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Introduction

This book intends to open up a discussion on fundamental ideas in didactics of math-
ematics as a scientific discipline. We want to introduce fundamental ideas as a possi-
ble answer to the diversity of theories in the field. Instead of providing a solely theo-
retical contribution, we suggest entering into this discussion by focusing on the “idea 
of transformation” that we regard as being fundamental to didactics of mathematics.

Transformation is a matter of interest in many areas of didactics of mathematics 
conceived of as “the sum of scientific activities to describe, analyze and better un-
derstand peoples’ joy, tinkering and struggle for/with mathematics” (Sträßer 2009, 
p. 68): transformations of representations of mathematics and related transforma-
tions of mathematics, transformations of artifacts into instruments, transformations 
of mathematical knowledge, transformation of practice, transformation of solving 
strategies, and transformation of acquired heuristics to new similar problems, just 
to name a few. Accordingly, many theoretical approaches aim to conceptualize 
and grasp transformations: semiotics, the instrumental approach (Rabardel 1995), 
transposition didactique (Chevallard 1985), and the nested epistemic actions model 
(Schwarz et al. 2009).

By looking at these theories as being related to the same fundamental idea, we 
can ask further questions such as: How do we approach transformations research in 
didactics of mathematics? How is transformation conceptualized in each of these 
theories? What do we know/ learn about transformations related to the teaching and 
learning of mathematics?

In the following section, we will elaborate on the theoretical origins of our ap-
proach.

Theoretical Background

Our approach is embedded in the debate about the diversity of theories in didactics 
of mathematics. The diversity of theories has been an issue of discussion ever since 
the foundation of the discipline. This is documented in the Theory of Mathematics 
Education Group (TME) founded by Steiner and regular study groups at the Inter-
national Congress on Mathematics Education (ICME) and the annual conference 
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of the International Group for the Psychology of Mathematics Education (IGPME). 
The current significance of this issue as well as the controversy about it can be 
seen in the comprehensive volume Theories of Mathematics Education (Sriraman 
and English 2010). The tenor of the contributions is that diversity of theories is an 
inevitable and even welcome hallmark of didactics of mathematics.

The theoretical manifoldness is traced back to the vast variety of goals and re-
search paradigms by many researchers, which are recorded in volumes such as 
“Didactics of mathematics as a scientific discipline” (Biehler et al. 1994) or the 
Study of the International Commission on Mathematical Instruction (ICMI) “What 
is research in mathematics education, and what are its results” (cf. Sierpinska and 
Kilpatrick 1998). Critics such as Steen (1999) argue that a lack of focus and identity 
pervades the foundations of the discipline:

there is no agreement among leaders in the field about goals of research, important ques-
tions, objects of study, methods of investigation, criteria for evaluation, significant results, 
major theories, or usefulness of results (Steen 1999, p. 236).

This observation even leads him to question the scientific nature of the field which 
he describes as

a field in disarray, a field whose high hopes for a science of education have been over-
whelmed by complexity and drowned in a sea of competing theories (Steen 1999, p. 236).

This criticism is often encored by the call for a grand theory of mathematical think-
ing. Although a growing number of convincing arguments is presented to support 
the necessity of multiple theories (e.g., Bikner-Ahsbahs and Prediger 2010; Lerman 
2006), the related problems of the discipline’s missing focus and identity persist. 
The questions are how we deal with this variety and if there are other ways to pro-
mote the development of focus and identity of the discipline than a grand theory of 
mathematics education.

Bikner-Ahsbahs and Prediger (2010) argue that “the diversity of theories and 
theoretical approaches should be exploited actively by searching for connecting 
strategies” in order to “become a fruitful starting point for a further development 
of the discipline” (p. 490). Based on a meta-analysis of case studies about connect-
ing theories, they suggest different strategies for connecting theories, which they 
call “networking strategies” (Bikner-Ahsbahs and Prediger 2010, p. 492). These net-
working strategies are organized according to their degree of integration between the 
two extremes “ignoring other theories” and “unifying globally” as shown in Fig. 1.

Fig. 1  A landscape of strategies for connecting theoretical approaches (Bikner-Ahsbahs and Pre-
diger 2010, p. 492)
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Although this overview of strategies for networking theories in didactics of 
mathematics provides a fruitful approach to deal with multiple theories, it seems 
hardly capable of contributing to the discipline’s search for focus and identity, be-
cause it does not say anything about the phenomena these theories are related to. 
The networking strategies can be understood as heuristics to connect given theories. 
However, how to find theories that are worthwhile connecting? Which theories re-
late to a certain phenomenon?

In order to answer these questions, we suggest reflecting upon fundamental ideas 
of didactics of mathematics as a scientific discipline. Pointing out fundamental 
ideas could help to focus on the core issues of the discipline and could provide a 
means to organize theories in terms of being related to a similar idea.

Fundamental Ideas

In his seminal book “The Process of Education” (1960), Bruner introduced funda-
mental ideas as a means for curriculum development. For him they provide an an-
swer to the basic problem that learning should serve us in the future which is at the 
heart of the educational process and therefore a fundamental problem of curriculum 
development. Students only have limited exposure to exemplary materials they are 
to learn. How can they learn something that is relevant for the rest of their lives? He 
argues that this “classic problem of transfer” can be approached by learning about 
the structure of a subject instead of simply mastering facts and techniques. “To learn 
structure” for Bruner means “to learn how things are related” (Bruner 1960, p. 7). 
According to him, transfer is dependent upon the mastery of the structure of a sub-
ject matter in the following way:

in order for a person to be able to recognize the applicability or inapplicability of an idea 
to a new situation and to broaden his learning thereby, he must have clearly in mind the 
general nature of the phenomenon with which he is dealing. The more fundamental or basic 
is the idea he has learned, almost by definition, the greater will be its breadth of applicabil-
ity to new problems. Indeed, this is almost a tautology, for what is meant by ‘fundamental’ 
in this sense is precisely that an idea has wide as well as powerful applicability. (Bruner 
1960, p. 18)

Ever since Bruner, fundamental ideas of mathematics have been discussed in math-
ematics education as a didactical principle to organize curricula, and various cata-
logues of fundamental ideas of mathematics have been suggested (for an overview 
see Heymann 2003; Schweiger 2006). We will not discuss these in detail, because it 
would not support the central claim made here.

In his attempt to characterize mathematics as a cultural phenomenon, Bishop 
(1991) also arrives at something similar to Bruner’s notion of fundamental ideas 
which he calls “similarities” (Bishop 1991, p. 22). ‘Similarities’ are similar math-
ematical activities and ideas that occur in different cultural groups. They are sup-
posed to be a means to overcome the culturo-centrism by focusing on mathemati-
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cal similarities between different cultural groups rather than on the differences in 
order to acknowledge that all cultures engage in mathematical activity. Therefore, 
Bishop’s similarities might be understood as a cross-cultural approach to charac-
terize the structure of mathematical activity whereas Bruner’s view is limited to a 
Western/ American perspective. Nevertheless, fundamental ideas or similarities are 
both means to think about the inner structure of a discipline.

Schweiger, as opposed to Bishop, does not speak of one mathematical culture, 
but of several mathematical cultures, e.g., “mathematics in everyday life or so-
cial practice, mathematics as a toolbox for application, mathematics in school, and 
mathematics as a science” (Schweiger 2006, p. 63). He claims “it is more fruitful 
to acknowledge these facts than to try in vain to reconcile these different cultures” 
(Schweiger 2006, p. 63). Interestingly for him also, fundamental ideas are a way of 
dealing with this diversity of mathematical cultures by providing an understanding 
of what mathematics is about (Schweiger 2006, p. 64).

To summarize these reflections on the functions of fundamental ideas, we want 
to distinguish epistemological functions of fundamental ideas on the one hand from 
pragmatic functions on the other. From an epistemological point of view, funda-
mental ideas are a means to elicit the structure of a discipline and build up semantic 
networks between different areas. Furthermore, they are supposed to elucidate the 
practice and the essence of a discipline. In doing so, their pragmatic functions are to 
support the design of curricula and to improve memory.

Although fundamental ideas are discussed in didactics of mathematics to serve 
these functions with respect to mathematics, it is important to remember that Brun-
er’s introduction of the notion of fundamental ideas was not limited to mathemat-
ics, but related to any discipline. Therefore, it seems legitimate to broaden the 
perspective and to not only discuss fundamental ideas of mathematics in didac-
tics of mathematics, but also contemplate on fundamental ideas of didactics of 
mathematics itself as a scientific discipline. From the epistemological functions 
of fundamental ideas, it follows that fundamental ideas could serve as a means to 
overcome the criticism based on the diversity of theories in the field and to pro-
mote the formation of a focus and an identity of the scientific discipline didactics 
of mathematics.

Although the preceding remarks refer to the functions of fundamental ideas, it 
remains vague what fundamental ideas are and how they can be identified. Or, as 
Schweiger puts it, “one has the uneasy feeling there is no agreement about funda-
mental ideas” (Schweiger 2006, p. 68).

Bruner simply leaves it to specialists in every discipline to identify the funda-
mental ideas of the discipline:

It is that the best minds in any particular discipline must be put to work on the task. The deci-
sion as to what should be taught in American history to elementary school children or what 
should be taught in arithmetic is a decision that can best be reached with the aid of those 
with a high degree of vision and competence in each of these fields. (Bruner 1960, p. 19)

However, even the specialists need to know what they are looking for. Bruner him-
self does not provide a clear definition of fundamental ideas. Revising the relevant 
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literature on fundamental ideas, Schweiger (2006) offers four descriptive criteria in 
order to characterize fundamental ideas of mathematics:

Fundamental ideas

•	 Recur	in	the	historical	development	of	mathematics	(time	dimension)
•	 Recur	in	different	areas	of	mathematics	(horizontal	dimension)
•	 Recur	at	different	levels	(vertical	dimension)
•	 Are	anchored	in	everyday	activities	(human	dimension;	Schweiger	2006, p. 68).

Although these dimensions relate to fundamental ideas of mathematics, they seem 
to be of a general nature which allows applying them to other disciplines as well. 
The time dimension and the horizontal dimension can be easily transferred to any 
other discipline. However, it is not obvious at the first sight what could be conceived 
of as a vertical dimension and a human dimension in didactics of mathematics. We 
suggest that different contexts of the disciplines involvement could be regarded as 
the vertical dimension: Didactics of mathematics is concerned not only with scien-
tific inquiry of issues related to the people’s involvement with mathematics, but also 
issues of teacher education and development. Therefore, ideas recurring as objects 
of inquiry and as relevant themes for teacher education and development could be 
conceived of as being fundamental in a vertical sense. Finally, we suggest that im-
portant ideas teachers are concerned about in their daily practice could be conceived 
of as the human dimension of didactics of mathematics.

The question remains how fundamental ideas can be found. It would be easy to 
just follow Bruner and leave it to “the best minds in any particular discipline”. But 
how will they be able to find fundamental ideas?

Bishop’s focus on similarities between different cultural groups in terms of 
mathematical activities and ideas offers a method to identify such similarities: 
cross-cultural comparison of mathematical ideas and activities. Accordingly, cross-
cultural comparison of ideas informing research in didactics of mathematics could 
be one way of approaching fundamental ideas of the discipline.

According to Schweiger’s characterization, cross-cultural comparison ought to 
be complemented by historical, horizontal, and vertical analysis of the disciplines 
areas of study and activity in order to link to the time dimension, the horizontal 
dimension, and the vertical dimension of fundamental ideas.

Transformation—A Fundamental Idea of Didactics 
of Mathematics?

In this book, we chose a twofold approach to tackle the issue of fundamental ideas 
of mathematics education as a scientific discipline. On the one hand, we followed 
Bruners’ advice: “It is a task that cannot be carried out without the active participa-
tion of the ablest scholars and scientists” (Bruner 1960, p. 32). The authors that con-
tributed to this book are well-known scholars in mathematics education. They were 
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willing to penetrate the idea of transformation with the expertise of their own field of 
research. On the other hand, we tried to include researchers from different countries 
in order to have a multicultural approach to the idea of transformation.

In this book, we restricted the analysis of transformations in didactics of math-
ematics to three overarching themes:

1. Transformations related to transitions in mathematics education;
2. Transformations related to representations of mathematics;
3. Transformations related to concept and ideas.

The book is structured into three parts and each part is dedicated to one of these 
themes. Each part begins with an introduction which gives an idea of the overarch-
ing theme of each part and thereby sets the scene for the following chapters. At the 
end of each part, one or two discussions embed the preceding chapters in a broader 
discourse and relate them to the central idea of the book.

Part I focuses on transformations that occur at transitions in the individuals’ 
course through mathematics education from Kindergarten to University. Two tran-
sitions within this course have attracted particular attention lately: the transition 
from Kindergarten to primary school and the transition from secondary school to 
university. Most of the chapters in part I focus on the latter transition and related 
transformations. Chapters 1–5 revolve around the double discontinuity in teacher 
education which was first pointed out by Felix Klein. In Chap. 1, Biermann and 
Jahnke draw attention to an aspect of the double discontinuity which has faded 
into obscurity namely the fact that school mathematics and mathematics as a sci-
ence are “disconnected” and do not develop in mutual relatedness. They illustrate 
this aspect analyzing the paradigm shift between Eulerian mathematics and the 
Klein movement at the end of the 19th century using the case of one particular 
secondary school in Germany. In Chap. 2, Vollstedt, Heinze, Gojdka, and Rach 
develop a scheme for textbook analysis which covers both, general aspects such 
as motivation, structure, and visual representation and content specific aspects 
such as development/understanding of concepts, proof characteristics, and task 
characteristics. The feasibility study already provides evidence for a transforma-
tion of learning that is expected from students at the transition from school to 
university. This is also substantiated by Deiser and Reiss in Chap. 3, but from a 
different perspective. They analyze the development of first year university stu-
dents’ mathematical knowledge in terms of fundamental mathematical concepts. 
In Chap. 4, Pepin carries out a case study with one student which provides a more 
detailed insight into students’ experience of the different contexts, different kinds 
of feedback and their benefit, and transformations students go through when tran-
siting from school to university. The Chaps. 1–4 aim at a better understanding of 
the discontinuity between school and university, whereas Kaiser and Buchholtz 
report on the impact of an innovative teacher training program at the University of 
Giessen in Germany in Chap. 5. Finally, in Chap. 6, Grevholm widens the perspec-
tive by focusing on transformations of an individual’s perception of mathematics 
throughout the course of education in mathematics as a whole.
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Part II addresses transformations related to representations of mathematics. 
Hoffmann (2006) describes the major mathematical activities mathematization, 
calculation, proving, and generalization in terms of related transformations of signs 
and concludes that the “essence of mathematics consists in working with represen-
tations” (p. 279). These activities comprise transformations of several kinds: On 
the one hand mathematics has to be represented. Therefore, mathematics has to 
be transformed into the representations. Different representations, e.g., geometrical 
or algebraic representations, have different affordances and constraints. The math-
ematical world is seen differently through different representations. Each represen-
tation may highlight some aspects of mathematics while others are neglected. On 
the other hand, humans can only act upon the mathematical reality via representa-
tions. Therefore, transformations of mathematical representations are capable of 
constructing and transforming mathematical reality (Steinbring 2005).

In Chap. 8, Kadunz draws on Pierce’s semiotic theory in order to analyze trans-
formations of diagrams that occur while reading a mathematical text. These are 
related to the transformation of the author’s language into the reader’s language. 
Mariotti illuminates the relation between transformations of representations of 
mathematics in a Dynamic Geometry Environment (DGE) and the mathematical 
meaning of conditional statement in Chap. 9. In Chap. 10, Hölzl illustrates how 
a DGE can be implemented to provide opportunities for an investigative style of 
learning at university level in order to support students in finding their own way 
of dealing with mathematical content. In Chap. 11, Laborde and Laborde address 
three different dimensions of transformations that are related to representations of 
mathematics in a DGE: an epistemological dimension faced by software design-
ers when implementing the features of mathematical objects into the software; a 
cognitive dimension related to students’ learning in dynamic environments; and a 
didactic dimension concerned with the transformation of tasks in order to exploit 
the affordances of the dynamic tool. Geiger draws attention to transformational 
aspects of social setting related to working with technological tools in Chap. 12. In 
two episodes, he illustrates how students work with technological tools in different 
social contexts and how this fosters the transformation of students’ understanding of 
mathematics. In Chap. 13, Bessot analyzes how a simulator for reading—marking 
out activities in vocational education transforms student’s encounter with geometry 
and space. In his discussion of part II, Seeger embeds the theoretical approaches of 
the chapters in part II in a broader discussion of what has been called an “embodied” 
perspective on human activity. In a second discussion of part II, Sutherland frames 
the chapters from a technological point of view and gives ideas on how to promote 
professional development in using modern tools.

Part III is concerned with transformations related to concepts and ideas. The chap-
ters in this part either introduce genuine didactical concepts that are supposed to 
grasp transformation processes related to particular mathematical content areas or ac-
tivities (Chaps. 16–18) or tackle the problem of how to model mathematical compe-
tencies in terms of specific instructions for practice or evaluation (Chaps. 19–20). In 
Chap. 16, Dreyfus and Kidron introduce the notion of proof image as an intermediate 
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stage in a learner’s production of proof and illuminate the transition from proof im-
age to formal proof. Stanja and Steinbring intend to conceptualize transformations of 
stochastic thinking at primary level by means of the notion of elementary stochastic 
seeing in Chap. 17. In Chap. 18, Kuzniak introduces the notion geometric work space 
which draws particular attention to figural, instrumental, and discursive geneses and 
is supposed to conceptualize the transformation of geometric knowledge at school 
level. Profke tackles the question of how competencies might be achieved through 
mathematical activities in Chap. 19. He suggests various activities which might con-
tribute to the development of mathematical literacy. In Chap. 20, Klep gives an idea 
about a future development of didactics of mathematics which he calls “informatical 
educational science.” Using the example of arithmetical competence, he illustrates 
the algorithm-based implementation of mathematical competences in computer sci-
ences. In her discussion of part III, Prediger comments on the overarching ideas of 
this book: the notion of fundamental ideas of didactics of mathematics as a scientific 
discipline in general and the idea of transformation as a candidate for a fundamental 
idea of didactics of mathematics in particular by referring to the chapters in part III.

Genesis of this Book

The idea of this book was born while preparing for Rudolf Sträßer’s 65th birthday 
celebration. The attempt to find a theme characterizing the work of Rudolf Sträßer 
led us to an idea, which, at the first sight, seemed not to be related to his work at 
all. References to one of Rudolf Sträßer’s main fields of interest can only be found 
in Part II. However, to be honest, can you imagine anything more boring than to 
get a volume with collected works of the field of your own expertise to your 65th 
birthday? Nevertheless, this book honors the work of Rudolf Sträßer. It relates to 
his pursuit to develop the field of mathematics education theoretically, it proofs 
how he encouraged his doctoral students to think independently, to believe in their 
own ideas and not to hesitate to go off the beaten track. We hope that this book will 
contribute to the discipline’s and to Rudolf Sträßer’s personal pursuit to advance the 
field of mathematics education theoretically.

Sebastian Rezat,  
Mathias Hattermann, Andrea Peter-Koop
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Part I
Transformations at Transitions in 

Mathematics Education

Introduction

Part I deals with transformations related to knowledge which occur throughout the 
course of education in mathematics. Several perspectives are used to analyze dif-
ferent kinds of transformations in several contexts. Biermann and Jahnke (Chap. 1), 
Vollstedt et al. (Chap. 2), Deiser and Reiss (Chap. 3) and Pepin (Chap. 4) share the 
same starting point for their discussion. Even though looking upon different histori-
cal periods, they all focus on the gap between mathematics in school and at uni-
versity. This gap might be characterized by a transformation from an application-
oriented school perspective to a formal and deductive paradigm at the university 
level. It was Klein who first pointed to the so called double discontinuity, a term 
that alludes to the missing link between school and university mathematics, which a 
teacher student experiences twice: once when he leaves school and enters university 
to start his studies in mathematics to become a teacher and again when he finishes 
his studies and goes back to school in order to teach mathematics. In general, this 
double discontinuity is traced back to the different mathematical paradigms preva-
lent at school and at university. However, Biermann and Jahnke (Chap. 1) argue that 
there is another aspect which Klein addressed by his notion of double discontinuity, 
namely the fact that mathematics in school and mathematics at the university are 
‘disconnected’ and do not develop in mutual relatedness. The transformation of 
school mathematics is very slow related to the development of mathematics as a 
science and the transformation of school curricula related to new scientific achieve-
ments in mathematics is confronted by several obstacles.

Biermann and Jahnke (Chap. 1) elucidate this second notion of double disconti-
nuity in their chapter. Using the case of a particular secondary school in Germany, 
they analyse the paradigm shift between Eulerian mathematics and the Klein move-
ment at the end of the nineteenth century. They show that the transformation from 
the well-established paradigm of algebraic analysis to Klein’s concept of functional 
thinking and the introduction of infinitesimal analysis in school mathematics was a 
tedious process which was underestimated by its proponents. The co-existence of 
the mentioned paradigms at the beginning of the twentieth century is underlined 
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by the analysis of a school book that fitted to the syllabus of 1901. “Klein thought 
to solve the problem by a modernization of the school curriculum, but the double 
discontinuity between school mathematics and university mathematics proved to be 
a much deeper problem than he could anticipate in his times (Biermann and Jahnke 
Chap. 1).

Vollstedt et al. (Chap. 2) approach the double discontinuity as it appears at the 
present from the perspective of textbooks. In order to develop a deeper understand-
ing of the discontinuity from school to university they develop a framework for ana-
lyzing textbooks from upper secondary level and university level. The scheme for 
textbook analysis focuses on general aspects, as well as on content specific criteria. 
In detail it focuses on ‘motivation’, ‘structure and visual representation’, ‘develop-
ment/understanding of concepts’, ‘proof characteristics’ and ‘task characteristics’. 
Feasibility studies based on this scheme already point out important commonalities 
and differences in school and university textbooks that do not only elucidate the 
discontinuity from school to university but also point to shortcomings of mathemat-
ics textbooks in general. With respect to transformations the analysis shows on the 
one hand transformations of mathematics and the learning of mathematics at the 
transition from school to university. On the other hand, the theories backing the 
categories of the textbook’s analysis scheme themselves point to important trans-
formations that are considered to support learning, e.g. the presentation of contents 
in different representations.

Deiser and Reiss (Chap. 3) also address the problem of double discontinuity in 
their chapter. They analyze the development of students’ mathematical knowledge 
during the first semester by means of an inquiry of students’ understanding of fun-
damental mathematical notions, as for example limit of a sequence or infimum. 
Their analysis mainly focuses on students’ ability to provide formalized definitions 
of fundamental mathematical notions and thus deals with the shift of paradigms 
between school and university mathematics. They conclude that “mathematical 
knowledge acquired in secondary school does not necessarily constitute a reliable 
foundation for adopting basic mathematical notions…at the university” (Deiser and 
Reiss Chap. 3). Furthermore, they identify typical problems that occur at the transi-
tion from school to university concerning “habits learned in school” (Deiser and 
Reiss Chap. 3) and highlight prospects for further research in order to learn more 
about the transformation of knowledge at the transition from school to university.

Pepin (Chap. 4) addresses the discontinuity between school and university 
mathematics from the perspective of identifying students’ experiences and kinds 
of feedback that could be helpful to master independent learning. In a qualitative 
study she analyzes biographical interviews of students, teachers and professors at 
university, as well as lectures and curricular documents to identify aspects of feed-
back and independent learning that students experience. The development of more 
independent learning practices is stressed as crucial to master the transition from 
school to university, where transformation processes from lessons into lectures, 
homework into coursework, textbooks into course materials, tests into examina-
tions and school mathematics into university mathematics take place. Pepin invites 
higher educational institutions to provide more necessary “tools and instructions 
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to use those” (Pepin Chap. 4) to support learners at the beginning of their studies 
at the university.

Whereas, the studies by Pepin and Deiser and Reiss take the conditions at school 
and at university for granted and aim at a better understanding of how students 
deal with the different expectations at school and at university in terms of social 
norms or mathematical competence; Kaiser and Buchholtz (Chap. 5) evaluate the 
effect of changing conditions at the university. In their chapter, they investigate the 
impact of an innovative teacher education programme at the University of Giessen 
that was developed to reduce the double discontinuity. In an evaluation study, they 
investigated how “the innovative efforts at the University of Giessen actually influ-
enced the development of the local students’ competences” (Kaiser and Buchholtz 
Chap. 5) compared to that of prospective teacher students from other universities 
and non-prospective teacher students. In interviews, the students of the University 
of Giessen who are part of the innovative programme still address the disconti-
nuity between mathematics at school and at university, but predominantly related 
to courses that have been taught in the traditional way. Altogether, the results of 
the evaluation study show also that the reorganization of the teacher training pro-
gramme involving specific courses for prospective mathematics teachers seems to 
work. Transforming the ways mathematical content is taught at universities in a way 
that focuses more on understanding than on quantity by means of exemplification, 
seems to motivate students and have a positive influence on the development of 
their professional competences (Kaiser and Buchholtz Chap. 5). In this respect the 
chapter by Kaiser and Buchholtz supports promoting change in teacher education 
in order to reduce or even overcome the double discontinuity identified by Klein.

Grevholm’s approach (Chap. 6) is more open. In her chapter, she addresses the 
development and transformation of a professional identity over time. Based on a 
retrospective analysis she identifies influences on the professional identity of one 
mathematics teacher. Her focus is on transformations “that take place for example 
in the professional identity of a student teacher going through teacher education 
and building up professional experience” (Grevholm Chap. 6). Grevholm uses nar-
ratives to investigate the development of personal conceptions of individuals with 
the theoretical background of a concept map model that combines professional and 
private identity of individuals to get a comprehensive conceptual understanding 
of the impact of teacher education. Based on a case study she identifies different 
kinds of transformations, as for example the “transformation from passive to ac-
tive”, “transformation from child to adult in mathematics”, “the transformation 
to experienced user of mathematics”, “transformation from learner to teacher of 
mathematics” or the “transformation from teacher of mathematics to researcher 
of mathematics” (Grevholm Chap. 6). These different transitions can be regarded 
as processes in the development of an individual’s professional identity “from ex-
perience of success in mathematics” (Grevholm Chap. 6). The identified stages 
are used in further research to investigate questions, such as: Do weak students of 
mathematics have a better understanding of special problems regarding the learning 
process of their pupils? Or is a weakness in mathematics the cause for problems in 
understanding another person’s thinking?

Transformations at Transitions in Mathematics Education 
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The chapters in this part demonstrate that the analysis of transformations occur-
ring during the course of education in mathematics is approached very differently.

Biermann and Jahnke as well as Vollstedt et al. rely on written, official or histori-
cal documents and textbooks in order to analyze transformations of mathematical 
knowledge. Kaiser and Buchholtz, Deiser and Reiss, Pepin and Grevholm use par-
ticular theoretical constructs to grasp transformations: Buchholz and Kaiser, as well 
as Deiser and Reiss measure specific competences of students in order to find out 
how students deal with transformations of conditions, whereas Pepin and Grevholm 
use the notions of didactical contract and identity respectively to grasp individual 
perceptions of conditions at educational institutions.

So, already the first part of the book indicates how fruitful and broadly conceived 
the idea of transformation is, although restricted to transition from school to uni-
versity.

Transformations at Transitions in Mathematics Education
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Chapter 1
How Eighteenth-Century Mathematics 
Was Transformed into Nineteenth-Century 
School Curricula

Heike Renate Biermann and Hans Niels Jahnke
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H. N. Jahnke
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e-mail: njahnke@uni-due.de

1.1  The Double Discontinuity

In the introduction to his famous book Elementary Mathematics from an Advanced 
Standpoint (originally published in 1908), Felix Klein coined the frequently cited 
phrase of a “double discontinuity” between mathematics at schools and universi-
ties. The underlying problem, as Klein described it in general terms, is considered 
as highly relevant still today (Deiser and Reiss, Chap. 3; Pepin, Chap. 4; Buchholtz 
and Kaiser, Chap. 5). However, at those times there existed an implicit and special 
connotation of the phrase, which is forgotten today, but should be known to under-
stand Klein adequately.

This connotation becomes obvious in the later parts of the book. In the section on 
analysis, Klein discussed the exponential and logarithmic functions as paradigmatic 
cases for some of his views on school mathematics, and it was in this context that 
he used a concept that might sound mysterious to the modern reader, namely that of 
“algebraic analysis”. Klein designated the procedure generalizing the exponential 
function step by step from natural numbers to fractions to negative numbers and 
finally to real numbers as the “Systematic Account of Algebraic Analysis” (Klein 
n. d., pp. 144–6). The phrase referred to the traditional way in which the exponential 
functions were handled at schools and which Klein wanted to replace by a more 
elegant and modern treatment. In a didactical résumé, he stated:

It is remarkable that this modern development has passed over the schools without hav-
ing, for the most part, the slightest effect on the instruction, an evil to which I have often 
alluded. The teacher manages to get along still with the cumbersome algebraic analysis, in 
spite of its difficulties and imperfections, and avoids the smooth infinitesimal calculus, … 
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The reason for this probably lies in the fact that mathematical instruction in the schools and 
the onward march of investigation lost all touch with each other after the beginning of the 
nineteenth century. … I called attention in the preface to this discontinuity, which was of 
long standing, and which resisted every reform of the school tradition… In a word, Euler 
remained the standard for the schools. (Klein n. d., p. 155)

This is one of the rare, but by no means singular, statements of Klein’s where he 
alluded to the term “algebraic analysis” as the core component of traditional school 
mathematics which he wanted to overcome. At another place, he spoke polemically 
of the “old misery of algebraic analysis” (Klein 1907, p. 105). Thus, Klein’s phrase 
of a “double discontinuity” did not hint only at missing links between school and 
university mathematics caused by the cognitive distance between research and el-
ementary level or by institutional boundaries. Beyond that, the term designated in 
Klein’s and his contemporaries’ view a difference of mathematical conception. As 
Klein said, the traditional school mathematics of his time was determined by Eul-
er’s views, whereas he intended to introduce into school the ideas of contemporary 
modern mathematics. To use Thomas Kuhn’s term, there was a difference of para-
digms between Klein’s conception and that of the school mathematics of his time.

The present chapter briefly sketches the basic conception of eighteenth-century 
algebraic analysis as conceived by Euler and Lagrange and then analyzes how at 
the turn of the nineteenth century this conception was transformed by mathematical 
and cultural forces into a subject of teaching at both universities and the reorganized 
Prussian gymnasia. It will become clear that the arithmetic algebraic curriculum of 
Prussian gymnasia was not an arbitrary collection of topics. Rather, there was an 
inner logic that was convincing to mathematicians and mathematics teachers.

Conceptions on a general level are one thing, teaching concrete students at 
schools another. Thus, the present chapter accompanies and contrasts the general 
concepts by information about the teaching of mathematics at a concrete school, 
the Ratsgymnasium in Bielefeld (see Biermann 2010). The decision to consider just 
this school is motivated by the fact that in the eyes of the Prussian government it 
was one of the leading schools in the province of Westfalia. Besides, there exists 
still extensive archival material concerning the teaching of mathematics, including 
numerous written tests of students, and the teachers of mathematics were highly 
committed in the reform movement at the end of the nineteenth century.

Originally, the Ratsgymnasium in Bielefeld was a church-related Latin school. In 1558 it 
was taken over by the authorities of the city of Bielefeld. In the course of the Humboldt 
educational reforms the Ratsgymnasium became a leading gymnasium in Westfalia. During 
the 19th century the school splitted into two types of secondary schools which remained 
in the same institution: the classical Gymnasium and the Realgymnasium. The latter had a 
focus on mathematics and the natural sciences.

In a final part, it will be shown that the old paradigm of algebraic analysis was so 
strong that F. Klein’s efforts to reform the teaching of mathematics did not lead to 
the replacement of the old paradigm by a new one but to a coexistence of the two 
paradigms which lasted well until the mid-1920s.
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1.2  Euler’s Algebraic Analysis

The term “algebraic analysis” suggests how calculus was thought of and practiced 
in the eighteenth century, especially in the works of Leonhard Euler and Josef-
Louis Lagrange, and the continuation of this tradition in the nineteenth century. It 
was only in the nineteenth century that the term received a technical meaning and 
appeared in the titles of a certain class of textbooks treating the elementary and 
preparatory parts of infinitesimal analysis, especially the theory of infinite series. 
Ironically, this use of the term was presumably established by Cauchy’s Analyse 
algébrique (Cauchy 1821) which contributed more than any other book to the final 
destruction of this tradition, which ended with the article “Algebraische Analysis” 
by Alfred Pringsheim and Georg Faber in the Enzyklopädie der Mathematischen 
Wissenschaften (Pringsheim and Faber 1909–1921).

The model for these nineteenth-century textbooks was Leonhard Euler’s famous 
Introductio in analysin infinitorum, which appeared in two volumes in 1748. The 
first volume developed algebraic methods and treated functions and their expan-
sions in power series, infinite products, and continued fractions. The second volume 
contained what today is called analytic geometry. Consequently, the Introductio is 
not a book on infinitesimal analysis proper, but provides algebraic and geometric 
tools to it. Euler explained the motivation of such an introductory book by the ob-
servation:

Often I have considered the fact that most of the difficulties which block the progress 
of students trying to learn analysis stem from this: that although they understand little of 
ordinary algebra, still they attempt to this more subtle art. (English translation according 
to Euler (1990, v))

The Introductio provided algebraic techniques which prepared a student for a deep-
er understanding of analysis and which were not contained in the ordinary treatises 
on the elements of algebra. In this way, “the reader gradually and almost impercep-
tibly becomes acquainted with the idea of the infinite” (l. c.).

Conceptually, there was no clear-cut demarcation between the Introductio and 
infinitesimal analysis proper. The Introductio treated infinite symbolic expressions 
like power series and infinite products, but it did not contain the differential and 
integral calculus. These were treated in Euler’s later textbooks Institutiones cal-
culi differentialis (1755) and Institutiones calculi integralis (1768–1770). Thus, in 
a first approximation one could say—and mathematicians at the turn of the nine-
teenth century did so—that the Introductio treated only finite quantities and did not 
contain infinitely small quantities as symbolized by the differentials dx, dy, and 
dz. From a modern point of view, this distinction looks rather artificial as both the 
theory of power series and the differential calculus are based on the concept of limit, 
but to mathematicians of the time it was plausible.

The somewhat fuzzy demarcation between the two fields becomes apparent 
again when one considers volume II of the Introductio. In this book, among many 



8

other things, the tangents to curves are calculated and Euler maintained that this is 
achieved by purely algebraic methods:

Thus I have explained a method for defining tangents to curves, their normals, and cur-
vature … Although all of these nowadays are ordinarily accomplished by means of dif-
ferential calculus, nevertheless, I have here presented them using only ordinary algebra, in 
order that the transition from finite analysis to analysis of the infinite might be rendered 
easier. (l. c., vii)

By the end of the eighteenth century, it was an open question what can be afforded 
by algebraic means and at what point infinitesimal methods were inevitable. In fact, 
there even emerged various attempts to reduce infinitesimal analysis completely to 
ordinary algebra.

The most famous approach of this type was Joseph-Louis Lagrange’s Théorie 
des fonctions analytiques (1797). In this book, infinitesimal analysis is consistently 
treated as a calculus of power series. The derivative of a function f is defined as the 
coefficient p in the power series expansion

f x i f x pi qi ri( ) ( )+ = + + + +2 3
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For details of Lagrange’s approach and especially his “proof” that any function 
can be expanded in a power series, see Fraser (1989).

Given the prominence of its author, Lagrange’s attempt of reducing infinitesi-
mal analysis to ordinary algebra was very influential. Nevertheless, at the turn of 
the nineteenth century it was more common to distinguish between Analysis of the 
Finite and Infinitesimal Analysis. The former comprised the contents of Euler’s 
Introductio, whereas the latter referred to differential and integral calculus proper. 
The subject of Analysis of the Finite was the analytical treatment of finite quantities 
including the use of infinite symbolic expressions like power series. The subject 
of Infinitesimal Analysis was the analytical treatment of infinitely small quantities 
like dx, dy, and dz. This distinction was in line with the global structure Euler had 
given to the field in his textbooks and was rather different from modern views of 
analysis.

The contents of Analysis of the Finite can be found in a well-known contempo-
rary mathematical encyclopedia as part of the entry Analysis.

H. R. Biermann and H. N. Jahnke
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Analysis of the Finite according to G. S. Klügel’s Mathematisches Wörterbuch 
(1803–1808):

I The theory of functions or of the forms of quantities
II Introduction to the theory of series
III Combinatorics
IV Combinatorial analysis in general
V Binomial and polynomial theorem
VI Products of unequal binomial factors
VII Factorials
VIII Logarithmic functions
IX Trigonometric functions
X Application of trigonometric functions to the decomposition of a function into trinomial 

real factors
XI Series, as continuation of Sect. II
XII Equations in two or more variables
XIII Analysis of curved lines
XIV Calculus of finite differences
XV Connection between the analysis of the finite and the differential calculus:

1. Through Taylor’s theorem and some of its applications to the theory of series
2. Through the general theorem of Lagrange for the reversion of series
3. Through the determination of maxima and minima of a function
4. In the geometry of curved lines, through the determination of tangents, normals and 

special points; through the formulae for different methods of generating lines by 
evolution, rotation etc

XVI Indeterminate or diophantine analysis, which may be viewed as the second main part of 
algebra

From Klügel’s survey, we can conclude that at the turn of the nineteenth century 
Taylor’s theorem was situated at the borderline between Analysis of the Finite and 
the Differential Calculus. Thus, it could be considered as a topic either in the former 
or in the latter. A hundred years later, Felix Klein argued that the 1812 syllabus for 
Prussian gymnasia, the so-called syllabus of Süvern, included differential calculus 
because Taylor’s theorem was mentioned in it. From the above survey it can be seen 
that this claim was historically not justified. The survey also shows that topics which 
today are taught as applications of differential calculus (extrema and tangents) were, 
in Klügel’s classification, a part of algebraic analysis (or analysis of the finite) in 
accordance with Euler’s treatment of these topics in Vol. 2 of the Introductio.

1.3  The Combinatorial Approach and its Cultural Impact

Klügel’s survey contained under numbers III–V the entries “Combinatorics,” 
 “Combinatorial analysis in general,” and “Binomial and polynomial theorem.” 
These topics refer to a mathematical development which took place in Germany 
and had a certain importance for the teaching of mathematics. Today the term com-
binatorial analysis is synonymous with combinatorics, but at the end of the eigh-
teenth century it designated an approach to calculus developed by a group of Ger-
man mathematicians, the so-called Combinatorial School. The leading figure of 
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this group was the Leipzig mathematician Carl Friedrich Hindenburg (1741–1808). 
These mathematicians sought to develop a system of “combinatorial operations” to 
determine and facilitate calculations with power series, infinite products, and con-
tinued fractions. With regard to their general vision, they referred to G. W. Leibniz 
who in his Dissertatio de Arte Combinatoria (1666) and other early writings had de-
veloped the idea that the ars combinatoria might be considered as a general  science 
of symbolic expressions (combinations of symbols) of which algebra is only a special 
case (cf. Leibniz 1976, pp. 54–56).

In their approach to infinitesimal analysis, the Combinatorial School followed La-
grange insofar as they considered it as a calculus of power series and infinite products. 
Their specific idea was to describe calculations with these infinite expressions by 
means of combinatorics. The reader might consider the so-called “binomial formula” 
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When m is a natural number, these formulae are in fact combinatorial identities. The 
coefficients Ai on the right side of the latter formula are the so-called “polynomial 
coefficients” which can be found in any textbook on combinatorics. This is true 
even if a a x a x a x0 1 2

2
3

3+ + + + is an infinite power series, a so-called infiniti-
nom, because the calculation of the Ai  involves only finite segments of the series, 
and therefore A f a a a ai i= ( , , , , )0 1 2  .

It is not so obvious that these formulae can also be interpreted in a combinato-
rial way when m is a negative or rational number; however, this is in fact possible 
(Jahnke 1990a, p. 169). Thus, by means of the polynomial formula, arbitrary roots 
and multiplicative inverses of any power series can be calculated. More than that, in 
1793 Heinrich August Rothe, a member of the Combinatorial School, proved a then 
famous theorem stating that also the reversion of series can be effected by means of 
the polynomial formula. For the Combinatorial School, algebraic or combinatorial 
analysis was a closed system of symbolic expressions. In this system, the elementary 
algebraic operations—addition, multiplication, division, exponentiation, extraction 
of roots of power series, and even the solution of arbitrary equations—are univer-
sally performable, and combinatorics, especially the polynomial theorem, played 
an essential role. For Carl Friedrich Hindenburg and his adherents, the polynomial 
theorem was the “most important theorem of analysis” (Hindenburg 1796).

Of course, this was a purely syntactical approach to power series and infinite 
products. In terms of modern mathematics, the underlying notion was that of a “for-
mal power series.” As is well known, it was not completely clear how the numerical 
relations which result from such power series expansions could be integrated into 
this formal approach. Euler and his followers were convinced that divergent series 
have to be accepted. In addition, at the beginning of the nineteenth century several 
more or less elaborate approaches for handling divergent series had been developed 
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(Jahnke, l. c.). None of them was successful. Finally, Cauchy’s Analyse algébrique 
of 1821 led to the exclusion of divergent series from mathematics for a long time 
and thus destroyed the formal approach.

It is a remarkable fact that at the turn of the nineteenth century the combinatorial 
approach had a considerable impact on intellectual circles outside of mathematics. 
Philosophers J. F. Herbart (1776–1841), K. Chr. Fr. Krause (1781–1832), J. F. Fries 
(1783–1843), G. W. F. Hegel (1770–1831), and others as well as the romantic poet 
Friedrich von Hardenberg (Novalis 1772–1801) referred in their writings on math-
ematics explicitly to the ideas of the Combinatorial School (Jahnke 1990a, p. 167). 
Some of these authors had the idea that a view of mathematics as a science of quan-
tity was too narrow. Rather, the two disciplines of arithmetic and combinatorics 
should be considered as “coordinated” and independent foundations of mathemat-
ics (Krause 1807). The same idea was expressed by Justus Günther Grassmann 
(1779–1852), father of the famous mathematician Hermann Grassmann, who wrote 
a small booklet on “Geometrische Combinationslehre” in which he developed a 
three-dimensional vector calculus based on combinatorial considerations (Scholz 
1989). In 1819, the famous pedagogue F.A.W. Diesterweg published a small book-
let under the title Geometrische Combinationslehre.

During the nineteenth century, textbooks written for the teaching of mathematics 
at gymnasia frequently contained a philosophically oriented introduction on what 
numbers and quantities are and what mathematics is. For example, in 1853 Carl 
Friedrich Collmann, teacher of mathematics at the Ratsgymnasium Bielefeld, pub-
lished a textbook with a lengthy philosophically oriented introduction on the nature 
of mathematics.

When contemplating things we are able to ignore and negate special properties of them, 
and by this we can so to speak pull off or abstract one or several features from things… The 
science which is concerned with considering relations of form and position and abstract 
quantities is called mathematics. (Collmann 1853, p. 1 f.)

The authors of these books were aware that students would understand these intro-
ductions only “retrospectively” (Tellkampf 1829, p. vi); nevertheless, this seemed 
to be required by the standards of scientific writing. In some of these introductions, 
the combinatorial approach with the idea of arithmetic and combinatorics as coor-
dinated and independent foundations of mathematics played an important role (see 
f.e. Müller 1838).

1.4  The Didactical Conception of Algebraic Analysis

In a complicated process, the mathematical curriculum of Prussian gymnasia and 
related institutions of higher education emerged and developed in the course of 
the nineteenth century. The process was framed by interests of the different social 
groups who sent their children to the institutions of higher education, by political 
decisions on the structure of the system, by cultural trends, and, last but not least, 
by mathematical and didactical conceptions and their acceptance by teachers and 
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 pupils. Biermann (2010) describes this process in detail discussing the example of 
the Ratsgymnasium Bielefeld, which in 1866 became a so-called Doppelanstalt 
consisting of a Gymnasium and a Realschule (later Realgymnasium). “Realschulen” 
were secondary schools which focused on mathematics and the natural sciences. 
This chapter does not discuss these developments in detail, but rather concentrates 
on the global structure of the mathematical curriculum and the role of algebraic 
analysis.

Basically, the mathematical curriculum consisted of three components, namely 
(1) a course of 2 or 3 years on elementary arithmetical calculations necessary for 
everyday life and basic commercial applications, (2) synthetic Euclidean geometry, 
and (3) a scientific course on arithmetic, elementary algebra, and a first introduc-
tion to infinite series. Thus, some contents of Algebraic Analysis or Analysis of the 
Finite became part of the curriculum.

As F. Klein remarked, it was common use to call the entire arithmetic–algebraic 
part of the school syllabus “Arithmetic”: “The term includes … besides ordinary cal-
culations with letters … the theory of equations and analysis insofar as it is taught” 
(Klein and Schimmack 1907, p. 101, our translation). Grosso modo the higher parts 
of this course were a true, though reduced, image of algebraic analysis as exhibited 
in Klügel’s survey. The development started with the ambitious syllabus of Süvern 
(1812). As was mentioned above, it contained Taylor’s theorem but seen as a sub-
ject of algebraic analysis. Because of strong resistance against its ambitious require-
ments in many schools and cities, this syllabus was never made official and finally 
abandoned. Nevertheless, some calculations with infinite series remained part of the 
teaching at the upper grades, and, in particular, the binomial theorem for arbitrary 
exponents as an application of combinatorics was contained in every syllabus until 
the beginning of the twentieth century. This was obviously a direct result of the 
combinatorial approach to analysis (see Sect. 3). In the second half of the century, 
the binomial theorem was confined to natural numbers at the gymnasia and then, of 
course, it reduced to a finite identity; however, at the Realschulen (Realgymnasien; 
see above) with more weekly hours for mathematics, the binomial theorem for arbi-
trary exponents was required until 1901. For the mathematics teachers of the time the 
binomial theorem was the culmination of the course in arithmetic.

This was also the case at the Ratsgymnasium Bielefeld. From 1830 to 1880, the 
binomial theorem and infinite series were a constant subject of the upper grades at 
this school. “Subjects in Prima: over the year in two hours per week combinator-
ics, binomial theorem, introduction into the theory of infinite series” (Stadtarchiv 
Bielefeld Ratsgymnasium 111 Lehrmittel 1842–1903). Beginning with the 1880s, 
there was a shift of subjects to analytic geometry though the binomial theorem was 
still officially demanded.

In the spirit of the time, teachers of mathematics and textbook authors stressed 
the systematic unity of the whole course in arithmetic. The regulations for the fi-
nal examinations at secondary schools (the “Abituredikt”) of 1834 required of the 
students “a clear insight into the coherence of all the theorems in a systematically 
arranged presentation.” At the end of the century, the influential mathematician and 
teacher trainer Max Simon wrote emotionally:
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The seven arithmetical operations and … the gradually extended concepts of number… 
form a closed whole of such a firmly established structure and inner necessity that the 
whole process progresses with elementary energy … if only the right starting point the 
insight in the process of counting is triggered. The elementary arithmetic from counting 
until the Binom with arbitrary exponents is the only example of a science which is acces-
sible to schools; only ignorance is able to withhold it from it. (Simon 1908, p. 82, English 
translation by the authors)

The statement was a clear defense of the nineteenth-century conception of school 
mathematics and its author Max Simon, a prominent antipode of Felix Klein with 
regard to the teaching of mathematics (see Klein’s remarks on Simon in the intro-
duction of his Elementary Mathematics from an Advanced Standpoint). In the above 
quotation, Simon mentioned the “gradually extended concepts of number,” a phrase 
by which he alluded to the process of adjoining step by step the negative numbers 
to the natural numbers and the rational to the integers. The mathematical elabora-
tion of the notion of algebraic adjunction as a systematic approach to the concept 
of number started with M. Ohm’s Versuch eines vollkommen konsequenten Systems 
der Mathematik [Attempt at a Perfectly Consequential System of Mathematics] of 
1822 (see Bekemeier 1987) and found its most mature expression in H. Hankel’s 
“Principle of Permanence” presented in the Vorlesungen über die complexen Zahlen 
und ihre Functionen [Lectures on complex numbers and their functions] of 1867.

Thus, in the eyes of teachers of mathematics and mathematicians involved in 
teacher training the arithmetic–algebraic domain as a whole was a systematic theory 
with the binomial theorem for arbitrary exponents as a culmination. This systema-
ticity constituted the intrinsic meaning of the field.

The extrinsic meaning of the arithmetic–algebraic domain consisted in elemen-
tary applications to geometry and physics. In 1834, the government decided to re-
move analytic geometry from the syllabus. Therefore, the applications were reduced 
to calculations of geometrical quantities, such as areas and volumes, and to plane 
and spherical trigonometry. Thus, the whole domain was a structure composed of 
theory and applications.

Theory Applications
Arithmetic, algebra, algebraic 
analysis

Calculations of elementary 
geometrical and physical quan-
tities and plane and spherical 
trigonometry

It was common use in school mathematics of the time to call the application of 
algebra to geometry and physics “algebraic analysis.” This referred to the concept 
of “analysis” in ancient mathematics. The term “algebraic analysis” in this meaning 
should not be confused with its use as a name for the Eulerian tradition established 
by the Introductio of 1748.

What types of applications students had to work on can be seen from tasks which 
have been treated at the Ratsgymnasium Bielefeld:

A prism with base area a [square ft] and height = h [ft] has to be converted into a sphere. 
(1832)
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The base areas of a layer of a sphere have radii of 12 and 8 inches. the height is 4 inches. 
The layer is transformed into a regular tetrahedron. What is the distance of the plane which 
bisects the tetrahedron from its base? (1869)

An object is thrown down vertically with initial velocity e. How many seconds later has 
another body with initial velocity c to be thrown down from the same point so that it catches 
up the first body in t seconds. (1886/1887)

During the nineteenth century, a special didactical education for the teachers of 
mathematics did not exist, and, consequently, there was no accumulation and sys-
tematization of didactical conceptions. Nevertheless, there were some pedagogical 
and mathematical ideas which, in part, derived from the combinatorial approach to 
algebra and which are worth considering still today. On a general level, these ideas 
can be described by the catchword insight into structural properties of formulae. 
In contrast to the standard approach, algebra was not treated as a technique of ap-
plying rules to formulae. Rather, the guiding viewpoint was to build up a network 
of formulae connected by structural similarities. The binomial formula might be a 
good example for illustrating this idea. In the standard treatment

( )a b a ab b+ = + +2 2 22

is an isolated entity derived by applying rules such as the distributive, commutative, 
and associative laws.

The alternative view aims at building up sequences of connected formulae:

( )

( ) ( )

( )

a b a b ab

a b c a b c ab ac bc

a b c d a

+ = + +
+ + = + + + + +

+ + + =

2 2 2

2 2 2 2

2 2

2

2

++ + + + + + + + +b c d ab ac ad bc bd cd2 2 2 2( )

The structural similarity of these formulae is obvious, and a teacher could ask a pu-
pil what will happen if a fifth letter occurs, or if one letter is omitted. In other words, 
the main aim was not to apply rules, but to see the symmetries and regularities 
of a formula. Today, educators of mathematics would talk of pattern recognition. 
Pattern recognition was also an important feature of Euler’s mathematical style, 
and it was inherent to the combinatorial approach. It is for such reasons that the 
well-known teacher of mathematics J.H.T. Müller, for example, started the teach-
ing of algebra with “easy combinatorial tasks … in order to accustom the student 
early to a … law-governed method of arrangement” (Müller 1838, viii). He called 
tasks involving algebraic pattern recognition as Symmetrische Aufgaben. A similar 
approach can be found in A. Bretschneider’s System der Arithmetik und Analysis 
(1856/1857).
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Algebraic expressions with symmetrical patterns can also be found at the Ratsgym-
nasium Bielefeld. “The sum of three numbers is 7, the sum of its squares is 45 and 
their product 14.” This leads to the symmetrical equations:

a b c a b c a b c+ + = + + = =7 45 142 2 2 · ·

(From the the final examination (“Abitur”) in 1873).
The above-mentioned textbook of teacher Collmann (1853, p. 36) contains rep-

resentations of sums of cubics:

1 1 1

1 2 3 1 3 5

1 2 3 6 1 3 5 7 9 11

1 2 3 4 1

3 2

3 3 2

3 3 3 2

3 3 3 3

= =
+ = = + +
+ + = = + + + + +
+ + + = 00 1 3 5 7 9 11 13 15 17 19

1 2 3 1 2 3
1

2

3 3 3 3 2

= + + + + + + + + +

+ + +… = + + +…+ =
+

n n
n

( )
( ))n

2

2






Pattern recognition was also the fundamental idea in F.A.W. Diesterweg’s Geome-
trische Kombinationslehre (1819). A task in this book is to determine the number of 
points of intersection of a given number of straight lines (Fig. 1.1). 

If the pupil starts with one line (zero points of intersections) and adds stepwise 
line after line, he will soon observe the pattern that the number of points of intersec-
tion of n + 1 lines is the sum of the points of intersection of n lines plus the number 
n. Of course, if he has some knowledge of combinatorics he will also realize that the 
number sought is equal to the number of possibilities of selecting two lines out of n 
lines that is equal to ( )1

2

n n⋅ − .

Collmann (1853, p. 65) contains, for example, statements about diagonals in an 
n-gon:
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The diagonals from a vertex divide any n-gon in (n – 2) triangles. Any n-gon has 
n n( )− 3

2
 diagonals.

1.5  Algebraic Analysis as a “Complete Paradigm”

From these insights into the structure and pedagogical ideas of nineteenth-century 
school mathematics, it is possible to come to a new evaluation of the question of why 
differential and integral calculus were not taught in nineteenth-century gymnasia. 
This question was first posed at the end of the nineteenth century when the reform 
movement under the influence of Felix Klein demanded the introduction of this sub-
ject matter into the school curriculum. Impressed by the heated debates, historiogra-
phers of the time answered this question by saying that the absence of infinitesimal 
calculus was a consequence of the dominance of the classical languages and the 
suppression of mathematics in neohumanist gymnasia. However, the above analysis 
leads to a different conclusion. If it is accepted that school mathematics as described 
above was a complete and closed whole, then the question of why differential and in-
tegral calculus were not taught proves largely ahistorical. Infinitesimal calculus was 
by nature not part of the curriculum, and mathematics teachers themselves defended 
this position. Of course, there were schools and teachers of mathematics pleading for 
elements of differential calculus in the upper grades of gymnasia. However, these 
were singular cases, and the majority of teachers of mathematics adhered to the con-
ception of confining school teaching to analysis of the finite.

To elaborate this argument, it will be shown that algebraic analysis was a com-
plete paradigm for school mathematics. “Complete” means that it was possible to 
solve problems, usually associated with infinitesimal calculus, for example, the 
determination of extrema, within algebraic analysis. As noted above, at the begin-
ning of the nineteenth century these problems were counted among the topics of 
algebraic analysis. Methods adapted to the needs of school teaching were devel-
oped during that century. One of them was the so-called “method of Schellbach” 
(Schellbach 1860).

Karl Heinrich Schellbach (1804–1892) was a well-known mathematics teacher 
and teacher-trainer in Prussia who exerted a great influence on mathematics teach-
ing. Felix Klein claimed that “Schellbach’s method” was “disguised infinitesimal 
calculus” and that Schellbach did not speak openly of infinitesimal methods be-
cause he feared the classical philologists. For the latter assertion, Klein gave no 
justification, and with regard to the former it is possible to show that Schellbach’s 
method can be interpreted as an integral part of algebraic analysis and that it was 
didactically well founded.
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Let f be a given function with an extremal point at xE (Fig. 1.2).
An arbitrary x is chosen sufficiently near to the extremal point xE

 and the paral-
lel to the x-axis is drawn through the point ( , ( ))x f x . It intersects the graph of f at 
( , ( ))x f x1 1

, where x1
 is on the other side of xE

. Thus, to every x there corresponds 
an x1

. The extremal point is characterized by the condition that x corresponds to 
itself when the parallel is tangent to the graph of f. By this condition, we can calcu-
late  in the following way.

The conditions on x and x1
imply

f x f x( ) ( )− =1 0

Schellbach claimed that it is “always possible” to factor f x f x( ) ( )− =1 0  and to 
write

   1 1, 0x x g x x  

For all x with x x≠ 1
 it follows that

g x x( , )1 0=

For reasons of continuity, this must also be the case for x x xE= =1
. Therefore, xE

 
can be calculated from the equation

g x x( , ) = 0

This was Schellbach’s simple procedure. Felix Klein claimed that this was “dis-
guised infinitesimal calculus” because factoring f x f x( ) ( )− 1

 and setting x x= 1
 

may be seen as equivalent to evaluating the limit
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lim
( ) ( )

x x

f x f x

x x→

−
−1

1

1

without mentioning the conceptual difficulties involved.
The whole procedure, however, can be interpreted equally well as a purely al-

gebraic calculation within the framework of analytic geometry. The extremal point 
is algebraically characterized by the condition that the intersection of the parallel 
with the graph of the function f becomes a single point which must be counted 
twice. “Schellbach’s method” simply imitated, on a more elementary level, Des-
cartes’ procedure for calculating tangents and normals in his “La Géométrie” of 
1636. Moreover, methods of determining a tangent to a curve algebraically in the 
style of Euler’s Introductio in analysin infinitorum, vol. 2, were a common topic in 
contemporary university textbooks of analytic geometry. Thus, Schellbach’s alge-
braic method agreed completely with Euler’s view on tangents and extrema in the 
Introductio (see Sect. 1.2).

The application of this procedure requires deciding whether an extremum exists 
and where it lies. This investigation uses the concrete conditions of the problem at 
hand. Clearly, such a concrete investigation is often pedagogically preferable to a 
blind application of an algorithm requiring mere mechanical calculations of de-
rivatives. Schellbach’s method can be used to solve a concrete extremum problem 
involving a concretely given (algebraic or analytic) function. Questions of existence 
and uniqueness are treated by recourse to the concrete conditions. For an example 
of Schellbach’s method, the reader should consult Sect. 1.8.

Thus, algebraic analysis provided an effective method for calculating the ex-
trema of concretely given algebraic and analytic functions. It is applicable to all 
functions that can be factored in the required manner. Infinitesimal calculus be-
comes necessary only when more general functions have to be treated and when one 
wishes to give general conditions for the existence and uniqueness of extrema. In 
addition, the pedagogical superiority of a method which forces the pupils to study a 
problem concretely and does not use an unnecessary conceptual apparatus is obvi-
ous. Schellbach had good mathematical and pedagogical reasons for his method.

Thus, it was only consequential that initiatives to reform mathematics teach-
ing strove to reintroduce into the curiculum analytic geometry, the second part of 
algebraic analysis as treated in vol. 2 of Euler’s Introductio. Schellbach’s method 
for determining extrema fitted organically into this field. Apparently, most teach-
ers of mathematics did not feel any need for infinitesimal analysis. In 1860, ana-
lytic geometry was introduced into the curriculum of the Realschulen (see above). 
Thus, mathematics teaching at these schools provided a complete, though of course 
quite reduced, image of Euler’s Introductio in both volumes. In 1872, the prominent 
physiologist and rector of the university of Berlin Émil Du Bois-Reymond deliv-
ered a much-discussed speech in which he demanded a reintroduction of analytic 
geometry into the teaching of mathematics also at Prussian gymnasia (Du Bois 
Reymond 1877; see Krüger 1999, pp. 118 f.). Du Bois-Reymond justified his claim 
by a remarkable analysis of the outstanding importance of the mathematical con-
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cept of function in science, mathematics, and the general culture. Without using the 
term “functional thinking,” he spoke of a “graphical method” which comes close to 
Klein’s later ideas of a qualitative use of graphs of functions.

1.6  The Decline of Algebraic Analysis and the Meran 
Reform

In the second half of the nineteenth century, algebraic analysis and the Eulerian 
style of doing analysis got scientifically more and more outmoded. The field lost 
meaning and status at schools as well. Although for many teachers the binomial 
formula remained a “venerable center key” of the whole curriculum as Max Nath, 
a Prussian expert, remarked, the presence of the field in real teaching declined. Yet, 
in the Prussian syllabus of 1901 it still played a major role.

At the Ratsgymnasium Bielefeld only a few tasks related to the binomial theorem and infi-
nite series were given in the final examinations of Abitur. One example is from Easter 1837: 

Expand the fraction 1

1− x
 in an infinite series in x and derive a formula for the sums of all 

powers of 1/2, 1/3, 1/4 etc.

There were no real teaching environments related to the binomial theorem. Rather, 
it seems that algebraic analysis and the binomial theorem provided an important 
leitmotiv for the teachers which did not result in a corresponding culture of tasks 
and teaching activities. During the nineteenth century, the majority of mathematical 
tasks were in the domains of arithmetic, algebra, equations, calculations of interest, 
and geometry.

In the beginning of the 1890s, Felix Klein (1849–1925) started to commit him-
self to a reform of the teaching of mathematics. The key concept for Klein’s ideas 
became that of functional thinking. In its widest sense, the concept was to be un-
derstood as flexible thinking. Typical applications of the notion of function were the 
description of law-like relations as, for example, position and velocity of a falling 
body by a formula and their representation in graphs and tables. It was essential to 
Klein’s ideas that functional thinking had a meaning far beyond the mere applica-
tion of the concept of function. Rather, functional thinking was to pervade all areas 
of school mathematics and all levels of teaching. In geometry, instead of contem-
plating static figures the basic account should be to systematically change configu-
rations (see Krüger 1999 for a full analysis of this broader notion and its roots in 
nineteenth-century mathematics).

Since 1891, Klein and like-minded German professors offered courses of ad-
vanced training in Göttingen and Münster and at other places to teachers during 
their holidays in order to familiarize them with the new ideas. The courses in Göt-
tingen (under Felix Klein) regularly had a mathematical focus. At the Gymnasium 
and Realgymnasium in Bielefeld, there was a wide and continuous participation of 
teachers in these courses, and they were supported by a municipal grant. Thus, we 
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can conclude that among the mathematics teachers of the Ratsgymnasium Bielefeld 
there was a positive attitude toward Klein’s ideas.

In 1905, at a symposium of the Association of German Natural and Medical 
Scientists in Meran a syllabus for the teaching of mathematics and science was 
proposed which came close to Klein’s ideas, the Meran syllabus. The proposal was 
discussed in journals, by principals, teachers, and other interested persons.

One of the main points in this syllabus was the introduction of some elements of 
infinitesimal analysis into the higher grades of mathematics teaching at gymnasia. The 
reader can get an idea of the intended new subject matter by considering the textbook 
Arithmetische Aufgaben by Hugo Fenkner. This textbook was used at the Ratsgymna-
sium Bielefeld. The edition of 1913 contained the forming of the differential quotient 
and its interpretation as the slope of a tangent, rules and examples for calculating 
derivatives including the chain rule, representation of a function f and its derivative f’ 
in one coordinate system, curvature and points of inflection, and L’Hopital’s rule. The 
criteria for the existence of extrema were derived by means of the second derivative. 
Tasks for maxima and minima were considered as “sufficient material for training the 
application of the differential calculus.” Thus, a lot of new theory was added to the 
existing subject matter. It was nevertheless notable that pupils of the time had high 
algebraic competencies, thanks to the Eulerian style of teaching.

1.7  Coexistence of Paradigms

All in all, at the beginning of the twentieth century there was among officials and 
teachers of mathematics some readiness to follow Klein’s proposals. This was also 
the case at the Ratsgymnasium in Bielefeld. On the other hand, there was the old 
and well-established paradigm of algebraic analysis. Thus, the process of reform 
did not work in a way that the new (Klein’s) conception replaced the old one (Eul-
er’s). Rather, there resulted a coexistence of the two paradigms.

This can nicely be seen by studying the above-considered textbook by Hugo 
Fenkner. It was published from 1890 onward in several editions and, as was said, 
used at the Ratsgymnasium Bielefeld. Common to all editions was the particular 
consideration of applications in geometry, physics, and chemistry. In 1892, the the-
ory of minima and maxima had become a new subject at the Realgymnasium but 
on an elementary level by the means of algebraic analysis. This can be seen in the 
edition of 1907 of Fenkner’s book, which followed the syllabus of 1901.

The determination of minima and maxima is considered in the book as a problem 
with many interesting applications. The book treated three different methods of de-
termining extrema without the use of differential calculus—elementary, arithmeti-
cal, and graphical. These were I. The function value appears under a square root, II. 
Method of Schellbach, and III. Graphical method.
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 I. The Function Value Appears Under a Square Root  
(Fenkner 1907, p. 11)

The method was applicable to quadratic functions, square root functions and to 
functions composed of these. It is based on the search for roots under the radicand.

 II. Method of Schellbach (Fenkner 1907, p. 15)

The task is to inscribe a cone of maximal volume into a sphere of radius r (Fig. 1.3).
r be the radius of the sphere, x the height of the inscribed cone. Then the volume 

of the cone is

V x x r x x( ) ( )= −
1
3
2 π

After setting V( x1) = V( x2) which implies V( x1) − V( x2) = 0 the latter difference is 
factored into a product ( ) ( )1 2 1 2, 0x x g x x− ⋅ =  Then setting x1 = x2 = x0 the equation 
g x x( , )0 0 0= has to be solved to determine the extremal point. The following steps 
demonstrate an example:
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The positive root of the last equation x r0

4

3
=  yields the solution.

To find out whether x0 is a minimum or maximum one has to investigate the be-
haviour of the function V(x0) near to x0.

 III. Graphical Method (Fenkner 1907, p. 16)

This method includes an approximate identification of extreme values by drawing a 
graph. The graph is constructed by calculating some coordinates.

In this way, “maxima and minima” were treated in the 1907 edition of Fenkner’s 
book. The situation changed with the next edition. In general, in the years after the 
reform document of Meran (1905) had appeared many publishers of schoolbooks 
reacted by releasing new editions of their textbooks. They integrated some elements 
of the differential calculus into the volumes for the upper classes—though the of-
ficial curriculum had not been changed. This practice was tolerated by the Prussian 
administration. Fenkner’s Arithmetische Aufgaben was assimilated to the new de-
velopments in 1913.

With regard to the topic of “minima and maxima” Fenkner (1913) treated the 
three methods of determining extremal values which were already contained in the 
former edition without any substantial change. A method using differential calculus 
was only added as a fourth method. Thus, the chapter on “minima and maxima” 
comprised the subchapters I. “Graphical method,” II. “The function value appears 
under a square root,” III. “Method of Schellbach”, and IV. “Determination of maxi-
ma and minima by means of the differential calculus.” There was no unifying idea, 
no didactical development, and no preference for one of these methods. The teach-
ers could and should decide by themselves what to do. The book reflected a diver-
sity of opinions, not a conception.

However, there was one substantial change. The method of Schellbach was rein-
terpreted by means of the differential calculus. An important step in this method is 
the factorization, that is, the division by ( x1–x2). In Schellbach’s view, as also pre-
sented in the 1907 edition of Fenkner’s book, this was a matter of algebra. Now in 
the 1913 edition the operation is justified by forming a difference quotient 

y y

x x
1 2

1 2

−
−

 

giving the slopes of secants. In this way, Schellbach’s method was assimilated to 
the new paradigm.

It is instructive to consider a solution of a minimum problem by a student of the 
time. It is taken from the Abitur examination eastern 1914 at the Ratsgymnasium 
Bielefeld. The Abitur is a diploma of German secondary schools qualifying for uni-
versity admission. The task for the students was:

To inscribe a maximal cylinder with a straight cone on top of it into a hemisphere of radius 
r. Determine the radius and the height of the cylinder.

The solution below was given by Hermann Schütze, a top ranking student. In 1914, 
five out of eleven students failed the Abitur examination.
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First, the student formed an equation of the function which represented the volume 
of the inscribed solid dependent of the height of the cylinder—the target function.

If the radius of the cylinder is x and the height y, then the volume of the cylinder 
is given by x²πy (Fig. 1.4). Thus, the whole solid has volume

                                               
;

For this function the equation of its secant line through the points II and I is 
formed.

V V
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;

This is the equation of the secant; if point II approaches point I, then the secant 
changes to the tangent. Its slope is:
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If the slope is 0, there will be a maximum or minimum or a point of inflection. Thus:
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Fig. 1.4  Graph from the 
solution by Schütze 1914, 
Stadtarchiv Bielefeld Ratsgym-
nasium 1067.
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which implies
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.

Because of x r y2 2 2= − x can be calculated from y. From this the student finally 
got the solution

The cylinder with height y and radius x has maximal volume and solves the 
problem.

The student did not prove that the extremum was really a maximum. Following 
the steps of the solution with regard to the algebraic calculations, the elements of 
the method of Schellbach can be found. V1– V2 is formally divided by y1– y2 and the 
equation is simplified by setting y1 = y2 and not by determining a limit. Nevertheless, 
the term in squared brackets is interpreted as the slope of a straight line. The student 
spoke of secants approaching the tangent, whereas in his calculations he simply set 
y1 = y2. Obviously, the student used the method of Schellbach in the new interpreta-
tion by Fenkner 1913. We observe that the student demonstrated high competencies 
of algebraic calculations and made many explaining comments. This shows that he 
had adequate ideas and was not only applying schematic recipes.

In principle, teachers at the Realgymnasium Bielefeld were open minded toward 
the introduction of the differential calculus. For example, in the Abitur examination 
of 1911, the following task was given to the students:

Investigate the equation of the curve y x x x= − + −3 26 11 6 , and determine maxima, 
minima and points of inflection. Explore the first and second derivates and draw them.

Nevertheless, it was a long process until the differential calculus became an official 
subject in the teaching of mathematics at gymnasia. The proposals of Meran were 
made official in the “Richert” syllabus in 1925, which was the year of Felix Klein’s 
death. In this syllabus, the concept of function and an introduction into differential 
calculus became the main topic in the teaching of mathematics. At the Gymnasium 
and Realgymnasium of Bielefeld, the teachers adapted themselves to the innovation 
with new textbooks and new methods of teaching (Arbeitsunterricht). However, it 
took a long time for the change to take place and to replace the old paradigm with 
the new ideas.

y
r

= −
6

13 1( )x
r

= +
6

22 2 13 ; .
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1.8  Conclusions

Coming back to the concept of transformation, it can be seen from this study that a 
process of curricular transformation, like the one which F. Klein inaugurated at the 
end of the nineteenth century, is much more complicated than its proponents might 
have anticipated when they started their campaign. In Klein’s case, it was a fact that 
his proposals met an existing tradition of teaching which was coherent and plausible 
for many mathematics teachers. Thus, the whole reform can be understood as an 
interaction of two different mathematical paradigms: the elder tradition of algebraic 
analysis versus the reorganization of teaching due to the needs of the newly intro-
duced infinitesimal calculus. A concrete analysis of the Klein reform movement, 
which takes into account the interaction of these two paradigms, is still missing.

Klein’s concept of a double discontinuity between school mathematics and uni-
versity mathematics proved to be a much deeper problem than he could anticipate in 
his times. Klein might have thought that the problem could be solved by a modern-
ization of the school curriculum and its adaptation to the most recent developments 
in mathematics. Considering the three chapters in this volume referring to this prob-
lem (Deiser and Reiss, Chap. 3; Pepin, Chap. 4; Buchholtz and Kaiser, Chap. 5), 
it is clear that broader and more general issues are behind the double discontinuity 
which point far beyond a mere curricular renovation.

With regard to the very concept of transformation, it can be seen from the present 
study that processes of transformations involve, with a certain necessity, partially 
incompatible components (paradigms in our case) and unintended side effects. As 
a consequence, projects of reform are involved and escape complete technocratic 
control.
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2.1  Introduction

Many first-year students experience the transition from school to university as a 
challenging enterprise. This is especially true for mathematics programs. Compara-
tively high dropout rates of freshman students after the first or second semester 
indicate that this transition is the main obstacle for students to finish their studies in 
mathematics. For example, in Germany, universities and mathematics departments 
are faced with dropout rates of up to 50 % of first-year students in mathematics. 
According to surveys, students report that this is mainly caused by the enormous 
pressure to perform and a lack of motivation (Heublein et al. 2009). However, 
most of the surveys do not use instruments detecting the specific situation for the 
subject mathematics. We assume that the high dropout rate during the transition 
from school to university is rooted in the necessity of coping with two disconti-
nuities: the discontinuity of the learning subject and the discontinuity of the way 
of learning. Accordingly, managing the transition from school to university suc-
cessfully means individually developing two ways of transformation to overcome 
these discontinuities. First, a transformation from school mathematics to academic 
mathematics, so that academic mathematics can be recognized as an extension of 
school mathematics and the individual mathematical knowledge learned in school 
can serve as a basis for further learning (Deiser and Reiss 2013, Chap. 3). Second, a 
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transformation from school learning to academic learning is required, so that learn-
ing strategies acquired implicitly in school can be adapted for academic learning 
processes (Pepin 2013, Chap. 4).

In this contribution, we describe an approach to examine and describe the two 
discontinuities and the related requirements for the corresponding transformations 
through textbook comparisons. Mathematics textbooks play a decisive role for stu-
dents’ learning processes at school (Rezat 2009) as well as at university (Alsina 
2001). Accordingly, we first assume that the way mathematics is presented in the 
textbooks can be considered as an indicator of the character of school mathematics 
and academic mathematics. Second we assume that the didactical structure of the 
textbooks can be considered as an indicator of the requirements of students’ learning 
strategies. Based on these assumptions, we developed a theory-driven framework 
to compare textbooks using certain criteria related to the character of mathematics 
and the requirements for students’ learning strategies. Using this framework for 
textbook comparison, we expect empirical results that help to specify which aspects 
of mathematics and mathematics learning are constitutive elements of the disconti-
nuities in the transition from school to university. Empirical findings of two feasi-
bility studies using two school textbooks, two university-level textbooks, as well as 
lecture notes handed out by a mathematics professor indicate that the application of 
this framework yields reliable results.

2.2  Theoretical Background

During the last decade, the previously mentioned discontinuities and the related 
challenges for first-year mathematics students were investigated from different per-
spectives. For example, the investigation took the transformation of mathematical 
contents, knowledge, learning strategies from school to university into account, as 
well as the students’ motivation and self-regulation (e.g., Deiser and Reiss 2013, 
Chap. 3; Pepin 2013, Chap. 4; Kaiser and Buchholtz 2013, Chap. 5; De Guzmán 
et al. 1998; Hoyles et al. 2001; Rach and Heinze 2011). In the following, we discuss 
theoretical observations and empirical results from studies focusing on the transfor-
mation of mathematics from school to academic level as well as the transformation 
of the corresponding learning processes at school and at university. Moreover, we 
present some results on textbook research, as our framework for examining trans-
formation processes in the transition phase from school to university is based on a 
textbook approach.

2.2.1  The Character of Mathematics at School and at University

Mathematics as it is taught in high school is not just academic mathematics in a 
simplified form; mathematics as “school mathematics” has its own character (e.g., 
Biermann and Jahnke 2013, Chap. 1; Hoyles et al. 2001; Heinze and Reiss 2007). 
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Mathematics as a school subject must contribute to the aim of general education. 
This means, in particular, that the character of school mathematics must enable 
students to learn mathematics in such a way that they can use their mathematical 
knowledge for solving everyday problems and as a sound basis for their vocational 
education (Heymann 2003). Accordingly, mathematical content, which is relevant 
for the application of mathematics as tool (e.g., percentages and algebraic manipu-
lations) but which is hardly interesting from a scientific mathematical perspective, 
is comparatively strongly emphasized (e.g., Dörfler and McLone 1986). Mathemat-
ics at university has a different character, because it is considered a scientific dis-
cipline. Here, the mathematical content is organized and presented in an axiomatic 
and rigorous manner. In the first semesters, applications of mathematics for solving 
real-world problems hardly play any role.

Mathematics as a tool and mathematics as a scientific discipline can be consid-
ered as two sides of the same domain: “It is a tool in the study of the sciences, and 
it is an object of study in its own right” (Hoyles et al. 2001, p. 841). The fact that 
these two sides of mathematics are reflected at school and at university in quite a 
different way has serious consequences for the role of important characteristics of 
mathematics like proving, rigor, or formalism. For example, most of the mathemati-
cal concepts in school are introduced and used informally (Engelbrecht 2010). Ac-
cordingly, students mainly work with a “concept image” of a concept (in the sense 
of Tall and Vinner 1981), whereas the “concept definition” of most of the concepts 
does not play a prominent role. In mathematic courses at university, concepts are 
mostly introduced by a formal definition, i.e., as concept definition (Deiser and 
Reiss 2013, Chap. 3). This is necessary to meet the standards of rigor. A similar situ-
ation can be observed for the role of mathematical proofs. If mathematics is consid-
ered as a scientific theory, then there is the need for scientific evidence of statements 
and for explanations why these statements are true (e.g., Hanna and Jahnke 1996). 
In contrast, if mathematics is considered as a tool, proofs play a minor role. In this 
case, proofs are often omitted because it is enough to know that a statement is true 
(e.g., that the tool works well).

2.2.2  Learning Mathematics at School and at University

Though learners at both school and university learn mathematics, there are remark-
able differences in students’ learning activities. These differences constitute a dis-
continuity in the transition phase from school to university which, in consequence, 
requires a transformation of individual learning strategies. The two most important 
differences between school and university in this respect are the formal organization 
of learning opportunities and the individual learning strategies necessary for an ef-
fective use of these learning opportunities (Pepin 2013, Chap.4).

In most German universities, teaching and learning mathematics for first-year 
students is structured in three complementary activities. Each week, there are one 
or two 90-min lectures given by a mathematics professor, a self-study phase where 
3–5 challenging tasks (mainly proof tasks) are solved as obligatory homework, and 
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a 90-minute tutorial where a senior mathematics student discusses the solutions of 
the homework with a group of 20–30 students. The self-study phase is organized 
by the students in their private time. Mostly, students work in small groups (2–6 
students) on their homework where they are individually and cooperatively in-
volved in problem-solving activities. Moreover, they are supposed to recapitulate 
their lecture notes and use additional literature. In summary, these learning op-
portunities are quite different from the learning opportunities in school. In school, 
German students attend 3–5 mathematics lessons per week (each 45 min) which 
are prepared and structured by teachers with respect to the cognitive and affec-
tive learning prerequisites of the students. Mathematics instruction encompasses 
phases of teacher talk and student’s private work (single, partner, or group work) 
and class work (in a questioning–answering format). Homework mainly serves as a 
supplement to the content of the previous lesson and offers opportunities for prac-
ticing. In most of the phases, students receive precise instructions about what they 
should do and what they should achieve. Therefore, it is a kind of guided learning 
with specific learning tasks which aims at the acquisition of different aspects of 
competencies (conceptual knowledge, procedural knowledge, etc.; Kaiser 1999; 
Kawanaka et al. 1999).

The differences between school and university in the formal organization of 
learning opportunities and in the character of mathematics imply different require-
ments for students’ learning strategies. Because mathematic lectures are both rig-
orous and formal in university lectures, university students need to apply specific 
elaboration strategies to understand the mathematical content. New mathematical 
concepts cannot be grasped through formal concept definitions, so it is necessary 
that students connect the presented concept definition to an already existing con-
cept image from an intuitive use of this concept in school or that they individually 
develop a new concept image (cf. Engelbrecht 2010). In addition to learning con-
cepts, students have to acquire problem-solving competencies so that they are able 
to solve the weekly challenging proof problems as homework. As mathematics is 
frequently taught using completed theories or as elegant solutions in lectures and 
tutorials, problem-solving strategies are mainly dealt with implicitly and students 
are not offered direct accessible models for the trial-and-error process of creating 
new knowledge (e.g., Dreyfus 1991). Accordingly, they have to elaborate on the 
proofs and to reflect on proving processes. The use of self-explanations can be 
considered as an effective learning strategy in this respect (e.g., Chi et al. 1989; 
Reiss et al. 2006).

In summary, at university, mathematics as a scientific product is presented to 
the students who, in turn, have to find and apply learning strategies on their own 
to make this product accessible for their individual learning processes. At school, 
however, mathematics is presented in the framework of a didactical structure. The 
teachers prepare mathematics in such a way that it is accessible to the students. 
Students’ learning is guided by sequences of specific chosen tasks which implicitly 
induces the application of adequate learning strategies (Pepin 2013, Chap. 4).

M. Vollstedt et al.
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2.2.3  Approaching the Discontinuities by Textbook Comparisons

There are different possibilities to approach the two discontinuities between school 
and university. For example, taking the student perspective, you can ask students 
about their perception of mathematics and mathematics learning at school and at 
university or you can compare mathematical competencies between freshmen be-
fore they commence their studies and again after one semester. Similarly, you can 
take the teacher’s perspective and ask teachers at school and university about their 
view on mathematics and mathematics learning. A third possibility is to take the ob-
server perspective and to observe and analyze mathematics and mathematics learn-
ing in both institutions.

In this contribution, we choose the third possibility by taking the observer per-
spective with a specific focus. We analyzed school and university textbooks and 
compared our findings to the previously mentioned discontinuities. We are well 
aware that (1) textbooks obviously only represent a small section of the learning 
opportunities students are offered at schools and universities. Furthermore, we are 
also aware that (2) the impact of textbooks strongly depends on the individual use 
of textbooks which again is influenced by cultural traditions (e.g., Pepin and Hag-
garty 2001). Nevertheless, research on mathematics textbooks shows that textbooks 
have a close connection to the curriculum and, therefore, they reflect the differences 
between the mathematics curriculum at school and at university. Geoffrey Howson 
(1995) describes textbooks as a mediator between intended and implemented cur-
riculum. They are designed as a means to transfer the intended contents to the lesson 
or function as a device for self-study phases. However, a textbook cannot be identi-
fied with either the intended or the implemented curriculum as publishers as well 
as teachers choose which contents to include in the book or to impart in the lesson, 
respectively (cf. Howson 1995). Hence, Schmidt et al. (2001) introduced the notion 
of a “potentially implemented curriculum” which is represented by a textbook.

There is already sufficient research on textbooks: Some studies take a compara-
tive cultural perspective by investigating the structure and use of textbooks in dif-
ferent countries (Howson 1995; Pepin and Haggarty 2001; Valverde 2002). Other 
studies look at textbooks from a sociocultural perspective when investigating their 
structure (Rezat 2006), the students’ use of textbooks (Rezat 2009), the difficulty 
of tasks (Brändström 2005), or the role of textbooks for the establishment of mis-
conceptions (Kajander and Lovric 2009). Most of these studies deal with school 
textbooks, whereas textbooks at university level are not as well researched.

Regarding our investigation of the two discontinuities during the transition from 
school to universities, we assume that both the discontinuity in the character of 
mathematics and the discontinuity in mathematics learning are reflected in the text-
books. According to Pepin and Haggarty (2001), textbooks show mathematical in-
tentions that can be divided into three areas: “What mathematics is represented in 
textbooks; beliefs about the nature of mathematics that are implicit in textbooks; 
and the presentation of mathematical knowledge” (Pepin and Haggarty 2001, 
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p. 160). Therefore, we expect that differences in the character of school mathemat-
ics and academic mathematics can be found in mathematics textbooks. In addition, 
we expect that differences in mathematics learning at school and at university are 
also reflected in the textbooks. A mathematics textbook in school is a focal point 
for the interaction between the teacher and mathematics, between the student and 
the teacher, as well as between the student and mathematics. Rezat (2009, p. 66) 
therefore suggests enhancing the didactic triangle into a didactic tetrahedron incor-
porating the textbook as fourth element.

In summary, mathematics textbooks play an important role for students’ learn-
ing processes at school as well as at university. As textbooks represent potentially 
implemented curricula, we assume that the way mathematics is presented in the 
textbooks represents the character of school mathematics and academic mathemat-
ics. Moreover, the didactical structure of the textbooks indicates the requirements 
for students learning strategies because textbooks influence the interaction between 
teachers, learners, and mathematics.

2.3  Research Objectives

Our research aims at examining and describing the two discontinuities in the transi-
tion from school to university regarding the character of mathematics and the way 
of learning mathematics. To achieve this goal, we use different approaches. In the 
following, we will present an approach that is based on a comparison of textbooks 
at school and textbooks at university. Hence, the specific goals of this contribution 
are as follows:

1. The elaboration of a theory-based framework for analyzing and comparing 
mathematics textbooks at the upper secondary level and the first semester at 
universities.

2. The presentation of results of feasibility studies to show that this framework 
allows a reliable data collection for textbook comparisons.

The feasibility studies were conducted with a small number of textbooks. This 
means particularly that we cannot yet report clear results concerning differences 
between textbooks at school and at university. Nevertheless, there are some tenden-
cies that we will address in the discussion section.

2.4  A Framework for Textbook Comparison

For the analysis of mathematics textbooks at school and university levels, we ap-
ply a framework that is derived from a psychological and a didactical perspective. 
It consists of six criteria that can be divided into general and content-specific ones 
(see Fig. 2.1). General criteria are not bound to mathematical contents but could be 
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applied for the analysis of textbooks from any other subject. We restrict ourselves 
to motivation and the structure and visual representation of the contents. Content-
specific criteria investigate aspects that are particular for mathematics such as the 
development and understanding of concepts and the deduction and understanding 
of theorems, proofs, and tasks.

In the following, we elaborate on these six criteria. In Sect. 2.5, we show ex-
amples of the operationalization for some of the criteria that were used as rating 
schemes for data collection.

2.4.1  General Criteria

The general criteria considered in our framework relate to self-determination theory 
of motivation and the structure and visual representation.

2.4.1.1  Self-Determination Theory of Motivation

According to self-determination theory (SDT; Deci and Ryan 1985; Ryan and Deci 
2002), motivated actions can be distinguished by their degree of self-determination 
and regulation. Actions can be amotivated, extrinsically motivated, or intrinsically 
motivated. Forming one end of a self-determination continuum, amotivation is 
characterized by non-regulation. The other end is marked by intrinsic motivation 
that is assigned by intrinsic regulation. The different degrees of extrinsic motiva-
tion lying in between distinguish four different types of regulations: external, in-
trojected, identified, and integrated regulations (see Ryan and Deci 2002; see also 

Fig. 2.1  Framework for the analysis of textbooks used at school and university levels
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Pepin 2013, Chap. 4 for the role of self-regulated learning at the transition from 
school to university).

SDT postulates three basic psychological needs to explain the relation of motiva-
tion and goals to health and well-being. The need for competence refers to “feeling 
effective in one’s ongoing interactions with the social environment and experienc-
ing opportunities to exercise and express one’s capacities” (Ryan and Deci 2002, 
p. 7) and the need for social relatedness corresponds to “feeling connected to others, 
to caring for and being cared for by those others, to having a sense of belongingness 
both with other individuals and with one’s community” (Ryan and Deci 2002, p. 7), 
while the need for autonomy focuses on “being the perceived origin or source of 
one’s own behavior” (Ryan and Deci 2002, p. 8). These needs are assumed to be in-
nate, culturally universal, and equally relevant for extrinsic and intrinsic motivation 
(Ryan and Deci 2002).

Different studies have analyzed mathematics lessons with respect to the imple-
mentation of the three basic needs (Rakoczy 2008; Kunter 2005; Daniels 2008). In 
these studies, the following aspects turned out to be important for motivated learning.

Implementation of Perceived Autonomy On the one hand, students should have 
the possibility to make deliberate choices in their learning process so as to give 
room for their own demands. In the context of textbooks, they should be able to 
have the choice as to which explanations, examples, and tasks they want to deal 
with to organize their own learning process. One way to offer this possibility is to 
provide different ways of introducing new contents and offering different examples 
and tasks. It is important that these different ways of approaching a certain concept 
do not offer different degrees of complexity or contents. On the contrary, they fol-
low the same aim by offering different approaches to the same learning goals and 
demands disguised in different representations and methods.

On the other hand, the topics dealt with in the lessons should be personally rel-
evant to the students (see also Vollstedt 2011) in order to help them realize the 
value of their actions. They experience them as leading to their goals concerning 
their own values. Hence, they have a higher feeling of autonomy which is related to 
their motivation to learn (see Rakoczy 2008, p. 41). Textbooks therefore implement 
autonomy when they allow contexts which relate to the students’ lives and which 
are personally relevant to the students. Through this, mathematics can become more 
important for the students.

Implementation of Perceived Competence This aspect complements the sug-
gestion to give room for own decisions mentioned above. The students perceive 
themselves as competent when they can come to the right conclusions. Therefore, 
different levels of difficulty are needed for the tasks and introductory parts of the 
sections (Rakoczy 2008). Depending on their own level of achievement, students 
can then choose which task to deal with subsequently. To enable this choice, the task 
or introduction should be marked, for instance, according to its degree of difficulty.

The second way to foster the students’ perception of competence is to give them 
guidance through the book by following a certain structure. The fragmentation of 
major contents into subchapters as well as a general guidance through each chapter 
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offer the students a sense of security (Rakoczy 2008; Kunter 2005). Another ele-
ment of structure is the occurrence of advance organizers at the beginning or the 
end of the text (Ausubel 1960). Without this structure they might have the feeling of 
getting lost and not being able to cope with the demands made on them.

Implementation of Perceived Social Relatedness Most of the aspects of the expe-
rience of social relatedness in mathematics lessons refer to the relation between the 
students and the teacher or between the students themselves. These are difficult to 
transfer to textbooks. It can, however, be evaluated to what extent books stimulate 
or cultivate cooperative learning so that the students’ need for social relatedness is 
met by the conceptual design of the book.

2.4.1.2  Structure and Visual Representation

This criterion is divided into the following subsections: comprehension of the text, 
formalism, and visual representation. The variables for the first one result from 
studies carried out by Langer et al. (1973, 1974, 2006). They were complemented 
by aspects of formalism (Kettler 1998) as this is one of the characteristic elements 
of mathematical texts. The last element concerns the role and quality of graphical 
representations, which is based on the work of Mayer et al. (Mayer and Gallini 
1990; Mayer and Moreno 1998; Mayer and Johnson 2008).

Comprehension of the Text and Formalism According to Langer et al., four ele-
ments are important to understand texts: simplicity, coherence/organization, con-
ciseness, and motivational additives. Simplicity refers to the diction and the syntax 
of the text. No matter what level of difficulty characterizes the content, familiar 
words are combined to short sentences with easy structure and difficult words (for-
eign words or technical terms) are explained. Coherence describes the inner logical 
structure of the text in which sentences combine to form a stringent idea, whereas 
organization refers to the outer structure of the text (sections related to each other 
are in close distance, sections are divided by headlines, and important aspects are 
highlighted). The level of conciseness relates to the length of the text in comparison 
to its informational content, i.e., whether the phrasing is scant or wordy. Motiva-
tional additives then embrace elements which the author uses to raise the reader’s 
interest. The complementation of the element formalism adjusts the theory to math-
ematical texts insofar as it judges the frequency of the occurrence of mathematical 
elements. According to Kettler (1998), the amount of mathematical symbols can 
have an impact on the reaction of the reader as the readers’ sympathy decreases 
when the degree of symbolism increases.

Visual Representation Concerning the characteristic visual representation, two 
major types are distinguished: the role and quality of graphical representations. 
Mayer and Gallini (1990) differentiate five roles of illustrations:

1. Decoration: The graphical representation has no direct relation to the text but 
serves as motivational element.
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2. Representation: The contents are represented in another way without adding 
information (e.g., diagrams).

3. Transformation: The graphical representation serves to ease the memory of eas-
ily understandable information; additional information may be included.

4. Organization: The graphical representation is supposed to structure the text and 
to organize its elements.

5. Interpretation: Graphical representations are to help the reader to understand dif-
ficult relationships.

The quality of a graphical representation can be judged by the occurrence of the 
split-attention effect (Mayer and Moreno 1998) and the redundancy effect (Mayer 
and Johnson 2008). Figures are more difficult to understand when it is necessary 
to split the reader’s attention between more than one source which can only be un-
derstood in relation with each other. The effect can be minimized when the sources 
can be integrated into one main source, for instance, by incorporating the values of 
angles directly into the figure instead of placing them next to it. The redundancy 
effect occurs when the same information is given in the text as well as in the figure. 
The different kinds of representation do not show any relations or help in another 
way toward a better understanding. The effect can be minimized when only key-
words are integrated in the representations, whereas it can be maximized by giving 
the whole text again in the figure (Sweller 2005). Mayer et al. were able to show 
that graphical representations can enhance understanding and remembrance of in-
formation, whereas improper use hinders them.

2.4.2  Content-Specific Criteria

In contrast to general criteria, which can also be applied to other subjects, content-
specific criteria investigate aspects which are specific for mathematics. The follow-
ing sections give more details about the development and understanding of concepts 
and theorems, the role of proofs, and tasks.

2.4.2.1  Development and Understanding of Concepts

The way how mathematical concepts are developed influences their fundamental 
understanding (Vollrath 1984): Can students give a definition of the concept and 
can they decide whether an example fits the category of the respective concept? Can 
students give examples or counterexamples and do they know characteristic proper-
ties of the concept? Can the concept be applied when solving problems and can the 
students integrate the concept into a network of subconcepts and generic terms? All 
but the very first aspect are necessary to develop a deep understanding of concepts.

The background theory we apply to the development and understanding of con-
cepts relates to instructional psychology as well as to the theory of mental models 
( Grundvorstellungen, vom Hofe 1995). Klauer and Leutner (2007) name different 
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possible functions of teaching which are necessary to reach a teaching goal. In our 
model, we primarily focus on three of them which are important for the develop-
ment of concepts: First, the transformation of information characterized with regard 
to the way the concept is introduced as well as the precision and formalism of this 
introduction. The second function concerns the processing of information and fo-
cuses on the possibilities of understanding, recalling, expanding, and reviewing the 
concept as well as on the way how concepts are distinguished from others with the 
help of examples and counterexamples. The third under consideration is transfer. 
This entails looking at the number of adequate mental models and the number of 
equivalent definitions given in the book.

2.4.2.2  Development and Understanding of Theorems

The development and understanding of theorems is partly analogous to the develop-
ment and understanding of concepts as well as proofs (see below). The first consid-
ered aspect is the way the theorem is introduced with the help of an example or a 
problem which motivates the theorem. The second aspect then deals with the math-
ematical development of the theorem. The formulation of the theorem then takes 
into consideration the precision and formalism of the formulations used to state the 
theorem. Finally, the last aspect concerns the differentiation of the respective theo-
rem from others with the help of illustrating examples and/or counterexamples for 
the application of the theorem.

2.4.2.3  Presentation of the Proving Process and Proofs

Proving something is an essential mathematical activity (e.g., Heinze and Reiss 
2007). To prove that a mathematical theorem is true, it is crucial to detect connec-
tions between mathematical structures and to show that the correctness of these 
connections can be universally argued. By doing so, learners have the possibility 
of experiencing mathematics as a process and not as a set science. Boero (1999) 
distinguishes six phases of a proving process:

1. Production of a conjecture;
2. Formulation of the statement according to shared textual conventions;
3. Exploration of the content (and limits of validity) of the conjecture;
4. Selection and enchaining of coherent, theoretical arguments into a deductive 

chain;
5. Organisation of the enchained arguments into a proof that is acceptable accord-

ing to current mathematical standards; and
6. Approaching a formal proof.

From this theoretical basis, we distinguish between elements of the proving pro-
cess (the role of advanced organizers and the generation of a proof idea) and the 
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formulation of proofs, i.e., preciseness and formalism of the proofs as well as the 
number of different methods which were presented.

2.4.2.4  Tasks

Tasks are a central element in mathematics textbooks and fundamental for the stu-
dents’ learning process (Rezat 2009). The characteristics taken in our framework 
to judge the tasks in school and university textbooks are based on the educational 
standards passed by The Standing Conference of the Ministers of Education and 
Cultural Affairs of the Länder in the Federal Republic of Germany (KMK 2004)1. 
They distinguish between five key content areas, six general mathematical compe-
tences (cognitive processes), and three levels of demand. As our study compares 
textbook sections with similar content only, the different key contents of education-
al standards can be neglected. The tasks from the different textbooks are therefore 
analyzed concerning their main mathematical competencies and levels of demand 
only. Each task has to be judged with respect to the competence:

1. Argue mathematically;
2. Solve problems mathematically;
3. Model mathematically;
4. Use mathematical representations;
5. Deal with symbolic, formal, and technical elements of mathematics; and
6. Communicate.

Moreover, each task has to be judged concerning its level of demand, i.e., whether it 
is necessary to reproduce, to make connections, or to generalize and reflect.

In addition to the task analysis based on the educational standards, the numbers 
of different solutions and solution approaches are evaluated. Finally, the tasks are 
analyzed with respect to their relation to mental models, i.e., whether new mental 
models are developed or whether known mental models are used.

2.4.3  Summary

In the previous subsections, we present general and content-specific criteria for 
a textbook analysis. All criteria are based on psychological or didactical theories 
or models. Their significance for mathematics learning is based on evidence from 
empirical studies (e.g., in case of learning activities) or on theoretical analyses (in 
the case of the learning content). Accordingly, we assume that these criteria cover 
important aspects for a comparison of school mathematics with academic math-
ematics and for a comparison of the requirements of individual mathematics learn-

1 The underlying competence model coincides in many respects with the competence model of the 
PISA 2012 study (see OECD 2010).
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ing at school and at university. By identifying differences and commonalities, these 
aspects help to track down the transformation of mathematical contents and the 
learning of mathematics at the transition between school and university.

2.5  Feasibility Studies

The model presented above was developed in the context of two feasibility stud-
ies. The first one was used to check the validity of the model. Both a school and a 
university book were rated by two field experts. The focus was on the consistency 
of the two experts’ judgment. Based on the results from this first study, the model 
was refined and then applied in a second study. The aim of this second study was 
again to test the model for validity as well as to detect differences concerning the 
methodological and didactical organization of the textbooks. These results form the 
basis for statements with respect to the transformation of contents or learning strate-
gies at the transition from school to university level.

The studies reported on in this article are part of an ongoing bigger study that 
compares textbooks from school and university in different countries. In this ar-
ticle, we restrict ourselves to the first two feasibility studies comparing textbooks 
at school and university levels which are very frequently used in Germany. For the 
first study, one book from each level was taken: Lambacher Schweizer Gesamtband 
Oberstufe (Brandt and Reinelt 2009) is one of the most commonly used textbooks at 
school level. Its section about vector spaces was compared to the respective section 
in the ‘Beutelspacher’, a very popular linear algebra textbook at university level us-
ing a very explanatory approach (Beutelspacher 2010). For Lambacher Schweizer 
Gesamtband Oberstufe, the experts reach a consensus on 16 out of 32 criteria. For 
Beutelspacher’s textbook, this was the case for 24 out of 34 criteria. The differing 
number of criteria results from the fact that not all criteria could be applied to both 
books: Lambacher Schweizer Gesamtband Oberstufe does not contain proofs and 
Beutelspacher’s book does not contain pictures. Although the consistency of the 
rating is higher than the anticipated value, it is obvious that the results could be 
improved.

A closer look at the results shows that, due to a misunderstanding of the coding 
scheme, some subitems from proof were accessed for the Lambacher Schweizer 
Gesamtband Oberstufe although this textbook does not contain any proofs. Simi-
larly, the criterion of vividness (one item in structure and visual representation/
motivational additives dealing with the way contents are presented) was not judged. 
Our hypothesis is that it did not become totally clear to what extent the items belong 
to their main categories. Descriptions were therefore refined to make this clearer.

After refining the framework, the second study was conducted in the field of 
calculus using the standard school textbooks Lambacher Schweizer (Drüke-Noe 
et al. 2008) and Elemente der Mathematik (Griesel and Postel 2001; Griesel et al. 
2007, 2008) together with the university-level textbooks Königsberger (Königs-
berger 2004) and Forster (Forster 2008), which from experience are often used by 
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undergraduate students. In addition, the lecture notes handed out by one of the pro-
fessors from the mathematics department at our university were coded. In all cases, 
the sections dealing with real numbers, continuity, and differentiability were rated.

Attention has to be drawn to some specifics concerning the textbooks used. For-
ster’s book does not contain a chapter dealing with real numbers in detail. They 
are only treated in a very dense compression on one page at the end of the book. 
Also, there are no solutions for the tasks posed to students. The lecture notes do not 
contain any tasks or solutions. Therefore, these sections were not rated for these 
textbooks in our study. Then, the school textbooks only briefly deals with continu-
ity so that the explanatory power of the comparison in this realm is lowered. We 
added propositions about typical characteristics of I like uncountability and the 
embeddedness of I to the topic of real numbers where possible. For continuity, 
we looked at the intermediate value theorem, and for differentiability, we observed 
derivation rules, the calculation of turning points, inflection points, as well as con-
vexity and monotony.

Two master mathematics students were responsible for the rating. The categories 
were quantified with respect to whether the criterion is a conceptual element of the 
book, i.e., that it occurs in every chapter considered or whether the criterion just oc-
curs sporadically, i.e., there is at least one chapter in which it does not occur. Crite-
ria were considered as consistent if both raters agreed totally with each other in their 
judgment. Only those characteristics were interpreted that were rated by both raters.

2.6  Exemplary Results of the Second Feasibility Study

Section 2.4 gave a general introduction to the framework used in the studies de-
scribed in Sect. 2.5. In the following subsections, exemplary operationalizations are 
given to illustrate how we transferred the model into ratable characteristic features. 
Cohen’s kappa is reported to indicate the strength of the interrater agreement as a 
reliability measure. According to the Landis and Koch (1977, p. 165) interpreta-
tion scale, the strength of agreement is fair if 0.2 <	κ	< 0.4, moderate if 0.4 <	κ	< 0.6, 
substantial if 0.6 <	κ	< 0.8, and almost perfect if 0.8 <	κ	< 1. In general, a reliability 
of	κ	> 0.6 is considered as an acceptable agreement, so that the value of the corre-
sponding criterion can be interpreted.

2.6.1  Motivation

One of the aspects of motivation according to SDT (see above) is the experience of 
social relatedness. When analyzing textbooks, you therefore have to judge to what 
extent the book supports group work. The following feature characteristics were 
developed:
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1. The book explicitly invites the students to work on the tasks in groups. This 
method is part of the book’s conceptual design.

2. Students are sporadically invited by the book to work in groups.
3. There are no tasks which are supposed to be worked on in groups.

Interrater agreement on social relatedness in the second feasibility study was sub-
stantial	(κ	=	0.632).

2.6.2  Structure and Visual Representation

The structure of the textbooks comprises motivational additives. One aspect consid-
ered in this realm is vividness:

1. It is part of the book’s conceptual design that descriptions are padded with anec-
dotes and that stories are used to convey facts.

2. Some information is always presented in the same dreary and unvaried way.
3. The text deals with the contents in a very prosaic way, i.e., facts are conveyed 

by using factual language. There is no supplementary information in terms of 
anecdotes or stories.

Interrater	agreement	on	vividness	was	substantial	(κ	=	0.650).
The role of graphical representations is operationalized as follows:

1. The graphical representation contains more information than can be found in the 
text. These mostly comprise tasks that are introduced by a text in which informa-
tion has to be taken from the corresponding graphical representation.

2. The graphical representation contains the same information as the text but even-
tually offers another way of access. Graphical representations that present the 
text in a modified display format belong to this group. They can, for instance, be 
restructured to be learned or understood more easily.

3. The graphical representation does not have any information content. Pictures 
with motivating character belong to this group.

Interrater agreement on the role of graphical representation is only moderate 
(κ	=	0.451).

2.6.3  Development and Understanding of Concepts

To develop a sound concept definition and concept image of a mathematical con-
cept, it has to be linked to inner-mathematical as well as extra-mathematical, i.e., 
applied contexts and examples. The following characterizations were developed to 
operationalize the introduction of a new concept:
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1. It is part of the book’s conceptual design that a new concept is introduced by 
using an applied or inner-mathematical example or problem.

2. Sporadically, an applied or inner-mathematical example or problem is used to 
introduce a new concept.

3. There is no introduction.

The characterization of the introduction of a new concept showed substantial inter-
rater	agreement	(κ	=	0.745).

To understand a mathematical concept properly, the corresponding information 
has to be processed in different steps. The conceptualization of reviewing is as fol-
lows:

1. The book requests the reader (after some time) to be able to actively name and 
use already known concepts as well as their characteristic properties. Occasion-
ally, contents that have already been learned are referred to, or they are necessary 
to solve tasks, respectively (active).

2. The book reminds the reader of learned contents and of characteristics of learned 
concepts (passive).

3. The book proceeds in the contents without testing concepts which have already 
been learned or including characteristics of learned concepts in the contents. The 
particular chapters are strictly delimited from each other.

The	interrater	agreement	on	reviewing	shows	moderate	strength	(κ	=	0.548).

2.6.4  Development and Understanding of Theorems

The operationalization of the development and understanding of theorems is di-
vided into three subsections dealing with the introduction of the theorem, its formu-
lation, and its demarcation from other theorems. The development of the theorem is 
an example of the first section.

1. It is part of the book’s conceptual design that the development of the theorem is 
described.

2. It is sporadically shown how the theorem can be developed.
3. There is only a formal formulation of the theorem.

Interrater agreement on the development of a theorem showed only moderate 
strength	(κ	=	0.417).

The next operationalization presented is the one of the degree of formalism. It 
belongs to the formulation of the theorem.

1. The formulation/notation of the theorem equally consists of mathematical sym-
bols and (German) language.

2. The formulation/notation of the theorem consists mainly of mathematical 
symbols.

3. The formulation/notation of the theorem consists mainly of (German) language.
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The interrater agreement on the degree of formalism of this operationalization was 
substantial	(κ	=	0.714).

The demarcation of a mathematical theorem can, for instance, be characterized 
by using explicating examples and counterexamples as this marks the theorem’s ap-
plicability. The operationalization of this characteristic shows substantial strength 
in	interrater	agreement	(κ	=	0.696).

1. There are examples and counterexamples for the theorem given.
2. There are either examples or counterexamples to mark the applicability of the 

theorem.
3. No examples of applicability of the theorem are used.

2.6.5  Presentation of the Proving Process and Proofs

To learn how to prove a mathematical proposition, it is necessary to understand 
how to come to the idea of the proof. Therefore, students have to understand how a 
proof is developed and how to write it down properly. The operationalization of the 
generation of a proof idea is given below:

1. It is part of the book’s conceptual design to show the derivation of the proof 
ideas.

2. Proof ideas are sporadically derived.
3. It is never shown how a proof idea can develop.

Substantial	interrater	agreement	(κ	=	0.632)	could	be	reached	for	the	generation	of	
a proof idea.

As there are several ways as to how to come to a proof idea, it is necessary to 
illustrate different approaches or methods on how to reach a proof:

1. It is part of the book’s conceptual design that the assertion is proven in different 
ways or that the proof idea is sketched, respectively.

2. It is sporadically shown how an assertion can be proven in another way.
3. The assertion is proven in at most one way.

The strength of the interrater agreement concerning the number of methods to prove 
is	substantial	with	κ	=	0.632.

2.6.6  Tasks

To work on mathematical tasks actively is a fundamental part in the process of 
learning mathematics. Therefore, our model distinguishes between different dimen-
sions of the tasks referring to the national educational standards, contents, and so-
lutions. In the realm of the contents, it was rated to what extent different mental 
models are part of the book’s conceptual design.
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1. The tasks only make use of mental models that have been addressed beforehand.
2. New mental models are introduced by means of tasks. They are just briefly pre-

sented; there is no sufficient implementation.
3. The readers must develop new mental models on their own while working on the 

tasks.

The	interrater	agreement	on	the	use	of	mental	models	was	perfect	(κ	=	1).
One aspect that was rated concerning the solutions of the tasks was the explica-

tion of the approach to the solution:

1. The idea of the approach to the solution is described and the approach to the 
solution is explained.

2. Only the approach to the solution is indicated. It is, however, not stated how it 
has arisen.

3. Only the solution is given without elaborating on the approach to the solution.

The	interrater	agreement	of	this	operationalization	was	moderate	(κ	=	0.591).

2.7  Discussion

The goal of the research presented here is to develop a theory-based framework for a 
mathematics textbook analysis. The aim is to allow a reliable rating of different cri-
teria to compare textbooks for schools and for universities. As presented in Sect. 2.4, 
the criteria are derived from theories and models concerning mathematical learning 
activities and the character of mathematics. Two feasibility studies were conducted 
to evaluate the framework: one to validate and complete the framework and a sec-
ond to check whether a reliable rating of the criteria is possible. In Sect. 2.6, exem-
plary results on the reliability values of different rating criteria are presented. The 
results indicate that the development of operationalizations which allow reliable 
ratings for a mathematics textbook analysis is possible for many criteria. However, 
in several cases, the interrater agreement cannot be considered as acceptable, and 
hence, a further improvement in the feature characteristic descriptions is necessary.

On the basis of the reliable rating criteria presented in Sect. 2.6, some tendencies 
about commonalities and differences between mathematics textbooks for school 
and for university can be described. However, as the “sample” of textbooks in-
cluded in this feasibility studies is quite small (two textbooks for schools, two for 
universities, and one lecture note for a university course), the results should not 
be over-interpreted. In our study, we did not find differences between school and 
university textbooks for:

•	 The	motivation	 criterion	 “social	 relatedness”	because	 there	were	hardly	 tasks	
requiring collaborative activities.

•	 The	criterion	relating	to	the	understanding	of	theorems	which	addresses	the	ex-
plication of examples and counterexamples. This is because only examples were 
presented for both types of textbooks.

M. Vollstedt et al.



47

•	 The	proof	criteria	“developing	a	proof	idea”	and	“different	proofs	for	a	theorem”	
because in both types of textbooks the idea was developed for a minimum of 
proof and, in general, only one proof was presented.

•	 The	task	criterion	“use	of	different	mental	models	in	tasks,”	because,	in	general,	
only the mental models introduced before were addressed in the tasks.

In contrast to these commonalities, the textbooks for schools and for universities in 
our sample also revealed some differences, for example:

•	 For	 the	 structure	 criterion	 “motivational	 additives”	 the	 textbooks	 for	 schools	
contain some additional information about the mathematical facts in terms of 
stories and anecdotes raising the readers’ interests, whereas we did not find such 
motivational additives in textbooks for universities.

•	 The	introduction	of	new	concepts	is	in	textbooks	for	schools	almost	always	de-
veloped on the basis of inner-mathematical or extra-mathematical examples, 
whereas in textbooks for universities such an introduction is rarely given.

•	 The	degree	of	formalism	for	the	formulation	of	theorems	in	textbooks	for	school	
almost always consists of continuous written language, whereas in textbooks for 
university a mixture of continuous text and symbols is used.

From analyzing these commonalities and differences, some anticipated findings 
have become evident which already give indications about the transformation prob-
lems in students’ learning during the transition stage from school to universities. For 
example, mathematical proofs are treated inadequately in both types of textbooks. 
However, proofs are underemphasized at school so that students do not experience 
negative consequences. In contrast, at university, proofs are one of the main aspects 
in mathematics courses; however, university-level textbooks do not give didactical 
support to learn how to prove a task. Another example is the introduction of new 
concepts. In school textbooks, there are frequently inner-mathematical or extra-
mathematical examples to motivate the new concepts. At university, such motiva-
tion is rarely given. This means that students have to elaborate on that question by 
themselves which requires specific learning strategies.

Already these first ideas from our feasibility studies indicate that the two hypoth-
esized transformations from school to university are not independent but interwo-
ven. The transformation of the character of mathematics with a stronger emphasis 
on concepts and proofs requires an increasing learning effort. However, the change 
from school-based to academic learning opportunities requires a transformation of 
individual learning strategies to grasp the academic mathematics.

To make sound statements about these tendencies revealed from our study, more 
substantial studies with more textbooks have to be carried out. The findings gained 
from this study, however, are an initial starting point and can be seen as basis for a 
future refinement of the model. This refined framework then is supposed to be used 
in further studies comparing international textbooks.

School and university textbooks should be revised in such a way that their con-
tents and methodologies are better adapted to each other. This would help diminish 
the transformation challenges experienced during transition from school to univer-
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sity. The transition from school mathematics to university mathematics is supposed 
to be easier for students if mathematical methods and university standards were ap-
plied in school textbooks. The same can be said for improving the didactical quality 
of university textbooks.

References

Alsina, C. (2001). Why the professor must be a stimulating teacher. In D. Holton (Ed.), The teach-
ing and learning of mathematics at university level. An ICMI study (pp. 3–12). Dordrecht: 
Kluwer.

Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful 
verbal material. Journal of Educational Psychology, 51(5), 267–272.

Beutelspacher, A. (2010). Lineare Algebra: Eine Einführung in die Wissenschaft der Vektoren, 
Abbildungen und Matrizen. 7th edition. Wiesbaden: Vieweg+Teubner.

Biermann, H. R., & Jahnke, H. N. (2013). How 18th century mathematics was transformed into 
19th century school curricula. (this volume).

Boero, P. (1999). Argumentation of mathematical proof: A complex, productive, unavoidable rela-
tionship in mathematics and mathematics education. International Newsletter on the Teaching 
and Learning of Mathematical Proof. Retrieved June 3, 2011 from http://www-didactique.
imag.fr/preuve/Newsletter/990708Theme/990708ThemeUK.html

Brändström, A. (2005). Differentiated tasks in mathematics textbooks: An analysis of the levels 
of difficulty. Licentiate Thesis: Vol. 18. Lulea: Lulea University of Technology, Department of 
Mathematics.

Brandt, D., & Reinelt, G. (2009). Lambacher Schweizer Gesamtband Oberstufe mit CAS Ausgabe 
B. Stuttgart: Klett Verlag.

Chi, M. T. H., Bassok, M., Lewis, M., Reimann, P., & Glasser, R. (1989). Self-explanations: How 
students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.

Daniels, Z. (2008). Entwicklung schulischer Interessen im Jugendalter. Münster: Waxmann.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. 

New York: Plenum.
Deiser, O., & Reiss, K. (2013). Knowledge transformation between secondary school and univer-

sity mathematics. (this volume).
Dörfler, W., & McLone, R. (1986). Mathematics as a school subject. In B. Christiansen, A. G. 

Howson, & M. Otte (eds.), Perspectives on mathematics education (pp. 49–97). Reidel: Dor-
drecht.

Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Mathematics 
education library: Vol. 11. Advanced mathematical thinking (pp. 25–41). Dordrecht: Kluwer.

Drüke-Noe, C., Herd, E., König, A., Stanzel, M., & Stühler, A. (2008). Lambacher Schweizer 9 
Ausgabe A. Stuttgart: Klett Verlag.

Engelbrecht, J. (2010). Adding structure to the transition process to advanced mathematical ac-
tivity. International Journal of Mathematical Education in Science and Technology, 41(2), 
143–154.

Forster, O. (2008). Analysis 1. Differential- und Integralrechnung in einer Veränderlichen. Wies-
baden: Vieweg.

De Guzman, M., Hodgson, B. R., Robert, A., & Villani, V. (1998). Difficulties in the passage from 
secondary to tertiary education. Documenta Mathematica, Extra Volume ICME 1998 (III), 
747–762.

Griesel, H., & Postel, H. (Eds.). (2001). Elemente der Mathematik 11 Druck A. Schülerband, 5th 
edition. Hannover: Schroedel.

M. Vollstedt et al.

http://www-didactique.imag.fr/preuve/Newsletter/990708Theme/990708ThemeUK.html
http://www-didactique.imag.fr/preuve/Newsletter/990708Theme/990708ThemeUK.html


49

Griesel, H., Postel, H., & Suhr, F. (Eds.) (2007). Elemente der Mathematik Leistungskurs Analysis 
Druck A. 6th edition. Hannover: Schroedel.

Griesel, H., Postel, H., & Suhr, F. (Eds) (2008). Elemente der Mathematik 8 Druck A. Schülerband. 
Hannover: Schroedel.

Hanna, G., & Jahnke, H. N. (1996). Proof and proving. In A. J. Bishop et al. (Hrsg.), International 
handbook of mathematics education. Dodrecht: Kluwer.

Heinze, A., & Reiss, K. (2007). Reasoning and proof in the mathematics classroom. Analysis, 
27(2–3), 333–357.

Heublein, U., Hutzsch, C., Schreiber, J., Sommer, D., & Besuch, G. (2009). Ursachen des Studienab-
bruchs in Bachelor- und in herkömmlichen Studiengängen: Ergebnisse einer bundesweiten Be-
fragung von Exmatrikulierten des Studienjahres 2007/08. Hannover: Hochschul-Informations-
System GmbH.

Heymann, H. W. (2003). Why teach mathematics? A focus on general education. Dordrecht: Klu-
wer.

vom Hofe, R. (1995). Grundvorstellungen mathematischer Inhalte. Heidelberg: Spektrum.
Howson, A. G. (1995). Mathematics textbooks: A comparative study of grade 8 texts. TIMSS 

monograph: Vol. 3. Vancouver: Pacific Educational Press.
Hoyles, C., Newman, K., & Noss, R. (2001). Changing patterns of transition from school to uni-

versity mathematics. International Journal of Mathematical Education in Science and Tech-
nology, 32(6), 829–845.

Kaiser, G. (1999). Comparative studies on teaching mathematics in England and Germany. In G. 
Kaiser, E. Luna, & I. Huntley (Eds.), International comparisons in mathematics education 
(pp. 140–150). London: Falmer Press.

Kaiser, G., & Buchholtz, N. (2013). Overcoming the gap between university and school mathemat-
ics: The impact of an innovative programme in mathematics teacher education at the Justus-
Liebig-University in Giessen. (this volume).

Kajander, A., & Lovric, M. (2009). Mathematics textbooks and their potential role in supporting 
misconceptions. International Journal of Mathematical Education in Science and Technology, 
40(2), 173–181.

Kawanaka, T., Stigler, J. W., & Hiebert, J. (1999). Studying mathematics classrooms in Germany, 
Japan and the United States: Lessons from the TIMSS videotape study. In G. Kaiser, E. Luna, & 
I. Huntley (Eds.), International comparisons in mathematics education (pp. 140–150). London: 
Falmer Press.

Kettler, M. (1998). Der Symbolschock: Ein zentrales Lernproblem im mathematisch-wissen-
schaftlichen Unterricht. Frankfurt am Main: Lang.

Klauer, K., & Leutner, K. (2007). Lehren und Lernen: Einführung in die Instruktionspsychologie. 
Weinheim: Beltz.

KMK. (2004). Beschlüsse der Kultusministerkonferenz: Bildungsstandards im Fach Mathematik 
für den Mittleren Schulabschluss. Beschluss vom 4.12.2003. München: Wolters Kluwer.

Königsberger, K. (2004). Analysis 1. 6th edition. Heidelberg: Springer.
Kunter, M. (2005). Multiple Ziele im Mathematikunterricht. Münster: Waxmann.
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. 

Biometrics, 33, 159–174.
Langer, I., Schulz von Thun, F., & Tausch, R. (1974). Verständlichkeit in Schule, Verwaltung, 

Politik und Wissenschaft. München: Reinhardt.
Langer, I., Schulz von Thun, F., & Tausch, R. (2006). Sich verständlich ausdrücken. München: 

Reinhardt.
Langer, I., Schulz von Thun, F., Meffert, J., & Tausch, R. (1973). Merkmale der Verständlichkeit 

schriftlicher Informations- und Lehrtexte. Zeitschrift für experimentelle und angewandte Psy-
chologie, 20(2), 269–286.

Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten thousand words? Journal 
of Educational Psychology, 82(4), 715–726.

Mayer, R. E., & Johnson, C. I. (2008). Revising the redundancy principle in multimedia learning. 
Journal of Educational Psychology, 100(2), 380–386.

2 Framework for Examining the Transformation of Mathematics … 



50

Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence 
for dual processing systems in working memory. Journal of Educational Psychology, 90(2), 
312–320.

OECD. (2010). PISA 2012 Mathematics Framework. Draft version. Paris: OECD.
Pepin, B. (2013). Student transition to university mathematics education: Transformation of peo-

ple, tools and practices. (this volume).
Pepin, B., & Haggarty, L. (2001). Mathematics textbooks and their use in English, French and Ger-

man classrooms: A way to understand teaching and learning cultures. Zentralblatt für Didaktik 
der Mathematik, 33(5), 158–175.

Rach, S., & Heinze, A. (2011). Studying Mathematics at the University: The influence of learning 
strategies. In Ubunz, B. (Ed.). Proceedings of the 35rd Conference of the International Group 
for the Psychology of Mathematics Education (Vol. 4, pp. 9–16). Ankara, Turkey: PME.

Rakoczy, K. (2008). Motivationsunterstützung im Mathematikunterricht: Unterricht aus der Per-
spektive von Lernenden und Beobachtern. Münster: Waxmann.

Reiss, K., Heinze, A., Kuntze, S., Kessler, S., Rudolph-Albert, F., & Renkl, A. (2006). Math-
ematiklernen mit heuristischen Lösungsbeispielen. In M. Prenzel & L. Allolio-Näcke (Hrsg.), 
Untersuchungen zur Bildungsqualität von Schule (pp. 194–208). Münster: Waxmann.

Rezat, S. (2006). The structure of German mathematics textbooks. Zentralblatt für Didaktik der 
Mathematik, 38(6), 482–487.

Rezat, S. (2009). Das Mathematikbuch als Instrument des Schülers: Eine Studie zur Schulbuchnut-
zung in den Sekundarstufen. Wiesbaden: Vieweg+Teubner.

Ryan, R. M., & Deci, E. L. (2002). Overview of self-determination theory: An organismic dialecti-
cal perspective. In E. L. Deci & R. M. Ryan (Eds.), Handbook of self-determination research 
(pp. 3–33). Rochester: University of Rochester Press.

Schmidt, W. H., McKnight, C. C., Houang, R. T., Wang, H. C., Wiley, D. E., Cogan, L. S., & 
Wolfe, R. G. (2001). Why schools matter: A cross-national comparison of curriculum and 
learning. San Francisco: Jossey-Bass.

Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer 
(Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). New York: Cambridge 
University Press.

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular 
reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.

Valverde, G. A. (2002). According to the book: Using TIMSS to investigate the translation of 
policy into practice through the world of textbooks. Dordrecht: Kluwer.

Vollrath, H.-J. (1984). Methodik des Begriffslehrens. Stuttgart: Klett.
Vollstedt, M. (2011). Sinnkonstruktion und Mathematiklernen in Deutschland und Hongkong: 

Eine rekonstruktiv-empirische Studie. Wiesbaden: Vieweg+Teubner.

M. Vollstedt et al.



51

Chapter 3
Knowledge Transformation Between Secondary 
School and University Mathematics

Oliver Deiser and Kristina Reiss

S. Rezat et al. (eds.), Transformation—A Fundamental Idea of Mathematics Education, 
DOI 10.1007/978-1-4614-3489-4_3, © Springer Science+Business Media, LLC 2014

O. Deiser () · K. Reiss
Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik, 
TUM School of Education, Technische Universität München, Arcisstr. 21,
80333 München, Germany
e-mail: deiser@tum.de

K. Reiss
e-mail: kristina.reiss@tum.de

Die Mathematiker sind eine Art Franzosen: Redet man zu 
ihnen, so übersetzen sie es in ihre Sprache, und dann ist es 
alsobald ganz etwas anders. (Mathematicians are like a sort of 
Frenchmen: if you talk to them, they translate it into their own 
language, and then it is immediately something quite different). 
Johann Wolfgang von Goethe (1749–1832).

3.1  Introduction

Mathematics at school level and mathematics at university level represent one disci-
pline; however, the foundations differ significantly (Freudenthal 1973). Mathemat-
ics taught at the university level seeks to describe knowledge within a coherent 
frame of axioms, definitions, and theorems and their proofs. School mathematics 
lacks this rigor and makes use of more intuitively accessible knowledge. This dif-
ference is crucial and an important cause for difficulties which students encoun-
ter when coming to the university. Learning mathematics at this level means in 
particular mastering the transformation between a phenomenon-oriented view on 
the subject and a description in terms of formal language. Accordingly, knowledge 
transformation is more than a translation process but includes the modulation of 
corresponding components. In the following, we will exemplarily describe how stu-
dents encounter this transformation in their first year at the university.
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3.2  Theoretical Background

Since Felix Klein wrote his influential books on “Elementarmathematik vom 
höheren Standpunkte aus,”1 effective mathematics instruction at the school and 
the university level has been intensively discussed from the mathematics and the 
mathematics education points of view. Both points meet when fundamental ideas 
of mathematics are addressed. Thus, the “reformers” what Felix Klein called the 
group to which he counted himself could initiate a movement in the mathematics 
classroom which put an emphasis on the basic notion of function and the “graphi-
cal method” (cf. Klein 1925, p. 5 f.). The standards for school mathematics which 
have been specified in many countries during the last decade adopted some of 
these ideas and established functional thinking as an important concept in school 
mathematics (National Council of Teachers of Mathematics 2000; Kultusminis-
terkonferenz 2003; Common Core State Standards Initiative 2010). Graphs of 
functions are used in depth in order to motivate, introduce, and explore basic ana-
lytical notions like continuity, monotony, differentiability, extremal values, and 
curvature.

However, accepting fundamental ideas does not necessarily mean that school 
mathematics and university mathematics are regarded as complementing fields by 
the students. The “double discontinuity” described by Klein concerning the transi-
tion of teacher students from the upper secondary level at school to the university 
and the transition of young teachers from the university back to school still remains 
(Klein 1925, p. 1; see also Biermann and Jahnke Chap. 1, as well as Buchholtz and 
Kaiser Chap. 5). In particular, the first transition is regarded a challenging break by 
many students. They are, on the one hand, used to complex calculation problems 
and they learn at secondary school, e.g., how to apply the chain rule of deriva-
tion, how to compute limits or Newton’s method to find zeros, and how to analyze 
the curvature of a function by computing and evaluating its second derivative. On 
the other hand, research suggests that the German mathematics classroom might 
overemphasize the calculation aspect and disregard the advancement of students’ 
more profound understanding (Baumert et al. 1997). Mathematics is experienced 
by students as a subject which is dominated by calculation and guided by recipes. 
They learn to calculate and to appreciate the correct result but have difficulties with 
the processes of mathematical work. Identifying mathematical arguments or giving 
mathematical proofs is a challenging task even for students at the upper secondary 
school level (Klieme et al. 2003).

At the university level, students experience mathematics as a scientific disci-
pline. In their view, calculation has been the constituting aspect of mathematics; 
however, it is now losing its dominant role and is replaced by a plethora of defini-
tions, theorems, and proofs, which are presented at a high speed with a hitherto 
unknown density of information. Living and surviving in this new world will not 
require a mere extension, but a fundamental transformation of knowledge, and 

1  Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis.
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the habits of learning and applying knowledge have to be redefined, tested, and 
modified. There is a “cognitive distance between research and elementary level” 
as Biermann and Jahnke (Chap. 1) phrase it, which can be seen as a gap to be 
bridged. However, school mathematics seems to be far away from the scientific 
perspective. Accordingly, in particular for preservice teacher students, it is un-
clear, whether the endeavor of transformation is necessary and meaningful. The 
requirements of the mathematics classroom, regarded as well known to preservice 
teacher students because of their 12 years of participation as a student, will cause 
some of this transformed knowledge to be rediscovered when they find themselves 
back in the old rooms as mathematics teachers. Therefore, difficulties with the 
new mathematical knowledge may lead to an argument against its significance for 
the daily routines at school. Obviously, these arguments cannot be proved true. 
Teachers need pedagogical knowledge, pedagogical content knowledge, as well as 
content knowledge (following the classification of Shulman 1986 as well as Shul-
man 1987). Moreover, it is not only the tradition of university mathematics but 
also recent research which emphasizes the role of teachers’ mathematical content 
knowledge for the successful classroom work (Baumert et al. 2010; Baumert and 
Kunter 2006; Darling-Hammond 2000; see also the discussion by Czerwenka and 
Nölle 2011).

The problems of students of mathematics in their first years (and sometimes 
beyond) at the university have been discussed in depth (e.g., Cappell et al. 2010); 
however, there is hardly any research which describes these problems in detail 
and from an individual point of view. Research concentrates primarily on content 
knowledge with a clear reference to school mathematics. Mathematical knowledge 
in these studies (e.g., Baumert et al. 2010; Blömeke et al. 2010) comprises facts 
and techniques which could have been acquired at school.2 Moreover, we lack em-
pirical evidence on how learning of mathematics at the university level takes place 
over time. There are a few introspective reports of problem-solving processes by 
mathematicians dating back to the first half of the twentieth century (e.g., Wert-
heimer 1945; Hadamard 1949; for a synopsis see Reiss and Törner 2007) which 
point out important aspects. These reports as well as recent research in secondary 
classrooms suggest that looking at mathematics as a subject will not explain the 
difficulties but point out an important role of intuition and personal views (Heinze 
and Reiss 2009).

These considerations brought us to conceptualize a study which aimed at identi-
fying preservice teacher students’ knowledge and competencies and their develop-
ment in their first year at the university. We were particularly interested in describ-
ing discontinuities in learning.

2  Baumert et al. (2010) used, e.g., the task “Is 21024 1 a prime number?” in their study. Solving 
this task presupposes the concept of prime number (approx. grade 6 in German curricula) and the 
formula x2n	−1	=	(xn  + 1)(xn −1)	(approx.	grade	7	in	German	curricula).
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3.3  Sample and Method

The sample comprised 18 first-year teacher students majoring in mathematics and 
physics3 who took part in a test on their mathematical knowledge. All students were 
enrolled in courses on analysis4, linear algebra, mathematics education, and peda-
gogy. By the time of testing, students had participated in all courses for 6 weeks. It 
should be mentioned that the students attended an innovative teacher education pro-
gram. This program included exercise phases which were specifically designed for 
teacher students and addressed the relation of topics to school mathematics (Reiss, 
Prenzel and Seidel, in prep.). Moreover, most of the students had participated in a 
precourse on mathematics which aimed at connecting school and university math-
ematics and had introduced them into the more systematic, abstract, and precise 
way in which the subject would be taught at the university.

The test encompassed six items related to the analysis course. Two items asked 
for basic knowledge concerning the geometric series and the handling of complex 
numbers. Four questions were designed to analyze students’ understanding of defi-
nitions concerning infimum and supremum, limit of a sequence, infinite series, and 
subsequence of a sequence. There were three main reasons for choosing this con-
tent. First, the items included basic but nonetheless very important notions of analy-
sis which should be mastered by all students. Second, the notions had, at least from 
a beginner’s point of view, a considerable degree of technical complexity, which 
was likely to result in answers reflecting specific individual problems. Third, all 
four notions had a high degree of intuitive meaning, and therefore seemed to be 
specifically apt to find out details about the transformation processes taking place 
in the first year in students’ minds. In the following, we will concentrate on these 
mathematical definitions. We will provide the items and give examples of correct 
answers. Moreover, we will briefly discuss how the concepts had been presented 
in the analysis class by the time of the test. In order to make the text readable for 
nonmathematicians, we will also provide some general information about specifics 
of the concepts before introducing the items.

The first item asked for the definition of the infimum of a set of real numbers. 
The infimum of a set X of real numbers is synonymously called its greatest lower 
bound, and is denoted by inf( X). Some examples are

inf inf
n
n inf

n
n inf({ , }) , { | } { } { | } ,1 2 1 1 1 0 0= ≥ ∪





= ∈





=
1

� (([ , ]) ([ , ]) .1 2 1 2 1= =inf

in particular, the infimum of a set might or might not be an element of the set. The 
examples and the expression greatest lower bound give an intuitive meaning, but 
students were asked to properly define the notion.

3  German preservice teacher students who will teach at the upper secondary level are supposed 
to choose two major subjects during their BA and MA studies as well as elementary courses in 
pedagogy and psychology.
4  This means a course at a level somewhat below Walter Rudin’s “Principles of Mathematical 
Analysis” (1976).
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Item 1: Greatest Lower Bound (infimum) Let s ∈�, and let X X⊆ ≠ ∅�, .  
Define: “s is the infimum of X, if…”

Example of an expected answer:
“(1) s ≤	X, i. e. ∀ ∈ ≤x Xs x , and (2) ∀ ∈ ≤ ⇒ ≤t t X t s�( ) .”5

In the analysis class, the notions of supremum6 and infimum were introduced 
and discussed in its specifics from the very beginning. The corresponding existence 
principle was part of an axiomatic characterization of the reals. The introduction 
made use of the established practice of presenting and discussing such a charac-
terization without constructing the real numbers. At length, the irrationality of the 
square root of 2 was discussed, and 2 22= ∈ <sup q q({ | })�  was pointed out. 
Following Dedekind, the students learned that square root of 2 marked a gap in the 
rationals, and that the axiomatic principle of the existence of suprema and infima 
was one way to precisely state the completeness of the real numbers. Moreover, 
suprema and infima had already been topics during the precourse. Accordingly, 
though the students had probably not encountered these notions in their second-
ary mathematics classrooms, they were not entirely unfamiliar when treated in the 
analysis class.

The second item addressed the notion of the limit of a sequence. Again, the 
intuitive meaning of this concept can be illustrated by examples: The limit of 
( , . , . , . ,...)1 0 1 0 01 0 001  is zero, while the limit of ( , , , , , ,...)1 0 1 0 1 0  does not exist. 
The limit of the sequence ( , . , . , . ,...)1 0 1 0 001 0 0001− −  is zero, too, and this example 
shows that the notion of a limit cannot be reduced to infima and suprema in a simple 
way. If a real number s is the limit of the sequence ( )xn n∈� , one can say that the 
sequence converges to s.

Item 2: Limit of a Sequence Let ( )xn n∈�  be a sequence in �,  and let x ∈� . 
Define: “x is a limit of ( )xn n∈� , if…”

Examples of expected answers:

“ ∀ > ∃ ∀ ≥ − < 0 0 0n n n x xn| | .”

“every interval ] , [, ,x x− + >   0  contains almost all xn.”

The notion of a limit was advertised to be one of the fundamental concepts of 
analysis, and it was pointed out that sometimes analysis was even defined to be the 
study of limits. Moreover, the concept had been introduced in the precourse, too, 
and had been combined there with a training in the use of quantifiers (e.g., rules 
for the negation of quantifiers and problem of switching quantifiers). In a tutorial 
section, the formal definition of the first answer was supplemented with diagrams 
and then figures of speech like “almost all” appearing in the second answer were 
introduced.

5  The notation “y	≤	Y” was introduced in the course to express that a real number y is a lower bound 
of a set Y of reals.
6  A real number s is the supremum or least upper bound of a set X of reals, if it is the smallest real 
number s such that X ≤ s.

3  Knowledge Transformation Between Secondary School and University Mathematics
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The third item concerned infinite sums of reals. Informally, the infinite sum 
x x x xn0 1 2+ + +…+ +…  is the result of adding up all reals xn in the order of their ap-

pearance, provided this result exists. For example, 1
1

2

1

4

1

8
2+ + + +… =  (geometric 

series), while the infinite sums 1 2 3+ + + ...  or 1– 1 + 1– 1 + … do not exist. A prop-
er definition of infinite sums can be given by looking at the limit of the sequence 
( ) ,sn n∈�  where the partial sums sn are defined by s x x x xn n= + + +…+0 1 2 .

Item 3: Infinite Series Explain “ xnn∈∑ � ”.

Example of an expected answer:

“(1) xnn∈∑ �  is the sequence ( )sn n∈� , with s xn kk n
=

≤∑  for all n. In this meaning, 
it is called an infinite series. (2) xnn∈∑ �

 is the limit of the sequence ( )sn n∈� , if the 
limit exists. In this meaning, xnn∈∑ �

 is called an infinite sum.”
As usual, an infinite series of real numbers was defined in class to be a se-

quence of partial sums. It was pointed out that the symbolic notation xnn∈∑ �
 

was used in the double meaning reflected in the answer provided above. The no-
tions were motivated by looking at the intuitively presented infinite summation 
x x xn0 1+ +…+ +… . When one computes this series, a sequence of computations 
is produced: x x x x x x0 0 1 0 1 2, , ,+ + + … . This sequence of computations serves as 
the definition of an infinite series. If the sequence converges, its limit is the infinite 
sum of all xn. By the time of the test, the students had worked with series like the 
geometric or harmonic series, and the symbolic notation xnn∈∑ �

 had appeared in 
both of its meanings several times.

Finally, we asked for the definition of subsequence of a sequence. Intuitively, a 
subsequence of a sequence ( , , , )x x x0 1 2 …  is produced by selecting infinitely many 
elements of the sequence, respecting the order of appearance. Thus ( , , , , )0 2 4 6 …  is 
a subsequence of ( , , , , ),0 1 2 3 …  while ( , , , , )2 0 4 6 …  or

( , , , , , )0 0 1 2 3 …  or ( , , , )0 1 2 3 are not.
Item 4: Subsequence of a Sequence Define the notion of a subsequence of a 
sequence ( )xn n∈�  of real numbers.

Examples of expected answers:

“A sequence ( )yn n∈�  is a subsequence of ( )xn n∈� , if there is a strictly increasing 
sequence ( )in n∈�  of natural numbers such that y xn i n= ( )  for all n.”

“A sequence is a subsequence of ( )xn n∈� , if it has the form ( )( )xi n n∈�  for a strictly 
increasing sequence ( )in n∈�  of natural numbers.”

The notion of a subsequence figures prominently in the Bolzano–Weierstraß 
theorem, which states that every bounded sequence of reals has a convergent subse-
quence. The theorem had been proven in class, and the recursive construction of the 
subsequence of the proof had been analyzed in a tutorial section. This led finally to 
an intuitive summary of the proof.

O. Deiser and K. Reiss
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3.4  Results

As we had expected from former systematic (Kessler 2011) and unsystematic in-
quiries as well as from teaching experience, the items turned out to be difficult to 
answer for most of the students. A grading assigned 0, 1, or 2 points to each item 
(2 points for a fully correct solution, 1 point for solutions with only minor faults, 
0 points for all others). The gradings added up to the following results (were the 
columns represent the 18 participants and are ordered by their scores):

Table 3.1 shows that three students were not able to solve any of the items correctly 
and only one student got full credit. There were important differences in the indi-
vidual achievement (i.e., properly defining basic mathematical notions) within the 
group. Students scored with a mean of m = 2.83 points (max = 8) and a standard 
deviation of stdev = 2.43 (all items). Moreover, the four items obviously differed in 
their demand (m = 0.89; stdev = 0.83 for item 1; m = 0.94; stdev = 0.94 for item 2; m 
= 0.44; stdev = 0.70 for item 3; m = 0.56; stdev = 0.70 for item 4; max = 2 for each 
item). Though presented as a notion expressing the fundamental difference between 
the rationals and the reals, the notion of an infimum in its order-theoretic language 
remained extraneous to many students. Only 5 of 18 answers to item 1 were fully 
correct. The second item limit of a sequence showed the best solution rate, but again 
around half of the group could not properly define it. Concerning the third item, 
only two students were able to give a satisfying explanation of the meaning of the 
frequently used symbolic notation for infinite series and infinite sums. This item 
turned out to be most difficult for the students. The fourth item was arguably the 
hardest, as the notion of a subsequence involved the composition of two functions 
defined on the natural numbers. Again, only two students could properly define this 
concept.

The rating of items according to a 2-1-0 pattern which reflected full score, par-
tial score, and non credit solutions gives a rough and technical information about 
students’ achievement. More meaningful information can be provided by a detailed 
analysis of the solutions. Accordingly, correct as well as non-correct solutions were 
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Table 3.1  Results for 18 students and 4 items.
Student 1 2 3 4 5 6 7 8 9

Item 1: 0 0 0 0 0 1 1 1 2
Item 2: 0 0 0 0 1 0 0 0 0
Item 3: 0 0 0 0 0 0 0 1 0
Item 4: 0 0 0 1 0 0 0 0 0

Student 10 11 12 13 14 15 16 17 18
Item 1: 0 1 0 1 2 2 2 1 2
Item 2: 1 1 2 2 2 2 2 2 2
Item 3: 1 1 0 0 0 0 1 2 2
Item 4: 1 0 1 1 0 1 1 2 2
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classified in order to understand the variety and nature of students’ knowledge, 
competencies, and problems. We chose the following post-hoc classification, which 
depended on the specific item and allocated every solution to a single class. We will 
provide the number of students whose solutions belong to the specific class and will 
give concrete examples.

Classification of the Answers to Item 1: 
•	 Explanation	(translation)	as	“greatest	lower	bound”	without	further	comments:	2
•	 Explanation	(translation)	using	the	concept	“greatest	lower	bound”	and	provid-

ing some additional comments: 5
•	 Erroneous	or	incomplete	explanation	of	“greatest	lower	bound”:	4
•	 Answer	with	small	errors:	2
•	 Correct	answer	different	from	the	expected	one:	1
•	 Correct	answer	as	expected:	4

The answers to item 1 showed that many students had reasonable ideas about the 
concept but were struggling with a precise formulation. Several students tried to 
use formalized language but failed in the end in using it adequately. However, most 
solutions revealed a rudimentary understanding. There were only two students who 
translated the concept into another undefined notion, whereas 16 students gave 
more detailed formulations.

Examples of an explanation (translation) with additional comments are: (1) 
“There are only finitely many values below this bound and there is no greater lower 
bound.” and (2) “s constitutes the least lower limit of X. Thus X is bounded below 
and converges against the infimum of X.” Both answers reveal that students had dif-
ficulties in separating this concept from the concept of limit. As an erroneous and 
incomplete explanation of greatest lower bound may be regarded (3) “s is the great-
est lower bound of X. There are no elements x with x∈X below the infimum. s ≤	x 
with x∈X.” The second sentence of this solution is descriptive, but the third sentence 
can be read as a definition of “s is a lower bound of X.” It appears to be an explana-
tion of the second sentence, and some kind of translation and transformation process 
is visible here. The following sentence was rated as a correct answer with small 
errors: (4) “1 ( ∀ ∈ ≥x X x s  2) For each s′,	which	is	a	lower	bound	too,	 ′ ≤s s .” 
One could object that “lower bound” was not explicitly defined in the answer, and 
that it should be “lower bound of X” in part 2). However, it is plausible that the 
student just needed to write down more carefully what he or she knew. Finally, (5) 
“ s g g x x X= ∈ ≤ ∀ ∈max{ | }� ” was regarded an unexpected but correct answer. 
In this case, the infimum s of X was correctly defined, without using supremum to 
define it.

Classification of the Answers to Item 2: 
•	 Explanation	as	“the	sequence	convergences	to	x”	without	comments:	4
•	 “Limit”	mistaken	with	the	concepts	of	“supremum/infimum”:	2
•	 Incorrect	use	of	quantifiers:	4
•	 Answer	with	small	errors:	1
•	 Correct	answer	as	expected:	7

O. Deiser and K. Reiss
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This item and the solutions by the students showed two typical phenomena more 
clearly than the first one: First, even more students presented mere synonymous 
expressions (“convergent”) but did not provide a mathematical definition based on 
properties of the concept (as shown in the examples). Second, some students knew 
the need for that type of solution, but failed to use the quantifiers “for all” and “there 
exists” correctly.

Typical examples for answers showing problems with quantifiers were: (1) 
“ ∃ > ∀ ∈ ∃ ≥ − < 0 0 0n n n x xn� | | ” and (2) “ ∀ > ∃ ∀ > − < 0 0 0 0x x x x x| | . ” In one  
instance, the correct answer was encapsulated between two wrong state-
ments: (3) “the sequence ( )xn n∈�  converges strictly increasing against x. 
∀ > ∃ ∀ ≥ − < 0 0 0n n n x xn| | . x is the supremum of ( )xn n∈� .” Despite the correct 
second line, the answer seemed to belong to the second class where limit was mistaken 
with infimum and supremum.

Classification of the Answers to Item 3: 
•	 Explanation	as	“series”	without	further	comments:	3
•	 Explanation	using	“series”	or	“partial	sums”	and	some	comments	added:	4
•	 Explanation	as	“ x x x0 1 2+ + +… ” without mentioning “convergence” and “par-

tial sums”: 8
•	 Answer	with	small	errors:	1
•	 Correct	answer	as	expected:	2

For this item, nearly half of the students gave answers by writing a term like 
“ x x x xn0 1 2+ + +…+ +… .” They did not recognize that the definition of the sym-
bol xnn∈∑ �

 aimed at transforming an informally presented infinite sum into a 
precise expression. The problems were multifaceted. Obviously, the definition of a 
series as the sequence of partial sums has to be regarded as complex and technical, 
and in the end the symbol is overloaded in denoting always a certain sequence as 
well as sometimes a real number, too.

One answer of the third category mentioned above was: (1) “It is the infinite 
sum of all xn.

( ) .x x x x xnn n∈∑ = + + +…+
� 1 2 3 ” The missing dots at the end of 

line indicated that the student knew that partial sums played a role here, but he 
(or she) failed to write “ ( ) ( )x lim x x x xnn n n∈∑ = + + +…+

� 1 2 3 ,” which would 
have been a correct definition of an infinite sum. Finally, there were typical ex-
amples that students mixed up concepts: (2) “It indicates the series of the se-
quence xn. It is the sum of all partial sums of the sequence xn.” Instead of looking 
at the “limit of all partial sums,” this student summed up all partial sums. How-
ever, the answer showed that the student was aware that partial sums were needed 
to define the symbol.

Classification of the Answers to Item 4: 
•	 Incorrect	without,	in	this	context,	meaningful	elements:	2
•	 Concept	mistaken,	mentioning	of	notions	like	“accumulation	point”,	“Bolzano–

Weierstraß”: 3
•	 Explanation	as	“subset”	or	“contained	in,”	the	concept	of	“index	sequence”	was	

not mentioned: 3

3  Knowledge Transformation Between Secondary School and University Mathematics
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•	 Descriptive	answer	listing	properties	of	subsequences:	2
•	 Concept	mistaken	with	“index	sequence”:	4
•	 Answer	with	small	errors:	2
•	 Correct	answer	as	expected:	2

Once more, some students simply described the notion without attempting to give a 
proper definition. Some other students tried to give a definition but failed to prop-
erly use the technical notion of an “index sequence.” In contrast to other items, we 
observed three students who neither described the notion nor attempted to provide 
a definition, but wrote down something they recalled from the wider context of the 
notion like the Bolzano–Weierstraß theorem.

This is an example of a descriptive answer: (1) “A subsequence must have the 
following properties: It must have the sorting of the sequence; all elements of the 
subsequence have to appear in the sequence; one can jump over arbitrarily many 
elements of the sequence; the first element of the subsequence may not be the first 
element of the sequence; the subsequence must not be empty.” A typical exam-
ple of misunderstanding the concept with index sequences was this one: (2) “A 
subsequence [crossed out: contains ] is an index sequence ( )in

 of the sequence 
( )xn n∈� , i.e., all elements of the subsequence are elements of the sequence.” This 
student mixed up the concepts of “index sequence” and “subsequence”; however, 
the crossed-out word “contains” might indicate some doubts.

3.5  Discussion

Our study provides (more) evidence that the mathematical knowledge acquired in 
secondary schools does not necessarily constitute a reliable foundation for univer-
sity mathematics. Adopting basic mathematical notions presented in the formally 
correct but abstract way at the university is a very difficult task for beginners. How-
ever, school mathematics is a starting point not only for calculation or the appli-
cation of algorithms but also for an intuitive understanding of mathematics. The 
step from here to rigorous mathematical definitions of concepts like infimum, limit, 
infinite sum, and subsequence is still a large one. School mathematics usually lacks 
a solid foundation; however, this is a characteristic feature and may be regarded 
the specific difference between mathematics at the school or at the university level 
(Freudenthal 1973). As a consequence, doing mathematics at the university level 
requires a different way of using language in class. It is probably not only a change 
in wording but also the learning of a new language with an unfamiliar structure as 
well as with a high degree of formality and precision. Appreciating these aspects 
presupposes a profound understanding of its advantages.

It is not surprising that learners show deficits but also progress while approach-
ing the goal of learning the mathematical language. Our study reveals how different 
aspects and components come together and add up to a multifaceted picture. They 
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might be regarded as typical for the transition between secondary school and uni-
versity mathematics.

•	 Continuation	of	habits	from	school:	In	the	context	of	school	mathematics,	exact	
definitions are rarely used. Instead, concepts are often acquired by regarding 
prototypes and discussing their properties (e.g., “square” and “cube”). More-
over, properties might be supplemented by translations from the Latin origin 
word to a German origin word which has an intuitive meaning for the students 
(e.g., “congruent” translated to deckungsgleich which means something like 
exact covering). Accordingly, mathematics instruction does primarily target at 
initiating understanding and the correct identification of examples. This pattern 
was continued by the students when they explained notions by synonyms or by a 
description of their properties.

•	 Discontinuation	of	habits	from	school:	School	mathematics	makes	use	of	math-
ematical definitions, at least at the upper secondary level. However, these defini-
tions do hardly aim at being fundaments, e.g., for further theoretical consider-
ations. It is more important in school instruction to apply concepts and methods 
in the context of problems: Curve sketching presupposes the concept of a maxi-
mum turning point but once it is established students’ activities are basically 
restricted to calculating the first and second derivative of a function.

 Students learned in the few weeks at the university that correct definitions ask 
for the use of the (new) mathematical language. Accordingly, examples were not 
used for explaining the concepts involved. On the one hand, this is good news, 
as students were able to realize the need for formalization in mathematics. On 
the other hand, this is probably also bad news as examples are often useful in 
order to prepare a precise formulation and to distinguish between examples and 
counterexamples.

•	 There	are	typical	patterns	of	work	which	reflect	individual	intellectual	processes.	
These patterns guided a classification of students’ solutions of the items and re-
vealed their errors and problems as well as their creative thoughts.

•	 Contemporary	forms	of	university	instruction	include	several	ways	of	providing	
support to the students. In particular, the precourse on mathematics should be re-
garded such an instrument. Moreover, the degree of abstraction can be lowered, 
and the pace of work can be reduced. However, it seems that students are con-
fronted with too much new mathematical content in their first weeks at the uni-
versity. Understanding unfamiliar concepts and ways of working is a challenging 
task which takes its time. In particular, processes of transition seem to take more 
time than is usually provided for a smooth change from school to university (see 
also Kaiser and Buchholtz, Chap. 5).

Looking at the results substantiates that the “double discontinuity” still exists. Is 
there help for teacher students to master the demands in the beginning of their stud-
ies? Certainly this research can only describe students’ competencies and discuss 
their problems. However, the detailed analysis might give information on how uni-
versity courses should be designed in order to better mediate between the different 
phases. In our view, the shift from mathematical knowledge based on intuitive con-
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cepts with only minor emphasis on an exact wording to mathematical knowledge 
based on formalization and exactness includes different aspects: Some students 
would certainly profit from a training in easy formal definitions in order to abandon 
the old habit of giving mere descriptions, while others would benefit from a “techni-
cal” training using quantifiers, sequences, or compositions of functions.

Further research concerning the subject-specific competencies of teachers is 
needed. Our study will be extended to a larger and more fine-grained analysis of 
the transformation of knowledge in mathematics between school and university. We 
will regard the first and second year at the university, because at this time students 
are confronted with topics bearing the highest relation to topics which are part of 
the school curriculum. It is still an open question how much understanding of “el-
ementary mathematics from an advanced standpoint” can be achieved in preservice 
teacher education. However, we know that it is important for the classroom work 
of a teacher (Baumert and Kunter 2011). As we aim at a better understanding and at 
more effective learning processes, it is essential to analyze precisely the mathemati-
cal difficulties of teacher students and the intellectual processes they pass through. 
Both components contribute to their content knowledge and their pedagogical con-
tent knowledge and are important determinants of their mathematical competencies.
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4.1  Introduction—Transition from School to Higher 
Education in Mathematics Education

There has been a widespread concern over the lack of preparedness of students 
making the transition from upper secondary to university mathematics. It appears 
that students experience different difficulties at different stages and develop differ-
ent strategies to make these transitions successful. At the same time institutional 
practices afford, or hinder, students developing a mathematical disposition and an 
identity that supports their engagement with mathematically oriented subjects in 
upper secondary and tertiary education. This links to most European governments’ 
concern about student participation, and success, in mathematics. In the UK the 
Smith report (2004) stressed the need for more young people to continue to study 
mathematics, which, as it was suggested, could be achieved by ‘wider recognition 
of the importance of mathematics, improved teacher supply and professional devel-
opment for teachers, and changes in the curriculum and qualifications pathways, so 
as to provide appropriate progression for all students’ (Brown et al. 2007, p. 18).

A number of studies (e.g. Thomas 2002) have highlighted factors that generally 
impact on retention rates and performance in higher education, such as ‘academic 
preparedness’, or academic experience, to name but a few. Others (e.g. Hager and 
Hodkinson 2009) have tried to move ‘beyond the metaphor of transfer of learning’ 
in higher education. In this paper I want to lean on literature in mathematics educa-
tion, more particularly mathematics learning, in transition from upper secondary 
school to higher education mathematics education, that is, transition to mathemati-
cally demanding subjects (such as mathematics, engineering, etc.).

S. Rezat et al. (eds.), Transformation—A Fundamental Idea of Mathematics Education, 
DOI 10.1007/978-1-4614-3489-4_4, © Springer Science+Business Media, LLC 2014
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The literature proposes different models for secondary–tertiary transition in 
mathematics education. In an early paper De Guzman et al. (1998) identified 
selected difficulties related to this passage; these are broadly categorised as ‘epis-
temological/cognitive’; ‘sociological/cultural’; and ‘didactical’. Leaning on this 
work Gueudet (2008) proposes three types of transition in her study: (1) transi-
tion ‘from one mode of thinking to another’, which includes the identification of 
different ‘student thinking modes and knowledge organisation’ at transition (e.g. 
Tall 1991; Sierpinska 2000; Lithner 2000); (2) transition to the ‘new world’ of 
proof and different mathematical communication (e.g. laws and language used 
by mathematicians) (e.g. Nardi 2009) and (3) transition from an institutional per-
spective (e.g. Bosch et al. 2004). There are also a number of research studies 
describing and analysing particular, sometimes innovative, practices (e.g. Croft 
et al. 2009).

In summary, the literature generally shows that transition is often a ‘threat’ to 
progress, especially for certain students, and that efforts to align practices on either 
side of transition can help (e.g. Hoyles et al. 2001). However, mathematics at the 
secondary/tertiary interface is believed to be particularly problematic for pedagogy, 
especially for proof and mathematical communication (Hoyles et al. 2001; Nardi 
1996), and ‘formal’ mathematical thinking generally. This is likely to have impli-
cations for students’ success or failure at this stage of their mathematics learning. 
Moreover, there are few studies (besides the Manchester projects) that directly ad-
dress the widening participation agenda with respect to higher education math-
ematics engagement, learning and identity development. In this paper I address 
the issue of ‘student learning’ at the interface between school and university, in 
particular the different pedagogic practices, types and sources of feedback which 
are likely to support, or hinder, student transiting to this new ‘arena’ of mathemat-
ics education.

4.2  Theoretical Framework: Feedback and Self-
Regulated/Independent Learning

There is a large amount of literature linking student achievement and feedback (e.g. 
Butler and Winne 1995) where feedback is conceptualised as ‘information with 
which a learner can confirm, add to, overwrite, tune, or restructure information’ 
(p. 275). In their study on the importance of feedback, Hattie and Timperley (2007, 
p. 81) view feedback as

information provided by an agent (e.g. teacher, peer, book, parent, self, experience) regard-
ing aspects of one’s performance or understanding. A teacher or parent can provide correc-
tive information, a peer can provide an alternative strategy, a book can provide information 
to clarify ideas, a parent can provide encouragement, and a learner can look up the answer 
to evaluate the correctness of a response. Feedback thus is a “consequence” of performance.
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There is ample evidence (e.g. Hattie and Jaeger 1998) that the presence of feedback 
(in whichever form it may be) increases the likelihood that learning will occur. In 
this study, I conceptualise feedback as feedback not only from teachers/lecturers 
but also from other sources, such as curriculum materials, or peers, for example. 
Moreover, and leaning on research by Hattie and Timperley (2007), I distinguish 
between four levels of feedback: the task level (how well the tasks are understood/
performed); the process level (the main process/es needed to understand/perform 
tasks); the self-monitoring level (directing and regulating actions); and the personal 
evaluation level (personal evaluation and affect) (p. 87). Butler and Winne (1995) 
also claim that feedback can have different sources: external (e.g. provided by con-
texts or other participants) and internal (e.g. self-generated such as monitoring their 
actions).

Leaning on these conceptualisations, I also explore the role and nature of feed-
back resulting from ‘tools’ (e.g. textbook) and their use, or indeed cognitive tools 
designed to help students develop further understandings of characteristics of math-
ematical topics. Here a ‘tool’ can be viewed in different ways. Whilst a tool may 
have different forms, using a tool in the context of learning mathematics, it is likely 
to re-frame students’ experiences. For example, a new tool is likely to add some-
thing to the student’s repertoire; equally it may disrupt participants’ practice and 
take something away. This reflects the tool’s catalytic quality: it may change par-
ticipants’ perceptions and practice. The individual agency of the student rests with 
the decisions s/he takes as a result of feedback from the use (of the tool), thus her/
his reactions to the feedback.

This provides the link between feedback and self-regulated/independent learn-
ing (and I use the latter terms interchangeably). Hattie and Timperley (2007) argue 
that feedback has a role in teaching self-regulation. Part of this process involves 
establishing sources to obtain feedback, and they suggest that many students neglect 
responsibility and ‘view feedback as the responsibility of someone else’ (p. 101).

Independent learning serves as a comprehensive framework for understanding 
how students become active and confident agents of their own learning process. 
Without going into detail, most models define independent/self-regulated learning 
as ‘an active, constructive process whereby learners set goals for their learning and 
then attempt to monitor, regulate, and control their cognition, motivation, and be-
haviour, guided and constrained by their goals and the contextual features in the 
environment’ (Pintrich 2000, p. 453). Boekaerts (1999) views it as the ability to ‘de-
velop knowledge, skills, and attitudes which can be transferred from one learning 
context to another’ (p. 446). It is likely to include ‘self-generated thoughts, feelings, 
and actions that are planned and cyclically adapted to the attainment of personal 
goals’ (Zimmermann 2005, p. 14). The ability to self-regulate one’s motivation, 
cognition, affect, and behaviour seems critical to development and growth (Corno 
2009).

According to Pintrich (2000), models of independent/self-regulated learning 
share a number of common assumptions:

The active, constructive assumption where learners are viewed as ‘active con-
structive participants in the learning process’ (p. 452).
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The potential for control assumption where it is assumed that learners can ‘po-
tentially monitor, control, and regulate certain aspects of their own cognition, moti-
vation, and behaviour as well as some features of their environment’ (p. 454).

The goal, criterion, or standard assumption where it is assumed that ‘there is 
some type of criterion or standard (also called goals) against which comparisons are 
made in order to assess whether the process should continue as is or if some type of 
change is necessary’ (p. 452).

The mediation assumption which assumes that ‘self-regulatory activities are me-
diators between personal and contextual characteristics and actual achievement and 
performance’ (p. 453).

Winne (1995) describes independent learners in the following way:
When they begin to study, self-regulated learners set goals for extending knowledge and 
sustaining motivation. They are aware of what they know, what they believe, and what the 
differences between these kinds of information imply for approaching tasks. They have a 
grasp of their motivation, are aware of their affect, and plan how to manage the interplay 
between these as they engage with the task. They also deliberate about small-grain tactics 
and overall strategies, selecting some instead of others based on predictions about how each 
is able to support progress toward chosen goals. (Winne 1995, p. 173)

In terms of mathematics education and independent learning, mathematics educa-
tion researchers (e.g. De Corte et al. 2000) adopted the theory of self-regulated 
learning as an important factor for the learning of mathematics, where students 
are expected to assume control and take up agency over their own mathematics 
learning (e.g. problem-solving activities; see Schoenfeld 1992). Pape et al. (2003) 
argued that in order to develop mathematical thinking and independent learning, 
several factors are crucial: ‘multiple representations and rich mathematical tasks; 
classroom discourse; environment scaffolding of strategic behaviour; and varying 
needs for explicitness and support’ (p. 179). Overall, it is said that independent/self-
regulated learning is ‘a major objective of mathematics education…and…a crucial 
characteristic of effective mathematics learning’ (De Corte et al. 2000, p. 721).

Using this larger theoretical frame of ‘feedback’ I seek to develop deeper under-
standings, theorise ‘feedback’ in connection with ‘tools’, and investigate and relate 
their connected power to student independent learning.

Thus the research questions are the following:

•	 What	are	the	contexts,	of	school	and	university,	in	which	students	work	and	learn	
mathematics?

•	 What	are	the	kinds	and	sources	of	feedback	students	receive	in	the	different	con-
texts, and in which ways do they link to student independent learning?

•	 What	are	the	‘transformations’	students	experience	and	what	is	their	potential	for	
students managing transition into higher education mathematics?
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4.3  Research Design

The TransMaths project at the University of Manchester1 investigated how student 
experiences of mathematics education practices may interact with various (identi-
fied) factors to shape students’ development as learners of mathematics, their dis-
positions and their decision-making at this crucial point. It appears that students 
experience different difficulties at different stages and develop different strategies 
to make these transitions successful. At the same time institutional practices afford, 
or hinder, students developing a mathematical disposition and an identity (Pepin 
2009; Boaler and Greeno 2000) that supports their engagement with mathematically 
oriented subjects in upper secondary and into higher education. The project studied 
students’ identity in relation to their experiences of different mathematics learning-
and-teaching practices. Leaning on the work of Cobb et al. (2009) we propose that 
student developing identities ‘can be made tractable for empirical analysis by docu-
menting students’ understandings and valuations of their classroom [or institution] 
obligations’. (p. 223)

The research design (of the whole project) was based on a theoretical framework 
of mixed methodology design involving longitudinal survey of outcomes, student 
biographical interviews and case studies of practice. The data selected for the analy-
sis reported in this article were the following:

•	 Individual	biographical	interviews	(with	linked	case-study	data)	of	students	over	
a period of two years: in this case Simar and his friends

•	 Case	studies	of	universities,	in	this	particular	case	one	large	traditional	university	
in a large city in the south of England, City University: these include observa-
tions of lectures

•	 Document	analysis	of	policy	and	curricular	documents	relevant	for	the	cases:	in	
this case documents related to the school and the university

•	 Interviews	with	participants,	in	this	case	head	teachers	and	teachers	in	Simar’s	
secondary school, and lecturers and professors at City University

In order to develop deeper insights into students’ experiences at transition from 
school to university mathematics education, I have analysed the qualitative data 
(e.g. interviews and case studies of institutional practices) on the basis of my 
 understanding of ‘feedback’ and ‘self-regulated’ learning in mathematics education. 
The theoretical framework for the analysis is provided in the previous  section. More 
practically, a procedure involving the analysis of themes, similar to that  described 
by Woods (1986), was adopted. In addition, and using open-coding with an on-
going formulation and refinement of categories (Strauss and Corbin 1990), I iden-
tified the various aspects of the feedback and independent learning that students 

1 http://www.education.manchester.ac.uk/research/centres/lta/LTAResearch/transmaths/
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experienced in the different institutions. The results are anchored in particular in the 
data taken from interviews with Simar and his friends (focus group), and the obser-
vations I made in his secondary school and university (City University).

This included, at one level, identification of the different kinds of feedback, such as:

•	 Generic	feedback	in	lesson/lecture/tutorial	(by	teacher/lecturer):	feedback	given	
on student contribution to the session in interaction with the teacher/lecturer (e.g. 
model answers, or on common problems)

•	 Feedback	through	questioning
•	 Individual	verbal	feedback	by	teacher/lecturer	(e.g.	on	project	work)
•	 Feedback	(by	teacher/lecturer)	to	student	written	work	(e.g.	home/coursework)
•	 Class	marking/feedback	(e.g.	of	home/coursework)
•	 Peer	 feedback:	 student	 feedback	 to	 each	 other	 (e.g.	 during	 discussion/group	

work) in lesson/tutorial
•	 Electronic	feedback	(e.g.	by	computer	assisted	tool)
•	 Marking	scheme	feedback	(e.g.	of	home/course/classwork)
•	 Summative	feedback	(e.g.	tests)
•	 Personal	development	planning/feedback

At another level, I explore the different kinds of feedback provided by the external 
‘tools’ in the classrooms (e.g. persons, objects, tools), and their use and meanings 
attributed to them, in particular those ‘tools’ which seem to be perceived as effec-
tive, either by the teacher or by the students, and for independent learning.

Subsequently, these different kinds of feedback (characteristic pedagogic prac-
tices) are categorised with respect to the four levels of self-regulated learning identi-
fied earlier (e.g. task level, process level/task performance, self-monitoring level/
self-regulation and personal evaluation level/self).

4.4  Findings

4.4.1  The Contexts at Simar’s School and University

Simar’s secondary school (age 11–18) is a high-achieving comprehensive school 
in a large city in the south of England. One of the head teachers talked about a 
‘purposeful learning environment’ and the focus on learning as their main key for 
success.

What the school has been very successful is establishing a very kind of purposeful learn-
ing atmosphere around the school. If you walk around the school, the ethos of the place is 
fantastic…. the learning ethos that we place on the whole way we run the school, I think 
is absolutely essential, and Ofsted have said that. You know, it’s the ethos and the relation-
ships mean that, in the classroom the focus is on learning. (HTeacher, SK, my italics)

He also emphasised the teacher–pupil relationship as a reason for the school’s suc-
cess, in particular an ‘atmosphere of trust and mutual respect’.
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I think it’s one it’s a long-term established ethos, where brothers and sisters have come 
through the school; it is a feeling of mutual respect. There isn’t a ‘them’ and ‘us’ feel, you 
know the teachers, again referring back to Ofsted, the teacher-student relationships are 
excellent. If you walk around the corridors you don’t hear lots of shouting, you know there 
is a kind of mutual respect, and little things like, we’ve invested heavily in the fabric of the 
school. (HTeacher, SK, my italics)

The school’s sixth form handbook (for mathematics) provided guidance and help. 
Amongst others, students were encouraged to

Get involved in the lessons. You need to be responsible for your understanding, which 
means that you need to be brave and have a go at offering your ideas and thoughts during 
class examples and discussions. Don’t worry about getting the answer wrong, your teacher 
will be able to explain to you any mistakes you may make in your thought process.

Discuss your work with other students. If you can explain how to do something, it means 
you understand it!

Ask for help when you need it. There can be nothing worse than leaving a lesson and know-
ing that you are going to struggle with the homework because you did not understand the 
work in class.’
(extract from the official Student Handbook SK)

Thus, the school environment can be characterised by the development/establish-
ment of an atmosphere of ‘trust and mutual respect’ and a ‘purposeful learning 
environment’, where students were supported in their learning by discussing their 
work with teachers, peers and explaining to others. They were also encouraged to 
seek help from the teacher, for example, in terms of pacing their learning and get-
ting ready for examinations.

The stated aims of City University were stated in the handbook as:
…[City University] seeks to teach its students to the very highest academic standards, 
 drawing in creative and innovative ways of its research… to ensure that students, when they 
leave us, have the mathematical skills most likely to be useful to them and their employers. 
In particular, these include fluency and accuracy in elementary calculations, ability to rea-
son clearly, critically and with rigour, both orally and in writing… (p. 1-part 3 handbook)

The intake of City University is varied and can be compared to that of Simar’s 
school: many from ethnic backgrounds who have lived in the large city all their 
lives; there are also many international students. Extracts from interviews showed 
that students talked about City University as having status, and students generally 
felt comfortable in a university close to their family or relatives.

The first-year teaching staff (professors), who seemed to be the ‘influentials’, 
were mostly experienced professors, who had been at City University for 20 years or 
longer. Indeed, the programme Director for mainstream mathematics programmes 
mentioned that it was important to have a first-year team that ‘sings from the same 
hymn sheet’, so that students learn ‘from day one’ that they are not in school but in 
a university mathematics department.

There was also a clear distance between students and lecturers, which was also 
mentioned by Simar:
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…in sixth form it was more personalised kind of…. you was closer to the teacher…you 
was talking to them -…after school you was chatting to them. You saw them around, like 
here it’s so funny cos when we see the lecturers walking around it’s like they’re like celebri-
ties…we haven’t quite got that personalised you know, thing with them so they’re from a 
distance you know. ‘That’s Professor…, that’s Professor…wow!’ You’re like wow, they’re 
about. So I suppose it’s less personal in a way. (DP5, Simar)

It can be argued that this change of ‘environment’ which included a change of ex-
pectations, from school to university appeared to necessitate students becoming 
more independent learners.

4.4.2  Findings in Terms of Feedback and Self-Regulated 
Learning

Simar’s school One of the aims at SK school was to help students to ‘actively 
learn’ mathematics, and teachers chose particular strategies to help students.

…we get them to teach the class. I’ve asked students to prepare a starter activity every les-
son, but it has to be a starter activity on a topic we have already done…. So that it’s not just 
regurgitating, and they’ve gotta come up with some ideas, some questions, thoughts on a 
topic we’ve completed and may be extended to a little bit further, or just reinforce it, and 
they are the people that stand at the front-they set the activity, they then go round and they 
talk about it. They help the people who are getting stuck and go through the answers them-
selves, which is really good for them…. Like they choose a topic and explain to the rest of 
the class, they produce their worksheets and they go round and help them in the class, and 
they do starters, you’re gonna be start from year twelve, year eleven, twelve, thirteen, we 
get them to do starters in lessons…. And we do a lot of group work in A-level and that’s 
how we really try to make them independent. (Teacher 2, SK)

However, it was evident that this was not an easy task, and often not possible, and 
that students were often very dependent on their mathematics teachers, in particular 
when students came from other schools with different practices.

…feeder schools…groom [students] quite a lot and then they get here because they’ve got 
wonderful GCSE results, and of course then they struggle a little bit at A-level, because 
they, you know, they haven’t got those same teachers with them, and they haven’t got the 
same sort of structures there. (Teacher 1, SK)

Thus, teachers at this school also felt a responsibility to ‘be there for students’, to be 
‘available’, in order to support students in their mathematics learning.

…as teachers we are really always available for them, and after school and lunch time, any-
time we are available and they really like that one. And in the class we try to talk to them, 
why are we doing maths, why are we doing this topic and they find out about things, and 
they always when we talk about it, explain to them why you know. (SK, T2)

Furthermore, it was made transparent as to what kinds of strategies teachers would 
use to assess pupil learning, and in interviews both teachers talked about particular 
strategies to formatively assess pupil learning. The handbook of SK talks about 
‘Questioning Techniques’, ‘Sharing information on how learning is assessed’ 
(e.g. focus on feedback—knowing how to improve); ‘Feedback’; and ‘Peer and 
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Self-Assessment’ as useful and valuable strategies. Whilst not all strategies may 
have been evident in the classroom, it nevertheless provided students with some 
techniques to evaluate their learning. In the handbook, students were asked to make 
comments for each strategy and with respect to the mathematics syllabus.

Simar recalled his experiences at school and emphasises the ‘doing of mathemat-
ics’.

I was in the top set [at lower secondary]…we’d have a class of thirty, with a teacher…he’d 
like teach on the board, kind of throw out examples, a lot of examples…this is how you do 
this one, now try it with this one…then I went to the sixth form…took maths there…basi-
cally more of the same. (DP5, Simar1, p. 10/11)

Thus, it can be argued that Simar’s school provided many support mechanisms for 
students in terms of learning, but these were not always ‘visible’ in the classroom. 
It may be that students needed time to adapt to new learning practices (at upper sec-
ondary level); it may also be that the most important support at school/college was 
the individual support of teachers, because they feel responsible for student learning.

City University The main, and most ‘esteemed’, pedagogic practices at City Uni-
versity were lectures, usually in halls of up to 300 students. Lecturers would typi-
cally produce hand-written notes projected onto a screen and talk students through 
the content. Students would copy those notes; it seemed most of the time with little 
or no understanding.

Simar talked quite enthusiastically about one of his lecturers, and what he (and 
his peers) would expect from a good lecture, which resembled very much what he 
was provided with at school in terms of support (e.g. notes).

S:  Geometry: the feedback we got from geometry is, basically he’s faultless. 
He’s brilliant, he’s excellent; the lecture’s engaging, the notes are avail-
able- clear notes. You can use the notes for the coursework—

Int: The notes are handwritten?
S:  Yeah handwritten notes yeah…. you can see the kind of proofs- he doesn’t 

give too much away, but it’s just enough to get you thinking in the course-
work’s, which is excellent…. [students] need something to take away from 
the lecture and you know, they’re gonna ready at home, they’re gonna 
read it, and they understand it…. And they can go to the tutorial, ask what-
ever questions and do the questions with confidence, knowing that they’ve 
done well like because everything’s there, available. They don’t need to go 
anywhere else, and if they do, the tutorial’s available or the office hours. 
So really it’s probably one of the best.

Int:  So do you think they understand because in the lecture he explains well, or do 
you think they understand because the, it’s so well-prepared and written out?

S:  I think mainly it’s mostly well-prepared, definitely, and then to accompany 
that, the lectures are brilliant as well. Yeah it’s really, really kind of funny. 
He catches your interest… (DP5, Simar)

However, there were different types of lectures, and some appeared more helpful 
than others. One criterion was speed, for writing down and for understanding, with 
no time for questions.
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First of all the speed is amazing…. Doesn’t wait for any student response, really rare to see 
anyone asking questions, I mean truly there’s just no time… (DP5, S2, p. 1)

Interestingly, students differentiated between lectures of ‘caffeine mode’ type and 
those of ‘sleeping mode’ type. ‘Caffeine mode’ lectures were characterised by a 
lively style and lots of movements (by the lecturer)—‘you need three or four cam-
eras’, and also by the ‘ways [the lecturer] speaks about the subject’, ‘makes con-
nections’- there is a ‘story’. ‘Sleeping mode’ lectures had little movement (‘[he] 
stands where he stands’), they are ‘tedious…same voice, same place…uuuh, uuuh, 
uuuh, blue pen…’. Students perceive that what they need were ‘caffeine mode’ type 
lectures (DP5, p. 17).

In terms of lecture notes as support for student learning, students distinguished 
between three types of notes. Firstly, there were ‘understanding notes’ which are 
wellprepared and developed, and apparently they helped learning and understanding. 
Secondly, ‘comfort notes’ were those where students did not understand but ‘you 
know you’ve got the notes’ and ‘you have gone to the lecture’ which in their view may 
have helped for revision and examination purposes. Thirdly, there were ‘motivation 
notes’ which were those that were provided on the web, before the lecture, and which 
‘makes you want to come to the lecture…because they are different’ (DP5, p. 4).

However, often students did not feel provided with lectures at City University, in 
terms of learning opportunities or strategies how to learn, and they also compared 
this to what they were expected to do at school.

Yeah, trying to catch up with what he’s saying and he’s just talking…he’s just writing, and 
writing and writing, and all your focusing is, on trying to write everything down… Like I 
know, at first when I started university I thought lectures are like lessons, you learn in the 
lecture but you don’t really. In the lectures you sort of get an understanding but you have to 
do more, but with his lectures I don’t understand anything in the lecture. I have to go away 
and do it after… (DP5, Focus group interview S5)

Talking about a particular lecture, students realised that they had to identify and 
seek their own help strategies, if they wanted to survive in this kind of environment.

S3:  ‘Yeah cos sometimes you know, you’re writing so you’re trying to catch 
up with his speed…if you start thinking of, ‘let me try and understand’, by 
the time you’re understanding, he’s already moving on. So you try to write 
and understand at the same time, so you can’t do both of them at the same 
time which is a bit difficult….

Int: Have you ever asked any questions during the lecture?
S3:  No, no,…the only way I understand to do my work is, when I’m doing my 

coursework and there are help questions to do your coursework…I think 
the tutorials and the courseworks are more helpful than, the lecture. The 
lecture you just get the notes.’ (DP5, Focus group interview)

As emphasised by tutors in interviews, there were selected support structures for 
students, and these were commonly related to the pedagogic approaches. In par-
ticular, coursework and tutorials were expected to help students to give them feed-
back about their developing learning. All lectures were supported by tutorials where 
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approximately three members of staff (e.g. PhD students) helped students to do the 
exercises set by the professor. Students had to submit their answers/coursework 
within a week (of being set by the professor in lectures), and they could get help 
with these questions in tutorials. However, these tutorials only seemed to be ef-
ficient, if students had thought about the exercises beforehand—which relates to 
students’ study skills (or lack of it) and maturity in terms of their learning.

However, the focus group students said that the coursework was so ‘time-con-
suming’ and they had to use all resources available to them to get it done. Indeed, 
it was felt that there was a ‘knowledge gap’ between the lecture (notes) and the 
coursework: for them it was not possible to do the coursework simply reviewing 
the lecture notes. Moreover, there was no time available for ‘understanding’ the 
lecture notes.

I think it’s really time consuming yeah…. [I] remember him saying at the beginning of the 
term, ‘oh you should take about an hour attempting the questions and then come to tutorial’, 
and I’m thinking, once I was up till six in the morning and it was on the very first course-
work, so it should have been the easiest one, trying to do it using the lecture notes, using 
three books, using the Internet, and it makes me think that if I need that much, just to do a 
coursework, what the hell do I need just to understand it? No seriously,…this is learning to 
do the coursework, so what about just understanding it in general? If it takes me that much 
time, there’s not enough hours in the day to do that. (DP5, focus group interview)

Because I think like when you’ve, from the lecture notes and then when you start the 
coursework, the like knowledge gap, there’s a bit of space in it where you have to make the 
links yourself. And that does take time, and because of the time constraints that we have, 
like it’s on a weekly basis that you get the coursework don’t you? (DP5, Simar)

It appeared that there were support structures to help students become independent 
learners, but these would only work if students ‘ask for help’; therefore, these were 
only effective if students practically sought help. It was mentioned by several pro-
fessors and tutors that students did ‘not know how to study on their own’ when they 
arrived at university.

It’s something that they need to learn fairly quickly at university because we don’t really 
have the resources to hold their hands a great deal, even if we wanted to, and I don’t think 
we want to that much. (DP5, FR1)

Thus, it was clear that whilst students were given some formal support, the uni-
versity and staff members expected them to ‘grow up’ and assume responsibility 
for their learning, on their own most likely. Field notes from an induction lecture 
showed what a professor regarded as ‘poor’ and ‘good’ study skills in mathemat-
ics. However, in terms of study skills, and besides the short presentation during the 
3-day induction, there is no further explicit support of study skills until the second 
year. For the second year one professor had identified study skills and communicat-
ing mathematics as an area of concern. He thus developed a programme module 
on ‘mathematical writing’ where he taught students how to write ‘precisely’ about 
mathematics ‘as a way of helping them to understand’. This was a relatively innova-
tive programme, and regarded with some scepticism by colleagues, but seemed to be 
welcome nevertheless.
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One of the main messages was that students developed an understanding about 
different sources of feedback (e.g. books, internet, and lecture notes), including ask-
ing for the help of peers and the tutor.

Yeah he says it especially… He wants us to go into books, research it…you have to go 
away, find out for yourself, struggle with it, and then try and get a bit of help and then try it 
a bit more and he’ll come to you. (DP5, Int 2, Simar)

In order to become independent learners, students identified and sought several 
support mechanisms: e.g. lecture notes, textbooks, coursework and tutorials, and 
asking peers for help. However, only in exceptional cases did they go to see the lec-
turers during office hours—quite a contrast to school conditions where the teacher 
was the first line of support.

To come to terms with such a change was difficult for students. Simar who was 
regarded as a ‘good student’ tried to find his own strategies and rhythm of learning:

I’m the type of person where I have to look at it, look at it, look at it- stare at it, stare at it, 
try questions, look at it, look at it and then I’ll get it. But other people can just, they can just 
get it. It depends on their kind of, I’m more analytical, I need a full set of notes. I need to 
go through it all step-by-step, make summaries on it, stare at it more and then do questions, 
questions, questions and then I’ll get it. (DP5, Simar, p. 10)

Thus, Simar’s strategy was to listen and take notes during lectures, not necessarily 
understand. In discussions he talked about the difficulty of ‘listening, learning and 
writing all at the same time’, and his tactic to write things down whilst listening, 
and later going back to his notes either in the library or at home and reading through 
properly. He claimed that by writing things down he learnt ‘subconsciously’. One 
can argue, and interviews with lecturers supported it, that at the same time students 
were also ‘enculturated’ into a ‘different kind of thinking’ and a different mathemat-
ics which included ‘rigour, accurate reading, and thinking’.

4.5  Discussions of Findings

At the general level school teachers appeared to provide students with clear and 
concise instructions what they wanted them to do (see also school handbook), and 
the expectation was that students learnt according to teacher guidance, and in the 
ways shown/taught by their teachers. At school this included attending mathematics 
classes—this is compulsory, and teachers provided particular notes which students 
either had to copy or they were provided as copies. There were also clear instruc-
tions about the course (e.g. the content, expected learning strategies, the modes of 
instruction, modes of assessment, etc.) in the department handbook. In this school 
teachers were expected to create opportunities for pupil mathematics learning (e.g. 
provide particularly useful strategies and worked examples) and recognise when 
this was not happening (e.g. through assessment), and perhaps offer further possi-
bilities for learning. Equally, students were expected to learn the mathematics skills 
to solve the exercises provided and the tasks in the tests/examinations. Thus, there 
was a common obligation and in an atmosphere of ‘trust and mutual respect’.
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However, at university the responsibility of the lecturers/professors was to pro-
vide the lectures and coursework that could be worked upon at tutorials—in short, 
to ‘deliver the content’. Students were expected to manage the learning processes 
largely by themselves. According to Simar and his friends, students were expected to

•	 Listen	to	lectures	(‘sit	quietly	and	copy’)
•	 ‘Take	notes’	and	‘read	the	lecture	notes’
•	 Go	to	tutorials	and	pass	tests
•	 ‘Emulate’	what/how	professors	do	mathematics

This implied that students were responsible for their own learning, and developed 
adaptive help seeking, if they did not understand—quite different to school, where 
the responsibility for learning mathematics was mainlyon the teachers and the 
school. As one of the lecturers pointed out that

we do provide quite a lot of support for students, but they have to accept it, they have to go 
and ask the questions. (DP1, Lecturer1)

Thus, the rhetoric was that they supported their students (and they genuinely want-
ed to), but practically students did not know ‘how to ask the questions’. Students 
would need to learn how to ‘diagnose themselves’ to know what their needs/ques-
tions were.

On the basis of video footage of selected lectures and pre- and post-video stimu-
lated recall discussions with lecturers, one could identify meanings that were at-
tached to particular practices. Particular lectures reflected the kinds of things that a 
‘rigorous mathematician’ may need to learn:

•	 ‘Reasoning	and	proof’-based	thinking	and	practices	were	expected	to	be	devel-
oped through geometry and linear algebra

•	 ‘Procedural	fluency’	(methods)	was	seen	to	be	developed	through	calculus
•	 Practical	and	context	relatedness	was	regarded	to	be	developed	through	statistics

Lecturers claimed that whilst students preferred ‘recipes’, they did not want skill 
training or recipe-like learning; they wanted mathematical thinking which included 
‘rigour and proof’, at least that was what they claimed. There was an apparent con-
tradiction in terms of what lecturers said and what they did, according to students’ 
understandings (see above, Simar and his friends understandings of expectations): 
it appeared that, in practice, lecturers wanted students to ‘emulate’ what they were 
doing in lecturers, which in turn was interpreted as a recipe for passing the tests.

It can be argued then that there was a clear institutional expectation in terms 
of mathematics at City University, made explicit in discussion with lecturers and 
students, and mediated by particular practices. This expectation was about helping 
students to become a ‘rigorous mathematician’ and there was an agreement amongst 
staff members that students should be ‘enculturated’ into this from day 1. Becoming 
a ‘rigorous mathematician’ included a particular approach to mathematical prob-
lem solving and reasoning, ‘stringing’ together a logical argument and writing in a 
logical manner, setting out the answer in a particular way. It was about ‘precision’ 
(e.g. using the right mathematical notation; setting things out properly) and ‘clarity’ 
(e.g. what are the assumptions, following an argument), and being able to explain 
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and reason why they did things in a particular way. However, how students were 
expected to learn and develop these was not clear.

The tests (and preparation for those) were seen (by the university) as getting stu-
dents on a similar level, but in practice it was more than that—it gave students the 
message that at City University a different mathematics was taught and learnt than 
they were used to at school, and with a different rigour—all this necessitated crucial 
changes from the side of the students.

In terms of mathematics learning and independent learning, I examined what kinds 
of practices and feedback may have helped students to become independent learners 
(see Table 4.1). Research (e.g. Schommer 1990) has established that students’ beliefs 
about learning affect self-regulation by influencing the nature of and interpretation 
of feedback. Alexander et al. (1991) contend that feedback is information with which 

Table 4.1  Pedagogic practices, feedback and transformations
Pedagogic practices—
feedback from

Source of feedback: 
people/objects/tools 
involved

Type of feedback 
with respect to self- 
regulated learning

Transformation 
through

Lectures
(including planning for 
lectures, post-lecture 
work)

Teacher/lecturer
Peers
Experience

Self-regulation Confrontation

Tutorial:
Class participation 
Engagement
Volunteering
Trying things out

Teacher/lecturer
Peers
Experience

Self
Task performance
Task

Shared problem space
Reflection

Coursework/
homework

Teacher/lecturer
Peers and parents
Experience
Self
Texts

Task
Self-regulation
Task performance

Confrontation
Shared problem space

Textbook/curriculum 
materials

Experience
Self
Texts

Task
Self-regulation
Task performance

Shared problem space

Lecture notes Hand written texts Task
Self-regulation
Task performance

Reflection

Seeing tutor/teacher Tutor Self
Task performance
Task

Reflection and 
Coordination

Seeing peers Peers Self
Task performance
Task
Self- regulation

Shared problem space
Reflection

Tests/examinations Teacher/lecturer
Peers
Experience
Self
Texts

Task performance
Task

Objectification
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a learner can confirm, add to, overwrite, tune, or restructure information in memory, 
whether that information is domain knowledge, metacognitive knowledge, beliefs 
about self and tasks, or cognitive tactics and strategies. Table 4.1 shows the different 
practices (at school and university) that are linked to the different types of feedback 
and people/objects/tools (as sources of feedback) involved.

Different practices and different ‘tools’ potentially provide different kinds of 
feedback to students. In principle, there were two sources of feedback: that which 
students self-generated by monitoring their engagement with learning tasks and that 
provided externally (e.g. through tutorials). For example, lectures were provided 
externally, and at the same time students (at City University) worked with lectures 
in such ways that gave them feedback in terms of regulation of the tasks, the process 
level. But perhaps most interestingly lectures also gave them feedback in terms of 
self-regulation and even personal evaluation (Hattie and Timperley 2007): in lec-
tures students were ‘confronted’ with unknown mathematics, a different pace, for 
example, and in a language largely unknown to them. Asking questions was often 
not appropriate, as the lecture pace was too fast to ask suitable questions—thus, 
adaptive help strategies were not supported by lectures.

However, according to students’ comments, potentially and in terms of self-regu-
lation, the lecture became the most potent catalyst for student independent learning. 
However, in itself it did not provide appropriate information on any of the three 
self-regulation layers (regulation of self, regulation of learning process, regulation 
of processing modes), but students who wanted to understand what was going on 
had to prepare the lectures, and work on them afterwards, perhaps using other tools, 
such as textbooks. In terms of ‘transformation’ as a learning mechanism and its as-
sociated processes (see Akkerman and Bakker 2011), there is definitely a confronta-
tion process, where students were faced with the very different mathematics-teach-
ing practices of ‘lecture’, and which forced many into self-regulation strategies.

As another example, particular pedagogic practices, such as coursework and tuto-
rials, went handinhand at City University, where tutorials potentially included class 
participation, engagement, volunteering, or ‘trying things out’. Feedback was given 
by the tutorial leader, by peers, and perhaps students’ own experience with the tasks. 
Asking questions was encouraged, and so was trying things out. This is likely to 
have provided students with feedback on the mathematical tasks (how well the task 
is understood), on the process level (how to perform the mathematical task) and 
perhaps on the self level (personal evaluation—‘I can do it’). The timing of course-
work was externally enforced, but according to students, comments also helped them 
to self-regulate and self-monitor. In terms of learning mechanisms and transforma-
tion, coursework and tutorials were not a completely new practice for students (there 
was coursework at school). However, they provided students with ‘shared problem 
spaces’ and time for reflection which in turn transformed their learning styles. In fact, 
it was remarkable how much students valued ‘peer’ and ‘friendship’ group work.

Furthermore, the mathematics (and how it was presented) was likely to have 
had a confrontation aspect. Tests and examinations were likely to have provided 
transformations through ‘objectification’ and ‘reification’ (Wenger 1998)—if they 
succeeded in the tests, they were expected to have learnt the mathematics.
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4.6  Conclusions

From our analyses, it appeared that students’ experience at upper secondary school 
did not seem to prepare them well for university learning of mathematics, whether 
in terms of mathematics (‘all new mathematics’) or in terms of learning styles, or 
indeed in terms of autonomously managing the resources. From the interview data, 
it was clear that most difficult for students were the changes in teaching styles and 
the associated styles of learning, besides the difference of the mathematics they were 
taught at school as compared to the‘new mathematics’ (including more argumenta-
tion and proof) at university. This is supported by the literature, and several studies 
(e.g. Ozga and Sukhnanden 1998) have claimed students’ lack of preparedness for 
learning in higher education. In this study students encountered difficulties because 
they lacked an understanding of what learning mathematics at university involved, 
and many tried their ‘old’ methods (following the teacher), but without success. The 
tempo was too fast to ‘emulate the mathematics’, and copy. At the same time lectur-
ers saw it as their responsibility to ‘deliver’ the content, rather than helping students 
‘learn to learn’. This is supported by the literature (e.g. Fallow and Steven 2000) 
which claims that most academics’ concerns focus on content, rather than on learning 
skills, which involved different pedagogic practices, different types of feedback and 
different tools.

It can be argued that at the point of transition there were distinct transformations 
with respect to feedback and self-regulated learning from school to university math-
ematics education, both in terms of sources and types of feedback, which in turn 
led to different kinds of mathematics learning and responsibilities for such learning. 
Further, at City University there was a clear distance between students and lecturers 
(addressed as Professor and Doctor, and not by first name), whereas at school there 
appeared to be an atmosphere of ‘mutual respect and trust’. Moreover, the school 
mathematics did not fit what was wanted at City University; students were told to 
‘forget the mathematics you have learnt in school’. At school students needed to 
acquire the mathematical skills; at university there seemed to be a different kind of 
learning needed, including reasoning and a deeper mathematical knowledge. It ap-
peared that City University lecturers wanted to ’enculturate’ students into a different 
way of thinking which included rigour and proof, but there was little support of how 
students could get to that level, except emulation. The university department rou-
tinely provided different kinds of support (tutorials, peer group teaching, etc.), but 
the support students needed most was not provided: ‘learning to learn mathematics’ 
(Wingate 2007). The question remains of how this ‘transformation’into a ‘rigorous 
mathematician’ was expected to happen; neither was it clear how lecturers wanted 
students to change their learning practices.

Further, I contend that the transformation at transition from school to univer-
sity mathematics education has implications for students and their mathematics 
 learning strategies. With the change from school to university, teachers ‘transform 
into’ lecturers, lessons into lectures, homework into coursework, textbooks into 
course materials, tests into examinations, and school mathematics into university 
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mathematics. However, students often receive little support how to manage these 
 transformation, and how to steer and direct their learning processes. There are dif-
ferent ‘sources’ at school and university level in mathematics education that could 
be regarded as potentially enriching for and supportive of student learning (e.g. 
texts and textbooks, see Vollstedt et al., Chap. 2). However, these sources are con-
textualised according to student perceptions and beliefs and prior knowledge, and 
thus cannot be seen to be uniformly ‘useful’. It is perhaps when students look out 
for these sources, that is when adaptive self-seeking becomes part of student learn-
ing, that these are most effective—it is at this moment that they become most rel-
evant and ‘problematic’ for students.

In terms of theory, the concept of feedback and self-regulated/independent learn-
ing has been useful in investigating the transition from school to university math-
ematics education, and I have argued that ‘transformations’ of learning practices 
have serious consequences for students’ success (or failure) at these crossroads of 
their mathematical development, in particular if students are inappropriately sup-
ported, or left on their own, to ‘bridge the gap’ from one to the other. If Higher 
Education institutions expect students to ‘transform’ into ‘rigorous mathematicians’ 
and self-regulated learners, they have to provide the necessary ‘tools’ and instruc-
tion to use those.
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5.1  Introduction

Prospective teachers, starting to study in order to become a mathematics teacher, 
contribute in a very special way to transformation processes, which mathematics 
as a science is actually undergoing in learning and teaching situations. We use the 
term transformation hereby to describe the adequate modification of mathematical 
content according to situation, intention, and cognition in educational settings. So, 
transformation is not an oversimplification or trivialization of content but an ad-
equate adaptation of the learning material to the learner’s perspective. On the one 
hand, in university mathematics courses at the beginning of their studies, starting 
out from their learner’s perspective, prospective teachers experience to be taught 
mathematical content that clearly differs from school mathematics, not only in 
range but also in formality and stringency. For this reason university teachers, who 
impart mathematical content, need to be sensitive to transformation processes in 
order to impart mathematical content in a comprehensible manner. On the other 
hand, later in their professional life, also the prospective teachers need to be able 
to teach mathematical content and make it accessible to their students in a di-
dactically well-prepared manner. Therefore, they independently need to undertake 
didactical transformations of mathematical content in the scope of their everyday 
preparation of teaching as well. In the 1950s, Klafki formed the idea of a didacti-
cal reduction of the complexity of the scientific content that has to be learned in 
school, a transformation of the content via exemplifying, carving out fundamental 
ideas, and concentrating on elementary aspects. The choice of adequate curricula 
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that is known as didactical analysis (Klafki 1958) or didactical transformation 
(Aschersleben 1993), its legitimation and the validation of its educational sub-
stance as well as the associated reduction of extent and difficulty in order to take 
into account the learners’ cognitive abilities, is considered to be one of the es-
sential requirements for teachers even prior to the choice of adequate methodi-
cal approaches. Traditionally prospective teachers are not provided with enough 
learning opportunities in order to sufficiently acquire the knowledge and abilities 
that are taught at university for didactically bridging the gap between the academic 
mathematics and the student-oriented elementary mathematics. High dropout rates 
among the first-year students indicate that already within the first semester impart-
ing mathematical content in a comprehensible way only partially succeeds. Cur-
rently, at the universities there often is a large gap between the specific training 
on subject-based content and its realization in terms of teaching methodology. It 
is especially criticized that the link between the separate parts of teacher training, 
i.e., mathematics, didactics of mathematics, and pedagogy, is insufficient (for an 
overview cf. Blömeke 2004).

The teacher training program has been criticized to be lacking in practical 
relevance already for a century. It was at the beginning of the twentieth century 
that Felix Klein already described the phenomenon known as double disconti-
nuity: “The young university student found himself, at the outset, confronted 
with problems which did not suggest, in any particular, the things with which 
he had been concerned at school. Naturally he forgot these things quickly and 
thoroughly. When, after finishing his course of study, he became a teacher, he 
suddenly found himself expected to teach the traditional elementary mathematics 
in the old pedantic way; and, since he was scarcely able, unaided, to discern any 
connection between this task and his university mathematics, he soon fell in with 
the time honoured way of teaching, and his university studies remained only a 
more or less pleasant memory which had no influence upon his teaching.” (Klein 
1932, p. 1).

Even today the double discontinuity is in the center of discussion concerning 
the relation between school and university (see Biermann and Jahnke 2013, this 
volume; Deiser and Reiss 2013, this volume; Pepin 2013, this volume). In the past 
couple of years there have been several approaches to subtend the discontinuity by 
altering the conditions of studying; one of them at the University of Giessen was 
sponsored by the Deutsche Telekom Stiftung (German Telekom foundation). This 
program focuses strongly on the entrance phase of the mathematics teacher training 
program for those who are becoming mathematics teachers for the higher track of 
the German tripartite school system (so-called Gymnasium). A central assumption 
of this program is that the discontinuity between school and university can partly 
be overcome by an adequate teacher-oriented transformation of the mathematical 
content in the academic lectures. In the following, we report about this program and 
the achieved changes.

The German Telekom foundation intends to support projects within the teacher 
training program that helps avoiding breaks in biographic transition periods such 
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as starting the teacher training program in mathematics. In the course of this, the 
University of Giessen, in cooperation with the University of Siegen, elaborated 
a research and development program called Mathematik Neu Denken ( Thinking 
Mathematics in a New Way) that reorientates the teacher training program (Beu-
telspacher et al. 2011). This project seeks a long-term improvement in the quality 
of the education of future mathematics teachers for the higher track schools, and, 
associated with these changes, improvement of mathematics education at schools is 
intended. The program was realized from 2005 to 2009, respectively, to 2010 with 
state funding. The students, who become mathematics teachers, were introduced to 
a new combination of courses that separated them from those who are aiming for 
a diploma in mathematics during their first two semesters. The subproject of the 
University of Giessen focuses on the rearrangement of the lecture on linear algebra/
analytical geometry to an introductory course that is adapted to school requirements 
emphasizing the relation to mathematics subject matters and that relies on the viv-
idness and the primacy of geometry. On the one hand, this approach is standing in 
the tradition of Felix Klein who laid an emphasis on the need of the sensualization 
of ideal constructs by the use of drawings and models (Klein 1939). On the other 
hand, it is trying to realize the idea of a didactical transformation of the mathemati-
cal content by consciously taking the student teachers’ existing preknowledge up 
and strongly connecting it to extramathematical applications of mathematics with 
regard to the student teachers’ future professional life. Furthermore, laying an em-
phasis on this kind of transformation offers an opportunity to learn an application-
oriented way of teaching.

This chapter is based on data from the evaluation study TEDS-Telekom. The 
main purpose of this study, which was funded by the German Telekom founda-
tion as well, is the evaluation of the funded project Thinking Mathematics in a 
New Way. In TEDS-Telekom these innovative approaches were evaluated from 
an external point of view with regard to the impact that was achieved in the area 
of the development of mathematical, didactical, and pedagogical competences of 
the students, together with the development of the corresponding beliefs. Among 
others, it has been drawn on approaches of the international comparative study 
“Teacher Education and Development Study—Learning to Teach Mathematics” 
(TEDS-M; Blömeke et al. 2010a, b; Blömeke and Delaney 2012). This IEA study 
for the efficiency of the education of mathematics teachers presents an external 
reference framework that allows for specific statements about the innovation po-
tential of the pilot project, funded by the German Telekom foundation, in terms 
of strengths and weaknesses of the teacher education at the university. Control 
groups at other universities, which agreed to evaluate their teacher training pro-
gram too, set another external benchmark. All in all, first-year student cohorts at 
five universities (Giessen, Siegen, Bielefeld, Essen, and Paderborn) were ana-
lyzed. For reasons of confidentiality, the results of the universities that addition-
ally took part in the study will be anonymously communicated throughout the 
chapter.
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5.2  Theoretical Framework and Study Design  
of the TEDS-Telekom Study

The presented study attempts to answer the question of how far the innovative ef-
forts at the University of Giessen actually influenced the development of the local 
students’ competences. The TEDS-Telekom study is restricted to the examination 
of influence of institutional educational factors on the individual development of 
competences with the help of quantitatively oriented written tests. For that reason, 
the approach of the study, which is mainly able to capture the development of the 
students’ professional competence, is enriched. Qualitatively oriented and problem-
focused interviews with prospective teachers of the involved universities were used 
in order to have an additional perspective. In doing so, the qualitative approach en-
ables us to gain insight into the impact of didactical concepts of the universities and 
different teaching and learning conditions on students and on their individual inter-
nal perception and acceptance of particular components of the university teacher 
education. The so-called mixed-method design—a qualitative–quantitative mixed 
study design (cf. Kelle 2008) that has been chosen to be applied—is supposed to 
compensate “blind spots” in the methods of a single research paradigm and custom-
ize a broader range of results.

The term professional competence has been conceptualized in various ways 
within the scope of empirical studies, such as the international studies MT21—
“Mathematics Teaching in the twenty-first Century” (Blömeke et al. 2008) and TEDS-
M (Blömeke et al. 2010a, b; Blömeke and Delaney 2012), the German COACTIV 
study—“Professionswissen von Lehrkräften, kognitiv aktivierender Mathematikun-
terricht und die Entwicklung mathematischer Kompetenz” (Kunter et al. 2011) or the 
Michigan LMT-Project “Learning Mathematics for Teaching” (Hill et al. 2008). The 
evaluation study presented below is based on the conceptualization of professional 
competence of prospective mathematics teachers as a multidimensional construct, 
like it has been developed in general by Weinert (1999) and Bromme (1992, 1997) 
and which forms the theoretical basis of the TEDS-M study too. According to this ap-
proach, professional competence includes subject-related and interdisciplinary cog-
nitive dispositions of performance, as well as affective-motivational beliefs as part of 
a teacher’s personality. In addition to that, in his topology of teacher’s professional 
knowledge, Bromme (1992, 1997) underlines the impact of the teachers’ personal-
ity on the professional competence by describing the knowledge on the philosophy 
of the school subject and its contained perspective of valuating. Further, elaborately 
discussed questions in the field of scientific research on the assessment of teachers’ 
competences are about the integration of acting into models of professional compe-
tence of teachers and the measurability of competence for action.

The evaluation study TEDS-Telekom is restricted to the analysis of the cogni-
tive components of professional competence (professional knowledge of teachers) 
and focuses in the area of personality features on beliefs concerning the subject and 
the teaching and learning of the respective subject. The study owes its restriction 
to the fact that students at the beginning of their studies cannot gain much action 
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competence, because up to that time most of them did not have the opportunity to 
get professional experience and, regarding the impact of personality traits on the 
characteristics of professional competence, it is widely believed that these influ-
ences tend to be less obvious at the beginning of the university study time than later 
in professional practice. For this reason, the evaluation study focuses on the central 
aspects of the knowledge in mathematics and didactics of mathematics of the first 
two academic years for future mathematics teachers for lower and upper secondary 
levels, including the related beliefs referring to the fundamental aspects of profes-
sional knowledge of teachers as outlined by Shulman (1986) and Bromme (1992, 
1997) (see Fig. 5.1).

For the evaluation study the dimensions of professional competence have been 
subdivided and operationalized as follows:

•	 Academic	mathematical	knowledge	in	the	area	calculus	and	linear	algebra/ana-
lytic geometry

•	 Elementary	mathematics	from	an	advanced	standpoint
•	 Pedagogical	content	knowledge	of	mathematics	or	didactics	of	mathematics	re-

ferring to upper secondary level
•	 Pedagogical	 knowledge	 focusing	 on	 action-related	 aspects,	 such	 as	 the	 struc-

turing of teaching, motivation, classroom management, assessment and dealing 
with heterogeneity

•	 Beliefs	on	mathematics	as	a	science	and	on	learning	and	teaching	of	mathematics

In this connection it must be noted that elementary mathematics from an advanced 
standpoint is a subarea of mathematics, but, simultaneously, it also creates basic 
elements for an interlocking of academic mathematical knowledge and didactics of 

Fig. 5.1  Model about professional competence in the evaluation study TEDS-Telekom
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mathematics in the meaning of the approaches of Klein (1932) which have been de-
veloped further by Kirsch (1987). These subdomains then are differentiated further 
with respect to cognitive aspects, by evaluating the respective declarative knowl-
edge and the repertoire of pedagogical acting. In order to identify the different qual-
ities of cognitive requirements to be met by the prospective teachers for solving the 
test items, Bloom’s taxonomy of cognitive processes, as revised and extended by 
Anderson and Krathwohl (2001), was applied in connection with the test items. The 
focus was on three dimensions of cognitive processes: memorizing, understanding/
analyzing, and creating (see Blömeke et al. 2011).

These mathematical and mathematics-didactical-related items of the study have 
successfully been developed in accordance with two interrelated content-based 
frameworks of reference: on the one hand, the largely canonical contents of the lec-
tures at the beginning of the university study courses for mathematics teacher edu-
cation for the upper secondary level and, on the other hand, the respective recom-
mendations for the structure and design of the study from the Standards for math-
ematics teacher education as suggested by the German Society of Mathematics 
(DMV), the German Society for Didactics of Mathematics (GDM) and the Union 
for the Advancement of Mathematics and Science Teaching (MNU) (DMV, GDM 
& MNU 2008) by considering the central ideas and approaches of the innovative 
concept of mathematics teacher education of the universities of Giessen and Siegen.

As far as the items are not taken from the TEDS-M study, mathematical and 
mathematics didactical items which had been created for TEDS-Telekom were de-
veloped further by the mathematics didactical working group at the University of 
Hamburg guided by Gabriele Kaiser in cooperation with Hans-Dieter Rinkens from 
the University of Paderborn and then refereed in workshops by further experts of 
mathematics didactics from universities which are also participating in the study. 
Then, based on that expertise, the items were revised again. The items related to 
pedagogy have been developed by the working group Systematic Didactics and In-
structional Research at Humboldt University of Berlin directed by Sigrid Blömeke 
in cooperation with Johannes König.

The test also contained items from the TEDS-M study so that later the results of 
the evaluation study can be evaluated and interpreted with reference to an external 
standard. Like the initial development of items, the TEDS-M items were selected 
with respect to the above-described content-based frameworks of reference (ca-
nonical contents of the respective university courses and DMV–GDM–MNU sug-
gestions).

To illustrate the items used in the study, we describe in the following one of 
the TEDS-M 2008 items that has been used in the TEDS-Telekom study with the 
respective solution frequencies. But attention should be given to the fact that per-
formance on the level of individual items can vary due to chance and thus should 
not be over-interpreted.

The task US25 (see Fig. 5.2) comes from the content area of the academic math-
ematical knowledge of linear algebra and analytic geometry and requires basic 
knowledge of the geometry of the plane and the space. The amount of points that 
satisfies the equation 3x = 6 in the plane is a straight line, but in space it is a plane.
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Seventy-two percent of the German prospective teachers in TEDS-M 2008 were 
able to solve item A correctly; for item B of the figure, the proportion is still 68 %. 
The student teachers of the University of Giessen solve both items with 75 % at 
approximately the same height, as well as the comparative teacher training group 
(71.4 % for item A and 61.9 % for item B). For being able to make a statement about 
the achievements and the achievement development of first-year-student cohorts, 
the TEDS-Telekom study is designed as a real longitudinal study. The evaluation of 
the students by means of a 90-minute paper-and-pencil test took place at the begin-
ning of the first semester (December 2008), the end of the second semester (July 
2009), and at the end of the fourth semester (July 2010). Central assumptions for 
the evaluation of the test results were measurable success of achievements from the 
first to the third point of measurement, thus from the beginning of the first semester 
until the end of the fourth semester, as well as that the degree of success of achieve-
ment varies depending on the level of achievement at the beginning, the students’ 
learning preconditions, and the learning opportunities provided by the universi-
ties—thus the innovative potential of the study programs (integration of domains 
of knowledge, extent of learning opportunities, etc.). Meanwhile, the results of the 
longitudinal measurements from all three evaluations are available (Buchholtz and 
Kaiser 2013, in print).

US25) We know that there is only one point on the number line that satis-

fies the equation , namely x = 2.

Let us now transfer the equation to a plane with coordinates x and y,
and then to space, with coordinates x, y and z. What is the set of points that
satisfy the equation there? 

Tick one box per row.

A point
A 

straight 
line

A plane Else

A) The solu-
tion of

in
the plane

B) The solu-
tion of

in
space

Fig. 5.2  TEDS-M 2008-item
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Going beyond the borders of the project Thinking Mathematics in a New Way, in 
order to investigate the influence of various aspects of institutional conditions and 
aspects of didactics of higher education on the individual acquisition of competence 
from a different, more qualitatively oriented point of view, additional problem-
centered guided interviews according to Witzel (1982) were carried out with 19 
prospective teachers from all participating universities. Within the scope of these 
interviews, the prospective teachers were asked about their perceptions and their 
estimations about learning opportunities and aspects of didactics of higher educa-
tion in connection with their studies. Among these 19 prospective teachers, who 
participated voluntarily and were chosen randomly, there were four students from 
the Justus-Liebig-University of Giessen. The interviews were conducted by using 
a guideline which contains the following aspects of perception and estimation of 
university teaching within the introductory phase of their experienced university 
studies:

•	 Integration	of	visualization,	examples	and	example-bound	argumentations,	and	
real-world applications in mathematical lectures

•	 Integration	of	 elementary	mathematics	 from	an	advanced	 standpoint	 in	math-
ematical lectures

•	 Interweaving	of	mathematical	and	mathematics	didactical	content	in	university	
courses

•	 Beliefs	about	teaching	and	learning	of	mathematics

Currently, the interviews are systematically evaluated by means of the method of 
qualitative content analysis of Mayring (2000) so that now only preliminary results 
are available. A mixed-method design has been chosen due to the fact that empirical 
studies dealing with the efficiency of teacher education are mostly either ground-
ed in the qualitative or the quantitative paradigm (as example see Blömeke et al. 
2010a, b; Eilerts 2009; Schwarz 2013). The decisive advantage of a combination of 
qualitative and quantitative methods is that in this way characteristic weaknesses of 
one tradition of methods can be balanced by the strengths of others (Tashakkori and 
Teddlie 2003, p. 16). Johnson and Turner (2003, p. 299) even call it a fundamental 
principle “that has complementary strengths and non-overlapping weaknesses.”

5.3  Development of Cognitive Dispositions  
of Achievement

Over all three measurement points, after the sample had been revised, altogether 128 
students participated in the TEDS-Telekom study. Thirty-two students of them are 
from the Justus-Liebig-University. Because the subsamples of the control universi-
ties decreased over the study time of four semesters, and for particular methodical 
reasons and reasons of confidentiality, the results of the universities of Bielefeld, 
Paderborn, and Essen will not be compared to those of the University of Giessen 
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on the level of universities. Instead of comparing small samples and heterogeneous 
groups, the groups of the students studying to become teachers and students not 
studying for the teaching profession will be treated separately, whereat these groups 
will be aggregated as “control groups,” or “reference groups,” containing students 
from all three universities: Bielefeld, Paderborn, and Essen. For this reason the 
composition of the control groups is extending across locations and consists of 39 
prospective teachers ( Control Group Teaching) and 30 nonteacher students ( Con-
trol Group Non-Teaching). The results of the group of prospective teachers from the 
University of Siegen, in which also a subproject of the German Telekom foundation 
was funded, are not mentioned.

To give an overview about the individual preconditions of the students partici-
pating in the study, at each point of measurement the average grade of the general 
qualification for university entrance (the so-called Abitur) of the students still re-
maining in the sample was compared to the average grade at the beginning. At the 
beginning, at measurement point M1 the groups did nearly not show any differ-
ences in comparison, but at measurement point M3 the control group of nonteacher 
students had significantly better average grades of the general qualification for uni-
versity entrance (the so-called Abitur grades) than all groups of prospective teach-
ers. This points to possible selection processes, e.g., dropout of weaker students 
with lower grades in their Abitur grades during the first four semesters. However, it 
cannot be excluded that students with lower grades could not be reached anymore 
by the tests.

Likewise, the two universities promoted by the program of the German Telekom 
Foundation show a similar characteristic improvement of the average Abitur grade. 
However, the grade of improvement of the University of Giessen is the lowest. This 
suggests that the introductory selection procedure is less noticeable in this group (to 
compare see Table 5.1).

Further, data were collected about the kind of courses that were attended by 
students at school in the upper secondary level. For this, the answer options basic 
course (courses at basic mathematical level), advanced course (courses at higher 
mathematical level), and neither basic nor advanced course (optional in some fed-
eral states of Germany) were given. The comparison of the results of the samples 
of M1 and M3 is shown in Table 5.2. First, it shows that at the control universities 
the percentage of students—prospective teachers and nonteacher students as well—
who had attended advanced mathematics courses during their schooltime increases 

Table 5.1  Comparison of average Abitur grades; the grades can differ from 1.0 (best grade) to 4.0 
(worst grade)
Group Abitur grade M1 Abitur grade M2 Abitur grade M3 Deviation
University of 

Giessen
2.20 2.20 2.15 − 0.05

Control group 
teaching

2.37 2.26 2.24 − 0.13

Control group 
nonteaching

2.21 2.05 2.01 − 0.20
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from measurement point 1 (M1) to measurement point 3 (M3), for which there 
might be a connection with effects from the introductory selection. However, at the 
University of Giessen the percentage remains the same. These results might indicate 
that the University of Giessen was more successful than the control universities in 
keeping students with less good preconditions over a longer period of time, at a 
minimum during the first four semesters.

The collected data from the tests have been scaled by IRT models (see Rost 2004), 
for which scales had to be distinguished according to the domains of knowledge 
as described in Sect. 5.2. For the estimation and presentation of individual abili-
ties, weighted likelihood estimates (WLEs, Warm 1989) were applied. Each scaling 
has been executed by using the software ConQuest (see Wu and Adams 2007), a 
software for fitting item response and latent regression models. As the second and 
third collection of data were intended to measure development, it was necessary to 
“anchor” the various kinds of tests at all three measurement points in all domains of 
knowledge with a respective number of items. This means that the same items had 
to be calculated over all kinds of tests and measurement points by referring to the 
same parameters of difficulty. As it is very difficult to equalize item parameters in 
ConQuest, an approach has been chosen, which also Hartig and Kühnbach (2006) 
reverted to. For an estimation of the item difficulties, first a one-dimensional scaling 
for all items with so-called “virtual persons” has been carried out.

Then, for an estimation of the person’s abilities the item difficulties of the anchor 
items of measurement point 1 (M1) have been imported into a three-dimensional 
scaling of all items, for which the single measurement points are indicating the three 
latent dimensions. For this, the difficulty parameters of the anchor items from the 
scaling with virtual persons have been taken and been fixed for all three measure-
ment points. Thus the anchor items show the same difficulty at each measurement 
point. Then, based on this model, the person parameters have been estimated.

The scales’ reliability in the three-dimensional model ranges from sufficient to 
good at all three measurement points (scale reliability from 0.63 to 0.83).

In the following, the ability parameters are presented graphically and subdivided 
according to the different domains of knowledge that were tested. The WLEs of all 

Table 5.2  Comparison of school-related preconditions
M Kind of course University of 

Giessen (%)
Control group 
teaching (%)

Control group 
nonteaching (%)

1 Advanced course 71.9 68.5 89.3
Basic course 28.1 29.2   5.4
Neither basic nor 

advanced  
course

0   2.2   5.4

3 Advanced course 71.9 76.9 96.7
Basic course 28.1 20.5   3.3
Neither basic nor 

advanced  
course

0   2.6 0
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measurement points were transformed to an average value of M = 100 and a stan-
dard deviation of SD = 20. Finally, all results will be interpreted separately accord-
ing to the respective domains.

5.4  Development of Performance in Cognitive Domains

5.4.1  Academic Mathematical Content Knowledge 
(Calculus & Linear Algebra/Analytic Geometry) 
(Fig. 5.3)

At all three measurement points, significant differences between the groups of the 
prospective teachers and the control group of nonteacher students exist with the 
group of the nonteacher students performing significantly better. However, alto-
gether the achievements of all first semester prospective teachers increase signifi-
cantly too. Therefore, the expectations of observable learning success have clearly 
been met by this study. After four semesters (M3) the prospective teacher groups 
have reached a similar level as the means of the two groups do not differ signifi-
cantly, although they developed differently.

The stagnation between the first two measurement points can be balanced by the 
University of Giessen up to the third measurement point. The group reached the 
same level of ability as the control group “Teaching” by means of higher learning 
success from the second to the third testing, while the control group “Teaching” 
showed strong success from the first to the second testing. The stagnation of the 
University of Giessen between the first and second measurement point can easily 
be explained. According to their study program it was not planned that the prospec-
tive teachers of the sample attend the calculus courses. Instead of that they attended 
courses on linear algebra and analytic geometry. Therefore, no increase in the area 
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Fig. 5.3  Ability parameters 
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of content knowledge could be expected, because many items of the tests refer to 
calculus which at the University of Giessen is part of the curriculum for the third 
and fourth semester. The high success of the Giessen group in the last testing can be 
explained by this different organization of the study structure and the timing of the 
offered learning opportunities.

5.4.2  Elementary Mathematical Content Knowledge (Elementary 
Mathematics from an Advanced Standpoint) (Fig. 5.4)

Best performances in the area of elementary mathematics from an advanced stand-
point at the third measurement point are achieved again by the control group of the 
students not aiming for teaching profession (nonteacher students). In contrast to 
that, the group of the prospective teachers performs significantly lower. The control 
group of prospective teachers shows, at no point of measurement, any significant 
change of knowledge in the area of elementary mathematics, whereas the control 
group of nonteacher students improved their performance from an average level at 
measurement point M1 to a significantly higher level at measurement point M3. 
Among the prospective teachers, only the group of students from the University of 
Giessen achieved significantly better results at the third measurement point com-
pared to that before, so that the University of Giessen holds the leading position 
among all participating groups of the prospective teachers.

At first sight, the outstanding performance of the nonteacher students in the area 
of elementary mathematics from an advanced standpoint is surprising, as especially 
one would assume the elementary mathematics from an advanced standpoint to be 
a domain where prospective teachers carve out their leading role in mathematics. 
A possible explanation might be that nonteacher students do not have problems 
with the school-related university mathematics on which the questions are based on. 
Further, generally this cohort of students does not study another academic subject, 
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so that they can spend more hours per semester studying mathematics than prospec-
tive teachers. Compared to all subsample groups, the control group of nonteacher 
students (Non-Teaching Group) contains the biggest share of students who had at-
tended advanced mathematics courses at school. Another reason may be the test 
structure and the test itself. The respective test differs from the tests for the other 
domains of knowledge insofar as the major part consists of TEDS-M 2008 items 
that aim at testing mathematical school knowledge. Only a few new and more diffi-
cult items are added in order to test an increase of knowledge. Altogether, the items 
of TEDS-M 2008 are structured in a slightly different way, sometimes more narrow 
in their questioning or stronger oriented to declarative knowledge. For this reason, 
the result suggests that these items tend to test other facets of knowledge which are 
structured differently compared to the other test parts, possibly more reproductive 
abilities. Anyhow, this predominant advantage of the group of students studying for 
nonteaching professions especially in this domain and the stagnation of the control 
group of prospective teachers compared to the students of the University of Giessen 
at all measurement points is a surprising and quite unexpected result.

The increase of performance of students from the University of Giessen is sur-
prising because of the time it happens, namely between the second and third testing. 
As most of the activities in Giessen, which are supported by the German Telekom 
foundation, concentrate on the area of linear algebra, one would have expected an 
increase of performance in the area of elementary mathematics from an advanced 
standpoint between the first and second measurement point. But at that time the 
results stagnated. This result might be explained as a delayed effect of the support 
programs or caused by specific learning opportunities determined by the character-
istics of the curricular content. In the third and fourth semester the students attend 
calculus courses and the items from the domain of knowledge of elementary math-
ematics from an advanced standpoint are more algebraic and algorithm oriented, 
which runs quite contrary to the more visual-based orientation of the mathematical 
content-based courses of the first two semesters at the University of Giessen, so 
that the numeric orientation of calculus might play a key role for understanding 
elementary mathematics.

5.4.3  Pedagogical Content Knowledge (Fig. 5.5)

The distinct pedagogical content knowledge of nonteacher students at M1 has been 
developed further by this group so that also until the third measurement point, they 
showed the best results in this field of knowledge. This indicates that the items 
which are mainly subject-matter based could obviously be solved well using mathe-
matical-content knowledge. As expected, from all first-year students the students 
from the nonteaching group produced the lowest increase of performance. The pro-
spective teacher groups showed generally a higher, sometimes even a clearly higher 
increase of performance. This result also refers to the fact that pedagogical content 
knowledge is an independent domain of knowledge.
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Students of the control group of prospective teachers and of the group of the Uni-
versity of Giessen showed a significant development of performance in pedagogical 
content knowledge from the second to the third measurement point. According to 
the study, regulations of the University of Giessen students must attend one peda-
gogical content course during the first four semesters, but not at a fixed time. This 
result indicates that the majority of the prospective teachers tend to choose a later 
point of time for attending these courses (Fig. 5.5).

5.5  Learning Opportunities

To get an overview about the students’ learning opportunities, it is necessary to ex-
amine the specific university curricula for teacher education, concerning type and 
scope of courses of the participating universities (intended curriculum) among oth-
ers. These data then need to be crosschecked with data about the students’ percep-
tion about the recommended courses (implemented curriculum) (for differentiation 
of intended and implemented curriculum see McDonnell 1995). In TEDS-Telekom 
the analysis of the intended curriculum was based on the official study and exami-
nation regulations for upper secondary-level teacher education valid at that time at 
the participating universities. Besides that, module manuals and study plans taken 
from the internet which are more or less regulating the students’ course of study 
were considered. The area of content knowledge is determined by a canonical uni-
formity of the study structure of the first four semesters (according to traditional 
teacher education terminology called “basic studies” or Grundstudium). During the 
first four semesters, students have to attend the classic introductory courses, which 
in the first two semesters traditionally are courses on calculus, and in the third and 
fourth semester on linear algebra. In contrast to the other universities which are 
participating in the study, at the University of Giessen the introductory courses are 
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arranged in the reverse order by giving priority to linear algebra/analytic geometry. 
Some universities suggest students to attend calculus and linear algebra courses 
simultaneously in one and the same semester. These regulations for the first four 
semesters are completed by a compulsory mathematical elementary or an advanced 
seminar, or at some universities by a course on the usage of computers in mathemat-
ics, and in some cases even by more advanced courses on calculus such as differ-
ential equations, stochastics, numerics, number theory, or algebra. The amount of 
pedagogical content courses is relatively small, generally only up to maximal 20 % 
of mathematics courses. In the TEDS-Telekom study, data on the attendance of 
these courses referring to study regulations were sampled. As the range of courses 
concerning mathematical content and didactical content differs on a large scale be-
tween the participating universities and the instrument could not be changed for 
local deviance, the study had to restrict to a common nomenclature of elementary 
and advanced courses, which differs from the local nomenclature of the respective 
university. The suggested courses were presented to the students in a list in which 
they had to set the corresponding crosses, but the students also had the opportunity 
to note further courses they had attended. Table 5.3 gives an overview on the an-
swers of the students, indicating courses which had been attended by the students.

Compared to the University of Giessen, the courses attended by students of the 
control universities appear broadly dispersed. Of course, this is caused by the fact 
that the control group consists of groups from three universities. However, as a part 
of the students of the control group attend courses on calculus and linear algebra in 

Table 5.3  Number of students having attended the listed courses 
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the same semester, they tend to take offered advanced courses already in the third 
and fourth semester, while students of the University of Giessen are limited to at-
tend the courses in the strictly predetermined order. In addition, it is striking that 
over the whole time of four semesters, content courses on computer-application 
training are multiply mentioned by the students, which does not occur with students 
from the other universities. Reasons for high attendance of the geometry course in 
the fourth semester at the University of Giessen, which is not part of the studies’ 
curriculum, lie probably in the overall high relevance of geometry at the University 
of Giessen.

Starting out from this background, the picture of the knowledge acquirement 
in various areas of knowledge gives a totally different impression. Concerning 
the acquisition of knowledge within the framework of the introductory courses, it 
obviously does not make any difference whether students take introductory courses 
simultaneously or one after another, because at the end of the fourth semester the 
prospective teachers have reached nearly the same ability level. Only the process 
of the development of content knowledge is different, and therefore no advantages 
or disadvantages of the study concept at the University of Giessen become evident. 
Effects might occur more strongly in the area of a working overload of the students 
and their perception of it.

Likewise, in the area of pedagogical content knowledge the groups differ signifi-
cantly. Generally, students in Giessen attend during the second and third semester 
one or two pedagogical content courses which are focusing on geometry and linear 
algebra. Courses on pedagogical content knowledge were attended only sporadi-
cally at the control universities, but for most of the prospective teachers a kind of an 
introductory and overview-providing lecture exists. As expected, courses on peda-
gogical content knowledge were nearly not at all chosen by nonteacher students.

By looking at the increase of performance, the same effects from attending the re-
spective course become evident. The performance of prospective teachers increases 
significantly from the second to the third measurement point. A differentiation of 
effects from attending introductory courses on pedagogical content knowledge and 
from specialized courses cannot be detected on the testing level.

5.6  First Results on the Evaluation of the Influence  
of Institutional Conditions

In the interviews the prospective teachers were asked to make estimations about the 
general institutional conditions. They should describe from which kind of learning 
opportunities they had gained most during their study time, and in addition which 
issues need to be addressed in order to ensure a more comprehension-oriented uni-
versity teaching. In the following, only the aspect integration of visualization in 
mathematical lectures tackled in the guided interviews will be discussed, because 
the interviews are actually still being evaluated further, but this aspect is deeply 
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related to the transformation of mathematics within academic teaching as Gustav 
Grüner formulated in his work on didactical transformation in general the impor-
tance of analogies, metaphors, and examples for illustrating a scientific statement 
in order to concretize it (Grüner 1967). In addition, especially in the work of Felix 
Klein we find the important role of models for visualizing abstract mathematical 
concepts (cf. Klein 1939). Below, we refer to the statements of the four prospec-
tive teachers from the University of Giessen, who—anonymously—give an insight 
into the impact of the project Thinking Mathematics in a New Way, which aims 
at a new orientation of teacher education for mathematics teachers for the upper 
secondary level at the University of Giessen. Within the statements, the students de-
scribe their involvement in the teacher training program and their perceptions about 
the mathematical courses on a very personal level. Biographical aspects as well as 
the individual development of professional knowledge for teaching form the back-
ground for these statements. (For a related approach to analyze professional identity 
of a student teacher going through teacher education and building up professional 
experience on a narrative way, see Grevholm 2013, this volume.)

The prospective teachers have repeatedly perceived the discontinuity described 
at the beginning of this chapter as a problem they are also struggling with during 
their studies. In Giessen, most of the statements refer to the calculus course which 
is taken only in the third semester and has not become part of the restructuring mea-
sures of mathematics teacher education: that means the calculus course is taught in 
the traditional abstract way attended by the prospective teachers and the mathemat-
ics students not aiming for the teaching profession.

If now I‘m thinking back on school, [in calculus] we had a bit the evaluation of functions, 
a bit derivations. And actually in calculus, the time at school, now I do not remember any-
more, but I think there were hardly any proofs. That is precisely the opposite at the univer-
sity, there are definitions, proofs … And calculus in the university context actually consists 
only of proofs and definitions. […] No, there were clearly dropouts. Due to calculus there 
were clearly dropouts, but I can imagine, if we have had that in the first semester, the drop-
out rate would have been even higher. (Prospective teacher, female, 26)

This shows especially that a higher grade of abstraction causes obstacles for under-
standing and that what has been learned will be forgotten immediately, which shows 
that pure transmission of factual knowledge is not sustainable.

The terminology of calculus remained abstract, 75 % of it I would even not know what to 
do with, what does it mean, for what I am actually doing that … That was just stupefying 
learned by heart and simply written down, that what the professor wanted to hear. (Prospec-
tive teacher, male, 21)

It extends, the learning process extends. At home I sit down and work upon it by exemplifi-
cation, so that I can understand it by myself. And so it takes much longer. If that would have 
been contributed by the lecture, one would not need to work on exemplification afterwards 
on one’s own. (Prospective teacher, female, 26)

The prospective teachers depend on an illustrative way of teaching mathematical 
content, which much too often cannot be realized in university courses which are 
attended by prospective teachers together with mathematics students not aiming for 
teaching profession.
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At the end actually, because there are so many prospective teachers, I personally think it 
would be wonderful if it would really be possible to separate Bachelor [(i.e. non-teacher) 
students] and prospective teachers, completely, and not only for selected courses. And the 
Bachelor [students] do not need these references of reality, the exemplification as strongly 
as prospective teachers need it. I think, because, the Bachelor [students] do not teach that 
later. (Prospective teacher, female, 26)

Obviously, the Justus-Liebig-University was successful with a course on Linear Al-
gebra for students aiming for the teaching profession and succeeded to overcome, at 
least partly, comprehension problems through embedding exemplification into the 
mathematical content courses.

In algebra, concerning vector spaces, it was beautifully made clear, that a vector is not 
just an arrow which is just drawn, but that it has a direction and which properties it has. 
Because, one has quasi developed an imagination of it, how it looks like. And therefore 
later it is good for the students, one can better explain it. (Prospective teacher, male, 21)

The students describe that indeed the exemplification is given a key role for their 
own understanding. The idea of transformation of mathematics in university math-
ematics courses via analogies, metaphors, and examples for illustrating and visu-
alizing is even recognized in its exemplary function for the later demands of the 
teaching profession.

I now also try to apply the exemplification in the private tutoring center, where I work. I 
try to put this also into the foreground. Because the experience, the short experience, that 
I could make now, has shown that the more exemplifying the beginning is, the more the 
pupils are willing to get to work on theory. (Prospective teacher, male, 21)

The teaching of mathematical content in an understanding-oriented way is on the 
one hand fostering learning, but on the other hand very time-consuming because 
the pace of learning may be reduced. But students do not consider that as impairing.

Yes, exemplification I think is quite important, in order to have reference, so that one knows 
what one is doing there. If you have an image right in front of your eyes, then the theory 
remains more rooted in your head, later it is like this at school. And yes, then it is okay for 
me, if then in only one week lecture can be worked on only the half, but one knows: the 
students do understand it now. (Prospective teacher, female, 20)

Yes, I just say, I personally think it makes more sense to work on less content, but to under-
stand it, instead of working on more content of which one does not know anything at the 
end after having struggled through. (Prospective teacher, male, 20)

5.7  Conclusions and Further Prospects

The described analyses about the development of the average Abitur grades and the 
kind of the attended mathematics course at school of the students of each cohort 
demonstrate that at the University of Giessen during the first four semesters obvi-
ously no strong selection is prevailing. With the programs supported by the German 
Telekom foundation, the University of Giessen succeeds in keeping the grade of 
selectivity low, whereas a high grade of selectivity is characteristic for mathematics 
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teacher education at the beginning of their study, which means that they succeed to 
keep students from the lower-achieving sector in their studies. Nevertheless, pro-
spective teachers of the University of Giessen achieved comparably high results 
in the areas of calculus, linear algebra and analytic geometry, elementary math-
ematics, and pedagogical content knowledge. Concerning the learning increase, the 
students’ performance stagnates between the first and second measurement point in 
the domains of content knowledge and pedagogical content knowledge, due to the 
structure of the curriculum of the University of Giessen. At the third measurement 
point, the students of the University of Giessen showed a remarkably high increase 
in the area of academic mathematical content knowledge, elementary mathematical, 
and pedagogical content knowledge.

We assume, and not at last based on the results of the interviews, that the special 
lectures for prospective teachers in Giessen separated from mathematics students 
not aiming for the teaching profession have a strong influence on the knowledge 
development of prospective teachers. One reason might be that a slower pacing and 
the empathic, exemplifying way of teaching applied in the courses has developed a 
“teacher-specific self-efficacy,” which on the one hand might explain the high grade 
of identification with the project and on the other hand might have a positive influ-
ence on the acquisition of knowledge. Equally from the students’ perspective it has 
been affirmed that this style of teaching in the mathematics courses has a motivating 
effect. Therefore, the students do not regard the sometimes slower pace of learning 
as an obstacle, but on the contrary, as a strengthening of their efforts of learning. 
Nevertheless, in the area of mathematical knowledge they do not show significant 
performance deficits. The results of this study give reason to ponder whether the 
improvement of teacher training can be achieved by restructuring the mathematical 
courses. Should teacher training in the future be more based on future practices, the 
integration of elements promoting understanding in mathematical lectures such as 
visualization or applications makes sense. The transformation of the mathemati-
cal content in the sense of being directed at understanding is related to curriculum 
changes and may, but not necessarily, need to be associated with a reduction of the 
teaching content. It lies in the responsibility of the universities to realize teacher-
specific teaching, for example, by systematically building on the knowledge of el-
ementary mathematics. According to the expressions of the students, in many math-
ematical lectures still a form of didactics is supposed to be dominating that conveys 
the systematics of the science subject on the learning process of student teachers 
in a rather unreflective way, which means without considering the perspective and 
the learning of student teachers. If the teacher education really should be improved, 
this thought of didactics should be discarded. Following Werner Jank and Hilbert 
Mayer (1991) in the general understanding of such an image didactics as a concept 
in which the professional scientific structures are transferred without changes to the 
process of selecting, structuring, and justifying the curriculum, the idea of transfor-
mation of academic content here means the exact opposite. The idea of transform-
ing mathematical content as done by the Justus-Liebig University within the scope 
of the project Thinking Mathematics in a New Way can make a fruitful contribution 
to the sustainable improvement of teacher education.

5 Overcoming the Gap Between University and School Mathematics 
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6.1  Introduction

In this chapter a sequence of narratives will illustrate episodes that contribute to the 
creation of the mathematical perception in a human being. Each episode contributes 
to the transformation of the view of mathematics held by that person. Added life ex-
periences of mathematics will be part of the formation of the mathematical identity 
of the person who goes through the experiences. The chapter presents episodes from 
the life of Lisa, such episodes that she herself considers important for the develop-
ment of her mathematical identity.

6.2  Theoretical Framework

To learn about the transformation of a human being in relation to her evolving views 
of mathematics, it seems most appropriate to use narratives as tools in research. 
Narratives and stories have been common data in qualitative research, and different 
understandings of narratives can be found in qualitative inquiry (see, for example, 
Richardson 1990; Connelly and Clandinin 1990, 2000; Kaasila 2007). The data 
from Lisa could be seen as a life story interview (Långström and Viklund 2010; 
Atkinson 1998) by which is meant an oral life story that the person in question 
offers to the interviewer. It does not cover the whole life of the person but some 
aspects of life, in this case transformations of views of mathematics which the 
person judges as important. The analysis of the data is then narrative/biographical 
(Bruner 1996). In the analysis I try to keep the whole story of Lisa and try to make 
sense of her trajectory of identity, her cultural history, her present experiences and 
imagined futures (Williams and Wake 2007b). According to Williams et al. (2008, 
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p. 6), Bruner (1996) sketched “the essential elements of the narrative form of con-
strual of cultural reality: temporal structure, generic particularity, reasons, herme-
neutic composition, canonicity, ambiguity, ‘troubles’, negotiability, and historical 
extensibility” (pp. 133–143). Williams et al. argue that it is possible to understand 
how aspirations can evolve, how identities grow and how key moments are said to 
deflect trajectories in significant ways for the students.

The subjective knowledge of an individual cannot be reached without help from 
that individual to open windows into the mental images of the person. The episodes 
told need not be seen as the truth or objective reality; they are the memories the per-
son has of an experience of importance. Justification of the story is given through 
the claim of the individual that it has been important. The value of the episode is 
decided by the person who had lived this experience.

6.2.1  The Concept Transformation

According to dictionaries the meaning of transformation is “radical change of some 
fundamental property (for example, form, expression in phenomenon and thought 
product etc, often a change possible to describe in scientific terms)” (Svensk ordbok 
2009). In this chapter I will use the word transformation for changes or development 
of a person’s views, beliefs, knowledge and attitudes (in this case in mathematics). 
This is mainly how the word has been used in mathematics education research. 
However, the word transformation certainly has precise meanings in other connec-
tions as, for example, in mathematics, in linguistics, in law and many other areas 
of society. The word transformation is used here for the development or changes 
that take place, for example, in the professional identity of a student teacher going 
through teacher education and building up professional experience.

6.2.2  Views of Mathematics

In research literature many different notions are used when talking about an individ-
ual’s view of mathematics. Pehkonen uses the word conception or belief (Pehkonen 
2003), while Mura (1993) for example talks about images, views or definitions. In 
this chapter when I use “view of mathematics” it is understood as the individual’s 
personal conception of mathematics in broad sense, including all aspects that can be 
inferred by experiences or observations of mathematics in different contexts.

6.2.3  Images of Mathematics

In order to characterise the views or images of mathematics that Lisa encountered 
as she grew up I will use the classification offered by Mura based on a study of uni-
versity mathematicians’ views of mathematics. Roberta Mura (1993) investigated 
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images of mathematics held by university teachers of mathematical sciences. The 
question “How would you define mathematics?” was answered in a questionnaire 
by 173 university teachers. The analysis led Mura to the identification of the fol-
lowing themes (and here she calls them themes, not views or images): (1) the study 
of formal axiomatic systems, of abstract structure and object, of their properties and 
relationships; (2) logic, rigour, accuracy, reasoning, especially deductive reasoning 
and the application of laws and rules; (3) a language, a set of notations and symbols; 
(4) design and analysis of models abstracted from reality and their application; (5) 
reduction of complexity to simplicity; (6) problem solving; (7) the study of pat-
terns; (8) an art, a creative activity, a product of imagination, harmony and beauty; 
(9) a science, the mother, the queen, the core and a tool of other sciences; (10) truth 
and (11) reference to specific mathematical topics (number, quantity, shape, space, 
algebra etc). Mura concludes that there is considerable variety in the images of 
mathematics held by university teachers (ibid, p. 384). Additionally, individuals 
hold composite views. And many seem to have little interest in reflecting on the 
nature of mathematics.

6.2.4  Impact on an Individual’s View on Mathematics

When interpreting Lisa’s development to become a mathematics teacher, I will use 
the model below indicating the development of a mathematics teacher’s profession-
al identity. Especially, I search for the transformed views of mathematics that Lisa 
is developing as she builds up knowledge in mathematics and reveals her personal 
view and beliefs in relation to this knowledge. The concept map model was created 
in this form in 1998 (Grevholm 2006), and is based on the findings in a longitu-
dinal study of student teachers, showing how teacher education can be perceived 
as development of a professional identity (see Fig. 6.1). This professional identity 
development is complementing the private identity of the teacher and it is gov-
erned by social demands, culture and the national identity (Grevholm 2006). The 
professional identity is reflecting who the person is in performing the professional 
activities and the private identity reflects who the person is as a private person. The 
two parts of the identity ought to be well integrated. The five main elements in the 
model (knowledge in mathematics related to teaching; competence to judge and di-
agnose pupils’ learning in mathematics; knowledge about classroom management, 
methods and material; a personal view on and beliefs about knowledge and learning 
in mathematics and a professional language for a mathematics teacher) constitute 
core parts of the professional identity that is developed in teacher education. These 
five elements are interrelated and closely linked to each other. The model also indi-
cates the sources or springs for the five areas and the sources for the knowledge and 
competencies, and how they are interrelated in a complex system. Student teach-
ers’ experiences, earlier knowledge, observations, reflections, practice, research and 
theoretical studies during the education contribute to the development of the five 
aspects of the teacher identity.
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6.3  Research Question

What characterises the transformations of views on mathematics that influence and 
impact an individual’s life choices and later professional development to become a 
mathematics teacher?

6.4  Methods

A mature aged woman, Lisa, was interviewed by the author about what episodes 
of encounters with mathematics she could remember as having had impact on her. 
Lisa chose to study mathematics and she became a mathematics teacher, and the 
events that could have been of importance for her choice of professional career and 
identity are in focus of the investigation. Lisa’s stories are presented as short narra-
tives written by the author based on Lisa’s memories. The intention is to find what 
transformations of views of mathematics become visible through these episodes.

6.4.1  Narrative Number One, Grandmother’s Work

Grandmother Hulda was sitting at the kitchen table with the big important book in 
front of her. Outside the window children were playing and the sun was shining. 
It was summer. The book had blue horizontal lines and red vertical lines giving 

Fig. 6.1  A concept map showing how mathematics teacher education can be seen as the develop-
ment of a professional identity, with five main elements and their sources. (Grevholm 2006)
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room for notes and numbers. Lisa’s grandmother was keeping the book for the taxi 
company belonging to her grandfather and his partner Axel. Lisa was standing next 
to her grandmother at the edge of the table trying to see what she was writing. Lisa 
was 5 years old and could just reach above the top of the table to see and follow the 
writing process, which was going on. The letters and numbers were beautiful and it 
seemed so attractive to do the work of her grandmother. How beautifully she could 
write. Now and then she stopped and took an extra careful look at the handwritten 
receipt from where she seemed to fetch her information for the book. After all the 
numbers for the day were included her grandmother started to calculate the sums. 
Most of the days everything seemed to be fine and she could close the book with a 
satisfied sigh. But now and then it happened that the columns did not show the result 
her grandmother wanted. She started to check her calculations and redo the sums. 
Maybe it still did not come out as expected? Then she called for Elof, her husband, 
and asked if there were receipts missing or if any one of them had been written in-
correctly. Sometimes they had long discussions before they could solve the problem. 
But they did always solve the problem and then her grandmother could close her 
work for that day. There was always a positive outcome of her grandmother’s work.

6.4.2  Narrative Number Two, Grandfather’s Work

In the cellar, Lisa’s grandfather had a workshop and in rainy days when he was not 
working in the garden he used to be in the workshop and do some carpentry. Lisa 
liked to sneak in and watch him when he was working. Sometimes she became 
curious and asked him what he was doing. He always gave the same reply. I am do-
ing a “himpajimpa for a vaermoella”. This did of course not make sense to a small 
child (or anyone) and her grandfather did not want to explain what a “himpajimpa” 
was. The thing he worked on could turn out to be a small chair for her to use in 
the playhouse or a bird’s house for the garden, a doll’s house or something simi-
lar. When her grandfather worked he took measures on the pieces of wood with a 
carpenter’s rule and made a mark with a flat pen. He used to say the numbers from 
the carpenter’s rule aloud before he went on and wrote them down on a piece of 
wood. He then sawed a piece of the wood in the size he had marked. It happened 
that the pieces did not fit exactly when he put them together and then he had to file 
off a little of the wood. Lisa’s grandfather had a small model of the object he was 
creating in full size in reality. It looked so exciting to see the pieces of plank being 
puzzled together into a nice object. After the pieces were screwed or glued together 
and had dried for some time her grandfather polished it and painted the new item 
nicely. The carpenter’s rule, which was made of wood, was folded together so it 
could fit into the special pocket in grandfather’s trousers. Lisa liked that instru-
ment. Children were not allowed to play with it as it could easily break. It was two 
metres long and had one kind of measures on one side and another on the other 
side. One could measure in centimetre or in inches. Her grandfather’s carpenter’s 
rule was a different tool than her grandmother’s measuring tape, although they both 
could measure lengths.
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6.4.3  Narrative Number Three, the Tailoring Business

Lisa’s mother Maja was educated as a tailor and had her own tailoring business at 
home. When Lisa grew up she was often a silent observer when her mother had cus-
tomers to serve. Maja used a measuring tape to measure the customers’ bodies after 
a specific pattern and the numbers where written down in a little black notebook. 
On top of the page was the name and telephone number of the customer and then, 
for example, the sequence 106–80–110 could mean bust, waist, and hip length. 14–
35–30 could mean shoulder-over-arm-under-arm and finally 44–45–65 was width 
of back, length of back and length of skirt. Thus, the body of each customer was 
represented by three number sequences in the book. The most exciting moment to 
observe was when Maja was adjusting the paper patterns to the customer’s sizes 
and then placing them on the piece of cloth to try to get as much as possible out of 
the given material. The forms or patterns had to be lined up along the threads in the 
cloth according to certain marks. She drew the patterns onto the material with the 
help of a white flat chalk crayon and the result was beautiful graphs, lines, angles, 
half-circles, parabolas and other curves. The patterns held different geometrical 
forms in combinations and to enlarge or diminish them to fit the right size seemed 
to be so exciting. Lisa heard her mother calculate aloud when she was working 
with the paper models. If we use four breadths in the skirt and the waist-length is 
80 we need each breadth to be 20 at the top. And then add 2 on each side for seams, 
which gives 24 for each breadth. Maja seemed to be good in mental calculations. 
Lisa saw numbers, calculations, patterns and forms being used in the tailoring work. 
Enlargement or diminishing of patterns and forms were crucial aspects of the work 
in addition to the artistic and aesthetic work when Maja was sketching the dress try-
ing to implement elements from latest fashion. Maja was very able and even if she 
happened to make a small mistake when she cut the cloth, she always knew how to 
repair it by adding some creative features to the dress, like an extra fold, an extra 
pocket or unexpected decorative seam.

6.4.4  Narrative Number Four, Lisa Goes to School

So far, Lisa had observed others use mathematics but at the age of six she started 
school and was invited to start to write numbers and do sums herself. The teacher 
probably invited pupils to approach numbers through two different representations. 
One was images of sets of dots or objects and the other the numerals (see Fig. 6.2).

Lisa still very vividly remembers how she in her mind marked each numeral 
with the same number of points as the number which the numeral indicated. Lisa 
combined the two representations into one in her own mind. When she was doing 
sums she very quickly counted all dots instead of using number facts as she could 
have done (see Lisa’s own combined image in Fig. 6.3). She could go back to this 
way of counting dots when she was tired long after she knew all number facts. She 
easily saw the invisible dots on the numerals.
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The first years in school did not leave Lisa with many explicit memories of math-
ematics. The change came in school-year five, when Lisa entered what was called 
“Realskolan”. Only a minor part of pupils went to Realskolan, the rest continued 
for another 3 years in “folkskolan”. A new teacher of mathematics, Oscar Brange, 
became her favourite and he obviously aroused her interest in the subject. Lisa can 
remember starting with Euclidean geometry and how fond she was of the systematic 
presentation with definitions, axioms, theorems and proofs. She liked the smell of the 
little book telling about Euclidean geometry (see Fig. 6.4). She liked much to draw 
the geometrical figures very carefully (see Fig. 6.5) and to learn the constructions 
and logical steps in the proofs. Other parts of mathematics were more difficult to 
learn. For example, fractions seemed to cause some confusion before the understand-
ing entered. At this stage, Lisa met with algebra for the first time and found it very 
attractive. The algebraic rules and forms gave a certainty to her work. To use logic 
and reasoning systematically suited her. Lisa’s grades in mathematics became better 
and better each semester. But her teacher Brange was demanding. When Lisa did not 
obey his advice to write larger numerals in her book, he punished her by a fee of 5 
öre. But fair as he was she got the money back on the final day of the term together 
with a nice apple from his garden. And Lisa learnt the value of writing in a clear and 
readable manner.

6.4.5  Narrative Number Five, Lisa Receives Vocational Advice

At the time when Lisa went to school only about 10 % of the entire year-group 
of pupils advanced to upper secondary school. As a preparation for the choice of 
educational direction in upper secondary school, Lisa went with her mother to a 
specialist for vocational advice. When this expert saw Lisa’s grades, he suggested 
she should specialise in mathematics and science rather than language, humanistic 
subjects or economy. He claimed this would give her a safe future and easy ac-
cess to good jobs. In his reasoning Lisa’s results in mathematics played a decisive 
role. The fact that Lisa’s mother was an able user of mathematics made it natural 
for her to support the given advice. Thus, following this advice Lisa applied for a 
school that offered “reallinjen”, which means studying all subjects but specialising 
in mathematics and science. This specific school was a former boy’s school and 
only two years earlier had girls been allowed to enter. When Lisa started there, the 
school was dominated by boys and in her class there were only seven girls out of 32 

Fig. 6.3  Lisa’s combined  
image of numerals and  
“invisible” dots

 

Fig. 6.2  Two representations 
of numbers
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pupils. Lisa could now imagine using this education to enter into further education 
to become a mathematics teacher.

6.4.6  Narrative Number Six, Lisa Goes 
to Upper Secondary School

Thus in school-year nine Lisa entered upper secondary school in a four-year pro-
gramme with emphasis on mathematics, physics and chemistry. What Lisa re-
members vividly from this time is that almost all calculations in both mathematics 
and science had to be carried out by using logarithms. The book with logarithm 
tables grew worn from all the use of it. In year two in upper secondary, though, 
the pupils were introduced to the slide rule. But even after the use of the slide rule 
was learnt, pupils could only use it in rare occasions as the precision was nor-
mally not good enough. The teacher Lisa admired most was her chemistry teacher 
Hall (who also taught mathematics but not to Lisa’s class) and she now became 
Lisa’s role model. In mathematics Lisa had several different teachers during these 
years. Lisa liked the connections that were made between algebra and geometry 
and the use of constructions in the mathematics work. She was especially fond 
of constructing graphs and calculating equations of circles, parabolas, hyperbolas 
and ellipses. She even created her own little plastic model of an ellipse, which she 
could use as template for drawings. In the last two years in school Lisa special-
ised in mathematics and had 7 lectures of mathematics each week. Mathematics 
was one of her favourite subjects and she had good grades. After twelve years of 
education Lisa finalised school with a higher certificate and received her white 
student cap.

Fig. 6.4  Lisa’s geometry book 
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6.4.7  Narrative Number Seven, Lisa Is Working 
as Private Teacher

As Lisa was successful in mathematics in school, the neighbours asked if she could 
teach their children. Already at the age of 16, Lisa started to work as a private teacher 
in mathematics for several other young students, who struggled with the learning of 
mathematics. This meant that Lisa had to explain a number of phenomena in math-
ematics and had to analyse what these students needed to learn by interviewing them 
and finding out what could possibly be tested in the next examination of them. She 
tried to convince her students to analyse the task properly and write down a plan for 
the solution before carrying it out. She was a patient and supportive teacher and she 
emphasised the good explanations for pupils. Lisa talked much with her pupils and 
thus developed a language for mathematical reasoning. Lisa found that she liked to 
teach others and that the students had made progress in their studies with her help. 
She went on working as a private teacher for many years. The extra income, although 
small, helped financing her studies. Her wish already then was to become a teacher of 
mathematics.

6.4.8  Narrative Number Eight, Lisa Starts University Studies

After four years in upper secondary school, Lisa graduated with very good results. 
She wanted to study at university to become a teacher of mathematics and chemis-
try. At the age of 18, she entered mathematical studies at tertiary level. Lisa liked 
the studies much and soon was part of a group of four friends who used to work as 
study group outside the mathematics lectures. Later Lisa learnt that such a group 
could be seen as a natural study group (Treisman 1992). The cooperative learning 

Fig. 6.5  Lisa’s drawing kept 
in the geometry book
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in this group assisted the development of a language for discussing mathematics 
and problem solving. In this group many heated discussions took place on how the 
tasks were best solved and what was the correct answer. Alternative methods were 
investigated, evaluated and compared. Now Lisa met with formal mathematics and 
theorems and proofs became even more important than in upper secondary school. 
Lisa took three full semesters of mathematics as the start of her academic career. 
She studied linear algebra, calculus, several variable analysis, algebra, differen-
tial equations, theory of analytic functions, non-Euclidean geometry and history of 
mathematics. But then when she wanted to turn to chemistry, it was not possible to 
start with chemistry in the fourth semester so she took physics instead and went on 
with physics, theoretical physics and astronomy. Before she finished her master’s 
degree, she was asked if she wanted to take a job at the mathematics department 
as an assistant. This meant teaching halftime as senior lecturer and the rest of the 
time devoting yourself to further mathematics studies. Lisa thought she had noth-
ing to lose and all to win so she took up this offer. Thus, she became a mathematics 
teacher at university for future civil engineers at the age of 20. Lisa took up her 
doctoral studies in mathematics as soon as she fulfilled all the prerequisites to en-
ter, which was one more semester of fulltime mathematical studies. We will leave 
Lisa here for the sake of space in this chapter but her further stories about how she 
encountered mathematics in life later are also interesting and will be dealt with in 
another paper.

6.5  Analysis of the Episodes

Different kinds of transformations can be found in Lisa’s stories. A number of them will 
be discussed below and will be related to the theoretical constructs mentioned above.

6.5.1  From Observer to Consumer, Transformation 
from Passive to Active

As a child Lisa met mathematics in everyday and vocational situations (accountant, 
carpenter and tailor) and obviously got a constructive and positive image of mathe-
matics as something useful, important and beautiful. Lisa’s grandmother’s attractive 
writing of numbers in the book for Lisa’s grandfather was admired and understood 
as meaningful and necessary for the taxi company. Lisa’s grandfather’s carpentry 
included measurement, drawings and calculations and led to the production of at-
tractive and appreciated objects. Her mother Maja’s tailoring work was a necessary 
source of income for the family and resulted in beautiful clothes for the customers. 
Lisa saw the beautiful image of mathematics and also how it could be valuable and 
important for everyday life. Research has shown that such early childhood experi-
ences are influencing the concept development of the child in a sustainable and 
continuous way (Helldén 2003). It is interesting to ponder upon how much of Lisa’s 
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experiences are available for children today. The division of work and home life is 
more marked nowadays and children are not so often allowed to enter their parents’ 
or other relatives’ working life. The workplace mathematics is often claimed to be 
hidden in black boxes (Williams and Wake 2007a). Strässer (2000) even claims that 
this tendency is stronger in a time of increased technology use. Hundeland (2010) 
has shown that teachers commonly refer to their own early experiences as learners 
of mathematics for explanations and justification of their decisions in teaching. In 
these early observation situations, Lisa was an observer, passively learning about 
what mathematics can be. She saw aspects that she admired and found beautiful 
but also much meaning in the work and necessity for the daily outcome. Her early 
observations had left her with a positive view or image of mathematics.

From the observer situation, Lisa entered into a more active phase with math-
ematics when she started to learn how to write numbers and calculate. What Lisa 
emphasises here is actually her own way of doing sums early, when she did not use 
number facts but simply calculated all dots for the numbers. Could this mean that 
Lisa did not listen to the teacher’s advice but went her own way in the solution? 
Research has shown the importance of allowing pupils to use their own methods 
before they are taught algorithms (Carpenter and Fennema 1988). Lisa seems to 
have taken this chance and used her own way of thinking.

It seems as if mathematics did not play a major role in the first years in school 
as Lisa remembers few episodes from there. The important episodes seem to come 
in year 5 or later. Here again she is not obedient to the teacher but writes too small 
numerals in her book. Many pupils have bad memories from school mathematics 
but for Lisa it seems as if the only negative feature came from her own behaviour, 
for example, in writing too small numerals and keeping her “counting-all” method 
longer than necessary. On the contrary, she does not describe the teacher as being 
negative or threatening or the subject as difficult in general. The different parts of 
mathematics are perceived as something important, positive and easy to learn. Lisa 
has a teacher as role model in both secondary and upper secondary school.

Lisa was through her own early observations and experiences laying a founda-
tion for later learning of mathematics and building up knowledge for teaching (see 
Fig. 6.1). These observations and experiences combined with her knowledge about 
learning of mathematics from her own work and studies and from her early private 
teaching supported the development of knowledge of mathematics for teaching.

6.5.2  The Importance of the Role Model, Transformation 
from Child to Adult in Mathematics

In Lisa’s episodes it is very clear for her who is the admired role model. We meet her 
grandmother, grandfather, mother and the teachers Brange and Hall. These persons 
were important to Lisa and she has kept some bright memories from them where 
mathematics is crucial. They have contributed to the fact that Lisa perceived a posi-
tive image of mathematics and came to admire and like it. For all of her role models 
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mathematics was something useful, beautiful and important, something they worked 
with regularly, sometimes every day. No one in Lisa’s surroundings claimed that 
mathematics was difficult or unnecessary. Quite the opposite was true. But Lisa’s 
brothers who could have been transformed by the same experiences as Lisa did in 
fact encounter problems in school while learning mathematics. As we have not heard 
their stories, it is impossible to give any explanation for this difference. The teacher 
Brange probably influenced her wish to become a teacher of mathematics. Lisa ad-
mired him as a person and as a teacher. Lisa wanted to become a chemistry teacher 
because she admired her teacher Hall, who taught both chemistry and mathematics.

Later in her tertiary studies, Lisa had other role models, for example, her friends 
in the study group. They all worked hard to solve all problems, were good at argu-
ing for their solutions, could admit that there were several possible solutions and 
could assess the quality of the methods. Uri Treisman (1992) has shown the value 
of such informal study groups for the quality of student learning. To work in such a 
group outside lectures also added to the total time for learning mathematics, which 
is another important factor for the learning outcome (Walberg 1988).

6.5.3  The Importance of Success, Transformation 
to Experienced User of Mathematics

Research has convinced us that pupils want to understand mathematics when they 
learn it (Kislenko 2011). Kislenko writes that the most striking result in her investi-
gation is that it gives evidence for pupils wish to learn mathematics by understand-
ing, and they like reasoning and to do things in mathematics, and to carry out activi-
ties. Nardi and Steward (2003) concluded that English pupils want to experience 
relevance, excitement, variety, challenge and deeper understanding. We also know 
that if pupils meet challenges and problems on appropriate levels and perceive that 
they succeed and master it they often come to like mathematics and are willing to 
learn more. Kislenko (2011) refers to Hoskonen (2007) and Stodolsky et al. (1991), 
who found that pupils liked mathematics when they were successful in it and when 
it was considered to be easy.

Another aspect emphasised in Kislenko (2011) is that the most important feature 
for the teacher to be liked is the ability to explain and to support understanding. Lisa 
probably developed her ability to explain mathematics and support understanding 
as she worked as a private mathematics teacher. In Lisa’s case we see how this 
worked and she was allowed to experience success and wanted to learn more. As 
she felt herself that she understood, she was brave enough to start to teach others 
and help them to gain understanding. That choice probably strengthened her pos-
sibilities. Additionally, the choice of special mathematics in upper secondary school 
contributed to further experiences of joy and success. The experience of success in 
helping others was a support to the idea of choosing the profession of a mathemat-
ics teacher.
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6.5.4  The Transformation from Learner to Teacher 
of Mathematics

Lisa took an early step towards being a teacher of mathematics from being a learner, 
although she started as an autodidact private teacher. This was paid work and thus 
Lisa took great responsibility in her task. This might even have helped her own 
development in mathematics as explaining to others also leads to development of 
her own deeper understanding. The experience of being able to help others rein-
forced her wish to become a teacher of mathematics. The five crucial elements in 
the model of development of a professional identity (see Fig. 6.1) can be seen to be 
impacted by Lisa’s early experiences. She created for herself opportunities to de-
velop a professional language by being a private teacher of mathematics, and she re-
members many opportunities where she could develop a personal view and beliefs 
about knowledge and learning of mathematics. As a private teacher she also built 
some competence to judge and diagnose pupils’ learning in mathematics and she 
built knowledge in mathematics related to teaching. Thus, when Lisa entered higher 
education, she had already a steady foundation of her own experiences and observa-
tions on which she could build further during her studies to become a teacher.

6.5.5  The Transformation from Teacher of Mathematics 
to Researcher of Mathematics

Before we leave Lisa she has taken the step to start as a doctoral student in mathe-
matics. For her this transformation was a huge step. No one in her family had gradu-
ated from university before and then going on to a higher level was extremely ex-
ceptional. Additionally, there were very few women in mathematics in her country. 
Most male professors at that time were not eager to supervise women in mathemat-
ics. Less than a handful of women had taken a higher degree in mathematics before 
her. But she did not know this at the time when she took her studies. Not until many 
years later did Lisa learn that she was the third woman ever to take a higher degree 
in mathematics at that university. The first one graduated as doctor of philosophy in 
1911 (Petrén 1911) and was not allowed to take up a position at the university (legal 
rules at that time). Lisa luckily approached a professor, who accepted to supervise 
women in mathematics.

6.5.6  Transformation Caused by Seeing Different Views 
or Images of Mathematics

Which of the images that Mura presented did Lisa encounter during her early years? 
Her first memory is from numbers and calculations done by her grandmother. This 
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image contains both elements of category 11, namely the topic numbers, and ele-
ments of category 3, the notions and symbols used in mathematics that she experi-
enced as so beautifully written by her grandmother that she longed to do it herself. 
In the situation where she learnt from her grandfather we can find the categorisation 
4, design and analysis of models abstracted from reality and applications and also 
from category 7 the study of patterns when her grandfather used a pattern for the 
model of his work. Both of these categories are also present in her mother’s work 
as a tailor. Here additionally we find mathematics used as an art, a creative activity 
and the development and design of fashion. Harmony and beauty became visible 
in the end product of that work when the customer collected the dress which was 
suitable as expected.

In school Lisa met with problem solving and other topics as geometry and alge-
bra. She expresses her satisfaction with Euclidean geometry and the logic system 
of definitions, axioms and proof. Thus, categories 6 and 1 are partly visible in her 
experiences. Here she also was subjected to demands concerning the formal pre-
sentation of mathematics through the teacher, who demanded nice, clear writing 
of solutions in the book. She came to appreciate beautiful geometric constructions.

When Lisa entered her studies of mathematics at the tertiary level, she met it 
in a more formal axiomatic way than in school. The abstract structure and objects 
and their properties and relationships became important. In the study group of four 
friends, she learnt how to reason properly and to deduce and apply laws and rules. 
Rigour and accuracy were needed in all the solutions of problems that were pro-
duced in the group. Finally, Lisa enters doctoral studies and has the opportunity 
to experience mathematics as a science and a creative activity. Thus, almost all 
of the faces or images of mathematics seem to have been present more or less in 
the experiences of Lisa. She was offered the opportunity to meet all the images, 
but of course it is still not obvious which of these images are dominating her own 
conception.

The transformations caused by the images were suitable for her conviction to 
specialise in mathematics and to become a mathematics teacher. The transforma-
tions being so varied and multifaceted gave Lisa a broad view of mathematics.

6.5.7  The Socio-economic Transformation of Lisa Through 
Mathematics

Lisa’s grandparents and parents are working-class people or middle-class people. 
Thanks to her choices of mathematics, for her vocation as a teacher and her suc-
cess leading to an employment at university, Lisa will have to leave her social roots 
and enter into upper class in the sense of having advanced academic education and 
safe employment with a good salary and working conditions. How will this influ-
ence Lisa? Will she remove herself from her social roots and enter into another 
world with a different life style or will she continue to be a hard working, careful 
employee? This we will have to learn from another story where Lisa tells us the 
continuation of her life story.
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6.6  A Concept Map Model of the Transformations 
in Mathematics

Based on the transformations presented and discussed in this chapter, the following 
model is constructed. In relation to the model I now discuss how other researchers 
have illuminated the transformations that are included in the model.

In their model of pedagogical thinking and action, Wilson et al. (1987) describe six 
components of teaching: comprehension, transformation, instruction, evaluation, re-
flection and new comprehension. The transformation relates to the process where the 
teacher moves from a personal comprehension of the ideas to be taught to an under-
standing of how to support students to a similar comprehension. In our model this re-
fers to the links showing that the teacher is a user of school mathematics but has stud-
ied formal axiomatic mathematics. In the earlier presented concept map on teacher 
identity development (Fig. 6.1), this refers to the element “mathematical knowledge 
related to teaching”. In the French school of didactics, this is most often called the di-
dactical transposition, referring to how scholarly academic mathematics is transposed 
into the mathematics taught in schools (Chevallard 1985; Bosch and Gascon 2006).

In his handbook chapter about advanced mathematical thinking, Tall (1992) 
writes: “The move to more advanced mathematical thinking involves a difficult 
transition, from a position where concepts have an intuitive basis founded on ex-
perience, to one where they are specified by formal definitions and their proper-
ties reconstructed through logical deductions.” (p. 495). In the model above this 
refers to the link from school mathematics to formal axiomatic mathematics. This 
transition or transformation is most often taken when the student progresses from 
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secondary school to university mathematics. Many other researchers have investi-
gated this transition, obviously as it is experienced as most often being a difficult 
passage (Wood 2001; Kajander and Lovric 2005; Brandell et al. 2008; Vollstedt 
et al., Chap. 2; Deiser and Reiss, Chap. 3). In the case of Lisa this transition from 
secondary to tertiary mathematics education is not reported as problematic. One ex-
planation for this fact could be that Lisa went to secondary school during the 1950s 
when very few students did so and thus the level of teaching at secondary classes 
was supposedly much higher than later. The widening gap discussed by Brandell 
et al. did not yet exist.

The transformation from novice to expert has been studied by several research-
ers. Koehler and Grouws (1992) discuss the expert-novice paradigm and give an 
overview of research in this spirit. Expert teachers are found to have richer agendas 
and their plans contain more detailed information. They spend less time on transi-
tions and distribute their time amongst other lesson components. The explanation 
part of the lessons showed that experts gave better explanation of new material. 
They emphasised more critical features and made fewer errors than novices, who 
often did not complete their explanations. These observations can be seen in the 
light of the fact that pupils expect teachers to give good explanations (Kislenko 
2011). In Lisa’s case she was a novice when she worked as a private teacher but 
later transformed into an expert teacher after her formal teacher education. This 
transformation took place over more than ten years, showing that the development 
from novice to expert may be a long-term process.

Included in the step from novice to expert or experienced user of mathematics as 
indicated in the concept map is the use of tools, artefacts and texts. In other chap-
ters in this book, authors are analysing transformations concerning these objects. 
Thus, there is a discussion of dynamic and tangible representations by the Labordes 
(Chap. 11), the transformation related to signs and representations of mathemat-
ics is discussed by Kadunz (Chap. 8), Mariotti (Chap. 9) treats the construction 
and transformation of signs in a technology-integrated environment and finally 
Hölzl (Chap. 10) enlightens dynamical representations of conformal transforma-
tions. Further, Pepin (Chap. 4) argues that mathematical texts and materials can get 
transformed by working with them in teacher learning. Bessot (Chap. 13) designs a 
simulator in order to transform vocational education in her chapter.

Several chapters present work on didactical transposition on micro-domains of 
mathematics. Kuzniak (Chap. 18) argues that new meaning is given to visualisation 
and experimentation in the transformation of geometric knowledge to school con-
text. Profke (Chap. 19) argues for a promotion of mathematical literacy via small 
steps in order to allow the big ideas of mathematics to determine the teaching.

In the model the long series of links showing the transformation from child to 
adult relates also to the work of Helldén (2003), where he has shown that the early 
experiences by the child give the basis for the conceptions that slowly develop as per-
sonal knowledge in the learner and stays with the learner into adulthood. Tall (1992) 
discussed the position where the concepts have an intuitive basis founded on experi-
ence and Helldén shows that such intuitive conceptions play a decisive role in later 
stages of the person’s conceptual development. In Lisa’s case one might interpret the 
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clear and strong stories she can tell about early personal experience of mathematics 
as such important contributions to her development of a professional identity.

6.7  Conclusions

What Lisa has chosen to expose to us in her stories about memories that had an 
impact on her view of mathematics is highly personal. Her stories are situated in 
specific contexts and closely connected to the social and cultural opportunities of 
Lisa as a child and a young girl. It is clear that other persons have been important 
for her transforming views of mathematics. We can make no generalisations from 
the narratives. But they constitute an existence proof that this can be the life story of 
one person who decided to become a teacher of mathematics. Other teachers have 
different life stories.

When Lisa tells her life story related to mathematics it is clear that her view of 
mathematics has undergone several transformations and that she at the same time 
has transformed as an individual and developed her identity. Some of the impor-
tant transformations are, for example, to become an active user of mathematics 
rather than an observer, to transform from a child to an adult aiming for a profes-
sion related to mathematics, to transform from a learner to a teacher and finally to 
a researcher of mathematics, and to transform her professional identity from the 
experience of success in mathematics. In these steps Lisa encountered positive ex-
periences of mathematics, which following mentioned research results each could 
support her choice of mathematics at the next level, and finally support her choice 
to become a teacher of mathematics. Lisa is also able to tell stories reflecting many 
different images of mathematics and to experience mathematics in the workplace.

How have Lisa’s experiences and observations from childhood and youth influ-
enced her as professional? Will she be able to understand and support her pupils 
when they encounter problems in mathematics when she herself never had such 
experiences? Will she be able to listen to pupils’ explanations even when they are 
idiosyncratic and not similar to her own way of thinking? As a teacher educator I 
have met several student teachers, who were weak in mathematics and claimed that 
this would help them to show understanding for their own pupils when they get 
stuck. This could be the issue for a future study. I hypothesise that being weak in 
mathematics will create difficulties in situations when you need to understand an-
other persons’ thinking. A teacher like Lisa, who is strong in mathematics, and has 
experienced several images of mathematics, will have a greater variety of modes of 
working, viewing, listening and thinking in the same mathematical situation.
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Chapter 7
Discussion of Part I

Transitions in Learning Mathematics as a Challenge 
for People and Institutions

Rolf Biehler

Abstract: The transition from school to university is a challenge for all students 
as the teaching-learning cultures and the types of mathematics are very different 
and require from students large efforts of adaptation. A deeper understanding and 
research into the features of this transition is necessary for informing institutions 
and their teachers to better support students in the transition phase. Vice versa, a 
backwards transition from university to school is part of every teachers’ biography 
and includes particular challenges. On an institutional level, the backwards transi-
tion is concerned with updating school curricula by taking new developments of 
mathematics and science at university level into account. The paper elaborates these 
problems and provides an introduction into the set of papers that are concerned with 
transitions and transformations on a personal and institutional level.

7.1 Overview

The papers in this book are predominantly concerned with the transition between 
school and university. We can see this as a specific instance of the problem of transi-
tions between different mathematical practices (Abreu et al. 2002).

When a student enters a university, he or she is already bearing a mathematical 
biography. The student has encountered mathematics as a subject to be learned in 
primary, middle and high school. The type of mathematics might have been heav-
ily dependent on the respective school as an institution. Moreover, the student may 
have encountered implicit mathematics in other school subjects or everyday situ-
ations without being aware that he or she is encountering mathematics. Grevholm 
(Chap. 6) provides an illuminative case study of mathematical moments in the life 
of Lisa from her early childhood, where she encountered implicit mathematics in 
the vocational contexts of her parents, up to entering university. The mathematical 
development of a person can have discontinuities, partly due to discontinuities in 
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the mathematical practices of the different institutions a person moves through. 
Earlier levels can disappear as such and become replaced or integrated in later lev-
els or can still coexist in the mind of a student. For instance, a university student 
will have an opinion about the differences and commonalities between school and 
university mathematics, although it may not be trivial for him or her to switch back 
to the practice of high school mathematics or even lower levels of mathematics. 
Obviously, this “switching-back ability” is a fundamental qualification of teachers. 
Grevholm’s Lisa seems to be capable of doing this as she is successfully coping 
with the challenge of acting as a private teacher of school students during her uni-
versity studies.

When mathematics students have finished with their university studies they face 
a further transition, namely from academic university mathematics into vocational 
contexts where, as a rule, mathematics is practiced in context. For future math-
ematics teachers, this second transition is a very specific one. Teachers go “back” 
to school and therefore may suffer in their mathematical biography from a “dou-
ble discontinuity,” namely in the transition school-university and in the transition 
university-school. Felix Klein has coined this term in the introduction to his book 
“Elementary Mathematics from an Advanced Standpoint” (1st edition 1908, see 
Klein 1932) and he is often quoted in recent movements to “overcome” the double 
discontinuity (Ableitinger et al. 2013). Most papers in this book discuss either the 
first discontinuity or both from various perspectives.

The ability to see a single mathematical topic in the context of different math-
ematical practices seems to be one of the qualifications good mathematics teachers 
should have. Hefendehl-Hebeker (1996) describes this as the ability to see math-
ematics with a high depth of focus. Discontinuities in the transitions have been a 
concern in education for long. Bruner’s (1960) idea of orienting the whole school 
curriculum according to fundamental ideas, whose source is the respective univer-
sity discipline, can be interpreted as avoiding or reducing discontinuities between 
levels within the school system and between school and university level. Teachers’ 
knowledge has to reflect this; Loewenberg Ball and Bass (2009) and Hill et al. 
(2008) put forward the notion of “horizon knowledge” as part of teachers’ knowl-
edge; that is knowledge in and about mathematics and the mathematical practice 
of the next (upper) level in the educational system. Vice versa however, it seems 
to be equally helpful for teachers to have knowledge about the mathematical prac-
tices below the level he or she is teaching. A question is with which attitude and 
respect should mathematical practices of lower levels be regarded and taken into 
account at higher levels? The case study of a student that enters university that 
Pepin (Chap. 4) is presenting in her paper to this book reports of university teach-
ers that favor a “confrontation approach” and tell students “forget the mathematics 
you have learnt in school.” Confrontation could be an adequate measure if it is 
unavoidable in making students aware of a discontinuity. Devaluating previous 
mathematical knowledge and experiences however, seems hardly to be a reason-
able pedagogical strategy.
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Pepin’ s paper (Chap. 4) as well as the papers by Deiser and Reiss (Chap. 3) 
and Vollstedt et al. (Chap. 2) in this book analyze the transition from school to uni-
versity from various perspectives for all mathematics major students, not just for 
future mathematics teachers. This transition has many general features that makes 
it difficult not only for all students but also for future mathematics teachers, who 
however may face specific motivational problems and have the specific concern 
of how university mathematics relates to the future school mathematics they have 
to teach. Kaiser and Buchholtz (Chap. 5) report on a particular innovative German 
project. This project was particularly devoted to first semester students who want to 
become mathematics teachers and it offered mathematics in a different way in order 
to smooth out the first of Klein’s discontinuities.

Some transitions from school to university and within university are not discussed 
in the set of papers of this book. The papers that are concerned with teachers are 
looking at teachers who will teach at university or college bound schools. The tran-
sition has to be analyzed in quite a different way, if we think of mathematics courses 
for future primary or lower secondary teachers. The TEDS-M study (Blömeke et al. 
2010a, b) reinforces the need of a careful specific curriculum design for these audi-
ences. The LIMA project ( LehrInnovation in der Studieneingangsphase “Mathema-
tik im Lehramtsstudium”—Hochschuldidaktische Grundlagen, Implementierung 
und Evaluation) (Biehler et al. 2012c) is one of the projects particularly devoted 
to improving the mathematics education of lower secondary student teachers in 
the first year of their studies. Moreover, school students who enter university stud-
ies in the STEM subjects (science, technology, engineering, and mathematics) but 
who are not mathematics majors encounter a different type of mathematics, which 
may vary in content and style among the different STEM subjects such as physics, 
biology, and the engineering sciences. Mathematics (including statistics) is pres-
ent also in non-STEM subjects such as psychology, social and economic sciences, 
where the mathematical practices as well as students’ attitudes and mathematical 
competences differ from the STEM subjects. In a very rough approximation, one 
can say that mathematics is more considered as a tool and language, whereas proof 
and formalization, the most distinguishing feature of all courses of mathematics 
majors, does not play a central role in these courses. These domains themselves 
often suffer from a clash of mathematical practices and cultures. The mathematical 
practice in an engineering course is quite different from the mathematical practice 
in course “mathematics for engineers.” This can be a source of tensions between de-
partments and within students’ minds. Mathematical courses for economy students 
may be taught either by lecturers of the mathematics department (mathematics as a 
service subject) or by lecturers from the economy department. Some departments 
teach their mathematics courses themselves because they are convinced that lec-
turers from the mathematics department would import a mathematical culture that 
makes the transition to the uses of mathematics in the respective domain more dif-
ficult. Seeing this wider domain of mathematical practices including mathematics 
in vocational settings and in industry is a perspective that Rudolf Sträßer (2000) put 
forward in his work.
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7.1.1 Transforming Backwards—From Universities to Schools

The paper of Biermann and Jahnke (Chap. 1) in this book reminds us of several his-
torical instances where a new stance of university mathematics was used as a basis 
of school curricula reforms. University mathematics served as a major input for up-
dating school mathematics. The authors point out how the eighteenth century con-
ception of “algebraic analysis” systematically influenced the curricula in Prussian 
Grammar schools in the nineteenth century. The Meran curriculum reform of 1905, 
which was inspired by Felix Klein’s ideas, intended to update school mathemat-
ics from a very different perspective, taking up major developments in nineteenth 
century mathematics as Klein and his companions conceived them. “Functional 
thinking” became a keyword of the reform movement. The concept of function 
was regarded from inside mathematics and at the same time seen as a bridging con-
cept that relates mathematics to its applications in natural and engineering sciences 
(see Krüger 2000 for a deeper analysis). Klein was also concerned about the gap 
between pure mathematics and its applications. Klein’s books on Elementary Math-
ematics from an Advanced Standpoint (Klein 1932, 1939) were written as books for 
teachers for supporting this specific backwards transition into schools. In the 1950s 
and 1960s a very strong international movement under the well-known name of the 
“new math reform” tried again to update school mathematics based on a specific 
view of university mathematics. The gap between school and university mathemat-
ics was supposed to be narrowed by changing school mathematics accordingly and 
adapt it closer to mathematics as a (university) discipline. More than 50 years later, 
we know much more about the complexities of the transformation from scientific 
knowledge to knowledge to be taught. Chevallard’s (1985) book was a milestone in 
research in mathematics education that looks at these processes of transformation 
with an analytical stance (see Seeger et al. 1989 for a review). Rudolf Sträßer was 
among those, who took Chevallard’s work into account in his work, particularly in 
geometry and particularly arguing for regarding not only university mathematics 
as a source for school mathematics but also vocational contexts and other non-
university uses of mathematics (Sträßer 1992). This more general approach for re-
constructing sources of meanings for concepts in school mathematics can be also 
exemplified by the concept of function (Biehler 2005).

In recent years, mathematical curricula seem to have developed in the direction 
of a more student-centered, application-oriented, and visual, less formal kind of 
mathematics allowing much more types of reasoning and argumentation than just 
formal proof. Due to these developments, the gap between school mathematics and 
the mathematics taught in university courses for mathematics majors seems to have 
become wider again. There is no easy solution with regard to the questions in which 
sense schools could readapt to university mathematics. We can frame it differently: 
How can we redefine what it means to mathematically “prepare” university bound 
students at school level for university courses with mathematical content. We have 
to take into account the problems of the school to university transition for gaining 
more insight.
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7.1.2 The School to University Transition

The secondary–tertiary transition has become the object of theoretical analyses such 
as Gueudet’s (2008) and of practical measures such as creating “bridging cours-
es” (such as Biehler et al. 2011, 2012b). Redesigning the introductory university 
courses are further measures. The papers in this book contribute to this research 
and development domain from various perspectives. The paper by Kaiser and Bu-
chholtz reports on an innovative German project that redesigned the introductory 
courses in analysis and in geometry and linear algebra at tertiary level in order that 
they better fit the needs of future Gymnasium teachers (Beutelspacher et al. 2012). 
Overcoming Klein’s double discontinuity was one of the objectives. The courses 
itself were to reflect the relation between school and university mathematics by 
adequate examples and activities. Hereby, the students should appreciate and un-
derstand the need of a different kind of mathematics at university level, while at the 
same time understanding how this new mathematics is related to school mathemat-
ics, why it is different, and why it nevertheless has the potential of contributing to 
the development of students’ mathematical competences in a way to make them 
useful for a qualified mathematics teaching at school level. Working in this way, the 
first discontinuity was regarded as laying foundations for smoothing out the second 
discontinuity at the transition from university to school. This is a very interesting 
experiment as it aims at maintaining and cultivating two views of mathematical 
practices at school and at university level from the beginning. In other words, it is 
cultivating the “switching back ability” as I called it earlier. The paper of Buchholtz 
and Kaiser reports on an empirical study that evaluated this innovative project in 
comparison to students who participated in more standard programs at different 
German universities. A quantitatively oriented evaluation has to develop adequate 
measurement instruments for mathematical competence. Based on knowledge con-
ceptualizations and instruments developed in the context of the IEA directed TEDS-
M project (Blömeke et al. 2010a, b), instruments were newly developed that distin-
guish between academic mathematical knowledge, knowledge in mathematics from 
an advanced standpoint, and mathematical pedagogical content knowledge and be-
liefs about mathematics. The study presents some slightly positive results but shows 
at the same time how difficult sustained educational reforms at the tertiary level are. 
A further theoretical modeling of the development of mathematical competencies at 
the secondary–tertiary transition and developing measurement instruments on this 
basis is still a challenge for the future.

The other papers of this section analyze the secondary–tertiary transition from 
various perspectives. Grevholm and Pepin provide holistic insights on how stu-
dents experience a totally new culture including new people, tools, and learning 
and mathematical practices. Grevholm’s narratives on transformation focus on the 
mathematical biography of Lisa, beginning in her preschool age up to her first years 
at university. It shows the complexity of constituting a mathematical identity and 
coping with transformations of various kinds. Lisa’s story is a success story in the 
sense that she mastered all the transformations and finally started her doctoral stud-
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ies in mathematics. Many students give up their mathematical studies in the first 
year. Also, engineering students fail, among other reasons because they fail in math-
ematics. Dropout rates of 30–50 % are not an exception, at least in German univer-
sities. Dieter (2012) did a quantitative study concerning premature matriculation 
and its influencing factors. Qualitative studies similar to Grevholm’s case study, 
done with first year university students may contribute to a deeper understanding of 
factors that affect a successful and a less successful mathematical biography in the 
process of transition.

Pepin’s paper goes into this direction, based on the TransMath project at the Uni-
versity of Manchester. Pepin analyzes the fundamental differences between schools 
and universities with regard to providing feedback and the requirements of self-reg-
ulated learning. This general framework is also applicable for other subjects than 
mathematics and opens the perspective to general problems students of all subjects 
face when entering the secondary–tertiary transition. Specific problems related to 
mathematics as a subject can thus be placed into a broader perspective. Based on 
case studies, Pepin provides a very instructive detailed portrait of the mathematical 
teaching-learning culture with the elements of lecturers, tutorials, and self-study and 
the implicit values and views of students and lecturers, which may not fit well with 
each other. Innovative reforms have to address the whole teaching-learning system 
and must not focus on curriculum and mathematics alone. In line with this perspec-
tive, we changed the teaching-learning culture in the small group tutorials that are 
accompanying our lectures with big audiences by creating a specific program for 
supporting student mathematics tutors that improved the quality of the group tutori-
als. We focused on enabling the student tutors to present solutions of homework with 
a view to student difficulties and to the process of problem solving. Moreover, the 
quality of feedback given to the problem solutions that students submitted as part of 
their homework assignments was increased. A third domain was supporting the stu-
dent tutors in moderating collaborative group work with minimal and strategic inter-
vention types. As a further step, our study has revealed the need of directly supporting 
students’ motivation and competence of dealing with feedback as not all of them 
make optimal use of the improved feedback provided to them (Biehler et al. 2012b, c)

The papers of Vollstedt et al. and of Deiser and Reiss are concerned with mathe-
matical knowledge and with mathematical learning resources in the secondary–ter-
tiary transition and open a further important dimension in studying the school–uni-
versity transition. Vollstedt et al. focus on a comparison of mathematical textbooks 
for upper secondary level and for school level. Learning resources are an important 
part of the knowledge and learning practice (Sträßer 2009), therefore comparisons 
can contribute to a deeper understanding of the major differences. Based on re-
search on text book structure and use (among others, see Rezat 2009), the authors 
develop a new instrument for comparative analysis of secondary and tertiary text 
books along the dimensions of motivation, structure and visual representation, de-
velopment and understanding of concepts, development and understanding of theo-
rems, presentation of the proving process and proofs, and type of tasks. Although 
the categories were as yet only applied in a feasibility study, the system of catego-
ries provides orientation for future comparative text book research.
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The paper by Deiser and Reiss focuses on specific elements of mathematical 
knowledge. Key differences between school and the mathematics of mathematics 
majors can be related to the different conceptions of proofs and definitions: “The 
move from elementary to advanced mathematical thinking involves a significant 
transition: that from describing to defining, from convincing to proving in a logical 
manner based on definitions” (Tall 1991, p. 20). Deiser and Reiss’ paper fits well 
into the tradition to analyze students’ difficulties with definitions (Edwards and 
Ward 2004; Kintzel et al. 2011) as key part of the transition difficulties but also 
gives new insights into difficulties with seemingly basic definitions in a first semes-
ter analysis course. Deiser and Reiss provide first results of a larger research project 
that will study the development of mathematical competences of student teachers of 
mathematics within the first years of their university studies.

The papers of this book show that the transitions and transformations mathemati-
cal learners have to face have become the object of promising research and devel-
opment studies in mathematics education, aiming at a deeper understanding and 
theoretical basis for educational innovations in the future.
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Part II
Transformations Related 

to Representations of Mathematics

Introduction

If you do mathematics every day, it seems the most natural 
thing in the world. If you stop to think about what you are 
doing and what it means, it seems one of the most mysterious. 
How are we able to tell about things no one has ever seen, and 
understand them better than the solid objects of daily life?
(Davis and Hersh 1981, p. 318)

In this quote Davis and Hersh paraphrase one of the most popular beliefs of the 
nature of mathematics: mathematics is abstract. Even from a philosophical point of 
view this remains true no matter what philosophical stance on the nature of math-
ematics is taken—a Platonist, a constructivist, a formalist position. Therefore, any 
encounter with mathematics is mediated through materializations of abstract math-
ematical objects and their relations. Taking up a Platonist point of view on the na-
ture of mathematics, this issue is aptly expressed by Drijvers et al.: “Because of its 
epistemological nature any immediate relationship with mathematics is impossible; 
any relation passes through a mediation process. Ideal, immaterial, non-perceivable 
entities such as numbers or figures acquire existence, can be thought of and shared, 
only through their materialization in a concrete perceivable entity, generally re-
ferred to as representation” (Drijvers et al. 2009, p. 133).

Talking about representations of mathematics raises the question of the ontologi-
cal status of what is being represented. From our perspective the word representa-
tion seems to be very closely related to a Platonist or realist view of mathematics, 
where objects that exist beyond or even within our perception are represented. In 
order to not enter into a philosophical discussion of this kind we relate to Wartofsky 
(1979) who suggests the term ‘artefact’ instead of ‘representation’, because arte-
facts are capable of representing human activity:

[…] what I took to be the crucial feature of human cognitive practice, namely the abil-
ity to make representations. This I traced to the primary production of artifacts—in the 
first place, tools and weapons, but more broadly, in good Aristotelian fashion, anything 
which human beings create by the transformation of nature and of themselves: thus, also 
language, forms of social organization and interaction, techniques of production, skills. 
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The production of such artifacts for use, I argued, was at the same time the production of 
representations, in that such artifacts not only have a use, but also are understood as rep-
resenting the mode of activity in which they are used, or the mode of their own production. 
Thus, spears and axes are not only made for the sake of hunting and cutting, but at the same 
time represent both the method of their manufacture and the activities of hunting animals or 
chopping wood. (Wartofsky 1979, pp. XIII–XIV)

Defining mathematics very generally as a human activity, we prefer the more gen-
eral term ‘artefact’ rather than to talk of representations to relate to materializations 
of mathematical objects and their relations.

Since the scientific discipline “didactics of mathematics” might be defined as the 
“the ‘sum’ of scientific activities to describe, analyse and better understand peoples’ 
joy, tinkering and struggle for/with mathematics” (Sträßer 2009, pp. 1–68) it seems 
natural that an important strand of this discipline tries to unveil this “mystery” as 
David and Hersh call it and thinks about what we are doing when we deal with 
mathematical objects and their relations through artefacts. The chapters in this part 
all relate to these efforts and address different kinds of transformations that are re-
lated to the way mathematics is mediated through artefacts.

The advent of technological artefacts has majorly increased the means to mediate 
mathematics. The opportunities these artefacts provide have changed the encounter 
with mathematics in a way that Sträßer (2001) even raises the question if there is 
a special mathematics incorporated in the technological artefacts. This means that 
there exists a dynamic relationship between mathematics and the mediating arte-
facts: depending on the view of what mathematics is the mediation of mathematics 
might even transform mathematics itself. However, this is not the only transforma-
tion that is related to the mediation of mathematics. The chapters in this part discuss 
the fact that the mediating artefacts are likely to transform the whole encounter with 
mathematics.

Kadunz (Chap. 8) shows that not only in technological environments the way 
mathematics is mediated is a crucial aspect in the construction of mathematical 
knowledge. Even reading a mathematical text involves transformations of repre-
sentations of mathematics. The author’s language has to be transformed into the 
reader’s language. Kadunz argues that this transformation is often accompanied 
by writing, and fosters the construction of knowledge. This claim is supported by 
conceptualizing these transformations in terms of diagrammatic reasoning in the 
context of the semiotics of Charles Sanders Peirce.

Mariotti (Chap. 9) is concerned with how the construction of knowledge is fos-
tered through instrument-mediated transformations of mathematical objects with a 
technological artefact. She claims that “dragging modalities (of Dynamic Geometry 
Systems (DGS)) offer a semiotic potential that can be exploited by the teacher to 
make the mathematical meaning of conditional statement evolve from haptic expe-
rience of direct and indirect movements, and the related different status of invariant 
properties” (Mariotti, Chap. 9). This claim is substantiated by an analysis of the 
semiotic potential of the dragging modalities based on the Theory of Semiotic Me-
diation (TSM). TSM is concerned with “the relationship between the accomplish-
ment of a task and student’s learning” (Mariotti, Chap. 9). Based on a Vygotskian 
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notion of semiotic mediation TSM conceptualizes this relationship in terms of a 
double semiotic relationship “(1) between a tool and meanings emerging in the ac-
complishment of the task (2) between the tool and the meanings related to specific 
mathematical content evoked by that use and recognizable by an expert” (Mariotti 
Chap. 9). In this case, the transformational possibilities of the artefact support the 
construction of mathematical knowledge because of the way these transformations 
elicit relations of mathematical objects.

In Chap. 10 Hoelzl also focuses on how transformations of mathematical objects 
with the help of technological artefacts might support understanding in mathematics. 
His main concern is how to achieve a deep understanding of at least school math-
ematics in teacher education. The answer he offers is that mathematics should be 
represented in many different ways in order to foster understanding. Dynamic repre-
sentations of complex numbers in a DGS exemplify how his ideas about the teaching 
of mathematical content knowledge in teacher education programs could be imple-
mented.

Laborde and Laborde (Chap. 11) address three different dimensions of transfor-
mations that are closely connected to the dynamic representation of mathematical 
objects and their relations offered by DGS: an epistemological, a cognitive and a di-
dactical dimension. The epistemological dimension relates to the problem of trans-
forming the behaviour of abstract mathematical objects into a materialized form. 
The cognitive dimension is closely related to the Theory of Semiotic Mediation 
as introduced by Mariotti (Chap. 9). Laborde and Laborde argue, that the dynamic 
character of the objects in a DGS fosters a transformation of the students’ cognition 
of mathematical concepts. The didactical dimension addresses transformations of 
tasks in order to unfold the potential of the dynamic representations. This third di-
mension already points to the interrelatedness of the epistemological, the cognitive 
and the didactical dimension of learning. The transformation of one aspect, e.g. the 
nature of representations used, will cause transformations of other aspects, e.g. the 
tasks implemented in order to stimulate a cognitive activity.

The issue of interrelatedness of different dimensions of teaching and learning 
such as the artefacts, the tasks, and the human actors and related transformations 
is also taken up by Geiger (Chap. 12). His focus is not on the mediation of math-
ematics through artefacts, but on social aspects related to the transformation of the 
encounter with mathematics through technological artefacts. Geiger draws attention 
to the role of social setting for technology-mediated interaction. In two episodes 
he provides evidence that social aspects are likely to transform the mathematical 
experience. Whereas, one episode shows how knowledge is transformed through 
the interplay of different social settings the other episodes relates to the transforma-
tion of identities of participation and non-participation in classroom interaction. 
The episodes are analysed using the tetrahedron-model of artefact mediated learn-
ing proposed by Rezat (2006) and generalized by Sträßer (2009) in order to unveil 
transformative powers of different learning arrangements. As a consequence of his 
analysis of social aspects in technology mediated interactions Geiger enhances the 
tetrahedron-model of artefact-mediated learning by including social aspects in sur-
rounding interacting social spheres.
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Whereas, all the previous papers addressing transformations of the mathematical 
experience associated with the use of technological artefacts related to the use of 
DGS, Chap. 13 by Bessot focuses on another technological tool. She introduces a 
simulator for reading–marking out activities in building work. In her chapter, she 
elaborates on how this simulator transforms the relationships of the worker with 
space.

In order to summarize the various transformations that might occur  related to 
mediation of mathematics through artefacts we use Rezat’s and Sträßer’s (2012) 
tetrahedron-model as an analytical tool and relate the transformations to this model.

The chapters by Kadunz (Chap. 8), Mariotti (Chap. 9), Hoelzl (Chap. 10) and 
Laborde and Laborde (Chap. 11) all draw attention to the transformations of rep-
resentations of mathematics within the mediating artefact and their relation to the 
construction of knowledge. Different theoretical frameworks are used to grasp how 
these transformations relate to the construction of knowledge. Kadunz uses Pierce 
and his semiotic theory to better understand how the transformations within the 
artefact relate to the construction of knowledge. Laborde and Laborde argue that 
the instrumental approach provides a tool to better understand how knowledge is 
constructed by the user of an artefact. The instrumental approach offers concepts 
that relate the use of artefacts to the understanding of mathematical concepts.

Mariotti also draws attention to the fact that a double semiotic relationship is 
recognizable between the artefact and meanings emerging in the accomplishment 
of the task at hand and between the artefact and meanings related to specific math-
ematical content evoked by that use and recognizable by an expert. Thus, it seems 
to be a shortcoming of the tetrahedron model to subsume mathematical knowledge 
and didactical aspects of didactical knowledge under one vertex. This does not take 
into account that the mathematical situation is usually characterized by students 
working on tasks. Mariotti argues that the meanings that emerge from working on 
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the task might be different from the intended mathematical meanings. Therefore, 
it seems appropriate to separate the task from the mathematical knowledge in the 
tetrahedron model. This is supported by Laborde and Laborde’s discussion of re-
lations between mathematics and its materialization in the artefact. By providing 
examples from the design of Cabri 3D, Laborde and Laborde exemplify that the re-
lation between mathematics and its materialization in the artefact is not simple. The 
design of an artefact is likely to create a different kind of mathematics. In the case of 
2D DGS, Sträßer (2001) already illustrated that with his discussion of ‘monsters’. 
Therefore, the relation between mathematics and its materialization in an artefact 
needs careful consideration.

Geiger addresses another shortcoming of the tetrahedron model. Referring to 
Sträßer’s assertion “that it may be worthwhile to think of something surrounding 
this tetrahedron, e.g. all those persons and institutions interested in the teaching and 
learning of mathematics, the ‘noosphere’ ” (Sträßer 2009, p. 75), he pays attention 
to the role of social setting for technology-mediated interaction. Drawing on Borba 
and Villarreal, who argue that an inter-shaping relationship exists between learners 
and technology in which both are transformed, he shows how this interaction might 
be conceptualized and how the interaction is depended on the social setting in the 
classroom. Therefore, he argues that it is not sufficient to surround the tetrahedron-
model with only the noosphere, but to distinguish between different social settings 
represented by different spheres.

Seeger and Sutherland discuss the chapters in part II from different perspectives. 
Seeger embeds and comments on the idea of transformation from the so called 
“embodied” perspective on human activity. By discussing the difficulties of ‘mean-
ing’, ‘sense’ and ‘existence’ of mathematical objects in a wider sense, he points to 
the socio-cultural and historical embeddedness of any artefact. In the following, he 
compares the idea of transformation to the idea of ‘meaning of meaning’ which is 
always reflexive and argues that the single idea of transformation is therefore not an 
appropriate motto to guide research in mathematics education.

Sutherland comments on the chapters in part II from a technological point of 
view. She frames most of the chapters by the socio-cultural approach of  Vygotsky 
and distinguishes several more specific theories as Rabardel’s instrumental  approach 
to describe the work with tools adequately. In addition, she focuses on constraints 
by implementing new technologies in mathematics classrooms and gives examples 
how these technologies are already used by students at home without any instruction 
in school. In a further step, Sutherland gives research-based ideas for design-based 
approaches through processes of professional development to exploit researcher–
practitioner synergies.
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8.1  Reading and Writing

The reading of mathematical texts is a vital part of learning mathematics. These texts 
can be notes from a lesson at school or university, or some part of a textbook1. In a 
similar way, a mathematician, as a researcher, updates his/her mathematical knowl-
edge by reading journals and monographs. However, reading a mathematical text 
does not mean that all the mathematics presented in such a text is embedded into the 
mathematical knowledge of the reader. Students in school, in particular, quite often 
have difficulty reading a mathematical text successfully. At the same time, reading 
of mathematics is very often also writing of mathematics (see Heintz 2000, p. 162). 
Heintz’s view on writing as a fundamental activity, when doing mathematics describes 
the purpose of this chapter. When reading a mathematical text, one very often has to 
write mathematics in order to transform the text or at least certain parts into something 
written. Though we use the word “writing” this does not mean the use of words alone 
when describing mathematics. On the contrary, mathematical text uses, e.g., formulas, 
geometrical figures, charts etc., as they will be used in the following deliberations. 
Looking for recent publications in the field of mathematics education concerning 
the use of diagrams, the reader finds quite a number of papers (cf. Hoffmann 2005; 
Dörfler 2006; Kadunz 2006). In the following deliberations, these diagrams are used 
as as a means of presenting a text by reader to the reader himself to gain insight into 
the presented text. These deliberations are not only backed by these papers having their 
origin within mathematics education but are supported by a number of publications 
presented by linguists and philosophers. Their views on the use of the written focus 
on the value of the visible for gaining new insight and new knowledge. To name just 
a few, I refer to Harris (2001), Coulmas (2003), or Krämer (2003). They all explain 

1 On the use of textbooks in mathematics, see Rezat 2010.

S. Rezat et al. (eds.), Transformation—A Fundamental Idea of Mathematics Education, 
DOI 10.1007/978-1-4614-3489-4_7, © Springer Science+Business Media, LLC 2014
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the use of the written and of writing as essential parts of developing new knowledge. 
Similar ideas can be found within the semiotics of Charles S. Peirce. In addition to, 
e.g., Krämer’s ideas, Peirce’s semiotics will be used to describe the learning of math-
ematics. To do so, Peirce’s concept of the diagram will be explained in the following. 
Using this concept, the transformation from a mathematical text that is only read to 
one, which the reader fully understands, will be shown.

This gaining of insight is explicated using the example of reading a text from 
Euclidian geometry. In his book “Analytische Geometrie der Ebene” (plane ana-
lytical geometry), Max Simon2 (1915) presented, among others, properties of the 
parabola. The reason for choosing this text is to reveal its nature in presenting cer-
tain geometrical theorems. In this respect, Simon’s text is a product of his age. This 
can be seen not only by the language he used but also by the comparatively slight 
number of diagrams and their use. This slight number—compared to a textbook 
today—may have been caused by the greater effort required to produce graphics for 
textbooks at the end of the nineteenth century. These two facts may be the reasons 
why the reading of this text is challenging. In particular, the need to read this kind 
of antiquated language and its use of references, which are very difficult to follow 
as other books Simon used are no more available. Second, the existing figures have 
to be complemented by new figures.

We close this introduction with a view on one theorem Simon presents on page 
91 (see also Fig. 8.1):

Theorem 5. Draw rays from the focus of a parabola to all tangents of this parabola, these 
rays has all having the same constant angle with the tangents. Then we conclude that the 
vertices of these angles determine one tangent of the parabola which has this constant angle 
with its touching ray.

Figure 8.1 illustrates this proposition.
Theorem 5 presents an example of Euclidian geometry which could be proved 

using methods from synthetic geometry. This was often the case when authors in the 
nineteenth century tried to prove a theorem from geometry. However, today’s read-
ers are not familiar with all the theorems and explanations used at that time. Hence, 
it is rather difficult to read this kind of a book. To read it successfully, the modern 
reader has to transform the “old fashioned” kind of presentations into his/her own 
knowledge. These transformations will be presented in Chaps. 3 and 4. However, 
before this transformation is demonstrated, some theoretical remarks on the use of 
the semiotical concepts are necessary.

8.2  Semiotics and Mathematics Education

In his “Handbook of Semiotics” (Nöth 2000), Wilfried Nöth presents a thorough 
and comprehensive review of the mainstreams of modern semiotics. Nöth’s hand-
book demonstrates that there is no universal semiotics, but a number of quite differ-

2 Max Simon (born in Kolberg in 1844, died in Strassburg in 1918), mathematics teacher and 
historian of mathematics, PhD 1867 by Weierstrass and Kummer.



1438 Constructing Knowledge by Transformation, Diagrammatic Reasoning in Practice

ent ones. In addition to his presentation of well-known semioticians—from Peirce 
to Eco—Nöth also shows their semiotics to be valuable tools in different research 
areas. We can find semiotics, for example, in the field of linguistics, in aesthetics, or 
in media theory, to name only a few. Semiotics seem to be a very “broad” concept. 
The use(s) of semiotics in mathematics education seem similarly “broad” as we will 
now see.

If we look at papers in mathematics education, we can find numerous articles in 
journals and edited books treating questions from a semiotical point of view (Cobb 
2000; Anderson 2003; Hoffmann 2003, 2005; Educational Studies in Mathemat-
ics Education (ESM), special issue 2006). Because of its topicality, I have chosen 
the special issue of ESM on semiotics from this list. Norma Presmeg and Adalira 
Saenz-Ludlow (Saenz-Ludlow and Presmeg 2006), the editors of this special issue, 
note the founding of a Psychology of Mathematics Education (PME) “discussion 
group on semiotics” at the 25th PME conference at Utrecht, and being continued 
in the following PME conferences (Norwich 2002; Honolulu 2003; Bergen 2004). 
The outcome of this discussion group was a basis for this special issue. Among 
other topics presented in this issue the reader finds semiotics as a means of studying 

Fig. 8.1  A certain tangent of the parabola
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epistemological questions, or of planning mathematics lessons (in a very wide 
sense), or of interpreting classroom communication. As diverse as these research 
questions are the semiotics used (Charles S. Peirce, Ferdinand de Saussure, or Mi-
chael Halliday) to mention only a few.

In a reviewing paper, Michael Hoffmann (2006) presents the highlights of all 
articles in this ESM special issue. He closes his text with an answer to the following 
question:

… is there a shared conception of “semiotics” behind all the “semiotic perspectives” deliv-
ered here, and should there be one? (Hoffmann 2006, p. 290)

Hoffmann denies that one universal semiotics can be established and warns against 
blending different semiotics.

This variety, however, is not necessarily a problem. As long as the terminology is consis-
tently defined and used so that communication and understanding are possible, several 
semiotic approaches can be used side by side. … If we are interested in epistemological 
problems of learning and communicating mathematics, and if we need a highly differenti-
ated semiotic terminology that allows very precise discussions of problems such as mean-
ing, cognition, interaction, and interpretation in mathematics, Peirce’s semiotics is by far 
the best tool. (Hoffmann 2006, p. 290)

In order to achieve a thorough and precise deliberation of a single problem in math-
ematics education, I will focus on one semiotic approach. Here, I not only follow 
Hoffmann (2006) but also Saenz-Ludlow and Presmeg (2006) or Schreiber (2010). 
Hence, I will concentrate in the following text on Peirce’s semiotics as he developed 
not only a differentiated semiotic terminology but also used his semiotics to answer 
epistemological questions from mathematics. I will give a view on Peirce’s famous 
classification of signs into icons, indices, and symbols. In particular, the role of 
icons and diagrams in constructing new knowledge will be investigated.

8.3  Diagrams as Means for Thinking

Like other sciences, mathematics education also deals with the concept of “repre-
sentations”. As a paradigmatic example, I refer to papers and research reports pre-
sented by researchers like Gerald G. Goldin or James J. Kaput (Goldin 1998a, b). 
Generally speaking, they investigate internal or mental representation and external 
or physical representation. This kind of separation between the mental and the phys-
ical representations brings up some epistemological and psychological difficulties 
I will not discuss here. For a detailed explanation, I refer to Falk Seeger (2000) or 
Michael Hoffmann (2005, 4th chapter). A remarkable development, at least of the 
last 20 years describes, a turn where those “representations” which are perceptible 
to our senses step into the center of interest.

Before attributing any special quality to the mind or to the method of people, let us examine 
first the many ways through which inscriptions are gathered, combined, tied together and 
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sent back. Only if there is something unexplained once the networks have been studied 
shall we start to speak of cognitive factors. (Latour 1987, p. 258)

More from art theory than from sociology, Thomas Mitchell (1994) diagnosed a pic-
torial turn and Gottfried Boehm introduced in 1994 his iconic turn (Boehm 1994, 
p. 13). With these turns Mitchell, Boehm, and other researchers express their inter-
est in the epistemological importance of “representations” available to our senses. 
Similarly, Frederik Stjernfelt formulated the importance of icons in semiotics:

…this return of the iconic in semiotics is probably the main event in semiotic scholarship 
during the recent decades…. (Stjernfelt 2000, p. 357)

In my deliberations, I will concentrate on such perceptible signs on icons and on 
diagrams. These diagrams will be introduced later in detail.

With his semiotics, Charles S. Peirce introduced a far-reaching project to dem-
onstrate the importance of signs. I will point at a “trademark feature” of this semiot-
ics. First, I only mention Peirce’s view of signs as a triadic relation. This relation 
consists of an object, a representamen, and an interpretant3. They are the corners of 
Peirce’s semiotic triangle. “ … a ‘sign’ is integrated in a triadic relation whose most 
important feature is what he called the sign’s ‘interpretant’.” (Bakker and Hoffmann 
2005, p. 336). As I will concentrate on the second “trademark feature,” I refer to 
papers which elaborate this triadic concept of sign (e.g., Hoffmann 2003; Bakker 
and Hoffmann 2005; Saenz-Ludlow and Presmeg 2006).

Peirce’s “trademark feature,” which I will examine, is his famous classification 
of signs into iconic, indexical, and symbolic.

Icon An icon is a sign which represents relations. By definition, it is a sign which 
is similar to its object. This similarity can lead to some misunderstanding (Stjernfelt 
2000, p. 358). Critical remarks dealing with the concept of similarity can also be 
found in Nelson Goodman’s Language of Art (Goodman 1976). As Stjernfelt indi-
cates, it seems that Peirce himself had recognized some of the difficulties connected 
with similarity. Icons are not in themselves similar. The impression of similarity 
comes into existence from possible activities we can do with the icon.

The icon is not only the only kind of sign involving a direct representation of qualities 
pertaining to its object; it is also—and this amounts to the same—the only sign by the 
contemplation of which more can be learnt than lies in the directions for its construction. 
(Stjernfelt 2000, p. 358)

These constructions and the activities with them may be the source of new knowl-
edge, as I will show in the following using diagrams, which are intimately related 
to icons.

Index Following Peirce, a sign is an index, which focuses the attention of a person 
using this sign. We can find indexes in our everyday language when we use words 

3 To give an example of a sign we can think of a barometer as representamen, which gives some 
information about its object, the air pressure. A person recognizing a change of the air pressure can 
interpret this change. It is remarkable that the representamen itself can be called a sign. For more 
information see the previously cited literature.
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indicating something. If we think of geometrical drawings then the labels on these 
drawings are indexes as they point to certain parts of the construction.

Symbol A symbol is a sign, the use of which is given by definition. We can find 
symbols in words of a language as the meaning of a word, which has to be learned 
by definition. In mathematics, symbols are widely used. We can think of e or pi to 
name the most famous ones. Also, letters used as variables in an equation are sym-
bols in this sense.

Diagram According to Charles S. Peirce, icons can be further classified into 
images, diagrams, and metaphors. From these three, the diagram will have the 
greatest importance for the rest of my chapter. Diagrams are icons, which are con-
structed following certain rules, and may thereby show relations. When we look for 
diagrams, we can find them in geometry. Every drawing obeying the rules of geom-
etry is a diagram. In the same sense, a written sentence is a diagram if it follows 
the grammar. On the other hand, the reader reading this sentence has to know the 
grammar to decide whether it is a diagram. Therefore, a diagram is not a diagram 
by itself!

However, diagrams are in most cases very complex signs. If we again take a 
diagram from geometry, we see in it symbols, indexes, and even other diagrams. As 
an example, we can imagine the drawing of a triangle and its circumscribed circle. 
The labels of its corners are indexes and symbols too. If we label the circle with 
“solution” then we have another symbol. The triangle itself is a diagram, as it is 
constructed using segments connecting three points in a special way.

Alongside this use of rules in constructing diagrams, the operational view on 
diagrams I mentioned previously for icons (Stjernfelt) will now be discussed. This 
operational view will be made use of in the interpretation of readers’ activities to 
be presented in Sect. 8.4. With diagrams as a special kind of icons, we can per-
form experiments when learning mathematics. Doing experiments and construct-
ing new knowledge is called diagrammatic reasoning (Hoffmann 2003; Bakker and 
Hoffman 2005). How can we imagine such reasoning when learning mathematics?

In a first step, a diagram has to be constructed. To give some examples, this may 
be an equation from algebra, a geometrical drawing using software, or pencil and 
paper, or designing a graph to solve a problem from graph theory. Once construc-
tion has been finished, we can start experimenting. The algebraic equation may be 
transformed following the rules from algebra. If we have used a software (DGS) for 
constructing the geometrical drawing, we can use the drag mode (Arzarello et al. 
2002) to change the construction without destroying the geometrical relations of the 
drawing. However, we could also implement a new line or segment or even a new 
label into the drawing to gain a new view. This also means that when performing 
experiments we have to obey the rules governing the system.

What makes experimenting with diagrams important is the rationality that is immanent to 
them… The rules define the possible transformations and actions, but also constraints of 
operations on diagrams. (Bakker and Hoffmann 2005, p. 340)
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In a final third step, the results of the experiment are explored. In front of the ob-
servers’ eyes new relations can become visible. A new configuration may show 
“itself.” A new pattern (Oliveri 1997) may be visible within the algebraic equation. 
Making use of the DGS drag mode, the continuous movement of parts of the draw-
ing may raise the idea of the equality of areas.

As Peirce wrote, the diagram constructed by a mathematician ‘puts before him an icon by 
the observation of which he detects relations between the parts of a diagram other than 
those which were used in the construction’ (NEM III, 749). (Bakker and Hoffmann 2005, 
p. 341)

With this citation, I close my remarks on diagrams and diagrammatic reasoning. I 
will finish this part with some hints on two further concepts Peirce presented. I will 
use them as a tool to “measure” the creativity of our students. In his semiotics, 
Peirce introduced two interesting concepts to describe logical deduction.

There are two kinds of Deduction; and it is truly significant that it should have been left for 
me to discover this. I first found, and subsequently proved, that every Deduction involves 
the observation of a Diagram (whether Optical, Tactical, or Acoustic) and having drawn the 
diagram (for I myself always work with Optical Diagrams) one finds the conclusion to be 
represented by it. Of course, a diagram is required to comprehend any assertion. My two 
genera of Deductions are first those in which any Diagram of a state of things in which the 
premises are true represents the conclusion to be true and such reasoning I call Corollarial 
because all the corollaries that different editors have added to Euclid’s Elements are of this 
nature. To the Diagram of the truth of the Premises something else has to be added, which 
is usually a mere May-be, and then the conclusion appears. I call this Theorematic reason-
ing because all the most important theorems are of this nature. (Peirce 1998, A Letter to 
William James, EP 2:502, 1909)

As we see, the corollarial deduction is the more simple form of deduction. It de-
scribes those logical activities we have to do when we draw a conclusion from 
observing a diagram without changing this diagram. Take, for instance, an isosceles 
triangle with its axis of symmetry drawn in. Then we can deduce corollarially that 
the base angles of this isosceles triangle are equal. If we draw a new or change a 
given diagram and we deduce a conclusion then we have done a theorematic deduc-
tion. Mathematical argumentations or the proving of theorems are in most cases ex-
amples of theorematic deduction. I return now to Max Simon’s analytical geometry 
and its theorems.

8.4  The Text: Transforming Diagrams into Diagrams

In Chap. 8 of his book, Simon introduces basic theorems of the parabola. Within 
this chapter, § 23 is dedicated to features of the focus of the parabola. To assist 
the reader, Simon refers to a list of theorems he had already presented and also 
proved. Some of these proofs were done with the aid of analytical geometry, while 
others rely on methods from synthetic geometry. This kind of blending of methods 
may have been common at the end of the nineteenth century; however, it does not 
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support a successful reading of this text. Such a blending contradicts, at least in my 
view, Freudenthal’s advice that a proof of a theorem should, among other tasks, also 
locally organize the theorem (cf. Freudenthal 1973). A merging of methods from 
synthetic geometry with methods of analytical geometry may show a student reader, 
as a learner, the relations between these two methods but it seems not to be very 
supportive for understanding what is written.

What are Simon’s arguments to prove the previously mentioned theorem 5? The 
theorem itself can be found as number 5 in a list of several theorems (cf. Simon 
1915, p. 91). This list is headed by further properties of the focus. To accept these 
properties some fundamental characteristics of the parabola are presented. Some of 
them are relevant to understanding the proof of theorem 5. In particular, we can read 
relations between the direction of the ray (through the focus F and the point B on 
the parabola) and the tangent at point B (cf. Fig. 8.2, which shows Simon’s Fig. 16).

Figure 16 is Simon’s proof of how to draw a tangent at a given point of the 
parabola. He refers to the diamond ABFT and claims that the tangent at point B 
bisects the angle of the ray FB and the perpendicular through B to the directrix of 
the parabola. This is a well-known property. Simon continues with some more char-
acteristics of the tangent. He ends with the answer for how to draw a tangent from 
a point P outside the parabola. He explains:

Draw a circle with PF as its radius around P. This circle intersects the directrix at A and 
A1. The bisectors of FA or FA1 are the tangents through P, where B and B1 are boundary 
points. (Simon 1915, p. 90)

To explain this algorithm Simon offers Fig. 17 (see Fig. 8.3). An experienced geo-
metrician would not ask any questions. However, a learning student has some dif-
ficulty seeing all the steps from Simon’s Fig. 16 to Fig. 17 (cf. Fig. 8.3). Within 
Fig. 16, properties of the tangent are shown, whereas Fig. 17 shows the construction 

Fig. 8.2  Simons’s figure 16 
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of the tangents to a parabola where no parabola is visible. Therefore, a sketch shown 
in Fig. 8.3 illustrates the tangents through P and the given parabola.

Let us follow Simon’s deliberation. However, before we continue we have to 
point to the main didactic interest. To be able to understand Simon, a certain amount 
of specific geometrical knowledge is necessary. Otherwise, the student reading 
Simon’s text has to translate this text together with the geometrical diagrams into a 
new text with some new and maybe simpler diagrams. With such a transformation 
he/she should be able to follow Simon successfully.

If a learning student accepts the tangent as an angle bisector then he/she could 
accept (together with Simon’s Fig. 17) the equations AP = PF and PF = PA1. There-
fore A1, A, and F are all on a circle with centre P. This circle is used by Simon to 
claim that the triangles A1PF and ABF (cf. Fig. 17 in Fig. 8.3) are similar. Simon 
writes:

Complete Fig. 17 by connecting F with B and with B1. Draw the axis of symmetry of AA1 
which passes through P. Remove AF and A1F. With these steps Fig. 18 is drawn. The central 
angle A1PF is twice as large as the peripheral angle A1AF, which is the same size as ABP. 
This holds as both of them add the angle BAF to 90°, hence angle(A1PF) = angle(ABF). 
Therefore the triangles A1PF and ABF are similar and furthermore their halves are similar. 
(cf. Simon 1915, p. 90)

Finally referring to Fig. 18 (see Fig. 8.4) Simon concludes
Due to the fact that the angles B1PF and PBF are equal, this angle does not depend on the 
position of P on the tangent PB. … Draw rays from the focus of a parabola to all tangents 
of this parabola, these rays all having the same constant angle with the tangents. Then we 
conclude that the vertices of these angles determine one tangent of the parabola which has 
this constant angle with its touching ray. (cf. Simon 1915, p. 91)

Fig. 8.3  How to draw a tangent
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This quite long list of conclusions is backed by a few sparsely executed geomet-
rical diagrams. Consequently, the comprehension of all these conclusions would 
seem to be quite difficult for a student. However, as indicated in Fig. 8.3, all these 
conclusions can be explained by sketches or using Perice’s concept diagrams. With 
their help these conclusions may be embedded into the mathematical experience of 
the student. In this sense, mathematical knowledge is constructed by the transfor-
mation of the “spoken”—cf. the list of arguments within the earlier paragraph—into 
a list of diagrams. What does this mean for Simon’s theorem? Let us start with the 
relation of the central angle to the peripheral angle.

Figure 8.5 presents the diagram. After drawing the segment A1F the claim 
becomes immediately visible. The next conclusion to explain is the proposition 
angle(A1PF) = angle(ABF). Which good arguments can we see? At first, we look 
back to the sketch in Fig. 8.3. The direction of BA is orthogonal to the directrix 
(line through A1A). Hence, the equation angle(A1AF) + angle(FAB) = 90° is valid. 
At the same time, BP is the tangent at point B where B is a point on the parabola. 
The triangle ABF is isosceles and the tangent at B is the axis of symmetry of this 
triangle. Therefore, the direction of AF is orthogonal to BP. Observing this rela-
tion between these directions and observing the diagram in Fig. 8.5 we conclude 
angle(ABP) + angle(FAB) = 90°. Hence, the triangles A1PF and ABF are similar.

But the proof of theorem 5 needs the independence of point P on the tangent. An-
other diagram may help (see Fig. 8.6). The lines through BP and PB1 are tangents 
to the parabola at B and B1. Hence, they are axes of symmetry of triangle ABF 
and triangle A1B1F. We conclude that the triangles BPF and PB1F are similar. If 

Fig. 8.4  Simon’s final 
diagram
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point P is moved along its own tangent BP then we are always able to determine the 
second tangent through P. There is always a point B1 at the parabola where PB1 is 
the tangent and the triangle A1PF is similar to triangle ABF. Therefore, the theorem 
holds. Figure 8.1 shows three of these similar triangles. At this point of my delibera-
tions, I should like to point out that all “handmade” diagrams which were presented 
above mirror the knowledge of one single reader of Simon’s text. In this sense, 
they are idiosyncratic and mirror the geometrical knowledge of one single student. 

Fig. 8.6  Point P is 
independent
 

Fig. 8.5  Similar triangles 
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However, I wanted to demonstrate the more important fact of inventing diagrams to 
transform a mathematical text.

8.5  Conclusion

Let us reexamine this kind of reading. The understanding of Simon’s deliberations 
is determined by the use of diagrams which follow the rules of geometry. On the 
one hand, Simon’s figures were supplemented by lines and labels. This results in a 
valuable support for the reader. The diagram in Fig. 8.3 assists balancing Simon’s 
Fig. 17 with his text as the sketched parabola and the tangents appear together with 
his more schematically executed diagram. The reader recognizes the property of the 
tangent as the axes of the isosceles triangle and the transitivity of the equals sign 
guarantees the use of the circle around P. No more deliberations are necessary. The 
existence of this circle is a corollarial deduction in Peirce’s sense.

One step beyond this corollarial deduction seems to be the use of the diagram 
in Fig. 8.5. This diagram is used to explain to the reader of the given text the simi-
larity between triangles. Several geometrical properties can be read into this dia-
gram. There is, e.g., the orthogonality of BA with the directrix of the parabola or 
the already-mentioned property of the tangent as the axis of symmetry. The reader 
transforms the “printed” diagram into his/her own diagram. However, this is not 
enough to see the similarity. Another kind of diagram is used. Two equations are 
written beside each other and as a result the reader can see immediately and plainly 
that angle(ABP) equals angle(A1AF). The diagram becomes the source of certainty. 
In other words, the source of certainty is based on the construction of new diagrams 
from given diagrams, which are drawn by the reader himself/herself.

To sum up, this (re)construction of the reading of a mathematical text illustrated 
the intensive collaboration of reading and writing, whereby writing mainly con-
sisted of the construction of geometrical diagrams. These had to explain the given 
text step by step. The reading of this text can be seen as a transformation from pre-
dominantly written diagrams to mostly constructed diagrams.
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9.1  Introduction

The advent of dynamic geometry systems (DGSs) has dramatically changed the 
possible scenario of geometrical experiences at school. The transition from the tra-
ditional graphic environment based on paper and pencil, to the virtual graphic envi-
ronment based on figures on the screen, realized by graphical tools and transformed 
by acting through the mouse, has the potential of deeply affecting the way students 
conceive and reason upon geometrical figures.

Line segments that stretch and points that move relative to each other are not trivially the 
same objects that one treats in the familiar synthetic geometry, and this suggests new styles 
of reasoning. (Goldenberg 1995, p. 220)

DGSs for computers and calculators, such as the Geometer’s Sketchpad (Jackiw 
2009) and Cabri géométre (Laborde and Bellemain 1995), have been at the core 
of a number of studies claiming the potential to impact the teaching and learning 
of school geometry (Healy and Hoyles 2001; Hölzl 2001; Jones 2000; Laborde 
2000; Mariotti 2000; Sträßer 2001; and for an extensive review, see Battista 2007; 
Laborde et al. 2006). Since the very beginning of their appearance research studies 
have highlighted the potential offered by DGSs in supporting students’ solution of 
geometrical problems:

[…] the changes in the solving process brought by the dynamic possibilities of Cabri 
come from an active and reasoning visualisation, from what we call an interactive process 
between inductive and deductive reasoning. (Laborde and Laborde 1991, p. 185)

Specifically, studies have investigated the support provided by a DGS in the solu-
tion of open problems that require the formulation of a conjecture. These types of 
tasks have been discussed to claim their didactic potential, not only with respect to 
the use of a DGS (Hadas et al. 2000; Boero et al. 2007; Pedemonte 2008).

S. Rezat et al. (eds.), Transformation—A Fundamental Idea of Mathematics Education, 
DOI 10.1007/978-1-4614-3489-4_8, © Springer Science+Business Media, LLC 2014
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The use of a DGS, like Cabri, in the generation of conjectures is based on the 
interpretation of the dragging function in terms of logical control that involves 
converting perceptual data into a conditional statement. During the conjecturing 
process, the way of transforming and observing screen images is directed by the 
intention of revealing a significant relationship between geometric properties, a 
 relationship that may be formulated in the statement of a conjecture.

Elaborating on the seminal work of Arzarello, Olivero, and colleagues (Arza-
rello et al. 2002; Olivero 2001, 2002), the potential offered by a DGS not only in 
supporting conjecturing processes but also in mediating the mathematical meaning 
of  conjecture and specifically of conditional statement in the geometry context is 
 discussed.

The following discussion is framed within the theory of semiotic mediation 
(TSM) as it has been introduced by Bartolini Bussi and Mariotti (2008). In this spe-
cific theoretical framework, the semiotic potential of particular modalities of drag-
ging with respect to the notion of conditionality is discussed. Any dragging mode 
can be considered as a specific artifact used to solve an open problem, meanings 
emerging from this use may be referred to the mathematical meaning of conjecture, 
that is, of a conditional statement expressing the logical dependency between a 
premise and a conclusion.

A brief outline of the TSM and specifically of the notion of semiotic poten-
tial and that of didactic cycle is given, then specific dragging modalities explain-
ing how they can be related to the mathematical meanings of premise, conclusion, 
and conditional link between them are analyzed. Some illustrative examples are 
given, drawn from a recent study carried out at the upper secondary level, focusing 
on a particular process of conjecture generation (Baccaglini-Frank 2010a, 2010b; 
 Baccaglini-Frank et al. 2009; Baccaglini-Frank and Mariotti 2010).

9.2  The Theory of Semiotic Mediation

In relation to the use of particular tools, specifically in relation to the use of new 
computer-based technologies in school practice, the term mediation has become 
widely present in the current mathematic education literature (Meira 1998; Rad-
ford 2003; Noss and Hoyles 1996; Borba and Villarreal 2005). However, the term 
“mediation” has been often employed in an unclear way, mixing up two interrelated 
potentialities of a given tool. On the one hand, the tool may be used and it may suc-
cessfully contribute to the accomplishment of a task, and on the other hand, the use 
of the tool may foster learning processes concerning mathematical ideas.

What remains unaddressed is the epistemological issue concerning the relation-
ship between the accomplishment of a task and the student’s learning. This leaves 
implicit the key elements of the mediation process1, which is triggered by the use of 
a specific tool and that is related to particular mathematical knowledge.

1 Someone who mediates, i.e., a mediator; something that is mediated, i.e., a content/force/energy 
released by mediation; someone/something subjected to mediation, i.e., the “mediatee” to whom/
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The TSM elaborated in Bartolini Bussi and Mariotti (2008) addresses this issue, 
combining a semiotic and an educational perspective and considering the crucial 
role of human mediation (Kozulin 2003, p. 19) in the teaching–learning process.

Starting from the notion of semiotic mediation introduced by Vygotsky (1978), 
we analyze the role of tools and of their functioning in the solution of specific 
tasks, and outline a model that describes how a specific tool can be exploited by the 
teacher as a means to enhance the teaching–learning process seen as effect of social 
and cultural interaction.

In the following, a short introduction of the model is provided, strictly finalized 
to clarifying the analysis of the dragging tool and the subsequent discussion of the 
examples that constitute the core of this contribution (for a full discussion and more 
references, see Bartolini Bussi and Mariotti 2008 and Mariotti 2009).

Following Vygotsky, we used the semiotic lens to describe individual knowledge 
construction in terms of internalization (Vygotsky 1981, p. 162) that constitutes the 
unifying element of description (Wertsch and Addison Stone 1985). The basic as-
sumption concerns the claim that internalization is essentially a social process based 
on the communication dimension and on the asymmetric role played by the main 
interlocutors: the teacher and the students.

Specifically, the social use of a certain tool in accomplishing a task makes mean-
ings emerge and these are shared via different semiotic means (verbal, gestural, 
etc.). Such meanings directly refer to the tool and its use in the context of the task; 
however, if observed from the point of view of an expert, they may also be related 
to specific mathematical content. Following Hoyles (1993), we can consider the 
relation between the tool’s use and mathematics as evoked knowledge: for an expert, 
the teacher for instance, the use of a tool may evoke the mathematics knowledge 
that one has to resort to in order to solve a specific task. In this sense, one says that a 
DGS may evoke the classic “ruler and compass” geometry or the abacus may evoke 
the positional notation for numbers.

Hence, a double semiotic relationship is recognizable: (1) between a tool and 
meanings emerging in the accomplishment of the task and (2) between the tool and 
the meanings related to specific mathematical content evoked by that use and rec-
ognizable by an expert. We define (Bartolini Bussi and Mariotti 2008) this double 
semiotic link as the semiotic potential specific to the tool.

A double relationship may occur between an artifact and on the one hand the personal 
meanings emerging from its use to accomplish a task (instrumented activity), and on the 
other hand the mathematical meanings evoked by its use and recognizable as mathematics 
by an expert. (op. cit., p. 754)

On the basis of the distinction between meanings emerging from the use of the tool 
and shared in a social interaction and mathematical meanings related to specific 
mathematical content, we can interpret the teaching–learning activity as organized 

which mediation makes some difference; the circumstances for mediation, viz, (a) the means of 
mediation, i.e., modality; (b) the location, i.e., site in which mediation might occur. For a full dis-
cussion, see Hasan (2002).
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around the goal of making students’ personal meanings evolve into mathematical 
meanings. In other terms, we can see the educational intervention as a way of ex-
ploiting the semiotic potential of a specific tool. On the one hand, the teacher orga-
nizes didactic situations where students use the tool and consequently are expected 
to generate specific personal meanings. On the other hand, the teacher organizes 
social interactions in order to support the transformation of the personal meanings 
that emerged in the artifact-centered activities into the mathematical meanings that 
constitute the teaching objectives.

Thus any artifact will be referred to as tool of semiotic mediation as long as it is (or it is con-
ceived to be) intentionally used by the teacher to mediate a mathematical content through a 
designed didactical intervention. (Bartolini Bussi and Mariotti 2008, p. 758)

The complex semiotic processes of the emergence and transformation of personal 
meanings, evolving toward mathematical meanings can be developed through the 
design and implementation of the so-called didactical cycle (op. cit., p. 754 ff). Be-
cause of the specific focus of this contribution, the description of any more detail on 
this part of the model will not be dealt with.

Of course, in order to make use of a tool as a tool of semiotic mediation, the 
teacher needs to be aware of its semiotic potential both in terms of personal mean-
ings that are expected to emerge when students are involved in specific tasks, and of 
the mathematical meanings that may be evoked by these activities. This asks for a 
careful a priori analysis, from both a cognitive and an epistemological perspective, 
of the use of a specific tool with respect to specific mathematical meanings that are 
educationally significant.

The discussion developed in the following section concerns the semiotic poten-
tial of a DGS with respect to the didactic goal of introducing students to conjec-
turing and developing the mathematical meaning of conditional statement, i.e., a 
logical dependency between premise and conclusion.

9.3  Transforming Figures in a DGS: Dragging and 
Invariants

Dynamic geometry provides, besides the traditional classic graphic representation, 
a new dimension—dynamism—that leads to a potentially quite powerful represen-
tation. The basic rationale behind dynamic geometry is that geometrical objects 
and properties can be presented in a dynamic format, which means that any figure 
that has been constructed using specific primitives can be acted upon by using the 
mouse.

This last action, generally referred to as “dragging” modality, constitutes the 
true novelty of such environments, and determines the well-known phenomenon of 
moving figures that gave the name to this category of softwares. After a construction 
is accomplished, the user may activate the dragging tool and determine the move-
ment of the figure on the screen.

M. A. Mariotti
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Perceiving the movement of the figure actually originates from the visual effect 
produced by a rapid sequence of images that are produced one after the other by 
the system according to the variation of the input (a new position of the dragged 
point) and the construction procedure given by the original sequence of the graphi-
cal tools. The perception of a moving figure comes from the fact that there is some-
thing that changes and something that is preserved: what is preserved—that is in-
variant—constitutes the identity of the object/figure in contrast to the changes that 
determines its transformation and consequently its movement.

Dynamic geometry exteriorizes the duality invariant/variable in a tangible way by means of 
motion in the space of the plane. (Laborde 2005, p. 22)

The invariants correspond to the properties that are preserved and allow the ob-
server to recognize the sequence of images as the same element in movement. The 
interplay between variation and invariants is the core of the process of categoriza-
tion, what allows us to recognize quite different objects as belonging to the same 
category, somewhat like recognizing a friend’s face over time.

But which are the “invariants” that are at the basis of the movement of figures 
in a DGS?

Actually, in a DGS like Cabri, there are two kinds of invariants appearing simul-
taneously as the dynamic figure is acted upon, and therefore “moves”: first, there 
are the invariants determined by the geometrical relations defined by the commands 
used to accomplish the construction, we call them direct invariants, and second, 
there are the invariants that are derived—indirect invariants—as a consequence 
within the theory of Euclidean geometry (Laborde and Sträßer 1990).

The relationship of logical dependency between the two types of invariants cor-
responds to an asymmetry between the two types of invariants, an asymmetry that 
can also be recognized in the relative movement of the different elements of a fig-
ure. Dragging is accomplished by acting on the basic points, those from which the 
construction originates, but their movement will determine the motion of the other 
elements of the figure obtained through the construction. Thus, there are funda-
mentally two different types of movements that, as we will see in the following, are 
worth distinguishing and analyzing carefully: direct motion and indirect motion.

The direct motion of a basic element (for instance, a point) consists in the varia-
tion of this element in the plane under the direct control of the mouse.

The indirect motion of an element (a point of any other element of a figure) con-
sists in the variation of this element as a consequence of the direct variation that can 
occur after a construction has been accomplished.

Therefore, the experience of dragging constructed figures allows the user to 
distinguish between direct invariants and indirect invariants, because the action 
of dragging can allow the user to “feel” motion dependency, which can be inter-
preted in terms of logical dependency. The distinction between direct and indirect 
invariants can be interpreted in terms of logical consequence between properties 
within the geometrical context. Consistently with this analysis, previous studies 
showed how the semiotic potential of dragging and constructions in Cabri could be 
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exploited with the aim of introducing pupils to a theoretical perspective (Mariotti 
2000, 2001, 2007, 2009).

Starting from this phenomenological analysis of the dragging tool, we now focus 
on the specific task of conjecture generation to analyze the semiotic potential of 
specific dragging modalities that can be used to solve it. Our discussion is consis-
tent with classic results coming from previous studies where the dragging strategies 
were described (Arzarello 2000; Hölzl 1996; Leung and Lopez-Real 2000; Leung 
and Lopez-Real 2002; Lopez-Real and Leung 2006; Healy 2000), and aims to elab-
orate on them within the frame of the theory of semiotic mediation.

Specifically, we discuss how different dragging modalities can be used to pro-
duce a conditional statement. First, we consider the case of exploring the conse-
quences of a certain set of premises, then we consider the case of finding under 
which conditions a given configuration takes on a certain property (as in Arzarello 
et al. 2002; Olivero 2002).

9.4  Dragging to Produce a Conditional Statement

The term “open problem” is common in mathematics education literature (Arsac 
and Mante 1983; Silver 1995) to express a task that poses a question without reveal-
ing or suggesting the expected answer. In the geometry context, open problems can 
consist of tasks requiring the formulation of a conjecture starting from a given con-
figuration, i.e., a figure of which specific properties are given. The solver is let free 
to explore the possible significant properties that are compatible with the original 
configuration and to formulate a conditional statement linking the given properties 
and their possible consequences. As the previous analysis highlights, dragging for 
producing a conjecture requires a complex interpretation of perceptual data com-
ing from the screen; clearly, such an interpretation presents a higher complexity as 
compared to, for example, dragging to test the correctness of a construction. It is 
not enough to observe the figure and its movement globally, but it is also neces-
sary to analyze and decompose the image appearing on the screen, according to 
its elements and their properties, in order to recognize a geometrically significant 
relationship between them.

9.4.1  Dragging to Search for Consequences

In this case, the statement of a conjecture is generated by the interpretation of per-
ceived invariants taking into account their logical hierarchy induced by the original 
construction. Consider the following example.

ABCD is a quadrilateral in which D is chosen on the parallel line to BC through 
A, and the perpendicular bisectors of AD and BC are constructed (Fig. 9.1).

Dragging any of the free points, the constructed parallelism and perpendicular-
ity are preserved, but it also happens that the parallelism between the two perpen-

M. A. Mariotti
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dicular bisectors is preserved. Complexity resides in being aware of the hierarchy 
induced on the different invariants, in spite of the fact that they are simultaneously 
perceived, and interpreting such a hierarchy as a logical dependency between prop-
erties of the “geometric figure.” In the earlier example, the exploration by dragging 
can lead to the following conjecture: “if two sides of the quadrilateral are parallel, 
then the corresponding perpendicular bisectors are parallel” (Fig. 9.2).

In other words, what appears on the screen while dragging, that is, the fact that 
a specific relationship between invariants is preserved, corresponds to the general 
validity of a logical implication between properties of a geometrical figure.

The distinction between direct and indirect movements plays a key role in identi-
fying and discerning the given properties and their consequences. As far as dragging 
is concerned, a dynamic figure moves when its basic points are acted upon. In the 
earlier example, A, B, and C are basic points of the dynamic figure and they can be 
dragged to any place on the screen (in this case, we speak of free dragging), while 
D can only be dragged along the parallel line to BC through A. The perpendicular 
bisectors, as dependent elements of the construction, cannot be directly acted upon, 
but they will move indirectly and their parallelism will be an indirect invariant. The 
different status of the elements of the figure, basic or dependent, as can be experi-
enced through dragging, corresponds to the different logical status of the geometri-
cal properties, premises, or consequences of a conditional statement. Therefore, 
we claim that the dragging tool used in solving a conjecture-production task has a 
semiotic potential recognizable in the relationship between:

•	 Direct and indirect invariants and premise and conclusion of a conditional state-
ment and

•	 The dynamic sensation of dependence between the two types of invariants and 
the geometrical meaning of logical dependence between premise and conclusion.

Fig. 9.1  ABCD as a result of 
the construction described in 
the earlier example
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9.4.2  Dragging to Search for a Premise

As shown by many studies in the literature, exploring the consequences of a certain 
set of premises is not the only possible use of dragging for generating conjectures. A 
different way involves the induction of a specific property by a “constrained” type 
of dragging. This way of dragging produces a new kind of invariant, which has been 
classified as a soft invariant, as opposed to a robust invariant that refers to direct 
invariants induced by a construction.

A soft invariant is a property “purposely constructed by eye, allowing the locus 
of permissible figures to be built up in an empirical manner under the control of 
the student” (Healy 2000; Laborde 2005). The use of soft invariants in the solution 
of conjecture problems has been observed in previous studies and described with 
different names, like lieu muet or dummy locus dragging (Arzarello et al. 2002). In 
a recent study, it has been referred to as maintaining dragging (Baccaglini-Frank 
2010; Baccaglini-Frank and Mariotti 2010).

As explained earlier, the control of the status of the different kinds of invariants 
is based on an enacted distinction between direct and indirect movements. This 
distinction leads to consider the new type of invariant, emerging from the specific 
goal-oriented dragging as indirectly induced invariant: A property occurs because 
of the movement of a basic point. Such a movement is direct, but controlled by the 
objective of causing a specific property to occur2 (Baccaglini-Frank 2010; Bacca-
glini-Frank and Mariotti 2010).

Consider the following example. Given a quadrilateral, construct the bisector of 
its sides, their intersections generate a new quadrilateral. Dragging freely, one ob-
serves that in some circumstances the internal quadrilateral collapses in one point. 
This may represent an interesting property for the solver, thus he/she decides to 
explore under which circumstances this may happen. In the earlier example, it is 
possible to try to induce the soft invariant “coinciding perpendicular bisectors” and 
search for a specific condition under which such property occurs.

2 Referring to the intentionality of the action, Baccaglini-Frank (2010) calls this kind of invariant 
the intentionally induced invariant. For the objective of this contribution, it is not necessary to 
introduce the terminology elaborated by Baccaglini-Frank.
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Fig. 9.2  The figures show 
the effect of dragging 
ABCD’s basic point C while 
trying to maintain the coin-
cidence of the perpendicular 
bisectors
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Using maintaining dragging, the special movement of a basic point intentionally 
induces the occurrence of a selected property and makes the figure assume a spe-
cific configuration as the consequence of a geometrical condition corresponding to 
the goal-oriented movement.

Once again we have the simultaneity of two invariants; however, they have a dif-
ferent status that comes from the different control exerted by the solver acting upon 
the figure. The haptic sensation of causality can be referred to the conditionality 
relating the unknown condition realized by the direct movement and the selected 
property indirectly induced as invariant, the first corresponding to the premise and 
the second to the conclusion of a conditional statement.

The different status of the two invariants is clearly discernible by their character-
istics related to the exploration process carried out by the solver.

On the one hand, the indirectly induced invariant that will become the conclusion 
of the conjecture has the following characteristics that make it clearly recognizable:

It is a property that is intentionally selected and may be induced indirectly as (soft) invari-
ant by moving a basic point.

On the other hand, the condition destined to originate the premise has the following 
characteristics:

It is searched for in response to the questions “what might cause the Indirectly Induced 
Invariant?”, it is recognizable in the constrained movement performed during the maintain-
ing dragging.

In summary, the asymmetry of the relationship between invariants in a DGS offers a 
great potential with respect to distinguishing the logical status of the properties that 
determines their belonging to the premise or the conclusion. Thus, according to our 
analysis it is possible to outline the following semiotic potential of the maintaining 
dragging tool in solving a conjecture-production task, recognizable in the relation-
ship between

•	 The	indirectly	induced	invariant,	i.e.,	the	property	the	solver	intends	to	achieve,	
and the conclusion of the conjecture statement.

•	 The	invariant	constrained	by	the	specific	goal-oriented	movement,	i.e.,	the	prop-
erty that must be assumed in order to obtain the induced invariant, and the prem-
ise of the conjecture statement.

•	 The	haptic	sensation	of	causality	relating	the	direct	and	indirect	movements	and	
the geometrical meaning of logical dependence between premise and conclusion.

9.5  The Teaching Experiment

As part of a broader research study (Baccaglini-Frank 2010), a teaching experiment 
was carried out with students of scientific high schools (licei scientifici) (a total 
of 31: 14 pairs and 3 single students.). The students had been using a DGS, spe-
cifically Cabri, for at least 1 year prior to the study. Different dragging modalities 
were explicitly introduced during two 1-hour introductory lessons (for details, see 
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Baccaglini-Frank 2010). Specifically, we introduced the maintaining dragging in 
relation to exploring a configuration to formulate conjectures. Subsequently, pairs 
of students were observed during a problem-solving session where four different 
open problems were proposed.

During these interview sessions, we intended to observe and describe the rela-
tionship between students’ use of the different modalities of dragging, in particular 
of the maintaining dragging, and the production of conjectures.

Data collected included: audio and video tapes and transcriptions of the intro-
ductory lessons; Cabri files worked on by the instructor and the students during the 
classroom activities; audio and video tapes, screenshots of the students’ explora-
tions, transcriptions of the task-based interviews, and the students’ work on paper 
that was produced during the interviews.

Among other results (for a full discussion, see Baccaglini-Frank 2010), the anal-
ysis of the collected data provides evidence supporting the previous analysis con-
cerning the semiotic potential of the dragging tool and in particular of maintaining 
dragging with respect to conjecture tasks. In the following section, we discuss two 
examples drawn from this corpus of data.

9.6  The Unfolding of the Semiotic Potential

During the interviews, pairs of students were observed while solving open problems 
in which the production of a conjecture was required. The use of different modali-
ties of dragging and specifically the maintaining dragging modality was promoted 
so that we could observe the relationship between the enactment of dragging and 
the emergence of meanings related to it. The following examples illustrate students’ 
actions and their interpretations of their experiences with the images on the screen. 
The analysis of students’ behavior will be related to the mathematical meanings 
discussed earlier. We will observe how the semiotic potential of dragging modalities 
unfolds. For the reader’s convenience, the examples that we present will refer to the 
same open problem, which is reported subsequently.

Problem
•	 Draw	three	points:	A,	M,	and	K.
•	 Construct	point	B	as	the	symmetric	image	of	A	with	respect	to	M	and	C	as	

the symmetric image of A with respect to K.
•	 Construct	the	parallel	line	l	to	BC	through	A.
•	 Construct	the	perpendicular	to	l	through	C,	and	construct	D	as	the	point	of	

intersection of these two lines.
•	 Consider	the	quadrilateral	ABCD.

Make conjectures about the types of quadrilaterals that can emerge, and try to 
describe all the ways in which it can become a particular type of quadrilateral.

M. A. Mariotti
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9.6.1  Dragging to Search for Consequence

The following excerpt concerns the kind of exploration carried out at the very be-
ginning of the solving process. We can observe how two students (Pie and Ale) 
notice and describe an indirect invariant, after free dragging of a basic point.

In the following excerpt, students are referring to the screen image which is 
shown in Fig. 9.3.

Excerpt 1 
Transcript Analysis
[1] Pie: the segment BC … if it varies what 

does it depend on?
Student’s attention focuses on one of the ele-

ments of the figure—segment BC—and he 
asks himself what does its variation depend 
on

[2] Pie: So, point B is the symmetric image of 
A …

In order to identify dependency, the student 
comes back to the given properties that 
determine the original configuration

[3] Ale: I think that the segment [pointing to 
BC] is fixed

[4] Pie: …and C is the symmetric image of A 
with respect to K. Therefore if I vary A, C 
varies too

[5] Pie: because…they are…I mean A has 
influence over both B and C

[6] Ale: But the distance between B and C 
always stays the same

In the exchange between the two students, the 
main elements come out: the identification 
of an invariant and the explicit expression 
of the dependence between basic points and 
constructed points. Ale identifies an invari-
ant, Pie tries to link such invariance to the 
given properties, at the same time express-
ing such link in terms of dependency on 
the variation of basic points: “Therefore if 
I vary A, C varies too. […] I mean A has 
influence over both B and C”

Fig. 9.3  A screen shot from the students’ exploration in Cabri
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Transcript Analysis
[7] Pie: Here there is basically AK and KC, 

which are the same and AM and BM are 
always the same

[8] Ale: Yes, try to move it?
[9] Pie: yes
[10] Ale: Hmm
[11] I: What are you looking at?
[12]  Ale: No, nothing, just that…I wanted to…

now we can also put [Ale refers to the 
statement that they are asked to write as a 
conjecture ] that the distance between B 
and C always stays the same…in any case 
it does not vary

More invariants are identified. It seems that 
Ale is looking for geometrical reasons for 
their appearance, though he does not imme-
diately see them. The control by dragging 
is invoked to verify them and decide to 
include them in the conjecture

However, dragging a basic point is invoked 
to check whether a certain property is a 
consequence; provided that it is invariant, 
a property should appear in the conjecture 
(“we can also put …”)

The main elements come out: the identification of an invariant and the explicit ex-
pression of the dependence between basic points and constructed points. When Ale 
identifies an invariant Pie tries to link it to the given properties [3–4], and expresses 
such links in terms of dependency on the variation of basic points: “Therefore if I 
vary A, C varies too. […] I mean A has influence over both B and C.”

This is a good example of how dragging is combined with the control over the 
direct and indirect movements of points, and of how this combination may be as-
sociated with logical dependency between properties, orienting the recognition of 
the status of premises and derived properties.

9.6.2  Dragging to Search for a Premise

Let us now consider an example of using the maintaining dragging modality. Here, 
after a first phase of exploration by free dragging, a pair of students start a more sys-
tematic investigation using the maintaining dragging mode, as it was introduced in 
the classroom. As we will see, they start searching for a condition to make the quadri-
lateral become a rectangle. It is possible to observe how this use of maintaining drag-
ging allows the students to distinguish the status of the different properties involved.

The exploration of Fab and Gus The problem after dealing with a first conjecture 
concerning the fact that the “quadrilateral is always a right trapezium,” the students 
notice the particular configuration “ABCD is a rectangle” and start dragging the 
basic point M trying to maintain this property, which we therefore refer to as the 
intentionally induced invariant. At the same time, Fab and Gus start to search for the 
condition that might be the cause that makes this property occur.

M. A. Mariotti
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Excerpt 2.a 
Transcript Analysis
10 Fab: Ok, should we drag M now?
11 Fab: Let’s try to get a rectangle first
12 Fab: How was it?
13 Fab: Like this. Now let’s try to maintain …
14 Interviewer: rectangle
15 Fab: The property rectangle
16 Gus: Eh, going up
17 I: Slowly, slowly
…
20 Fab: No, no, it changes. It moves too 

much…
21 Fab: Should we try to do trace so we can 

see?
…
28 Fab: It looks like a curve
29 Gus: It would look like a nice circle again
30 Fab: Like this

31 Fab: It is not a straight line, for sure!
…
42 Fab: It looks like it goes through A
43 Gus: and through K
44 Fab: where?
45 Gus: It looks like a circle with diameter AK
46 Fab: Yes, it looks like a circle with diameter 

AK!
….

The solvers decide to activate the maintaining 
dragging on point M to induce the property 
“ABCD rectangle”

It is clear that for the students the direct motion 
has to cause the invariance of the property 
“ABCD rectangle”

Students are searching for regularities in the 
direct motion and in order to detect them 
the students decide to activate trace on M, 
as they say “so we can see”

The haptic sensation of dependency appears in 
the utterances 16–21, when modifications 
of the action of dragging is invoked after 
perceiving that maintaining is violated

After the use of trace, the direct motion—caus-
ing the property of being a rectangle to 
occur—is reified in the trajectory produced 
by the trace tool. The solvers recognize 
such trajectory as a circle and specifically 
as the circle of diameter AK

The first property “ABCD is a rectangle” is identified and fixed at the very begin-
ning, while the condition slowly emerges through the enacted goal-oriented drag-
ging process. In this case, as in others, the use of the trace tool is combined with 
the maintaining dragging; this leads to the reification of the direct movement of 
the basic point, facilitating the recognition of the searched condition. A trace of the 
haptic sensation of causality is expressed by the students’ verbal commentary to the 
dragging (16–21).

Both the properties in focus (“ABCD rectangle” and “M on circle”) constitute 
soft invariants; the first is controlled “by eye” with a certain tolerance, the second 
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emerges and is recognized after its reification in the trajectory produced by the trace 
tool. It is expressed as “the point M moves on the circle of diameter AK.”

In the following episode, we can find confirmation of students’ awareness of the 
different status of the two soft invariants.

Excerpt 2.b 
Transcript Analysis
50 Fab: So let’s draw the circle AK…
51 Interviewer: that you thought appeared
52 Fab: exactly, but first we need to…I mean I 

need to give it a centre, right?
53 Fab & Gus: So let’s construct the midpoint 

of AK. (They label it Z)
…

Fab suggests to construct robustly the circle 
identified in the product of the trace

64 Fab: I need to link M to the circle.
…
66 Fab: Because I am trying to maintain the
property rectangle dragging M along this 

circle…

Point M is linked to the constructed circle 
through the command “redefine object,” 
and Fab explains his goal “66 I’m trying 
to maintain ….”. It is clear that this robust 
property, obtained by construction, is 
recognized as the cause of the property 
“ABCD is rectangle”

69 Fab: That means, if M belongs to the circle 
with radius AZ and center Z …

70 Fab: then ABCD is a rectangle

Finally, the conjecture is given (69–70) in the 
form “if... then...”

The students construct the circle that was identified in the product of the trace, then 
point M is linked to it. Fab summarizes the interpretation of their phenomenologi-
cal experience referring to the initial activity of exploration “66. Fab: I’m trying to 
maintain ….” It seems clear that they interpret the new directly induced invariant 
“M on the circle” as a cause of the indirectly induced invariant “ABCD rectangle.” 
All that finally (69–70) is expressed in a conditional statement, a conjecture of the 
form “if ... then ..”

Immediately after that, the conjecture is tested through constructing the premise 
and accomplishing a free dragging; the simultaneous appearance of the two robust 
invariants, confirms the conjecture.

We advance the hypothesis that as the solvers induce the invariants, the type of 
control that they experience over them can help them to perceive the asymmetry of 
their status in spite of the fact that they appear simultaneously. This may lead the 
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students to interpret the dynamic relationship between the invariants as a condi-
tional relationship between properties. Thus, perception of invariants together with 
the sensation of the causal relationship between them may be transformed into a 
conditional statement relating geometrical properties.

9.7  Conclusions

Though one should not under-evaluate the difficulty that students face in perceiv-
ing and interpreting dynamic phenomena occurring on the screen, the deep educa-
tional value of such activities motivates the effort requested in fostering it through 
adequate teaching interventions (Talmon and Yerushalmy 2004; Restrepo 2008; 
Baccaglini-Frank et al. 2009; Mariotti and Maracci 2010).

However, with this contribution I want to go a step further: it is claimed that not 
only the use of different dragging modalities may lead students to successfully solve 
conjecture-generation tasks, supporting them in producing conditional statements, 
but also the dragging modalities offer a semiotic potential that can be exploited by 
the teacher to make the mathematical meaning of conditional statement evolve from 
haptic experience of direct and indirect movements, and the related different status 
of invariant properties.

Simultaneity, combined with the control of direct and indirect movements, makes 
the different status of each kind of invariant emerge as well as the counterpart of 
the logical dependency between a premise, corresponding to the constructed invari-
ants and a conclusion, corresponding to the derived invariants. Specifically, the 
two kinds of invariants can be characterized referring to their specific status in the 
exploratory activity, their specific characteristics make them clearly recognizable 
by the students and they can be used by the teacher to exploit the semiotic potential 
of maintaining dragging.

In summary, different meanings emerging from the semantic of the DGS can be 
exploited to mediate the mathematical meaning of premise and conclusion and gen-
erally speaking, the mathematical notion of conditional statement. Specifically, the 
two kinds of invariants can be characterized referring to their specific status in the 
exploratory activity, their specific characteristics make them clearly recognizable 
by the students and they can be used by the teacher to exploit the semiotic potential 
of maintaining dragging.

The model elaborated in the TSM (Bartolini Bussi and Mariotti 2008) describes 
the main components of the process that starts with the student’s use of an artifact to 
accomplish a task and leads to the student’s appropriation of a particular mathemati-
cal content. Taking a semiotic perspective, such a description is provided in terms 
of transformation of signs: personal signs, referring to meanings emerging from stu-
dents’ activities with the artifact, are expected to be transformed into mathematical 
signs. Such a transformation is not spontaneous, rather it has to be fostered by the 
teacher through organizing specific social activities designed to exploit the semiotic 
potential of the artifact. Collective mathematical discussions (Bartolini Bussi 1998) 
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constitute the core of these activities, on which teaching and learning is based. The 
whole class is engaged: taking into account individual contributions and exploiting 
the semiotic potentialities coming from the use of a particular artifact, the teacher’s 
action aims at fostering the transformations from personal meanings to mathemati-
cal meanings (Mariotti 2009; Mariotti and Maracci 2010).

Further investigations are necessary to explore the whole process of semiotic 
mediation related to the different dragging modalities. Teaching experiments de-
signed according to a specific didactic organization (didactical cycle) described in 
the TSM (Bartolini Bussi and Mariotti 2008) have been planned, and are in prog-
ress, in order to collect evidence of how the semiotic potential of different dragging 
modalities can be exploited in classroom activities and how the transformation of 
signs might actually be realized. However, this will be the theme of another paper.
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10.1 Introduction

It seems a reasonable claim that students who will be future mathematics teach-
ers are provided with appropriate opportunities to actively engage in mathematical 
topics and tasks in the course of their training. This should not only involve more 
or less difficult routine tasks following the lecture, but should also include open 
and self-differentiating tasks. In other words, their training at the teacher college 
or university should deliver and reflect, as far as possible, what is to be expected in 
their future careers.

Empirical findings support the view that teachers are better able to promote 
and facilitate the mathematical thinking of their students if they themselves have 
learned and engaged in mathematical activities.

Many issues concerning pedagogical content knowledge (Shulman 1986) and 
good practice are directly linked to teachers’ own expertise in the subject matter 
(COACTIV, TEDS-M). For instance, knowledge of and in “differentiation,” “indi-
vidual learning paths,” “multiple solution tasks,” “basic ideas and misconceptions,” 
“visualizing abstract concepts,” “consistent image of mathematics,” etc.

To be clear, for the sake of this chapter “professional proficiency of lower sec-
ondary teachers” does not refer to any inert knowledge of mathematical topics cu-
mulatively acquired at the university, but the ability to independently explore math-
ematical topics or domains within a more or less delimited range. Asking questions 
of one’s own mathematical practice, trying solutions to problems (subjective though 
they may be) could be regarded as necessary ingredients of such proficiency.

This paper reports on a course at our training institution for prospective math-
ematics teachers. It links content-related aspects with didactical perspectives: It is 
about functional relationships between complex numbers and their process-oriented 
acquisition by our students. In linking both aspects together, it is believed that the 
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representation of the mathematical content by means of a dynamic geometry soft-
ware (DGS) plays a key role.

10.2 High Hopes, Slow Pace

Since the advent of the so-called “dynamic geometry software” (DGS) in the late 
1980s and the early 1990s there has been considerable discussion about its possi-
bilities and potentials in the learning and teaching of geometry (Laborde & Sträßer 
1990). Following the then general optimism, if not enthusiasm, within the commu-
nity of mathematics educators, dynamic geometry could play a distinctive role in 
mediating geometric concepts and heuristic processes while supporting less teach-
er-centered styles of instruction (Laborde 2001).

However, it became clear that any technology-mediated mathematics is not the 
same as paper-and-pencil mathematics (Sträßer 2001). In the case of dynamic ge-
ometry, this was true especially for the very essence of DGS, namely its so-called 
“drag mode,” the defining feature which allows certain parts of a figure to be moved 
around the screen preserving its geometrical relationships.

As Sträßer (1991) noted, distinguishing “drawing” from “figure” becomes es-
sential when investigating geometric situations with DGS; while “drawing” refers 
to the visual aspects of, say a triangle, “figure” refers to its underlying relation-
ships (for example, an isosceles triangle). This difference is crucial because “drag-
ging” operates on the drawing but not on the figure. With this distinction, other di-
lemmas of dynamic representations also arise: In a paper-and-pencil environment, 
there is no principal difference between simply a point and a point of intersection, 
the latter being constructed by using ruler and compass. However, with DGS the 
difference between points and intersection points can become poignant in the eyes 
of students as the former are freely moveable whereas the latter are not. The con-
sequences of this can be crucial when it comes to heuristic processes (Hölzl 1995, 
1996; Sträßer 1992).

Given the fact that DGS has been in use for some 20 years now, one can ask 
what has been achieved in relation to the learning of geometry or in mathemat-
ics in general. Laborde & Sträßer (2010) conclude, in their review of 25 years of 
International Commission on Mathematical Instruction (ICMI) activities concern-
ing new technology, that problems of implementation are far from being solved 
and “the discrepancy between intentions, suggestions and potentials to use new 
technology and the actual use of it is still wide” (p. 131). They suggest that, 
notwithstanding the abundance of well-designed software and well-meaning sug-
gestions on how to use new technology in the classroom, the most important in-
novations seem to be in the arena of research as different theoretical frameworks 
had to be developed. Indeed, while the majority of research projects focused on 
various aspects of students’ learning in or interacting with “microworlds” (Healy 
and Kynigos 2010), little attention had been paid to teachers and teaching (La-
grange et al. 2003). To explain the relatively slow pace of technology integration 
in the classroom, one had to take into account teachers’ conceptions, beliefs, and 



17510 Dynamic Representations of Complex Numbers

knowledge (Lavicza 2010), and it is reasonable to assume that these variables are 
influenced by what the teachers experienced themselves in their own schooling 
and training.

To put it simply: Mathematics teachers who have not experienced a meaning-
ful problem-based style of mathematics supported by certain facets of ICT are less 
likely to employ new technologies later in their own teaching. Thus, I see it as a 
challenge to give our teacher students opportunities to (a) find their own ways of 
dealing with mathematical content and (b) use, in our case, dynamic geometry as a 
tool to support an investigative style of learning and teaching.

10.3 Course Contents

Our course content is based on elementary properties of complex numbers and 
functions. In teacher education, we deem complex numbers to be a rewarding topic 
in many ways. On one hand, the epistemological problems associated with its de-
velopment show that mathematical concepts are not simply defined, as the prevail-
ing mode of lecturing at universities still suggests, but may have been developed 
over centuries. On the other hand, complex numbers provide ample opportunities 
for a rich interplay between geometric and algebraic ideas. In addition, for pro-
spective mathematics teachers, the history of ideas about complex numbers can be 
very instructive because of the distinctive parallels to the development of negative 
numbers.

Complex numbers or, as they are formerly called, “imaginary quantities” ap-
peared during the Renaissance. Cardano (1501–1576) set up and solved the problem 
of dividing 10 into two parts whose product is 40. The roots for the corresponding 

equation are 5 15+ − and 5 15− − which are, in the words of Cardano, “sophistic 
quantities”—ingenious but of no value. However, “putting aside the mental tortures 
involved” Cardano proceeds to multiply both roots, as is common with real num-
bers, obtaining the perfectly natural number 40. His comment in Chap. 37 of his 
Ars magna (1545) states: “So progresses arithmetic subtlety, the end of which, as is 
said, is as refined as it is useless.” (cited in Kline 1980, p. 116)

Descartes (1596–1650) stresses the difference between real vs. imaginary. He 
says with each polynomial equation a x a x a x an

n
n

n+ + + + =−
−

1
1

1 0 0  ...  one could 
imagine as many roots as its degree n indicates. At times, however, these imaginary 
roots do not correspond with real quantities.

Leibniz (1646–1716) enriches his doctrine of imaginary quantities with the sur-

prising relation 1 3 1 3 6+ − + − − =  and views the square root of a negative 
number as a “sublime outlet of the Divine Spirit, almost an amphibian between be-
ing and not-being” (cited in Ebbinghaus 1991, p. 48).

Euler (1707–1783) calculates at ease with complex numbers and with superb 
intuition. He already knows the relation

1 log 1
2

π
− ⋅ − = −
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but finds himself on slippery grounds by calculating − ⋅ − = =1 4 4 2 thus using 
a b ab= , which in general is no longer valid with complex numbers (indeed, 

even the sign is ambiguous with complex numbers).
The views on complex numbers start to change with the work of Gauss (1777–

1855). He knows the geometric interpretation of complex numbers as points in a two-
dimensional Cartesian coordinate system called the complex plane (cf. Fig. 10.1); 
he uses it albeit somewhat in disguise, in his dissertation in 1799, where he proves 
the “fundamental theorem of algebra”. By 1815, Gauss was in full possession of 
the geometric theory but it was not until another of Gauss’ treatises in 1831 that the 
complex plane gained broad dissemination (Ebbinghaus 1991, p. 50). Interestingly, 
the geometric and thus visual representation of complex numbers as points in a 
plane earned them a legitimate place in mathematics.

Complex numbers are characterized by two components: a real and an imaginary 
part, which are interpreted as Cartesian coordinates. The formal expression x iy+  is 
known as the algebraic (or rectangular) form of a complex number, where the sym-
bol i denotes the “imaginary unit” with the characteristic property i2 1= − .

As long as calculations such as multiplication or division are not involved, one 
can comfortably switch between interpretations of complex numbers as numbers, 
points, or position vectors, as is practiced throughout the text.

A powerful way of interpreting calculations with complex numbers arises from 
the polar form, that is, instead of using the real and imaginary parts to determine a 
point in the complex plane, one measures its distance r to the origin (0, 0) and its 
angle ϕ to the real axis (counterclockwise). r defines the absolute value of a com-
plex number z which by using Pythagoras’ theorem is

r z x iy x y= = + = +2 2

The value of ϕ, the so-called argument of z, can change by any multiple of 360° (or  
2π if radians are used).

Fig. 10.1  Representing 
a complex number in the 
plane
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Basic trigonometry shows that (cos sin )z x iy r iϕ ϕ= + = + , the latter some-
times being abbreviated to r cis φ.

10.4 Course Arrangements and Opportunities to Learn

Instead of solely lecturing, our approach to complex numbers was twofold. Al-
though there was some input to provide basic orientation, introducing key concepts 
and giving illustrations of using DGS, the main features of the course were nine 
“topic cards” that opened up space for exploratory learning about complex num-
bers. Topics ranged from complex numbers as a field, complex roots (sequences, 
functions) to non-Euclidian geometry (Coxeter 1969). Students could choose ac-
cording to their own interests the card they wanted to engage with. This is crucial 
because there is sometimes (or often) a mismatch between the professional demand 
of taking heterogeneity in classes into account and what teacher students actually 
experience in their training. At least as far as mathematics for secondary teachers is 
concerned, there is, in my view, still scope for improvement.

Each topic card contained a central theme as well as key concepts to outline the 
territory that was to be explored. We asked our students to

1. …write a mathematical report in a reflective style which documents their per-
sonal questions and insights they came across on their path of learning. Clarity 
of text was to be supported and enhanced by giving examples, and appropriate 
forms of visualizing, specializing, or generalizing;

2. …choose at least one specific question, thought, or problem, etc. and develop 
some form of substantial preparation by using ICT, for instance, Excel or Geo-
Gebra; and

3. …work on a “research question.” The criteria for the “research question” were 
clearly subjective in nature. A valid question or problem was what students 
regarded as (personally) meaningful and to which there was (for them) no obvi-
ous answer or solution.

Multiple topic cards could be chosen and worked on cooperatively. However, re-
ports had to be individual and cooperative work explicitly referenced.

10.5 Dynamic Representations of Complex Numbers

The geometric representation of complex numbers sheds new light on the basic 
calculations with those numbers. Take multiplication as an example:

z w x iy u iv xu yv i xv yu⋅ = + ⋅ + = − + +( ) ( ) ( ) ( )

10 Dynamic Representations of Complex Numbers
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The procedural course seems quite straightforward—the result follows from the 
distributive law taking into account i2 1= − . However, what is the “meaning” of the 
expressions xu yv−  and xv yu+ , respectively?

Representing the complex multiplication z w⋅  dynamically, we can study the ef-
fect of the multiplication from a geometrical viewpoint in various ways: We can set 
both the direction and length of the vector that represents the complex number w, 
then vary the vector representing z and study the changes to z w⋅ .

As an example, for w ≥ 0, that is w u iv= +  with u v≥ =0 0 and , it happens that 
z is dilated at the origin O, with the factor being of value w. Whereas if w has only 
an imaginary part v u≥ =0 0 ( ), then z appears to be not only dilated but rotated at 
O counterclockwise by 90° (cf. Fig. 10.2).

Similar special cases enable analogous observations. In general, the multiplica-
tion

z z ww• → ⋅

can be interpreted geometrically as a dilative rotation about the origin O. The factor 
k of dilation equals the absolute value of w, the rotation angle ϕ is in accordance 
with the argument of w.

This geometric interpretation can be recognized in symbolic form too. Switching 
to polar coordinates and taking

( ) ( )1 1 1 2 2 2cos sin cos sinz w r i r iϕ ϕ ϕ ϕ⋅ = + ⋅ +

as a starting point, we can factor out and apply appropriate trigonometric rules thus 
gaining

Fig. 10.2  Representing 
the complex multiplica-
tion dynamically
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z w r r i⋅ = ⋅ + + +[ ]1 2 1 2 1 2cos( ) sin( )φ φφ φ

Therefore, the complex product z w⋅  is of magnitude r r1 2⋅  and has the argument 
1 2ϕ ϕ+  (modulo 360°).

10.6 Functional Relations

There is a clear analogy between the real and complex numbers with respect to 
functional relations: A variable w changes depending on a variable z, e.g.,

w = 2i · z + 1, w = z2, w = 1/z, in general w = f (z) or z
f−→ w .

In contrast to real numbers, the familiar graphic interpretation of a function f is no 
longer possible as its graph

G z w w f z wf = ={( | ) : ( ) , } for z  complex

forms a four-dimensional real subset, because of  ( | ) ( | | | )z w x y u v=  for 
z x iy w u iv= + = + und . However, visualizing can be powerful at least as long as 
there are pedagogical intentions involved; hence, graphical interpretations of com-
plex functions exist. It is common, for instance, to draw “niveau curves,” that is, 
curves where the absolute value | |w does not change.

As an alternative way of visualizing, we can investigate the effects a function has 
on certain subsets of the complex plane (cf. Fig. 10.3). The basic idea is that a com-
plex function somehow “distorts” the plane and in doing so shows its characteristics.

Example. How does the function w f z z i= = − +( ) 2 2  transform a spe-
cial subset of the complex plane, say the triangle represented by its vertices 
A i B i C i( ), ( ) ( )− − − − − +2 1 1 und ?

Fig. 10.3  Mapping a subset of the “z-plane” onto the “w-plane”

10 Dynamic Representations of Complex Numbers
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Each vertex transforms into

− −  → +
− −  → +
− +  →

2 4 4

1 2 4

1 2

i i

i i

i

f

f

f

The dynamic representation of this situation within GeoGebra would be as follows: 
The complex number z represents a point of triangle ABC. While z goes around the 

Fig. 10.4  Transform-
ing a triangle by a linear 
complex function

Fig. 10.5  The image of 
the triangle as a locus.
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triangle ABC, w f z= ( )  traces the image of the triangle (cf. Fig. 10.4). Mathemati-
cally speaking, the image is generated pointwise.

How can the result be explained? As mentioned above

z z z ii⋅ − + → − ⋅  → − ⋅ +( )2 22 2 3

amounts to a dilative rotation about the origin by factor 2 and rotation angle 
arg( )− = °2 180 , followed by a translation with + 3 units parallel to the imaginary 
axis. Hence, three geometric operations are involved: dilating, rotating, and shifting.

As far as the dynamic representation within GeoGebra is concerned, it is worth 
mentioning that it is possible to generate the image of the triangle not only point wise 
as a trace (in this case, as a trace of w) but also as a locus (cf. Fig. 10.5).

Such loci already behave, in some respect, like other objects created with the 
software. For example, if the original triangle ABC changes, so does the image 
triangle A’B’C’.

More surprising is the dynamic representation of the complex function w z= 2: 
The intuitive notion that the triangle ABC would somehow be “dilated by a quadratic 
magnitude,” does not stand the test because the sides of the triangle are obviously 
bent (cf. Fig. 10.6).

Fig. 10.6  Transform-
ing a triangle by z2

10 Dynamic Representations of Complex Numbers
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10.7 Impressions of Student’s Work

Which topic cards did our students prefer? Mainly those where unusual, surpris-
ing insights are likely during the course of experimenting; topics where dynamic 
representations of the underlying mathematical situation offer various routes of in-
vestigation—qualities that are linked to the cards’ “complex roots” or “complex 
functions” in particular.

To give some impressions as to which questions or insights our students came 
across during their work on the topic cards, we briefly illustrate some points.

Students often encounter the ambiguity of square roots (or any nth root, n > 1 ) 
when dealing with the GeoGebra model of the above-mentioned quadratic function. 
The image of the unit circle under the transformation z z→ 2  obviously remains 
the unit circle because of z z2 2

1= = . However, this fact has more facets within a 
dynamic representation.

Figure 10.7 indicates that the position vector of w z= 2  goes around the unit circle 
twice as fast as the position vector of z. This is because of arg( ) arg( ) arg( )w z z= =2 2 .

In other words one round for z on the unit circle means two rounds for w z= 2. 
Conversely, for each position of w on the unit circle there must be two distinct posi-
tions of z such that z w2 = , which differ in their argument by 180°.

The GeoGebra model in Fig. 10.8 serves as a visualization of the (ambiguous) 
complex square root w.

Students who used this model were likely to generalize and attempted to model 
n  for n = 3, 4, 5, too. A rather sophisticated form of dynamic representation of 

complex roots shows up in this work: A slider can be used to control n in w zn = ,  
while the position vector of z can be moved around, thus visualizing all possible 
roots zn  in the complex plane (cf. Fig. 10.9).

R. Hölzl

Fig. 10.7  Position vec-
tor of z and w z= 2
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Dealing with complex roots poses the question, with some students, whether 
there is such a thing as 2 5. , and if so, how many and what results could be ex-
pected, thus raising the question of complex powers in general.

In the case of complex functions, students mainly focused on the geometric prop-
erties of z z z2 3 1, , /  . Not surprisingly, instances where the original figure (triangle, 
square, circle…) was transformed or even distorted gained a lot of attention. Thi-
erry, for example, explores the effect the transformation z z→ 2  has on a horizontal 
line in Fig. 10.10. The line seems to be transformed into a parabola.

It should be mentioned that students very seldom resorted to analytical explana-
tions for such phenomena, instead, intuitive geometric reasoning was invoked such 

Fig. 10.8  Complex 
square roots

Fig. 10.9  Representing 
n
√

z, here 5
√

2 + 2i
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as “At the point i or near it, the absolute value of z equals approximately 1, conse-
quently z2 1≈ . Because changes of arg( )z  exert near i a greater influence than 
changes of z , a curvature results.”

Similar to the above case of a horizontal line, a vertical line would be trans-
formed into a parabola open to the left. Viewed as a whole, the Cartesian grid trans-
forms into a parabolic grid (with angles preserved) (cf. Fig. 10.11).

10.8 Summary

Recent studies on teacher cognition, such as COACTIV (Kunter et al. 2007), focus 
on teacher knowledge and skills. Among those aspects of teacher competence re-
garded as essential, the dimension “knowledge” plays a prominent role. Research 
shows that the meaningful interplay between “content knowledge,” “pedagogical 
content knowledge,” and “pedagogical knowledge” (Shulman 1986) is fundamental 
for good teaching. (Questions of organizational knowledge as well as counseling 
skills are not to be neglected, of course.)

Whereas the category “pedagogical content knowledge” is relatively well docu-
mented in the literature, the description of the category “content knowledge” re-
mains somewhat traditional. To be sure, as far as school curricula are concerned, 
fundamental ideas are mentioned, useful forms of representing those ideas are 

R. Hölzl

Fig. 10.10  Transforming a 
horizontal line
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 suggested, as are good analogies, illustrations, examples, explanations, and demon-
strations. In short, various ways of representing and formulating the subject matter 
that make it comprehensible to others are known and can be taught at a teacher 
college. However, when it comes to “content knowledge” the common phrase is 
that teacher students need a sufficient, preferably “deep understanding” of (at least) 
school mathematics. The question is how this is achieved. The normal route is via 
lectures in mathematics, which often still follow a transmission model: Presenting 
definitions, assertions, and proofs (cyclically in this order). We claim however that 
the central emphasis should not be on how much mathematics teacher students en-
counter and even what mathematics, but in what different ways.

If prospective teachers are to lead their future students to what makes the es-
sence of mathematical thinking, namely recognizing (ir)regularities, exploring pat-
terns, and finding arguments to back up or refute assumptions, then it is vital in our 
view that they encounter activities that reinforce an open and self-differentiating 
approach during their time at the college or university.
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11.1  Introduction

As so often stated since the time of ancient Greece, the nature of mathematical 
objects is, by essence, abstract. Mathematical objects are only indirectly accessible 
through representations (D’Amore 2003, pp. 39–43) and this contributes to the par-
adoxical character of mathematical knowledge: “The only way of gaining access to 
them is using signs, words or symbols, expressions or drawings. But at the same 
time, mathematical objects must not be confused with the used semiotic represen-
tations” (Duval 2000, p. 60). Other researchers have stressed the importance of 
these semiotic systems under various names. Duval calls them registers. Bosch and 
Chevallard (1999) introduce the distinction between ostensive and nonostensive 
objects and argue that mathematicians have always considered their work as dealing 
with non-ostensive objects, and that the treatment of ostensive objects (expressions, 
diagrams, formulas, and graphical representations) plays just an auxiliary role for 
them. Moreno Armella (1999) claims that every cognitive activity is an action medi-
ated by material or symbolic tools.

Through digital technologies, new representational systems were introduced with 
increased capabilities in manipulation and processing. The dragging facility in dy-
namic geometry environments (DGEs) illustrates very well this transformation that 
technology can bring in the kind of representations offered for mathematical activity 
and consequently for the meaning of mathematical objects. A diagram in a DGE is 
no longer a static diagram representing an instance of a geometrical  object, but a 
class of drawings representing invariant relationships among variable  elements: The 
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dynamic parallelogram ABCD, constructed on variable points A, B, and C represents 
two relationships of parallelism between two opposite sides, AB and CD on one hand 
and AD and BC on the other. It is because the relationships of parallelism are invari-
ant in the dragging, while points and sides vary, that they constitute the mathematical 
essence of this figure. The dynamic representation expresses, in this example, the 
generality of the parallelogram. The distinction between drawing and figure is clear-
ly illuminated by DGEs and a discussion (initiated by Parzysz in 1988 independently 
of DGE) took place at the international level, about the complexity of relationships 
between diagrams and figures, in particular, in a workshop organized by Straesser in 
August 1990 at IDM in Bielefeld (Germany) (Strässer 1991; Laborde 1991). A more 
recent synthesis is presented in Kadunz and Straesser (2007, pp. 39–46).

The role of representations in the use of digital technologies is essential. Hoyles 
and Noss (2003) consider digital technologies as “dynamic manipulable and in-
teractive representational forms” that “mediate and are mediated by mathematical 
thinking and expression” (p. 326). As they stress it, the systems we use to present 
or represent our thoughts to ourselves and to others, to create and communicate 
records across space and time, and to support reasoning and computation, constitute 
an essential part of our cultural infrastructure.

The paper addresses three dimensions of transformations brought about by these 
new kinds of representations:

•	 An	epistemological	dimension:	the	problems	faced	by	software	designers	when	
working on the features of direct manipulation of representations of variable 
mathematical objects;

•	 a	cognitive	dimension:	the	way	students	learn	mathematics	using	this	new	kind	
of representation offers a window on their conceptualizations; and

•	 a	didactic	dimension:	how	transforming	the	tasks	by	taking	into	account	the	fea-
tures of these dynamic representations, in particular of the drag mode, may im-
pact students’ learning.

11.2  Designing the Features of Direct Manipulation:  
the Case of Cabri 3D

Direct manipulation has proven to be a key feature to facilitate creative user inter-
actions with a computer and has slowly generalized to most computer platforms. 
For educational software, nevertheless, direct manipulation cannot be designed by 
chance and has to follow some additional principles. One of them is called epis-
temic fidelity: the representations of mathematical objects have to avoid any con-
tradiction with the abstract object they are supposed to represent; and this has to be 
true at the graphical level as at the level of their behavior under direct manipulation. 
Let us elaborate on the difference between interactivity and direct manipulation.

When interacting with a modern computer, the interface is essentially interactive 
in the sense that the user is “asking” the software to perform something, and after 
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the reaction of the computer, he or she asks something again for a next step. The 
most basic interactivity is offered by the so-called “interactive books” giving es-
sentially the possibility to display pages and, by pressing buttons, to turn the pages 
of the books.

This kind of interactivity (unfortunately still widely spread, especially through 
the Internet) is easy to develop and leads to a form of “impoverishment” of the 
user interface, with the generalization of the use of Internet. By contrast, authentic 
direct manipulation software is mainly not driven by the press of buttons, or by 
the filling of dialogs (or forms), or by typing command lines. It offers an interface 
where the user is invited to directly act on the mathematical objects. Actually, the 
action is on the representation of an object or an abstract entity; nevertheless, if 
the implementation is sophisticated enough and if the interaction turns out to be of 
direct engagement type (Schneidermann 1983), eventually the user perceives the 
representation of the object and the abstract object itself, as already noticed by the 
five main designers of the Star Machine (Smith et al. 1982).

The need for extending the benefit of direct manipulation present in many two-
dimensional (2D) environments just followed the first introduction of direct-ma-
nipulation geometry software of Cabri type. Recall that Cabri actually stands for 
“Cahier de BRouillon Interactif,” somehow “Interactive Sketchpad.”

The need for extending direct manipulation from 2D to 3D cannot be achieved 
without a deep transformation of the environment under several aspects: the math-
ematical problems to be solved for the representing dynamic 3D objects are differ-
ent and, for most of them, even still open.

Two kinds of new problems arise: representing 3D objects with a meaningful 
depth and representing their behavior in the drag mode; the manipulation of 2D ob-
jects with a mouse in a 2D screen is natural but becomes problematic for 3D objects: 
how can the mouse capture the depth of the space?

11.2.1  Complexity

A very common idea, about extending a 2D environment to 3D, is to think that this 
could be achieved (somehow) merely by adding an additional coordinate to the 
internal representation of the objects at the level of their data structure: essentially 
this would be then a trivial task. Actually, as it is well known by mathematicians, 
3D objects are “essentially” more complex than 2D objects: in most of the cases, 
augmenting the dimension leads to some increase in complexity, even if eventu-
ally in a higher dimension the situation might show more regularities. In 3D, many 
“basic problems” are still open. Let us mention the classification of quadrics. In 
2D, there are only three conics: ellipses, parabolas, and hyperbolas. In 3D, i.e., for 
quadrics, nobody has yet found any really “elegant” classification that would satisfy 
everybody. Another example could be the conjecture about the probable existence 
of unfolding of any convex polyhedron as a net of not overlapping connected (con-
vex) polygons. In 2D, “to follow,” in a reasonable way, the intersection of two 
conics is not an easy task (actually many of the DGEs cloned from the main ones 
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fail in  trying to dynamically follow, in rather simple cases, the intersection points 
of a circle with a straight line). In 3D, nobody knows (yet and apparently) how to 
dynamically follow the intersections of a quadric with a line and, even less, the 
intersection curves of two quadrics.

11.2.2  Representing Dynamic 3D Objects

The first new problem arising when moving from 2D to 3D deals with the choice 
of the perspective.

In classrooms, the so-called cavalier perspective has been the most popular way 
of representing 3D scenes. The main reason for this is that it is easy to create per-
spective drawings using the rules of the cavalier perspective. Recall that this per-
spective is governed by the fact that it is a parallel (yet not orthogonal) perspective 
(the observer is at infinity and parallel lines are still parallel in the perspective draw-
ing). In addition, there is a plane in which objects are in real size, and actually lines 
perpendicular to this plane are represented as oblique lines in the drawing. This is 
really different from the “natural” perspective as introduced by the painters at the 
time of the Renaissance (e.g., Alberti) and which today can be considered as real-
ized by high-quality camera lenses.

Figure 11.1 shows a cube, in “natural perspective” vs. the same cube in “cavalier 
perspective”: if we animate the cube to rotate around its vertical axis of rotational 
symmetry, the cube in natural perspective would keep its “cubic” shape, but, in 
cavalier perspective, the cube would actually somehow pulse as its shape would 
change during the various phases of the rotation. Cavalier perspective is thus in 
conflict with the user’s perception about the cube as a solid object.

Therefore, we assumed that the natural perspective favors the appropriation of 
the figure by students and users more generally. This is the reason why in Cabri 3D 
the default perspective is actually a natural perspective. Its characteristics match the 
view of an object of approximately 40 cm in size held (as in the hand of the user) at 
a distance of 50 cm. This is in contrast to some other software that, by exaggerating 
the perspective effect (for some artistic purpose), apparently does not favor the ap-
propriation just mentioned. In Fig. 11.1, one can clearly understand how, somehow, 

Fig. 11.1  On the left a cube 
in natural perspective, on 
the right the same cube in 
cavalier perspective
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the cavalier perspective is an attempt to look at an object from two points of view 
at once: from the front and from the right. Actually, this kind of representation has 
developed in many cultures, ranging from ancient Egypt to China and Japan.

Let us stress that this choice is not shared by other 3D environments. The latter 
generally favor either the parallel perspective, for easiness of the computations, or a 
strong perspective effect by taking advantage of the facilities of computer graphical 
cards.

11.2.3  Rendering 3D Mathematical Objects

There is not much space here to address all specificities of the rendering of 3D 
mathematical objects (lines, planes, spheres, cylinders…), some of them being “in 
nature” infinite. Let us just mention the case of the plane—an infinite object. In 
textbooks, planes are most of the time represented using a rectangle to display a 
“portion” of a plane. It is also worth to note that textbooks present only a really lim-
ited number of figures. Space geometry textbooks display hardly more than ten dif-
ferent types of 3D situations we could consider as stereotypic. Among them, one is 
the illustration of the famous “théorème du toit,” stating that if two planes intersect 
a plane along two parallels lines, their intersection is a third parallel line (Fig. 11.2).

In textbooks, which display only a static image, one can easily agree about “the 
good rectangle” taken to represent each plane. When things turn out to be dynamic, 
there is no “natural” way to “follow” the plane as it evolves. This is the reason why 
some 3D geometry software considering that planes are essentially infinite do not 
limit their representations. A plane (up to the special case of being viewed as a line, 

Fig. 11.2  Two planes inter-
secting in a third parallel line
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in French “de bout”) covers the whole screen and, in such environments, practically 
cannot be “seen” and so is not directly represented. We do not consider that this is 
a good idea for learners. In Cabri, after various attempts we decided to represent a 
plane as a rectangle (in some earlier version as a parallelogram) presenting a cer-
tain amount of thickness, in the very same spirit as when Hilbert and Cohn-Vossen 
designed their 3D figures for their famous “Anschauliche Geometrie” (Hilbert and 
Cohn-Vossen 1952).

11.2.4  Manipulating 3D Objects

One of the first things to be considered in order to directly manipulate objects in 
space is to have a mouse that can drive a point in 3D. Ordinary mice are essentially 
2D, though expensive 3D mice have existed for a while. Because such 3D devices 
are not expected to be available soon, neither in the regular classroom nor at home, 
we have been looking for various solutions based on an ordinary mouse combined 
with modifiers (at keyboard level). Actually, in Cabri 3D a metaphor of the old 
“typewriter” is used: as long as the shift key is not pressed, the mouse simulates a 
displacement in some horizontal plane and if the user presses the shift key (implying 
a vertical movement of the carriage on antique typewriters) the mouse movement is 
interpreted as a movement along a vertical axis. Note that other environments may 
have employed another choice, like Archimedes Geo 3D, in which pressing the shift 
key provokes a move orthogonal to the screen plane. For reasons of making sense to 
the users, Cabri 3D does not permit any arbitrary rotation of the scene (as in looking 
at the scene in some upside-down way) and the horizontal reference plane always 
stays horizontal and consequently verticality is preserved.

All these choices made on the basis of epistemic and ergonomic reasons must 
then be confronted with the real use by teachers and students. Let us mention here 
a thorough study (Hattermann 2011) analyzing the use of Archimedes Geo 3D and 
Cabri 3D by university students, giving evidence of various aspects of the ways of 
using these environments for solving different kinds of problems. It is worth men-
tioning that students solved problems more rapidly in Cabri 3D than in Archimedes 
Geo 3D (p. 164) without a clear evidence of an effect due to a particular feature of 
the interface of both software environments. It may be the combination of several 
aspects of the whole interface that played a role.

11.3  A Cognitive Dimension: Dynamic Diagrams 
as a Window on Students’ Ideas

Interacting with dynamic diagrams transforms the usual ways of acting on math-
ematical objects into new ones. Because students cannot directly apply the usual 
paper-and-pencil routines in DGEs, they have to make decisions about actions. 
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These decisions are influenced by their conceptions about mathematical objects. 
Therefore, placing students in unfamiliar conditions may reveal their own ideas and 
conceptions about mathematical objects.

Many research works have been carried out on students solving tasks in DGEs. 
In particular, the way in which students drag as they solve geometry problems in 
DGEs was investigated by several researchers. Hölzl (1996) identified the “drag 
and link approach” in students’ construction processes of Cabri diagrams. Students 
relax one condition to do the construction and then drag to satisfy the last condition. 
They obtain a visually correct diagram and want to secure the diagram by using the 
redefinition facility of Cabri. However, often it does not work because of hidden 
dependencies that are not considered by the students. Although Hölzl does not refer 
to instrumentation, this “drag and link approach” would be called an instrumenta-
tion scheme in terms of Vérillon and Rabardel (1995). The students constructed an 
instrumentation scheme incompatible with the functioning of Cabri.

Arzarello et al. (1998a, b) identified different kinds of dragging modalities that 
were not all referring to an organized experimentation: “wandering dragging”, “lieu 
muet” dragging, and dragging to test hypotheses. Wandering is just moving without 
a predefined aim for searching for regularities, while “lieu muet” dragging refers to 
dragging in such a way that some regularity in the drawing is preserved. The drag-
ging to test hypotheses obviously presupposes that regularities have already been 
detected which are not systematically tested. Goldenberg (1995) notes that often 
students do not know how to conduct experiments and are unsure what to vary and 
what to keep fixed. Thus, a student’s purposeful move from “wandering dragging” to 
“lieu muet” dragging represents a cognitive shift. Restrepo (2008) who investigated, 
in depth, the instrumental genesis of the drag mode by sixth graders over one school 
year, concluded that the genesis lasts over a long time made of several steps.

From all these investigations, it appears that the power of the drag mode in explo-
ration is not spontaneously mastered by students because the mathematical meaning 
of the drag mode itself is not yet constructed by students. As claimed by Strässer 
(1992), dragging offers a mediation between drawings and figures and can only be 
used as such at the cost of an explicit introduction and analysis organized by the 
teacher. Transforming the interaction between student and geometric figures turned 
out to reveal that the notion of geometric figures, as a set of relationships between 
variable elements, is not appropriated by students. It may imply that students do not 
necessarily recognize the mathematics they learned in a paper-and-pencil environ-
ment. Mathematics itself may be changed in students’ eyes by a DGE.

Below, an investigation on the construction of a proof by ninth graders is re-
ported (Abd El All 1996) giving evidence that even a known theorem is transformed 
in a DGE for students.

11.3.1  Students’ Conception of a Theorem

All students of a class (ninth graders) were given the following tasks. They worked 
in pairs. The work of four pairs was observed and audio-recorded.
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 Task 1 (Fig. 11.3) Students were given a rectangle ABCD and the quadrilateral 
IJKL of the midpoints of the sides of ABCD in a paper-and-pencil environment. 
They had to determine the nature of IJKL and justify their answer. All students 
found that it is a rhombus.

 Task 2 Then, they had to predict whether IJKL would remain a rhombus in any 
movement of B that does not preserve ABCD as a rectangle. All students predicted 
that IJKL would not be any longer a rhombus.

 Task 3 They were given a rectangle ABCD in Cabri. Then, they had to construct 
the circle with center D and radius AC and to redefine B as belonging to the circle. 
They were asked “Is IJKL still a rhombus?” (Fig. 11.4).

The sequence of questions was designed with the intention to favor the need of 
having recourse to proof. In a computer environment, the need for proof cannot 
any longer be favored by the uncertainty of the result. It may arise for intellectual 
motives because the student wants to know why a phenomenon takes place. As 
pointed out by the Piagetian perspective, a means of provoking this intellectual 
curiosity may be caused by a conflict between what the learner believes or pre-
dicts and what actually happens. Such a conflict may be achieved by asking the 
students to predict properties of the diagram before allowing them to check on the 
computer, as in this problem. In task 1, we expected that students would prove that 
IJLK is a rhombus by using the specific properties of a rectangle (theorem of Py-
thagoras, properties of reflection, and congruence of right-angle triangles) rather 
than using the more general property of the midpoint segment that is valid even if 
ABCD is no longer a rectangle. In task 2, we expected them to predict that IJKL 
is no longer a rhombus, as they probably would have justified in task 1 that IJKL 
is a rhombus by using properties of a rectangle. In task 3, we expected them to be 
very surprised upon observing that IJKL remains a rhombus and that they would 
be eager to understand why. This is why they were not asked to justify what they 
had observed. We expected that from the strength of the contradiction would arise 
the need for justifying.

Fig. 11.3  Rhombus in a 
rectangle
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This is exactly what happened. Students were so surprised to discover that IJKL 
was a rhombus, although ABCD was not a rectangle that they became eager to prove 
why without being asked in an explicit way to do so. However, it took time for them 
to construct a justification. We could observe that the variability of the diagram cre-
ated several difficulties for students. We comment here on the effect of variability on 
the use of a theorem. Some students did recognize that IJ was the segment joining 
the midpoints and evoked the property of this segment, but they were not sure about 
the validity of using the theorem when the diagram moved. V. and L., for example, 
evoked the theorem of the midpoint segment but did not dare using it. Pushed by 
the observer, they selected a triangle and V. looked carefully at the triangle and the 
midpoint segment when point B was dragged. She expressed her satisfaction:

“The theorem of midpoints moves, yes it moves. It works even if we move”
L. confirmed: “the midpoint theorem it works”
V. “it works the same way”
V. even tried to justify the invariance of the property in the drag mode:
“they are all the same because there is always the same length. AC it is two times that. It 
is always two times that. It is always two times that and it works there all the time even if 
we move anyway.”

A student of another pair wrote at the end of their proof: “As DB is always the ra-
dius, this proof is always right” and then the partner added: “for any position of B.”

For these students, a proof seems to be carried out only for a particular instance of 
the diagram. From the work in Cabri, the problem of the shift from proving one in-
stance to proving all instances arose for them. According to Netz (1999), Greek proof 
was rather done on a generic example than in a general case. The validity of the general 
statement was claimed at the end of the proof in the final part called Sumperasma. The 
expression of the validity claimed by students for all instances obtained by the drag 
mode can be compared with the expression of the Sumperasma in the Greek proof.

Fig. 11.4  Rhombus in a 
quadrilateral with congruent 
diagonals
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In this example, Cabri provided a window (Noss and Hoyles 1996) on the con-
ceptions of students about proof, but the complexity introduced by the variability 
of the diagram acted as a catalyst for change in this conception for students such as 
V. and L. who became aware of the fact that a theorem may be valid for a moving 
diagram as the relations between elements remain unchanged. Questioning the va-
lidity of the theorem under the drag mode led the students to focus their attention to 
the relationships between elements of the figure. They learned from the complexity 
brought by the computer environment that offered to the students another window 
on mathematics (Noss and Hoyles 1996). This point of view was supported by sev-
eral researches on Computer AlgebraSystems (CAS) used as a lever to promote 
work on the syntax of algebraic expressions (Artigue 2002, p. 265; Lagrange 2002, 
p. 171, or DGE assisting pupils to distinguish the properties of a rhombus from 
those of a square, Hoyles and Jones 1998).

11.4  A Didactic Dimension: Transforming the Tasks by 
Making Use of the Features of the Software

11.4.1  The Adidactical Milieu

The idea of a technological environment that has to be explored and that is inter-
acting with the learner can be linked to the notion of “adidactical milieu” in the 
theory of didactic situations by Brousseau (1997). In this latter theory, knowledge 
is constructed by the student as a solution to a problem for which the constructed 
knowledge item provides an efficient solving strategy. The student does not solve 
the problem for satisfying the expectations of the teacher but because it is a genuine 
problem for him, a problem of the same kind as problems encountered in real life 
outside the classroom. The only difference is that real-life problems are not orga-
nized by a teacher in order to promote learning. Although designed by the teacher, 
a problem in an adidactical situation is experienced by the student as a real-life 
problem. In the core of the notion of adidactical situations is the notion of “adidacti-
cal milieu”. An “adidactical milieu” offers information and a means of action to the 
student and reacts by providing feedback to his/her actions. It can be of material 
nature as well as of intellectual nature.

We do not claim that dynamic environments like Cabri II Plus and Cabri 3D 
provide an “adidactical milieu” but it can be organized and based on them for at 
least two main reasons:

•	 the	 available	 tools	 allow	 the	 user	 to	 perform	mathematical	 operations	 on	 the	
representations of the mathematical objects; and

•	 the	feedback	offered	by	the	drag	mode	allows	the	user	to	check	whether	his/her	
constructions are done by using mathematical properties and relations, and are 
not simply visually done.
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Numerous examples of construction tasks with Cabri I, Cabri II, or Cabri II Plus 
are given in the literature and show how the first solving strategies of students are 
visual and evolve toward more geometrical constructions through the drag mode 
playing a double role. The drag mode invalidates purely visual constructions and 
also provides information about the geometrical behavior of objects (Noss and 
Hoyles 1996, p. 125; Jones 1998, pp. 79–82). In these construction tasks, geometri-
cal knowledge is efficient as it is the only way to build a construction that is “drag 
mode proof ”. As it is possible to configure the software and to make available a 
restricted range of default tools or new tools obtained as macro-constructions, the 
designers of the construction tasks can thus promote the use of specific properties 
by the students and contribute to learning through the organized “adidactical mi-
lieu”. An eloquent example is given by the task of drawing a perpendicular line to 
a line without the tool “Perpendicular” but with transformation tools, in particular 
the “Reflection” tool.

11.4.2  Example of an Adidactical Milieu in Cabri 3D

A more recent example (Mithalal 2010) is given here about a construction task in 
Cabri 3D. Cabri 3D is used to create an adidactical milieu fostering the move by 
students from a pure global visualization of a solid object, called iconic visualiza-
tion by Duval (2005), to an analytical breaking down of a solid object into parts 
interrelated through geometrical relationships called dimensional deconstruction by 
Duval (2005).

Grade-10 students of two classrooms using Cabri 3D for learning 3D geometry 
(Mithalal 2010) were faced with the following activity at the beginning of the teach-
ing of 3D geometry and after an introduction to the use of Cabri 3D: A cube with a 
triangular cross section was given on the screen and the students had to reconstruct 
the missing vertex so that it remains a vertex even when the cube is enlarged or 
dragged (Fig. 11.5).

In order to foster learning, students were asked to find several solving strategies, 
and tools were withdrawn from Cabri 3D once visual strategies appeared and once it 
was observed that these strategies did not produce robust vertices against dragging. 

Fig. 11.5  A truncated cube 
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It was expected that the added constraints would lead students to move to geometric 
characterizations of the missing vertex.

Producing a vertex by a purely visual strategy is not as easy in Cabri 3D as in a 
paper-and-pencil environment. If the user attempts to put a point by eye at the de-
sired location, Cabri 3D proposes to create the point on the triangular crosssection 
(Fig. 11.6).

Visual strategies must be a little more elaborated and include some geometric 
components. An example of such a semi-visual strategy is creating a cube on the 
top of the original cube by visually placing its center at the center of the squared top 
face and putting one of its vertices to a vertex of the original cube and then visually 
adjusting this second cube so that its bottom face is coinciding with the top face of 
the original cube (Fig. 11.7). Of course, a vertex reconstructed in this way is not 
“dragging resistant.” It was decided to withdraw the tool Cube from Cabri 3D after 
this strategy was proposed by the students.

Thus, strategies conceiving the vertex as an intersection of straight lines or of 
planes were expected in a second phase after semi-visual strategies. Students pro-
posing such strategies were asked to find other strategies without using the tool 
“point.”

The attentive observation of 30 pairs of students shows that a few of them resort-
ed to a first phase to visual or semi-visual strategies. Some of those students tried 
to create a tetrahedron based on the triangular cross section with a fourth vertex 

Fig. 11.6  A point visually 
located
 

Fig. 11.7  Adjusting a second 
cube
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providing the missing vertex of the cube. Noniconic visualization clearly underlies 
such a strategy. Students intended to reconstruct the entire cube as a material entity.

The most prevailing spontaneous strategy was to construct the missing vertex as 
the intersecting point of the three straight lines supporting the segments adjacent to 
the cross section (although two lines would be enough). The fact that often three 
lines, and not two, were constructed can be interpreted as a strategy inherited from 
paper-and-pencil environment mixed with iconic visualization. The three lines al-
lowed students to restore the original representation of the whole cube in a paper-
and-pencil environment. Some students then moved to the construction of the ver-
tex as the intersecting point of planes or of a plane and a line. They took advantage 
of the possibility of using 2D objects in Cabri 3D and extended the intersection 
strategy. The use of a plane supporting a face moved them away from a purely icon-
ic visualization of the cube and very often when using a plane and a line, the vertex 
was constructed only with one plane and one line and not with two planes and one 
line, and two lines and one plane. Through the instrumental deconstruction of the 
cube made possible by Cabri 3D, students moved toward a noniconic visualization.

Finally, it must be stressed that after the tool “point” was withdrawn, some stu-
dents constructed the vertex using geometric transformations like point symmetry 
or translation: the vertex was constructed as the reflected image of another vertex 
with respect to the center of a cut face of the cube, or it is the image of a vertex in a 
translation with the vector which is defined by a side of the cube.

Construction tasks in DGEs are thus transformed. They become, in a way, more 
demanding as they require the use of geometrical knowledge to be solved and can 
be more difficult for students. However, the drag mode invalidating strategies may 
encourage the students.

11.4.3  Tasks Specific to Dynamic Geometry

Over the 20 years of existence of the Cabri technology, the design of “adidactical 
milieu” led to experiments with new kinds of tasks that cannot exist in paper-and-
pencil environments, in particular:

•	 “black	 box”	 tasks	 in	which	 dynamic	 constructions	 are	 given	 to	 students	who	
must reconstruct them again so that the reconstructions have the same behavior 
in the drag mode as the original ones and

•	 prediction	tasks	in	which	students	must	predict	without	dragging	as	to	what	will	
happen if a specific point is dragged.

These tasks of a new kind are based on the same idea of taking advantage of the 
transformation of the nature of diagrams in DGEs, namely taking advantage of the 
variable nature of the diagrams controlled by the mathematical model underlying 
the software program.

In these tasks, students explore and interact with the environment. Through 
feedback and the available tools, they will develop strategies involving  geometrical 
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knowledge. The fact that it is the environment, and not the teacher who reacts, 
contributes to make the problem analogous to a genuine problem for students. In a 
black-box task, students can experiment on the given construction by adding ele-
ments and dragging, in order to find the relationships between its elements. The 
nature of the mathematical activity of the student is changed and becomes more of 
an experimental activity in which hypotheses are made and checked by experiment-
ing. In prediction tasks, students must resort to geometrical knowledge to be able to 
predict the behavior of the construction in the drag mode. Then the predictions can 
be checked by dragging a point of the construction.

With the extension of Cabri tools to algebraic and graphing tools, the design of 
tasks making use of the Cabri features went beyond geometry. For example, Fal-
cade (Falcade et al. 2007) designed a milieu for constructing the notion of graph of 
a function as expressing the covariation of two variables, the first one independent 
and the second one depending on the first one. Moreno (2006) designed a milieu 
in which the students had to find the ordinary differential equation of a family of 
dynamic curves, by exploring the variation and the invariant elements of this family 
in the drag mode, a kind of black-box task in calculus.

11.5  Transformations

In the nineteenth century, human knowledge led to the design of tools for the mech-
anization of human activity. At the end of the twentieth century, human knowl-
edge could be embarked in technology-modeling domains of theory. In dynamic 
mathematics environments, human knowledge is embarked in the representations of 
theoretical objects, which behave according to the theoretical model underlying the 
technology, independent of the wishes of the user as soon as the latter has construct-
ed them. One could say that a transformation of a new kind took place. It does not 
lie only in the creation of artefacts embarking knowledge but also in the creation of 
artifacts offering a dynamic model of theoretical objects. In terms of the Vygotskian 
perspective, the creation of artifacts embodying theoretical knowledge at a higher 
degree than before may affect the nature of the psychological tool constructed by 
humans. It may extend the role of these psychological tools on the mental activity 
of the individual. This is very apparent in the reaction of students L. and V. when 
they discovered that the theorem “moved”, i.e., was valid for every occurrence of 
the diagram. The use of a dynamic construction led them to consider a theorem as 
an invariant statement about variable objects.

The teaching of mathematics can take advantage of the transformation of the of-
fered representations of mathematical objects by changing the kind of tasks given 
to students for fostering learning as described in Sect. 11.3. However, the role of the 
teacher is still essential. The students may not be able to solve new kinds of tasks 
that are more demanding in terms of knowledge and need help from the teacher. 
Once students have solved the task, the teacher may contribute to an internalization 
process by organizing social interactions and collective discussions in the class-
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room, intervening in order to transform the meaning of what has been done on the 
computer into a meaning that can be related to the “official” mathematical mean-
ing. This process of semiotic mediation based on this new nature of representations 
was theorized and extensively experimented by Mariotti (2001) (see also Mariotti, 
Chap. 9).

The industrial revolution deeply affected the human society. The transformations 
brought about by knowledge technology also affected the society. However, it influ-
enced schools in a minor way. One missing link between this deep transformation 
of technology and schools is certainly pre- and in-service teacher education and 
accompanying measures for taking advantage in everyday teaching of this transfor-
mation of representations of mathematical objects.

References

Abd El All, S. (1996). La géométrie comme un moyen d’explication de phénomènes spatio-
graphiques: une étude de cas, Mémoire de DEA de Didactique des Disciplines Scientifiques, 
Grenoble: University of Grenoble 1, Laboratoire Leibniz-IMAG.

Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about 
instrumentation and the dialectics between technical and conceptual work. International Jour-
nal of Computers for Mathematical Learning, 7(3), 245–274.

Arzarello, F., Micheletti, C., Olivero, F., Robutti, O. & Domingo, P (1998a). A model for analysing 
the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings 
from the 22nd annual conference of the international group for the psychology of mathematics 
education (Vol. 2, pp. 24–31). South Africa: University of Stellenbosch.

Arzarello, F., Micheletti, C., Olivero, F., Robutti, O., Paola, D., & Gallino, G. (1998b). Dragging 
in Cabri and modalities of transition from conjectures to proofs in geometry. In A. Olivier & 
K. Newstead (Eds.), Proceedings of the 22nd conference of the international group for the 
psychology of mathematics education (Vol. 2, pp. 32–39). South Africa: University of Stel-
lenbosch.

Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Re-
cherches en didactique des mathématiques, 19(1), 77–124.

Brousseau, G. (1997). Theory of didactical situations in mathematics. N. Balacheff, M. Cooper, R. 
Sutherland, & V. Warfield (Trans., Eds.). Dordrecht: Kluwer.

D’Amore, B. (2003). Le basi filosofische, pedagogiche, epistemologiche e concettuali della Didat-
tica della Matematica. Bologna: Pitagora Editrice.

Duval, R. (2000). Basic issues for research in mathematics education In T. Nakahara & M. Koya-
ma (Eds.), Procedings of the 24th Conference of the International Group for the Psychology of 
Mathematics Education (Vol 1, pp. 55–69). Hiroshima: Hiroshima University.

Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de 
la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements, 
In: Annales de didactique et sciences cognitives, 5–53. Strasbourg, France: IREM, Université 
Louis Pasteur.

Falcade, R., Laborde, C., Mariotti, A. (2007). Approaching functions: Cabri tools as instruments of 
semiotic mediation. Educational Studies in Mathematics, 66(3), 317–333.

Goldenberg, E. P. (1995). Rumination about dynamic imagery. In R. Sutherland & J. Mason, (Eds.), 
Exploiting Mental Imagery with computers in mathematics education, (Vol 138, pp. 202–224). 
(NATO ASI series F). Heidelberg: Springer.



202 C. Laborde and J.-M. Laborde

Hattermann, M. (2011). Explorative Studie zur Hypothesengewinnung von Nutzungsweisen des 
Zugmodus in dreidimensionalen dynamischen Geometriesoftwaresystemen. Giessen: Disser-
tation der Justus Liebig Universität.

Hilbert, D., Cohn-Vossen, S. (1952). Geometry and the imagination, (2nd ed., 1990), New York: 
Chelsea, translation by P. Nemenyi of Anschauliche Geometrie, Berlin, 1932: Springer.

Hölzl, R. (1996). How does the dragging affect the learning of geometry? International Journal of 
Computer for Mathematical Learning, 1(2), 169–187.

Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana & V. Villani 
(Eds.), Perspectives on the teaching of geometry for the 21st century—An ICMI study, (chap. 4, 
section II, pp. 121–128). Dordrecht: Kluwer.

Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in 
mathematics education? In J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), 
Second international handbook of mathematics education (Part 1; pp. 323–349). Dordrecht, 
The Netherlands: Kluwer.

Jones, K. (1998). Deductive and intuitive approaches to solving geometrical problems. In C. Mam-
mana & V. Villani (Eds.) Perspectives on the teaching of geometry for the 21st century: An 
ICMI study (pp. 78–83). Dordrecht: Kluwer.

Kadunz, G., & Straesser, R. (2007). Didaktik der Geometrie in der Sekundarstufe I, Hildesheim, 
Berlin: Franzbecker.

Laborde, C. (1991). Zu einer Didaktik des Geometrie-Lernens unter Nutzung des Computers in 
Intelligente Tutorielle Systeme für das Lernen von Geometrie, Proceedings des Workshops am 
IDM, März 1991, Occasional Paper 124, Bielefeld, Germany: Universität Bielefeld, Institut für 
Didaktik der Mathematik.

Lagrange, J.-B. (2002). Etudier les mathématiques avec les calculatrices symboliques: quelles 
places pour les techniques? In D. Guin & L. Trouche (Eds.), Calculatrices symboliques, trans-
former un outil en un instrument du travail mathématique: un problème didactique (ch. 5, 
pp. 151–185), Grenoble: La Pensée Sauvage Editions.

Mariotti, A. (2001). Justifying and proving in the Cabri environment. International Journal of 
Computers for Mathematical Learning, 6(3), 257–281.

Mithalal, J. (2010). Déconstruction instrumentale et déconstruction dimensionnelle dans le con-
texte de la géométrie dynamique tridimensionnelle. Thèse de l’Université Grenoble 1.

Moreno, J. (2006). Articulation des registres graphique et symbolique pour l’étude des équations 
différentielles avec Cabri-géomètre: analyse des difficultés des étudiants et rôle du logiciel. 
Thesis, Université Joseph Fourier, Grenoble, France.

Moreno Armella, L. (1999). Epistemologia ed Educazione matematica. La Matemetica e la sua 
Didattica, 1, 43–59.

Netz, R. (1999). The shaping of deduction in Greek mathematics Cambridge Univ. Press
Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings. Dordrecht: Kluwer.
Parzysz, B. (1988). Knowing vs. Seeing, Problems of representation of space geometry figures. 

Educational Studies in Mathematics, 19(1), 79–92.
Restrepo, A. (2008). Genèse instrumentale du déplacement en géométrie dynamique chez des 

élèves de 6ème. Thèse Université Grenoble 1.
Schneidermann, B. (1983). Direct manipulation: A step beyond programming languages. IEEE 

Computer, 16, 57–69.
Smith, D., Harslem, E., Irby, C., & Kimball, R. (1982). Designing the star user interface. Byte, 74, 

242–282.
Strässer, R. (1991). Dessin et Figure Géométrie et Dessin technique à l’aide de l’ordinateur. (Juni 

1991) Occasional paper n°128. Bielefeld, Germany: Universität Bielefeld, Institut für Didak-
tik der Mathematik.

Strässer, R. (1992). Didaktische Perspektiven auf Werkzeug-Software im Geometrie-Unterricht 
der Sekundarstufe I. Zentralblatt für Didaktik der Mathematik, 24(5), 197–201.

Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts. A contribution to the study of thought 
in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 
77–101.



203

Chapter 12
The Role of Social Aspects of Teaching and 
Learning in Transforming Mathematical 
Activity: Tools, Tasks, Individuals and Learning 
Communities

Vince Geiger

V. Geiger ()
Australian Catholic University, 107 Yarrabee Rd, The Gap,
Brisbane, 4061 QLD, Australia
e-mail: vincent.geiger@acu.edu.au

12.1  Introduction

Developments in technology, including all types of hardware, applications and 
the Internet, have led to an expanding number and range of studies that focus on 
how digital tools can transform teaching and learning in mathematics (Hoyles and 
 Lagrange 2010). This research now represents a substantial corpus of knowledge 
with increasing activity in many aspects of the field. Many studies have focussed 
on improving approaches to the development of content knowledge or concept de-
velopment including: number (e.g. Kieran and Guzman 2005); algebra and calculus 
(e.g. Ferrara et al. 2006); and geometry (e.g. Laborde et al. 2006). Other studies 
have attempted to explore the role of digital technologies in enhancing particular 
types of mathematical activity, for example, problem solving (e.g. Lesh and English 
2005) and mathematical modelling and applications (e.g. Geiger et al. 2010), or 
to investigate how specific digital tools can be used in the process of teaching and 
learning, such as hand-held technologies (e.g. Drijvers and Weigand 2010), com-
puter algebra systems (e.g. Pierce et al. 2009), and dynamic geometry systems (e.g. 
Laborde 2002).

Fewer studies, however, have attempted to theorise the nature of the types of 
transformation that take place when teachers, students, digital tools, and tasks inter-
act. Of relevance here, are studies which explore the way artefacts, such as digital 
technologies and mathematical tasks and human actors, students, and teachers, are 
all transformed through multiple and concurrent interactions. There is a reflexive, 
transformative relationship between each of these elements, each a component of 
a learning complex that mediates change in the other. While research in this area is 
developing, to date, it has tended to focus on individualistic point-to-point relation-
ships, for example, the relationship between a single student and a single teacher or 
between a single student and a digital tool. As Strässer (2009) points out, the social 
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aspects of learning and the potential for learning communities to move forward 
have often been neglected when attempting to explain the relationships between 
humans, as individuals and as collectives, physical and representational resources, 
and mathematical knowledge.

In this chapter I discuss research that seeks to theorise the relationships between 
humans, mathematical knowledge, digital tools, tasks, and other resources that in-
teract in the processes of learning and teaching mathematics. I will then attempt 
to explore the role of social aspects in the process of learning, illustrated through 
selective examples drawn from my research program.

12.2  Technological Tools in Mathematics Education

Prominent in literature about how interaction between user and tool changes the 
nature of digital tools are authors such as Guin et al. (2005) and Artigue (2002), who 
have attempted to explain how digital artefacts such as computer algebra systems 
(CAS) are transformed into instruments for learning through interaction with teach-
ers and students. According to Verillon’s and Rabardel’s (1995) distinction between 
an artefact and an instrument, an artefact has no intrinsic meaning of its own but 
meaningful relationships develop between an artefact and a user when both com-
bine to work on a specific task. Different tasks will require different relationships 
between the user and the artefact, and the development of these relationships is re-
ferred to as the instrumental genesis. This instrumental genesis has two components 
(as described by Artigue 2002). First, the transformation of the artefact itself into an 
instrument is known as instrumentalisation. In this process, the potentialities of the 
artefact for performing specific tasks are recognised. Second, the process that takes 
place within the user in order to use the instrument for a particular task is known as 
instrumentation. Here, we see the development of schemas of instrumented  action, 
which are developed either personally or through the appropriation of pre-existing 
schemas. Thus, an instrument is composed of the artefact, along with its affordances 
and constraints, and the user’s task-specific schemas. In concert, these elements 
provide direction for the use of the instrument in a given context. Finally, the pro-
cess of instrumental genesis is two-dimensional in that the possibilities and con-
straints shape the conceptual development of the user, while at the same time, the 
user’s conceptualisation of the artefact and, thus, its instrumentation leads, in some 
cases, to the user changing the instrument (Drijvers and Gravemeijer 2005).

A teacher’s activity in promoting a student’s instrumental genesis is known as 
instrumental orchestration (Trouche 2003, 2005). Social aspects of learning are 
recognised within this process and take the form of student activity that makes 
explicit the schemas that individuals have developed within a small group or whole 
class. These schemas are then available for appropriation by other class members 
through careful and selective questioning by the class teacher, that is, the teacher 
orchestrates the interaction so that a new individual scheme is shared with others. 
While this perspective attempts to incorporate the role of social interaction into the 
instrumental approach, utilisation schemas are essentially individual, even though 
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instrumental genesis may take place through a social process (Drijvers and Grave-
meijer 2005). As a result, this conceptualisation of the role of social aspects of 
learning is limited to the contributions of individuals to a larger group and does not 
accommodate genuinely shared approaches to learning and teaching where mutual-
ity is an accepted norm.

More recently, Gueudet and Trouche (2009) have extended the concept of the in-
strumental approach to include other artefacts in addition to CAS-enabled technolo-
gies when considering the professional work of teachers. They introduce the term 
resources to identify any artefact with the potential to promote semiotic mediation 
in the process of learning, including computer applications, student worksheets or 
discussions with a colleague. In their view, resources must undergo a process of 
genesis, parallel to that of the instrumental approach, in which a resource is appro-
priated and reshaped by a teacher in a way that reflects their professional experience 
in relation to the use of resources, to form a scheme of utilisation. The combination 
of the resource and the scheme of utilisation is called a document. The process of 
documental genesis is an ongoing one as utilisation schemes will be reshaped as the 
teacher gains more experience through the use of a resource. While this approach 
extends the theory of the instrumental approach to accommodate a broader range of 
material and representation resources, it still does not provide a clear role for social 
interaction in the process of developing a document.

Theorising about the role of artefacts in mediating transformative learning expe-
riences from a different perspective, Rezat (2006) draws on activity theory to assign 
artefacts, such as textbooks, a position in a tetrahedral model (Fig. 12.1), which 
uses the so-called didactical triangle as a base. The faces of the tetrahedron repre-
sent activity sub-systems of textbook use, in which one element mediates between 
the other two elements of the triangular face. For example, the face that is bounded 
by the elements student–teacher–textbooks represents activity in which the teacher 
mediates the use of the textbook in order for the student to learn.

Strässer (2009) draws on Wartofsky’s (1979) classification of artefacts to extend 
Rezat’s (2006) tetrahedral model to combine the theoretical constructs of semiotic 
mediation (for more on this construct see Mariotti, Chap. 9), instrumental genesis, 
and a broader view of artefacts. He argues that Wartofsky’s class of “secondary” 

Fig. 12.1  Rezat’s (2006) 
tetrahedral model
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artefacts, which are “used in the preservation and transmission of the acquired skills 
or modes of action or praxis by which this production is carried out” (Wartofsky 
1979, pp. 202–209), can replace textbooks in Rezat’s tetrahedron to create a more 
inclusive model for the use of instruments in teaching and learning mathematics 
(Fig. 12.2). In this new model, the edges, which join the elements, allow for a num-
ber of processes. The edges that join student and artefact and teacher and artefact, 
for example, allow for the process of instrumental genesis. The vertices of sec-
ondary artefact and mathematical knowledge are joined by an edge that represents 
semiotic mediation.

Strässer points out, however, that one of the shortcomings of this model is that 
it does not clearly theorise a role for social aspects of teaching and learning math-
ematics and that further development is needed in order to account for the influence 
of institutional and social influences in the process of instrumental genesis. While 
he does not attempt to address this gap in theory himself, he points to the concept 
of Chevallard’s (1985/1991) “noosphere”—a space that accommodates “all persons 
and institutions interested in the teaching and learning of mathematics” (Strässer 
2009, p. 75) and suggests his model for teaching and learning in mathematics edu-
cation could accommodate social aspects of this activity by surrounding the model 
in such a noosphere. Strässer’s suggested extension highlights the need to develop 
frameworks which describe, theorise, and interpret the ways that teachers and stu-
dents engage with mathematical knowledge and secondary artefacts within learning 
communities. This implies that sociocultural perspectives must be considered when 
developing frameworks which accommodate the noosphere.

12.3  A Sociocultural Perspective on Teaching and 
Learning with Technology

Sociocultural perspectives on learning emphasise the socially and culturally situ-
ated nature of mathematical activity and view learning as a collective process of 
enculturation into the practices of mathematical communities. The classroom, as 

Fig. 12.2  Strässer’s (2009) 
tertrahedral model
 



20712  The Role of Social Aspects of Teaching and Learning in Transforming …

a community of mathematical practice, supports a culture of sense making, where 
students learn by immersion in the practices of the discipline.

A central claim of sociocultural theory is that human action is mediated by cul-
tural tools and is fundamentally transformed in the process (Wertsch 1985). Within 
particular knowledge communities, then, tools are cultural resources that reorga-
nise, as well as amplify, cognitive processes through their integration into human 
practices.

There is now an emerging body of literature that explores the idea that human 
thought and action, within social environments, are mediated through many aspects 
of a situation, including interactions between human actors and both material and 
representational resources. Pea (1985, 1993a, b), for example, draws on a Vygotski-
an view of learning to argue that learning and reasoning should now be considered 
an activity system, which involves minds, social contexts, and digital tools such as 
computers, that is, thinking is distributed among and between these elements.

This position is paralleled in Hutchins’ (1995) account of the process of naviga-
tion on a naval vessel (as described by Cobb 2007), which considers the whole navi-
gation team, including all physical and symbolic tools, as the reasoning system that 
provides for the safe piloting of the vessel into port. Further, this reasoning system 
is constituted by elements that exist not only in the moment of the act, for example, 
the navigator and the ship’s guidance system, but also by elements that preceded the 
event that led to the process of navigation and the artefacts used to navigate. This is 
because traces of the intelligence of the other minds that developed relevant tools 
and procedures to guide navigation remain in those tools and procedures.

Pea (1985) further argues that tools, and in particular, digital tools can be used 
to reorganise mental processes, which in turn alter a task as it was originally con-
ceived.

Computers are commonly believed to change how effectively we do traditional tasks, ampli-
fying or extending our capabilities, with the assumption that these tasks stay fundamentally 
the same. The central point I wish to make is quite different, namely, that a primary role for 
computers is changing the tasks we do by reorganizing our mental functioning, not only by 
amplifying it. (Pea 1985, p. 168)

Thus, in Pea’s view, there is a reflexive, transformative relationship between digital 
tools, tasks and human players. He goes on to add:

… human nature is not a product of environmental forces, but is of our own making as a 
society and is continually in the process of "becoming." Humankind is reshaped through a 
dialectic, or "conversation" of reciprocal influences: Our productive activities change the 
world, thereby changing the ways in which the world can change us. By shaping nature and 
how our interactions with it are mediated, we change ourselves. (Pea 1987, p. 93, original 
emphasis)

Other authors have also speculated on the nature of transformations that take place 
when humans and technology interact with the intention of learning and doing 
mathematics. Consistent with Pea’s view of the interactive relationship between 
digital tools, tasks and human agents, Borba and Villarreal (2006) see learning as a 
collaborative act between collectives of humans and technology.
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They (computers) interact and are actors in knowing. They form part of a collective that 
thinks, and are not simply tools which are neutral or have some peripheral role in the pro-
duction of knowledge. (p. 5)

From this perspective, Borba and Villarreal (2006) argue that an intershaping rela-
tionship exists between learners and technology in which both are transformed. In 
this relationship, technology mediates the way in which students learn and come 
to know while, at the same time, students interact with technology in ways unan-
ticipated by the designers of the digital tools. Thus, learner/knower and technol-
ogy shape each other. Knowledge is produced through the efforts of collectives of 
humans-with-media or humans-with-technologies. They further argue that this col-
lective also produces different mathematical knowledge and so the discipline itself 
is influenced to change.

While studies, such as those discussed above, argue that there are transformative 
relationships between all agents, digital tools, tasks, and humans, when brought to-
gether in the act of learning, this research does not make clear how interactions be-
tween collectives of humans, when working on mathematical tasks, are influenced 
by and, in turn, influence digital tools. An important question which arises is how 
do peers, through the meditative influence of technology and tasks, assist each other 
to move forward in their knowing and doing of mathematics?

This issue is addressed by Manouchehri (2004), who identifies four ways in 
which the computer application NuCalc supported productive interaction among 
undergraduate pre-service teachers when studying a course in algebra. She found 
that there was a greater level of interaction when NuCalc was in use, compared to 
sessions when no technology was available, to support learning and concluded that 
this digital tool promoted interaction by:

1. Assisting peers in constructing more sophisticated mathematical explanations;
2. Motivating engagement and increased participation in group inquiry;
3. Mediating discourse, resulting in a significant increase in the number of collab-

orative explanations constructed and;
4. Shifting the pattern of interaction from teacher directed to peer driven.

This form of interaction also supported a culture of conjecturing, testing and verify-
ing, formalising mathematics and collaboration that shifted the locus of power from 
the teacher to the students.

In a series of sociocultural informed studies conducted by myself and colleagues 
(see for example, Galbraith et al. 1999; Geiger 2005, 2006; Goos et al. 2000, 2003), 
ways in which productive interactions between students, teachers and secondary 
artefacts led to mathematical learning have been explored. Through these studies 
we documented instances of not only the most widely known definition of the zone 
of proximal development (ZPD), which considers the potential of an individual 
to learn with the support of a more knowledgeable and/or experienced other, for 
example, a teacher, but also the conceptualisation of the ZPD in egalitarian part-
nerships (Galbraith et al. 2001). This view of the ZPD involves equal status rela-
tionships wherein students have incomplete but relatively equal expertise—each 
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partner  possessing some knowledge and skill but requiring the contributions of the 
others in order to make progress. In our research context, this feature becomes rel-
evant through the collaborative activity of students in bringing technology to bear 
on mathematical tasks with varying levels of individual technological and math-
ematical expertise and within different social settings.

As a second extension of the ZPD concept we have theorised the ways in which 
classroom participants and both material and representational resources interact 
within learning communities. These ways of reasoning, thinking and acting within 
such a community have been described through a typology (see, for example, Goos 
et al. 2003) in which four metaphors, Master, Servant, Partner, and Extension-of-
self, are used to describe patterns of student–student–technology behaviour, where 
the boundaries between human and technological agents are blurred during the pro-
cess of learning and using mathematics. Implicit in these interactions are the use of 
other resources such as mathematical tasks on which student–student–technology 
interactions are brought to bear. The blurring of the boundaries between human and 
non-human participants in learning means that it is possible to attribute agency to 
digital tools in a way not previously considered as part of the concept of the ZPD. 
This is particularly evident where digital tools are used by students as partners or 
extensions-of-self to assist them to move forward within their ZPDs. More recent-
ly, Geiger (2009) has developed a framework based around these metaphors that 
also differentiates between types of student–student–technology interactions on the 
basis of the social setting in which these interactions take place—as individuals, 
within small groups and within whole groups.

In the case of individual’s interactions with digital tools, learning may be trans-
formed, for example, because of the way tasks can be explored through viewing and 
manipulating a range of different representations, algebraic, numerical, graphical, 
and geometrical. Within small groups, digital tools may act as a means to transform 
the way a group coordinates its efforts when working on a task, for example, when 
all group members view a digital representation of a possible solution to a problem 
on the same computer display and negotiate how the solution might be improved. 
When students present their work on a task to a whole-class group, learning is trans-
formed from a private activity into one that is brought into the public realm for 
scrutiny. Digital tools, in this social context, can provide the opportunity for collab-
orative and supportive critique to take place in order to lead the presenter forward 
in their learning.

As each of these social contexts represents possibilities for the ways in which 
resources, students, teachers, and mathematical knowledge interact, Geiger’s por-
trayal of the role of social setting for technology-mediated interaction offers pos-
sibilities for the elements of Strässer’s foreshadowed structure of the noosphere 
that surrounds his model for teaching and learning mathematics. Aspects of this 
structure will now be explored with reference to classroom episodes drawn from 
our research.
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12.4  Episodes of Resource Use in Social Contexts

The episodes reported here, are drawn from a 2-year longitudinal case study based 
on a single mathematics classroom located in a large Australian city. Student par-
ticipants were in years 11 and 12, the final 2 years of secondary schooling, and 
were 16–17 years of age. They were studying a subject, Mathematics C, which is 
designed for students who have a high interest in mathematics or who have inten-
tions to study mathematically intensive courses at a tertiary level. The curriculum 
document associated with this course strongly encouraged, but did not mandate, the 
use of digital technologies, and schools in this educational jurisdiction were allowed 
to choose, without restriction, whatever form of digital technologies they believed 
offered the greatest potential to enhance student learning. In this study, students had 
unrestricted access to a wide range of digital tools including, CAS-enabled calcula-
tors, computer software applications, and the Internet.

The teacher in this study had based his classroom around a community of prac-
tice principles where learning was structured around approaches to knowing and 
meaning making, which included the public scrutiny of conjectures and ideas in 
order to provide for the opportunity of supportive critique from all classroom par-
ticipants. In this way, the teacher attempted to initiate students into the socially 
constructed practices of knowledge creation and validation as is practised within 
the discipline of mathematics.

Since the aim of the study was to explore the types of interaction that took place 
between students, teachers and both material and representational resources in ho-
listic classroom settings, in situ, ethnographic techniques for data collection were 
employed. These included: participant observation; semi-structured interviews with 
students as individuals, in small groups, and as a whole class; survey instruments; 
and video- and audio-taped records.

Consistent with a naturalistic methodology, data collection and analysis were 
conducted simultaneously with the development of theory. An iterative approach 
was utilised where initial observations of phenomena were used to formulate theo-
retical propositions which are in turn tested, revised and refined against further data. 
Instances of emergent behaviour were documented and categorised. Where emer-
gent phenomena were noted and documented, the researcher made use of follow-up 
interviews with the relevant participant(s) in order to triangulate the occurrence of 
the identified phenomena and to discuss possible explanations for what was ob-
served (Lincoln and Guba 1985). In this way, observed phenomena and explana-
tions were concurrently incorporated into developing theory. This process led to 
the emergence of four categories of technology use: master; servant; partner; and 
extension-of-self. These metaphors are described in the following paragraphs.

Technology as Master Students may be subservient to the technology if their 
knowledge and usage are limited to a narrow range of operations over which they 
have technical competence. In the case of students, subservience may become 
dependence if the lack of mathematical understanding prevents them from evaluat-
ing the accuracy of the output generated by the calculator or computer.
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Technology as Servant Here, technology is used as a fast, reliable replacement 
for mental or pen and paper calculations, but the tasks of the classroom remain 
unchanged, that is, technology is a supplementary tool that amplifies cognitive pro-
cesses but is not used in creative ways to change the nature of activities.

Technology as Partner In this case, technology is used creatively to increase the 
power students exercise over their learning; for example, by providing access to 
new kinds of tasks or new ways of approaching existing tasks. This cognitive re-
organisation effect may involve using technology to facilitate understanding or to 
explore different perspectives.

Technology as Extension-of-Self The most sophisticated mode of functioning, 
this involves users incorporating technological expertise as a natural part of their 
mathematical and/or pedagogical repertoire. Students may integrate a variety of 
technological resources into the construction of a mathematical argument so that 
powerful use of computers and calculators forms an extension of the individual’s 
mathematical prowess.

(selected from Goos et al. 2003, pp. 77–80)
Each of these categories was also differentiated into behaviour sets based on 

three types of social setting, individual, small group, and whole group, to form a 
4 × 3 array (Table 12.1).

Within this framework, the ways in which human actors and material and rep-
resentation resources interact vary in individual, small-group, and whole-class set-
tings. The following is a section of the framework associated with the partner meta-
phor and its expression in each type of social setting (Table 12.2).

The following episodes have been selected to illustrate elements of the category 
of partner across the social settings of individual, small group, and whole group, 
with the aim of identifying possible expressions of Strässer’s tetrahedral model.

12.5  Peer-Based Interactions in Small-Group and Whole-
Group Social Settings

12.5.1  Episode 1

In this episode, students (Year 11) were asked to use the geometry facility on their 
TI-92 calculators (a version of Cabri Geométrè) to draw a line 45  units long. The 

Table 12.1  Metaphor/social setting framework array
Setting/metaphor Master Servant Partner Extension-of self
Individual
Small group
Whole group
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teacher’s aim was to encourage students to think about the geometric representa-
tion of irrational numbers, the topic being studied at that time. It was anticipated 
that students would solve the problem by making use of the geometric facilities of 
their calculators to explore possible Pythagorean relationships that would provide a 
solution to the problem. It was hoped that students would eventually realise the rela-
tionship 6 3 452 2 2+ = ( )  was a basis for the construction of a right-angled triangle 
with a hypotenuse equal to 45 . This meant that the other two sides must be 3 and 
6 units, respectively. This is illustrated via the calculator screen-shot in Fig. 12.3.

Students had been previously provided with experience in working with this 
facility through assignment work earlier in the year, although not all had become 
confident users as a result. The class was set to work on the task with few further 
instructions in the use of this application.

The teacher allowed some time for students to explore the problem. This excerpt 
concerns three students, Susie, Keira and Gena, working in a small group. Initially, 
Keira and Gena worked together, while Susie worked independently. Later, Susie 
joined the conversation as Keira and Gena raised issues that were also troublesome 
to Susie. During the discussion of the problem, Keira and Gena made use of a  TI-92 
calculator in a variety of ways. Each used the calculator to perform procedural cal-
culations, such as taking the square root of numbers they wished to evaluate, as part 
of their exploration of the problem. After each calculation, however, they passed 
their calculators to each other as a way of sharing what they had found. Thus, the 
calculator was used as a means of communicating the findings between the stu-
dents. The openness of this process of sharing was evident when Gena passed her 
calculator to Susie, who was not immediately next to Gena but on the other side 

Table 12.2  Partner metaphor against social setting (Geiger 2009)
Social setting Partner metaphor
Individual Here, rapport has developed between the user and technology, which is 

used creatively to increase the power that students have over their learning. 
Students often appear to interact directly with the technology (e.g. graphical 
calculator), treating it almost as a human partner that responds to their com-
mands—for example, with error messages that demand investigation. The 
calculator acts as a surrogate partner as students verbalise their thinking in 
the process of locating and correcting such errors

Small group Technology is used to explore and investigate a problem but there is also 
evidence of the technology playing a part in the facilitation of collabora-
tive processes. Calculator or computer output also provides a stimulus for 
peer discussion as students cluster together to compare their screens, often 
holding up graphical calculators side by side or passing them back and forth 
to neighbours to emphasise a point or to compare their work. Work can be 
progressed “live” on any group member’s display. Technology may provide 
support that facilitates students’ engagement in a group interaction

Whole group Technology is used to explore and investigate a problem or an idea in a 
public forum. Technology is used to focus the intellectual resources of the 
community to help explore ideas, offer public critique of existing work or 
suggest improvements to work where faults are identified. Technology is 
used to provide support for engagement in this community of inquiry
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of Keira. The passing of a calculator from one student to another was not just about 
the simple transmission of results. On a number of occasions, each student in this 
small group accepted the calculator of another and modified or added to what was 
being displayed. In this way, the calculator was acting as a medium for the progress 
of the thoughts and ideas of these students and so the calculator played the role of 
Partner in transforming initial conjectures into more developed ideas. Within the 
working cluster, each student’s calculator display appeared to be public property 
on which ideas were offered up for comment and critique and were then trans-
formed through the modification of existing ideas or the addition of new ones by 
the group as a collective. After allowing some time for investigation of the problem, 
the teacher called for volunteers to present preliminary results of the investigation. 
Gena offered the solution, developed by her group, to the class in a whole-group 
context. She moved to the front of the room, plugged her calculator into the views-
creen and entered 45  followed by the “enter” key. This produced a result with 10 
decimal places which Gena assumed was a terminating decimal because of the cal-
culator’s known capacity to display up to 12 decimal places. Other students in class, 
however, pointed out that 45  is irrational and so could not terminate. They, then, 
offered counter-examples for Gena to input and display “live” in order to illustrate 
the misconception. The problem was identified by Gena, with the assistance of the 
class, to lie with a setting on the calculator that fixed the results of calculations to 10 
decimal places. At this stage, Gena acknowledged the error although she was unable 
to suggest any improvements to her approach to the original task.

Gena’s group initially used their calculators to perform procedural operations 
such as finding the 45  and secondly, to communicate their individual findings 
to other members of the group. The passing of calculators from one to another 
provided the opportunity and the medium to progress ideas or try new directions 
by altering the display and return it to an original group member for further con-
sideration in the same way that a scratch pad might be used by a group of people 
working on a common problem. Here, technology was used as a Partner to make 
public individual contributions to the problem-solving endeavour and also as the 
canvas on which all members of the small group worked together as a collective in 
scaffolding each other’s efforts towards finding a solution. In terms of Strässer’s tet-
rahedron, student, secondary artefacts and mathematical knowledge have interacted 

Fig. 12.3  Model solution to 
the length of 45  problem
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to transform the original task into a proto-solution. However, Strässer’s model does 
not accommodate the type of partnership that takes place between multiple students 
and technology as human and non-human participants work in concert.

The initial, faulty solution is a result of a misconception, clearly shared by all 
group members and was related to the way irrational numbers are represented on a 
calculator. The episode, described earlier, illustrates the capacity of technology to 
act as a Partner in whole-group settings as the combination of calculator and views-
creen permitted Gena to present her group’s findings which, in turn, allowed other 
members of the class to identify an error and to help Gena correct the source of the 
problem. This instance again shows how student, secondary artefacts and math-
ematical knowledge interact, but this time in a whole-group context, to transform 
a proto-solution into a valid result. The episode also highlights the important role 
of a collective of learners in assisting a member of the class to overcome a miscon-
ception which was limiting her capacity to find an appropriate solution. This type 
of whole-class interaction is also not accommodated by Strässer’s model. Further, 
this episode also represents a meta-interaction between two types of social settings. 
Findings that were produced via the interaction within the small group were held up 
for scrutiny by the whole group, where supportive critique was provided. The cri-
tique facilitated the improvement of the small group’s initial result. This means that 
the interaction between the two social settings has resulted in the transformation of 
the mathematical knowledge of at least one member of the group who was assisted 
to overcome a misconception.

12.5.2  Episode 2

This section presents a series of excerpts from an episode that took place over two 
classroom sessions. Students (Year 12) were asked to design programs for their TI-83 
or TI-92 calculators programs capable of taking inputs for vector pairs, either two-
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determine the angle between relevant vector pairs.
The teacher provided only minimal instruction in basic programming techniques, 

and expected students to work as individuals or with consult peers, within small 
groups, for assistance. Students were given one lesson to work on their programs 
and advised that they would be expected to present their results at the next meeting 
of the class. During the following session, two volunteers offered to demonstrate 
their programs to the whole group via a calculator viewscreen. The presentations of 
the two volunteers are reported in the following excerpts.
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Excerpt 1 Demi was the first of the volunteers to demonstrate her program to the 
whole group. She felt confident her program, which she developed as an individual, 
performed the required calculation effectively.

Demi: What do you want me to tell you about it?
Teacher: Just what each of those bits do (pointing to the command lines of the 

program displayed through the OHT).
Demi: OK. The Prompt feature … like when you want to do a vector in 3D it 

just goes A, B, C, etc. so that A, B and C are the first vector and D, E and 
F are the second one … and then it just.

Francis: (shouting out assistance) Does it!
Demi: Yeah! Does it!
Teacher: Do you want to show us an example?
Demi: Sure.
 Demi began the program and entered the components of two vectors.
Francis:	 (reading	out	what	Demi	is	entering)	−	1,	2,	3,	3,	−	1,	2.
 Demi activated the program but recognized immediately her output was 

in radians, not in the form she wanted, which is degrees.
Demi: It’s not in the right mode.
 Demi opened up the mode menu and made the appropriate adjustment.
Teacher: Will it work in degrees?
 Demi completed the adjustments.
Demi: Yeah.
 Demi re-entered her example and calculator displayed the desired output.
Demi: Is it right now? (to audience)
Francis: Yeeaaaahhh!

Demi produced a program that functioned without error. She made minor adjust-
ments “on the fly” in order to produce an output of the form required. This was a 
confident display in which she received few prompts or advice from the class. In-
formation was presented in a clear and well-structured manner and the class seemed 
satisfied, as they did not ask questions for clarification or any other purpose. As 
the task itself did not require the exploration of deep mathematical concepts, the 
calculator and viewscreen were used purely for presentation purposes and were 
not required as a medium for the stimulation of discussion and debate, even though 
the presentation was in a public setting. Thus, in this case, Demi’s work as an in-
dividual, based on the instruction she had already received from her teacher, was 
enough to effect a valid solution to the problem. In terms of Strässer’s model, the 
faces defined by student–secondary artefacts–mathematical knowledge and stu-
dent–teacher–mathematical knowledge appear to offer an appropriate framework 
for capturing the elements that have led to Demi’s results. This episode demon-
strates that transformation of an individual’s or group’s mathematical understanding 
does not happen simply because technology is available within a whole-group con-
text. In this case, the nature of the task did not provide enough challenge for Demi 
to engage the assistance of others.
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Excerpt 2 The second volunteer was a student who consistently rejected the teach-
er’s invitations to participate in whole-class discussion and to contribute to thinking 
with his peers. It was quite surprising when Geoffery offered to present in relation to 
this task, as he had often been resistant to working in public forums or to contributing 
to any endeavour that required his active contribution. For example, prior to an earlier 
assessment item, the teacher asked class members to assist in the development of a 
revision sheet for the upcoming exam. This involved each student writing a question 
with a model solution for a revision sheet that the teacher offered to edit, and then 
print for each class member. Geoffery attempted to avoid participation in the activity.

Teacher: So…, what’s your contribution going to be?
Geoffery: Not much?

In response to this obvious reluctance to assist with the classes’ assessment prepa-
ration, the teacher decided to assign a section of work to Geoffery in order that he 
made a fair contribution to the classes’ revision sheet. Geoffery expressed his op-
position to this request.

Geoffery: But I wouldn’t have a bloody clue.
Teacher: But that’s part of the point…this is probably a really good way of revising.
Geoffery: Yes but me revising one thing isn’t going to help me much!
 After considering what was being asked of him further, Geoffery decided 

to make one more attempt to avoid the activity.
Geoffery: Does that mean if I choose not to take a revision sheet I don’t have to 

write a question?
 Several other students: Aw just grow up!

There appears to be at least two reasons for this student’s reluctance to contribute 
to the class revision sheet. First, Geoffery did not believe that learning could be 
a collaborative activity and, as a result, he viewed preparation for assessment as 
an individual responsibility. Second, Geoffery seems to operate from a system of 
beliefs about learning that ascribes the role of a student to that of a passive receiver 
of knowledge from an expert source—in this case, the teacher. From Geoffery’s 
perspective, his only responsibilities as a learner are to attend classes, to listen to 
the instruction provided by the teacher and to consolidate knowledge through ex-
emplars provided by the teacher. In this instance, Geoffery believed the creation of 
a revision sheet was the teacher’s responsibility and found it difficult to accept that 
this role was to be shared by the students. Thus, Geoffery does not seem to believe 
that there is a social aspect to learning.

Geoffery’s participation in classroom events began to change when he was 
drawn into the activity described above. He offered to present his program, to the 
whole class, which included the initial screen illustrated in Fig. 12.4 (Screen 1) and 
also two screens which contained a question that appeared after vector components 
were entered but before the final calculations were displayed (Screens 2 and 3). If 
option 1—YES—was chosen (from Screen 3), the user received an answer to the 
problem (Screen 4). The selection of option 2—No—resulted in the display of a 
taunt (Screen 5).
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Geoffery used the task to demonstrate dissent in relation to the culture the teach-
er had established in this mathematics classroom. This was a clever use, by Geof-
fery, of the very methods the teacher was using to encourage students’ participation 
in a classroom community of inquiry in order to record a protest. Despite such an 
open challenge, the teacher did not issue a reprimand of any type as he recognised 
that this would only be counter-productive. Instead, Geoffery was complimented on 
his ingenuity and praised for the quality of his program.

Geoffery responded, over subsequent lessons, by increasing his involvement 
in classroom presentations whenever technology was used to mediate discussion 
about a mathematical task. This included presentations to the whole class of im-
proved, and increasingly sophisticated, versions of his initial program.

After some weeks, Geoffery asked if he could present an animated program he 
had created that depicted the adventures of mathematical objects (various irrational 
numbers) as human-like characters—Dodge: The Movie. The enthusiastic and ad-
miring response to his “movie” (and the sequel—Dodge II: The Revenge of Dodge) 
was significant in drawing this student into the kind of mathematical discussion he 
had previously resisted, and he became a willing participant in subsequent discus-
sions both technology-focused and otherwise.

Geoffery had initially used a method of working within the class he had previ-
ously resisted to register dissent in relation to the way his mathematics classes were 
conducted. However, after receiving positive reinforcement from his peers (and no 
negative feedback from the teacher) for his initial and subsequent presentations, 
he was slowly drawn into the norms of interaction practised by his learning com-
munity. In this excerpt, Geoffery attempted to stand outside of the social contexts 
for learning set up by the teacher—small group and whole group—and work within 
a framework which consisted of only digital tools, tasks, mathematical knowl-
edge, teacher and himself as a student. The resulting interactions are consistent 
with the faces of Strässer’s model defined by student–teacher–secondary artefacts 
and student–teacher–mathematical knowledge. It should also be noted that his view 

Fig. 12.4  Geoffery’s program for solving a three-dimensional vector problem
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of  student–teacher interactions was unilateral, that is, from teacher to student and 
rarely the other way around. This began to change when Geoffery decided to use the 
combination of technology and task as a Partner to express the personal frustration 
he felt over a conflict between his view of how to learn and do mathematics and 
the social and cultural norms for doing so in his particular classroom. Technology 
and task had acted as a Partner “in crime” in this instance. It was this attempt to 
show dissent, however, that marked his appropriation of the modes of reasoning and 
meaning making that the teacher had established within this learning community. 
Resources, in the form of technology and task, had not only transformed ways of 
reasoning and making meaning in a way that was now inclusive of other members 
of the class but also transformed him into a member of a community from which he 
had previously isolated himself. Material and representation resources in this case 
were used as a supportive Partner, a “go-between”, that encouraged him to move 
from the fringes of his learning community into the mainstream and so transforming 
his identity within this group.

12.6  Conclusion

This chapter began with a discussion of research into how technological tools in 
combination with mathematical tasks can be used to transform learning and teach-
ing. In attempting to theorise the nature of this transformation, researchers such as 
Artigue (2002), Guin et al. (2005) and Gueudet and Trouche (2009) have proposed 
an instrumental approach which characterises the act of learning and knowing as 
a series of interactions between material and representational resources, learners, 
and teachers, within which all of these elements are transformed. Absent from this 
approach, however, is a clear description and interpretation of the role of social as-
pects of learning. Strässer (2009) has attempted to point a way forward in relation to 
this gap by extending the definition of resources to that of Wartofsky’s (1979) sec-
ondary artefacts and situating a tetrahedral model of learning, knowing, and teach-
ing that incorporates the elements of student, teacher, mathematical knowledge, 
and secondary artefacts, within a Chevallard (1985/1991) inspired notion of a noo-
sphere in order to account for social aspects that influence teaching and learning. In 
this chapter, I have attempted to provide insight into the nature of the types of social 
interaction that take place within such a noosphere through examples drawn from 
research in authentic classroom settings. These social interactions, in concert with 
available secondary artefacts, influence the transformation of students’ understand-
ing of mathematical knowledge, as well as their modes of reasoning and meaning 
making, in different ways according to the particular social setting in which learn-
ing is situated.

The episodes, presented here, have provided evidence that these social settings 
have a range of different forms. Students’ work can take place in individual settings 
with little input from the teacher or other class members, as in the case where Demi 
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presented an error-free solution to a problem. In this case, the interaction between 
Demi and the whole class was really only for the sake of a presentation, not for the 
furthering of her knowledge or understanding.

When Keira and Gena worked as a small group on the length of 45  problem, 
both small-group and whole-group interactions were vital in developing their un-
derstanding of the concept under focus. Within the small group, digital tools and 
tasks mediated students’ interactions with mathematical knowledge and with each 
other. This was particularly evident in the use of a CAS-enabled calculator as a 
dynamic scratchpad to share and develop ideas and initial solutions to the problem. 
Technology and task also mediated this small group’s interaction with the whole 
group via Gena’s presentation that was shared through a calculator viewscreen. The 
public display of the work they had completed within their small group provided 
for the scrutiny of their ideas by a larger learning community and offered up the 
opportunity for supportive critique to identify a misconception and to improve their 
mathematical knowledge and understanding. This type of interaction could be de-
scribed as an interactive intersection between two spheres which represent social 
contexts. While inspired by Chevallard’s (1985/1991) noosphere, these spheres of 
social context (SSCs) differ as they are specific to the types of interaction that take 
place in individual, small-group, and whole-group settings (illustrated in Fig. 12.5). 
In Gena’s case, it would appear that a dynamic transformation took place in her 
mathematical knowledge and understanding, and it might be speculated, also that 

Fig. 12.5  Strässer’s tetrahedral model surrounded by the spheres of social context
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of her group, in relation to the problem and its solution. Because Gena and her 
group did not appear to know that an irrational number could not be represented by 
a terminating decimal, they presented a faulty solution to the 45  task to the class. 
After pointing out the misconception, the class acted as a collective to provide rel-
evant counter-examples and to lead Gena to a valid solution. In doing so, the class 
transformed her understanding of the characteristics of an irrational number—all 
within a very public context. In this episode, a number of transformations have 
taken place within and between different SSCs. First, social interaction, mediated 
by the task and digital tools, and in concert with the group’s collective mathemati-
cal knowledge, led to the transformation of the task into what the group believes is 
a solution. The group’s solution is then presented to the whole class by Gena. This 
represents an interaction between the small-group SSC and the whole-group SSC, 
with the small group’s solution to the task providing the impetus to the instantiation 
of this interaction. This interaction leads to the transformation of the initial solu-
tion into a valid one and also the transformation of Gena’s individual mathematical 
knowledge. As the group assisted Gena to find a valid solution to the task, they 
challenged her understanding of the concept of irrational numbers. This is a trans-
formation that takes place as a result of an interaction between an individual SSC 
and a whole-group SSC.

The final excerpt illustrates a different type of transformation. In Geoffery’s 
case, this transformation is related to his relationship with the sociocultural norms 
that the teacher has established in his classroom. Initially, Geoffery was resistant to 
the appropriation of the ways of working and knowing that his fellow classmates 
had adopted over time. He seems almost antagonistic towards the whole class SSC. 
In attempting to express his dissent, however, through the use of a digital tool and 
an associated resource (his movie), Geoffery became captured by the very social 
way of working he had attempted to ridicule. In this situation, the secondary arte-
facts mediated Geoffery’s migration from the fringes of his learning community to 
its centre as it provided the means for him to feel, first, comfortable, and eventu-
ally valued, within the SSCs, which represented the sociocultural ways of working 
within his classroom.

The examples described and interpreted in this chapter are by no means an ex-
haustive list of possibilities for what might constitute a plethora of social settings 
in which learning might take place within mathematics classrooms, but they do 
provide support for and extend Strässer’s concept of a noosphere that surrounds his 
tetrahedral model of learning and teaching through the idea of SSCs. In addition, 
these examples suggest that SSCs are not concentric and independent entities but 
rather that SSCs interact. These places of intersection may also be sites that provide 
for dynamic learning possibilities. The evidence presented here suggests that there 
is still much research to be done on how the role of social aspects of learning and 
teaching can be theorised together with the roles of students, teachers, secondary 
artefacts and mathematical knowledge.
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13.1  Introduction

This chapter reports on a part of a research work included in a more general proj-
ect aimed at changing vocational education. In the first part, we present the char-
acteristics of a fundamental professional situation in building work that involves 
conceptualizations of a geometric nature. In the second part, we describe how this 
situation is first changed in the current teaching process and second in the computer 
simulation. The main design choices of this simulation are described. Eventually, 
we provide a specific example of the use of the simulator by students to illustrate 
how some relationships with space are transformed.

13.2  The Reading–Marking Out of Boxing Out: 
A Professional Situation to Observe Geometrical 
Conceptualization

What is a reading–marking out activity in a building work? Most building tasks are 
based on reading plans for marking out on the building site. We call this kind of 
task a reading–marking out task. In a building site, setting out elements takes into 
account what will be set out later. For example, when a floor is to be laid down, the 
marking out of the floor must leave holes for water pipes and electric cables. Setting 
out a wall must include a plan for the location for windows and doors by marking 
out their contour. Such marking out is called “boxing out.” Generally speaking, a 
boxing out is a formwork placed in the middle of a structure before concrete casting, 
used to set aside an area in which additional equipment can be added at a later date. 

S. Rezat et al. (eds.), Transformation—A Fundamental Idea of Mathematics Education, 
DOI 10.1007/978-1-4614-3489-4_12, © Springer Science+Business Media, LLC 2014
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This task of reading information from a plan to mark out contours and boxing out 
on the building site is usual for workers in building trades.

Two types of controls can be distinguished in the marking out of boxing out:

•	 Controls	coming	from	reading	information	on	the	plan	and
•	 Subsequent	and	effective	controls	at	the	moment	of	putting	the	additional	ele-

ments (pragmatic controls), the first type of controls being oriented toward the 
second type of controls.

The first type of controls is the focus of our attention. In the absence of pragmatic 
controls, only controls guided by knowledge about space and instruments can take 
place. The activity of setting out boxing out can allow researchers to observe geo-
metrical conceptualization and help them answer questions such as: what is the 
nature of knowledge involved in this activity? How is such knowledge organized 
and what relationship does it have with the artifacts available at the building site?

The observation of students of a vocational school gave evidence of a discrepancy 
between the procedures of students and of professionals in this reading–marking out 
activity at a building site from reading a plan. Two types of analyses were carried out 
in order to better understand this discrepancy and its reasons: an analysis of the ge-
ometry in action underlying the students’ activity in reading–marking out tasks in a 
workshop (Bessot and Laborde 2005) and an analysis of the didactical transposition 
of the professional activity in vocational education (Chevallard 1985) were needed.

The first analysis shows that the geometry in action in reading–marking out tasks 
cannot be described only by means of Euclidean geometry. This geometry in action 
must also account for knowledge of the individuals related to the material aspects 
of the situation and of perceptual knowledge.

Theoretical objects of Euclidean geometry constitute, nevertheless, efficient 
modeling tools of this geometry in action: Euclidean geometry partly originates 
from modeling the material space, which would be difficult to do without its basic 
concepts and its attached terminology (perpendicular, parallel, etc.). It provides a 
means for evaluating not only the validity but also the consistency of the two ele-
ments of geometry in action: concepts in action and theorems in action (Vergnaud 
1991) identified for the same individual. As Vergnaud (2000) said,

activity is usually intelligent and well adapted, […] different situations are handled by the 
same scheme, and above all that new situations, never met before, may be met with some 
success, owing to the decombination and recombination of existing operational invariants 
and rules, and the discovery of fresh ones.

Theorems in action and concepts in action are the two principal operational invari-
ants.

A theorem-in-action is a sentence that is held to be true in action.
A concept-in-action is held to be relevant: it cannot be true or false, only relevant or 
 irrelevant. (Vergnaud 2000)

For example, in the reading–marking out of a boxing out situation, the concept in 
action of a point can be a segment or an intersection of two segments: the first type 
of point may be a “parallel point.”
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The complex relationship between theoretical geometry and geometry in action 
of reading–marking out activity in building trades questions the nature and the place 
of theoretical geometry in situations preparing for the reading–marking out practice.

The second analysis focused on the place and status of reading–marking out 
activities in vocational education, in particular, when preparing students to a certifi-
cation of qualified workers for building trades (in French, BEP: see in appendix an 
organizational diagram of the French education system).

This second analysis (Metzler 2006) has shown that the reading–marking out 
situation is fragmented and almost absent from the vocational education institution. 
This reflects the separation mentioned by Sträßer (2000a, p. 69) between “learning 
at the workplace versus classroom instructions.”

More precisely, in French vocational education, knowledge about space belongs 
to the learning aims of three different teaching domains: in the teaching of math-
ematics (in particular geometry), in the teaching of construction, and in the teaching 
of practice in a workshop. Reading is separated from marking out: reading is pres-
ent in mathematics and construction teaching; marking out is the aim of the practice 
workshop but reading is not taken into account.

How is it possible to restore the unity of the reading–marking out activity in voca-
tional education? An answer is to use simulated situations “as a mediator between the 
trainee and the work situation (reference situation)” (Samurçay and Rogalski 1998).

From this point of view, a simulator is a means

•	 Of	designing	situations	restoring	the	unity	of	reading–marking	out	activity	in	the	
three teaching domains of French vocational education and

•	 For	posing	critical	problems	of	the	professional	practice.

A simulator is thus an artifact that “offers an opportunity to explore the inherent, 
implemented relations […], workplace reality would never allow because of the risk 
of material, financial and time losses” (Sträßer 2000, p. 244).

Finally, according to a key design choice, the simulator was meant as an open-
ended environment offering the possibility of constructing didactic situations based 
on problems previously identified in the analysis of professional situations.

13.3  Fundamental Problems Involved in Reading–
Marking Out Professional Situations

Previous research on different types of space (Bessot and Vérillon 1993; Brousseau 
1983; Berthelot and Salin 1992; Samurcay 1984; Weill-Fassina and Rachedi 1993) 
as well as the analysis of professional practices (Bessot and Laborde 2005) allowed 
us to identify three types of problems related to the specific invariants of reading–
marking out situations. The first two types are related to mesospace, the third type 
to the instruments of the building site (as set square, ruler, measuring tape, etc.).

The first type is the problem of locating the local space in which marking out 
takes place within the mesospace of the building site.



226 A. Bessot

[…] the idea which students have of geometrical objects, the way in which they approach 
them, depends on their size […]. The ‘straight lines’ and angles appear during the process 
of surveying the macro-space. […] The micro-space is the context in which small objects 
may be manipulated. […] The meso-space is the space in which the observer is able to gain 
different viewpoints of objects by moving around. […]. (Brousseau 1986, pp. 467–471; 
translated from French by the author)

Two types of space are involved in the mesospace: the local spaces in which the ac-
tual marking out of the lines takes place, and the global space of moves that allows 
the worker to move from one local working space to another.

Locating the local space requires coordinating three frames of reference (Samur-
çay 1984):

•	 The	frame	of	reference	attached	to	the	subject	(egocentric	reference	frame):	in	
front of, behind, on the left, and on the right of a subject;

•	 The	frame	of	reference	of	the	lines	marked	on	the	building	site	(allocentric	refer-
ence frame) to construct from fixed existing objects of the mesospace that may 
also be lines already marked on the building site; and

•	 The	frame	of	reference	of	the	plan	that	is	given	by	the	dimension	system.

The second problem related to the mesospace deals with the coordination of local 
spaces (Brousseau 1983; Galvez Perez 1985) that may be distant from each other. 
This coordination is needed in the process of obtaining the expected global set of 
marked lines of the mesospace.

The third problem is related to the use of instruments: transferring measures 
requires taking into account the features of the instruments.

13.4  Choices for Simulating the Mesospace

In order to decouple the problem of local marking out from that of moving and 
orienting, two different windows were created: the first window allows the worker 
to have access to various local spaces but never to the entire space; the second one 
provides access to the visual field of the worker within the global space and his/her 
movements in this global space. In the second window (global space), one can only 
move; in the former, one can mark out by means of instruments and one can move 
without a general view (through the scrolling bars).

The features of these two windows are presented in the following section.

13.4.1  Window Simulating the Local Space for Marking Out

The visual field of the worker with its real dimensions 1.50 m by 1.10 m is simu-
lated in one window on the computer screen. It provides a representation of the real 
visual field on a scale from 1 to 5 (Fig. 13.1).

One can perform measurements and marking out activities with the simulated 
instruments (see later). This window is located within the global space for marking 
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out which is not entirely visually accessible. One can move in the global space from 
one local space to another by using the scrolling bars of the window (Fig. 13.1) but 
with only a partial view at a time making the linking up of local spaces difficult.

We wanted to simulate the change of viewpoint when the worker is moving 
away	from	or	closer	to	the	lines	marked	on	the	site.	Zoom	out	(Zoom−)	and	zoom	
in (Zoom+) possibilities have been set up to simulate these moves, moving away 
and moving closer. Zoom facilities are limited in order to avoid a global view of the 
space for marking out. In addition, it is not possible to perform marking out when 
the zoom tool is active but it is possible to move the instruments. At any time, it is 
possible to come back to marking out by pressing the key “Zoom 0.” This zooming 
possibility makes an accurate reading of the marks of the measuring tape and the 
move from one marking out local space to another one at a small distance easier.

13.4.2  Window Simulating the Global Space

In order to locate the current marking out local space within the mesospace, it is 
possible to have access to the simulation of the global space at any time by press-
ing the F9 key. The global space window is simulated by a squared vignette with a 
7.5-cm-long side representing a real squared space with a 5-m-long side (Figs. 13.2, 
13.3, 13.4, and 13.5).

When opening the window, a gray hard hat appears that represents the worker 
with its visual field represented by a rectangle. The size of the rectangle corresponds 
to the scale of the image on the screen (marking out local space). When opening 
the window, the gray hard hat is always oriented vertically below the rectangle 
(Figs. 13.3, 13.4, and 13.7).

It was chosen to simulate the moves of the worker ( gray hard hat) and not its po-
sition (Figs. 13.5 and 13.7). Two moves are possible: shifts and rotations which are 
multiples of a quarter turn. Shifts are performed by directly moving the rectangle 

Fig. 13.1  Window simulating the marking out local space
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Fig. 13.3  Window global space in the screen after pressing F9 key

 

Fig. 13.2  Window “marking out local space”

 

Fig. 13.4  Local space in the global space window
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Fig. 13.5  After pressing button “<”

 

Fig. 13.7  Back to global space after pressing “F9”

 

Fig. 13.6  Back to local space after pressing “OK”
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through the mouse. Rotations are egocentric and are performed by pressing one of 
the three buttons “>,” “<,” “∨”: to get to the marking out local space on the right of 
the worker press button “>,” to get to the marking out local space on the left of the 
worker press button “<,” and to get to the marking out local space behind the worker 
press button “∨.” Back to the local space (Fig. 13.6), the worker sees the lines ori-
ented in a way that results from the move performed in the global space window. In 
this way, the decision of moving and the effect of the move on the visual field are 
decoupled. If one comes back from the marking out local space to the global view 
(F9 key), when opening the window, the gray hard hat is always below the rectangle 
representing the local space (Fig. 13.7). Without a fixed frame of reference, the 
change of position cannot be inferred from the position of the gray hard hat with 
respect to the fixed border of the screen.

13.5  Choices for Simulating Objects

13.5.1  Choices for Simulating the Prefabrication Table

The prefabrication table, in which the slab is poured, is simulated by three rect-
angles with the same width of 0.05 m joined in a U shape: the table is 4 m long and 
2.5 m wide. When opening the simulator, the borders of the table may have various 
directions with respect to the borders of the screen: parallel to the screen borders 
(see Fig. 13.8) or not (see Fig. 13.10). The U shape can be oriented in various 
 directions (see Figs. 13.8 and 13.9).

The table is not entirely visible in the local space although, as a fixed object of 
this space, it can serve as a frame of reference of the mesospace for locating lines 
in coordination with the plan. The table is only entirely visible in the global space 
window (F9 key).

13.5.2  Choices for Simulating the Use of Instruments

The choices for simulating instruments deal with their appearance, their accessibil-
ity, their movements, and their use. We decided that all instruments should look 
like real instruments. In particular, their dimensions should be proportional to the 
real dimensions. The 2.5-m-long ruler and the 3-m-long tape even partly unwound 
exceed beyond the visual field (see Figs. 13.11 and 13.12).

Marking out instruments, namely the pen and the “blue” line, are permanently 
visible as icons at the top of the screen.

Instruments for measuring and transferring geometric properties read from the 
plan (set square, ruler, and tape) can be found in three boxes labeled with their 
names, which are simulated by rectangles located in a corner of the global space and 
are only accessible by moving in this space. Once an instrument is in use by click-
ing on its box, the worker may have to move to find it again in his/her visual field 



23113 Designing a Simulator in Building Trades to Transform Vocational Education

(resorting to the global space window or to zoom) and to shift it in the screen (local 
space) to the adequate location in order to perform a marking out.

The materiality of the instruments was not preserved in that simulated instru-
ments can overlap. However, seeking to make the edge of an instrument coincide 
with the prefabrication table or with the edge of another instrument partly replaces 
its materiality. However, note that the simulated tape is also retractable into a pink-
squared case as in reality.

13.6  Conclusion about the Design of the Simulator

One of the important contributions of simulators lies in the possibility of being 
freed of the constraints of reality, like the irreversibility of some actions or the time 
passage.

It is clear that the simulator transforms the relationships of the worker with 
space. But what is lost in fidelity can be gained in terms of problems and control. 
Indeed, separating local and global spaces in the use of the simulator requires the 
subject to seek information in the global space. To this end, the subject must leave 
the local space in order to be and move in the global space, and then has to come 
back in order to perform the marking out. These conscious back-and-forth moves 
do not occur in reality.

Fig. 13.10  Prefabrication 
table nonparallel to the screen 
borders

 

Fig. 13.9  Prefabrication 
table parallel to the screen 
borders, in another orienta-
tion: “open on the left, closed 
on the right”

 

Fig. 13.8  Prefabrication 
table parallel to the screen 
borders: “open on the right, 
closed on the left”
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As Sträßer (2000b) said, the simulator “can be used in learning processes to 
foster understanding of the professional use of mathematics by explicitly modeling 
the hidden mathematical relations […],” like the relations between local and global 
spaces in the reading–marking out activity.

Fig. 13.12  A part of the measuring tape

 

Fig. 13.11  The ruler cannot be seen entirely
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As a result of this separation, the subject is certainly faced with a problem of 
coordination between the frames of reference of the two spaces: this favors the 
awareness of the necessity of an allocentric frame of reference.

The additional action of moving back and forth between the two spaces is te-
dious. It transforms the reading–marking out strategies and favors predictions to 
decrease the number of back-and-forth moves. However, it gives rise to observa-
tions for the subject and the educator and consequently can become an object of a 
reflexive work analyzing strategies in real and simulated situations.

Another contribution of the simulator is the possibility of controlled variation 
offered to the educator. The same simulator can give rise to different uses in vo-
cational education. The educator has the command of the type of use and of tasks 
given to the students. An example of a didactical situation is briefly presented later.

13.7  Example of a Didactical Situation Making Use 
of the Simulator in Vocational Education

The situation reported here raises the problem of continuing a marking out already 
done without transmitting information on what has been already set out to the 
worker. This situation simulates a usual professional problem. Solving this problem 
requires that the worker identifies the local space within the mesospace by coor-
dinating various frames of reference including the frame of reference of the plan.

13.7.1  Instructions for Students

The plan of slab 1 with three boxings out is given (Fig. 13.13) to the students.

1. Open the file “slab 1.”
2. As is visible, the contour of slab 1 and one boxing out have already been marked.

Fig. 13.13  Plan of slab 1 
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3. Mark out the two other boxings out of slab 1.

The plan of slab 1 provided to the students as well as the windows, local space and 
global space are given in Fig. 13.13, and Fig. 13.14.

The plan is oriented according to the orientation of the writing (from left to 
right and from top to bottom) and consequently imposes a position for reading. It 
is represented in this position in Fig. 13.13. When opening the file “slab 1,” part of 
the prefabrication table, part of the lines, and the boxing out with dimensions 25 cm, 
26 cm (denoted by R(25; 26)) are visible in the local space (Fig. 13.15).

In Fig. 13.14, it is visible that the slab is rotated through 180° with respect to the 
frame of reference of the plan.

13.7.2  A Priori Analysis of the Situation

In the marking out activity, the worker’s aim is to reproduce the image of the draw-
ing of the fabrication plan in the mesospace. The continuation of the marking out 
requires interpretation of the boxing out already marked in the mesospace as cor-
responding to a boxing out in the plan.

Two cases are possible:

•	 Either	the	plan	and	its	(	unfinished) image in the working local space have a simi-
lar orientation and the boxing out is erroneously considered as R(27; 23)

Fig. 13.14  At the opening of file “slab 1”
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•	 Or	measures	are	taken	in	order	to	identify	the	already	drawn	boxing	out	with	a	
boxing out in the plan.

The choice of the dimensions of boxings out in slab 1 is deliberate. The distances 
to the border of the two boxings out R(25; 26) and R(27; 23) are visually close, 
thus favoring the choice of the (wrong) first case in the absence of the professional 
gesture of taking information on what already has been set out.

13.7.2.1  Incorrect Interpretation of the Already Marked Boxing Out 
Without Measuring: R(27; 23)

Two other boxings out must be marked. Here, the case of boxing out R(27; 55) is 
considered as the only one likely to lead to feedback. Two procedures for marking 
out R(27; 55) are possible:

•	 Through	an	alignment	with	R(27;	23)	by	resorting	to	the	only	measure	55:	no 
feedback.

•	 By	resorting	to	two	measures	27	and	55	without	making	use	of	the	alignment.	
Once the marking out is done, the absence of alignment of the two marked box-
ings out provides feedback that leads to reject the interpretation of the existing 
boxing out as R(27; 23). This leads to the second case which is analyzed below.

Fig. 13.15  The two windows
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13.7.2.2  Correct Interpretation of the Already Marked Boxing Out Through 
Checking by Measuring: R(25; 26)

The coordination between the plan and its unfinished image can be achieved in two 
ways.

•	 Real	or	mental	half	turn	of	the	plan	of	slab	1

The plan is rotated through 180° effectively or is thought to superimpose the image 
on the screen with the rotated plan: the marking out is performed with a prefabrica-
tion table in the position “open on the right, closed on the left.”

•	 Move	in	the	mesospace	through	resorting	to	the	global	space	window.

To keep the prefabrication table in its privileged position and make it coinciding 
with its image on the screen, it is possible to use the F9 key to get access to the 
 global space in order to simulate a half turn in this space: the table is then in the po-
sition “open on the left, closed on the right.” When back in the local space, the box-
ing out already marked is the image of R(25; 26). Boxings out can be marked in the 
same position as they appear in the plan.

The situation aims to provide multiple opportunities in which checking measures 
of marked objects in mesospace (prefabrication table and lines) lead to an economy 
in marking out. Checking is a critical gesture of building trade as claimed by the 
educators in vocational education.

Check what is left by the others… The guy is arriving. He is told to put this… Work starts… 
It must be checked (exchanges between two workshop teachers at the technological and 
vocational school of Sassenage; translated from French by the author).

13.7.3  A Posteriori Analysis of the Situation

The experiment took place in the technological and vocational school of Sassenage. 
The BEP class was comprised of 12 students working in pairs. We collected:

•	 The	simulator	screenshots	of	all	student	pairs	taken	every	second	and
•	 Audio	and	video	recording.

In the following, an excerpt of the a posteriori analysis regarding pairs 1, 2, 4, 5, 
and 6 is presented.

As displayed in Table 13.1, only three pairs out of five resort to measuring on the 
marking out, in order to identify the boxing out.

Let us analyze the checking procedures of the three pairs 4, 5, and 6.
Pair 4 made two checks by measuring the dimensions of the slab and the dimen-

sion of the already marked boxing out (26 cm) which is sufficient for identifying 
the boxing out.

Pair 5 checked only one measure (26 cm) and did a half turn of the plan to make 
the screen match the plan.
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Pair 6 drew surprising conclusions: the already marked boxing out is first consid-
ered as not being in the plan, and then as the erroneous boxing out R(27; 23). Verbal 
interactions among students V and N of this pair allow us to understand those succes-
sive conclusions. Similar to pairs 1 and 2, V immediately identified the already marked 
boxing out as R(27; 23), but N insisted on measuring. He measured one of the dimen-
sions of the boxing out and obtained 20 cm as a result of a wrong use of the measuring 
tape: the distance is measured by making the centre of the boxing out coinciding with 
the border of the case of the measuring tape (with width 5 cm in real size). Then, he 
measured the second dimension in the same way and obtained 21 cm. Surprised not 
to find any boxing out of the plan, he resumed each measuring twice or three times.

V:  It fits nothing. It means that it is already marked, then we must mark out 
the three others. We make one more, that’s it.

  N doubts that there can exist 4 boxings out and asks questions about the 
use of the measuring tape to observer O. He admits that he never used a 
measuring tape!

N:  The end of the tape, is it at the black mark (corresponding to the clip of the 
real tape) or at the other end?

O: It is at the black mark as on a real tape… do you know, don’t you?
N: No, I don’t know, I never used a tape.
V: Didn’t you? (Translated from French by the author)

The doubt about the correct use of the tape as well as the cost of its use in the 
simulator lead them to give up checking the correspondence between measures and 
dimensions on the plan. They come back to the first opinion of V, i.e., identifying 
the already marked boxing out as R(27; 23).

13.8  Conclusion

The simulator made it possible to confront the students with the usual professional 
problem of continuing a marking out, which is a fundamental issue of the profes-
sional activity, as claimed by the teachers. The simulator revealed that, even at the 
end of the vocational training, almost half of the observed students do not resort to 
checking and among those who checked, the use of instruments may cause difficul-
ties. This professional gesture of checking is not available to all students at the end 
of the school year.

The hidden mathematical knowledge underlying the professional activity of 
checking consists of metric and analytical geometrical properties related to the three 

Table 13.1  Checking procedures of already marked boxing out
Interpreting the already 
marked boxing out

Without measuring With measuring

R(27; 23) Pairs 1 and 2 R(20; 21) then 
R(27; 23) Pair 6

R(25; 26) 
Pairs 4 and 5
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systems of reference. As the simulator decouples the local marking out space from 
the global moving and orienting space, the student is compelled to take into ac-
count those geometrical properties in order to move from one subspace to the other. 
The use of the simulator aims at transforming the relationships of the learner to 
the mesospace. As said earlier, the simulator “can be used in learning processes to 
foster understanding of the professional use of mathematics by explicitly modelling 
the hidden mathematical relations and offering software tools to explore and better 
understand the underlying mathematical models” (Sträßer 2000, pp. 244–245).

 Appendix: Organizational Diagram of the French 
Education System
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Chapter 14
Discussion I of Part II

Representing and Meaning-Making: 
The Transformation of Transformation

Falk Seeger

Abstract: This commentary simultaneously offers a broad and a narrow perspec-
tive. It is narrow in that it does not attempt to synthesize or digest the chapters in 
this section. It can be called broad as it attempts to sketch some salient features of 
the future development of and learning geometry, of the transformation of transfor-
mation. Four such strands of reasoning are discussed: the paramount significance of 
meaning-making, the role of artefacts as socially and culturally embedded, embo-
diment and enactment, and, finally, emotions, meaning-making, and triangulation.

All chapters in this section circle around the question how (technical) artefacts 
can be thought of as mediating mathematical meaning, especially how mathematical 
meaning emerges in the interaction of a subject with a (technical) artefact embed-
ded in an educational situation, said shortly. In all chapters, geometry is the kind of 
representation that is investigated. I will not go into the question of the special kind 
of representations that geometry is incorporating. I will restrict my commentary 
to a discussion of multiple forms of psychosocial and semiotic triangulation that 
are salient in the teaching and learning of geometry, in meaning-making, emotion, 
and development. By triangulation I mean those meaning-making relationships that 
include three instances: a subject—an object—another subject, or a subject—an 
artefact—an object, or simply three subjects.

In my commentary, I will discuss the consequences of what has been called 
an “embodied” perspective on human activity and thinking following the seminal 
volume of Varela et al. (1991). They put this fundamentally different perspective on 
cognition as embodied action as follows:

By using the term embodied we mean to highlight two points: first, that cognition depends 
upon the kinds of experience that come from having a body with various sensorimotor 
capacities, and second, that these individual sensorimotor capacities are themselves embed-
ded in a more encompassing biological, psychological, and cultural context. By using the 
term action we mean to emphasize once again that sensory and motor processes, perception 
and action, are fundamentally inseparable in lived cognition. Indeed, the two are not merely 
contingently linked in individuals; they have also evolved together (Varela et al. 1991, 
p. 172–173).
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Reading this quotation again today, one is surprised to see that emotion is missing 
from this perspective—just as it is missing from the whole volume by Varela et al. 
It seemed easier then to think of cognition as having a bodily basis, leaving emotion 
unmentioned. It comes as no surprise that emotion is practically missing in a recent 
volume on the state of the art of mathematics education (Sriraman and English 
2010), although today, emotion appears as the psychological function paradigmatic 
for a perspective of embodiment.

In a sense and finally, my commentary is also meant to be a discussion and criti-
cal reflection of the main concept of this volume, transformation.

14.1 Making Meaning

Meaning is the key. It has already been the key to the New Math movement that had 
been searching for an answer to fundamental changes in the society, the culture, and 
the life of the individual in the twentienth century. It has been central in the descrip-
tion of the ever growing faster and wider transformations of life. These transforma-
tions of the twentieth century had forced mathematics educators to respond, if they 
were followers of the New Math or not, and their common denominator was the 
problem of meaning. As Thom has expressed it:

The real problem which confronts mathematics teaching is not that of rigour, but the pro-
blem of the development of ‘meaning’, of the ‘existence’ of mathematical objects (Thom 
1973, p. 202).

Today, the problem in the center of mathematics education is still meaning—what-
ever we wish to call the societal, cultural, and psychosocial transformations under 
way in the twenty-first century. But now it is meaning with a discursive or dialogi-
cal and a distributed meaning (see Otte 2011).

In his famous speech on the equally famous 1972 International Congress on 
Mathematical Education in Exeter, Thom could still get away with a conception of 
meaning in a strictly object-related fashion. Forty years later, so it seems, the issue 
of meaning in mathematics education is not only related to the mathematical objects 
but also to the personal sense they make to students.

In this paper, I tend to use “meaning” in a rather unspecified way. Basically, most 
of the times when it is spoken of meaning, one could replace it with “sense”. How 
are meaning and personal sense mutually related? A. N. Leont’ev (1981, 1978) has 
put it concisely in this way: “… sense is expressed in meanings (like motive in aim), 
but not meaning in senses” (Leont’ev 1981, p. 229). Meaning has a quasi-objective 
meaning, and meaning has a personal meaning, sense.

Meaning is the reflection of reality irrespective of man’s individual, personal relation to it. 
Man finds an already prepared, historically formed system of meanings and assimilates it 
just as he masters a tool, the material prototype of meaning (Leont’ev 1981, p. 227–228)

As it were, meaning has a general form mostly culturally organized; and meaning 
has a personal form: personal sense.
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In what follows, I will begin to discuss the use of artefacts, not their creation and 
invention, that is, I will talk about technical artefacts “in use” and not “put down”, as 
Stewart (2010, p. 19) has described the two modes of using tools and technical artefacts.

14.2 Artefacts as Socially and Culturally Embedded

The interaction with the artefact is not necessarily restricted to the interaction of an 
artefact and a person. The meaning of an artefact can only be accessed through the 
analysis of its socio-cultural (and historical) embeddedness. This is equally true for 
simple as for highly sophisticated technical artefacts.

Now, the fate of artefacts is that they “disappear” in the ongoing interaction as 
mastering the artefact is growing: when a human learns how to chop wood with an 
axe, the axe as technical artefact is the object of activity, when she or he has learned 
how to handle an axe with a sufficient degree of mastery, chopping wood, keeping 
a stove burning etc. is the object of activity and the artefact “disappears.” Leont’ev 
(1978, p. 66) has described this very nicely as actions “sinking down” to operations 
as a very general case.

Now, this all is not true for artefacts that produce something automatically. Au-
tomata, in general, do not allow for any intervening actions of a human user: they 
produce a result that is either useful for a user or not. Correspondingly, the list 
is long with successful automata in mechanical systems governing and regulating 
output processes. However, the list of failed attempts to insert automata into human-
machine-interactions or in user-supported processes is equally long (see, e.g., La-
tour 1993; Engeström and Escalante 1995).

It is interesting that the mastery of technical artefacts in any culture is often in 
itself an object—and here the artefact is not at all “disappearing”, in the contrary. 
Gaining and showing mastery over the artefact is not only the core of the matter in 
wood-chopping tournaments, but in all kinds of sports like sailing, pole-jumping, 
motor-racing, darts tournaments, tennis, and so on and so forth. In many cultures, 
the mastery of artefacts has been and still is connected to weapons and other devices 
for survival. Often these tournaments have a religious embedding and ornamenta-
tion. But some, actually, also refer to mathematics and calculating like the Soroban 
contests held in Japan and the USA.

Learning to master a (technical) artefact, as it were, is a process deeply embed-
ded into the culture. It is not the interaction with the artefact that determines the 
ultimate goal of the artefact-mediated activity, it is a goal and a motive that goes be-
yond this interaction. As Norbert Elias (1994) has shown for the cultural evolution 
of emotional and self-control in Europe from 800 to 1900, the control of artefacts 
is closely related to this process: mastering the artefact, like spoon and fork, entails 
mastering one’s feeling and self-control.

In the interaction with the artefact, the cultural embeddedness is not something 
that is only “surrounding” the human-artefact interaction. It is, rather, the basic 
mechanism (see, e.g., Cole 1996; Hutchins 2010). In the learning sciences this has 
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lead to an approach that focuses not on the direct teaching but on the indirect teach-
ing that has its source in the culturally defined situation (see Lave 1988; Lave and 
Wenger 1991).

In order to make clearer what I am talking about, I will use the following figure 
taken from Stewart (2010) as an example (see Fig. 14.1).

Figure 14.1 is meant to give an idea of how an organism is related to an environ-
ment through artefacts. The artefact is not just “mediating” while remaining in a 
rather neutral position and status, the artefact is enacted into the organism as it is, in 
fact, constituting the world. It is of crucial importance that the processes of action 
and the sensory processes are of qualitative different nature. Neither can actions 
be explained through sensory processes nor can sensory processes be explained 
through actions. They remain in a sense incompatible. Only when looking at the 
complete circle as actions and the results of actions become sensory inputs do we 
realize that they belong together, much in the sense that Hutchins (2010, p. 446) has 
put it: “… perception is something we do, not something that happens to us.”

Making a difference between sensory and motor processes is, of course, not 
a new idea. It has been a topic in the physiology of excitatory processes and in 
ethology as the difference between afference and efference including the principle 
of reafference (see, e.g., von Holst and Mittelstaedt 1950). However, already von 
Uexküll (2010) has elaborated in his theoretical model of environmental biology 
that the environment is not out there, outside the organisms, but that it is as well 
inside, as it is symbolically constructed. Insofar, the clear distinction of efference 
from afference is not tenable because it basically leads again to a great divide be-
tween organism and environment.

Uexküll’s theoretical model made it clear that the unity, or complementarity, of 
organism and environment has to be grounded into a semiotic and symbolic ap-
proach. His attempt to resolve the uncomfortable duality of mind and body, of or-
ganism and environment, following from the Cartesian split, is reflected in current 
approaches to embodiment and enactment.

Fig. 14.1  Sensorimotor coupling of organism and environment mediated by the artefact 
(S =  sensory processes; A = Actions; from Stewart 2010)
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Thus, efference and afference will not be conceptually satisfactory to reveal the 
basic mechanisms of humans using technical artefacts. What would a satisfactory 
approach have to embrace that includes the role of the body in the use of technical 
artefacts?1

14.3 Embodiment and Enactment

As I said at the beginning, the role of the body appears of such great importance 
because in a unique way cognitive and emotional functions of human activity are 
no longer divided but can be seen as two fundamental features. In addition, this lens 
makes it absolutely essential to take record of what is happening at each and every 
moment of an ongoing activity, to understand it as a unity of lived experience and 
to try to reconstruct it accordingly.

As put in the initial quote by Varela et al., it is also essential to reconstruct the 
cultural embeddedness of such an ongoing activity. That is, to reconstruct the envi-
ronment not as a loose collection of surrounding factors, but as a system of cultural 
meaning. In his paper The problem of environment, written in 1934 L. S. Vygotsky 
has discussed the issue why an identical learning environment does not “produce” 
identical learning results. The answer seems to suggest itself: different students 
experience the same situation differently. Vygotsky concludes that this means for 
educational research to look through a certain prism at the student and the situation:

It ought to always be capable of finding the particular prism through which the influence 
of the environment on the child is refracted, i.e. it ought to be able to find the relation-
ship which exists between the child and its environment, the child’s emotional experience 
( perezhivanie), in other words how a child becomes aware of, interprets, and emotionally 
relates to a certain event (Vygotsky 1934/1994, p. 341).

This shift of focus on the concrete experience of the students entails some conse-
quences in research on mathematics learning as attentional, cognitive-emotional, 
and social processes have to be considered in detail. Research has to highlight the 
interfaces where these different psychological functions meet and regulate the on-
going activity. One good example for such an interface is the research on math-
ematical beliefs as components that regulate student activity and action (see, e.g., 
Leder et al. 2002; Maas and Schlöglmann 2009; Goldin et al. 2011). Other examples 

1 In what follows, I will not discuss the specific details of embodied or enactment approaches. 
First, because these paradigms are still very much „under construction” and exhibit a great di-
versity; second, because space would not allow to go into the details. I will also not discuss the 
brain-focused approaches that sometimes label themselves as approaches to embodied cognition 
(for a short overview, see, e.g., Di Paolo and De Jaegher, 2012). Interesting and fascinating as 
these approaches may be, they reduce the role of the body to excitatory patterns in the brain that 
since recently can be traced with brain-scanners. For an overview and discussion of cognitive 
neuroscience see Campbell (2010). Dehaene, e.g., has presented an interesting tripartite model of 
the development of number (1992), but his numerous attempts to show how the components of 
this model are processed by and localized in the brain have not been very conclusive (see, e.g., 
Dehaene 1997).
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of such interfaces could include the concepts of student engagement (see, e.g., Fred-
ricks et al. 2004), self-efficacy (Bandura 1997, 2001) or recognition (see, e.g., Hon-
neth 1995).

Another interface between the cognitive and the emotional, between thinking 
and communicating are gestures as movement and expression signs. Especially in 
mathematics education, gesturing has been found to be an interesting area of re-
search (see, e.g., Maschietto and Bartolini Bussi 2009; Radford 2003; Radford et al. 
2005; Robutti 2006; Sabena 2007; Roth 2001; Roth and Welzel 2001 as examples 
from other areas)2.

14.4 Emotions, Meaning-Making, and Triangulation

In the center of meaning, body, and artefact we find emotions—or, to be more pre-
cise, emotions as they are related to cognition, and cognitions as they are related to 
emotions. Emotions have an important dual relation to body processes and to signs 
and symbols. In a unique way, emotions offer a possibility to access the two, now 
felt as basic, constituents of meaning-making: the embodiment of thinking and act-
ing and the symbolic ground of meaning. Emotions control and express meaning 
and personal sense of one’s own activity and actions and the activity and actions of 
others (Holodynski 2006). This, of course, brings the pivotal importance of emo-
tions for learning right to the point.

We arrive at this pivotal point if we follow the trails of two great schools of 
thinking on the problem of meaning: the semiotic tradition after Peirce and the 
developmental approach to the ontogenesis of intersubjectivity, reciprocity, empa-
thy, and cooperation—with L.S. Vygotsky somehow mediating the semiotic and the 
developmental approach. The development of meaning making under the perspec-
tive of reciprocity has to do with the complicated interplay between the social and 
the individual which has been the dominant theme in Vygotsky’s developmental 
psychology3.

Control and self-control have been an important motive for Peirce in formulat-
ing the pragmatic maxim. Equally, Vygotsky has taken great efforts in giving a 
vivid account of the transition from other-regulated to self-regulated control as it 
can be demonstrated in the development of volition and sign operations (see, e.g., 
Vygotsky 1997, 1999). To gain self-control is one of the great accomplishments 

2 This issue would deserve an extended discussion because the relation of gestures to language is 
still very much in need of clarifications. Gestures are often seen as developmental precursors to 
language (see, e.g., Tomasello 2008). At the same time, they seem so important because gestures 
potentially express what cannot be expressed through language. For an interesting account of 
gestural language see Sacks (1989). Goldin-Meadow (2003) has discussed intensely the gestu-
re-speech mismatches, and Sinclair (2010) has elaborated the idea of overt and covert forms of 
knowing in mathematics education, gestures indicating covert knowing.
3 For reasons of space, I will not present of Vygotsky’s ideas in more detail, also because this has 
been done extensively elsewhere over the past years (see, e.g., van der Veer and Valsiner 1991, 
1994; Daniels et al. 2007).
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in human ontogeny. It is especially remarkable on the background of the fact that 
no infant and child can develop normally if attachment and secure base are not 
provided by the mother and other caretakers. It is as if we have again two paradoxi-
cally opposing poles where development has to find its way—the self being neither 
completely attached nor completely self-directed. It is quite clear that real self-
determination and autonomy are not in a steady state but in a process of becoming, 
in a developmental process.

When we look at what research has found out about this development of self-
control we find again that already at a very early age the infant is not a passive 
vessel controlled by the mother. Rather, the infant starts meaning making from birth 
on—and even earlier. What could be mistaken for a genetic predisposition turns out 
to be, at closer scrutiny, a result of interaction and preverbal communication. Be-
ginning in the late 1960s, gradually intensified research has accumulated evidence 
of the fundamental nature of reciprocal interaction in early development (see, e.g., 
Bullowa 1979). The work of Hanus Papousek (Papousek and Papousek 1974, 1977, 
1981), Andrew Meltzoff (Meltzoff 2002, 2007; Meltzoff and Moore 1977; Melt-
zoff et al. 2009), Colwyn Trevarthen (Trevarthen 1979, 1980, 1994; Trevarthen and 
Hubley 1978), Daniel Stern (1971, 1985), to name only a few, has paved the way to 
a new understanding of the “competent infant.”4

This whole work in developmental psychology has been tremendously extended 
and amplified through developmental research in non-human primates. Here the 
work of Tomasello and his co-workers on the evolutionary transition field of the 
great apes and human infants (see, e.g., Tomasello 1999, 2005) has been immensely 
stimulating for theoretical advances in our understanding of the genesis of symbol-
formation and meaning-making as the result of social-interactive processes of shar-
ing attention, of pointing and gesturing, as semiotic exchange in a very general sense. 
And finally, as the result of some emotional grounding, of belonging, of sharing, of 
empathy—all lead into an enriched understanding of the sociogenesis of the self.

It is also remarkable that new research into the etiology and the development of 
autism has fundamentally added to our understanding of what it means to be hu-
man (see, e.g., Hobson 1993, 2002; Dornes 2005). It may seem odd to mention this 
here—but actually the mathematical experience has sometimes been described by 
outsiders as tending to be rather “autistic” and research indicates at least a certain 
tendency (Baron-Cohen et al. 1998, 2007). However, this tendency is noteworthy 
not from the epidemiological perspective. Rather, the study of autism reveals that 
the sometimes amazing capacities of autistic persons seem so isolated because they 
are not embedded into the natural art of relating to other persons, into empathy and 
cooperation, into the emotional experience. Wing has brought this perspective to the 
point: “The key to autism is the key to the essence of humanity” (Wing 1996, p. 225). 
The key feature of this essence is triangulation in the sociogenesis of the self.

Triangulation is in a particular way appropriate to capture the specific quality of 
human thinking and acting, of the human mind and human activity, be they used in 

4 A term coined already in a 1973 volume by Stone and others (Stone et al. 1973; see also Dornes 
1993).
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semiotics, in education, in psychoanalysis, in developmental psychology, or in the 
analysis of educational situations.5

One enduring issue in teaching and learning and the underlying assumptions on 
how learning can be organized is the credo that it has to proceed from the simple to 
the complex and complicated, from the concrete to the abstract, from trying out to 
planned and reflected learning, from unreflected drill to understanding, from emo-
tional to rational regulation of action. Even though some of these principles certainly 
have their justification, it must be questioned whether they support meaning-making 
in mathematics education. It is not solely the question whether symbols do describe or 
construct reality as Steinbring (2005) has put it. It is the problem that human activity 
is situated within a universe of meaning that is discursive and distributed at the same 
time, it is the old problem of how meaning as generated between subjects and with the 
help of artefacts is becoming meaning within the self, making personal sense.

In Table 14.1, Trevarthen who has done seminal research in the genesis of inter-
subjectivity and interiorisation (see, e.g., Trevarthen and Hubley 1978), has tried to 
bring together a semiotic perspective after Peirce and a developmental perspective 
in order to show how Firstness, Secondness, and Thirdness could be understood 
in terms of concepts from developmental psychology. While this is in itself a good 
summary and presentation of the different approaches seen together, this table can 
also help to make the above idea much clearer about the progression of development 
and the progression of learning. It turns out a developmental perspective changes 
the place and function of the signs as they are presented in the classical semiotic 
model. The progression from Firstness to Secondness to Thirdness is prone to be 
interpreted as a developmental sequence from the assumed simple and unmediated 
to the complex and mediated. However, research in developmental psychology has 
amply demonstrated that it is, in fact, only the triangulation between these three 
forms of signs and meanings can account for the development of meaning. Third-
ness, as the assumed highest form of meaning, being the result of interaction be-
tween subjects is actually the precondition for a sound development of emotion—as 
research has shown (see, e.g., Fonagy et al. 2002). Conversely, the quality of emo-
tion as a potentiality seems like a late accomplishment of development that needs 
the relation to the object as well as the relation to other subjects. In addition, devel-
opmental research has demonstrated that the relation to the objects is fundamentally 
mediated through other persons, primarily through caregivers during infancy.

5 Already Hegel expressed this specific feature of triangulation in his “Quadratum est lex naturae, 
triangulum mentis” (Hegel 1801, p. 533).

Table 14.1  Firstness, Secondness, and Thirdness according to Peirce (after Trevarthen 1994)
Firstness
Sign as such Quality Icon Emotion in subject
Secondness
Sign and relation to Object Actuality Index Object of subject in intended action
Thirdness
Sign and relation to Interpretant Potentiality Symbol Cooperation, self, and value between 

subjects
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14.5 Transformation and Communication

In their path-breaking book on the linguistics and philosophy of meaning, Ogden 
and Richards (1923) chose the title “The meaning of meaning.” This nicely ex-
pressed that meaning is always reflexive and that the development of meaning is 
forming some sort of a never-ending spiral: one cannot get behind meaning and 
one cannot pin down some beginning, some starting point. Varela et al. (1991) have 
extended our understanding of this situation with the claim that in order to under-
stand meaning-making one has to go beyond cognitive processes and include lived 
experience. So there is meaning that we make and meaning that is already there.

In a similar vein, there is also transformation that we make and transformation 
that appears to us as if it has always been there. It seems that we have largely lost the 
sense of authorship of the transformation going on. Looking at transformation from 
a global perspective, the current impression certainly reveals a picture that finds us 
largely alienated from the optimistic perspective on transformation: Gideon Rach-
man (2011) has presented a succession from the Age of Transformation (1978–
1991), the Age of Optimism (1991–2008) to today’s Age of Anxiety into what he 
calls today’s Zero-Sum world. We do not have to take this analysis too seriously.6 
It is quoted only to show that transformation may not be a convenient motto for to-
day’s mathematics education, and it indicates that we may have to lower our sights

In search of a new motto, a nice story told by George Dyson (2010) might be 
amusing and whetting the appetite to search for alternatives:

In the North Pacific Ocean, there were two approaches to boatbuilding. The Aleuts (and 
their kayak-building relatives) lived on barren, treeless islands and built their vessels by 
piecing together skeletal frameworks from fragments of beach-combed wood. The Tlingit 
(and their dugout canoe-building relatives) built their vessels by selecting entire trees out of 
the rainforest and removing wood until there was nothing left but a canoe.
The Aleut and the Tlingit achieved similar results—maximum boat/mini-mum material—
by opposite means. The flood of information unleashed by the Internet has produced a 
similar cultural split. We used to be kayak builders, collecting all available fragments 
of information to assemble the framework that kept us afloat. Now, we have to learn to 
become dugout-canoe builders, discarding unnecessary information to reveal the shape of 
knowledge hidden within.
I was a hardened kayak builder, trained to collect every available stick. I resent having to 
learn the new skills. But those who don’t will be left paddling logs, not canoes.

The problem for mathematics education seems to be that the piecemeal and the 
dugout style do coexist—and they coexist in different ways for students and for 
teachers at different moments of the teaching-learning process. Navigating the terri-
tory of meaning that is there and making meaning while we do this, certainly needs 
whatever works.

6 Rachman is a leading figure in the Financial Times. Although his intention is to present an 
account of today’s global situation, it must be doubted if he really can leave his fixation on the 
investment and money-making perspective behind.



250 F. Seeger

References

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychol-

ogy, 52, 1–26.
Baron-Cohen, S., Bolton, P., Wheelwright, S., Scahill, V., Short, L., Mead, G., & Smith, A. (1998). 

Autism occurs more often in families of physicists, engineers, and mathematicians. Autism, 2, 
296–301.

Baron-Cohen, S., Wheelwright, S., Burtenshaw, A., & Hobson, E. (2007). Mathematical talent is 
linked to autism. Human Nature, 18, 125–131.

Bullowa, M. (Ed.) (1979). Before speech: The beginnings of human communication. Cambridge: 
Cambridge University Press.

Campbell, S. R. (2010). Embodied minds and dancing brains: New opportunities for research in 
mathematics education. In B. Sriraman & L. English (Eds.), Theories of mathematics educa-
tion: Seeking new frontiers (pp. 309–331). Heidelberg: Springer

Cole, M. (1996). Cultural psychology. A once and future discipline. Cambridge, MA: Harvard 
University Press.

Daniels, H., Cole, M., & Wertsch, J. V. (2007). The Cambridge companion to Vygotsky. New York: 
Cambridge University Press.

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–40.
Dehaene, S. (1997). The number sense. How the mind creates mathematics. New York: Oxford 

University Press.
Di Paolo, E., & De Jaegher, H. (2012). The interactive brain hypothesis. Frontiers in Human Neu-

roscience, 6, Article 163 (doi: 10.3389/fnhum.2012.00163)
Dornes, M. (1993). Der kompetente Säugling. [The competent infant]. Frankfurt/Main: Fischer.
Dornes, M. (2005). Die emotionalen Ursprünge des Denkens [The emotional origins of thinking]. 

West-End. Neue Zeitschrift für Sozialforschung, 2(1), 3–48
Dyson, G. (2010). Kayaks vs. canoes. http://www.edge.org/q2010/q10_2.html.
Elias, N. (1994). The civilizing process. Oxford: Blackwell (original 1934)
Engeström, Y., & Escalante, V. (1995). Mundane tool or object of affection? The rise and fall of 

the postal buddy. In B. Nardi (Ed.), Context and consciousness:activity theory and human-
computer interaction (pp. 325–373). Cambridge: The MIT Press.

Fonagy, P,. Gergely, G., Jurist, E., & Target, M. (2002). Affect regulation, mentalization, and the 
development of the self. New York: Other Press.

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the 
concept, state of the evidence. Review of Educational Research, 74(1), 59–109.

Goldin, G. A., Epstein, Y. M., Schorr, R. Y., & Warner, L. B. (2011). Beliefs and engagement 
structures: Behind the affective dimension of mathematical learning. ZDM—The International 
Journal on Mathematics Education, 43, 547–560.

Goldin-Meadow, S. (2003). Hearing gesture—How our hands help us think. Cambridge, MA: 
Harvard University Press.

Hegel, G. W. F. (1801). „Habilitationsthesen“. In: Georg Wilhelm Friedrich Hegel, Werke in Zwan-
zig Bänden. Band 2. Jenaer Schriften 1801-1807 (S. 533). Frankfurt am Main: Suhrkamp.

Hobson, R. P. (1993). Autism and the development of mind. Hillsdale: Lawrence Erlbaum.
Hobson, R. P. (2002). The cradle of thought. Exploring the origins of thinking. London: Macmillan.
Holodynski, M. (2006). Die Entwicklung der Emotionen. Berlin: Springer.
Honneth, A. (1995). The struggle for recognition. The moral grammar of social conflicts. Cam-

bridge: Polity Press.
Hutchins, E. (2010). Enaction, imagination, and insight. In J. Stewart, O. Gapenne, & E. A. Di 

Paolo (Eds.), Enaction. Toward a new paradigm for cognitive science (pp. 425-450). Cam-
bridge, MA: MIT Press.

Latour, B. (1993). Aramis, or the love of technology. Cambridge, MA: Harvard University Press.



25114 Discussion I of Part II

Lave, J. (1988). Cognition in practice. Mind mathematics and culture in everyday life. Cambridge: 
Cambridge University Press.

Lave, J., & Wenger, E. (1991). Situated learning—Legitimate peripheral participation. Cam-
bridge: Cambridge University Press.

Leder, G. C., Pehkonen, E., & Törner, G. (Eds.) (2002). Beliefs: A hidden variable in mathematics 
education? Dordrecht: Kluwer.

Leont’ev, A. N. (1981). Problems of the development of the mind. Moscow: Progress Publishers.
Leont’ev, A. N. (1978). Activity, consciousness, and personality. Englewood Cliffs, N.J.: Prentice-

Hall.
Maschietto, M., & Bartolini Bussi, M. G. (2009). Working with artefacts: gestures, drawings and 

speech in the construction of the mathematical meaning of the visual pyramid. Educational 
Studies in Mathematics, 70, 143–157.

Maass, J., & Schlöglmann, W. (Eds.) (2009). Beliefs and attitudes in mathematics education: New 
research results. Rotterdam: Sense.

Meltzoff, A. N. (2002). Elements of a developmental theory of imitation. In A. N. Meltzoff &W. 
Prinz (Eds.), The imitative mind (pp. 19-41). Cambridge: Cambridge University Press.

Meltzoff, A. N. (2007). ‘Like me’: A foundation for social cognition. Developmental Science, 
10(1), 126–134.

Meltzoff, A. N., Kuhl, P. K., Movellan, J., & Sejnowski, T. J. (2009). Foundations for a new sci-
ence of learning. Science, 325, 284–288.

Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neo-
nates. Science, 198, 75–78.

Ogden, C. K., & Richards, I. A. (1923). The meaning of meaning: A study of the influence of 
language upon thought and of the science of symbolism. London: Routledge & Kegan Paul.

Otte, M. F. (2011). Evolution, learning, and semiotics from a Peircean point of view. Educational 
Studies in Mathematics, 77, 313–329.

Papousek, H., & Papousek, M. (1974). Mirror image and self-recognition in young infants. Devel-
opmental Psychology, 7, 149–157.

Papousek, H., & Papousek, M. (1977). Cognitive aspects of preverbal social interaction between 
human infants and adults. In R. Porter & M. O’Connor (Eds.), Ciba Foundation Symposium 
33: Parent-infant interaction (pp. 241–269). New York: Wiley

Papousek, H., & Papousek, M. (1981). How human is the human newborn, and what else is to 
be done. In K. Bloom (Ed.), Prospective issues in infancy research (pp. 137–155). Hillsdale: 
Erlbaum.

Rachman, G. (2011). Zero-sum future—American power in an age of anxiety. New York: Simon 
& Schuster.

Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to 
students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.

Radford, L., Bardini, C., Sabena, C., Diallo, P., & Simbagoye, A. (2005). On embodiment, arte-
facts, and signs: A semiotic-cultural perspective on mathematical thinking. In H. L. Chick & 
J. L. Vincent (Eds.), Proceedings of the 29th International Group for the Psychology of Math-
ematics Education, vol. 4, pp. 113–122. Melbourne, Australia

Robutti, O. (2006). Motion, technology, gesture in interpreting graphs. International Journal of 
Computer Algebra in Mathematics Education, 13, 117–126.

Roth, W.-M. (2001). Gestures: Their role in teaching and learning. Review of Educational Re-
search, 71(3), 365–392.

Roth, W.-M., & Welzel, M. (2001). From activity to gestures and scientific language. Journal of 
Research in Science Teaching, 38(1), 103–136.

Sabena, C. (2007). Body and signs: A multimodal semiotic approach to teaching-learning pro-
cesses in early calculus. Unpublished Doctoral Dissertation, Università degli Studi di Torino, 
Torino

Sacks, O. (1989). Seeing voices—A journey into the world of the deaf. Berkeley: University of 
California Press.

Sinclair, N. (2010). Knowing more that we can tell. In B. Sriraman & L. English (Eds.), Theories 
of mathematical education: Seeking new frontiers (pp. 595–612). Heidelberg: Springer



252 F. Seeger

Sriraman, B., & English, L. (2010) (Eds.), Theories of mathematical education: Seeking new fron-
tiers. Heidelberg: Springer

Steinbring, H. (2005). Do mathematical symbols serve to describe or to construct reality? In M. 
Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign (pp. 91–104). New York: Springer.

Stern, D. (1971). A microanalysis of mother-infant interaction. Journal of the American Academy 
of Child Psychiatry, 10, 501–517

Stern, D. (1985). The interpersonal world of the  infant: A view from psychoanalysis and develop-
mental psychology. New York: Basic Books.

Stewart, J. (2010). Foundational issues in enaction as a paradigm for cognitive science: From the 
origin of life to consciousness and writing. In J. Stewart, O. Gapenne, & E. A. Di Paolo (Eds.), 
Enaction. Toward a new paradigm for cognitive science (pp. 1–31). Cambridge: MIT Press.

Stone, L. J., Smith, H. T., & Murphy, L. B. (Eds.) (1973). The competent infant. New York: Basic 
Books.

Thom, A. (1973), Modern mathematics: Does it exist? In A. G. Howson (Ed.), Developments 
in mathematical education. Proceedings of the 2nd International Congress on Mathematical 
Education (pp.  194–210). Cambridge: Cambridge University Press

Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard Uni-
versity Press.

Tomasello, M. (2005). Constructing a language: A usage-based theory of language acquisition. 
Cambridge, MA: Harvard University Press.

Tomasello, M. (2008). Origins of human communication. Cambridge, MA: MIT Press.
Tomasello, M. (2006). Why don’t apes point? In N. J. Enfield & S. C. Levinson (Eds.), Roots of 

human socialty: Culture, cognition and interaction (pp. 506–524). Oxford: Berg.
Trevarthen, C. (1979). Communication and cooperation in early infancy: A description of primary 

intersubjectivity. In M. Bullowa (Ed.), Before speech: The beginnings of human communica-
tion (pp. 321–347). Cambridge: Cambridge University Press.

Trevarthen, C. (1980). The foundations of intersubjectivity: Development of interpersonal and co-
operative understanding in infants. In D. Olson (Ed.), The social foundations of language and 
thought: Essays in honor of J. S. Bruner (pp. 316–342). New York: Norton.

Trevarthen, C. (1994). Infant semiosis. In W. Nöth (Ed.), Origins of semiosis: Sign evolution in 
nature and culture (pp. 219–252). Berlin: Mouton de Gruyter.

Trevarthen, C., & Hubley, P. (1978). Secondary intersubjectivity: Confidence, confiding and acts 
of meaningin the first year. In A. Lock (Ed.), Action, gesture, and symbol: The emergence of 
language (pp. 183–230). London: Academic.

Van der Veer, R., & Valsiner, J. (1991). Understanding Vygotsky: A quest for synthesis. Oxford: 
Blackwell.

Van der Veer, R., & Valsiner, J. (Eds.) (1994). The Vygotsky reader. Oxford: Blackwell.
Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and hu-

man experience. Cambridge, MA: MIT.
Von Holst, E., & Mittelstaedt, H. (1950).  Das Reafferenzprinzip. Wechselwirkungen zwischen 

Zentralnervensystem und Peripherie. Die Naturwissenschaften, 37, Heft 20, 464–476.
Von Uexküll, J. (2010). A foray into the worlds of animals and humans; with a theory of meaning. 

Minneapolis: University of Minnesota Press (original work published 1934).
Vygotsky, L.S. (1994). The problem of the environment. In van der Veer, R. & Valsiner, J. (Eds.), 

The Vygotsky reader (pp. 338–354). Oxford: Blackwell. (Original work 1934).
Vygotsky, L. S. (1997). The history of the development of higher mental functions. In R. W. Rieber 

(Ed.), The collected works of L. S. Vygotsky, Vol. 4. New York: Plenum. (Original work 1931).
Vygotsky, L. S. (1999). Tool and sign in the development of the child. In R. W. Rieber (Ed.), The 

collected works of L. S. Vygotsky, Vol. 6 (pp. 1–68). New York: Kluwer. (Original work 1930).
Wing, L. (1996). The autistic spectrum: A guide for parents and professionals. London: Constable.



253

Chapter 15
Discussion II of Part II

Digital Technologies and Transformation  
in Mathematics Education

Rosamund Sutherland

Abstract: This chapter is a commentary on a collection of chapters that focus on 
the transformational potential of digital technologies for learning mathematics. I 
suggest that the theoretical perspectives represented within the collection cohere 
around theories that predominantly derive from sociocultural theory, with a focus 
on the mediating role of technologies in human activity. All of the chapters  acknow-
ledge the role of the teacher, and the importance of designing activities to exploit the 
semiotic potential of digital technologies for learning mathematics. However I argue 
that the chapters do not adequately take into account students’ out-of-school uses of 
digital technologies which are likely to impact on their in-school use of ‘mathemati-
cal’ technologies, and also the societal and institutional factors that structure the use 
of technologies in schools. I also argue for the importance of scaling-up the design 
based studies represented in the collection and developing a model of professional 
development that exploits the potential of networked communities of mathematics 
teachers in order to initiate large-scale transformation in mathematics classrooms.

15.1 Introduction

This chapter is a commentary on a collection of chapters entitled Transformations 
Related to Representations of Mathematics, within the book Transformation—a Fun-
damental Idea of Mathematics Education. All of the chapters focus on the transforma-
tional potential of digital technologies as representational systems, and demonstrate 
how dynamic digital technologies both add to the available mathematical representa-
tional systems, and augment existing static representational systems. Dynamic repre-
sentational systems offer the potential for transforming and democratising the teach-
ing and learning of mathematics (Kaput et al. 2008), and the chapters in this book 
have provoked me to re-examine this potential in order to understand why changes 
at the level of the classroom have not been as dramatic as many of us had predicted.

My own involvement in mathematics education research started in 1983 with a 
research project that investigated the potential of Logo programming for learning 
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mathematics and in particular algebra (Hoyles and Sutherland 1989; Sutherland 
1989), and developed into a more general interest in the potential of computers and 
technology for learning mathematics (for example Sutherland and Rojano 1993; 
Sutherland 2007). More recently I have focused on approaches to professional de-
velopment as I became aware that teachers need support to take the risk of experi-
menting with using digital technologies in the classroom (Sutherland et al. 2009). 
I mention this history because it feels as if I have lived through many “waves of 
optimism” about how “digital technologies” will transform mathematics education, 
yet despite extensive research in this area (see for example Hoyles and Lagrange 
2010) it is widely recognized that teachers are generally not exploiting the potential 
of digital technologies for the teaching and learning of mathematics (Assude et al. 
2010).

Over and over again it is the newest technology which excites teachers in schools, 
provoking them to think that the latest wave of technology will make a difference to 
teaching and learning. For example many schools in my local area are buying class 
sets of ipads, accompanied by a belief that the mere introduction of this technol-
ogy into the classroom, together with the use of the internet is all that is needed to 
transform teaching and learning. It is difficult not to go along with this enthusiasm 
and the confidence that simply by making a technological system available, people 
will more or less automatically take advantage of the opportunities that it offers. 
It is a challenge to find ways of convincing school leaders and teachers that it is 
how the technology is used that is important, and that a seemingly “mathematical” 
technology can be used for non mathematical purposes. The theoretical ideas that 
are raised in this collection of chapters address this issue, providing frameworks for 
understanding the use of digital technologies and the role of the teacher in orches-
trating such use for mathematical purposes.

Within this chapter I start by explaining why I believe it is important to consider 
the policy and institutional constraints on innovation at the level of the classroom. I 
then discuss the theoretical perspectives represented within this collection of chap-
ters. I go on to argue that young people’s out-of-school uses of digital technolo-
gies are likely to impact on their classroom learning of mathematics. I claim that 
whereas technologies can potentially be used to transform mathematics education, 
teachers and students have to learn to use them in mathematically purposeful ways. 
Finally I discuss why I believe that professional development is key to transforma-
tion in mathematics education.

15.2 Constraints on Innovation in Mathematics Classrooms

The research represented in this collection relates to what could be called bottom-up 
change at the level of the classroom. For example, the project by Bessot (Chap. 13) 
which designed and evaluated a computer-based mathematical simulator for voca-
tional construction students to learn about geometry-related aspects of their profes-
sional practice, or the longitudinal study carried out by Geiger (Chap. 12) which 
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investigated the dynamics of classroom interaction in which 16–17-year-old math-
ematics students had unrestricted access to a wide range of digital technologies. 
Both of these studies are design-based studies, the former influenced by the work of 
Brousseau (1997), and the later drawing on Sträßer’s (2009) tetrahedral model for 
teaching and learning mathematics.

For most of my research career, I have also been involved in bottom-up research 
and development projects. However more recently I led a research project (the In-
terActive Education project) which examined learning at both the level of learner 
and classroom, as well as taking into account the institutional and societal factors 
which structure learning (Sutherland et al. 2009). If you take such an holistic per-
spective you begin to understand the challenges that teachers face when consid-
ering using digital technologies in the classroom. For example as we reported in 
the InterActive Education project, the mandate for ICT in education (in England) 
has overwhelmingly been interpreted by schools as a license to acquire equipment. 
Such a focus on acquiring equipment detracts from an emphasis on the professional 
development that teachers need in order to change established practices of teaching 
and learning.

When we examine the societal and institutional factors that structure the use 
of technologies in schools, we can begin to appreciate why mathematics teachers 
might not be embracing digital technologies for teaching and learning. For exam-
ple in England many schools have recently invested in Virtual Learning Systems 
(VLEs) and this widespread adoption of VLEs is getting in the way of bottom-up 
innovation at the level of the classroom:

“……far from being a source of enabling ‘bottom-up’ change, these institutional techno-
logies appear to be entwined in a multiplicity of ‘top down’ relationships related to the 
concerns of school management and administration. It could be argued that the use of these 
systems is shaped more often by concerns of institutional efficiency, modernisation and 
rationalisation, rather than the individual concerns of learners or teachers. Indeed despite 
the connotations of the ‘Learning Platform’ and ‘virtual learning environment’ it would 
seem that the primary concern of these technologies is – at best – with a limited bureau-
cratic ‘vision of academic success’ based around qualifications and grades (Pring 2010, 
p. 84). With these issues in mind, we therefore need to approach institutional technologies 
in terms of enforcing the bureaucratic interests of the institution rather than expanding the 
educational interests of the individual” (Selwyn 2011, p. 477).

As Selwyn suggests it is important to understand the policy and institutional context 
in which digital technologies are being introduced into schools and this is likely to 
vary from country to country and change over time (Assude et al. 2010). Without 
such an understanding we may attribute lack of change in classrooms to, for exam-
ple, lack of training of teachers, or to teachers’ resistance to change, whereas there 
may be more complex and interrelated factors that need to be understood if we are 
going to be able to use digital technologies to innovate at the level of the classroom.

Engaging with the chapters in this book reminds me that there tends to be a 
divide in the education literature between those who focus on the more sociologi-
cal aspects of learning in schools and those who focus on the more psychological 
aspects of learning. With notable exceptions (for example, Chevallard 1992) and 
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the more recent work of Cobb (Cobb and McClain 2011), there is very little math-
ematics education research that situates teachers’ classroom practices within the 
institutional and policy contexts in which they work. However, as Selwyn (2011) 
has pointed out digital technologies have not only been introduced into schools for 
educational purposes, with “many countries perceiving a close relationship between 
success in global economic markets and the increased use of technology in educa-
tional institutions” (p. 60).

Engaging with the political realities of schooling is a long way from the focus 
of the chapters in this collection, which are all concerned with classroom-based 
research that expands the potential of students to learn mathematics. I agree with 
the views of the authors, namely that digital technologies can potentially transform 
classroom mathematical practices. I also agree with the authors that transformation 
of learning mathematics needs to be informed by theory and evidence-informed 
research, and in the next section I discuss the theoretical perspectives represented 
in this collection.

15.3 Theory as a Way of Seeing

“Humans are irrepressible theorisers. We cannot help but note similarities among 
diverse experiences, to see relationships among events, and to develop theories that 
explain these relationships (and that predict others)” (Davis et al. 2000, p. 52).

The introductory chapter to this book starts by raising the issue of the diverse 
theoretical approaches that have evolved within the mathematics education com-
munity (Introduction). In this respect new researchers and practicing teachers could 
easily become confused by the plethora of theories related to the use of digital tech-
nologies for learning mathematics. However, it seems to me that many of the per-
spectives represented in this collection cohere around theories that predominantly 
derive from sociocultural theory and the work of Vygotsky (1978).

Sociocultural theory is predicated on the view that humans as learning, knowing, 
reasoning, feeling subjects are situated in social and cultural practices. Participation 
in these practices provides the fundamental mechanism for learning and knowing. 
Furthermore, human activity and practices must be understood as products of his-
tory, with artefacts and tools being fundamental parts of this history. A key concept 
within socio-cultural theory is the idea that all human activity is mediated by tools. 
These tools, invented by people living in particular cultures, are potentially trans-
formative, that is they enable people to do things which they could not easily do 
without such tools. Within this framework the idea of person-acting-with-media-
tional-means (Wertsch 1991) expands the view of what a person can do and also 
suggests that a person will be constrained by their situated and mediated actions as 
they take place in various kinds of settings. In this respect as discussed in the previ-
ous section, learning events in school have to be understood as embedded in institu-
tions, linked to the historical and political dynamics of the classroom.

R. Sutherland
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The theoretical focus on tools is relevant when considering the role of the dig-
ital in mediating and potentially transforming mathematical activity. Both Mari-
otti (Chap. 9) and Geiger (Chap. 12) draw on the theory of instrumental genesis 
(Rabardel 2001) which derives in part from the work of Vygotsky. This conceptual 
approach allows us to understand more about the ways in which people interact 
differently with the same tool, and over time learn how to use it in different ways. 
This framework distinguishes between two aspects of a tool—the artefact and the 
instrument, separating what relates to the intention of the designer and what occurs 
in practice. From this perspective the instrument is made up of both artefact—type 
components and schematic components, associated with both the object/artefact 
and the subject/person. The instrument is constructed by the individual and relates 
to the context of use (utilisation process), which relates to the mathematical task to 
be solved as well as other contextual, institutional and policy-related factors. The 
particular instrument constructed by a student with respect to a particular artefact or 
technology (for example dynamic geometry software) may not be consistent with 
the intention of the teacher. To make the situation even more complex the instru-
ment constructed by the student may not be consistent with the intentions of the de-
signer. The theory of instrumental genesis has been used to explain the discrepancy 
between the students’ behavior and the teacher’s intentions with respect to the use 
of technology.

Acknowledging the role of the teacher in guiding instrumental genesis, Drijvers 
et al. (2010) have developed the idea of instrumental orchestration. This is defined 
as the intentional and systematic organisation and use of the various tools avail-
able to the teacher in a given mathematical situation, in order to guide students’ 
instrumental genesis. This includes decisions about the way a mathematical task is 
introduced to students and worked on in the classroom, decisions about which tools 
to use (both digital and non digital), and on the schemes and techniques to be de-
veloped by the students. Mariotti also emphasises that the transformation process is 
not spontaneous and has to be “fostered by the teacher, through organizing specific 
social activities, designed to exploit the semiotic potential of the artefact” (Mariotti, 
Chap. 9). Bartollini-Bussi and Mariotti (2008) use the phrase “didactical cycle” to 
refer to the organisation of classroom activity incorporating the use of technolo-
gies. From a different theoretical antecedent Laborde and Laborde (Chap. 11) also 
emphasise the importance of designing mathematical teaching and learning situa-
tions, discussing the idea of the adidactical milieu which derives from the theory of 
Brousseau (1997).

Laborde and Laborde also discuss the perspective of the designer in terms of 
designing dynamic geometry environments and in particular Cabri 3D. They sug-
gest that “the dragging facility in dynamic geometry environments illustrates very 
well the transformation technology can bring in the kind of representations offered 
for mathematical activity and consequently for the meaning of mathematical ob-
jects. A diagram in DGE is no longer a static diagram representing an instance of 
a geometrical object, but a class of drawings: representing invariant relationships 
among variable elements” (Chap. 11). They also emphasise that although the de-
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signer (Jean-Marie Laborde is the designer of Cabri) has clear intentions, the ways 
in which the technology is used may not relate to such intentions.

Whereas, appreciating that in the section above I have very much oversimplified 
the perspectives of the authors, I suggest that there are more similarities than differ-
ences in the theoretical perspectives represented in this collection of chapters. Work 
has already begun to connect these theoretical frames (Artigue and Cerulli 2008) 
and in the future more work could be carried out to develop an accessible frame-
work that could inform mathematics teachers about the complex issues involved in 
using digital technologies to transform mathematics education.

15.4  Mathematics and Out-Of-School Use of Digital 
Technologies

Sociocultural theory recognises that a student’s history of learning, what they learn 
out-of-school and what they have learned in previous schooling impacts on their 
ongoing learning experiences in school. From this perspective all students actively 
construct and make sense of a particular mathematical activity in terms of their 
previous learning, developing their own personal theories, or theories in action 
(Vergnaud 1994). In order to illustrate this I present an example from an interview 
with a 15-year-old student who was struggling with school mathematics. When in-
terviewed about the meaning she gave to the use of letters in mathematics she told 
the interviewer that the value of a letter related to its position in the alphabet. When 
probed further she provided the following explanation:

Int: Does L have to be a larger number than A?
Eloise: Yes because A starts off as 1 or something.
Int: What made you think that [L has to be a larger number than A?]
Eloise:  Because when we were little we used to do a code like that...in junior 

school...A would equal 1, B equals 2, C equals 3.....there were possibilities 
of A being 5 and B being 10 and that lot.....but it would come up too high 
a number to do it.........it was always in some order...

Eloise had developed her own theory about the meaning of letters, which derived 
from her work in primary school, and made sense to her in the context of the prob-
lems she was solving at the time. This personal knowledge had not been intentially 
taught by the teacher and was no longer appropriate (or correct) in the context of 
secondary school mathematics. Eloise’s theory about the role of letters in mathe-
matics, influenced how she made sense of letters when she encountered them in sec-
ondary school algebra. What this example illustrates is that each student brings to 
the classroom his/her own history of learning and when faced with a new situation 
makes sense of this from his/her own particular experience and way of knowing.

Another example derives from an interview with Anthony when he was a 10 
year old primary school student. Anthony had not met algebraic symbols in school 
mathematics, yet when asked the question:

Which is larger, 2n or n + 2? He responded:

R. Sutherland
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“You can’t say that because it wouldn’t always be right….if n was 6 that would be 12….
and that would be 8 so that would be right….but if n was one then 2n would be 2 and n = 
2 would be 3.”

This response was surprising given that research has shown that this question is 
only answered correctly by 6 % of 14 year olds (Küchemann 1981). When asked 
why he was able to answer the interview questions correctly he said:

“It might be partly because of BASIC, where I’ve learned to use things like variables and 
things….like p is a number and you can use any letter for a number….”

This is an example in which a primary school student learned from out-of-school 
computer programming ideas that are related to the “scientific concepts” of school 
mathematics. The idea of “scientific concepts” draws attention to the importance 
of a systematic organised body of knowledge, knowledge that can be separated 
from the community that produced it. Vygotsky discussed the difference between 
informal and scientific concepts, and claimed that there is a dialectic relationship 
between the development of informal and scientific concepts:

“the dividing line between these two types of concepts turns out to be highly fluid, passing 
from one side to the other in an infinite number of times in the actual course of develop-
ment. Right from the start it should be mentioned that the development of spontaneous and 
academic concepts turn out as processes which are tightly bound up with one another and 
which constantly influence one another” (Steiner and Mahn 1996, p. 365).

In my research I continue to find examples of young people’s out-of-school use 
of digital technologies impacting on their learning of mathematics in schools. For 
example, the following is an interview with two 8-year olds from the InterActive 
Education Project.

Int: Do either of you use Excel at home (Alan shakes head)?
Ray: Sometimes. My Dad uses it for his paper work.
Int: And when you use it what do you use it for?
Ray:  Umm, he uses it, cos when he’s got paper calculations and some are hard 

like for him, he puts it in Excel and then he puts, he circles it and then 
presses the equal button and it tells him what the sums are.

Int: What do you use it for?
Ray: Maths homework.
Alan: Cheat.

From sitting alongside his father at home Ray had observed him using a spreadsheet 
for his work. Ray’s explanation shows that he understands how a spreadsheet can 
carry out “hard” calculations which are related to mathematics. Interestingly until 
this interview was carried out by a researcher the class teacher was not aware of 
this “fund of knowledge” (Moll and Greenberg 1990), illustrating the way in which 
home learning out-of-school is often not recognised by teachers at school.

Nowadays, the vast majority of young people engage with digital technologies in 
their lives outside school, and these experiences can impact negatively or positively 
on their mathematical learning with digital technologies in school. For example 
young people’s experience of playing games out-of-school can impact on the ways 
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in which they make sense of digital technologies in school and this can detract from 
the intended or “scientific” learning (Sutherland et al. 2009).

One of the research results from the InterActive Education project was that 
teachers often underestimate the impact of students’ past experiences on their 
learning in the classroom, and in particular their out-of-school experiences of using 
digital technologies. The theory of instrumental genesis discussed earlier explains 
why such out-of-school learning is likely to impact on the student’s construction of 
a particular digital instrument, that is how they make sense of the potential of the 
digital technology for learning mathematics. It is perhaps surprising therefore, that 
none of the authors in this collection of chapters appear to take such factors into 
account in their research. I suggest that mathematics education researchers tend to 
underestimate the impact of students’ out-of-school uses of ICT on their in-school 
learning of mathematics with digital technologies. As out-of-school uses of mobile 
devices become ubiquitous it will be even more important to consider the interre-
lationships between young people’s construction of the digital from their learning 
out-of-school and the mathematical concepts which teachers intend them to learn 
in school. Raising such issues presents a challenge to the use of digital technologies 
for transforming the teaching and learning of mathematics. In the next section of 
the paper, I explain why I believe that professional development is the way forward.

15.5  A Way Forward: Transformation Through 
Professional Development

As I argued earlier, a sociocultural approach to learning enables us to see the poten-
tial transformative nature of tools and artefacts that have been designed to enable 
us to do things that would be difficult to do without them. For example, the long 
multiplication algorithm enables us to perform calculations that would be difficult 
to perform mentally, dynamic geometry software enables us to visualise the invari-
ant and variable properties of geometrical figures that are difficult to see in paper-
and-pencil constructions, spreadsheets enable us to construct financial models that 
would be very difficult or impossible to develop on paper. However a focus on the 
transformative potential of digital technologies can fall into the trap of deterministic 
thinking, that is a belief that the mere use of such tools is sufficient for transforma-
tion to occur, and as I have discussed already the authors of this collection of chap-
ters provide ample evidence for why this is not the case. Such deterministic thinking 
gets in the way of the productive use of ICT for teaching and learning, because from 
such a perspective there is no acknowledgement of the complexities and challenges 
involved in embedding digital technologies into mathematical classroom practices.

In our everyday lives we learn about the transformative potential of a particu-
lar digital technology through experimentation and discussion with colleagues and 
friends. However, as academics we are also aware that within the institutional set-
ting of the University we may be resistant to using a technology that is being im-
posed on us to transform our everyday work practices. For example, I am resisting 
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using the digital calendar that I am supposed to be using, and continue to use a paper 
diary which I argue is more transformative for me personally than a digital diary.

In order to start to use a digital diary to transform my time-management practices 
I would have to learn to use it in a transformative way. Similarly, teachers have to 
learn how to use “mathematical” digital technologies in a transformative way. Here 
the challenge is much greater than the challenge for me personally of learning how 
to use a digital diary. Teachers firstly have to learn how to use the chosen digital 
technology to transform both their own mathematical practices and their teaching 
of mathematics. Teachers then have to “teach” students to learn how to use digital 
technologies in transformative and mathematically appropriate ways.

Most of the authors of this collection of chapters carry out what could be called 
design-based research (Brown 1992). In my opinion the challenge is to scale-up 
such design-based (or didactical engineering) approaches through processes of pro-
fessional development. The InterActive project showed that a successful model for 
professional development is to create networked communities in which teachers and 
researchers work in partnership to design and evaluate learning initiatives which 
use digital technologies as a tool for transforming learning. We argue that such 
professional development requires people to break out of set roles and relationships 
in which researchers are traditionally seen as knowledge generators and teachers as 
knowledge translators or users. For meaningful researcher-practitioner communi-
ties to emerge, trading zones are needed where co-learning and the co-construction 
of knowledge take place (Triggs and John 2004). Within such communities design 
can be informed by: theory and research-informed evidence; the craft knowledge of 
teachers; curriculum knowledge; policy and management constraints and possibili-
ties and young people’s use of digital technologies in their everyday lives. The focus 
is on iterative design and evaluation and a dynamic record of classroom activity and 
learning can be created from video and audio recording, screen-capture, observa-
tion, student interviews, and students’ work.

Such design-based professional development should also pay attention to areas 
of tension that emerge through the process of classroom-based innovation (Suther-
land et al. 2012). For example, as discussed earlier, there may be an area of tension 
around the ways in which senior management in a school intend to use technology 
to improve the qualifications and grades of students and the ways in which math-
ematics teachers intend to use digital technology to transform students’ understand-
ing of mathematical concepts.

In summary, we know from research on the use of digital technologies in schools 
that there is a dominant belief that simply by making a technological system avail-
able, teachers and students will more or less automatically take advantage of the op-
portunities it offers. We also know that despite many years of investing in technol-
ogy in schools mathematics teachers are not taking advantages of the opportunities 
such technology offers for transforming the teaching and learning of mathematics. 
Whereas, theories of teaching and learning mathematics are a necessary part of 
opening up new ways for teachers to see what is possible, I suggest that the way 
forward is to focus attention on developing a model of networked communities of 
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mathematics teachers that can be scaled-up in order to initiate large-scale transfor-
mation in mathematics classrooms.
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Part III
Transformation Related to Concepts and 

Ideas

Introduction

Part III deals with transformations related to five genuine didactical concepts. On 
the one hand new concepts are introduced in order to grasp aspects of students’ 
cognitive state or activity: Dreyfus and Kidron (Chap. 16) propose the notion of 
proof image as an intermediate stage in a learner’s production of a proof, Stanja and 
Steinbring (Chap. 17) introduce the notion of elementary stochastic seeing in order 
to describe aspects of elementary school students’ stochastic thinking. Drawing on 
a definition from architecture Kuzniak (Chap. 18) introduces the notion of Geo-
metric Work Space which is characterized by different geometrical paradigms and 
interaction between epistemological and cognitive levels. On the other hand Profke 
(Chap. 19) addresses the question of how didactical concepts can be translated into 
actions in order to help students in achieving a desired ability, competence or state 
of mind expressed in a didactical concept like mathematical literacy. Finally, Klep 
(Chap. 20) addresses a similar problem like Profke. However, instead of dealing 
with the problem of deducing actions from the definition of an abstract competency 
he tackles the problem differently. Klep models arithmetical competence on the 
basis of students’ concrete actions.

All five chapters illustrate how the idea of transformation is inseparably linked 
to didactical concepts. Dreyfus and Kidron investigate transformations occurring 
within the process of the construction of knowledge. In order to describe the trans-
formations that take place within the construction process they use Abstraction in 
Context as a theoretical framework. Abstraction in Context defines “abstraction as 
a process of vertically reorganizing some of the learner’s previous mathematical 
constructs within mathematics and by mathematical means so as to lead to a con-
struct that is new to the learner” (Dreyfus and Kidron, Chap. 16). In other words, 
construction of knowledge is thought of as a process in which mathematical con-
structs available to the learner are transformed into new constructs. In this context, 
Dreyfus and Kidron pay particular attention to justifying, because “in the process 
of justifying a mathematical phenomenon, learners frequently need to expand their 
knowledge and to construct new knowledge” (Dreyfus and Kidron, Chap. 16). In 
order to grasp a particular intermediary stage in this transformation process they 
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introduce the notion of proof image which “contains an entire mathematical situa-
tion as an image” (Dreyfus and Kidron, Chap. 16). A proof image is an insight into 
why a claim is true and how this truth can be argued. It contains different math-
ematical constructs and their combinations in order to justify a mathematical claim 
without being necessarily formal. According to Dreyfus and Kidron, a need for a 
more formal reasoning may appear as a consequence of the learner’s satisfaction 
from obtaining a proof image. The question remains, how this transformation from 
proof image to formal proof can be characterized. Is it possible to conceptualize 
this transformation process by means of the three epistemic actions “recognizing”, 
“building-with”, and “constructing” of the RBC-model on another level?

Stanja and Steinbring also introduce a new genuine didactical concept. They 
discuss the notion of elementary stochastic seeing in order to describe aspects of 
elementary students’ stochastic thinking. According to Stanja and Steinbring el-
ementary stochastic seeing has two dimensions: an epistemological and a semiotic 
dimension. The epistemological dimension refers to the children’s conceptions of 
knowledge and their ways of knowing related to random experiments. It is char-
acterized by an understanding of stochastic predictions either being dichotomic, 
i.e., right or wrong, or relative, i.e., implying “a qualitative reference to a more or 
less probable occurrence or non-occurrence of a future event” (Stanja and Stein-
bring, Chap. 17). The semiotic dimension “concerns the interplay between recorded 
empirical observations of random experiments and symbolical interpretations of 
artefacts of elementary stochastics such as spinners and diagrams at the elementary 
theoretical level” (Stanja and Steinbring, Chap. 17).

Unlike the notion of proof image the concept of elementary stochastic seeing 
does not grasp a stage in a transformation process, but is a construct to describe 
a cognitive disposition. Nevertheless, transformation is related to the concept el-
ementary stochastic seeing in terms of the following questions: How does elemen-
tary stochastic seeing develop? How do interpretations of given artefacts related to 
elementary stochastic seeing change? Which ideas about artefacts and stochastic 
contexts do children develop? (Stanja and Steinbring, Chap. 17).

Kuzniak addresses the issue of different geometrical paradigms that are coexis-
tent in school geometry. Geometrical paradigms characterize the Geometric Work 
Space—a notion which is supposed to describe “a place organized to enable the 
work of people resolving geometric problems” (Kuzniak, Chap. 18).

The intention of the concept of Geometric Work Space is to conceptualize how 
geometric knowledge emerges and evolves in geometry classes and how it is reliant 
on different geometric paradigms.

According to Kuzniak a Geometric Work Space connects two levels: The epis-
temological level and the cognitive level. The epistemological level relates to geo-
metrical activity into its purely mathematical dimension.

The second level is centred on the cognitive way that groups, and also particular 
individuals, use and appropriate the geometrical knowledge in their practice of the 
domain.

Transformational aspects of the notion of Geometric Work Space are based on 
the idea of a geometric work considered as a process involving creation, develop-
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ment, and transformation. To describe this complex process, Kuzniak uses a general 
meaning of the notion of genesis which is not only focused on origin but also on 
development and transformation of interactions.

The Geometrical Work Space requires various geneses in particular three funda-
mental types which articulate cognitive and epistemological levels.

•	 An	instrumental	genesis	which	transforms	artefacts	in	tools	within	the	construc-
tion process.

•	 A	figural	and	semiotic	genesis	which	provides	the	tangible	objects	their	status	of	
operating mathematical objects.

•	 A	discursive	genesis	of	proof	which	gives	a	meaning	to	properties	used	within	
mathematical reasoning.

With this specific framework, it is possible to describe ways in which students solve 
geometry problems and to understand how they form and transform their work in 
geometry within the education system.

Profke (Chap. 19) and Klep (Chap. 20) address a third aspect of transformations 
related to didactical concepts. Both chapters deal with the relation of mathemati-
cal competencies and mathematical activity. Profke approaches the question how a 
concept like mathematical literacy might be transformed into classroom activities 
that teachers and students can carry out in order to achieve this learning goal or 
competency. Thus, the transformation process exemplified by Profke is confronted 
with the problem of deducing tasks or activities from learning goals or competen-
cies which is an open/unsolvable problem (Meyer 1971, 1974). Profke addresses 
the problem in the way that he describes mathematical activities which from his 
point of view are likely to foster the development of mathematical literacy. This 
chapter once more illustrates that the transformation of competencies into actions 
are an open problem, because precise justifications for the transformations seem to 
be vague.

The transformation process of learning goals or competencies like mathematical 
literacy into classroom activities addressed by Profke is comparable to the problem 
of any form of assessment: Any form of assessment needs to specify what knowl-
edge of mathematics or what mathematical skills should be measured and how the 
tasks relate to both (Webb 2007).

The two transformation problems—transforming intended goals or competen-
cies on the one hand into classroom activities and on the other hand into assess-
ment items—are actually two sides of the same coin. The one relates to classroom 
instruction and the other to assessment of the same concept.

Klep (Chap. 20) seems to offer a solution to this problem by avoiding the problem 
of deducing tasks and actions from defined competencies. He tackles the problem 
in the way that he defines arithmetical competence based on student’s actions. He 
is able to mirror the learning process of students by modelling the transformations 
of arithmetical structures students are potentially capable to carry out. Thus, his ap-
proach is not only about transforming potential arithmetic actions into a model and 
a measure of arithmetical competence, but mathematical transformation is at the 
core of his computational model of arithmetical competence.
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Prediger discusses the meta-theoretical construct of ‘fundamental ideas’ in 
connection with mathematics and mathematics education and takes these results 
as a background to reflect the chapters of part III theoretically with regard to the 
idea of transformation. By working out and comparing the different approaches 
to transformation in each chapter, she tries to test the suitability of the notion of 
‘transformation’ as a fundamental idea. In a further step Prediger gives ideas how to 
connect three chapters of part III concerning transformation of students’ cognitions 
and claims at the end of her discussion that the meta-theoretical construct ‘funda-
mental idea’ should be widened to a landscape of ideas to have the choice what 
epistemological level is the most promising to work with.
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16.1  Introduction

The idea to investigate the notions of proof image and formal proof emerged within 
our research on construction of knowledge and of justification as a specific case of 
construction of knowledge. Indeed, justification is a central and crucial component 
of mathematical reasoning. In the process of justifying a mathematical phenom-
enon, learners frequently need to expand their knowledge and to construct new 
knowledge. The aim in our previous research was to elucidate the intricate relation-
ships between processes of justification and the emergence of new (to the learner) 
knowledge constructs. In a previous study (Dreyfus and Kidron 2006), processes 
of knowledge construction of a solitary learner whom we call L were investigated. 
The learner was constructing knowledge about bifurcations of dynamic processes. 
While we were acutely aware that the core of the constructing process is justifica-
tion, it was only later (Kidron and Dreyfus 2010a) that we paid attention to the 
question of what justification means to the learner and analyzed the relationship of 
this meaning of justification for the constructing actions and the patterns of knowl-
edge construction. It is indeed important to elucidate what we mean by justification. 
Fischbein (1982) identified a gap between mathematical proof and justification in 
everyday life. Rather than starting from formal mathematics, justification takes into 
account the learner’s point of departure with its intuitive thinking, visual intuitions, 
and verbal descriptions. For example, the solitary learner in our previous studies 
wanted to gain more insight into the phenomena causing the second bifurcation 
point. The term enlightenment, introduced by Rota (1997), seems appropriate to 
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express her interpretation of the word justification. Rota also pointed out that, con-
trary to mathematical proof, enlightenment is a phenomenon that admits degrees.

The aim of this chapter is to elaborate the notion of proof image and to focus on 
the transformation from proof image to formal proof. In order to investigate this 
transformation, we use microanalytic methods related to knowledge constructing. 
For this purpose, we have chosen Abstraction in Context (AiC) as an appropriate 
theoretical framework. In the following section, we describe AiC and how we used 
it to analyze justification as a dynamic process of construction of knowledge. Then, 
we present the attempt of a mathematician whom we call K, to prove that under 
given conditions a function attains its minimum, and we show how the notion of 
proof image emerges from and can be discerned in the story of K. After present-
ing the story of L about bifurcation, we discuss, in more detail, the notion of proof 
image based on both stories. In particular, we point to a parallel between the well-
known double-strand concept definition and concept image and the double-strand 
formal proof and proof image. We then come back to the transition from proof im-
age to formal proof. We end the chapter with concluding remarks and explain how 
the transition from proof image to formal proof relates directly to the theme of this 
book—transformation.

16.2  Abstraction in Context

Abstraction in Context (AiC) is a theoretical framework that allows the researcher 
to describe and analyze, at a microanalytic level, processes of mathematical abstrac-
tion as they occur in their mathematical, historical, social, and learning context. 
Here, we give a short and partial introduction to AiC; we refer the reader to the 
literature for details and examples (see Schwarz et al. 2009, and references therein).

Freudenthal has brought forward some of the most important insights to math-
ematics education in general, and to mathematical abstraction in particular, and this 
has led his collaborators to the idea of “vertical mathematization.” Vertical math-
ematization points to a process of constructing by learners that typically consists of 
the reorganization of previous mathematical constructs within mathematics and by 
mathematical means. This process interweaves previous constructs and leads to a 
new construct.

AiC adopts this view and defines abstraction as a process of vertically reorganiz-
ing some of the learner’s previous mathematical constructs within mathematics and 
by mathematical means so as to lead to a construct that is new to the learner. The 
genesis of an abstraction passes through a three-stage process, which includes the 
emergence of a need for learning, the emergence of a new construct, and its con-
solidation. This view of abstraction follows Van Oers (2001) in negating the role 
of decontextualization in abstraction and embraces Davydov’s dialectic approach 
(1990); in that, it proceeds from an initial unrefined first form to a final coherent 
construct in a dialectic two-way relationship between the concrete and the abstract 
(see also Ozmantar and Monaghan 2007).
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Activity theory proposes an adequate framework to consider processes that are 
fundamentally cognitive while taking into account the mathematical, historical, so-
cial, and learning contexts in which these processes occur. In this, AiC follows Giest 
(2005), who considers activity theory as a theoretical basis, which has an underly-
ing constructivist philosophy but allows avoiding a number of problems presented 
by constructivism.

According to activity theory, outcomes of previous activities naturally turn to 
artifacts in further ones, a feature, which is crucial to trace the genesis and the de-
velopment of abstraction throughout a succession of activities. The kinds of actions 
that are relevant to abstraction are epistemic actions—actions that pertain to the 
knowing of the participants and that are observable by participants and researchers. 
The observability is crucial since other participants (teacher or peers) may chal-
lenge, share, or construct on what is made public.

The three epistemic actions that were found relevant and useful in order to model 
the central second stage of the process of abstraction are recognizing, building-
with, and constructing. Recognizing (R) takes place when learners recognize that a 
specific previous knowledge construct is relevant to the problem they are dealing 
with. Building-with (B) is an action comprising the combination of recognized con-
structs, in order to achieve a localized goal, such as the actualization of a strategy 
or a justification or the solution of a problem. The model suggests constructing as 
the central epistemic action of mathematical abstraction. Constructing (C) consists 
of assembling and integrating previous constructs by vertical mathematization in a 
specific context in such a way that a new (to the learner) construct emerges. Con-
structing refers to the vertical mathematization process up to the first time the new 
construct is used or expressed by the learner, either through verbalization or through 
nonverbal action. Constructing does not refer to later stages of consolidation during 
which the construct becomes freely and flexibly available to the learner.

C-actions depend on R- and B-actions with previous constructs; while R- and B-
actions are building blocks of the C-action, C-action is more than the collection of 
all the R- and B-actions in the same sense as the whole is more than the sum of its 
parts. The power of the C-action depends on the mathematical connections, which 
the learner establishes to link these building blocks and make them into a single 
whole unity—the new construct. It is in this sense that we say that R- and B-actions 
with previous constructs are nested within the C-action of a new construct. Simi-
larly, R-actions are nested within B-actions since building-with a previous construct 
necessitates recognizing this construct, at least implicitly.

The model has been called the dynamically nested epistemic actions (RBC) 
model for AiC, or briefly, the RBC-model. It constitutes a methodological tool used 
for realizing the ideas of AiC. It has been developed and validated in a sequence 
of research studies showing a great variety of processes of constructing knowledge 
in terms of mathematical content, age of the learners, and the context in which the 
learning took place. In particular, it has been applied in several studies on justifica-
tion as a dynamic process of constructing knowledge (Dreyfus and Kidron 2006; 
Kidron and Dreyfus 2010a, b); this research is briefly reviewed in the section about 
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the bifurcation story presented below (16.5). For more detail on AiC and the RBC-
model, we refer the reader to the review chapter by Schwarz et al. (2009).

16.3  The Story of K

A mathematician, whom we will call K, was offered the following problem. We 
found this problem in Scataglini-Belghitar and Mason’s (2011) work; as they state, 
it was given as a weekly assignment in an analysis course at the University of Ox-
ford.

Problem: Show that a continuous function defined on R which tends to plus infinity as x 
tends to plus or minus infinity must have a minimum value.

K worked on the problem, in the presence of one of the researchers, for about half 
an hour. During this time, he checked graphically with an explicit example (with a 
continuous function with many oscillations) whether the claim was correct or not. 
Being unsuccessful in finding a counterexample, he tried to prove that the claim is 
correct. After he felt satisfied that he knew how to prove the claim, he was asked to 
describe his way of thinking. He talked to the researcher, and the researcher took 
notes, which were then immediately shaped into the following report. We are aware 
that the resulting report is a doubly indirect set of data, having undergone K’s self-
interpretation and the researcher’s interpretation of what K said; however, having 
in mind our aim of examining K’s thought processes while constructing the proof, 
we negated the option of interacting with K during the time when he was construct-
ing the proof since this would have substantially disturbed the crucial phases of his 
thinking. We also submit that asking K to fluently describe the process orally imme-
diately after the event allows for less reflection on his part than asking him to write 
down what the process was, and is therefore likely to give a more accurate picture 
of his thought processes. The following report resulted from the above procedure.

I did not know what the function looks like. I imagined that the function is | x | and then I 
thought about x2 + sin( x) in order to prevent myself from working only with monotonous 
functions. I tried to imagine some disturbing cases; for example, instead of adding sin( x), I 
added in my imagination 1,000sin( x). I wanted to imagine a function with some uncontrol-
lable oscillations. I saw in my imagination that at the end, in spite of the large oscillations 
the function should increase (not in a monotonic way) and there should be a clear upward 
tendency. It was clear to me that I should use the fact that in each finite closed interval the 
function attains its minimum. It was clear to me as well that I have to use the theorem (stat-
ing that a continuous function on a closed and bounded interval is bounded and attains its 
extreme values). It was also clear to me that the proof should be a proof by contradiction. I 
devoted some time to analyze what is the practical meaning that the function does not have 
a global minimum and then I realized that I need to use intervals that are nested in each 
other. Then, I formulated to myself what is the meaning that no global minimum exists: a 
function	does	not	have	a	global	minimum	if	to	each	interval	[−	i,i] there exists an interval 
[−	i′,i′] such that i′	> i in which the minimum is smaller than the previous minimum. Now I 
needed the exact definition of tending to infinity. I felt I forgot it for a moment (I was not 
sure about it). Visually I saw in my imagination that from a specific x onward, the function 
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should have values bigger than a given value, specifically bigger than the minimum value 
in	the	interval	[−	i,i].

In this situation I realized that if all the values I get are bigger than a given N, let us 
take	N	the	minimum	of	the	function	in	the	interval	[−	i,i], then it is clear that we cannot 
get a smaller minimum. I was still disturbed by the large oscillations that I saw in my 
imagination. At this moment I tried to reconstruct the definition of the limit and it is the 
formal definition of the limit and the meaning of the continuity of the function that helped 
me to overcome the problem. At the moment I had the formal definition, I realized that the 
problem is solved. At each stage, some picture accompanied the formal proof. The main 
difficulty was that it was clear to me that the claim is correct for a monotonous continuous 
increasing function but I was not sure of its correctness for a general function. Neverthe-
less when I added sin( x) to x2, the function still increases despite the oscillations. Through 
the interplay between the definition of the limit and the image of the too large waves (that 
would not permit to get a contradiction), the formal definition saved me from having to 
picture additional “crazy” functions like x2 + 1,000,000 sin( x).

With the intention of keeping terminology uniform, we will refer to K as a learner; 
indeed, in the situation he was put, K needed to construct some new (to him) knowl-
edge, namely the proof of the claim given in the problem.

Our interpretation of the report is that K constructed the proof in two stages. In 
the first stage (first paragraph), he collected ideas, previous knowledge constructs, 
and examples that seemed useful and connected to the problem in front of him; 
these previous constructs include “the theorem” (and subconstructs such as conti-
nuity and boundedness of a function on an interval of the real line), the notion of 
limit in the special case of a function tending to infinity as the independent vari-
able tends to infinity, proof by contradiction, and a construct relating to the fact 
that a general claim needs to be valid in all cases, especially in extreme (or in K’s 
words “disturbing”) cases. Obviously, K has many other mathematical constructs 
available but he recognized these as relevant in the present problem situation, and 
selected them to build-with them in attempting to come up with a proof. Indeed, his 
selection was successful and helped him bring to light a contradiction between the 
ever-expanding intervals needed if the function was not to have a minimum, given 
the assumption that the function tends to infinity as x does.

We, as researchers and readers, can only conclude from the report on what might 
have been in K’s mind at the moment he was actually conceiving of the proof. Al-
though the report is, of course, verbal, the image in K’s mind at the time was not 
or not necessarily verbal. We submit that K had in his mind a complex image of 
how the selected previous constructs resonate (interact and collaborate) in order to 
provide the contradiction he was looking for, and hence the proof of the claim. It is 
this image, which we propose to call K’s proof image.

The second part of the report describes how K built-with his proof image, as well 
as with the formal definition of the limit in order to overcome his fear that maybe 
some “crazy” function could be found that escapes the contradiction. This part de-
scribes the transition from proof image to formal proof, to which the title of our 
paper refers. This transition, modulo the proof image on which it builds, is far more 
easily accessible to the researcher than the proof image itself. Specifically, we can 
identify here that K constructed a formal proof by recognizing that the definition of 
limit (the limit of a function as x tends to infinity) is relevant in the present situation 
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and by building-with this definition of limit and with his formulation of the mean-
ing of (absence of a) global minimum, an airtight argument from which he could 
infer the statement of the theorem. Hence, there is clear evidence for a constructing 
action by K, in which recognizing and building-with actions are nested. However, 
given that we collected the data by means of an after-the-effect report by K, it is 
difficult for the researchers to analyze this constructing process in more detail than 
has been done here.

K’s demarche was, in part, determined by characteristics of the problem: Though 
not explicitly, the problem in fact challenges the learner to create his own examples 
in order to begin the justification process, examples that obviously fit the claim 
as well as “nasty” or “disturbing” examples. Nevertheless, by means of creating 
one’s own examples, a problem arises concerning the generality of the justification 
because one might consider particular cases, which do not constitute an appropri-
ate justification. It is interesting to note that it is the consolidation of the definition 
of the limit, which enabled the generalization and saved the learner from having to 
consider more examples, which might disturb his proof image.

16.4  What is a Proof Image?

At the most elementary level, a proof image may be the mental image held by a 
learner—student or mathematician—who can see why a claim is true but finds it 
difficult to articulate or express this in formal mathematical terms. Hence, each 
proof image is specific to a specific learner in a specific case.

A proof image can but need not be spatial. In the story of K, the graphical image 
is only of a function; however, the image of the proof includes a dynamic, develop-
ing process, namely the successively smaller minima of the function as one consid-
ers successively longer intervals on the real axis. Being the image of a proof, any 
proof image is also likely to have logical aspects. In the case of K, the logical aspect 
is the incompatibility between a function that tends to infinity and the dynamically 
developing function with successively smaller minima.

We see the justification process as a process of suitably combining selected pre-
vious constructs. Hence, recognizing and selecting relevant previous constructs is a 
preliminary stage of the justification process. Examining how they might combine, 
as well as possibly discarding some of the selected constructs and selecting others, 
is the first stage that may lead to a proof image. A proof image contains an entire 
mathematical situation as an image. Even if the proof image does not include a for-
mal representation of the logical steps, it usually will include some intuitive threads 
that have the potential to link the selected previous constructs. The entire process 
of construction of the formal proof will come at a later, second stage. In this sense, 
we may find some analogies and some differences between the double-strand “con-
cept image, concept definition” and the double-strand “proof image, formal proof.” 
These analogies and differences will be discussed subsequently.
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The proof image might appear as a flash of insight after working for a while try-
ing to prove a statement. This was the case for some mathematicians like Nash. In 
her book, A Beautiful Mind, Nasar (1998) wrote:

Nash always worked backward in his head. He will mull over a problem and, at some point, 
have a flash of insight, an intuition, a vision of the solution he was seeking. (p. 129)

She added that the solution did not present itself as a rigorous proof but as:
... a bunch of intuitive threads that have to be woven together and some of the early ones 
present themselves visually. (p. 129)

Nevertheless, we do not reduce the proof image to a “flash of insight.” We rather 
see it as the process that leads to this “flash of insight.” The flash of insight as a first 
degree of enlightenment demonstrates the existence of a proof image but is not nec-
essarily identified with the proof image. Hence, we do not discount the possibility 
of a flash of insight, but neither do we postulate it as obligatory. Neither the story of 
K nor the following one are clearly flashes of insight.

16.5  The Bifurcation Story

A bunch of intuitive threads that have to be woven together is exactly what hap-
pened to a learner whom we will call L in a learning experience, which we will call 
the bifurcation story. We describe the parts of the bifurcation story that relate to 
combining the threads, how L’s proof image emerged as a consequence, and how it 
supported her in the construction of a justification.

The bifurcation story is described in Dreyfus and Kidron (2006), where we con-
sidered a solitary learner dealing with bifurcations in a logistic dynamical system 
and attempting to justify the occurrence and position of the second bifurcation point 
(the transition point from 2-periodic to 4-periodic behavior of the system). Kidron 
and Dreyfus (2010a) analyzed the construction of the justification for the second 
bifurcation point.

L is an experienced mathematician and her motivation for finding a justification 
drove her entire learning process. She had a keen interest and strong motivation in 
learning about the period doublings that occur in dynamical systems, specifically 
in the system defined by the logistic equation f( x) = x + rx(1	−	x), as r increases from 
r = 1 through r = 2 and beyond.

Gathering data about the learning process of a solitary learner presents great 
challenges because there is usually no need for the learner to report about her learn-
ing. The researchers were in the fortunate position to have reports of L’s learning 
process. L was preparing a lecture on bifurcations in dynamical systems while being 
homebound for a period of 2 weeks. Like many mathematicians, L wrote, graphed, 
drew, and sketched a lot, some by hand and some by computer. As is her habit, she 
carefully dated and kept these notes as well as all computer files and printouts. 
These documents later served as a window into her thinking for the researchers 
and allowed them to infer her epistemic actions. The researchers then constructed 
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a report of the learning process, following an elaborate procedure of several cycles 
of description by the learner and challenges by one of the researchers. The accuracy 
of the report was verified by observing its close correspondence with the raw data, 
some of which have been published (Dreyfus and Kidron 2006).

Considering the mathematical content and the development of L’s thinking, 
Dreyfus and Kidron (2006) found an overarching constructing action, within which 
four secondary constructing actions were nested. These secondary constructing ac-
tions relate to different modes of thinking: numerical (C1), algebraic (C2), analytic 
(C3), and visual (C4). They are not linearly ordered but took place in parallel and 
interacted (see Fig. 16.1 for a representation of these interacting parallel construc-
tions; in the diagram, the time axis runs from top to bottom; the numbers denote 
episodes). Interactions included branching of a new constructing action from an 
ongoing one (such as C1 branching from C2 at the beginning of episode 7), combin-
ing or recombining of constructing actions (such as C1 and C4 combining at the end 
of episode 10), and interruption and resumption of constructing actions. L aimed to 
justify, in the sense set forth in the introduction, results obtained empirically from 
her interaction with a computer. In L’s learning experience, combining C-actions 
indicate steps in the justification process that lead to enlightenment.

In L’s learning experience, we observe three successive degrees of enlighten-
ment. They occur at three points in time when C-actions combine, and each combin-
ing point was characterized by the integration of different C-actions and different 
modes of thinking. For example, the combining of C1 and C4 at the end of episode 
10 expresses the connection in L’s thinking of the numerical mode and a graphical 
mode, first a static graphical mode, and then a dynamic graphical mode and thus 
reinforces and concretizes her view of the dynamics.

Fig. 16.1  The interact-
ing parallel constructions 
diagram
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We claim that at this first combining point, L had a proof image and that this 
proof image helped her constructing the justification. In order to better under-
stand what happened in episode 10 we briefly describe the previous episodes: Us-
ing information from several web-based resources, L learned that the fourth-order 
equation f 2( x)	−	x = 0 will yield the 2-periodic points, and the quadratic equation 
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solved p( x) = 0 for general r. She found that the discriminant D = 0 for r = 2 and 
checked that for r > 2 there are two real solutions—the 2-period. These results made 
it clear to her that D = 0 where period doubling occurs and that this happens at r = 2. 
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for the 4-periodic points. The computer showed that this equation is of order 12 
(episode 3) and cannot be solved for general r. The strategies that worked for the 
previous transition became inapplicable (episode 4). Web resources led L to the no-
tion of discriminant for a general polynomial (episode 5), which she used with the 
help of the computer (episode 6) to find the numerical value r = 6 of the transition 
point to the 4-period. Encouraged by this numerical success, she began to search for 
the connection between multiple roots, D = 0, and transition points.

In order to analyze the interaction pattern of combining constructions in episode 
10, we describe in more detail the two constructions C1 and C4:

C1: The process of constructing the solution of the polynomial equation.

p( x) = 0 in order to find the 4-periodic points. The solution process is considered 
algebraically and numerically. The focus is on the solutions for each value of the 
parameter r and relationships between the solutions for different values of r.

C4: The process of constructing a dynamic view of the bifurcation in which the 
final state values of x are considered as functions of r.

The data we used for the analysis of L’s learning experience consisted of a carefully 
constructed and double-checked report of the learning experience, as mentioned 
above. We cite part of episode 10 of this report.

10e The transition point is a single value of r ( r = 6 ). I focused on the set of x-values at 
r = 6  (two that became four). I looked at the transition point and from there to the right. 
While I observed the bifurcation map, I noticed its structure: the branches that split off and 
my attention was focused to the points in which this change is detected: the bifurcation points.

10f I looked at this fork-like shape and associated its splitting point to the fact that the 
discriminant vanishes. At once, the bifurcation map seemed different, endowed with a new 
meaning. I looked at it and I could not understand how it could be that I did not see it this 
way before.

10g Now, it seemed to me intuitively clear that at the bifurcation points there must be 
double solutions and therefore the discriminant should equal zero.
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Our interpretation of this excerpt is that a mental image of the fork-like shape 
emerged and that this indicates the first degree of enlightenment (Kidron and Drey-
fus 2010a). This occurs at the end of episode 10, at the first combining point in the 
construction diagram that marks the connection between the constructing actions 
C1 and C4.

As in the story of K, we see the justification process in the bifurcation story as a 
process of combination of selected previous constructs. The proof image includes a 
bunch of intuitive threads that have to be woven together and that have the potential 
to link the selected previous constructs. Indeed, the deep learning that takes place 
in episode 10 is characterized by the establishment of new connections between 
the numerical aspects of C1 and the dynamic view of C4. The selected previous 
constructs include the result of the constructing action C1 with its numerical and 
algebraic potential as well as the graphic representations of several time series plots 
(Fig. 16.2) as well as the bifurcation diagram (Fig. 16.3).

The links between these previous constructs emerged while L focused, in this 
order, on:

•	 The	two	repeating	solutions	for	r = 2.3,
•	 The double real solution for r = 6 , and
•	 The	four	repeating	solutions	for	r = 2.5,

Fig. 16.2  Time series plots 
for r = 2.3 and for r = 2.5
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and at the same time moved with her eyes along the r-axis of the bifurcation dia-
gram.

Here, the dynamic nature of the transition from 2-period to 4-period became 
prominent. The connection between C1 and C4 is expressed by the transition from 
the numerical mode to the graphical mode, first to a static graphical mode, and then 
to a dynamic graphical mode. The numerical aspects of C1 and the dynamic view 
of C4 are thus complementary with the more powerful graphic dynamic view sup-
planting the static numerical one as the episode progresses. In fact, C4 was not very 
powerful at the beginning of episode 10 when L vaguely remembered the bifurca-
tion diagram as a static graphical representation. Only later, within numerical con-
siderations (C1) the static graphical mode turned to a dynamic graphical mode and 
C4 became stronger. Thus, connections between the fragile weak branch C4 and the 
more established knowledge of the stronger branch C1 reinforced the weak branch 
and contributed to a combination of the two branches. This positive interaction be-
tween the two branches enabled a change of the view of the nature of the parameter 
r in the bifurcation map from discrete to continuous. This was the first degree of 
enlightenment. The proof image that was created in this stage is a result of the way 
the intuitive threads link the selected previous constructs. In order to understand 
what L’s proof image was, we should point out that the transition from episode 9 to 
episode 10 was crucial because at that moment, all L’s resources had been exhausted. 
The natural thing to do was to return to C1. However, this was unlikely to yield more 
than it had already yielded: The numerical mode was not sufficient to understand the 
structure of the double solutions at the bifurcation points. L could not find an alge-
braic expression but was still looking for some connection between the x-values for 
different values of the parameter r, before and after the bifurcation point. She needed 
a new view, a different type of thinking. This need initiated C4, leading to a graphic 
equivalent of the requested algebraic expression and thus to the consideration of the 
numerical values in a graphical framework. The graphic equivalent had to show the 
x-values as they depended on r. L found this view in the bifurcation diagram.

Like in K’s case the report is, of course, verbal but the image in L’s mind was 
not verbal. We submit that L had in her mind an image of how the selected previous 

Fig. 16.3  The bifurcation 
diagram
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constructs C1 and C4 resonate in order to provide the graphic equivalent of the 
requested algebraic expression she was looking for: the view of the dynamic be-
havior of the x-values, as r varies and the realization that at the bifurcation points, 
a branching of the x-values occurs. It is this image, which we call L’s proof image. 
This first degree of enlightenment consisted of a mental image, the movement of the 
x-values through the fork-like shape, and as a consequence, L’s drive to understand 
the structure of the double solutions at the bifurcation points was satisfied at least 
intuitively, visually.

This proof image supported the construction of the justification in the sense that 
L’s background was now different. As a consequence of the dynamic view of the 
transition, she found the analogy with the first transition point, which she had been 
looking for but she wanted to know more, especially about the mathematics behind 
the computations with the help of the computer. She realized that her knowledge of 
double solutions at bifurcation points was still intuitive.

11a I was interested in a mathematical explanation why the transition point from 2-period 
to 4-period is obtained by comparing the discriminant to zero.

11b Therefore, I wanted to know more about the term discriminant. Especially, what is the 
meaning of the discriminant of an equation of higher degree?

Wanting to know more about the discriminant was a first step in the transformation 
of L’s proof image into the formal proof or to the justification she was looking for. 
In Kidron and Dreyfus (2010a), we describe in detail how the proof image in epi-
sode 10 supports L’s additional modes of thinking which permit the transition from 
the proof image to the justification.

16.6  Discussion of Proof Image

In this section, we will illuminate the notion of proof image by discussing its re-
lationship to related notions as well as to the literature in which mathematicians 
refer to their experiences. We will then discuss characteristic aspects of the notion 
of proof image and conclude with remarks on the transition from proof image to 
formal proof, using information from both cases (K and L).

16.6.1  Proof Image and Proof Idea

A first question that arises concerns the difference between a proof image and a 
proof idea. We relate to the distinction between proof image and proof idea only 
in connection with the two cases described here. In distinction from a proof idea, a 
proof image is not necessarily the emergence of a first idea or of a single idea in the 
process of justifying. A proof image is rather oriented from the end to the beginning: 
an image of the entire mathematical justification. In “simple” cases, in which the 
proof image may emerge at the very beginning of the justification process, it might 
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be difficult to make the distinction but we are interested in more complex cases, in 
which the person who wants to prove needs to select suitable previous constructs 
and establish links between them. This was the case in K’s story. K’s proof image 
with the intuitive threads that link his selected previous constructs contains an en-
tire mathematical situation as an image. Indeed, in K’s proof image, we discern the 
intuitive threads that link between K’s previous constructs like the use of nested 
closed intervals, the application of the theorem on a continuous function in a closed 
and bounded interval, and the meaning K attributed to the words “the function tends 
to infinity.” Similarly, L’s proof image at the first combining point in episode 10 
contains an entire mathematical situation. Here too, we discern the linkages be-
tween the numerical considerations offered by C1 and the intuitive threads that link 
the different graphical static and dynamic representations.

A proof idea is communicable and hence can be made available to others. This is 
not necessarily the case for a proof image. People may have a proof image in their 
mind but be unable to write it down or explain it in words to somebody else or even to 
themselves; a proof image may be definite but transitory and disappear again, and the 
person may be worried about that possibility. This is what happened to L in episode 
10 of the bifurcation story. Her proof image consisted of mental objects that were in-
timately connected and clear to her but are not fully expressed in the report. L looked 
at the fork-like shape and associated its splitting with the fact that the discriminant 
vanishes and, at once, the bifurcation diagram seemed different, endowed with a new 
meaning. L felt the urge to sit down and to write her notes about what happened before 
at this moment. In the case of K, we are not able to similarly point out the ephemeral 
nature of the proof image from the data, but as mentioned, this is due to methodologi-
cal constraints. We submit that at the time he was actually constructing the proof, K’s 
proof image was similarly transitory; the fact that he later, when reporting, recalled his 
doubts about further disturbingly oscillating functions may be taken as a sign for that.

16.6.2  Proof image and Rota’s View of Proof

As already mentioned, our view of justification as enlightenment is compatible with 
the view of proof as held by Rota. Rota wrote: “we say that a proof is beautiful when 
it gives away the secret of the theorem, when it leads us to perceive the inevitability 
of the statement being proved” (p. 132).

This might be connected to proof image in the sense that when we realize the 
links between the previous constructs we have a feeling of the inevitability of the 
statement being proved. A proof image is an intermediate stage on the way to a more 
communicable and more detailed form of proof (which may but need not be for-
mal). While being a mental image rather than a communicable text, and while possi-
bly lacking detail, a proof image nevertheless is complete in the sense of giving the 
learner the clear feeling of clearly grasping the reasons why the claim is true, even 
inevitable (even though from an expert mathematician’s point of view, the argument 
may not be complete or even correct). This is what happened in the first degree of 
enlightenment in which L did feel this kind of inevitability of the statement.
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10f I looked at this fork-like shape and associated its splitting point to the fact that the 
discriminant vanishes. At once, the bifurcation map seemed different, endowed with a new 
meaning. I looked at it, and I could not understand how it could be that I did not see it this 
way before.

16.6.3  Proof Image and Thurston’s View of Proof

Thurston (1994) claims that human thinking and understanding are organized into 
a variety of separate powerful facilities that work together loosely at high levels 
of organization. These facilities include language, vision, spatial sense, kinesthetic 
sense (motion sense), logic and deduction, intuition, association, metaphor, stimu-
lus–response, process, and time. On this basis, he claimed that

A group of mathematicians interacting with each other can keep a collection of mathemati-
cal ideas alive for a period of years, even though the recorded version of their mathematical 
work differs from their actual thinking, having much greater emphasis on language, sym-
bols, logic and formalism. (p. 7)

He goes on to claim that in some areas of mathematics, “it is often pretty hard to 
have a document that reflects well the way people actually think” (p. 9). Expressed 
in the terms we introduced in this paper, Thurston stresses the importance of proof 
images over proof ideas. He teaches us that when doing research, professional 
mathematicians may rely more on their proof images than on their formally written 
proofs. Proof images of professional mathematicians used in the manner implied by 
Thurston should be expected to be more elaborate than proof images typically held 
by learners but they will usually not be communicable and therefore very difficult to 
ascertain. In summary, Thurston wrote that more than knowledge, people want per-
sonal understanding. A proof image is more related to personal understanding than 
a proof idea, which we can more easily transmit as knowledge to another person.

16.6.4  The Concept Image/Concept Definition Analogy

The notion of proof image as a stage on the way to formal proof emerged in the 
framework of our research on construction of knowledge and more particularly on 
justification as a specific case of construction of knowledge. Fischbein (1982) iden-
tified a gap between justification in everyday life and mathematical proof. Rather 
than starting from formal mathematics, justification takes into account the learner’s 
point of departure with his intuitive thinking, visual intuitions, and verbal descrip-
tions. We therefore encounter a similar situation as in the well-known gap between 
concept definition and concept image: Vinner and Hershkowitz (1980) have coined 
the term concept image to denote the set of all pictures that have ever been associ-
ated in a person’s mind with the concept together with the set of properties associ-
ated with the concept. It has later been more explicitly characterized as “the total 
 cognitive structure that is associated with the concept, which includes all the mental 
pictures and associated properties and processes” (Tall and Vinner 1981, p. 152); the 
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term concept definition is a “form of words used to specify that concept” (Tall and 
Vinner 1981, p. 152). Dealing with the learner’s intuitive thinking, we are interested 
to explore the analogy between the double-strand concept image/concept definition 
and the double-strand proof image/formal proof. A main component of this analogy 
is that the concept image and the proof image are more personal and less objective 
than concept definition and formal proof. While the latter are, at least in most cases, 
explicit formulations largely agreed upon by the community of mathematicians, the 
former are mental images: A proof image consists of the cognitive structure in the 
learner’s mind that is associated with the given proof. A limitation of the analogy 
is that a proof image usually contains some elements of the logic that underlies 
the formal proof whereas the concept image may be free of formal aspects. There 
is some interest in the transition from concept image to concept definition. There 
is also some interest in the transition from proof image to formal proof. In section 
16.7, we will refer to this transition.

16.6.5  Logical Aspects of Proof Image

As pointed out earlier, and because of the nature of a proof image as a form of jus-
tification, logical aspects will invariably form part of any proof image—not their 
formal version but some intuitive representations of them. Even if the proof image 
does not include a formal representation of the logical steps, it does include some 
intuitive threads that link the selected previous constructs. In this respect, the no-
tion of proof image differs from that of concept image, which does not necessarily 
include logical aspects.

Intuitive representations of the logical aspects appear in L’s story in the links 
between the numerical aspects of C1 and the dynamic view of C4. The connection 
between C1 and C4 is expressed by the transition from finding the solutions (numeri-
cal aspects of C1) to a graphical mode of thinking about the solutions, first a static 
one and then a dynamic one, which allowed L to begin constructing a dynamic view 
of the bifurcation (C4). The intuitive representations of the logical aspects are well 
demonstrated by means of L’s experimentation in a new setting (graphical) with 
information obtained in a previous setting (numerical). These linkages enabled the 
integration of the two modes of thinking associated with C1 and C4.

Among the logical aspects that accompany the development of the proof image 
in K’s story, we notice K’s awareness of the incompatibility between the succes-
sively smaller minima as one considers successively longer intervals on the real 
axis and the function that tends to infinity.

16.6.6  Visual Aspects of Proof Image

Here, we discuss the question whether a proof image needs to be related to a visual 
proof. For example, when proving the quadratic formula, we might think about 
quadratic completion with or without the graphical version of quadratic completion.
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We suggest that a proof image may but need not be related to a visual proof. L’s 
proof image is clearly visual, and the visual aspects include the crucial features of 
what makes the image into a proof image. However, in the case of a proof that is not 
inherently visual, a proof image does not need to be related to the visualization of 
the proof. The story of K is a case where the proof is not inherently visual; the proof 
image is only incidentally related to a visualization of the elements involved in the 
proof such as specific examples of functions or sequences of functions. Hence, 
K’s proof image is not related to a visual proof. If we consider proofs in domains 
other than analysis (because in analysis, we have a tendency to visualize the objects 
involved) further questions arise: Could we imagine someone’s proof image for 
Euclid’s proof of the infinity of the number of primes or someone’s proof image 
of Lagrange’s theorem that the order of a subgroup is a divisor of the order of the 
group? We think we could but we have no empirical evidence for this yet. There is 
a need to further elaborate the notion of proof image with respect to examples not 
from the analysis.

16.6.7  Static Versus Dynamic Proof Image

We could have seen the proof image as a static overview of the mathematical situ-
ation with the links between relevant previous constructs as an image but we prefer 
to consider the proof image as a dynamic process which accompanies the learner for 
a certain time like a sequence of images or, maybe better, a single developing image 
with different foci of attention. This more dynamic description corresponds to the 
fact that we consider the justification itself as a dynamic process of construction of 
knowledge. It also contributes to the sharpness of the distinction between proof idea 
and proof image.

Moreover, this description of the proof image as a dynamic process also marks a 
difference between proof image and concept image, since a concept image is gener-
ally considered as something static. This does, of course, not mean that a concept 
image may not have dynamic components—it may, if it is a concept image of a 
dynamic object. For example, a learner’s concept image of function may include 
a point moving along a graph in a Cartesian coordinate system. In the same sense, 
L’s proof image has dynamic components, moving from left to right in the bifurca-
tion diagram. But this is not the sense in which we are using the term dynamic in 
this subsection: A proof image is inherently dynamic since it represents a process, 
the process of justification, and this is the case independently of whether the math-
ematical objects that form part of the image have dynamic aspects or not (in L’s 
story, they do, while in K’s story they do not).

Considering proof image as a dynamic process we might ask: Could it be that the 
dynamics show how the various linkages between the selected previous constructs 
appear as the proof develops? This leads us to see the emergence of a proof image 
as a case of constructing an abstract mathematical notion.
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16.6.8  Proof Image as a Construct

The answer to the question whether a proof image should be considered as a con-
struct in the sense of AiC depends, in our opinion, on the situation. A proof image 
might be a construct, especially if it emerges as a consequence of an effort of think-
ing toward the selection and combination of relevant previous constructs, which 
are linked in the proof image. But considering the proof image as a construct turns 
it into a rather static outcome of the constructing process, in contradiction to the 
discussion in the previous subsection. The question thus arises whether the proof 
image is a construct or the constructing process. This question leads us back to the 
two descriptions of the proof image as a static overview of the mathematical situ-
ation or as a dynamic process, a dynamic image with different foci of attention. It 
might be both.

The proof image can be the result of serious efforts rather than appearing at the 
very beginning of the justification process. In such cases, we can analyze its emer-
gence with AiC. We then use AiC not only for the second stage of the transition 
from the proof image to the formal proof but also for the first stage of the emergence 
of the proof image. This is, what we did for the story of L, where we had sufficiently 
reliable data for carrying out such an analysis. We used AiC to analyze the selection 
of the constructs C1 and C4 in episode 10 as well as the linkages between these two 
constructs (Kidron and Dreyfus 2010a). In particular, AiC was used to analyze the 
new meaning that L attributed to the bifurcation diagram in 10e, close to the com-
bination of C1 and C4, which was of crucial importance in the learning process. We 
wrote that the proof image contains selected previous constructs and some intuitive 
threads that link these selected previous constructs. We then used AiC to analyze 
both:

•	 The	selection	of	relevant	previous	constructs	and
•	 The	intuitive	threads	that	link	these	selected	previous	constructs.

We found that the intuitive threads with the potential links are already present in the 
process of selection of the relevant previous constructs. We surmise that something 
similar happened in the story of K but our data are not sufficiently detailed to un-
ambiguously support this claim, which is why we leave it to stand as a speculation.

16.6.9  Proof Image and Davydov’s View of Abstraction

In L’s story, we described a progressive mutual approach of two constructing ac-
tions, one of which was initially weak and strengthened in the process; this matches 
the genesis of abstraction as expressed by Davydov’s (1990) method of ascent to 
the concrete, according to which abstraction starts from an initial, simple, undevel-
oped first form, which need not be internally and externally consistent, and ends 
with a consistent and elaborate final form. In the bifurcation case, for example, at 
the beginning of episode 10 the dynamics shows the progressive mutual approach 
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between the weak branch C4 and the strong branch C1. At the end of episode 10, C4 
is the strong branch and C1 is the weak branch.

It is interesting to note that in the story of K we also have two branches that com-
bine, like in the story of L. We also have connections (linkages) between a fragile 
weak branch and a strong branch in which the more established knowledge of the 
stronger branch reinforced the weak branch and contributed to a combination of the 
two branches. The strong branch was K’s mode of thinking in which he realizes that 
he should use nested closed intervals and apply the theorem stating that a continu-
ous function on a closed and bounded interval is bounded and attains its extreme 
values. The weak branch refers to the meaning he attributed to the sentence “the 
function tends to plus infinity.” The intuitive meaning that the function grows infi-
nitely was enough for functions that behave nicely in a monotonic way but K was 
not satisfied with this fragile knowledge for functions with oscillations. For such 
functions, K needed more. There was a need to reinforce the weak branch.

Referring to Davydov’s notion of abstracting, according to which abstraction 
proceeds from an unrefined and vague form to a final coherent construct begs the 
question whether the proof image is this unrefined vague form of the formal proof. 
Davydov describes how a process of abstraction develops. We do not think that a 
proof image is necessarily a vague initial notion, which need not be internally and 
externally consistent. While the proof image will usually not include a formaliza-
tion of the logic involved, it will usually not be vague. Nevertheless, if we consider 
a proof image as a process in progress, the description of Davydov might apply to 
the initial step of the process. Therefore, Davydov’s view might apply to the transi-
tion from the initial stages of proof image to its final stages as well as to the transi-
tion from proof image to formal proof.

16.7  The Transition from Proof Image to Formal Proof

The transition from proof image to formal proof in the case of L, including the im-
portant role of Davydov’s view of abstraction in this transition, has been analyzed 
in detail in our previous articles (Dreyfus and Kidron 2006, Kidron and Dreyfus 
2010a). That analysis was carried out in the framework of AiC. In particular, we 
have shown how L’s proof image has played a crucial role in the constructing pro-
cess leading to her more formal conception of the proof, a process that included 
building-with actions using additional constructs from analysis and algebra that 
were necessary for the transition but were present only as background (the algebraic 
ones) or not at all (the analytic ones) in the proof image.

The transition from proof image to formal proof in the case of K has been briefly 
analyzed above. We have exhibited it as a constructing action in the sense of AiC that 
can be usefully analyzed by means of the recognizing, building-with, and construct-
ing epistemic actions. While this is not surprising, it lends credence to the claim that 
in cases in which learners’ proof image can be identified, an analysis of the transition 
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from proof image to formal proof as a process of AiC is not only possible but also 
promising and may lead to insight into ways in which learners construct proofs.

The process of constructing the proof image leads to some satisfaction for the 
learner. For example, Kidron and Dreyfus (2010a) noted how L’s drive to under-
stand the structure of the double solution at the bifurcation points was satisfied at 
least intuitively. More importantly, it is interesting to note that, for both, K and L, 
the process of constructing the proof image led to a need for more formal reasoning. 
K explicitly expressed this with his need for a formal definition of a function that 
tends to infinity. K needed the formal definition of the limit to ensure that there can 
be no strange examples, which disturb his proof image.

The need for more formal reasoning was explicitly expressed by L as well. In-
deed, after the first degree of enlightenment or the flash of insight, expressed by 
the combining of constructions at the end of episode 10, the two constructions 
merge and L realized that her knowledge that there must be double solutions at 
bifurcation points was still intuitive. Her drive to understand the structure of the 
double solutions at bifurcation points was satisfied intuitively but her work was 
not finished. She was interested in a more formal explanation why the transition 
point from 2-period to 4-period is obtained by equating the discriminant to zero. As 
a consequence, in episode 11, she renewed and supported her quest for algebraic 
connections and wanted to know more about the term discriminant, especially what 
is the meaning of a discriminant of an equation of higher degree and how it can 
be computed. This was the first part of the transition from the proof image to the 
formal proof.

The need for more formal reasoning is exquisitely expressed in Nasar’s (1998) 
description of Nash’s thinking as a “bunch of intuitive threads that have to be woven 
together” (see above).

16.8  Concluding Remarks

In this chapter, we have introduced the notion of proof image as we see it in two 
cases: K’s story about a function attaining its minimum and L’s story about bifurca-
tion. We found similarities between the two cases concerning the first part of the 
transition from proof image to formal proof. In both cases, there is a strong branch 
and a weak branch. The weak branch is vague in the beginning and is being elabo-
rated during the episode under consideration in agreement with Davydov’s view of 
abstraction (1990). This elaboration, which is a part of the process of constructing 
the proof image, is a constructing action that leads to a strengthening of the weak 
branch and, consequently, to the first part of the transition from proof image to 
formal proof. An obvious question is how specific is the role played by the dissym-
metry between the strength of the two branches at stake in the emergence of the 
proof image to the two cases investigated in the present paper. Further research is 
required to answer this question.
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We expect that in the near future, we will be in a position to add to the cases of 
K and L, taking into account other cases and other mathematical domains position-
ing order to enrich our description of the notion of proof image and of the transition 
from proof image to formal proof.

Transformational aspects are central during the two phases of constructing 
a proof. Transformational aspects during the phase of the emergence of a proof 
image have been discussed in the discussion of proof image above, especially in 
Sects. 16.6.7, 16.6.8, and 16.6.9. For example, we have pointed out and shown in 
the examples how various linkages between selected previous constructs appear as 
the proof image develops and hence is being continuously transformed. Transfor-
mational aspects are equally central in the phase of transition from proof image to 
formal proof discussed in the preceding section.

The transition from proof image to formal proof relates directly to the theme of 
this book—transformation—in the following sense: The learner who constructs a 
proof typically (at least this was the case for K and L) feels a need to transform her 
or his personal proof image into a communicable form of proof that can be pre-
sented to others, discussed in a classroom, and evaluated as to its power of convic-
tion and mathematical validity. This transformation from proof image into a formal 
proof requires transformations in the learner’s human cognition, just as the learning 
of concepts and strategies does. The transformations are likely to include changes of 
representation since the proof image often involves visual aspects and formal proof 
usually strives for independence from visual aspects, such as in the case of K. In 
summary, the transition from proof image to formal proof involves transformations 
of knowledge whose investigation is an important and promising avenue for further 
research.
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17.1  Introduction

A central focus of our contribution is on the specific characteristics of an elementary 
access to “stochastic thinking” in primary mathematics teaching. We will elaborate 
that, right from the beginning, stochastic thinking is a complex human knowledge per-
ception and requires adequate means and artefacts necessary for activating this scien-
tific kind of thinking. As a central component of stochastic thinking, we concentrate on 
“making and understanding stochastic predictions” in elementary chance experiments. 
The essential question of investigation is how young students could modify their un-
derstanding about a prediction being simply right or wrong/true or false to a new con-
ception of a stochastic prediction that implies a qualitative reference to a more or less 
probable occurrence or non-occurrence of a future event. This key idea is fundamental 
for the development of stochastic thinking, and as a basic component of mathematical 
thinking, it should be an early element of mathematical teaching in school.

In 2002, the working group “Stochastik” of the “Association of Didactics of 
Mathematics” (GDM) of German-speaking mathematics educators has approved a 
joint statement and recommendations concerning stochastics in school starting with 
the first grade at the primary level. According to the statement, stochastics should 
already be a part of primary mathematics based on the following arguments: Young 
students are confronted in their everyday life with stochastic phenomena, and the 
development of a stochastic general education is a fundamental and a long-range 
goal and therefore needs a propaedeutic treatment in primary teaching (see Engel 
2002, pp. 75–83). Meanwhile, stochastics has been incorporated in the educational 
standards for the elementary school (see KMK 2004).

S. Rezat et al. (eds.), Transformation—A Fundamental Idea of Mathematics Education, 
DOI 10.1007/978-1-4614-3489-4_14, © Springer Science+Business Media, LLC 2014
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Primary school children have heterogeneous experiences close to stochastics (as 
board games, dice, etc.) and in uncertain everyday situations that have a personal 
meaning (as birthday wishes) and where the child is confronted with an uncertain 
event and can only wait until the birthday to know what will happen, i.e. which 
wishes have come true.

The intention of this contribution is to make clear that children need an interven-
tion with more structured stochastic situations and that they have to be provided 
with appropriate tools to develop a more differentiated perspective and more so-
phisticated interpretations of prognoses.

17.2  The Nature of Stochastic Knowledge and Stochastic 
Prognoses

We understand stochastics as part of mathematics integrating statistics and prob-
ability. Basically, this characterization of stochastics implies that it is seen as a kind 
of experimental science in which random experiments are performed and data are 
collected as well as elementary ideal models are developed for theoretically de-
scribing, evaluating and predicting the outcomes of the experiments. In this way, 
we get a dualistic formation of stochastics as the interplay between random ex-
periments and elementary probability theory—with the conceptual counterparts of 
(relative) frequency and (relative) parts of probability (Laplace probability) (for 
further explanation, see Steinbring 1991, pp. 135–167).

Having	this	interplay	of	“random	experiment	↔	elementary	probabilistic	model”	
as a first foundation we take into consideration the following epistemological per-
spective.

The experimental and the theoretical side of stochastic concepts are related to 
each other—they can be seen as explaining referential contexts for the other side. 
Elementary theoretical notions can gain explanations and understanding by refer-
ence to notions on the experimental side, and new notions on the experimental side 
can get specific stochastic interpretations with the help of concepts in the elemen-
tary probability theory. This dualistic use and reciprocal explaining of the reference 
of signs and symbols in stochastics can be explained with the help of the epistemo-
logical triangle (Steinbring 2009, see Fig. 17.1).

“The development of the probability concept can be used as a paradigmatic ex-
ample for explaining essential features of the epistemological triangle. In the early 
history of the probability concept, the sign system is given by “fraction numbers” 
and an accompanying reference context is given by the “ideal die”. Later in history, 
the reference context changed to “independent collectives” (cf. von Mises 1972), 
and the sign system to “limit of relative frequency”. And, at the beginning of the 
twentieth century, the reference context changed to “stochastically independent/de-
pendent structures” and the sign system to “implicitly defined axioms” (cf. Stein-
bring 1980). A central characteristic of this semiotic structure is the fact that the ob-
ject or the reference context cannot be a fixed and definite point, but that it is inter-
preted by the learner more and more as a structural domain during the development 
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of mathematical knowledge. Accordingly, mathematical meaning is produced in the 
interplay between a reference context and a sign system, by means of transferring 
possible meanings from a relatively familiar, or partly known, reference context to 
a new, still meaningless, sign system” (Steinbring 2009, pp. 24–25).

What makes stochastics different from other fields in school mathematics is the 
central meaning of application—as it is already basically inherent in the dualistic 
interplay	of	“random	experiment	↔	elementary	probabilistic	model”.	Applications	
play an important role throughout the curriculum. Contrary to the academic field of 
probability theory, the conditions for application, such as independence, are mostly 
not considered in school mathematics. What makes stochastics so special is the 
relationship between the mathematical model and the part of reality being described 
by it. The modelling aims to describe a certain part of reality as good as possible, 
but right from the beginning there is a (never avoidable) gap between the model and 
the considered part of reality. Students often struggle with discrepancies between 
what probability theory tells them and the outcomes they observe in experiments.

In the case of random experiments, from a probability perspective, we try to 
describe experiments that have not been carried out yet. Of course, we cannot look 
into the future and say what will happen exactly—according to a deterministic 
world view. Still, we are able to make reasonable prognoses that are more or less 
certain and describe the outcomes of random experiments.

The outlined nature of stochastic knowledge can serve as orientation for primary 
school stochastics. We see stochastics in primary school as a preparation for later 
stochastic instructions and not as an antedated instruction of topics of the secondary 
level. This propaedeutics aims not primarily at the quantification of stochastic phe-
nomena, nor should it at all be a course with axiomatic structure, that includes early 
calculations with however formalized probabilities (fractions, percentages, etc.). A 
course in primary stochastics should rather include adequate stochastic predictions 
of results of random experiments and the relationship between the prognoses and 
the outcomes. We see this as one possibility for a first approach in primary school 
to grasp the particularity of stochastic knowledge and to learn that there could be 
different qualities of what scientific knowledge can express. The importance of 

Fig. 17.1  The epistemological triangle applied to the concept of probability
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prognoses as part of instructional programmes was already outlined by Fischbein 
(1975). We give some examples of studies—without making claims of being com-
plete—in which aspects of the understanding of prognoses may be found. We cat-
egorize these studies according to the role prognoses played such as:

1. Something that has to be constructed by the child,
2. Something that has to be justified or
3. The focus lies at the interplay between the prognoses and outcomes of an 

experiment.

For example, children have to predict single outcomes of random experiments with 
the highest or lowest probability (Way 2003, Nikiforidou and Pange 2010) or most 
likely events (Jones et al. 1997). In some studies, children are asked for predictions 
of frequencies of random events in symbolic forms as relative frequencies (mostly 
orally given for example Fischbein 1975) or absolute frequencies (symbolically for 
example Watson and Callingham 2003). The framework for assessing probabilistic 
thinking developed by Jones et al. (1997, 1999) includes prediction of events and 
their justification as one aspect in their stage model. Other studies focus on distri-
butions instead of single events or probabilities. Thus, children have to predict the 
whole distribution (orally for example Abrahamson 2009; Bakker and Gravemeijer 
2004). Several aspects of the interplay between prognoses and outcomes of an ex-
periment can be found, for example, in the stage model of Jones et al. (1997, 1999) 
who state that a child can be assigned to the informal quantitative level (level 3 
of 4) if the child is able to understand the differences between experimental and 
theoretical probability or as reported in Fischbein (1975) where experiments served 
for “verification” of predicted relative frequencies. A different attempt is carried 
out by Kazak and Confrey (2007) who let children predict, realize and interpret 
distributions of real objects as well as let them create iconic representations of these 
distributions antecedent to mathematical distributions.

In all of these studies, stochastic prognoses were not in the main focus. We are 
particularly interested in how students initially understand stochastic prognoses, 
and how they may develop their understanding. In our research about the develop-
ment of children’s emerging stochastic thinking, a decisive feature is taken into con-
sideration, i.e. the completely different epistemological nature of stochastic knowl-
edge vs. deterministic scientific knowledge. This central difference firstly appears 
for young students when being exposed to making prognoses for the outcomes of 
elementary random experiments.

17.3  Artefacts and Signs in the Learning of Stochastics

From a semiotic perspective on mathematics, signs and symbols are needed to 
make abstract notions accessible (see for example Duval 2008). Following Hoff-
mann (2003), thinking and reasoning in mathematics are not possible without signs. 
Therefore, they represent necessary tools for thinking and reasoning. Furthermore, 
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with signs we can make abstract notions manipulable and communicable—so they 
can also be understood as tools for argumentation and the articulation of ideas.

Signs and symbols—in the general form we understand them here—also create 
the possibility to develop new ideas (e.g. representation of empirical distributions in 
diagrams) and build the possibility to adopt different perspectives. This corresponds 
to Sfard (2000), who states that introducing a new symbol is a crucial step to the 
generation of a concept and symbol and meaning constitute each other.

When introducing a new symbol, the artefact comes first. To become a symbol, 
it still has to be related to something it refers to. To understand this transformation 
from an artefact to a symbol, the following perspectives on artefacts might be help-
ful. First, we take the perspective that we look at the artefacts as knowledge-oriented 
tools. From this perspective, an artefact might be modified or used to do something. 
The structure of the associated mathematical knowledge produces additional con-
straints for the usage of the artefact as a sign, through the linkage of the meaning 
of the signs. Furthermore, a sign does not stand alone. There are relations to other 
signs—meaning the sign is located or embedded in a sign system. A second perspec-
tive might consider the epistemological use of the artefact. Here, the artefact may 
serve as a tool in order to explain something else (as part of the reference context) or 
it might be the artefact itself that has to be explained or interpreted (as part of a sign).

The outside appearance of mathematical signs is mostly and firstly conventional. 
However, having agreed on the signs to be used, in mathematics the signs and sym-
bols then are the basis for constructing structures, patterns and relations.

In contrast to that, in stochastics, we often run the risk, that because of properties 
of the associated signs/symbols, we may successfully work on stochastic problems 
without any stochastic understanding—for example, when we use tree diagrams 
to solve Bayesian problems or fractions to determine or work with probabilities. 
Therefore, these sign systems allow us to use substituting strategies or to say more 
than we know (compare with Kazak and Wertsch 2005). For the teaching and learn-
ing of stochastics, as well as in research on stochastic thinking, we have to be aware 
of this fact, since it makes it difficult to see whether or not someone has a stochastic 
understanding. We stress that understanding stochastics means more than the mas-
tery of the associated sign systems.

Both	sides	of	the	outlined	interplay	of	“random	experiment	↔	elementary	prob-
abilistic model” need many signs and symbols of different forms for coding the 
elementary stochastic concepts. In order to describe the outcomes of random experi-
ments with spinners, one can record them in forms such as diagrams or lists, etc. 
In our study, we use templates (as shown in Figs. 17.2 and 17.3) that simplify the 
notation and that are adapted to the use in primary school (considering only absolute 
frequencies for example). These artefacts are used to code and interpret outcomes of 
experiments as well as to record prognoses.

Recording the outcomes of an experiment means to interpret the given artefact 
as a recording instrument and to modify it according to the outcomes. So, a symbol 
is created for each realisation of turns indicating the outcomes that have occurred. 
The way of recording the outcomes—the notation—allows different interpretations. 
If one records the outcomes in the form of a list, according to the order of their 
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occurrence, one can use the list and read the information about the sequence of 
single outcomes, and one can further take the list as a database to study questions 
concerning the absolute or relative frequencies of the single events, patterns in the 
sequences, the length of runs, etc.

Compared to the data list, the diagrams aggregate data in different ways. So, the 
raw data are no longer available but this form of notation allows a direct comparison 
of the absolute frequencies of outcomes. However, the notations we described can 
be considered as abstract descriptions of the random experiments giving us infor-
mation about the outcomes but ignoring other facts like who was carrying out the 
experiment and how this was done.

The understanding and use of such symbols could make it possible to compare 
the functioning of different random generators and maybe, later, to put aside the 
random generators used and consider the different distributions as new mathemati-
cal objects.

Bartolini Bussi et al. (2005) state that the presence of an artefact does not me-
chanically determine its use and understanding. In exploratory interviews, we could 
observe that the templates for diagrams, for example, were used in very different 
ways. In Fig. 17.4, we present the concrete usages of the given artefact in the re-
cording contexts of the interviews. The third possibility is the one we will see again 
later in the example of Jule. In the prognosis context as well as in the experimenting 
context, single turns were coded by a cross or a hatched box. Sometimes, colours 
were used to indicate, additionally, the outcome of the turns.

In general, there were two different ideas for recording a prognosis that we could 
observe up to now during interviews. The first idea includes a mark for each single 
turn that would be carried out in an experiment. In the second, just the “final result” 
is recorded by marking the corresponding box counted from the bottom of the dia-
gram. In both ideas, the global position of these markings (left/right) stands for the 
corresponding colour.

In recording outcomes, again, the global position indicates the outcome. All chil-
dren started from the bottom of the template. However, there are differences in the 
local positioning of the marks. One idea was to mark the box above the preceding 
one for the next outcome. When a change of colour occurred, some children wanted 
to change the side and continue marking at the same height. Using this rule, one 
could reconstruct the sequence of the outcomes but the absolute frequencies could 
not immediately be read off. By contrast, a different idea of continuation when a 
change of colour occurred was to mark the next box above the last marked on that 
side. Using this strategy, one can easily read off the absolute frequencies, but the 
sequence of outcomes is no longer accessible.

When looking at the ways children recorded their prognoses and the outcomes 
of experiments, two things are striking. First, the spontaneous usages of the given 

Fig. 17.2  Template for a list 
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Fig. 17.3  Template for a 
diagram
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artefact before any intervention might well differ from the intended usage and pro-
vide several advantages and disadvantages. This makes clear that the appropriate 
usage is something that has to be learnt by the child.

Second, and even more important, we can almost say nothing about the chil-
dren’s understanding of stochastic prognoses from their recorded prognosis alone. 
From the contexts of the interviews, we know that the same way of notation may be 
interpreted in various ways. This gives us a reason to design a qualitative study with 
interviews that allows us to gain more insight into the understanding of stochastic 
prognosis through the way children use and interpret recorded prognoses.

17.4  The Conception of Elementary Stochastic Seeing

At the beginning of this section we would like to explain what we mean by the ex-
pression elementary stochastic seeing (else) and how it might be described.

In general, else serves as an expression for a theoretical construct describing 
aspects of stochastic thinking in elementary school students. It differs from other 

Fig. 17.4  Typical ways of 
recording a prognosis
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descriptions in the way that we do not take a particular mathematical concept (as for 
instance distribution, expectation, etc.) into focus in order to describe which aspects 
of this concept are understood by a child. We also do not look at specific levels of 
quantification for these concepts. Instead, we take as an orientation the nature of 
stochastic knowledge and our understanding of mathematical thinking as thinking 
with tools to study elementary school students’ thinking in connection with random 
experiments. What meaning do they find? What do they perceive of the stochastic 
situation? How do they understand stochastic prognoses?

For the development of elementary stochastic seeing, we emphasize that a sto-
chastic prognosis and the actual outcomes of an experiment usually will not match 
exactly, and we investigate how one can deal with this fact as an important con-
dition. Furthermore, we have already outlined the necessity of tools for thinking 
in mathematics (Hoffmann 2003; Sfard 2000) and the role of artefacts as sources 
for the construction of signs (material sign vehicles). Usually, children in primary 
school do not have appropriate tools or verbal means (see also Wollring 1993) yet 
to describe and study random phenomena.

For the development of an elementary sense of random phenomena, a child has 
to be introduced in an elementary stochastic culture with established ways of speak-
ing and using/interpreting cultural tools. The enculturation would include the in-
troduction to the usage of tools, ways of speaking and tasks, as well as examples 
of interpretations that serve as an orientating support and provide a frame that is a 
sound basis for the development of stochastic thinking. In order to cope with that 
demand, the development of appropriate materials and tasks is required.

How does the elementary stochastic seeing develop? How do the interpretations 
of the given artefacts change and what ideas do the children develop?

We designed a research project that consists of two parts: one part concerns the 
elaboration and empirical testing of the theoretical construct else describing sto-
chastic thinking in primary school children and the other part concerns the design 
of materials that are an integral component of an intervention that will be carried 
out. Both parts interrelate with each other. In order to elaborate the theoretical con-
struct, we design a qualitative study consisting of a first series of pre-interviews, an 
intervention and a second series of post-interviews. In the first series of interviews, 
prior to the intervention, we afford children with no or little pre-experience in sto-
chastics an opportunity to make sense of random experiments. This series gives us 
some insight into spontaneous usages and interpretations of the given artefacts as 
spinners and diagrams. We assume, that young students’ scientific comprehension 
at hand will not change on their own because of the complex and strongly different 
way of stochastic thinking and arguing; therefore, it becomes necessary to conduct 
an intervention that gives children the chance to develop their own elementary sto-
chastic seeing. For this purpose, we design materials and tasks to work with in the 
third grade. Third-grade students have learnt in mathematics teaching the necessary 
elementary arithmetic (for instance, additive decompositions of natural numbers) 
and first geometric notions (as area and equal parts of area). These form a basis 
for understanding and using mathematical ideas for making connections between 
different semiotic representations that are a basis for stochastic interpretations. The 
intervention includes experimenting, provision with tools and language to describe 
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and study random situations and tasks related to the interplay of prognoses and out-
comes of experiments. The intervention aims at giving the students an orientation 
and opportunities to take possibly new perspectives.

The second series of interviews after the intervention gives us important infor-
mation about changes in the way children use and interpret the given artefacts. This 
might serve as a contrast to the perspectives in the first series and it explores what is 
possible after the intervention. So, methodologically, this series serves as a basis for 
further development of the construct else. For the second series, we expect children 
to give a more detailed prognoses and more sophisticated justifications and hope 
that they develop first ideas concerning different qualities of knowledge.

With the help of the considerations of the previous sections and some exploratory 
interviews, we identified two dimensions to characterize elementary stochastic see-
ing—an epistemological dimension and a semiotic dimension. The epistemological 
dimension deals with questions such as: Do children think that it would be pos-
sible at all to say something about the outcomes of a random experiment and that 
they themselves are able to state something and, if so, what do they say? What do 
they use for a valid justification of the stated prognoses? How do they evaluate 
prognoses presented to them? These questions could be connected to the children’s 
conception of knowledge and ways of knowing. Therefore, it might be stimulating 
to look more closely at the epistemological beliefs literature to further elaborate this 
dimension (see e.g. Hofer and Pintrich 1997).

The epistemological dimension reaches from a dichotomic to a relativizing per-
spective. A child is said to take a dichotomic perspective if she/he just considers 
whether the prognosis is right or wrong—say whether there is a perfect match be-
tween a prognosis and the outcomes. With a relativizing perspective, a child con-
siders a prognosis as quite good or bad with respect to the outcomes of a random 
experiment having possible deviations of the given prognosis in mind.

The semiotic dimension concerns the interplay between recorded empirical ob-
servations of random experiments and symbolical interpretations of artefacts of el-
ementary stochastics, such as spinners and diagrams at the elementary theoretical 
level. It deals with questions such as: How do children interpret recorded outcomes 
and prognoses and what relations do they construct? What interpretations do young 
students make of the different sorts of the broad types of signs, symbols and dia-
grams? Thus, the semiotic dimension is about the original semiotic understanding: 
investigating the student’s idea about what the sign/symbol he/she uses stands for, 
or to what signified a used signifier refers. An example given in the following sec-
tion shall further illustrate how we understand elementary stochastic seeing.

17.5  Example from the Exploratory Phase of the Project

In 2010, we conducted eight exploratory interviews with four third graders from 
each of two schools (4, 4). In both schools, the children, chosen by their teacher, 
usually have different achievements in mathematics. All children had no or almost 
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no experiences with stochastics in school. These exploratory interviews are not part 
of the actual study. Their purpose was twofold. On the one hand, we wanted to 
explore by which means we could investigate the children’s (partly spontaneous) 
perspectives and understanding of prognoses. Apparently, it is useful to make a dis-
tinction between phenomenological and conceptual understanding. Children at this 
age, and when confronted with this subject, might have difficulties to articulate their 
understanding. For in going beyond a pure phenomenological understanding to a 
more conceptual comprehension, they need appropriate artefacts and semiotic tools. 
On the other hand, we evaluate our materials and tasks for further development.

For this contribution, we focus on the following question: How does a child use 
the given artefacts and how does he/she interpret them?

17.5.1  Setting of the Interview

The interview was carried out without a fixed guide but orientating questions and 
problems concentrating on the key idea of elementary stochastic seeing. In the fol-
lowing, we describe the artefacts that have been used in a twofold manner—in the 
prognosis and the experiment contexts in the interview.

17.5.2  Artefacts

(1) Spinner We take a “good” random generator with symmetric properties (see 
Fig. 17.5). With a “good” random generator, we mean a generator that is as unbia-
sed as possible. The spinner here is understood not only as the object that has to 
be described but also as a tool for thinking and learning. Thus, the conditions for 
correctly applying mathematical theory are not an issue here. Due to the assump-
tion, that the children do not have a mathematical notion of distribution and the 
various types of distributions, and for reasons such as length of an experiment and 
the relation between the empirical and theoretical distribution, we chose to use a 
“non-equal-distributed” random generator.

17 Elementary Stochastic Seeing in Primary Mathematics Classrooms … 

Fig. 17.5  Spinner 



302

(2) Diagrams We use empty templates and filled diagrams as shown in Figs. 17.2 
and 17.6 (where L corresponds to blue and R corresponds to yellow). These dia-
grams are adapted for the use in primary school: the filling in and recording is facili-
tated by the use of boxes, the scale is given and absolute frequencies can be easily 
read off. (Though we know that this is not always done right from the beginning.) 
The diagram serves as a tool in two different ways. Firstly, the diagram functions as 
a tool to record prognoses. The idea is that the child has to give a precise prognosis 
in a definite way in order to get away from pure guessing and to make the progno-
sis more accessible for justifications, discussions and comparisons with actual out-
comes of random experiments and the construction of the spinner. Secondly, we use 
it as a protocol for outcomes of random experiments. The child records outcomes in 
a certain way, the absolute frequencies of the events “yellow” and “blue” become 
“visible” and the raw data of the experiment are no longer available to the child. We 
offer the child a possibility to look at random experiments in a certain way—what 
aspects are considered in what ways. The protocol helps to “memorize” how often 
each colour occurred and how often the spinner was turned. The filled diagram 

Fig. 17.6  Diagrams 
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might serve as a basis for interpreting the experiments and as a source for one’s own 
prognoses for experiments.

The filled diagrams chosen for the interview include an ideal prognosis, one 
good prognosis close to the ideal prognosis and two bad prognoses—one including 
the idea of fairness and one opposite to the ideal prognosis.

17.5.3  Course of the Interview

In the introduction phase, the interviewer shows the spinner and asks the child if 
the he/she already has experiences with spinners. Both the interviewer and the child 
take a close look at the spinner and, if necessary, the interviewer explains how the 
spinner works.

The main phase of the interview starts with an oral prediction of how often blue 
and yellow would occur if one would turn the spinner 20 times. The child is asked 
to justify his/her prediction and to give an evaluation of the prediction in the sense 
of saying whether the results of an experiment would be exactly like the prediction. 
Before the child carries out any experiment (of several trials), he/she is asked to 
record the prediction in an empty diagram.

The child carries out one or two experiments and records the results in an empty 
diagram template. It might occur during the first experiment wherein the child tries 
to memorize every single result without recording and just records the final results. 
In that case, children usually realize that it is difficult to memorize every single 
result and to know when the experiment is done at the same time.

After the child has carried out the experiment, he/she has to compare the out-
comes and the prediction and give a new prognosis.

In a next step, the interviewer introduces already-filled diagrams as ideas for 
prognoses of other children and lets the child evaluate them. The last task in the 
main part of the interview considers the question: with what spinner is it possible 
to get what outcome, and a justification is requested for each choice or non-choice.

At the end of the interview, the problem context is changed to a game context 
with two imagined players, that is still closely related to the experiment situation 
before. The child is asked to predict the winner in one and in more rounds of playing 
and to give a justification. Then the interviewer asks what colour the child would 
choose if he/she would play the game.

17.5.4  Jule

The following example is part of an interview carried out in the first half-year of the 
third grade. Jule is a 9-year-old girl. According to her teacher, she has good marks 
in mathematics. In her class, the only experience with stochastics is a teaching unit 
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at the end of the second grade. The topic of this unit was the empirical distribution 
of the sum of the outcomes of two dice.

The chosen episode starts just after the beginning of the interview. The inter-
viewer already introduced the spinner, they took a close look and the interviewer 
explained how it works. Jule tried to turn the spinner. The proportion of blue and 
yellow was not a subject of the introduction. The spinner remains on the table in 
front of Jule during the following episode. Now the interviewer asks Jule to make a 
prognosis for an experiment.

1 I: Now, imagine you would turn the spinner 20 times, just as you did.
2 J: Mhm.
3 I: What do you believe, how often will the pointer (points at the pointer of the spinner) 

(Fig. 17.5) stop at blue and how often will it stop at yellow?
4 J: Hmm. I guessa…(..) Hmm.(..) I guessb 15 times at blue and 5 times at yellow.
5 I: Mhm. What gives you that idea? What did you think?
6 J: I was just guessing.
7 I: Mhm. And—eh, if you would carry out this/such an experiment. If we would try and 

turn 20 times, does it come out exactly like that? What do you think?
8 J: Well, it could be not quite right now, I think. But maybe so (…) so in this piece, such 

that it is only one, two numbers away.
9 I: What do you mean by in this piece?
10 J: Well, that it would not lie at for example…15 times at yellow and 5 times at blue now. 

That this is not the other way around now, or something like that. I believe…, that it 
is also, eh, close.

11 I: Close? Is this, eh, close to what?
12 J: To the outcomes I’ve said.
13 I: Mhm. So 15 times blue and 5 times yellow.
14 J: Mhm.

a German: “schätze”
b Rate

The interviewer gives Jule an empty diagram and asks her to record her prognosis. 
Jule first shows how she would record her prognosis by pointing at the 15th box 
at the left side and the 5th box at the right side and then fills the empty diagram 
(Fig. 17.7).

15 I: Now, you’ve already said, that if we would carry out an experiment, then it comes about 
that area. Could you explain this to me again with the picture, how did you mean 
that? ( points at the diagram)

16 J: Well, in the area of the 15 I mean about till the 10 or until the 20. ( points at the area 
between 10 and 20 at the left side) That this is not full ( points at 30 and pauses), full, 
eh…(..) That blue would not come out like 3 times now. (marks the area between 10 
and 20 with two fingers of her left hand)

17 I: Mhm. Why wouldn’t blue come 3 times?
18 J: This is what I think, because (…) there is plenty of blue ( points with a finger at the blue 

area of the spinner) and yellow is just a little field. ( taps the yellow field)
19 I: Mhm. So you mean that’s why this is/has to be like that.
20 J: Yes, I think so.
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17.5.4.1  Detailed Analysis of Lines 1–14

The interviewer asks for a prediction for 20 turns of the spinner (lines 1 and 3). Jule 
thinks for a while and answers in line 4: “Hmm. I guess1…(..) Hmm.(..) I guess2 15 
times at blue and 5 times at yellow.” She may have thought about decompositions 
of the number 20 and/or taking the single turns and/or the construction of the spin-
ner as a basis for an estimation or calculation. Up to that point, there is no evidence 
for one or the other interpretation. From the transcript, we can only understand that 
she is thinking about something but not how she gets to her prognosis or how she 
understands it. To the question what she was thinking about her answer is “I was just 
guessing” (line 6). It might be that Jule means this as justification or it may be an 
expression of not being able to give a justification. How is “guessing” in lines 4 and 
6 understood? It is possible that “guessing” is used as a description of uncertainty 
whereby this may relate to her answer or to the actual occurrence of her predicted 
outcome. There is also the possibility that she has difficulties in articulating her 
thoughts. In line 7, the interviewer asks Jule to interpret her prognosis in relation 
to a hypothetical experiment. Jule takes a relativizing point of view by saying that 
“it could be not quite right now”, but “maybe so (…) so in this piece, such that it 
is only one, two numbers away” (line 8). It remains unclear whether she refers to 
her given answer or to hypothetical outcomes of an experiment. The expression 
“not quite right” could be a hint for a non-dualistic conception of knowledge. The 
usage of “maybe” reinforces the impression of uncertainty. The meaning of “in this 
piece” is questioned by the interviewer. Here, Jule refers to her prognosis and gives 
a counter-example (“15 times at yellow and 5 times at blue”) and an additional 
explanation “that it is also, eh, close” and more precise “to the outcomes I’ve said” 
(lines 10 and 12). By “outcomes”, she may mean just her prognosis or include the 
deviations she spoke about in lines 8 and 10.

Then Jule had to record her prognosis. For that, she had to interpret the empty 
diagram and modify the artefact by entering markings according to her prognosis. 
Jule records her prognosis by marking the 15th box from the bottom at the left side 
for 15 times blue and the 5th box from the bottom at the right side for 5 times yel-
low each with a cross.

17.5.4.2  Detailed Analysis of Lines 15–20

Jule is asked to explain what she meant with “in that area” with the help of the 
diagram (line 15). Here, the word “area” is introduced by the interviewer and Jule 
picks it up in her following explanation (line 16). She interprets “in the area of 15” 
by referring to her recorded prognosis. She says “about till the 10 or until the 20”, 
“not full” and “blue would not come like 3 times” and points with her finger at the 
area between the number 10 and 20 at the left side of the diagram. This indicated 

1  German: “schätze”.
2  German: “rate”.
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area refers to a larger deviation than the one she talked about in the first part of the 
episode (“one, two numbers away”, line 8). The words “not full” can be interpreted 
in different ways. It is possible that Jule is referring to the whole diagram as an 
area for possible outcomes and then restricts this area to make clear that not every 
outcome comes into question here.

The second possibility would be that the number 30 is given as a counter-ex-
ample—as one outcome outside the mentioned area between 10 and 20. The given 
counter-example “blue would not come like 3 times” is consistent with both inter-
pretations. For the first possibility, Jule refers to the area that ranges not till 3, for 
possibility 2 Jule gives a counter-example outside the mentioned area. When asked 
why “blue would not come like 3 times” she refers to the size of the blue and yel-
low area of the spinner indicating that “there is plenty of blue” and “yellow is just 
a little field”. These verbal expressions are combined with pointing and tapping at 
the respective areas (line 18).

Jule is already taking a rather relativizing perspective while giving her progno-
sis. In the presented episode, we can see that she is having possible deviations of 
her prognosis in mind. Jule also shows aspects of a theoretical interpretation of the 
diagram referring to other possible outcomes.

17.5.4.3  Analysis by the Role of the Artefacts

In what ways do artefacts play a role in the presented episode? In our episode, we 
have two artefacts to consider—the spinner and the diagram. The spinner is not 
obviously used until the end of the episode where Jule refers to it in order to explain 
why “blue would not come out like 3 times”. The diagram instead is used in several 
ways. It first appears as an empty given form that has to be used in order to record 
the prognosis. Now, the artefact has to be interpreted itself—where and how may 
the recording be done? Jule marks the 15th box at the left side and the 5th box at 
the right side with a cross and so modifies the given diagram. In what follows, the 
diagram is used for explaining the possible deviation from the given prognosis (“the 
area of 15”).

From an epistemological perspective, we could, as an example, analyse Jule’s 
statement (line 16) in the following way: the interviewer questions the meaning Jule 
presumes for the notion of “area”, “Could you explain area to me again with the 
picture” (line 15). In this way, a new symbol/sign is questioned and the new symbol 
“area” has to be explained. In her statement (line 16) Jule gives at least four aspects 
of explanation. Further, these explanations are not restricted to concrete properties, 
but Jule characterizes important stochastic relations and connections. With the help 
of the epistemological triangle we can argue that the diagram with the blue and 
yellow columns of 30 boxes, in which Jule has marked with a cross the 15th blue 
and the 5th yellow box, serves Jule in this short interaction as a reference context 
in which she brings in new views. The new sign/symbol “area” the interviewer 
wants to be explained is constructed by Jule with the help of own descriptions and 
gestures: area is the space around 15, from 10 to 20, and it is not up to 30 nor near 
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to 3. In this way, Jule expresses in her own communicative manner an acceptable 
stochastic deviation for possible outcomes of the experiment with the spinner in 
question. This deviation is an essential element for the new requirement of under-
standing and of developing an idea of stochastic prognosis.

The epistemological triangle (see Fig. 17.8) shows the essential epistemological 
relations and connections Jule constructs for explaining the symbol “area” (line 16). 

Fig. 17.8  Epistemological triangle for analysing the notion of “Area”
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It is indeed a productive epistemological perspective because Jule does not simply 
use the diagram as a protocol with the given or fixed data, but she elaborates struc-
tures and relations in the diagram in the sense of a symbolic understanding of this 
artefact.

In summary, Jule gives a prognosis close to the ideal one and verbalizes ideas 
of deviation from her given prognosis. She creates a sign for her prognosis through 
modification of the artefact of the template for a diagram. The modified template—
the diagram—is used by her to clarify her idea of possible deviations from the 
prognosis. She gives a counter-example for an outcome that is not possible and 
justifies it with reference to the spinner comparing the size of the areas in a qualita-
tive manner.

17.6  Final Remarks

What can we learn from the interview with Jule and examples of the other explor-
atory interviews?

From the presented episode, we mostly get information about the prognosis Jule 
gives and how she justifies it. We also get a first hint for her understanding of 
the prognoses. Jule is an example of a child who is surprisingly successful in the 
spontaneous usage of the new artefacts and semiotic tools. Here, the setting of the 
interview gives occasions for her to develop productive ideas for dealing with the 
relation of her prognosis and hypothetical outcomes of a random experiment. She 
is able to express aspects of elementary stochastic seeing with her own words in 
quite a good way.

However, from other interviews we know that this is not always the case. These 
interviews show that elementary stochastic seeing does not normally arise spon-
taneously and that an intervention offering children a possibility to enter and par-
ticipate in the stochastic culture is a necessary condition for the development of 
stochastic thinking. The example of Jule helps to give an idea of what should be the 
aim of an intervention supporting the development of elementary stochastic seeing.
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18.1  Introduction

The influence of tools, especially drawing tools, on geometry development at school 
has recently improved greatly due to the appearance of dynamic geometry software 
(DGS). As Straesser (2001) suggested, we need to think more about the nature of 
geometry embedded in tools, and reconsider the traditional opposition between the 
practical and theoretical aspects of geometry. It is well-known that we can approach 
geometry through two main routes:

1. A concrete approach which tends to reduce geometry to a set of spatial and prac-
tical knowledge based on the material world.

2. An abstract approach oriented towards well-organized discursive reasoning and 
logical thinking.

With the social cynicism of the bourgeoisie in the mid-nineteenth century, the first 
approach was for a long time reserved for children coming from the lower class and 
the second was introduced to train the elite who needed to think and manage society.

Today, in France, with the “college unique”, this conflict between both ap-
proaches stays more hidden in mathematics education, but such discussions have 
reappeared with the social expectation supported by the Organisation for Economic 
Co-operation and Development (OECD) and its “bras armé” Programme for Inter-
national Student Assessment (PISA) with the opposition between “mathematical 
literacy” and “advanced mathematics”.

The present paper leaves aside sociological and ideological aspects and focuses on 
what could be a didactical approach, keeping in mind a possible scientific approach to 
a more practical geometry referring to approximation and measure, in the sense Klein 
used when he suggested a kind of approximated Pascal’s theorem on conics:
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Habe ich sechs Punkte, die ungefähr auf einem Kegelschnitt liegen, ziehe deren ungefähre 
Verbindungsgeraden und bringe diese in a, b, c zum Schnitt, dann liegen diese Punkte unge-
fähr auf einer geraden Linie1 (Klein 1903, III, p. 172).

The present discussion is supported by a first example showing what kind of con-
tradiction exists in the French education system where no specific work on approxi-
mation exists during compulsory school. This contradiction appears as a source of 
confusion and misunderstandings between teachers and students. We were led to 
introduce some theoretical perspectives aiming at understanding and solving this 
issue. In the following, our theoretical framework for studies in geometry is intro-
duced and is used to launch some perspectives.

18.2  Complexity of the Geometric Work

Mathematical domains are constituted by the aggregation and organization of 
knowledge. As Brousseau (2002) emphasized, this organization will not inevi-
tably be the same as the actual implementation in a classroom. A mathematical 
domain is the object of various interpretations when it is transformed to be taught. 
These interpretations will also depend on school institutions. The case of geom-
etry is especially complex at the end of compulsory school, as we show in the 
following.

The following problem was given for the French examination at grade 9 in 1991 
and was used in a study we conducted (Houdement and Kuzniak 2003a). 

Construct a square ABCD with side 5 cm Fig. 18.1.

1. Compute BD. 
2. Draw the point I on [BD] such that BI = 2.8 cm, and then the point J on [BC] 

such that JC = 3 cm.
 Is the line (IJ) parallel to the line (DC)?

The intuitive evidence (the lines are parallel) contradicts the conclusion expected 
from a reasoning based on properties (the lines are not parallel). Students are faced 

1 Let six points be roughly located on a conic: if we draw the lines roughly joining points and they 
intersect at a, b and c, then these points are roughly aligned.

Fig. 18.1  Problem from 
French examination at grade 
9 in 1991
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with a variety of tasks referring to different, somewhat contradictory, conceptions 
and the whole forms a fuzzy landscape:

1. In the first question, a real drawing is requested. Students need to use some 
drawing and measure tools to build the square and control and validate the 
construction.

2. Students then have to compute a length BD using the Pythagorean theorem and 
not measure it with drawing tools. However, which is the nature of the numbers 
that students have to use to give the result: An exact value with square roots or 
an approximate one with decimal numbers that is well adapted to using construc-
tions and that allows students to check the result on the drawing?

3. In the third question—are the lines parallel?—students work again with con-
structions and have to place two points (I and J) by measuring lengths. Moreover, 
giving the value of 2.8 could suggest that the length is known up to one digit and 
could encourage students to use approximated numbers rounded to one digit. In 
that case, 2  is equal to 1.4 and both ratios are equal, which implies the parallel-
ism by Thales’ theorem (Strahlensatz) related to similarity. If students keep exact 
values and know that 2  is irrational, the same theorem implies that the lines are 
not parallel.

With grade 9 students The problem was given in a grade 9 class (22 students), 1 
week after a lecture on exact value with square roots and its relationships to length 
measurement. After the students had spent 30 min working on the problem, half 
of them answered that the lines were parallel and the other half answered that they 
were not. On the teacher’s request, they used the problem of approximated values 
to explain the differences among them. At the teacher’s invitation, they started again 
to think about their solutions. At the end, 12 concluded the lines were not parallel, 
eight that they were and two hesitated.

Indeed, after studying their solutions and their comments on the problem, we can 
conclude that students’ difficulties did not generally relate to a lack of knowledge on 
geometric properties but to their interpretations of the results. They had trouble with 
the conclusions to be drawn from Thales’ theorem. Even after discussion, students 
expressed their perplexity about the result and its fluctuation. One student said, “I 
don’t know if they are parallel for when I round off, the ratios are equal and so the 
lines are parallel, but they are not parallel when I take the exact values.” For stu-
dents, one answer is not more adequate than another. This gives birth to a geometric 
conception where some properties could be sometimes true or false. How to make 
students overcome the contradiction? A first possibility is to force the entrance into 
the didactical contract expected by the class-teacher, who explained us that at this 
moment in grade 9, it must be clear that “a figure is not a proof.”

Working on approximations and thinking about the nature of geometry taught 
during compulsory school open a second way that we explore with geometrical 
paradigms in the following.
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18.3  Geometrical Paradigms and Three Elementary 
Geometries

The previous example and numerous others of the same kind show that a single 
viewpoint on geometry would miss the complexity of the geometric work, due to 
different meanings that depend on both the evolution of mathematics and of school 
institutions. At the same time, we saw that students are strongly disturbed by this 
diversity of approaches. Geometrical paradigms were introduced into the field of 
didactics of geometry to take into account the diversity of points of view (Houde-
ment and Kuzniak 1999, 2003b).

The idea of geometrical paradigms was inspired by the notion of paradigm in-
troduced by Kuhn (1962) in his work on the structure of scientific revolutions. In a 
global view, one paradigm consists of all the beliefs, techniques and values shared 
by a scientific group. It indicates the correct way for putting and starting the resolu-
tion of a problem. Within the restricted frame of the teaching and learning of geom-
etry, our study is limited to elementary geometry, and the notion of paradigm is used 
to pinpoint the relationships between geometry and belief or mathematical theories.

With the notion of paradigms, Kuhn has enlarged the idea of a theory to include 
the members of a community who share a common theory.

A paradigm is what the members of a scientific community share, and a scientific 
community consists of men who share a paradigm (Kuhn 1962, p. 180).

When people share the same paradigm, they can communicate very easily and 
in an unambiguous way. By contrast, when they stay in different paradigms, mis-
understandings are frequent and can lead, in certain cases, to a total lack of com-
prehension. For instance, the use and meaning of figures in geometry depend on 
the paradigm. Sometimes it is forbidden to use a drawing to prove a property by 
measuring and only heuristic uses of figures are allowed.

To bring out geometrical paradigms, we used three viewpoints: epistemological, 
historical and didactical. That led us to consider the three following paradigms.

18.3.1  Geometry I: Natural Geometry

Natural geometry has the real and sensible world as a source of validation. In this 
geometry, an assertion is supported using arguments based upon experiment and 
deduction. Little distinction is made between model and reality and all arguments 
are allowed to justify an assertion and convince others of its correctness. Assertions 
are proven by moving back and forth between the model and the real: The most 
important thing is to develop convincing arguments. Proofs could lean on drawings 
or observations made with common measurement and drawing tools such as rulers, 
compasses and protractors. Folding or cutting the drawing to obtain visual proofs 
are also allowed. The development of this geometry was historically motivated by 
practical problems.

The perspective of Geometry I is of a technological nature.



31518  Understanding Geometric Work through Its Development and Its Transformations 

18.3.2  Geometry II: Natural Axiomatic Geometry

Geometry II, whose archetype is classic Euclidean geometry, is built on a model 
that approaches reality. Once the axioms are set up, proofs have to be developed 
within the system of axioms in order to be valid. The system of axioms could be 
incomplete and partial: The axiomatic process is a work in progress with model-
ling as its perspective. In this geometry, objects such as figures exist only by their 
definition, even if this definition is often based on some characteristics of real and 
existing objects.

Both geometries have a close link to the real world even if it is in different ways.

18.3.3  Geometry III: Formal Axiomatic Geometry

To these two approaches, it is necessary to add a third geometry (formal axiomatic 
geometry), which is little present in compulsory schooling but which is the implicit 
reference of teachers’ trainers when they have studied mathematics in university, 
which is very influenced by this formal and logical approach.

In Geometry III, the system of axioms itself, disconnected from reality, is cen-
tral. The system of axioms is complete and unconcerned with any possible applica-
tions in the world. It is more concerned with logical problems and tends to complete 
“intuitive” axioms without any “call in” to perceptive evidence such as convexity 
or betweenness. Moreover, axioms are organized into families that structure geo-
metrical properties: affine, Euclidean, projective, etc.

These three approaches (and this is one original aspect of our viewpoint) are not 
ranked: Their perspectives are different and so the nature and the handling of prob-
lems change from one to the next what is important here is the idea of three different 
approaches of geometry: Geometry I, II and III.

Back to the example If we look again at our example, students—and teachers—are 
not explicitly aware of the existence of two geometrical approaches to the problem, 
each coherent and possible. Moreover, students generally think within the paradigm 
which seems natural to them and close to perception and instrumentation, Geom-
etry I. However, in this geometry, measurement is approximated and known only 
over an interval. The parallelism of lines depends on the degree of approximation. 
Teachers insist on a logical approach—Geometry II—which leads the students to 
conclude blindly that the lines are not parallel, against what they see.

It could be interesting to follow Klein’s ideas and introduce a kind of “approxi-
mated” theorems, more specifically here an “approximated” Thales’ theorem: If the 
ratios are “approximately” equal, then the lines are “almost” parallel. In that case, 
it would be possible to reconcile what is seen on the drawing and what is deduced 
based on properties.

Developing thinking on approximation in geometry can be supported by DGS, 
which favours a geometric work into Geometry I, but with a better control of the 
degree of approximation. It is the case, for instance, with the CABRI version we 



316 A. Kuzniak

used during the session with students. In this version, an “oracle” is available which 
can confirm, or not, the validity of a property seen on the drawing. Here, the paral-
lelism of both lines was confirmed by the “oracle” according to the approach of the 
problem based on approximation.

Many problems allow discussion of the validity of a theorem or property in re-
lationship to numerical fields. For instance, the CABRI oracle asserts that (EF) and 
(BC) are parallel lines in a triangle ABC when E and F are respectively defined as the 
midpoint of [AB] and [AC]. However, if E is defined as the midpoints of [AB], when 
we drag a point F on [AC], it is possible that CABRI oracle never concludes that (EF) 
and (BC) are parallel for any position of F. These variations in the conclusion need an 
explanation and provoke a discussion among students, which can be enriched by the 
different perspectives on geometry introduced by geometrical paradigms.

To discuss the question in depth and think about new routes in the teaching and 
learning of geometry, we introduce some details about the notion of the geometric 
work space (GWS; Kuzniak 2008, 2010; Kuzniak and Rauscher 2011).

18.4  The Notion of GWS within the Framework 
of Didactics of Geometry

At school, geometry is not a disembodied set of properties and objects reduced 
to signs manipulated by formal systems: It is at first and mainly a human activ-
ity. Considering mathematics as a social activity that depends on the human brain 
leads to understanding how a community of people and individuals use geometrical 
paradigms in the everyday practice of the discipline. When specialists try to solve 
geometric problems, they go back and forth between the paradigms and they use 
figures in various ways, sometimes as a source of knowledge and, at least for a 
while, as a source of validation of some properties. However, they always know 
the exact status of their hypotheses and the confidence they can give to each one of 
these conclusions.

When students perform the same task, we are not sure about their ability to use 
the knowledge and techniques related to geometry. That requires an observation of 
geometric practices set up in a school frame, and, more generally, in professional 
and everyday contexts, if we aim to know common uses of mathematics tools. The 
whole work is summarized in the notion of GWS, a place organized to enable the 
work of people solving geometric problems. They can be experts (the mathemati-
cians) or students or senior students in mathematics. Problems are not a part of the 
work space but they justify and motivate it.

Architects define work spaces as places built to ensure the best practice of a 
specific work (Lautier 1999). To conceive a work space, Lautier suggests thinking 
of it according to three main issues: a material device, an organization the designers 
are responsible for, and finally a representation which takes into account the way 
the users integrate this space. We do not intend to take up this structure oriented to 
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productive work without any modifications, but it seems to us necessary to keep 
in mind these various dimensions, some more material and the others intellectual.

To define the GWS, two levels connected to each other have been introduced: the 
epistemological level and the cognitive level.

18.4.1  The Epistemological Level

Geometrical activity, in its purely mathematical dimension, can be characterized 
by three components. These three interacting components are the following ones:

•	 a	real	and	local	space	as	a	material	support	with	a	set	of	concrete	and	tangible	
objects;

•	 a	set	of	artefacts	such	as	drawing	instruments	or	software;	and	
•	 a	theoretical	frame	of	reference	based	on	definitions	and	properties.

These components are not simply juxtaposed but must be organized with a precise 
goal depending on the mathematical domain in its epistemological dimension. This 
justifies the name epistemological plane given to this first level. In our theoretical 
frame, the notion of paradigms brings together the components of this epistemologi-
cal plane. The components are interpreted through the reference paradigm and, in 
return, through their different functions, the components specify each paradigm. 
When a community can agree on one paradigm, they can then formulate problems 
and organize their solutions by favouring tools or thought styles described in what 
we name the reference GWS. To know this GWS, it will be necessary to bring these 
styles out by describing the geometrical work with rhetoric rules of discourse, treat-
ment and presentation.

18.4.2  The Cognitive Level

We introduced a second level, centred on the cognitive articulation of the GWS 
components, to understand how groups, and also particular individuals, use and 
appropriate the geometrical knowledge in their practice of the domain. From Duval 
(2005), we adapted the idea of three cognitive processes involved in geometrical 
activity:

•	 a	visualization	process	connected	to	the	representation	of	space	and	material	sup-
port;

•	 a	construction	process	determined	by	instruments	(ruler,	compass,	etc.)	and	geo-
metrical configurations; and 

•	 a	discursive	process	which	conveys	argumentation	and	proofs.

From Gonseth (1945–1952), we retained the idea of conceiving geometry as the 
synthesis between different modes of knowledge: intuition, experiment and deduc-
tion (Houdement and Kuzniak 1999).
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The real space will be connected to visualization by intuition, artefacts to con-
struction by experiment, and the reference model to the notion of proof by deduc-
tion. This can be summarized in Fig. 18.2.

18.5  Building a GWS: A Transformation Process

18.5.1  On the Meaning of Genesis

In the following section, we will consider the formation of a GWS by teachers and 
students within the educational system. Our approach aims to better understand the 
creation and development of all components and levels shown in Fig. 18.2. The geo-
metric work will be considered as a process involving creation, development and 
transformation. The whole process will be studied through the notion of genesis, 
used in a general meaning which focuses not only on the origin but also on the de-
velopment and transformation of interactions. Through the transformation process, 
a structured space, the GWS is formed.

Fig. 18.2  The geometric work space
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18.5.2  Various GWS Levels

In a particular school institution, the resolution of geometric tasks implies that one 
specific GWS has been developed and organized well to allow students to enter 
into the problem-solving process. This GWS has been termed appropriate and the 
appropriate GWS needs to meet two conditions: it enables the user to solve the 
problem within the right geometrical paradigm, and it is well built, in the sense in 
which its various components are organized in a valid way. Here, the designers play 
a role similar to architects conceiving a working place for prospective users. When 
the problem is put to an actual individual (young student, student or teacher), the 
problem will be treated in what we have termed a personal GWS. The geometric 
work at school can be described according to three GWS levels: geometry intended 
by the institution is described in the reference GWS, which must be fitted out in an 
appropriate GWS, enabling an actual implementation in a classroom where every 
student works within his or her personal GWS.

18.5.3  Various Geneses of the GWS

As we have seen, geometrical work is framed through the progressive implementa-
tion of various GWSs. Each GWS, and specifically the personal GWS, requires a 
general genesis which will lean on particular geneses connecting the components 
and cognitive processes essential to the functioning of the whole GWS. The episte-
mological plane of the GWS needs to be structured and organized through a process 
oriented by geometrical paradigms and mathematical considerations. This process 
has been named “epistemological genesis”. In the same way, the cognitive plane 
needs a cognitive genesis when it is used by a generic or particular individual. Spe-
cific attention is due for some cognitive processes such as visualization, construc-
tion and discursive reasoning.

Both levels, cognitive and epistemological, need to be articulated in order to 
ensure a coherent and complete geometric work. These three fundamental geneses 
relate to three kinds of transformation (Fig. 18.3) that occur in this process:

•	 an	 instrumental	 genesis	which	 transforms	 artefacts	 into	 tools	within	 the	 con-
struction process;

•	 a	figural	and	semiotic	genesis	which	gives	the	tangible	objects	the	status	of	op-
erating mathematical objects; and 

•	 a	discursive	genesis	of	proof	which	gives	a	meaning	to	properties	used	within	
mathematical reasoning.

We will examine how it comes into geometrical work by clarifying each genesis 
involved into the process.

On figural genesis The visualization question came back recently to the fore-
ground of concerns in mathematics and didactics after a long period of ostracism 
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and exclusion for suspicion. In geometry, figures are the visual supports favoured 
by geometrical work. This led us, in a slightly restrictive way, to introduce a fig-
ural genesis within the GWS framework to describe the semiotic process associated 
with visual thinking and involved in geometry. This process has been especially 
studied by Duval (2005) and Richard (2004). Duval has given some perspectives 
to describe the transition from a drawing seen as a tangible object to the figure 
conceived as a generic and abstract object. For instance, he spoke of a biologist’s 
viewpoint when it is enough to recognize and classify geometric objects such as a 
triangle or Thales’ configurations often drawn in a prototypical way. He also intro-
duced the idea of dimensional deconstruction to explain the visual work required 
on a figure to guide the perceptive process. In that case, a figure needs to be seen as 
a two-dimensional (2D) object (a square as an area), a set of 1D objects (sides), or 
0D objects (vertices). Conversely, Richard stresses the downward2 process from the 
abstract and general object to a particular drawing.

On instrumental genesis A viewpoint on traditional drawing and measuring 
instruments depends on geometrical paradigms. These instruments are usually used 
for verifying or illustrating some properties of the studied objects. The appearance 
of computers has completely renewed the question of the role of instruments in 
mathematics by facilitating their use and offering the possibility of dynamic proofs. 
This aspect is related to the question of proof mentioned in the preceding paragraph, 

2 In the following, upward and downward refer to the diagram and do not have a positive or nega-
tive meaning.

Fig. 18.3  Geneses into the geometric work space
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but the ability to drag elements adds a procedural dimension which further increases 
the strength of proof in contrast to the static perception engaged in paper and pencil 
environments. However, students do not master easily the use of artefacts. At the 
same time, teachers need to develop specific knowledge for implementing software 
in a classroom. Based on Rabardel’s works on ergonomics, Artigue (2002) stressed 
the necessity of an instrumental genesis with two main phases that can be inserted 
in our frame. The upward transition, from the artefacts to the construction of geo-
metric configurations, is called instrumentation and describes users’ manipulation 
and mastery of the drawing tools. The downward process, from the configuration 
to the adequate choice and the correct use of one instrument, is related to geometric 
construction procedures and is called instrumentalization. In this second process, 
geometric knowledge is engaged and developed.

On discursive genesis of reasoning The geometrization process, which combines 
geometric shapes and mathematical concepts, is central to mathematical under-
standing. We saw the strength of images or experiments in developing or reinforc-
ing certainty in the validity of an announced result. However, how can we make 
sure that students understand the logic of proof when they do not express their 
argumentation in words but instead base it on visual reconstructions that can create 
illusions? A discursive explanation with words is necessary to argue and to convince 
others.

The nature and importance of written formulations differ from one paradigm 
to another. In most axiomatic approaches, it is possible to say that mathematical 
objects exist only in and by their definition. This is obviously not the case in the 
empiricist approach, where mathematical objects are formed from a direct access 
to more or less prototypical concrete objects. As for artefacts, we can pinpoint two 
geneses. The upward sense relates to a proof process based on initial properties 
(Balacheff 1982) and the other sense could be seen as a defining process (Ouvrier-
Buffet 2007) and relates to institutionalization for Coutat and Richard (2011).

18.6  Towards a Coherent Geometric Work at the End 
of Compulsory School

Using the theoretical framework introduced above, we emphasize here some con-
tradictory ways we encountered in French geometry education and highlight what 
could be a coherent approach using both geometric paradigms. For that, we draw 
some conclusions from a work of Lebot (2011), who has studied ways of teaching 
the introduction for the notion of angles at grades 6 to 8. Using the GWS diagram, 
it is possible to describe possible routes students may take when they use software 
or drawing tools to construct figures and solve problems (1 to 9). Lebot has ob-
served interesting differences visible in the following diagrams, and we discuss 
some among them:
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Besides these complex routes, he had observed some very incomplete schemas 
like these:

A coherent GI work space Generally, a geometric task begins with a construction 
performed using either traditional drawing tools or digital geometric software. Each 
time, the construction is adjusted and controlled by gesture and vision.

In this approach to geometry, the trail into the GWS diagram is like the one of 
Diagram 5 and done in a first sense (Instrumental (I)—Figural (F), and then Discur-
sive (D)), which characterizes an empirical view on geometric concepts.

A coherent way to work theoretically in Geometry I would be to use “approxi-
mated” theorems in the sense we introduced (Sect. 18.3), where the numerical do-
main is based on decimal numbers rather than on real numbers. Theoretical dis-
course must justify what we see and not contradict it. This approach has been devel-
oped by Hjelmsev (1939), among others.

A coherent GII Work Space In the Geometry II conception, the focus is first on 
the discourse that structures the figure and controls its construction. This time, the 
route is trailed (Diagram 8) in an opposite sense (D—F—I) and the figure rests on 
its definition: All properties could be derived from the definition without surprises.

The inverse circulation of the geometric work in Geometry I and Geometry II 
can lead to a break in the geometric work that forms, when only one approach is 
explicitly privileged. As we can observe in the traditional teaching and learning of 
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geometry, students are frequently asked to start geometric problems with the con-
struction of real objects. This leads them to work in the sense (I—F—D) of the Dia-
gram 5. However, for the teacher, the actual construction of an object is not really 
important: The discursive approach is preferred and expected, as in the Diagram 
8 covered in the sense (D—F—I). In this pedagogical approach and for teachers, 
elements coming from Geometry I only support students’ intuition for working in 
Geometry II, leading the formation of a (GII/gI)3 work space. However, at the same 
time, students may believe that they work in a (GI/gII) work space where the objec-
tive is to think about real objects using some properties coming from Geometry II 
(Thales and Pythagorean theorems) to avoid direct measurement on the drawing. 
The geometric work made by students can be incomplete, as in Diagram 6, where 
students stay in an experimental approach without any discursive conclusion. They 
have paid too much attention to the construction task which requires time and care, 
but this work was neglected in the proof process expected by the teacher, where fig-
ures play only a heuristic supporting role. That can lead to another form of incom-
plete work but this time favoured by teachers, as in Diagram 4 where there exists 
only interaction between proof and figure.

We support the idea that both geometric paradigms must be included in geometry 
learning to develop a coherent (GI / GII) work space where both paradigms have the 
same importance. Only when this condition is met, an approximation can have both 
a numerical and a geometrical meaning, and a GWS can be created suitable for in-
troducing “almost parallel” lines in relationship to decimal numbers where “strictly 
parallel” lines relate to real numbers. That would help resolve problems of math-
ematical coherency such as those experienced by students who asserted that they 
did not know whether the lines were parallel because “the lines (IJ) and (DC) are 
parallel if we round off, but they are not if we take the exact value”.

18.7  Beyond the GWS

How can the notion of GWS be extended beyond geometry? First, the context in 
which the geometric work is developed can be taken into account. This context can 
be of a social and technological nature such as within Geiger’s studies (Chap. 12), 
where ways in which productive social interactions between students, teachers and 
artefacts that led to mathematical learning have been explored. Another extension 
could consider the cognitive dimension in the teaching and learning processes. Ar-
zarello (2008) took this approach by introducing the “Space of Action, Production 
and Communication” that he viewed as a metaphorical space where the student’s 
cognitive processes mature through a variety of social interactions. Within these 
frameworks, it is clear that the notion of GWS can operate on and pinpoint what, 
at the end, is the goal of an educational approach in mathematics: to make an ad-

3 We use capital letters to insist on the dominant paradigm and small letters for the supporting 
paradigm.
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equate mathematical work. This assertion leads us to another kind of generalization 
related to the nature of mathematical work. In this direction, we have started some 
investigations with researchers interested in calculus, probability or algebra. A third 
symposium on this topic has been held held in Montreal in 2012 and some ele-
ments on this approach are given in Kuzniak (2011). The generalization supposes 
an in-depth epistemological study of the specific mathematical domain and of its 
relationships to other domains. Indeed, each domain relates to a particular class of 
problems and the crucial question is to find an equivalent to the role that real space 
plays in geometry. Variations and functions for calculus, and chance and data for 
probability and statistics, can play the same role as space and figures in geometry. 
It seems that the two planes, epistemological and cognitive, would keep the same 
importance as in geometric work, but figural genesis and visualization should be 
changed and reinterpreted through semiotic and representation processes in relation 
to the mathematical domain concerned.
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19.1  Mathematical Literacy and Big Ideas

There is no standard definition of “mathematical literacy.” Some descriptions are 
specified in the following section.

19.1.1 Descriptions by OECD

In the work by the Organisation for Economic Co-operation and Development 
(OECD 1999, p. 41) “mathematical literacy” is defined as

an individual’s capacity to identify and understand the role that mathematics plays in the 
world, to make well-founded mathematical judgements and to engage in mathematics, in 
ways that meet the needs of that individual’s current and future life as a constructive, con-
cerned and reflective citizen,

and predominantly described within the definition of “mathematical competencies” 
as

a non-hierarchical list of general mathematical skills which are relevant and pertinent to all 
levels of education. This list includes the following elements (cf. p. 43):

1. Mathematical thinking skill. This includes posing questions characteristic of mathemat-
ics […]; knowing the kinds of answers that mathematics offers to such questions; dis-
tinguishing between different kinds of statements […]; and understanding and handling 
the extent and limits of given mathematical concepts.

2. Mathematical argumentation skill. This includes knowing what mathematical proofs 
are and how they differ from other kinds of mathematical reasoning; following and 
assessing chains of mathematical arguments of different types; possessing a feel for 
heuristics […]; and creating mathematical arguments.
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3. Modelling skill. This includes structuring the field or situation to be modelled; “math-
ematising” […]; “de-mathematising” […]; working with a mathematical model; vali-
dating the model; reflecting, analyzing and offering a critique of a model and its results; 
communicating about the model and its results […]; and monitoring and controlling the 
modelling process.

4. Problem posing and solving skill. This includes posing, formulating, and defining dif-
ferent kinds of mathematical problems […]; and solving different kinds of mathematical 
problems in a variety of ways.

5. Representation skill. This includes decoding, interpreting and distinguishing between 
different forms of representation of mathematical objects and situations and the inter-
relationships between the various representations; choosing, and switching between, 
different forms of representation, according to situation and purpose.

6. Symbolic, formal and technical skill. This includes: decoding and interpreting symbolic 
and formal language and understanding its relationship to natural language; translating 
from natural language to symbolic/formal language; handling statements and expres-
sions containing symbols and formulae; using variables, solving equations and under-
taking calculations.

7. Communication skill. This includes expressing oneself, in a variety of ways, on matters 
with a mathematical content, in oral as well as in written form, and understanding oth-
ers’ written or oral statements about such matters.

8. Aids and tools skill. This includes knowing about, and being able to make use of, vari-
ous aids and tools […] that may assist mathematical activity, and knowing about the 
limitations of such aids and tools.

Here, some essential aspects are not included in the notion of “mathematical lit-
eracy,” but are tacitly implied (cf. p. 42):

Attitudes and emotions, such as self-confidence, curiosity, a feeling of interest and rel-
evance, and a desire to do or understand things, to name but a few, are not components of 
the OECD/PISA definition of mathematical literacy but nevertheless are important prereq-
uisites for it. In principle it is possible to possess mathematical literacy without harbouring 
such attitudes and emotions at the same time. In practice, however, it is not likely that 
mathematical literacy, as defined above, will be put into practice by someone who does not 
have self-confidence, curiosity, a feeling of interest, or the desire to do or understand things 
that contain mathematical components.

Mathematical competencies are solely acquired while doing mathematics (if at all). 
Thus, the question is, whether someone possesses such competencies. The extent 
to which competencies are applied in mathematical activities allows drawing infer-
ences on the initial possession of such competencies.

The OECD (1999, p. 48) does not regard the traditional curriculum content 
strands as a major dimension of the mathematical literacy domain, because

mathematics is the language that describes patterns, both patterns in nature and patterns 
invented by the human mind. In order to be mathematically literate, students must recog-
nise these patterns and see their variety, regularity and interconnections.

Therefore, the mathematics to be assessed (and to be learned previously) should be 
organized around big mathematical ideas.

A large number of big ideas can be identified. In fact, the domain of mathematics is so 
rich and varied that it would not be possible to draw up an exhaustive list of big ideas. For 
the purpose of focusing the OECD/PISA mathematical literacy domain, however, […] a 
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selection of big ideas […] encompasses sufficient variety and depth to reveal the essentials 
of mathematics.

The OECD (1999) uses the following list of mathematical big ideas to meet this 
requirement:

chance; change and growth; space and shape; quantitative reasoning; uncertainty; depen-
dency and relationships.

19.1.2 Big Ideas in the German Didactics of Mathematics

Within the German didactics of mathematics, the outlined notion of mathematical 
literacy in the Programme for International Student Assessment (PISA) framework 
is slightly extended, modified ( mathematische Grundbildung), and embedded in a 
broader discussion of general education ( Allgemeinbildung; e.g., Neubrand 2001, 
p. 46).

Besides the notion of big ideas, the notion of fundamental (mathematical) ideas 
(sometimes also central and leading ideas) is used. Führer (1997, p. 83) prefers the 
notion of fundamental concepts, because it does not only relate to ideas but also 
includes typical questions, modes of marking, manners of structuring and reason-
ing, heuristics, methods, etc. for a discipline (mathematics). Following Schweiger 
(1992), Führer describes fundamental concepts (cf. p. 84):

Fundamental concepts in mathematics instruction should only be understood as concepts 
(a question, an intellectual structural approach, an action scheme, etc.) which are meaning-
ful, intuitively effective, insightful, relieving, and mathematically legitimate, i.e. which 
have at least several of the following features:

•	 The	concept	can	contribute	to	the	discourse	on	the	questions,	what	mathematics	really	
is or means.

•	 The	 concept	 has	 an	 archetype	 according	 to	 language	 or	 action	 concerning	 everyday	
language, acting and thinking.

•	 The	concept	is	revealing,	i.e.	it	makes	mathematical	problems	of	very	different	levels	
more transparent.

•	 The	concept	clears	the	short-term	as	well	as	the	long-term	memory,	and	hereby	improves	
the flexibility of instruction.

•	 The	concept	is	useful	for	a	vertical	fibre	in	a	spiral	curriculum,	i.e.	it	repetitively	clari-
fies and bundles up essential contents of mathematics instruction.

•	 The	 concept	 has	 proven	 itself	 to	 be	 successful	 in	 the	 historical	 development	 of	
mathematics.

(Translated by L. P.)

Führer (1997) especially recommends the following fundamental concepts:
functional variation, induction, approximation, algorithmisation, invariance, symmetry and 
symmetrisation, reflection (cf. p. 84), and efficiency (personal information, 2010).

The search for fundamental concepts ( ideas) has already been going on for a long 
time. Each curriculum and each book which approaches the question “what is math-
ematics?” always sets up that task (Führer 1997, p. 83).
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Vohns (2010) puts forward some very critical theses about the didactical use of 
fundamental ideas for the construction of curricula and their efficiency in math-
ematics lessons.

19.1.3 Mathematics Curricula in Germany

In German curricula and their preambles, the terms mathematical literacy and big 
ideas were usually mentioned only indirectly and in a different phrasing than the 
above cited definitions. However, after Trends in International Mathematics and 
Science Study (TIMSS) and PISA, they appear in curricula and in teaching aids for 
mathematics instruction more obviously and officially.

For example, Hessisches Kultusministerium (2011, p. 5) provides a list of com-
petencies that students are supposed to acquire at certain stages of schooling. Here

competencies are understood as compositions of knowledge and skills […].Thus the per-
spective focuses not only on pieces of knowledge that shall merge together into a general 
understanding but also on further conditions of successful mastery of cognitive demands. 
They comprise strategies for the acquisition of knowledge and for its use and application as 
well as personal and social dispositions, attitudes, and behaviour. By the interplay of these 
components the demand for general education of personality comes true; […]. (Translated 
by L. P.)

This core curriculum attributes particular importance to setting up competencies 
that are relevant for several subjects (cf. pp. 8, 11):

•	 Personal competence: self-perception, self-concept, self-regulation;
•	 Social competence: social perception abilities, consideration and solidarity, co-

operation and teamwork abilities, dealing with conflicts, social responsibility, 
intercultural communication;

•	 Learning competence: problem-solving competence, working competence, me-
dia competence;

•	 Linguistic competence: reading competence, writing competence, communica-
tion competence.

[…] Together with other subjects, the subject of mathematics provides the foundations for 
the development of the learner’s education […]. Mathematical education is revealed in a 
number of competencies, which are developed in the process of mathematical thinking and 
working.
(Translated by L. P.)

Categories of competencies in mathematics education are (cf. pp. 12, 16):
Representing Learners

•	 Choose	the	type	of	representation	that	is	appropriate	for	the	addressees	and	adequate	to	the	
context, and appropriately prepare it for presentation;

•	 Develop	representations;
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•	 Detect	connections	and	vary	between	different	types	of	representations;
•	 Interpret	and	assess	representations.

Communicating Learners

•	 Describe	processes;
•	 Present,	explain,	compare,	and	assess	multiple	procedures	to	solve	a	task;
•	 Document	reflections,	solution	strategies	and	results,	describe	them	adequately	to	address-

ees, and present them, also using suitable media;
•	 Use	adequate	technical	and	formal	language	to	addressees.

Arguing Learners

•	 Ask	 questions	 related	 to	 generalizations	 and	 specializations	 of	 mathematical	 facts,	 and	
evaluate their correctness;

•	 Express	well-founded	conjectures	on	mathematical	connections	and	make	comparisons;
•	 Analyze	mathematical	statements	and	procedures,	explain,	and	justify	them	by	multistep	

chains of arguments;
•	 Understand	 mathematical	 argumentations,	 evaluate	 them,	 and	 give	 reasons	 to	 meet	 the	

facts.

Dealing with symbolic, formal, and technical elements Learners

•	 Work	formally	with	variables,	terms,	and	equations;
•	 Translate	 technical	 language	 into	 colloquial	 language	 and	 vice	 versa,	 using	 appropriate	

symbols;
•	 Create	tables	and	diagrams,	and	extract	data	and	values;
•	 Conduct	solution	and	checking	methods;
•	 Use	mathematical	tools	reasonably	and	smartly,	like	formulary,	pocket	calculator,	software,	

measuring instruments. They select the tools according to criteria of accuracy, economy of 
time, and proneness to mistakes.

Problem-solving Learners

•	 Conceive	possible	mathematical	questions,	phrase	them	in	their	own	words,	and	develop	
solution ideas in problem situations;

•	 Select	appropriate	heuristic	aids,	strategies,	and	principles	for	problem-solving,	apply	them,	
and evaluate solution strategies;

•	 Use	different	types	of	representations	and	approaches	to	solve	problems;
•	 Identify	relevant	quantities	and	describe	their	interdependences;
•	 Interpret	results	with	regard	to	the	problem;
•	 Reflect	on	solution	strategies.

Modeling Learners

•	 Gather	information	in	complex,	unfamiliar	situations,	and	from	different	sources;
•	 Translate	the	context	or	the	situation	into	familiar	mathematical	structures	and	connections	

using mathematical concepts and consider factors of influence and dependences;
•	 Work	with	the	selected	mathematical	model	and	translate	the	results	back	into	the	real	situ-

ation;
•	 Check	and	interpret	results	within	the	real	situation	including	a	critical	evaluation	of	the	

selected model;
•	 Evaluate	the	selected	model;
•	 Provide	typical	real-life	situations	for	mathematical	models.

(Translated by L. P.)
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Standards are more specific about these competencies. Basic and indispensable 
pieces of mathematical knowledge are specified in content areas and their fo-
cal points. Furthermore, concepts of content are organized around leading ideas 
( Leitideen; cf. p. 14):

Number and operation; space and form; quantities and measuring; functional variation; 
data and chance.

19.2  Small Steps to Promote Mathematical Literacy: 
Examples

Although the details of and the differences between the descriptions of mathemati-
cal literacy, big ideas, etc. may be important for didactical theories as well as for 
the construction of curricula and teaching materials, they are rather irrelevant in 
everyday mathematics lessons:

A “mediocre” teacher (i.e., a teacher who is not as proficient as expected by 
theorists) suffers from a lot of pressure in terms of the amount of content, the lack of 
time, and the daily challenge to support the students of lower performance levels. In 
this respect, most proposals provided in didactical papers require too much effort to 
apply. Such a teacher is looking for basic examples, which are relevant to the topic 
the teacher has to deal with “(the day after) tomorrow in his/her class,” which can 
easily be prepared, and which take only little time of instruction. For this purpose, 
the teacher usually decides to use the textbook.

Furthermore, we have to consider that many teachers have to teach mathematics 
without a genuine qualification in the subject (cf. Törner and Törner 2010).

In order to provide examples to promote mathematical literacy and to demon-
strate the references to big ideas, it appears reasonable to follow the lists of math-
ematical competencies (OECD 1999, p. 43), of fundamental concepts (Führer 1997, 
p. 84), or the fields of competencies (Hessisches Kultusministerium 2011, pp. 12, 
16).

However, as it has just been argued, it is more useful for many teachers to il-
lustrate that they can promote mathematical literacy with little additional effort, 
just by dealing with the topics prescribed in curricula or local syllabuses. For this 
reason, this paper provides hints and suggestions on how this can be achieved with 
reference to selected topics of secondary school mathematics.

The intention is to connect

•	 General	descriptions	of	mathematical	competencies,	e.g.,	general mathematical 
skills in Sect. 19.1.1 and the fields of competencies in Sect. 19.1.3,

•	 General	descriptions	of	fundamental concepts, for instance, those in Sect. 19.1.2, 
and

•	 Subject	 matters	 prescribed	 by	 curricula,	 (e.g.,	 Hessisches	 Kultusministerium	
2010, pp. 14, 18, 26),
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as well as to give substance to such “catchwords” with methods for regular math-
ematics lessons at school.

Which arguments can be pointed out for the (additional) methodical proposals? 
As already mentioned, mathematical competencies are only acquired by taking 
part in mathematical activity. Therefore, mathematics instruction has to guide, or, 
if necessary, oblige students to carry out desirable mathematical activities with 
the help of suitable instruction, questions, and demonstrations provided by the 
teacher.

The proposals do not require special methodical classroom arrangements but 
are appropriate for “normal” traditional mathematical instruction, with the teacher 
often in front of the class, developing the subject matter with questions, impulses, 
and information ( fragend-entwickelnder Unterricht). Even this kind of instruction 
does not discharge the students from learning.

Students (can) learn to think for themselves (selbst nachdenken) if they follow 
the teacher’s thoughts (vordenken) and think with him (mitdenken).

The examples are chosen more or less randomly. The hints are supposed to il-
lustrate a way of proceeding what can and should be applied in other topics. Most 
of them (if not all) can probably be found in textbooks, monographs, or booklets for 
mathematics education.

19.2.1  Concept Formation

Concepts are agreements, more or less expedient, usually related to some kind of 
(pre-) experience and mediate meaning, which is not isolated, but rather part of a 
system of concepts. Although mathematical concepts are determinately “defined,” 
students can learn about all of them.

19.2.1.1  Prime Numbers

Prime numbers are often introduced by decomposing the natural numbers into com-
ponents with as few divisors as possible.

Teachers may ask:

•	 Consider	the	definition:
The natural number n is a prime number, if the only divisors of n are 1 and n?
Should the number 1 also be regarded as a prime number? Why (not)?

•	 Can	we	define
The natural number n is a prime number if and only if n has exactly two divisors?
May we omit the word ‘exactly’ in this definition?
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19.2.1.2  Common and Decimal Fractions

Common fractions are often introduced by dividing a cake, a pizza, etc. equitably 
into three, four, five, or more pieces and taking together a certain amount of these 
pieces.

•	 However,	what	does	“equitable”	mean,	if	the	dimensions	of	the	cake	or	the	pizza	
are irregular or some ingredients are not distributed evenly?
We have to ignore all irregularities and imagine absolute perfect cakes or pizzas.

Further activities:

•	 Compare:	2/3 of a cake, half a cake, 3/4 of a cake; half a 100 g bar of chocolate 
and 1/3 of a 200 g bar of chocolate.

•	 Which	criterion	should	be	used	for	comparisons:	size,	weight,	taste,	or	price?
In the case that not all cakes are identical, comparisons can turn out very 
differently.

•	 What	could	be	the	meaning	of:	2/3 of an apple pie + 3/4 of a strawberry cake?
•	 Musical	rhythms:	Is	three-four-time	=	six-eight-time?
•	 Look	at	the	following	notions.	Can	you	determine	the	whole	things?	Quarterfi-

nal, semifinal of sports competitions; lodgings and half-board (when booking a 
room on holiday); half-truth; 7/8 pants; half-pipe for children with rollerblades.

•	 Which	numbers	are	decimal	numbers?	Why	(not)?
0.375, 3/8, 9/24, 37.5 %, 375 ‰, 5/3, 4.010 010 001 000 1…,
2.999 999…

 How can you distinguish decimal numbers from decimal fractions?

19.2.1.3  Geometric Figures

In everyday life, students and we (including mathematicians) use phrases which are, 
strictly speaking, not correct:

Quadrangular box, hexagonal tower, circular flowerpot, rectangular room, 
walking line, etc.

However, we (also mathematicians) understand what is meant by such phrases 
almost every time.

In an analogous way, we use certain geometric terms often restrictively in ev-
eryday life:

Rectangles are not quadratic, and squares are no rectangles. Cylinders are 
thought to be like tins, rotational symmetrical and finite. Planes and flat areas are 
imagined horizontally.

Teachers can and should address the differences between the colloquial and the 
mathematical language.

•	 Evaluate	the	definition:
A rectangle is a quadrilateral with four right angles and adjacent sides of dif-
ferent lengths.
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•	 Compare	and	evaluate:
A quadrilateral with three right angles is called a rectangle. Each quadrilat-
eral with four right angles is called a rectangle. A quadrilateral with four right 
angles and opposite sides of equal length is a rectangle. Each rectangle is a 
quadrilateral with four right angles and adjacent sides of different length.

 Are some of these statements incorrect? Why and for whom? If any statement is 
incorrect, correct it and explain your changes.

•	 Is	a	rectangle	also	a	parallelogram,	a	cube	also	a	cuboid,	etc.?	Why	(not)?

19.2.1.4  Geometric Symmetrical Figures

•	 Are	 the	outcomes	of	 the	 activities	below	consistently	 axisymmetric	or	mirror	
pictures?
Producing patterns and colored blots after folding a paper along a straight line; 
making imprints with hands and feet onto sand or snow; stamps, seals, and their 
prints; mirror writings; looking through a transparent paper from the backside.
Where do we have to place or to imagine a mirror to be placed?

•	 Symmetries	in	plane,	in	space	geometry,	and	in	real	life	can	be	studied	using	the	
following:
Ornaments and friezes (one- or two-dimensional, on plane surfaces or on vases, 
plates)

•	 More	general	symmetries	with	similarities,	oblique	reflections,	etc.
•	 Fundamental	ideas	of	symmetry	can	be	studied	thus:

A symmetrical figure can be dissected into equal parts; a pattern is repeated 
over and over.

 In both cases, how do we have to specify the terms “equal” and “repeated”?

19.2.1.5  Nets of Solids

The nets of boxes for shoes, cosmetics, foodstuffs, etc., of paper tubes, etc., often 
differ from nets of polyhedrons, cylinders, and cones presented in mathematics text-
books that are covered in mathematics lessons.

Teachers could animate students:

•	 To	find	out	how	a	net	has	to	be	folded	to	generate	the	surface	of	the	resulting	
solid figure;

•	 To	compare	both	sorts	of	nets	mentioned	above	and	to	transform	one	into	the	
other;

•	 To	analyze	why	real	nets	have	their	specific	shape	(production,	transport	of	many	
flat nets, and easy folding to solid figures);

•	 To	discuss	whether	nets	of	solid	figures	might	be	connected	or	not	(e.g.,	building	
the surface of a solid figure with synthetic material) and whether a net should be 
made of the nondivided parts of the surface of the solid figure;
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•	 To	clarify	which	nets	of	a	solid	figure	are	different	and	how	they	differ;	and
•	 To	investigate	whether	there	are	nets	that	do	determine	several	solid	figures.

19.2.1.6  Sizes, Quantities, and Measures

Some tasks for students:

•	 What	is	the	meaning	of	the	following	statements?	How	can	we	imagine	the	quan-
tities described?
Basel 334 km ( sign at highway 5); Marburg 25.7 km ( sign at a cycling track); 
average distance between earth and sun = 1.5 × 108 km;
3 kg of potatoes; hundredweight-man; 40 t truck.
2,500 ha (farm size); 357,000 km2 (country size);
80 L rain/m2 within 3 h; 202,106 m3 capacity of a reservoir dam; 82 millions 
( population of a country)
Some objects are bigger than others of the same kind (houses, countries, animals, 
etc.).

•	 Are	the	following	invariable	(invariant)	or	not?
Will you become smaller, if you squat down? Does a piece of wire become 
shorter while it is coiled up? How does the size of a sheet of paper change, if it 
is crumpled or if it gets wet?
Which geometric statements stay the same, if the orientation of the plane or the 
space changes?

•	 Illustrating	quantities:
Which quantities illustrate a 1 L paper bag for drinks? How do we have to use it 
to illustrate volume?
Can a rhinoceros give you an idea of the mass of 1.5 t?
How can you illustrate a great speed?
Can you imagine the distance of 2.5 light years to the Andromeda galaxy, or the 
size of 10–300 nm of soot particles?

•	 How	can	you	define	and	measure	sizes?
Distances between points, lines, curves, planes, surfaces; distances between vil-
lages, countries, stars, etc.; angles of lines in a two-dimensional or three-dimen-
sional space; angles between two planes, between a plane and a line; angles in 
surveying and in astronomy.
Can we always connect distance and orthogonality? Are some of the angles men-
tioned above extreme? What is the possible range of angles between lines or 
directions in space?

•	 How	can	we	determine	23	%	of	an	entity?
As 23/100 of the entity; 23 of each 100 of the entity (sometimes it is necessary to 
imagine the entity to be a multiple of hundred); the x which solves the propor-
tion, 100: entity = 23: x.
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19.2.1.7  Functions, Mappings, etc.

After functions are introduced, the teacher might elaborate on this concept:

•	 There	are	not	only	those	functions	that	assign	real	numbers	to	other	real	num-
bers. Which of the following concepts are also included in the concept of func-
tions:

 Sequences, series; tables; geometric mappings (translation, reflection, dilata-
tion, similarity, projection, etc.); movements (i.e., processes); arithmetic opera-
tions (e.g., addition, subtraction, multiplication, division); measuring; prob-
abilities of events; parametric descriptions (equations) of curves or surfaces; 
parameterized sets of functions (Funktionenschar); differentiation, integration; 
certain buttons of an electronic calculator; ticket machine; macros of computer 
algebra systems and of dynamic geometry software

•	 The	coordinate	system	determines	what	the	graph	of	a	function	(which	assigns	
real numbers to others) looks like.
Compare the graphs of functions in Cartesian coordinate systems and in a polar 
coordinate system. Can a circular line be the graph of a function?

•	 Usually,	 in	mathematics	 instruction	we	 deal	with	 geometric	mappings	 of	 the	
plane into itself.
How can we define and handle congruence or similarity mappings from one 
plane into another?
Hint: Copy a picture with help of square grids in the plane of the picture and in 
the plane of its copy as well. What happens if the square grid in the second plane 
is replaced by a parallelogram grid?

19.2.1.8  Limits

•	 Consider	and	explain	the	meaning	of	the	following:
Decimal expansion of 6:7, non-terminating decimal fractions; calculating the 
perimeter and the area of a circle; determining the volume of a pyramid; Cava-
lieri’s theorem.

•	 Compare	the	following	concepts:
Limit of a sequence or a series of numbers; limit(s) of a function; limit of a 
sequence of geometric figures or solid figures; limits in probability theory.

19.2.1.9  Examples and Counterexamples

•	 Give	examples	and	counterexamples	of	a	concept	and	justify	your	choices:
 natural, integer, (ir)rational numbers, real numbers, and common and decimal 

fractions;
square, rectangle, parallelogram, trapezoid, and rhombus;

 cube, cuboid, prism, pyramid, cylinder, and cone;
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 convergent or divergent sequences; and
 continuous (differentiable and integrable) functions.
•	 How	can	we	check	whether	we	have	found	an	example,	a	counterexample,	or	

perhaps none?

Students might learn by using the following activities (probably the teacher has to 
demonstrate these before the students can apply them):

•	 Mathematical	definitions	(also	definitions	in	other	domains)	are	not	“given	by	
God” and therefore unalterable, but definitions fulfill certain criteria which can 
be stated.

•	 Each	mathematical	concept	has	several	characterizations.	After	we	have	chosen	
one for defining the concept, the others become provable theorems of the con-
cept.

•	 A	definition	does	not	have	to	be	minimal,	but	if	so,	we	can	identify	(counter-)	
examples more easily.

•	 As	mathematics	also	serves	to	describe	certain	aspects	of	“the	world,”	we	can	
decide on one of the following: Either a mathematical definition should follow 
the characteristics of everyday life or we have to adapt these criteria to the tradi-
tional mathematical definition.

•	 It	is	sometimes	claimed	that	it	is	necessary	to	use	the	technical	terms	in	everyday	
life in order to be understood. However, often the technical terminology does not 
serve this purpose better than the colloquial expressions.

•	 The	assignments	right	and	wrong,	concerning	statements	(even	with	mathemati-
cal content), depend on the context of the statement.

19.2.2  Producing and Ensuring Knowledge, Argumentation

Deepening insights into already acquired concepts, or new knowledge, can arise 
from connecting different subjects and embedding subject matters in greater con-
texts (cf. Vollrath 1995 for long-term learning). To receive new ideas you should 
know about the features and relations of the situation that is taken into account, 
which are remarkable, unexpected, and surprising.

The field of proving or disproving conjectures and statements has often been 
ploughed. Therefore, I will only provide a short reference.

19.2.2.1  Connecting Concepts, which Were Dealt with Formerly, and which 
are More or Less Different.

•	 Subtraction	and	division
We subtract a number “b”, either by taking it away from another number “a” or 
by adding a suitable number “d” to “b” so that, b + d = a.
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 Dividing a number “a” by a number “b” could be done by subtracting “b” from 
“a” as often as possible. Apply the adding idea of subtraction to the dividing 
concept.

•	 Geometric	figures
See Sect. 19.2.1.3. Apply the formula for calculating the areas of trapezoids to 
triangles, rectangles, and parallelograms.

 Bars, postcards, tiles, cuboids, cylinders, etc. can all be understood to be prisms; 
sometimes, it is necessary to imagine them to be perfect.

•	 Functions:	see	Sect.	19.2.1.7
•	 Coordinate	systems

Signs for outdoor water- and gas stopcocks; Cartesian systems in plane and in 
space geometry; rectangular systems for functions; geodesic and geographic 
systems (also clockwise-oriented or left-threaded); and longitude, latitude, and 
altitude of geography or topographic maps. 
Parametrical descriptions (equations) of curves or surfaces provide the figures 
with coordinate systems.

•	 Differentiation	and	integration
The fundamental theorem of calculus combines differentiation and integration 
of functions. By using this theorem, one can define and tabulate nonelementary 
functions.
The rule of integration by parts can be derived from the product rule of differ-
ential calculus. Which integration rule follows the quotient rule of differential 
calculus?

19.2.2.2  Proving Statements

•	 How	 can	 we	 understand	 statements	 that	 can	 be	 found	 in	 textbooks,	 formula	
books, etc. or ones that are guessed?
Separate prerequisites and assertions. Explain all details. Transform colloquial 
language into mathematical correct phrasings such as: Can two objects be iden-
tical? Different geometric figures cut each other and not themselves. Parallel-
ism, orthogonality, etc. are not features of single objects but relations between 
several ones. The words “a” and “the” could mean “all.” “Some,” “several,” 
“none,” “few,” “many,” “at least,” “at best,” etc. are also to be defined or 
rather clarified. The inversion of an if–then theorem results provisionally in a 
statement, perhaps later on in a theorem.

•	 Transfer	a	theorem	together	with	a	proof	to	an	analogous	situation.
Formulas for calculating the areas of polygons; congruence statements for rect-
angles, circles, cuboids, etc.; perpendicular bisectors of the sides of a triangle 
to its angle bisectors.
Does this also work for orthocenters or centroids of triangles and quadrilaterals?
How does the product rule of calculus differ from the quotient rule?

•	 Can	special	facts	prove	general	theorems?
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Yes, if all calculations and considerations with specific facts show a general 
strategy regarding how to deal with other specific facts: Commutative law of 
number multiplication; paper and pencil calculations of the four rules (all num-
bers); divisibility tests for natural numbers; power rules; associative law of 
matrix multiplication; rule of three.

•	 Which	reasons	are	allowed?
Mathematical theorems are statements “if p, then q.” To prove such a statement, 
we do not have to know whether p is true. To prove the statement, we may 
assume that p is true; otherwise, the statement is always true. Remember in a 
similar way, how to prove the validity of a for-all statement.
In mathematics, at school we usually do not start with a system of axioms and 
then proceed by deduction. At first and often still later, students find and learn 
mathematical concepts and facts by induction. When proving (or deriving) a 
theorem, the teacher may interpret (for himself/herself) those concepts and facts 
as a system of axioms.

•	 Provide	steps	of	proofs	emphasizing	with	easily	memorizable	phrasings,	also	by	
writing on the blackboard and in students’ exercise books.
For example, proving a general rule of divisibility:

We have to show: “if ab and ac, then a(b + c)”
We might assume: actually a divides both b and c.
Now, we have to show: a(b + c) is also valid.

19.2.2.3  Detecting and Guessing Mathematical Facts

•	 Which	statements	are	we	looking	for?
How to add, subtract, multiply, divide fractions or positive and negative num-
bers; theorems for working with vectors or matrices; differentiation rules or inte-
gration rules

•	 Which	statements	may	be	remarkable?
Exceptional points and lines of triangles: Any three straight lines of a plane do 
not have to pass the same point; any three points do not have to be situated on 
the same straight line. However, each triangle has an inscribed circle, a circum-
circle, all perpendicular bisectors of its sides pass through the same point, as do 
all angle bisectors, etc. Is that remarkable? Examine quadrilaterals in a similar 
manner. Can we assert analogous statements for some solid figures?

•	 Check	a	supposition.	Test	it	with	special	data;	examine	extreme	cases	of	the	sup-
position. In geometry: Make and measure accurate drawings or spatial models.

•	 Experimental	mathematics.	Observe	and	follow	scientific	standards:
Decide which data and how much you should collect; pay attention to reason-
able accuracy of measuring; clearly arrange the data in tables and graphs; make 
assertions and test them; try to understand hypotheses that have proven to be 
valid in tests.
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19.2.3  Modeling

There are many publications about teaching modeling in mathematics education. 
Not very often, you will find encouragements to teach students modeling activities 
while they have to deal with mathematics that is prescribed by curricula or local 
agreements.

19.2.3.1  In Daily Life We Need only One Arithmetic

•	 Which	statements	could	be	meaningful?
Sum of zip codes; 3 workers times 5 hours; 4 apples plus 5 pears; mean value of 
test points or credits; April 42nd.

•	 Explain	your	answers:
9.15 a.m. plus 55 min; the day before yesterday minus 2 weeks. When does a 
decade, or century, or millennium start and when does it come to an end?

19.2.3.2  Assigning Numbers to Facts

•	 Calculate	costs	of	goods	and	services.
Should the prize of a unit stay the same in a bulk purchase? May we get some 
discount or rather some extra charge for a bulk purchase or should the prizes be 
proportional to the prize of a single unit, respectively? What is of advantage to 
sellers and customers?

•	 Assess	results.
Sports: highest, widest, fastest, or the best mean value of several attempts. Which 
mean value should be used?

•	 Performances	at	school;	pay	for	work;	assigned	punishment	by	justice.

19.2.3.3  Geometry in Real Life

•	 Look	for	geometric	instruments	used	by	craftsmen,	engineers,	or	amateurs.	How	
are these instruments used to draw lines, circles, right angles, and other angles or 
to produce planes and other surfaces, etc.?

•	 Carry	out	the	following	geometrical	constructions.
Find the central point of a tin cap. Construct a straight line on a football field 
with 100 m length. Imagine you have to mark a circular arc with radius 3.7 km 
in a hilly landscape as part of a traffic line.
Scenery in theatre is designed on a reduced scale. How can you draw the sketch 
of the original scale?
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•	 Describe	geometric	construction	problems	(cf.	Holland	2007, Chap. 3; Profke 
1986):

 Initial state, target state, allowed construction tools; practicability and correct-
ness of the construction plan, number of different results (in which sense?); theo-
retical exact or approximate construction plans versus practical accuracy.
Do mechanical plotters and electronic geometry software produce mathemati-
cally exact or practically accurate drawings?

19.2.3.4  Stochastics

•	 What	are	the	main	domains	of	probability	theory,	descriptive,	and	inference	sta-
tistics? Compare their statements.

•	 The	following	characterize	force	and	helplessness	of	the	statistician:
Influence of the client (prescribing a universal set and attributes to investi-
gate, purpose of the investigation); guarantee of representativeness and signifi-
cance; realization of an investigation that is dispassionate and impartial; use of 
(which?) special characteristic data (means, deviation, etc.); representing the 
results of an investigation in an understandable way; misunderstanding of an 
investigation by the consumers

•	 Some	understandings	or	misinterpretations	of	stochastic	statements	are	discussed:
 Whether a mathematical random experiment grasps a real event (more or less) 

adequately cannot be proven, rather disproven, and calls for competent inter-
pretation. Realizing a mathematical random experiment is a technical and not 
a mathematical problem. What is the meaning (frequency interpretation) of hy-
pothesis tests on a significance level of 95 %? Does such a hypothesis test prove 
anything scientifically (as often claimed in media)? The single test may lead to 
a misjudgment of the results, because of errors of the first or second kind. A rare 
event points to the invalidity of the zero hypothesis; but the test result does not 
appear to have occurred accidentally under the zero hypothesis or not acciden-
tally according to an opposite hypothesis.

19.2.3.5 Supplement

See also Sects. 19.2.1.2, 19.2.1.4–19.2.1.6, examples (2), (4), and (5). Some more 
examples, concerning the application of mathematics in real life, can be found in 
Profke 2010.

Students can perform modeling activities from the beginning of mathematics 
instruction. As mathematics concepts are extracted from real-life situations, the 
acquired mathematics knowledge should be applied to real life. Students might 
learn (probably the teacher has to prompt this directly) by the following activities:

•	 Not	 everything	 that	 can	 be	 done	 with	mathematics	 makes	 sense	 in	 real	 life.	
Mathematical correctness does not always result in practical applicability.

•	 Often,	modeling	a	real	life	situation	by	mathematics	can	be	done	in	several	ways.
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19.2.4  Procedures Planning, Carrying out, and Documenting

For working on exercises and problems, exploring situations, etc., it is very often 
helpful to make a plan. Here are some examples: 
Finding rules to add or to multiply common or decimal fractions; four rules with 
positive and negative numbers; calculating areas of complex geometric figures or 
volumes of complex solid figures; kinds of problems in a domain (percentage or in-
terest calculus, (inverse) proportionality, etc.); working on real-life situations ( Sa-
chrechnen); congruent or similar triangles; constructing or calculating triangles, 
quadrangles, etc.; transforming algebraic terms; and how to solve quadratic equa-
tions.

In order to teach students not to work without a plan, the teacher should discuss 
the following procedures together with the students. Hopefully, this makes the ideas 
for the preparation of the lesson(s) explicit.

19.2.4.1  Gathering Information

•	 Revising	mathematical	concepts	and	procedures.	Search	in	students’	textbooks:	
index, table of contents, and markings in the text. Are there treatments in the 
textbook or in exercise books that can serve as patterns?

•	 Getting	an	idea	how	to	proceed.	
 Is there a standard method? Look for an analogous problem and its solution. Ap-

proach the problem with a simpler collection of data. Identify and solve special 
cases. Are there other ideas to work with on the problem?

•	 Getting	general	ideas	of	dealing	with	a	problem.
In space geometry: deciding on mutual positions of points, straight lines, and 
planes; calculating distances between points, straight lines, and planes; deter-
mining specific distances with elementary geometric reflections.

19.2.4.2  Carrying Out a Plan

•	 Write	down	the	meaning	of	and	the	reason	for	each	step.
•	 How	can	we	check	whether	the	results	are	correct?

Look for and apply specific tests (not very often available, and not always 
completely accurate); check each step (risky because we often make the same 
mistakes again). Apply the result to special and extreme cases of the original 
problem. If possible, work on the same problem in another way.

19.2.4.3  Documenting Plans and Procedures

•	 Write	down	all	ideas	and	reflections	as	brief	outlines	in	your	exercise	book.
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Gather information and document where they were found including questions, 
answers, references, reasons, and plan(s) together with hints on how to fol-
low the plan(s); reasons for a plan, the choice or the rejection of a mathemat-
ical concept or statement; and incorrect considerations and reasons for their 
incorrectness.

•	 The	teacher	has	to	guide	the	students	on	how	to	write	down	considerations.
Students’ exercise books mirror a teacher’s blackboard in a more or less dis-
torted	manner.	Therefore,	 the	 teacher	should	not	be	afraid	of	detailed,	clearly	
arranged texts (also in brief outlines), which the teacher and students formu-
late together (practically possible). Do worksheets and work folders fulfill that 
intention?

See also Kaune et al. (2010).

19.2.5  Sum of Angles of Triangles

This	section	shows	how	a	teacher	can	put	some	small steps for promoting math-
ematical literacy into action during treating a standard topic of secondary math-
ematics instruction. Only one outline is given, according to Walsch (1972, p. 136); 
see also Profke (2009, pp. 102–110).

Some more examples, concerning applying mathematics in real life, can be 
found in Profke 2010.

19.2.5.1  Introduction to the Topic and Posing a Problem

See Sect. 19.1.1.1 no. 1 and 19.2.2.3.

•	 Repetition
How can we categorize triangles? Which characteristics can we use to distin-
guish the triangles? Possible answers: size, form, lengths of sides, and angles 
(right, acute, and obtuse).
Constructing a triangle: What can we choose without restrictions, and what is the 
result of the choice?
One expected answer:	Two	angles	of	a	triangle	determine	the	third	angle.

•	 Problem	posing

Heading: Are the angles of a triangle interdependent?
Problem:	 Given	a	triangle	ABC	with	angle	sizes	α	or	β	or	γ	respectively.
	 Can	we	calculate	γ,	if	we	know	(e.g.)	α	and	β.

Write down the problem, questions, answers, etc. on the blackboard, and also should 
do the students into their exercise books (see Sect. 19.1.1.1 no. 7; 19.2.4.3).
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19.2.5.2  Making a Plan

(See Sect. 19.1.1.1 no. 7; and Sect. 19.2.4.)

•	 Experimenting,	collecting	information,	and	hypothesizing.

−	 Search	for	patterns	by

a. Drawing some triangles and measuring their angles;
b. Investigating special triangles, all of whose angles can be determined.

−	 Test	all	supposed	patterns	with	other	general	triangles.

•	 Asserting	a	statement	for	all	triangles.
•	 Proving	the	asserted	statement.

Give reasons for the need for proof, first for some special triangles, then for all 
triangles (if possible by means of the first cases).

•	 Establishing	a	theorem	on	triangles.

Now, let’s carry out the plan.

19.2.5.3  Experimenting, Collecting data, and Guessing

(See Sect. 19.1.1.1 no. 8; and Sect. 19.2.2.3).

•	 Drawing	triangles	and	measuring	their	angles.	
 Students may be uncertain which triangles to draw. Together with the teacher, 

students can set some data: the length of one side of the triangle and the sizes 
of the adjacent angles. Place the given and the measured data into a table (see 
Table 19.1):

 The students might not detect the invariance of the angle sum.

•	 Investigating	special	triangles	whose	angles	can	all	be	determined.
Triangle	ABC	with	angle	sizes	α	or	β	and	γ	(see	Table	19.2):

All angles of an equilateral triangle have the same size. Six congruent equilateral 
triangles obviously can be joined together to a regular hexagon (see Fig. 19.1). 
From	this,	we	can	see	that	α	=	β	=	γ	=	60°.

We	can	complete	each	rectangular	triangle	ABC	with	α	=	90° to a rectangle. 
For any rectangle, this is evident (see Fig. 19.2): The angles sum up to 360°. 

 Side lengths Angle sizes
a b c α β γ
8 cm 6 cm 5 cm 49° 39° 93°
5 cm 4 cm 8 cm 25° 123° 32°
4 cm 6 cm 8 cm 47° 104° 30°
… … … … … …

Table 19.1  Triangles’ data
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Each diagonal dissects the rectangle in two congruent (equal) rectangular tri-
angles. (Instead of the second we can argue with the theorem on alternate an-
gles at parallel straight lines).
We	deduce	and	calculate	γ	=	90°	−	β.

•	 Detecting	a	pattern.
The	teacher	might	have	to	help	the	students	to	see	the	relation	γ	=	180°	−	(α	+	β)	
for the special triangles that are investigated.
We also have to check this pattern with more general triangles, accurately drawn, 
and confirm the equation within the scope of the drawing precision and measure-
ment precision.

19.2.5.4  Asserting a Statement for All Triangles

Our drawings and investigations suggest:
For all triangles, the following is valid (if we denote angle sizes as usual):
γ	=	180°	−	(α	+	β)	or	α	+	β	+	γ	=	180°

19.2.5.5  Proving the Asserted Statement

(See Sect. 19.1.1.1 no. 1, 7; and Sect. 19.2.2.2.)

α β γ
≈ 0° ≈ 0° ≈ 180°
≈ 0° ≈ 180° ≈ 0°
≈ 90° ≈ 90° ≈ 0°
→ 0° fix ?

Table 19.2  Angle sizes of 
special triangles

Fig. 19.2  A rectangular 
triangle ABC completed to 
form a rectangle

 

Fig. 19.1  Six congruent 
equilateral triangles joined 
together to form a regular 
hexagon
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•	 Do	we	need	to	provide	a	proof	for	the	asserted	statement?
Here are two reasons for this:

a. We cannot produce perfect triangles and measure their angles precisely.
b. We cannot check the statement for very (astronomic) big and very (micro-

scopic) small triangles.

•	 Make	a	plan	for	proving	the	statement.
Identify different cases, e.g., right, acute, and obtuse triangles and look for proof 
of each case. Look for a special case, in which you can prove the statement and 
then try to reduce the general case to the special case.

•	 Prove	the	statement.

1. We already have strictly proven the statement for rectangular triangles.
2.	 Now,	given	a	non-rectangular	triangle	ABC	with	angle	measures	α,	β,	and	γ.
3.	 We	have	to	prove:	γ	=	180°	−	(α	+	β)	or	equivalently:	α	+	β	+	γ	=	180°.
4. For the proof we can use: If a triangle is rectangular, then the sum of its angle 

measures equals 180°.
5. Therefore, we dissect ABC by a suitable altitude line into two rectangular 

triangles, ABD and BCD. (If necessary, we have to change the names of the 
vertices and angles of the triangle.) See Fig. 19.3.

6. We apply the valid case of the statement to ABD and BCD.
7.	 In	fact,	we	get:	α	+	β	+	γ	=	180°	(short	calculation).

19.2.5.6  Establishing a Theorem on Triangles

In the previous step we have proven:
For each triangle, the sizes of its angles amount to 180°:
α	+	β	+	γ	=	180°	(if	we	denote	its	angle	sizes	as	usual	by	α,	β,	and	γ)

Fig. 19.3  Dissection of tri-
angle ABC into two triangles 
ABD and BCD by an altitude
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20.1  Introduction

This chapter is an unusual approach to arithmetical competence. The starting point 
is the idea that students often produce their own strategies, which might differ from 
how their teacher teaches them, to solve prescribed exercises. To cope with these 
different strategies, the teacher has to make a great effort in understanding and 
solving them. Differences in strategy, in the use of facts and automatisms in sub-
solutions, in speed and number of steps can be observed by an experienced teacher; 
but in a group of 25 children, these observations cannot be systematically used in 
noticing, giving support and planning new exercises. The given volume of data can-
not be handled within the constraints of working in the classroom. It would then be 
a good idea to provide a computer program for the teacher, which can then assist in 
such assessments.

This kind of a computer program should be compatible with educational ideas, 
but it should not be an extension of existing educational theories. The new element 
lies in the change of constraints: what is hard to handle for a teacher might be an 
easy job for a computer and vice versa. The discipline of informatical educational 
science focusses on modelling educational data and processes, like the fostering 
of arithmetical competence. It focusses on computer programs as instruments in 
education.

Modelling learning processes might provide new ideas about learning and teach-
ing because computer programs like dynamic models of arithmetical competence 
provide new ways of understanding and scientific research. In the case of Arithme-
ticus, some aspects of flexible calculation can be better understood.

S. Rezat et al. (eds.), Transformation—A Fundamental Idea of Mathematics Education, 
DOI 10.1007/978-1-4614-3489-4_17, © Springer Science+Business Media, LLC 2014
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20.1.1  The Structure of this Chapter

The example of informatical educational science presented in this chapter bases it-
self and develops on several mathematical, psychological and educational theories 
about the learning of elementary mathematics. The central theme is problem solving 
with a focus on skill attainment. The themes of this chapter can be illustrated by a 
short description of an elder computer program for the fostering of elementary mul-
tiplications. These themes are discussed in Sect. 20.2.

Section 20.3 focusses on how ‘interpreting students’ work’ can be understood. 
This section ends with the question, how to make interpretations of calculations 
which are unknown for the teacher or the system. The theme of Sect. 20.3 leads to 
the deeper mathematical and informatical question of how to think of ‘all possible 
solutions for an exercise’. In Sect. 20.4, some informatical elements of the produc-
tion of calculations by Arithmeticus are discussed. Here, the concept ‘transforma-
tion’ plays an important role.

Following these mathematically oriented sections, the fostering of the students’ 
problem solving and skill attainment is revisited in Sect. 20.5. Here, the concept of 
transformation plays an important role in the model that deals with solving arith-
metical problems.

In Sect. 20.6, several educational aspects of the informatical modelling of arith-
metical competence are discussed in connection with actual psychological litera-
ture. Finally, in Sect. 20.7, a conclusion is presented.

20.2  Backgrounds

In this section the understanding and fostering of arithmetical competence are dis-
cussed: psychological backgrounds, solving arithmetical problems as a basis for 
competence, educational consequences and an example of educational software is 
used to illustrate some important concepts finally in this section.

20.2.1  Psychological Backgrounds

Theories about the learning and teaching of the basic arithmetical operations ad-
dition, subtraction, multiplication and division have made fundamental progress. 
Ebbinghaus (1885) has formulated his theory of learning and forgetting and his 
theory of saving effect, which says: although someone has forgotten some piece 
of information, relearning the same information seems to be faster than the initial 
learning. Repeated learning gives a good lasting result because the more the infor-
mation has been relearned the more unlikely it is to be forgotten. This theory of 
learning elementary arithmetical operations has been very popular in education.
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A long sequence of investigators and educationalists, however, proposed that 
information which is in any sense meaningful for the learner can be learnt bet-
ter (Müller 1911; Bartlett 1932; Atkinson and Shiffrin 1971; Neisser 1982) than 
meaningless data, and mathematical educationalists emphasise that a mathematical 
understanding of facts improves a child’s learning (Gerlach 1914; Erlwanger 1973, 
Skemp 1978, Davis 1978; Thornton 1978; Baroody 1983; Ashcraft 1983, 1985; 
Ginsburg 1977; Radatz and Schipper 1983; ter Heege 1986; Wittmann and Müller 
1993). Factual knowledge is not necessarily agile or flexible knowledge (e.g. van 
Parreren 1960). Research has focussed more and more on children’s development 
of meaningful strategies and their learning of facts.

20.2.2  Solving Arithmetical Problems as a Basis for Competence

For most of these authors, the learning of elementary mathematics is a mix of un-
derstanding strategies, learning to apply them and rote learning of arithmetical facts 
like elementary additions and multiplications. Students can attain an understand-
ing by explanations and by problem solving. Problem solving can be fostered by 
offering appropriate problems and material, inviting students to model problem 
situations or offering them appropriate models and having them reflect on their 
mathematical activity. Students can learn facts by heart in meaningful application 
contexts, by repetition and in games.

When talking about a solution for a problem, teachers and students often focus 
on the ‘how’ (Skemp 1978, Instrumental understanding) and/ or the ‘why’ of the 
solution (Skemp 1978, Relational understanding). The ‘how’ and the ‘why’ do not 
explain ‘how to find the solution’.

Although a teacher proposes a solution and the students are able to see each 
other’s solutions, they are still able to produce their own alternative solutions (e.g. 
Ashcraft 1983, 1985; ter Heege 1986).

In the problem solving activity, students develop thinking activity, which is not 
always necessarily discussed or highlighted: This can be fostered by providing them 
with several educational impulses and inputs (Treffers 1987 and van den Heuvel-
Panhuizen 2008), e.g., appropriate contexts, questions, models and applications.

Not only the ‘how’ and the ‘why this way?‘ of solution strategies are important 
for teachers, but also the stimulation of students to produce their own queries, which 
is the secret of an effective educational program.

20.2.3  Educational Consequences

Teaching mathematics implies thinking about how students might produce, perform 
and justify/prove their strategies. A teacher has to make well-tailored educational 
offers for the students: Problems, exercises and help have to be chosen as stepping 
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stones for the students’ learning and for their mathematical activities. The better 
teachers know the students and their actual competences, the better they can tailor 
the educational offer, by providing a rich learning environment for the students, 
where they can find what they might need.

The teacher has to think of how the students’ learning might develop. Grave-
meijer et al. (2003) call this ‘hypothetical learning trajectories’. This thinking in 
advance about individual or group learning is only possible when the teacher has 
an appropriate student model available. The more a learning environment has to 
be individually tailored for specific learning the more detailed the student model 
should be. Relevant informatical educational questions include, how the student 
model could look like, how educational decisions in designing and organising learn-
ing environments could be made and how the student model has to be maintained. 
Deciding on and maintaining the student model can be done by the teacher and by 
a computer system. How these two can work together is the next question in the 
informatical educational approach.

20.2.4  Educational Software

To support the meaningful learning of multiplication facts, Klep and Gilissen (1986, 
1987) developed a computer program that offers children the opportunity of chang-
ing between a formal representation of products and four dynamic multiplication 
models: a number line, a grid and bars and sets (Figs. 20.1, 20.2, 20.3 and 20.4). 
The icons at the bottom of the window can be used to change the model. At the left 
side, a list of neighbour exercises (Dutch: buursom) fitting to the current exercise 
can be displayed on demand: These neighbours can be displayed with the main 
exercise in the window. On demand, the relation between the main exercise and the 
neighbour can be explained by an animation. This learning environment offers the 
possibility of using strategies and of producing personal favourite strategies. In this 
learning environment, a student finds his personal knowledge and fitting strategies 
indicated as a help to find strategies that fit to his personal level and appreciations. 

Fig. 20.1  6 ⋅ 8 as 6 jumps of 
8 units on a number line. At 
the left side, icons are offered 
to start an animation of the 
jumps in the number line 
representation
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The student model contains a performance history over all the sessions a child had 
with the program. The system ‘knows’ the trends in response time and correctness 
for each individual exercise. This information is represented in the little indicators 
at the left of the neighbours, which remind the student of which neighbours are 
‘well known’ to him. Subsequent sessions are planned by the program: In the first 
part of a session, well-known exercises are presented without a model; in the second 
part, exercises which are not yet well exercised in changing model representations 

Fig. 20.3  Relevant strate-
gies for 6 ⋅ 8, which are 
represented as ‘neighbour’ 
products (in Dutch: Buur-
som). The grids at the left of 
the neighbours are indicators 
telling the child how good 
he knows this neighbour on 
behalf of the child’s personal 
learning history in the 
program

 

Fig. 20.2  6 ⋅ 8 as a grid 
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are presented; in the third part, new exercises are offered; and in the last part, the 
student can freely choose the exercises he/she wants to ‘play with’. A teacher pro-
gram informs the teacher about the student’s level and the trend. Other details will 
not be discussed here.

This program offers the children a learning environment, where they can solve 
elementary multiplications using their preferred strategy. The program has a small 
student model that describes the level of a student in a rote-learning perspective. 
This student model is a basis for hinting at what might be an appropriate neighbour 
strategy, for planning subsequent sessions and for informing the teacher about the 
students’ progress.

During the development of this program and after the program was published, a 
mixture of research questions arose: Would it be possible to create:

•	 A	 program	with	 a	 flexible	 user	 interface	 in	which	 children	 can	 express	 their	
thinking easily,

•	 An	interface	which	offers	several	representations,
•	 A	program	that	can	make	interpretations	of	a	child’s	strategies	and
•	 A	program	that	can	maintain	a	student	model	as	a	basis	for	educational	decisions	

about further learning and for the dynamical composition of the mathematical 
user interface?

Would it be possible to comment on a child’s strategy related to his learning history?
A positive answer to these questions is only possible when there is a detailed 

student model, which describes at least the students’ strategies and factual knowl-
edge.

In the next section, the interpretation of calculations and the underlying strate-
gies is analyzed. The next section starts with a short discussion of intelligent tutor-
ing systems (ITSs) because the kind of program under discussion has some features 
in common with the ITS. However, the idea of a student who is mathematically 
active and who constructs ‘new’ strategies goes beyond the traditional ITS. This 
‘beyond’ is the central theme of the next section.

Fig. 20.4  6 ⋅ 8 and its well 
known neighbor, 5 ⋅ 8
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20.3  Towards an Informatical Model of Interpretation 
of Calculating/Doing Arithmetic

To build a computer program with features as discussed in the last section, it is 
important to decide what kind of a program it should be. At the end of the 1980s, 
ITSs were popular. These ITSs were generally considered for assessing the child’s 
solutions by comparing these solutions with expert solutions. In fact, some kind of 
reproductive learning paradigm is the basis of these ITSs. An example is a school-
book-related computer program by Hennecke et al. (2002), Mathematik heute—
Bruchrechnung, which provides precise diagnosis of errors, tips and examples of 
solutions.

In the concept of realistic mathematics (Treffers 1987; Freudenthal 1991; Grave-
meijer 1994; van den Heuvel-Panhuizen 1996), and in wider constructivist liter-
ature (e.g. Cobb et al. 1992), the fundamental idea is that children can reinvent 
mathematical ideas and solutions themselves. These solutions should be improved 
in classroom discussions and in processes like progressive mathematisation and 
progressive algorithmisation (Treffers 1987; Gravemeijer 1994).

The educational requirements, which are connected with these realistic and con-
structivistic ideas, led to a new kind of ITS. Freudenthal (1984) formulated the 
requirements clearly and simply: when a child is solving 7 ⋅ 8, he/she should be free 
to write 3 ⋅ 8 = 24 as the first step. The computer should nod, to give its approval, 
and the child should be free to write 6 ⋅ 8 = 48. Again, the computer ought to nod to 
encourage and the child could write 48 + 6 = 54. Alternatively, the child may type 
48 + 2 = 50, and then 56. Freudenthal thought it would not be possible to create a 
program that could evaluate the complete calculation. It turned out, however, that 
it is possible.

20.3.1  A Nodding Computer?

The metaphor of a nodding computer could be a teacher looking at and listening to 
what a child does and who creates an interpretation of what the child does. Such an 
interpretation is something like finding a calculation which could be written down 
or stated in the steps the child produces. Of course, a teacher cannot be completely 
sure of a child’s thought process. Sometimes, he/she has to ask what the child has 
done. The teacher may get an authentic answer; or the teacher may get an answer in 
which the child reconstructs his or her original thoughts, because the child does not 
know what he or she has thought anymore. The more flexible a teacher is, the better 
his/her chances are to understand the child and to be more sensible to alternative in-
terpretations. In German there is a verb nachvollziehen, which has the approximate 
meaning of ‘to re-enact’, building a calculation or an argument that seems to match 
with the calculation or solution the child proposed.

These features lead to some design requirements for a ‘nodding computer’, 
which I will formulate here in single sentences:
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•	 The	first	step	in	the	program	design	should	be	to	design	a	system,	Arithmeticus,	
producing all possible solutions—like the flexible teacher can produce—for any 
exercise (a mathematical expression to be calculated) or mathematical expres-
sion which has to be solved.

•	 The	second	would	be	to	build	a	program,	solution	matcher,	which	can	match	the	
child’s solution with the possible solutions of Arithmeticus, like the observing 
teacher.

•	 The	third	step	is	the	design	of	a	program,	assessor,	which	can	evaluate	the	inter-
pretations.

•	 The	 fourth	 step	 is	 to	 build	 a	 storing	 system,	 some	kind	 of	 a	 database,	which	
stores the interpreted children’s solutions.

•	 A	virtual	teacher,	planner,	can	provide	comments	and	further	questions	for	the	
child and it can produce changes in the user interface.

These design questions were the leading points in the Information Systems for (the 
support of) Mathematical Activity (ISMA) project . The ISMA project is document-
ed by Klep (1998).

20.3.2  Central Hypothesis in Competence Modelling

The central hypothesis in the ISMA design is: Every correctly produced (written or 
spoken) calculation can be represented as a sequence of mathematical steps. This 
hypothesis is not a psychological one; it is a mathematical approach to calculations, 
as Turing (1948) and Kleene (1952) have proposed. This hypothesis does not say 
anything about a student’s thinking; it states that it is possible to image a calculation 
in a sequence of mathematical steps. Later in this section, I will explain how these 
sequences of mathematical steps can be produced by Arithmeticus, which behaves 
as a flexible teacher as far as flexible production of calculations is concerned. In the 
diagram in Fig. 20.5 the functions of Arithmeticus are represented.

This approach of the ISMA project provides the opportunity for research on the 
learning of arithmetic, because psychological and educational theories, as men-
tioned in the introduction of this chapter, are operationalised in or can be related to 
the program.

20.3.3  Informatical Education Science: Programs are Theories 

In fact, the program group in Fig. 20.5 is a theory which can be approved by falsifi-
cation. Falsification questions could include:

•	 ‘Can	the	program	make	interpretations	for	any	calculation?’
•	 ‘Are	the	interpretations	made	by	the	programs	valid	for	educational	experts?’
•	 ‘Are	the	competences	in	the	program	model	compatible	with,	for	instance,	psy-

chometric test results?’
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This kind of theory has very special features. The kernel of the theory is a dynamic 
model: it is dynamic because its behaviour changes by ‘the students’ and the sys-
tems’ ‘learning’ and its behaviour depends on parameters, which can be changed.

This is a new kind of educational research, which I call: Informatical educational 
science.

Important parts of the dynamic model in the ISMA project, e.g. Arithmeticus, 
will be discussed further in the next sections.

20.3.4  From Strategy to Transformations

The central hypothesis put forward in the last section is not a usual one in the psy-
chology of the learning of mathematics. Usually, different calculations in school are 
considered as strategies (e.g. Ashcraft 1990). The concept of strategy is not a good 

Fig. 20.5  Some relations between program components in the ISMA project: steps 1 and 2: A 
child solves a task in a learning environment; step 3: The written solution is documented in the 
user interface; step 4: Arithmeticus produces calculations, which are sequences of mathematical 
steps; step 5: The solution matcher tries to re-enact (nachvollziehen), in a mathematical way, the 
child’s calculations; step 6: The assessor adds psychological concepts to the mathematical inter-
pretation of the child’s calculation; step 7: By storing the interpretations of the child’s solutions 
in the database, a learning history is built; Arithmeticus, the solution matcher and the assessor can 
make new interpretations of what the child does; step 8: The planner either produces new tasks or 
gives the child freedom to experiment
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basis to understand the production1 of calculations by children or by Arithmeticus, 
because strategies—as I mentioned earlier—are the result of the production of cal-
culations, not the production itself.

The core of this chapter is the idea of modelling arithmetical solutions as algo-
rithms, to be defined as sequences of subsequent arithmetical transformations. This 
is a furthering hypothesis to the central hypothesis: in arithmetic, the mathematical 
steps can be represented by arithmetical transformations.

This approach starts from the mathematical idea of Turing machines (Turing 
1948) and leads to a computational model for arithmetical competence, which can 
be used for making very precise interpretations of any arithmetical solution and for 
recording and planning individual learning paths for the children.

Solutions for elementary arithmetical tasks are usually discussed in terms of ‘ar-
ithmetical strategies’, which are defined by characteristic arithmetical steps in a 
solution. A strategy covers many different calculations and is not appropriate for 
discussing important details in a child’s calculation. Nevertheless, strategies will be 
discussed as categories of calculations.

I will explain how the concept of algorithms as sequences of subsequent arith-
metical transformations can be represented in a dynamic computer model of arith-
metical competence. This cohesive approach makes sense because such a computer 
model opens five interesting fields of didactical research:

1. Analysing mathematical aspects of children’s computations by matching them 
with sequences of subsequent arithmetical transformations;

2. Modelling psychological concepts like (the development of) routines, automa-
tisms and facts as a basis for actual dynamic student models;

3. Analysing mathematical and psychological qualities of children’s computational 
competence and modelling the concept of ‘zone of proximal development of a 
child’;

4. Developing user interfaces which can collect data for an individual dynamic 
computer model of arithmetical competence for each child; and

5. Developing user interfaces which can reflect actual child knowledge from the 
model as a problem-solving support for a child and can propose solutions based 
on the student model: reproductive proposals as well as new proposals in the 
zone of proximal development.

In the next section Arithmeticus, a dynamic model of producing calculations, will be 
explained. Arithmeticus plays a central role in the informatical educational  theory 
of arithmetical competence.

1  In this chapter ‘production’ is not meant in an industrial or technical meaning but in the original 
Latin meaning of ‘to create and to reveal something’, ‘bringing out something’, or ‘to bring up 
something’.
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20.4  Arithmeticus: A Model for ‘all Possible Arithmetical 
Calculations’

20.4.1  ‘Algorithms’ as an Alternative for ‘Strategies’

In educational literature (Schipper 2009, Padberg and Benz 2011), some strategies 
for addition up to 100 are discussed. Two of them are:

a. complete decimal decomposition: 34 + 27 = (30 + 20) + (4 + 7) = 50 + 11 = 61 and
b. partial decimal decomposition: 34 + 27 = (34 + 20) + 7 = 54 + 7 = 61.

Partial decimal decomposition (strategy b) seems to be less complex than complete 
decimal decomposition (strategy a), because only two additions have to be performed 
and only three numbers (34, 20 and 7) are involved and not four (30, 20, 4 and 7) as in 
strategy a. The complexity of these two calculations depends not only on the number 
of numbers involved in the calculation and the number of sub-additions but also on 
how the sub-calculations like (30 + 20) and (34 + 20) are solved or should be solved.

In the complete decimal decomposition (strategy a), for instance, the addition of 
tens (30 + 20) could be done parallel to the addition of ones:

30 + 20 = 3 tens + 2 tens = 5 tens = 50 or short:
30 + 20 (reminds of 3 + 2 = 5) = 50.
Another solution for 30 + 20 is counting forward in steps of 10: 30, 40, 50.
In the partial decimal decomposition (strategy b), the addition (34 + 20) could 

involve counting forward from 34 in steps of ten:
34, 44, 54 or a short version of counting forward where 34 + 20 = 54 could be 

done parallel to 30 + 20 = 50, 34 + 20 = 30 + 20 (mind the 4) = 50, ‘and the 4’ makes 
54: The 4 of 34 is removed before and added after the addition 30 + 20 = 50.

Although the strategies a and b seem to offer two different approaches, each strat-
egy can be performed in several actual calculations using several sub-calculations.

The calculation 34 + 27 = 30 + 20 + 4 + 7 = 50 + 4 + 7 = 54 + 7 = 61 cannot be attrib-
uted clearly to strategy a or b: the step 50 + 4 + 7 might be the result of a complete 
decomposition as in strategy a or of a strategy b where the analogy between 34 + 20 
and 30 + 2 (with 4) is completely formulated as 50 + 4.

To understand calculations, involving sub-calculations seems to be necessary. 
When taking into account sub-calculations, the disadvantage is that the researcher 
has to cope with a large collection of slightly different calculations. A richer but still 
well-structured model for calculations and sub-calculations is needed.

Maybe thinking of calculations in terms of algorithms—sequences of mathemat-
ical transformations—offers a basis for such a model. Threlfall (2009) proposes, 
from a psychological perspective, a similar idea of ‘transformation’ for a better 
understanding of flexibility in calculation. Threlfall (2009, p. 545) discusses the 
idea of strategic choice, which is necessary for understanding why children do ap-
ply a specific strategy for a problem. This strategy thinking is not applicable for 
understanding the massive variety of calculations children produce, because it fo-
cusses on the solution as a whole, not on the small differences between different 
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calculations. Threlfall (2009, p. 547) proposes the psychological concept of ‘zero-
ing in’ to explain the finding of fitting transformations. This ‘zeroing in’ can explain 
the variety of solutions and flexibility in calculation. From a scientific perspective, 
it is positive that the informatical–mathematical thinking (Klep 1998) and the psy-
chological thinking (Threlfall 2009) match: the congruence provides some mutual 
validation of both approaches.

20.4.2  Production Rules for Calculations

A different approach to understand calculations is to concentrate on production 
rules for (all possible) calculations instead of categorising them. In the theory of 
(primitive) recursive functions, Kleene (1952) proposed thinking of production 
rules for all possible arithmetical expressions. It might be a good scientific proj-
ect to investigate whether this approach can be used for understanding all possible 
calculations too. Turing (1948) proposed the concept of an abstract machine, which 
should produce all possible proofs (and calculations). I will leave aside the math-
ematical and philosophical discussions related to this approach and will use the idea 
of production rules for a better understanding of elementary calculations.

Two fundamental questions for modelling computational competence by means 
of sequences of subsequent transformations (algorithms) are:

•	 Is	it	possible	to	understand	calculations	as	compositions	of	elementary	steps?
•	 Is	 it	possible	 to	define	a	(finite)	set	of	elementary	steps	which	can	be	used	to	

produce all possible arithmetical calculations?

In the theory of primitive recursive functions, five elementary functions are defined:

•	 The	constant	function,
•	 The	successor	function,
•	 The	projection	function	(to	take	an	argument	of	a	function),
•	 Composition	function	and
•	 A	primitive	recursion	function,	which	enables	recursive	definitions,	which	can	

be used to define addition as a recursion of counting and multiplication as a re-
cursion of addition.

A subset of arithmetical calculations, as used in elementary education, can be re-
written by this set of construction rules. The theory of primitive recursive functions 
does not deal with the decimal structure of numbers. However, maybe Turing’s and 
Kleene’s ideas can be used for producing all calculations.

20.4.3  Transformation of Mathematical Expressions

In this section, I will explain how a calculation can be understood as a sequence of 
steps. In each step, a mathematical expression is produced and the final step leads 
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to a single number or a desired mathematical expression format. For example, the 
format ‘…remainder…’ defines a desired mathematical expression format for divi-
sions:

45:6 = 7 remainder 3. In this example, 45:6 is ‘transformed’ in hidden steps into 
the expression ‘7 remainder 3’. Often, like in the illustrated example, these subse-
quent mathematical expressions are connected with equal signs.

Sometimes special notations are used, like in the case of the complete decimal 
decomposition in calculation a:

34 27
3 2 5
4 7 11

34 27 61

+
+ =

+ =
+ =

:
0 0 0

This scheme represents a format for the necessary steps in this calculation: decom-
position of the addenda and the vertical addition of the two sums.

Strategy b (partial decimal decomposition) can be represented by a sequence of 
steps:

34 54 6120 7+ + →  →

Models sometimes offer a more complex representation of a calculation format. An 
example for multiplication is the decomposition of 4 ⋅ 12 in 4 ⋅ 10 + 4 ⋅ 2 and repre-
sented in a grid or a rectangle model:

These different representations of calculations can be understood as ‘tools’2 (iconic 
representations) to organise the calculation.

The grid representation of 4 ⋅ 12 can be observed as a structure, which, in a sec-
ond step, is reconstructed in two elements, which can be calculated easily: The 4 ⋅ 12 
rectangle is reconstructed or transformed in two parts: 4 ⋅ 10 + 4 ⋅ 2.

In the case of the rectangle, a calculation can be understood as a sequence of 
transformations of the rectangle and the mathematical expressions in the rectangles:

2  In German, the nouns ‘Bearbeitungshilfe’ and ‘Veranschaulichungsmittel’.
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In this sequence, the transformation of 4 ⋅ 12 into 4 ⋅ 10 + 4 ⋅ 2 is not yet clearly repre-
sented. In fact, the number 12 is decomposed and following the distribution rule the 
multiplication 4 ⋅ (10 + 2) is distributed in 4 ⋅ 10 + 4 ⋅ 2.

The next important aspect is how both terms 4 ⋅ 10 and 4 ⋅ 2 can be treated as 
mathematical expressions themselves and can be replaced by their values.

20.4.4  Calculations as Sequences of Transformations

These observations lead to the next step in thinking about calculations.
A calculation can be understood as a sequence of transformations of an initial 

structure. Transformation steps can be:

•	 Application	of	decomposition	and	composition	rules,
•	 Application	of	algebraic	rules,
•	 Taking	apart,	transforming	and	replacing	terms	(e.g.	projection	and	composition	

in the theory of primitive recursive functions) and
•	 Application	of	well-known,	more	elementary	calculations.

In an abstract representation, it looks like the sequence in calculation I. This se-
quence represents minutely, the transformation steps in the rectangle. The two strate-
gies, a and b, for 34 + 27 are represented in calculations II and III. Calculation IV 
starts as calculation III and goes on like calculation II; it is a mix of strategies a and b.
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•	 In	calculation	IV.d,	the	direct	transformation	34	+	20	=	54	is	not	used	as	in	calcu-
lation III.d, but 34 + 20 is solved by decomposition itself.

•	 The	calculations	in	II.f.	and	IV.i.	are	both	50	+	4	+	7:	the	difference	is	that	in	cal-
culation II the expression comes from 30 + 4 + 20 + 7 = 50 + 4 + 7 and in calcula-
tion IV it comes from an incompletely performed calculus along the decomposi-
tion of 34 + 20 = 50 + 4.

A first glance tells us that, in these sequences of transformations, small differences 
in calculations can be represented.

20.4.5  Algorithms as Sequences of Transformations

Each subsequent mathematical expression in a calculation can be annotated by a 
description of the transformation on that mathematical expression:

Taking apart the descriptions of the subsequent steps brings:
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A mathematical expression like 4 ⋅ 11 or 4 ⋅ 13 might be solved with a similar se-
quence of transformations with the same description. Hence, this list of transfor-
mations can be applied to several mathematical expressions and therefore this se-
quence of transformations can be interpreted as an algorithm ( Algorithm 1), which 
can be successfully applied to at least the mathematical expressions 4 ⋅ 12 and 4 ⋅ 11.

A further example is given in calculation VI:

.

.

.

. .
. .

. .
. .

.

If decomposition of a number, distributivity, taking and replacing mathematical 
sub-expressions are general—or at least on certain domains—applicable transfor-
mations, and if 4 ⋅ 20 = 80 and 80 + 8 = 88 are basic knowledge, then Algorithm 1 can 
be applied to 4 ⋅ 22 too. If 4 ⋅ 70 = 280 and 280 + 8 = 288 are basic knowledge, then, 
algorithm 1 can be applied to 4 ⋅ 72 as well.

Applying an algorithm to any mathematical expression might be successful or 
might fail. Hence, Algorithm 1 might be applied successfully to 4 ⋅ 12 and 4 ⋅ 22. 
Testing algorithm 1 on 4 ⋅ 123 might fail, because the decomposition of 123 is 
100 + 20 + 3 or 120 + 3 or 100 + 23. Maybe this decomposition and the following 
distribution are not available. If this decomposition and distribution are successful, 
then the availability of basic knowledge for 4 ⋅ 120, 4 ⋅ 100, or 4 ⋅ 23 might be a prob-
lem. Therefore, the steps e., h. and j. might fail.

The idea of testing algorithms makes the idea of the domain of an algorithm 
meaningful. On some mathematical expressions, the algorithm will succeed, on oth-
ers it will fail, because certain transformations might fail or some basic knowledge 
is not available.

20.4.6  Domains of Algorithms 

The concepts are expressed in detail within this section; this might prove to be a 
tedious read for the reader but from a mathematical and academic viewpoint it is 
essential in formulating the hypothesis.

The approach of testing algorithms as mentioned in the last section leads to two 
different interpretations of the concept of ‘the domain of all mathematical expres-
sion an algorithm can be applied to’.
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Before venturing into these two interpretations, there is a need for defining the idea 
of ‘set of mathematical expressions an algorithm A can be tested on’. Note the dif-
ference in the terms ‘domain’ and ‘set’. The set contains mathematical expressions 
which have to be tested; the domain contains expressions which were successfully 
tested. In a computer system, it is not a good idea to have infinite sets, like the set of 
all mathematical expressions. A computer cannot cope with infinite sets. Therefore, 
limited sets are needed and we need an appropriate limitation like this one: A set of 
mathematical expressions can be defined as a current universe of all mathematically 
possible expressions, which is of interest in an actual situation. Examples of this kind 
of current universes are: the additions up to 20 or the multiplications up to 100.

Given: 
•	 an	algorithm	A,
•	 a	current	universe	U	and	
•	 a	set	of	actual	basic	knowledge	ABK	of	a	person	P	and
•	 a	set	of	actually	available	transformations	AAT	of	a	person	P,	
then:
the actual domain of algorithm A for person P can be found by testing the algorithm 
A on universe U using the actual basic knowledge ABK and the actually available 
transformations AAT of person P. 

Definition 1: Actual Personal Domain
This definition of actual domain defines a ‘student’s personal domain of an algo-

rithm’. Later, this kind of domain will be discussed further.
A second interpretation of domain of A is a mathematical one:
Test algorithm A on all mathematical expressions ME of the current universe U 

and collect for each ME

a. The basic knowledge and
b. The transformations,

which are needed to enable a successful performance of A.
The result of this testing of A on the current universe U leads to a set of triples of 

a mathematical expression ME of U and the basic knowledge and the transforma-
tions which are necessary to perform A on that mathematical expression.

Given: 
•	 an	algorithm	A	and
•	 a	current	universe	U
then: 
A can be tested on each Mathematical Expression ME from U. 
Either A fails on ME or the triple (ME , necessary basic knowledge, necessary 
transformations ) is created. 
The Maximum Domain of A on U is the collection of all these triples. 

Definition 2: Maximum Domain
This second interpretation will be called the maximum domain of A in the cur-

rent Universe because it does not depend on the knowledge of a person P. The 
maximum domain is congruent with the actual domain of algorithm A for a person P 
who has all necessary basic knowledge and all necessary transformations available. 
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(In Sect. 20.5.2, combinations of an algorithm A and an actual domain of A will be 
interpreted as (dynamic) concepts.)

This maximum domain can be used by the planning program to find out which 
expressions can nearly be solved using a certain algorithm A by a student. The plan-
ning-program can find out for which expressions and algorithm A a student knows 
the transformations involved but not all basic knowledge, or for which expressions 
and algorithm A, a student knows the basic knowledge but not all transformations. 
Offering these expressions as exercises might result in a good exercise in the zone 
of proximal development.

20.4.6.1  Domains as a Model for a Student’s ‘Zone of Proximal Development’

The availability of ‘personal actual domains’ and ‘maximum domains’ opens a 
highly sensitive way of thinking about flexible calculation; sensitive to ‘what a 
child is able to’ or ‘a child’s arithmetical competence’. It is an interpretation of what 
a ‘nodding’ teacher tries to do when observing and coaching a working child. The 
actual basic knowledge ABK and a set of actually available transformations (AAT) 
of an individual child are essential in this conceptualisation.

The traditional thinking of phases in the learning of arithmetic and the traditional 
thinking of more or less fixed strategies is left behind. Calculating has been mod-
elled as the generation of sequences of transformations in a student. This generation 
has constraints, two of which are the actual basic knowledge and the set of actually 
available transformations of a student.

20.4.7  Arithmeticus: A Computer Model for Generating Algorithms

In the last section, algorithms—sequences of subsequent transformations—are pro-
posed as a model for calculations generated by a student. In this section, Arithme-
ticus will be discussed. Arithmeticus is a computer program for the generation of 
algorithms.

Arithmeticus is a computer program in which mathematical expressions, trans-
formations and algorithms have been implemented. Due to the paucity within the 
subject of this chapter, I will not discuss the informatical definitions of ‘mathemati-
cal expression’, ‘transformation’ and ‘algorithm’. The important message in this 
section is: Algorithms can be tested by a computer. The maximum domain and the 
actual domain of an algorithm like Algorithm 1 are dynamic objects, which can be 
(re-)calculated at any moment for any universe and other sets of basic knowledge.

In Arithmeticus, transformations are operationalised at a computational level by 
procedures, which can transform a mathematical expression. Arithmeticus can suc-
cessfully perform a transformation procedure on a mathematical expression or the 
transformation procedure fails. If one transformation fails, the whole algorithm fails. 
An algorithm is tested on a mathematical expression by applying the subsequent 
transformations on the generated successive mathematical expressions. The last math-
ematical expression of the calculation should be an acceptable result: e.g. a number.
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20.4.8  A Generative Model for Algorithms

‘Is it possible to define a (finite) set of elementary steps which can be used to pro-
duce all possible arithmetical calculations?’ is the second question that arises in 
Sect. 20.4.2.

In Sect. 20.4.4, a number of transformations were presented. This Sect. 20.4.8 
focusses on the production of algorithms based on a chosen set S of transformations.

The idea of generating algorithms is to test successive transformations on an ini-
tial mathematical expression getting sequences, like in calculation I to calculation 
IV. Although this might be a straightforward and attractive idea, it is a computational 
monster: Systematically testing six different transformations to produce algorithms 
of 6 to 12 steps would result in over 66 = 46,656 to 612 = 2,176,782,336 evaluations of 
transformations. If there are 20 different transformations in S, the number of tests to 
find all algorithms will be discouragingly large: even for computers.

To prevent the search tree from exploding, several further concepts are imple-
mented in Arithmeticus. I will discuss some of them to give the reader an idea of 
how Arithmeticus can generate algorithms.

Problem Space Given any mathematical expression, a child might produce calcu-
lations by using:

•	 ‘Personal	 transformations’	 like	well-known	 facts,	well-exercised	 automatisms	
and fairly known algorithms and

•	 Mathematical	transformations,	e.g.	decomposition,	distribution	or	taking	a	math-
ematical sub-expression.

The set of these personal or mathematical transformations which a child might use 
can be interpreted as a ‘dynamic problem space’ (Newell and Simon 1972; Klep 1998; 
Klep 2000). A problem space to a mathematical expression F for a child or a system 
S is the set of alternatives that S might be aware of when thinking about how to 
transform F. There are three reasons why I use the concept ‘dynamic problem space’:

•	 Because	 a	 child	 is	 not	 aware	 of	 everything	 he/she	 knows,	 the	 problem	 space	
changes from one mathematical expression to another while he/she works on a 
task.

•	 As	a	result	of	his/her	learning	process,	his/her	problem	space	will	change	in	time:	
the actual problem space to a mathematical expression F will change by learning.

•	 While	 working	 on	 a	 task,	 a	 child	 might	 remember	 some	 actual	 solutions	 or	
results and might apply these in a next step. For example, when calculating 
66 ⋅ 88, the result 6 ⋅ 88 = 528 leads to 66 ⋅ 88 = 5280 + 528 by calculating 60 ⋅ 88 as 
10 ⋅ 528 = 5280.

When reducing a mathematical expression, Arithmeticus can use different dynamic 
problem spaces:

•	 A	dynamic	problem	space	based	on	a	database	of	specific	child	knowledge,
•	 A	dynamic	problem	space	with	mathematical	transformations	and	without	(spe-

cific) facts or algorithms,
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•	 A	dynamic	problem	space	with	a	restricted	set	of	transformations,	facts	and	au-
tomatisms and

•	 Combinations	of	these.

Arithmeticus can solve exercises with child-specific dynamic problem spaces: It 
brings shortcuts in the calculation trees by pruning mathematically necessary se-
quences of transformations, as ‘the child has fast solutions available’.

This pruning of well-known sub-calculations is a fundamental feature in generat-
ing calculations in Arithmeticus. This pruning leads to the simple and effective idea of 
Arithmeticus as a system that learns together with a child. The more the child learns 
and the more the student model grows, the more well-known calculations Arithme-
ticus has available, the more Arithmeticus can prune in new or long calculations and 
the more short calculations Arithmeticus can produce. This learning effect seems to 
be a good model for the learning of students in the usual mathematics education.

(Pseudo) Orthogonality An interesting idea is that sub-problems can be treated 
more or less independently from a main problem. For instance, 27 ⋅ 45 can be trans-
formed (decomposition and distribution) in 20 ⋅ 45 + 7 ⋅ 45. In a next step, 20 ⋅ 45 
might be solved independently of the main calculation of 27 ⋅ 45. There are different 
possible calculations to solve the sub-problem 20 ⋅ 45, for instance:

20 ⋅ 45 = 20 ⋅ 40 + 20 ⋅ 5 = 800 + 100 = 900, or
20 ⋅ 45 = 2 ⋅ 450 = 900 or
20 ⋅ 45 = 20 ⋅		(50	−	5)	=	1000	−	100	=	900.

All these different calculations for 20 ⋅ 45 lead to different calculations of 27 ⋅ 45. If 
there exists one solution for 20 ⋅ 45, it can be used as a sub-solution in 27 ⋅ 45 and it 
can be replaced by any other solution of 20 ⋅ 45.

While producing calculations for 27 ⋅ 45, the search tree for 20 ⋅ 25 is independent 
of the search tree for 7 ⋅ 45. They seem to be perpendicular or orthogonal to each other.

Search trees for sub-expressions are often orthogonal to each other. Still, there 
are problems with orthogonality of sub-calculations, which became clear in the first 
prototypes of Arithmeticus:

Calculation VII: An in�nite loop of transformations. 

a.

b.

c.

d.

e.

f.

g.

h.

i. 

j. 

k.

l.

7 ⋅ 10 

10

5 ⋅ 2
7 ⋅ ( 5 ⋅ 2 )  

2 ⋅ ( 7 ⋅ 5 )  

7 ⋅ 5 

5

10 : 2

7 ⋅ ( 10 : 2 ) 

( 7 ⋅ 10 ) : 2 

7 ⋅ 10  

...

leading to an in�nite loop.
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Unfortunately, sub-calculations are not always as independent of the main calcula-
tion as one would like them to be. It is necessary while generating a sub-calculation, 
to keep an eye on ‘preceding’ steps, to avoid infinite loops. For that reason, the term 
‘pseudo orthogonality’ is used.

Context of a Mathematical Expression in an Evaluation To solve the problem 
of infinite loops like in calculation VII, the concept of context of an expression in a 
calculation is important.

In the example of 7 ⋅ 5 over here there is a need to check in all preceding steps if 
the mathematical expression F which has to be solved is used in any preceding step 
of the current calculation. All preceding calculation steps belong to the (broader) 
context of F.

A smaller context of F is the rest mathematical expression, which remains when 
F is taken out from a more complex mathematical expression.

3 ⋅ 45 + 27 + 3,
3 ⋅ 45 (a mathematical sub-expression) with context 27 + 3.

Sometimes, it is effective to take the context into account when developing a 
 calculation:

6 ⋅ 14 + 3 ⋅ 13 

6 ⋅ 14  (context + 3 ⋅ 13)

2 ⋅ 3 ⋅ 14  

2 ⋅ 14 
28

3 ⋅ 28 (which will not be evaluated because it can be taken together with +3 ⋅ 13 in the
context)

 

3 ⋅ 28 + 3 ⋅ 13

3 ⋅ ( 28 + 13 ) 
28 + 13
41

3 ⋅ 41
123

The idea to stop the evaluation of 6 ⋅ 14 at 3 ⋅ 28 is useful, because 3 ⋅ 13 (in the con-
text of 6 ⋅ 14) can be contracted with 3 ⋅ 28, leading to 3 ⋅ 41, which can be evaluated 
with an automatism.

Arithmeticus, therefore, always looks into the contexts, to find combinations, 
which are ‘easy to evaluate’.

The context of a calculation is interesting in a psychological sense. While gen-
erating a calculation, the stepwise changing context has to be remembered. This 
relates in some sense to the workload in the short-term memory. The psychologi-
cal question is whether the number and the complexity of contexts in calculation 
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steps make tasks more difficult. These observations are important when valuing 
calculations in a psychological perspective like ‘heavy short-term-memory load’. 
In the TAL project (van den Heuvel-Panhuizen 2008), the researchers preferred the 
calculation

57 + 26

57 + 20 + 6

57 + 20 (context +6)

77 (context +6)

77 + 6

83

in place of the total distribution:

The second solution demands more context management than the first one. How-
ever, these two algorithms demand different basic knowledge and automatisms.

Actual Solutions In 218 ⋅ 345, the number 218 can be decomposed into 200 + 18. The 
number	18	is	in	the	neighbourhood	of	20:	18	=	20	−	2.	Therefore,	218	=	200	+	20	−	2	
and 218 ⋅ 345 = 200 ⋅ 345 + 20 ⋅	345	−	2	⋅ 345.

Once the solution of 2 ⋅ 345 = 690 is available, solving 20 ⋅ 345 and 200 ⋅ 345 
might be easy.

When Arithmeticus comes across a mathematical expression F in a calculation, 
it checks whether a solution of F is already available. That can be the case when F 
has been solved in another mathematical sub-expression in the same calculation or 
in a preceding calculation. Therefore, Arithmeticus stores solutions and looks in this 
store for actual solutions, to prune the search tree.

Set of Permitted Transformations Some transformations lead to complica-
tion of a mathematical expression, like the decomposition in: 34 + 17 = 34 + 10 + 7. 
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Other complicating transformations are: replacing a number by a neighbour 
17	+	19	=	17	+	(20	−	1),	or	distribution	34	⋅  (40 + 5) = 34 ⋅ 40 + 34 ⋅ 5.

These transformations are used to change a mathematical expression in parts 
which are easier to solve.

These transformations should not be followed by their antagonists: 34 ⋅ 45 + 34 ⋅ 
5 = 34 ⋅ ( 45 + 5 ) to get 34 ⋅	50	or	17	+	(20	−	1)	=	17	+	19.

When using a transformation, it might be a good idea to disable other transfor-
mations. Therefore, the set of permitted transformations is dynamically changing 
with the subsequent steps in a calculation.

Stop Criteria (to Stop Meaningless Searches) Identifying meaningless searches 
and stopping the evaluation process is important for effectively producing ‘all pos-
sible evaluations of a mathematical expression’. In (pseudo-)orthogonal solutions, 
when using actual solutions, facts or automatisms or when using the context of a 
mathematical expression, stopping might often be useful.

Stopping the search process when an automatism is available is often effective, 
because a child will not choose an alternative when an automatism is available. 
Sometimes the context of the solution offers ‘smart’ combinations without using an 
available automatism.

Stop criterions are important and complex. This complexity has been solved in 
Arithmeticus by defining search processes with different stop criteria.

These six points in this section give an impression of how the production of algo-
rithms in a search tree can be pruned. After the modelling of the search process, the 
following psychological questions come up:

•	 Do	‘dynamic	problem	spaces’	exist	in	students?
•	 Does	 a	 richer	dynamic	problem	space	of	 a	 student	predict	more	 flexibility	 in	

calculations?
•	 Are	the	concepts	of	pseudo-orthogonality	and	context	helpful	to	understand	why	

certain calculations are more difficult than others?
•	 Under	what	circumstances	do	children	use	actual	solutions	and	when	do	experts	

use more actual solutions than poor calculators?
•	 Do	children	have	the	stop	criteria	to	cut	off	useless	search	paths?

These questions might be answered when children could write down their calcula-
tions in a learning environment supervised by Arithmeticus, in its role as a nodding 
teacher.

In the next section, a first front end will be presented, in which students can 
express their calculations.

20.5  Transformation and Metamorphosis of Structures

In mathematics, problem solvers use symbols (numbers, operators and relation sym-
bols) and models like set diagrams, a number line, a grid or bars, like in Fig. 20.6.
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In Sect. 20.4.3, some examples were given regarding how a calculation can be 
expressed in these symbols and diagrams. In the next section, the computer  program 
Plato en de rekenspiegel (English ‘Plato and the math mirror’) (Klep and Spekken 
1998) is be presented, which offers children several opportunities to transform 
mathematical expressions and which offers an individual child a reflection of its 
dynamic problem space connected with a current mathematical expression.

20.5.1  Plato and the Math Mirror

Plato en de rekenspiegel (Klep and Spekken 1998) is a computer program in which 
children can transform expressions.

Figure 20.6 shows a mathematical expression representation of 45 + 18. In the 
user front end, the number 18 is selected, marked in black; the third animal at the 
bottom, the one who can make decimal decompositions, has a bright marker, indi-
cating it can propose a transformation. With a mouse click on this animal, the fol-
lowing decomposition transformation can be performed:

45 + 18 = 45 + 10 + 8. In a next step, the child can select the mathematical sub-
expression, 4 + 10 (Fig. 20.7), and he/she can replace 45 + 10 by 55.

Fig. 20.6  45 + 18 (a)
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While typing, a small window is opened and the child can see what he/she is 
replacing and the resulting new expression. Finally, the small window disappears 
and 45 + 10 + 8 is replaced by 55 + 8.

Figure 20.8	 shows	a	number	 line	 representation	of	100	−	61.	The	arc	with	 the	
number 61 and the number 100 are given and can be selected by the child. Using 
the	 decomposition	 animal,	 two	 arcs	 are	 obtained:	−	60	−	1.	 In	 the	 small	 fields	 in	
Fig. 20.9, the numbers 40 and 39 can be filled in.

In Fig. 20.10, the decomposition animal proposes two alternatives for splitting 
19:	19	=	10	+	9	or	19	=	20	−	1.	The	child	can	choose	one	of	them,	and	that	decomposi-
tion will be performed.

At any moment, the child can select a (sub-)expression and replace that (sub-)
expression by means of the small worksheet as in Fig. 20.7. A child can select 

Fig. 20.7  45 + 18 (b)

 

Fig. 20.8  100	−	61	(a)
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mathematical sub-expressions or a sub-graph to transform them. Each of the five 
animals at the bottom of the screen can propose several specific transformations on 
a selected  (sub-)expression.

All selections and replacements by a child are tested for mathematical correctness 
and eventually feedback is given. All proposals of the animals at the bottom line are 
before presenting them, tested using the actual student model. The decomposition 
19	=	20	−	1	is	only	meaningful	if	a	child	knows	the	difference	between	19	and	20.

Other transformations of the animals -numbered from the left to the right at the 
bottomline- are:

Fig. 20.9  100	−	61	(b)

 

Fig. 20.10.  47 + 19 (a)
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1.	 Several	kinds	of	rounding:	28	+	31	=	30	−	2	+	30	+	1	=	60	−	2	+	1;
2. Commutation: 5 + 6 = 6 + 5;
3. All kinds of decompositions like decimal decompositions, rounding up, distribu-

tions like 7 ⋅	(20	−	1)	=	7	⋅	20	−	7	and	transforming	a	product	in	a	repeated	addition;
4. Contractions like inversion of distribution and converting repeated addition in a 

product; and
5. Neighbours like 5 + 6 = 5 + 5 + 1, 6 ⋅ 7 = 5 ⋅ 7 + 7 or 6 ⋅ 7 = 2 ⋅ 3 ⋅ 7.

At the right side in the screen, four further characters are presented: a sorcerer, a 
coach, Plato and a grandfather. The sorcerer can change the representation of the 
current problem between mathematical expression, number line and arrow repre-
sentations. The coach comments on the performance of the child on the basis of the 
actual childs’ input and of the student model. The grandfather can explain calcula-
tions, which the child is familiar with, somewhat familiar with and completely un-
familiar with. Plato is the child’s friend and gives helpful remarks and suggestions 
in case the child remains inactive or makes errors.

20.5.2  Transformation of Structures: SITs 

In Sect. 20.4.3, the multiplication 4 ⋅ 12 is represented as a grid. A representation in 
symbolic mathematical expressions could be: 4 ⋅ 12 = 4 ⋅ 10 + 4 ⋅ 2 = 40 + 8 = 48.

Both the grid and the mathematical expressions can be interpreted with the algo-
rithm as presented in Calculation V. This is not the only possible interpretation, be-
cause ‘written’ and ‘drawn’ solutions do not tell the whole sequence of transforma-
tions generated by the problem solver. There are several interpretational problems:

•	 In	informally	written	solutions,	it	is	hard	to	find	out	the	sequence	of	transforma-
tions that have been followed.

•	 Not	all	transformations	are	represented;	some	are	‘hidden’.
•	 It	remains	unclear	how	long	it	has	taken	to	perform	a	‘hidden’	transformation.

In Plato en de rekenspiegel(Klep and Spekken 1998), all expressed steps in a cal-
culation are annotated with time and eventually the use of animals. Because of 
these annotations, Plato en de rekenspiegel enables more precise interpretations by 
Arithmeticus.

When a child replaces a mathematical (sub-)expression by another mathemati-
cal expression or a number, intermediate stages might remain hidden. Arithmeticus 
solves this problem by testing whether there are automatisms or facts available in 
the actual student model that cover the gap. Another solution is to open a commu-
nication between Arithmeticus and the child, where Arithmeticus asks the child to 
explain what his hidden steps are. This was not implemented in Plato en de reken-
spiegel (Klep and Spekken 1998), because computers at the time in primary schools 
were slow and had little memory.

A collection of calculations for 4 ⋅ 12 in different representations like a number 
line, arrows or symbolic mathematical expressions can be interpreted as one algo-
rithm. Not all steps have to be given explicitly by the child. Therefore, we see that:
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•	 There	are	several	multiplications	like	4	⋅ 12 (Calculation V), 4 ⋅ 21, 3 ⋅ 12 and oth-
ers, which can be interpreted with Algorithm 1 and

•	 There	are	several	models	and	symbolic	mathematical	expression	representations	
(modes), in which Algorithm 1 can be expressed.

Alternatively, given an algorithm A, the domain of this algorithm A can be calcu-
lated and by a proper specification (Klep 1998, p. 151 (Klep 1998, p. 151) it can be 
performed in different representations (models). In the dynamic context of Arithme-
ticus, the actual domain of an algorithm is dependent on a child’s knowledge base, 
because the algorithm may contain automatisms and facts.

An algorithm as a whole can be regarded as a transformation by itself. Automa-
tisms and facts are the kind of (sub-)algorithms, which are performed in ‘one step’. 
Therefore, it is possible to create an algorithm A with an unspecified algorithm B as 
a transformation step. Until now, B can be unspecified if at least one instance for B 
can be found, which makes A successful. B is some kind of a wildcard which will 
be specified when A needs a ‘fitting’ algorithm.

In a set of algorithms, there are relations between algorithms:

•	 Sub-algorithms,
•	 Competitive	algorithms	(same	starting	mathematical	expressions,	different	algo-

rithms, same result) and
•	 Regressions,	where	facts	or	automatisms	are	replaced	by	‘full’	algorithms.

20.5.2.1  Defining an Algorithm Calculus

An open mathematical research question is whether it is possible to create an ‘algo-
rithm calculus’, which may produce new algorithms, not by testing the subsequent 
steps to generate algorithms, but by transforming algorithms as structures itself. The 
meaning of this question is whether it is possible to make a model creating ‘new’ 
algorithms by transforming well-known algorithms and thereby creating some kind 
of meta-algorithms.

This then leads, in the next section, to the concept of a SIT and a connection with 
ideas of concepts, as formulated by other researchers.

20.5.2.2  Definition of a SIT

Let us think of a domain (a set) of expressions (e.g. multiplications) in different 
modes, which can be transformed by one (maybe partially unspecified) algorithm 
A. I propose to define a SIT, as a pair <A, Domain>. This concept of SIT is related 
to the concept of ‘actual domain’ in Sect. 20.4.6.

This SIT is a mathematical object, which is an informatical representation (Klep 
1998) of the concepts mental object (Freudenthal 1987), Erfahrungsbereich (Bau-
ersfeld 1985) and Grundvorstellung (vom Hofe 1995). The fundamental connecting 
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idea is that concepts are defined by objects and operations, like in the theories of 
Piaget (1972, 1992) and Aebli (1963). This leads to further informatical modelling 
of mathematical problem solving, by an algorithm-generating or SIT-generating 
program.

In fact, some elements of this way of thinking are implemented in Arithmeticus. 
By these features, Arithmeticus can be used in a mode of ‘self-employed’ learning, 
because it can create new exercises in the zone of proximal development of itself: 
Arithmeticus can be its own teacher.

Arithmeticus is an informatical model of arithmetical competence based on:

•	 The	idea	of	transformation	of	mathematical	structures;
•	 Algorithms:	sequences	of	transformations;
•	 SITs;
•	 Production	 rules,	not	description	or	categorisation	of	algorithms	or	 strategies;	

and
•	 Psychological	annotations	of	child	algorithms	(facts,	automatisms	and	routines).

20.5.3  Some Results of the Idea: Transformation as a 
Fundamental Concept in Arithmetical Competence 
Modelling

In this chapter transformation is the fundamental concept for understanding calcula-
tions as sequences of transformations. This understanding leads to Arithmeticus: an 
informatical rule-driven dynamic model for ‘all possible calculations’. In Arithme-
ticus, algorithms can be produced by applying mathematical transformations. The 
search process is pruned by applying psychological concepts like automatisms and 
facts.

Arithmeticus is a self-learning model: The more algorithms it produces, the more 
new algorithms it can produce. Arithmeticus is also a model for learning: It can be 
used to represent learning processes.

Arithmeticus can be connected with an interactive front end like in Plato en de 
rekenspiegel (Klep and Spekken 1998), and receive from the front end annotated 
child’s calculations. The program can generate algorithmic interpretations of those 
calculations and store those interpretations.

In the next step, it can generate further algorithms representing classes of 
calculations ‘a child might produce’. The fundamental hypothesis in the whole 
ISMA project is that Arithmeticus can make interpretations of all calculations the 
child makes. This it does by generating every possible calculation a child is able 
to produce.

At the front end, the child can make calculations by:

•	 Simply	writing	or	drawing	what	he/she	wants	to	express,
•	 Transforming	an	 initial	mathematical	expression	by	means	of	replacing	math-

ematical (sub-)expression or
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•	 Transforming	an	initial	mathematical	expression	by	means	of	actors	(animals),	
who propose meaningful transformations to the child.

In this context, ‘meaningful’ connotes testing whether the child could perform 
that transformation on behalf of his/her personal student model, which is main-
tained by interpreting his/her former activities in the front end. The algorithms 
and transformations, already used by the child, are mirrored to the child by the 
actors (hence the name Plato and the Math Mirror) and are used for planning new 
exercises.

The child in turn generates new algorithms and exercises them. Arithmeticus 
makes interpretations, enriches the student model and is able to support the fur-
ther learning of the child; it is a transformation-based reproductive and productive 
model for a child’s arithmetical competence: a model for the child’s actual and 
feasible repertoire.

Arithmeticus can produce algorithms a child might be able to perform. In other 
words, it can calculate a zone of proximal development for individual children. 
This feature opens an important opportunity in education: it is possible to create a 
planning for an individual learning path for each child. It provides an alternative 
for traditional, mostly linear schoolbook-defined learning paths. A planner that was 
built on the basis of Arithmeticus is an example of a generative curriculum (Klep 
1998; Klep 2002): a curriculum type not defined by a sequence of contents and lev-
els, but defined by planning rules, stating which priorities are to be set in the actual 
zone of proximal development of a child. If a child performs calculations which are 
‘out of order’ or ‘unexpected’ for the system, Arithmeticus can learn these strate-
gies from the child and the planner can take them into account for planning future 
learning.

20.6  Discussion

In this section, I will find a common ground with some of the ideas presented by the 
authors mentioned in the section ‘Backgrounds’ and these I will combine with the 
points I have presented. I will find common ground also with certain theories men-
tioned in an issue of ZDM—The International Journal on Mathematics Education 
about flexible and adaptive use of strategies and representations, edited by Heinze 
et al. (2009).

20.6.1  Forgetting Facts and Automatisms

In Sect. 20.2, the theory of Ebbinghaus (1885) is mentioned. The concept of learn-
ing and forgetting is implemented in the Arithmeticus student model by maintain-
ing a history of individual facts and individual algorithms of a child. Accuracy and 
response time are used to dynamically assess individual facts as well as more or less 
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stable routines or more or less well-automated algorithms. The idea of forgetting 
is implemented by supposing a time-related forgetting process: facts or algorithms 
which are not—explicitly or implicitly—used for a long period might be less reli-
able for the child and will not be chosen by the child that quickly unlike in an earlier 
period, in which they were used frequently. The forgetting of products from the 
multiplication tables was observed when testing the program Een wereld rond tafels 
(Klep and Gilissen 1987). After the summer holidays, the whole experimental group 
had slower and less accurate results in the program. It took some time to return to 
the ‘old level’.

For each fact or algorithm, a ‘trend’ is calculated and in the front end there is the 
‘coach’ who comments on some of the results, e.g., ‘this is better than your previ-
ous attempts’, or ‘it seems you know this kind of exercise quite well’, or ‘c’mon, I 
think you can do this better, because I remember you scoring very well on similar 
exercises!’

20.6.2  Competition Between Automatisms and Memory Retrieval

Ashcraft (1983) and Baroody (1983) have discussed the question whether facts are 
retrieved from (some kind of declarative) memory or are recalculated ‘very fast’. 
When I conducted training in multiplication tables, I found evidence for both: on 
asking very well-memorised multiplication exercises to a child, he/she seemed to 
rely on a memory-retrieval mode, and after a ‘difficult’ multiplication exercise the 
same child seemed to remain within a re-calculating mode. In Arithmeticus, this 
theme is modelled by maintaining learning histories: exercises with stable correct 
answers, a stable net (corrected for typing and reading) response time of 2 s or less 
and a stable trend, which are considered to be well memorised. Solutions with inter-
mediate steps or long response times are considered to be the result of calculation. 
Results without intermediate steps, with fair response times and a positive trend are 
considered to be automated. In fact, there is no difference between facts and highly 
automated algorithms in Arithmeticus.

When Arithmeticus produces new algorithms or when it tests algorithms, it takes 
the best elements: Arithmeticus prefers facts, then automatisms, then routines and 
it creates new sub-algorithms if necessary. An important hypothesis is that facts, 
automatisms and new algorithms are always in competition.

An important effect in the assessing of calculations is this one: If a child has 
automated calculations like (a) 7 ⋅ 18 = 7 ⋅ 10 + 7 ⋅ 8 and then tries to solve the ex-
ercise 7 ⋅ 18 by (b) 7 ⋅	20	−	7	⋅ 2, the use of intermediate steps and the increasing 
response time will not be assessed as regression of the automated algorithm but as 
a result of the new algorithm b. When a child does not give any signals of using 
a new algorithm, the assessor in the system can start a communication with the 
question: ‘can you explain what you have done?’ to complete the interpretation. 
Unfortunately, we could not implement this option of the Assessor in Plato en de 
rekenspiegel (Klep and Spekken 1998): it only works in the experimental version 
of Arithmeticus.
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20.6.3  The Nature of Automatisms and Zeroing In

Threlfall (2009) makes a difference between:

•	 Approach	strategies	which	are	‘the	general	form	of	mathematical	cognition	used	
for the problem—for example counting, or recall, or application of a learned 
method, or visualisation of a procedure, or exploiting known number relations’ 
(Threlfall 2009, p. 541),

•	 Number-transformation	strategies:	‘the	detailed	way	in	which	the	numbers	have	
been transformed’ (Threlfall 2009, p. 542). ‘Number-transformation-strategies 
each reflect an approach, but it is noticeable that some approach-strategies in 
effect determine the number-transformation-strategy, whereas others do not.’ 
(Threlfall 2009, p. 542),

•	 Calculation	strategies,	number-transformation	strategies	that	arises	from	an	ap-
proach strategy based on exploiting known number relations. A calculation strat-
egy in mental calculation is when a problem is answered by exploiting known 
number relations having adopted an approach to do so (Threlfall 2009, p. 542).

Threlfall states, ‘In any particular case, it may not be possible to say from its form 
whether a number-transformation-strategy was an example of purposeful calcula-
tion based on number knowledge or the ‘blind’ application of a learned method. […] 
There is some psychological reality in the difference described, but the difficulty 
of the diagnosis does have an impact on educational implications’ (Threlfall 2009, 
p. 542).

Calculations I to VII, as discussed above, are contained in Threlfall’s psycho-
logical approach resulting from ‘blind’ number-transformation strategies or result 
of calculation strategies. Therefore, there is the option for opening communication 
between Arithmeticus and the child to find out what a child could have meant.

The idea in Plato en de Rekenspiegel (Klep and Spekken 1998) is that children 
can start with calculations through approach strategies and that these strategies will 
coagulate to fixed procedures which are to be automated and in some cases will 
be shortened to pairs of a mathematical expression and a number (3 + 4 = 7) and 
remembered as facts.

A further idea in the Assessor program is to ask children every now and then—
this asking is a time-related procedure in the assessor—to explain their calculation 
strategy) behind a specific automatism or fact. There are other applications of this 
regarding automatisms. On behalf of the student model:

•	 The	planner	can	ask	a	child	to	re-produce	the	algorithms/	calculation	strategies	it	
has developed before;

•	 The	system	can	advise	a	child	when	it	hesitates	‘how	a	strategy	was’;	and
•	 the	system	can	ask	for	alternative	strategies:	One	of	the	possible	responses	of	the	

assessor is: ‘I suppose you can produce a better calculation using everything you 
have learnt so far’.

I agree with Threlfall that the nature of a well-performed number-transformation 
strategy is not always clear. Therefore, we need communication with children and 
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eventually make them aware of possible argumentations. This will help in ‘grading 
up’ their strategy to a well-understood calculation strategy.

When going on in their learning process, children will automate procedures 
and forget about their argumentations and mathematical background. As discussed 
above, this is a necessary step, to free up mental energy for more complex new 
exercises. As Threlfall discusses, ‘where an approach-strategy is adopted that in-
volves the visualisation of the problem as a written ‘sum’, the number-transforma-
tion-strategy echoes the written procedure, and is more or less the same each time’ 
(Threlfall 2009, p. 542) and ‘other approach-strategies, such as the use of mental 
recall, or the imagining of the use of manipulatives, also lead directly to a number-
transformation-strategy’ (Threlfall 2009, p. 542). Number-transformation strategies 
in the sense of Threlfall or automated algorithms, as above, might be of a different 
nature than sequences of transformation steps. In many schoolbooks, some exer-
cises present sequences as:

   8 + 7 = 15
   18 + 7 = 25
28 + 7 = 35 and so on, leading to some kind of pattern manipulation like 38 + 7 ends 
with 5 because 8 + 7 = 15 and the 3 increases by 1 because of crossing the 10. This 
is pure number transformation, nearly some kind of pattern-manipulation: either a 
visual pattern or a language pattern. In the language-pattern manipulation, it might 
be this way: thirty-eight and seven (sounds like) eight and seven,… are fifteen. 
This last step is an acoustic completion by memory retrieval of the known sentence 
‘eight and seven is fifteen’. The next step in the strategy is, in the sequence of tens 
that sounds like thirty, forty, resulting in the composition ‘forty and five’ or ‘forty-
five’. An alternative might be the sequence of sentences,

This sequence of sentences does not have much to do with mathematics, although it 
can be represented as an algorithm. It is a sequence of transforming expressions in 
an (acoustic) language representation.

My conclusion is, doing arithmetic can be psychologically understood as build-
ing sequences of subsequent transformations of expressions in an (acoustic) lan-
guage representation. These transformations are not of a mathematical nature, al-
though they can be matched with mathematical transformations, but they are asso-
ciations of parts of sentences retrieved from memory.

I proposed (Klep 1998) the German word Anklang to characterise this effect: 
one sentence finds an echo in another sentence or in a more active description; one 
sentence generates a stimulus for the brain the way the conductor gives a ‘beat-up’ 
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as a stimulus to the orchestra. The brain can react with sentences, which can be 
unified with the stimulus. One of them is used as a next step. From this set of 
competitive responses, one next step has to be selected. One of the selecting mecha-
nisms is mathematical logic in its socio-constructivist meaning: some connections 
of sentences are more acceptable in the classroom community than others. Another 
selecting mechanism is the feeling: this transformation or this strategy might be 
successful for me (the student). It is some kind of appreciation mechanism that is 
discussed later in Sect. 20.6.4.

The concepts of facts, automatisms and routines together with the metaphor or 
mechanism of Anklang and its logical and appreciative selection mechanisms pro-
vide an explanatory set of ideas to understand the generation of calculations.

In Arithmeticus, this mechanism of Anklang is modelled in a mathematical way: 
A mathematical expression is represented in a structured manner, including infor-
mation about the characteristics of that mathematical expression:

•	 To	 use	 the	 standard	 unification	 mechanisms	 in	 the	 Prolog	 language	 (Merritt	
1995–2010) and

•	 To	make	a	relevant	description	of	a	domain	of	an	algorithm.

The Prolog unification mechanism can take an incomplete structure and try to unify 
it with other complete or incomplete sentences (clauses in the database), which 
themselves can call for further clauses. A call is completed or successful or true, 
when the original structure is completed. I have used this mechanism with some 
modifications as a technical representation of Anklang.

This idea of Anklang seems to have some parallels with the idea of zeroing in 
used by Threlfall (2009, p. 547).

20.6.4  Flexibility and Appreciation of Transformations

When an Anklang generates a set of competitive responses in a student, there seems 
to be a selection mechanism to choose one of them. I use the word ‘appreciation’ for 
this mechanism. In Arithmeticus, this appreciation was modelled keeping in mind:

1. Availability of necessary facts and automatisms (including pattern manipulation);
2. Availability of mathematical understanding;
3. Appreciation on behalf of energy saving:

a. Facts are appreciated more than automated algorithms;
b. Automated algorithms more than routines;
c. Routines more than generating new algorithms;

4. Appreciation on behalf of risk for errors. Important characteristics are, e.g.:

a. The number of steps in the algorithm;
b. The recursion depth (mathematical sub-expressions in mathematical 

sub-expressions);
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c. Complexity of mathematical expressions involved: number of numbers and 
operators;

d. Complexity of numbers involved;
e. The complexity of the algorithm itself: the number of branches, complexity of 

the context when operating on mathematical sub-expressions;

5. Memory load:

a. The use of actual knowledge;
b. The stack of the algorithm (all procedural and declarative things that have to 

be kept in mind in the subsequent steps):

−	 The	number	of	numbers	and	operators	in	the	subsequent	stages;
−	 The	context;
−	 The	state	in	the	flow	of	the	algorithm;

6. The personal history:

a. Is this algorithm stable for me;
b. Is it reliable (few errors);
c. Can I manage the work (working memory, stack control)?

Although this model for what a child feels to be ‘difficult’ seems to be relevant, the 
appreciation in the mind might be of another kind: not only will the algorithm itself 
be remembered, but also the feelings accompanying former calculations with this 
algorithm.

Nevertheless, Arithmeticus generates and uses this kind of characteristics for 
individual calculations, algorithms and SITs.

The concepts of facts, automatisms and routines together with the metaphor or 
mechanism of Anklang and its logical and appreciative selection mechanisms give 
a good basis to understand strategy flexibility as discussed by Heinze et al. (2009) 
and Threlfall (2009). The informatical model of arithmetical competence brings a 
set of precise and operational concepts and the opportunity to investigate different 
settings. Changes in the large set of parameters in Arithmeticus lead to different 
behaviour of the system. In the Amzi-Prolog user interface, it is possible to make 
simulations of the long-term learning processes: the researcher being a teacher and 
Arithmeticus being a learning child. The points 1–6 influence the ability of Arith-
meticus to generate and apply algorithms.

20.7  Conclusion

Arithmeticus is an informatical model (artificial intelligence) for arithmetical com-
petence, based on:

•	 The	idea	of	transformation	of	mathematical	structures,
•	 The	idea	of	primitive	recursive	functions	and	Turing	machines,
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•	 The	concept	of	algorithms	as	a	sequence	of	mathematical	transformations	and	
dynamic transformations like facts and automatisms and

•	 A	child’s	learning	history	as	interpreted	and	maintained	by	an	Assessor	in	inter-
action with Arithmeticus.

Arithmeticus can generate new algorithms and can ‘learn’ new algorithms as pro-
duced by children. The more Arithmeticus has learnt the more flexibly it can ‘think’. 
Basically, it can learn every arithmetical strategy, which is mathematically valid.

Arithmeticus can be related to psychological and educational concepts and theo-
ries. The model seems to be rich enough to simulate in a meaningful way arithmeti-
cal learning processes.

Arithmeticus is a basis for planning systems, providing dynamic educational of-
fers for a child with consideration paid to its learning history and the actual individ-
ual zone of proximal development of a child. The assessor can keep track of increas-
ing or decreasing competence and can make comments on a child’s performance.

Research and development on the competence modelling are continuing: A new 
version of Arithmeticus with a new production system of algorithms is under con-
struction. The scope of Arithmeticus 3 is extended to arithmetic, algebra and ap-
plications of arithmetic and algebra. Readers who are interested in this project, are 
invited to contact the author.
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Chapter 21
Discussion of Part III

Fundamental Ideas of Didactics—Reactions 
to the Suggested Meta-theoretical Construct 
for Reflecting and Connecting Theories

Susanne Prediger

Abstract: The editors of this book have introduced the meta-theoretical construct 
‛fundamental ideas of mathematics didactics’ as a very interesting approach for 
reflecting on the identity of the scientific discipline didactics of mathematics and 
for dealing with the diversity of theories in the field. This chapter discusses how 
and under which conditions the construct can be used for these purposes. For foun-
ding this discussion, some main aspects of the construct fundamental ideas, their 
meanings and functions are shortly revised and related to the editors’ suggestions 
for the fundamental ideas in didactics of mathematics (Section 21.1). After that, the 
concrete suggestion for a first idea, namely ‘transformation’ will be discussed with 
respect to contributions of part III (Section 21.2).

21.1 Fundamental Ideas as Meta-theoretical Constructs

21.1.1  Fundamental Ideas in Mathematics for Didactics 
of Mathematics

The construct of fundamental ideas has been suggested by the psychologist Jerome 
Bruner (1960) as a construct that allows to specify the essential cores of each scien-
tific discipline and then use them to build up coherency within a spiral curriculum 
of each school subject. Although the construct itself is often used and cited, there is 
little agreement on its exact meaning, even within a single discipline like mathemat-
ics (Schweiger 2006; Vohns 2010).

While some authors try to figure out the interfaces between mathematics and 
the reality it describes (e.g. Heymann 2003 with his catalogue number, measuring, 
spatial structuring, functional dependency, algorithm, modeling), other researchers 
specify the main phenomena (e.g. Halmos 1981 with size for algebra, shape for 
geometry and change for analysis) or activities (e.g. MacLane 1985 with moving, 
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measuring, shaping, counting). The first group emphasizes fundamental ideas as 
different perspectives of the discipline on reality, whereas the second group focuses 
on the phenomena, activities and concepts themselves. The main phenomena (being 
the objects of specific fields of mathematics) have been termed leading ideas in the 
German discussion (i.e. Tietze et al. 1997; KMK 2004).

Tietze et al. (1997, p. 37 ff) have suggested to distinguish three interdepending 
epistemological levels to which fundamental ideas refer. All of them are important, 
although for different purposes and functions:

1. Leading ideas as characterizing the main phenomena (e.g. space and shape, 
quantities and measures, dependencies and change, etc.)

2. Interfaces for mathematization (e.g. number, systems of linear equations, appro-
ximation, …)

3. Domain-specific ideas and strategies (e.g. exhaustion, algebraization and geo-
metrization, …)

Notwithstanding the variety of catalogues, Schweiger (2006, p. 68) cites four di-
mensions that can characterize fundamental ideas: time dimension, horizontal di-
mension, vertical dimension, and human dimension (cf. Introduction). These di-
mensions implicitly relate to different functions of fundamental ideas, which im-
plies different prioritizations of dimensions as conducted by different authors. For 
example Vohns (2010) emphasizes establishing coherency as the most important 
function of fundamental ideas, he thus focuses on the time, horizontal, and verti-
cal dimension. In contrast, Heymann (2003) emphasizes the horizontal dimension 
in its function to mark the specificity of mathematics and different mathematical 
domains, compared to everyday thinking. The different levels of ideas, however, 
seem to address different functions and different dimensions, and so, there seems to 
be no logical deduction of suitable levels from a choice of dimensions or functions.

The common essence of the construct fundamental idea in mathematics is cap-
tured by Vohn’s definition that refers to different epistemological levels but empha-
sizes the idea behind:

A mathematical idea signifies the main thought, that one can try to specify behind certain 
strategies, techniques, patterns of thinking and acting, it is the attempt to answer the ques-
tion on the crucial point that allows to understand the core of a subject. (Vohns 2010, p. 230, 
translated by SP)

21.1.2  Fundamental Ideas in Didactics of Mathematics 
for Reflecting on Theories in Didactics of Mathematics

Rezat (2012) suggests the interesting and creative idea to transfer the meta-theoret-
ical construct fundamental ideas to the reflection on theories in didactics of mathe-
matics. By this transfer, he intends to contribute first to the search of the disciplines’ 
identity (Biehler et al. 1994; Sierpinska and Kilpatrick 1998), and second, to the 
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exploitation of the existing diversity of theories in the didactics of mathematics as a 
scientific discipline towards more reflection and connection (Prediger et al. 2008a; 
Sriraman and English 2010).

Following Rezat’s main idea, the editors of this book formulate different func-
tions to which the meta-theoretical construct ‘fundamental ideas of didactics of 
mathematics’ should contribute:

1. Focus on core issues of the discipline: contribute ‘to the discipline’s search for 
focus and identity’

2. Systematize the scientific discipline: ‘provide a means to organize theories in 
terms of being related to a similar idea’

3. Specify connecting points: ‘find theories that are worthwile connecting’
4. Construct curricula for teacher education: ‘contribute to the development of 

curricula for teacher education’.

For these purposes, the editors suggest ‘transformation’ as a first fundamental idea 
that they locate on the general level of overarching phenomena in the sense of a 
leading idea. Before discussing ‘transformation’ in Sect. 21.2, these four purposes 
shall be related to the dimensions and complemented by a fifth purpose.

Focus on core issues of the discipline For the focus on core issues of didactics 
as a scientific discipline, the time dimension and the vertical dimension are to be 
taken into account for specifying relevant fundamental ideas in Vohn’s sense. But 
also the horizontal dimension can contribute to finding of the core issues in diffe-
rent areas.

The time dimension applies only partly: Some didactical ideas have been dis-
cussed for many decades and thus seem to be (historically) important for the scien-
tific discipline, for example Comenius’ “omnes omnia omnino” (Comenius 1657) 
which was recalled by Bruner’s (1960) idea of a spiral curriculum and his hypoth-
esis that every subject can be taught on every level. However, the time dimension 
alone cannot be crucial for a young scientific discipline like didactics in which 
not all essential ideas have already been established. In contrast, many substan-
tial new ideas arise in the research and are powerful drivers for the discipline’s 
development (cf. ontological innovations, DiSessa and Cobb 2004). Hence, the 
time dimension should be extended to the following: either the idea is very old or 
has offered a historical contribution to the scientific discipline (like for example 
Cobb’s construct of sociomathematical norms, discussed as an example in DiSessa 
and Cobb 2004).

For the vertical dimension, Rezat (2012) suggests to interpret the different lev-
els as different discourses (that he calls contexts) on didactics, namely classroom 
practice, teachers’ practically oriented discourse, teacher education discourses in 
university and seminars, and theoretical and research discourses in the scientific 
discipline (similar in the Introduction, p. 5). A fundamental idea that reflects the 
vertical dimension can contribute to the specification of the focus since this idea 
seems to be relevant in different discourse levels. However, it must be clear that the 
vertical dimension addresses not only the continuities (what is similar within the 
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different discourse levels?), but also the discontinuities (how does an idea change 
from discourse to discourse?), as Vohns (2010) has emphasized for fundamental 
ideas in mathematics. The identity of the scientific discipline is shaped not only 
by similarities, but also by the differences to the purely practical discourses and 
practices.

The search for coherences seems to address mainly quite general fundamental 
ideas, i.e. the leading ideas in horizontal or vertical dimension; the search for dif-
ferences mainly the more concrete levels on which the differences become more 
visible.

Systematize the discipline For providing means to systematize the discipline, ideas 
are needed that mostly satisfy the horizontal dimension (or its explicit absence—for 
marking differences). For organizing the field, the chosen ideas should cover more 
than one branch while not being too general.

Specify connecting points between different theories In contrast, the specifica-
tion of connecting points needs very concrete ideas, most ideally those that serve 
as interfaces for interpreting phenomena. These ideas sometimes neither address 
horizontal nor vertical dimensions, but the human dimension.

Construct curricula for teacher education There is no doubt that Bruners’ ori-
ginal construct of fundamental ideas can be applied to the curriculum construction 
also within didactics as a scientific discipline. Hence, the purpose of contributing to 
the curriculum construction for teacher education addresses all four dimensions, as 
explained by Schweiger (2006).

Beyond teacher education (mentioned in the Introduction), fundamental ideas 
should also guide the construction of curricula for novices in the scientific com-
munities, namely the curricula for young researchers. The curricula for young re-
searchers partly overlap with the one for teachers, but obviously not completely.

A further function: Identify black holes A fifth function should be added that 
emphasizes the human dimension: If Rezat (2012) suggests to interpret the ‘ever-
yday patterns’ addressed in the human dimension by teachers’ practices and con-
cerns, then this dimension of fundamental ideas might give the opportunity to 
identify black holes in the scientific community: Some ideas seem to be very crucial 
for school practices but missing on the scientific discourse levels. In order to realize 
a better match between human dimension and vertical dimension, they might be 
considered as a starting point to identify black holes and initiate a further theory 
development.

These general considerations on fundamental ideas in didactics, their possible 
levels, functions, and dimensions serve as a background for discussing the concrete 
suggestion of one fundamental idea in Sect. 21.2.
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21.2 ‘Transformation’ as Fundamental Idea?

21.2.1  ‘Transformation’ as a (Non-)Shared Fundamental 
Idea of five Contributions

Part III of this volume comprises five contributions around the fundamental idea 
‘transformation’ that provided the title for the volume. Each of the five contribu-
tions is very interesting itself; but in sum, they offer a challenging field for testing 
the suitability of ‘transformation’ as a fundamental idea.

Three of the five contributions, Dreyfus and Kidron (Chap. 16), Stanja and Stein-
bring (Chap. 17), and Kuzniak (Chap. 18), explicitly deal with the transformation of 
students’ cognitions in a large sense. They are in a certain way comparable, and the 
idea of transformation might inform this comparison.

The other two contributions use the term ‘transformation’ in a completely differ-
ent sense: Klep (Chap. 20) mainly intends to model arithmetical competence (hence 
basically a learning state, not a learning process). Within this model, he uses the 
term ‘transformation’ not for the learning processes, but for the elementary steps 
in calculation procedures or strategies. Although his explicit focus is mostly on 
these learning states, his work might also contribute to modeling transformation of 
students’ cognitions, as the technical model of students’ calculations can develop in 
parallel to students’ cognitions. The fundamental idea in his work that contributes to 
the overarching idea of transformation of students’ cognitions is Vygotsky’s zone of 
proximal development: Although not too explicit in the text, I suppose that beyond 
the author’s claim that he can derive the zone of proximal development from the 
modeled arithmetical competence, he must have a model of how the competencies 
progress and follow each other. However, the systematizing of theories would be 
easier if he used the term transformation for this part of the theory.

Profke (Chap. 19) is the only one who does not aim at developing descriptive 
theories for describing change in students’ cognitions, but emphasizes the construc-
tive part of didactics. He illuminates design challenges while transforming over-
arching normative goals of mathematical literacy into concrete learning opportuni-
ties for everyday classrooms. For this, he chooses to give examples without being 
explicit on the theoretical conceptualization of the different discourse levels or on 
the applied techniques of transposing goals into concrete activities. Hence, the ar-
ticles’ use of the term ‘transformation’ seems to be nearer to Chevallard’s (1985) 
idea of ‘didactical transposition between praxeologies’ than to ‘transformation of 
students’ cognitions’.

The comparison between these five contributions offers a good example on the 
meta-level for the claim that a fundamental idea can hardly serve any of the formu-
lated purposes if its meanings are too divergent. Although a certain vagueness of 
the fundamental idea might be important for being applicable in different contexts 
(Schweiger 2006), the divergence between these concrete cases is too large.

In contrast, the comparison of these five papers might be interesting in the light 
of fundamental ideas on overall goals of didactic research (e.g. design science ver-
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sus fundamental descriptive research, cf. Wittmann 1995) and on conditions for 
design for being scientific (Gravemeijer and Cobb 2006), for which especially Kuz-
niak’s construct of ‘geometric work space’ gives interesting profiles.

21.2.2  Suitability for Specifying Focus and Structure  
of the Discipline

Whereas the general idea of ‘transformation’ seems to be too vague (see Sect. 21.2.1), 
the more specified idea ‘transformation of students’ cognitions’ appears to be in-
sightful for describing one typical phenomenon that is a central object of empirical 
investigation in didactical research, it could easier be called ‘learning processes’.

For systematizing different theoretical approaches to the same large phenome-
non ‘learning processes’, it might however be fruitful to be even more precise on the 
specific conceptualizations of learning processes that underlie the different theoreti-
cal approaches. The distinction between the ideas ‘transmission’, ‘internalization’, 
‘construction’ and ‘transformation’ might illuminate different theoretical perspec-
tives that conceptualize students’ learning in different ways (Sierpinska and Lerman 
1996). While ‘transmission’ addresses the traditional idea that learning could take 
place by transmitting contents from the teacher to the students, socio-cultural theo-
ries conceptualize learning mostly as ‘internalization’ of culturally shared practices. 
In contrast, ‘construction’ is the constructivist term that emphasized the active indi-
vidual mental constructions as driving forces for learning.

The three contributions by Dreyfus and Kidron (Chap. 16), Stanja and Stein-
bring (Chap. 17), and Kuzniak (Chap. 18), all conceptualize learning processes as 
transformation processes, i.e. they consider learning not as starting from “empty 
sheets” but as changing existing cognitive structures and experiences. This interface 
between the real phenomena and its scientific conceptualization can be fruitfully 
called a shared fundamental idea. However, neither of the contributions would be 
completely modeled by this characterization. Instead, they differ in essential other 
points like the epistemological background for Stanja and Steinbring, the theories 
of proof to which Dreyfus and Kidron refer, or the large corpus of theory connected 
to instrumental genesis in Kuzniak’s contribution. Hence, for providing “means to 
organize theories in terms of being related to a similar idea” (Introduction), a whole 
landscape of fundamental ideas is needed, not only one single idea.

21.2.3  Suitability of the Fundamental Idea ‘Transformation’ for 
Finding Connecting Points between Theories

It is inherent in the nature of the volume that its contributions do not aim primarily at 
connecting with each other. However, since all contributions are referred to the same 
fundamental idea, some should at least have the potential to be connected. For test-
ing the suitability of the fundamental idea ‘transformation’, these reflections refer 
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again to the small “data set” of three articles that all share the idea ‘transformation of 
students’ cognitions’ and compare its potential to other possible connecting points.

The editors of this volume are right to mention that any networking strategy 
(Prediger et al. 2008b) can only be applied when connecting points between the 
theories are found (Introduction). Hence, other papers have suggested different 
meta-theoretical constructs as starting points for different activities of connecting 
theories (cf. Prediger et al. 2008b for an overview):

•	 Research	practices	have	often	been	compared	and	contrasted	by	 their	empiri-
cal methods. Comparing and contrasting methods that are applied in different 
theoretical approaches address another area of reflection than fundamental ideas, 
since methods alone only cover the forms of research, not its content in the sense 
of central problems, questions, conceptualizations and results.

•	 Different	authors	have	used	a	common data set as starting point for comparing 
and contrasting or partly integrating theories. A common piece of data is a very 
instructive starting point since the reflections can be very concrete and become 
hence substantial. However, the specification of data heavily depends on the re-
search practice and its underlying theories, so the connection of theories usually 
has to be planned before the data collection.

•	 The	integration	or	synthesizing	of	different	theories	often	starts	from	a	common	
phenomenon but is driven by the complementarity of different theoretical cons-
tructs that serve as interfaces for conceptualizing interconnected phenomena.

•	 Prediger	and	Ruthven	(2008) report on a case study in which a common sense 
problem or phenomenon of everyday classrooms served as a starting point for 
comparing and contrasting how different theories conceptualized and investiga-
ted this problem. The case study showed that different research practices come 
to very different approaches which are not completely determined by the explicit 
parts of their theoretical approaches, in contrast, many further implicit aspects 
of the research traditions guide the researchers’ decisions (e.g. what counts as 
interesting research question?). Comparing and contrasting these processes of 
conceptualization and developing research designs is hence very interesting.

This list of different connecting points shows that it makes a difference whether 
researchers have a common phenomenon and different perspectives or a common 
perspective and add several phenomena. For testing the suitability of fundamental 
ideas as a connecting point, we must thus specify the epistemological level.

•	 For	finding	similarities	between	theories,	the	leading ideas (like transformation 
of students’ cognition in the large sense) give a first clue as it helps to restrict the 
search space.

•	 For	contrasting	the	theories	in	more	detail,	it	is	interesting	to	consider	the	level	
of specific strategies and techniques.

•	 For	partial	integration	or	synthesizing,	the	most	important	epistemological	level	
seems to be the theoretical constructs as interfaces for specific, perhaps comple-
mentarity conceptualization of specific aspects of the large phenomenon.
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21.3 Outlook

The meta-theoretical construct fundamental idea seems promising for all postulated 
purposes. However, for further development of this idea, it appears to be necessary 
to specify not only one single idea but a landscape of ideas. This landscape will 
never be complete. Like for the fundamental ideas of mathematics, it will depend 
on the concrete purpose which epistemological level of ideas is the most promising. 
I wish the editors good luck in continuing the search!
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Epilogue

Rudolf Sträßer

Fundamental Idea: Transformation

At the end of a whole bunch of challenging chapters in a book full of information 
and ideas, it is impossible to write an epilogue which gives full credit to all the 
creative and innovative deliberations of the texts. As a consequence, I will restrict 
myself to a few features of the book, which—for me personally—make the essence 
of the book. Furthermore, I will also describe some aspects of a discussion on fun-
damental ideas and transformations, which seem not to be present in this book.

I want to start with a comment on the idea of the book: Discussing the idea and 
the potential of ‘fundamental ideas’ in didactics of mathematics (as I prefer to name 
this emerging scientific discipline instead of research in mathematics education) 
is an innovative and most promising attempt to create something like an overall 
and structured landscape of the emerging discipline didactics of mathematics. At 
present, the ‘standard’ way of creating the structure of a discipline by identifying 
the object of research and its methodology (or methodologies) seems to be unsuc-
cessful (to say the least) in the case of didactics of mathematics as can be seen in 
volumes like Mathematics education as a research domain. A search for identity 
(Sierpinska and Kilpatrick 1998) and Theories of Mathematics Education. Seeking 
New Frontiers (Sriraman and English 2010). Consequently, didactics of mathemat-
ics can profit from a different approach to create something like an identity of the 
discipline. The book tries to create this identity with an approach borrowed from 
Bruner: By identifying ‘fundamental ideas’ of didactics of mathematics, it may be 
possible to develop a distinctive and accepted conception of what the discipline is 
about. By taking ‘transformation’ as a prototype of such a fundamental idea, the 
approach does not remain abstract and vague, but attempts to put the approach to 
practice—showing strengths and weaknesses of the enterprise.

As a consequence, an epilogue can comment on two levels: (1) What can we learn 
about fundamental ideas of didactics of mathematics from discussing the  prototype 
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‘transformation’? I give my personal answer to this question in Sect. 2 of the epi-
logue, and (2) what about the approach as a whole, or: What to learn about taking 
‘fundamental ideas’ as a possible answer to the diversity in the field of didactics of 
mathematics? My perspective on this issue can be found in Sect. 3 of the epilogue.

On Transformation

Transformation of Institutions

The title of part I of this book reads Transformations at Transitions in Mathematics 
Education and—using different methodologies—concentrates on the transforma-
tions of mathematical ideas and concepts, which result from their use in different 
institutions. As a complement and in the discussion of part II of the book, Suther-
land reminds us of a major characteristic of this transformation: Institutions alone 
do not provoke transformations. Change (or transformation?) is an affair enacted 
and promoted by human beings, who have to take a personal interest and active role 
in the transformation of institutions. There seems to be always a ‘human factor’ in 
transformations—even if they can be described as changes inside institutions or 
between different institutions.

As one can easily see, part I of the book somehow concentrates on what Felix 
Klein has called the double discontinuity between school mathematics and univer-
sity mathematics. From the history of mathematics education in Germany, with 
university mathematicians and mathematics teachers from ‘Gymnasium’ being one 
major source of didactics of mathematics, this does not come as a surprise (for a his-
torical sketch of German didactics of mathematics, see Griesel and Steiner 1992). 
Two of the papers in part I analyse an important part of institutional transforma-
tions, but do not cover institutional change as a whole.

The discussion by Biehler correctly mentions an omission, which nevertheless 
is statistically more important: the transformation from school to work. This trans-
formation is more important under the perspective of persons involved, because it 
is still a minority of young adults who directly move from upper secondary schools 
into university. Students aiming at becoming mathematics teachers are again a mi-
nority of beginning students. The small number of future mathematics teachers is 
outnumbered by persons directly going into the labour market, and mathematics is 
an important subject in nearly all types of vocational training (for an international 
perspective see Sträßer 2014, in print). The transformation, which school math-
ematics has to undergo to become vocational mathematics, may be less dramatic 
than the one for university mathematics, but the problems with mathematics in en-
gineering studies already show that ‘applied’ or ‘industry’ mathematics also faces 
difficult problems (for examples see the ICMI-study on ‘Educational Interfaces be-
tween Mathematics and Industry (EIMI)’ with its discussion document Damlamian 
et al. (2009) and the forthcoming Study Book of this ICMI/ICIAM-study no. 20: 
Damlamian et al. 2013). The transformation of school mathematics to industrial 
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mathematics (with ‘industry’ in the broad sense of the EIMI-study) must be a major 
issue in didactics of mathematics, hence an important aspect linked with transfor-
mation as a fundamental idea.

Transformation of (Mathematical) Content

It may come as a surprise that—in my epilogue—I do not distinguish between trans-
formations of representations (of mathematics)—as discussed in part II—and trans-
formations of ideas and concepts—as in part III of this book. In doing so, I just want 
to give a hint that at least for some approaches in didactics of mathematics, there 
is no distinction between a mathematical inscription (as Dörfler 2008 and Kadunz 
2006 have called it) and mathematical concepts and/or ideas. This approach is, to 
say the least, quite tempting if one is interested in overcoming the separation of 
material representations of mathematics and the immaterial structure of patterns, 
the material/immaterial divide of realism or platonism in the epistemology of math-
ematics.

Looking back to the actual contents of the book, Seeger, in an aside in the be-
ginning of his discussion of part II, correctly mentions a characteristic which is 
quite surprising: All papers in part II discuss topics from geometry. The text from 
Klep in part III shows that ‘transformation’ can also be used in the content area of 
arithmetic in order to better understand the calculations of children. Transforma-
tions of equations and formulae are one of the major topics from lower secondary 
school mathematics till the end of upper secondary school mathematics and beyond. 
Consequently, analysing the concept of transformation in (school) mathematics also 
has to look into algebraic transformations. Also, a very helpful candidate for the 
analysis of transformation in algebra can be looking into different ‘representations’ 
of the equations under study in order to find the solution of a given equation—like 
analysing appropriate function graphs or a table of values. Do the transformations 
of algebraic expressions serve the same purposes as do those in geometry? What 
about transformation in Arithmetic? What is the role of transformation(s) across 
different parts of school, industrial and university—and maybe other forms of—
mathematics?

For transformation as a fundamental idea of didactics of mathematics, one can 
learn from this excursion into mathematics as such that fundamental ideas may be 
fundamental for a discipline only in parts of a discipline or change their appearance 
when the ‘same’ fundamental idea is looked after for different areas of a discipline.

On the Methodology of Research on Transformation

Looking through the texts in this volume—especially in the first section, a major 
feature stands out: When trying to empirically grasp a transformation, the research 
has to somehow mirror the flow of time. There are two basic ways of doing so. One 
method is comparing the state of something being transformed. This is often done 
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by looking into the same thing at two or more different points in time. This implies 
a comparative approach and can be best illustrated by the text from Kaiser and Bu-
chholtz (Chap. 5), who report on a longitudinal study with three consecutive data 
gathering points within 2 years altogether. In this approach, data is gathered based 
on questionnaires. The answers are classified according to a pre-defined evaluation 
manual. This approach allows for advanced data analysis methods including pro-
cedures based on Rasch-models and complemented with additional comparisons to 
cohorts from different populations to further interpret the data gathered at the dif-
ferent points in time. Qualitative approaches are used to find better interpretations 
of the quantitative data.

The other approach to transformation is a qualitative one, which uses the analy-
sis of more open empirical data gathering methods at one point in time and tries to 
find out about the way individuals or groups of persons see their transformations 
of feelings, concepts and ideas in retrospective. In empirical studies, we find only 
one data gathering point in time (often by means of an interview—if one can iden-
tify data gathering at all). An extreme case in this book is the text by Grevholm 
(Chap. 6), presenting the narrative of a woman who describes her transformations 
of mathematical ideas and concepts and triggering an interpretation in terms of the 
development of a concept map from the author. This more or less qualitative ap-
proach can also be seen in the rest of the chapters in part I and all chapters in the 
other parts—with the first chapter by Biermann and Jahnke (Chap. 1) showing that 
it also makes sense to take the history of concepts in a ‘national’ curriculum as a 
way to analyse transformations of concepts and ideas. This text convincingly shows 
that ‘data’ can be more than instances gathered from individuals and/or groups, but 
have to be seen in the broad ‘definition’ given by Beck and Maier (1994). Addition-
ally, the texts in this volume show the variety of types of ‘data’ or texts in didactics 
of mathematics.

As a consequence of this observation of methods to analyse transformations, it 
should be obvious that the idea of one and only one method for didactics of math-
ematics is obsolete. Looking only into a small sample of research on transforma-
tions shows a whole variety of methodological paradigms. A ‘one method fits all’ 
approach for didactics of mathematics is obviously doomed to failure.

On Fundamental Ideas

In her discussion of part III of the book, Prediger raises an issue which deserves 
to be mentioned at a prominent place: ‘However, for further development of this 
idea, it appears to be necessary to specify not only one single idea but a landscape 
of ideas.’ In an informative survey in another book, Schweiger (2006) shows that 
it may be difficult to arrive at such a landscape of fundamental ideas in the case of 
mathematics. The end of Schweiger’s chapter can be even read as denying the pos-
sibility of arriving at a general catalogue of fundamental ideas. Instead and nearly at 
the end of the chapter, Schweiger takes catalogues of fundamental ideas as a reflec-
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tion of a ‘personal view of mathematics’, which should be ‘open to revision’ and 
developed in communications between ‘student teachers, teachers and teacher edu-
cators’ (Schweiger 2006, p. 71). In this respect, the present book is a look around the 
personal landscapes of didactics of mathematics of the authors when being asked 
about the surroundings of a common concept, namely transformations. The book is 
a documentation of what comes to mind, when a set of didacticians of mathemat-
ics is asked about their personal neighbourhood of the concept of ‘transformation’.

With transformation as a ‘prototype’ and for fundamental ideas in general, this 
can be read as a confirmation of the idea of a landscape of fundamental ideas. If 
one wants to cater for didactics of mathematics as a whole, a hopefully complete 
landscape of fundamental ideas is necessary. Paragraph 2 of this epilogue already 
mentioned results from an analysis of just one fundamental idea in didactics of 
mathematics (like the different facets of transformation in different areas of math-
ematics and didactics of mathematics and the absence of a methodological unifor-
mity in didactics of mathematics). A single fundamental idea—like the prototype 
‘transformation’—cannot cover the whole variety of didactics of mathematics as a 
scientific discipline. I personally doubt that a ‘one-fits-all’ approach is appropriate 
in any scientific discipline whatsoever.

To end my epilogue, I want to bring to the forefront an issue which is not very 
explicitly treated in the chapters of this book so far, but was clearly identified in the 
introduction: Are we looking for fundamental ideas within the discipline mathemat-
ics or are we looking for fundamental ideas within didactics of mathematics? Or are 
they the same? If they are not the same, what makes the difference? Are there funda-
mental ideas common to both mathematics and didactics of mathematics? The case 
of ‘transformation’ seems to show that—at least for some authors—mathematics 
and didactics of mathematics share some fundamental ideas. In part I of the book, 
transformation is nearer to didactics of mathematics, because the transformation is 
clearly linked to institutions or—as Sutherland correctly puts forward—linked to 
human beings not fully dependant on institutional constraints. On the other hand, 
transformations in geometry illustrate that ‘transformations’ can even be taken as 
a fundamental idea within mathematics, which is relevant in the whole discipline 
if ‘transformations’ in geometry is the synonym for ‘functions’ in mathematics in 
general. In addition to this line of thought and in conformity to the introduction of 
the whole book, part I of the book shows that ‘transformations’ can have a different 
meaning as a fundamental idea in didactics of mathematics. Here, the meaning of 
‘transformation’ can be explained by ‘change of mathematical ideas influenced by 
human beings and/or institutions’. The text from Biermann and Jahnke illustrates 
that ‘transformations’ can also be ‘change in time’. The text from Grevholm de-
scribes a ‘change in the course of a biography’. In all and for a fundamental idea, it 
is important to decide which discipline is concerned when looking for fundamental 
ideas. Fundamental ideas in didactics of mathematics can be different from funda-
mental ideas in mathematics—even if the same word is used to describe them. If 
one takes up the issue raised in the paragraph before, it must be mentioned that a 
proposal for a catalogue of fundamental ideas for didactics of mathematics is still to 
be identified—if possible at all.
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