
down" onto the center of the system. In other words, the boundary between 
band c will move to the center. Similarly, particles in the boundary region 
between a and b will mainly be carried by the faster rotating ringlet b, moving 
away from the center. Thus, ringlet b will expand and eventually disappear: 
the "normal" viscous stress, increasing with the growth of density, leads to 
normal diffusion. The criterion (26) being satisfied, ringlet b will, on the 
contrary, contract (analogous considerations prove that). This means 
instability: anomalous viscous stress leads to anomalous diffusion. 

Using the formulae above it is possible to study approximately the ring's 
stability at arbitrary values of, (Ward [12S ad]; Lin and Bodenheimer [121 ad]). 

For each given value of the parameter a (in the model considered), which 
determines the velocity dependence of the restitution coefficient according 
to (20), the certain critical value of the optical depth 'c exists, and the system is 
unstable only for, > 'c' An approximate estimation is a,; ~ 1. So it follows 
that rings with small, may be unstable only at very large a. Factually, this 
obviously means that perturbations in optically thin rings must be damping. 

We shall not go into the detail of this theory, as the model of the ring 
suggested by the above authors is too idealized, while conditions of this 
instability happen to be very sensitive to the choice of a model. For instance, 
principally different relations already occur for the model of a monolayer. 
However, it is more important to take into account the real distribution of the 
rings' particles over sizes (and, consequently, over masses). Observations 
(including those obtained by Voyagers I and II) show that the spectrum of 
particle sizes of Saturn's rings is very wide-from micrometers up to approxi­
mately a few tens of meters, maximum contribution into the optical depth 
belonging, probably, to centimeter-size particles. As we observe just a 
modulation of the rings' optical depth, studying the conditions of instability 
in the system of centimeter particles is of interest. But, as was noted in the 
review by Lane et al. [120ad], chaotization of these particles' velocities occurs 
mainly due to gravitation scattering (focusing) by large particles. Conse­
quently, we should write, in this case, instead of(l1): 

(27) 

where (see formula (3), Section 2.1, Chapter VIII) 'g ~ v~/noM2G2 In 1\., 
where M and no is the mass and density of large particles. So the condition 
of heat balance gives, instead of (17)-(19), quite a different state equation: 

(28) 
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from where, particularly, the minimum optical depth, corresponding to the 
stability boundary, is ('c)min = J2 ~ 1.4, this being derived for e independent 
of VT (IX = (0). Other cases6 may be considered in similar fashion. 

Now let us return to expression (25) for the growth rate of the instability; 
it predicts shorter wave perturbations to be more unstable, at least for kh ~ 1, 
when the theory is correct. Perhaps this instability vanishes for perturbations 
with kh ;$ 1. Thus, the initial density perturbation being smooth, a set of 
narrow ringlets should appear for a time of the order of a few to = h2 Iv 
in the regions where the instability criterion (26) is satisfied (i.e., in enough 
dense regions). Their widths and separations should be of the order of a few 
h. However, in Saturn's rings a hierarchy of scales of different circular 
structures is observed-from kilometers (or even a few hundreds of meters) 
up to/hundreds and thousands of kilometers. An attempt to explain this 
hierarchy within the framework of the above instability meets substantial 
difficulties. (However, in the set of narrow ringlets an instability 7 could 
occur which in turn would lead to their "bunching"). Another embarrass­
ment in the application of the theory of this instability to Saturn's rings is 
connected with the presence of 'c' so that the instability considered may occur 
only for, > 'c > 1. This inequality contradicts conventional opinion on the 
value of the optical depth of rings: even the densest ring B is believed to have 
the optical depth , ;$ 1. Nevertheless we should dwell more thoroughly 
upon the correctness of using the observable optical depth, < 1 for Saturn's 
rings. Let , ~ 1 in the homogeneous disk; then, as this disk breaks, as a 
result of some instability, into separate ringlets which are much narrower 
that their widths ('" H), less than or comparable to a resolution of a device 
(the highest resolution L\ '" 150 m was obtained at photopolarimetry 
measurements (Lane et al. [120ad]); this value is not less than the usually 
admitted thickness H). The nonlinear stage of instability could lead to the 
appearance of clear zones between separate ringlets. Then a device with a 
resolution L\ > H would reveal, < 1 (Esposito et al. [113ad]). 

Note also that the difficulty ofthis theory due to 'c > 1 might be principally 
removed when considering short wavelength perturbations, A '" H (solely, 
they are interesting because of their rapid growth). However, for these 
short-scale perturbations, the theory should become much more sophisti­
cated, firstly due to the necessity of solving the three-dimensional problem 
(instead of the plane problem as before) with detailed calculation of the z­
dependence of perturbed quantities. Besides, one should include the per­
turbations of rotational velocity v"" pressure P, and gravitational potential 

6 For example, especially interesting are resonant regions (primarily, vicinities of the main 
resonances), for which effective state equations may be obtained, by equalization the rate of 
chaotization of the kinetic energy (due to "shaking" particles in these regions by satellites) 
to the rate of its annihilation in imperfectly elastic collisions. We note also that one would obtain 
the state equation, somewhat different from (28), by taking into account the thermal motion of 
large particles (for this case, (!c)min '" 2). 

7 Perhaps this instability belongs to the type discussed below. The question on the stability 
of the set of ringlets is very interesting, but a separate problem. 
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<I> (the latter for Q '" 1). At last, the heat conductivity (both in the z-direction 
and in the plane of rings) becomes important, as well as viscosity, for finding 
the heat regime of such perturbations. Note that taking into account the 
heat conductivity along the vertical (z) direction is, strictly speaking, neces­
sary even when considering the equilibrium heat balance in thin disks or 
rings. In the paper by Goldreich and Tremaine [114ad] the heat conductivity 
was omitted, which was incorrect. The statement of the problem being 
correct, the resulting" state equations" of the matter would link the density 
p, the temperature T, and the derivatives dT/dz, d2 T/dz 2 , and not only p and 
T. The same inaccuracy remains in the stability investigations by Ward 
[125ad] and Lin and Bodenheimer [121 ad]. This should not change con­
siderably the main results ofthe theory at the long-wavelength limit, although 
even here a need arises to single out the sense of the quantities averaged in z. 

If the system of particles determining the optical depth of the rings is 
thermostatized,8 quite a new situation arises (Polyachenko and Fridman 
[123 ad]). Now we begin to study this problem. Further, we restrict ourselves to 
long-wavelength perturbations of rings, kh ~ 1, and also assume that 1'2 ~ 1. 9 

The latter condition being fulfilled, the dynamical viscosity Jl is the function 
only of the temperature. Since we consider the temperature to be constant, 
then, in Eq. (22), '11 equals zero, so that the perturbation Vip1 of the Keplerian 
rotation must be taken into account in the expression (5) for the viscous 
stress (where vip = Or + Vip1)' So the set of linearized equations will be the 
following: 

(29) 

2nG(J' 1 
----

k 

(c is the isothermic sound velocity). Equating the determinant of the set to 
zero, one can obtain a cubic dispersion equation -a simplified equation of 
Kumar [115 adJ.10 Two roots of this equation correspond to the usual Jeans 
(Toomre) instability while the latter root describes the secular instability 

8 We do not discuss here the concrete nature ofthe thermostat. Note only that just taking into 
account the heat conductivity (which tends to smooth inhomogeneities of temperature) will 
further the "isothermalization" of perturbations. This is especially appreciable for short-wave­
length perturbations. 

9 As can be readily shown, long-wavelength isothermic perturbations are damping if T ~ 1. 

10 The dispersion relation of Kumar [I I S"d] has five orders of frequency. In its derivation 
Kumar took into account temperature perturbations: liT -# 0, adding the heat conduction 
equation to the initial set of equations. Besides that, he took the angular velocity in a more 
complicated form: n = n(O, y, z). True, Kumar's dispersion relation corresponds to a viscous 
cylinder rather than a disk. 
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of the rings. Supposing w ~ vk2 , one can readily find, from the set (29), main 
relations of this solution [130ad]: 

i 0'1 2 2 . 
V'" = - 20k 0'0 (2nGO'olkl- k c), (30) 

iO'l vk2(2nGO'o 1 k 1 - k2c2) 
V = . 

r kO'O/('X2 + k2c2 - 2nGO'o 1 k I) , (31) 

0<1>1 . 
Fg == - - = 10'1 . 2nG' or ' (32) 

1 OP 1 . kc2 

Fg == - - = -10'1 - ; 
0'0 or 0'0 

(33) 

. k2 2nGO'o 1 k 1 - k2c2 
W = IV 

'X2 + k2c2 - 2nGO'o 1 k I' (34) 

From Eq. (34), we see that the secular instability takes place for k < 2nGO'o/c2 
if the denominator in (34) is positive (i.e., the rings are stable according to 
Jeans). 

To explain the physics of secular instability, let us, first of all, consider 
the case of uniform rotation: 0 "# O(r). The energy of perturbations in the 
disk is determined by the expression: 

(35) 

where c2 = oP/oo'; 0', <1>, and v are the perturbations of density, potential, and 
velocity, respectively. Expanding perturbed quantities into the Fourier 
integrals 

(v, 0', <1» = f dk exp(ikr)(vk' O'k' <l>k), (36) 

and using here the connection <l>k = - 2nGO' k/ 1 k I, we shall obtain 

or for one harmonic 

bEk =I VkI 2 + 1::12(C2 _ 2~~~0). (38) 

Among radial eigenoscillations of the disk with the wave number k, there 
is, apart from Jeans modes, another, neutral (w = 0) mode (10) which is of 
interest to us in this case. Since 0'/0'0 = -k<l>/2nGO'o, the wave energy bE is 
thus easily expressed through <1>. As a result, we have 

(39) 
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For a Jeans-stable disk, the second bracket in (39) is positive, so that bE < 0, 
if 

kl 2nGO'o 
1<-­

c2 
(40) 

The disturbance under examination corresponds to a new, differentially 
rotating equilibrium disk, and from condition (40) this disk has a lower 
energy than the original one. Therefore, if some (any!) dissipative mechanism 
is at work in the system, for example, viscosity, the system indeed will go 
over into this new state at a rate proportional to the rate of energy release 
in a specific dissipative process. This is just the secular instability. It is quite 
analogous to the classical secular instability of viscous Maclaurin's ellipsoids 
(see Appendix, where we derive the instability condition in terms of energy). 

For a differentially rotating disk (Q = Q(r» the rate of change of the wave 
energy is determined, for w ~ VP,l1 by the equation (which is readily 
found from Eqs. (29»: 

In order to elucidate the physical mechanism that drives the instability 
(" in terms of forces") we return to formulas (30)-(34). Figure 130 visualizes 
the plots of disturbances (30)-(33). In the absence of viscosity (or if it is 
neglected) we now have the solution described above, i.e., a new, differentially 
rotating equilibrium disk. In this solution Vr = 0, vII' =1= O. This means that the 
particle from one radius had simply passed to another12 (close) radius and 
remained there (but for the equilibrium not to be violated, the angular 
rotation rate, gravitational potential, and surface density should be cor­
respondingly corrected). 

Consider now formula (30) expressing the relationship between the surface 
density 0' of disturbances and the azimuthal velocity v 11" This formula does not 
involve viscosity, so that at v = 0 the relationship between 0' and vII' is given 
by the same formula (30) (see also Figs. 130(a) and (b». Assume that at 

11 In the opposite case, W ~ vk2 (Jeans modes), one can readily obtain: 

(41') 

Here, the additional term in the expression of the wave energy is due to the central body (see 
end oflntroduction). These modes are damping owing to viscosity. 

12 This evidently requires that the angular momentum of each particle be correspondingly 
changed (unlike Jeans modes, where the angular momentum of each particle stays unchanged). 
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Figure 130. Profiles of perturbed quantities in the stable (by Jeans) gravitating disk. 
Solid lines correspond to the case of secular instability, dotted lines to the case of secular 
stability. (a) Perturbed surface density; (b) perturbed azimuthal velocity; (e) radial 
velocity; (d) perturbed radial gravitational force; (e) perturbed pressure force. 

some moment there has been a density disturbance (0' > 0 at some point A). 
Then, according to Fig. 13O(b), for k2c2 < 2nGO'olkl, vip> 0 at points C (at 
somewhat larger radii, rc > r A) and vip < 0 at points B (at somewhat smaller 
radii, tB < r A)' If there were no viscosity (v = 0), the initial O'(r), vir), 
Fir), Fp(r), Vr = 0 would have remained at subsequent moments of time 
(w = 0, which corresponds to the new, close equilibrium state). The picture 
will, however, change when viscosity (v =F 0) is taken into account. Viscous 
forces will evidently tend to decrease the velocity gradient so that vip will 
slightly increase at points B and slightly decrease at points C. Hence, both 
particles Band C will approach A, i.e., there will be such a radial motion of 
fluid (it corresponds to Fig. 130(c» which wi1llead to a further increase in 
density 0', etc. Thus, it is clear that under condition (40) the (secular) in­
stability must actually arise. For the inequality contrary to (40), it is also 
easy to make certain that this case (dotted curves in Fig. 130) corresponds to 
the stability. 

The secular instability of the type just described is interesting for several 
reasons. Primarily, it works in a (Jeans-Toomre) stable disk. Further, it is 
universal in that it can be caused by any dissipative mechanism: for the system 
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it is energetically advantageous to change to a new ("sliced ") state, and the 
criterion for stability does not depend on a specific process of dissipation. 
Finally, it is essential that for a fairly cool disk the instability must manifest 
itself within a very broad wavelength range which is limited only on the side 
of very short wavelengths, according to (40).13 

1.5 Modulational Instability 

The aim of this section is to prove the following general statement: in an 
arbitrary gravitating disk rotating in the field of the central body with large 
mass, the sufficient condition of the modulational instability is fulfilled. As 
a consequence ofthis statement it can be concluded that Saturn's rings under­
go modulational instability. 

In the works by Petviashvili, Mikhailovskii, Fridman (see Section 1.1, 
Chapter VII) a nonlinear dispersion equation was obtained describing 
perturbation of the small but finite amplitude in a rotating gravitating disk 
provided this disk is near its stability boundary. This equation was generalized 
by Polyachenko, Churilov, and Shukhman (see in the same place), who 
did not use the latter condition. The dispersion equation obtained in the 
latter work has the form 

k2 

w2 = w~ - 2( 2 4 2)' {8[(2yp - 1)k 2c2 - ypnGaolklY 
yp W2k - Wk 

- [(2yp - 1)(5yp - 2)k 2c2 - 4y~nGaolkl](W~k - 4wD) lekl 2• (42) 

Here yp is the "flat" adiabatic index, ek is the element's displacement ampli­
tude, 

(43) 

and 

(43') 

Eq. (42) is valid for arbitrary k. Now we are only interested in a small vicinity 
of that wave number ko which corresponds to non convective oscillations. 
In other words we shall consider only those oscillations which remain in 
the disk. Their group velocity is zero, dwk/dk = O. The corresponding region 
of wave numbers is shaded in Fig. 131, where 

km _ kJ _ nGao 
0- 01 -~. (44) 

13 See also Section 1.5. We would like to mention some different (but gravitational too) 
instabilities which were used by Kadomtsev [126ad] and Igumenshev [127ad] to explain the wave­
like appearance and "clumping" of F-ring (and of several other thin Saturn ringlets). 
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Figure 131. Dependence of the secular instability growth rate y of a disk in the field of 
large central mass on the wave number k. Notation: kl = 2nGao/c2, k2 = x2/nGao; 
k2/k 1 = Q2/2 }> 1. Left: the dispersion curve in a very stable (by Jeans) gravitating disk. 
Nonconvective perturbations (having Vg == dwk/dk = 0) belong to the shaded area of 
wave numbers in the vicinity of the point k = k~1 ~ dw/dk = O. w~ is the dispersion 
(marginal) curve corresponding to Jeans instability in the region of k = k~. It is seen 
that k~2 }> ko I' 

For comparison, we show there the dispersion curve for the case of the 
Jeans instability. It is seen that maximum Jeans instability is at k~ ~ k~. As 
it follows from § 1.3, A~ = 5H; at the same time from the latter inequality it 
follows that A~ ~ H. Besides, we are in a very stable (in the sense of Jeans) 
region where x2 ~ 2rcGa 0 1 k~ I. 

Let us substitute into Eq. (42), instead of k, its value at the point k = ko. 
Then we express the quantities entering into Eq. (42) in terms of Q and x: 

2 4 ~ 

ko2 C2 = ~ k2 Z k x G k '" ) QZ ' 0 C nGa 0 0 = Q4' n a 0 0 = QZ ; (45 

a nonlinear dispersion equation for the vicinity of k = ko is obtained in the 
form 

4 

roZ = rolo Y; Q4(3xQZ _ 4) {16y; - 20yp - 3QZ(6y; - 9yp + 2)} 1 ~k IZ. 

(46) 

Let us express the "surface" adiabatic index yp in terms of the "volume" 
adiabatic index Yv. If this equilibrium is due to the balance between the 
pressure force and the external gravitational force (Q ~ 1), then (see Churilov 
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and Shukhman [112adJ) 

Yp = 3 - 4/(yv + 1), Q~1. (47) 

For Q < 1 the Jeans instability develops in the disk; as known this instability 
is an aperiodic one, i.e., Re Wk = O. In this case, as we shall see below, the 
modulational instability is not possible. In the" very stable" (in the sense 
of Jeans) region, Q ~ 1, it is necessary to use Eq. (47). Then we obtain, 
instead of Eq. (46): 

3x4 l~kl2 
(3yv - 1)2 . Q2(3Q2 - 4) 

x [(50YV - 29y~ - 17) + 84y~ -3~26YV + 36]. (48) 

For large Q, the second term in the square brackets in Eq. (48) may be 
neglected, and then in the expression for the frequency 

W = Wko - PI~kI2 (49) 

the nonlinear addition is negative, p > 0 (which, as we shall see below, 
corresponds to development of the modulational instability) if 

1 ~ "Iv < 1.26. (50) 

Further we shall take "Iv ~ 1 for the estimation of the wavelength ofmodula­
tional instability. For "Iv = Yp = 1, from Eq. (46) we obtain 

4 
2 2 X 2 

W = Wko - Q4C21~kl , "Iv = 1. (51) 

From the continuity equation 

0;1 + div(110V1) = 0, 

in the region of the minimum of the dispersion curve (k ~ ko) we have 

(52) 

Hence 

lat/aol2 = k~I~12. 

Then, instead of Eq. (51) we obtain 

or, using the first formula of (45), we find 

(53) 
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Since 

2 2 ( 1 ) Wko = x 1 - Q2 ' (54) 

then 

(55) 

In the stable (in the sense of Jeans) region, Q2 ~ 1 (Q not necessarily being 
very large; it is sufficient for example to have Q = 3) we obtain 

(56) 

Taking as before Q2 ~ 1 we find the group velocity of the wave (in the 
vicinity of k ~ ko) 

hence 

kc2 - 2nGuo 
x 

dVg _ c2 0 
dk - x> . (57) 

It is seen from (56) that the nonlinear addition to the frequency oc which is 
determined from the equation 

(58) 

is negative: 

(59) 

consequently, 

(60) 

The last inequality coincides with the well-known Lighthill's condition 
[265a]-the sufficient condition of the modulational instability. 

The boundary of the modulational instability in the wave vector q of the 
envelope is determined by the inequality 

(61) 
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Using (57), (59), and also the equilibrium condition in z, c ~ xh, we obtain 
from (61) 

or 

(62) 

Physics of the modulational instability is clearly described in the well­
known books on plasma physics (see, e.g., [39]), and can be understood with 
the help of Fig. 132, where the modulated dependence of the perturbed density 
0" 1 on the coordinate x is represented. As seen from Fig. 132, the sign of 
010" dO" 01 2 /ox in region 1 is negative, while in region 2 it is positive. According 
to Eg. (59), If. < 0, so from the definition (58) ofthe frequency w it follows that 

_ ow = { < 0, in region 1, 
ax > 0, in region 2. 

(63) 

For short wavelengths which we are just considering the approximation 
of geometrical optics is valid in which equations for the connection between 
the frequency and the wave number have the form of Hamilton's equations 
(see, e.g., [70]). With the help of one of these equations, 

ok ow 
at ax' 

we determine the function k = k(t) which, according to Eq. (63), decreases 
with the time t in region 1 and increases in region 2. Then, in accordance 
with Eq. (57), oVg/ok > 0, the group velocity decreases in region 1 and in­
creases in region 2. Thus the wave packet in region 1 will trail intensifying 
thereby the wave at the point A and decreasing its amplitude at the point B. 

A A' 

Figure 132. Initial stage of modulational instability. 
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In region 2 the packet will lead thereby deepening the minimum at the point 
B and increasing the maximum at the point A. 

A similar situation occurs for the gravitational waves on the surface of a 
deep water, for Lengmoir solitons, and helikons in plasma, with the only 
specific feature that for the Lengmoir waves signs of nonlinear addition to 
the frequency ex and ovg/ok coincide with signs of analogous expressions of 
nonlinear waves of the gravitation disk, while for the gravitation waves on 
the deep water and for the helikons the same terms have, respectively, 
opposite signs. 

The necessary condition of the modulational instability (as it follows from 
the description of its mechanism) is the presence of the derivative of the 
group velocity dvg/dk ::P 0 and consequently the presence of the real part of 
the frequency, Re (Ok ::P O. So for Q < 1 when the aperiodic Jeans instability 
occurs, Re (Ok = 0, the modulational instability is impossible. 

Let us estimate the characteristic time of the modulational instability as 
l/Y~ax where ym is the growth rate of this instability determined by the ex­
pression (see, e.g., [39]) 

_ ex 1 0" 1 12 dVg . q. 
0"0 dk 

(64) 

Maximum growth rate of the modulational instability can be estimated if 
we substitute q = qcr into Eq. (64): 

y~ax ~ OQ- 2 1 :: 1
2

• (65) 

Appendix 

Derivation of the Expression for the Perturbation Energy of 
Maclaurin's Ellipsoid 

Let us restrict ourselves to the case of radial perturbations which have the 
frequency (0 = 0 in the reference system rotating with the angular velocity 
o (where the ellipsoid is at rest). Then the perturbation energy bE may be 
written in the form 

bE = T + W, (AI) 

where the kinetic energy 

1 f 2 T = 2 pv",dV, (A2) 

and the potential energy W can be calculated (similarly to Chandrasekhar 
[186]) by the formula 

1 f ( 02r2) W = - 2 V <I> - -2- ; dV, (A3) 

where; is a Lagrange displacement of a fluid element, <I> is a potential. 
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First we calculate W. Representing <I> as the sum <I> = <1>0 + <1>1 of the 
unperturbed <1>0 = tAr2 + t BZ2 and perturbed <1>1 potentials, we divide W 
into two parts 

(A 4) 

where we pass to integration over the ellipsoid's surface (generally, a per­
turbed one). Reducing integration in (A4) to the unperturbed surface of the 
ellipsoid and using oblate spheroidal coordinates 11, (r2 = R2(1 - 112) X 

(1 + (2), Z = R(I1) we obtain 

W = n f "(0 h,hl' hq>[ <1>1 + "(0 :( (<1>0 - Q~r2) j,;J, (A5) 

where ( = (0 is the equation of ellipsoid's surface; h" hI!' hq> are the Lame 
coefficients: 

h~ = RJ«(2 + 112)«(2 + 1), 

hq> = RJ(1 - 112)(1 + (2). 

The perturbed potential of Maclaurin's ellipsoid for the certain mode, 
characterized by the index n, may be written as 

(A6) 

where the continuity of <1>1 at ( = (0 is already taken into account; Pn(z) is 
the Legendre polynomial, 

pnCz) = i-nPn(iz), qn(z) = Pn(Z) 100
(1 + t2 )-I[Pn(t)]- 2 dt. 

We shall not seek to express "E in terms of <li l . Connection between <li l 

and "(0 may be found from the boundary condition 

1 8<1> I 1 8<1> I -- - -- = 4nGph,"(0 
h,8( ';'0 + 0 h,8( (;'0 -0 ' 

(A7) 

so that 

Pn(Jl) -
"(0 = - 4nGphl(1 + (5) . <1>1' 

(A8) 

Taking into account also that 

:, (<1>0 - Q2r2/2) = BR2(0«(5 + 112)/«(2 + 1), 
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we obtain after simple calculations: 

nRz 2-z 
W = 4nGp Kn(Co) 2n + 1 <1>1, (A9) 

where Bryan's [172] notation Kn(z) = P1(Z)q1(Z) - pnCz)qnCz) was introduced. 
Let us now calculate T. To do this, it is necessary to find a connection 

between v", and <1>1. From the equilibrium condition in r we have 

1 at/! 1 at/! 1 

v'" = 2Q a;: = 2Q Tr' (A10) 

wheret/! = <I> + Pip - QZr2/2(Pisthepressure).Ontheotherhand,fromthe 
motion equation in z-axis it follows that at/!/az = 0, i.e., t/! = t/!(r). It is 
sufficient to calculate t/! at the boundary C = Co, where P = 0, t/! = const. 
We obtain 

(All) 

From the expression 

t/! 1 (Co) = <1>1 (Co) + :C (<1>0 - QZrz /2)t5Co = - <1>1 Kn<Co)Pn(JI,), (AI2) 

since JI,1,0 = J1 - rZ/az. Respectively, 

(A13) 

Calculating the integral in (A2) we obtain 

1 -z Z 2 
T = 8Qz<I>1Kn(Co)2nRCon(n + 1)2n + r (A14) 

Taking into account that QZ = 4nGpqz(CoKo, then from (A9) and (A14) we 
find the following final expression for the energy of the radial mode (A6): 

t5E = <l>z 2nn(n + 1) . RCo . K (Y ) {K (Y ) + 4qz(Co)} (A15) 
1 2n + 1 4Qz n <"0 n <"0 n(n + 1) . 

The dispersion relation of Bryan [172] for the same mode (A6) is 

p(O)(Y ) _ K (Y) WZ qz{Co)PnCvo) - ° 
n <"0' W = n <"0 - QZ· vo(1 + 19Z)(dPnCvo)/dvo) -, (A16) 

wCo 
Vo == )4QZ(1 + Cl) _ wz · 

It is easy to see that the expression in curly brackets in (A15) and the left 
side of the dispersion relation (A16) are identical for w = 0. 



§ 2 On the Law of Planetary Distances 261 

§ 2 On the Law of Planetary Distances 

Another interesting application of the theory of the stability of flat gravitat­
ing systems in the field of a large central mass is the problem of the evolution 
of the proto planetary cloud. This topic 14 is dealt with in a number of original 
papers, principally in the papers by Schmidt [151], Fesenkov [137], 
Weizsiicker [347,348], Kuiper [262], Berlaga [164, 165]. Polyachenko and 
Fridman [110] investigate the possibility of the explanation of the law of 
planetary distances by the gravitational instability in sufficiently flat systems. 

As is well known, the distances of the planets from the sun are well enough 
described with the help of the following empirical rule formulated as long ago 
as the eighteenth century by Bode and Titius (see, e.g., [3]): 

(1) 

where ro = 0.4; c = 0.3; n = - 00,0, 1, ... ,6; ro are the distances (in a.u.), 
respectively, to Mercury, Venus, ... , Pluto. 

In accordance with this point of view, assume that the planetary system 
has been produced from a gas-dust disk rotating in a field of the central 
mass [110]. Let the instability condition of such a disk be satisfied. Then 
if the disk is nonhomogeneous in its density 0"0' the perturbation wave­
length is a function ofthe radius-vector r. Thus, the problem is reduced to the 
determination offunction 0"0 = O"o(r) from the function A. = A.(r) given from 
(1). 

Above all, note that the Titius-Bode law (1) can be written in the following 
form: 

r - r 
a In _" __ 0 = 2nn, (2) 

c 
where 

2n 
a = In 2 ~ 9.1. (3) 

Represent the density 0" in the form of the sum O"o(r) + O"l(r). Let 

O"l(r) = a1(r) exp[iaIn r; roJ. (4) 

where a1(r) is the amplitude of the perturbed density varying slowly with 
radius, and a In[(r - ro)/c] is the phase. 

From Eq. (2), it follows that the maxima of the perturbed density 0" 1 in 
(4) coincide with true locations of all the planets, except for the last two­
Neptune and Pluto. This exception is easily removed if one assumes that up 
to r '" 14 a.u. O"o(r) '" 1/r2, and farther it is 0"0 '" 1/r3 (see Fig. 133). 

With due regard for the pressure of the medium, the dispersion equation 
for the frequencies of small radial oscillations of a flat disk rotating about 

14 A detailed review ofrelevant papers is contained in Safronov's book [119]. 
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Figure 133. Dependence of the unperturbed density of the gas-dust protoplanetary 
cloud O'o(r) on the radius r (in astronomical units): (a) 0.4 ~ r ~ 1.6; (b) 10 ~ r ~ 40. 

a central mass M, is Eq. (6) of §l. (The quantity c may denote also the mean 
velocity of turbulent motions of the gas.) 

(a) c = 0, the dust disk model. For perturbations of the type of (4) it is 
easy to find 

(}2 _ 0)2 

O"o(r) = 2nGa (r - ro), (5) 

where (}2(r) = GM/r3• By determining the mass of the nth protoplanet from 
the formula mn = J~: + 1 0" o(r)r dr, we obtain that the masses of the proto­
planets in the region where O"o(r) is determined by formula (5), are of the 
same order of magnitude. At the stability boundary ())2 = 0, and from (5) 
we have (taking into account that a = 9.1, c = 0.3) M/mn ~ 28. 

If the ratio of masses M/mn is more than 28, then the gravitational insta­
bility of a dust disk with the parameters above is absent, and the density 
waves do not increase. 

(b) c =F 0, the gas-dust disk. As follows from the dispersion equation, at 
k = nGO"o/c2 the instability is maximum. Substituting this value of k again 
into the dispersion equation in (1), Section 4.1, we find the relation between 
the stationary parameters of the system at the stability boundary «())2 = 0): 
n = nGO"o/c, hence 

() M(r-ro) 
0"0 r = 3' nar 

(6) 

Comparing the obtained density of the stationary state of the gas-dust 
disk with a similar expression in (5) for the dust disk, we see that the difference 
is only twofold. 
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Thus, in the case where the disk density is dependent on radius according 
to the law of (5) or (6), the time-increasing ring-shaped disk density perturba­
tions are arranged in it according to the law of Titius-Bode (1). If one 
does not assume any definite dependence (To(r), the condition of "quantiza­
tion" of planetary orbits will appear in the following way (on the stability 
boundary OJ2 = 0): 

MIT.. dr 
<l>t(rn) == -2 ~( ) = 2rcn. 

rc r(Tor 

The Titius-Bode rule is obtained from this for 

( ) _ Min 2 r - ro 
(To r - -4 2 --3-' 

rc r 

(7) 

It is easy to see that for (To = c/r3 (c = const) we shall obtain from (7) 
equal distances between the planetary orbits. The constant may be expressed 
through the distance I1r between these planets (11r ~ 10 a.u.): c = MI1r/4rc2• 

From the continuity condition of the surface density we have 

{

M In 2 r - ro 
_ 4n"2-r-3 -, r;:5 14 a.u. 

(To(r) - Mf1r 1 
-423' r> 14a.u. 

rc r 
(8) 

From (8), it follows that the Titius-Bode law is valid up to r ~ 14 a.u. 
Farther (according to observations), the separations between the orbits 
remain unaltered. 
Thus, if the space dependence of the surface density of a gas-dust disk 
rotating in a field of the central mass M, has the form (8), the increasing 
ring-shaped perturbations are located in places of the solar system planets 
(Fig. 134). From Fig. 133, it is seen that approximately from 0.6 to 14 a.u., 
the surface density drops _1/r2. Within this interval, the masses of proto­
planets prove to be of the same order of magnitude. Starting with 14 a.u., 
(To - l/r3 , therefore the masses of the last two proto planets should decrease 
with distance. 

o f-----++-t- 1--+-'--T--T:...J...:""o;;:--t 
1.6 

39.5 

(a) (b) 

Figure 134. Dependence of the perturbed density of the gas-dust protoplanetary 
cloud O"t(r) on the radius: (a) 0 < r ~ 1.8 a.u.; (b) g ~ r ~ 40 a.u. 
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For the development of the instability in the dust disk model, it is necessary 
that M/mn ~ 28, while in the gas-dust model M/mn ~ 14. This means 
that in the present planets there is contained not more than ::::::: 3 % (::::::: 1.5 %) 
of the mass of the protoplanet cloud. 

According to Kuiper's hypothesis [262J, the mass of the present planets 
constitutes 1-10% of the protoplanetary cloud, and Hoyle postulates that 
the residual mass makes up 9 % [223J. 

It is suggested that the larger part of the initial mass of protoplanets 
was blown away due to intensive corpuscular emission of the sun. The 
difference between the masses of the giant planets and planets of the Earth's 
group is ascribed to the action of thermal emission of the sun, which has 
burned away from the latter nearly all the light elements. 

Such a point of view, according to Fesenkov [137J, is not unnatural since 
the planets of the Earth's type consist, as is known, mainly of elements with a 
high melting temperature and are almost lacking light elements such as, for 
example, hydrogen, which is the main material of which stars and giant 
planets are built. 

By adding to the present masses of planets of the Earth's group the amount 
of light gases which is necessary to restore the chemical composition of 
giant planets, we obtain masses larger by a factor of several hundreds, 
coincident in order of magnitude with the masses of giant planets [137]. 
Therefore, it is quite logical to suggest that the original diffuse medium that 
has served for planetary formation, has had the same composition as in the 
sun. 

Of course, the above linear treatment may serve only as a very approximate 
idea for a future theory, which must be essentially nonlinear. If an originally 
stable, slowly evolving system loses at some moment its stability, then it would 
be natural to assume that the growth rate of the corresponding perturbations 
will be rather small. Then a question arises of the further fate of these per­
turbations (already in the nonlinear stage). Practically, one is able to in­
vestigate only perturbations with values relatively small as compared to 
equilibrium, though with finite amplitudes. But even such a treatment 
allows one to answer a number of interesting questions. Taking account 
of nonlinearity can lead either to the stabilizing effect or, on the contrary, 
to an increase in the growth rate of perturbations. Which case will be 
realized in reality is determined by the physical properties of the system. 
In the simplified treatment described in Section 1.2, Chapter VII, these 
properties are generally characterized by the gaseous adiabatic exponent y 
whose value, as is well known, is dependent on many factors: temperature, 
molecular or dissociated state of the gas, ionization degree, etc. It turns out 
that the behavior of the evolving perturbations is critically dependent 
on the value of y: with the adiabatic exponents larger than some critical value 
Yo perturbations increase only to some small finite value. Therefore, only 
with such physical states of the gas in the system as ensure sufficiently low 
values of the adiabatic index y < Yo perturbations can increase strongly. 
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The critical value of the adiabatic index for a rotating gaseous layer turn out 
to be equal to Ye = 1.404. It is interesting that Ye turned out to be close to the 
adiabatic index of the two-atomic gas (y = ! under normal conditions). In 
the one-atomic gas of neutral atoms, for which Y = i, perturbations must be 
stabilized with small amplitudes. But this also refers to the molecular 
hydrogen gas under the conditions typical for dense gas-dust complexes 
of the Galaxy (T '" 10 -;- 50 K). For the hydrogen molecules, the rotational 
degrees of freedom are "frozen in" due to an anomalously large value of 
the rotational quantum of energy [68] : hw ::::; 8 . 10 - 3 e V, which corresponds 
to the temperature hwjk ~ 85 K. 

In what cases may perturbations of the gas be assumed to be approxi­
mately isothermic (y < Ye)? Note two possibilities. The adiabatic index may 
be close to 1 for the gaseous layer in the state of partial ionization. Such a 
state could be established in a gaseous layer surrounding the young sun 
if the gas is heated by its radiation up to T '" 8000 K. The same may be 
applicable to the case if, in the layer of the gas (even neutral) or the dust, 
losses for radiation are large, so that under compression the temperature 
changes negligibly.ls 

§ 3 Galactic Plane Bending 

Hunter and Toomre [230] applied the membrane oscillation theory of an 
infinitely thin cold gravitating disk which they developed (cf. Section 2.1, 
Chapter V) to test the different hypotheses proposed for the explanation of 
the observed bending of the plane of the Galaxy (Burke [177]). 

Data obtained from radio observations at A = 21 cm (see [230]) come 
to the following. The outer edge of the layer of the interstellar atomic hydro­
gen is lifted upwards (by about h = 1 kps, or (6 -;- 7 % of radius) near 
one (solar) edge of the Galaxy, while on the opposite side it is lowered 
downwards by approximately the same amount. At the same time, a part 
of the disk of the Galaxy, internal relative to the sun, appears to be flat. 
Thus, in the cross-section, the hydrogen layer resembles in shape the integral 
sign. 

At least four different explanations of the described phenomenon are 
suggested. 

(1) The possibility was considered [230] that this is simply a tidal dis­
tortion due to the Magellanic Clouds at their present distance from the 
Galaxy (in order of magnitude). 

(2) Kahn and Woltjer (see [230]) suggested that the phenomenon is due 
to the intergalactic gas flow round the Galaxy and its halo. 

15 In conclusion, we should note that the Jeans instability is apparently not only interesting 
in the problem discussed. For example. the secular instability of the type considered in the pre­
ceding section could also play an essential role. 
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(3) The same authors, as well as Lynden-Bell [283], considered also the 
possibility of free oscillations of the plane of the Galaxy (of the mem­
brane type) which might have been excited at the epoch of the forma­
tion of the Galaxy. 

(4) The orbit of the Magellanic Clouds might in the past have been located 
much closer to the Galaxy than it is now [230]. Then the amount of 
the effect may be essentially larger than that according to the first 
of the versions listed. For the first time such a possibility, but in Ii 

somewhat different connection, was considered by Idlis [51]. 

To the four possibilities listed above, one may add still another implying 
an a priori nonprohibited instability. However, this possibility may be 
excluded due to the general theorem about the perturbation stability with 
m = 1 (in a cold disk) proved by Hunter and Toomre, which just corresponds 
to the observable angular dependence "'ei",. The available thickness of the 
Galaxy is likely to be enough to stabilize the" fire-hose" instability. 

Let us consider the remaining possibilities. 

3.1 Quasistationary Tidal Deformation 

To make an estimate of the present tidal effect of the Magellanic Clouds, these 
latter may be represented in the form of a point (with a mass Me ~ 1010 M 0' 

where M ° is the solar mass), located at a distance re ~ 55 kps at the latitude 
b = 35°. It is convenient to assume the longitude of this point (from the 
center of the Galaxy disk) to be cp = O. Then, in the first order of magnitude 
with respect to rlr" the vertical tidal force F * from the clouds is approxi­
mately equal to 

(1) 

Hunter and Toomre [230] calculated the response to the stationary 
external perturbation of the form 

F * = (nGMIR2)(rIR) cos cp. (2) 

It is represented in the folloWing form: 

her, cp, t) = Srr sin cp + RHst(rIR) cos cp, (3) 

where S ::::::: const is the constant velocity of precession (S '" 1/2Q) while H 
is the function of radius, which is presented by Hunter and Toomre [230] in 
the form of plots (Fig. 135). In order that they might be used, it is necessary 
in this case to take into account that F * in Eqs. (1) and (2) differ by a factor of 
gst = (3/2n)(Me R3/Mr;) sin 2b. Assume for the Galaxy that 

M = 1.2.1011 M 0 ,R = 16kps; 
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Figure 135. Perturbations with m = 1 of various disks under the action of external 
force [230]; amplitudes at the disk's edge are 2.72, 5.31, and 7.94 for mode1s 16X, 16XX, 
and 16XXX, respectively. 

the last value yields for the model 16X16 a reasonable surfat;e density: 
(J = 87 M 0/pS2 and the rate of rotation V = 255 km/s at r = 10 kps. Then 
the factor gst = 9.2.10- 4, and from Fig. 135 it follows that for the 16X 
model, for example, we have a maximum deviation of the plane by only 
2.72g1R ~ 40 ps (if the tidal force of such an amount is constantly acting). 
For the 16XX model, a similar displacement will be 78 ps and even for the 
16XXX model with a very low density on the periphery it is only 117 ps 
on the very edge. Of course, these quasistationary estimates may easily 
contain an error by a factor of 2 or 3 due to uncertainties in the models of 
the Galaxy and of clouds. Nevertheless, because of the fact that the observed 
deformation is '" 1 kps, Hunter and Toomre [230] arrive at the conclusion 
that the possibility considered here should be rejected, in any event it 
cannot be the main cause of the observed bending of the Galaxy plane. 

3.2 Free Modes of Oscillations 

The disk with discrete spectra are not typical since the real disks have no 
sharp boundary. In such disks (with a continuous frequency spectrum) 
simple initial deformations cannot remain for a sufficiently long time. One 
of the reasons common for perturbations of any form, was noted earlier, 
in Section 2.1, Chapter V -this is the drift of the initial perturbation toward 
the disk edge (where it must damp rapidly). The other reason, which is 
essential, at least in the case of perturbations with m = 1, lies in the fact that 
different ringlets simply tend to rotate at different rates under the action of 
the gravitational torque from the side of a massive internal disk. 

16 These models were considered in §1, Chapter V. 
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3.3 Close Passage 

According to the opinions of Hunter and Toomre [230], this is a single 
promising suggestion. The observed radial velocity of the Large Magellanic 
Cloud (LMC) corrected for the movement of the sun and for galactic rotation 
(250 km/s) shows that the LMC is at present moving away not only from us 
but also from the galactic center. This velocity is of the order of 50 km/s 
[230]. The time scale of T - (4 -;- 6) . 108 years was determined thus: at 
that era, the Galaxy and LMC were separated from each other by a distance 
essentially less than at present. Numerical estimates of the Galaxy plane 
bending in this case, which are similar to those made above (Section 3.1), 
yield a reasonable amount of deviation provided that the LMC (about 5 . 108 

years ago) had passed at a distance within 20 kps from the center of the 
Galaxy (for the mass of the LMC ~ 2.1010 M0). 

From this point of view, the presently observed picture of the Galaxy 
plane bending is the evolved tidal perturbation from the LMC, which had 
been excited several hundred million years ago. 

§ 4 Instabilities in Collisions of Elementary Particles 

In conclusion, let us briefly consider17 one somewhat unexpected possibility 
of applying the idea of the gravitational instability to the problem of multiple 
production of particles (see [136]). 

Let us now turn our attention to collisions of hadrons (leading to the 
formation of a very much flattened disk and its subsequent scattering). In the 
most consistent way, this scattering is described, as is well known, in the 
hydrodynamic Landau theory [66]. This theory, however, does not describe 
the "fireball" (or "parton") structure of scattering. In reality, such a structure 
may probably be obtained with the preservation of the main idea of the 
Landau theory, i.e., ofthe hydrodynamics itself. Only the suggestion in it that 
the motion of the matter in the course of an essential part of scattering is one­
dimensional is possibly inconsistent. The one-dimensional motion, as follows 
from elementary estimates, is unstable relative to perturbations lying in the 
disk plane. 18 The instability must lead to the formation of "quasi-inde­
pendent" clusters. As we are aware, the dispersion equation for plane per­
turbations of a gravitating disk has, roughly speaking, the form 

w2 ~ k2c2 - 2nGaok (+X2). 

In the case of interest, the role of gravitation is played by the attraction be­
tween" elements" of nuclear liquid of the disk. Since rather large distances are 

17 Presented by V. L. Polyachenko at the All·Union Conference on Plasma Astrophysics 
(Irkutsk, 1976). 

18 Other types of perturbations may also be unstable. It is generally interesting to investigate 
the problem of the role of "collective phenomena" in the problems under consideration. 
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essential here, we have, for the Yukawa (for example) attraction between 
the nuclear charges q and Q: U = -g (qQ/r)e- W (g is the constant of inter­
action, h = c = 1). Since the size of the disk is less than l/p, one may, for the 
estimate, assume that e- W ~ 1: the Yukawa attraction becomes long­
range (and"" -l/r), similar to gravitation. Accordingly, we have the 
following approximate dispersion equation: w 2 = k2c2 - 2n(g/m)(Jk, where 
m is the mean mass of nuclear particles, (J is their surface density (cm - 2). 
Hence, as one can easily confirm, it follows that w2 < 0 (i.e. the instability 
takes place) already for multiplicity of the order of 1 (and when c is the 
velocity of light). 

Of course, we have stated above only a "rough substantiation" of the 
idea. A more detailed discussion would be irrelevant in this book. 
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§ 1 Collisionless Kinetic Equation and Poisson Equation 
in Different Coordinate Systems 

(a) Kinetic equation. In Cartesian coordinates x, y, z the collisionless 
kinetic equation is written in the form 

of + v of + v of + v of _ oell of _ oell of _ oell of = 0 (1) 
at x ax Yay z oz ax ovx oy ovy oz ovz . 

It is easy to see that the transition to the curvilinear coordinates or into a 
rotating system may be realized via direct transformation of Eq. (1). This 
procedure, however, is normally rather cumbersome. A simpler method of 
obtaining the kinetic equation immediately in the required coordinate 
system is as follows. Note that the collision less kinetic equation may be 
presented in the form 

df of 
dt = ot + [f, H] = O. (2) 

Here H is the Hamiltonian of a particle in the self-consistent field 

H = !v2 + CI>(r, t), (3) 

while [f, H] is the Poisson bracket: 

[f H] = L (Of oH _ of OH) (4) 
, - i Oqi 0Pi 0Pi Oqi ' 
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where qi and Pi are the generalized coordinates and conjugate impulses of 
the particle. Recall that according to the definition Pi = aL/aqi' where L 
is the Lagrange function: 

L = tv2 - <1>(r, t). (5) 

Generally, it is easy to write the expression for the Hamiltonian in any 
coordinate system. 

In the most usable (including those in this book) coordinates, the Hamilton 
function has the following form. In the cylindrical coordinates r, qJ, Z 

(6) 

where Pr = V" Pcp = rvcp, pz = Vz· 
In the spherical coordinates r, e, qJ 

(7) 

In this case, Pr = V" Pe = rVe, Pcp = r sin e vcp. 
In accordance with these expressions for the Hamilton function, it is easy 

to obtain, using (2)-(4), the kinetic equation in the coordinate systems under 
consideration. 

In cylindrical coordinates, it happens to be 

_ (VrVcp + a<1» aj _ a<1> ~f = O. (8) 
r r aqJ avcp az avz 

In spherical coordinates, respectively, the kinetic equation is of the form 

- --cote-+- -(
Vr Ve V~ a<1» aj 

r r rae aVe 

_ (VrVcp + cot e VeVcp + _~_ a<1» aj = O. 
r r r sm e aqJ aV cp 

(9) 

In the spherically symmetrical case, it is frequently more convenient 
(see, e.g., §3, Chapter III) to use somewhat different coordinates in the velocity 
space: instead of v" Ve, and vCP' V" V-L = (v~ + V~)1/2, and If. = arctan vcp/ve. 
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In these coordinates, the kinetic equation is written in the form 

of + V 1- (cos IY. of + sin IY. of _ cot e sin IY. Of) 
ot r oe sin e o<p OIY. 

+ vr(of _ V 1- Of) + (vi _ 0<1» of 
or r OV1- r or oVr 

_ ~ (cos IY. 0<1> + sin IY. 0<1» of __ 1_ (sin IY. 0<1> _ cos IY. 0<1» of = 0 
r oe sin e o<p ov 1- rv 1- oe sin e o<p OIY. . 

(10) 

One may write the kinetic equation also in an arbitrary orthogonal 
coordinate system q1, qz, q3, with the square of the line element of the form 

dlz = hi dqi + h~ dq~ + h~ dq~, (11) 

where the hi are some coordinate functions. The velocity components are 

(12) 

so that the Lagrangian is 

L = -!<Mtii + h~ti~ + h~tiD - <I>(qb qz, q3)· (13) 

Hence we find the generalized impulses Pb Pz, P3, corresponding to the 
coordinates q1, q2, q3: 

oL z. 
P1 = Oti1 = h1q1'···· (14) 

We express, from (14), {11, 4z, 43 through P1, Pz, P3 and the Lame coefficients 
hb hZ,h3: 

til = pdhi,···· 

Therefore, the velocity components are 

V1 = pdh1, .... 

The Hamiltonian of the particle is 

(15) 

(16) 

Hence according to (2)-(4) we derive the general form of the kinetic equation 

of + I [p~ of _ 0<1> of _ ~~ (p~ + P~ + p~) Of] = O. (18) 
ot i= 1 hi Oqi Oqi 0Pi 20qi h1 hz h3 0Pi 

Then one has to turn again from the impulses Pi to the velocities Vi [by 
formulae (16)]. 
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Write now the kinetic equation in a rectangular coordinate system 
x, y, z, rotating with an angular rate n. If it is written in the form 

of of . of 
-+v-+v-=O 
ot or ov ' 

(19) 

then, instead of the acceleration t, in this case one evidently has to substitute 
the force 

t = F = - ~~ + 2[vn] + [n[rn]], (20) 

where the first term on the right-hand side provides the ordinary gravitational 
force, while the remaining two terms provide the inertia forces (respectively, 
the Coriolis and centrifugal force). If the rotation axis is chosen as the 
z-axis of the coordinate system, then the required kinetic equation will 
take the form 

+ (n2y _ 2nv _ 0<1» of _ 0<1> of = O. (21) 
x oy ovy oz oVz 

Let us further give this equation in the cylindrical (also rotating) co­
ordinate system: 

of + v of + v", of + v of + (_ 0<1> + n2r + 2nv + v;) of 
ot ' or r ocp Z oz or '" r ov, 

_ (0<1> + 2nv, + v,v"') of _ 0<1> of = o. 
r ocp r OV'" OZ OVz 

(22) 

(b) Poisson equation. The second basic equation of the theory, the Poisson 
equation, has, in the arbitrary orthogonal coordinate system (11), the follow­
ing symmetrical form: 

(23) 

where the summing is carried out with circular interchanges of the indices 
1, 2, 3. In cylindrical coordinates 

1 0 (0<1» 1 02<1> 02<1> 
~<I> = -;: or r 8r + r2 Ocp2 + OZ2 = 4nGp. (24) 

In spherical coordinates 

1 0 ( 2 0<1» 1 0 (. 0<1» 1 02<1> 
~<I> = r2 or r 8r + r2 sin e oe sm e oe + r2 sin2 e Ocp2 = 4nGp. 

(25) 
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§ 2 Separation of Angular Variables in the Problem of Small 
Perturbations of Spherically Symmetrical Collisionless 
Systems 

For the arbitrary distribution function of the form fo = fo(E, L 2) in the 
spherically symmetrical case, the angular part of the spatial dependence of 
perturbation may always be separated in the form proportional to the 
spherical harmonics: <1>1 '" Yj(e, ({J). 

This natural statement may be formally substantiated with the aid of the 
following calculations. Simultaneously, we shall obtain, seemingly, the most 
natural representation of the equations describing the perturbations of 
spherically symmetrical stellar systems which takes into account completely 
the symmetry of the problem. 

We represent the perturbation of the distribution function in the form of 
the expansion 

(1) 

where the functions 

T~.«({Jb e, ((J2) = e-im"'l-is"'2P~s(cose) (2) 

are introduced, and P~.( cos e) are the three-index functions [33], in particular, 
the P~o(cos e) functions, within an accuracy of coefficients coincident with 
the associated Legendre functions. Therefore, it is convenient to write 
that 

<1>1 = x(r, t)T~o«({J, e, oc). (3) 

Let us substitute (1) and (3) into the linearized equation in the form 
(see §1, Appendix) 

afl v 1. f' ~ 0<1>1 afo 1 L (afo afo 2) at + -;:Lfl + Dfl = Tr aE Vr + r <1>1 aE V1. + aL2 2V1. r , 

where 

As a result, we have 

a" I I V1." I ~ I "~'l I -;- L.,AmsTms + - L.,AmsLTms + L., DAms Tms 
ut s r s s 

(4) 
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Further, the operator L will be represented in the form (33) 

(6) 

where the operators fJ + and fJ _ act on the T~s functions according to the 
formulae (33): 

~ I I 
H+ Tms = ()(s+ITm,s+h 
~ I I 

H_ Tms = ()(sTm,s-l, 

where ()(s = J(l + s)(1 - s + 1). Therefore, 

~ I 1 I I 
LTms = 2/()(S+ITm,S+1 + ()(sTm,S-I)' 

(7) 

(8) 

(9) 

Further, the spherical harmonic y~(e, cp) is rewritten through T~o(cpI' e, CP2) 
in the following way: 

(10) 

[if all normal coefficients are included in x(r)]. Through T~s one may write 
also the expression LT~o(e, cp), on the right-hand side of (5). For that 
purpose, make use of the equality 

I 1 I I 
LT mO(CP, e, ()() = 2i «()(I T m, I + ()(o T m, -I)' (11) 

Thus, the angular variables have been separated, and the equations for the 
function A±s 

(12) 

s = -1, ... ,1, 

have been obtained. 
Since A-s = A+s (as may be easily shown), we can restrict ourselves to 

only nonnegative s = 0, 1, 2, ... , 1. The density PI = J II dv needs to be 
calculated, according to (1) and (2), by the formula 

PI = 2n fAOV.ldVrdV.l' (13) 

The further investigation depends already on a specific form of the 
distribution function under consideration, and is unlikely to be carried out in 
the general form. In particular, in the general case 10 = 10(E, L 2), it is 
impossible to construct the variational principle, except for the isotropic 
case 10 = 10(E) (or for radial perturbations). 
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However, for sufficiently simple systems, possessing some additional 
properties of symmetry, the problem is solvable. For example, in case of a 
homogeneous sphere with circular orbits of particles, from derived Eqs. (15) 
and (16) it is easy to obtain all eigenfrequencies of oscillations (cf. Section 3.1, 
Chapter III). 

In Section 3.4, Chapter III, the above method (for I = 2) is applied to 
derivation of the dispersion equation describing the local disturbances of the 
spherically symmetrical systems with nearly circular orbits. 

§ 3 Statistical Simulation of Stellar Systems 

In this section we consider some details of the method of statistical simulation 
of the stellar systems with different geometries. Description of the method 
was begun in Section 5.2, Chapter III. 

3.1 Simulation of Stellar Spheres of the First Camm Series 

1. First of all let us switch from the distribution function in (7), Section 
6.2, Chapter III: 

dM = fodrdv, f dM = M, (1) 

which is normalized for the system's mass M to the function F(e;, Jl) necessary 
for us which is normalized for 1; the latter expresses the density of prob­
ability that the particle has the energy and the angular momentum within the 
range (e;, e; + de;; Jl, Jl + dJl) 

f dw = 1. (2) 

Let us take the general case j~ = j~(e;, Jl, Jlz), where Jlz is the z component 
of the angular momentum, and then in the formula 

(3) 

switch to the variables action-angle Ii and Wi. Since 

and since the equilibrium distribution function is not dependent of the angular 
variables Wi' we obtain 

(4) 
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Thus, in the general case the probability density in the variables Ii is 

8n3 

Fill' 12 , 13) = Ai fo[e(li), fl(l i), flz(li)]. (5) 

When the function fo is independent of flz = 13 , fo = fo(e, fl), one may 
integrate in (4) over 13 (from - fl to + fl), so that we have 

16n3 f 1 = M flfo[e(li), fl(li)J d11 d12 • 

Thus 

If one switches in (6) from 11, 12 to e, fl, one finds 

1 = 16n3 fl ( ) D(l1, 12) d d 
M JOe, fl fl D(e, fl) e fl, 

that is, the desired probability density equals 

16n3 D(l1,12) 
F(e, fl) = M flfo(e, fl) D(e, fl) . 

Since (see §4, Appendix) 

(6) 

(8) 

(9) 

(10) 

the Jacobian on the right side of (9) is equal to 01 doe = l/VI so that we, 
indeed, arrive at formula (5), Section 5.2, Chapter III: 

16n3 

F(e, fl) = M flfo(e, fl)/v 1(e, fl)· (11) 

This formula is valid for arbitrary systems with the distribution functions 
of the form fo(E, L). In the given case we must substitute into (11) fo(e, fl) 
from (1), so that, finally, for the models of the first Camm series 

6 == qJ(R) - e. 

The normalized constant C is expressed by the formula (see §6) 

C = (2n)-3/2. 2-P/2 [(IX + (f3 + 5)/2) . 
r(1X + 1)r(f3/2 + 1) 

(12) 

(13) 

2. "Playing" of energies ei and of angular momenta fli' which correspond to 
(12), may be performed by one of the standard methods in the statistical 
simulation. Here we recall briefly two normally used methods (details may 
be found in the special courses of the statistical simulation [3ad,9OOJ). For 
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the simulations of different systems, results of which are discussed in the 
main text of the book (§§5 and 6, Chapter III; §3, Chapter IV) we used both 
these methods. Since in all the cases we must first of all "play" two-dimen­
sional random vectors [for example, (e, J1.) for Camm's models], we shall 
describe these methods just for some two-dimensional distribution function 
f(x, y) which is determined in a region L\: 

II f(x, y) dx dy = 1. 

& 

First method (Neumann's method). Let us suppose that f(x, y) :=:; M 0 

everywhere in L\. We introduce also the auxiliary probability density 

f ( ) - {liS, if(x,Y)EL\, 
1 x, y - . 

0, If (x, y) ~ L\, 
(14) 

where S is the area of the L\ region: S = H& dx dy. Then, the following al­
gorithm of the playing of the vector (x, y) is valid [3ud,9ud]. At first, we play 
(x, y) according to fl (x, y) (it is usually a very simple task -see, for example, 
below); let us assume that we obtain some vector (Xi' yJ Then we play the 
value OCI distributed uniformly in (0,1), and, if it turns out that oclMo < 
f(Xi, Yi), then the first pair (Xi> Yi) is found: but if oclMo > f(xi> Yi) then this 
pair must be discarded, and we play (x, y) again according to fl' compare 
f(x, y) with oc2Mo, and so on. 

The algorithm described is the most simple one. Though this algorithm 
is not the fastest of the known algorithms, we used just one in most cases 
since, as a rule, the time of playing of an initial state is only a negligible part 
of the total computer time for any task. 

For the distribution function (12) with f3 > -1 and oc > 0, one can 
choose, as Mo, the maximum of the function F(e, J1.) in the region L\: Mo = 

max& (F(e, J1.». In this case the region L\ is the "triangle" in Fig. 25(a) (§6, 
Chapter III), so that the playing algorithm of (ei, J1.i) in accordance with 
flee, J1.) = 11S& is especially simple: it reduces to the playing of coordinates 
of the point which has the uniform distribution within the rectangular region 
(0 < e < 1, 0 < J1. < J1.max), if one will simultaneously discard those points 
which have for a given e the ordinate J1. > J1.k(e), where J1.k = J1.k(e) is the line 
of circular orbits. 

For f3 < -1 (we assume oc to be always positive) F(e, J1.) ~ 00 as J1. ~ 0; 
so in this case for the application of Neumann's method one must cut off 
F(e, J1.) at some J1. = J1.min, assuming, for example, that F(e, J1. < J1.min) = 
F(e, J1.min). It is clear that if we choose J1.min ~ fl, then an error due to such a 
cutoff must not influence the results of computations. It is possible, however, 
that in this case the playing methods of (e, J1.) connected with piece-constant 
approximation of the distribution function [3 ad] are more profitable. 

Second method (inversion). Using this method of playing the vector (x, y), 
one should, for each given case of the random number OCi having a uniform 
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distribution on the segment (0,1), "invert," i.e., resolve with respect to y, 
the equation 

lY.i = r F(y') dy' 
Ymin 

(15) 

[F(y) is the one-dimensional distribution of the value y]. As a result, for y, 
we find some value y = Yi. Then, the conditional distribution of the random 
value x is considered: 

( I ) - I(x, Yi) 
g x Y - F(Yi) . (16) 

We select again, within the segment (0, 1), the random number lY.i+ I and 
determine with it the random number Xi with the distribution g(x I y;) by 
solving, with respect to Xi' the "equation of inversion" similar to (15): 

Ix, 1 IX' 
lY.i+1 = g(x'ly;)dx' = F( .) I(x', Yi) dx'. 

Xmin Yl Xmin 

(17) 

The sequence of the pairs of numbers (x;, y;) resulting in this way has, as 
may be shown [3 ad], the required distribution I(x, y). 

Some combined methods of playing are also possible, of course. For 
example, in the second stage of the inversion method just described [deter­
mination of Xi from lY.i + 1 in accordance with the probability density g(x I Yi)] 
it may prove to be easy to make use of the Neumann method, etc. 

In [41 ad] the problem was solved by both an N -body method and a matrix 
method. The latter requires the computation of different orbit characteristics 
of moving particles xmin ' X max , VI' V 2 , •.• on the sufficiently" dense" net­
work (in order to obtain the necessary exactness). So in fact we played 
[41ad] just these "set" values (Si' Pi) in most cases. 

Playing of the coordinates and the velocities of the particles with the 
given £, p, pz may be performed, for example, in the way described in Section 
5.2, Chapter III (or in [41 ad]). 

As to the solution methods of the large sets of differential equations, then, 
in this connection, one can say that different high-order methods (of those 
normally used) are practically almost identical. 

3.2 Simulation of Homogeneous Nonrotating Ellipsoids 

From the distribution function of the ellipsoid at rest in the form (64), 
§1, Chapter IV, which was normalized by density Po, we go to the probability 
density 

3 
F(u, v) = r...' 

4", v 
(1) 
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which explicitly depends only on v and vanishes out of the triangular region 
shaded in Fig. 47(b). 

The playing ofthe values u, v according to (1) may easily be executed by both 
Neumann's method [replacing in (1) v ~ v + 1:, where I: ~ vJ and the method 
of inversion. According to the latter, we calcurate the one-dimensional 
distribution function 

f 3 (1 - v) 
f(v) = F(u, v) du = 4 Jv ' ° ~ v ~ 1; (2) 

after that we calculate the integral 

x = J:f(V)dV = iJv - ¥Jv)3. (3) 

Playing the value x uniformly within the interval (0,1), x = Xi' then we 
solve the cubic equation following from (3): 

yf - 3Yi + 2Xi = ° (4) 

thus determining Yi and v = Vi = yf. With given v = Vi we finally find u = Ui' 
playing this value uniformly within the interval (v;, 1). Simultaneously, 
we also know the following quantities: the energy of the particle at the plane 
(x, Y), E.l = (u + v)/2; the modulus of the z-component of the angular mo­

mentum I Lz I = Fv; the radial action I I = (E.l - I Lz I )/2. The sign of Lz we 
play according to random law. 

After this we display [uniformly within the interval (0,2n)J the radial 
angular variable Wi> determining the radius of the particle in the plane 
(x, y) as 

z u + v (u - v) 
r = -2- - --2-COSWI. (5) 

Similarly, playing uniformly in the interval (0,2n) the angular variable 
Wz corresponding to the azimuthal motion of the particle at the plane 
(x, y), we determine the angle ({J according to the following formula (which 
may be easily derived): 

win 1 . [(21 I - I Lz I )r2 - L;] 
({J = W - - + - + - arCSIn . 

z 2 4 2 2r\/Jf + ILzl/I 
(6) 

Then we calculate components of the particle velocity at the plane (x, y): 

Vcp = Lz/r, I Vr I = J2E.l - rZ - v~; signs of Vr must be defined in accordance 
with the value WI: these signs for WI > n and WI < n are opposite to each 
other. 

Now we must only determine z and Vz. Due to the presence of the (j 

function in the distribution function of the system (64), §1, Chapter IV, under 
investigation, we have 

(7) 
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Let us play [again uniformly in the interval (0, 2n)J the angular variable 
W3 which corresponds to the z-motion of the particle. Then 

z = p sin W3 (8) 

and playing of coordinates and velocities of the particle is completed. 
Repeating this procedure N times (N = 100-300), we obtain the realization 
of the system considered. 

§ 4 The Matrix Formulation of the Problem of Eigenoscillations 
of a Spherically-Symmetrical Collisionless System 

Introduce the variables action-angle [69J for the particle movmg in a 
centrally-symmetrical potential <l>o(r). The action variable: 

1 i 2 Jrmax J L 2 

11 = 2n J Pr dr = 2n rmin dr 2E - 2<1>o(r) -7' 

12 = 21n f P8 de = 22n i~-80 de 

13 = 2~ f p'fJdqJ = Lz • 

(1) 

(2) 

(3) 

Here r, e, qJ are the spherical coordinates; E is the energy of the particle; L 
is the module of the angular momentum; L z is the projection of the angular 
momentum onto the z-axis; the angle eo is determined from the equality 
sin2 eo = L;/L 2 ; P" P8, P'fJ are the corresponding generalized impulses: 

L2 
P; = 2E - 2<1>0 - 2""' 

r 

2 2 L; 
P 8 = L - ----;----Y-e ' sm 

The angular variables, conjugated to the action variables, are defined by 
the relations: 

as 
Wi = 01.' , 

(4) 

1 Indeed, the Lagrange function of a particle in this case is [69]:.fi?= f2/2 + r2{J2/2 + r2 
sin2 (J cp2/2 - !llo(r); therefore, p, = iJIe/iJf = f, Po = iJ.fi?/iJ() = r2(), P", = iJIe/iJcp = r2 
sin2 (J cp. Since L; = r2 sin2 (J cp, L 2 = r2(r2(J2 + r2 sin2 (J cp2), E = ;-2/2 + r2(J2/2 + r2 sin2 

(J cp2/2 + !llo(r), one can readily make sure that the written expressions for P"Po,p", are correct. 
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where 

S3 = I: dcp' 13 , 

From (4), (5) we find 

8S1 (COSO) 
W2 = 812 + arccos COS 00 ' 

(5) 

The linearized kinetic equation in the variables action-angle has the form 

dfl = 8fl + g. 8fl = 8fo 8<1>1 
dt - 8t ' 8Wi 81i 8Wi ' 

(7) 

where gi = 8E(I1> 12 + 1131 )/81i are the oscillation frequencies of the 
particles, fo(E, L) = fo(I 1,12,13) is the unperturbed distribution function 
depending on the action variables, andfl and <1>1 are the perturbations of the 
distribution function and the potential, respectively, g3 = g2 sgn(I3)' 
Owing to periodicity of the movement of the particles with respect to 
Wl' W2' W3 (periods 2n), the potential along the trajectory may be written 
in the form 

where the symbol c.c. denotes complex conjugation, and 

X <1>1 (Ii' Wi) exp[ - i(ll Wl + 12 W2 + 13 W3)]. (9) 

Integrating (7) along the trajectory of the particle, we find the perturbation 
of the distribution function 

1 ei(liwi - wt) 8fo 
fl = - (2 )3 L <1>111213 _ l.g . . lj 81. + c.c. (10) 

n hl2 13 W" J 

Thus, the first part of the problem of the search for the eigenfrequencies of 
the system-the determination of the response of the system to a given 
perturbation of the potential-is solved in the variables action-angle in the 
simplest way. More cumbersome is the second part of the problem-the 
solution of the Poisson equation in the same variables. 
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Due to the spherical symmetry of the problem it is clear that the oscillation 
frequencies are independent of the azimuthal quantum number m. Therefore, 
it is possible to choose for the sake of simplicity the axially symmetrical 
perturbed potential 

<1>1 = <l>1(r, (J) = x(r)Plcos(J), 

where PI is the Legendre polynomial. 
Assuming, according to (6), that 13 = 0, we obtain from (9) and (11) 

f2" f2" 
<1>1\,12 == <l>lJ,I,,13=O = 0 dWI 0 dW2x[r(lI,/2 + 1/3 1, WI] 

(11) 

x p{cos (Jo cos(~~~ - W2) ] exp[ -i(lIWl + 12 W2)]. (12) 

Use the addition theorem for the Legendre polynomials [33]: 
I 

Plcos (Jl cos (J2 - sin (Jl sin (J2 cos ({J2) = I e-ik'P2P}(cos (Jl)PI-k(COS (J2)' 
k=-I 

Assume in this formula that 

as] 
({J2 = W 2 - alz + n; 

then it is possible to write 

p{cos (Jo cos( Wz - ~~J] 

kt-I exp[ -ik( Wz - ~~J ]p}(Sin (JO)PI-k(O) x e- ik". (13) 

From (12) and (13) we obtain (k = -/2): 

<l>hh = 2nPl2(0)p,-h(sin (JO)XI\12(E, L)eil2", 

where the notation 

(14) 

Xhl,(E, L) = f" dW I x exp [ - i(/1 WI + 12 ~~J ] x x[r(E, L, WI)] (15) 

is introduced. 
Similarly to [59ad, 73ad] where the oscillations of the disk systems are 

treated, consider the set of the functions Xa(r) and pir) (0: = 1,2,3, ... ), 
such that the density perturbation PI(r) of the form 

(16) 

corresponds to the potential perturbation 

<1>1 (r) = PI(cos (J) I aaxir). (17) 
a 
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Assume the density perturbation J 11 dv and the potential perturbation 
in the form of(16) and (17). Then we obtain 

Pl(r,O) = P1(cos 0) L arzpir) 
rz 

MUltiplying (18) by P1(cos O)x~(r) and integratirtg over r, 0 with the weight 
r2 sin 0, after some transformations, we obtain the following infinite system 
of equations: 

(19) 

where 

(A, B) == f ABr2 dr, 

(20) 

f21t [.( as1)] (Xrz)lth= 0 Xrz[r(E,L,A)]exp -I l1A+1201z dA. 

In the derivation of these equations, we have used the following formulae 
(see [33, 42]): 

pI2(z)PI- /2(z)pI2(0)PI- /2(0) = [PI- /2(z)]2[pI2(0)]Z, 

II dZ[PI-h(z)]2 = [(1 - 12)!JZ I1 [pI2(z)]Z dz = _2_ (1- 12)! 
-1 (1 + 12)! - 1 21 + 1 (1 + lz)! ' 

{ ( _I)(l+l,)/2~ (1+ 12)! 1 11 
pI2(0) = 21 [(1 - lz)/2] ![(1 + 12)/2]! ' I - 2 even, 

0, 11 - 121 odd. 
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The other, equivalent form of the matrix element MaP (it ensues naturally in 
the derivation of equations by the" Lagrange method" -cf. such a derivation 
in §5, Appendix, where a similar problem for disk systems is solved): 

(I) - " f dE dL ( Mmn - - L.,.D1l2 n- FE, L) 
1,/2 1 

X [(l101 + 12(2)~ + 12 ~J(L' (Xm)/,/iXn)/,la ). (21) 
aE aL w - 110 1 - 12 0 2 

By equating to zero the determinant of the system (19), we obtain the 
dispersion equation for the determination of eigenfrequencies w. 

It is convenient as a set of the Xa and Pa functions, to choose some biortho­
normalized (similar to [59ad, 74ad]) system, i.e., a set of the Xa and Pa functions, 
for which 

<PaX~> = [)aP' (22) 

In this case, the dispersion equation takes an especially simple form: 

(23) 

Examples of some biorthonormalized systems, convenient for the numerical 
computations, will be given below. 

Equation (23) must be solved numerically for a concrete distribution 
function F(E, L). 

Note some transforms useful in practical computations. Switch in (15) 
to integration over the radius r (instead of integration over the angular 
variable W 1 corresponding to r). Since dW 1 = dt0 1 = 0 1 dr/v" then we 
have, by separating the integral into two parts in r (corresponding to the 
"direct" movement from rmin to rmax and to "inverse" movement from 
r max to r min): 

X (E, L) = 0 e-i(l!wr+/2oSr/oI2) fr max dr x(r) 

I,la 1 rmln J2[E _ L2/2r2 - <l>O(r)] 

fr max dr x(r) + 0 e-i(l,wr +l20SI/OIa) 
1 J 2 2 

rmln 2[E - L /2r - <l>o(r)] 
(24) 

In Eq.(24) wi, Si and WI, SI correspond to the direct (WI E(O,n» and 
inverse (Wl E (n, 2n» movement. It can be written as 

Si = 1(r, E, L) = fr
max dr'[2E - 2<1>o(r') - L 2/r'2r/2, 

rmin 

SI = 21 -1, 1 = 1(rmax , E, L), (25) 

+ a1 
Wl = 0 1 aE' 

- 2 n a1 2 + 
WI = n - Ul aE = n - Wi ; 
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therefore, 

But the expression in the parentheses in the last line of this equality is zero; 
therefore, 

Denote 

Then we obtain the following final expression 

In the investigation of the stability of the distribution functions of Camm 
series (Section 6.2, Chapter III) with the help of the matrix formulation de­
veloped here there arise some peculiarities. For the first Camm series 

where B = cp(R) - t: and J1 are the dimensionless energy and the angular 
momentum, defined in Section 6.2, Chapter III and cp is the dimensionless 
potential. It is easy to see that, for the values of the parameter f3 < -1, the 
matrix elements M mn' if calculated, for example, by formula (20), are divergent 
as L '" J1 ~ O. In this case, one has to perform regularization. For that 
purpose, we introduce the sequence of the functions 

k = 1,2, ... , 

ak --t 0 as k --t 00. Substituting these Fk into (20), transform Mmn in the 
following manner: 
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where VI and Vz are the dimensionless frequencies. We transform now the 
second summand in (27): We mUltiply and divide the integrand by 
11/(ak + I1)P; we get 

I DIl2 If de dl1 (ak + I1)P[ 11 (-w O~k + Iz OFk)] (Xm)I,I/Xn)I,12 
1,12 VI (ak + I1)P oe all W - 11v1 - Izv z 

= I ~ f de{l1(ak + 11)[-W O~k + Iz OFk] (Xm)I,12(Xn)I,12 }C2 
l,h({3+1) oe all vl(w-/1VI- /ZvZ) c, 

If (ak + I1)P+ 1 

- I Dill dedl1 {3 1 
1,12 + 

x ~ [ 11 (-w OFk + Iz OFk) (Xm)I,12(Xn)I,12 J. 
all (ak + I1)P as all (w - II VI - Iz VZ)v 1 

The two-dimensional integration of (de dl1) is here (as above) performed over 
the" triangle" phase region of the system limited by the straight lines S = 0, 
11 = ° (the line C1) and by the line (Cz) of circular orbits (cf. Section 6.2, 
Chapter III); the expression { }~~ means the difference of two expressions 
taken on the lines C 1 and C z. But, on C l' the expression in the braces is zero. 
On the line of circular orbits (C z) (Xm)1,12 = 0, if II =1= 0, and there remains 
only the terms with II = 0. Since now as k --> 00 (a k --> 0) all the integrals 
written are convergent, we can proceed to the limit k --> 00; finally we get 

M~n = (IX + {3 ; 3) foR dx XmXnxP+Zyd(P+ 1)/Z 

+_1_ ± f de I1Z(e)(-w O: + Iz OF) (Xm)Oh(Xn)Oll 
{3 + 1 h= -I C2 oe 011 Vl(W -/z Vz) 

(28) 

Some biorthonormal systems. Consider the (dimensionless) Poisson 
equation for the Ith harmonic: 

dZcp 2dcp 1(1 + 1) 
dxz + ~ dx - XZ cp = (1, (29) 

where cp, (1, X are the dimensionless potential, density, and radius. On the 
boundary of the system (x = R), the condition 

(30) 
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must be satisfied. Make the substitution y = cp(x)Jx: 

( 
d2 1 d (I + !)2) 

dx2 + ~ dx - x2 Y = Jxo{x). (31) 

The operator on the right-hand side of (31) is the" Bessel" operator; therefore, 
it is natural to test the Bessel function as a probable candidate for the bi­
orthogonal pair: 

Yn(x) = J1+ 1/2( OCn~). n = 1,2,3, ... , (32) 

and, consequently, 

aix) = - Jx(~r Jl+l/2(OCn~)' (33) 

where OCn must be determined from the boundary condition (30). Indeed, 
we prove the biorthogonality of (32) and (33): 

J: CPm(x)O"n(x)x2 dx = -oc; f Z dzJ1+ 1/2(OCn Z)JI + 1/2(OCm Z) 

= - oc; c5mn • ![Jl+ l/z(OCn)Y 
Therefore, the desired biorthonormalized system is: 

X1(x) = J2 1 1 Jl+l/2(OCn~a)' (34) 
n OCn 1 J1+1/z(OCn)1 Jx 

(I) _ J2 1 1 (x) O"n(X)- --2 OCnlJ ()I· r:.Jl+1/2 ocn -· (35) 
a 1+ 1/2 OCn V x a 

One has to define ocn ; from condition (30) we have 

Since [42J, for the Bessel function, the identity 

zJ~(z) + vJv(z) = zJv-1(z) 

is valid, then we obtain the following condition for ocn : 

J1-1/z(OCn) = o. (36) 

The system (34), (35) is the particular case of a more general biorthonormal 
set, which can be obtained in the following manner. We make in Eq. (29) 
the substitution x --. z = xV: 

(37) 
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Substitute now ({J -+ y = ({J • Z1/2v: 

d2y 1 dy J-L2 a 
dz2 + -; dz - Z2 Y = V2Z2 5/2v' 

Thus, we must consider the system: 

or 

(l + i) 
J-L=--. 

v 

((In(Z) = z1~2vJ~(an:v) = fiJ~[an(~)] 
and, consequently, 

(38) 

(39) 

(40) 

a(z) = _ (van)2z2-5/2VJ (0( ~) = _ (van)2x2V-5/2J (0( XV). (41) n aV ~ n aV aV ~ n aV 

Since 

S:x2({Jix)am(x) dx = -va; bnm![Jian)] 2, 

then the desired biorthogonal system is 

xix) = Jva~x IJ~:O(n)1 J{O(n(~)] 
a (x) = - 12 v 3/2 a 1 J [a (~)VJX2V- 5/2 (42) n v' £. n I J /an) I ~ n a ' 

where an must be defined, as is easily proved, from the equation 

(J-L = I ~ !). 
From (42), it is easy to see that ({JnCx) expands in series of the form 

((In(x) cv xl(1 + ax2v + bx4v + ... ). 

(43) 

(44) 

In the particular case, when v = 1, we return to the first biorthonormal 
system of (34), (35). According to (44), all ({In(x) for v = 1 are the analytical 
functions of x at x -+ 0. Therefore, it is natural to use the system (34), (35) in the 
numerical investigation for the stability of the systems with fairly" good," 
smooth equilibrium distributions of potential, density, etc. (as, e.g., for the 
Idlis models, considered in detail in Section 6.1, Chapter III). At the same 
time, in the study of the stability of the models possessing some peculiarities at 
center (for example, a volumetric density softly divergent as r -+ 0, etc.), 
the second biorthonormal system (42) may be of more use. Indeed, for the 
first Camm series, the unperturbed potential is expanded in the series 

({Jo cv 1 + ax(J+2 + bx2«(J+2) + '" . (45) 
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Comparing (45) with (44), we see that, in this case, it is natural to choose 
v = (P + 2)/2. Just this biorthogonal system was used in obtaining the 
results described in Section 6.2, Chapter III. 

§ 5 The Matrix Formulation of the Problem of Eigenoscillations 
of Collisionless Disk Systems 

We shall give here, following Kalnajs [7400], the derivation of the matrix 
equation, the solutions of which give the eigenfrequencies of oscillations 
of the disk stellar systems of a rather general form. We recall that a similar 
problem for the spherically symmetrical systems was considered in §4, 
Appendix [34ad]. The way of derivation of the matrix equation that is 
used therein (conventionally, it may be called the "Euler" method) fits, 
of course, also in the case of stellar disks. Below, however, this equation is 
derived by the method used in the original work [7400]; as will be clear 
from further treatment, this method can logically be called the" Lagrange" 
one. It distinguishes itself by its somewhat greater generality: For example, 
it at once leads to reasonable expressions not only for smooth but also for a 
certain class of singular distribution functions (where in the" Euler" approach 
there may arise the formally divergent integrals that require regularization); 

5.1 The Main Ideas of the Derivation of the Matrix Equation 

If one imposes on the equilibrium state of the disk a small potential perturba­
tion, this will lead to a change in the original orbits of stars, resulting in t\W 
surface density perturbation O'orb' At the same time, the Poisson equation 
also defines the density perturbation O'p' which is required to produce 
potential perturbation. For the eigenoscillations, the self-consistency 
condition 

(1) 

which we have repeatedly used (for example, in the derivation of the integral 
equation in Section 4.4, Chapter V), must be satisfied. It is convenient to 
replace (1) by the other initial requirement-by the equality of the scalar 
products of the form 

II g*O'orbrdrd({J = IIg*O'prdrd({J, (2) 

where g is the arbitrary potential,2 rand ({J are the polar coordinates. The 

2 Belonging to the perturbation space f!} with a finite potential energy introduced by Kalnajs in 
[74""]; in this space, the perturbation potential energy may be used as a norm, and the energy 
of interaction between the two perturbations as a scalar product. 
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convenience is due to the fact that the "orbital" scalar product on the 
left-hand side of (2) is nothing other than the value of the potential g*, 
taken in perturbed orbits, averaged with the weight 10(r, v) over the phase 
volume of the system, without its value in equilibrium orbits. Just such a 
value will be calculated below; this is the first idea of the considered method of 
obtaining the matrix equation. 

The second idea concerns the use of the action-angle variables. They are 
ideally appropriate in this case, since there is no need here for a separate 
calculation of the perturbed surface density and the complicated transforma­
tion to the coordinates r, v of phase space. 

The third and last idea consists of using biorthonormal systems of the 
density-potential functions (cf. §4, Appendix, and below, in Section 5.2). The 
perturbed potential and the surface density are written in the form of a sum 
of the terms of the biorthonormal system and the calculation of the "Poisson" 
scalar product [of the right-hand side of Eq. (2)] then becomes a trivial 
problem. This yields the matrix equation for the coefficients of these expan­
sions.3 From the condition of zero equality of the (infinitely dimensional) 
determinant of the system, the characteristic equation for eigenfrequencies 
ensues. Examples of biorthonormal systems of functions for gravitating 
disks are given in papers by Clutton-Brock [59adJ and Kalnajs [73OOJ; 
however, they are too complicated to be given here. 

The matrix formulation of the problem of eigenvalues of the stellar disk 
obtained by the described method is seemingly the most appropriate for 
numerical calculations. 

5.2 "Lagrange" Derivation of the Matrix Equation 

Thus, we introduce the action-angle variables: 11 is the radial action, 12 
is the angular momentum of the particle, W1 and W2 are the corresponding 
angles (for a detailed description see, e.g., §2, Chapter XI). 

To begin with, consider the calculation of the orbital scalar product. 
In the presence of the perturbed gravitational field, actions Ii and angles Wi 

will get the increments M i , ~w;, and (see §2, Chapter XI) in the first order of 
magnitude in the perturbations: 

(3) 

where the generating function 

X = - ~ L cI>lm(I) exp[i(lwl + mW2 - rot)J , 
4n 1m i(llOl + m02 - ro) 

(4) 

3 If the biorthonormal system is countable. If, however, this system is nonenumerable, the 
integral equation ensues. 
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and <1>I,m are the Fourier coefficients of the expansion of the perturbed 
potential <1>1 (I;, Wi): 

(5) 

The potential g in the star orbit is g(Ii + M i, Wi + ~w;), where Ii and Wi 

are the stationary actions and angles. Expanding g in the Taylor series near 
the unperturbed orbit and using Eq. (3), we find 

2 og OX og OX 
g(I. + M· w· + ~w· t) = g(I. w· t) + ,,-- - -- + ... (6) 

, '" " "" .L... :)I.:). :). :)I. . ,=1 u ,uW, uW,u, 

Let us integrate (6) over phase space: SISI dI l dI2 dWl dW2 F(Ii)' To begin 
with, we perform integration over the angular variables dWl dW2; on the 
right-hand side we obtain the expression 

f
27< f27< 2 f27< f27< [og OX og OX] 

g(Ii, Wi) dWl dW2 + L :)I. ~ - ~ :)I. dWl dW2' 
o 0 1=10 0 u,uW, uW,u, 

(7) 

The first term is the potential energy of the unperturbed stars with the given 
II and I2, in the field <1>1' We omit it (see Section 5.1) and integrate the last 
term in (7) by parts and combine with the middle term; as a result, we obtain 

2 a f27< f27< OX .L :)I. g~dWl dW2' 
,=1 u, 0 0 uW, 

(8) 

The boundary terms are cancelled due to periodicity of all values with respect 
to Wi with the period 2n. We now integrate (8) over II and I2 with the weight 
F(I;). Substituting instead of the value X its expression in (4) and integrating 
over the angular variables, we transform expression (8) for the orbital scalar 
product to the final form 

where glm are the Fourier coefficients of the function g, defined as in (5). 
Note that since the orbital scalar product (9) is calculated by the Lagrange 
method, it automatically involves all the contributions which may arise 
due to the displacement of the system boundaries and, besides, is suitable 
for any F(Ii) functions with integrated singularities. 

We turn to the calculation of the Poisson scalar product. Consider any 
biorthonormal system of surface densities {Ui} and the potentials {<1>a 
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corresponding to them, such that the scalar product 

__ 1 ffCl>~u.rdrdm = t5 .. = {1' 
2nG 'J 't' 'J 0, 

i = j, 

i i= j. 
(10) 

We assume that the system is complete, i.e., assume that any potential 
Cl>14 can be expanded in a series with respect to Cl>i: 

00 

Cl>1 = L ajCl>j. 
j=O 

The surface density which corresponds to Cl>1 is 

00 

up = L ajuj, 
j=O 

(11) 

(12) 

and the coefficients aj are calculated by means of the biorthonormalization 
condition (10): 

aj = - 2~G II Cl>jup r dr dqJ = - 2~G II Cl>tUjr dr dqJ. (13) 

Equality (2) must be satisfied for each potential of the biorthonormal 
system. Substituting into (2) the expansion (11) for Cl>1 and (12) for up and 
assuming in (9) that g = Cl>i' i = 0, 1,2, ... , we arrive at an infinite system of 
linear equations which must be satisfied by the coefficients ai: 

00 

L [Miiw) - t5ij]aj = 0, 
j=O 

where the matrix elements 

Miiw) = sn13G l~ II F(I1' l z) 

(14) 

x {(/1 ~ + m~)[ (Cl>i)t...(Cl»lm J}dl1 dl z. (15) 
all alz In1 + mnz - w 

The characteristic equation for the oscillation eigenfrequencies w is 

detllMij(w) - t5ijll = 0. 

For a disk system in the linear approximation in question, the azimuthal 
number m may be considered as fixed, in investigating separately the stability 
of radial (m = 0), "barlike" (m = 2) and other perturbations. To calculate 
on computer, it is useful to turn, in expressions for matrix elements (15), 

4 Belonging to the space ~ mentioned above. 
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from the action variables I 1 and 12 to the energy E and the angular momentum 
L. The derivatives are transformed as 

§ 6 Derivation of the Dispersion Equation for Perturbations 
of the Three-Axial Freeman Ellipsoid 

Restricting ourselves to the largest-scale oscillations of the ellipsoid­
ellipsoid type retaining the direction of the main axis z, one may assume that 

(1) 

Then from Eq. (9) (§2, Chapter IV) we obtain for the B function the following 
expression, 

2i(1.1 (20Vy) 1 . 
B = -;;;- x - 7 + w 2 _ [32 (- 4(1.1 Oy - 21(1.2 v y) 

2w (4(1. 10Vy . ) + w2 _ [32 ----p- - 2'(1.2Y , (2) 

and from Eq. (8) we find the function C (which in this case is a constant) 

C = _ 2(1.1 + [2(1.1 402 + 40(1.2 _ 8(1.102 ] 
w 2 w 2 [32 w( w 2 - [32) [32( w 2 - [32) . 

(3) 

The cumbersome equation for the function A ensuing from (7) has a 
solution which we shall represent in the form: 

where 

D1 = dll (1.1 + d12 (1.2 + d13 (1.3, 

1 1 1 
D2 = b2 d21 (1.1 - b2 d22 (1.2 + b2 d23 (1.3, 

(5) 
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R contains all the terms, nonessential further on, that contain odd degrees 
Vz and cy- The coefficients dik are given by the following expressions: 

2( 1 1) d31 = 160 0)2 _ 4 - 0)2 - 1 ' 

4 
d33 = - 2 4' 0) -

d _ 4(1 - 1l2)(402 - 1) 1602(1 - 21l2) - 4(1 - 1l2) 
5 1 - 0)2 - 0)2 - 1 

8(1 - 1l2)(402 - 1) 
(0)2 _ 1)2 

(6) 

4 
d44 = - 2 42. 0) - Y 
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Introduce the corresponding notations also into the expression for C: 

4(402 - 1) 1602 

C 1 = - 2 + 2 1 ' w w -

8 
C2 = - Ow(w2 - 1)' (7) 

In (6) and (7) it is assumed that f3 = 1 and a = 1. The perturbed density 
ensues by formula (12), §2, Chapter IV: 

epl = -1epo(b2J12D5 + lC2D6) + epoc' (8) 

The equation for the perturbed boundary of the ellipsoid is 

x2 y2 Z2 

2 + b2 + 2" = 1 - e(DIX2 + 2iD2xy + D3i + D4Z2). (9) 
a c 

In this case, the potential perturbation <1>1 can be calculated by writing 
an exact potential of a homogeneous ellipsoid with the density Po + PI in the 
new boundaries of (9) and by subtracting from it the unperturbed potential 
<1>0 . 

We turn the plane (x, y) by an angle (), so that the new coordinate axes 
(x', y') are the main axes of the ellipsoid (9): 

x = x' + by', y = y' - bx', (10) 

The equation of perturbed ellipsoid in the coordinates x', y', z' = z takes 
on the form 

(11) 

The potential of the rotated ellipsoid is 

<I>(x', y', z') = nG(po + Pl)[IX~(XY + f3~(y')2 + Y~Z2] + const, (12) 

, (cY (C')2) 
Yo = F (a')2' (by . 

(13) 

Expansions IX~, f3~, Y~ over e have the form 
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Here the following notations are introduced: 

2 
C 2 2) 

C2 = 2 (a Dl - c D4 , 
a 

(15) 

Proceeding in (12) again to the coordinates (x, y): x' = x - by, y' = y + bx, 
we obtain <1>1 : 

8<1>1 = 8nG(lXox2 + Poy2 + YoZ2)Pl + 8nGpo 

x [1X(I)X2 + P(1)y2 + Y(I)Z2 + 2bxy(po - lXo)]. (16) 

A comparison with the initial expression in (1) for <1>1 gives the following 
uniform system of algebraic equations relative to lXI' 1X2' 1X3' and 1X4: 

IXI = nGpl + nGpOIX(I)' - i1X2 = nGpob(Po - lXo), 

1X3 = nGPOPI + nGpOP(I), 1X4 = nGYoPI + nGpoY(I)" 
(17) 

The required dispersion equation ensues from (17) by equating the de­
terminant of the system to zero: 

f(w, b, c) == detllrikll = 0, (18) 

where the elements of the determinant rik are 

(19) 
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In (19), the following notations are used 

1 1 
At = Fa.(at, a3) b2 (d3t - dll ) - Faiat, a3) c2 dll , 

p == (61Xo + 2Po)- 1, 

J.l2 = 1 - 8pb21XO' 

Dispersion equation (18) has been investigated numerically. First of all, 
the values of the determinant (18) were calculated on the real axis of the 
complex plane OJ for different values of the semiaxes b, c. In particular, 
in this way, we determined the real zeros of this determinant. As their 
number, at some values of band c, decreased by the value multiple of 2, 
this meant the appearance of complex pairs of the roots. In this case, the 
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integrals over the contour y lying wholly in the upper semiplane were 
calculated (since we were interested only in unstable solutions): 

1 i f'(w) 
2ni Jy f(w) dw = N, (20) 

where N is the number of zeros inside y, taking into account their multi­
plicity nl. 5 If only one root (N = 1) appeared in the contour y, then the 
second formula (20) gave its value. 

The results are given in Fig. 27. 

§ 7 WKB Solutions of the Poisson Equation Taking into Account 
the Preexponential Terms and Solution of the Kinetic 
Equation in the Postepicyclic Approximation 

In this section, we deal with, following Shu [325], the solutions of the 
system of Vlasov's equations for gravitating disks within an accuracy of 
two orders of magnitude with respect to the parameters 1/kr and e = cr/rn, 
which are assumed to be small. 

7.1 The Relation Between the Potential and the 
Surface Density 

Let us obtain the asymptotic solution of the Poisson equation for the disk 
with an accuracy of the first two orders of magnitude with respect to (kr)-1. 
Let the surface density be a 1 = a(r) exp[ - i( wt - m<p )], let the potential 
similarly be <1>1 = <I>(r, z) exp[ -i(wt - m<p)], and in the plane of the disk 
let <I>(r, z = 0) = A(r) exp[iljJ(r)]. By integrating the Poisson equation 

[ 02 1 0 02 m2] 
or2 + -; or + OZ2 - -;:z <I>(r, z) = 4nGa(r) b(z) (1) 

over z between (0 - c) and (0 + c) and then presetting e -+ 0, we obtain the 
familiar boundary condition 

1 [0<1> ] IZ= +0 
a(r) = 4nG OZ (r, z) z= -0' (2) 

The function <I>(r, z) may be dependent only on I z I as a consequence of 
the symmetry of the problem with respect to the reflection z -+ - z. It is 
natural to introduce the transformation <I> -+ W customary for the cylin­
drical geometry: 

W(r, z) = r1/2<1>(r, z). (3) 

5 From (6), it is evident that all poles off(w, b, c) lie on the real w-axis. 
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Then Eqs. (1) and (2) are rewritten in the form 

a2w a2w m2 - * 
ar2 + alzl2 - -r-2 - W = 0, for Izl > 0, 

r- 1/2 [aw ] I 
O'(r) = 2nG alzl (r, Izl) Izl=o· 

These equations must be solved with the boundary conditions 

W(r,O) = r1/2 A(r)ei",(,), 

W(r, z) -+ 0 as Izl-+ 00. 

(4) 

(5) 

(6) 

(7) 

We shall study here only the part of the disk system, in which Ikrl ~ 1. 
In it, the "term of curvature" ,..., [(m2 - !)/r2]W has a smallness of the 
order of (kr) - 2 in comparison with the first two terms, and therefore it may 
be omitted. Thus, within an accuracy of the second order of magnitude of 
the WKB approximation, the exact Poisson equation is coincident with the 
following: 

Izl ~ 0, (8) 

[the boundary conditions are, as before, (6) and (7)]. Continuation of the 
solution to (6) from the plane z = 0 in Izl > 0 is trivial, if one makes use of 
the theory of the functions of a complex variable. To continue the solution, 
it is necessary simply to make a substitution: r -+ r ± i I z I in W(r, 0). The 
correct selection of the sign is dictated by the boundary conditions at 
infinity (z -+ ± 00). In accordance with the approximation adopted, we 
can change the condition in (7) for the restraint that, for small I z I, the 
value W(r, Izl) decreases from its value W(r, 0) at Izl = O. If r + iplzl with 
p = ± 1 provides a correct selection of the sign and if I/I(r) is a rapidly 
varying function, this condition, taking into account (6), may be presented 
in the form 

Im[I/I(r + iplzl)] > 0, Izl > O. (9) 

Expansion for small I z I yields 

p = ± 1 = sgn I/I'(r) == sgn k. (10) 

Thus, one may obtain 

W(r, Izl) = (r + iplzl)1 /2A(r + iplzl)ei",(,+ip1z ll, (11) 

O'(r) = _ Ikl<l>(r) {I _ ~ dln[r1/2A(r)]}. 
2nG kr dIn r (12) 
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7.2 Calculations of the Response of a Stellar Disk to an 
Imposed Perturbation of the Potential 

We start from the general expression derived in Section 4.2, Chapter V, 
for the perturbation ofthe distribution function of the stars, 

11 = (f; 4>1 + X )e-i(Wr-mlpl, (1) 

where 

x(r, E, L) = _ wo!%E + mol%L Itl2 4>l(r'(r»e- i[wt-mlp'(t))dr. (2) 
2 sm(wr12 - mqJ12) -t12 

In these formulae,.fo(E, L) is the unperturbed distribution function, 2r 12(E, L) 
is the period of radial oscillations of the star with the energy E and the 
angular momentum L, and 2qJ12(E, L) is the azimuthal angular displacement 
of the star for the time 2r12 . The functions r'(r) and qJ'(r) describe the un­
perturbed orbit of the star, such that its position at the times r = ir12 is 
(r, i qJ12): 

dr' 
dt = TIo(r', E, L), r' = r at r = i r12, (3) 

dqJ' L 
qJ' = i qJ12 at r = ir12, (4) Tt= r,2' 

where the function TIo(r, E, L) in Eq. (3) is the radial velocity of the star: 
TIo = {2[E - 4>o(r)] - L2/r2}1/2. 

Assume that, in the unperturbed state, the stars satisfy the "modified 
Schwarzschild distribution" [325]: 

10(E, L) = {~o(ro) exp[ -1I/c5(ro)], II < -E(ro), 
II> -E(ro), 

(5) 

where the functions Po(ro) and co(ro) may be expressed through the surface 
density and the dispersion of radial velocities, while the "epicyclic" in­
tegrals ro and II are defined as the functions of E and L from the equations 

r~n(ro) = L, II = E - Ec(ro), 

(6) 

Equation (5) may be considered as the parametric representation of the 
unperturbed distribution function through (r, c" clp)' if the peculiar veloci­
ties are determined by the natural relations: 

c, = {2[1I - Bc(ro, r)]p/2, 
r2 (7) 

clp = ~O(ro) - rO(r), 
r 
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and the eiro, r) function is given by the equation 

r6 Q2(ro) (r6 ) eiro, r) = <I>o(r) - <I>o(ro) + 2 r2 - 1 , (8) 

so that, for example, eiro, ro) = O. Under the transformation (E, L) - (8, ro) 
the partial derivatives are transformed thus: 

(9) 

Assume now that the second dimensionless parameter e = co(ro)/rox(ro) 
is also small: e ~ 1. This assumption seems to be well satisfied in the disk 
parts of most of the spiral galaxies. With an accuracy of two orders with 
respect to e, one of the terms of (2) has the form, with due regard for (5) and 
(9) 

( 010 010) x(r 0) 
- w oE + m oL = v(ro) c2(ro) Io(e, ro)· (10) 

In the same approximation, the velocity dispersion crCro) is co(ro), while the 
unperturbed distribution (5) is reduced to the following: 

10 = 2Q(ro). O'o(ro) exp[-~J 
x(ro) 2nc;(ro) 2e2(ro) , 

(11) 

where the "eccentricity" B = j2 8/r 0 x(r 0) is introduced. Assume further 
that the parameters e and (kr) -1 have the same order of smallness: e ~ (kr) - 1. 

To calculate the response of the surface density up to the second order of 
magnitude in this asymptotical approximation, we require that all formulae 
be true within an accuracy of the second order with respect to e or 1 kr 1- 1. 

An exception is the relation providing the radial orbit r' = r'(r); for it 
there is required an accuracy of the third order of magnitude with respect 
to e (since the two orders with respect to e represent the usual epicyclic 
approximation). This allows one to calculate <I>l(r'(r» (the potential on 
the unperturbed orbit) within an accuracy of the second order. For small e, 
the most part of the stars is contained in the part of the phase space, in 
which B :::; e(ro). Therefore, in the determination of the stellar orbit from 
Eqs. (3) and (4), it is necessary to derive expressions true only up to a cor­
responding order with respect to B. 

Symmetrical expansion yielding stellar orbits of this kind, can be obtained 
by using the parametric representation [325]. In this representation, one 
radial period 2r 12 corresponds to the change by 2n of the radial phase 
coordinate (}, defined by the relation 

(12) 

If another dimensionless time s = x(ro)r is introduced, then the para­
metric representation of the orbits required may be obtained by expanding 
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Eqs. (3) and (4), which leads to the relations 

S - So = e - 2Biro)e sin e, 

r? = 1 + e cos e + A2(ro)e2 cos2 e, 
r 

(13) 

(14) 

q/ - qJo = o«ro» [e + 2A2(rO)e sin e], (15) 
x ro 

where A2(ro) = t[1 + i d In x/d In ro], and B,lro) = 1 - A2(ro), while the 
phase constants So and qJo will be chosen so that s = -11: and qJ' = 
-1I:0(ro)/x(ro), when r' = r [see (3) and (4)]. Within an accuracy of the 
second order with respect to e, from Eqs. (13)-(15) it follows that sand 
qJ'x(ro)/O(ro) change by 211: when e changes by 211:; therefore, the radial 
period of oscillations and the change in azimuth 2qJ12 for that period are 

2 211: 2 _ 211:0(ro) (16) 
t12=-()' qJ12- (). x ro x ro 

It is convenient to express all the values through (r, ~, '1, s), where 

~ = e sin so, '1 = e cos so· 

In particular, eliminating e from Eqs. (13)-(15), one may represent the 
required orbits in the form 

, = O(ro) [ _ 2(ORl ;:)] qJ ()s ~ + .. , x ro uS 
(17) 

where 

Rl = '1(1 + cos s) + e sin s, R2 = B2(r)R~ - [1 + 2B2(r)]'1Rl' 
(18) 

We shall use the variables (e, '1) instead of (v" vip)' Accordingly, we shall 
need the Jacobian of transformation equal in the approximation used to 

I o(v" vip) I = r~x3(ro) (19) 
o(~, '1) 2rO(ro) , 

ro = r(1 - '1). (20) 

The mass element in the same approximation is given by the formula 

r~ [ e2 + '12J d~ d'1 
fodvr dvlp = --;: 110(ro) exp - 2e2(ro) 211:e2(ro)' (21) 

The integration range over e and '1 may be extended from - 00 to + 00 

and the errors arising will be exponentially small. Integrating (21) over the 
velocities Vr and vip' we obtain the density amplitude 

x {-Cl>(r) + . v(ro)1I: . ~ JX Cl>(r')eiv(ro)s[l + im 20 (OR 1 + e)] dS}. 
sm v(ro)1I: 211: -x x os 

(22) 
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We shall further restrict ourselves to the analysis of the regions of the disk 
sufficiently far from the resonances. We expand the potential <I>(r') by 
assuming that e - 1 '" I kr I : 

<I>(r') = <I>(r)e- ikrR{l - Rl ~I~~ + ikr(~i~~:~ - R2)J (23) 

Substituting (23) into (22) and expanding near r = ro, we obtain [by using 
also (20)] 

O"o(r)<I>(r) {nv(r) } 
O"(r) = - e2(r)r2x2(r) 1 - sin nv(r) [01 gv> + (G I gv>] , (24) 

where the Dirac notations 
00 

(25) 

-00 

are employed, and the gv and G functions are 

exp[iv(r)s - ikrR l] [ ~2 + 1]2J 
gv = 2ne2(r) exp - 2e2(r) , (26) 

G = -1]_d-In(~~g) _ R dinA 
din r e2 x2 sin vn v 1 din r 

. 2Q (OR l ) . [ din kr Ri din k J + zm-;- as + ~ + zkr -1]Rl dlnr + 2 dlnr - R2 . (27) 

Such differentiations with respect to In r are commutative with the operations 
"bra" and" ket"; therefore, 

<Glgv> = -<1Jlgv>_d_ln(~ vn~1Jlgv» _ <R I > dinA 
din r x 2e2 sm vn 1 gv din r 

+ im 2~ [ (O~l I gv) + (~Igv> J + ikr[ - (1]Rllgv> ~I~ ~ 
1 2 dink J + z(Rllgv> din r - (R2Igv> . (28) 

Direct calculation shows that (the prime means differentiation with 
respect to x at v = const) 

Olgv> = Gv(x), 

1 i 
(1]lgv> = z(Rllgv> = kr xG~(x), 

(1]Rllgv> = -(R2Igv> = t(Rilgv> 

= - (k!)2 [xG~(x) + 2x2G~(X)], 

(~Igv> = _(O~llgv) = klr[Si~:n - VG.(X)], 

(29) 

(30) 

(31) 

(32) 
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where 

G.(x) = - cos vs e- x (1 +C05S) ds, 1 f" 
2n _" 

(33) 

and x = t;2k2r2 = k2c;/X2. 
Using (29)-(32), one may make sure that the sums in the square brackets 

in (28) are zero, while the first two terms may be combined into the following: 

- i, d [0" 0 2 vn , ] (Glgv) = - -k xGv(x)-dl In 2krA -.-G.(x) . 
r n r x Sill vn 

Then Eq. (24) may be written thus: 

where ~(x) is the reduction factor in (22) Section 4.1, Chapter V, and 

2 vn G~(x) 0 07; 
Dv(x) = -(1 - v ) -. - 07;( ) ~l In[x~.(x)]. 

Sill vn ~v X u n x 

§ 8 On the Derivation of the Nonlinear Dispersion Equation 
for a Collisionless Disk 

(34) 

(36) 

In this section, we give some details and comments on the derivation of 
the nonlinear dispersion equation (14), Section 1.3, Chapter VII. 

For the equilibrium distribution function 

I = ~e-v2 
n 

(1) 

(which is made dimensionless, as described in the main text) the linear 
correction for the harmonic with the wave number k is (cf. §4, Chapter V) 
[271] 

1(1) = -2«1> I{l -~ 
k k slllvn 

x ~ f" exp[ - i(vx + kvx sin x + kvp + cos x))] dX}, (2) 
2n _" 

where «I>k is the corresponding harmonic of the perturbed potential; Vx and 
Vy are the velocities in the locally Cartesian coordinate system and v is the 
dimensionless frequency. 

The perturbation of the distribution function in the second order of 
perturbation theory consists of three terms, which will be denoted 12k> 
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J 2k, and f}})· The first two terms are proportional to <I>~ and <I>Zk, respectively; 
they must be found from the equations 

. OfZk . Ofk1) 
- 21{ V - kv cos cp) f Zk + -;- = Ik<I>k -::1 - , 

ucp uvx 
(3) 

2· k J oj Zk . of . - leV - V cos cp) Zk + -;- = 2lk<I>Zk ~ = -4Ik<I>Zkfv cos cp. 
ucp uvx 

(4) 

The equation for fhZ) (zero harmonic) is 

26fhZ) + ofhZ) = ik(<I>k ofP)* _ <I>t UfP»), 
ocp ovx ovx 

(5) 

where 6 is the positive imaginary additive to the frequency v, corresponding 
to the adiabatic inclusion of perturbation as t -+ - 00: v = v + i6, 6 -+ + O. 

A more detailed form of Eq. (3) is as follows: 

- 2i(v - kv cos CP)fZk + ~;k = - 2ik<I>~{ - 2v cos cp 

+ ~-21 I" dx(2v cos cp + ik sin x) exp[ - i(vx 
sm vn n _" 

+ kv cos cp sin x + kv sin cp(l + cos x)] }. 

where we have used (2). 

(6) 

Establish the rule for the solution of the equation of a somewhat more 
general form 

of 
-iN{v - kvcos cp)F + ocp = A{cp). (7) 

We solve Eq. (7) by the method of variation of the constant. We have 

F = eiN(WP-kvsincp)[I:e-iN(VY-kVSinY)A(Y)dY + A} (8) 

where A = A{V) is the "constant" (independent of the cp function). We 
impose the periodicity condition F(cp) = F(cp + 2n) 

eiNOZ1tV{I: + I:+Z" + A} = I: + A.. (9) 

The integral J:+ z", by substituting for Y = x + cp, is reduced to 

f2" 
e- iNvcp 0 e-iN[vX-kvsin(x+cp»)A(x + cp)dx. (10) 
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This allows one to express the expression (f~ + A), which stands in brackets 
in (8), through the integral (10), and we finally obtain 

F = e . e-iNkvsin'P e-iNlvx-kVsin(x+'P)]A(x + f.{J) dx. 2iNv" 12" 
1 - e21Nv" 0 

(11) 

In case if A(f.{J) = cos f.{J, we write the solution in another way, similarly to 
(2): 

F = -. _1_ [1 - . NV1r . ~ I" e-iNlvx+kvxsinx+kvy(l +cosxl] dxJ. (12) 
INkv sm NV1r 21r -" 

Thus, for 12k we find 

12k = -2ikcI>U[- .lk (1 - .2V21r '-21 I" exp{ -2i(vx 
I sm V1r 1r -" 

) 
V1r 1 e4iv" 

+ kvx sin x + kVy[1 + cos x])} dx + -.--' -2 1 2iv" 
sm V1r 1r - e 

x f" dy f" dx[2v cos(f.{J + y) + ik sin x] . exp{ikv[ - 2v sin f.{J 

+ 2 sin(y + f.{J) - sin x cos(f.{J + y) - (1 + cos x) sin(f.{J + y)] 

- iv(x + 2y)} 1 (13) 

In this formula, we can proceed to the limit v --+ 0 by opening the uncertainty 
according to I'H6pital rule, then we obtain 

12k = -2ikcI>f{ - i~ [1 - Jo(2kv)e-2ikvsin'P] 

+ (2~)2 f" dy f" dx(vx cos y - Vy sin y + tik sin x)(x + 2y) 

x exp[ik(cwx + PVy)]}. (14) 

where we denoted 

IX = 2 sin y - sin x cos y - (1 + cos x) sin y, 

P = - 2 + 2 cos y + sin x sin y - (1 + cos x) cos y. 

In a similar way, Eq. (4) for J2k 

J2k = -2cI>2kI(1 - ~~I" e-2iIVX+kvxsinx+kVY(l+COSXl]dX) 
sm 2V1r 21r _" 

is solved. 
Equation (5) has the form 

ar(2) 

2BIb2l + ~; = A( f.{J), 

(15) 

(16) 

(17) 
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where 

1 V1t fO: A(cp) = -2ikl<l>kI2-2 -.- dx[(2vcoscp-iksinx) 
1t sm V1t _0: 

x ei{vx + kvlsin q> + sin(x + q>)]} 

- (2v cos cp + ik sin x)e- i{vx+kvlsinq>+sin(x+q>)])]. (18) 

In a conventional way, the periodical solution of Eq. (17): 

e- 4 o:. e2O: 

fb2) = 1 _ e 40:. Jo A(y + cp)e2•y dy (19) 

was found. In (19), one has further to perform the limiting transition e -+ + o. 
By opening the uncertainty arising here [one has then to bear in mind that 
the frequency v has a small imaginary part: v -+ v + ie, and the bracket in 
(18) is multiplied by exp(ex)], we obtain 

1 1 V1t f2O: fO: fb2) = --2 2ikl<l>kl2_2 -.-f dy dx(y+!x) 
1t 1t sm V1t 0 _ 0: 

x {[2v cos(y + cp) - ik sin x]ei{vx+kvlsin(q>+y)+sin(x+y+q>)]} 

- [2v cos(y + cp) - ik sin x]e-i{vx+kvlsin(q>+y)+sin(x+y+q>)]}}. (20) 

To calculate the surface density, we need the integrals of the form 

ff(avx + bVy)eik(I1Vx+{lvY)fdvxdvy = !ik(aa + bp)e-(k2/4)(112+{l2). (21) 

In particular, for oW = J f2k dvx dvy, we obtain by using (14) and (21): 

a<iJ = Bk<l>~, Bk = 2{(1 - Io(2k2)e- 2k2) 

ik e2O: fO: 
- (21t)2 Jo dy _0: dx (x + 2y}!ik(a cos y - p sin y + sin x) 

(22) 

It is easy to check that for a and P from (15) 

a cos y - P sin y + sin x = 2 sin y, 

a2 + p2 = 6 - 2 cos x - 4 cos y + 4 cos(x + y), 

so that 

Bk = 2(1 - Io(2k2)e- 2k2 + (2~)2 fO: dy fo: dx (x + 2y) sin y 

x exp{ -!P[3 - cos x + 2 cos(x + y) - 2 cos y]}). (23) 
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In the third order of perturbation theory, the calculations are similar, 
but more cumbersome. For example, to find the contribution of the third 
order to the harmonic of the perturbed distribution function (with the 
wave number k), due to In, first there is the equation 

.( k )/(3) O/~3) 'k'" Ol2k -z V - V cos qJ k + -- = -z '11- k -
OqJ OVx 

For the arbitrary frequency v we obtain 

I k = - 2ik I Cl>k I Cl>k' I . - -;- 1 - -. --(3) 2 (2 ( V7t 1 
zk SID V7t 27t 

X e-i(.x+klJ",sinx+klJy(l+cosx)) + _._7t_. _ e . f" ) 2v 1 2i.1I 

_II SID 2v7t 27t 1 - e2 .. 11 

X f" dy fll dx [2v cos (y + qJ) + 2ik sin x] 

x exp{ -2ivx + ikv[j.t cos(y + qJ) + A. sin(y + qJ)] 

- ikv sin qJ - i[vy - kv sin(qJ + y)]} 

2ik V7t e4i•1I e2hll 1211 1211 f" 
- -2 -.-- 1 4i.1I 1 2i.1I dz dy dx {[ikIX 

7t SID V7t - e - e 0 0 _II 

(24) 

- 2v cos(z + qJ )][v cos y cos(z + qJ) - v sin y sin(z + qJ) + tik sin x] 

+ cosy} x exp{ -iv(z + 2y + x) + ikv[acos(z + qJ) 

+ P sin(z + qJ) - sin qJ - sin(z + qJ)]} ). 

J.l == -2 sin x, 

A. == -2(1 + cos x). (25) 

As v -+ 0, we therefore find 

1~3) = -2ikICl>kI2C1>kl{- ~ [1 - ~e-iklJsin", Jo(kV)] 
zk 27t 

1 1211 f" +' (27t)2 0 dy _II dx (y + 2x)[2 cos y Vx - 2 sin y Vy + 2ik sin x] 

1 ik 1211 1211 f" 
X exp[ik(Ao Vx + Bo Vy)] - 2" (27t)3 0 dz 0 dy _:x(z + 2y + X)2 

X {cos Y + [ikIX - 2 cos z Vx + 2 sin z vy] . [tik sin x Vx cos (z + y) 

- Vy sin(z + y)] exp[ik(Avx + Bvy)]}. (26) 

where the notations are introduced 

Ao = J.l cos y + A. sin y + sin y, 

A = a cos z + P sin z + sin z, 

Bo = - J.l sin y + A. cos y - 1 + cos y, 

B = - a sin z + P cos z - 1 + cos z. 
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By integrating (25) or (26) over the velocity according to the general 
formula (21), we obtain the corresponding contribution to the perturbed 
surface density U~3), proportional to I <l>k 12<1>k" The proportionality coefficient 
connecting the total perturbed surface density U~3) with l<I>kl 2<1>k (calculated 
in the third order of perturbation theory), we denote Ck : 

uP) = Ckl<l>kl 2<1>k" (27) 

The contribution to Ck from (26) proves to equal 

(28) 

11 = 4[1 - 10(~)e-k2/2J (29) 

12 = 22ik)2 f2" dy I" dx (y + 2x)( -cos y" ikAo + sin y 
(17: Jo -" 

"ikBo - 2ik sin x)e- k2(A5+ B5)/4 

2k2 12
" I" = --2 dy dx (y + 2x) sin ye- k2[3+ 2cosx+cosy+ 2cos(x+y)]/2, 

(217:) 0 -" 

(30) 

13 = - ~ (2:)3 f" dz f" dy f" dx(z + 2y + X)2 sin z[sin y + sin(y + z)] 

x exp{ -!k2[2 - cos x - cos y + cos(x + y) - cos(y + z) 

+ cos(x + y + z) + cos z]}" (31) 

The contribution from 12k must be determined from the equation 

"( k )1(3) olf) "k<l> 012k 2"k<l> of<!l 
-I v - V k + -- = -I -k - + 1 2k --" 

~ o~ a~ 
(32) 

Finding from (32) lP) and integrating over velocities, we obtain the cor­
responding perturbation of the surface density 

(33) 

where 

[ ( k2) ] 2k2 f2" I" 
Dk = 4 1 - 10 2 e- k2

/ 2 - (217:)2 Jo dy -" dx (2x + y) sin y 

x e- k2 (3 + 2 cosx+cosy+ 2 cos(x+y)]/2 

4k2 12
" I" +--2 dy dx(y - x)sinye- k2 [3+2 cosx-2cosy-cos(x+y)]/2 

(217:) 0 -" 

(34) 

Finally, the last contribution to f~3), from P02), is found from the equation 

oj(3) oP2 ) 

-i(v - kv cos cp)f~!) + a~o = ik<l>ko ovox " (35) 
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The perturbation of surface density corresponding to f<:)' is obtained as a 
result of simple but cumbersome calculations in the form 

O'l~) = Ck2 <1>kl<l>kl2, 

Ck2 = ~: PiV)Ql(V) f" dz f" dy f" dx e-iVZ[(X + 2y + z) 

x (EseiVX - E6e- ivX) - iOQQ~OV (EseivX + E6e- iVX)} (36) 

where 

e2iv" 
P 2 = 1 - e2iv'" 

Es = exp{ -!k2 [2 + cos y + cos(x + y) + cos x - cos z - cos(y + z) 

- cos(x + y + z)} x sin z· [sin(y + z) - sin y], (37) 

E6 = exp{ -!k2 [2 - cos y - cos(x + y) + cos x - cos z + cos(y + z) 

+ cos(x + y + z)} x sin z[sin(y + z) - sin y]. 

As v -+ ° 
e f2" f2" I" Ck2 = (2n)3 o dz ° dy _" dx (x + 2y + z)[Es(z - x) - E6(Z + x)]. 

We now show how the nonlinear equation is constructed for the potential 
harmonic <l>k. 

To begin with, calculate the frequency v for v2 ~ x2 • Expanding the 
linear dispersion equation (23), Section 4.1, Chapter V, 

-x = 1 - --.- e-x(1+c08')cosvsds kT vn 1 I" 
Ikl sin vn 2n _" 

(38) 

(kT = x2/2nGO'o = 1/2nGO'o, x = k2c;/X2 = k2/2 in the units adopted 
here) for v2 ~ 1, we obtain: 

2 1 - Io(k2/2)e- k2/2 - k/4nGO'o 
Vk = in2e k2/2 I o(k2 /2) _ (1/2n) So e k2(1+ c08.)/2S2 ds . (39) 

On the other hand, our nonlinear dispersion equation [(14) in the main 
text] may be reduced to the form 

{ k 1 [ (k2) k2/2]} 1 2 - "2. 2nGO' 0 - 1 - 10 2 e - <l>k - "2 Rk I <l>k I <l>k = 0, (40) 

or, if divided by the denominator in (39), 

2 1 Rk I <l>k 12<1>k 
Vk<l>k = "2!n2Io(k2/2)e-k2/2 _ (l/2n)Joe- k2(1+C08.)/2s2ds. (41) 
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Hence it is obvious that the required nonlinear equation for Cl>k(t) is 

a2C1>k 2 2 ¥ + Vk Cl>k = (Xk I Cl>k I Cl>b (42) 

where 

(Xk = ! [Ck _ (2nGO"o/12k l)BkDk ] 
2 1 + (2nGo/12kl)A 2k 

x [n2 I (k2)e- k2/2 _ ~e-k2(1+coSS)/2s2 dS]-l (43) 
6 0 2 2n 

Recall the meaning of the coefficients B, C, D involved in (42): Bk is the 
coefficient in O"W before CI>~ (calculated in the second order of perturbation 
theory), Dk is the proportionality coefficient between O"k and Cl>2k Cl>-k (calcu­
lated in the third order), Ck is the coefficient in O"k before CI>_kCl>~ (in the third 
order). In conclusion, let us give the final expressions for all values used in 
(43): 

A - -2(1 Q J" e-2iVX-2k6(1+COSX)dX) 2ko - - 2 , 

-" 
(44) 

BkO = 2(1 - Q2 J~"e-2iVX-2k6(1+COSX)dX 

+ 2k~Q1P4 f" dy f" dx E1e- iV(X+2Y} (45) 

Dko = 4(1 - Ql f"e-iVX-k6(1+COSX)/2 dX) 

(46) 
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Here the following notations are introduced: 

Q=~~ 
n 2n sin nvn' 

(48) 

E1(x, y) = sin y. exp{ -tk6[3 - cos x - 2 cos y + 2 cos(x + y)]}, (49) 

Ez(x, y) = sin y. exp{ -tk6[3 + 2 cos x + cos y + 2 cos(x + y)]}, (50) 

E3(x, y) = sin y. exp{ -tk6[3 + 2 cos x - 2 cos y - cos(x + y)]}, (51) 

Eix, y, z) = sin z [sin y + sin(y + z)] exp[ -tk6(2 - cos x - cos y 

+ cos(x + y) - cos(y + z) + cos(x + y + z) + cos z)], (52) 

Es(x, y, z) = sin z [sin(y + z) - sin y] exp{ -tk6[2 + cos y + cos(x + y) 

+ cos x - cos z - cos(y + z) - cos(x + y + z)]}, (53) 

E6(x, y, z) = -Es(x, y + n, z). (54) 

In the case ko = k6, v ~ 0 instead of (44)-(47) we have simpler expressions: 

AZko = -2[1 - Io(2k6)e-zk6], 

Bko = 2{l - Io(2k6)e-Zk5} + (;:)Z f" dy f" dx(x + 2y)Et. 

Dko = 2Bko ' 

Cko = 4[1 - Io(~6)e-k6/zJ + (~~~Z f" dy f" dx(y + 2x)Ez 

- 2(~!)3 f" dz f" dy f" dx(x + 2y + z)Z E4 

(55) 

(56) 

(57) 

+ (2~~3 f" dz f" dy f" dx (x + 2y)[Es(z - x) - E6(Z + x)], (58) 

where I o(x) is the Bessel function of imaginary argument. The computations 
give the following values (ko = 1.377): 

AZko = -1.574, Bko = 0.230, Dko = 2Bko ' Cko = 0.206 (59) 

§ 9 Calculation of the Matrix Elements for the 
Three-Waves Interaction 

Let us use formulae (20), Section 4.1, Chapter VII (for notations see in the 
same place): 

J'f(3) = tao f ["Vi + 2(Vl Vz) + tc2(y - 2),,3] dr, 

(1) 
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where 

d = -(Alx + j1/y). 

It may be easily checked that 

1 
AVj1 - j1VA = - {Ed rot[dx]] + (dV)[dx]}; 

x 

consequently, 

V2 = -2 1 {Ed rot[dx]] + (dV)[dx]} - /x4x 7:d. 
(FoX ~~ 

Let us express the integral £(3) through the Fourier components: 

£(3) = ~~ J dk dk 1 dk2[7:k(~J~2) + i(~' [ddk~~k2X]]]) 

+ i(~, (dk,k2)[dk2 X]) - ~ 7:k(~, dk,) 
Xl10 ~~ 

+ y; 2 C27:k7:k,7:k2}>(k + kl + k2). 

Reducing the vector products and performing the symmetrization over 
kl and k2' we obtain 

£(3) = 110 Jdk dk dk { (V, V, ) + . (~, k2 - k1)(x[dk, dk2]) 
4 1 2 7:k k, k2 I 2 

n x~ 

- ~ 7:k[(Vk, dk2 ) + (~2dk)] + Y ; 2 C27:k 7:k, 7:k2} 

x b(k + kl + k2 ). (2) 

With the aid of Eqs. (27) (subsection 4.1, Chapter VII) we first express the 
Fourier components through the normal variables ak' and after this we 
shall be occupied with the term-by-term calculation of the right-hand side of 
(2): 

1 
dk = ~ {(x2k - iWk[xk])ak - (x2k + iWk[xk])a"'.d, 

Ikl 2xw~ 

N = 4J2116w~w~,w~2Ikllklllk21. 

(1) 7:k(~, ~2) = ~ k2wkWk,wk2(ak + a"'.k){[(wk,Wk2 - x2)(k1k2) 

+ i(Wk, - wk2)(x[k1k2])]ak,ak2 + [(Wk,Wk2 - x2)(k1k2 ) 

-i(Wk, - wk2)(x[k1k2])]a"'.k,a"'.k2 - [(Wk,Wk2 + x2)(k1k2) 

+ i(Wk, + wk,)(x[k1k2 ])]a"'.k,ak2 - [(Wk ,Wk2 + x2)(k1k2 ) 

-i(Wk, + wk2)(x[k1k2 ])]ak,a"'.k2}; 
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(2) i(J-i, k2 - kd(x[dk,dk2J) = Wk {[«(k l _ k2)[xkJ) 
2xO"o N 

+ iWk(k, kl - k2)]ak + [«k l - k2)[xkJ) - iwk(k, kl - k2)]a!.d 

x {[(Wk,Wk2 - x2)(x[k lk2J) - iX2(Wk, - wk)(klk2)]ak,ak2 

+ [(WkIWk2 - x2)(x[k lk2J) + iX2(Wkl - wk)(klk2)]a!.k,a!.k2 

+ [(WkIWk2 + x2)(x[klk2J) - iX2(Wk' + Wk2)(klk2)]a!.k,ak2 

+ [(WkIWk2 + x2)(x[k lk2J) + iX2(Wkl + Wk2)(klk2)]ak,a!.k,}; 

(X Wk k2 * 
(3) -.J ~o Lk[(J-ildk2 ) + (J-i2dk)J = - N (ak + a-k) 

X {[X2(Wkl - Wk2)2(klk2) + i(Wk, - Wk2)(WkIWk2 - x2)(x[k lk2J)] 

x aklak2 + [X2(Wkl - wkY(k 1k2) - i(Wk, - Wk2)(Wk1Wk2 - X2) 

x (x[klk2J)]a!.k,a!.k2 - [X2(Wkl + wk,>2(k lk2) + i(Wk, + Wk2) 

X (Wk1Wk2 + x 2)(x[klk2J)]a!.kl"k2 - [X2(Wkl + wk,>2(klk2) 

- i(Wk, + Wk2)(Wk,Wk2 + x2)(x[k lk2J)]ak,a!.k'}; 

It is easily seen that the expressions obtained have two important properties. 
First, under the products of the normal variables, differing from each 
other only by substitution of aki for a!.ki (for example, under a!.kak,ak2 
and aka!.kla!.k2)' we have the coefficients complex conjugate each to other. 
Second, all such coefficients are invariant with respect to simultaneous 
substitution k -+ -k, kl -+ -kl' k2 -+ -k2' since they involve the products 
of only even numbers of vectors ki' and W-k = Wk' Therefore, later on we 
may restrict ourselves to the calculation of the terms containing the products 

The remaining terms are the complex conjugate ones. 
Taking into account this circumstance, we summarize the expressions 

obtained above, performing the symmetrization over k, kb k2 and using 
the fact that, due to the () function contained in (2), k + kl + k2 = 0, so 
that 

We obtain 

Jt<'(3) = t f dk dkldk2(J-iklk2akak,ak2 + VH~k2a!.kak,ak2 

+ Vki~k2aka!.k,ak2 + Vmk2akak,a!.k2 + c.c.){)(k + kl + k2), (3) 
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where c.c. denotes the terms complex conjugate to those written, 

Ukk ,k2 = 4:~ {2WkWk,Wk2X2[kIk2]2 + 2X4Wk([kkI][kk2]) 

+ 2WkW~,w~2k2(klk2) + j(y - 2)C2k2kik~WkWk,Wk2 

+ X2[W~Wk,«kkl)(klk2) + t(kk2)(k~ - k2 - ki» 

+ W~Wk2«kk2)(klk2) + t<kk I)(ki - k2 - k~))] 
- 2iw~Wk,Wk2 x (ki - k~)(x[klk2]) 
- iX2[(W~, - w~2)(X[kIk2])(klk2) 

+ Wk,wk,(ki - k~)(x[klk2])}' (4) 

and 

V(I) - V* kk,k2 - - kk,k2' V(2) - V* kk,k2 - k - k,k2' V(3) - V* kk,k2 - kk, - k2· (5) 

Substituting in (3) k; -+ - k; in the necessary cases and taking into account 
(5) and the symmetry of l--kk'k2 with respect to all the indexes, we obtain 

JIf(3) = f dkdkIdk2Hl--kk,k2akak2<>(k + kl + k2) 

+ V:k,k2a:ak,ak2<>(k - ki - k2) + c.c.}. 

§ 10 Derivation of the Formulas for the Boundaries of Wave 
Numbers Range Which May Take Part in a Decay 

Let us write down the dispersion equation for the gas disk in the dimen­
sionless form: 

V~ = (q - 1)2 + Q2 - 1, 

x 
Q=-k' 

c 0 

Decay conditions are qi = q + q3 and VI = V2 + V3. We denote 

V2 - Q2 _ 1 q-+ _ .J.Q2 0- ,- 2 , 

q~ = 1 ± t[ 1 + J(3Q2 - 2)(Q2 - 1)/(2 _ Q2)]. 

It may be shown that qo < q- and q+ :::;; qri as Q2 :::;; 4 and q+ :::;; qri for 
Q2 ~ 4 (the equalities correspond to Q2 = 4). 

1. Q2 :::;; j: For 0 :::;; ql :::;; qi) boundaries are determined from the condi­
tions VI = V2 + V3 and ql = I q2 - q31 and described by the formulae 
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As ql ~ 0 the outer (+) and inner (-) boundaries merge and Iq2 - 11 ~ 
Jl - 3Q2/4, and for ql = q(j the inner boundaries merge (q2 = 1), see 
Fig. 101. Continuation of the outer boundaries for q(j :::;; ql :::;; q- are 
determined by the equation VI = V2 + Vo: 

(q2 - 1)2 = qf - 2qI + Q2 - 2J(Q2 - 1)(qf - 2qI + Q2) = vf - 2vo VI' 

(2) 

For ql ~ q+, the upper boundary is described by (2) (the larger root), 
and the lower, by the smaller root in (2) for q+ :::;; ql :::;; qri and by the 
formula (VI = V2 + V3; qi = q2 + q3) 

(2qI - 3Q2)(qf - 2qI + Q2)] 
2ql - 4 + Q2 

(3) 

2. For Q2 ~ 1 ql ~ q+: The lower boundary is described by (3). If Q2 ~ 2. 
then the upper boundary is determined by the equations VI = V2 + V3 

andql = q2 + q3: 

(2ql - 3Q2)(qf - 2q} + Q2)]. 
2ql - 4 + Q 

(4) 

If 1 :::;; Q2 < 2, then for q+ :::;; ql :::;; qri, the upper boundary is described by 
(4), and for ql ~ qri by (2). 

Asymptotics (2), (3), (4) are given in the main text (qi ~ 00). 

§ 11 Derivation of the Kinetic Equation for Waves 

We shall start from Eq. (2), Section 4.3, Chapter VII: 

a~k + iWkak = - i f dki dk2[V~,k2 ak,ak2 c5(k - kl - k2) 

+ 2Vkk ,k2 at,ak2 c5(k + kl - k2) + Vtk,k2at,at2c5(k + ki + k2)] 

- 6i f dk 1dk2dk 3(Wkk,k2k3 + Wtktk2k3) 

x at,ak2ak3c5(k + ki - k2 - k3), 

in which only the terms necessary later on are left. Let us introduce the 
amplitudes Ak 
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They obviously obey the equation 

a:rk = -i fdkldk2{Vtk'k2Ak,Ak2 exp[i(wk - Wk, - wkJt]b(k - kl - k2 ) 

+ 2Vkk,k2At,Ak2 exp[i(wk + Wk, - wk,}t]b(k + kl - k2) 

+ Vtk,k2At,At2 exp[i(wk + Wk, + wkJt]b(k + kl + k2)} 

- 6i f dk 1 dk2 dk3(~k,k2k3 + Wtk,k2k)At,Ak2 Ak3 

x exp[i(wk + Wk, - Wk2 - Wk3)t]b(k + kl - k2 - k3)' (1) 

By neglecting the wave interaction, the solution of the Eq. (1) is 

AkO)(t) = AkO)(O) = const. 

We shall seek the solution in the form of the expansion in powers AkO), 
assuming that AkO) are the exact values of the amplitudes for t = 0: 

Ak = AkO) + AP) + Ak2) + "', 
In the first approximation 

Ak1) = - dk 1dk2 kk,k2 k, k2 {exp[i(wk - Wk, - Wk2)t] - 1} f (
v* A(O)A(O) 

Wk - Wk, - Wk2 

x {exp[i(wk + wk, - Wk2)t] - 1} 

V* A(O)* A(O)* 
x b(k + kl - k2) + kk,k2 k, k2 

Wk + wk, + Wk2 

(2) 

x {exp[i(wk + Wk, + Wk2)t] - 1} x b(k + kl + k2»). (3) 

In the second approximation 

Ak2) = -i f~ dt' fdkldk2(2Vtk'k2Ak~)Ak~)eXp[i(Wk - Wk, - Wk,}t'] 

x b(k - kl - k2) + 2~k,k2(Ak~)* Ak~) t Ak~)Ak~) 

x exp[i(wk + Wk, - Wk2)t'] 

x b(k + kl - k2) + 2Vtk'k2A~~)* A~~)* exp[i(wk + Wk, + Wk2)t'] 

x b(k + kl + k2) - 6' f dkldk2dk3(~k,k2k3 + Wtk'k2k3) 

A (0)* A (0) A (0) _ex_p_[_i(_W_k_+_W--,k,_-_W_k-=2_-_W_k--,,-3)_t_']_-_1 
x k, k2 k3 

Wk + Wk, - Wk2 - Wk3 

x b(k + kl - k2 - k3»). (4) 
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Substituting (3) into (4), we obtain (for brevity, we write only those terms 
which will contribute to the kinetic equation, i.e., the terms containing the 
products like Ai~)* Ai~) Ai~»: 

Ai2) = 2 dk1dk2dq1dq2 kklk2 klqlq2 ql q2 k2 f {2V* V; A(O)*A(O)A(O) 

Wk l + wql - wq2 

x (eXP[i(Wk - Wk2 + wql - wq2)t] - 1 
Wk - Wk2 + wql - wq2 

_ exp[i(wk - Wkl - Wk,)t] - 1) 
Wk - Wkl - Wk2 

x J(k - kl - k2)J(kl + ql - q2) 

2V; V* A(O)A(O)* A(O) + kklk2 k1qlq2 ql q2 k2 
Wkl + wql - wq2 

x (eXP[i(Wk - Wk2 - wql + wq,)t] - 1 
Wk - Wk2 - wql + wq2 

_ exp[i(wk + Wk l - Wk,)t] - 1) 
Wk + Wkl - Wk2 

x J(k + kl - k2)J(kl + ql - q2) 

V; V* A(O)A(O)A(O)* + kklk2 k2qlq2 ql q2 kl 
Wk2 - wql - wq2 

x (eXP[i(Wk + wkl - wq2 - wq)t] - 1 
Wk + Wkl - wql - wq2 

_ exp[i(wk + Wkl - Wk,)t] - 1) 
Wk + wkl - Wk2 

x J(k + kl - k2)J(k2 - ql + q2) 

V* V; A(O)A(O)A(O)* 
+ kklk2 klqlq2 ql q2 kl 

wkl + wql + wq2 

x (eXP[i(Wk + Wk2 - wql - wq,)t] - 1) 
Wk + Wk2 - wql - wq2 

_ exp[i(wk + Wkl + Wk2 )t] - 1) 
Wk + Wkl + Wk2 

x J(k + kl + k2)J(k1 + ql + q2) - 6 f dkldk2dk3(~klk2k3 
+ W* )A(O)*A(O)A(O) exp[i(wk + Wkl - Wk2 - Wk3)t] - 1 

kklk2k3 kl k2 k3 + 
Wk wkl - Wk2 - Wk3 

XJ(k+k 1 -k2 -k3)}+R, (5) 



§ 11 Derivation of the Kinetic Equation for Waves 321 

where R denotes the terms which are nonessential for the future. 
We calculate now the time change of IAkI2, with an accuracy to terms of 

second order: 

IAkl2 == AkAt = IAiO)1 2 + (AiO)AP)* + AiO)*Ai1» 

+ 1 AP) 12 + (AiO)* Ai2) + AiO)AF)*). (6) 

Let us perform then the averaging (6) over the oscillation phases. Here, 
obviously, it is necessary to consider the intervals of time t such that 1 Wk t 1 ~ 

1. We denote the averaging by angle brackets. Assuming the hypothesis on 
the randomness of the oscillation phases, we shall consider that all the cor­
relations of the odd orders are equal to zero; from the pair correlations 
only the following, 

(7) 

are nonzero, and fourth correlations split into the products of the pair 
correlations, for example, 

<At AtAk2 Ak) = <At Ak,)<At Ak) + <At Ak)<At Ak,)· (7') 

Then we obtain from (6) [Ak(O) = AiO)]: 

<IAk(tW) - <IAiO)1 2 ) = <IAP)1 2 ) + <AiO)*Ai2) + AiO)AF)*). (8) 

The calculations of the terms on the right-hand side of (8), with the help of (3) 
and (5) and taking into account (7) and (7'), give 

<Akl)Ai~)*) = J(k - ko) J dkldk2(81l-kklk212nklnk2 

x {sin2[!CWk - wk, - W~2)t] J(k - kl - k2 ) 

(Wk - Wk, - Wk2) 

+ 2 sin2 [i(wk + Wk, - ~k2)t] J(k + k\ - k2) 
(Wk + Wk1 - Wk2 ) 

+ sin2[i(wk + Wkl + W~2)t] J(k + kl + k2)} 
(Wk + wk, + WkJ 

Since, as already noted above, IWktl ~ 1, we may use the formula 

. 2 
~( ) _ 1. SIn (Xx 

TCv X - 1m --2-' 
a-> 00 (Xx 

(9) 

(10) 

which gives one of the representations of the J function. The last term in 
(9) is proportional to J(K)· J(Wk). But since, for k = 0, Wk -# ° this term 
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vanishes. Therefore, later on we shaH omit such terms 

<A~~)*A~2) + A~~)A~2)*) = 8o(k - ko) f dk1dk2i ~klk2i2 

{2 sin2[!(wk + Wkl - Wk2)t] >:(k k _ k ) 
x ( )2 nk nk2 u + 1 2 

Wk + Wkl - Wk2 

sin2[!(Wk + Wkl + Wk2)t] 
+ ( ) x (nknkl + nknk2)o(k + kl + k2) 

Wk + Wkl + Wk2 

_ sin2[l(wk - Wkl - Wk2)t] ( )>:(k _ k _ k ) 
( ) 2 nknkl + nknk2 u 1 2 
Wk - Wkl - Wk2 

+ 48o(k - ko) f dkldk2dk3(w"klk2k3 + wtklk2k)nknkl 

sin2[!(wk + Wkl - Wk2 - Wk3)t] 
x ----------~--~----~ 

Wk + Wkl - Wk2 - Wk3 

X O(kl - k3)O(k + kl - k2 - k3)' 

Substitution of (9) and (11) into (8) gives [taking into account (10)] 

<Ak(t)Ato(t) - <A~O)A~~)*) 

= 4nto(k - ko) f dk1dk2i ~klk2i2{(nklnk2 - nknkl - nknk2) 

x o(wk - wkl - Wk2)O(k - kl - k2) + 2(nklnk2 + nknk2 - nknk) 

x O(Wk + wkl - Wk2)O(k + kl - k2) + (nklnk2 + nknkl + nknk2) 

x o(wk + Wkl + Wk2)O(k + kl + k2)} 

+ 6 f dkldk2dk3(Wkklk2k3 + Wtklk2k3)nk nkl 

x (Wk + Wkl - Wk2 - Wk3)O(Wk + wkl - Wk2 - Wk3) 

X O(kl - k3)O(k + kl - k2 - k3)' 

(11) 

(12) 

The last term vanishes since it contains the product of a type X· o(x); there­
fore, the derivation of the kinetic equation may be produced, at the very 
beginning, starting from the equation which doesn't involve the terms, 
describing the four wave interaction. Finally, since in the problem considered 
wk > 0 for any k, the term containing O(Wk + Wkl + Wk2) doesn't con­
tribute, which corresponds physically to impossibility of the spontaneous 
production of" quanta" from the vacuum. Taking into account (7), we have 

<Ak(t)Ato(t) - <A~O)A~~)*) = o(k - kO)[nk(t) - nk(O)]. 
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As was indicated in Section 4.2, Chapter VII, under derivation of the limits 
of appreciability for the kinetic equation for waves, the characteristic 
time r of the spectrum evolution is much more than the inverse maximum 
increment of the decay instability 

1 
r ~ -_-. 

Ymax 

On the other hand, the wave amplitudes are assumed to be sufficiently 
small so that Ymax ~ Wk' Consequently, we can choose the time t so that 
the inequalities 

t 
- ~ 1 and Wk t ~ 1 
r 

perform simultaneously. In this case 

nk(t) - nk(O) dnk 
dt' 

and, with only nonzero terms remaining in (12), we obtain the kinetic 
equation for waves: 

dnk J 2 - = 4n dk,dk 2 1 Vkk'k21 [(nk,nk2 - nknk, - nknk2) 
dt 

X b(Wk - Wk, - wkJb(k - k, - k2 ) + 2(nk,nk2 + nknk2 - nknk,) 

x b(Wk + Wk, - wkJb(k + k, - k2 )]. 

§ 12 Table of Non-Jeans Instabilities (with a Short Summary) 

In Table X we use the following notations: w, k = the frequency and the 
wave number of oscillations, where W = Re W + iy, k2 = k; + m2/r2 

(in the case of cylindrical symmetry), kr = the radial component of 
the wave vector, m = the azimuthal wave number; Jeans frequency 
Wo = J4nGp, where P is the medium density, G is the gravity constant; 
A = (p, - P2)/(P, + P2), where p, and P2 are densities above and below 
the boundary of density discontinuity (the value a wide); v 1 = the 
thermal velocity of medium (the sound velocity); Vo = QR, where Q = the 
angular velocity of the cylinder and R = the cylinder radius; v = the beam 
velocity (along the z-axis); Tl = the transversal (relative to the axis of 
rotation) temperature, Til = the longitudinal temperature; the parameters 
of the beam are marked by indexes" 1". The remaining notations are given 
in the table. 

Non-Jeans instabilities (NJI) of the gravitating medium are, by definition, 
instabilities which may excite in the gravitating systems provided that 
Jeans instability (JI) is completely absent or develops much slower than NJI. 
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In the table we enumerate all the hydrodynamic and kinetic NJI known 
at present. The kinetic instabilities distinguish themselves in that only 
a rather small group of so-called resonance particles takes part in their 
generation. For this reason the energy capacity of the kinetic instabili­
ties, as a rule, is considerably less than the energy capacity of the hydro­
dynamic instabilities : The latter are generated by all the particles of the phase 
space. 

The necessary and sufficient condition of the Kelvin-Helmholtz instability 
(KHI) is the occurrence of a rather sharp drop in the medium velocity. 
The classical example of KHI yields the instability arising at the boundary 
between two media, one of which is moved respective to another medium 
(see Fig. 136). The most intensive KHI corresponds to the incompressible 
medium which is the limiting case of the compressible medium as the 
sound velocity Cs -+ 00. It follows from this fact that KHI builds up more 
strongly in a hotter medium than in a colder one. This is the main difference 
between KHI and JI: The latter is stabilized in a hot medium. The growth 
rate of KHI may considerably exceed the increment of JI in the region of 
just those short waves which are not important for the growth of JI. 

The physical meaning of KHI is as follows. The disturbance amplitude 
decreases exponentially in both sides from the boundary. Therefore, "the 

z 

-~~.--- vo 

a 

t .. -... -....... - '.. -_ .. , .. _-
I 

(a) 

v" = - Qr 

Figure 136. (a) Plane jump of a velocity. The medium in the semispace z < 0 is at rest, 
the medium in the semispace z > 0 is moving with the velocity vo, parallel to x-axis ; a 
is the thickness of the transition layer which is perturbed. KHI leads to growth of per­
turbation amplitude. (b) Cylindrical velocity jump. 
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a r 

Figure 137. Two-humped rotation curve of the flat subsystem of a spiral galaxy. 

scene" plays completely either directly at the disturbed boundary or in the 
narrow vicinity of the boundary. Outside this region the flow may be assumed 
as practically undisturbed. This means that in the moving component of the 
fluid, due to conservation of the total flux through the variable "cross 
section," the velocity must increase immediately above "humps" produced 
by the boundary displacements. Thus the reason for increasing the velocity 
above "the humps" is the same as in a narrowed section of a water-pipe. 
From Bernoulli's law (i.e., from the conservation of the total pressure: 
statical + dynamical) it follows that the statical pressure decreases above the 
humps of the boundary disturbances in the moving component, due to an 
increase of the dynamical pressure in this region. So a gradient of the statical 
pressure arises that compels the medium to be moved in such a manner 
that the early created humps some more increase. 

The energy reservoir of KHJ is the kinetic energy of the relative move­
ment of the medium in the vicinity of the disturbed boundary. Evidently, 
the concept of "the division surface" itself for the continuous function 
vo(z) [Fig. 136(a)] (when the tangential discontinuity is absent), is condi­
tional. The best known example of the region, where the condition of KHI 
is probably satisfied, is the interval ab (Fig. 137) of a sharp drop of the 
azimuthal velocity of rotation for a number of spiral galaxies. 

The necessary and sufficient conditions for the flute-like instability (FI) 
are the following: (1) the presence of a density gradient A; (2) the presence 
of an "effective" force of the weight g (per unit mass); and (3) the fact that 
direction of density gradient must be opposite to the vector of the" effective" 
force of the weight. The effective force of the weight may be produced by 
various means: by proper or external gravitational fields, by centrifugal 
force, and so on, in case the nature of this force is not important. The classical 
example of FI is the instability of the situation when the "heavy" fluid is 
placed above the "light" fluid (see Fig. 138). Similar to KHI, the increment 
of FI may greatly exceed the increment of n. The present name of this 
instability-"flute-Iike"-came from plasma physics (where the stability 
of the boundary between two plasma components-heavy and light-is 
defined by the form of magnetic surfaces) and characterizes exactly the 
dynamics of the development of FI. The appearance of an initial perturbation 
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Figure 138. (a) Plane jump of a density, PI < P2' (b) Cylindrical jump of a density, 
PI > P2' 

at the boundary of separation between" heavy" and" light" fluids in a form 
of a flute leads to increasing its dimension in the region ofthe light component 
and to forcing the latter out into the region of the heavy component. In the 
medium without the magnetic field, FI has another name-Reley-Teylor 
instability (RTI). The necessary and sufficient conditions of FI are fulfilled, 
for example, in a some region of Galaxy disk (see Fig. 139). 

P 

Figure 139. The presence of a density maximum permits the development of FI on the 
left side from the maximum point '0' The possible instability region is dashed, here the 
necessary and sufficient condition of FT is satisfied. 



330 Appendix 

The building-up mechanism of the hydrodynamic beam instability 
(HBI) is essentially different from the kinetic beam instability (KBI -see 
below) and is as follows. Let us have the beam, moving in the medium, 
undergo perturbations. Then the beam (modulated in a density) when it is 
passing near an arbitrary point of the medium, serves as the source of the 
disturbed gravitational field connected with the disturbed beam density 
by the Poisson equation. The field perturbation causes in turn the perturba­
tion of the medium density. 

If the beam velocity v is less than its thermal velocity VT" then the perturba­
tion of the beam density will spread with the thermal velocity of the beam. 
If the beam velocity v is less than the thermal velocity of the medium, then 
the density "response," arising in the medium, spreads with the thermal 
velocity of the medium. In the case when the beam velocity exceeds the 
summary sound velocity in the beam and medium, v> VT + VT" the density 
perturbations of the beam and medium don't go out of each point of its 
appearance; then they accumulate and that just leads to HBI. Hence we 
obtain the necessary condition of HBI: 

(1) 

(which is exactly coincident with the analogous criterion for HBI in the case 
of plasma). Thus, the mechanism of the perturbation growth for HBI is 
analogous to the mechanism of the growth of a density jump at the front of a 
shock wave, arising in a supersound movement of a body in the medium. 
Apart from condition (1) it is necessary to satisfy the condition that the 
increment of 11 was much less than the increment of HBI. This is so if 

(2) 

where Vo = Rn, R is the radius of the cylindrical system. 
Contrary to the oscillative (Re w #- 0) HBI, the beam-gradient instability 

(BGI) is aperiodical. It was investigated for the case of two oppositely 
rotating equal-density systems with cylindrical symmetry, which were 
enclosed each into the other. The instability arose only for the azimuthal 
mode m = 2 in the region where the value of the rotational velocity Q 

increases outwards, dQ/dr > O. The fact that similar increasing occurs in 
the region ab in Fig. 137 is not excluded. The relative rotational velocity 
of the flat and nonflat constituents of the spiral galaxies, which exceeds 
their thermal velocities, create the necessary conditions for the appearance 
of HBI and BGl 

The temperature-gradient instability (TGI) was investigated in the rota­
ting cylindrical systems provided the transversal temperature is much less 
than the rotational energy: TJ. ~ w;., and d4/dr #- 0 and finally 11 is 
absent: v~ ~ v}. The density gradient has the stabilizing influence for 
TGI. For dpo/dr = 0, TGI occurs for the practically arbitrary temperature 
gradient. For dpo/dr #- 0, TGI is absent in the region 0 < ,., < 1, where 
,., = a In T/a In p. The necessary condition ofTGI is as follows: 

(m/2r)VTI dVT/dr I ~ IRew - mOl. 
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F, .r. 

Figure 140. The flat layer with a perturbation. Fc.L = mvil R, where R is the curvature 
radius, and m is the particle mass. 

Since, however, Re w '" mn, then the necessary condition of TGI may be 
simply satisfied: The resonance frequencies must occur for the arbitrarily 
small (but finite) temperature gradient. For the excitation of waves with 
frequencies far from the resonance ones, correspondingly more tempera­
ture gradients are necessary. The most unstable are the long waves along 
the rotation axis with a large azimuthal number m. 

The nature of TGI is analogous to the universal instability (UI) of a 
plasma. The stability region for the long waves in a plasma (0 < IJ < 2) 
exceeds by a factor of 2 the analogous stability region (0 < IJ < 1) in a 
gravitating medium, since particles of both negative and positive charge 
(electrons and ions), contribute to the real part of the dielectric permeability 
while the gravitating medium consists of the particles with the one sign of 
"a charge." 

The fire-hose instability (FHI) may be easily observed if we bend the 
flexible hose with the flowing water: the hose would then bend already 
without any help. The centrifugal force, which is the reason of FHI, does not 
depend on the direction of flux, i.e., if one bends a flat layer as is shown in 
Fig. 140, then the centrifugal forces for all the molecules are directed outside 
along the radius of curvature. The less the radius of curvature the more the 
centrifugal force F cr, consequently, with a decrease in the perturbation 
wavelength A, Fer increases, and for the wavelengths A < ..11' one may 
exceed the gravitational returning force Fg. having the opposite direction. 
Thus the range of the development FHI, A < ..11, lies in the region of the 
wavelengths stable, according to Jeans, short waves. 

The considerations described above determine the lower boundary of 
FHI, which develops for 

A < ..11 ~ 3h!X2, 

!X 2 = ~ :g = ;~h2 = the anisotropy of the velocity distribution. 6 

6 Here and in the table the exact value of numerical coefficients is given for the homogeneous 
(in density) systems. Since the boundaries in A (hrx ;$ A ;$ 3hrx2 ) are given at the long wave­
lengths limit, A ~ h (in the general case, see Fig. 141) the concrete form of the function p(r) 
leaves the numerical coefficients practically unchanged. 
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Figure 141. (a) The range of FHI for the gravitatihg fiat layer. Dotted line is the bound­
ary for J.I. in this case. (b) The range of FHI for the gravitating cylinder. Dotted line is 
the boundary for J.1. in this case. 

The range of unstable wavelengths is also restricted from above: A> A2 '" hex. 
Indeed, if A/VTx ~ l/wo, a particle, during the time of one oscillation l/wo, 
has time to pass many wavelengths, i.e., such perturbations are smoothed 
out by the thermal movement of the particles. The range of FHI for the flat 
layer is represented in Fig. 141 (a). For the gravitating cylinder an analogous 
picture is given in Fig. 141. 

The kinetic beam instability (KBI) may become manifest only when stronger 
HBI are absent, i.e., provided ex 1/2 ~ VT)V (ex = ndn). 

The distribution function of a particle ensemble in the presence of a beam 
is represented in Fig. 142. Consider the interaction between the wave and 
the particles. Let the wave have the frequency wand the wave number k. 
The most effective interaction occurs with those particles whose velocities 
are close to the phase velocity of the wave (w/k). Such particles are called 
resonance particles; they occupy the narrow interval in the velocity space 
(w/k - ~VZ, w/k + ~vz) ~vz ~ w/k. If w/k lies within the range, where 
oi%v < 0, then the wave "collides" more frequently with those particles 
which have velocities smaller than the wave velocity, in comparison with 
the particles exceeding the wave in velocity (since each volume unit contains, 

o w/k v 

Figure 142. Beam-like distribution function. 
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Figure 143. Temperature jump in the homogeneous (in a density) cylinder of the 
radius R. 

for aj~/av < 0, slower particles more than faster ones). As a result, the energy of 
the wave decreases, i.e., the wave is decaying. On the other hand, if the 
phase velocity of the wave is situated in the range where aio/av > 0, as 
shown in Fig. 142, then such a wave collides more frequently with those 
particles whose velocities are higher than the wave phase velocity. Therefore, 
in this case the wave will on the average collect the energy, i.e., the wave 
amplitude will increase. The physics of KBI consists of just this. The reso­
nance condition which must be satisfied here is the following: Re w - kz v + 
mQ = 0. The strongest KBI develops for m = 2. 

The kinetic temperature-gradient instability (KT -GI) may arise in the 
simplest case of a homogeneous rotating cylindrical system when a small 
portion of particles with the density rxp (rx ~ 1, p = the medium density) 
has the temperature jump (see Fig. 143). The remaining mass of the medium 
has the fixed temperature T. The conditions, when the instability occurs 
with the maximum growth rate, are reflected in Table X. 

Figure 144. The graph of the distribution function j~(L) = S fo(E, L) dE in the vicinity 
of the critical value of the angular momentum L cr • 
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The kinetic cone instability (KCI) may arise, for example, in the spherically 
symmetrical stellar system in the presence of the massive compact central 
body with mass M h . Assume that r R is the Roche limit for stars: inside rR 

tidal forces from the central body exceed the forces of self-gravitation of the 
star. Thus, all the stars whose trajectories lie inside the radius rR' are de­
stroyed. The distributiort function of stars in the spherically symmetrical 
system depends on two integrals of motion: energy E and angular momentum 
L. In the presence of the central body, stars with small momenta are absent 
(with momenta L < Lcr). This means that in the region Lcr + eLcr (where 
e ~ 1) iJ!o/iJL > 0 (Fig. 144). Repeating then all the reasonings for KBI, 
we are led to the conclusion that in this region of momenta the system must 
be unstable for the suitable sign of the wave energy. KCI leads to anoma­
lously fast (compared to Newtonian collisions) filling in the "empty" region 
of small values of momenta due to the diffusion flow in the phase space E, L. 



References 

[1] T. A. Agekyan, Stars, Galaxies, Metagalaxy, Nauka, Moscow, 1966 (in 
Russian). 

[2] T. A. Agekyan, Vestn. Leningr. Univ. 1, 152 (1962) (in Russian). 

[3] C. W. Allen, Astrophysical Quantities, 3d ed., Athlone Press, London. 

[4] V. A. Antonov, Astron. Zh. 37, 918 (1960) [SOy. Astron. 4, 859 (1961)]. 

[5] V. A. Antonov, Vestn. Leningr. Univ. 13, 157 (1961) (in Russian). 

[6] V. A. Antonov, Vestn. Leningr. Univ. 19,96 (1962) (in Russian). 

[7] V. A. Antonov, in ftogi Nauki, Ser. Astron.: Kinematika i Dinamika Zvezdnykh 
Sistem (Scientific Findings, Astron. Ser.: Kinematics and Dynamics of Stellar 
Systems), VINITI, Moscow, 1968 (in Russian). 

[8] V. A. Antonov, Uch. Zap. Leningr. Univ. No. 359,64 (1971) (in Russian). 

[9] V. A. Antonov, Dokl. Akad. Nauk SSSR 209(3), 584 (1973) [SOy. Phys.­
Dokl. 18 (3), 159 (1973)]. 

[10] V. A. Antonov and E. M. Nezhinskii, Uch. Zap. Leningr. Univ. 363,122 (1973) 
(in Russian). 

[11] V. A. Antonov, in Dinamika Galaktik i Zvezdnykh Skoplenii (Dynamics of 
Galaxies and Star Clusters), Nauka, Alma-Ata, 1973 (in Russian). 

[12] V. A. Antonov and S. N. Nuritdinov, Vestn. Leningr. Univ. 7, 133 (1975) (in 
Russian). 

[12a] V. A. Antonov and S. N. Nuritdinov, Astron. Zh. 54, 745 (1977). 

[13] V. A. Antonov, in ftogi Nauki, Ser. Astron., T. 10: Ravnovesije i Ustoichivost' 
Gravitirujushchikh Sistem (Scientific Findings, Astron. Ser.): Equilibrium and 
Stability of Gravitating Systems), Nauka, Moscow, 1975 (in Russian). 

335 



336 References 

[13a] V. A. Antonov, in Dinamika i Evolutsija Zvezdnykh Sistem (Dynamics and 
Evolution of Stellar Systems), VAGO, Moscow and Leningrad, 1975, p. 269 
(in Russian). 

[14] V. A. Antonov, Uch. Zap. Leningr. Univ., Tr. Astron. Obs. 24, 98 (1968) (in 
Russian). 

[15] P. Appell, Figures d'equilibre d'une masse liquide homogene en rotation, Russian 
translation, ONTI, Leningrad and Moscow, 1936. 

[16] H. Arp, in Astrojizika (Astrophysics), Nauka, Moscow, 1961 (in Russian). 

[17] W. Baade, Evolution of Stars and Galaxies, Cecilia Payne-Gaposhkin, Ed., 
Harvard University Press, Cambridge, Mass. (Russian translation: Mir, 
Moscow, 1966.) 

[18] R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, New 
York, 1953 (Russian translation: IL, Moscow, 1954). 

[19] G. S. Bisnovatyi-Kogan, Ya. B. Zel'dovich, and A. M. Fridman, Dokl. Akad. 
Nauk SSSR 182, 794 (1968) [Sov. Phys.-Dokl. 13, 960 (1969)]. 

[20] G. S. Bisnovatyi-Kogan, Ya. B. Ze1'dovich, R. Z. Sagdeev, and A. M. Fridman, 
Zh. Prikl. Mekh. Tekh. Fiz. 3,3 (1969) (in Russian). 

[21] G. S. Bisnovatyi-Kogan and Ya. B. Zel'dovich, Astrofizika 5 (3), 425 (1969) 
[Astrophysics 5(3), 198-200 (1969)]. 

[22] G. S. Bisnovatyi-Kogan and Ya. B. Zel'dovich, Astrofizika 5 (2), 223 (1969) 
[Astrophysics 5(3), 105-109 (1969). 

[23] G. S. Bisnovatyi-Kogan and Ya. B. Zel'dovich, Astrofizika 6 (3), 387 (1970) 
[Astrophysics 6(3), 207-212 (1973)]. 

[24] G. S. Bisnovatyi-Kogan and Va. B. Zel'dovich, Astron, Zh. 47, 942 (1970) 
[Sov. Astron. 14, 758 (1971)]. 

[25] G. S. Bisnovatyi-Kogan, Astrofizika 7, 121 (1971) [Astrophysics 7,70 (1971)]. 

[26] G. S. Bisnovatyi-Kogan, Astron. Zh. 49, 1238 (1972) [Sov. Astron. 16, 997 
(1973)]. 

[27] G. S. Bisnovatyi-Kogan and S. I. Blinnikov, preprint, Inst. Prikl. Mat. Akad. 
Nauk SSSR 34, Moscow, 1972 (in Russian). 

[28] G. S. Bisnovatyi-Kogan and A. B. Mikhailovskii, Astron. Zh. SO, 312 (1973) 
[Sov. Astron. 17,205 (1973)]. 

[29] G. S. Bisnovatyi-Kogan, Pis'ma Astron. Zh. 1(9),3 (1975) [Sov. Astron. Lett. 
1(5), 177 (1975)]. 

[30] M. S. Bobrov, Kol'tsa Saturna (Saturn's Rings), Nauka, Moscow, 1970 (in 
Russian). 

[31] A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Usp. Fiz. Nauk 73, 701 
(1961) [Sov. Phys.-Usp. 4,332 (1961)]. 

[32] Yu.-1. K. Veltmann, in [togi Nauki, Ser. Astron.: Kinematika i Dinamika 
Zvezdnykh Sistem (Scientific Findings, Astron. Ser.: Kinematics and Dynamics 
of Stellar Systems), VINITI, Moscow, 1968 (in Russian). 

[33] N. Ya. Vilenkin, Spetsiafnyje Funktsii i Teorija Group (Special Functions and 
Group Theory), Nauka, Moscow, 1965 (in Russian). 

[34] M. A. Vlasov, Pis'ma Zh. Eksp. Teor. Fiz. 2, 274 (1965) [JETP Lett. 2, 174 
(1965)]. 



References 337 

[35] G. de Vaucouleurs, in Strojenije Zvezdnykh Sistem (The Structure of Stellar 
Systems), IL, Moscow, 1962 (in Russian). 

[36] B. A. Vorontsov-Velyaminov, Atlas i Katalog Vzaimodeistvuyushchikh Galaktik 
(Atlas and Catalogue of Interconnected Galaxies), Gos. Astron. Inst. imeni P. K. 
Shternberg, Moscow, 1959 (in Russian). 

[37] B. A. Vorontsov-Velyaminov, Vnegalakticheskaya Astronomia (Extragalactic 
Astronomy), Nauka, Moscow, 1972 (in Russian). 

[38] S. K. Vsekhsvjatskii, in Problemy Sovremennoi Kosmogonii (Problems of 
Modern Cosmogony), V. A. Ambartsumjan, Ed., Nauka, Moscow, 1969 (in 
Russian). 

[39] A. A. Galeevand R. Z. Sagdeev, Vopr. Teor. Plazmy (Plasma Theory Problems) 
7,3 (1973) (in Russian). 

[40] I. F. Ginzburg, V. L. Polyachenko, and A. M. Fridman, Astron. Zh. 48, 815 
(1971) [SOy. Astron. 15, 643 (1972)]. 

[41] I. M. Glazman, Direct Methods of Qualitative Spectral Analysis, IPST, 
Jerusalem, 1965 (Eng!. translation). 

[42] I. S. Gradshtein and I. M. Ryznik, Table of Integrals, Series, and Products, 
Academic Press, New York, 1965 (Eng!. translation). 

[43] L. E. Gurevich, Vopr. Kosmog. (The Problems of Cosmogony), 2, 150 (1954) 
(in Russian). 

[44] L. E. Gurevich, Astron. Zh. 46, 304 (1969) [SOy. Astron, 13,241 (1969)]. 

[45] A. G. Doroshkevich and Va. B. Zel'dovich, Astron. Zh. 40, 807 (1963) [SOy. 
Astron. 7, 615 (1964)]. 

[46] B. M. Dzyuba and V. B. Yakubov, Astron. Zh. 47, 3 (1970) [SOy. Astron. 14, 
1 (1970)]. 

[47] Va. B. Zel'dovich and M. A. Podurets, Astron. Zh. 42, 963 (1965) [SOy. Astron. 
9,742 (1966)]. 

[48] Va. B. Zel'dovich and I. D. Novikov, Relativistic Astrophysics, translated by 
David Arnett, University of Chicago Press, Chicago, 1971 (Eng!. translation). 

[48a] Va. B. ZeI'dovich and I. D. Novikov, Strojenije i Evolutsija Vselennoi (The 
Structure and Evolution of the Universe), Nauka, Moscow, 1975 (in Russian). 

[49] Va. B. ZeI'dovich and I. D. Novikov, Preprint, Inst. Prik!. Mat. Akad. Nauk 
SSSR 23, Moscow, 1970 (in Russian). 

[50] Va. B. Zel'dovich, V. L. Polyachenko, A. M. Fridman, and I. G. Shukhman, 
preprint, Inst. Zemn. Magn. lonsf. Rasprostr. Radiovoln Sibir. Otd. Akad. 
Nauk SSSR, No. 7-72, Irkutsk, 1972 (in Russian). 

[51] G. M. Idlis, Astron. Zh. 29, 694 (1952) (in Russian). 

[52] G. M. Idlis, in Itogi Nauki, Ser. Astron., Kinematika i Dinamika Zvezdnykh 
Sistem (Scientific Findings, Astron. Ser.: Kinematics and Dynamics of Stellar 
Systems), VINITI, Moscow, 1968 (in Russian). 

[53] B. B. Kadomtsev, Vopr. Teor. Plazmy (The Problems of Plasma Theory) 2, 
132 (1963) (in Russian). 

[54] B. B. Kadomtsev, A. B. Mikhailovskii, and A. V. Timofeev, Zh. Eksp. Teor. 
Fiz. 47, 2266 (1964) SOY. Phys.-[JETP 20,1517 (1965)]. 



338 References 

[55] E. Kamke, Differentialgleichungen Reeller Funktionen, Chelsea Publishing Co., 
New York, 1947 (Russian translation: Nauka, Moscow, 1965). 

[55a] V. I. Karpman, Nelinejnyje Volny v Dispergirujushchikh Sredakh (Nonlinear 
Waves in Dispersing Media), Nauka, Moscow, 1973 (in Russian). 

[56] S. V. Kovalevskaya, in S. V. Kovalevskaya, Nauchnyje Raboty (Scientific 
Reports), Izd. Akad. Nauk SSSR, Moscow, 1948 (in Russian). 

[57] V. I. Korchagin and L. S. Marochnik, Astron. Zh. 52, 15 (1975) [SOy. Astron. 
19, 8 (1975)]. 

[58] G. G. Kuz'min, Pub!. Tartus. Astron. Obs. 32, 211 (1952) (in Russian). 

[59] G. G. Kuz'min, Pub!. Tartus. Astron. Obs. 35, 285 (1956) (in Russian). 

[60] G. G. Kuz'min, Astron. Zh. 33, 27 (1956) (in Russian). 

[61] G. G. Kuz'min, Izv. Akad. Nauk Eston. SSR 5,91 (1956) (in Russian). 

[62] G. G. Kuz'min and Yu.-1. K. Veltmann, Pub!. Tartus. Astron. Obs. 36, 5 
(1967) (in Russian). 

[63] M. A. Lavrentjev and B. V. Shabat, Metody Teorii Funktsii Kompleksnogo 
Peremennogo (Methods of the Theory of Functions of a Complex Variable), 
Fizmatgiz, Moscow, 1958 (in Russian). 

[64] H. Lamb, Hydrodynamics, Cambridge University Press, Cambridge, 1932 
(Russian translation: Gostekhizdat, Moscow, 1947). 

[65] L. D. Landau, Zh. Eksp. Teor. Fiz. 16, 574 (1946) (in Russian). 

[66] L. D. Landau, Izv. Akad. Nauk SSSR, Ser. Fiz. 17, 51 (1953) (in Russian). 

[67] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London, 
and Addison-Wesley Publishing Co., Reading, Mass., 1959 (Eng!. translation). 

[68] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, 
Oxford and New York, and Addison-Wesley Publishing Co., Reading, Mass., 
1965 (Eng!. translation). 

[69] L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford and 
New York, 1976 (Eng!. translation). 

[70] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press, 
Oxford and New York, 1971 (Eng!. translation). 

[71] N. N. Lebedev, Problems in Mathematical Physics, Pergamon Press, Oxford 
and New York, 1966 (Eng!. translation). 

[72] V. I. Lebedev, M. N. Maksumov, and L. S. Marochnik, Astron. Zh. 42, 709 
(1965) [SOY. Astron. 9,549 (1966)]. 

[73] B. Lindblad, in Strojenije Zvezdnykh Sistem (The Structure of Stellar Systems), 
IL, Moscow, 1962 (Russian translation). 

[74] C. C. Lin, The Theory of Hydrodynamic Stability, Cambridge University 
Press, Cambridge, 1966 (Russian translation: IL, Moscow, 1958). 

[75] E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 16, 587 (1946) (in Russian). 

[76] E. M. Lifshitz and I. M. Khalatnikov, Usp. Fiz. Nauk 30, 391 (1963) [SOY. 
Phys.-Usp. 6, 495 (1964)]. 

[77] L. Lichtenshtein, Figury Ravnovesija Vrashchayushchejsja Zhidkosti (Equilib­
rium Configurations of Rotating Fluid), Nauka, Moscow, 1965 (in Russian). 



References 339 

[78] A. M. Lyapunov, Selected Works, Izd. Akad. Nauk SSSR, Moscow, 1954-1965 
(in Russian). 

[78a] R. K. Mazitov, Prikl. Mat. Tekh. Fiz. 1,27 (1965) (in Russian). 

[79] V. A. Mazur, A. B. Mikhailovskii, A. L. Frenkel, and I. G. Shukhman, pre­
print, Instituta Atomnoi Energii, No. 2693, 1976 (in Russian). 

[80] M. N. Maksumov, Dokl. Akad. Nauk Tadzh. SSR 13,15 (1970) (in Russian). 

[81] M. N. Maksumov, Bul. Inst. Astrofiz. Akad. Nauk Tadzh. SSR 64, 3 (1974) 
(in Russian). 

[82] M. N. Maksumov, Bul. Inst. Astrofiz. Akad. Nauk Tadzh. SSR 64,22 (1974) 
(in Russian). 

[83] M. N. Maksumov and Yu. I. Mishurov, Bul. Inst. Astrofiz. Akad. Nauk 
Tadzh. SSR 64, 16 (1974) (in Russian). 

[84] L. S. Marochnik and A. A. Suchkov, Usp. Fiz. Nauk 112(2), 275 (1974) [SOY. 
Phys.-Usp. 17(1), 85 (1974)]. 

[85] A. B. Mikhailovskii, A. L. Frenkel', and A. M. Fridman, Zh. Eksp. Teor. Fiz. 
73,20 (1977) [SOY. Phys.-JETP 46,9 (1977)]. 

[86] A. B. Mikhailovskii, Theory of Plasma Instabilities, Consultants Bureau, 
New York, 1974, Vol. I (Engl. translation). 

[87] A. B. Mikhailovskii, A. M. Fridman, and Ya. G. Epe\'baum, Zh. Eksp. Teor. 
Fiz.59, 1608 (1970) [SOY. Phys.-JETP 32,878 (1971)]. 

[88] A. B. Mikhailovskii and A. M. Fridman, Zh. Eksp. Teor. Fiz. 61, 457 (1971) 
[SOY. Phys.-JETP 34, 243 (1972)]. 

[89] A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2, Instabilities of an 
Inhomogeneous Plasma, Consultants Bureau, New York, 1974 (Engl. trans­
lation). 

[89a] A. B. Mikhailovskii, V. I. Petviashvili, and A. M. Fridman, Astron. Zh. 56, 
279 (1979). 

[90] A. B. Mikhailovskii and A. M. Fridman, Astron. Zh. SO, 88 (1973) [SOY. 
Astron. 17, 57 (1973)]. 

[90a] A. B. Mikhailovskii, V. I. Petviashvili, and A. M. Fridman, Pis'ma Zh. Eksp. 
Teor. Fiz. 26, 129 (1977) [JETP Lett. 24(2),43 (1976)]. 

[91] A. G. Morozov, V. L. Polyachenko, and I. G. Shukhman, preprint, Inst. Zemn. 
Magn. Ionosf. Rasprostr. Radiovoln Sibir. Otd. Akad. Nauk SSSR, No. 3-72, 
Irkutsk, 1972, (in Russian). 

[92] A. G. Morozov, V. L. Polyachenko, and I. G. Shukhman, preprint, Inst. Zemn. 
Magn. lonosf. Rasprostr. Radiovoln Sibir. Otd. Akad. Nauk SSSR, No. 6-72, 
Irkutsk, 1972, (in Russian). 

[93] A. G. Morozov, V. L. Polyachenko, and I. G. Shukhman, preprint, Inst. Zemn. 
Magn. Ionosf. Rasprostr. Radiovoln Sibir. Otd. Akad. Nauk SSSR, No. 1-73, 
Irkutsk, 1973, (in Russian). 

[94] A. G. Morozov and A. M. Fridman, Astron. Zh. SO, 1028 (1973) [SOY. Astron. 
17,651 (1974)]. 

[95] A. G. Morozov, V. L. Polyachenko, and I. G. Shukhman, preprint, Inst. Zemn. 
Magn. Ionosf. Rasprostr. Radiovoln Sibir. Otd. Akad. Nauk SSSR, No. 5-74, 
Irkutsk, 1974, (in Russian). 



340 References 

[96J A. G. Morozov, V. L. Polyachenko, and I. G. Shukhman, Astron. Zh. 51, 75 
(1974) [SOy. Astron. 18,44 (1974)]. 

[97J A. G. Morozov, V. L. Polyachenko, A. M. Fridman, and I. G. Shukhman, in 
Dinamika i Evolutsija Zvezdnykh Sistem (Dynamics and Evolution of Stellar 
Systems), VAGO, Akad. Nauk SSSR, Moscow, 1975 (in Russian). 

[98J A. G. Morozov, V. L. Polyachenko, and I. G. Shukhman, preprint, Inst. Zemn. 
Magn.lonosf. Rasprostr. Radiovoln Sibir. Otd. Akad. Nauk SSSR, No. 3-75, 
Irkutsk, 1975, (in Russian). 

[98aJ A. G. Morozov and A. M. Fridman, in Dinamika i Evolutsija Zvezdnykh 
Sistem (Dynamics and Evolution of Stellar Systems), V AGO, Akad. Nauk 
SSSR, Moscow, 1975, p. 238 (in Russian). 

[99J A. G. Morozov, V. L. Polyachenko, V. G. Fainshtein, and A. M. Fridman, 
Astron. Zh. 53, 946 (1976) [SOy. Astron. 20, 535 (1976)]. 

[99aJ A. G. Morozov, V. L. Fainshtein, and A. M. Fridman, Dokl. Akad. Nauk 
SSSR 231,588 (1976) [SOy. Phys.-Dok!. 21(11), 661 (1976)]. 

[100J A. G. Morozov, V. G. Fainshtein, and A. M. Fridman, Zh. Eksp. Teor. Fiz. 
71, 1249 (1976) [SOy. Phys.-JETP 44,653 (1976)]. 

[IOIJ K. F. Ogorodnikov, Dynamics of Stellar Systems, Pergamon, Oxford, 1965 
(Eng!. translation). 

[102J L. M. Ozernoi and A. D. Chernin, Astron. Zh. 44, 321 (1967) [SOy. Astron. 
11,907 (1968)]. 

[103J L. M. Ozernoi and A. D. Chernin, Astron. Zh. 45, 1137 (1968) [SOy. Astron. 
12, 90 I (1969)]. 

[104J J. H. Oort, In Strojenije Zvezdnykh Sistem (The Structure of Stellar Systems), 
IL, Moscow, 1962 (Russian translation). 

[105J M. Ya. Pal'chik, A. Z. Patashinskii, V. K. Pienus, and Ya. G. Epel'baum, 
preprint, Instituta Yadernoi Fiziki Sibir. Otd. Akad. Nauk SSSR, 99-100, 
Novosibirsk, 1970 (in Russian). 

[106J M. Ya. Pal'chik, A. Z. Patashinskii, and V. K. Pienus, preprint, Instituta 
Yadernoi Fiziki Sibir. Otd. Akad. Nauk SSSR, 100, Novosibirsk, 1970 (in 
Russian). 

[107J A. G. Pakhol'chik, Astron. Zh. 39, 953 (1962) [SOy. Astron. 6, 741 (1963)]. 

[108J S. B. Pikel'ner, Osnovy Kosmicheskoi Elektrodinamiki (Principles of Cosmical 
Electrodynamics), Fizmatgiz, Moscow, 1961 (in Russian). 

[108aJ V. L. Polyachenko, V. S. Synakh, and A. M. Fridman, Astron. Zh. 48, 1174 
(1971) [SOy. Astron.15, 934 (1972)]. 

[109J V. L. Polyachenko and A. M. Fridman, Astron. Zh. 48, 505 (1971) [SOy. 
Astron. 15, 396 (1971)]. 

[110J V. L. Polyachenko and A. M. Fridman, Astron. Zh. 49, 157 (1972) [SOy. 
Astron. 16, 123 (1972)]. 

[IIIJ V. L. Polyachenko and I. G. Shukhman, preprint, lust. Zemn. Magn. lonosf. 
Rasprostr. Radiovoln Sibir. Otd. Akad. Nauk SSSR, 1-72, Irkutsk, 1972 (in 
Russian). 

[112J V. L. Polyachenko and I. G. Shukhman, preprint, lust. Zemn. Magn. lonosf. 
Rasprostr. Radiovoln Sibir. Otd. Akad. Nauk SSSR, 2-72, Irkutsk, 1972, 
(in Russian). 



References 341 

[1l3] V. L. Polyachenko and I. G. Shukhman, Astron. Zh. 50, 97 (1973) [SOy. 
Astron. 17, 62 (1973)]. 

[114] V. L. Polyachenko and I. G. Shukhman, Astron. Zh. SO, 649 (1973) [SOy. 
Astron. 17,413 (1973). 

[115] V. L. Polyachenko and I. G. Shukhman, Astron. Zh. 50, 721 (1973) [SOy. 
Astron. 17,460 (1974)]. 

[116] V. L. Polyachenko, kandidatskaja dissertatsija (doctoral dissertation), Lenin­
grad, 1973 (in Russian). 

[117] V. L. Polyachenko, Dokl. Akad. Nauk SSSR 229,1335 (1976) [SOy. Phys.­
Dokl. 21(8),417 (1976)]. 

[118] V. L. Polyachenko and I. G. Shukhman, Pis'ma Astron. Zh. 3, 199 (1977) 
[SOy. Astron. Lett. 3, 105 (1977)]. 

[1l9] V. S. Safronov, Evolutsija Doplanetnogo Oblaka i Obrazovanije Zemli i Planet 
(The Evolution of a Protoplanetary Cloud and Formation of the Earth and Planets), 
Nauka, Moscow, 1969 (in Russian). 

[120] V. P. Silin and A. A. Rukhadze, Elektromagnitnyje Svoistva Plazmy i Plazmo­
podobnykh Sred (The Electromagnetic Properties of Plasma and Plasmalike 
Media), Gosatomoizdat, Moscow, 1961 (in Russian). 

[121] L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 
Cambridge, 1960 (Russian translation: Compo Centr. Akad. Nauk SSSR, 
Moscow, 1966). 

[122] H. B. Sawyer Hogg, in Strojenije Zvezdnykh Sistem (The Structure of Stellar 
Systems), IL, Moscow, 1962 (Russian translation). 

[123] Th. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York, 1962 
(Russian translation: Atomoizdat, Moscow, 1966). 

[124] V. S. Synakh, A. M. Fridman, and I. G. Shukhman, Dokl. Akad. Nauk SSSR 
201(4),827 (1971) [SOy. Phys.-Dokl. 16(12),1062 (1972)]. 

[125] V. S. Synakh, A. M. Fridman, and I. G. Shukhman, Astrofizika 8(4),577 (1972) 
[Astrophysics 8(4), 338 (1972)]. 

[126] S. I. Syrovatskii, Tr. Fiz. Inst. Akad. Nauk 8, 13 (1956) (in Russian). 

[127] M. F. Subbotin, Kours Nebesnoi Mekhaniki (Celestial Mechanics), GTTI, 
Moscow-Leningrad, 1949, Vol. 3 (in Russian). 

[128] A. V. Timofeev, preprint, Inst. Atomnoi Energii im. Kurchatova, Moscow, 
1968 (in Russian). 

[129] A. V. Timofeev, Usp. Fiz. Nauk 102, 185 (1970) [SOY. Phys.-Usp. 13(5),632 
(1971 )]. 

[130] A. N. Tikhonov and A. A. Samarskii, Equations in Mathematical Physics, 
Macmillan, New York, 1963 (Engl. translation). 

[131] B. A. Trubnikov, Vopr. Teor. Plazmy (The Problems of Plasma Theory) 1, 98 
(1963) (in Russian). 

[132] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, The Uni­
versity Press, New York, 1947, Vol. 1 (Russian translation: GIFML, Moscow, 
1959). 

[133] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, The Uni­
versity Press, New York, 1947, Vol. 2 (Russian translation: GIFML, Moscow, 
1963). 



342 References 

[134] V. N. Fadeeva and N. M. Terentjev, Tablitsy Znachenii Integrala Verojatnosti 
ot Kompleksnogo Argumenta (Tables of Integral Values of Probability of a Com­
plex Argument), GITTL, Moscow, 1954 (in Russian). 

[135] Ya. B. Fainberg, At. Energ. (At. Energy) 11, 391 (1961) (in Russian). 

[136] E. L. Feinberg, Usp. Fiz. Nauk 104, 539 (1971) [SOy. Phys.-Usp. 14, 455 
(1972)]. 

[137] V. G. Fesenkov, Astron. Zh. 28, 492 (1951) (in Russian). 

[138] D. A. Frank-Kamenetskii, Lektsii po Fizike Plazmy (Lectures on Plasma 
Physics), Atomizdat, Moscow, 1968 (in Russian). 

[139] A. M. Fridman, in Itogi Nauki, Ser. Astron., T. 10: Ravnovesije i Ustoichivost' 
Gravitirujushchikh Sistem (Scientific Findings, Astron. Ser.: Equilibrium and 
Stability of Gravitating Systems), Moscow, 1975 (in Russian). 

[140] A. M. Fridman, Astron. Zh. 43, 327 (1966) [SOY. Astron. 10,261 (1966)]. 

[141] A. M. Fridman, Astron. Zh. 48, 910 (1971) [SOY. Astron. 15, 720 (1972)]. 

[142] A. M. Fridman, Astron. Zh. 48, 320 (1971) [SOY. Astron. 15,250 (1971)]. 

[143] A. M. Fridman and I. G. Shukhman, Dokl. Akad. Nauk SSSR, 202, 67 (1972) 
[SOY. Phys.-Dokl. 17,44 (1972)]. 

[144] A. M. Fridman, doktorskaja dissertatsija (doctoral thesis), Moscow, 1972 
(in Russian). 

[145] L. G. Khazin and E. E. Shnol', Dokl. Akad. Nauk SSSR, 185, 1018 (1969) 
[SOY. Phys.-Dokl. 14,332 (1969)]. 

[146] F. Zwicky, in Strojenije Zvezdnykh Sistem (The Structure of Stellar Systems), 
IL, Moscow, 1962 (Russian translation). 

[147] S. Chandrasekhar, Principles of Stellar Dynamics, Chicago University Press, 
Chicago, 1942 (Reprinted: Dover, New York, 1960) (Russian translation: 
IL, Moscow, 1948). 

[148] S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Yale University Press, 
New Haven, 1969 (Russian translation: Mir, Moscow, 1973). 

[149] V. D. Shafranov, Vopr. Teor. Plazmy (The Problems of Plasma Theory) 3, 3 
(1963) (in Russian). 

[150] M. Schwarzschild, Structure and Evolution of the Stars, Princeton University 
Press, Princeton, N.J., 1958 (Reprinted: Dover, New York, 1965) (Russian 
translation: IL, Moscow, 1961). 

[151] O. Yu. Schmidt, Chetyre Lektsii 0 Teorii Proiskhozhdenija Zemli (Four Lec­
tures on the Theory of Origin of the Earth), Izd. Akad. Nauk SSSR, Moscow, 
1950 (in Russian). 

[152] E. E. Shnol', Astron. Zh. 46, 970 (1969) [SOY. Astron. 13, 762 (1970)]. 

[153] I. G. Shukhman, kanadidatskaja dissertatsija (doctoral dissertation), Leningrad, 
1973 (in Russian). 

[154] I. G. Shukhman, Astron. Zh. SO, 651 (1973) [SOY. Astron. 17,415 (1973)]. 

[155] A. Einstein, Sobr. Sochin., T. 2 (Selected Works, Vol. 2), Nauka, Moscow, 
1967 (in Russian). 

[156] L. E. El'sgoltz, Differential Equations and the Calculus of Variations, Mir, 
Moscow, 1970 (in English). 



References 343 

[157J E. Yanke, F. Emde, and F. Loesh, Spetsialnyje Funktsii. Formuly, Grafiki, 
Tablitsy (Special Functions. Formulas, Graphs, and Tables), Nauka, Moscow, 
1964 (in Russian). 

[158J M. Aggarswal and S. P. Talwar, Monthly Notices Roy. Astron. Soc. 146, 187 
(1969). 

[159J E. S. Avner and 1. R. King, Astron. 1. 72, 650 (1967). 

[160J B. Barbanis and K. H. Prendergast, Astron. J., 72(2), 215 (1967). 

[161J J. M. Bardeen and R. V. Wagoner, Astrophys. 1. 158(2),65 (1969). 

[162J J. M. Bardeen and R. V. Wagoner, Astrophys. J., 167(3),359 (1971). 

[163J L. Bel, Astrophys. 1. 155,83 (1969). 

[164J H. P. BerJage, Proc. K. Ned. Akad. Wet. Amsterdam 51,965 (1948). 

[165J H. P. Berlage, Proc. K. Ned. Akad. Wet. Amsterdam 53,796 (1948). 

[166J A. B. Bernstein, F. A. Frieman, H. D. Kruskal, and R. M. Kulsrud, Proc. 
Roy. Soc. London 17, 244 (1958). 

[167J P. Bodenheimer and J. P. Ostriker, Astrophys. J. 180, 159 (1973). 

[168J W. B. Bonnor, Appl. Math. 8, 263 (1967). 

[169J W. H. Bostick, Rev. Mod. Phys. 30, 1090 (1958). 

[170J J. C. Brandt, Astrophys. J. 131,293 (1960). 

[171J J. C. Brandt, Monthly Notices Roy. Astron. Soc. 129, 309 (1965). 

[172J G. H. Bryan, Philos. Trans. 180,187 (1888). 

[173J E. M. Burbidge, G. R. Burbidge, and K. H. Prendergast, Astrophys. 1. 130, 
739 (1959). 

[174J E. M. Burbidge, G. R. Burbidge, and K. H. Prendergast, Astrophys. J. 137, 
376 (1963). 

[175J E. M. Burbidge, G. R. Burbidge, and K. H. Prendergast, Astrophys. J. 140, 
80, 1620 (1964). 

[176J E. M. Burbidge and G. R. Burbidge, Astrophys. J. 140,1445 (1964). 

[177J B. F. Burke, Astron. J. 62, 90 (1957). 

[178J W. B. Burton, Bull. Astron. Netherl. 18,247 (1966). 

[179J G. L. Camm, Monthly Notices Roy. Astron. Soc. 101, 195 (1941). 

[180J G. L. Camm, Monthly Notices Roy. Astron. Soc. 112(2), 155 (1952). 

[181J G. Carranza, G. Courtes, Y. Georgellin, and G. Monnet, C. R. Acad. Sci. Paris 
264, 191 (1967). 

[182J G. Carranza, G. Courtes, Y. Georgellin, G. Monnet, and A. Pourcelot, Ann. 
Astrophys. 31, 63 (1968). 

[183J G. Carranza, R. Crillon, and G. Monnet, Astron. Astrophys. 1,479 (1969). 

[184J K. M. Case, Phys. Fluids 3,149 (1960). 

[185J S. Chandrasekhar and E. Fermi, Astrophys. J. 118, 113 (1953). 

[186J S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability, Clarendon 
Press, Oxford, 1961. 

[187J G. Contopoulos, Astrophys. J. 163, 181 (1971). 

[188J G. Contopoulos, Astrophys. Space Sci. 13(2), 377 (1971). 



344 References 

[189] G. Contopoulos, Astrophys. 1. 160, 113 (1970). 

[190] G. Courtes and R. Dubout-Crillon, Astron. Astrophys. 11(3),468 (1971). 

[191] M. Creze and M. O. Mennessier, Astron. Astrophys. 27(2), 281 (1973). 

[192] J. M. A. Danby, Astron. J. 70, 501 (1965). 

[193] G. Danver, Ann. Obs. Lund. 10, 134 (1942). 

[194] M. E. Dixon, Astrophys. J. 164,411 (1971). 

[194a] J. P. Doremus and M. R. Feix, Astron. Astrophys. 29(3.), 401 (1973). 

[195] O. J. Eggen, D. Lynden-Bell, and A. R. Sandage, Astrophys. J. 136,748 (1962). 

[196] A. S. Eddington, Monthly Notices Roy. Astron. Soc. 75(5), 366 (1915). 

[197] A. S. Eddington, Monthly Notices Roy. Astron. Soc. 76(7),572 (1916). 

[198] G. Elwert and D. Z. Hablick, Astrophys. J., 61, 273 (1965). 

[199] S. I. Feldman, and C. C. Lin. Stud. App!. Math. 52, I (1973). 

[200] E. Fermi, Progr. Theor. Phys. 5, 570 (1950). 

[201] K. C. Freeman, Monthly Notices Roy. Astron. Soc. 130, 183 (1965). 

[202] K. C. Freeman, Monthly Notices Roy. Astron. Soc. 133(1),47 (1966). 

[203] K. C. Freeman, Monthly Notices Roy. Astron. Soc. 134(1), 1 (1966). 

[204] K. C. Freeman, Monthly Notices Roy. Astron. Soc. 134(1),15 (1966). 

[205] K. C. Freeman, Astrophys. J. 160(3),811 (1970). 

[206] K. C. Freeman and G. de Vaucouleurs, Astron. 1. 71(9), 855 (1966). 

[207] M. Fujimoto, Pub!. Astron. Soc. Jpn. 15, 107 (1963). 

[208] M. Fujimoto, lAU Symposium No. 29, D. Reidel, Dordrecht, 1966. 

[209] P. Goldreich and D. Lynden-Bell, Monthly Notices Roy. Astron. Soc. 130, 
(2-3), 97 (1965). 

[210] P. Goldreich and D. Lynden-Bell, Monthly Notices Roy. Astron. Soc. 130, 
(2-3), 125 (1965). 

[211] J. Guibert, Astron. Astrophys. 30(3), 353 (1974). 

[212] D. ter Haar, Rev. Mod. Phys. 22, 119 (1950). 

[213] A. P. Henderson, Ph.D. thesis, University of Maryland, 1967. 

[214] M. Henon, Ann. Astrophys. 29(2), 126 (1959). 

[215] F. Hohl, Astron. J. 73(5), 98, 611 (1968). 

[216] M. Henon, Bull Astron, 3, 241 (1968). 

[217] M. Henon, Astron. Astrophys. 24(2), 229 (1973). 

[218] R. W. Hockney and D. R. K. Brownrigg, Monthly Notices Roy. Astron. Soc. 
167(2), 351 (1974). 

[219] F. Hohl, J. Comput. Phys. 9,10 (1972). 

[220] F. Hohl, Astrophys. J. 168,343 (1971). 

[221] R. J. Hosking, Austr. J. Phys. 22(4), 505 (1969). 

[222] F. Hoyle and M. Schwarzschild, Astrophys. J., Supp!. 2(13), (1955). 

[223] F. Hoyle, Frontiers 0/ Astronomy, New York, 1960. 

[224] F. Hoyle and W. A. Fowler, Nature 213,373 (1967). 

[225] E. Hubble, The Realm o/the Nebulae, Yale University Press, New Haven, 1937. 



References 345 

[226] c. Hunter, Monthly Notices Roy. Astron. Soc. 126(4),299 (1963). 

[227] C. Hunter, Monthly Notices Roy. Astron. Soc. 129(3-4),321 (1965). 

[228] c. Hunter, Stud. App!. Math. 48(1),55 (1969). 

[229] C. Hunter, Astrophys. J. 157(1), 183 (1969). 

[230] C. Hunter and A. Toomre, Astrophys. J. 155(3),747 (1969). 

[231] C. Hunter, Astrophys. 1. 162(1),97 (1970). 

[232] C. Hunter, in Dynamics of Stellar Systems, Hayli, ed., D. Reidel, Dordrecht 
and Boston, 1970. 

[233] C. Hunter, Ann. Rev. Fluid Mech., 4, 219 (1972). 

[234] C. Hunter, Monthly Notices Roy. Astron. Soc. 166,633 (1974). 

[235] c. Hunter, Astron. J. 80(10), 783 (1975). 

[236] G. M. Idlis, Astron. Zn. 3, 860 (1959). 

[237] K. A. Innanen, J. Roy. Astron. Soc. Can. 63(5), 260 (1969). 

[238] J. R. Ipser and K. S. Thorne, preprint, OAP-121 California Inst. Techno!., 
Pasadena, 1968. 

[239] J. R. Ipser and K. S. Thorne, Astrophys. 1.,154(1),251 (1968). 

[240] J. D. Jackson, Plasma Phys. 1,171 (1960). 

[241] J. H. Jeans, Monthly Notices Roy. Astron. Soc. 76(7), 767 (1916). 

[242] J. Jeans, Astronomy and Cosmology, Cambridge University Press, Cambridge, 
1929. 

[243] H. M. Johnson. Astrophys. J. 115, 124 (1952). 

[244] W. H. Julian, Astrophys. J. 155(1), 117 (1969). 

[245] W. H. Julian and A. Toomre, Astrophys. J. 146(3),810 (1966). 

[246] B. B. Kadomtzev and o. P. Pogutze, Phys. Rev. Lett. 25(17), 1155 (1970). 

[247] F. D. Kahn and L. Woltjer, Astrophys. J. 130,705 (1959). 

[248] F. D. Kahn and J. E. Dyson, Ann. Rev. Astron. Astrophys. 3, 47 (1965). 

[249] A. J. Kalnajs, Ph.D. thesis, Harvard University, 1965. 

[250] A. J. Kalnajs, in IAU Symposium No. 38, D. Reidel, Dordrecht, 1970. 

[251] A. J. Kalnajs, Astrophys. J. 166(2),275 (1971). 

[252] A. J. Kalnajs, Astrophys. J. 175(1),63 (1972). 

[253] A. J. Kalnajs, Astrophys. J. 180, 1023 (1973). 

[254] A. J. Kalnajs and G. E. Athanassoula, Monthly Notices Roy. Astron. Soc. 
168,287 (1974). 

[255] S. Kato, Pub!. Astron. Soc. Jpn. 23, 467 (1971). 

[256] S. Kato, Pub!. Astron. Soc. Jpn. 25, 231 (1973). 

[257] F. J. Kerr, Monthly Notices Roy. Astron. Soc. 123,327 (1962). 

[258] F.1. Kerr and G. Westerhout, in Stars and Stellar Systems, Chicago University 
Press, Chicago and London, 1965. 

[259] F. J. Kerr, Austr. 1. Phys. Astrophys. Supp!., No.9, (1969). 

[260] I. R. King, Astron. J. 70(5), 376 (1965). 

[261] N. Krall and M. Rosenbluth, Phys. Fluids 6,254 (1963). 

[262] G. P. Kuiper, Astrophysics, J. A. Hynek, ed., New York, 1951. 



346 References 

[263] R. M. Kulsrud, 1. W.-K. Mark, and A. Caruso, Astrophys. Space Sci. 14(1), 
52 (1971). 

[264] R. M. Kulsrud and J. W.-K. Mark, Astrophys. J. 160,471 (1970). 

[265] P. S. Laplace, Mem. Acad. Sci. (Mecanique Celeste, k. 3, p. VI), 1789 (1787). 

[265a] M. J. Lighthill, J. Inst. Math. App!. 1,269 (1965). 

[266] E. P. Lee, Astrophys. J. 148, 185 (1967). 

[267] C. C. Lin and F. H. Shu, Astrophys. J.140(2), 646 (1964). 

[268] C. C. Lin, L. MesteI, and F. Shu, Astrophys. J. 142(4), 1431 (1965). 

[269] C. C. Lin, SIAM J. App!. Math. 14(4), 876 (1966). 

[270] C. C. Lin and F. H. Shu, Proc. Nat. Acad. Sci. USA 55(2), 229 (1966). 

[271] C. C. Lin, C. Yuan, and F. H. Shu, Astrophys. J. 155(3),721 (1969). 

[272] C. C. Lin, in IAU Symposium, No .. 38, D. Reidel, Dordrecht, 1970. 

[273] B. Lindblad, Stockholm Obs. Ann. 20(6), (1958). 

[274] B. Lindblad, Stockholm. Obs. Ann. 22, 3 (1963). 

[275] P. o. Lindblad, Popular Arstok Tidschr. 41, 132 (1960). 

[276] P. o. Lindblad, Stockholm Obs. Ann. 21, 3 (1960). 

[277] P. O. Lindblad, in Interstellar Matter in Galaxies, L. Woltjer, ed., New York, 
1962. 

[278] C. Lundquist, Phys. Rev. 83, 307 (1951). 

[279] D. Lynden-Bell, Monthly Notices Roy. Astron. Soc. 120(3),204 (1960). 

[280] D. Lynden-Bell, Monthly Notices Roy. Astron. Soc. 123,447 (1962). 

[281] D. Lynden-Bell, Monthly Notices Roy-Astron. Soc. 124,279 (1962). 

[282] D. Lynden-Bell, Astrophys. J. 139, 1195 (1964). 

[283] D. Lynden-Bell, Monthly Notices Roy. Astron. Soc. 129,299 (1965). 

[284] D. Lynden-Bell, The Theory of Orbits in a Solar System and in Stellar Systems, 
1966. 

[285] D. Lynden-Bell, Lect. App!. Math. 9, 131 (1967). 

[286] D. Lynden-Bell, Monthly Notices Roy. Astron. Soc. 136, 101 (1967). 

[287] D. Lynden-Bell and J. P. Ostriker, Monthly Notices Roy. Astron. Soc. 136(3), 
293 (1967). 

[288] D. Lynden-Bell and N. Sanitt, Monthly Notices Roy. Astron. Soc. 143(2), 
176 (1969). 

[289] D. Lynden-Bell and A. J. Kalnajs, Monthly Notices Roy. Astron. Soc. 157, 1 
(1972). 

[289a] J. W.-K. Mark, Astrophys. J. 169,455 (1971). 

[290] J. W.-K. Mark, Proc. Nat. Acad. Sci. USA 68(9),2095 (1971). 

[290a] J. W.-K. Mark, Astrophys. J. 193, 539 (1974). 

[291] J. C. Maxwell, The Scientific Papers, Cambridge University Press, Cambridge, 
1859, Vo!' 1, p. 287. 

[292] L. MesteI, Monthly Notices Roy. Astron. Soc. 126(5-6), 553 (1963). 

[293] R. W. Michie, Monthly Notices Roy. Astron. Soc. 125(2), 127 (1963). 



References 347 

[294] R. W. Miller, K. H. Prendergast, and W. J. Quirk, Astrophys. J. 161(3),903 
(1970). 

[295] G. Munch, Pub!. Astron. Soc. Pacific, 71, 101 (1959). 

[295a] T. O'Neil, Phys. Fluids 8,2255 (1965). 

[296] J. H. Oort, Bull. Astron. Nether!., 6, 249 (1932). 

[297] J. H. Oort, Scientific Am. 195, 101 (1956). 

[298] J. H. Oort, F. J. Kerr, and G. Westerhout, Monthly Notices Roy. Astron. Soc. 
118,319 (1958). 

[299] J. H. Oort, in Interstellar Matter in Galaxies, L. Woltjer, ed., W. A. Benjamin, 
New York, 1962. 

[300] J. P. Ostriker and P. Bodenhiemer, Astrophys. J. 180, 171 (1973). 

[301] J. P. Ostriker and P. J. E. Peebles, Astrophys. J. 186(2),467 (1973). 

[302] P. J. Peebles and R. H. Dicke, Astrophys. J. 154, 898 (1968). 

[303] J. H. Piddington, Monthly Notices Roy. Astron. Soc. 162,73 (1973). 

[304] J. H. Piddington, Astrophys. J. 179, 755 (1973). 

[305] H. C. Plummer, Monthly Notices Roy. Astron. Soc. 71, 460 (1911). 

[306] K. H. Prendergast, Astron. J. 69, 147 (1964). 

[307] K. H. Prendergast and E. Tomer, Astron. J. 75, 674 (1970). 

[308] W. J. Quirk, Astrophys. J. 167(1),7 (1971). 

[309] R.-G. Rohm, Ph.D. thesis, MIT, Cambridge, Mass., 1965. 

[310] P. H. Roberts and K. Stewartson, Astrophys. J. 137(3),777 (1963). 

[311] W. W. Roberts, Astrophys. J. 158, 123 (1969). 

[312] W. W. Roberts, M. S. Roberts, and F. H. Shu, Astrophys. J.196, 381 (1975). 

[313] M. N. Rosenbluth, N. Krall, and N. Rostocker., Nuc!. Fusion, Supp!. 2, 143 
(1962). 

[314] G. W. Rougoor, Bull. Astron. Inst. Nether!' 17, 318 (1964). 

[315] V. C. Rubin and W. K. Ford, Astrophys. J. 159(2),379 (1970). 

[316] H. N. Russel, Astronomy, Part 1,1926. 

[317] A. Sandage, The Hubble Atlas o/Galaxies, Carnegie Inst., Washington, 1961. 

[318] A. Sandage, K. C. Freeman, and N. R. Stokes, Astrophys. 1.160, 831 (1970). 

[319] M. Schmidt, in Galactic Structure, A. Blaauw and M. Schmidt, eds., Uni-
versity of Chicago Press, Chicago, 1965. 

[320] W. W. Shane and G. P. Bieger-Smith, Bull. Astron. Nether!' 18,263 (1966). 

[321] H. Shapley and H. B. Sawyer, Harv. Obs. Bull. No. 852 (1927). 

[322] F. H. Shu, Astron. J. 73(10), 201 (1968). 

[323] F. H. Shu, Ph.D. thesis, Harvard University Press, Cambridge, Mass., 1968. 

[324] F. H. Shu, Astrophys. J. 160(1),89 (1970). 

[325] F. H. Shu, Astrophys. J. 160(1),99 (1970). 

[326] F. H. Shu, R. V. Stachnic, and J. C. Yost, Astrophys. J. 166(3),465 (1971). 

[327] E. A. Spiegel, Symp. Origine Syst. Solaire, Nice, 1972, Paris, 1972. 

[328] P. Stromgren, in Proc. IA U Symp. No. 31, Noordwick, 1966. 



348 References 

[329] P. Stromgren, in lAU Symp. No. 31, D. Reidel, Dordrecht, 1967. 

[330] P. Sweet, Monthly Notices Roy. Astron. Soc. 125,285 (1963). 

[331] A. Toomre, Lectures in Geophysical Fluid Dynamics at the Woods Hole 
Oceanographic Institution, 1966. 

[332] A. Toomre, Astrophys. J. 138, 385 (1963). 

[333] A. Toomre, Astrophys. J. 139(4),1217 (1964). 

[334] A. Toomre, Astrophys. J. 158,899 (1969). 

[335] S. D. Tremaine, preprint, California lnst. Techno!., Pasadena, 1976. 

[336] P. o. Vandervoort, Astrophys. J. 147(1),91 (1967). 

[337] P. O. Vandervoort, Mem. Soc. Roy. Sci. Liege 15, 209 (1967). 

[338] P. o. Vandervoort, Astrophys. J. 161,67, 87 (1970). 

[339] G. de Vaucouleurs, Mem. Mt. Stromlo Obs. 111(3), (1956). 

[340] G. de Vaucou1eurs, Astrophys. 1. Supp!. 8(76), 31 (1963). 

[341] G. de Vaucouleurs, Rev. Popular Astron. 57(520), 6 (1963). 

[342] G. de Vaucouleurs, Astrophys. J. Supp!. 8(74), 31 (1964). 

[343] G. de Vaucouleurs, A. de Vaucouleurs, and K. C. Freeman, Monthly Notices 
Roy. Astron. Soc. 139(4),425 (1968). 

[344] G. de Vaucouleurs and K. C. Freeman, Vistas Astron. 14, 163 (1973). 

[345] L. VoIders, Bul!. Astron. Nether!. 14,323 (1959). 

[346] H. Weaver, in [AU Symp. No. 38, D. Reidel, Dordrecht, 1970. 

[347] C. F. Von Weizsacker, Z. Astrophys. 22, 319 (1944). 

[348] C. F. Von Weizsacker, Naturwiss. 33, 8 (1946). 

[349] G. Westerhout, Bull. Astron. lnst. Nether!. 14,215 (1958). 

[350] R. Wielen, Astron. Rechen-Inst., Heidelberg Mitt. Ser. A, No. 47, (1971). 

[351] c.P. Wilson, Astron. J. 80, 175(1975). 

[352] R. van der Wooley, Monthly Notices Roy. Astton. Soc. 116(3),296 (1956). 

[353] R. van der Wooley, Observatory, 81(924), 161 (1961). 

[354] c.-S. Wu, Phys. Fluids 11(3), 545 (1968). 

[355] A. B. Wyse and N. U. Mayall, Astrophys. J. 95, 24 (1942). 

[356] S. Yabushita, Monthly Notices Roy. Astron. Soc. 143(3), (1969). 

[357] S. Yabushita, Monthly Notices Roy. Astron. Soc. 133(3),247 (1966). 

[358] S. Yabushita, Monthly Notices Roy. Astron. Soc. 142(2),201 (1969). 

[359] C. Yuan, Astrophys. J. 158(3),871 (1969). 

[360] C. Yuan, Astrophys. J. 158(3),889 (1969). 



Additional References 

[i] L. M. Al'tshul', Dep. No. 50295, VINITI, 1972. 

[2] N. N. Bogolyubov and Yu. A. Mitropol'skiy, Asymptotic Methods in the 
Theory of Nonlinear Oscillations, M., Nauka, Moscow, 1974. 

[3] N. P. Buslenko, Statistical Test Method (the Monte-Carlo Method), 5MB, M., 
Fizmatgiz, Moscow 1962. 

[4] Yu.-1. K. Veltmann, Trudy Astrofiz. Inst. AN Kaz. SSR 5, 57 (1965). 

[5] Yu.-l. K. Veltmann, Publications of the Tartusk. Astr. Observ. 34,101 (1964); 
35,344,356 (1966). 

[6] B.1. Davydov, Dokl. AN SSSR 69, 165 (1949). 

[7] B. P. Demidovich, I. A. Maron and E. Z. Shuvalova, Numerical Analysis 
Methods. GIFML, M., 1963. 

[8] V. I. Dokuchayev and L. M. Ozernoy, Preprint FIAN im. P. N. Lebedev, 
No. 133, S.; ZhETF, 73,1587 (1977); Letters to Astron. Zh. 3, 391 (1977). 

[9] S. M.Yermakov and G. A. Mikhaylov, Course of Statistical Modeling, M., 
Nauka, Moscow 1976. 

[10] V. Yeo Zakharov, ZhETF 60,1113 (1971). 

[11] V. Yeo Zakharov, Izvestiya vyzov. Radiofizika 17, 431. 

[12] V. Yeo Zakharov, PMTF No.2, 86 (1968). 

[13] V. Yeo Zakharov, ZhETF 62, 1945 (1972). 

[14] G. M. Idlis, Astron. Zh. 33 (1),53 (1956). 

[15] B. B. Kadomtsev, Collective Phenomena in Plasma, M., Nauka, Moscow, 1976. 

[16] B. P. Kondrat'yev and L. M. Ozernoy, Letters to Astron. Zh. 5, 67 (1979). 

349 



350 Additional References 

[17] V. I. Korchagin and L. S. Marochnik, Astron. Zh. 52(4), 700 (1975). 

[18] G. G. Kuzmin and Yu.-1. K. Veltmann, Pub!. Tartusk. Astr. Observ. 36, 3, 
470 (1968). 

[19] G. G. Kuzmin and Yu.-1. K. VeJtmann, CoIl: "Dynamics of Galaxies and 
Stellar Clusters," 1973, Alma-Ata, Nauka, Moscow, p. 82. 

[20] A. B. Mikhaylovskiy, V. I. Petviashvili and A. M. Fridman, Letters to ZhETF 
26,341 (1977). 

[21] L. S. Marochnik, Astrofizika 5, 487 (1969). 

[22] A. G. Morozov and I. G. Shukhman, Letters to Astron. Zh. 6, 87 (1980). 

[23] A. G. Morozov, Letters to Astron. Zh. 3, 195 (1977) .. 

[24] A. G. Morozov and A. M. Fridman, Report at the All-Union Conference 
"Latent Mass in the Universe," TaIlin, January, 1975. 

[25] A. G. Morozov, Astron. Zh 56, 498 (1979). 

[26] S. N. Nuritdinov, Author's abstract of Thesis, Leningrad, 1975, Astrofizika 
11, 135 (1975). 

[27] L. N. Osipkov, Letters to Astron. Zh. 5, 77 (1979). 

[28] V. L. Polyachenko, Letters to Astron. Zh. 3, 99 (1977). 

[29] V. L. Polyachenko and A. M. Fridman, Letters to Astron. Zh. 7, 136 (1981). 

[30] V. L. Polyachenko and I. G. Shukhman, Letters to Astron. Zh. 3, 199 (1977). 

[31] V. L. Polyachenko, S. M. Churilov and I. G. Shukhman, Preprint SibIZMIR 
SO AN SSSR, No. 1-79, Irkutsk, 1979; Astron. Zh. 57, 197 (1980). 

[32] V. L. Polyachenko and I. G. Shukhman, Astron. Zh. 56(5), 957 (1979). 

[33] V. L. Polyachenko and I. G. Shukhman, Letters to Astron. Zh. 3(6), 254 (1977). 

[34] V. L. Polyachenko and I. G. Shukhman, Preprint SibIZMIR SO AN SSSR, 
No. 31-78, Irkutsk, 1978. 

[35] V. L. Polyachenko and I. G. Shukhman, Astron. Zh. 57(2), 268 (1980). 

[36] V. L. Polyachenko, Letters to Astron. Zh. (1983), to appear. 

[37] V. L. Polyachenko and I. G. Shukhman, Astron. Zh. 56(4), 724 (1979). 

[38] V. L. Polyachenko, Astron. Zh. 56, 1158 (1979). 

[39] V. L. Polyachenko and A. M. Fridman, Astron. Zh., (1983), to appear. 

[40] V. L. Polyachenko and I. G. Shukhman, Preprint SibIZMIR SO AN SSSR, 
No. 1-78, Irkutsk, 1978. 

[41] V. L. Polyachenko, Letters to Astron. Zh. (1983), to appear. 

[42] V. L. Polyachenko, Letters to Astron. Zh. (1983), to appear. 

[43] V. L. Polyachenko, Letters to Astron. Zh. 7(3), 142 (1981). 

[44] V. L. Polyachenko and I. G. Shukhman, Astron. Zh. 58, 933 (1981). 

[45] Yu. M. Rozenraukh, Thesis, IGU, Irkutsk, 1977. 

[46] R. Z. Sagdeev, Vopr. Teor. Plazmy (Plasma Theory Problems) Ed. M. A. 
Leontovich, No.4, M., Atomizdat, 1963. 

[47] M. A. Smirnov and B. V. Kornberg, Letters to Astron. Zh. 4, 245 (1978). 

[48] I. M. Sobol', Numerical Monte-Carlo Methods, M., Nauka, Moscow, 1973. 



Additional References 351 

[49] A. M. Fridman, Uspekhi tiz. nauk 125, 352 (1978). 

[50] A. M. Fridman, Letters to Astron. Zh. 4, 243 (1978). 

[51] A. M. Fridman, Letters to Astron. Zh. 4, 207 (1978). 

[52] A. M. Fridman, Letters to Astron. Zh. 5, 325 (1979). 

[53] S. M. Churilov and I. G. Shukhman, Astron. Zh. 58, 260 (1981); 59,1093 (1982). 

[54] V. D. Shapiro and V. I. Shevchenko, ZhETF 45, 1612 (1963). 

[55] 1. N. Bahcall, Astrophys. 1. 209, 214 (1976). 

[56] 1. M. Bardeen, in IAU Symposium No. 69, D. Reidel, Dordrecht, 1975. 

[57] F. Bertola and M. CapaccioJi, Astrophys. 1. 219,404 (1978). 

[58] 1. Binney, Monthly Notices Roy. Astron. Soc. 177, 19 (1976). 

[59] M. Clutton-Brock, Astrophys. Space Sci. 16, 101 (1972). 

[60] G. Contopoulos, Astron. Astrophys. 64,323 (1978). 

[61] M. 1. Dunkan and 1. C. Wheeler, preprint, Astrophys. 1. Lett. (1980), Dept. 
Astron., Univ. Texas, Austin, 1979. 

[62] 1. Frank and M. 1. Rees, Monthly Notices Roy. Astron. Soc. 176,633 (1976). 

[63] A. M. Fridman, preprint, Inst. Zemn, Magn. Ionosf. Rasprostr. Radiovoln 
Sibir. Otd. Akad. Nauk SSSR, 6-78, Irkutsk, 1978. 

[64] A. M. Fridman, Y. Palous and I. I. Pasha, Monthly Notices Roy. Astron. Soc. 
194,705 (1981). 

[64a] A. M. Fridman and V. L. Polyachenko, Zh ETP 81, 13 (1981). 

[65] P. B. Globa-Mikhailenko, 1. Math. (7 serie) II, 1 (1916). 

[66] P. Goldreigh and S. Tremaine, Astrophys. 1. 222, 850 (1978). 

[67] F. Hohl, in IAU Symposium No. 69, D. Reidel, Dordrecht, 1975. 

[68] c. Hunter, Astrophys. 1. 181,685 (1973). 

[69] c. Hunter, Astron. 1.82,271 (1977). 

[70] S. Ikeuchi, Progr. Theor. Phys. 57, 1239 (1977). 

[71] G. Illingworth, Astrophys. 1. Lett. 218, U3 (1977). 

[72] A. 1. Kalnajs, Proc. Astron. Soc. Austr. 2,174 (1973). 

[73] A. 1. Kalnajs, Astrophys. 1. 205, 745, 751 (1976). 

[74] A. 1. Kalnajs, Astrophys. 1. 212, 637 (1977). 

[75] 1. Katz, Monthly Notices Roy. Astron. Soc. 183, 765 (1978). 

[76] I. R. King, Astron. 1. 71, 64 (1966). 

[77] I. R. King, in IAU Symposium No. 69, D. Reidel, Dordrecht, 1975. 

[78] A. P. Lightman and S. L. Shapiro, Astrophys. 1. 211, 244 (1977). 

[79] D. Lynden-Bell, C.N.R.S. International Colloquium No. 241, Centre Nat. de la 
Rech. Sci., Paris, 1975. 

[80] R. H. Miller, 1. Comput. Phys. 21, 400 (1976). 

[81] R. H. Miller, Astrophys. 1. 223, 122 (1978). 

[82] L. M. Ozernoy and B. P. Kondrat'ev, Astron. Astrophys. 79,35 (1979). 

[83] P. J. E. Peebles, Astron. J. 75, 13 (1970). 

[84] P. 1. E. Peebles, Gen. Relativity Gravity, 3, 63 (1972). 



352 Additional References 

[85] C. J. Peterson, Astrophys. J. 222, 84 (1978). 

[86] W. L. W. Sargent, P. J. Young, A. Boksenberg, K. Shortrigge, C. R. Lynds, and 
F. D. A. Hartwick, Astrophys. J. 221, 731 (1978). 

[87] L. Schipper and L R. King, Astrophys. J. 220, 798 (1978). 

[88] A. Toomre, Annu. Rev. Astron. Astrophys. 15, 437 (1977). 

[89] P. 1. Young, W. L. W. Sargent, A. Boksenberg, C. R. Lynds, and F. D. A. 
Hartwick, Astrophys. J. 222, 450 (1978). 

[90] P. J. Young, 1. A. Westphal, J. Kristian, C. P. Wilson, and F. P. Landauer, 
Astrophys. J. 221, 721 (1978). 

[91] T. A. Zang, Ph.D. thesis, M.LT., Cambridge, Mass., 1976. 

[92] M. Nishida and T. Ishizawa, 1976, preprint, Kyoto Univ. 

[93] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Function, 
1964. 

[94] P. L. Schechter and J. E. Gunn, Astrophys. J. 229, 472 (1979). 

[95] J. R. Cott, Astrophys. J. 201, 2961 (1975). 

[96] R. B. Larson, Monthly Notices Roy. Astron. Soc. 173,671 (1975). 

[97] G. Illingworth, Astrophys. J. 43, 218 (1977). 

[98] J. J. Binney, Monthly Notices Roy. Astron. Soc. 183, 501 (1978). 

[99] J. J. Binney, Monthly Notices Roy. Astron. Soc. 190, 421 (1980). 

[100] T. C. Chamberlin, Astrophys. J. 14, 17 (1901). 

[101] E. Holmberg, Astrophys. J. 94, 385 (1941). 

[102] J. Pfleiderer and H. Siedentopf, Z. Astrophys. 51, 201 (1961). 

[103] J. Pfleiderer, Z. Astrophys. 58, 12 (1963). 

[104] N. Tashpulatov, Astron. Zh. 46, 1236 (1969). 

[105] A. Toomre, in IAU Symposium No. 79, D. Reidel, Dordrecht, 1977. 

[106] S. Yabushita, Monthly Notices Roy. Astron. Soc. 153, 97 (1971). 

[107] F. Zwicky, Naturwissenschaften, 26, 334 (1956). 

[108] N. N. Kozlov, T. M. Eneev, and R. A. Syunyaev, Dokl. Akad. Nauk SSSR204, 
579 (1972). 

[109] T. M. Eneev, N. N. Kozlov, and R. A. Syunyaev, Astron. Astrophys. 22, 41 
(1973). 

[110] A. Toomre, IAU Symposium No. 38, D. Reidel, Dordrecht, 1970. 

[Ill] A. M. Fridman, IAU Symposium No. 79, D. Reidel, Dordrecht, 1977. 

[112] S. M. Churilov and L G. Shukhman, Astron. Tsirk., No. 1157 (1981). 

[113] L. W. Esposito, J. P. Dilley, and J. W. Fountain, 1. Geophys. Res. 85 (All), 
5948 (1980). 

[114] P. Goldreich and S. D. Tremaine, Icarus 34, 227 (1978). 

[115] S. S. Kumar, Pub!. Astron. Soc. Japan 12, 552 (1960). 

[116] R. H. Sanders and G. T. Wrikon, Astron. Astrophys., 26,365 (1973). 

[117] G. Chew, M. Goldberger and F. Low, Proc. Roy. Soc. A, 236, 112 (1956). 

[118] A. G. Doroshkevich, A. A. Klypin, preprint IPM, No.2 (1980). 



[119] A. G. Morozov, Astron. Zh. 57, 681 (1980). 

[120] A. Lane et at., Science 215, No. 4532 (1982). 

Additional References 353 

[121] N. C. Lin and P. Bodenheimer, Astrophys. 1. Letters 248, L83 (1981). 

[122] G. W. Null, E. L. Lau, and E. D. Biller, Astron. J. 86, 456 (1981). 

[123] V. L. Polyachenko, and A. M. Fridman, Astron. Tsirk., No. 1204 (1981). 

[124] Voyager Bulletin, Mission status report, No. 57, Nov. 7, NASA (1980). 

[125] W. R. Ward, Geophys. Res. Lett. 8, No.6 (1981). 

[126] B. B. Kadomtsev, Letters to ZhETP 33(7}, 361 (1981). 

[127] I. V. 19umenshev, Thesis, ChGU, Chelyabinsk (1982). 

[128] V. A. Ambartsumian, The Scientific Papers, v. 1, Erevan, 1960. 

[129] V. A. Ambartsumian, Astron. Zh. 14,207 (1937). 

[130] M. G. Abrahamian, Astrophysics 14, 579 (1978). 



Index 

The page numbers which appear in upright figures refer to Volume I and those which 
appear in italic refer to Volume II. 

Action density 196 
Anisotropic distribution functions 142 
Antispiral theorem 189 

Barlike mode 
linear 284,415 
nonlinear 125, 128 
with a halo 128 

Barlike structure 207 
Beam instability 20 

in a cylinder model 
kinetic 5, 35 
hydrodynamical 8 

in a layer model 34 
in multi-component systems with 

homogeneous flows 2 
Biorthonormalized sets 286-290 
Black hole 29,152,153-157 
Boltzmann kinetic equation 4 

Camm distribution functions 144-145 
nonlinear evolution 240 
stability investigation of 186,219 

Cauchi-Bunyakovsky inequality 155 
Characteristic frequencies. See 

Eigenfrequencies 
Characteristics of equation 7 
Cherenkov resonance 7,33,66 
Cold medium 6 
Collapse of nonlinear waves 124 
Collisionless 

damping. See Landau damping 
kinetic equation 4 
shocks 62 
systems 2 
universe 242 

Collisions 143 
Compressible medium 2 
Computer simulation. See Statistical 

simulation 
Consistency condition 50 
Continuous spectra. See Spectra 
Corotation resonance. See Resonance 
Cylinders 

beam instability 5,8,35 
composite models 80 
firehose instability 83, 97 
Jeans instability 83, 96 
nonlinear stability 131, 132 

355 



356 Index 

Debye radius ·6, 13 
Decay instability 93 
Decrement of damping 10 
Derivative along the trajectory 4 
Discrete spectra. See Spectra 
Disks 

composite models 340 
continuous spectra 350, 354, 374 
Lindblad relation between velocity 

dispersions 339 
Dispersion equation (relation), 

linear II, 393 
Dispersion relation, nonlinear. See 

Nonlinear dispersion relation 
Distribution function 

Camm 144-145 
Eddington 149 
Freeman 146, 190 
Kuz'min-Veltmann 147,231 
Osipkov-Idlis 146,209 
"playing" of 201 
Schwarzschild 391 
trapped particles of 69, 78 
untrapped (transit) particles of 70, 78 

Drift of a spiral wave packet 190 
Duffing's equation 61 

Eddington's distribution function 149 
Eigenfrequencies 10 

of a cylinder lO6 
ofa disk 

for bending perturbations 403 
for plane perturbations 

in composite models 419 
in Maclaurin's model 414 
with a halo 443 

matrix formulation of a problem of 
for disks 291 
for spheres 282 

Eigenfunctions 10 
for Camm's spheres 187 
for Freeman's spheres 192 
for homogeneous cylinders 107 
for homogeneous layer 71 
for Maclaurin's disks 422 

Ellipsoids 
inhomogeneous 260 
oblate 248 
prolate 313 
superposition of Freeman's 

models 284 
Elliptical cylinder 132,299,319 
Elliptical disks 298 
Envelope solitons 62 

Epicycle 
radius of 82 

Epicyclic 
approximation 81 
frequency 82 

Equation 
Euler 3 
of a spiral wave 396 

Equations for perturbations 9 
Expansions in o-series 150 
Explosive instability 55 
Exponential instability 10 

Firehose instability 
dispersion relation 

for a cylinder 99 
for a disk 403 
for a layer 40 

physics of 37, 42 
Flute instability 

for a cylinder 24 
for a layer 20 
in the Galaxy 204 

Freeman's sphere 146, 190 

Galaxies 216-221 
Galaxy 

parameters of 213 
rotation curve 219 
Schmidt's model 213 
spiral structure 

Lin-Shu theory of 389-401,213 

Hubble's "tuning-fork" diagram 139 
Hydrodynamics 2 

Incompressible 
cylinder 117 
ellipsoids 285 
fluid I 
layer 34 

Increment of instability 10 
Infinitely-thin layer 32 
Instability 

beam. See Beam instability 
beam-gradient 9 
decay 93 
explosive 55 
firehose. See Firehose instability 
flute-like. See Flute instability 
gradient 11 



hydrodynamical 16 
Jeans II 
Kelvin~Helmholtz 16 
modulational 123 
temperature-gradient 11 

Instability of circular orbits 83 
Integration over trajectories 44, 166 

Jacobi ellipsoids 246, 285 
Jeans 

frequency 11 
instability 11 
suppression of 20 
wavelength 12 

Kinetic equation 
of Boltzmann 4 
collisionless, in various 

coordinates 271 
for waves 97,318 

Kramp function 33 
Kuz'min~ Veltmann's distribution 

function 147,231 

Landau bypass rule 32 
Landau damping (or growth) 

linear 91,180 
nonlinear 69, 78 

Langmuir oscillations 13 
Layer 

eigenfunctions of 71 
long wavelength perturbations 69 
nonlinear evolution 74 
short wavelength perturbations 69 

Leading spirals 370 
Lindblad relation between velocity 

dispersions 339 
Lindblad resonances 394, 171 
Liouville's equation 5 
Local perturbations 122 

Mach number 19 
Maclaurin's collision less disks 

distribution function 340 
eigenfrequencies 414 
eigenfunctions 422 

Maclaurin's ellipsoids 
(spheroids) 246, 285 

Marginal stability 394 
Material spiral arms 167 

Index 357 

Method 
of characteristics. See Integration 

over trajectories 44 
of Lagrangian shifts 53 
of phase volume variation 58 

Migration of stars 215 
Modulational instability 123 

Negative energy waves 173 
Nonhomogeneous layer 30 
Non-Jeans instabilities 2 
Nonlinear corrections for a critical 

wavelength 
in incompressible layer 116 
in isothermal layer 111, 113 

Nonlinear dispersion relation 
for a disk 40, 42 
for a gaseous disk 48 
for a stellar disk 52 

Nonlinear evolution 
of a distribution function 

in a cylinder 69 
in a disk near the corotation 75 

of a monochromatic wave 70 
Nonlinear Jeans instability 55 
Nonlinear parabolic equation 100 
Nonlinear waves. See Solitons and 

nonlinear waves 
Nonrotating liquid cylinder 117 

Osipkov~Idlis distribution function 146 
stability 209 

Permutational modes 68 
Phase fluid 4 
Plasma and gravitating medium 

(comparison) 13~14 

Plateau formation in distribution 
function 75~78 

Playing of distribution functions 200 
method of inversion 279 
Neumann's method 279 

Poisson bracket 5, 274 
Poisson equation 3, 271 
Power instability 10,65, 130 
Prolate spheroid 313 

Quadrupole momenta tensor 206 



358 Index 

Reduction factor 
of Lin-Shu (~) 393 
for a thickness (1) 398 

Resonance 
Cherenkov 7,33,66 
corotation 180 
Lindblad 394, 171 
rotational 7 

Resonance conditions 93 
Response of a system 390 
Rotational resonance 7 

Schwarzschild's distribution 
function 391 

Self-consistent field 4 
Separation of angular variables 275 
Shuster's sphere 147,231 
Singular solutions 123 
Solitary waves. See Solitons 
Solitons and nonlinear waves 

in a disk 40, 42 
in a gaseous disk 48 
in a stellar disk 42 

Spectra. See also Dispersion equation. 
Eigenfrequencies 

continuous 350, 374 
Spheres 

circular orbits with 137, 143, 164,238 
elliptical orbits with 138, 146, 186 
general type of 138, 207 
isotropic distribution function 

with 136, 139, 152 
nearly-circular orbits 

with 137, 143, 181 
radial trajectories with 138, 147-148, 

193 
with a rotation 150 

Stability. See also Instability 
of solitons 54 
of a system 10 

Statistical simulation of stellar 
systems 199,203 

See also Playing of distribution 
functions 

Strongly elongated ellipsoids 263 
Suppression of Jeans instability 20 
Surface perturbations 121 

Temperature-gradient instability 20, 11 
Thin prolate spheroid 313 
Third integral 8 
Time-independent perturbations 69 
Toomre's 

stability criterion 395 
stability reserve 396 
wavelength 364 

Trailing spirals 370, 206 
Transit particles. See Untrapped 

particles 
Trapped particles 69, 78 
Turbulence 83 
Two-stream instability. See Beam 

instability 

Uniformly rotating disk 346,370 
Unperturbed trajectory 9 
Untrapped (transit) particles 70, 78 

Variational method 377,381 
Vlasov equations 4, 6 

linearization approximation 9 
solution by method of characteristic. 

See Integration over trajectories 

Waves of negative energy 173 
Weak turbulence. See Turbulence 
WKB-approximation 389, 300 
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