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Preface to the Second Edition

The ongoing developments being made in large dimensional data analysis
continue to generate great interest in random matrix theory in both theoret-
ical investigations and applications in many disciplines. This has doubtlessly
contributed to the significant demand for this monograph, resulting in its first
printing being sold out. The authors have received many requests to publish
a second edition of the book.

Since the publication of the first edition in 2006, many new results have
been reported in the literature. However, due to limitations in space, we
cannot include all new achievements in the second edition. In accordance with
the needs of statistics and signal processing, we have added a new chapter on
the limiting behavior of eigenvectors of large dimensional sample covariance
matrices. To illustrate the application of RMT to wireless communications
and statistical finance, we have added a chapter on these areas. Certain new
developments are commented on throughout the book. Some typos and errors
found in the first edition have been corrected.

The authors would like to express their appreciation to Ms. Lü Hong for her
help in the preparation of the second edition. They would also like to thank
Professors Ying-Chang Liang, Zhaoben Fang, Baoxue Zhang, and Shurong
Zheng, and Mr. Jiang Hu, for their valuable comments and suggestions. They
also thank the copy editor, Mr. Hal Heinglein, for his careful reading, cor-
rections, and helpful suggestions. The first author would like to acknowledge
the support from grants NSFC 10871036, NUS R-155-000-079-112, and R-
155-000-096-720.

Changchun, China, and Singapore Zhidong Bai
Cary, North Carolina, USA Jack W. Silverstein

March 2009
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Preface to the First Edition

This monograph is an introductory book on the theory of random matri-
ces (RMT). The theory dates back to the early development of quantum
mechanics in the 1940s and 1950s. In an attempt to explain the complex or-
ganizational structure of heavy nuclei, E. Wigner, Professor of Mathematical
Physics at Princeton University, argued that one should not compute energy
levels from Schrödinger’s equation. Instead, one should imagine the complex
nuclei system as a black box described by n × n Hamiltonian matrices with
elements drawn from a probability distribution with only mild constraints
dictated by symmetry considerations. Under these assumptions and a mild
condition imposed on the probability measure in the space of matrices, one
finds the joint probability density of the n eigenvalues. Based on this con-
sideration, Wigner established the well-known semicircular law. Since then,
RMT has been developed into a big research area in mathematical physics
and probability. Its rapid development can be seen from the following statis-
tics from the Mathscinet database under keyword Random Matrix on 10 June
2005 (Table 0.1).

Table 0.1 Publication numbers on RMT in 10 year periods since 1955

1955–1964 1965–1974 1975–1984 1985–1994 1995–2004

23 138 249 635 1205

Modern developments in computer science and computing facilities moti-
vate ever widening applications of RMT to many areas.

In statistics, classical limit theorems have been found to be seriously in-
adequate in aiding in the analysis of very high dimensional data.

In the biological sciences, a DNA sequence can be as long as several billion
strands. In financial research, the number of different stocks can be as large
as tens of thousands.

In wireless communications, the number of users can be several million.

ix



x Preface to the First Edition

All of these areas are challenging classical statistics. Based on these needs,
the number of researchers on RMT is gradually increasing. The purpose of
this monograph is to introduce the basic results and methodologies developed
in RMT. We assume readers of this book are graduate students and beginning
researchers who are interested in RMT. Thus, we are trying to provide the
most advanced results with proofs using standard methods as detailed as we
can.

After more than a half century, many different methodologies of RMT have
been developed in the literature. Due to the limitation of our knowledge and
length of the book, it is impossible to introduce all the procedures and results.
What we shall introduce in this book are those results obtained either under
moment restrictions using the moment convergence theorem or the Stieltjes
transform.

In an attempt at complementing the material presented in this book, we
have listed some recent publications on RMT that we have not introduced.

The authors would like to express their appreciation to Professors Chen
Mufa, Lin Qun, and Shi Ningzhong, and Ms. Lü Hong for their encouragement
and help in the preparation of the manuscript. They would also like to thank
Professors Zhang Baoxue, Lee Sungchul, Zheng Shurong, Zhou Wang, and
Hu Guorong for their valuable comments and suggestions.

Changchun, China Zhidong Bai
Cary, North Carolina, USA Jack W. Silverstein

June 2005
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Chapter 1

Introduction

1.1 Large Dimensional Data Analysis

The aim of this book is to investigate the spectral properties of random
matrices (RM) when their dimensions tend to infinity. All classical limiting
theorems in statistics are under the assumption that the dimension of data
is fixed. Then, it is natural to ask why the dimension needs to be considered
large and whether there are any differences between the results for a fixed
dimension and those for a large dimension.

In the past three or four decades, a significant and constant advancement
in the world has been in the rapid development and wide application of
computer science. Computing speed and storage capability have increased a
thousand folds. This has enabled one to collect, store, and analyze data sets
of very high dimension. These computational developments have had a strong
impact on every branch of science. For example, Fisher’s resampling theory
had been silent for more than three decades due to the lack of efficient random
number generators until Efron proposed his renowned bootstrap in the late
1970s; the minimum L1 norm estimation had been ignored for centuries since
it was proposed by Laplace until Huber revived it and further extended it
to robust estimation in the early 1970s. It is difficult to imagine that these
advanced areas in statistics would have received such deep development if
there had been no assistance from the present-day computer.

Although modern computer technology helps us in so many respects, it
also brings a new and urgent task to the statistician; that is, whether the
classical limit theorems (i.e., those assuming a fixed dimension) are still valid
for analyzing high dimensional data and how to remedy them if they are not.

Basically, there are two kinds of limiting results in multivariate analysis:
those for a fixed dimension (classical limit theorems) and those for a large
dimension (large dimensional limit theorems). The problem turns out to be
which kind of result is closer to reality. As argued by Huber in [157], some
statisticians might say that five samples for each parameter on average are

1Z
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2 1 Introduction

enough to use asymptotic results. Now, suppose there are p = 20 parameters
and we have a sample of size n = 100. We may consider the case as p = 20
being fixed and n tending to infinity, p = 2

√
n, or p = 0.2n. So, we have at

least three different options from which to choose for an asymptotic setup.
A natural question is then which setup is the best choice among the three.
Huber strongly suggested studying the situation of an increasing dimension
together with the sample size in linear regression analysis.

This situation occurs in many cases. In parameter estimation for a struc-
tured covariance matrix, simulation results show that parameter estimation
becomes very poor when the number of parameters is more than four. Also,
it is found in linear regression analysis that if the covariates are random (or
have measurement errors) and the number of covariates is larger than six, the
behavior of the estimates departs far away from the theoretic values unless
the sample size is very large. In signal processing, when the number of signals
is two or three and the number of sensors is more than 10, the traditional
MUSIC (MUltiple SIgnal Classification) approach provides very poor esti-
mation of the number of signals unless the sample size is larger than 1000.
Paradoxically, if we use only half of the data set—namely, we use the data set
collected by only five sensors—the signal number estimation is almost 100%
correct if the sample size is larger than 200. Why would this paradox happen?
Now, if the number of sensors (the dimension of data) is p, then one has to
estimate p2 parameters (1

2p(p+1) real parts and 1
2p(p−1) imaginary parts of

the covariance matrix). Therefore, when p increases, the number of param-
eters to be estimated increases proportional to p2 while the number (2np)
of observations increases proportional to p. This is the underlying reason for
this paradox. This suggests that one has to revise the traditional MUSIC
method if the sensor number is large.

An interesting problem was discussed by Bai and Saranadasa [27], who
theoretically proved that when testing the difference of means of two high
dimensional populations, Dempster’s [91] nonexact test is more powerful than
Hotelling’s T 2 test even when the T 2 statistic is well defined.

It is well known that statistical efficiency will be significantly reduced
when the dimension of data or number of parameters becomes large. Thus,
several techniques for dimension reduction have been developed in multivari-
ate statistical analysis. As an example, let us consider a problem in principal
component analysis. If the data dimension is 10, one may select three princi-
pal components so that more than 80% of the information is reserved in the
principal components. However, if the data dimension is 1000 and 300 princi-
pal components are selected, one would still have to face a high dimensional
problem. If one only chooses three principal components, he would have lost
90% or even more of the information carried in the original data set. Now,
let us consider another example.

Example 1.1. Let Xij be iid standard normal variables. Write
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Sn =

(
1

n

n∑

k=1

XikXjk

)p

i,j=1

,

which can be considered as a sample covariance matrix with n samples of a
p-dimensional mean-zero random vector with population matrix I. An im-
portant statistic in multivariate analysis is

Tn = log(detSn) =

p∑

j=1

log(λn,j),

where λn,j , j = 1, · · · , p, are the eigenvalues of Sn. When p is fixed, λn,j → 1

almost surely as n→ ∞ and thus Tn
a.s.−→ 0.

Further, by taking a Taylor expansion on log(1 + x), one can show that

√
n/pTn

D→ N(0, 2),

for any fixed p. This suggests the possibility that Tn is asymptotically normal,
provided that p = O(n). However, this is not the case. Let us see what hap-
pens when p/n→ y ∈ (0, 1) as n→ ∞. Using results on the limiting spectral
distribution of {Sn} (see Chapter 3), we will show that with probability 1

1

p
Tn →

∫ b(y)

a(y)

log x

2πxy

√
(b(y) − x)(x − a(y))dx =

y − 1

y
log(1−y)−1 ≡ d(y) < 0

(1.1.1)
where a(y) = (1 −√

y)2, b(y) = (1 +
√
y)2. This shows that almost surely

√
n/pTn ∼ d(y)

√
np→ −∞.

Thus, any test that assumes asymptotic normality of Tn will result in a serious
error.

These examples show that the classical limit theorems are no longer suit-
able for dealing with high dimensional data analysis. Statisticians must seek
out special limiting theorems to deal with large dimensional statistical prob-
lems. Thus, the theory of random matrices (RMT) might be one possible
method for dealing with large dimensional data analysis and hence has re-
ceived more attention among statisticians in recent years. For the same rea-
son, the importance of RMT has found applications in many research areas,
such as signal processing, network security, image processing, genetic statis-
tics, stock market analysis, and other finance or economic problems.
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1.2 Random Matrix Theory

RMT traces back to the development of quantum mechanics (QM) in the
1940s and early 1950s. In QM, the energy levels of a system are described by
eigenvalues of a Hermitian operator A on a Hilbert space, called the Hamilto-
nian. To avoid working with an infinite dimensional operator, it is common to
approximate the system by discretization, amounting to a truncation, keep-
ing only the part of the Hilbert space that is important to the problem under
consideration. Hence, the limiting behavior of large dimensional random ma-
trices has attracted special interest among those working in QM, and many
laws were discovered during that time. For a more detailed review on appli-
cations of RMT in QM and other related areas, the reader is referred to the
book Random Matrices by Mehta [212].

Since the late 1950s, research on the limiting spectral analysis of large di-
mensional random matrices has attracted considerable interest among mathe-
maticians, probabilists, and statisticians. One pioneering work is the semicir-
cular law for a Gaussian (or Wigner) matrix (see Chapter 2 for the definition),
due to Wigner [296, 295]. He proved that the expected spectral distribution
of a large dimensional Wigner matrix tends to the so-called semicircular law.
This work was generalized by Arnold [8, 7] and Grenander [136] in various
aspects. Bai and Yin [37] proved that the spectral distribution of a sam-
ple covariance matrix (suitably normalized) tends to the semicircular law
when the dimension is relatively smaller than the sample size. Following the
work of Marčenko and Pastur [201] and Pastur [230, 229], the asymptotic
theory of spectral analysis of large dimensional sample covariance matrices
was developed by many researchers, including Bai, Yin, and Krishnaiah [41],
Grenander and Silverstein [137], Jonsson [169], Wachter [291, 290], Yin [300],
and Yin and Krishnaiah [304]. Also, Yin, Bai, and Krishnaiah [301, 302],
Silverstein [260], Wachter [290], Yin [300], and Yin and Krishnaiah [304] in-
vestigated the limiting spectral distribution of the multivariate F -matrix, or
more generally of products of random matrices. In the early 1980s, major
contributions on the existence of the limiting spectral distribution (LSD)
and their explicit forms for certain classes of random matrices were made.
In recent years, research on RMT has turned toward second-order limiting
theorems, such as the central limit theorem for linear spectral statistics, the
limiting distributions of spectral spacings, and extreme eigenvalues.

1.2.1 Spectral Analysis of Large Dimensional
Random Matrices

Suppose A is anm×mmatrix with eigenvalues λj , j = 1, 2, · · · ,m. If all these
eigenvalues are real (e.g., if A is Hermitian), we can define a one-dimensional
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distribution function

FA(x) =
1

m
#{j ≤ m : λj ≤ x} (1.2.1)

called the empirical spectral distribution (ESD) of the matrix A. Here #E
denotes the cardinality of the set E. If the eigenvalues λj ’s are not all real,
we can define a two-dimensional empirical spectral distribution of the matrix
A:

FA(x, y) =
1

m
#{j ≤ m : ℜ(λj) ≤ x, ℑ(λj) ≤ y}. (1.2.2)

One of the main problems in RMT is to investigate the convergence of
the sequence of empirical spectral distributions {FAn} for a given sequence
of random matrices {An}. The limit distribution F (possibly defective; that
is, total mass is less than 1 when some eigenvalues tend to ±∞), which is
usually nonrandom, is called the limiting spectral distribution (LSD) of the
sequence {An}.

We are especially interested in sequences of random matrices with dimen-
sion (number of columns) tending to infinity, which refers to the theory of
large dimensional random matrices.

The importance of ESD is due to the fact that many important statistics
in multivariate analysis can be expressed as functionals of the ESD of some
RM. We now give a few examples.

Example 1.2. Let A be an n× n positive definite matrix. Then

det(A) =

n∏

j=1

λj = exp

(
n

∫ ∞

0

log xFA(dx)

)
.

Example 1.3. Let the covariance matrix of a population have the form Σ =
Σq + σ2I, where the dimension of Σ is p and the rank of Σq is q(< p).
Suppose S is the sample covariance matrix based on n iid samples drawn
from the population. Denote the eigenvalues of S by σ1 ≥ σ2 ≥ · · · ≥ σp.
Then the test statistic for the hypothesis H0 : rank(Σq) = q against H1 :
rank(Σq) > q is given by

T =
1

p− q

p∑

j=q+1

σ2
j −


 1

p− q

p∑

j=q+1

σj




2

=
p

p− q

∫ σq

0

x2FS(dx) −
(

p

p− q

∫ σq

0

xFS(dx)

)2

.



6 1 Introduction

1.2.2 Limits of Extreme Eigenvalues

In applications of the asymptotic theorems of spectral analysis of large di-
mensional random matrices, two important problems arise after the LSD is
found. The first is the bound on extreme eigenvalues; the second is the conver-
gence rate of the ESD with respect to sample size. For the first problem, the
literature is extensive. The first success was due to Geman [118], who proved
that the largest eigenvalue of a sample covariance matrix converges almost
surely to a limit under a growth condition on all the moments of the underly-
ing distribution. Yin, Bai, and Krishnaiah [301] proved the same result under
the existence of the fourth moment, and Bai, Silverstein, and Yin [33] proved
that the existence of the fourth moment is also necessary for the existence
of the limit. Bai and Yin [38] found the necessary and sufficient conditions
for almost sure convergence of the largest eigenvalue of a Wigner matrix.
By the symmetry between the largest and smallest eigenvalues of a Wigner
matrix, the necessary and sufficient conditions for almost sure convergence
of the smallest eigenvalue of a Wigner matrix were also found.

Compared to almost sure convergence of the largest eigenvalue of a sample
covariance matrix, a relatively harder problem is to find the limit of the
smallest eigenvalue of a large dimensional sample covariance matrix. The
first attempt was made in Yin, Bai, and Krishnaiah [302], in which it was
proved that the almost sure limit of the smallest eigenvalue of a Wishart
matrix has a positive lower bound when the ratio of the dimension to the
degrees of freedom is less than 1/2. Silverstein [262] modified the work to
allow a ratio less than 1. Silverstein [263] further proved that, with probability
1, the smallest eigenvalue of a Wishart matrix tends to the lower bound
of the LSD when the ratio of the dimension to the degrees of freedom is
less than 1. However, Silverstein’s approach strongly relies on the normality
assumption on the underlying distribution and thus cannot be extended to
the general case. The most current contribution was made in Bai and Yin
[36], in which it is proved that, under the existence of the fourth moment
of the underlying distribution, the smallest eigenvalue (when p ≤ n) or the
p − n + 1st smallest eigenvalue (when p > n) tends to a(y) = σ2(1 − √

y)2,
where y = lim(p/n) ∈ (0,∞). Compared to the case of the largest eigenvalues
of a sample covariance matrix, the existence of the fourth moment seems to
be necessary also for the problem of the smallest eigenvalue. However, this
problem has not yet been solved.

1.2.3 Convergence Rate of the ESD

The second problem, the convergence rate of the spectral distributions of
large dimensional random matrices, is of practical interest. Indeed, when the
LSD is used in estimating functionals of eigenvalues of a random matrix, it is
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important to understand the reliability of performing the substitution. This
problem had been open for decades. In finding the limits of both the LSD
and the extreme eigenvalues of symmetric random matrices, a very useful and
powerful method is the moment method, which does not give any information
about the rate of the convergence of the ESD to the LSD. The first success was
made in Bai [16, 17], in which a Berry-Esseen type inequality of the difference
of two distributions was established in terms of their Stieltjes transforms.
Applying this inequality, a convergence rate for the expected ESD of a large
Wigner matrix was proved to be O(n−1/4) and that for the sample covariance
matrix was shown to be O(n−1/4) if the ratio of the dimension to the degrees
of freedom is far from 1 and O(n−5/48) if the ratio is close to 1. Some further
developments can be found in Bai et al. [23, 24, 25], Bai et al. [26], Götze et
al. [132], and Götze and Tikhomirov [133, 134].

1.2.4 Circular Law

The most perplexing problem is the so-called circular law, which conjectures
that the spectral distribution of a nonsymmetric random matrix, after suit-
able normalization, tends to the uniform distribution over the unit disk in the
complex plane. The difficulty exists in that two of the most important tools
used for symmetric matrices do not apply for nonsymmetric matrices. Fur-
thermore, certain truncation and centralization techniques cannot be used.
The first known result was given in Mehta [212] (1967 edition) and in an un-
published paper of Silverstein (1984) that was reported in Hwang [159]. They
considered the case where the entries of the matrix are iid standard complex
normal. Their method uses the explicit expression of the joint density of the
complex eigenvalues of the random matrix that was found by Ginibre [120].
The first attempt to prove this conjecture under some general conditions was
made in Girko [123, 124]. However, his proofs contain serious mathematical
gaps and have been considered questionable in the literature. Recently, Edel-
man [98] found the conditional joint distribution of complex eigenvalues of a
random matrix whose entries are real normal N(0, 1) when the number of its
real eigenvalues is given and proved that the expected spectral distribution of
the real Gaussian matrix tends to the circular law. Under the existence of the
4 + ε moment and the existence of a density, Bai [14] proved the strong ver-
sion of the circular law. Recent work has eliminated the density requirement
and weakened the moment condition. Further details are given in Chapter
11. Some consequent achievements can be found in Pan and Zhou [227] and
Tao and Vu [273].
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1.2.5 CLT of Linear Spectral Statistics

As mentioned above, functionals of the ESD of RMs are important in multi-
variate inference. Indeed, a parameter θ of the population can sometimes be
expressed as

θ =

∫
f(x)dF (x).

To make statistical inference on θ, one may use the integral

θ̂ =

∫
f(x)dFn(x),

which we call linear spectral statistics (LSS), as an estimator of θ, where
Fn(x) is the ESD of the RM computed from the data set. Further, one may

want to know the limiting distribution of θ̂ through suitable normalization.
In Bai and Silverstein [30], the normalization was found to be n by showing
the limiting distribution of the linear functional

Xn(f) = n

∫
f(t)d(Fn(t) − F (t))

to be Gaussian under certain assumptions.
The first work in this direction was done by Jonsson [169], in which f(t) =

tr and Fn is the ESD of a normalized standard Wishart matrix. Further work
was done by Johansson [165], Bai and Silverstein [30], Bai and Yao [35], Sinai
and Soshnikov [269], Anderson and Zeitouni [2], and Chatterjee [77], among
others.

It would seem natural to pursue the properties of linear functionals by way
of proving results on the process Gn(t) = αn(Fn(t)−F (t)) when viewed as a
random element in D[0,∞), the metric space of functions with discontinuities
of the first kind, along with the Skorohod metric. Unfortunately, this is im-
possible. The work done in Bai and Silverstein [30] shows that Gn(t) cannot
converge weakly to any nontrivial process for any choice of αn. This fact ap-
pears to occur in other random matrix ensembles. When Fn is the empirical
distribution of the angles of eigenvalues of an n×n Haar matrix, Diaconis and
Evans [94] proved that all finite dimensional distributions of Gn(t) converge
in distribution to independent Gaussian variables when αn = n/

√
logn. This

shows that with αn = n/
√

logn, the process Gn cannot be tight in D[0,∞).
The result of Bai and Silverstein [30] has been applied in several areas,

especially in wireless communications, where sample covariance matrices are
used to model transmission between groups of antennas. See, for example,
Tulino and Verdu [283] and Kamath and Hughes [170].
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1.2.6 Limiting Distributions of Extreme Eigenvalues
and Spacings

The first work on the limiting distributions of extreme eigenvalues was done
by Tracy and Widom [278], who found the expression for the largest eigen-
value of a Gaussian matrix when suitably normalized. Further, Johnstone
[168] found the limiting distribution of the largest eigenvalue of the large
Wishart matrix. In El Karoui [101], the Tracy-Widom law of the largest
eigenvalue is established for the complex Wishart matrix when the popula-
tion covariance matrix differs from the identity.

When the majority of the population eigenvalues are 1 and some are larger
than 1, Johnstone proposed the spiked eigenvalues model in [168]. Then, Baik
et al. [43] and Baik and Silverstein [44] investigated the strong limit of spiked
eigenvalues. Bai and Yao [34] investigated the CLT of spiked eigenvalues. A
special case of the CLT when the underlying distribution is complex Gaussian
was considered in Baik et al. [43], and the real Gaussian case was considered
in Paul [231].

The work on spectrum spacing has a long history that dates back to Mehta
[213]. Most of the work in these two directions assumes the Gaussian (or
generalized) distributions.

1.3 Methodologies

The eigenvalues of a matrix can be regarded as continuous functions of entries
of the matrix. But these functions have no closed form when the dimension
of the matrix is larger than 4. So special methods are needed to understand
them. There are three important methods employed in this area: the mo-
ment method, Stieltjes transform, and orthogonal polynomial decomposition
of the exact density of eigenvalues. Of course, the third method needs the as-
sumption of the existence and special forms of the densities of the underlying
distributions in the RM.

1.3.1 Moment Method

In the following, {Fn} will denote a sequence of distribution functions, and
the k-th moment of the distribution Fn is denoted by

βn,k = βk(Fn) :=

∫
xkdFn(x). (1.3.1)
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The moment method is based on the moment convergence theorem (MCT);
see Lemmas B.1, B.2, and B.3.

Let A be an n× n Hermitian matrix, and denote its eigenvalues by λ1 ≤
· · · ≤ λn. The ESD, FA, of A is defined as in (1.2.1) with m replaced by n.
Then, the k-th moment of FA can be written as

βn,k(A) =

∫ ∞

−∞
xkFA(dx) =

1

n
tr(Ak). (1.3.2)

This expression plays a fundamental role in RMT. By MCT, the problem of
showing that the ESD of a sequence of random matrices {An} (strongly or
weakly or in another sense) tends to a limit reduces to showing that, for each
fixed k, the sequence { 1

n tr(Ak)} tends to a limit βk in the corresponding
sense and then verifying the Carleman condition (B.1.4),

∞∑

k=1

β
−1/2k
2k = ∞.

Note that in most cases the LSD has finite support, and hence the charac-
teristic function of the LSD is analytic and the necessary condition for the
MCT holds automatically. Most results in finding the LSD or proving the ex-
istence of the LSD were obtained by estimating the mean, variance, or higher
moments of 1

n tr(Ak).

1.3.2 Stieltjes Transform

The definition and simple properties of the Stieltjes transform can be found
in Appendix B, Section B.2. Here, we just illustrate how it can be used in
RMT. Let A be an n × n Hermitian matrix and Fn be its ESD. Then, the
Stieltjes transform of Fn is given by

sn(z) =

∫
1

x− z
dFn(x) =

1

n
tr(A − zI)−1.

Using the inverse matrix formula (see Theorem A.4), we get

sn(z) =
1

n

n∑

k=1

1

akk − z − α∗
k(Ak − zI)−1αk

where Ak is the (n− 1)× (n− 1) matrix obtained from A with the k-th row
and column removed and αk is the k-th column vector of A with the k-th
element removed.

If the denominator akk−z−α∗
k(Ak−zI)−1αk can be proven to be equal to

g(z, sn(z))+ o(1) for some function g, then the LSD F exists and its Stieltjes
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transform of F is the solution to the equation

s = 1/g(z, s).

Its applications will be discussed in more detail later.

1.3.3 Orthogonal Polynomial Decomposition

Assume that the matrix A has a density pn(A) = H(λ1, · · · , λn). It is known
that the joint density function of the eigenvalues will be of the form

pn(λ1, · · · , λn) = cJ(λ1, · · · , λn)H(λ1, · · · , λn),

where J comes from the integral of the Jacobian of the transform from the
matrix space to its eigenvalue-eigenvector space. Generally, it is assumed that
H has the form H(λ1, · · · , λn) =

∏n
k=1 g(λk) and J has the form

∏
i<j(λi −

λj)
β
∏n

k=1 hn(λk). For example, β = 1 and hn = 1 for a real Gaussian matrix,
β = 2, hn = 1 for a complex Gaussian matrix, β = 4, hn = 1 for a quaternion
Gaussian matrix, and β = 1 and hn(x) = xn−p for a real Wishart matrix
with n ≥ p.

Examples considered in the literature are the following

(1) Real Gaussian matrix (symmetric; i.e., A′ = A):

pn(A) = c exp

(
− 1

4σ2
tr(A2)

)
.

In this case, the diagonal entries of A are iid real N(0, 2σ2) and entries
above diagonal are iid real N(0, σ2).

(2) Complex Gaussian matrix (Hermitian; i.e., A∗ = A):

pn(A) = c exp

(
− 1

2σ2
tr(A2)

)
.

In this case, the diagonal entries of A are iid real N(0, σ2) and entries
above diagonal are iid complex N(0, σ2) (whose real and imaginary parts
are iid N(0, σ2/2)).

(3) Real Wishart matrix of order p× n:

pn(A) = c exp

(
− 1

2σ2
tr(A′A)

)
.

In this case, the entries of A are iid real N(0, σ2).
(4) Complex Wishart matrix of order p× n:
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pn(A) = c exp

(
− 1

σ2
tr(A∗A)

)
.

In this case, the entries of A are iid complex N(0, σ2).

For generalized densities, there are the following.

(1) Symmetric matrix:
pn(A) = c exp(−trV (A)).

(2) Hermitian matrix:
pn(A) = c exp(−trV (A)).

In the two cases above, V is assumed to be a polynomial of even degree
with a positive leading coefficient.

(3) Real covariance matrix of dimension p and degrees of freedom n:

pn(A) = c exp(−trV (A′A)).

(4) Complex covariance matrix of dimension p and degrees of freedom n:

pn(A) = c exp(−trV (A∗A)).

In the two cases above, V is assumed to be a polynomial with a positive
leading coefficient.

Note that the factor
∏

i<j(λi−λj) is the determinant of the Vandermonde
matrix generated by λ1, · · · , λn. Therefore, we may rewrite the density of the
eigenvalues of the matrices as

pn(λ1, · · · , λn)

= c

n∏

k=1

hn(λk)g(λk)det




1 1 · · · 1
λ1 λ2 · · · λn
...

... · · ·
...

λn−1
1 λn−1

2 · · · λn−1
n




β

= c

n∏

k=1

hn(λk)g(λk)det




1 1 · · · 1
m1(λ1) m1(λ2) · · · m1(λn)

...
... · · ·

...
mn−1(λ1) mn−1(λ2) · · · mn−1(λn)




β

,

where mk is any polynomial of degree k and having leading coefficient 1. For
ease of finding the marginal densities of several eigenvalues, one may choose
the m functions as orthogonal polynomials with respective [g(x)hn(x)]2/β .
Then, through mathematical analysis, one can draw various conclusions from
the expression above.

Note that the moment method and Stieltjes transform method can be
done under moment assumptions. This book will primarily concentrate on
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results without assuming density conditions. Readers who are interested in
the method of orthogonal polynomials are referred to Deift [88].

1.3.4 Free Probability

Free probability is a mathematical theory that studies noncommutative ran-
dom variables. The “freeness” property is the analogue of the classical notion
of independence, and it is connected with free products. This theory was
initiated by Dan Voiculescu around 1986 in order to attack the free group
factors isomorphism problem, an important unsolved problem in the theory
of operator algebras. Typically the random variables lies in a unital alge-
bra A such as a C∗ algebra or a von Neumann algebra. The algebra comes
equipped with a noncommutative expectation, a linear functional ϕ : A→ C
such that ϕ(1) = 1. Unital subalgebras A1, · · · , An are then said to be free if
the expectation of the product a1 · · · an is zero whenever each aj has zero ex-
pectation, lies in an Ak, and no adjacent aj ’s come from the same subalgebra
Ak. Random variables are free if they generate free unital subalgebras.

An interesting aspect and active research direction of free probability lies in
its applications to RMT. The functional ϕ stands for the normalized expected
trace of a random matrix. For any n× n Hermitian random matrix An and
a given integer k, ϕ(Ak

n) = 1
n tr(EAk

n). If limn ϕ(Ak
n) = αk, for all k, then

instead of referring to the collection of numbers αk, it is better to use some
random variable A (if it exists) to characterize the αk’s as moments of A. By
setting ϕ(Ak) = αk, one may say that An → A in distribution. A general
definition is given as follows.

Definition 1.4. Consider n×n random matricesA
(1)
n , · · · , A(m)

n and variables
A1, · · · , Am. We say that

(A(1)
n , · · · , A(m)

n ) → (A1, · · · , Am) in distribution

if
lim

n→∞
ϕ(A(i1)

n · · ·A(ik)
n ) = ϕ(Ai1 · · ·Aik

)

for all choices of k, 1 ≤ i1, · · · , ik ≤ m.

When m = 1, the definition of convergence in distribution is to say that
if the normalized expected trace of Ak

n tends to the k-th moment of A, then
we define An tending to A. For example, let An be the normalized Wigner
matrix (see Chapter 2). Then A is the semicircular law. Now, suppose we
have two independent sequences of normalized Wigner matrices, {An} and
{Bn}. How do we characterize their limits? If individually, then An → sa

and Bn → sb, and both sa and sb are semicircular laws. The problem is how
to consider the joint limit of the sequences of pairs (An,Bn). Or equivalently,
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what is the relationship of sa and sb? According to free probability, we have
the following definition.

Definition 1.5. The matrices A1, · · · ,Am are called free if

ϕ([p1(Ai1 ) · · · pk(Aik
)]) = 0

whenever

• p1, · · · , pk are polynomials in one variable,
• i1 6= i2 6= i3 6= · · · 6= ik (only neighboring elements are required to be

distinct),
• ϕ(pj(Aij )) = 0 for all j = 1, · · · , k.

Note that the definition of freeness can be considered as a way of organizing
the information about all joint moments of free variables in a systematic and
conceptual way. Indeed, the definition above allows one to calculate mixed
moments of free variables in terms of moments of the single variables. For
example, if a, b are free, then the definition of freeness requires that ϕ[(a −
ϕ(a)1)(b − ϕ(b)1)] = 0, which implies that ϕ(ab) = ϕ(a)ϕ(b). In the same
way, ϕ[(a − ϕ(a)1)(b − ϕ(b)1)(a − ϕ(a)1)(b − ϕ(b)1)] = 0 leads finally to
ϕ(abab) = ϕ(aa)ϕ(b)ϕ(b) + ϕ(a)ϕ(a)ϕ(bb) − ϕ(a)ϕ(b)ϕ(a)ϕ(b). Analogously,
all mixed moments can (at least in principle) be calculated by reducing them
to alternating products of centered variables as in the definition of freeness.
Thus the statements sa, sb are free, and each of them being semicircular
determines all joint moments in sa and sb. This shows that sa and sb are not
ordinary random variables but take values on some noncommutative algebra.

To apply the theory of free probability to RMT, we need to extend the
definition of free to asymptotic freeness; that is, replacing the state functional
ϕ by φ, where

φ(A) = lim
n→∞

1

n
trE(An).

Since normalized traces of powers of a Hermitian matrix are the moments
of the ESD of the matrix, free probability reveals important information
on their LSD. It is shown that freeness of random matrices corresponds to
independence and to distributions being invariant under orthogonal trans-
formations. Formulas have been derived that express the LSD of sums and
products of free random matrices in terms of their individual LSDs.

For an excellent introduction to free probability, see Biane [52] and Nica
and Speicher [221].



Chapter 2

Wigner Matrices and Semicircular Law

A Wigner matrix is a symmetric (or Hermitian in the complex case) ran-
dom matrix. Wigner matrices play an important role in nuclear physics and
mathematical physics. The reader is referred to Mehta [212] for applications
of Wigner matrices to these areas. Here we mention that they also have a
strong statistical meaning. Consider the limit of a normalized Wishart matrix.
Suppose that x1, · · · ,xn are iid samples drawn from a p-dimensional multi-
variate normal population N(µ, Ip). Then, the sample covariance matrix is
defined as

Sn =
1

n− 1

n∑

i=1

(xi − x)(xi − x)′,

where x = 1
n

∑n
i=1 xi. When n tends to infinity, Sn → Ip and

√
n (Sn − Ip) →√

pWp. It can be seen that the entries above the main diagonal of
√
pWp

are iid N(0, 1) and the entries on the diagonal are iid N(0, 2). This matrix is
called the (standard) Gaussian matrix or Wigner matrix.

A generalized definition of Wigner matrix only requires the matrix to
be a Hermitian random matrix whose entries on or above the diagonal are
independent. The study of spectral analysis of the large dimensional Wigner
matrix dates back to Wigner’s [295] famous semicircular law. He proved
that the expected ESD of an n×n standard Gaussian matrix, normalized by
1/

√
n, tends to the semicircular law F whose density is given by

F ′(x) =

{
1
2π

√
4 − x2, if |x| ≤ 2,

0, otherwise.
(2.0.1)

This work has been extended in various aspects. Grenander [136] proved
that ‖FWn − F‖ → 0 in probability. Further, this result was improved as in
the sense of “almost sure” by Arnold [8, 7]. Later on, this result was further
generalized, and it will be introduced in the following sections.

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,
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2.1 Semicircular Law by the Moment Method

In order to apply the moment method (see Appendix B, Section B.1) to
prove the convergence of the ESD of Wigner matrices to the semicircular
distribution, we calculate the moments of the semicircular distribution and
show that they satisfy the Carleman condition. In the remainder of this sec-
tion, we will show the convergence of the ESD of the Wigner matrix by the
moment method.

2.1.1 Moments of the Semicircular Law

Let βk denote the k-th moment of the semicircular law. We have the following
lemma.

Lemma 2.1. For k = 0, 1, 2, · · · , we have

β2k =
1

k + 1

(
2k

k

)
,

β2k+1 = 0.

Proof. Since the semicircular distribution is symmetric about 0, thus we have
β2k+1 = 0. Also, we have

β2k =
1

2π

∫ 2

−2

x2k
√

4 − x2dx

=
1

π

∫ 2

0

x2k
√

4 − x2dx

=
22k+1

π

∫ 1

0

yk−1/2(1 − y)1/2dy (by setting x = 2
√
y)

=
22k+1

π

Γ (k + 1/2)Γ (3/2)

Γ (k + 2)
=

1

k + 1

(
2k

k

)
.

2.1.2 Some Lemmas in Combinatorics

In order to calculate the limits of moments of the ESD of a Wigner matrix,
we need some information from combinatorics. This is because the mean and
variance of each empirical moment will be expressed as a sum of expectations
of products of matrix entries, and we need to be able to systematically count
the number of significant terms. To this end, we introduce some concepts
from graph theory and establish some lemmas.
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vertices, and F is a function, F : E 7→ V ×V . If F (e) = (v1, v2), the vertices
v1, v2 are called the ends of the edge e, v1 is the initial of e, and v2 is the
terminal of e. If v1 = v2, edge e is a loop. If two edges have the same set of

Let i = (i1, · · · , ik) be a vector valued on {1, · · · , n}k. With the vector i,
we define a Γ -graph as follows. Draw a horizontal line and plot the numbers
i1, · · · , ik on it. Consider the distinct numbers as vertices, and draw k edges
ej from ij to ij+1, j = 1, · · · , k, where ik+1 = i1 by convention. Denote
the number of distinct ij’s by t. Such a graph is called a Γ (k, t)-graph. An
example of Γ (6, 4) is shown in Fig. 2.1.

5
i 1 = i 7 i 2 = i 6

i 3 = i 4 i

Fig. 2.1 A Γ -graph

By definition, a Γ (k, t)-graph starts from vertex i1, and the k edges con-
secutively connect one after another and finally return to vertex i1. That is,
a Γ (k, t)-graph forms a cycle.

Two Γ (k, t)-graphs are said to be isomorphic if one can be converted to
the other by a permutation of (1, · · · , n). By this definition, all Γ -graphs are
classified into isomorphism classes.

We shall call the Γ (k, t)-graph canonical if it has the following properties:

1. Its vertex set is V = {1, · · · , t}.
2. Its edge set is E = {e1, · · · , ek}.
3. There is a function g from {1, 2, · · · , k} onto {1, 2, · · · , t} satisfying g(1) = 1

and g(i) ≤ max{g(1), · · · , g(i− 1)} + 1 for 1 < i ≤ k.
4. F (ei) = (g(i), g(i+1)), for i = 1, · · · , k, with convention g(k+1) = g(1) =

1.

It is easy to see that each isomorphism class contains one and only one
canonical Γ -graph that is associated with a function g, and a general graph
in this class can be defined by F (ej) = (ig(j), ig(j+1)). Therefore, we have the
following lemma.

Lemma 2.2. Each isomorphism class contains n(n−1) · · · (n− t+1) Γ (k, t)
graphs.

A graph is a triple (E, V, F ), where E is the set of edges, V is the set of

ends, they are said to be coincident.
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The canonical Γ (k, t)-graphs can be classified into three categories.
Category 1 (denoted by Γ1(k)): A canonical graph Γ (k, t) is said to belong

to category 1 if each edge is coincident with exactly one other edge of opposite
direction and the graph of noncoincident edges forms a tree (i.e., a connected
graph without cycles). It is obvious that there is no Γ1(k) if k is odd.

Category 2 (Γ2(k, t)) consists of all those canonical Γ (k, t)-graphs that
have at least one single edge; i.e., an edge not coincident with any other
edges.

Category 3 (Γ3(k, t)) consists of all other canonical Γ (k, t)-graphs. If we
classify the k edges into coincidence classes, a Γ3(k, t)-graph contains either a
coincidence class of at least three edges or a cycle of noncoincident edges. In
both cases, t ≤ (k+ 1)/2. Then, in fact we have proved the following lemma.

Lemma 2.3. In a Γ3(k, t)-graph, t ≤ (k + 1)/2.

Now, we begin to count the number of Γ1(k)-graphs for k = 2m. We have
the following lemma.

Lemma 2.4. The number of Γ1(2m)-graphs is 1
m+1

(
2m
m

)
.

Proof. Suppose G is a graph of Γ1(2m). We define a function H : E →
{−1, 1}; H(e) = +1 if e is single up to itself (called an innovation) and
= −1 otherwise (called a Type 3 (T3) edge, the edge that coincides with an
innovation that is single up to it). Corresponding to the graph G, we call
the sequence (H(e1), · · · , H(ek)) = (a1 = 1, a2, · · · , a2m−1, a2m = −1) the
characteristic sequence of the graph G. By definition, all partial sums of the
characteristic sequence are nonnegative; i.e., for all 1 ≤ ℓ ≤ 2m,

a1 + a2 + · · · + aℓ ≥ 0. (2.1.1)

We show that there is a one-to-one correspondence between Γ1(2m)-graphs
and the characteristic sequences. That is, we need to show that any sequence
of ±1 satisfying (2.1.1) corresponds to a Γ1(2m)-graph. Suppose (a1, · · · , a2m)
is a given sequence satisfying (2.1.1). We construct a Γ1(2m)-graph with the
given sequence as its characteristic sequence.

By (2.1.1), a1 = 1 and F (e1) = (1, 2); i.e., g(1) = 1, g(2) = 2. Sup-
pose g(1), g(2), · · · , g(s) (2 ≤ s < 2m) have been defined with the following
properties:

(i) For each i ≤ s, we have g(i) ≤ max{g(1), · · · , g(i− 1)} + 1.
(ii) If we define (g(i), g(i+ 1)), i = 1, · · · , s− 1, as edges, then from g(1) = 1

to g(s) there is a path of single innovations if g(s) 6= 1. All other edges
not on the path must coincide with another edge of opposite direction. If
g(s) = 1, then each edge coincides with another edge of opposite direction.

(iii) H(g(i), g(i+ 1)) = ai for all i < s.

Now, we define g(s+ 1) in the following way:
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Case 1. If as = 1, define g(s + 1) = max{g(1), · · · , g(s)} + 1. Obviously,
the edge (g(s), g(s+1)) is a single innovation that, combining the original
path of single innovations, forms the new path of single innovations from
g(1) = 1 to g(s+1) if g(s) 6= 1. If g(s) = 1, then g(s+1) 6= 1 and the edge
(g(s), g(s + 1)) forms the new path of single innovations. Also, all other
edges coincide with an edge of opposite directions. That is, conditions
(i)–(iii) are satisfied.

Case 2. If as = −1, then g(s) 6= 1 for otherwise condition (2.1.1) will be
violated. Hence, there is an i < s such that (g(i), g(s)) is a single innovation
(the last edge of a path of single innovations). Then, define g(s+1) = g(i).
If g(i) = 1, then the new graph has no single edges. If g(i) 6= 1, the original
path of single innovations has at least two single innovations. Then, the
new path of single innovations is obtained by cutting the last edge from the
original path of single innovations. Also, conditions (i)–(iii) are satisfied.

By induction, the functions g(1), · · · , g(2m) are well defined, and hence a
Γ1(2m) with characteristic sequence (a1, · · · , a2m) is defined.

Therefore, to count the number of Γ1(2m)-graphs is equivalent to counting
the number of characteristic sequences of isomorphism classes.

Arbitrarily arrange m ones and m minus ones. The total number of possi-
bilities is obviously

(
2m
m

)
. We shall use the symmetrization principle to count

the number of noncharacteristic sequences. Write the sequence of ±1s as
(a1, · · · , a2m) and S0 = 0 and Si = Si−1 + ai, for i = 1, 2, · · · , 2m. Plot the
graph of (i, S(i)) on the plane. The graph should start from (0, 0) and return
to (2m, 0). If for all i, Si ≥ 0 (that is, the figure is totally above or on the
horizontal axis), then (a1, · · · , a2m) is a characteristic sequence. Otherwise,
if (a1, · · · , a2m) is not a characteristic sequence, then there must be an i ≥ 1
such that Si = −1. Then we turn over the rear part after i along the line
S = −1 and we get a new graph (0, 0) to (2m,−2), as shown in Fig. 2.2.

i

0

−2

2m

S

Fig. 2.2 Symmetrization principle

This is equivalent to defining bj = aj for j ≤ i and bj = −aj for j > i.
Then, the sequence (b1, · · · , b2m) contains m− 1 ones and m+ 1 minus ones.
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Conversely, for any sequence of m−1 ones and m+1 minus ones, there must
be a smallest integer i < 2m such that b1 + · · ·+ bi = −1. Then the sequence
(b1, · · · , bk,−bk+1, · · · ,−b2m) contains m ones and m minus ones which is a
noncharacteristic sequence. The number of b-sequences is

(
2m

m−1

)
. Thus, the

number of characteristic sequences is

(
2m

m

)
−
(

2m

m− 1

)
=

1

m+ 1

(
2m

m

)
.

The proof of the lemma is complete.

2.1.3 Semicircular Law for the iid Case

In this subsection, we will show the semicircular law for the iid case; that is,
we shall prove the following theorem. For brevity of notation, we shall use
Xn for an n×n Wigner matrix and save the notation Wn for the normalized
Wigner matrix, i.e., 1√

n
Xn.

Theorem 2.5. Suppose that Xn is an n×n Hermitian matrix whose diagonal
entries are iid real random variables and those above the diagonal are iid
complex random variables with variance σ2 = 1. Then, with probability 1, the
ESD of Wn = 1√

n
Xn tends to the semicircular law.

Before applying the MCT to the proof of Theorem 2.5, we first remove
the diagonal entries of Xn, truncate the off-diagonal entries of the matrix,
and renormalize them, without changing the LSD. We will proceed with the
proof by taking the following steps.

Step 1. Removing the Diagonal Elements

Let W̃n be the matrix obtained from Wn by replacing the diagonal elements
with zero. We shall show that the two matrices are asymptotically equivalent;
i.e., their LSDs are the same if one of them exists.

Let Nn = #{|xii| ≥ 4
√
n}. Replace the diagonal elements of Wn by

1√
n
xiiI(|xii| < 4

√
n), and denote the resulting matrix by Ŵn. Then, by Corol-

lary A.41, we have

L3(F Ŵn , F W̃n) ≤ 1

n
tr[(W̃n − Ŵn)2] ≤ 1

n2

n∑

i=1

|xii|2I(|xii| < 4
√
n) ≤ 1√

n
.

On the other hand, by Theorem A.43, we have

∥∥∥FWn − F W̃n

∥∥∥ ≤ Nn

n
.
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Therefore, to complete the proof of our assertion, it suffices to show that
Nn/n → 0 almost surely. Write pn = P(|x11| ≥ 4

√
n) → 0. By Bernstein’s

inequality,1 we have, for any ε > 0,

P(Nn ≥ εn) = P

(
n∑

i=1

(I(|xii| ≥ 4
√
n) − pn) ≥ (ε− pn)n

)

≤ 2 exp(−(ε− pn)2n2/2[npn + (ε− pn)n]) ≤ 2e−bn,

for some positive constant b > 0. This completes the proof of our assertion.
In the following subsections, we shall assume that the diagonal elements

of Wn are all zero.

Step 2. Truncation
For any fixed positive constant C, truncate the variables at C and write
xij(C) = xijI(|xij | ≤ C). Define a truncated Wigner matrix Wn(C) whose

diagonal elements are zero and off-diagonal elements are 1√
n
xij(C). Then, we

have the following truncation lemma.

Lemma 2.6. Suppose that the assumptions of Theorem 2.5 are true. Trun-
cate the off-diagonal elements of Xn at C, and denote the resulting matrix
by Xn(C). Write Wn(C) = 1√

n
Xn(C). Then, for any fixed constant C,

lim sup
n

L3(FWn , FWn(C)) ≤ E
(
|x11|2I(|x11| > C)

)
, a.s. (2.1.2)

Proof. By Corollary A.41 and the law of large numbers, we have

L3(FWn , FWn(C)) ≤ 2

n2


 ∑

1≤i<j≤n

|xij |2I(|x11| > C)




→ E
(
|x11|2I(|x11| > C)

)
.

This completes the proof of the lemma.

Note that the right-hand side of (2.1.2) can be made arbitrarily small by
making C large. Therefore, in the proof of Theorem 2.5, we can assume that
the entries of the matrix Xn are uniformly bounded.

Step 3. Centralization
Applying Theorem A.43, we have

∥∥∥FWn(C) − FWn(C)−a11′
∥∥∥ ≤ 1

n
, (2.1.3)

1 Bernstein’s inequality states that if X1, · · · , Xn are independent random variables with
mean zero and uniformly bounded by b, then, for any ε > 0,
P (|Sn| ≥ ε) ≤ 2 exp(−ε2/[2(B2

n + bε)]), where Sn = X1 + · · · + Xn and B2
n = ES2

n.
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where a = 1√
n
ℜ(E(x12(C))). Furthermore, by Corollary A.41, we have

L(FWn(C)−ℜ(E(Wn(C))), FWn(C)−a11′
) ≤ |ℜ(E(x12(C)))|2

n
→ 0. (2.1.4)

This shows that we can assume that the real parts of the mean values of
the off-diagonal elements are 0. In the following, we proceed to remove the
imaginary part of the mean values of the off-diagonal elements.

Before we treat the imaginary part, we introduce a lemma about eigenval-
ues of a skew-symmetric matrix.

Lemma 2.7. Let An be an n × n skew-symmetric matrix whose elements
above the diagonal are 1 and those below the diagonal are −1. Then, the eigen-
values of An are λk = icot(π(2k−1)/2n), k = 1, 2, · · · , n. The eigenvector as-
sociated with λk is uk = 1√

n
(1, ρk, · · · , ρn−1

k )′, where ρk = (λk−1)/(λk +1) =

exp(−iπ(2k − 1)/n).

Proof. We first compute the characteristic polynomial of An.

Dn = |λI − An| =

∣∣∣∣∣∣∣∣∣∣

λ −1 −1 · · · −1
1 λ −1 · · · −1
1 1 λ · · · −1
...

...
...

. . .
...

1 1 1 · · · λ

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

λ− 1 −(1 + λ) 0 · · · 0
0 λ− 1 −(1 + λ) · · · 0
0 0 λ− 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · λ

∣∣∣∣∣∣∣∣∣∣

.

Expanding the above along the first row, we get the following recursive
formula

Dn = (λ − 1)Dn−1 + (1 + λ)n−1,

with the initial value D1 = λ. The solution is

Dn = λ(λ − 1)n−1 + (λ+ 1)(λ− 1)n−2 + · · · + (λ+ 1)n−1

=
1

2
((λ− 1)n + (λ+ 1)n) .

Setting Dn = 0, we get

λ+ 1

λ− 1
= eiπ(2k−1)/n, k = 1, 2, · · · , n, (2.1.5)

which implies that λ = icot(π(2k − 1)/2n).
Comparing the two sides of the equation Anuk = λkuk, we obtain
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−uk,1 − · · · − uk,ℓ−1 + uk,ℓ+1 + · · · + uk,n = λkuk,ℓ

for ℓ = 1, 2, · · · , n. Thus, subtracting the equations for ℓ+ 1 from that for ℓ,
we get

uk,ℓ + uk,ℓ+1 = λk(uk,ℓ − uk,ℓ+1),

which implies that

uk,ℓ+1

uk,ℓ
=
λk − 1

λk + 1
= e−iπ(2k−1)/n := ρk.

Therefore, one can choose uk,ℓ = ρℓ−1
k /

√
n.

The proof of the lemma is complete.

Write b = Eℑ(x12(C)). Then, Eℑ(Wn(C)) = ibAn. By Lemma 2.7, the

eigenvalues of the matrix iℑ(E(Wn(C))) = ibAn are ibλk = −n−1/2bcot(π(2k−
1)/2n), k = 1, · · · , n. If the spectral decomposition of An is UnDnU∗

n, then
we rewrite iℑ(E(Wn(C))) = B1+B2, where Bj = − 1√

n
bUnDnjU

∗
n, j = 1, 2,

where Un is a unitary matrix, Dn =diag[λ1, · · · , λn], and

Dn1 = Dn − Dn2 = diag[0, · · · , 0, λ[n3/4], λ[n3/4]+1, · · · , λn−[n3/4], 0, · · · , 0].

For any n× n Hermitian matrix C, by Corollary A.41, we have

L3(FC, FC−B1) ≤ 1

n2

∑

n3/4≤k≤n−n3/4

cot2(π(2k − 1)/2n)

<
2

n sin2(n−1/4π)
→ 0 (2.1.6)

and, by Theorem A.43,

‖FC − FC−B2‖ ≤ 2n3/4

n
→ 0. (2.1.7)

Summing up estimations (2.1.3)–(2.1.7), we established the following cen-
tralization lemma.

Lemma 2.8. Under the conditions assumed in Lemma 2.6, we have

L(FWn(C) , FWn(C)−E(Wn(C))) = o(1). (2.1.8)

Step 4. Rescaling

Write σ2(C) = Var(x11(C)), and define W̃n = σ−1(C)
(
Wn(C) − E(Wn(C))

)
.

Note that the off-diagonal entries of
√
nW̃n are x̂kj = σ−1(C)

(
xkj(C) −

E(xkj(C))
)
.

Applying Corollary A.41, we obtain
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L3(F W̃n , FWn(C)−E(Wn(C))) ≤ 2(σ(C) − 1)2

n2σ2(C)

∑

1≤i<j≤n

|xkj(C) − E(xkj(C))|2

→ (σ(C) − 1)2, a.s. (2.1.9)

Note that (σ(C) − 1)2 can be made arbitrarily small if C is large. Com-
bining (2.1.9) with Lemmas 2.6 and 2.8, to prove the semicircular law, we
may assume that the entries of X are bounded by C, having mean zero and
variance 1. Also, we may assume the diagonal elements are zero.

Step 5. Proof of the Semicircular Law
We will prove Theorem 2.5 by the moment method. For simplicity, we still use
Wn and xij to denote the Wigner matrix and basic variables after truncation,
centralization, and rescaling.

The semicircular distribution satisfies the Riesz condition. Therefore it is
enough to show that the moments of the spectral distribution converge to the
corresponding moments of the semicircular distribution almost surely. The
k-th moment of the ESD of Wn is

βk(Wn) = βk(FWn) =

∫
xk dFWn(x)

=
1

n

n∑

i=1

λk
i =

1

n
tr(Wk

n) =
1

n1+ k
2

tr(Xk
n)

=
1

n1+ k
2

∑

i

X(i), (2.1.10)

where λi’s are the eigenvalues of the matrix Wn, X(i) = xi1i2xi2i3 · · ·xiki1 ,
i = (i1, · · · , ik), and the summation

∑
i runs over all possibilities that i ∈

{1, · · · , n}k.
By applying the moment convergence theorem, we complete the proof of

the semicircular law for the iid case by showing the following:

(1) E[βk(Wn)] converges to the k-th moment βk of the semicircular distribu-
tion, which are β2m−1 = 0 and β2m = (2m)!/m!(m+ 1)! given in Lemma
2.1.

(2) For each fixed k,
∑

n Var[βk(Wn)] <∞.

The Proof of (1); i.e., E[βk(Wn)] → βk.

We have

E[βk(Wn)] =
1

n1+k/2

∑
EX(i).

For each vector i, construct a graph G(i) as in Subsection 2.1.2. To specify
the graph, we rewrite X(i) = X(G(i)). The summation is taken over all
sequences i = (i1, i2, · · · , ik) ∈ {1, 2, · · · , n}k.
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Note that isomorphic graphs correspond to equal terms. Thus, we first
group the terms according to isomorphism classes and then split E[βk(Wn)]
into three sums according to categories. Then

E[βk(Wn)] = S1 + S2 + S3,

where
Sj = n−1−k/2

∑

Γ (k,t)∈Cj

∑

G(i)∈Γ (k,t)

E[XG(i)],

in which the summation
∑

Γ (k,t)∈Cj
is taken on all canonical Γ (k, t)-graphs in

category j and the summation
∑

G(i)∈Γ (k,t) is taken on all isomorphic graphs
for a given canonical graph.

By definition of the categories and by the assumptions on the entries of
the random matrices, we have

S2 = 0.

Since the random variables are bounded by C, the number of isomorphic
graphs is less than nt by Lemma 2.2, and t ≤ (k + 1)/2 by Lemma 2.3, we
conclude that

|S3| ≤ n−1−k/2O(nt) = o(1).

If k = 2m − 1, then S1 = 0 since there are no terms in S1. We consider
the case where k = 2m. Since each edge coincides with an edge of opposite
direction, each term in S1 is (E|x12|2)m = 1. So, by Lemma 2.4,

S1 = n−1−m
∑

Γ (2m,t)∈C1

n(n− 1) · · · (n−m)

= β2m

(
1 − 1

m

)
· · ·
(
1 − m

n

)
→ β2m.

Assertion (1) is then proved.

The proof of (2). We only need to show that Var(βk(Wn)) is summable
for all fixed k. We have

Var(βk(Wn)) = E[|βk(Wn)|2] − |E[βk(Wn)]|2

=
1

n2+k

∑ ∗{E[X(i)X(j)]− E[X(i)]E[X(j)]}, (2.1.11)

where i = (i1, · · · , ik), j = (j1, · · · , jk), and
∑∗

is taken over all possibilities
for i, j ∈ {1, · · · , n}k. Here, the reader should notice that βk(Wn) is real and
hence the second equality in the above is meaningful, although the variables
X(i) and X(j) are complex.

Using i and j, one can construct two graphs G(i) and G(j), as in the proof
of (1). If there are no coincident edges between G(i) and G(j), then X(i) is
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independent of X(j), and thus the corresponding term in the sum is 0. If
the combined graph G = G(i) ∪ G(j) has a single edge, then E[X(i)X(j)] =
E[X(i)]E[X(j)] = 0, and hence the corresponding term in (2.1.11) is also 0.

Now, suppose that G contains no single edges and the graph of noncoin-
cident edges has a cycle. Then the noncoincident vertices of G are not more
than k. If G contains no single edges and the graph of noncoincident edges
has no cycles, then there is at least one edge with coincidence multiplicity
greater than or equal to 4, and thus the number of noncoincident vertices is
not larger than k. Also, each term in (2.1.11) is not larger than 2C2kn−2−k.
Consequently, we can conclude that

Var(βk(Wn)) ≤ KkC
2kn−2, (2.1.12)

where Kk is a constant that depends on k only. This completes the proof of
assertion (2).

The proof of Theorem 2.5 is then complete.

2.2 Generalizations to the Non-iid Case

Sometimes, it is of practical interest to consider the case where, for each n,
the entries above or on the diagonal of Wn are independent complex random
variables with mean zero and variance σ2 (for simplicity we assume σ = 1 in
the following), but may depend on n. For this case, we present the following
theorem.

Theorem 2.9. Suppose that Wn = 1√
n
Xn is a Wigner matrix and the en-

tries above or on the diagonal of Xn are independent but may be dependent
on n and may not necessarily be identically distributed. Assume that all the
entries of Xn are of mean zero and variance 1 and satisfy the condition that,
for any constant η > 0,

lim
n→∞

1

n2

∑

jk

E|x(n)
jk |2I(|x(n)

jk | ≥ η
√
n) = 0. (2.2.1)

Then, the ESD of Wn converges to the semicircular law almost surely.

Remark 2.10. In Girko’s book [121], it is stated that condition (2.2.1) is nec-
essary and sufficient for the conclusion of Theorem 2.9.

2.2.1 Proof of Theorem 2.9

Again, we need to truncate, remove diagonal entries, and renormalize before
we use the MCT. Because the entries are not iid, we cannot truncate the
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entries at constant positions. Instead, we shall truncate them at ηn
√
n for

some sequence ηn ↓ 0.

Step 1. Truncation
Note that Corollary A.41 may not be applicable in proving the almost sure
asymptotic equivalence between the ESD of the original matrix and that of
the truncated one, as was done in the last section. In this case, we shall use
the rank inequality (see Theorem A.43) to truncate the variables.

Note that condition (2.2.1) is equivalent to: for any η > 0,

lim
n→∞

1

η2n2

∑

jk

E|x(n)
jk |2I(|x(n)

jk | ≥ η
√
n) = 0. (2.2.2)

Thus, one can select a sequence ηn ↓ 0 such that (2.2.2) remains true

when η is replaced by ηn. Define W̃n = 1√
n
n(x

(n)
ij I(|x(n)

ij | ≤ ηn
√
n). By using

Theorem A.43, one has

‖FWn − F W̃n‖ ≤ 1

n
rank(Wn − Wn(ηn

√
n))

≤ 2

n

∑

1≤i≤j≤n

I(|x(n)
ij | ≥ ηn

√
n). (2.2.3)

By condition (2.2.2), we have

E


 1

n

∑

1≤i≤j≤n

I(|x(n)
ij | ≥ ηn

√
n)




≤ 2

η2
nn

2

∑

jk

E|x(n)
ij |2I(|x(n)

ij | ≥ ηn

√
n) = o(1),

and

Var


 1

n

∑

1≤i≤j≤n

I(|x(n)
ij | ≥ ηn

√
n)




≤ 4

η2
nn

3

∑

jk

E|x(n)
ij |2I(|x(n)

ij | ≥ ηn

√
n) = o(1/n).

Then, applying Bernstein’s inequality, for all small ε > 0 and large n, we
have

P


 1

n

∑

1≤i≤j≤n

I(|x(n)
ij | ≥ ηn

√
n) ≥ ε


 ≤ 2e−εn, (2.2.4)
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which is summable. Thus, by (2.2.3) and (2.2.4), to prove that with probabil-
ity one FWn converges to the semicircular law, it suffices to show that with

probability one F W̃n converges to the semicircular law.

Step 2. Removing diagonal elements

Let Ŵn be the matrix W̃n with diagonal elements replaced by 0. Then, by
Corollary A.41, we have

L3
(
F W̃n , F Ŵn

)
≤ 1

n2

n∑

k=1

|x(n)
kk |2I(|x(n)

kk | ≤ ηn

√
n) ≤ η2

n → 0.

Step 3. Centralization
By Corollary A.41, it follows that

L3
(
F Ŵn , F Ŵn−EŴn

)

≤ 1

n2

∑

i 6=j

|E(x
(n)
ij I(|x(n)

ij | ≤ ηn

√
n))|2

≤ 1

n3η2
n

∑

ij

E|x(n)
jk |2I(|x(n)

jk | ≥ ηn

√
n) → 0. (2.2.5)

Step 4. Rescaling

Write W̃n = 1√
n
X̃n, where

X̃n =

(
x

(n)
ij I(|x(n)

ij | ≤ ηn
√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn
√
n))

σij
(1 − δij)

)
,

σ2
ij = E|x(n)

ij I(|x(n)
ij | ≤ ηn

√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn
√
n))|2 and δij is Kro-

necker’s delta.
By Corollary A.41, it follows that

L3
(
F W̃n , F Ŵn−EŴn

)

≤ 1

n2

∑

i6=j

(1 − δ−1
ij )2|x(n)

ij I(|x(n)
ij | ≤ ηn

√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn

√
n))|2.

Note that

E


 1

n2

∑

i 6=j

(1 − δ−1
ij )2|x(n)

ij I(|x(n)
ij | ≤ ηn

√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn

√
n))|2




≤ 1

n2η2
n

∑

ij

(1 − σij)
2
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≤ 1

n2η2
n

∑

ij

(1 − σ2
ij)

≤ 1

n2η2
n

∑

ij

[E|x(n)
jk |2I(|x(n)

jk | ≥ ηn

√
n) + E2|x(n)

jk |I(|x(n)
jk | ≥ ηn

√
n)] → 0.

Also, we have2

E

∣∣∣∣∣∣
1

n2

∑

i6=j

(1 − δ−1
ij )2

∣∣∣x(n)
ij I(|x(n)

ij | ≤ ηn

√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn

√
n))
∣∣∣
2

∣∣∣∣∣∣

4

≤ C

n8



∑

i6=j

E|x(n)
ij |8I(|x(n)

ij | ≤ ηn

√
n) +


∑

i6=j

E|x(n)
ij |4I(|x(n)

ij | ≤ ηn

√
n)




2



≤ Cn−2[n−1η6
n + η4

n],

which is summable. From the two estimates above, we conclude that

L
(
F W̃n , F Ŵn−EŴn

)
→ 0, a.s.

Step 5. Proof by MCT

Up to here, we have proved that we may truncate, centralize, and rescale
the entries of the Wigner matrix at ηn

√
n and remove the diagonal elements

without changing the LSD. These four steps are almost the same as those we
followed for the iid case.

Now, we assume that the variables are truncated at ηn
√
n and then cen-

tralized and rescaled.
Again for simplicity, the truncated and centralized variables are still de-

noted by xij , We assume:

(i) The variables {xij , 1 ≤ i < j ≤ n} are independent and xii = 0.
(ii) E(xij) = 0 and Var(xij) = 1.
(iii) |xij | ≤ ηn

√
n.

Similar to what we did in the last section, in order to prove Theorem 2.9, we
need to show that:

(1) E[βk(Wn)] converges to the k-th moment βk of the semicircular distribu-
tion.

(2) For each fixed k,
∑

n E|βk(Wn) − E(βk(Wn))|4 <∞.

The proof of (1)
Let i = (i1, · · · , ik) ∈ {1, · · · , n}k. As in the iid case, we write

2 Here we use the elementary inequality E|
∑

Xi|2k ≤ Ck(
∑

E|Xi|2k + (
∑

E|Xi|2)k) for
some constant Ck if the Xi’s are independent with zero means.
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E[βk(Wn)] = n−1−k/2
∑

i

EX(G(i)),

where X(G(i)) = xi1,i2xi2,i3 · · · , xik,i1 , and G(i) is the graph defined by i.
By the same method for the iid case, we split E[βk(Wn)] into three sums

according to the categories of graphs. We know that the terms in S2 are all
zero, that is, S2 = 0.

We now show that S3 → 0. Split S3 as S31 + S32, where S31 consists
of the terms corresponding to a Γ3(k, t)-graph that contains at least one
noncoincident edge with multiplicity greater than 2 and S32 is the sum of the
remaining terms in S3.

To estimate S31, assume that the Γ3(k, t)-graph contains ℓ noncoincident
edges with multiplicities ν1, · · · , νℓ among which at least one is greater than
or equal to 3. Note that the multiplicities are subject to ν1 + · · · + νℓ = k.
Also, each term in S31 is bounded by

n−1−k/2
ℓ∏

i=1

E|xai,bi |νi ≤ n−1−k/2(ηn

√
n)
∑

(νi−2) = n−1−ℓηk−2ℓ
n .

Since the graph is connected and the number of its noncoincident edges is ℓ,
the number of noncoincident vertices is not more than ℓ + 1, which implies
that the number of terms in S31 is not more than n1+ℓ. Therefore,

|S31| ≤ Ckη
k−2ℓ
n → 0

since k − 2ℓ ≥ 1.
To estimate S32, we note that the Γ3(k, t)-graph contains exactly k/2

noncoincident edges, each with multiplicity 2 (thus k must be even). Then
each term of S32 is bounded by n−1−k/2. Since the graph is not in category 1,
the graph of noncoincident edges must contain a cycle, and hence the number
of noncoincident vertices is not more than k/2 and therefore

|S32| ≤ Cn−1 → 0.

Then, the evaluation of S1 is exactly the same as in the iid case and hence
is omitted. Hence, we complete the proof of Eβk(Wn) → βk.

The proof of (2)
Unlike in the proof of (2.1.11), the almost sure convergence cannot follow by
estimating the second moment of βk(Wn). We need to estimate its fourth
moment as

E(βk(Wn) − E(βk(Wn)))4

= n−4−2k
∑

ij ,j=1,2,3,4

E
4∏

j=1

(X [ij] − E(X [ij])) , (2.2.6)
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where ij is a vector of k integers not larger than n, j = 1, 2, 3, 4. As in the
last section, for each ij , we construct a graph Gj = G(ij).

Obviously, if, for some j, G(ij) does not have any edges coincident with
edges of the other three graphs, then the term in (2.2.6) equals 0 by inde-

pendence. Also, if G =
⋃4

j=1Gj has a single edge, the term in (2.2.6) equals
0 by centralization.

Now, let us estimate the nonzero terms in (2.2.6). Assume that G has ℓ
noncoincident edges with multiplicities ν1, · · · , νℓ, subject to the constraint
ν1 + · · · + νℓ = 4k. Then, the term corresponding to G is bounded by

n−4−2k
ℓ∏

j=1

(ηn

√
n)νj−2 = η4k−2ℓ

n n−4−ℓ.

Since the graph of noncoincident edges of G can have at most two pieces
of connected subgraphs, the number of noncoincident vertices of G is not
greater than ℓ + 2. If ℓ = 2k, then ν1 = · · · = νℓ = 2. Therefore, there is at
least one noncoincident edge consisting of edges from two different subgraphs
and hence there must be a cycle in the graph of noncoincident edges of G.
Therefore,

E(βk(Wn) − E(βk(Wn)))4

≤ Ckn
−2k−4

[∑

ℓ<2k

nℓ+2(η2
nn)2k−ℓ + n2k+1

]
≤ Ckηnn

−2,

which is summable, and thus (2) is proved. Consequently, the proof of The-
orem 2.9 is complete.

2.3 Semicircular Law by the Stieltjes Transform

As an illustration of the use of Stieltjes transforms, in this section we shall
present a proof of Theorem 2.9 using them.

2.3.1 Stieltjes Transform of the Semicircular Law

Let z = u+ iv with v > 0 and s(z) be the Stieltjes transform of the semicir-
cular law. Then, we have

s(z) =
1

2πσ2

∫ 2σ

−2σ

1

x− z

√
4σ2 − x2dx.
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Letting x = 2σ cos y, then

s(z) =
2

π

∫ π

0

1

2σ cos y − z
sin2 ydy

=
1

π

∫ 2π

0

1

2σ eiy+e−iy

2 − z

(eiy − e−iy

2i

)2

dy

= − 1

4iπ

∮

|ζ|=1

1

σ(ζ + ζ−1) − z
(ζ − ζ−1)2ζ−1dζ (setting ζ = eiy)

= − 1

4iπ

∮

|ζ|=1

(ζ2 − 1)2

ζ2(σζ2 + σ − zζ)
dζ. (2.3.1)

We will use the residue theorem to evaluate the integral. Note that the in-

tegrand has three poles, at ζ0 = 0, ζ1 = z+
√

z2−4σ2

2σ , and ζ2 = z−
√

z2−4σ2

2σ ,
where here, and throughout the book, the square root of a complex number
is specified as the one with the positive imaginary part. By this convention,
we have √

z = sign(ℑz) |z| + z√
2(|z|+ ℜz)

(2.3.2)

or

ℜ(
√
z) =

1√
2
sign(ℑz)

√
|z| + ℜz =

ℑz√
2(|z| − ℜz)

and

ℑ(
√
z) =

1√
2

√
|z| − ℜz =

|ℑz|√
2(|z| + ℜz)

.

This shows that the real part of
√
z has the same sign as the imaginary part

of z. Applying this to ζ1 and ζ2, we find that the real part of
√
z2 − 4σ2 has

the same sign as z, which implies that |ζ1| > |ζ2|. Since ζ1ζ2 = 1, we conclude
that |ζ2| < 1 and thus the two poles 0 and ζ1 of the integrand are in the disk
|z| ≤ 1. By simple calculation, we find that the residues at these two poles
are

z

σ2
and

(ζ2
2 − 1)2

σζ2
2 (ζ2 − ζ1)

= σ−1(ζ2 − ζ1) = −σ−2
√
z2 − 4σ2.

Substituting these into the integral of (2.3.1), we obtain the following lemma.

Lemma 2.11. The Stieltjes transform for the semicircular law with scale
parameter σ2 is

s(z) = − 1

2σ2
(z −

√
z2 − 4σ2).



2.3 Semicircular Law by the Stieltjes Transform 33

2.3.2 Proof of Theorem 2.9

At first, we truncate the underlying variables at ηn
√
n and remove the di-

agonal elements and then centralize and rescale the off-diagonal elements as
done in Steps 1–4 in the last section. That is, we assume that:

(i) For i 6= j, |xij | ≤ ηn
√
n and xii = 0.

(ii) For all i 6= j, Exij = 0, E|xij |2 = σ2.
(iii) The variables {xij , i < j} are independent.

For brevity, we assume σ2 = 1 in what follows.
By definition, the Stieltjes transform of FWn is given by

sn(z) =
1

n
tr(Wn − zIn)−1. (2.3.3)

We shall then proceed in our proof by taking the following three steps:

(i) For any fixed z ∈ C+ = {z,ℑ(z) > 0}, sn(z) − Esn(z) → 0, a.s.
(ii) For any fixed z ∈ C+, Esn(z) → s(z), the Stieltjes transform of the semi-

circular law.
(iii) Outside a null set, sn(z) → s(z) for every z ∈ C+.

Then, applying Theorem B.9, it follows that, except for this null set, FWn →
F weakly.

Step 1. Almost sure convergence of the random part
For the first step, we show that, for each fixed z ∈ C

+,

sn(z) − E(sn(z)) → 0 a.s. (2.3.4)

We need the extended Burkholder inequality.

Lemma 2.12. Let {Xk} be a complex martingale difference sequence with
respect to the increasing σ-field {Fk}. Then, for p > 1,

E
∣∣∣
∑

Xk

∣∣∣
p

≤ KpE
(∑

|Xk|2
)p/2

.

Proof. Burkholder [67] proved the lemma for a real martingale difference
sequence. Now, both {ℜXk} and {ℑXk} are martingale difference sequences.
Thus, we have

E
∣∣∣
∑

Xk

∣∣∣
p

≤ Cp

[
E
∣∣∣
∑

ℜXk

∣∣∣
p

+ E
∣∣∣
∑

ℑXk

∣∣∣
p]

≤ Cp

[
KpE

(∑
|ℜXk|2

)p/2

+KpE
(∑

|ℑXk|2
)p/2

]

≤ 2CpKpE
(∑

|Xk|2
)p/2

,
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where Cp = 2p−1. This lemma is proved.
For later use, we introduce here another inequality proved in [67].

Lemma 2.13. Let {Xk} be a complex martingale difference sequence with
respect to the increasing σ-field Fk, and let Ek denote conditional expectation
w.r.t. Fk. Then, for p ≥ 2,

E

∣∣∣∣
∑

Xk

∣∣∣∣
p

≤ Kp

(
E
(∑

Ek−1|Xk|2
)p/2

+ E
∑

|Xk|p
)
.

Similar to Lemma 2.12, Burkholder proved this lemma for the real case.
Using the same technique as in the proof of Lemma 2.12, one may easily
extend the Burkholder inequality to the complex case.

Now, we proceed to the proof of the almost sure convergence (2.3.4).
Denote by Ek(·) conditional expectation with respect to the σ-field gen-
erated by the random variables {xij , i, j > k}, with the convention that
Ensn(z) = Esn(z) and E0sn(z) = sn(z). Then, we have

sn(z) − E(sn(z)) =

n∑

k=1

[Ek−1(sn(z)) − Ek(sn(z))] :=

n∑

k=1

γk,

where, by Theorem A.5,

γk =
1

n

(
Ek−1tr(Wn − zI)−1 − Ektr(Wn − zI)−1

)

=
1

n

(
Ek−1[tr(Wn − zI)−1 − tr(Wk − zIn−1)

−1]

−Ek[tr(Wn − zI)−1 − tr(Wk − zIn−1)
−1]
)

=
1

n

(
Ek−1

1 + α∗
k(Wk − zIn−1)

−2αk

−z − α∗
k(Wk − zIn−1)−1αk

−Ek
1 + α∗

k(Wk − zIn−1)
−2αk

−z − α∗
k(Wk − zIn−1)−1αk

)
,

where Wk is the matrix obtained from Wn with the k-th row and column
removed and αk is the k-th column of Wn with the k-th element removed.

Note that

|1 + α∗
k(Wk − zIn−1)

−2αk|
≤ 1 + α∗

k(Wk − zIn−1)
−1(Wk − z̄In−1)

−1αk

= v−1ℑ(z + α∗
k(Wk − zIn−1)

−1αk)

which implies that
|γk| ≤ 2/nv.

Noting that {γk} forms a martingale difference sequence, applying Lemma
2.12 for p = 4, we have
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E|sn(z) − E(sn(z))|4 ≤ K4E

(
n∑

k=1

|γk|2
)2

≤ K4

(
n∑

k=1

2

n2v2

)2

≤ 4K4

n2v4
.

By the Borel-Cantelli lemma, we know that, for each fixed z ∈ C+,

sn(z) − E(sn(z)) → 0, a.s.

Step 2. Convergence of the expected Stieltjes transform
By Theorem A.4, we have

sn(z) =
1

n
tr(Wn − zIn)−1

=
1

n

n∑

k=1

1

−z − α∗
k(Wk − zIn−1)−1αk

. (2.3.5)

Write εk = Esn(z) − α∗
k(Wk − zIn−1)

−1αk. Then we have

Esn(z) =
1

n

n∑

k=1

E
1

−z − Esn(z) + εk

= − 1

z + Esn(z)
+ δn, (2.3.6)

where

δn =
1

n

n∑

k=1

E

(
εk

(z + Esn(z))(−z − Esn(z) + εk)

)
.

Solving equation (2.3.6), we obtain two solutions:

1

2
(−z + δn ±

√
(z + δn)2 − 4).

We show that

Esn(z) =
1

2
(−z + δn +

√
(z + δn)2 − 4). (2.3.7)

When fixing ℜz and letting ℑz = v → ∞, we have Esn(z) → 0, which implies
that δn → 0. Consequently,
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ℑ
(1

2
(−z + δn −

√
(z + δn)2 − 4)

)
≤ −v − |δn|

2
→ −∞,

which cannot be Esn(z) since it violates the property that ℑsn(z) ≥ 0. Thus,
assertion (2.3.7) is true when v is large. Now, we claim that assertion (2.3.7)
is true for all z ∈ C+.

It is easy to see that Esn(z) and 1
2 (−z+δn±

√
(z + δn)2 − 4) are continuous

functions on the upper half plane C+. If Esn(z) takes a value on the branch
1
2 (−z+ δn −

√
(z + δn)2 − 4) for some z, then the two branches 1

2 (−z+ δn ±√
(z + δn)2 − 4) should cross each other at some point z0 ∈ C+. At this point,

we would have
√

(z0 + δn)2 − 4 = 0 and hence Esn(z0) has to be one of the
following:

1

2
(−z0 + δn) =

1

2
(−2z0 ± 2).

However, both of the two values above have negative imaginary parts. This
contradiction leads to the truth of (2.3.7).

From (2.3.7), to prove Esn(z) → s(z), it suffices to show that

δn → 0. (2.3.8)

Now, rewrite

δn = − 1

n

n∑

k=1

E(εk)

(z + Esn(z))2
+

1

n

n∑

k=1

E

(
ε2k

(z + Esn(z))2(−z − Esn(z) + εk)

)

= J1 + J2.

By (A.1.10) and (A.1.12), we have

|Eεk| =

∣∣∣∣
1

n
E(tr(Wn − zI)−1 − tr(Wk − zIn−1)

−1)

∣∣∣∣

=

∣∣∣∣
1

n
· E 1 + α∗

k(Wk − zIn−1)
−2αk

−z − α∗
k(Wk − zIn−1)−1αk

∣∣∣∣ ≤
1

nv
.

Note that

|z + Esn(z)| ≥ ℑ(z + Esn(z)) = v + E(ℑ(sn(z)) ≥ v.

Therefore, for any fixed z ∈ C+,

|J1| ≤
1

nv3
→ 0.

On the other hand, we have

| − z − Esn(z) + εk| = | − z − α∗
k(Wk − zIn−1)

−1αk|
≥ ℑ(z + α∗

k(Wk − zIn−1)
−1αk)
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= v(1 + α∗
k((Wk − zIn−1)(Wk − z̄In−1))

−1αk) ≥ v.

To prove J2 → 0, it is sufficient to show that

max
k

E|εk|2 → 0.

Write (Wk − zIn−1)
−1 = (bij)i,j≤n−1. We then have

E|εk − Eεk|2 = E|α∗
k(Wk − zIn−1)

−1αk − 1

n
Etr((Wk − zIn−1)

−1)|2

= E|α∗
k(Wk − zIn−1)

−1αk − 1

n
tr((Wk − zIn−1)

−1)|2

+E

∣∣∣∣
1

n
tr((Wk − zIn−1)

−1) − 1

n
Etr((Wk − zIn−1)

−1)

∣∣∣∣
2

.

By elementary calculations, we have

E|α∗
k(Wk − zIn−1)

−1αk − 1

n
tr((Wk − zIn−1)

−1)|2

=
1

n2


∑

ij 6=k

[E|bij |2E|xik|2E|xjk|2 + Eb2ijEx
2
ikEx2

jk] +
∑

i6=k

E|b2ii|(E|x4
ik| − 1)




≤ 2

n2

∑

ij

E|bij |2 +
η2

n

n

∑

i6=k

E|bii|2

=
2

n2
Etr((Wk − zIn−1)(Wk − z̄In−1))

−1 +
η2

n

n

∑

i6=k

E|bii|2

≤ 2

nv2
+ η2

n → 0. (2.3.9)

By Theorem A.5, one can prove that

E

∣∣∣∣
1

n
tr((Wn − zIn−1)

−1) − 1

n
Etr((Wn − zIn−1)

−1)

∣∣∣∣
2

≤ 1/n2v2.

Then, the assertion J2 → 0 follows from the estimates above and the fact
that

E|εn|2 = E|εn − Eεn|2 + |Eεn|2.
The proof of the mean convergence is complete.

Step 3. Completion of the proof of Theorem 2.9
In this step, we need Vitali’s convergence theorem.

Lemma 2.14. Let f1, f2, · · · be analytic in D, a connected open set of C,
satisfying |fn(z)| ≤M for every n and z in D, and fn(z) converges as n→ ∞
for each z in a subset of D having a limit point in D. Then there exists a
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function f analytic in D for which fn(z) → f(z) and f ′
n(z) → f ′(z) for

all z ∈ D. Moreover, on any set bounded by a contour interior to D, the
convergence is uniform and {f ′

n(z)} is uniformly bounded.

Proof. The conclusions on {fn} are from Vitali’s convergence theorem (see
Titchmarsh [275], p. 168). Those on {f ′

n} follow from the dominated conver-
gence theorem (d.c.t.) and the identity

f ′
n(z) =

1

2πi

∫

C

fn(w)

(w − z)2
dw,

where C is a contour inD and enclosing z. The proof of the lemma is complete.

By Steps 1 and 2, for any fixed z ∈ C+, we have

sn(z) → s(z), a.s.,

where s(z) is the Stieltjes transform of the standard semicircular law. That
is, for each z ∈ C+, there exists a null set Nz (i.e., P (Nz) = 0) such that

sn(z, ω) → s(z) for all ω ∈ N c
z .

Now, let C
+
0 = {zm} be a dense subset of C+ (e.g., all z of rational real and

imaginary parts) and let N = ∪Nzm . Then

sn(z, ω) → s(z) for all ω ∈ N c and z ∈ C
+
0 .

Let C+
m = {z ∈ C+,ℑz > 1/m, |z| ≤ m}. When z ∈ C+

m, we have |sn(z)| ≤
m. Applying Lemma 2.14, we have

sn(z, ω) → s(z) for all ω ∈ N c and z ∈ C
+
m.

Since the convergence above holds for every m, we conclude that

sn(z, ω) → s(z) for all ω ∈ N c and z ∈ C
+.

Applying Theorem B.9, we conclude that

FWn
w→ F, a.s.



Chapter 3

Sample Covariance Matrices and the

The sample covariance matrix is a most important random matrix in multi-
variate statistical inference. It is fundamental in hypothesis testing, principal
component analysis, factor analysis, and discrimination analysis. Many test
statistics are defined by its eigenvalues.

The definition of a sample covariance matrix is as follows. Suppose that
{xjk, j, k = 1, 2, · · ·} is a double array of iid complex random variables with
mean zero and variance σ2. Write xj = (x1j , · · · , xpj)

′ and X = (x1, · · · ,xn).
The sample covariance matrix is defined by

S =
1

n− 1

n∑

k=1

(xk − x̄)(xk − x̄)∗,

where x̄ = 1
n

∑
xj .

However, in most cases of spectral analysis of large dimensional random
matrices, the sample covariance matrix is simply defined as

S =
1

n

n∑

k=1

xkx
∗
k =

1

n
XX∗ (3.0.1)

because the x̄x̄∗ is a rank 1 matrix and hence the removal of x̄ does not affect
the LSD due to Theorem A.44.

In spectral analysis of large dimensional sample covariance matrices, it is
usual to assume that the dimension p tends to infinity proportionally to the
degrees of freedom n, namely p/n→ y ∈ (0,∞).

The first success in finding the limiting spectral distribution of the large
sample covariance matrix Sn (named the Marčenko-Pastur (M-P) law by
some authors) was due to Marčenko and Pastur [201]. Succeeding work was
done in Bai and Yin [37], Grenander and Silverstein [137], Jonsson [169],
Silverstein [256], Wachter [291], and Yin [300]. When the entries of X are
not independent, Yin and Krishnaiah [303] investigated the limiting spectral
distribution of S when the underlying distribution is isotropic. The theorem

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,
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in the next section is a consequence of a result in Yin [300], where the real
case is considered.

3.1 M-P Law for the iid Case

3.1.1 Moments of the M-P Law

The M-P law Fy(x) has a density function

py(x) =

{
1

2πxyσ2

√
(b − x)(x − a), if a ≤ x ≤ b,

0, otherwise,
(3.1.1)

and has a point mass 1 − 1/y at the origin if y > 1, where a = σ2(1 −√
y)2

and b = σ2(1 +
√
y)2. Here, the constant y is the dimension to sample size

ratio index and σ2 is the scale parameter. If σ2 = 1, the M-P law is said to
be the standard M-P law.

The moments βk = βk(y, σ2) =
∫ b

a
xkpy(x)dx. In the following, we shall

determine the explicit expression of βk. Note that, for all k ≥ 1,

βk(y, σ2) = σ2kβk(y, 1).

We need only compute βk for the standard M-P law.

Lemma 3.1. We have

βk =

k−1∑

r=0

1

r + 1

(
k

r

)(
k − 1

r

)
yr.

Proof. By definition,

βk =
1

2πy

∫ b

a

xk−1
√

(b− x)(x − a)dx

=
1

2πy

∫ 2
√

y

−2
√

y

(1 + y + z)k−1
√

4y − z2dz (with x = 1 + y + z)

=
1

2πy

k−1∑

ℓ=0

(
k − 1

ℓ

)
(1 + y)k−1−ℓ

∫ 2
√

y

−2
√

y

zℓ
√

4y − z2dz

=
1

2πy

[(k−1)/2]∑

ℓ=0

(
k − 1

2ℓ

)
(1 + y)k−1−2ℓ(4y)ℓ+1

∫ 1

−1

u2ℓ
√

1 − u2du,

(by setting z = 2
√
yu)
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=
1

2πy

[(k−1)/2]∑

ℓ=0

(
k − 1

2ℓ

)
(1 + y)k−1−2ℓ(4y)ℓ+1

∫ 1

0

wℓ−1/2
√

1 − wdw

(setting u =
√
w)

=
1

2πy

[(k−1)/2]∑

ℓ=0

(
k − 1

2ℓ

)
(1 + y)k−1−2ℓ(4y)ℓ+1

∫ 1

0

wℓ−1/2
√

1 − wdw

=

[(k−1)/2]∑

ℓ=0

(k − 1)!

ℓ!(ℓ+ 1)!(k − 1 − 2ℓ)!
yℓ(1 + y)k−1−2ℓ

=

[(k−1)/2]∑

ℓ=0

k−1−2ℓ∑

s=0

(k − 1)!

ℓ!(ℓ+ 1)!s!(k − 1 − 2ℓ− s)!
yℓ+s

=

[(k−1)/2]∑

ℓ=0

k−1−ℓ∑

r=ℓ

(k − 1)!

ℓ!(ℓ+ 1)!(r − ℓ)!(k − 1 − r − ℓ)!
yr

=
1

k

k−1∑

r=0

(
k

r

)
yr

min(r,k−1−r)∑

ℓ=0

(
s

ℓ

)(
k − r

k − r − ℓ− 1

)

=
1

k

k−1∑

r=0

(
k

r

)(
k

r + 1

)
yr =

k−1∑

r=0

1

r + 1

(
k

r

)(
k − 1

r

)
yr.

By definition, we have β2k ≤ b2k = (1 +
√
y)4k. From this, it is easy to see

that the Carleman condition is satisfied.

3.1.2 Some Lemmas on Graph Theory and
Combinatorics

To use the moment method to show the convergence of the ESD of large
dimensional sample covariance matrices to the M-P law, we need to define
a class of ∆-graphs and establish some lemmas concerning some counting
problems related to ∆-graphs.

Suppose that i1, · · · , ik are k positive integers (not necessarily distinct) not
greater than p and j1, · · · , jk are k positive integers (not necessarily distinct)
not larger than n. A ∆-graph is defined as follows. Draw two parallel lines,
referring to the I line and the J line. Plot i1, · · · , ik on the I line and j1, · · · , jk
on the J line, and draw k (down) edges from iu to ju, u = 1, · · · , k and k
(up) edges from ju to iu+1, u = 1, · · · , k (with the convention that ik+1 = i1).
The graph is denoted by G(i, j), where i = (i1, · · · , ik) and j = (j1, · · · , jk).
An example of a ∆-graph is shown in Fig. 3.1.

Two graphs are said to be isomorphic if one becomes the other by a suit-
able permutation on (1, 2, · · · , p) and a suitable permutation on (1, 2, · · · , n).
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2

i 1 = i 4 i 2 i 3

j
1
= j 3 j

Fig. 3.1 A ∆-graph.

For each isomorphism class, there is only one graph, called canonical, satisfy-
ing i1 = j1 = 1, iu ≤ max{i1, · · · , iu−1}+ 1, and ju ≤ max{j1, · · · , ju−1}+ 1.
A canonical ∆-graph G(i, j) is denoted by ∆(k, r, s) if G has r+ 1 noncoinci-
dent I-vertices and s noncoincident J-vertices. A canonical ∆(k, r, s) can be
directly defined in the following way:

1. Its vertex set V = VI+VJ , where VI = {1, · · · , r+1}, called the I-vertices,
and VJ = {1, · · · , s}, called the J-vertices.

2. There are two functions, f : {1, · · · , k} 7→ {1, · · · , r+1} and g : {1, · · · , k} 7→
{1, · · · , s}, satisfying

f(1) = 1 = g(1) = f(k + 1),

f(i) ≤ max{f(1), · · · , f(i− 1)} + 1,

g(j) ≤ max{g(1), · · · , g(j − 1)} + 1.

3. Its edge set E = {e1d, e1u, · · · , ekd, eku}, where e1d, · · · , ekd are called the
down edges and e1u, · · · , eku are called the up edges.

4. F (ejd) = (f(j), g(j)) and F (eju) = (g(j), f(j + 1)) for j = 1, · · · , k.
In the case where f(j+1) = max{f(1), · · · , f(j)}+1, the edge ej,u is called

an up innovation, and in the case where g(j) = max{g(1), · · · , g(j − 1)} + 1,
the edge ej,d is called a down innovation. Intuitively, an up innovation leads
to a new I-vertex and a down innovation leads to a new J-vertex. We make
the convention that the first down edge is a down innovation and the last up
edge is not an innovation.

Similar to the Γ -graphs, we classify ∆(k, r, s)-graphs into three categories:

Category 1 (denoted by ∆1(k, r)): ∆-graphs in which each down edge must
coincide with one and only one up edge. If we glue the coincident edges, the
resulting graph is a tree of k edges. In this category, r + s = k and thus s is
suppressed for simplicity.
Category 2 (∆2(k, r, s)): ∆-graphs that contain at least one single edge.
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Category 3 (∆3(k, r, s)):∆-graphs that do not belong to∆1(k, r) or∆2(k, r, s).

Similar to the arguments given in Subsection 2.1.2, the number of graphs
in each isomorphism class for a given canonical ∆(k, r, s) is given by the
following lemma.

Lemma 3.2. For a given k, r, and s, the number of graphs in the isomor-
phism class for each canonical ∆(k, r, s)-graph is

p(p− 1) · · · (p− r)n(n− 1) · · · (n− s+ 1) = pr+1ns[1 +O(n−1)].

For a ∆3-graph, we have the following lemma.

Lemma 3.3. The total number of noncoincident vertices of a ∆3(k, r, s)-
graph is less than or equal to k.

Proof. Let G be a graph of ∆3(k, r, s). Note that any ∆-graph is connected.
Since G is not in category 2, it does not contain single edges and hence
the number of noncoincident edges is not larger than k. If the number of
noncoincident edges is less than k, then the lemma is proved. If the number
of noncoincident edges is exactly k, the graph of noncoincident edges must
contain a cycle since it is not in category 1. In this case, the number of
noncoincident vertices is also not larger than k and the lemma is proved.

A more difficult task is to count the number of ∆1(k, r)-graphs, as given
in the following lemma.

Lemma 3.4. For k and r, the number of ∆1(k, r)-graphs is

1

r + 1

(
k

r

)(
k − 1

r

)
.

Proof. Define two characteristic sequences {u1, · · · , uk} and {d1, · · · , dk} of
the graph G by

uℓ =

{
1, if f(ℓ+ 1) = max{f(1), · · · , f(ℓ)} + 1,
0, otherwise,

and

dℓ =

{
−1, if f(ℓ) 6∈ {1, f(ℓ+ 1), · · · , f(k)},
0, otherwise.

We can interpret the intuitive meaning of the characteristic sequences as
follows: uℓ = 1 if and only if the ℓ-th up edge is an up innovation and dℓ = −1
if and only if the ℓ-th down edge coincides with the up innovation that leads
to this I-vertex. An example with r = 2 and s = 3 is given in Fig. 3.2.

By definition, we always have uk = 0, and since f(1) = 1, we always have
d1 = 0. For a ∆1(k, r)-graph, there are exactly r up innovations and hence
there are r u-variables equal to 1. Since there are r I-vertices other than 1,
there are then r d-variables equal to −1.
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3

u 1 = 1
u 3 = 1

d 4 = − 1

d
5
= − 1

1 2 3

1 2

Fig. 3.2 Definition of (u, d) sequence

From its definition, one sees that dℓ = −1 means that after plotting the ℓ-
th down edge (f(ℓ), g(ℓ)), the future path will never revisit the I-vertex f(ℓ).
This means that the edge (f(ℓ), g(ℓ)) must coincide with the up innovation
leading to the vertex f(ℓ). Since there are s = k− r down innovations to lead
out the s J-vertices, dℓ = 0 therefore implies that the edge (f(ℓ), g(ℓ)) must
be a down innovation.

From the argument above, one sees that dℓ = −1 must follow a uj = 1 for
some j < ℓ. Therefore, the two sequences should satisfy the restriction

u1 + · · · + uℓ−1 + d2 + · · · + dℓ ≥ 0, ℓ = 2, · · · , k. (3.1.2)

From the definition of the characteristic sequences, each ∆1(k, r)-graph
defines a pair of characteristic sequences. Conversely, we shall show that each
pair of characteristic sequences satisfying (3.1.2) uniquely defines a ∆1(k, r)-
graph. In other words, the functions f and g in the definition of the ∆-graph
G are uniquely determined by the two sequences of {uℓ} and {dℓ}.

At first, we notice that uℓ = 1 implies that eℓ,u is an up innovation and
thus

f(ℓ+ 1) = 1 + #{j ≤ ℓ, uj = 1}.
Similarly, dℓ = 0 implies that eℓ,d is a down innovation and thus

g(ℓ) = #{j ≤ ℓ, dj = 0}.

However, it is not easy to define the values of f and g at other points. So, we
will directly plot the ∆1(k, r)-graph from the two characteristic sequences.

Since d1 = 0 and hence e1,d is a down innovation, we draw e1,d from the
I-vertex 1 to the J-vertex 1. If u1 = 0, then e1,u is not an up innovation and
thus the path must return the I-vertex 1 from the J-vertex 1; i.e., f(2) = 1.
If u1 = 1, e1,u is an up innovation leading to the new I-vertex 2; that is,
f(2) = 2. Thus, the edge e1,u is from the J-vertex 1 to the I-vertex 2. This
shows that the first pair of down and up edges are uniquely determined by u1

and d1. Suppose that the first ℓ pairs of the down and up edges are uniquely
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determined by the sequences {u1, · · · , uℓ} and {d1, · · · , dℓ}. Also, suppose
that the subgraph Gℓ of the first ℓ pairs of down and up edges satisfies the
following properties

1. Gℓ is connected, and the undirectional noncoincident edges of Gℓ form a
tree.

2. If the end vertex f(ℓ + 1) of eℓ,u is the I-vertex 1, then each down edge
of Gℓ coincides with an up edge of Gℓ. Thus, Gℓ does not have single
innovations.
If the end vertex f(ℓ + 1) of eℓ,u is not the I-vertex 1, then from the I-
vertex 1 to the I-vertex f(ℓ + 1) there is only one path (chain without
cycles) of down-up-down-up single innovations and all other down edges
coincide with an up edge.

To draw the ℓ+ 1-st pair of down and up edges, we consider the following
four cases.

Case 1. dℓ+1 = 0 and uℓ+1 = 1. Then both edges of the ℓ + 1-st pair are
innovations. Thus, adding the two innovations to Gℓ, the resulting subgraph
Gℓ+1 satisfies the two properties above with the path of down-up single in-
novations that consists of the original path of single innovations and the two
new innovations. See Case 1 in Fig. 3.3.

4

Case Case

Case Case

1 2

3

Fig. 3.3 Examples of the four cases. In the four graphs, the rectangle denotes the subgraph
Gℓ, solid arrows are new innovations, and broken arrows are new T3 edges.

Case 2. dℓ+1 = 0 and uℓ+1 = 0. Then, eℓ+1,d is a down innovation and eℓ+1,u

coincides with eℓ+1,d. See Case 2 in Fig. 3.3. Thus, for the subgraph Gℓ+1,
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the two properties above can be trivially seen from the hypothesis for the
subgraph Gℓ. The single innovation chain of Gℓ+1 is exactly the same as that
of Gℓ.

Case 3. dℓ+1 = −1 and uℓ+1 = 1. In this case, by (3.1.2) we have

u1 + · · · + uℓ + d2 + · · · + dℓ ≥ 1

which implies that the total number of I-vertices of Gℓ other than 1 (i.e.,
u1 + · · · + uℓ) is greater than the number of I-vertices of Gℓ from which the
graph ultimately leaves (i.e., d2+ · · ·+dℓ). Therefore, f(ℓ+1) 6= 1 because Gℓ

must contain single innovations by property 2. Then there must be a single
up innovation leading to the vertex f(ℓ+ 1) and thus we can draw the down
edge eℓ+1,d coincident with this up innovation. Then, the next up innovation
eℓ,u starts from the end vertex to g(ℓ + 1). See case 3 in Fig. 3.3. It is easy
to see that the two properties above hold with the path of single innovations
that is the original one with the last up innovation replaced by eℓ+1,u.

Case 4. dℓ+1 = −1 and uℓ+1 = 0. Then, as discussed in case 3, eℓ+1,d can be
drawn to coincide with the only up innovation ended at f(ℓ + 1). Prior to
this up innovation, there must be a single down innovation with which the
up edge eℓ,u can be drawn to coincide. If the path of single innovations of Gℓ

has only one pair of down-up innovations, then f(ℓ+ 2) = 1 and hence Gℓ+1

has no single innovations. If the path of single innovations of Gℓ has more
than two edges, then the remaining part of the path of single innovations of
Gℓ, with the last two innovations removed, forms a path of single innovations
of Gℓ+1. See case 1 in Fig. 3.3. In either case, two properties for Gℓ+1 hold.

By induction, it is shown that two sequences subject to restriction (3.1.2)
uniquely determine a ∆1(k, r)-graph. Therefore, counting the number of
∆1(k, r)-graphs is equivalent to counting the number of pairs of characteristic
sequences.

Now, we count the number of characteristic sequences for given k and r.
We have the following lemma.

Lemma 3.5. For a given k and r (0 ≤ r ≤ k − 1), the number of ∆1(k, r)-
graphs is

1

r + 1

(
k

r

)(
k − 1

r

)
.

Proof. Ignoring the restriction (3.1.2), we have
(
k−1

r

)(
k−1

r

)
ways to arrange

r ones in the k− 1 positions u1, · · · , uk−1 and to arrange r minus ones in the
k − 1 positions d2, · · · , dk. If there is an integer 2 ≤ ℓ ≤ k such that

u1 + · · · + uℓ−1 + d1 + · · · + dℓ = −1,

then define

ũj =

{
uj , if j < ℓ,
−dj+1, if ℓ ≤ j < k,
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and

d̃j =

{
dj , if 1 < j ≤ ℓ,
−uj−1, if ℓ < j ≤ k.

Then we have r− 1 u’s equal to one and r+ 1 d’s equal to minus one. There
are

(
k−1
r−1

)(
k−1
r+1

)
ways to arrange r−1 ones in the k−1 positions ũ1, · · · , ũk−1,

and to arrange r + 1 minus ones in the k − 1 positions d̃2, · · · , d̃k.
Therefore, the number of pairs of characteristic sequences with indices k

and r satisfying the restriction (3.1.2) is

(
k − 1

r

)2

−
(
k − 1

r − 1

)(
k − 1

r + 1

)
=

1

r + 1

(
k

r

)(
k − 1

r

)
.

The proof of the lemma is complete.

3.1.3 M-P Law for the iid Case

In this section, we consider the LSD of the sample covariance matrix for the
case where the underlying variables are iid.

Theorem 3.6. Suppose that {xij} are iid real random variables with mean
zero and variance σ2. Also assume that p/n→ y ∈ (0,∞). Then, with prob-
ability one, FS tends to the M-P law, which is defined in (3.1.1).

Yin [300] considered existence of the LSD of the sequence of random matri-
ces SnTn, where Tn is a positive definite random matrix and is independent
of Sn. When Tn = Ip, Yin’s result reduces to Theorem 3.6.

In this section, we shall give a proof of the following extension to the
complex random sample covariance matrix.

Theorem 3.7. Suppose that {xij} are iid complex random variables with
variance σ2. Also assume that p/n → y ∈ (0,∞). Then, with probability
one, FS tends to a limiting distribution the same as described in Theorem
3.6.

Remark 3.8. The proofs will be separated into several steps. Note that the
M-P law varies with the scale parameter σ2. Therefore, in the proof we shall
assume that σ2 = 1, without loss of generality.

In most work in multivariate statistics, it is assumed that the means of
the entries of Xn are zero. The centralization technique, which is Theorem
A.44, relies on the interlacing property of eigenvalues of two matrices that
differ by a rank-one matrix. One then sees that removing the common mean
of the entries of Xn does not alter the LSD of sample covariance matrices.
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Step 1. Truncation, Centralization, and Rescaling
Let C be a positive number, and define

x̂ij = xijI(|xij | ≤ C),

x̃ij = x̂ij − E(x̂11),

x̂i = (x̂i1, · · · , x̂ip)
′,

x̃i = (x̃i1, · · · , x̃ip)
′,

Ŝn =
1

n

n∑

i=1

x̂ix̂
∗
i =

1

n
X̂X̂∗,

S̃n =
1

n

n∑

i=1

x̃ix̃
∗
i =

1

n
X̃X̃∗.

Write the ESDs of Ŝn and S̃n as F Ŝn and F S̃n , respectively. By Corollary
A.42 and the strong law of large numbers, we have

L4(FS, F Ŝn) ≤


 2

np

∑

i,j

(|x2
ij | + |x̂2

ij |)




 1

np

∑

i,j

(|xij − x̂ij |2)




≤


 4

np

∑

i,j

|x2
ij |




 1

np

∑

i,j

(|x2
ij |I(|xij | > C))




→ 4E(|x2
ij |I(|xij | > C)), a.s. (3.1.3)

Note that the right-hand side of (3.1.3) can be made arbitrarily small by
choosing C large enough.

Also, by Theorem A.44, we obtain

||F Ŝn − F S̃n || ≤ 1

p
rank(EX̂) =

1

p
. (3.1.4)

Write σ̃2 = E(|x̃jk|2) → 1, as C → ∞. Applying Corollary A.42, we obtain

L4(F S̃n , F σ̃−2S̃n) ≤ 2


1 + σ̃2

npσ̃2

∑

i,j

|x̃ij |2



1 − σ̃2

npσ̃2

∑

i,j

|x̃ij(c)|2



→ 2(1 − σ̃4), a.s. (3.1.5)

Note that the right-hand side of the inequality above can be made arbitrarily
small by choosing C large. Combining (3.1.3), (3.1.4), and (3.1.5), in the
proof of Theorem 3.7 we may assume that the variables xjk are uniformly
bounded with mean zero and variance 1. For abbreviation, in proofs given
in the next step, we still use Sn, Xn for the matrices associated with the
truncated variables.
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Step 2. Proof for the M-P Law by MCT

Now, we are able to employ the moment approach to prove Theorem 3.7. By
elementary calculus, we have

βk(Sn) =

∫
xkFSn(dx)

= p−1n−k
∑

{i1,···,ik}

∑

{j1,···,jk}
xi1j1 x̄i2j1xi2j2 · · ·xikjk

x̄i1jk

:= p−1n−k
∑

i,j

XG(i,j),

where the summation runs over all G(i, j)-graphs as defined in Subsection
3.1.2, the indices in i = (i1, · · · , ik) run over 1, 2, · · · , p, and the indices in
j = (j1, · · · , jk) run over 1, 2, · · · , n.

To complete the proof of the almost sure convergence of the ESD of Sn,
we need only show the following two assertions:

E(βk(Sn)) = p−1n−k
∑

i,j

E(xG(i,j))

=

k−1∑

r=0

yr
n

r + 1

(
k

r

)(
k − 1

r

)
+O(n−1) (3.1.6)

and

Var(βk(Sn))

= p−2n−2k
∑

i1,j1,i2,j2

[E(xG1(i1,j1)xG2(i2,j2) − E(xG1(i1,j1))E(xG2(i2,j2)))]

= O(n−2), (3.1.7)

where yn = p/n, and the graphs G1 and G2 are defined by (i1, j1) and (i2, j2),
respectively.

The proof of (3.1.6). On the left-hand side of (3.1.6), two terms are equal
if their corresponding graphs are isomorphic. Therefore, by Lemma 3.2, we
may rewrite

E(βk(Sn)) = p−1n−k
∑

∆(k,r,s)

p(p−1) · · · (p−r)n(n−1) · · · (n−s+1)E(X∆(k,r,s)),

(3.1.8)
where the summation is taken over canonical ∆(k, r, s)-graphs. Now, split
the sum in (3.1.8) into three parts according to ∆1(k, r) and ∆j(k, r, s),
j = 2, 3. Since the graph in ∆2(k, r, s) contains at least one single edge, the
corresponding expectation is zero. That is,
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S2 = p−1n−k
∑

∆2(k,r,s)

p(p−1) · · · (p−r)n(n−1) · · · (n−s+1)E(X∆2(k,r,s)) = 0.

By Lemma 3.3, for a graph of ∆3(k, r, s), we have r + s < k. Since the
variable x∆(k,r,s) is bounded by (2C/σ̃)2k, we conclude that

S3 = p−1n−k
∑

∆3(k,r,s)

p(p− 1) · · · (p− r)n(n− 1) · · · (n− s+ 1)E(X∆(k,r,s))

= O(n−1).

Now let us evaluate S1. For a graph in ∆1(k, r) (with s = k− r), each pair
of coincident edges consists of a down edge and an up edge; say, the edge
(ia, ja) must coincide with the edge (ja, ia). This pair of coincident edges
corresponds to the expectation E(|Xia,ja |2) = 1. Therefore, E(X∆1(k,r)) = 1.
By Lemma 3.4,

S1 = p−1n−k
∑

∆1(k,r)

p(p− 1) · · · (p− r)n(n− 1) · · · (n− s+ 1)E(X∆1(k,r))

=

k−1∑

r=0

yr
n

r + 1

(
k

r

)(
k − 1

r

)
+O(n−1)

= βk + o(1),

where yn = p/n→ y ∈ (0,∞). The proof of (3.1.6) is complete.

The proof of (3.1.7). Recall

Var(βk(Sn))

= p−2n−2k
∑

i,j

[E(XG1(i1,j1)XG2(i2,j2)) − E(XG1(i1,j1))E(XG2(i2,j2))].

Similar to the proof of Theorem 2.5, if G1 has no edges coincident with
edges of G2 or G = G1 ∪G2 has an overall single edge, then

E(XG1(i1,j1)XG2(i2,j2)) − E(XG1(i1,j1))E(XG2(i2,j2)) = 0

by independence between XG1 and XG2 .
Similar to the arguments in Subsection 2.1.3, one may show that the num-

ber of noncoincident vertices of G is not more than 2k. By the fact that the
terms are bounded, we conclude that assertion (3.1.7) holds and consequently
conclude the proof of Theorem 3.7.

Remark 3.9. The existence of the second moment of the entries is obviously
necessary and sufficient for the Marčenko-Pastur law since the limiting dis-
tribution involves the parameter σ2.
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3.2 Generalization to the Non-iid Case

Sometimes it is of practical interest to consider the case where the entries
of Xn depend on n and for each n they are independent but not necessarily
identically distributed. As in Section 2.2, we shall briefly present a proof of
the following theorem.

Theorem 3.10. Suppose that, for each n, the entries of X are independent
complex variables with a common mean µ and variance σ2. Assume that
p/n→ y ∈ (0,∞) and that, for any η > 0,

1

η2np

∑

jk

E(|x(n)
jk |2I(|x(n)

jk | ≥ η
√
n)) → 0. (3.2.1)

Then, with probability one, FS tends to the Marčenko-Pastur law with ratio
index y and scale index σ2.

Proof. We shall only give an outline of the proof of this theorem. The details
are left to the reader. Without loss of generality, we assume that µ = 0 and
σ2 = 1. Similar to what we did in the proof of Theorem 2.9, we may select
a sequence ηn ↓ 0 such that condition (3.2.1) holds true when η is replaced
by ηn. In the following, once condition (3.2.1) is used, we always mean this
condition with η replaced by ηn.

Applying Theorem A.44 and the Bernstein inequality, by condition (3.2.1),

we may truncate the variables x
(n)
ij at ηn

√
n. Then, applying Corollary A.42,

by condition (3.2.1), we may recentralize and rescale the truncated variables.
Thus, in the rest of the proof, we shall drop the superscript (n) from the
variables for brevity. We further assume that

1) |xij | < ηn

√
n,

2) E(xij) = 0 and Var(xij) = 1. (3.2.2)

By arguments to those in the proof of Theorem 2.9, one can show the
following two assertions:

E(βk(Sn)) =

k−1∑

r=0

yr
n

r + 1

(
k

r

)(
k − 1

r

)
+ o(1) (3.2.3)

and
E |βk(Sn) − E (βk(Sn))|4 = o(n−2). (3.2.4)

The proof of Theorem 3.10 is then complete.
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3.3 Proof of Theorem 3.10 by the Stieltjes Transform

As an illustration applying Stieltjes transforms to sample covariance matrices,
we give a proof of Theorem 3.10 in this section. Using the same approach of
truncating, centralizing, and rescaling as we did in the last section, we may
assume the additional conditions given in (3.2.2).

3.3.1 Stieltjes Transform of the M-P Law

Let z = u+ iv with v > 0 and s(z) be the Stieltjes transform of the M-P law.

Lemma 3.11.

s(z) =
σ2(1 − y) − z +

√
(z − σ2 − yσ2)2 − 4yσ4

2yzσ2
. (3.3.1)

Proof. When y < 1, we have

s(z) =

∫ b

a

1

x− z

1

2πxyσ2

√
(b − x)(x − a)dx,

where a = σ2(1 −√
y)2 and b = σ2(1 +

√
y)2.

Letting x = σ2(1 + y + 2
√
y cosw) and then setting ζ = eiw, we have

s(z) =

∫ π

0

2

π

1

(1 + y + 2
√
y cosw)(σ2(1 + y + 2

√
y cosw) − z)

sin2 wdw

=
1

π

∫ 2π

0

((eiw − e−iw)/2i)2

(1 + y +
√
y(eiw + e−iw))(σ2(1 + y +

√
y(eiw + e−iw)) − z)

dw

= − 1

4iπ

∮

|ζ|=1

(ζ − ζ−1)2

ζ(1 + y +
√
y(ζ + ζ−1))(σ2(1 + y +

√
y(ζ + ζ−1)) − z)

dζ

= − 1

4iπ

∮

|ζ|=1

(ζ2 − 1)2

ζ((1 + y)ζ +
√
y(ζ2 + 1))(σ2(1 + y)ζ +

√
yσ2(ζ2 + 1) − zζ)

dζ.

(3.3.2)

The integrand function has five simple poles at

ζ0 = 0,

ζ1 =
−(1 + y) + (1 − y)

2
√
y

,

ζ2 =
−(1 + y) − (1 − y)

2
√
y

,
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ζ3 =
−σ2(1 + y) + z +

√
σ4(1 − y)2 − 2σ2(1 + y)z + z2

2σ2√y ,

ζ4 =
−σ2(1 + y) + z −

√
σ4(1 − y)2 − 2σ2(1 + y)z + z2

2σ2√y .

By elementary calculation, we find that the residues at these five poles are

1

yσ2
, ∓1 − y

yz
and ± 1

σ2yz

√
σ4(1 − y)2 − 2σ2(1 + y)z + z2.

Noting that ζ3ζ4 = 1 and recalling the definition for the square root of
complex numbers, we know that both the real part and imaginary part of√
σ2(1 − y)2 − 2σ2(1 + y)z + z2 and −σ2(1+ y)+ z have the same signs and

hence |ζ3| > 1, |ζ4| < 1. Also, |ζ1| = | −√
y| < 1 and |ζ2| = | − 1/

√
y| > 1. By

Cauchy integration, we obtain

s(z) = −1

2

(
1

yσ2
− 1

σ2yz

√
σ4(1 − y)2 − 2σ2(1 + y)z + z2 − 1 − y

yz

)

=
σ2(1 − y) − z +

√
(z − σ2 − yσ2)2 − 4yσ4

2yzσ2
.

This proves equation (3.3.1) when y < 1.
When y > 1, since the M-P law has also a point mass 1−1/y at zero, s(z)

equals the integral above plus −(y − 1)/yz. In this case, |ζ3| = | − √
y| > 1

and |ζ4| = | − 1/
√
y| < 1, and thus the residue at ζ4 should be counted into

the integral. Finally, one finds that equation (3.3.1) still holds. When y = 1,
the equation is still true by continuity in y.

3.3.2 Proof of Theorem 3.10

Let the Stieltjes transform of the ESD of Sn be denoted by sn(z). Define

sn(z) =
1

p
tr(Sn − zIp)

−1.

As in Section 2.3, we shall complete the proof by the following three steps:

(i) For any fixed z ∈ C+, sn(z) − Esn(z) → 0, a.s.
(ii) For any fixed z ∈ C+, Esn(z) → s(z), the Stieltjes transform of the M-P

law.
(iii) Except for a null set, sn(z) → s(z) for every z ∈ C

+.

Similar to Section 2.3, the last step is implied by the first two steps and thus
its proof is omitted. We now proceed with the first two steps.
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Step 1. Almost sure convergence of the random part

sn(z) − Esn(z) → 0, a.s. (3.3.3)

Let Ek(·) denote the conditional expectation given {xk+1, · · · ,xn}. Then, by
the formula

(A + αβ∗)−1 = A−1 − A−1αβ∗A−1

1 + β∗A−1α
(3.3.4)

we obtain

sn(z) − Esn(z) =
1

p

n∑

k=1

[Ektr(Sn − zIp)
−1 − Ek−1tr(Sn − zIp)

−1]

=
1

p

n∑

k=1

γk,

where, by Theorem A.5,

γk = (Ek − Ek−1)[tr(Sn − zIp)
−1 − tr(Snk − zIp)

−1]

= −[Ek − Ek−1]
x∗

k(Snk − zIp)
−2xk

1 + x∗
k(Snk − zIp)−1xk

and Snk = Sn − xkx
∗
k. Note that

∣∣∣∣
x∗

k(Snk − zIp)
−2xk

1 + x∗
k(Snk − zIp)−1xk

∣∣∣∣

≤ x∗
k((Snk − uIp)

2 + v2Ip)
−1xk

ℑ(1 + x∗
k(Snk − zIp)−1xk)

=
1

v
.

Noticing that {γk} forms a sequence of bounded martingale differences, by
Lemma 2.12 with p = 4, we obtain

E|sn(z) − Esn(z)|4 ≤ K4

p4
E

(
n∑

k=1

|γk|2
)2

≤ 4K4n
2

v4p4
= O(n−2),

which, together with the Borel-Cantelli lemma, implies (3.3.3). The proof is
complete.

Step 2. Mean convergence
We will show that

Esn(z) → s(z), (3.3.5)

where s(z) is defined in (3.3.1) with σ2 = 1.
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By Theorem A.4, we have

sn(z) =
1

p

p∑

k=1

1
1
nα′

kαk − z − 1
n2 α′

kX
∗
k( 1

nXkX∗
k − zIp−1)−1Xkαk

, (3.3.6)

where Xk is the matrix obtained from X with the k-th row removed and α′
k

(n× 1) is the k-th row of X.
Set

εk =
1

n
α′

kαk − 1 − 1

n2
α′

kX
∗
k

(
1

n
XkX

∗
k − zIp−1

)−1

Xkαk + yn + ynzEsn(z),

(3.3.7)

where yn = p/n. Then, by (3.3.6), we have

Esn(z) =
1

1 − z − yn − ynzEsn(z)
+ δn, (3.3.8)

where

δn = −1

p

p∑

k=1

E

(
εk

(1 − z − yn − ynzEsn(z))(1 − z − yn − ynzEsn(z) + εk)

)
.

(3.3.9)

Solving Esn(z) from equation (3.3.8), we get two solutions:

s1(z) =
1

2ynz
(1 − z − yn + ynzδn +

√
(1 − z − yn − ynzδn)2 − 4ynz),

s2(z) =
1

2ynz
(1 − z − yn + ynzδn −

√
(1 − z − yn − ynzδn)2 − 4ynz).

Comparing this with (3.3.1), it suffices to show that

Esn(z) = s1(z) (3.3.10)

and
δn → 0. (3.3.11)

We show (3.3.10) first. Making v → ∞, we know that Esn(z) → 0 and
hence δn → 0 by (3.3.8). This shows that Esn(z) = s1(z) for all z with large
imaginary part. If (3.3.10) is not true for all z ∈ C

+, then by the continuity
of s1 and s2, there exists a z0 ∈ C+ such that s1(z0) = s2(z0), which implies
that

(1 − z0 − yn + ynzδn)2 − 4ynz0(1 + δn(1 − z0 − yn)) = 0.

Thus,
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Esn(z0) = s1(z0) =
1 − z0 − yn + ynz0δn

2ynz0
.

Substituting the solution δn of equation (3.3.8) into the identity above, we
obtain

Esn(z0) =
1 − z0 − yn

ynz0
+

1

yn + z0 − 1 + ynz0Esn(z0)
. (3.3.12)

Noting that for any Stieltjes transform s(z) of probability F defined on R+

and positive y, we have

ℑ(y + z − 1 + yzs(z)) = ℑ
(
z − 1 +

∫ ∞

0

yxdF (x)

x− z

)

= v

(
1 +

∫ ∞

0

yxdF (x)

(x− u)2 + v2

)
> 0. (3.3.13)

In view of this, it follows that the imaginary part of the second term in (3.3.12)
is negative. If yn ≤ 1, it can be easily seen that ℑ(1 − z0 − yn)/(ynz0) < 0.
Then we conclude that ℑEsn(z0) < 0, which is impossible since the imaginary
part of the Stieltjes transform should be positive. This contradiction leads to
the truth of (3.3.10) for the case yn ≤ 1.

For the general case, we can prove it in the following way. In view of
(3.3.12) and (3.3.13), we should have

yn + z0 − 1 + ynz0Esn(z0) =
√
ynz0. (3.3.14)

Now, let sn(z) be the Stieltjes transform of the matrix 1
nX∗X. Noting that

1
nX∗X and Sn = 1

nXX∗ have the same set of nonzero eigenvalues, we have
the relation between sn and sn given by

sn(z) = y−1
n sn(z) − 1 − 1/yn

z
.

Note that the equation above is true regardless of whether yn > 1 or yn ≤ 1.
From this we have

yn − 1 + ynz0Esn(z0) = z0Esn(z0).

Substituting this into (3.3.14), we obtain

1 + Esn(z0) =
√
y/

√
z0,

which leads to a contradiction that the imaginary part of LHS is positive and
that of the RHS is negative. Then, (3.3.10) is proved.

Now, let us consider the proof of (3.3.11). Rewrite
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δn = −1

p

p∑

k=1

(
Eεk

(1 − z − yn − ynzEsn(z))2

)

+
1

p

p∑

k=1

E

(
ε2k

(1 − z − yn − ynzEsn(z))2(1 − z − yn − ynzEsn(z) + εk)

)

= J1 + J2.

At first, by assumptions given in (3.2.2), we note that

|Eεk| =

∣∣∣∣∣−
1

n2
EtrX∗

k

(
1

n
XkX

∗
k − zIp−1

)−1

Xk + yn + ynzEsn(z)

∣∣∣∣∣

=

∣∣∣∣∣−
1

n
Etr

(
1

n
XkX

∗
k − zIp−1

)−1
1

n
XkX

∗
k + yn + ynzEsn(z)

∣∣∣∣∣

≤ 1

n
+

|z|yn

n
E

∣∣∣∣∣tr
(

1

n
XkX

∗
k − zIp−1

)−1

− sn(z)

∣∣∣∣∣

≤ 1

n
+

|z|yn

nv
→ 0, (3.3.15)

which implies that J1 → 0.
Now we prove J2 → 0. Since

ℑ (1 − z − yn − ynzEsn(z) + εk)

= ℑ
(

1

n
α′

kαk − z − 1

n2
α′

kX
∗
k

(
1

n
XkX

∗
k − zIp−1

)−1

Xkαk

)

= −v


1 +

1

n2
α′

kX
∗
k

[(
1

n
XkX

∗
k − uIp−1

)2

+ v2Ip−1

]−1

Xkαk


 < −v,

combining this with (3.3.13), we obtain

|J2| ≤
1

pv3

p∑

k=1

E|εk|2

=
1

pv3

p∑

k=1

[E|εk − Ẽ(εk)|2 + E|Ẽεk − E(εk)|2 + (E(εk))2],

where Ẽ(·) denotes the conditional expectation given {αj , j = 1, ..., k−1, k+
1, ..., p}. In the estimation of J1, we have proved that

|E(εk)| ≤ 1

n
+

|z|y
nv

→ 0.

Write A = (aij) = In − 1
nX∗

k( 1
nXkX

∗
k − zIp−1)

−1Xk. Then, we have
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εk − Ẽεk =
1

n




n∑

i=1

aii(|xki|2 − 1) +
∑

i6=j

aijxkix̄kj


 .

By elementary calculation, we have

1

n2
Ẽ|ε′k − Ẽεk|2

=
1

n2




n∑

i=1

|aii|2(E|xki|4 − 1) +
∑

i6=j

[|aij |2E|xki|2E|xkj |2 + a2
ijEx

2
kiEx

2
kj ]




≤ 1

n2




n∑

i=1

|aii|2(η2
nn) + 2

∑

i6=j

|aij |2



≤ η2
n

v2
+

2

nv2
.

Here, we have used the fact that |aii| ≤ v−1.
Using the martingale decomposition method in the proof of (3.3.3), we can

show that

E|Ẽεk − Eεk|2

=
|z|2y2

n2
E
∣∣∣tr
(

1

n
XkX

∗
k − zIp−1

)−1

− Etr

(
1

n
XkX

∗
k − zIp−1

)−1∣∣∣
2

≤ |z|2y2

nv2
→ 0.

Combining the three estimations above , we have completed the proof of the
mean convergence of the Stieltjes transform of the ESD of Sn.

Consequently, Theorem 3.10 is proved by the method of Stieltjes trans-
forms.



Chapter 4

Product of Two Random Matrices

In this chapter, we shall consider the LSD of a product of two random ma-
trices, one of them a sample covariance matrix and the other an arbitrary
Hermitian matrix. This topic is related to two areas: The first is the study of
the LSD of a multivariate F -matrix that is a product of a sample covariance
matrix and the inverse of another sample covariance matrix, independent of
each other. Multivariate F plays an important role in multivariate data anal-
ysis, such as two-sample tests, MANOVA (multivariate analysis of variance),
and multivariate linear regression. The second is the investigation of the LSD
of a sample covariance matrix when the population covariance matrix is ar-
bitrary. The sample covariance matrix under a general setup is, as mentioned
in Chapter 3, fundamental in multivariate analysis.

Pioneering work was done by Wachter [290], who considered the limiting
distribution of the solutions to the equation

det(X1,n1X
′
1,n1

− λX2,n2X
′
2,n2

) = 0, (4.0.1)

where Xj,nj is a p × nj matrix whose entries are iid N(0, 1) and X1,n1

is independent of X2,n2 . When X2,n2X
′
2,n2

is of full rank, the solutions
to (4.0.1) are n2/n1 times the eigenvalues of the multivariate F -matrix
( 1

n1
X1,n1X

′
1,n1

)( 1
n2

X2,n2X
′
2,n2

)−1.
Yin and Krishnaiah [304] established the existence of the LSD of the ma-

trix sequence {SnTn}, where Sn is a standard Wishart matrix of dimension
p and degrees of freedom n with p/n→ y ∈ (0,∞), Tn is a positive definite
matrix satisfying βk(Tn) → Hk, and the sequence Hk satisfies the Carle-
man condition (see (B.1.4)). In Yin [300], this result was generalized to the
case where the sample covariance matrix is formed based on iid real random
variables of mean zero and variance one. Using the result of Yin and Kr-
ishnaiah [304], Yin, Bai, and Krishnaiah [302] showed the existence of the
LSD of the multivariate F -matrix. The explicit form of the LSD of multivari-
ate F -matrices was derived in Bai, Yin, and Krishnaiah [40] and Silverstein

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,
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[256]. Under the same structure, Bai, Yin, and Krishnaiah [41] established
the existence of the LSD when the underlying distribution of Sn is isotropic.

Some further extensions were done in Silverstein [256] and Silverstein and
Bai [266]. In this chapter, we shall introduce some recent developments in
this direction.

Bai and Yin [39] considered the upper limit of the spectral moments of
a power of Xn (i.e., the limits of βℓ((

1√
n
Xn)k( 1√

n
X′

n)k), where Xn is of

order n× n) when investigating the limiting behavior of solutions to a large
system of linear equations. Based on this result, it is proved that the upper
limit of the spectral radius of 1√

n
Xn is not larger than 1. The same result was

obtained in Geman [117] at almost the same time but by different approaches
and assuming stronger conditions.

4.1 Main Results

Here we present the following results.

Theorem 4.1. Suppose that the entries of Xn (p×n) are independent com-
plex random variables satisfying (3.2.1), that Tn is a sequence of Hermitian
matrices independent of Xn, and that the ESD of Tn tends to a nonrandom
limit FT in some sense (in probability or a.s.). If p/n → y ∈ (0,∞), then
the ESD of the product SnTn tends to a nonrandom limit in probability or
almost surely (accordingly), where Sn = 1

nXnX∗
n.

Remark 4.2. Note that the eigenvalues of the product matrix SnTn are all
real, although it is not symmetric, because the whole set of eigenvalues is the

same as that of the symmetric matrix S
1/2
n TnS

1/2
n .

This theorem contains Yin’s result as a special case. In Yin [300], the
entries of X are assumed to be real and iid with mean zero and variance one
and the matrix Tn real and positive definite and satisfying, for each fixed k,

1

p
tr(Tk

n) → Hk (in probability or a.s.) (4.1.1)

while the constant sequence {Hk} satisfies the Carleman condition.
In Silverstein [256], Theorem 4.1 was established under the additional

condition that Tn is nonnegative definte.
In Silverstein and Bai [266], the following theorem is proved.

Theorem 4.3. Suppose that the entries of Xn (n × p) are complex random
variables that are independent for each n and identically distributed for all n
and satisfy E(|x1 1 −E(x1 1)|2) = 1. Also, assume that Tn = diag(τ1, . . . , τp),
τi is real, and the empirical distribution function of {τ1, . . . , τp} converges
almost surely to a probability distribution function H as n→ ∞. The entries
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of both Xn and Tn may depend on n, which is suppressed for brevity. Set
Bn = An + 1

nXnTnX∗
n, where An is Hermitian, n×n satisfying FAn → FA

almost surely, where FA is a distribution function (possibly defective) on the
real line. Assume also that Xn, Tn, and An are independent. When p = p(n)
with p/n → y > 0 as n → ∞, then, almost surely, FBn, the ESD of the
eigenvalues of Bn, converges vaguely, as n → ∞, to a (nonrandom) d.f. F ,
where for any z ∈ C+ ≡ {z ∈ C : ℑz > 0}, its Stieltjes transform s = s(z) is
the unique solution in C+ to the equation

s = sA

(
z − y

∫
τdH(τ)

1 + τs

)
, (4.1.2)

where sA is the Stieltjes transform of FA.

Remark 4.4. Note that Theorem 4.3 is more general than Yin’s result in the
sense that there is no requirement on the moment convergence of the ESD of
Tn as well as no requirement on the positive definiteness of the matrix Tn.
Also, it allows a perturbation matrix An involved in 1

nX∗
nTnXn. However, it

is more restrictive than Yin’s result in the sense that it requires the matrix
Tn to be diagonal. Weak convergence of (4.1.2) was established in Marčenko
and Pastur [201] under higher moment conditions than assumed in Theorem
4.1 but with mild dependence between the entries of Xn.

The proof of Theorem 4.3 uses the Stieltjes transform that will be given
in Section 4.5.

4.2 Some Graph Theory and Combinatorial Results

In using the moment approach to establish the existence of the LSD of prod-
ucts of random matrices, we need some combinatorial results related to graph
theory.

For a pair of vectors i = (i1, · · · , i2k)′ (1 ≤ iℓ ≤ p, ℓ ≤ 2k) and
j = (j1, · · · , jk)′ (1 ≤ ju ≤ n, u ≤ k), construct a graph Q(i, j) in the
following way. Draw two parallel lines, referred to as the I-line and J-line,
Plot i1, · · · , i2k on the I-line and j1, · · · , jk on the J-line, called the I-vertices
and J-vertices, respectively. Draw k down edges from i2ℓ−1 to jℓ, k up edges
from jℓ to i2ℓ, and k horizontal edges from i2ℓ to i2ℓ+1 (with the convention
that i2k+1 = i1). An example of a Q-graph is shown in Fig. 4.1.

Definition. The graph Q(i, j) defined above is called a Q-graph; i.e., its
vertex set V = Vi+Vj , where Vi is the set of distinct numbers of i1, · · · , i2k and
Vj are the distinct numbers of j1, · · · , jk. The edge set E = {edℓ, euℓ, ehℓ, ℓ =
1, · · · , k}, and the function F is defined by F (edℓ) = (i2ℓ−1, jℓ), F (euℓ) =
(jℓ, i2ℓ), and F (ehℓ) = (i2ℓ, i2ℓ+1).
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Fig. 4.1 A Q-graph with k = 6.

Definition. Let Q = (V,E, F ) be a Q-graph. The subgraph of all I-vertices
and all horizontal edges of Q is called the roof of Q and is denoted by H(Q).
Let r equal 1 less than the number of connected components of H(Q).

Definition. Let Q = (V,E, F ) be a Q-graph. The M-minor or the pillar
of Q is defined as the minor of Q by contracting all horizontal edges, which
means all horizontal edges are removed from Q and all I-vertices connected
through horizontal edges are glued together.

Note that a pillar is a ∆-graph. Note that the number of noncoincident I-
vertices of the pillar is 1+r, the same as the number of connected components
of the roof of Q. Also, we denote the number of noncoincident J-vertices by
s.

We denote the M-minor or the pillar of Q by M(Q). If two Q-graphs
have isomorphic pillars, then the number of horizontal edges in corresponding
connected components of their roofs is equal.

For a givenQ-graphQ, glue all coincident vertical edges; namely, we regard
all vertical edges with a common I-vertex and J-vertex as one edge. But
coincident horizontal edges are still considered different edges. Then, we get
an undirectional connected graph of k horizontal edges and m vertical edges.
We shall call the resulting graph the base of the graph Q and denote it by
B(Q).

Definition. For a vertical edge e of B(Q), the number of up (down) vertical
edges of Q coincident with e is called the up (down) multiplicity of e. The
up (down) multiplicity of the ℓ-th vertical edge of B(Q) is denoted by µℓ(νℓ).

We classify the Q-graphs into three categories. Category 1 (denoted by
Q1) contains all Q-graphs that have no single vertical edges and whose pillar
M(Q) is a ∆1-graph. For the definition of ∆1-graphs, see Subsection 3.1.2.
From the definition, one can see that, for a Q1-graph, each down edge must
coincide with one and only one up edge and there are k noncoincident vertical
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edges. That implies that for each noncoincident vertical edge eℓ of a Q1-graph
Q, the multiplicities are µℓ = νℓ = 1.

Category 2 (Q2) contains all graphs that have at least one single vertical
edge.

Category 3 (Q3) contains all other Q(k, n) graphs.

In later applications, one will see that a Q2-graph corresponds to a zero
term and hence needs no further consideration. Let us look further into the
graphs of Q1 and Q3.

Lemma 4.5. If Q ∈ Q3, then the degree of each vertex of H(Q) is not less
than 2. Denote the coincidence multiplicities of the ℓ-th noncoincident vertical
edge by µℓ and νℓ, ℓ = 1, 2, · · · ,m, where m is the number of noncoincident
vertical edges. Then either there is a µℓ + νℓ ≥ 3 with r + s ≤ m < k or all
µℓ + νℓ = 2 with r + s < m = k.

If Q ∈ Q1, then the degree of each vertex of H(Q) is even. In this case,
for all ℓ, µℓ = νℓ = 1 and r + s = k.

Proof. Note that each I-vertex of Q must connect with a vertical edge and
a horizontal edge. Therefore, if there is a vertex of H(Q) having degree one,
then this vertex connects with only one vertical edge, which is then single.
This indicates that the graph Q belongs to Q2. Since the graph Q is con-
nected, there are at least r + s noncoincident vertical edges to make the
graph of r+1 disjoint components of H(Q) and s J-vertices connected. This
shows that r + s ≤ m. It is trivial to see that m ≤ k because there are in
total 2k vertical edges and there are no single edges. If, for all ℓ, µℓ + νℓ = 2,
then m = k. If r + s = k, then the minor M(Q) is a tree of noncoincident
edges, which implies that Q is a Q1-graph and µℓ = νℓ = 1. This violates
the assumption that Q is a Q3-graph. This proves the first conclusion of the
lemma.

Note that each down edge of a Q1-graph coincides with one and only one
up edge. Thus, for each Q1-graph, the degree of each vertex of H(Q) is just
twice the number of noncoincident vertical edges of Q connecting with this
vertex. Since M(Q) ∈ ∆1, for all ℓ, µℓ = 2 and r + s = k. The proof of the
lemma is complete.

As proved in Subsection 3.1.2, for ∆1-graphs, s+ r = k. We now begin to
count the number of various ∆1-graphs. Because each edge has multiplicity
2, the degree of an I-vertex (the number of edges connecting to this vertex)
must be an even number.

Lemma 4.6. There are
k!

s!i1! · · · is!
isomorphic classes of ∆1-graphs that have s J-vertices, r + 1 = k − s + 1
I-vertices with degrees (the number of vertical edges connecting this I-vertex)
2ιℓ, ℓ = 1, · · · , r+1, where ib = #{ℓ, ιℓ = b} denotes the number of I-vertices
of degree 2b satisfying i1 + · · · + is = r + 1 and i1 + 2i2 + · · · + sis = k.
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Proof. Because ι1 + · · · + ιr+1 = k, we have

i1 + · · · + ik = r + 1 and i1 + 2i2 + · · · + kik = k.

For the canonical ∆1-graph, the noncoincident edges form a tree. Therefore,
there is at most one noncoincident vertical edge directly connecting to a
given I-vertex and a given J-vertex; that is to say, an I-vertex of degree
2b must connect with b different J-vertices. Therefore, b ≤ s. Consequently,
the integer b such that ib 6= 0 is not larger than s, so we can rewrite the
constraints above as

i1 + · · · + is = r + 1 and i1 + 2i2 + · · · + sis = k.

Since the canonical∆1-graph has r+1 I-vertices with degrees 2ι1,· · ·, 2ιr+1,
we can construct a characteristic sequence of integers while the graph is being
formed. After drawing each up edge, place a 1 in the sequence. After drawing
a down edge from the ℓ-th I-vertex, if this vertex is never visited again, then
put −ιℓ in the sequence. Otherwise, put nothing and go to the next up edge.
We make the following convention: after drawing the last up edge, put a one
and a −ι1. Then, we get a sequence of k ones and r + 1 negative numbers
{−ι2, · · · ,−ιr+1,−ι1}. Then we obtain a sequence that consists of negative
integers {−ι2, · · · ,−ιr+1,−ι1} separated by k 1’s, and its partial sums are all
nonnegative (note the total sum is 0). As an example, for the graph given in
Fig. 4.2, the characteristic sequence is

1, 1, 1, 1,−3, 1,−2, 1,−1.

Conversely, suppose that we are given a characteristic sequence of k ones
and r+1 negative numbers for which all partial sums are nonnegative and the
total sum is zero. We show that there is one and only one canonical ∆1-graph
having this sequence as its characteristic sequence.

In a canonical ∆1-graph, each down edge must be an innovation except
those that complete the preassigned degrees of its I-vertex (see e5d, e6d in
Fig. 4.2). Also, all up edges must coincide with the down innovation just
prior to it (see edges e3u, e4u, e5u, and e6u in Fig. 4.2), except those that lead
to a new I-vertex; i.e., an up innovation. Therefore, if we can determine the
up innovations and the down T3 edges by the given characteristic sequence,
then the ∆1-graph is uniquely determined.

We shall prove the conclusion by induction on r. If r = 0 (that is, the
characteristic sequence consists of k 1’s and ends with −k), it is obvious that
there is only one I-vertex, which is 1. Then, all down edges are innovations
and all up edges are T3 edges. That is, each up edge coincides with the
previous (down) edge. This proves that, if r = 0, the ∆1-graph is uniquely
determined by the characteristic sequence.

Now, suppose that r ≥ 1 and the first negative number is −a1, before
which there are p1 1’s. By the condition of nonnegative partial sums, we have
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Fig. 4.2 An example of a characteristic sequence.

p1 ≥ a1. By the definition of characteristic sequences, the p1 + 1-st down
edge must coincide with an up innovation leading to its end (I-)vertex. By
the property of a ∆1-graph, once the path leaves from an I-vertex through a
T3, the path can never revisit this I-vertex. Therefore, in between this pair
of coincident edges, there should be a1 − 1 down innovations and a1 − 1 up
T3 edges that are coincident with the previous innovations. This shows that
the p1 − a1 + 1-st up edge is the up innovation that leads to this I-vertex.

As an example, consider the characteristic sequence defined by Fig. 4.2.
a1 = 3 and p1 = 4, by our arguments, the second up edge is an up innovation
that leads to the I-vertex i3 = i4 = i5, and the third and fourth up edges are
T3 edges.

Now, remove the negative number −a1 and a1 1’s before it from the char-
acteristic sequence. The remainder is still a characteristic sequence with k−a1

ones and r negative numbers. By induction, the positions of up innovations
and T3 up edges can be uniquely determined by the sequence of k − a1 1’s
and r negative numbers. That is, there is a ∆1-graph of k − a1 down edges,
and k− a1 up edges, and having the remainder sequence as its characteristic
sequence. As for the sequence

1, 1, 1, 1,−3, 1,−2, 1,−1,

the remainder sequence is
1, 1,−2, 1,−1.

The ∆1-graph constructed from the remainder sequence is shown in Fig. 4.3.
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Fig. 4.3 Subgraph corresponding to a shortened sequence.

Then we cut off the graph at the J-vertex between the µ1 − a1 + 1-st
down edge and the µ1−a1 +1-st up edge. Then insert an up innovation from
this J-vertex, draw a1 − 1 down innovations and T3 up edges coincident with
their previous edges, and finally return to the path through a down T3 edge
by connecting the µ1 − a1 + 1-st up edge of the original graph. Then, it is
easy to show that the new graph has the given sequence as its characteristic
sequence.

Now, we are in a position to count the number of isomorphism classes of
∆1-graphs with r + 1 I-vertices of degrees 2ι1, · · · , 2ιr+1, which is the same
as the number of characteristic sequences. Place the r + 1 negative numbers
into the k places after the k 1’s. We get a sequence of k 1’s and r+1 negative
numbers. We need to exclude all sequences that do not satisfy the condition
of nonnegative partial sums. Ignoring the requirement of nonnegative partial
sums, to arrange {−ι2, · · · ,−ιr+1,−ι1} into k places after the k 1’s is equiva-
lent to dropping k −1’s into k boxes so that the number of nonempty boxes is
{ι2, · · · , ιr+1, ι1}. Since ib is the number of b’s in the set {ι1, · · · , ιr+1} and the
number of empty boxes is s − 1, the total number of possible arrangements
is

k!

i1! · · · is!(s− 1)!
.

Add a 1 behind the end of the sequence and make the sequence into a circle by
connecting its two ends. Then, to complete the proof of the lemma, we need
only show that in every s such sequences corresponding to a common circle
there is one and only one sequence satisfying the condition that its partial
sums be nonnegative. Note that in the circle there are k + 1 ones and r + 1
negative numbers separated by the ones. Therefore, there are s gaps between
consecutive 1’s. Cut off the cycle at these gaps. We get s different sequences
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led and ended by 1’s. We show that there is one and only one sequence
among the s sequences that has all nonnegative partial sums. Suppose we
have a sequence

a1, a2, · · · , at−1, at, at+1, · · · , ak+r+2

for which all partial sums are nonnegative. Obviously, a1 = ak+r+2 = 1. Also,
we assume that at = at+1 = 1, which gives a pair of consecutive 1’s. Cut the
sequence off between at and at+1 and construct a new sequence

at+1, · · · , ak+r+2, a1, a2, · · · , at−1, at.

Since
∑k+r+1

i=1 ai = 0 and
∑t

i=1 ai ≥ 1, the partial sum is

at+1 + · · · + ak+r+1 ≤ −1.

This shows that corresponding to each circle of k+1 ones and the r+1 negative
numbers {−ι1, · · · ,−ιr+1} there is at most one sequence whose partial sums
are nonnegative.

The final job to conclude the proof of the lemma is to show that for any
sequence of k + 1 ones and the r + 1 negative numbers summing up to −k
where the two ends of the sequence are ones, there exists one sequence of the
cut-off circle with nonnegative partial sums. Suppose that we are given the
sequence

a1(= 1), a2, · · · , at−1, at, at+1, · · · , ak+r+2(= 1),

where t is the largest integer such that the partial sum a1 + a2 + · · · + at−1

is the minimum among all partial sums. By the definition of t, we conclude
that at = at+1 = 1. Then, the sequence

at+1, · · · , ak+r+2, a1, a2, · · · , at−1, at

satisfies the property that all partial sums be nonnegative. In fact, for any
m ≤ k − t+ r + 2, we have

at+1 + · · · + at+m = (a1 + · · · + at+m) − (a1 + · · · + at) ≥ 0,

and for any k − t+ r + 2 < m ≤ k + r + 2, we have

at+1 + · · · + at+m = (a1 + · · · + at+m) − (a1 + · · · + at)

= 1 + (a1 + · · · + at+m−k−r−2) − (a1 + · · · + at) ≥ 0.

The proof of the lemma is complete.
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4.3 Proof of Theorem 4.1

Again, the proof will rely on the MCT, preceded by truncation and renor-
malization of the entries of Xn. Additional steps will be taken to reduce the
assumption on Tn to be nonrandom and to truncate its ESD.

4.3.1 Truncation of the ESD of Tn

For brevity, we shall suppress the superscript n from the x-variables.

Step 1. Reducing to the case where Tn’s are nonrandom
If the ESD of Tn converges to a limit FT almost surely, we may consider
the LSD of SnTn conditioned on all Tn as given and hence may assume that
Tn is nonrandom. Then the final result follows by Fubini’s theorem. If the
convergence is in probability, then we may use the subsequence method or
use the strong representation theorem (see Skorohod [270] or Dudley [96]).1

The strong representation theorem says that there is a probability space on
which we can define a sequence of random matrices (X̃n, T̃n) such that, for

each n, the joint distribution of (X̃n, T̃n) is identical to that of (Xn,Tn) and

the ESD of T̃n converges to FT almost surely. Therefore, to prove Theorem
4.1, it suffices to show it for the case of a.s. convergence.

Now, suppose that Tn are nonrandom and that the ESD of Tn converges
to FT .

Step 2. Truncation of the ESD of Tn

Suppose that the spectral decomposition of Tn is
∑p

i=1 λinuiu
∗
i . Define a

matrix T̃n =
∑p

i=1 λ̃inuiu
∗
i , where λ̃in = λin or zero in accordance with

whether |λin| ≤ τ0 or not, where τ0 is prechosen to be constant such that

both ±τ0 are continuity points of FT . Then, the ESD of T̃n converges to the
limit

FT,τ0(x) =

∫ x

−∞
I[−τ0,τ0](u)F

T (du) + (FT (−τ0) + 1 − FT (τ0))I[0,∞)(x),

and (4.1.1) is true for T̃n with H̃k =
∫
|x|≤τ0

xkdFT (x).

Applying Theorem A.43, we obtain

1 In an unpublished work by Bai et al [19], Skorohod’s result was generalized to: Suppose
that µn is a probability measure defined on a Polish space (i.e., a complete and separable
metric space) Sn and ϕn is a measurable mapping from Sn to another Polish space S0.

If µnϕ−1
n tends to µ0 weakly, where µ0 is a probability measure defined on the space

S0, then there exists a probability space (Ω,F , P ) on which we have random mappings
Xn : Ω 7→ Sn, such that µn is the distribution of Xn and ϕn(Xn) → X0 almost surely.
Skorohod’s result is the special case where all Sn are identical to S0 and all ϕn(x) = x.
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∥∥∥FSnTn − FSnT̃n

∥∥∥ ≤ 1

p
rank(Tn − T̃n) → FT (−τ0) + 1 − FT (τ0) (4.3.1)

as n→ ∞. Note that the right-hand side of the inequality above can be made
arbitrarily small if τ0 is large enough.

We claim that Theorem 4.1 follows if we can prove that, with probability

1, FSnT̃n converge to a nondegenerate distribution Fτ0 for each fixed τ0. We
shall prove this assertion by the following two lemmas.

Lemma 4.7. If the distribution family {FSnT̃n} is tight for every τ0 > 0,
then so is the distribution family {FSnTn}.

Proof. Since FTn → FT , for each fixed ε ∈ (0, 1), we can select a τ0 > 0
such that, for all n, FTn(−τ0) + 1 − FTn(τ0) < ε/3. On the other hand, we

can select M > 0 such that, for all n, FSnT̃n(−M) + 1 − FSnT̃n(M) < ε/3

because {FSnT̃n} is tight. Thus, we have

FSnTn(M) − FSnTn(−M)

≥ FSnT̃n(M) − FSnT̃n(−M) − 2||FSnTn − FSnT̃n ||
≥ 1 − ε/3 − 2(FTn(−τ0) + 1 − FTn(τ0)) ≥ 1 − ε.

This proves that the family of {FSnTn} is tight.

Lemma 4.8. If FSnT̃n → Fτ0 , a.s., for each τ0 > 0, then

FSnTn → F, a.s.,

for some distribution F .

Proof. Since the convergence of FSnT̃n → Fτ0 a.s. implies the tightness of the
distribution family {FSnTn}, by Lemma 4.7, the distribution family {FSnTn}
is also tight. Therefore, for any subsequence of {FSnTn}, there is a convergent
subsequence of the previous subsequence of {FSnTn}. Therefore, to complete
the proof of Theorem 4.1, we need only show that the sequence {FSnTn} has
a unique subsequence limit.

Suppose that F (1) and F (2) are two limiting distributions of two convergent
subsequences of {FSnTn}. Suppose that x is a common continuity point of
F (1), F (2), and Fτ0 for all rational τ0. Then, for any fixed ε > 0, we can
select a rational τ0 such that FTn(−τ0) + 1 − FTn(τ0) < ε/5 for all n. Since

FSnT̃n → Fτ0 , there exists an n0, such that for all n1, n2 > n0, |FSn1T̃n1 (x)−
FSn2T̃n2 (x)| < ε/5. Also, we can select n1, n2 > n0 such that |F (j)(x) −
FSnj

Tnj (x)| < ε/5, j = 1, 2. Thus,

|F (1)(x) − F (2)(x)|
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≤
2∑

j=1

[|F (j)(x) − FSnj
Tnj (x)| + ‖FSnj

Tnj − FSnj
T̃nj ‖]

+|FSn1T̃n1 (x) − FSn2T̃n2 (x)| < ε.

This shows that F (1) ≡ F (2), and the proof of the lemma is complete. It is
easy to see from the proof that limτ0→∞ Fτ0 exists and is equal to F , the a.s.
limit of FSnTn .

Therefore, we may truncate the ESD of FTn first and then proceed to
the proof with the truncated matrix Tn. For brevity, we still use Tn for the
truncated matrix Tn, that is; we shall assume that the eigenvalues of Tn are
bounded by a constant, say τ0.

4.3.2 Truncation, Centralization, and Rescaling of the
X-variables

Following the truncation technique used in Section 3.2, let X̃n and S̃n de-
note the sample matrix and the sample covariance matrix defined by the
truncated variables at the truncation location ηn

√
n. Note that SnTn and

1
nX∗

nTnXn have the same set of nonzero eigenvalues, as do the matrices

S̃nTn and 1
nX̃∗

nTnX̃n. Thus,

‖FSnTn − F S̃nTn‖
=
n

p
‖F 1

nX∗
nTnXn − F

1
n X̃∗

nTnX̃n‖ =
n

p
‖FX∗

nTnXn − F X̃∗
nTnX̃n‖.

Then, by Theorem A.43, for any ε > 0, we have

P
(∥∥∥FSnTn − F S̃nTn

∥∥∥ ≥ ε
)

= P
(∥∥∥FX∗

nTnXn − F X̃∗
nTnX̃n

∥∥∥ ≥ εp/n
)

≤ P(rank(X∗
nTnXn − X̃∗

nTnX̃n) ≥ εp)

≤ P(2rank(Xn − X̃n) ≥ εp)

≤ P

(∑

ij

I{|xij |≥ηn
√

n} ≥ εp/2

)
.

From the condition (3.2.1), one can easily see that

E

(∑

ij

I{|xij |≥ηn
√

n}

)
≤ 1

η2
nn

∑

ij

E|xij |2I{|xij |≥ηn
√

n} = o(p)
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and

Var

(∑

ij

I{|xij |≥ηn
√

n}

)
≤ 1

η2
nn

∑

ij

E|xij |2I{|xij |≥ηn
√

n} = o(p).

Then, applying Bernstein’s inequality, one obtains

P

(∥∥∥FSnTn − F S̃nTn

∥∥∥ ≥ ε

)
≤ 2 exp

(
−1

8
ε2p

)
, (4.3.2)

which is summable. By the Borel-Cantelli lemma, we conclude that, with
probability 1, ∥∥∥FSnTn − F S̃nTn

∥∥∥→ 0. (4.3.3)

We may do the centralization and rescaling of the X-variables in the same
way as in Section 3.2. We leave the details to the reader.

4.3.3 Completing the Proof

Therefore, the proof of Theorem 4.1 can be done under the following addi-
tional conditions:

‖Tn‖ ≤ τ0,

|xjk| ≤ ηn

√
n,

E(xjk) = 0,

E|xjk|2 = 1. (4.3.4)

Now, we will proceed in the proof of Theorem 4.1 by applying the MCT
under the additional conditions above. We need to show the convergence of
the spectral moments of SnTn. We have

βk(SnTn) =
1

p
E[(SnTn)k]

= p−1n−k
∑

xi1j1xi2j1ti2i3xi3j2 · · ·xi2k−1jk
xi2kjk

ti2ki1

= p−1n−k
∑

i,j

T (H(i))X(Q(i, j)), (4.3.5)

where Q(i, j) is the Q-graph defined by i = (i1, · · · , i2k) and j = (j1, · · · , jk)
and H(i) is the roof of Q(i, j). We shall prove the theorem by showing the
following lemma.
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Lemma 4.9. We have

Eβk(SnTn) → βst
k =

k∑

s=1

yk−s
∑

i1+···+is=k−s+1

i1+···+sis=k

k!

s!

s∏

m=1

Him
m

im!
, (4.3.6)

E|βk(SnTn) − Eβk(SnTn)|4 = O(n−2), (4.3.7)

and the βst
k ’s satisfy the Carleman condition.

Proof. We first prove (4.3.6). Write

Eβk(SnTn) = p−1n−k
∑

Q

∑

Q(i,j)∈Q

T (H(i))X(Q(i, j)), (4.3.8)

where the first summation is taken for all canonical graphs and the second
for all graphs isomorphic to the given canonical graph Q. Glue all coincident
vertical edges of Q, and denote the resulting graph asQgl. Let each horizontal
edge associate with the matrix Tn. If a vertical edge of Qgl consists of µ up
edges and ν down edges, then associated with this edge is the matrix

T(µ, ν) =
[
Exν

ij x̄
µ
ij

]
p×n

.

We call µ+ ν the multiplicity of the vertical edge of Qgl.
Since the operator norm of a matrix is less than or equal to its Euclidean

norm, it is easy to verify that

‖T(µ, ν)‖ ≤





0, if µ+ ν = 1,
o(n(µ+ν)/2), if µ+ ν > 2,
max(n, p), if µ+ ν = 2.

(4.3.9)

One can also verify that ‖T(µ, ν)‖0 satisfies the same inequality, where the
definition of the norm ‖ · ‖0 can be found in Theorem A.35.

Split the sum in (4.3.8) according to the three categories of the ∆-graphs.
If Q ∈ Q2 (i.e., it contains a single vertical edge), the corresponding term is
0. Hence, the sum corresponding to Q2 is 0.

Next, we consider the sum corresponding to Q3. For a given canonical
graph Q ∈ Q3, using the notation defined in Lemma 4.5, by Lemma 4.5 and
Theorem A.35, we have

1

pnk

∣∣∣∣∣∣
∑

Q(i,j)∈Q

T (H(i))X(Q(i, j))

∣∣∣∣∣∣

≤
{
o(1)n−k−1n

1
2

(∑
m

i=1
(µi+νi−2)

)
nr+s+1 if for some i, µi + νi > 2

Cn−k−1n
1
2

(∑m

i=1
(µi+νi−2)

)
nr+s+1 if for all i, µi + νi = 2

= o(1), (4.3.10)
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where we have used the fact that
m∑

i=1

(µi +νi) = 2k and r+s < m = k for the

second case. Because the number of canonical graphs is bounded for fixed k,
we have proved that the sum corresponding to Q3 tends to 0.

Finally, we consider the sum corresponding to all Q1-graphs, those terms
corresponding to canonical graphs with vertical edge multiplicities µ = ν = 1.
This condition implies that the expectation factor X(Q(i, j)) ≡ 1. Then,
(4.3.5) reduces to

βk(SnTn) = p−1n−r
∑

i

T (H(i)) + o(1), (4.3.11)

where the summation runs over all possible heads of Q1-graphs.
Denote the number of disjoint connected components of the head H(Q)

of a canonical Q1-graph by r + 1 and the sizes (the number of edges) of the
connected components of H(Q) by ι1, · · · , ιr+1. We will show that

p−1n−r
∑

H(i)ι

T (H(i)) → yrHι1 · · ·Hιr+1 , (4.3.12)

where the summation
∑

H(i)ι

runs over an isomorphic class of heads H(i) of

Q1-graph with indices {ι1, · · · , ιr+1} and

Hℓ =

∫ τ0

−τ0

tℓdFT (t).

By Lemma 4.6, we have

βk(SnTn) = p−1
k−1∑

r=0

n−r
∑

i

k!

i1! · · · is!s!
∑

H(i)ι

H(i) + o(1), (4.3.13)

where the summation
∑

i

runs over all solutions of the equations

i1 + · · · + is = r + 1 and i1 + 2i2 + · · · + sis = k.

When a roof of a canonical Q1-graph consists of 1+ r connected components
with sizes ι1, · · · , ιr+1, by the inclusion-exclusion principle we conclude that

∑

H(i)ι

(t)H(i) =

r+1∏

ℓ=1

(trTνℓ)(1 + o(1)) = p1+r

[
r+1∏

ℓ=1

Hνℓ
+ o(1)

]
,

which proves (4.3.12). Combining (4.3.10), (4.3.12), and (4.3.13), we obtain
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1

p
E[(ST)k] =

k∑

s=1

yk−s
∑

i1+···+is=k−s+1
i1+···+sis=k

k!

s!

s∏

m=1

Him
m

im!
+ o(1). (4.3.14)

This completes the proof of (4.3.6).

Next, we prove (4.3.7). Similar to the proof of (4.3.5), for given i1, · · · , i8k

taking values in {1, 2, · · · , p} and j1, · · · , j4k taking values in {1, 2, · · · , n},
and for each ℓ = 1, 2, 3, 4, we construct a Q-graph Gℓ with the indices iℓ =
(i2(ℓ−1)k+1, · · · , i2ℓk) and jℓ = (j(ℓ−1)k+1, · · · , jℓk

). We then have

E

(∣∣∣∣
1

p
tr[(ST)k] − E

(
1

p
tr[(ST)k]

)∣∣∣∣
4)

= p−4n−4k
∑

i1,j1,···,i4,j4

[
E

(
4∏

ℓ=1

(tx)Gℓ(iℓ,jℓ)

)
−
(

4∏

ℓ=1

E((tx)Gℓ(iℓ,jℓ))

)]
, (4.3.15)

where

(tx)Gℓ(iℓ;jℓ) =

k∏

ℓ=1

(
tifℓ(2ℓ),ifℓ(2ℓ+1)

xifℓ(2ℓ−1),jg((ℓ−1)k+ℓ)
xifℓ(2ℓ),jg((ℓ−1)k+ℓ)

)
.

If, for some ℓ = 1, 2, 3, 4, all vertical edges of Gℓ do not coincide with any
vertical edges of the other three graphs, then

[
E

(
4∏

ℓ=1

(tx)Gℓ
(iℓ, jℓ)

)
−
(

4∏

ℓ=1

E((tx)Gℓ
(iℓ, jℓ))

)]
= 0

due to the independence of the X-variables. Therefore, G = ∪Gℓ consists
of either one or two connected components. Similar to the proof of (4.3.6),
applying the second part of Theorem A.35, the sum of terms corresponding
to graphs G of two connected components has the order of O(n4k+2), while
the sum of terms corresponding to a connected graphs G has the order of
O(n4k+1). From this, (4.3.7) follows.

Finally, we verify the Carleman condition. By elementary calculation, we
have ∣∣βst

k

∣∣ ≤ τk
0 (1 +

√
y)2k,

which yields the Carleman condition. The proof of Lemma 4.9 is complete.
From (4.3.14) and (4.3.7), it follows that with probability 1

1

p
tr[(ST)k] → βst

k =

k∑

s=1

yk−s
∑

i1+···+is=k−s+1
i1+···+sis=k

k!

s!

s∏

m=1

Him
m

im!
.

Applying the MCT, we obtain that, with probability 1, the ESD of ST tends
to the nonrandom distribution determined by the moments βst

k .
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The proof of the theorem is complete.

4.4 LSD of the F -Matrix

In this section, we shall derive the LSD of a multivariate F -matrix.

Theorem 4.10. Let F = Sn1S
−1
n2 , where Sni (i = 1, 2) is a sample covariance

matrix with dimension p and sample size ni with an underlying distribution of
mean 0 and variance 1. If Sn1 and Sn2 are independent, p/n1 → y ∈ (0,∞)
and p/n2 → y′ ∈ (0, 1). Then the LSD Fy,y′ of F exists and has a density
function given by

F ′
y,y′(x) =

{
(1−y′)

√
(b−x)(x−a)

2πx(y+xy′) , when a < x < b,

0, otherwise,
(4.4.1)

where a =

(
1−

√
y+y′−yy′

1−y′

)2

and b =

(
1+

√
y+y′−yy′

1−y′

)2

.

Further, if y > 1, then Fst has a point mass 1 − 1/y at the origin.

Remark 4.11. If Sn2 = 1
n2

Xn2X
∗
n2 and the entries of Xn2 come from a dou-

ble array of iid random variables having finite fourth moment, under the
condition y′ ∈ (0, 1), it will be proven in the next chapter that, with proba-
bility 1, the smallest eigenvalue of Sn2 has a positive limit and thus S−1

n2 is
well defined. Then, the existence of Fst follows from Theorems 3.6 and 4.1.
If the fourth moment does not exist, then S−1

n2 may not exist. In this case,
S−1

n2 should be understood as the generalized Moore-Penrose inverse, and the
conclusion of Theorem 4.10 remains true.

Proof. We first derive the generating function for the LSD of SnTn in the
next subsection. We use it to derive the Stieltjes transform of the LSD of
multivariate F -matrices in the last subsection.

4.4.1 Generating Function for the LSD of SnTn

We compute the generating function g(z) = 1 +

∞∑

k=1

zkβst
k of the LSD F st

of the matrix sequence {SnTn} where the moments βst
k are given by (4.3.6).

For k ≥ 1, βst
k is the coefficient of zk in the Taylor expansion of

k∑

s=0

yk−s k!

s!(k − s+ 1)!

( ∞∑

ℓ=1

zℓHℓ

)k−s+1

+
1

y(k + 1)
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=
1

y(k + 1)

[
1 + y

∞∑

ℓ=1

zℓHℓ

]k+1

, (4.4.2)

whereHk are the moments of the LSDH of Tn. Therefore, βst
k can be written

as

βst
k =

1

2πiy(k + 1)

∮

|ζ|=ρ

ζ−k−1

[
1 + y

∞∑

ℓ=1

ζℓHℓ

]k+1

dζ

for any ρ ∈ (0, 1/τ0), which guarantees the convergence of the series
∑
ζℓHℓ.

Using the expression above, we can construct a generating function of βst
k

as follows. For all small z with |z| < 1/τ0b, where b = (1 +
√
y)2,

g(z) − 1 =
1

2πiy

∮

|ζ|=ρ

∞∑

k=1

1

k + 1
zkζ−1−k

(
1 + y

∞∑

ℓ=1

ζℓHℓ

)k+1

dζ

=
1

2πiy

∮

|ζ|=ρ

[
−ζ−1− y

∞∑

ℓ=1

ζℓ−1Hℓ −
1

z
log

(
1 − zζ−1 − zy

∞∑

ℓ=1

ζℓ−1Hℓ

)]
dζ

= −1

y
− 1

2πiyz

∮

|ζ|=ρ

log

(
1 − zζ−1 − zy

∞∑

ℓ=1

ζℓ−1Hℓ

)
dζ.

The exchange of summation and integral is justified provided that |z| <
ρ/(1 + y

∑
ρℓ|Hℓ|). Therefore, we have

g(z) = 1 − 1

y
− 1

2πiyz

∮

|ζ|=ρ

log

(
1 − zζ−1 − zy

∞∑

ℓ=1

ζℓ−1Hℓ

)
dζ. (4.4.3)

Let sF (z) and sH(z) denote the Stieltjes transforms of F st and H , respec-
tively. It is easy to verify that

−1

z
sF

(
1

z

)
= 1 +

∞∑

k=1

zkβst
k ,

−1

z
sH

(
1

z

)
= 1 +

∞∑

k=1

zkHk.

Then, from (4.4.3) it follows that

1

z
sF

(
1

z

)
=

1

y
−1+

1

2πiyz

∮

|ζ|=ρ

log

(
1 − zζ−1 + ζ−1zy + ζ−2zysH

(
1

ζ

))
dζ.

(4.4.4)
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4.4.2 Completing the Proof of Theorem 4.10

Now, let us use (4.4.4) to derive the LSD of general multivariate F -matrices.
A multivariate F -matrix is defined as a product of Sn with the inverse of
another covariance matrix; i.e., Tn is the inverse of another covariance matrix
with dimension p and degrees of freedom n2. To guarantee the existence of
the inverse matrix, we assume that p/n2 → y′ ∈ (0, 1). In this case, it is easy
to verify that H will have a density function

H ′(x) =

{
1

2πy′x2

√
(xb′ − 1)(1 − a′x), if 1

b′ < x < 1
a′ ,

0, otherwise,

where a′ = (1 −√
y′)2 and b′ = (1 +

√
y′)2. Noting that the k-th moment of

H is the −k-th moment of the Marčenko-Pastur law with index y′, one can
verify that

ζ−1sH

(
1

ζ

)
= −ζsy′(ζ) − 1,

where sy′ is the Stieltjes transform of the M-P law with index y′. Thus,

sF (z) =
1

yz
− 1

z
+

1

2πiy

∮

|ζ|=ρ

log(z − ζ−1 − ysy′(ζ))dζ. (4.4.5)

By (3.3.1), we have

sy′(ζ) =
1 − y′ − ζ +

√
(1 + y′ − ζ)2 − 4y′

2y′ζ
. (4.4.6)

By integration by parts, we have

1

2πiy

∮

|ζ|=ρ

log(z − ζ−1 − ysy′(ζ))dζ

= − 1

2πiy

∮

|ζ|=ρ

ζ
ζ−2 − ys′y′(ζ)

z − ζ−1 − ysy′(ζ)
dζ

= − 1

2πiy

∮

|ζ|=ρ

1 − yζ2s′y′(ζ)

zζ − 1 − yζsy′(ζ)
dζ. (4.4.7)

For easy evaluation of the integral, we make a variable change from ζ to s.
Note that sy′ is a solution of the equation (see (3.3.8) with δ = 0)

s =
1

1 − ζ − y′ − ζy′s
. (4.4.8)

From this, we have
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ζ =
s− sy′ − 1

s+ s2y′
,

ds

dζ
=

s+ s2y′

1 − y′ − ζ − 2sy′ζ
=

s2(1 + sy′)2

1 + 2sy′ − s2y′(1 − y′)
.

Note that when ζ runs along ζ = ρ anticlockwise, s will also run along a
contour C anticlockwise. Therefore,

− 1

2πiy

∮

|ζ|=ρ

1 − yζ2(dsy′(ζ)/dζ)

zζ − 1 − yζsy′(ζ)
dζ

= − 1

2πiy

∮

C

1 + 2sy′ − s2y′(1 − y′) − y(s− sy′ − 1)2

s(1 + sy′)[z(s− sy′ − 1) − s(1 + sy′) − ys(s− sy′ − 1)]
ds

= − 1

2πiy

∮

C

(y′ + y − yy′)(1 − y′)s2 − 2s(y′ + y − yy′) − 1 + y

(s+ s2y′)[(y′ + y − yy′)s2 + s((1 − y) − z(1 − y′)) + z]
ds.

The integrand has 4 poles at s = 0,−1/y′ and

s1, s2 =
−(1 − y) + z(1 − y′) ±

√
((1 − y) + z(1 − y′))2 − 4z

2(y + y′ − yy′)

=
2z

−(1 − y) + z(1 − y′) ∓
√

((1 − y) + z(1 − y′))2 − 4z

(the convention being that the first function takes the top operation).
We need to decide which pole is located inside the contour C. From (4.4.8),

it is easy to see that when ρ is small, for all |ζ| ≤ ρ, sy′(ζ) is close to 1
1−y ; that

is, the contour C and its inner region are around 1
1−y . Hence, 0 and −1/y′

are not inside the contour C.
Let z = u+ iv with large u and v > 0. Then we have

ℑ(((1 − y) + z(1 − y′))2 − 4z) = 2v[(1 − y)(u(1 − y′) + (1 − y)) − 2] > 0.

By the convention for the square root of complex numbers, both real
and imaginary parts of

√
((1 − y) + z(1 − y′))2 − 4z are positive. Therefore,

|s1| > |s2| and s1 may take very large values. Also, s2 will stay around
1/(1 − y′). We conclude that only s2 is the pole inside the contour C for all
z with large real part and positive imaginary part.

Now, let us compute the residue at s2. By using s1s2 = z/(y + y′ − yy′),
the residue is given by

R =
(y′ + y − yy′)(1 − y′)s22 − 2s2(y

′ + y − yy′) − 1 + y

(s2 + s22y
′)(y′ + y − yy′)(s2 − s1)

=
(1 − y′)zs2s

−1
1 − 2zs−1

1 − 1 + y

(zs−1
1 + zs2s

−1
1 y′)(s2 − s1)
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=
z(1 − y′)s2 − 2z − (1 − y)s1

z(1 + s2y′)(s2 − s1)

=
[(1 − y + z − zy′) −

√
((1 − y) + z(1 − y′))2 − 4z](y + y′ − yy′)

z(2y + y′ − yy′ + zy′(1 − y′) − y′
√

((1 − y) + z(1 − y′))2 − 4z)
.

Multiplying both the numerator and denominator by 2y+ y′ − yy′ + zy′(1−
y′) + y′

√
((1 − y) + z(1 − y′))2 − 4z, after simplification we obtain

R =
y(1 − y + z − zy′) + 2y′z − y

√
((1 − y) + z(1 − y′))2 − 4z

2z(yz + y′)
.

So, for all large z ∈ C+,

sF (z) =
1

zy
−1

z
−y(z(1 − y′) + 1 − y) + 2zy′ − y

√
((1 − y) + z(1 − y′))2 − 4z

2zy(y + zy′)
.

Since sF (z) is analytic on C+, the identity above is true for all z ∈ C+.
Now, using Theorem B.10, letting z ↓ x+ i0, π−1ℑsF (z) tends to the density
function of the LSD of multivariate F -matrices; that is,

{ √
4x−((1−y)+x(1−y′))2

2πx(y+y′x) , when 4x− ((1 − y) + x(1 − y′))2 > 0,

0, otherwise.

This is equivalent to (4.4.1). Now we determine the possible atom at 0 by the
fact that as z = u+ iv → 0 with v > 0, zsF (z) → −F ({0}). We have

ℑ((1 − y + z(1 − y′))2 − 4z) = 2v[(1 − y + u(1 − y′))(1 − y′) − 2] < 0.

Hence ℜ(
√

(1 − y + z(1 − y′))2 − 4z) < 0. Thus
√

(1 − y + z(1 − y′))2 − 4z
→ −|1 − y|. Consequently,

F ({0}) = − lim
z→0

zsF (z) = 1 − 1

y
+

1 − y + |1 − y|
2y

=

{
1 − 1

y , if y > 1
0, otherwise.

This conclusion coincides with the intuitive observation that the matrix
SnTn has p− n 0 eigenvalues.

This completes the proof of the theorem.
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4.5 Proof of Theorem 4.3

In this section, we shall present a proof of Theorem 4.3 by using Stieltjes
transforms. We shall prove it under a weaker condition that the entries of
Xn satisfy (3.2.1). Steps in the proof follow along the same way as earlier
proofs, with the additional step of verifying the uniqueness of solutions to
(4.1.2). We first handle truncation and centralization.

4.5.1 Truncation and Centralization

Using similar arguments as in the proof of Theorem 4.1, we may assume An

and Tn are nonrandom. Also, using the truncation approach given in the
proof of Theorem 4.1, we may truncate the diagonal entries of the matrix Tn

and thus we may assume additionally that |τ (n)
k | ≤ τ0.

Now, let us proceed to truncate and centralize the x-variables. Choose
{ηn} such that ηn → 0 and

1

n2η8
n

∑

ij

E|X2
ij |I(|xij | ≥ ηn

√
n) → 0. (4.5.1)

Set x̂ij = xijI(|xij | < ηn
√
n) and x̃ij = [x̂ij − E(x̂ij)], and define X̂n, X̃n,

B̂n, and B̃n as analogues of Xn and Bn by the corresponding x̂ij and x̃ij ,
respectively. At first, by the second conclusion of Theorem A.44, we have

‖FBn − F B̂n‖ ≤ 2

p
rank(Xn − X̂n)

≤ 2

p

∑

ij

I(|xij | ≥ ηn

√
n).

Applying Bernstein’s inequality, one may easily show that

‖FBn − F B̂n‖ → 0, a.s.

Then, we will show that

L(F B̂n , F B̃n) → 0, a.s. (4.5.2)

By Theorem A.46, we have

L(F B̂n , F B̃n) ≤ max
k

|λk(B̂n) − λk(B̃n)|

≤ 1

n
‖X̂nTnX̂∗

n − X̃nTnX̃∗
n‖
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≤ 2

n
‖(EX̂n)TnX̃∗

n‖ +
1

n
‖(EX̂n)Tn(EX̂∗

n)‖.

At first, we have

1

n
‖(EX̂n)Tn(EX̂n)∗‖ =

1

n
‖EX̂n‖2‖Tn‖

≤ τ0n
−1
∑

ij

|ExijI(|xij | ≤ ηn

√
n)|2

≤ τ0
n2ηn

∑

ij

E|x2
ij |I(|xij | ≥ ηn

√
n) → 0.

Then, we shall complete the proof of (4.5.2) by showing that

1

n
‖(EX̂n)TnX̃∗

n‖ → 0, a.s. (4.5.3)

We have

(
1

n
‖(EX̂n)TnX̃∗

n‖
)2

≤ 1

n2

∑

ik

∣∣∣∣∣∣

p∑

j=1

(Ex̂ij)τj ¯̃xkj

∣∣∣∣∣∣

2

≤ J1 + J2 + J3,

where

J1 =
1

n2

n∑

k=1

p∑

j=1

n∑

i=1

|Ex̂ijτj |2|x̃kj |2,

J2 =
1

n2

n∑

k=1

p∑

j1<j2

( n∑

i=1

Ex̂ij1E
¯̂xij2τj1τj2

)
x̃kj1

¯̃xkj2 ,

J3 =
1

n2

n∑

k=1

p∑

j1>j2

( n∑

i=1

Ex̂ij1E
¯̂xij2τj1τj2

)
x̃kj1

¯̃xkj2 .

Using (4.5.1), we can prove

EJ1 =
1

n2

∑

ik

p∑

j=1

|Ex̂ijτj |2E|x̃kj |2

=
τ2
0

n2η2
n

∑

ij

|E|xij |2I(|xij | ≥ ηn

√
n) → 0

and
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E|J1 − EJ1|4 ≤ τ8
0

n8


∑

kj

E
∣∣|x̃2

kj | − 1
∣∣4
∣∣∣∣∣

n∑

i=1

|Ex̂ij |2
∣∣∣∣∣

4

+3


∑

kj

E
∣∣|x̃2

kj | − 1
∣∣2
∣∣∣∣∣

n∑

i=1

|Ex̂ij |2
∣∣∣∣∣

2



2



= O(n−2).

The preceding two formulas imply that J1 → 0, a.s.
Furthermore, we have

E|J2|4 ≤ τ8
0

n8




n∑

k=1

∑

j1<j2

E|x̃4
kj1 |E|x̃4

kj2 |
∣∣∣∣∣

n∑

i=1

Ex̂ij1E
¯̂xij2

∣∣∣∣∣

4

+3




n∑

k=1

∑

j1<j2

E|x̃2
kj1 |E|x̃2

kj2 |
∣∣∣∣∣

n∑

i=1

Ex̂ij1E
¯̂xij2

∣∣∣∣∣

2



2



= O(n−2)

and similarly
E|J3|4 = O(n−2).

These two imply that J2, J3 → 0, a.s. Thus we have proved (4.5.3). Conse-
quently, (4.5.2) follows.

Therefore, in what follows, we shall assume that:

(i) For each n, xij are independent.
(ii) |xij | ≤ ηn

√
n.

(iii) Exij = 0.
(iv) 1 ≥ 1

np

∑
ij E|xij |2 → 1.

The details of the proofs are given in the next section.

4.5.2 Proof by the Stieltjes Transform

Let

sn(z) =
1

n
tr(Bn − zI)−1.

Assume first that FA, the LSD of the sequence An, is the zero measure.
Then sA(z) ≡ 0 for any z ∈ C+. In this case, the proof of (4.1.2) reduces to
showing that sn(z) → 0. We have that, except for o(n) eigenvalues of An,
all other eigenvalues of An will tend to ± infinity. Let λk(A) denote the k-th
largest singular value of matrix A. By Theorem A.8, we have
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λi+j+1(An) ≤ λi+1(Bn) + λj+1

(
− 1

n
XnTnX∗

n

)
. (4.5.4)

Since ‖Tn‖ ≤ τ0,

λj+1

(
− 1

n
XnTnX∗

n

)
≤ τ0λj+1

(
1

n
XnX∗

n

)
.

Let j0 be an integer such that λj0+1(
1
nXnX∗

n) < b+ 1 ≤ λj0 (
1
nXnX∗

n). Since
the ESD of 1

nXnX∗
n converges a.s. to the Marčenko-Pastur law with spectrum

bounded in [0, b], it follows that j0 = o(n). For any M > 0, define ν0 to be
such that λn−ν0+2(An) < M ≤ λn−ν0+1(An). By the assumption that FA

is a zero measure, we conclude that ν0 = o(n). Define i0 = n − ν0 − j0. By
(4.5.4), we have

λi0+1(Bn) ≥ λn−ν0+1 − λj0+1

(
− 1

n
XnTnX∗

n

)
≥M − b − 1.

This shows that except o(n) eigenvalues of Bn, the absolute values of all its
other eigenvalues will be larger than M − b − 1. By the arbitrariness of M ,
we conclude that except for o(n) eigenvalues of Bn, all its other eigenvalues
tend to infinity. This shows that FBn tends to a zero measure or sn(z) → 0,
a.s., so that (4.1.2) holds trivially.

Now, we assume that FA 6= 0. We claim that for any subsequence n′,
with probability one, FBn′ 6→ 0. Otherwise, using the same arguments given
above, one may show that FAn′ → 0 = FA, a contradiction. This shows that,
with probability 1, there is a constant m such that

inf
n
FBn([−m,m]) > 0,

which simply implies that

δ = inf
n

|Esn(z)| ≥ inf
n

Eℑ(sn(z)) ≥ E inf
n

∫
vdFBn(x)

(x− u)2 + v2
> 0. (4.5.5)

Now, we shall complete the proof of Theorem 4.3 by showing:

(a) sn(z) − Esn(z) → 0, a.s. (4.5.6)

(b) Esn(z) → s(z), (4.5.7)

which satisfies (4.1.2).

(c) The equation (4.1.2) has a unique solution in C+. (4.5.8)

Step 1. Proof of (4.5.6)

Let xk denote the k-th column of Xn, and set
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qk =
1√
n
xk,

Bk,n = Bn − τkqkq
∗
k.

Write Ek to denote the conditional expectation given xk+1, · · · ,xp. With this
notation, we have sn(z) = E0(sn(z)) and E(sn(z)) = Ep(sn(z)). Therefore,
we have

sn(z) − E(sn(z)) =

p∑

k=1

[Ek−1(sn(z)) − Ek(sn(z))]

=
1

n

p∑

k=1

[Ek−1 − Ek](tr(Bn − zI)−1) − tr(Bk,n − zI)−1)

=
1

n

p∑

k=1

[Ek−1 − Ek]γk,

where

γk =
τkq

∗
k(Bk,n − zI)−2qk

1 + τkq∗
k(Bk,n − zI)−1qk

.

By (A.1.11), we have

|γk| ≤
|τkq∗

k(Bk,n − zI)−2qk|
|ℑ(1 + τkq∗

k(Bk,n − zI)−1qk)| ≤ v−1. (4.5.9)

Note that {[Ek−1 − Ek]γk} forms a bounded martingale difference sequence.
By applying Burkholder’s inequality (see Lemma 2.12), one can easily show
that, for any ℓ > 1,

E|sn(z) − Esn(z)|ℓ ≤ Kpn
−ℓE

( n∑

k=1

|(Ek−1 − Ek)γk|2
)ℓ/2

≤ Kℓ(2/v)
ℓn−ℓ/2. (4.5.10)

From this, with p > 2, it follows easily that

1

n

p∑

k=1

[Ek−1 − Ek]γk → 0, a.s.

Then, what is to be shown follows.

Step 2. Proof of (4.5.7)

Let sAn(z) denote the Stieltjes transform of the ESD of An. Write

x = xn =
1

n

p∑

k=1

τk
1 + τkEsn(z)

.
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It is easy to verify that ℑx ≤ 0. Write

Bn − zI = An − (z − x)I +

p∑

k=1

τkqkq
∗
k − xI.

Then, we have

(An − (z − x)I)−1 − (Bn − zI)−1

= (An − (z − x)I)−1

( p∑

k=1

τkqkq
∗
k − xI

)
(Bn − zI)−1.

From this and the definition of the Stieltjes transform of the ESD of random
matrices, using the formula

q∗
k(Bn − zI)−1 =

q∗
k(Bk,n − zI)−1

1 + τkq∗
k(Bk,n − zI)−1qk

, (4.5.11)

we have

sAn(z − x) − sn(z) =
1

n
tr(An − (z − x)I)−1

( p∑

k=1

τkqkq
∗
k − xI

)
(Bn − zI)−1

=
1

n
tr(An − (z − x)I)−1

p∑

k=1

τkqkq
∗
k(Bn − zI)−1

−x
n

tr(An − (z − x)I)−1(Bn − zI)−1

=
1

n

p∑

k=1

τkdk

1 + τkEsn(z)
,

where

dk =
1 + τkEsn(z)

1 + τkq∗
k(Bk,n − zI)−1qk

q∗
k(Bk,n − zI)−1(An − (z − x)I)−1qk

− 1

n
tr(B − zI)−1(An − (z − x)I)−1.

Write dk = dk1 + dk2 + dk3, where

dk1 =
1

n
tr(Bk,n−zI)−1(An−(z − x)I)−1 − 1

n
tr(Bn−zI)−1(An−(z − x)I)−1,

dk2 =q∗
k(Bk,n−zI)−1(An−(z−x)I)−1qk − 1

n
tr(Bk,n−zI)−1(An−(z−x)I)−1,

dk3 =
τk(Esn(z)−q∗

k(Bk,n−zI)−1qk)(q∗
k(Bk,n−zI)−1(An−(z − x)I)−1qk)

1 + τkq∗
k(Bk,n−zI)−1qk

.
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Noting that ‖(An − (z − x)I)−1‖ ≤ v−1, we have

|dk1| =
1

n

∣∣∣∣−
τkq

∗
k(Bk,n − zI)−1(An − (z − x)I)−1(Bk,n − zI)−1qk

1 + τkq∗
k(Bk,n − zI)−1qk

∣∣∣∣

≤ n−1v−1 |τk|q∗
k(Bk,n − zI)−1(Bk,n − z̄I)−1qk

|ℑ(1 + τkq∗
k(Bk,n − zI)−1qk)|

≤ 1

nv2
.

Therefore, by (4.5.5), we obtain

1

n

p∑

k=1

|τkdk1|
|1 + τkEsn(z)| ≤

1

nv2δ
→ 0.

Obviously, Edk2 = 0.
To estimate Edk3, we first show that

∣∣∣∣
τk(q∗

k(Bk,n − zI)−1(An − (z − x)I)−1qk)

1 + τkq∗
k(Bk,n − zI)−1qk

∣∣∣∣ ≤ 2τ0v
−2‖qk‖2. (4.5.12)

One can consider q∗
k(Bk,n − zI)−1qk/‖qk‖2 as the Stieltjes transform of a

distribution. Thus, by Theorem B.11, we have

|ℜ(q∗
k(Bk,n − zI)−1qk)| ≤ v−1/2‖qk‖

√
ℑ(q∗

k(Bk,n − zI)−1qk).

Thus, if

τ0v
−1/2‖qk‖

√
ℑ(q∗

k(Bk,n − zI)−1qk) ≤ 1/2,

then

|1 + τk(q∗
k(Bk,n − zI)−1qk)| ≥ 1 − τ0|ℜ(q∗

k(Bk,n − zI)−1qk)| ≥ 1/2.

Hence,

∣∣∣∣
τk(q∗

k(Bk,n − zI)−1(An − (z − x)I)−1qk)

1 + τkq∗
k(Bk,n − zI)−1qk

∣∣∣∣ ≤ 2τ0v
−2‖qk‖2.

Otherwise, we have

∣∣∣∣
τk(q∗

k(Bk,n − zI)−1(An − (z − x)I)−1qk)

1 + τkq∗
k(Bk,n − zI)−1qk

∣∣∣∣

≤ |τk‖(Bk,n − zI)−1qk‖‖(An − (z − x)I)−1qk‖|
|ℑ(1 + τkq∗

k(Bk,n − zI)−1qk)|

=
‖(An − (z − x)I)−1qk‖√
vℑ(q∗

k(Bk,n − zI)−1qk)
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≤ 2τ0v
−2‖qk‖2.

Therefore, for some constant C,

|Edk3|2 ≤ CE|Esn(z) − q∗
k(Bk,n − zI)−1qk|2E‖qk‖4. (4.5.13)

At first, we have

E‖qk‖4 =
1

n2
E

(
n∑

i=1

|xik|2
)2

=
1

n2




n∑

i=1

E|xik|4 +
∑

i6=j

E|xik|2E|xjk|2



≤ 1

n2
[n2η2

n + n(n− 1)] ≤ 1 + η2
n.

To complete the proof of the convergence of Esn(z), we need to show that

1

n

p∑

k=1

(E|Esn(z) − q∗
k(Bk,n − zI)−1qk|2)1/2 → 0. (4.5.14)

Write (Bk,n − zI)−1 = (bij). Then, we have

E

∣∣∣∣∣q
∗
k(Bk,n − zI)−1qk − 1

n

n∑

i=1

σ2
ikbii

∣∣∣∣∣

2

≤ 1

n2




n∑

i=1

E|x2
ik − σ2

ik|2 + 2
∑

i6=j

E|x2
ik|E|x2

jk||bij |2



≤ v−2η2
n +

2

n2
tr((Bk,n − uI)2 + v2I)−1

≤ v−2[η2
n + n−1] → 0.

By noting that 1− σ2
ik ≥ 0,

∣∣∣∣∣
1

n

n∑

i=1

(σ2
ik − 1)bii

∣∣∣∣∣ ≤
1

nv

n∑

i=1

(1 − σ2
ik),

∣∣∣∣
1

n
tr(Bk,n − zI)−1 − sn(z)

∣∣∣∣ ≤ 1/nv.

By Step 1, we have

E|sn(z) − E(sn(z))|2 ≤ 1

nv2
.

Then, (4.5.14) follows from the estimates above.
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Up to the present, we have proved that, for any z ∈ C+,

sAn(z − x) − Esn(z) → 0.

For any subsequence n′ such that Esn(z) tends to a limit, say s, by assumption
of the theorem, we have

x = xn′ =
1

n

p∑

k=1

τk
1 + τkEsn′(z)

→ y

∫
τdH(τ)

1 + τs
.

Therefore, s will satisfy (4.1.2). We have thus proved (4.5.7) if equation (4.1.2)
has a unique solution s ∈ C+, which is done in the next step.

Step 3. Uniqueness of the solution of (4.1.2)

If FA is a zero measure, the unique solution is obviously s(z) = 0. Now,
suppose that FA 6= 0 and we have two solutions s1, s2 ∈ C+ of equation
(4.1.2) for a common z ∈ C+; that is,

sj =

∫
dFA(λ)

λ− z + y
∫ τdH(τ)

1+τsj

, (4.5.15)

from which we obtain

s1 − s2

= y

∫
(s1 − s2)λ

2dH(τ)

(1 + τs1)(1 + τs2)

∫
dFA(λ)(

λ− z + y
∫ τdH(τ)

1+τs1

)(
λ− z + y

∫ τdH(τ)
1+τs2

) .

If s1 6= s2, then

∫ y
∫ λ2dH(τ)

(1+τs1)(1+τs2)
dFA(λ)

(
λ− z + y

∫ τdH(τ)
1+τs1

)(
λ− z + y

∫ τdH(τ)
1+τs2

) = 1.

By the Cauchy-Schwarz inequality, we have

1 ≤



∫ y

∫ λ2dH(τ)
|1+τs1|2 dF

A(λ)
∣∣∣λ− z + y

∫ τdH(τ)
1+τs1

∣∣∣
2

∫ y
∫ λ2dH(τ)

|1+τs2|2 dF
A(λ)

∣∣∣λ− z + y
∫ τdH(τ)

1+τs2

∣∣∣
2




1/2

.

From (4.5.15), we have

ℑsj =

∫ v + yℑsj

∫ τ2dH(τ)
|1+τsj|2 dF

A(λ)
∣∣∣λ− z + y

∫ τdH(τ)
1+τsj

∣∣∣
2 >

∫ yℑsj

∫ τ2dH(τ)
|1+τsj|2 dF

A(λ)
∣∣∣λ− z + y

∫ τdH(τ)
1+τsj

∣∣∣
2 ,
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which implies that, for both j = 1 and j = 2,

1 >

∫ y
∫ τ2dH(τ)

|1+τsj|2 dF
A(λ)

|λ− z + y
∫ τdH(τ)

1+τsj
|2
.

The inequality is strict even if FA is a zero measure, which leads to a con-
tradiction. The contradiction proves that s1 = s2 and hence equation (4.1.2)
has at most one solution. The existence of the solution to (4.1.2) has been
seen in Step 2. The proof of this theorem is then complete.



Chapter 5

Limits of Extreme Eigenvalues

In multivariate analysis, many statistics involved with a random matrix can
be written as functions of integrals with respect to the ESD of the random
matrix. When the LSD is known, one may want to apply the Helly-Bray
theorem to find approximate values of the statistics. However, the integrands
are usually unbounded. For instance, the integrand in Example 1.2 is log x,
which is unbounded both from below and above. Thus, one cannot use the
LSD and Helly-Bray theorem to find approximate values of the statistics.
This would render the LSD useless. Fortunately, in most cases, the supports
of the LSDs are compact intervals. Still, this does not mean that the Helly-
Bray theorem is applicable unless one can prove that the extreme eigenvalues
of the random matrix remain in certain bounded intervals.

The investigation on limits of extreme eigenvalues is important not only
in making the LSD useful when applying the Helly Bray theorem, but also
for its own practical interests. In signal processing, pattern recognition, edge
detection, and many other areas, the support of the LSD of the population
covariance matrices consists of several disjoint pieces. It is important to know
whether or not the LSD of the sample covariance matrices is also separated
into the same number of disjoint pieces, under what conditions this is true,
and whether or not there are eigenvalues falling into the spacings outside the
support of the LSD of the sample covariance matrices.

The first work in this direction is due to Geman [118]. He proved that
the largest eigenvalue of a sample covariance matrix tends to b (= σ2(1 +√
y)2) when p/n → y ∈ (0,∞) under a restriction on the growth rate of the

moments of the underlying distribution. This work was generalized by Yin,
Bai, and Krishnaiah [301] under the assumption of the existence of the fourth
moment of the underlying distribution. In Bai, Silverstein, and Yin [33], it
is further proved that if the fourth moment of the underlying distribution
is infinite, then, with probability 1, the limsup of the largest eigenvalue of a
sample covariance matrix is infinity. Combining the two results, we have in
fact established the necessary and sufficient conditions for the existence of
the limit of the largest eigenvalue of a large dimensional sample covariance

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,
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matrix. In Bai and Yin [38], the necessary and sufficient conditions for the a.s.
convergence of the extreme eigenvalues of a large Wigner matrix were found.
The most difficult problem in this direction concerns the limit of the smallest
eigenvalue of a large sample covariance matrix. In Yin, Bai, and Krishnaiah
[302], it is proved that the lower limit of the smallest eigenvalue of a Wishart
matrix has a positive lower bound if p/n → y ∈ (0, 1/2). Silverstein [262]
extended this work to allow y ∈ (0, 1). Further, Silverstein [261] showed that
the smallest eigenvalue of a standard Wishart matrix almost surely tends to
a (= (1 − √

y)2) if p/n → y ∈ (0, 1). The most current result is due to Bai
and Yin [36], in which it is proved that the smallest (nonzero) eigenvalue of a
large dimensional sample covariance matrix tends to a = σ2(1 −√

y)2 when
p/n→ y ∈ (0,∞) under the existence of the fourth moment of the underlying
distribution.

In Bai and Silverstein [32], it is shown that in any closed interval outside
the support of the LSD of a sequence of large dimensional sample covariance
matrices (when the population covariance matrix is not a multiple of the
identity), with probability 1, there are no eigenvalues for all large n. This
work will be introduced in Chapter 6. In this chapter, we introduce some
results in this direction by using the moment approach.

5.1 Limit of Extreme Eigenvalues of the Wigner Matrix

The following theorem is a generalization of Bai and Yin [38], where the
real case is considered. What we state here is for the complex case because
we were questioned by researchers in electrical and electronic engineering on
many occasions as to whether the result is true with complex entries.

Theorem 5.1. Suppose that the diagonal elements of the Wigner matrix√
nWn = (

√
nwij) = (xij) are iid real random variables, the elements above

the diagonal are iid complex random variables and all these variables are in-
dependent. Then, the largest eigenvalue of W tends to c > 0 with probability
1 if and only if the five conditions

(i) E((x+
11)

2) <∞,
(ii) E(x12) is real and ≤ 0,
(iii) E(|x12 − E(x12)|2) = σ2,
(iv) E(|x4

12|) <∞,
(v) c = 2σ,

(5.1.1)

where x+ = max(x, 0), are true.

By the symmetry of the largest and smallest eigenvalues of a Wigner ma-
trix, one can easily derive the necessary and sufficient conditions for the
existence of the limit of smallest eigenvalues of a Wigner matrix. Combining
these conditions, we obtain the following theorem.
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Theorem 5.2. Suppose that the diagonal elements of the Wigner matrix Wn

are iid real random variables, the elements above the diagonal are iid complex
random variables, and all these variables are independent. Then, the largest
eigenvalue of W tends to c1 and the smallest eigenvalue tends to c2 with
probability 1 if and only if the following five conditions are true:

(i) E(x2
11) <∞,

(ii) E(x12) = 0,
(iii) E(|x12|2) = σ2,
(iv) E(|x4

12|) <∞,
(v) c1 = 2σ and c2 = −2σ.

(5.1.2)

From the proof of Theorem 5.1, it is easy to see the following weak con-
vergence theorem on the extreme eigenvalue of a large Wigner matrix.

Theorem 5.3. Suppose that the diagonal elements of the Wigner matrix√
nWn = (xij) are iid real random variables, the elements above the diago-

nal are iid complex random variables, and all these variables are independent.
Then, the largest eigenvalue of W tends to c > 0 in probability if and only if
the following five conditions are true:

(i) P(x+
11 >

√
n) = o(n−1),

(ii) E(x12) is real and ≤ 0,
(iii) E(|x12 − E(x12)|2) = σ2,
(iv) P(|x12| >

√
n) = o(n−2),

(v) c = 2σ.

(5.1.3)

5.1.1 Sufficiency of Conditions of Theorem 5.1

It is obvious that we can assume σ = 1 without loss of generality.
The conditions of Theorem 5.1 imply that the assumptions of Theorem

2.5 are satisfied. By the latter, we have

lim inf
n→∞

λn(W) ≥ 2, a.s. (5.1.4)

Thus, the proof of the sufficiency reduces to showing that

lim sup
n→∞

λn(W) ≤ 2, a.s. (5.1.5)

The key in proving (5.1.5) is the bound given in (5.1.9) below for an
appropriate sequence of kn’s. A combinatorial argument is required. Before
this bound is used, the assumptions on the entries of W are simplified.

Condition (i) implies that lim sup 1√
n

maxk≤n x
+
kk = 0, a.s. By condition

(ii) and the relation
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λmax(W) =
1√
n

max
‖z‖=1


∑

j,k

zj z̄kxjk




= max
‖z‖=1


 1√

n

∑

j 6=k

zj z̄k(xjk − E(xjk)) +
1√
n

n∑

k=1

|zk|2xkk

+ℜ(E(x12))
1√
n

∑

j 6=k

zj z̄k




≤ max
‖z‖=1


 1√

n

∑

j 6=k

zj z̄k(xjk − E(xjk)) +
1√
n

max
k

(x+
kk −ℜ(E(x12)))




≤ λmax(W̃) + oa.s.(1), (5.1.6)

where W̃n denotes the matrix whose diagonal elements are zero and whose
off-diagonal elements are 1√

n
(xij − E(xij)). By (5.1.4)–(5.1.6), we only need

show that
lim sup

n→∞
λmax(W̃) ≤ 2, a.s.

That means we may assume that the diagonal elements and the mean of the
off-diagonal elements of Wn are zero in the proof of (5.1.5).

We first truncate the off-diagonal elements. By condition (iv), for any
δ > 0, we have

∞∑

k=1

δ−22kE|x12|2I(|x12| ≥ δ2k/2) <∞.

Then, we can select a slowly decreasing sequence of constants δn → 0 such
that ∞∑

k=1

δ−2
2k 2kE|x12|2I(|x12| ≥ δ2k2k/2) <∞. (5.1.7)

Let W̃ = 1√
n
(xjkI(|xjk | ≤ δn

√
n)). Then, by (5.1.7), we have

P(W 6= W̃, i.o.) = lim
k→∞

P


 ⋃

n=2k

⋃

1≤i<j≤n

(|xjk| ≥ δn
√
n)




≤ lim
k→∞

∞∑

m=k

P


 ⋃

2m<n≤2m+1

⋃

1≤i<j≤n

(|xjk| ≥ δn
√
n)




≤ lim
k→∞

∞∑

m=k

P


 ⋃

2m<n≤2m+1

⋃

1≤i<j≤2m+1

(|xjk| ≥ δ2m2m/2)



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≤ lim
k→∞

∞∑

m=k

22(m+1)P
(
|x12| ≥ δ2m2m/2

)
= 0.

By the selection of δn, we have

λmax(E(W̃)) ≤ n1/2|E(x12I(|x12| ≤ δn
√
n))|

≤ n1/2E(|x12|I(|x12| ≥ δn
√
n)) → 0. (5.1.8)

Therefore, we need only consider the upper limit of the largest eigenvalue

of W̃ − E(W̃). For simplicity, we still use W to denote the truncated and
recentralized matrix. That means we assume that

√
nWn = (xij) and the

following conditions are true:

• xii = 0.
• E(xij) = 0, σ2

n = E(|xij |2) ≤ 1 for i 6= j.
• |xij | ≤ δn

√
n for i 6= j.

• E|xℓ
ij | ≤ b(δn

√
n)ℓ−3 for some constant b > 0 and all i 6= j, ℓ ≥ 3.

We shall prove (5.1.5) under the four assumptions above and the indepen-
dence of the entries. For any even integer k and real number η > 2, we have

P(λmax(Wn) ≥ η) ≤ P(tr[(Wn)k] ≥ ηk) ≤ η−kE(tr(Wn)k). (5.1.9)

To complete the proof of the sufficient part of the theorem, select a se-
quence of even integers k = kn = 2s with the properties k/ logn → ∞ and

kδ
1/3
n / logn → 0, and show that the right-hand side of (5.1.9) is summable.

To this end, we shall estimate

E(tr(Wk)) = n−k/2
∑

i1,···,ik

E(xi1i2xi2i3 · · ·xiki1)

= n−k/2
∑

G

∑

i

E(xG(i)), (5.1.10)

where the graphs G are Γ (k)-graphs as defined in Subsection 2.1.2. Classify
the edges into several types:

1. If f(a+ 1) = max(f(1), · · · , f(a)) + 1, the edge ea = (f(a), f(a+ 1)) is
called an innovation or a Type 1 (T1) edge. A T1 edge leads to a new vertex
in the path e1, · · · , ea.

2. An edge is called a T3 if it coincides with an innovation that is single
until the T3 edge appears. A T3 edge (f(a), f(a+1)) is said to be irregular if
there is only one innovation single up to a (an edge e is said to be single up to
a if it does not coincide with any other edges in the chain (f(1), · · · , f(a))).
All other T3 edges are called regular T3 edges.

3. All other edges are called T4 edges.
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4. The first appearance of a T4 edge is called a T2 edge. There are two cases:
the first is the first appearance of a single noninnovation, and the second is
the first appearance of an edge that coincides with a T3 edge.

To estimate the right-hand side of (5.1.10), we need the following lemmas.
We remind the reader that the following lemmas are true for any connected
graphs, not only for the Γ -graphs.

Lemma 5.4. Let (f(a), · · · , f(c)) be a chain such that the edge (f(a), f(a+
1)) is an innovation single up to c (i.e., f(a + 1) 6∈ {f(1), · · · , f(a), f(a +
2), · · · , f(c)}) and f(c) ∈ {f(1), · · · , f(a)}. Then there is a T2 edge contained
in the chain (f(a), · · · , f(c)).

Proof. Since (f(a), f(a+1)) is an innovation and f(a+1) 6∈ {f(1), · · · , f(a)},
let a < d < c be the smallest value such that f(d) 6∈ {f(1), · · · , f(a)} but
f(d + 1) ∈ {f(1), · · · , f(a)}. Since f(a + 1) 6∈ {f(1), · · · , f(a)} and f(c) ∈
{f(1), · · · , f(a)}, the value d is well defined. Then, the edge (f(d), f(d + 1))
must be a T2 edge (see Fig. 5.1). The proof of lemma is complete.

f(d)
f(a)

f(a+1)

f(1)

f(c)

f(d+1)

Fig. 5.1 The broken arrow is a T2 edge.

Lemma 5.5. Let t denote the number of T2 edges and s denote the number
of innovations in the chain (f(1), f(2), · · · , f(a)) that are single up to a and
have a vertex coincident with f(a). Then s ≤ t+ 1.

Proof. If s = 1, then the lemma is trivially true. Thus, we need only consider
the case s > 1. Except for the first innovation, which leads to the vertex f(a),
all other innovations start from the vertex f(a). Write the remaining s − 1
innovations single up to a by (f(b1), f(b1+1)), · · · , (f(bs−1), f(bs−1+1)) with
f(b1) = · · · = f(bs−1) = f(a) and b1 < b2 < · · · < bs−1 < a = bs.
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For any u ≤ s − 1, we consider the cycle (f(bu), · · · , f(bu+1)). Since
(f(bu), f(bu + 1)) is a single innovation up to ebu+1 , by Lemma 5.4, there
is a T2 edge (f(cu), f(cu + 1)) with f(cu) 6∈ {f(1), · · · , f(bu)}. This property
guarantees that the T2 edges in the s − 1 cycles are distinct (see Fig. 5.2).
This proves the lemma.

)

f(1 )

f(2 )

f(a) f(b 1 +1)

f(b 2 + 1)

f(a−1

Fig. 5.2 Each cycle contains a T2 edge (broken arrow).

Lemma 5.6. The number of regular T3 edges is not greater than twice the
number of T2 edges.

To prove this lemma, we need the following concepts.

Definition. A chain (f(a), · · · , f(b)) is called a ∗-cycle up to c (≥ b) if:

1. f(a) = f(b) 6∈ {f(a+ 1), · · · , f(b− 1)}. The vertex f(a) = f(b) is called
the head of the ∗-cycle.

2. The edge (f(a), f(a+1)) is an innovation single up to c. This innovation
is called the leader of the ∗-cycle.

3. In the chain (f(1), · · · , f(a)), there is at least one innovation single up
to c and having a vertex coincident with f(a). The latest such innovation is
called the preleader of the ∗-cycle.

By definition, the leader of a ∗-cycle can be the preleader of the next
∗-cycle with the same head.

Definition. A ∗-cycle is said to be of the first type if there are no T2 edges
from its

preleader to its leader (see Fig. 5.3). Otherwise, it is said to be of the
second type (see Fig. 5.4).
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2

Preleader

f(d−1)

f(b−1)

f(a+1)
T T1 3

Leader

f(d)= f(a) = f(b)

T

Fig. 5.3 Definition of a ∗-cycle of the first type.

f(b−1)

Preleader Leader

T 2

f(d)=f(a)=f(b)f(d−1)

Fig. 5.4 Definition of a ∗-cycle of the second type.

If (f(a), · · · , f(b)) is a first type ∗-cycle and its preleader is (f(d−1), f(d)),
then we must have f(d) = f(a). Otherwise, f(d−1) = f(a) ∈ {f(1), · · · , f(d−
1)} and (f(d− 1), f(d)) is an innovation single up to a, which, together with
Lemma 5.4, implies that there must be a T2 edge between its preleader and
leader, which contradicts the definition of the first-type ∗-cycle. Furthermore,
if d < a, then between f(d) and f(a) all edges are either T1 or T3 and no T1

edges are single up to a, for otherwise there would be a T2 by Lemma 5.4.
Thus, a− d is even and (a− d)/2 edges between f(d) and f(a) are T1, which
are coincident with the other (a − d)/2 T3 edges. Therefore, the preleader
(f(d−1), f(d)) is the only edge that links the chains (f(d), f(d+1), · · · , f(a))
and (f(1), · · · , f(d − 1)). Moreover, we claim that (f(b − 1), f(b)) must be
a T2. At first, f(b − 1) 6= f(d − 1), for otherwise (f(d − 1), f(d)) cannot be
single up to b, which violates the definition of preleader. Also, f(a) = f(b) 6∈
{f(d− 1), f(a+ 1), · · · , f(b− 1)}, so the edge (f(b− 1), f(b)) is either single
or coincident with a T3 edge between f(d) and f(a). In either case, it is a T2.
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Proof of Lemma 5.6. Suppose that (f(a), f(a + 1)) is a regular T3 edge.
Then, in the chain (f(1), · · · , f(a)), there is at least one ∗-cycle up to a with
head f(a), whereas in the chain (f(1), · · · , f(a + 1)), one such cycle disap-
pears because one single innovation has been coincident with (f(a), f(a+1)).
Therefore, the number of regular T3 edges does not exceed the number of ∗-
cycles. Therefore, to complete the proof of this lemma, it is sufficient to show
that the number of ∗-cycles does not exceed twice the number of T2 edges.

Define a mapping Φ∗ from the ∗-cycles to the T2 edges in such a way that
the Φ∗-image of a first-type ∗-cycle is the last T2 edge in the cycle and the
Φ∗-image of a second-type ∗-cycle is the first T2 edge in the cycle. By Lemma
5.4, there is at least one T2 edge in each ∗-cycle. Hence, the mapping Φ∗ is
well defined.

Then, the proof of this lemma amounts to showing that any three ∗-cycles
cannot have a common Φ∗-image. If there are three ∗-cycles that have a
common Φ∗-image, then among the three ∗-cycles either two of them are
of the first type or two of them are of the second type. We will derive a
contradiction for both cases.

Suppose that the ∗-cycles are (f(a1), · · · , f(b1)) and (f(a2), · · · , f(b2)) with
a1 < a2. It is evident that the two ∗-cycles have different heads since otherwise
the two cycles do not have common edges, which contradicts the assumption
that they have a common Φ∗-image.

Case 1. Suppose that the two ∗-cycles are both of the first-type. As dis-
cussed earlier for first-type ∗-cycles, the last edges of the cycles are the Φ∗

image of the two ∗-cycles, namely (f(b1 − 1), f(b1)) and (f(b2 − 1), f(b2)).
Because the two ∗-cycles have different heads, b1 6= b2. Therefore, the later
of the two edges does not belong to both ∗-cycles and hence they cannot be
the same edges. Therefore, Case 1 is impossible.

Case 2. Suppose that the two ∗-cycles are both of the second type. If the
preleader (f(d2 − 1), f(d2)) appears after the head f(a1) of the first ∗-cycle,
then the φ∗ image of the first ∗-cycle is in the chain (f(a1 + 1), · · · , f(a2))
because there is a T2 edge in the chain (f(d2), · · · , f(a2)). This edge is not in
the second ∗-cycle (see Fig. 5.5).

If the preleader (f(d2 − 1), f(d2)) appears before the head f(a1) of the
first ∗-cycle (that is, d2 < a1), then, by Lemma 5.4, there is a T2 edge in the
chain (f(a1 + 1), C, f(a2)) and hence the Φ∗ image of the first ∗-cycle is also
in this chain. This shows that this case is also impossible (see Fig. 5.6). The
proof of the lemma is complete.

Continuing the proof of Theorem 5.1. Now, we begin to estimate the right-
hand side of (5.1.10). At first, if the graph G has a single edge, then the
corresponding terms are zero. Therefore, we need only estimate those terms
corresponding to Γ1- and Γ3-graphs. Suppose that there are r innovations
(r ≤ s) and t T2 edges in the graph G. Then there are r T3 edges, k − 2r T4

edges and r + 1 noncoincident vertices.
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Preleader Preleader
LeaderLeader

1f(d  −1)
1  1

f(d  )=f(a  )

1

f(d  −1) 2

2f(a  +1)f(a  +1)

T

Fig. 5.5 The preleader of the second ∗-cycle is later than the leader of the first ∗-cycle.

)f(

f(
f(

f(

f(

f(

d

d 1 ) = f(a 1 )
a 1 +1)

d 2 −1)

a 2 +1)

C

d 2 ) = f(a 2 )
1 −1

Fig. 5.6 The preleader of the second ∗-cycle is earlier than the leader of the first ∗-cycle.

Therefore, the number of graphs of each isomorphic class is less than nr+1,
and the expectation corresponding to each canonical graph is not larger than
bt(δn

√
n)k−2r−t. Then we need to estimate the number of canonical graphs.

At first, there are at most
(

k
r

)
ways to select r edges out of the total k edges

to be the r innovations. Then, there are at most
(
k−r

r

)
ways to select r edges

out of the rest of the k − r edges to arrange the r T3 edges. Then, the rest
of the k − 2r edges are assigned for the T4 edges. For an innovation, by the
relation f(ℓ) = max{f(1), . . . , f(ℓ + 1)} + 1, there is only one way to plot
the innovation once the subgraph prior to this innovation is plotted. For an
irregular T3 edge, since there is only one single innovation to be matched,
there is thus only one way to plot it when the subgraph prior to this T3 edge
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is plotted. By Lemma 5.5, there are at most t + 1 single innovations to be
matched by a regular T3 edge. That is, each regular T3 edge has at most
t + 1 ways to plot it. By Lemma 5.6, there are at most 2t regular T3 edges.
Hence, there are at most (t+1)2t ≤ (t+1)2(k−2r) ways to plot the regular T3-
edges. Finally, we consider the T4 edges. For each T4 edge, there are at most
(r+1)2 < k2 ways to determine its two vertices. Therefore, there are at most(
k2

t

)
ways to plot the t T2 edges. After the t positions of T4 are determined,

there are at most tk−2r < (t+ 1)k−2r ways to distribute the k− 2r T4 edges.
Finally, from (5.1.10), we obtain

E(tr(W)k)

≤ n−k/2

k/2∑

r=1

k−2r∑

t=0

nr+1

(
k

r

)(
k − r

r

)(
k2

t

)
(t+ 1)3(k−2r)bt(

√
nδn)k−2r−t

≤
k/2∑

r=1

k−2r∑

t=0

n

(
k

2r

)(
2r

r

)
(t+ 1)3(k−2r)[bk2/(

√
nδn)]tδk−2r

n

≤ n2b−1

k/2∑

r=1

(
k

2r

)
22rδk−2r

n

(
3(k − 2r)

log(nδn/bk2)

)3(k−2r)

≤ n2[2 + (10δ1/3
n k/ logn)3]k

= n2[2 + o(1)]k.

In the above, the third inequality follows from the elementary inequality

abc−a ≤ (b/ log c)b, for all a ≥ 1, b > 0, and c > 1, (5.1.11)

with a = t+1, and the last equality follows from the fact that δ
1/3
n k/ logn→

0. Finally, substituting this into (5.1.9), we obtain

P(λmax(Wn) ≥ η) ≤ n2(2 + o(1)/η)−k. (5.1.12)

The right-hand side of (5.1.12) is summable due to the fact that k/ logn→ ∞.
The sufficiency is proved.

5.1.2 Necessity of Conditions of Theorem 5.1

Suppose lim supλmax(W) ≤ a, (a > 0) a.s. Then, by (A.2.4), λmax(W) ≥
xnn/

√
n. Therefore, 1√

n
x+

nn ≤ max{0, λmax(W)}. Hence, for any η > a,

P(x+
nn ≥ η

√
n, i.o.) = 0. An application of the Borel-Cantelli lemma yields

∞∑

n=1

P(x+
11 ≥ η

√
n) <∞,
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which implies condition (i).
Define Nℓ = {j; 2ℓ < j ≤ 2ℓ+1; |xjj | ≤ 2ℓ/4} and p = P(|x11| ≤ 2ℓ/4).

Write Nℓ = #(N ).
When n ∈ (2ℓ+1, 2ℓ+2], for xjk 6= 0 and j, k ∈ Nℓ, construct a unit com-

plex vector z by taking zk = xjk/(
√

2|xjk |), zj = 1/
√

2, and the remain-
ing elements zero. Substituting z into the first identity of (5.1.6), we have
λmax(W) ≥ 1√

n
[|xjk| + 1

2 (xkk + xjj)]. Thus, we have

λmax(W) ≥ 2−ℓ/2−1 max
j,k∈Nℓ

{|xjk|} − 2−ℓ/4.

The above is trivially true when xjk = 0. Thus, for any η > a, by assumption,
we have

P

(
max

2ℓ+1<n≤2ℓ+2
λmax(Wn) ≥ η, i.o.

)
= 0.

The equality above trivially implies that

P

(
max

j,k∈Nℓ

{|xjk|} ≥ η2ℓ/2+2, i.o.

)
= 0.

Applying the Borel-Cantelli lemma, we conclude that

∞∑

ℓ=1

P

(
max

j,k∈Nℓ

{|xjk|} ≥ η2ℓ/2+2

)
<∞. (5.1.13)

By the independence of Nℓ and xjk, we have

P

(
max

j,k∈Nℓ

|xjk| ≥ η2ℓ/2+2

∣∣∣∣Nℓ = r

)

= P

(
max

1≤j<k≤r
|xjk| ≥ η2ℓ/2+2

)

= 1 −
(
1 − P(|x12| ≥ η2ℓ/2+2)

)r(r−1)/2

.

Since Nℓ has a binomial distribution with success probability p and number
of trials 2ℓ, by noting that p is close to 1 for all large ℓ, we have

P

(
max

j,k∈Nℓ

{|xjk|} ≥ η2ℓ/2+2

)

≥
2ℓ∑

r=2ℓ−1+1

(
2ℓ

r

)
pr(1 − p)2

ℓ−r[1 − (1 − P(|x12| ≥ η2ℓ/2+2))r(r−1)/2]

≥ 1

2
(1 − (1 − P(|x12| ≥ η2ℓ/2+2))2

2ℓ−3

).

From this and (5.1.13), we obtain
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∞∑

ℓ=1

(1 − (1 − P(|x12| ≥ η2ℓ/2+2))2
2ℓ−3

) <∞.

From the relationship of convergence between infinite series and products, we
obtain ∞∏

ℓ=1

(
1 − P(|x12| ≥ η2ℓ/2+2)

)22ℓ−3

> 0,

which then implies

∞∑

ℓ=1

22ℓ−3P
(
|x12| ≥ η2ℓ/2+2

)
<∞,

which implies condition (iv).
Now, suppose that a = E(ℜ(x12)) > 0. Define Dn = {j ≤ n, |xjj | < n1/4}.

Write N = #(Dn). Define a unit vector z = (z1, · · · , zn) with zj = 1√
N

if

j ∈ Dn and zj = 0 otherwise. Substituting z into (A.2.4), we get

λmax(W) ≥ z∗(W)z

=
a(N − 1)√

n
+

1

N
√
n

∑

i∈Dn

xii + z∗
(
W̃ − E(W̃)

)
z

≥ a(N − 1)√
n

+ λmin

(
W̃ − E(W̃)

)
− n−1/4

≥ aN√
n

+O(1) → ∞,

where W̃ is the matrix obtained from W by replacing its diagonal elements

with zero. Here the last limit follows from the fact that λmin

(
W̃ − E(W̃)

)
→

−2σ almost surely, which is a consequence of the sufficiency part of the theo-
rem, and that N/n→ 1 almost surely because N has a binomial distribution
with success probability p = P(|w11| ≤ n1/4) → 1. Thus, we have derived
a contradiction to the assumption that lim supλmax(W) = c almost surely.
This proves that ℜ(Ex12) ≤ 0, the second assertion of condition (ii).

To complete the proof of necessity of condition (ii), we need to show that
the imaginary part of the expectation of the off-diagonal elements is zero.

Suppose that b = ℑ(E(x12)) 6= 0. Define a vector u = (u1, · · · , un)′ by

{uj, j ∈ Dn} = N−1/2{1, eiπsign(b)(2k−1)/N , · · · , eiπsign(b)(2k−1)(N−1)/N}

and uj = 0, j 6∈ Dn. By Lemma 2.7,

iu∗ℑ(E(Wn))u =
1√
n
|b|ctan(π(2k − 1)/2N).
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Also,

u∗Ju =
1

N

∣∣∣∣∣∣

N−1∑

j=0

eiπsign(b)j(2k−1)/N

∣∣∣∣∣∣

2

=
1

N

∣∣∣∣
1 − eiπsign(b)(2k−1)

1 − eiπsign(b)(2k−1)/N

∣∣∣∣
2

≤ 4

N sin2(π(2k − 1)/2N)
,

where J is the n× n matrix of 1’s.
Write a = E(ℜ(x12)) ≤ 0. Then, by (A.2.4), we have

λmax(W) ≥ u∗Wnu

≥ − 4|a|√
nN sin2(π(2k − 1)/2N)

+
|b|√

n sin(π(2k − 1)/2N)
+ λmin((W̃ − E(W̃))) − n−1/4

:= I1 + I2 + I3 − n−1/4. (5.1.14)

Take k = [n1/3]. Then, by the fact that N/n→ 1, a.s., we have

I1 ∼ −2|a|√n
πk2

→ 0,

I2 ∼ |b|√n
πk

→ ∞,

|I3| → −2σ.

Thus, the necessity of condition (ii) is proved. Conditions (iii) and (v) follow
by applying the sufficiency part. The proof of the theorem is complete.

Remark 5.7. In the proof of Theorem 5.1, if the entries of W depend on n
but satisfy

E(xjk) = 0, E(|x2
jk|) ≤ σ2, E(|xℓ

jk|) ≤ b(δn
√
n)ℓ−3, (ℓ ≥ 3) (5.1.15)

for some b > 0, then for fixed ε > 0 and x > 0,

P(λmax(W) ≤ 2σ + ε+ x) = o(n−ℓ(2σ + ε+ x)−2). (5.1.16)

This implies that the conclusion of lim supλmax(W) ≤ 2σ, a.s., is still true.
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5.2 Limits of Extreme Eigenvalues of the Sample
Covariance Matrix

We first introduce the following theorem.

Theorem 5.8. Suppose that {xjk, j, k = 1, 2, · · ·} is a double array of iid
random variables with mean zero and variance σ2 and finite fourth moment.
Let Xn = (xjk, j ≤ p, k ≤ n) and Sn = 1

nXX∗. Then the largest eigenvalue
of Sn tends to σ2(1 +

√
y)2 almost surely.

If the fourth moment of the underlying distribution is not finite, then with
probability 1, the limsup of the largest eigenvalue of Sn is infinity.

The real case of the first conclusion is due to Yin, Bai, and Krishnaiah
[301], and the real case of the second conclusion is proved in Bai, Silverstein,
and Yin [33]. The proof of this theorem is almost the same as that of
Theorem 5.1, and the proof for the real case can be found in these papers.
Thus the details are omitted and left as an exercise for the reader. Here,
for our future use, we remark that the proof of the theorem above can be
extended to the following.

Theorem 5.9. Suppose that the entries of the matrix Xn = (xjkn , j ≤ p, k ≤
n) are independent (not necessarily identically distributed) and satisfy

1. E(xjkn) = 0,
2. |xjkn| ≤

√
nδn,

3. maxj,k |E|Xjkn|2 − σ2| → 0 as n→ ∞, and
4. E|xjkn|ℓ ≤ b(

√
nδn)ℓ−3 for all ℓ ≥ 3,

where δn → 0 and b > 0. Let Sn = 1
nXnX∗

n. Then, for any x > ε > 0 and
integers j, k ≥ 2, we have

P(λmax(Sn) ≥ σ2(1 +
√
y)2 + x) ≤ Cn−k(σ2(1 +

√
y)2 + x− ε)−k

for some constant C > 0.

In this section, we shall present a generalization to a result of Bai and Yin
[36]. Assume that Xn is a p× n complex matrix and Sn = 1

nXnX∗
n.

Theorem 5.10. Assume that the entries of {xij} are a double array of iid
complex random variables with mean zero, variance σ2, and finite fourth mo-
ment. Let Xn = (xij ; i ≤ p, j ≤ n) be the p×n matrix of the upper-left corner
of the double array. If p/n→ y ∈ (0, 1), then, with probability 1, we have

−2
√
yσ2 ≤ lim inf

n→∞
λmin(Sn − σ2(1 + y)In)

≤ lim sup
n→∞

λmax(Sn − σ2(1 + y)In) ≤ 2
√
yσ2. (5.2.1)

From Theorem 5.10, one immediately gets the following theorem.
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Theorem 5.11. Under the assumptions of Theorem 5.10, we have a.s.

lim
n→∞

λmin(Sn) = σ2(1 −√
y)2 (5.2.2)

and
lim

n→∞
λmax(Sn) = σ2(1 +

√
y)2. (5.2.3)

Denote the eigenvalues of Sn by λ1 ≤ λ2 ≤ · · · ≤ λn. Write λmax = λn

and

λmin =

{
λ1, if p ≤ n,
λp−n+1, if p > n.

Using the convention above, Theorem 5.11 is true for all y ∈ (0,∞).

5.2.1 Proof of Theorem 5.10

We split our tedious proof of Theorem 5.10 into several lemmas. The key idea
is to estimate the spectral norm of the power matrix (Sn−σ2(1+y)I)ℓ. In the
first step, we split the power matrix into several matrices, among which the
most significant matrix is the one called Tn(ℓ) defined below. Lemma 5.12
is devoted to the estimate of the norm of Tn(ℓ). The aim of the subsequent
lemmas is to estimate of the norm of (Sn−σ2(1+y)I)ℓ by using the estimate
on Tn(ℓ).

Lemma 5.12. Under the conditions of Theorem 5.10, we have

lim sup
n→∞

‖Tn(ℓ)‖ ≤ (2ℓ+ 1)(ℓ+ 1)y(ℓ−1)/2σ2ℓ a.s., (5.2.4)

where
Tn(ℓ) = n−ℓ

(∑′xav1xu1v1xu1v2xu2v2 · · ·xuℓ−1vℓ
xbvℓ

)
,

the summation
∑′

runs over for v1, · · · , vℓ = 1, 2, · · · , n, and u1, · · · , uℓ−1 =
1, 2, · · · , p subject to the restriction

a 6= u1, u1 6= u2, · · · , uℓ−1 6= b and v1 6= v2, v2 6= v3, · · · , vℓ−1 6= vℓ.

Proof. Without loss of generality, we assume σ = 1. We first truncate the
x-variables. Since E|x11|4 <∞, we can select a sequence of slowly decreasing
constants δn → 0 such that nδn is increasing and

∑

k

δ−2
2k 2kE|x11|2(|x11| ≥ 2k/2δ2k) <∞. (5.2.5)

Then, define xijn = xijI(|xij | ≤ δn
√
n). Next, construct a matrix T̂n(ℓ) with

the same structure of Tn(ℓ) by replacing xij with xijn. Then, we have
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P
(
T̂n(ℓ) 6= Tn(ℓ), i.o.

)

≤ lim
K→∞

∞∑

k=K

P


 ⋃

2k<n≤2k+1

⋃

i≤p,j≤n

(xijn 6= xij)




≤ lim
K→∞

∞∑

k=K

P


 ⋃

2k<n≤2k+1

⋃

i,j≤2k+1

(|xij | ≥ δ2k2k/2)




= lim
K→∞

∞∑

k=K

P


 ⋃

i,j≤2k+1

(|xij | ≥ δ2k2k/2)




≤ lim
K→∞

∞∑

k=K

22k+2P
(
|x11| ≥ δ2k2k/2

)
= 0.

This shows that we need only to show (5.2.4) for the matrix T̂n(ℓ).

Let T̃n(ℓ) be the matrix constructed from the variables xijn−E(xijn). We
shall show that, for all ℓ ≥ 0,

‖T̃n(ℓ) − T̂n(ℓ)‖ → 0 a.s. (5.2.6)

if (5.2.4) is true for the matrix T̃n(ℓ) and all fixed ℓ.

Write Ŷn = 1√
n

(xijn) and Ỹn = 1√
n

(xijn − E(xijn)) = Ŷn − E(Ŷn).

Using the notation of ⊙ products (see Page 483 for the definition of ⊙), we
have

T̂n(ℓ) = Ŷn ⊙ (Ŷ∗
n) ⊙ · · · ⊙ Ŷn ⊙ (Ŷ∗

n) (5.2.7)

and
T̃n(ℓ) = Ỹn ⊙ (Ỹ∗

n) ⊙ · · · ⊙ Ỹn ⊙ (Ỹ∗
n). (5.2.8)

Suppose that (5.2.4) is true for the matrix T̃n(ℓ). We will show that

lim sup ‖Ỹn‖2 ≤ 7, a.s.

In fact, with probability 1,

lim sup ‖Ỹn‖2 = lim sup

∥∥∥∥∥∥
T̃n(1) + diag


 1

n

n∑

j=1

|xijn − E(xijn)|2, i ≤ p



∥∥∥∥∥∥

≤ 6 + lim sup
1

n
max
i≤p

n∑

j=1

[|xij |2 + 2|Ex11n||xij | + |Ex11n|2]

≤ 7.

Here, the first inequality follows from (5.2.4) for T̃(ℓ) and the second follows
from Lemma B.25 given in Appendix B and the fact that Ex11n → 0.
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Note that |E(xijn)| ≤ (δn
√
n)−3E(|x4

11|) → 0. We obtain
∥∥∥E(Ŷn)

∥∥∥ ≤
√
n|E(x11n)| = o(1).

By (5.2.7) and (5.2.8), the difference T̃n(ℓ)−T̂n(ℓ) can be written as a sum

of ⊙ products of matrices Ỹn, E(Ŷn) or their complex conjugate transpose.

Each product has 2ℓ factor matrices, and at least one of them is E(Ŷn) or
its complex conjugate transpose. The number of terms in the sum is 2ℓ − 1.

Then, assertion (5.2.6) follows by applying Theorem A.23. Therefore, the

proof of the lemma reduces to proving (5.2.4) for the matrix T̃n(ℓ). For
brevity, we still use Tn(ℓ) and xij to denote the matrix and variables after
truncation and centralization. Namely, we shall proceed with our proof under
the following additional assumptions:

1. E(xij) = 0, E(|xij |2) ≤ 1, and E(|xij |2) → 1. (5.2.9)

2. E(|xij |ℓ) ≤ (δn
√
n)ℓ−3 for all ℓ ≥ 3.

Select an integer m such that m/ logn→ ∞ and mδ
1/3
n / logn→ 0. Then,

we have

tr(E(T2m
n (ℓ))) = n−2mℓ

∑
E(xi1j1xi2j1xi2j2xi3j2 · · ·xi2mℓj2mℓ

xi1j2mℓ
),

(5.2.10)
where the summation runs over all integers i1, · · · , i2mℓ from {1, 2, · · · , p}
and j1, · · · , j2mℓ from {1, 2, · · · , n} subject to the conditions that, for any
v = 0, 1, · · · , 2m− 1,

ivℓ+1 6= ivℓ+2, ivℓ+2 6= ivℓ+3, · · · , i(v+1)ℓ 6= i(v+1)ℓ+1,

jvℓ+1 6= jvℓ+2, jvℓ+2 6= jvℓ+3, · · · , j(v+1)ℓ−1 6= j(v+1)ℓ. (5.2.11)

Given i1, · · · , i2mℓ and j1, · · · , j2mℓ, define functions f and g by f(1) =
g(1) = 1 and, for 1 < ℓ ≤ 2mℓ,

f(ℓ) =

{
f(u), if iℓ = iu for some u < ℓ,
max{f(1), · · · , f(ℓ− 1)} + 1, otherwise,

and

g(ℓ) =

{
g(u), if jℓ = ju for some u < ℓ,
max{g(1), · · · , g(ℓ− 1)} + 1, otherwise.

Similar to what we did in Subsection 3.1.2, construct a ∆-graph G of 2mℓ
down edges and 2mℓ up edges, by using these two functions, called a canonical
graph. Then, (5.2.10) can be rewritten as

tr(E(T2m
n (ℓ))) = n−2mℓ

∑

G

∑

i,j

E(xi1j1xi2j1xi2j2xi3j2 · · ·xi2mℓj2mℓ
xi1j2mℓ

).

(5.2.12)
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Obviously, if G has a single edge, the terms corresponding to this graph are
zero. Thus, we need only to estimate the sum of all those terms whose G has
no single edge.

We split the graph G into 2m subgraphs G1, · · · , G2m, where the graph
Gv consists of the ℓ down edges ed,(v−1)ℓ+1 · · · , ed,vℓ and the ℓ up edges
eu,(v−1)ℓ+1 · · · , eu,vℓ and their vertices.

Due to condition (5.2.9), within each subgraph, all down edges do not
coincide with their adjacent (prior to or behind) up edges, but those between
different subgraphs can be coincident.

Now, we begin to estimate the right-hand side of (5.2.12). Let k denote
the total number of innovations and t denote the number of T2 edges. Then,
we have the following.

1. By noting that G has no single edge, the expectation is not greater than
(δn

√
n)4mℓ−2k−t.

2. Since G has no single edge, 1 ≤ k ≤ 2mℓ.
3. For the same reason, t ≤ 2mℓ.
4. Let ai denote the number of pairs of consecutive edges (e, e′) in the

subgraph Gi in which e is an innovation but e′ is not. Then the number of
sequences of consecutive innovations in Gi is either ai or ai + 1 (the latter
happens when the last edge of Gi is an innovation). Hence, the number of
ways to arrange the consecutive innovation sequences is not more than

(
2ℓ

2ai

)
+

(
2ℓ

2ai + 1

)
=

(
2ℓ+ 1

2ai + 1

)
.

5. Given the positions of innovations, there are at most
(
4mℓ−k

k

)
ways to

arrange the T3 edges.
6. Given the positions of innovations and T3 edges, the T4 edges will be at

the rest 4mℓ− 2k positions.
7. For canonical graphs, there is only one way to plot the innovations and

irregular T3-edges. By Lemmas 5.5 and 5.6, there are at most (t+1)2(4mℓ−2k)

ways to plot the regular T3 edges.
8. Because there are k + 1 vertices, there are at most

(
k+1
2

)
(< (k + 1)2)

positions to plot the T2 edges. Hence, there are at most
(
(k+1)2

t

)
ways to plot

the t T2 edges. And there are at most t4mℓ−2k ways to distribute the 4mℓ−2k
T4-edges into the t positions.

9. Let r and s denote the number of up and down innovations. Then, we
have k = r+ s and the number of terms for each canonical graph is not more
than nspr+1 = nk+1yr+1

n , where yn = p/n→ y.

Combining the above, (5.2.12) can be estimated by

tr(E(T2m
n (ℓ))) ≤ n

∑∗
(

2m∏

i=1

(
2ℓ+ 1

2ai + 1

))(
4mℓ− k

k

)(
(k + 1)2

t

)
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·(t+ 1)3(4mℓ−2k)yr+1
n δ4mℓ−2k

n (
√
nδn)−t, (5.2.13)

where the summation is taken subject to restrictions 1 ≤ k ≤ 2mℓ, 0 ≤ t ≤
2mℓ, and 0 ≤ ai ≤ ℓ.

Suppose that in the pair (e, e′) of the graph Gi, e is an innovation and e′

is not. Then, e′ must be a T2 edge since it cannot coincide with e. Therefore,

a1 + · · · + a2m ≤ the number of T2 edges ≤ t. (5.2.14)

In each consecutive sequence of innovations, the difference in the number of
up and down innovations is at most 1. Since in Gi there are at most ai + 1
consecutive innovation sequences, we obtain

|r − s| ≤ a1 + · · · + a2m + 2m. (5.2.15)

From the estimations above and the relation k = r + s, we have

r ≥ 1

2
(k − t) −m.

Since yn ≤ 1, we have
yr+1

n ≤ y(k−t−2m)/2
n . (5.2.16)

By the trivial inequality
(

2ℓ+1
2ai+1

)
≤ (2ℓ+ 1)2ai+1, we have

2m∏

i=1

(
2ℓ+ 1

2ai + 1

)
≤ (2ℓ+ 1)2

∑
ai+2m ≤ (2ℓ+ 1)2t+2m. (5.2.17)

Because each ai may take values from 0 to ℓ, there are at most (ℓ + 1)2m

ways to arrange various a1, · · · , a2m. Then, applying inequality (5.1.11), we
further get

tr(E(T2m
n (ℓ))) ≤ n

2mℓ∑

k=1

4mℓ−2k∑

t=0

(2ℓ+ 1)2m(ℓ+ 1)2m

(
4mℓ− k

k

)

·
(

(k + 1)2√
nδn

)t

(t+ 1)3(4mℓ−2k)y
1
2 (k−t−2m)
n δ4mℓ−2k

n

≤ n2(2ℓ+ 1)2m(ℓ+ 1)2my−m
n

2mℓ∑

k=1

(
4mℓ− k

k

)

·
(

3(4mℓ− 2k)δ
1/3
n

log(
√
nynδn/(k + 1)2)

)3(4mℓ−2k)

yk/2
n δ4mℓ−2k

n

≤ n2(2ℓ+ 1)2m(ℓ+ 1)2my−m
n


y1/4

n +

(
24mℓδ

1/3
n

1
2 logn

)3



4mℓ
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= n2(2ℓ+ 1)2m(ℓ+ 1)2mym(ℓ−1)
n (1 + o(1))4mℓ. (5.2.18)

Thus, for any η > (2ℓ+ 1)(ℓ+ 1)y(ℓ−1)/2, we have

P(‖Tn(ℓ)‖ ≥ η) ≤ η−2mE(‖Tn(ℓ)‖2m)

≤ η−2mE(tr(Tn(ℓ))2m)

≤
(
η−1(2ℓ+ 1)(ℓ + 1)y(ℓ−1)/2

)2m

n2(1 + o(1))4mℓ (5.2.19)

which is summable due to the assumption m/ logn → ∞. The lemma then
follows by applying the Borel-Cantelli lemma.

Define Y
(2f+1)
n = (n−f−1/2|xij |2fxij) and Y

(2f+2)
n = (n−f−1|xij |2f+2),

f = 0, 1, 2, · · ·. Then, we have the following lemma.

Lemma 5.13. Under the conditions of Theorem 5.10, we have

lim sup ‖Y(1)
n ‖ ≤

√
7σ, a.s.,

lim sup ‖Y(2)
n ‖ ≤

√
E|x11|4, a.s.,

lim sup ‖Y(f)
n ‖ = 0, a.s., for all f > 2.

Proof. We have

‖Y(1)
n ‖2 ≤ ‖Tn(1)‖ +

1

n
max
i≤p

n∑

j=1

|xij |2.

Then, the first conclusion of the lemma follows from Lemmas 5.12 and B.25.

By ‖Y(2)
n ‖2 ≤ tr(Y

(2)
n Y

(2)
n

∗), we have

‖Y(2)
n ‖2 ≤ n−2

∑

ij

|xij |4 → yE(|x11|4), a.s.

For f > 2, by Lemma B.25, we have

‖Y(f)
n ‖2 ≤ n−f

∑

ij

|xij |2f → 0 a.s.

Lemma 5.14. Under the conditions of Theorem 5.10, we have

TnTn(k) = Tn(k + 1) + yσ2Tn(k) + yσ4Tn(k − 1) + o(1) a.s. (5.2.20)

Proof. We can assume σ = 1 without loss of generality. By relation (A.3.6)
and Lemma 5.13,

Tn(k) = Yn




k Y∗
n’s︷ ︸︸ ︷

Y∗
n ⊙ Y∗

n ⊙ · · · ⊙Y∗
n



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−[diag(YnY∗
n)]Tn(k − 1) + Y(3)

n ⊙ (Y∗
n ⊙ · · · ⊙Y∗

n)

= Yn (Y∗
n ⊙ Y∗

n ⊙ · · · ⊙Y∗
n) − Tn(k − 1) + o(1) a.s., (5.2.21)

and similarly

Tn(k + 1) = Yn




k+1 Y∗
n’s︷ ︸︸ ︷

Y∗
n ⊙ Yn ⊙ · · · ⊙Y∗

n


− [diag(YnY∗

n)]Tn(k) + o(1) a.s.

= YnY∗
nTn(k) − Yndiag(Y∗

nY∗
n) (Y∗

n ⊙ · · · ⊙Y∗
n)

−diag(YnY∗
n)Tn(k) + o(1) a.s.

= TnTn(k) − yYn (Y∗
n ⊙ · · · ⊙Y∗

n) + o(1) a.s.

= TnTn(k) − y(Tn(k) + Tn(k − 1)) + o(1) a.s. (5.2.22)

The proof of the lemma is complete.

Lemma 5.15. Under the conditions of Theorem 5.10, we have

(Tn − yσ2Ip)
k =

k∑

r=0

(−1)r+1σ2(k−r)T(r)

[(k−r)/2]∑

i=0

Ci(k, r)y
k−r−i + o(1),

(5.2.23)
where the constants |Ci(k, r)| ≤ 2k.

Proof. When k = 1, with the convention that T(0) = I, the lemma is trivially
true with C0(1, 1) = 1 and C0(1, 0) = 1. The general case can easily be proved
by induction and Lemma 5.14. The details are omitted.

We are now in a position to prove Theorem 5.10.

Proof of Theorem 5.10. Again, we assume that σ2 = 1 without loss of gener-
ality. By Lemma B.25, we have

‖Sn − Ip − Tn‖ ≤ max
i≤p

∣∣∣∣∣∣

n∑

j=1

(|xij |2 − 1)

∣∣∣∣∣∣
→ 0 a.s.

Therefore, to prove Theorem 5.10, we need only to show that

lim sup ‖Tn − yIp‖ ≤ 2
√
y a.s.

By Lemmas 5.12 and 5.15, for any fixed k, we have

lim sup ‖Tn − yIp‖k ≤ Ck42ky(k−1)/2.

Therefore,
lim sup ‖Tn − yIp‖ ≤ C1/kk4/k2y(k−1)/(2k).

Letting k → ∞, we conclude the proof of Theorem 5.10.
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5.2.2 Proof of Theorem 5.11

By Theorem 3.6, with probability 1, we have

lim supλmin(Sn) ≤ σ2(1 −√
y)2 and lim inf λmax(Sn) ≥ σ2(1 +

√
y)2.

Then, by Theorem 5.10,

lim supλmax(Sn)=σ2(1 + y) + lim supλmax(Sn − σ2(1 + y)Ip)
≤ σ2(1 + y) + 2σ2√y

and

lim inf λmin(Sn) = σ2(1 + y) + lim inf λmin(Sn − σ2(1 + y)Ip)
≥ σ2(1 + y) − 2σ2√y.

This completes the proof of the theorem.

5.2.3 Necessity of the Conditions

By the elementary inequality λmax(A) ≥ maxi≤p aii, we have

λmax(Sn) ≥ max
i≤p

1

n

n∑

j=1

|xij |2.

By Lemma B.25, if E(|x11|4) = ∞, then

lim sup
n→∞

max
i≤p

1

n

n∑

j=1

|xij |2 → ∞, a.s.

This shows that the finiteness of the fourth moment of the underlying distri-
bution is necessary for the almost sure convergence of the largest eigenvalue
of a sample covariance matrix.

If E(|x11|4) <∞ but E(x11) = a 6= 0, then

∥∥∥∥
1√
n
Xn

∥∥∥∥ ≥
∥∥∥∥

1√
n

(aJ)

∥∥∥∥−
∥∥∥∥

1√
n

(Xn − E(Xn))

∥∥∥∥

≥ |a|p/√n−
∥∥∥∥

1√
n

(Xn − E(Xn))

∥∥∥∥→ ∞, a.s.

Combining the above, we have proved that the necessary and sufficient
conditions for almost sure convergence of the largest eigenvalue of a large
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dimensional sample covariance matrix are that the underlying distribution
has a zero mean and finite fourth moment.

Remark 5.16. It seems that the finiteness of the fourth moment is also nec-
essary for the almost sure convergence of the smallest eigenvalue of the large
dimensional sample covariance matrix. However, at this point we have no
idea how to prove it.

5.3 Miscellanies

5.3.1 Spectral Radius of a Nonsymmetric Matrix

Let X be an n×n matrix of iid complex random variables with mean zero and
variance σ2. In Bai and Yin [39], large systems of linear equations and linear
differential equations are considered. There, the norm of the matrix ( 1√

n
X)k

plays an important role in the stability of the solutions to those systems. The
following theorem is established.

Theorem 5.17. If E(|x4
11|) <∞, then

lim sup
n→∞

∥∥∥∥∥

(
1√
n
X

)k
∥∥∥∥∥ ≤ (1 + k)σk, a.s. (5.3.1)

The proof of this theorem, after truncation and centralization, relies on
the estimation of E([tr( 1√

n
X)k( 1√

n
X∗)k]ℓ). The details are omitted. Here, we

introduce an important consequence on the spectral radius of 1√
n
X, which

plays an important role in establishing the circular law (see Chapter 11). This
was also independently proved by Geman [117] under additional restrictions
on the growth of moments of the underlying distribution.

Theorem 5.18. If E(|x4
11|) <∞, then

lim sup
n→∞

∣∣∣∣λmax

(
1√
n
X

)∣∣∣∣ ≤ σ, a.s. (5.3.2)

Theorem 5.18 follows from the fact that, for any k,

lim supn→∞

∣∣∣λmax

(
1√
n
X
)∣∣∣ = lim supn→∞

∣∣∣∣λmax

[(
1√
n
X
)k
]∣∣∣∣

1/k

≤ lim supn→∞

∥∥∥( 1√
n
X)k

∥∥∥
1/k

≤ (1 + k)1/kσ → σ

by making k → ∞.
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Remark 5.19. Checking the proof of Theorem 5.11, one finds that, after
truncation and centralization, the conditions for guaranteeing (5.3.1) are
|xjk| ≤ δn

√
n, E(|x2

jk|) ≤ σ2, and E(|x3
jk|) ≤ b, for some b > 0. This is

useful in extending the circular law to the case where the entries are not
identically distributed.

5.3.2 TW Law for the Wigner Matrix

In multivariate analysis, certain statistics are defined in terms of the extreme
eigenvalues of random matrices, which makes the limiting distribution of nor-
malized extreme eigenvalues of special interest. In [279], Tracy and Widom
derived the limiting distribution of the largest eigenvalue of a Wigner ma-
trix when the entries are Gaussian distributed. The limiting law is named
the Tracy-Widom (TW) law in RMT. We shall introduce the TW law for
the Gaussian Wigner matrix. Under the normality assumption, the density
function of the ensemble is given by

P (w)dw = Cβ exp

(
−β

4
trw∗w

)
dw

and the joint density of the eigenvalues is given by

pnβ(λ1, · · · , λn) = Cnβe
− 1

2β
∑

λ2
j

∏

j<k

|λj − λk|β , −∞ < λ1 < · · · < λn <∞,

where

β =

{
1 for GOE,
2 for GUE,
4 for GSE,

where GOE stands for Gaussian orthogonal ensemble, for which all entries
of the matrix are real normal random variables and whose distribution is
invariant under real orthogonal similarity transformations; GUE stands for
Gaussian unitary ensemble, for which all entries of the matrix are complex
normal random variables and whose distribution is invariant under complex
unitary similarity transformations; while GSE stands for Gaussian symplectic
ensemble, for which all entries of the matrix are normal quaternion random
variables and whose distribution is invariant under symplectic transforma-
tions.

It is necessary here to provide a note on quaternions for the Wigner matrix
and GSE. We define 2 × 2 matrices

e =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, and k =

(
0 i
i 0

)
.
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It is easy to verify that i2 = j2 = k2 = ijk = −e. For any real numbers
a, b, c, d, the 2 × 2 matrix of the linear combination

x = ae + bi + cj + dk =

(
u v
−v̄ ū

)

is called a quaternion, where u = a + bi and v = c + di. The quaternion
conjugate of x is defined by

x̄ = ae− bi − cj− dk =

(
ū −v
v̄ u

)

which is a complex conjugate transpose of the quaternion x. An n×n quater-
nion matrix consists of n2 quaternion entries and thus is in fact a 2n × 2n
complex matrix. By the property of quaternion conjugation, the quaternion
conjugate transpose of a quaternion matrix is the same as the usual complex
conjugate transpose of its 2n× 2n complex matrix version. By this property,
we can similarly define a quaternion Hermitian matrix by X = X∗, where
X∗ stands for quaternion conjugate transpose of the quaternion matrix X.

A GSE is a 2n × 2n Hermitian matrix X = (xij)
n
i,j=1, where xij is a

quaternion with four coefficients being iid N(0, 1/4) for i > j and the diago-

nal elements of xii = aie with ai
iid∼ N(0, 1) and the quaternions above or on

the diagonal are independent. Such a matrix is called GSE because its distri-
bution is invariant under symplectic transformations. We shall not introduce
these transformations here. Interested readers are referred to Section 2.4 of
Mehta [212].

It is well known that all eigenvalues of a GSE are real and have multiplic-
ities 2 and thus GSEs have n distinct eigenvalues.

In Tracy and Widom [279], the following theorem is proved.

Theorem 5.20. Let λn denote the largest eigenvalue of an order n GOE,
GUE, or GSE. Then

n2/3(λn − 2)
D−→ Tβ ,

where Tβ is a random variable whose distribution function Fβ is given by

F2(x) = exp

(
−
∫ ∞

x

(t− x)q2(t)dt

)
,

F1(x) = exp

(
− 1

2

∫ ∞

x

q(t)dt

)
[F2(x)]

1/2,

F4(2
−1/2x) = cosh

(
− 1

2

∫ ∞

x

q(t)dt

)
[F2(x)]

1/2,

and q(t) is the solution to the differential equation

q′′ = tq + 2q3
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(solutions to which are called Painlevé functions of type II) satisfying the
marginal condition

q(t) ∼ Ai(t), as t→ ∞
and Ai is the Airy function.

The descriptions of the Airy and the TW distribution functions are com-
plicated. For an intuitive understanding of the TW distributions, we present
a graph of their densities (see Fig. 5.7).

Fig. 5.7 The density function of Fβ for β = 1, 2, 4.

5.3.3 TW Law for a Sample Covariance Matrix

It is interesting that the normalized largest eigenvalue of the standard
Wishart matrix tends to the same TW law under the assumption of nor-
mality. The following result was established by Johnstone [168].

We first consider the real case.

Theorem 5.21. Let λmax denote the largest eigenvalue of the real Wishart
matrix W (n, Ip). Define

µn,p = (
√
n− 1 +

√
p)2,

σn,p = (
√
n− 1 +

√
p)

(
1√
n− 1

+
1√
p

)1/3

.
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Then
λmax − µn,p

σn,p

D−→W1 ∼ F1,

where F1 is the TW distribution with β = 1.

The complex Wishart case is due to Johansson [164].

Theorem 5.22. Let λmax denote the largest eigenvalue of a complex Wishart
matrix W (n, Ip). Define

µn,p = (
√
n+

√
p)2,

σn,p = (
√
n+

√
p)

(
1√
n

+
1√
p

)1/3

.

Then
λmax − µn,p

σn,p

D−→W2 ∼ F2,

where F2 is the TW distribution with β = 2.



Chapter 6

Spectrum Separation

6.1 What Is Spectrum Separation?

The results in this chapter are based on Bai and Silverstein [32, 31]. We con-

sider the matrix Bn = 1
nT1/2XnX∗

nT
1/2
n , where T

1/2
n is a Hermitian square

root of the Hermitian nonnegative definite p × p matrix Tn, with Xn and
Tn satisfying the (a.s.) assumptions of Theorem 4.1. We will investigate the
spectral properties of Bn in relation to the eigenvalues of Tn. A relationship
is expected to exist since, for nonrandom Tn, Bn can be viewed as the sam-

ple covariance matrix of n samples of the random vector T
1/2
n x1, which has

Tn for its population matrix. When n is significantly larger than p, the law
of large numbers tells us that Bn will be close to Tn with high probability.
Consider then an interval J ⊂ R+ that does not contain any eigenvalues of
Tn for all large n. For small y (to which p/n converges), it is reasonable
to expect an interval [a, b] close to J which contains no eigenvalues of Bn.
Moreover, the number of eigenvalues of Bn on one side of [a, b] should match
up with those of Tn on the same side of J . Under the assumptions on the
entries of Xn given in Theorem 5.11 with σ2 = 1, this can be proven using
the Fan Ky inequality (see Theorem A.10).

Extending the notation introduced in Theorem A.10 to eigenvalues and,
for notational convenience, defining λA

0 = ∞, suppose λTn

in
and λTn

in+1 lie,
respectively, to the right and left of J . From Theorem A.10, we have (using
the fact that the spectra of Bn and (1/n)XnX∗

nTn are identical)

λBn

in+1 ≤ λ
(1/n)XnX∗

n
1 λTn

in+1 and λBn

in
≥ λ

(1/n)XnX∗
n

p λTn

in
. (6.1.1)

From Theorem 5.11, we can, with probability 1, ensure that λ
(1/n)XnX∗

n
1

and λ
(1/n)XnX∗

n
p are as close as we please to one by making y suitably small.

Thus, an interval [a, b] does indeed exist that separates the eigenvalues of Bn

in exactly the same way the eigenvalues of Tn are split by J . Moreover, a, b
can be made arbitrarily close to the endpoints of J .

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,
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Even though the splitting of the support of F , the a.s. LSD of FBn (guar-
anteed by Theorem 4.1), is a function of y (more details will be given later),
splitting may occur regardless of whether y is small or not. Our goal is to
extend the result above on exact separation beginning with any interval [a, b]
of R+ outside the support of F . We present an example of its importance
that was the motivating force behind the pursuit of this topic. It arises from
the detection problem in array signal processing. An unknown number q of
sources emit signals onto an array of p sensors in a noise-filled environment
(q < p). If the population covariance matrix R of the vector of random val-
ues recorded from the sensors is known, then the value q can be determined
from it due to the fact that the multiplicity of the smallest eigenvalue of R,
attributed to the noise, is p− q. The matrix R is approximated by a sample
covariance matrix R̂, which, with a sufficiently large sample, will have with
high probability p − q noise eigenvalues clustering near each other and to
the left of the other eigenvalues. The problem is that for p and/or q sizable,

the number of samples needed for R̂ to adequately approximate R would be
prohibitively large. However, if for p large the number n of samples were to be
merely of the same order of magnitude as p, then, under certain conditions on
the signals and noise propagation, it is shown in Silverstein and Combettes

[268] that F R̂ would, with high probability, be close to the nonrandom LSD
F . Moreover, it can be shown that, for y sufficiently small, the support of
F will split into two parts, with mass (p − q)/p on the left and q/p on the
right. In Silverstein and Combettes [268], extensive computer simulations
were performed to demonstrate that, at the least, the proportion of sources
to sensors can be reliably estimated. It came as a surprise to find that not
only were there no eigenvalues outside the support of F (except those near
the boundary of the support) but the exact number of eigenvalues appeared
on intervals slightly larger than those within the support of F . Thus, the
simulations demonstrate that, in order to detect the number of sources in the
large dimensional case, it is not necessary for R̂ to be close to R; the number
of samples only needs to be large enough so that the support of F splits.

It is of course crucial to be able to recognize and characterize intervals
outside the support of F and to establish a correspondence with intervals
outside the support of H , the LSD of FTn . This is achieved through the
Stieltjes transforms, sF (z) and s(z) ≡ sF (z), of, respectively, F and F , where
the latter denotes the LSD of Bn ≡ (1/n)X∗

nTnXn. From Theorem 4.3, it is
conceivable and will be proven that for each z ∈ C+, s = sF (z) is a solution
to the equation

s =

∫
1

t(1 − y − yzs)− z
dH(t), (6.1.2)

which is unique in the set {s ∈ C : −(1− y)/z + ys ∈ C+}. Since the spectra
of Bn and Bn differ by |p− n| zero eigenvalues, it follows that

FB
n = (1 − (p/n))I[0,∞) + (p/n)FBn ,
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from which we get

sFB
n
(z) = − (1 − p/n)

z
+ (p/n)sFBn (z), z ∈ C

+, (6.1.3)

F = (1 − y)I[0,∞) + yF,

and

sF (z) = − (1 − y)

z
+ ysF (z), z ∈ C

+.

It follows that

sF = −z−1

∫
1

1 + tsF
dH(t), (6.1.4)

for each z ∈ C+, s = sF (z), is the unique solution in C+ to the equation

s = −
(
z − y

∫
t dH(t)

1 + ts

)−1

, (6.1.5)

and sF (z) has an inverse, explicitly given by

z(s) = zy,H(s) ≡ −1

s
+ y

∫
t dH(t)

1 + ts
. (6.1.6)

Note that this could have been derived from (4.1.2) by setting sA = −z−1.
The unique solution to (6.1.2) follows from (4.5.8).

Let F y,H denote F in order to express the dependence of the LSD of FB
n

on the limiting dimension to sample size ratio y and LSD H of the population
matrix. Then s = sF y,H (z) has inverse z = zy,H(s).

From (6.1.6), much of the analytic behavior of F can be derived (see
Silverstein and Choi [267]). This includes the continuous dependence of F
on y and H , the fact that F has a continuous density on R+, and, most
importantly for our present needs, a way of understanding the support of
F . On any closed interval outside the support of F y,H , sF y,H exists and is
increasing. Therefore, on the range of this interval, its inverse exists and is
also increasing. In Silverstein and Choi [267], the converse is shown to be
true along with some other results. We summarize the relevant facts in the
following lemma.

Lemma 6.1. (Silverstein and Choi [267]). For any c.d.f. G, let SG denote
its support and Sc

G, the complement of its support. If u ∈ Sc
F y,H , then s =

sF y,H (u) satisfies:
(1) s ∈ R\{0},
(2) −s−1 ∈ Sc

H ,
and

(3) d
dszy,H(s) > 0.

Conversely, if s satisfies (1)–(3), then u = zy,H(s) ∈ Sc
F y,H .
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Thus, by plotting zy,H(s) for s ∈ R, the range of values where it is increas-
ing yields Sc

F y,H (see Fig. 6.1).

−1.5 −1 −0.5 0 0.5

0

5

10

15

s

x

Fig. 6.1 The function z0.1,H(s) for a three-mass point H placing masses 0.2, 0.4, and
0.4 at three points 1, 3, 10. The intervals of bold lines on the vertical axes are the support
of F 0.1,H .

Of course, the supports of F and F y,H are identical on R+. The density
function of F 0.1,H is given in Fig. 6.2.

As for whether F places any mass at 0, it is shown in Silverstein and Choi
[267] that

F y,H(0) = max(0, 1 − y[1 −H(0)]),

which implies

F (0) =

{
H(0), y[1 −H(0)] ≤ 1,
1 − y−1, y[1 −H(0)] > 1.

(6.1.7)

It is appropriate at this time to state a lemma that lists all the ways
intervals in Sc

F y,H can arise with respect to the graph of zy,H(s), s ∈ R. It
also states the dependence of these intervals on y. The proof will be given in
later sections.

Lemma 6.2. (a) If (t1, t2) is contained in Sc
H with t1, t2 ∈ ∂SH and t1 > 0,

then there is a y0 > 0 for which y < y0 ⇒ there are two values s1y < s2y in
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Fig. 6.2 The density function of F 0.1,H with H defined in Fig. 6.1

[−t−1
1 ,−t−1

2 ] for which (zy,H(s1y), zy,H(s2y)) ⊂ Sc
F y,H , with endpoints lying in

∂SF y,H and zy,H(s1y) > 0. Moreover,

zy,H(si
y) → ti, as y → 0, (6.1.8)

for i = 1, 2. The endpoints vary continuously with y, shrinking down to a
point as y ↑ y0, while zy,H(s2y) − zy,H(s1y) is monotone in y.

(In the graph of zy,H(s), s1y and s2y are the local minimizer and maxi-
mizer in the interval (−1/t1,−1/t2), and zy,H(s1y), and zy,H(s2y) are the local
minimum and maximum values. As an example, notice the minimizers and
maximizers of the two curves in the middle of Fig. 6.1.)

(b) If (t3,∞) ⊂ Sc
H with 0 < t3 ∈ ∂SH , then there exists s3y ∈ [−1/t3, 0)

such that zy,H(s3y) is the largest number in SF y,H . As y decreases from ∞ to
0, (6.1.8) holds for i = 3 with convergence monotone from ∞ to t3.

(The value s3y is the rightmost minimizer of the graph zy,H(s), s < 0, and
zy,H(s3y) is the largest local minimum value. See the curve immediately to
the left of the vertical axis in Fig. 6.1.)

(c) If y[1 −H(0)] < 1 and (0, t4) ⊂ Sc
H with t4 ∈ ∂SH , then there exists

s4y ∈ (−∞,−1/t4] such that zy,H(s4y) is the smallest positive number in SF y,H ,
and (6.1.8) holds with i = 4, the convergence being monotone from 0 as y
decreases from [1 −H(0)]−1.
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(The value s4y is the leftmost local maximizer, and zy,H(s4y) is the smallest

local maximum value; i.e., the smallest point of the support of F y,H . See the
leftmost curve in Fig. 6.1.)

(d) If y[1 − H(0)] > 1, then, regardless of the existence of (0, t4) ⊂ Sc
H ,

there exists sy > 0 such that zy,H(sy) > 0 and is the smallest number in
SF y,H . It decreases from ∞ to 0 as y decreases from ∞ to [1 −H(0)]−1.

(In this case, the curve in Fig. 6.1 should have a different shape. It will
increase from −∞ to the positive value zy,H > 0 at sy and then decrease to
0 as s increases from 0 to ∞.)

(e) If H = I[0,∞) (that is, H places all mass at 0), then F = F y,I[0,∞) =
I[0,∞).

All intervals in Sc
F y,H ∩ [0,∞) arise from one of the above. Moreover,

disjoint intervals in Sc
H yield disjoint intervals in Sc

F y,H .

Thus, for interval [a, b] ⊂ Sc
F y,H ∩ R+, it is possible for sF y,H (a) to be

positive. This will occur only in case (d) of Lemma 6.2 when b < zy,H(sy).
For any other location of [a, b] in R+, it follows from Lemma 6.1 that sF y,H

is negative and
[−1/sF y,H (a),−1/sF y,H (b)] (6.1.9)

is contained in Sc
H . This interval is the proper choice of J .

The main result can now be stated.

Theorem 6.3. Assume the following.
(a) Assumptions in Theorem 5.10 hold: xij , i, j = 1, 2, ... are iid random

variables in C with Ex11 = 0, E|x11|2 = 1, and E|x11|4 <∞.
(b) p = p(n) with yn = p/n→ y > 0 as p→ ∞.
(c) For each n, T = Tn is a nonrandom p × p Hermitian nonnegative

definite matrix satisfying Hn ≡ FTn
D→ H, a c.d.f.

(d) ‖Tn‖, the spectral norm of Tn is bounded in n.

(e) Bn = (1/n)T
1/2
n XnX∗

nT
1/2
n , T

1/2
n is any Hermitian square root of Tn,

and Bn = (1/n)X∗
nTnXn, where Xn = (xij), i = 1, 2, · · · , p, j = 1, 2, · · · , n.

(f) Interval [a, b] with a > 0 lies in an open interval outside the support
of F yn,Hn for all large n.
Then:

(1) P(no eigenvalues of Bn appear in [a, b] for all large n) = 1.
(2) If y[1−H(0)] > 1, then x0, the smallest value in the support of F y,H,

is positive, and with probability one λBn
n → x0 as n→ ∞. The number x0 is

the maximum value of the function zy,H(s) for s ∈ R+.
(3) If y[1 − H(0)] ≤ 1, or y[1 − H(0)] > 1 but [a, b] is not contained

in (0, x0), then by assumption (f) and Lemma 6.1, the interval (6.1.9) is
contained in Sc

Hn
∩ R+ for all large n. For these n, let in ≥ 0 be such that

λTn

in
> −1/sF y,H (b) and λTn

in+1 < −1/sF y,H (a). (6.1.10)

Then
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P
(
λBn

in
> b and λBn

in+1 < a for all large n
)

= 1.

Remark 6.4. Conclusion (2) occurs when n < p for large n, in which case
λBn

n+1 = 0. Therefore exact separation should not be expected to occur for
[a, b] ⊂ [0, x0]. Regardless of their values, the p − n smallest eigenvalues of
Tn are essentially being converted to zero by Bn. It is worth noting that
when y[1 − H(0)] > 1 and F and (consequently) H each have at least two
nonconnected members in their support in R+, the number of eigenvalues of
Bn and Tn will match up in each respective member except the leftmost
member. Thus the conversion to zero is affecting only this member.

Remark 6.5. The assumption of nonrandomness of Tn is made only for con-
venience. Using Fubini’s theorem, Theorem 6.3 can easily be extended to
random Tn (independent of xij) as long as the limit H is nonrandom and
assumption (f) is true almost surely. At present, it is unknown whether the
boundedness of ‖Tn‖ can be relaxed.

Conclusion (1) and the results on the extreme eigenvalues of (1/n)XX∗

yield properties on the extreme eigenvalues of Bn. Notice that the interval
[a, b] can also be unbounded; that is, lim supn ‖Bn‖ stays a.s. bounded (non-
random bound). Also, when p < n and λTn

p is bounded away from 0 for all
n, we can use

λBn
p ≥ λ(1/n)XX∗

p λTn
p

to conclude that a nonrandom b > 0 exists for which a.s. λBn
p > b. Therefore

we have the following corollary.

Corollary 6.6. If ‖Tn‖ converges to the largest number in the support of H,
then ‖Bn‖ converges a.s. to the largest number in the support of F . If the
smallest eigenvalue of Tn converges to the smallest number in the support of
H and y < 1, then the smallest eigenvalue of Bn converges to the smallest
number in the support of F .

The proof of Theorem 6.3 will begin in Section 6.2 with the proof of (1). It
is achieved by showing the convergence of Stieltjes transforms at an appro-
priate rate, uniform with respect to the real part of z over certain intervals,
while the imaginary part of z converges to zero. Besides relying on standard
results on matrices, the proof requires Lemmas 2.12 and 2.13 (bounds on
moments of martingale difference sequences) as well as Lemma B.26 (an ex-
tension of Lemma 2.13 to random quadratic forms). Additional results are
given in the next section. Subsection 6.2.2 establishes a rate of convergence
of FB

n , needed in proving the convergence of the Stieltjes transforms. The
latter will be broken down into two parts (Subsections 6.2.3 and 6.2.4), while
Subsection 6.2.5 completes the proof of (1).

Conclusion (2) is proven in Section 6.3 and conclusion (3) in Section
6.4 . Both rely on (1) and on the properties of the extreme eigenvalues of
(1/n)XnX∗

n. The proof of (3) involves systematically increasing the number
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of columns of Xn, while keeping track of the movements of the eigenvalues
of the new matrices, until the limiting y is sufficiently small that the result
obtained at the beginning of the introduction can be applied.

Along the way to proving (2) and (3), Lemma 6.2 will be proven (in Section
6.3 and Subsection 6.4.3).

6.1.1 Mathematical Tools

We list in this section additional results needed to prove Theorem 6.3.
Throughout the rest of this chapter, constants appearing in inequalities are
represented byK and occasionally subscripted with variables they depend on.
They are nonrandom and may take on different values from one appearance
to the next.

The first lemma can be found in most probability textbooks, see, e.g.,
Chung [79].

Lemma 6.7. (Kolmogorov’s inequality for submartingales). If X1, . . . , Xm

is a submartingale, then, for any α > 0,

P

(
max
k≤m

Xk ≥ α

)
≤ 1

α
E(|Xm|).

Lemma 6.8. If, for all t > 0, P(|X | > t)tp ≤ K for some positive p, then
for any positive q < p,

E|X |q ≤ Kq/p

(
p

p− q

)
.

Proof. For any a > 0, we have

E|X |q =

∫ ∞

0

P(|X |q > t)dt ≤ a+K

∫ ∞

a

t−p/qdt = a+K
q

p− q
a1−p/q.

By differentiating the last expression with respect to a and setting to zero,
we find its minimum occurs when a = Kq/p. Plugging this value into the last
expression gives us the result.

Lemma 6.9. Let z ∈ C+ with v = ℑ z, A and B n × n with B Hermitian,
and r ∈ Cn. Then

∣∣tr
(
(B−zI)−1−(B+rr∗−zI)−1

)
A
∣∣ =

∣∣∣∣
r∗(B− zI)−1A(B − zI)−1r

1 + r∗(B − zI)−1r

∣∣∣∣ ≤
‖A‖
v

.

Proof. Since (B−zI)−1− (B+rr∗−zI)−1 = (B−zI)−1rr∗(B+rr∗−zI)−1,
similar to (4.5.11), we use the identity
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r∗(C + rr∗)−1 =
1

1 + r∗C−1r
r∗C−1, (6.1.11)

valid for any square C for which C and C + rr∗ are invertible, to get

∣∣tr
(
(B− zI)−1 − (B + rr∗ − zI)−1

)
A
∣∣ =

∣∣∣ tr(B−zI)−1rr∗(B−zI)−1A

1+r∗(B−zI)−1r

∣∣∣
=
∣∣∣ r

∗(B−zI)−1A(B−zI)−1r

1+r∗(B−zI)−1r

∣∣∣ ≤ ‖A‖ ‖(B−zI)−1r‖2

|1+r∗(B−zI)−1r| .

Write B =
∑
λB

i eie
∗
i , where the ei’s are the orthonormal eigenvectors of

B. Then

‖(B− zI)−1q‖2 =
∑ |e∗i q|2

|λB
i − z|2 ,

and

|1 + r∗(B− zI)−1r| ≥ ℑ r∗(B − zI)−1r = v
∑ |e∗i q|2

|λB
i − z|2 .

The result follows.

Lemma 6.10. For z = u + iv ∈ C+, let s1(z), s2(z) be Stieltjes transforms
of any two c.d.f.s, A and B n × n with A Hermitian nonnegative definite,
and r ∈ Cn. Then

(a) ‖(s1(z)A + I)−1‖ ≤ max(4‖A‖/v, 2)

(b) |trB((s1(z)A + I)−1 − (s2(z)A + I)−1|
≤ |s2(z) − s1(z)|n‖B‖ ‖A‖(max(4‖A‖/v, 2))2

(c) |r∗B(s1(z)A + I)−1r − r∗B(s2(z)A + I)−1r|
≤ |s2(z) − s1(z)|‖r‖2‖B‖‖A‖(max(4‖A‖/v, 2))2

(‖r‖ denoting the Euclidean norm on r).

Proof. Notice (b) and (c) follow easily from (a) using basic matrix prop-
erties. Using the Cauchy-Schwarz inequality, it is easy to show |ℜ s1(z)| ≤
(ℑ s1(z)/v)1/2. Then, for any positive x,

|s1(z)x+ 1|2 = (ℜ s1(z)x+ 1)2 + (ℑ s1(z))2x2

≥ (ℜ s1(z)x+ 1)2 + (ℜ s1(z))4v2x2

≥ min

(
1

4
,

v2

16x2

)
,

where the last inequality follows by considering the two cases where |ℜs1(z)x|
< 1

2 and otherwise. From this inequality, conclusion (a) follows.

Lemma 6.11. Let {Fn} be an increasing sequence of σ-fields and {Xn} a
sequence of random variables. Write Ek = E(·|Fk), E∞ = E(·|F∞), F∞ ≡∨

j Fj. If Xn → 0 a.s. and supn |Xn| is integrable, then
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lim
n→∞

max
k≤n

EkXn = 0, a.s.

Proof. Write, for integer m ≥ 1, Ym = supp≥m |Xp|. We have Ym integrable
for all m, bounded in absolute value by supn |Xn|. We will use the fact that
for integrable Y

lim
n→∞

EnY = E∞Y, a.s.

(Theorem 9.4.8 of Chung [79]). Then, by the dominated convergence theorem,
for any m and positive integer K

Z ≡ lim sup
n

max
k≤n

Ek|Xn| ≤ lim sup
n


 ∑

k≤K

Ek|Xn| + max
K≤k≤n

Ek|Xn|




≤ lim sup
n

max
K≤k≤n

EkYm = sup
K≤k<∞

EkYm a.s.

Therefore

Z ≤ lim sup
K

EKYm = lim
K→∞

EKYm = E∞Ym a.s.

Since Ym → 0 a.s. as m → ∞, we get from the dominated convergence
theorem E∞Ym → 0 a.s. Therefore we must have Z = 0 a.s. The result
follows.

Basic properties on matrices will be used throughout this chapter, the two
most common being trAB ≤ ‖A‖trB for Hermitian nonnegative definite A
and B and (6.1.11).

6.2 Proof of (1)

6.2.1 Truncation and Some Simple Facts

We begin by simplifying our assumptions. Because of assumption (d) in the
theorem we can assume ‖Tn‖ ≤ 1.

For C > 0, let yij = xijI[|xij |≤C] − ExijI[|xij |≤C], Y = (yij) and

B̃n = (1/n)T
1/2
n YnY∗

nT
1/2
n . Denote the eigenvalues of Bn and B̃n by λk

and λ̃k (in decreasing order). Since these are the squares of the k-th largest
singular values of (1/

√
n)TnXn and (1/

√
n)TnYn (respectively), we find

using Theorem A.46 that

max
k≤n

|λ1/2
k − λ̃

1/2
k | ≤ (1/

√
n)‖Xn − Yn‖.
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Since xij −yij = xijI[|xij |>C]−ExijI[|xij |>C], from Theorem 5.8 we have with
probability 1 that

lim sup
n→∞

max
k≤n

|λ1/2
k − λ̃

1/2
k | ≤ (1 +

√
y)E1/2|x11|2I[|x11|>C].

Because of assumption (a), we can make the bound above arbitrarily small
by choosing C sufficiently large. Thus, in proving Theorem 6.3, it is enough
to consider the case where the underlying variables are uniformly bounded.

In this case, the conditions in Theorem 5.9 are met. It follows then that
λmax, the largest eigenvalue of Bn, satisfies

P (λmax ≥ K) = o(n−t) (6.2.1)

for any K > (1 +
√
y)2 and any positive t.

Also, since, for square A, tr(AA∗)ℓ ≤ (trAA∗)ℓ, we get from Lemma B.26
for any ℓ ≥ 1 when x11 is bounded

E|x∗
1Ax1 − trA|2ℓ ≤ Kℓ(trAA∗)ℓ (6.2.2)

(xj denoting the j-th column of X), where Kℓ also depends on the bound of
x11. From (6.2.2), we easily get

E|x∗
1Ax1|2ℓ ≤ Kℓ((trAA∗)ℓ + |trA|2ℓ). (6.2.3)

6.2.2 A Preliminary Convergence Rate

After truncation, no assumptions need to be made on the relationship be-
tween the Xn’s for different n (that is, the entries of Xn need not come from
the same doubly infinite array). Also, variable z = u+iv will be the argument
of any Stieltjes transform.

Let sn = sn(z) = sFBn and sn = sn(z) = sFB
n
. For j = 1, 2, · · · , n, let

qj = (1/
√
p)xj , rj = (1/

√
n)T

1/2
n xj , and B(j) = Bn

(j) = Bn − rjr
∗
j . Let

yn = p/n.
Write

Bn − zI + zI =

n∑

j=1

rjr
∗
j .

Taking the inverse of Bn − zI on the right on both sides and using (6.1.11),
we find

I + z(Bn − zI)−1 =

n∑

j=1

1

1 + r∗j (B(j) − zI)−1rj
rjr

∗
j (B(j) − zI)−1.
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Taking the trace on both sides and dividing by n, we have

yn+zynsn =
1

n

n∑

j=1

r∗j (B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj
= 1− 1

n

n∑

j=1

1

1 + r∗j (B(j) − zI)−1rj
.

From (6.1.3), we see that

sn = − 1

n

n∑

j=1

1

z(1 + r∗j (B(j) − zI)−1rj)
. (6.2.4)

For each j, we have

ℑ r∗j ((1/z)B(j) − I)−1rj =
1

2i
r∗j
(
((1/z)B(j) − I)−1 − ((1/z)B(j) − I)−1

)
rj

=
v

|z|2 r∗j ((1/z)B(j) − I)−1B(j)((1/z)B(j) − I)−1rj

≥ 0.

Therefore
1

|z(1 + r∗j (B(j) − zI)−1rj)|
≤ 1

v
. (6.2.5)

Write Bn−zI−
(
−zsnTn−zI

)
=
∑n

j=1 rjr
∗
j − (−zsn)Tn. Taking inverses

and using (6.1.11) and (6.2.4), we have

(−zsnTn − zI)−1− (Bn − zI)−1

= (−zsnTn − zI)−1




n∑

j=1

rjr
∗
j − (−zsn)Tn


 (Bn − zI)−1

=

n∑

j=1

−1

z(1+r∗j(B(j)−zI)−1rj)

[
(snTn + I)−1rjr

∗
j (B(j) − zI)−1

− 1

n
(snTn + I)−1Tn(Bn − zI)−1

]
. (6.2.6)

Taking the trace and dividing by p, we find

wn = wn(z) =
1

p
tr(−zsnTn − zI)−1 − sn

=
1

n

n∑

j=1

−1

z(1 + r∗j (B(j)− zI)−1rj)
dj , (6.2.7)

where
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dj = q∗
jT

1/2
n (B(j) − zI)−1(snTn + I)−1T1/2

n qj

−(1/p)tr(snTn + I)−1Tn(Bn − zI)−1.

Since it has been shown in the proof of Theorem 4.1 that the LSD of Bn

depends only on y and H , (6.1.4) and hence (6.1.5) will follow if one proves
wn → 0. In the next step, we will do more than this. We will prove, for
v = vn ≥ n−1/17 and for any n, z = u + ivn-values whose real parts are
collected as the set Sn ⊂ (−∞,∞),

max
u∈Sn

|wn|
v5

n

→ 0, a.s. (6.2.8)

Write, for each j ≤ n, dj = d1
j + d2

j + d3
j + d4

j , where

d1
j = q∗

jT
1/2
n (B(j) − zI)−1(snTn + I)−1T1/2

n qj

−q∗
jT

1/2
n (B(j) − zI)−1(s(j)Tn + I)−1T1/2

n qj ,

d2
j = q∗

jT
1/2
n (B(j) − zI)−1(s(j)Tn + I)−1T1/2

n qj

−(1/p)tr(s(j)Tn + I)−1Tn(B(j) − zI)−1,

d3
j = (1/p)tr(s(j)Tn + I)−1Tn(B(j) − zI)−1

−(1/p)tr(s(j)Tn + I)−1Tn(Bn − zI)−1,

d4
j = (1/p)tr(s(j)Tn + I)−1Tn(Bn − zI)−1

−(1/p)tr(snTn + I)−1Tn(Bn − zI)−1,

and let s(j) = − (1−yn)
z + ynsF

B(j) (z). From Lemma 6.9, we have

max
j≤n

|sn − s(j)| ≤
1

nv
. (6.2.9)

Moreover, it is easy to verify that s(j) is the Stieltjes transform of a c.d.f., so

that |s(j)| ≤ v−1
n .

In view of (6.2.5), to prove (6.2.8), it is sufficient to show the a.s. conver-
gence of

max
j≤n, u∈Sn

|di
j |
v6

n

(6.2.10)

to zero for i = 1, 2, 3, 4.
Using ‖(A − zI)−1‖ ≤ 1/vn for any Hermitian matrix A, we get from

Lemma 6.10 (c) and (6.2.9)

|d1
j | ≤ 16

‖xj‖2

p

1

nv4
n

.
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Using (6.2.2), it follows that, for any t ≥ 1, we have for all n sufficiently
large

P

(
maxj≤n, u∈Sn

|d1
j |

v6
n
> vn

)
≤ pP

(
maxj≤n

1
p‖xj‖2 > 1

16nv
11
n

)

≤ Kt
pn

(nv11
n )t

.

The last bound is summable when t > 17/2, so we have (6.2.10)
a.s.−→ 0 when

i = 1.
Using Lemmas 6.9 and 6.10 (a), we find

v−6
n |d3

j | ≤
4

pv8
n

,

so that (6.2.10) → 0 for i = 3.
We get from Lemma 6.10 (b) and (6.2.9)

v−6
n |d4

j | ≤ 16
1

nv10
n

,

so that (6.2.10) → 0 for i = 4.
Using (6.2.2), we find, for any t ≥ 1,

E|v−6
n d2

j |2t ≤ Kt

v12t
n p2t

(trT1/2
n (B(j) − zI)−1(s(j)Tn + I)−1Tn

(s(j)Tn + I)−1(B(j) − zI)−1T1/2
n )t

=
Kt

v12t
n p2t

(tr(s(j)Tn + I)−1Tn(s(j)Tn + I)−1

(B(j) − zI)−1Tn(B(j) − zI)−1)t

(using Lemma 6.10 a) )

≤ Kt

v12t
n p2t

1

v2t
n

(tr(B(j) − zI)−1Tn(B(j) − zI)−1)t

=
Kt

(pv7
n)2t

(trTn(B(j) − zI)−1(B(j) − zI)−1)t

≤ Kt

(pv7
n)2t

(p/v2
n)t

=
Kt

(pv16
n )t

.

We have then, for any ε > 0 and t ≥ 1,

P

(
max

j≤n, u∈Sn

|v−6
n d2

j | > ε

)
≤ Kt

1

ε2t

pn

(pv16
n )t

,
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which implies that (6.2.10)
a.s.−→ 0 for i = 2 by taking t > 51. Obviously, the

estimation above remains if d2
j is replaced by di

j for all i = 1, 3, 4.

Thus we have shown, when vn ≥ n−1/17, for any positive t and all ε > 0,

P

(
max
u∈Sn

|wn(z)|v−5
n > ε

)
≤ Ktε

−2tn2−t/17. (6.2.11)

Therefore, maxu∈Sn |wn(z)|v−5
n

a.s.−→ 0 by choosing t > 51.
Moreover, for any ε > 0, replacing ε in (6.2.11) by ε/µn, we obtain

P

(
µn max

u∈Sn

|wn(z)|v−5
n > ε

)
≤ Ktε

−2tn2−t/34, (6.2.12)

where µn = n1/68 and v = vn = n−δ with δ ≤ 1/17.
We now rewrite wn totally in terms of sn. Using identity (6.1.3), we have

wn =
1

yn

(
−yn

z

∫
dHn(t)

1 + tsn

− sn − (1 − yn)

z

)

=
sn

ynz

(
−yn

sn

∫
dHn(t)

1 + tsn

− z − (1 − yn)

sn

)

=
sn

ynz

(
−z − 1

sn

+ yn

∫
t dHn(t)

1 + tsn

)
.

Let

Rn = −z − 1

sn

+ yn

∫
t dHn(t)

1 + tsn

. (6.2.13)

Then Rn = wnzyn/sn.
Returning now to F yn,Hn and F y,H , let s0n = sF yn,Hn and s0 = sF y,H .

Then s0 solves (6.1.5), its inverse is given by (6.1.6),

s0n =
1

−z + yn

∫ t dHn(t)
1+ts0

n

, (6.2.14)

and the inverse of s0n, denoted z0
n, is given by

z0
n(sn) = − 1

sn

+ yn

∫
t dHn(t)

1 + tsn

. (6.2.15)

From (6.2.15) and the inversion formula for Stieltjes transforms, it is obvious

that F yn,Hn
D→ F y,H as n → ∞. Therefore, from assumption (f), an ε >

0 exists for which [a − 2ε, b + 2ε] also satisfies (f). This interval will stay
uniformly bounded away from the boundary of the support of F yn,Hn for
all large n, so that for these n both supu∈[a−2ε,b+2ε]

d
dus

0
n(u) is bounded and

−1/s0n(u) for u ∈ [a − 2ε, b + 2ε] stays uniformly away from the support of
Hn. Therefore, for all n sufficiently large,
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sup
u∈[a−2ε,b+2ε]

(
d

du
s0n(u)

)∫
t2 dHn(t)

(1 + ts0n(u))2
≤ K. (6.2.16)

Let a′ = a − ε, b′ = b + ε. On either (−∞, a′] or [b′,∞), each collection
of functions in λ, {(λ − u)−1 : u ∈ [a, b]}, {(λ − u)−2 : u ∈ [a, b]}, forms a
uniformly bounded, equicontinuous family. It is straightforward then to show

lim
n→∞

sup
u∈[a,b]

|s0n(u) − s0(u)| = 0 (6.2.17)

and

lim
n→∞

sup
u∈[a,b]

∣∣∣∣
d

du
s0n(u) − d

du
s0(u)

∣∣∣∣ = 0 (6.2.18)

(see, e.g., Billingsley [57], problem 8, p. 17). Since, for all u ∈ [a, b], λ ∈
[a′, b′]c, and positive v,

∣∣∣∣
1

λ− (u+ iv)
− 1

λ− u

∣∣∣∣ <
v

ε2
,

we have, for any sequence of positive vn converging to 0,

lim
n→∞

sup
u∈[a,b]

|s0n(u+ ivn) − s0n(u)| = 0. (6.2.19)

Similarly

lim
n→∞

sup
u∈[a,b]

∣∣∣∣
ℑ s0n(u+ ivn)

vn
− d

du
s0n(u)

∣∣∣∣ = 0. (6.2.20)

Expressions (6.2.16), (6.2.17), (6.2.19), and (6.2.20) will be needed in the
latter part of Subsection 6.2.4.

Let s02 = ℑ s0n. From (6.2.14), we have

s02 =
vn + s02yn

∫ t2 dHn(t)
|1+ts0

n
|2∣∣∣−z + yn

∫ t dHn(t)
1+ts0

n

∣∣∣
2 . (6.2.21)

For any real u, by Lemma 6.10 a),

s02yn

∫ t2 dHn(t)
|1+ts0

n
|2 = ynℑ

(∫ t dHn(t)
1+ts0

n

)

≤ yn||Tn(I + Tns
0
n)−1|| ≤ 4yn/vn.

Applying
√

1 − a ≤ 1 − 1
2a for a ≤ 1, it follows that
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


s02yn

∫ t2 dHn(t)
|1+ts0

n
|2

vn + s02yn

∫ t2 dHn(t)
|1+ts0

n
|2




1/2

< 1 −Kv2
n (6.2.22)

for some positive constant K.
Let sn = sn1 + isn2, where sn1 = ℜ sn, sn2 = ℑ sn. We have sn satisfying

sn =
1

−z + yn

∫ t dHn(t)
1+tsn

−Rn

(6.2.23)

and

sn2 =
vn + sn2yn

∫ t2 dHn(t)
|1+ts

n
|2 + ℑRn

∣∣∣−z + yn

∫ t dHn(t)
1+ts

n
−Rn

∣∣∣
2 . (6.2.24)

From (6.2.14) and (6.2.23), we get

sn − s0n =
(sn − s0n)yn

∫ t2 dHn(t)
(1+ts

n
)(1+ts0

n
)(

−z + yn

∫ t dHn(t)
1+ts

n
−Rn

)(
−z + yn

∫ t dHn(t)
1+ts0

n

) + sns
0
nRn.

(6.2.25)
When |ℑRn| < vn, by the Cauchy-Schwarz inequality, (6.2.21), (6.2.22),

and (6.2.24), we get

∣∣∣∣∣∣∣∣

yn

∫ t2 dHn(t)
(1+ts

n
)(1+ts0

n
)(

−z + yn

∫ t dHn(t)
1+ts

n
−Rn

)(
−z + yn

∫ t dHn(t)
1+ts0

n

)

∣∣∣∣∣∣∣∣

≤




yn

∫ t2 dHn(t)
|1+ts

n
|2∣∣∣−z + yn

∫ t dHn(t)
1+ts

n
−Rn

∣∣∣
2




1/2


yn

∫ t2 dHn(t)
|1+ts0

n
|2∣∣∣−z + yn

∫ t dHn(t)
1+ts0

n

∣∣∣
2




1/2

=


 s2yn

∫ t2 dHn(t)
|1+tsn|2

vn + s2yn

∫ t2 dHn(t)
|1+ts

n
|2 + ℑRn




1/2
 s02yn

∫ t2 dHn(t)
|1+ts0

n|2

vn + s02yn

∫ t2 dHn(t)
|1+ts0

n
|2




1/2

≤


 s02yn

∫ t2 dHn(t)
|1+ts0

n
|2

vn + s02yn

∫ t2 dHn(t)
|1+ts0

n
|2




1/2

≤ 1 −Kv2
n. (6.2.26)

We claim that on the set {λmax ≤ K1}, where K1 > (1 +
√
y)2, for all

n sufficiently large, |sn| ≥ 1
2µ

−1
n vn whenever |u| ≤ µnv

−1
n . Indeed, when

u ≤ −vn or u ≥ λmax + vn,
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|sn| ≥ |ℜsn| ≥
K1 + µnv

−1
n

(K1 + µnv
−1
n )2 + v2

n

≥ 1

2µnv
−1
n

for large n. When −vn < u < λmax + vn,

|sn| ≥ |ℑsn| ≥
vn

(K1 + vn)2 + v2
n

≥ µ−1
n vn

for large n. Thus the claim is proven.
Therefore, when |u| ≤ µnv

−1
n , |wn| ≤ µ−1

n v5
n, and λmax ≤ K1, we have, for

large n, |z| ≤ 2µnv
−1
n and

|Rn| = |ynzwn/sn| ≤ Kµ2
nv

−2
n |wn| < vn.

Consequently, by (6.2.25), (6.2.26), and the fact that |zs0n| ≤ 1 +K/vn, for
all large n, we have

|sn − s0n| ≤ Kv−2
n |sns

0
nRn|

= Kv−2
n |ynzs

0
nwn| ≤ K ′v−3

n |wn| ≤ 3µ−1
n vn.

Furthermore, when z = u + ivn with |u| ≥ µnv
−1
n and λmax ≤ K1, it is

easy to verify that, for all large n, we still have

|sn − s0n| ≤ 3µ−1
n vn.

Therefore, for large n, we have

max
u∈Sn

v−1
n |sn − s0n| ≤ 3µ−1

n + 2v−2
n max

u∈Sn

(
I(|wn| > µ−1

n v5
n) + I(λmax > K1)

)
.

Thus, for these n and for any positive ε and t, from (6.2.1) and (6.2.12) we
obtain

P(v−1
n max

u∈Sn

|sn − s0n| > ε)

≤ Ktε
−t

(
µ−t

n + v−2t
n

[∑

u∈Sn

P(µnv
−5
n |wn| > 1) + P(λmax > K1)

])

≤ Ktε
−tn−t/68, (6.2.27)

where the last step follows by replacing t with 5t+102 in (6.2.12) and t with
t/68 in (6.2.1).

We now assume the n elements of Sn to be equally spaced between −√
n

and
√
n. Since, for |u1 − u2| ≤ 2n−1/2,

|sn(u1 + ivn) − sn(u2 + ivn)| ≤ 2n−1/2v−2
n ,

|s0n(u1 + ivn) − s0n(u2 + ivn)| ≤ 2n−1/2v−2
n ,
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and when |u| ≥ √
n, for large n,

|sn(u+ ivn)| ≤ 2n−1/2 + v−1
n I(λmax > K1),

|s0n(u+ ivn)| ≤ 2n−1/2,

we conclude from (6.2.27) and (6.2.1) that for these n and any positive ε and
t,

P

(
v−1

n sup
u∈R

|sn(u + ivn) − s0n(u+ ivn)| > ε

)
≤ Ktε

−tn−t/68. (6.2.28)

Let E0(·) denote expectation and Ek(·) denote conditional expectation
with respect to the σ-field generated by r1, · · · , rk. Since, for any r > 0,

Ek

(
v−r

n sup
u∈R

|sn(u+ ivn) − s0n(u+ ivn)|r
)

for k = 0, . . . , n forms a martingale, it follows (from Jensen’s inequality) that,
for any t ≥ 1, (Ek(v−r

n supu∈R
|sn(u + ivn) − s0n(u + ivn)|r))t, k = 0, . . . , n,

forms a submartingale. Therefore, for any ε > 0, t ≥ 1, and r > 0, from
Lemmas 6.7 and 6.8 and (6.2.28) with t replaced by 2rt, we have

P

(
max
k≤n

Ek

(
v−r

n sup
u∈R

|sn(u + ivn) − s0n(u+ ivn)|r
)
> ε

)

≤ ε−tE

(
v−rt

n sup
u∈R

|sn(u+ ivn) − s0n(u+ ivn)|rt

)

≤ 2ε−tK
1/2
rt n−rt/68 (6.2.29)

whenever δ ≤ 1/17. From this, it follows that with probability 1,

max
k≤n

Ek

(
v−r

n sup
u∈R

|sn(u + ivn) − s0n(u+ ivn)|r
)

→ 0. (6.2.30)

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of Bn, and write

snj = sout
nj + sin

nj , j = 1, 2,

where

sout
n2 (u+ ivn) =

1

n

∑

λj∈[a′,b′]

vn

(u− λj)2 + v2
n

.

Similarly, define

sout
02 (u+ ivn) =

∫

x∈[a′,b′]

vn

(u− x)2 + v2
n

dF yn,Hn(x) = 0.
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By (6.2.30),

max
k≤n

Ek

(
v−r

n sup
u∈R

|sn2(u+ ivn) − s02(u+ ivn)|r
)

→ 0 a.s. (6.2.31)

Noting that on either (∞, a′] or [b′,∞) the collection of functions in λ {((λ−
u)2 + v2

n)−1 : u ∈ [a, b]} forms a uniformly bounded, equicontinuous family,
we get as in (6.2.18)

sup
u∈[a,b]

v−r
n |sin

n2(u+ ivn) − sin
02(u+ ivn)|

= sup
u∈[a,b]

∣∣∣∣
∫

x∈[a′,b′]c

1

(x− u)2 + v2
n

d(FBn(x) − F yn,Hn(x))

∣∣∣∣→ 0 a.s.

Therefore, from Lemma 6.11,

max
k≤n

Ekv
−r
n sup

u∈[a,b]

|sin
n2(u+ ivn) − sin

02(u + ivn)|r → 0 a.s.

This, together with (6.2.31), implies that

max
k≤n

v−r
n sup

u∈[a,b]

Ek(sout
n2 (u+ ivn))r → 0 a.s. (6.2.32)

For any u ∈ [a, b], we have

v−1
n sout

n2 (u+ ivn)

≥
∫

[a,b]

1

(x− u)2 + v2
n

dFBn(x)

≥
∫

[a,b]∩[u−vn, u+vn]

1

(x− u)2 + v2
n

dFBn(x)

≥ 1

2v2
n

FBn([a, b] ∩ [u− vn, u+ vn]).

Therefore, by selecting uj ∈ [a, b] such that vn < uj−uj−1 and ∪[uj−vn, uj+
vn] ⊃ [a, b], it follows that

v−r
n Ek(FBn([a, b]))r

≤ v−r
n Ek


∑

j

FBn([a, b] ∩ [uj − vn, uj + vn])




r

≤ v−r
n Ek


2
∑

j

(uj − uj−1) sup
u∈[a,b]

(sout
n2 (u + ivn))




r
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≤ 2r(b− a)rv−r
n max

k≤n
Ek sup

u∈[a,b]

(sout
n2 (u + ivn))r → 0, a.s.

This shows that

max
k≤n

Ek(FBn{[a, b]})r = oa.s.(v
r
n) = oa.s.(n

−r/17).

By replacing [a, b] with the interval [a′, b′], we get

max
k≤n

Ek(FBn{[a′, b′]})r = oa.s.(v
r
n) = oa.s.(n

−r/17). (6.2.33)

6.2.3 Convergence of sn − Esn

We now restrict δ = 1/68, that is, v = vn = n−1/68. The reader should note
that the vn defined in this subsection is different from what was defined in
the last subsection, where vn ≥ n−1/17.

Our goal is to show that

sup
u∈[a,b]

nvn|sn − Esn| → 0 a.s. n→ ∞. (6.2.34)

Write D = Bn − zI, Dj = D− rjr
∗
j , and Djj = D− (rjr

∗
j + rjr

∗
j ), j 6= j.

Then sn = 1
p tr(D−1). Let us also denote

αj = r∗jD
−2
j rj − n−1tr(D−2

j Tn), aj = n−1tr(D−2
j Tn),

βj =
1

1 + r∗jD
−1
j rj

, β̄k =
1

1 + n−1tr(TnD−1
k )

, bn =
1

1 + n−1Etr(TnD−1
1 )

,

γj = r∗jD
−1
j rj − n−1E(tr(D−1

j Tn)), γ̂j = r∗jD
−1
j rj − n−1tr(D−1

j Tn).

We first derive bounds on moments of γj and γ̂j . Using (6.2.2), we find for
all ℓ ≥ 1,

E|γ̂j|2ℓ ≤ Kℓn
−2ℓE(trT1/2

n D−1
j TnD̄−1

j T1/2
n )ℓ ≤ Kℓn

−ℓv−2ℓ
n . (6.2.35)

Using Lemma 2.12 and Lemma 6.9, we have, for ℓ ≥ 1,

E|γj − γ̂j |2ℓ = E|γ1 − γ̂1|2ℓ = E

∣∣∣∣∣∣
1

n

n∑

j=2

EjtrTnD−1
1 − Ej−1trTnD−1

1

∣∣∣∣∣∣

2ℓ

= E

∣∣∣∣∣∣
1

n

n∑

j=2

EjtrTn(D−1
1 − D−1

1j ) − Ej−1trTn(D−1
1 − D−1

1j )

∣∣∣∣∣∣

2ℓ
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= E

∣∣∣∣∣∣
1

n

n∑

j=2

(Ej − Ej−1)
r∗jD

−1
1j TnD−1

1j rj

1 + r∗jD
−1
1j rj

∣∣∣∣∣∣

2ℓ

≤ Kℓ
1

n2ℓ
E




n∑

j=2

∣∣∣∣(Ej − Ej−1)
r∗jD

−1
1j TnD−1

1j rj

1 + r∗jD
−1
1j rj

∣∣∣∣
2



ℓ

≤ Kℓn
−ℓv−2ℓ

n .

Therefore
E|γj |2ℓ ≤ Kℓn

−ℓv−2ℓ
n . (6.2.36)

We next prove that bn is bounded for all n. We have bn, βk, and β̄k all
bounded in absolute value by |z|/vn (see (6.2.5)). From (6.2.4), we see that
Eβ1 = −zEsn. Using (6.2.30), we get

sup
u∈[a,b]

|E(sn(z)) − s0n(z)| = o(vn).

Since s0n is bounded for all n, u ∈ [a, b] and v, we have supu∈[a,b] |Eβ1| ≤ K.
Since bn = β1 + β1bnγ1, we get

sup
u∈[a,b]

|bn| = sup
u∈[a,b]

|Eβ1 + Eβ1bnγ1| ≤ K +K
1/2
2 v−3

n n−1/2 ≤ K.

Since |sn(u1 + ivn)−sn(u2 + ivn)| ≤ |u1−u2|v−2
n , we see that (6.2.34) will

follow from
max
u∈Sn

nvn|sn − Esn| → 0 a.s.,

where Sn now contains n2 elements, equally spaced in [a, b].
We write

Esn − sn = −1

p

n∑

k=1

(EktrD−1 − Ek−1trD
−1)

=
1

p

n∑

k=1

(Ek − Ek−1)

(
r∗kD

−2
k rk

1 + r∗kD
−1
k rk

)

=
1

p

n∑

k=1

(Ek − Ek−1)
r∗kD

−2
k rk − n−1tr(D−2

k Tn)

1 + r∗kD
−1
k rk

+
1

p

n∑

k=1

(Ek − Ek−1)
n−1tr(D−2

k Tn)(n−1trTnD−1
k − r∗kD

−1
k rk)

(1 + n−1trTnD−1
k )(1 + r∗kD

−1
k rk)

=
1

p

n∑

k=1

(Ek − Ek−1)αkβk − 1

p

n∑

k=1

(Ek − Ek−1)akγ̂kβ̄kβk

≡ W1 −W2.
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Let Fnj be the ESD of the matrix
∑

k 6=j rkr
∗
k. From Lemma A.43 and

(6.2.33), for any r, we have

max
k

Ek(Fnk([a′, b′]))r = o(n−r/17) = o(v4r
n ) a.s. (6.2.37)

Define

Bk = I(Ek−1Fnk([a′, b′]) ≤ v4
n) ∩ (Ek−1(Fnk([a′, b′]))2 ≤ v8

n)

= I(EkFnk([a′, b′]) ≤ v4
n) ∩ (Ek(Fnk([a′, b′]))2 ≤ v8

n).

By (6.2.37), we have

P

(
n⋃

k=1

[Bk = 0], i.o.

)
= 0.

Therefore, we have, for any ε > 0,

P

(
max
u∈Sn

|nvnW1| > ε, i.o.

)

≤ P

(([
max
u∈Sn

∣∣∣∣vn

n∑

k=1

(Ek − Ek−1)(αkβk)

∣∣∣∣ > ε̃

] n⋂

k=1

[Bk = 1]

)
, i.o.

)

= P

(([
max
u∈Sn

∣∣∣∣vn

n∑

k=1

(Ek − Ek−1)(αkβk)Bk

∣∣∣∣ > ε̃

] n⋂

k=1

[Bk = 1]

)
, i.o.

)

≤ P

(
max
u∈Sn

∣∣∣∣vn

n∑

k=1

(Ek − Ek−1)(αkβk)Bk

∣∣∣∣ > ε̃, i.o.

)
,

where ε̃ = infn pε/n > 0. Note that, for each u ∈ R, {(Ek −Ek−1)(αkβk)Bk}
forms a martingale difference sequence.

By Lemma 2.13, we have for each u ∈ [a, b] and ℓ ≥ 1,

E

∣∣∣∣∣vn

n∑

k=1

(Ek − Ek−1)(αkβk)Bk

∣∣∣∣∣

2ℓ

≤ Kℓ


E

(
n∑

k=1

Ek−1|vn(αkβk)Bk|2
)ℓ

+

n∑

k=1

E|vn(αkβk)Bk|2ℓ




≤ Kℓ


E

(
n∑

k=1

Ek−1|vn(αkβk)Bk|2
)ℓ

+
n∑

k=1

E|z|2ℓ|αk|2ℓBk




≤ Kℓ


E

(
n∑

k=1

Ek−1|vn(αkβk)Bk|2
)ℓ

+ n1−ℓv−4ℓ
n


 . (6.2.38)
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Note that when |bn| ≤ K0, by |αkβk| ≤ v−1
n + (p/n)|z|v−3

n ,

|αkβk|2 ≤ 4K2
0 |αk|2 +Kv−6

n I(|βk| ≥ 2K0)

≤ 4K2
0 |αk|2 +Kv−6

n I(|γk| ≥ 1/(2K0)).

On the other hand, by (6.2.2),

Ek−1|αkBk|2

≤ KEk−1n
−2Bktr(D−2

k TnD
−2

k Tn)

≤ Kn−2BkEk−1tr(D
−2
k D

−2

k ).

Let λkj denote the j-th largest eigenvalue of
∑

j 6=k rjr
∗
j . By (6.2.37), we

have

n∑

k=1

BkEk−1trD
−2
k D

−2

k

=

n∑

k=1

BkEk−1


 ∑

λkj /∈[a′b′]

1

((λkj − u)2 + v2
n)2

+
∑

λkj∈[a′b′]

1

((λkj − u)2 + v2
n)2




≤
n∑

k=1

(pε−4 +Bkv
−4
n Ek−1pFnk([a′, b′])) ≤ Kn2.

Substituting the two estimates above into (6.2.38) and applying (6.2.36), for
any ℓ > 2 and t > 2ℓ, we have

P

(
max
u∈Sn

∣∣∣∣∣vn

n∑

k=1

(Ek − Ek−1)(αkβk)Bk

∣∣∣∣∣ > ε̃

)

≤ Kn2


E

(
v2

n + v−4
n

n∑

k=1

Ek−1I(|γk| ≥ 1/(2K0))

)ℓ

+ n1−ℓv1−4ℓ
n




≤ Kn2

[
v2ℓ

n + v−4ℓ
n nℓ−1

n∑

k=1

P(|γk| ≥ 1/(2K0))

]

≤ Kn2

[
v2ℓ

n + v−4ℓ
n nℓ−1

n∑

k=1

E|γk|2t

]

≤ Kℓ,ε̃n
2−ℓ/34,

which is summable when ℓ > 102. Therefore,

max
u∈Sn

|W1| = o(1/(nvn)) a.s. (6.2.39)

We can proceed the same way for the proof of
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max
u∈Sn

|W2| = o(1/(nvn)) a.s. (6.2.40)

It is straightforward to show that |akβ̄k| ≤ v−1
n . Again, with K0 a bound

on bn, we have

|akγ̂kβ̄kβk|2 ≤ (2K0)
4|akγ̂k|2 +Kv−4

n |γ̂k|2I(|β̄kβk| ≥ (2K0)
2)

≤ (2K0)
4|akγ̂k|2 +Kv−4

n |γ̂k|2I(|γk| or |γ̂k| ≥ 1/(4K0)).

We have, by (6.2.2),

n∑

k=1

Ek−1v
2
n|akγ̂k|2Bk

≤ Kv2
nn

−2
n∑

k=1

Ek−1Bk|ak|2trD−1
k D

−1

k

≤ Kv2
nn

−4
n∑

k=1

Ek−1Bkp
∑

j

1

((λkj − u)2 + v2
n)2

∑

k

1

(λkj − u)2 + v2
n

≤ Kn−3v2
n

n∑

k=1

Ek−1Bk(pε−4 + v−4
n pFnk([a′, b′]))(pε−2 + v−2

n pFnk([a′, b′]))

≤ Kv2
n.

By noting |ak| ≤ (p/n)v−2
n and using (6.2.36), we have, for ℓ ≥ 2,

n∑

k=1

E|vn(akγkβ̄kβk)Bk|2ℓ ≤ Kv−6ℓ
n

n∑

k=1

E|γk|2ℓ ≤ Kv−8ℓ
n n1−ℓ ≤ Kv2ℓ

n .

Therefore, by Lemma 2.13, (6.2.35), and (6.2.36), we have, for all ℓ ≥ 2,

n2E

∣∣∣∣∣vn

n∑

k=1

(Ek − Ek−1)(akγ̂kβ̄kβk)Bk

∣∣∣∣∣

2ℓ

≤ Kn2

(
E

( n∑

k=1

Ek−1|vn(akγ̂kβ̄kβk)Bk|2
)ℓ

+

n∑

k=1

E|vn(akγ̂kβ̄kβk)Bk|2ℓ

)

≤ Kn2


E

(
v2

n + v−4
n

n∑

k=1

Ek−1|γ̂k|2I(|γk| or |γ̄k| ≥ 1/(4K0))

)ℓ

+ v2ℓ
n




≤ Kn2

(
v2ℓ

n + v−4ℓ
n nℓ−1

n∑

k=1

E|γ̂k|2ℓI(|γk| or |γ̂k| ≥ 1/(4K0))

)

≤ Kn2

(
v2ℓ

n + v−4ℓ
n nℓ−1

n∑

k=1

E|γ̂k|2ℓ[|γk|2ℓ + |γ̂k|2ℓ]

)
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≤ Kn2

(
v2ℓ

n + v−4ℓ
n nℓ−1

n∑

k=1

(E|γ̂k|2ℓ|γk|2ℓ + E|γ̂k|4ℓ)

)

≤ Kn2
(
v2ℓ

n + v−8ℓ
n n−ℓ

)

≤ Kn2v2ℓ
n = Kn2−ℓ/34.

Then, (6.2.40) follows if we choose ℓ > 102.
Combining (6.2.39) and (6.2.40), then (6.2.34) follows.

6.2.4 Convergence of the Expected Value

Our next goal is to show that, for v = n−1/68,

sup
u∈[a,b]

|Esn − s0n| = O(1/n). (6.2.41)

We begin by deriving an identity similar to (6.2.7). Write

D− (−zEsn(z)Tn − zI) =

n∑

j=1

rjr
∗
j − (−zEsn(z))Tn.

Taking first inverses and then the expected value, we get

(−zEsnTn − zI)−1 − ED−1

= (−zEsnTn − zI)−1E



( n∑

j=1

rjr
∗
j − (−zEsn)Tn

)
D−1




= −z−1
n∑

j=1

Eβj

[
(EsnTn + I)−1rjr

∗
jD

−1
j − 1

n
(EsnTn + I)−1TnED−1

]

= −z−1nEβ1

[
(EsnTn + I)−1r1r

∗
1D

−1
1 − 1

n
(EsnTn + I)−1TnED−1

]
.

Taking the trace on both sides and dividing by −n/z, we get

yn

∫
dHn(t)

1 + tEsn

+ zynE(sn(z))

= Eβ1

[
r∗1D

−1
1 (EsnTn + I)−1r1 −

1

n
Etr(EsnTn + I)−1TnD−1

]
.(6.2.42)

We first show



6.2 Proof of (1) 145

sup
u∈[a,b]

∣∣∣∣Etr(EsnTn + I)−1TnD−1−Etr(EsnTn + I)−1TnD−1
1

∣∣∣∣ ≤ K. (6.2.43)

From (6.2.37), we get

sup
u∈[a,b]

E(trD−1
1 D

−1

1 )2 ≤ E(pε−2 + v−2
n pFn1([a

′, b′]))2 ≤ Kn2 (6.2.44)

and

sup
u∈[a,b]

EtrD−2
1 D

−2

1 ≤ E(pε−4 + v−4
n pFn1([a

′, b′])) ≤ Kn. (6.2.45)

Also, because of (6.2.29) and the fact that −1/s0n(z) stays uniformly away
from the eigenvalues of Tn for all u ∈ [a, b], we must have

sup
u∈[a,b]

‖(EsnTn + I)−1‖ ≤ K. (6.2.46)

Therefore, from (6.2.3), (6.2.36), (6.2.44)–(6.2.46), and the fact that
supu∈[a,b] |bn| is bounded, we get

left-hand side of (6.2.43) = sup
u∈[a,b]

|Eβ1r
∗
1D

−1
1 (EsnTn + I)−1TnD−1

1 r1|

≤ sup
u∈[a,b]

(|bn| · |Er∗1D
−1
1 (EsnTn + I)−1TnD−1

1 r1|

+E|β1bnγ1r
∗
1D

−1
1 (EsnTn + I)−1TnD−1

1 r1|)
≤ K sup

u∈[a,b]

(n−1|EtrT1/2
n D−1

1 (EsnTn + I)−1TnD−1
1 T1/2

n |

+v−1
n (E|γ1|2)1/2(E|r∗1D−1

1 (EsnTn + I)−1TnD−1
1 r1|2)1/2)

≤ K sup
u∈[a,b]

(n−1EtrD−1
1 D

−1

1 + v−2
n n−3/2(EtrD−2

1 D
−2

1 + E(trD−1
1 D

−1

1 )2)1/2)

≤ K.

Thus (6.2.43) holds.
From (6.2.2), (6.2.44), and (6.2.46), we get

supu∈[a,b] E|r∗1D−1
1 (EsnTn + I)−1r1 − n−1trD−1

1 (EsnTn + I)−1Tn|2

≤ Kn−2 sup
u∈[a,b]

EtrD−1
1 D

−1

1 ≤ Kn−1. (6.2.47)

Next, we show

sup
u∈[a,b]

E|tr(EsnTn + I)−1TnD−1
1 − Etr(EsnTn + I)−1TnD−1

1 |2 ≤ Kn.

(6.2.48)
Let
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β1j =
1

1 + r∗jD
−1
1j rj

,

b1n =
1

1 + n−1Etr(TnD−1
12 )

,

γ1j = r∗jD
−1
1j rj − n−1E(tr(D−1

1j Tn)).

It is easy to see that these three quantities are the same as their counterparts
in the previous section with n replaced by n−1 and z replaced by (n/(n−1))z.
Thus, by deriving the bounds on the quantities in the previous section with
an interval slightly larger than [a, b] (still satisfying assumption (f)), we see
that γ1j satisfies the same bound as in (6.2.36) and that supu∈[a,b] |Eβ1j | and
supu∈[a,b] |b1n| are both bounded.

It is also clear that the bounds in (6.2.37), (6.2.44), and (6.2.45) hold when
two columns of X are removed. Moreover, with Fn12 denoting the ESD of∑

j 6=1,2 rjr
∗
j , we get

supu∈[a,b] E(trD−1
12 D

−1

12 )4 ≤ E(pε−2 + v−2
n pFn12([a

′, b′]))4

≤ Kn4(ε−8 + v−8
n E(Fn12([a

′, b′]))2) ≤ Kn4

and

sup
u∈[a,b]

E(trD−2
12 D

−2

12 )2 ≤ E(pε−4 + v−4
n pFn12([a

′, b′]))2 ≤ Kn2.

With these facts and (6.2.3), for any nonrandom p × p matrix A with
bounded norm, we have

sup
u∈[a,b]

E|trAD−1
1 − EtrAD−1

1 |2 = sup
u∈[a,b]

n∑

j=2

E|(Ej − Ej−1)trAD−1
1 |2

≤ 2 sup
u∈[a,b]

n∑

j=2

E|β1jr
∗
jD

−1
1j AD−1

1j rj |2

= 2(n− 1) sup
u∈[a,b]

E|(b1n − β12b1nγ12)r
∗
2D

−1
12 AD−1

12 r2|2

≤ Kn sup
u∈[a,b]

(
E|r∗2D−1

12 AD−1
12 r2|2 + v−2

n (E|γ12|4E|r∗2D−1
12 AD−1

12 r2|4)1/2
)

≤ Kn−1 sup
u∈[a,b]

[
E(trD−2

12 D
−2

12 ) + E(trD−1
12 D

−1

12 )2

+n−1v−4
n (Etr(D−2

12 D
−2

12 )2 + E(trD−1
12 D

−1

12 )4)1/2

]

≤ Kn−1(n2 + nv−4
n ) ≤ Kn.
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Thus, using (6.2.46), when A = (EsnTn + I)−1Tn, we get (6.2.48). More-
over, when A = I, we have just shown

sup
u∈[a,b]

E|γ1 − γ̂1|2 ≤ Kn−1.

Also, from (6.2.2) and (6.2.44), when ℓ = 1,

sup
u∈[a,b]

E|γ̂1|2 ≤ sup
u∈[a,b]

Kn−2EtrD−1
1 D

−1

1 ≤ Kn−1.

Therefore
sup

u∈[a,b]

E|γ1|2 ≤ Kn−1. (6.2.49)

From (6.2.36), (6.2.42), (6.2.43), and (6.2.47)–(6.2.49), we get

sup
u∈[a,b]

∣∣∣∣yn

∫
dHn(t)

1 + tEsn

+ zynE(sn)

∣∣∣∣

≤ Kn−1 + sup
u∈[a,b]

∣∣∣∣Eβ1

[
r∗1D

−1
1 (EsnTn + I)−1r1

−(1/n)Etr(EsnTn + I)−1TnD−1
1

]∣∣∣∣

= Kn−1 + sup
u∈[a,b]

|bn|2
∣∣∣∣E(γ1 − β1γ

2
1)

[
r∗1D

−1
1 (EsnTn + I)−1r1

−(1/n)Etr(EsnTn + I)−1TnD−1
1

]∣∣∣∣

≤ K

(
n−1 + sup

u∈[a,b]

(E|γ1|2 + v−2
n E|γ1|4)1/2n−1/2

)

≤ K(n−1 + (n−1 + v−2
n n−2v−4

n )1/2n−1/2) ≤ Kn−1.

As in Subsection 6.2.2, we let

wn = −1

z

∫
dHn(t)

1 + tEsn(z)
− E(sn(z))

and

Rn = −z − 1

Esn

+ yn

∫
tdHn(t)

1 + tEsn

.

Then
sup

u∈[a,b]

|wn| ≤ Kn−1,

Rn = wnzyn/Esn, and equation (6.2.25) together with the steps leading to
(6.2.26) hold with sn replaced with its expected value. From (6.2.15) it is
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clear that s0n must be uniformly bounded away from 0 for all u ∈ [a, b] and
all n. From (6.2.30), we see that Esn must also satisfy this same property.
Therefore

sup
u∈[a,b]

|Rn| ≤ Kn−1.

Using (6.2.16), (6.2.17), (6.2.19), and (6.2.20), it follows that
supu∈[a,b] |v−1

n s0n2| is bounded in n and hence

sup
u∈[a,b]

s0n2yn

∫ t2 dHn(t)
|1+ts0

n
|2

vn + s0n2yn

∫ t2 dHn(t)
|1+ts0

n
|2

is bounded away from 1 for all n. Therefore, we get for all n sufficiently large,

sup
u∈[a,b]

|Esn − s0n| ≤ Kyn|zs0nwn| ≤ Kn−1,

which is (6.2.41).

6.2.5 Completing the Proof

From the last two sections, we get

sup
u∈[a,b]

|sn(z) − s0n(z)| = o(1/(nvn)) a.s. (6.2.50)

when vn = n−1/68. It is clear from the arguments used in Subsections 6.2.2–
6.2.4 that (6.2.50) is true when the imaginary part of z is replaced by a
constant multiple of vn. In fact, we have

max
k∈{1,2,···,34}

sup
u∈[a,b]

|sn(u+ i
√
kvn)−s0n(u+ i

√
kvn)| = o(1/(nvn)) = o(v67

n ) a.s.

We take the imaginary part and get

max
k∈{1,2,···,34}

sup
u∈[a,b]

∣∣∣∣
∫
d(FB

n(λ) − F yn,Hn(λ))

(u− λ)2 + kv2
n

∣∣∣∣ = o(v66
n ) a.s.

Upon taking differences, we find

max
k1 6=k2

sup
u∈[a,b]

∣∣∣∣
∫

v2
n d(F

B
n(λ) − F yn,Hn(λ))

((u − λ)2 + k1v2
n)((u − λ)2 + k2v2

n)

∣∣∣∣ = o(v66
n ) a.s.

...
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sup
u∈[a,b]

∣∣∣∣
∫

(v2
n)33 d(FB

n(λ) − F yn,Hn(λ))

((u − λ)2 + v2
n)((u − λ)2 + 2v2

n) · · · ((u− λ)2 + 34v2
n)

∣∣∣∣ = o(v66
n ), a.s.

Thus

sup
u∈[a,b]

∣∣∣∣
∫

d(FB
n(λ) − F yn,Hn(λ))

((u− λ)2 + v2
n)((u − λ)2 + 2v2

n) · · · ((u − λ)2 + 34v2
n)

∣∣∣∣ = o(1) a.s.

We split up the integral and get

sup
u∈[a,b]

∣∣∣∣
∫

I[a′,b′]c d(F
B

n(λ) − F yn,Hn(λ))

((u− λ)2 + v2
n)((u − λ)2 + 2v2

n) · · · ((u − λ)2 + 34v2
n)

(6.2.51)

+
∑

λj∈[a′,b′]

v68
n

((u − λj)2 + v2
n)((u− λj)2 + 2v2

n) · · · ((u− λj)2 + 34v2
n)

∣∣∣∣=o(1), a.s.

Now if, for each term in a subsequence satisfying (6.2.51), there is at least
one eigenvalue contained in [a, b], then the sum in (6.2.51), with u evaluated
at these eigenvalues, will be uniformly bounded away from 0. Thus, at these
same u values, the integral in (6.2.51) must also stay uniformly bounded away
from 0. But the integral converges to zero a.s. since the integrand is bounded
and, with probability 1, both FB

n and F yn,Hn converge weakly to the same
limit having no mass on {a′, b′}. Thus, with probability 1, no eigenvalues of
Bn will appear in [a, b] for all n sufficiently large. This completes the proof
of (1).

6.3 Proof of (2)

Throughout the remainder of this chapter, there will be frequent referrals to
Theorem 5.11 whenever the limiting properties of the extreme eigenvalues of
(1/n)XnX∗

n are needed, even though the assumptions of the theorem are not
necessarily met. However, it can be seen from the proof of Theorem 5.10 that
the results are true for our Xn, namely, the Xn’s need not come from one
doubly infinite array of random variables.

We now begin the proof of (2). We see first off that x0 must coincide with
the boundary point in (d) of Lemma 6.2. Most of (d) will be proven in the
following lemma.

Lemma 6.12. If y[1 −H(0)] > 1, then the smallest value in the support of
F yn,Hn is positive for all large n, and it converges to the smallest value, also
positive, in the support of F y,H as n→ ∞.

Proof. Assume y[1 −H(0)] > 1. Write

zy,H(s) =
1

s

(
−1 + y

∫
ts

1 + ts
dH(t)

)
,
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z′y,H(s) =
1

s2

(
1 − y

∫ (
ts

1 + ts

)2

dH(t)

)
.

As s increases in R+, the two integrals increase from 0 to 1−H(0), which
implies zy,H(s) increases from −∞ to a maximum value and decreases to
zero. Let ŝ denote the number where the maximum occurs. Then, by Lemma
6.1, x0 ≡ zy,H(ŝ) is the smallest value in the support of F y,H . We see that ŝ
is sy in (d) of Lemma 6.2.

We have

y

∫ (
tŝ

1 + tŝ

)2

dH(t) = 1.

From this it is easy to verify

zy,H(ŝ) = y

∫
t

(1 + tŝ)2
dH(t).

Therefore zy,H(ŝ) > 0.
Since lim supnHn(0) ≤ H(0), we have yn(1 − Hn(0)) > 1 for all large

n. We consider now only these n and we let ŝn denote the value where the
maximum of zyn,Hn(s) occurs in R+. We see that zyn,Hn(ŝn) is the smallest
positive value in the support of F yn,Hn . It is clear that, for all positive s,
zyn,Hn(s) → zy,H(s) and z′yn,Hn

(s) → z′y,H(s) as n → ∞ uniformly on any

closed subset of R+. Thus, for any positive s1, s2 such that s1 < ŝ < s2, we
have, for all large n,

z′yn,Hn
(s1) > 0 > z′yn,Hn

(s2),

which implies s1 < ŝn < s2. Therefore, ŝn → ŝ and, in turn, zyn,Hn(ŝn) → x0

as n→ ∞. This completes the proof of the lemma.
We now prove that when y[1 −H(0)] > 1,

λBn
n

a.s.−→ x0 as n→ ∞. (6.3.1)

Assume first that Tn is nonsingular with λTn
n uniformly bounded away

from 0. Using Theorem A.10, we find

λ
(1/n)XnX∗

n
n ≤ λBn

n λ
T−1

n
1 = λBn

n

(
λTn

n

)−1
.

Since by Theorem 5.11 λ
(1/n)XnX∗

n
n

a.s.−→ (1 − √
y)2 as n → ∞, we conclude

that lim infn λ
Bn
n > 0 a.s. Since, by Lemma 6.12, the interval [a, b] in (1) can

be made arbitrarily close to (0, x0), we get

lim inf
n

λBn
n ≥ x0 a.s.



6.4 Proof of (3) 151

But since FBn
D→ F a.s., we must have

lim sup
n

λBn
n ≤ x0 a.s.

Thus we get (6.3.1).
For general Tn, let, for ε > 0 suitably small, Tε

n denote the matrix by
replacing all eigenvalues of Tn less than ε with ε. Let Hε

n = FTε
n = I[ε,∞)Hn.

Then Hε
n

D→ Hε ≡ I[ε,∞)H . Let Bε
n denote the sample covariance matrix

corresponding to Tε
n.

Let ŝε denote the value where the maximum of zy,Hε(s) occurs on R+.
Then

λ
Bε

n
n

a.s.−→ zy,Hε(ŝε) as n→ ∞. (6.3.2)

Using Theorem A.46, we have

|λBε
n

n − λBn
n | =

∣∣∣λ(1/n)X∗
nTε

nXn
n − λ

(1/n)X∗
nTnXn

n

∣∣∣
≤ ‖(1/n)X∗

n(Tε
n − Tn)Xn‖ ≤ ‖(1/n)XnX∗

n‖ε. (6.3.3)

Since Hε D→ H as ε→ 0, we get from Lemma 6.12

zy,Hε(ŝε) → zy,H(ŝ) = x0 as ε→ 0. (6.3.4)

Therefore, for ε sufficiently small, we see from (6.3.2)–(6.3.4) and the a.s.

convergence of λ
(1/n)XnX∗

n
1 (Theorem 5.11) that lim infn λ

Bn
n > 0 a.s., which,

as above, implies (6.3.1).

6.4 Proof of (3)

6.4.1 Convergence of a Random Quadratic Form

The goal of this section is to prove a limiting result on a random quadratic
form involving the resolvent of Bn.

Lemma 6.13. Let u be any point in [a, b] and s = sF y,H (u). Let x̃ ∈ Cp be

distributed the same as x1 and independent of Xn. Set r = (1/
√
n)T

1/2
n x̃.

Then
r∗(uI− Bn)−1r

a.s.−→ 1 + 1/(us) as n→ ∞. (6.4.1)

Proof. Let Bn+1
n denote (1/n)T

1/2
n Xn+1

n Xn+1
n

∗
T

1/2
n , where Xn+1

n ≡ [Xn, x̃],
and Bn+1

n = (1/n)Xn+1
n

∗
TnXn+1

n . Let z = u + ivn, vn > 0. For Hermitian
A, let sA denote the Stieltjes transform of the ESD of A. Using Lemma 6.9,
we have
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|sBn(z) − sBn+1
n

(z)| ≤ 1

nvn
.

From (6.1.3) and its equivalent

sBn+1
n

(z) = −1 − p/(n+ 1)

z
+ (p/(n+ 1))sBn+1

n
(z)

for Bn+1
n and Bn+1

n , we conclude that

|sB
n
(z) − sBn+1

n
(z)| ≤ (2yn + 1)

v(n+ 1)
. (6.4.2)

For j = 1, 2, · · · , n + 1, let rj = (1/
√
n)T

1/2
n xj (xj denoting the j-th

column of Xn+1
n ) and B(j) = Bn+1

n − rjr
∗
j . Notice B(n+1) = Bn.

For Bn+1
n , (6.2.4) becomes

sBn+1
n

(z) = − 1

n+ 1

n+1∑

j=1

1

z(1 + r∗j (B(j) − zI)−1rj)
. (6.4.3)

Let

µn(z) = − 1

z(1 + r∗(Bn − zI)−1r)
,

where r = rn+1 = (1/
√
n)T

1/2
n x̃.

Our present goal is to show that for any i ≤ n+1, ε > 0, z = zn = u+ ivn

with vn = n−δ, δ ∈ [0, 1/3), and ℓ > 1, we have for all n sufficiently large

P(|sB
n
(z) − µn(z)| > ε) ≤ K|z|2ℓε−2ℓv−6ℓ

n n−ℓ+1. (6.4.4)

We have from (6.4.3)

sBn+1
n

(z) − µn(z)

= − 1

(n+ 1)z

n∑

j=1

(
1

1 + r∗j (B(j) − zI)−1rj
− 1

1 + r∗(Bn − zI)−1r

)

= − 1

(n+ 1)z

n∑

j=1

r∗(Bn − zI)−1r − r∗j (B(j) − zI)−1rj

(1 + r∗(Bn − zI)−1r)(1 + r∗j (B(j) − zI)−1rj)
.

Using (6.2.5), we find

|sBn+1
n

(z) − µn(z)| ≤ |z|
v2

n

max
j≤n

|r∗(Bn − zI)−1r − r∗j (B(j) − zI)−1rj |. (6.4.5)

Write

r∗(Bn − zI)−1r − r∗j (B(j) − zI)−1rj
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= r∗(Bn − zI)−1r − (1/n)tr(Bn − zI)−1Tn

−
(
r∗j (B(j) − zI)−1rj − (1/n)tr(B(j) − zI)−1Tn

)

+(1/n)tr((Bn − zI)−1 − (B(j) − zI)−1)Tn.

Using Lemma 6.9, we find

(1/n)|tr((Bn − zI)−1 − (B(j) − zI)−1)Tn| ≤ 2/(nvn). (6.4.6)

Using (6.2.2), we have, for any j ≤ n+ 1 and ℓ ≥ 1,

E|r∗j (B(j) − zI)−1rj − (1/n)trT1/2
n (B(j) − zI)−1T1/2

n |2ℓ

≤ Kn−ℓv−2ℓ
n . (6.4.7)

Therefore, from (6.4.2) and (6.4.5)–(6.4.7), we get (6.4.4).
Setting vn = n−1/17, from (6.2.30) we have

sB
n
(u+ ivn) − sF yn,Hn (u+ ivn)

a.s.−→ 0 as n→ ∞.

Since sF yn,Hn (u+ ivn) → s as n→ ∞, we have

sB
n
(u+ ivn)

a.s.−→ s as n→ ∞.

When ℓ > 34/11, the bound in (6.4.4) is summable and we conclude that

|µn(zn) − s| a.s.−→ 0 as n→ ∞.

Therefore

|r∗(zI− Bn)−1r− (1 + (1/us))| a.s.−→ 0 as n→ ∞. (6.4.8)

Let dn denote the distance between u and the nearest eigenvalue of Bn.
Then, because of (1), there exists a nonrandom d > 0 such that, almost
surely, lim infn dn ≥ d.

When dn > 0,

|r∗(zI− Bn)−1r − r∗(uI − Bn)−1r| ≤ vn

d2
n

x̃∗x̃
n
. (6.4.9)

Using (6.2.2), we have for any ε > 0 and ℓ = 3,

P(|(1/p)x̃∗x̃ − 1| > ε) ≤ K
1

ε3
p−3/2,

which gives us
|(1/p)x̃∗x̃− 1| a.s.−→ 0 as n→ ∞. (6.4.10)

Therefore, from (6.4.8)–(6.4.10), we get (6.4.1).
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6.4.2 spread of eigenvaluesSpread of Eigenvalues

In this subsection, we assume the sequence {Sn} of Hermitian matrices is
arbitrary except that their eigenvalues lie in the fixed interval [d, e]. To sim-
plify the notation, we arrange the eigenvalues of Sn in nondecreasing order,
denoting them as s1 ≤ · · · ≤ sp. Our goal is to prove the following lemma.

Lemma 6.14. For any ε > 0, we have for all M sufficiently large

lim sup
n→∞

(
λ

(1/n)Y∗
nSnYn

1 − λ
(1/n)Y∗

nSnYn

[n/M]

)
< ε a.s., (6.4.11)

where Yn is p × [n/M ] containing iid elements distributed the same as x11

([ · ] denotes the greatest integer function). Moreover, the size of M depends
only on ε and the endpoints d, e.

Proof. We first verify a basic inequality.

Lemma 6.15. Suppose A and B are p× p Hermitian matrices. Then

λA+B
1 − λA+B

p ≤ λA
1 − λA

p + λB
1 − λB

p .

Proof. Let unit vectors x,y ∈ Cp be such that x∗(A + B)x = λA+B
1 and

y∗(A + B)y = λA+B
p . Then

λA+B
1 − λA+B

p = x∗Ax + x∗Bx− (y∗Ay + y∗By) ≤ λA
1 + λB

1 − λA
p − λB

p .

We continue now with the proof of Lemma 6.14. Since each Sn can be
written as the difference between two nonnegative Hermitian matrices, be-
cause of Lemma 6.15 we may as well assume d ≥ 0. Choose any positive α so
that

e(e− d)

α
<

ε

24y
. (6.4.12)

Choose any positive integer L1 satisfying

α

L1
(1 +

√
y)2 <

ε

3
. (6.4.13)

Choose any M > 1 so that

My

L1
> 1 and 4

√
yL1

M
e <

ε

3
. (6.4.14)

Let

L2 =

[
My

L1

]
+ 1. (6.4.15)

Assume p ≥ L1L2. For k = 1, 2, · · · , L1, let
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ℓk = {s[(k−1)p/L1]+1, · · · , s[kp/L1]},
L1 = {ℓk : s[kp/L1] − s[(k−1)p/L1]+1 ≤ α/L1}.

For any ℓk /∈ L1, define for j = 1, 2, · · · , L2,

ℓk j = {s[(k−1)p/L1+(j−1)p/(L1L2)]+1, · · · , s[(k−1)p/L1+jp/(L1L2)]},

and let L2 be the collection of all the latter sets. Notice that the number of
elements in L2 is bounded by L1L2(e− d)/α.

For ℓ ∈ L1 ∪ L2, write

Sn,ℓ =
∑

si∈ℓ

sieie
∗
i (ei the unit eigenvector of Sn corresponding to si),

An,ℓ =
∑

si∈ℓ

eie
∗
i , sℓ = max

i
{si ∈ ℓ}, and sℓ = min

i
{si ∈ ℓ}.

We have
sℓY

∗An,ℓY ≤ Y∗Sn,ℓY ≤ sℓY
∗An,ℓY, (6.4.16)

where “≤” denotes partial ordering on Hermitian matrices (that is, A ≤ B
⇐⇒ B− A is nonnegative definite).

Using Lemma 6.15 and (6.4.16), we have

λ
(1/n)Y∗

nSnYn

1 − λ
(1/n)Y∗

nSnYn

[n/M ]

≤
∑

ℓ

[
λ

(1/n)Y∗
nSn,ℓYn

1 − λ
(1/n)Y∗

nSn,ℓYn

[n/M ]

]

≤
∑

ℓ

[
sℓλ

(1/n)Y∗
nAn,ℓYn

1 − sℓλ
(1/n)Y∗

nAn,ℓYn

[n/M ]

]

=
∑

ℓ

sℓ

(
λ

(1/n)Y∗
nAn,ℓYn

1 − λ
(1/n)Y∗

nAn,ℓYn

[n/M ]

)
+
∑

ℓ

(sℓ − sℓ)λ
(1/n)Y∗

nAn,ℓYn

[n/M ] .

From (6.4.15), we have

lim
n→∞

[
p

L1L2

]

[
n
M

] =
My

L1L2
< 1. (6.4.17)

Therefore, for ℓ ∈ L2, we have for all n sufficiently large

rankAn,ℓ ≤
[

p

L1L2

]
+ 1 <

[ n
M

]
,

where we have used the fact that, for a, r > 0, [a + r] − [a] = [r] or [r] + 1.

This implies λ
(1/n)Y∗

nAn,ℓYn

[n/M ] = 0 for all large n. Thus, for these n,
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λ
(1/n)Y∗

nSnYn

1 −λ(1/n)Y∗
nSnYn

[n/M ] ≤ eL1 max
ℓ∈L1

(
λ

(1/n)Y∗
nAn,ℓYn

1 − λ
(1/n)Y∗

nAn,ℓYn

[n/M ]

)

+
e(e− d)L1L2

α
max
ℓ∈L2

λ
(1/n)Y∗

nAn,ℓYn

1 +
α

L1
λ

(1/n)Y∗
nYn

[n/M ] ,

where for the last term we use the fact that, for Hermitian Ci,
∑
λCi

min ≤
λ

∑
Ci

min .
We have with probability 1

λ
(1/[n/M ])Y∗

nYn

[n/M ] −→ (1 −
√
My)2.

Therefore, from (6.4.13) we have almost surely

lim
n→∞

α

L1
λ

(1/n)Y∗
nYn

[n/M ] <
ε

3
.

We have

FAn,ℓ =

(
1 − |ℓ|

p

)
I[0,∞) +

|ℓ|
p
I[1,∞),

where |ℓ| is the size of ℓ, and from the expression for the inverse of the Stieltjes
transform of the limiting distribution it is a simple matter to show

F p/[n/M ],FAn,ℓ
= F |ℓ|/[n/M ],I[1,∞) .

For ℓ ∈ L1, we have

FAn,ℓ
D→
(

1 − 1

L1

)
I[0,∞) +

1

L1
I[1,∞) ≡ G.

From Corollary 6.6, the first inequality in (6.4.14), and conclusion (2), we
have the extreme eigenvalues of (1/[n/M ])Y∗

nAn,ℓYn converging a.s. to the
extreme values in the support of FMy,G = F (My)/L1,I[1,∞) . Therefore, from
Theorem 5.11 we have with probability 1

λ
(1/[n/M ])Y∗

nAn,ℓYn

1 − λ
(1/[n/M ])Y∗

nAn,ℓYn

[n/M ] −→ 4

√
My

L1
,

and from the second inequality in (6.4.14) we have almost surely

lim
n→∞

eL1 max
ℓ∈L1

(
λ

(1/n)Y∗
nAn,ℓYn

1 − λ
(1/n)Y∗

nAn,ℓYn

[n/M ]

)
<
ε

3
.

Finally, from (6.4.17) we see that, for ℓ ∈ L2, limn→∞ |ℓ|/[n/M ] < 1, so
that from (6.4.12), the first inequality in (6.4.14), and Corollary 6.6 we have
with probability 1



6.4 Proof of (3) 157

lim
n→∞

e(e− d)L1L2

α
max
ℓ∈L2

λ
(1/n)Y ∗

n An,ℓYn

1 <
e(e− d)

α
L1L2

4

M
<
ε

3
.

This completes the proof of Lemma 6.14.

6.4.3 Dependence on y

We now finish the proof of Lemma 6.2. The following relies on Lemma 6.1
and (6.1.6), the explicit form of zy,H .

For (a), we have (t1, t2) ⊂ S′
H with t1, t2 ∈ ∂SH and t1 > 0. On

(−t−1
1 ,−t−1

2 ), zy,H(s) is well defined, and its derivative is positive if and
only if

g(s) ≡
∫ (

ts

1 + ts

)2

dH(t) <
1

y
.

It is easy to verify that g′′(s) > 0 for all s ∈ (−t−1
1 ,−t−1

2 ). Let ŝ be
the value in [−t−1

1 ,−t−1
2 ] where the minimum of g(s) occurs, the two end-

points being included in case g(s) has a finite limit at either value. Write
y0 = 1/g(ŝ). Then, for any y < y0, the equation yg(s) = 1 has two solu-
tions in the interval [−t−1

1 ,−t−1
2 ], denoted by s1y < s2y. Then, s ∈ (s1y, s

2
y) ⇔

yg(s) < 1 ⇔ z′y,H(s) > 0. By Lemma 6.1, this is further equivalent to

(zy,H(s1y), zy,H(s2y)) ⊂ S′
F y,H , with endpoints lying in the boundary of SF y,H .

From the identity (6.1.6), we see that, for i = 1, 2,

zy,H(si
y) =

1

s
(yg(si

y) − 1) + y

∫
t

(1 + tsi
y)2

dH(t)

= y

∫
t

(1 + tsi
y)2

dH(t) > 0. (6.4.18)

As y decreases to zero, we have s1y ↓ −t−1
1 , s2y ↑ −t−1

2 , which also includes
the possibility that either endpoint will reach its limit for positive y (when
g(s) has a limit at an endpoint). We now show (6.1.8) for i = 1, 2. If eventually
si

y = −t−1
i , then clearly (6.1.8) holds. Otherwise we must have yg(si

y) = 1,
and so by the Cauchy-Schwarz inequality,

y

∣∣∣∣∣

∫ (
tsi

y

1 + tsi
y

)
dH(t)

∣∣∣∣∣ ≤ y



∫ (

tsi
y

1 + tsi
y

)2

dH(t)




1/2

= y1/2,

and so again (6.1.8) holds.
It is straightforward to show

dzy,H(si
y)

dy
=

∫
t

1 + tsi
y

dH(t). (6.4.19)
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Since (1 + ts)(1 + ts′) > 0 for t ∈ SH and s, s′ ∈ (−t−1
1 ,−t−1

2 ), we get from
(6.4.19)

d(zy,H(s2y) − zy,H(s1y))

dy
= (s1y − s2y)

∫
t2

(1 + ts2y)(1 + ts1y)
dH(t) < 0.

Therefore
zy,H(s2y) − zy,H(s1y) ↑ t2 − t1 as y ↓ 0.

As y ↓ y0 = g(ŝ), the minimum of g(s), we see that s1y and s2y approach
ŝ and so the interval (zy,H(s1y), zy,H(s2y)) shrinks to a point. This establishes
(a).

We have a similar argument for (b), where now s3y ∈ [−1/t3, 0) such that
z′y,H(s) > 0 for s ∈ (−1/t3, 0) ⇐⇒ s ∈ (s3y, 0). Since zy,H(s) → ∞ as s ↑ 0,

we have (zy,H(s3y),∞) ⊂ S′
F y,H with zy,H(s3y) ∈ ∂SF y,H . Equation (6.4.19)

holds also in this case, and from it and the fact that (1 + ts) > 0 for t ∈ SH ,
s ∈ (−1/t3, 0), we see that boundary point zy,H(s3y) ↓ t3 as y → 0. On the
other hand, s3y ↑ 0 and, consequently, zy,H(s3y) ↑ ∞ as y ↑ ∞. Thus we get
(b).

When y[1 −H(0)] < 1, as s increases from −∞ to −1/t4, yg(s) increases
from y[1 − H(0)] < 1 to ∞. Thus, we can find a unique s4y ∈ (−∞,−1/t4]
such that yg(s4y) = 1. So, on the interval (−∞, s4y), z′y,H(s) > 0. Since

zy,H(s) ↓ 0 as s ↓ −∞, we have (0, zy,H(s4y)) ∈ Sc
F y,H with zy,H(s4y) ∈ ∂SF y,H .

From (6.4.19), we have zy,H(s4y) ↑ t4 as y ↓ 0. Since g(s) is increasing
on (−∞,−1/t4), we have s4y ↓ −∞, and consequently zy,H(s4y) ↓ 0 as
y ↑ [1 −H(0)]−1. Therefore we get (c).

When y[1−H(0)] > 1, g(s) increases from 0 to y[1−H(0)] as s increases
from 0 to ∞. Thus, there is a unique sy such that yg(sy) = 1. When s ∈
(0, sy), g(s) < 1, and hence zy,H(s) is strictly increasing from −∞ to x0 :=
zy,H(sy). And then zy,H(s) strictly decreases from x0 to 0 as s increases from
sy to ∞. Thus, x0 > 0, which is the smallest value of the support of F y,H .
It can be verified that (6.4.19) is also true for sy. Since its right-hand side
is always positive, x0 is strictly increasing as y increases. Subsequently, from
(6.4.18), x0 = zy,H(sy) ranges from 0 to ∞ as y increases from 0 to ∞, which
completes (d).

(e) is obvious since zy,I[0,∞)
= −1/s for all s 6= 0 and so s

F
y,I[0,∞) (z) =

−1/z, the Stieltjes transform of I[0,∞).
From Lemma 6.1, we can only get intervals in Sc

F y,H from intervals arising
from (a)–(e). By (6.1.6), for any two solutions sy > s′y (note that they may
not be in the same interval of Sc

H) of the equation yg(s) = 1,

zy,H(sy) − zy,H(s′y) =
sy − s′y
sys′y

[
1 − y

∫
t2sys

′
y

(1 + tsy)(1 + ts′y)
dH(t)

]
≥ 0,

(6.4.20)
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where the last step follows by the Cauchy-Schwarz inequality and the fact
that both sy and s′y are solutions of the equation yg(s) = 1. If the above is
not strict, then for all t ∈ SH ,

tsy

1 + tsy
= a

ts′y
1 + ts′y

for some constant a. If SH contains at least two points, then the identity
above implies that

a = 1 and sy = s′y,

which contradicts the assumption sy > s′y. If SH contains only one point, say
t0, then the same identity as well as the definition of sy imply that

1 =
t20sys

′
y

(1 + t0sy)(1 + t0s′y)
=

t20s
2
y

(1 + t0sy)2
.

This also implies the contradiction sy = s′y. Thus, inequality (6.4.20) is strict
and hence the last statement in Lemma 6.2 follows. The proof of Lemma 6.2
is complete.

We finish this section with a lemma important to the final steps in the
proof of (3).

Lemma 6.16. If the interval [a, b] satisfies condition (f) of Theorem 6.3 for
yn → y, then for any ŷ < y and sequence {ŷn} converging to ŷ, the interval
[zŷ,H(sF y,H (a)), zŷ,H(sF y,H (b))] satisfies assumption (f) of Theorem 6.3 for
ŷn → ŷ. Moreover, its length increases from b− a as ŷ decreases from y.

Proof. According to (f), there exists an ε > 0 such that [a−ε, b+ε] ⊂ Sc
F yn,Hn

for all large n. From Lemma 6.1, we have for these n

[sF y,H (a− ε), sF y,H (b+ ε)] ⊂ Ayn,Hn

≡ {s ∈ R : s 6= 0,−s−1 ∈ Sc
Hn
, z′yn,Hn

(s) > 0}.

Since z′y,H(s) increases as y decreases, [sF y,H (a − ε), sF y,H (b + ε)] is also
contained in Aŷn,Hn . Therefore, by Lemma 6.1,

(zŷ,H(sF y,H (a− ε)), zŷ,H(sF y,H (b+ ε)) ) ⊂ Sc
F ŷn,Hn .

Since zŷ,H and sF y,H are monotonic on, respectively, (sF y,H (a− ε), sF y,H (b+
ε) ) and (a− ε, b+ ε), we have

[zŷ,H(sF y,H (a)), zŷ,H(sF y,H (b))] ⊂ (zŷ,H(sF y,H (a− ε)), zŷ,H(sF y,H (b+ ε)) ),

so assumption (f) is satisfied.
Since z′ŷ′,H(s) > z′ŷ,H(s) > z′y,H(s) for ŷ′ < ŷ, we have

zŷ′,H(sF y,H (b)) − zŷ′,H(sF y,H (a)) > zŷ,H(sF y,H (b)) − zŷ,H(sF y,H (a))
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> zy,H(sF y,H (b)) − zy,H(sF y,H (a)) = b− a.

6.4.4 Completing the Proof of (3)

We begin with some basic lemmas. For the following, A is assumed to be a
p×p Hermitian matrix, λ ∈ R is not an eigenvalue of A, and Y is any matrix
with p rows.

Lemma 6.17. λ is an eigenvalue of A + YY∗ ⇐⇒ Y∗(λI − A)−1Y has
eigenvalue 1.

Proof. Suppose x ∈ Cp\{0} is such that (A + YY∗)x = λx. It follows that
Y∗x 6= 0 and

Y∗(λI − A)−1YY∗x = Y∗x

so that Y∗(λI − A)−1Y has eigenvalue 1 (with eigenvector Y∗x).
Suppose Y∗(λI−A)−1Y has eigenvalue 1 with eigenvector z. Then (λI−

A)−1Yz 6= 0 and

(A+YY∗)(λI−A)−1Yz = −Yz+λ(λI−A)−1Yz+Yz = λ(λI−A)−1Yz.

Thus A + YY∗ has eigenvalue λ (with eigenvector (λI − A)−1Yz).

Lemma 6.18. Suppose λA
j < λ. If λ

Y∗(λI−A)−1Y
1 < 1, then λA+YY∗

j < λ.

Proof. Suppose λA+YY∗

j ≥ λ. Then, since λA+αYY∗

j is continuously in-

creasing in α ∈ R+ (Corollary 4.3.3 of Horn and Johnson [154]), there

is an α ∈ (0, 1] such that λA+αYY∗

j = λ. Therefore, from Lemma 6.17,

αY∗(λI − A)−1Y has eigenvalue 1, which means Y∗(λI − A)−1Y has an
eigenvalue ≥ 1.

Lemma 6.19. For any i ∈ {1, 2, · · · , p}, λA
1 ≤ λA

1 − λA
p + Aii.

Proof. Simply use the fact that Aii ≥ λA
p .

We now complete the proof of (3). Because of the conditions of (3) and
Lemma 6.2, we may assume sF y,H (b) < 0. For M > 0 (its size to be deter-
mined later), let yj = y/(1+ j/M) for j = 0, 1, 2, · · ·, and define the intervals

[aj , bj] = [zyj ,H(sF y,H (a)), zyj ,H(sF y,H (b))].

By Lemma 6.16, these intervals increase in length as j increases, and, for
each j, the interval together with yj satisfies assumption (f) for any sequence
yj

n converging to yj . Here we take

yj
n =

p

n+ j[n/M ]
.
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Let sa = sF y,H (a). We have

aj − a = zyj ,H(sa) − zy,H(sa) = (yj − y)

∫
t

1 + tsa
dH(t).

Therefore, for each j,

aj ≤ â ≡ a+ y

∣∣∣∣
∫

t

1 + tsa
dH(t)

∣∣∣∣ .

We also have

aj+1 − aj = zyj+1,H(sa) − zyj ,H(sa) = (yj+1 − yj)

∫
t

1 + tsa
dH(t).

Thus, we can find an M1 > 0 so that, for any M ≥M1 and any j,

|aj+1 − aj | < b− a

4
. (6.4.21)

Let M2 ≥M1 be such that, for all M ≥M2,

1

1 + 1/M
>

3

4
+

1

4

â

b− a+ â
.

This will ensure that, for all n, j ≥ 0 and M ≥M2,

n+ j[n/M ]

n+ (j + 1)[n/M ]
bj > bj − (bj − aj)

4
. (6.4.22)

From Lemma 6.14, we can find an M3 ≥ M2 such that, for all M ≥ M3,
(6.4.11) is true for any sequence of Sn with

d = − 4

3(b− a)
, e =

4

b− a
, and ε =

1

â|sa|
.

We now fix M ≥M3.
For each j, let

Bj
n =

1

n+ j[n/M ]
T1/2

n Xn+j[n/M ]
n Xn+j[n/M ]

n

∗
T1/2

n ,

where X
n+j[n/M ]
n ≡ (xn,j

i k ), i = 1, 2, · · · , p, k = 1, 2, . . . , n+ j[n/M ], are de-
fined on a common probability space, entries iid distributed as x1 1 (no rela-
tion assumed for different n, j).

Since aj and bj can be made arbitrarily close to −1/sF y,H(a) and
−1/sF y,H(b), respectively, by making j sufficiently large, we can find a K1

such that, for all K ≥ K1,
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λTn

in+1 < aK and bK < λTn

in
for all large n.

Therefore, using (6.1.1) and Theorem 5.11, we can find a K ≥ K1 such that
with probability 1

lim sup
n→∞

λ
BK

n

in+1 < aK and bK < lim inf
n→∞

λ
BK

n

in
. (6.4.23)

We fix this K.
Let

Ej = { no eigenvalue of Bj
n appears in [aj , bj] for all large n }.

Let

ℓjn =

{
k, if λ

Bj
n

k > bj, λ
Bj

n

k+1 < aj ,
−1, if there is an eigenvalue of Bj

n in [aj , bj ].

For notational convenience, let λA
−1 = ∞ for Hermitian A.

Define

âj = aj +
1

4
(bj − aj),

b̂j = bj − 1

4
(bj − aj).

Fix j ∈ {0, 1, · · · ,K−1}. On the same probability space, we define for each
n ≥ M , Yn = (Yi k), i = 1, 2, · · · , p, k = 1, · · · , [n/M ], entries iid distributed
the same as x11, with {Bj

n}n and {Yn}n independent (no restriction on Yn

for different n). Let Rn = T
1/2
n Yn.

Whenever âj is not an eigenvalue of Bj
n, we have by Lemma 6.19

λ
1

n+j[n/M]
R∗

n(âjI−Bj
n)−1Rn

1

≤ λ
1

n+j[n/M]
R∗

n(âjI−Bj
n)−1Rn

1 − λ
1

n+j[n/M]
R∗

n(âjI−Bj
n)−1Rn

[n/M ]

+

(
1

n+ j[n/M ]
R∗

n(âjI − Bj
n)−1Rn

)

1 1

. (6.4.24)

If âj is not an eigenvalue of Bj
n for all large n, we get from Lemma 6.13

(
1

n+ j[n/M ]
R∗

n(âjI − Bj
n)−1Rn

)

1 1

a.s.−→ 1 +
1

âjsF yj ,H (âj)
< 1 +

1

âsa
as n→ ∞, (6.4.25)

and from Lemma 6.14
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lim sup
n→∞

(
λ

1
n+j[n/M]

R∗
n(âjI−Bj

n)−1Rn

1 −λ
1

n+j[n/M]
R∗

n(âjI−Bj
n)−1Rn

[n/M ]

)
<

1

â|sa|
a.s.

(6.4.26)
Now, (6.4.24)–(6.4.26) hold for a fixed realization in Ej with respect to
the probability measure on {Yn}n. By Fubini’s Theorem and the fact that
P(Ej) = 1 (from (1)), we subsequently have (6.4.24)–(6.4.26) holding on the
probability space generating {Bj

n}n and {Yn}n. Therefore we find

P

(
λ

1
n+j[n/M]

R∗
n(âjI−Bj

n)−1Rn

1 < 1 for all large n

)
= 1,

and since Bj
n + 1

n+j[n/M ]RnR
∗
n ∼ n+(j+1)[n/M ]

n+j[n/M ] Bj+1
n , we get from Lemma

6.18, with probability 1,

λ
Bj+1

n

ℓj
n+1

< âj for all large n.

Since λ
Bj

n

ℓj
n

≤ λ
Bj

n+ 1
n+j[n/M]

RnR∗
n

ℓj
n

, we use (6.4.22) to get

P
(
λ
Bj+1

n

ℓj
n

> b̂j and λ
Bj+1

n

ℓj
n+1

< âj for all large n
)

= 1.

From (6.4.21) we see that [âj , b̂j] ⊂ [aj+1, bj+1]. Therefore, combining the
event above with Ej+1, we conclude that

P
(
λ
Bj+1

n

ℓj
n

> bj+1 and λ
Bj+1

n

ℓj
n+1

< aj+1 for all large n
)

= 1.

Therefore, with probability 1, for all large n [a, b] and [aK , bK ] split the
eigenvalues of, respectively, Bn and BK

n , having equal amounts on the left-
hand sides of the intervals. Finally, from (6.4.23), we get (3).



Chapter 7

Semicircular Law for Hadamard
Products

7.1 Sparse Matrix and Hadamard Product

In nuclear physics, since the particles move with very high velocity in a small
range, many excited states are seldom observed in very short time instances,
and over long time periods there are no excitations. More generally, if a real
physical system is not of full connectivity, the random matrix describing the
interactions between the particles in the system will have a large proportion
of zero elements. In this case, a sparse random matrix provides a more natural
and relevant description of the system. Indeed, in neural network theory, the
neurons in a person’s brain are large in number and are not of full connectivity
with each other. Actually, the dendrites connected with one individual neuron
are of much smaller number, probably several orders of magnitude, than the
total number of neurons. Sparse random matrices are adopted in modeling
these partially connected systems in neural network theory.

A sparse or dilute matrix is a random matrix in which some entries will
be replaced by 0 if not observed. Sometimes a large portion of entries of
the interesting random matrix can be 0’s. Due to their special application
background, sparse matrices have received special attention in quantum me-
chanics, atomic physics, neural networks, and many other areas. Some recent
works on large sparse matrices and their applications to various areas in-
clude, among others, [45, 61, 285] (linear algebra), [48] (neural networks),
[62, 89, 143, 197, 218, 292] (algorithms and computing), [207] (financial mod-
eling), [211] (electrical engineering), [216] (biointeractions), and [176, 271]
(theoretical physics).

A sparse matrix can be expressed by the Hadamard product (see Section
A.3). Let Bm = (bij) and Dm = (dij) be two m × m matrices. Then the
Hadamard product Am = (aij) with aij = bijdij is denoted by

Ap = Bm ◦ Dm.

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,

© Springer Science+Business Media, L C 2010 

165
Second Edition, Springer Series in Statistics, DOI 10.1007/978-1-4419-0661-8_7,

L



166 7 Semicircular Law for Hadamard Products

A matrix Am is sparse if the elements dij of Dm take values 0 and 1 with∑m
i=1 P (dij = 1) = p = o(m). The index p usually stands for the level of

sparseness; i.e., after performing the Hadamard product, the resulting matrix
will have p nonzero elements per row on average.

Several of the papers mentioned above consider a sparse matrix resulting
from the removal of entries of a sample covariance matrix. Removing the
assumption that the elements of Dm are Bernoulli trials, this chapter will
consider the LSD of general Hadamard products of a normalized sample co-
variance matrix with a diluted matrix. We shall show that its ESD converges
to the semicircular law under certain conditions.

To this end, we make the following assumptions. We remind the reader
that the entries of Dm and Xn are allowed to depend on n. For brevity, the
dependence on n is suppressed.

Assumptions on Dm:

(D1) Dm is Hermitian.

(D2)

m∑

i=1

pij = p+ o(p) uniformly in j, where pij = E|d2
ij |.

(D3) For some M2 > M1 > 0,

max
j

∑

i

(
E|dij |2I[|dij | > M2] + P (0 < |dij | < M1)

)
= o(1) (7.1.1)

as m→ ∞.

Assumptions on Xn:

(X1) Exij = 0, E|xij |2 = σ2.

(X2, 0) 1
mn

∑
ij E|x2

ij |I[|xij | > η 4
√
np] → 0 for any fixed η > 0.

(X2, 1)
∑∞

u=1
1

mn

∑
ij E|x2

ij |I[|xij | > η 4
√
np] <∞ for any fixed η > 0,

where u may take [p], m, or n.

(X3) For any η > 0, 1
m

∑m
i=1 P

[∣∣∣∣
∑n

k=1(|xik|2 − σ2)dii

∣∣∣∣ > η
√
np

]
→ 0. (7.1.2)

We shall prove the following theorem.

Theorem 7.1. Assume that conditions (7.1.1) and (7.1.2) hold and that the
entries of the matrix Dm are independent of those of the matrix Xn (m×n).
Also, we assume that p/n→ 0 and p→ ∞.

Then, the ESD FAp tends to the semicircular law as [p] → ∞, where
Ap = 1√

np (XnX∗
n − σ2nIm) ◦ Dm. The convergence is in probability if the

condition (X2,0) is assumed and the convergence is in the sense of almost
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surely for [p] → ∞ or m → ∞ if condition (X2,1) is assumed for u = [p] or
u = m, respectively.

Remark 7.2. Note that p may not be an integer and it may increase very
slowly as n increases. Thus, the limit for p → ∞ may not be true for a.s.
convergence. So, we consider the limit when the integer part of p tends to
infinity. If we consider convergence in probability, Theorem 7.1 is true for
p→ ∞.

Remark 7.3. Conditions (D2) and (D3) imply that p ≤ Km; that is, the order
of p cannot be larger than m. In the theorem, it is assumed that p/n → 0.
That is, p has to have a lower order than n. This is essential. However, the
relation between m and n can be arbitrary.

Remark 7.4. From the proofs given in Sections 7.2 and 7.3, one can see that
a.s. convergence is true for m → ∞ in all places except the part involving
truncation on the entries of Xn, which was guaranteed by condition (X2,1).
Thus, if condition (X2,1) is true for u = m, then a.s. convergence is in the
sense ofm→ ∞. Sometimes, it may be of interest to consider a.s. convergence
in the sense of n → ∞. Examining the proofs given in Sections 7.2 and 7.3,
one finds that to guarantee a.s. convergence for n → ∞, truncation on the
entries of Dm and the removal of diagonal elements require m/ logn → ∞;
truncation on the entries of Xn requires condition (X2,1) be true for u = n. As
for Theorem 7.1, as remarked in Section 7.3, one may modify the conclusion
of (II) to

E|βnk − Eβnk|2µ = O(m−µ)

for any fixed integer µ, where βnk is defined in Section 7.3. Thus, ifm ≥ nδ for
some positive constant δ, then a.s. convergence for the ESD after truncation
and centralization is true for n → ∞. Therefore, the conclusion of Theorem
7.1 can be strengthened to a.s. convergence as n → ∞ under the additional
assumptions that m ≥ nδ and condition (X2,1) is for u = n.

Remark 7.5. In Theorem 7.1, if p = m and dij ≡ 1 for all i and j and the
entries of Xn are iid, then the model considered in Theorem 7.1 reduces to
that of Bai and Yin [37], where the entries Xn are assumed to be iid with
finite fourth moments. It can be easily verified that the conditions of Theorem
7.1 are satisfied under Bai and Yin’s assumption. Thus, Theorem 7.1 contains
Bai and Yin’s result as a special case.

A slightly different generalization of Bai and Yin’s result is the following.

Theorem 7.6. Suppose that, for each n, the entries of the matrix Xn are in-
dependent complex random variables with a common mean value and variance
σ2. Assume that, for any constant δ > 0,

1

p
√
np

∑

jk

E|x2
jk|I[|xjk| ≥ δ 4

√
np] = o(1) (7.1.3)
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and
1

np
max
j≤p

n∑

k=1

E|x4
jk|I[|xjk | ≤ δ 4

√
np] = o(1). (7.1.4)

When p → ∞ with n = n(p) and p/n→ 0, with probability 1 the ESD of W
tends to the semicircular law with the scale index σ2.

This theorem is not a corollary of Theorem 7.1 because neither of the
conditions (X2,0) and (7.1.3) implies the other. But their proofs are very
similar and thus we shall omit the details of the proof of Theorem 7.6.

Remark 7.7. If we assume that there is a positive and increasing function
ϕ(x) defined on R+ such that

1

mn

∑

ij

E|x2
ij |ϕ(|xij |)I[|xij | > η 4

√
np] → 0 (7.1.5)

and ∞∑

u=1

1/ϕ(η 4
√
np) <∞, (7.1.6)

then condition (X2,1) holds. If we take ϕ(x) = x4(2ν−1) for some constant 1
2 <

ν < 1, then (7.1.6) is automatically true and (7.1.5) reduces to a condition
weaker than the assumption made in Kohrunzhy and Rodgers [177] if we
change their notation to pij = P (dij = 1) = p/m with p = n2ν−1 and
m/n→ c. Therefore, Theorem 7.1 covers Kohrunzhy and Rodgers [177] as a
special case (condition (X3) is automatically true since P (dii 6= 0) = 0).

Remark 7.8. The most important contribution of Theorem 7.1 to random
matrix theory is to allow the nonhomogeneous and nonzero-one sparseness,
and the order of m can be arbitrary between p and n. The conditions on
the entries of Xn are to require some homogeneity on the Xn matrix. We
conjecture that the homogeneity on the Xn matrix can be relaxed if we require
the entries of the Dm matrix to have certain homogeneity. This problem is
under investigation.

7.2 Truncation and Normalization

The strategy of the proof follows along the same lines as in Chapter 2, Section
2.2.



7.2 Truncation and Normalization 169

7.2.1 Truncation and Centralization

Truncation on entries of Dm

Define

d̂ij =

{
dij , if M1 ≤ |dij | ≤M2,
0, otherwise,

D̂m = (d̂ij), and Âp = 1
σ2√np (XnX∗

n − σ2nIm) ◦ D̂m.

Lemma 7.9. Under the assumptions of Theorem 7.1,

‖F Âp − FAp‖ → 0 a.s. as m→ ∞.

Proof. By the rank inequality (Theorem A.43),

‖F Âp − FAp‖ ≤ 1

m
rank(Sm − σ2Im) ◦ (Dm − D̂m)

≤ 1

m

∑

ij

I({|dij | > M2} ∪ {0 < |dij | < M1}).

By condition (D3) in (7.1.1),

1

m

∑

ij

I({|dij | > M2} ∪ {0 < |dij | < M1})

≤ 1

m

∑

ij

M−1
2 E|dij |2I(|dij | > M2) + P(0 < |dij | < M1) = o(1).

Applying Bernstein’s inequality, we obtain

P(‖F Âp − FAp‖ ≥ ε)

≤ P


∑

ij

I[{|dij | > M2} ∪ {0 < |dij | < M1}] ≥ εm




≤ 2e−bm,

for any ε > 0, all large n, and some constant b > 0. By the Borel-Cantelli
lemma, we conclude that

‖F Âp − FAp‖ → 0 a.s. as m→ ∞.

Therefore, in the proof of Theorem 7.1, we may assume that the entries of
Dm are either 0 or bounded by M1 from 0 and by M2 from above. We shall
still use Dm = (dij) in the subsequent proofs for brevity.

Removal of the diagonal elements of Ap
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For any ε > 0, denote by Âp the matrix obtained from Ap by replacing with
0 the diagonal elements whose absolute values are greater than ε and denote
by Ãp the matrix obtained from Ap by replacing with 0 all diagonal elements.

Lemma 7.10. Under the assumptions of Theorem 7.1,

‖F Âp − FAp‖ → 0 a.s. as m→ ∞,

and
L(F Âp , F Ãp) ≤ ε.

Proof. The second conclusion of the lemma is a trivial consequence of Theo-
rem A.45. As for the first conclusion, by the rank inequality (Theorem A.43),

‖F Âp − FAp‖ ≤ 1

m

m∑

i=1

I

[∣∣∣∣
1√
np

n∑

k=1

(|xik|2 − σ2)dii

∣∣∣∣ > ε

]
.

By condition (X3) in (7.1.2), we have

m∑

i=1

P

[∣∣∣∣
1√
np

n∑

k=1

(|xik|2 − σ2)dii

∣∣∣∣ > ε

]
= o(m).

Here, the reader should note that condition (X3) remains true after the trun-
cation on the d’s. By Bernstein’s inequality, it follows that, for any constant
η > 0,

P (‖F Âp − FAp‖ ≥ η)

≤ P

( m∑

i=1

I

[∣∣∣∣
1√
np

n∑

k=1

(|xik|2 − σ2)dii

∣∣∣∣ > ε

]
≥ ηm

)

≤ 2e−bm

for some constant b > 0. By the Borel-Cantelli lemma, we conclude that

‖F Âp − FAp‖ → 0 a.s. as m→ ∞.

Combining the two conclusions in Lemma 7.10, we have shown that

L(FAp , F Ãp) → 0 a.s. as m→ ∞.

Hence, in what follows, we can assume that the diagonal elements are 0; i.e.,
assume dii = 0 for all i = 1, · · · ,m.

Truncation and centralization of the entries of Xn

Note that condition (X2,0) in (7.1.2) guarantees the existence of ηn ↓ 0 such
that
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1

mnη2
n

∑

ij

E|xij |2I(|xij | ≥ ηn
4
√
np) → 0.

Similarly, if condition (X2,1) holds, there exists ηn ↓ 0 such that

∑

u

1

mnη2
n

∑

ij

E|xij |2I(|xij | ≥ ηn
4
√
np) <∞.

In the subsequent truncation procedure, we shall not distinguish under which
condition the sequence {ηn} is defined. The reader should remember that,
whatever condition is used, the {ηn} is defined by that condition.

Define x̃ij = xijI(|xij | ≤ ηn
4
√
np)−ExijI(|xij | ≤ ηn

4
√
np) and x̂ij = xij −

x̃ij . Also, define B̃m with B̃ij = 1√
np

∑n
k=1 x̃ik

¯̃xjk, and denote its Hadamard

product with Dm by Ãp. It is easy to verify that

E|x̂ij |2 ≤ E|xij |2I(|xij | ≥ ηn
4
√
np) (7.2.1)

and
E|x̃ij |2 ≤ σ2. (7.2.2)

Then, we have the following lemma.

Lemma 7.11. Under condition (X2,0) in (7.1.2) and other assumptions of
Theorem 7.1,

L(F Ãp , FAp) → 0 in probability as m→ ∞.

If condition (X2,0) is strengthened to (X2,1), then

L(F Ãp , FAp) → 0 a.s. as u→ ∞,

where u = [p], m, or n in accordance with condition (X2,1).

Proof. By Theorem A.45,

L3(F Ãp , FAp) ≤ 1

m
tr[(Bm − B̃m) ◦Dm]2

=
1

mnp

∑

i6=j

∣∣∣∣∣
n∑

k=1

(xikx̄jk − x̃ik
¯̃xjk)dij

∣∣∣∣∣

2

.

By (7.2.1) and (7.2.2), we have

E


 1

mnp

∑

i6=j

∣∣∣
n∑

k=1

(xikx̄jk − x̃ik
¯̃xjk)dij

∣∣∣
2



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≤ 1

mnp

∑

i6=j

n∑

k=1

E|xikx̄jk − x̃ik
¯̃xjk|2E|d2

ij |

≤ 9σ2

mnp

m∑

j=1

n∑

k=1

E|x̂jk|2
m∑

i=1

pij

≤ 20σ2

mn

m∑

j=1

n∑

k=1

E|xjk|2I[|xjk| > ηn
4
√
np].

If condition (X2,0) in (7.1.2) holds, then the right-hand side of the inequality
above converges to 0 and hence the first conclusion follows.

If condition (X2,1) holds, then the right-hand side of

20

mn

m∑

j=1

n∑

k=1

E|xjk|2I[|xjk| > ηn
4
√
np]

is summable. Then, it follows that

L3(F Ãp , FAp) → 0 a.s.

as u → ∞, where u takes [p], m, or n in accordance with the choice of u in
(X2,1). The proof of this lemma is complete.

From Lemmas 7.9-7.11, to prove Theorem 7.1 we are allowed to make the
following additional assumptions:

(i) dii = 0, M1I(dij 6= 0) ≤ |dij | ≤M2;

(ii) Exij = 0, |xij | ≤ ηn
4
√
np.

(7.2.3)

Note that we shall no longer have E|xij |2 = σ2 after the truncation and
centralization on the X variables. Write E|xij |2 = σ2

ij . One can easily verify
that:

(a) For any i 6= j, E|dij |2 ≤ pij and
∑

ℓ E|diℓ|2 = p+ o(p).

(b) For any i 6= j, σ2
ij ≤ σ2 and 1

mn

∑
ik σ

2
ik → σ2.

(7.2.4)

7.3 Proof of Theorem 7.1 by the Moment Approach

In the last section, we showed that to prove Theorem 7.1 it suffices to prove
it under the additional conditions (i) and (ii) in (7.2.3) and (a) and (b) in
(7.2.4).
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To prove the theorem, we again employ the moment convergence approach.

Let βnk and βk denote the k-th moment of F Âp and the semicircular law
Fσ2 (x) with the scale parameter σ2.

It was shown in Chapter 2 that

βk =

{
σ4s(2s)!
s!(s+1)! , if k = 2s,

0, if k = 2s+ 1,

and that {βk} satisfies the Carleman condition; i.e.,

∞∑

k=1

β
−1/2k
2k = ∞.

Thus, to complete the proof of the theorem, we need only prove βnk → βk

almost surely. By using the Borel-Cantelli lemma, we only need to prove

(I) E(βnk) = βk + o(1),

(II) E|βnk − Eβnk|4 = O( 1
m2 ).

Now, we begin to proceed to the proof of (I) and (II). Write i = (i1, · · · , ik),
j = (j1, · · · , jk), and

I = {(i, j) : 1 ≤ iv ≤ m, 1 ≤ jv ≤ n, 1 ≤ v ≤ k}.

Then, by definition, we have

βnk =
1

mnk/2pk/2

∑

(i,j)∈I
d(i)X(i,j),

where
d(i) = di1i2 · · ·diki1 ,

X(i,j) = xi1j1xi2j1xi2j2xi3j2 · · ·xikjk−1
xikjk

xi1jk
.

For each pair (i, j) = ((i1, · · · , ik), (j1, · · · , jk)) ∈ I, construct a graph
G(i, j) by plotting the iv’s and jv’s on two parallel straight lines and then
drawing k (down) edges (iv, jv) from iv to jv, k (up) edges (jv, iv+1) from
jv to iv+1, and another k horizontal edges (iv, iv+1) from iv to iv+1. A down
edge (iv, jv) corresponds to the variable xivjv , an up edge (jv, iv+1) corre-
sponds to the variable xjviv+1 , and a horizontal edge (iv, iv+1) corresponds
to the variable div ,iv+1 . A graph corresponds to the product of the variables
corresponding to the edges making up this graph. An example of such graphs
is shown in Fig. 7.1. We shall call the subgraph of horizontal edges and their

vertices of G(i, j) the roof of G(i, j) and denote it as G(i, j) and call the
subgraph of vertical edges and their vertices of G(i, j) the base of G(i, j) and
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2 I−line

J−line

i = i 1 i 3 i 5

j j j jj
5 1 2 3 4

6
i = i 4

Fig. 7.1 A graph with six I- and six J-vertices

denote it as G(i, j). The roof of Fig. 7.1 is shown in Fig. 7.2. By noting that
the roof of G(i, j) depends on i only, we may simplify the notation of roofs
as G(i).

6i i

i

i
1 2

3

5

= =i i 4

Fig. 7.2 The roof of Fig. 7.1

Two graphs G(i1, j1) and G(i2, j2) are said to be isomorphic if one can be
converted to the other by a permutation on (1, · · · ,m) and a permutation
on (1, · · · , n). All graphs are classified into isomorphic classes. An isomorphic
class is denoted by G. Similarly, two roofs G(i1) and G(i2) are said to be iso-
morphic if one can be converted to the other by a permutation on (1, · · · ,m).
An isomorphic roof class is denoted by G. For a given i, two graphs G(i, j1)
and G(i, j2) are said to be isomorphic given i if one can be converted to the
other by a permutation on (1, · · · , n). An isomorphic class given i is denoted
by G(i).
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Let r, s, and l denote the number of noncoincident i-vertices, noncoincident
j-vertices, and noncoincident vertical edges. Let G(r, s, l) denote the collection
of all isomorphic classes with the numbers r, s, l.

Then, we may rewrite

βnk =
1

mnk/2pk/2

∑

i,j

dG(i)XG(i,j)

=
1

mnk/2pk/2

∑

r,s,l

∑

G∈G(r,s,l)

∑

G(i,j)∈G
dG(i)XG(i,j). (7.3.1)

Proof of (I). By the notation introduced above,

E(βnk) =
1

mnk/2pk/2

∑

r,s,l

∑

G∈G(r,s,l)

∑

G(i,j)∈G
EdG(i)EXG(i,j).

When G(i, j) contains a single vertical edge, EXG(i,j) = 0. When G(i, j) con-
tains a loop (that is, for some v ≤ k, iv = iv+1 (ik+1 is understood as i1)),
dG(i) = 0 since dii = 0 for all i ≤ m.

So, we need only consider the graphs that have no single vertical edges
and no loops of horizontal edges. Now, we write

E(βnk) = S1 + S2 + S3,

where S1 contains all terms subject to l < k or r + s ≤ k, S2 contains all
terms with l = k = r + s − 1 but s < 1

2k, and S3 contains all terms with
l = k = r + s− 1 and s = 1

2k.
Before evaluating the sums above, we first prove the following lemma.

Lemma 7.12. For a given r and a given i-index, say i1, there is a constant
K such that, for all G ∈ G(r),

∣∣∣∣∣∣∣∣

∑

G(i)∈G
fixed i1

EdG(i)

∣∣∣∣∣∣∣∣
≤ Kpr−1. (7.3.2)

Consequently, we have

∣∣∣∣∣∣
∑

G(i)∈G

EdG(i)

∣∣∣∣∣∣
≤ Kmpr−1.

Proof. If r = 1, G(r) = ∅ since G(i, j) has no loops, and hence (7.3.2) follows
trivially. Thus, we only consider the case where r ≥ 2.

First, let us consider EdG(i). If G(i) contains µ1 horizontal edges with ver-

tices (u, v) and µ2 horizontal edges with vertices (v, u), then EdG(i) contains
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a factor Edµ1
u,vd̄

µ2
u,v whose absolute value is not larger than Mµ1+µ2−2

2 puv if

µ1 + µ2 ≥ 2 and not larger than M−1
1 puv if µ1 + µ2 = 1. Also, we have

|Edµ1
u,vd̄

µ2
u,v| ≤ Mµ1+µ2

2 for all cases. That is, each noncoincident horizontal

edge of G(i) in G corresponds to a factor that is dominated by a constant C
and Cpuv for some constant C.

Note that G(i) is connected. Thus, for each isomorphic roof class with in-
dex r, we may select a tree T (i) from the noncoincident edges ofG(i) such that
any two trees T (i1) and T (i2) are isomorphic for any two roofsG(i1) andG(i2)
in the same class. Denote the r−1 edges of T (i) by (u1, v1), · · · , (ur−1, vr−1).
Then,

|EdG(i)| ≤ Cpu1,v1 · · · pur−1,vr−1 .

The inequality above follows by bounding the factors corresponding to edges
in the tree by Cpu,v and other factors by C. If r = 2, then the lemma follows
from condition (a) in (7.2.4).

If r > 2, we use induction. Assume (7.3.2) is true for r − 1. Since T (i)
is a tree, without loss of generality we assume that vr−1 is a root other
than i1 of the tree; that is, vr−1 6∈ {u1, v1, · · · , ur−2, vr−2}, and i1, ur−1 ∈
{u1, v1, · · · , ur−2, vr−2}. Then, using assumption (D2),

∑

u1,v1,···,ur−1,vr−1

pu1,v1 · · · pur−1,vr−1

=
∑

u1,v1,···,ur−2,vr−2

pu1,v1 · · · pur−2,vr−2

∑

vr−1

pur−1,vr−1

≤ (p+ o(p))
∑

u1,v1,···,ur−2,vr−2

pu1,v1 · · · pur−2,vr−2

≤ (p+ o(p))r−1,

the last inequality following from the inductive hypothesis. The lemma fol-
lows.

Continuing the proof of (I). When G belongs to G(r, s, l) with l < k or r+s ≤
k, for any given i, we have

∑

G(i,j)∈G(i)

|EXG(i,j)| ≤ nsσ2l(ηn
4
√
np)2k−2l. (7.3.3)

Let G(r) denote the set of all isomorphic roof classes with r noncoincident
i-vertices.

By (7.3.3) and Lemma 7.12, we have

|S1| ≤
1

m(np)
1
2k

∑

r,s, l<k
or r+s≤k

∑

G∈G(r,s,l)

O(mpr−1)(nsσ2l(ηn
4
√
np)2k−2l)
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=

{
o(n− 1

2 l+sp−
1
2 l+r−1), if l < k,

o(n− 1
2k+sp−

1
2k+r), if r + s ≤ l = k.

(7.3.4)

Noting that each jv vertex connects with at least two noncoincident ver-
tical edges since G(i, j) does not have loops, we conclude that l ≥ 2s. Since
the vertical edges form a connected graph, we conclude that r+ s ≤ l+ 1 for
graphs in S1. Therefore, we have

|S1| ≤
{
o((p/n)

1
2 l−s), if l < k

o((p/n)
1
2k−s), if r + s ≤ l = k

}
= o(1).

By the same argument as for estimating S1, we also have

|S2| ≤ O((p/n)
1
2k−s) = o(1),

where the second inequality follows from the fact that s < 1
2k.

Note that if k is odd and G(i, j) does not have single vertical edges, it is
impossible to have l = k and s = 1

2k since 2s ≤ l ≤ k. That is, all terms of
Eβnk are either in S1 or S2. We have now proved that

Eβnk → 0.

Therefore, in what follows, we only need to consider S3 in the case where k
is even.

Now let us evaluate S3 for the case l = k = 2s = 2r − 2. In this case,
each noncoincident j-vertex connects exactly with two noncoincident edges
and the noncoincident vertical edges from a tree. As discussed in Chapter 3,
each down edge must be coincident with an up edge.

Denote the noncoincident vertical edges by {(u1, v1), · · · , (uk, vk)}. Then

EXG(i,j) =

k∏

j=1

σ2
uj ,vj

,

and hence, for each isomorphic class G, we have

∑

G(i,j)∈G
EdG(i)

k∏

j=1

σ2
uj ,vj

.

We first show that

1

m(np)s

∑

G(i,j)∈G
EdG(i)

k∏

j=1

σ2
uj ,vj

=
1

m(np)s

∑

G(i,j)∈G
EdG(i)σ

2k + o(1). (7.3.5)

By condition (b) in (7.2.4) and Lemma 7.12, we have
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0 ≤ 1

m(np)s

∑

G(i,j)∈G
|EdG(i)|


σ2k −

k∏

j=1

σ2
uj ,vj




≤ 1

m(np)s

∑

G(i,j)∈G
|EdG(i)|

k∑

ℓ=1


σ2(s−ℓ)(σ2 − σ2

uℓ,vℓ
)

ℓ−1∏

j=1

σ2
uj ,vj




≤ 1

m(np)s

∑

G(i,j)∈G
|EdG(i)|

k∑

ℓ=1

[
σ2(s−1)(σ2 − σ2

uℓ,vℓ
)

]

≤ σ2(k−1)

mnps

∑

G(i)∈G

|EdG(i)|
k∑

ℓ=1

∑

uℓ

(σ2 − σ2
uℓ,vℓ

)

≤
k∑

ℓ=1

Kσ2(k−1)

mn

∑

vℓ

∑

uℓ

(σ2 − σ2
uℓ,vℓ

) → 0,

from which (7.3.5) follows.
For a graph corresponding to a term in S3, we claim that each horizontal

edge (v1, v2) must coincide with a horizontal edge (v2, v1). In fact, if (iℓ, iℓ+1)
is the first appearance of (v1, v2) (i.e., iℓ = v1, iℓ+1 = v2, and v2 is not in
{i1, · · · , iℓ}), there is a vertex jℓ such that (iℓ, jℓ) and (jℓ, iℓ+1) are single up to
the vertex iℓ+1. In the future development of the graph, there must be a down
edge (iν , jν) coincident with the up edge (jℓ, iℓ+1); that is, iν = iℓ+1 = v2.
Then the next up edge (jν , iν+1) must coincide with (iℓ, jℓ) since otherwise
the vertex jν = jℓ will connect to at least three noncoincident vertical edges,
which violates the assumption that s = k/2. That is, we have proved that
iν+1 = iℓ = v1 and hence the horizontal edge (iℓ, iℓ+1) = (v1, v2) coincides
with the horizontal edge (iν , iν+1) = (v2, v1) (see Fig. 7.3). Since the number
of noncoincident i vertices is r = s+ 1 = 1

2k + 1, the noncoincident edges of

G(i) form a tree of s = 1
2k edges.

Therefore,

EdG(i) =

s∏

ℓ=1

peℓ
,

where eℓ, ℓ = 1, · · · , s, are the edges of the tree of noncoincident horizontal
edges.

By (7.12) and (7.3.5), we have

1

m(np)s

∑

G(i,j)∈G
EdG(i)EXG(i,j)

=
σ2k

mps

∑

G(i)∈G

EdG(i) + o(1)

= σ2k + o(1).
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I−line

i = i  = v l v+1 1
i  = i = v l+1 v 2

j = j 
l v

J−line

Fig. 7.3 (v1, v2) coincides with (v2, v1).

Recall that the number of isomorphic classes with indices k = 2s has been
computed in Chapter 2; that is,

(2s)!

s!(s+ 1)!
.

Conclusion (I) follows.

Proof of (II). Write

E|βnk − Eβnk|4 (7.3.6)

=
1

m4n2kp2k

∑

iℓ,jℓ
ℓ=1,2,3,4

E
4∏

ℓ=1

[dG(iℓ)
XG(iℓ,jℓ) − EdG(iℓ)

EXG(iℓ,jℓ)],

where G(iℓ, jℓ) is the graph defined by (iℓ, jℓ) in the way given in the proof
of (I).

If G(iℓ, jℓ) has no edges coincident with edges of the other three, then the
corresponding term is 0 by independence. Furthermore, the term is also 0 if⋃4

ℓ=1G(iℓ, jℓ) contains a single vertical edge or a loop. We need to consider
the following two cases:

(1) The four graphs are connected together through a coincident edge.

(2)
⋃4

ℓ=1G(iℓ, jℓ) has two separated pieces; that is, two graphs are con-
nected and the other two are connected.

Split E|βnk − Eβnk|4 = SI + SII according to the two cases.

For these two cases, suppose
⋃4

ℓ=1G(iℓ, jℓ) contains r noncoincident i-
vertices, s noncoincident j-vertices, and l noncoincident vertical edges. Sim-
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ilar to the proof of (I), we have

SI ≤
∑

r,s,l

1

m4n2kp2k
Kmpr−1(ηn

4
√
np)8k−2lns

= K
∑

r,s,l

m−3p−1n− 1
2 l+sp−

1
2 l+r.

For graphs corresponding to terms in SI , we have 2s ≤ l and r + s ≤ l + 1.
We obtain

|SI | ≤ Km−3(p/n)
1
2 l−s = O(m−3).

Similarly, we have

SII ≤
∑

r,s,l

1

m4n2kp2k
Km2pr−2(ηn

4
√
np)8k−2lns

= K
∑

r,s,l

m−2p−1n− 1
2 l+sp−

1
2 l+r.

For graphs corresponding to terms in SII , we have 2s ≤ l and r + s ≤ l + 2.
We obtain

|SII | ≤ Km−2(p/n)
1
2−s = O(m−2).

Combining the above, (II) is proved.

Remark 7.13. Using the same approach in proving (II), one can easily show
that

E|βnk − Eβnk|2µ = O(m−µ)

for any fixed integer µ. This is useful when considering the a.s. convergence
when n→ ∞.

These estimates may be used to strengthen the almost sure convergence
for m→ ∞ to n→ ∞ when m is at least as large as a power of n.



Chapter 8

Convergence Rates of ESD

In applications of asymptotic theorems of spectral analysis of large dimen-
sional random matrices, one of the important problems is the convergence
rate of the ESD. It had been puzzling probabilists for a long time until the
papers of Bai [16, 17] were published. The moment approach to establishing
limiting theorems for spectral analysis of large dimensional random matri-
ces is to show that each moment of the ESD tends to a nonrandom limit.
This proves the existence of the LSD by applying the Carleman criterion. This
method successfully established the existence of the LSD of large dimensional
Wigner matrices, sample covariance matrices, and multivariate F -matrices.
However, this method cannot give any convergence rate. In Bai [16], three
inequalities were established in terms of the difference of Stieltjes transforms
(see Chapter B). In this chapter, we shall apply these inequalities to estab-
lish the convergence rates for the ESD of large Wigner and sample covariance
matrices.

8.1 Convergence Rates of the Expected ESD of Wigner
Matrices

In this section, we consider the convergence rate of ESD of the complex
Wigner matrix Wn = (xij , i, j = 1, · · · , n), whose entries may depend on
n, but the index n is suppressed for brevity. Also, we assume the following
conditions hold:

(i) Exij = 0, xji = x̄ij , for all 1 ≤ i ≤ j ≤ n.
(ii) E|x2

ij | = 1, for all 1 ≤ i < j ≤ n;
E|x2

ii| = σ2, for all 1 ≤ i ≤ n.
(iii) supn sup1≤i<j≤n E|x6

ij |, E|x3
ii| ≤M <∞.

(8.1.1)

For convenience, we assume that σ2 ≤M in what follows.
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Remark 8.1. The moment requirements (iii) are needed for maintaining the
convergence rate after the truncation step.

Here and in what follows, Fn denotes the ESD of 1√
n
Wn. Under the con-

ditions in (8.1.1), it follows from Theorem 2.9 that Fn
w−→ F almost surely,

where F is the well-known semicircular law,

F (x) =
1

2π

∫ x

−∞

√
4 − y2I[−2,2](y)dy. (8.1.2)

In this section, we shall establish the following theorem.

Theorem 8.2. Under assumptions (8.1.1), we have

‖EFn − F‖ = O(n−1/2). (8.1.3)

The proof of the theorem, which relies strongly on those inequalities on
Stieltjes transforms found in Appendix B, is similar to what was done in
Chapter 2 but requires more accurate estimates on the remainder term of the
Stieltjes transform of the ESD. To this end, the error quantity δ (see (8.1.20))
should be expanded into additional terms. Also, the truncation position on
the x-variables needs to be lowered to n1/4 while allowing the renormalization
to maintain the same convergence rate.

8.1.1 Lemmas on Truncation, Centralization, and
Rescaling

Lemma 8.3. Let W̃n denote the matrix whose entries are 1√
n
xijI(|xij | ≤

n1/4) for all i, j. Then, we have

√
nE‖Fn − F̃n‖ ≤M, (8.1.4)

where Fn and F̃n are the ESDs of Wn and W̃n, respectively.
Also, for any η > 0,

lim sup
n→∞

n
1
2−η‖Fn − F̃n‖ = 0, a.s. (8.1.5)

If {|xii|2} and {|xij |6, i < j ≤ n} are uniformly integrable, then the right-
hand side of (8.1.4) can be improved to zero.

Proof. By Theorem A.43, we have

‖Fn − F̃n‖ ≤ 1

n
rank(Wn − W̃n)
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≤ 1

n

∑

i 6=j

I(|xij | > n1/4) +
1

n

n∑

i=1

I(|xii| > n1/4).

Therefore,

E‖Fn − F̃n‖ ≤ 1

n

∑

i6=j

P(|xij | > n1/4) +
1

n

n∑

i=1

P(|xii| > n1/4)

≤ n−5/2
∑

i6=j

E|xij |6 + n−3/2
n∑

i=1

E|xii|2

≤ Mn−1/2.

From the estimate above and Bernstein’s inequality, the second conclusion
follows. The proof of Lemma 8.3 is complete.

Lemma 8.4. Let Ŵn denote the matrix whose entries are 1√
n
[xijI(|xij | ≤

n1/4) − ExijI(|xij | ≤ n1/4)] for all i, j. Then, we have

L(F̂n, F̃n) ≤M2/3n−1/2, (8.1.6)

where L(·, ·) denotes the Levy distance between distribution functions and F̂n

is the ESD of Ŵn.

Proof. By Corollary A.41, we have

L3(F̂n, F̃n) ≤ 1

n
tr(Ŵn − W̃n)2

=
1

n2

∑

i 6=j

|ExijI(|xij | ≤ n1/4)|2 +
1

n2

n∑

i=1

|ExiiI(|xii| ≤ n1/4)|2

≤ 1

n7/2

∑

i 6=j

E2|xij |6 +
1

n5/2

n∑

i=1

E2|xii|2

≤ M2n−3/2.

The proof is done.

Lemma 8.5. Let
˜̂
W denote the matrix whose entries are 1√

n
σ−1

ij [xijI(|xij | ≤
n1/4) − ExijI(|xij | ≤ n1/4)] for i 6= j and 1√

n
σσ−1

ii [xiiI(|xii ≤ n1/4) −
ExiiI(|xii ≤ n1/4)], where σ2

ij are the variances of the truncated variables.
Then, we have

EL(F̂n,
˜̂
Fn) ≤ 21/3M2/3n−1/2, (8.1.7)

lim sup
n→∞

√
nL(F̂n,

˜̂
Fn) ≤ 21/3M2/3 a.s., (8.1.8)
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where
˜̂
Fn is the ESD of

˜̂
Wn.

Proof. By Corollary A.41, we have

L3(F̂n,
˜̂
Fn) ≤ 1

n
tr(Ŵn − ˜̂Wn)2

=
1

n2

∑

i 6=j

(1 − σ−1
ij )2|xijI(|xij | ≤ n1/4) − ExijI(|xij | ≤ n1/4)|2

+
1

n2

n∑

i=1

(1 − σσ−1
ii )2|xiiI(|xii| ≤ n1/4) − ExiiI(|xii| ≤ n1/4)|2.

Thus,

EL3(F̂n,
˜̂
Fn) ≤ 1

n2

∑

i6=j

(1 − σij)
2 +

1

n2

n∑

i=1

(σ − σii)
2

≤ 1

n2

∑

i6=j

(1 − σ2
ij)

2 +
1

n2

n∑

i=1

(σ2 − σ2
ii)

2

≤ 2M2n−3/2,

where we have used the fact that, for all large n, σij(1 + σij) ≥ 1 and hence

(1 − σ2
ij)

2 ≤ (E|x2
ij |I(|xij | > n1/4) + E2|xij |I(|xij | > n1/4))2

≤ 2M2n−2

and

(σ2 − σ2
ii)

2 ≤ (E|x2
ii|I(|xii| > n1/4) + E2|xii|I(|xii| > n1/4))2

≤ 2M2n−1.

The proof of (8.1.7) is done. Conclusion (8.1.8) follows from the fact that

Var

(
1√
n

∑

i6=j

(1 − σ−1
ij )2|xijI(|xij | ≤ n1/4) − ExijI(|xij | ≤ n1/4)|2

+
1√
n

n∑

i=1

(1 − σσ−1
ij )2|xiiI(|xii| ≤ n1/4) − ExiiI(|xii| ≤ n1/4)|2

)

≤ 16M2

n

(∑

i 6=j

(1 − σ−1
ij )4 +

n∑

i=1

(1 − σσ−1
ii )4

)

≤ 64M4n−2.
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8.1.2 Proof of Theorem 8.2

By Lemma B.18 with D = 1/π and α = 1, we know that L(Fn, F ) and ‖Fn−
F‖ have the same order if F is the distribution function of the semicircular
law. Now, applying Lemmas 8.3, 8.4, and 8.5, to prove Theorem 8.2 for the
general case, it suffices to prove it for the truncated, centralized, and rescaled
version. Therefore, we shall assume that the entries of the Wigner matrix
are truncated at the positions given in Lemma 8.3 and then centralized and
rescaled.

Define
∆ = ‖EFn − F‖, (8.1.9)

where Fn is the ESD of 1√
n
Wn and F is the distribution function of the

semicircular law.
Recall that we found in Chapter 2 the Stieltjes transform of the semicir-

cular law, which is given by

s(z) = −1

2
(z −

√
z2 − 4). (8.1.10)

Here, the reader is reminded that the square root of a complex number is
defined to be the one with a positive imaginary part.

Then, it is easy to verify that s(z)(− 1
2 (z +

√
z2 − 4)) = 1 and |s(z)| <

|(− 1
2 (z+

√
z2 − 4))| since both the real and imaginary parts of z and

√
z2 − 4

have the same signs. Hence, for any z ∈ C+,

|s(z)| < 1. (8.1.11)

Now, we begin to prove the theorem by using the inequality of Theorem
B.14.

Let u and v > 0 be real numbers and let z = u+ iv. Set

sn(z) =

∫ ∞

−∞

1

x− z
Fn(x) =

1

n
tr(Wn − zIn)−1. (8.1.12)

By (8.1.12) and the inverse matrix formula (see (A.1.8)),

Esn(z) =
1

n

n∑

k=1

E
1

1√
n
xkk − z − 1

nα
′
k(Wn(k) − zIn−1)−1αk

=
1

n

n∑

k=1

E
1

εk − z − Esn(z)

= − 1

z + Esn(z)
+ δ, (8.1.13)
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where α′
k = (x1k, · · · , xk−1,k, xk+1,k, · · · , xnk), Wn(k) is the matrix obtained

from Wn by deleting the k-th row and k-th column,

εk =
1√
n
xkk − 1

n
α′

k(Wn(k) − zIn−1)
−1αk + Esn(z), (8.1.14)

and

δ = δn = − 1

n

n∑

k=1

E
εk

(z + Esn(z))(z + Esn(z) − εk)
. (8.1.15)

Solving the quadratic equation (8.1.13), we obtain

s(1)(z), s(2)(z) = −1

2
(z − δ ±

√
(z + δ)2 − 4). (8.1.16)

As analyzed in Chapter 2, we should have

Esn(z) = s(2)(z) = −1

2
(z − δ −

√
(z + δ)2 − 4). (8.1.17)

If ℑ(z + δ) > 0, we can also write

Esn(z) = δ + s(z + δ). (8.1.18)

We shall show that (8.1.18) is true for all z ∈ C+. We shall prove this by
showing that D = C+, where

D = {z ∈ C
+,ℑ(z + δ(z)) > 0}.

At first, we see that δ → 0 as ℑz → ∞. That is, z ∈ D if ℑ(z) is large.
If D 6= C

+, then there is a point in C
+

D
c, say z1. Let z0 ∈ D. Let z2 be

a point in the intersection of ∂D and the segment connecting z0 and z1. By
the continuity of δ(z) in z, we have ℑ(z2 + δ(z2)) = 0. By (8.1.13), we obtain

z2 + Esn(z2) +
1

z2 + Esn(z2)
= z2 + δ(z2),

in which the right-hand side is a real number. We conclude that

|z2 + Esn(z2)| = 1.

Since z2 ∈ ∂D, there are zm ∈ D such that zm → z2. Then, by (8.1.17), we
have

z2 + Esn(z2)

= lim
m

(zm + Esn(zm)) = lim
m

(zm + δ(zm) + s(zm + δ(zm))

= − lim
m
s(1)(zm + δ(zm)) = −s(1)(z2 + δ(z2)).
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The two identities above imply that |s(1)(z2 + δ(z2))| = 1, which implies that
z2 + δ(z2) = ±2 and that s(1)(z2 + δ(z2)) = ±1. Again, using the identity
above, z2 +Esn(z2) = ±1, a real number, which violates the assumption that
z2 ∈ C+ since ℑ(z2 + Esn(z2) > 0.

We shall proceed with our proofs using the following steps. Prove that |δ|
is “small” both in its absolute value and in the integral of its absolute value
with respect to u. Then, find a bound of sn(z)− s(z) in terms of δ. First, let
us begin to estimate |δ|.

For brevity, define

bn = bn(z) =: (z + Esn(z))−1 = −Esn(z) + δ,

βk = βk(z) =: (z + Esn(z) − εk)−1.

By (8.1.18), we have bn(z) = −s(z + δ), and hence, by (8.1.11),

|bn(z)| < 1 for all z ∈ C+. (8.1.19)

By (8.1.15), we have

|δ| =

∣∣∣∣∣
1

n

n∑

k=1

E(βkεk)

∣∣∣∣∣

=

∣∣∣∣∣
1

n

n∑

k=1

(b2nEεk + b3nEε2k + b4nEε3k + b4nEε4kβk)

∣∣∣∣∣

≤ 1

n

n∑

k=1

|Eεk| + E|ε2k| + E|ε3k| + v−1E|ε4k|

= : J1 + J2 + J3 + J4. (8.1.20)

By Lemma 8.6,

J1 ≤ 1

nv
. (8.1.21)

Applying Lemmas 8.6 and 8.7 to be given in Subsection 8.1.3, we obtain,
for all large n and some constant C,

|J2| ≤
1

n

n∑

k=1

E|εk|2 ≤ C(v +∆)

nv2
. (8.1.22)

Similar to (8.1.27), we have, for some constant C,

E|ε4k| = C[E|εk − Eεk|4 + |E4(εk)|]

=
C

n2
E|xkk|4 +

C

n4
E
∣∣∣α′

k(Wn(k) − zIn−1)
−1αk

−tr(Wn(k) − zIn−1)
−1
∣∣∣
4

+
C

n4
E
∣∣∣tr(Wn(k) − zIn−1)

−1
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−Etr(Wn(k) − zIn−1)
−1
∣∣∣
4

+ C|E4(εk)|. (8.1.23)

We shall use the following estimates:

(i) n−2E|xkk|4 ≤ n−3/2σ2 (by truncation).

(ii) n−4E
∣∣∣α′

k(Wn(k) − zIn−1)
−1αk − tr(Wn(k) − zIn−1)

−1
∣∣∣
4

≤ Cn−4
[
Eν8tr

(
(Wn(k) − uIn−1)

2 + v2In−1

)−2

+
(
ν4tr((Wn(k) − uIn−1)

2 + v2In−1)
−1
)2]

(Lemma B.26)

≤ Cn−4E

(
n1/2v−3ℑtr(Wn(k) − zIn−1)

−1

+v−2tr
(
ℑtr(Wn(k) − zIn−1)

−1
)2
)

(by ν8 ≤ n1/2)

≤ Cn−4E
(
n1/2v−3

[
nℑsn(z) + v−1

]
+ v−2n2(ℑsn(z))2 + v−4

)

≤ Cn−4

(
n1/2v−3[n(|Esn(z) − s(z)| + |s(z)|) + v−1]

+v−2n2
(
E|sn(z) − Esn(z)|2 + |Esn(z) − s(z)|2 + |s(z)|2

)

+v−4

)

≤ Cn−1v−2
(
n−1/2(v +∆) + (v +∆)2

)
(by Lemma 8.7).

(iii) n−4E
∣∣∣tr(Wn(k) − zIn−1)

−1 − Etr(Wn(k) − zIn−1)
−1
∣∣∣
4

≤ Cn−4
[
n4E|sn(z) − Esn(z)|4 + v−4

]

≤ Cn−1v−2[n−1/2(v +∆) + (v +∆)2 + n−2] (Lemma 8.7).

Substituting these into (8.1.23), we obtain

E|ε4k| ≤ C(n−3/2 + n−1v−2(v +∆)2),

which implies that

|J4| ≤ Cv−1(n−3/2 + n−1v−2(v +∆)2). (8.1.24)

By the elementary inequality |a|3 ≤ 1
2 (|a|2 + |a|4), we notice that

E|εk|3 ≤ 1

2
(E|εk|2 + E|εk|4),
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|J3| ≤
1

n

n∑

k=1

(E|εk|2 + E|εk|4)

≤ C(v +∆)n−1v−2.

Therefore, we obtain

|δ| ≤ C0

(
1

nv
+
v +∆

nv2
+
n−1/2(v +∆) + (v +∆)2

nv3

)
. (8.1.25)

By Lemma 8.8, if |δ| < v, then ∆ < C1v. Choose M > C0(2 + C1)
2 and

consider the set

Ev =
{
v ∈

[√
M/n,

1

3

]
, |δ| < v

}
.

First, choose v0 = (9C0/n)1/3 (which is less than 1
3 for all large n). Since

∆ ≤ 1, we have

|δ| ≤ C0

(
1

nv3
+

2

nv3
+

6

nv3

)
< v0.

Thus, v0 ∈ Ev. Now, let v1 = inf Ev. We show that v1 =
√
M/n.

If that is not the case, assume that nv2
1 > M + ω0. Choose ω1 =

min{ω0/(4
√
nv1), ω0/(24C0C1)} and define v2 = v1 − ω1/

√
n. Then, by

Lemma 8.8,

∆ < C1

(
v2 +

2ω1√
n

)
.

Consequently, letting z = u+ iv2, we then have

|δ| ≤ C0

(
1

nv2
+

2(v2 + C1(v2 + 2ω1/
√
n))

nv2
2

+
(v2 + C1(v2 + 2ω1/

√
n))2

nv3
2

)

≤ C0

(
(2 + C1)

2 + 12C1ω1

nv2

)

≤ M + ω0/2

nv2
≤ nv2

1 − ω0/2

nv2
2

v2 < v2.

This shows that v2 ∈ Ev, which contradicts the definition of v1.
Finally, applying Lemma 8.8, Theorem 8.2 is proved.

8.1.3 Some Lemmas on Preliminary Calculation

Lemma 8.6. Under the conditions of Theorem 8.2, we have
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(i) |Eεk| ≤ 1/nv,

(ii) E|εk|2 ≤ Cn−1E|sn(z) − Esn(z)|2 + C(v +∆)n−1v−2.

Proof. Recalling the definition of εk in (8.1.14) and applying (A.1.12), we
obtain

|Eεk| =
1

n

∣∣E
[
tr(Wn − zIn)−1 − tr(Wn(k) − zIn−1)

−1
]∣∣

≤ 1

nv
. (8.1.26)

Next, we estimate E|ε2k|. Recalling definition (8.1.14), we have

E|ε2k| = E|εk − Eεk|2 + |E2(εk)|

=
1

n
E|xkk|2 +

1

n2
E
∣∣∣α′

k(Wn(k) − zIn−1)
−1αk

−tr(Wn(k) − zIn−1)
−1
∣∣∣
2

+
1

n2
E
∣∣∣tr(Wn(k) − zIn−1)

−1

−Etr(Wn(k) − zIn−1)
−1
∣∣∣
2

+ |E2(εk)|. (8.1.27)

Then, by Lemma B.26, we have

1

n2
E
∣∣α′

k(Wn(k) − zIn−1)
−1αk − tr(Wn(k) − zIn−1)

−1
∣∣2

≤ C

n2
Etr

(
(Wn(k) − uIn−1)

2 + v2In−1

)−1

=
C

n2v
ℑ
(
Etr(Wn(k) − zIn−1)

−1
)

≤ C

n2v

∣∣Etr(Wn(k) − zIn−1)
−1 − tr(Wn − zIn)−1

∣∣

+
C

nv

[
|Esn(z) − s(z)| + |s(z)|

]

≤ C(v +∆)

nv2
. (8.1.28)

Here the estimate of the first term follows from (A.1.12) and that of the
second term follows from Lemma B.22.

Again, by (A.1.12), we have

1

n2
E
∣∣∣tr(Wn(k) − zIn−1)

−1 − Etr(Wn(k) − zIn−1)
−1
∣∣∣
2

≤ 2

n2
E
∣∣∣tr(Wn − zIn)−1 − Etr(Wn − zIn)−1

∣∣∣
2

+
8

n2v2

=
2

n
|sn(z) − Esn(z)|2 +

8

n2v2
. (8.1.29)
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Finally, by (8.1.26)–(8.1.29), the second conclusion of the lemma follows.

Lemma 8.7. Assume that v > n−1/2. Under the conditions of Theorem 8.2,
for all ℓ ≥ 1,

E|sn(z) − Esn(z)|2ℓ ≤ Cn−2ℓv−4ℓ(∆+ v)ℓ.

Proof. Let

γk = Ek−1tr(Wn − zIn)−1 − Ektr(Wn − zIn)−1

= Ek−1σk − Ekσk,

where Ek denotes the conditional expectation given {xij , k + 1 ≤ i < j ≤ n}
and

σk =
[
tr(Wn − zIn)−1 − (Wn(k) − zIn−1)

−1
]

= βk

(
1 +

1

n
α∗

k(Wn(k) − zIn−1)
−2αk

)
. (8.1.30)

Note that {γk} forms a martingale difference sequence and

sn(z) − Esn(z) =
1

n

n∑

k=1

γk.

Since 2ℓ > 1, by Lemma 2.13, we have

E|sn(z) − Esn(z)|2ℓ

≤ C

n2ℓ


E

(
n∑

k=1

Ek|γk|2
)ℓ

+

n∑

k=1

E|γk|2ℓ


 . (8.1.31)

By (A.1.12), we have
|σk| ≤ v−1. (8.1.32)

Write

Ak = (Wn(k) − zIn−1)
−2,

ε̃k = n−1/2xkk − n−1α∗
k(Wn(k) − zIn−1)

−1αk + sn(z),

b̃n =
1

z + sn(z)
.

Recall that βk = −b̃n − b̃nβkε̃k. Similar to (8.1.19), one may prove that

|b̃n| < 1.

Substituting these into (8.1.30) and noting that
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Ek−1

[
1 +

1

n
α∗

kAkαk

]
− Ek

[
1 +

1

n
α∗

kAkαk

]

=
1

n
Ek−1[α

∗
kAkαk − tr(Ak)],

we may rewrite

γk = − 1

n
Ek−1b̃n(α∗

kAkαk−tr(Ak))+[Ek−1b̃n(σkε̃k)−Ek b̃n(σk ε̃k)]. (8.1.33)

Employing Lemma B.26, we have

Ek|γk|2 ≤ 2

n2
Ek|b̃n(α∗

kAkαk − tr(Ak))|2 +
2

v2
Ek|b̃nε̃k|2

≤ 2

n2
Ek|α∗

kAkαk − tr(Ak)|2 +
2

v2
Ek|ε̃k|2

≤ C

n2
Ek(tr(AkA

∗
k)) + v−2

[
n−1E|xkk|2

+Ek

∣∣∣α∗
k(Wn(k) − zIn−1)

−1αk

− 1

n
tr(Wn(k) − zIn−1)

−1
∣∣∣
2

+Ek

∣∣∣ 1
n

tr(Wn − zIn−1)
−1 − sn(z)

∣∣∣
2
]

≤ C

nv3

[
Ek(ℑsn(z)) + v + n−1v−1

]
. (8.1.34)

Thus, we have, by noting v2 > n−1,

The first term on the right-hand side of (8.1.31)

≤ C

n2ℓv4ℓ

[
vℓE(ℑsn(z))ℓ + vℓ

]
. (8.1.35)

Furthermore, by Lemma B.26 and the fact that ν4ℓ ≤ Cnℓ−1,

E

∣∣∣∣
1

n
[(α∗

kAkαk − tr(Ak)]

∣∣∣∣
2ℓ

≤ Cℓn
−2ℓ
[
ν4ℓEtr[(AkA

∗
k)ℓ] + νℓ

4E[tr(AkA
∗
k)]ℓ
]

≤ Cℓ

[
v−4ℓ+1n−ℓE(ℑsn(z)) + n−ℓv−3ℓE(ℑsn(z))ℓ

]
. (8.1.36)

Similarly, by noting E|xkk|2ℓ ≤ σ2n(ℓ−1)/2, we have

E|ε̃k|2ℓ ≤ C

[
E|n−1/2xkk|2ℓ

+E
∣∣∣n−1

[
α∗

k(Wn(k) − zIn−1)
−1αk − tr(Wn(k) − zIn−1)

−1
]∣∣∣

2ℓ
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+n−2ℓE
∣∣∣tr
(
Wn(k) − zIn−1

)−1 − tr(Wn − zIn)−1
∣∣∣
2ℓ
]

≤ C
[
n−(ℓ+1)/2 + n−ℓv−2ℓ+1E(ℑsn(z))

+n−ℓv−ℓE[ℑ(sn(z))]ℓ + n−2ℓv−2ℓ
]
. (8.1.37)

Thus, by the two estimates above and recalling (8.1.33), we have

The second term on the right-hand side of (8.1.31)

≤ C

n2ℓv4ℓ

[
n−ℓ+1vE(ℑsn(z)) + vℓn−ℓ+1E(ℑsn(z))ℓ

+v2ℓn−(ℓ−1)/2
]
. (8.1.38)

Substituting (8.1.35) and (8.1.38) into (8.1.31), we obtain

E|sn(z) − Esn(z)|2ℓ

≤ C

n2ℓv4ℓ

[
n−ℓ+1vE(ℑsn(z)) + vℓE(ℑsn(z))ℓ + vℓ

]
. (8.1.39)

First, we note that

0 < Eℑsn(z) ≤ |Esn(z) − s(z)| + |s(z)| ≤ ∆/v + 1.

The lemma then follows if ℓ = 1.
To treat the term E(ℑsn(z))ℓ when ℓ > 1, we need to employ induction.
Now, we extend the conclusion to the case where 1

2 < ℓ < 1. Applying
Lemma 2.12, we obtain

E|sn(z) − Esn(z)|2ℓ ≤ Cn−2ℓE

(
n∑

k=1

|γk|2
)ℓ

≤ Cn−2ℓ

(
n∑

k=1

E|γk|2
)ℓ

≤ Cn−2ℓ

(
n∑

k=1

n−1v−3Eℑsn(z) + v

)ℓ

≤ Cn−2ℓ(v−4ℓ(v +∆) + nℓvℓ) < C.

This shows that when 1 < ℓ < 2,

E(ℑsn(z))ℓ ≤ 2E|sn(z) − Esn(z)|ℓ + 2(Eℑsn(z))ℓ

≤ C(1 + (1 +∆/v)ℓ).

This, together with (8.1.39), implies that the lemma holds for 1 ≤ ℓ < 2.
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Then, the lemma follows by induction and (8.1.39). The proof of the lemma
is complete.

Lemma 8.8. If |δ| < v < 1
3 for all z = u+ iv, then ∆ ≤ Cv.

Proof. From (8.1.10) and (8.1.17), we have

Esn(z) − s(z) =
1

2
δ

[
1 +

2z + δ√
z2 − 4 +

√
(z + δ)2 − 4

]
.

By the convention for the square root of complex numbers, we know that the
real parts of

√
z2 − 4 and

√
(z + δ)2 − 4 are sgn(uv) = sgn(u) and sgn(u +

ℜδ)(v + ℑδ) = sgn(u + ℜδ). Therefore, if |u| > v > |δ|, then both the
real and imaginary parts of

√
z2 − 4 and

√
(z + δ)2 − 4 have the same signs.

Therefore, for v < |u| < 16, we have

|Esn(z) − s(z)| ≤ 1

2
|δ|
[
1 +

32√
|u2 − 4|

]
.

When |u| < v < 1
3 , then

|Esn(z) − s(z)| ≤ 1

2
|δ|
[
1 +

32

ℑ(
√
z2 − 4)

]
≤ 1

2
|δ|
[
1 +

32

2 − 2v

]
.

This simply implies that

∫ −16

16

|Esn(z) − s(z)|du ≤ ηv,

where η = 1
2

∫ 16

−16

[
1 + 32√

|u2−4|

]
du+1. Then, the lemma follows from Corol-

lary B.15.

8.2 Further Extensions

In this section, we shall consider the convergence rate in probability and
almost surely.

Theorem 8.9. Under conditions (i)–(iii) in (8.1.1), we have

‖F (1/
√

nW) − F‖ = Op(n
−2/5), (8.2.1)

‖F (1/
√

nW) − F‖ = Oa.s.(n
−2/5+η), for any η > 0. (8.2.2)

In the proof of Theorem 8.2, we have already proved that we may assume
that the elements of the matrix W are truncated at n1/4 and then recentral-
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ized and rescaled. Then, by Corollary A.41, to prove (8.2.1), we only need to
show that, for z = u+ iv, v = n−2/5,

E

∫ 16

−16

|sn(z) − s(z)|du = O(v).

In the proof of Theorem 8.2, we have proved that

∫ 16

−16

|Esn(z) − s(z)|du = O(v).

Thus, to prove Theorem 8.9, one only needs to show that

∫ 16

−16

|sn(z) − Esn(z)|du = O(v).

This follows from Lemma 8.7 and the following argument: for v = n−2/5,

∫ 16

−16

|sn(z) − Esn(z)|2du ≤ Cn−2v−3 = O(v2).

Conclusion (8.2.2) follows from the argument that, for v = n−2/5+η,

∫ 16

−16

|sn(z) − Esn(z)|2ℓdu ≤ Cn−2ℓv−3ℓ = O(v2ℓn−5ℓη).

Here, we choose ℓ such that 5ℓη > 1. Thus, Theorem 8.9 is proved.

8.3 Convergence Rates of the Expected ESD of Sample
Covariance Matrices

In this section, we shall establish some convergence rates for the expected
ESD of the sample covariance matrices.

8.3.1 Assumptions and Results

Let Sn = n−1XnX∗
n : p× p, where Xn = (xij(n), i = 1, · · · , p, j = 1, · · · , n).

Assume that the following conditions hold:

(i) For each n, xij(n) are independent.
(ii) Exij(n) = 0 and E|x2

ij(n)| = 1 for all i, j.
(iii) supn supi,j E|x6

ij(n)| <∞.
(8.3.1)
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Throughout this section, for brevity, we shall drop the index n from the
entries of Xn and Sn.

Denote by Fp the ESD of the matrix Sn. Under the conditions in

(8.3.1), it is well known (see Theorem 3.10) that Fp
w−→ Fy a.s., where

y = limn→∞(p/n) ∈ (0,∞) and Fy is the limiting spectral distribution of
Fp, known as the Marčenko-Pastur [201] distribution, which has a mass of
1 − y−1 at the origin when y > 1 and has density

F ′
y(x) =

1

2xyπ

√
4y − (x − y − 1)2I[a,b](x), (8.3.2)

with a = a(y) = (1−√
y)2 and b = b(y) = (1+

√
y)2. In this section, we shall

establish the following theorem.

Theorem 8.10. Under the assumptions in (8.3.1), we have

‖EFp − Fyp‖ =

{
O
(
n−1/2a−1

)
, if a > n−1/3,

O(n−1/6), otherwise,
(8.3.3)

where yp = p/n ≤ 1.

Remark 8.11. Because the convergence rate of |yp − y| may be arbitrarily
slow, it is impossible to establish any rate for the convergence of ‖EFp −Fy‖
if we know nothing about the convergence rate of |yp − y|. Conversely, if we
know the convergence rate of |yp − y|, then from (8.3.3) we can easily derive
a convergence rate for ‖EFp−Fy‖. This is the reason why Fyp , instead of the
limit distribution Fy, is used in Theorem 8.10.

Remark 8.12. If yp > 1, consider the sample covariance matrix 1
pX

∗X whose

ESD is denoted by Gn(x). Noting that the matrices XX∗ and X∗X have the
same set of nonzero eigenvalues, we have the relation

Fp(x) = y−1
p Gn(y−1

p x) + (1 − y−1
p )δ(x).

Therefore, we have

‖Fp − Fyp‖ = y−1
p ‖Gn − F1/yp

‖.

Therefore, the convergence rate for the case yp > 1 can be derived from
Theorem 8.10 with yp < 1. This is the reason we only consider the case
where yp ≤ 1 in Theorem 8.10.

To better understand the notation of the convergence rates, let us see the
following special cases.

Corollary 8.13. Assume the conditions of Theorem 8.10 hold.
If yp = (1 − δ)2 for some constant δ > 0, then ‖EFp − Fyp‖ = O(n−1/2).

If yp ≥ (1 − n−1/6)2, then ‖EFp − Fyp‖ = O(n−1/6).

If yp = (1−n−η)2 for some 0 < η < 1
6 , then ‖EFp−Fyp‖ = O(n−(1−4η)/2).
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For brevity of notation, we shall drop the index p from yp in the remainder
of this section.

The steps in the proof follow along the same lines as in Theorem 8.2.

8.3.2 Truncation and Centralization

We first truncate the variables xij at n1/4 and then centralize and rescale the

variables. Let X̃n and Dn denote the p×n matrix of the truncated variables

x̃ij = xijI(|xij | < n1/4) and that of the rescalers, i.e., Dn =
(
σ−1

jk

)
p×n

with

σ2
jk = var(x̃ij). Write X̂n = X̃n −EX̃n and Yn = X̂n ◦Dn, where ◦ denotes

the Hadamard product of matrices. Further, denote by F
(t)
p , F

(tc)
p , and F

(s)
p

the ESDs of the sample covariance matrices 1
nX̃nX̃∗

n, 1
nX̂nX̂∗

n, and 1
nYnY∗

n,
respectively. Then, by the rank inequality (see Theorem A.44) and the norm
inequality (see Theorem A.47), we have

‖Fp − F (t)
p ‖ ≤ 1

p

∑

jk

I{|xjk|≥n1/4},

L(F (t)
p , F (tc)

p ) ≤ 2

∥∥∥∥
1√
n
X̃n

∥∥∥∥
∥∥∥∥

1√
n

E(X̃n)

∥∥∥∥+

∥∥∥∥
1√
n

E(X̃n)

∥∥∥∥
2

,

and

L(F (tc)
p , F (s)

p )

≤ 2

∥∥∥∥
1√
n
X̃n

∥∥∥∥
2
[∥∥∥∥

1√
n
X̃n ◦ (Dn − J)

∥∥∥∥+

∥∥∥∥
1√
n
X̃n ◦ (Dn − J)

∥∥∥∥
2
]
,

where J is the p× n matrix of all entries 1.
Similar to the proof of Lemma 8.3, under condition (8.3.1), applying Bern-

stein’s inequality, one can show that, for any η > 0,

E‖Fp − F (t)
p ‖ ≤ p−1

∑

ij

P (|xij | > n1/4) = O(n−1/2),

‖Fp − F (t)
p ‖ ≤ 1

p

∑

jk

I{|xjk|≥n1/4} = oa.s.(n
−1/2+η), a.s.

By Theorem 5.9,

lim sup

∥∥∥∥
1√
n
X̃n

∥∥∥∥ ≤ (1 +
√
y), a.s.,

and by elementary calculus, one gets
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∥∥∥∥
1√
n

E(X̃n)

∥∥∥∥ ≤ √
nmax

jk
E|xjk|I{|xjk |≥n1/4} = O(n−3/4)

and, by the fact that max |1 − σjk| = O(n−1),

∥∥∥∥
1√
n
X̂n ◦ (Dn − J)

∥∥∥∥
2

≤ 1

n

∑

jk

|x̂jk|2(σ−1
jk − 1)2

≤ 1

n

∑

jk

|x̂jk|2 max
jk

|σ−1
jk − 1|2

= Oa.s.(n
−1).

These show that

L(F (t)
p , F (tc)

p ) = Oa.s.(n
−3/4),

L(F (tc)
p , F (s)

p ) = Oa.s.(n
−1/2).

Applying Lemmas B.19 and 8.14, given in Section 8.4, we have

‖Fp − Fy‖ ≤ Cmax

{
‖F (s) − Fy‖,

1√
na+ 4

√
n

}
.

Thus, to prove Theorem 8.10 and Corollary 8.13, one can assume that the
entries of Xn are truncated at n−1/4, recentralized, and then rescaled.

8.3.3 Proof of Theorem 8.10

In Chapter 3, we derived that the Stieltjes transform of the M-P law with
index y is given by

sy(z) = −y + z − 1 −
√

(1 + y − z)2 − 4y

2yz
. (8.3.4)

Because M-P distributions are weakly continuous in y, letting y ↑ 1, we
obtain

s1(z) = −z −
√
z2 − 4z

2z
. (8.3.5)

We point out that (8.3.4) is still true when y > 1, which can be easily derived
through the dual case where y < 1.

Set

sp(z) =
1

p
tr(Sn − zIp)

−1, (8.3.6)
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where z = u + iv with v > 1/
√
n. Similar to the proof of (3.3.2) in Chapter

3, one may show that

Esp(z) =
1

p

p∑

k=1

E
1

skk − z − n−2α∗
k(Snk − zIn−1)−1αk

=
1

p

p∑

k=1

E
1

εk + 1 − y − z − yzEsp(z)

= − 1

z + y − 1 + yzEsp(z)
+ δ, (8.3.7)

where

skk =
1

n

n∑

j=1

|x2
kj |,

Snk =
1

n
XnkX

∗
nk,

αk = Xnkx̄k,

εk = (skk − 1) + y + yzEsp(z) −
1

n2
α∗

k(Snk − zIp−1)
−1αk,

δ = δp = −1

p

p∑

k=1

bnEβkεk,

bn = bn(z) =
1

z + y − 1 + yzEsp(z)
,

βk = βk(z) =
1

z + y − 1 + yzEsp(z) − εk
, (8.3.8)

and Xnk is the (p−1)×nmatrix obtained from Xn with its k-th row removed
and x′

k is the k-th row of Xn.
In Chapter 3, it was proved that one of the roots of equation (8.3.7) is

Esp(z) = − 1

2yz

(
z + y − 1 − yzδ −

√
(z + y − 1 + yzδ)2 − 4yz

)
. (8.3.9)

By Lemma 8.16, we need only estimate sp(z) − sy(z) for z = u + iv, v >
0, |u| < A, where A is a constant chosen according to (B.2.10).

As done in the proof of Theorem 8.2, we mainly concentrate on finding a
bound for |δ| and postpone the technical proofs to the next subsection.

We now proceed to estimate |δn|. First, we note that

|βk| =
1

|z + y − 1 + yzEsp(z) − εk|
≤ v−1 (8.3.10)

by the fact that
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ℑ(z + y − 1 + yzsp(z) − εk)

= ℑ
(
skk − z − 1

n2
α∗

k(Snk − zIn−1)
−1αk

)
< −v.

Then, by (8.3.8) and (8.3.10), we have

|δ| ≤ 1

p

p∑

k=1

(|b2n‖Eεk| + |b3n|E|εk|2 + |b4n|E|εk|3 + |bn|4v−1E|ε4k|). (8.3.11)

In (3.3.15), it was proved that

|Eεk| ≤
C

nv
, (8.3.12)

where the constant C may take the value yA+ 1.
Next, the estimation of E|εk|2 needs to be more precise than in Chapter

3. By writing ∆ = ‖EFp − Fy‖, we have

E|ε2k| ≤
C

n
+R1 +R2 + |E(εk)|2, (8.3.13)

where the first term is a bound for E|skk − 1|2,

R1 = n−4E
∣∣α∗

k(Snk − zIp−1)
−1αk

−E[(α′
k(Snk − zIp−1)

−1αk|Xnk)
∣∣2

= n−4E

∣∣∣∣x′
kX

∗
nk(Snk − zIp−1)

−1Xnkx̄k

−tr(X∗
nk(Snk − zIp−1)

−1Xnk)

∣∣∣∣
2

≤ Cn−4tr(X∗
nk(Snk − zIp−1)

−1XnkX
∗
nk(Snk − z̄Ip−1)

−1Xnk)

(by Lemma B.26)

= C

(
1

n
+

|u|2
n2

Etr((Snk − uIp−1)
2 + v2Ip−1)

−1

)

= C

(
1

n
+

|u|2
n2v

Eℑtr(Snk − zIp−1)
−1

)

≤ C

(
1

n
+

|u|2
n2v

Eℑtr(Sn − zIp)
−1 +

2

n2v2

)

≤ C

(
1

n
+

|u|2
nv

[|Esp(z) − sy(z)| + |sy(z)|]
)

≤ C

(
1

n
+

|u|2
nv2

(∆+ v/
√
yvy)

)
(by Lemma B.22), (8.3.14)
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where vy =
√
a+

√
v = 1 −√

y +
√
v, and

R2 =
|z|2
n2

E
∣∣tr(Snk − zIp−1)

−1 − Etr(Sn − zIp)
−1
∣∣2

≤ 2|z|2
n2

[
E
∣∣tr(Sn − zIp−1)

−1 − Etr(Sn − zIp)
−1
∣∣2 +

1

v2

]

= 2|z|2
[
E |sp(z) − Esp(z)|2 +

1

n2v2

]

≤ C|z|2
[
n−2v−4(∆+ v/vy) +

1

n2v2

]
(by Lemma 8.20)

≤ C|z|2
n2v4

(∆+ v/vy). (8.3.15)

Substituting (8.3.12) and the estimates for R1 and R2 into (8.3.13), we obtain

E|εk|2 ≤ C

(
1

n
+

|z|2
nv2

(∆+ v/vy)

)
.

We now estimate E|εk|4. At first, by noting ν8 ≤ Cn1/2, we have

E|skk − 1|4 ≤ Cn−4[ν8n+ ν2
4n

2] ≤ C/n2.

Employing Lemma B.26, we obtain

n−8E
∣∣α∗

k(Snk − zIp−1)
−1αk − tr(X∗

nk(Snk − zIp−1)
−1Xnk)

∣∣4

≤ Cn−4E
[
ν8tr((Snk − zIp−1)

−2S4
nk(Snk − z̄Ip−1)

−2)

+ ν4tr((Snk − zIp−1)
−1S2

nk(Snk − z̄Ip−1)
−1)2

]

≤ Cn−4E
[
ν8tr(I + |z|4(Snk − zIp−1)

−2(Snk − z̄Ip−1)
−2)

+ ν4tr(I + |z|2(Snk − zIp−1)
−1(Snk − z̄Ip−1)

−1)2
]

≤ Cn−2E
[
1 + n−1/2|z|4v−3ℑ(sp(z)) + |z|4v−2(ℑ(sp(z)))

2
]

≤ Cn−2[1 + |z|4v−2|Esp(z)|
+|z|4v−2(E|sp(z) − Esp(z)|2 + |Esp(z)|2)]

≤ Cn−2[1 + |z|4v−3(∆+ v/vy) + |z|4v−6n−2(∆+ v/vy)

+|z|4v−4(∆+ v/vy)2]

≤ Cn−2[1 + |z|4v−4(∆+ v/vy)2].

Applying Lemma 8.20, it follows that

=
|z|4
n4

E
∣∣tr(Snk − zIp−1)

−1 − Etr(Sn − zIp)
−1
∣∣4

≤ C|z|4
n4

[
E
∣∣tr(Sn − zIp−1)

−1 − Etr(Sn − zIp)
−1
∣∣4 +

1

v4

]
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= C|z|4
[
E |sp(z) − Esp(z)|4 +

1

n4v4

]

≤ C|z|4
[
n−4v−8(∆+ v/vy)2 +

1

n4v4

]
(by Lemma 8.20)

≤ C|z|4
n4v8

(∆+ v/vy)2 ≤ C|z|4
n2v4

(∆+ v/vy)2.

Therefore, the three estimates above yield

E|εk|4 ≤ C

n2
[1 + |z|4v−4(∆+ v/vy)2].

By Cauchy’s inequality, we have

E|εk|3 ≤ (E|εk|2E|εk|4)1/2

≤ Cn−3/2(1 + |z|3v−3(∆+ v/vy)3/2).

Substituting the estimates of the moments of εk above into (8.3.11) and
noting that |bn| ≤ 1/

√
y|z| by Lemma 8.18, we obtain

|δ| ≤ C[|bn|2n−1v−1 + n−1v−2(∆+ v/vy) + n−2v−5(∆+ v/vy)2].

Define
I = {M0v > n−1/2, |δ| < v/[10(A+ 1)2]}. (8.3.16)

From (8.3.7), it follows that

|bn|2 ≤ 2|Esp(z)|2 + 2|δ|2
≤ 2v−2(∆+ v/vy)2 + 2|δ|2.

Choose M0 large. Then Cy−1n−1v−2 < 1
2 . Consequently, 2Cn−1v−1|δn| < 1

2 ,
from which it follows that

|δ| ≤ C[n−1v−3(∆+ v/vy)2 + n−1v−2(∆+ v/vy)] +
1

2
|δ|

≤ C0n
−1v−3(∆+ v/vy)2.

By Lemma 8.21, if v ∈ I, we have

∆ ≤ C1v/vy.

Hence,
|δn| ≤ C0(C1 + 1)2n−1v−2

y .

At first, it is easy to verify that, for all large n, v0 = n−1/5 ∈ I.
We first consider the case where a < n−1/3. If v1 = M1n

−1/3+η ∈ I, where
η > 0 and M1 >

√
10C0(A + 1)(C1 + 1), we have ∆ ≤ C1

√
v1. Choosing

v2 = M1n
−1/3+η/4, we then have
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|δn| ≤ C0n
−1v−3

2

(
∆+

v2√
a+

√
v2

)2

≤ C0(C1 + 1)2n−1v−3
2

(
v1√

a+
√
v1

)2

≤ C0(C1 + 1)2n−1v−3
2 v1

≤ C0(C1 + 1)2M−2
1 v2 < v2/[10(A+ 1)2].

This proves that v2 ∈ I. Starting from η = 1
3 − 1

5 = 2/15, recursively using
the result above, we know that, for any m,

M1n
−1/3+2/[15×4m] ∈ I.

Making m→ ∞, we have shown that M1n
−1/3 ∈ I. Consequently,

∆ ≤ O(n−1/6).

Now, let us consider the case a > n−1/3. If v3 = M2n
−1/2+ηa−1/2 ∈ I,

where η > 0 and M2 >
√

10C0(A+ 1)(C1 + 1), then we have ∆ ≤ C1v3/
√
a.

Choosing v4 = M2n
−1/2+η/2a−1/2, we then have

|δn| ≤ C0n
−1v−3

4

(
∆+

v4√
a+

√
v4

)2

≤ C0(C1 + 1)2n−1v−3
4 v2

3/a

≤ C0(C1 + 1)2M−2
2 v4 < v4/[10(A+ 1)2].

This proves that v4 ∈ I. Starting from η = 1
2 − 1

5 = 3/10, recursively using
the result above, we obtain, for any m,

M2n
−1/2+3/[10×2m]a−1/2 ∈ I.

Making m→ ∞, we have shown that M1n
−1/2a−1/2 ∈ I. Consequently,

∆ ≤ O(n−1/2a−1).

The proof of the theorem is complete.



204 8 Convergence Rates of ESD

8.4 Some Elementary Calculus

8.4.1 Increment of M-P Density

To apply Lemma B.19 to the truncation and centralization of the entries of
Xn, we need to estimate the incremental function g given in Lemma B.19.
We have the following lemma.

Lemma 8.14. For the M-P law with index y ≤ 1, the function g in Lemma
B.19 can be taken as g(v) = 2v/(y(

√
a+

√
v)).

Proof. Let v > 0 be a small number and

Φ(x) =

∫ x+v

x

1

2πty

√
(b− t)(t− a)I[a,b](t)dt.

To find the maximum value of Φ(x) for fixed v, we may assume that a ≤ x ≤
b − v because Φ(x) is increasing for x < a and decreasing for x > b − v. In
this case,

Φ(x) ≤
∫ x+v

x

1

πy
√
t
dt

=
2

πy
(
√
x+ v −√

x)

=
2v

πy(
√
x+ v +

√
x)

≤ 2v

πy(
√
a+

√
v)
.

To apply Corollary B.15, we need the following estimate.

Lemma 8.15. For v > n−1/2, we have

sup
x

∫

|u|<v

|Fy(x + u) − Fy(x)|du < 11
√

2(1 + y)

3πy
v2/vy,

where Fy is the M-P law with index y ≤ 1.

Proof. Set

Φ(λ) =

∫ v

0

|Fy(x + u) − Fy(x)|du,

where λ = x− a. It is obvious that
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sup
x

∫

|u|<v

|Fy(x+ u) − Fy(x)|du ≤ 2 sup
λ
Φ(λ).

We now begin to estimate the maximum of Φ(λ). To this end, we need only
consider the case λ ≥ 0. Then,

Φ(λ) =

∫ v

0

∫ x+u

x

1

2πxy

√
(b− t)(t− a)I[a,b](t)dtdu

=

∫ a+λ+v

a+λ

a+ λ+ v − t

2πxy

√
(b − t)(t− a)I[a,b](t)dt

=

∫ λ+v

λ

λ+ v − t

2πy(t+ a)

√
t(4

√
y − t)I[0,4

√
y](t)dt.

Write φ(t) = (a+ t)−1
√
t(4

√
y − t). Then

2
d

dt
logφ(t) =

1

t
− 1

4
√
y − t

− 1

t+ a
=

2(2
√
ya− (1 + y)t)

t(4
√
y − t)(t+ a)

.

This shows that φ(t) is increasing in the interval (0, ρ) and decreasing in
(ρ, 4

√
y), where ρ = 2a

√
y/(1 + y). Since

d

dλ
Φ(λ) =

1

2πy

∫ λ+v

λ

[φ(t) − φ(λ)]dt,

it follows that Φ(λ) is decreasing when λ > ρ and increasing when λ < ρ− v.
Therefore, the maximum of Φ(λ) can only be reached when λ ∈ [0∨(ρ−v), ρ].
Suppose λ is in this interval. Then

Φ(λ) ≤ 2y1/4

2πy

∫ λ+v

λ

λ+ v − u

u+ a

√
udu

= 2(πy3/4)−1

{
(λ+ v + a)

[
(
√
λ+ v −

√
λ)

−√
a

(
arctan

√
λ+ v

a
− arctan

√
λ

a

)]

−1

3

[
(λ+ v)3/2 − λ3/2

]}
.

Since

√
a

(
arctan

√
λ+ v

a
− arctan

√
λ

a

)
≥ a

λ+ v + a

(√
λ+ v −

√
λ
)
,

we get, by setting λ∗ =
√
λ+ v −

√
λ,
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Φ(λ)

≤ 2

πy3/4

{
(a+ λ+ v)

(
λ∗ − a

a+ λ+ v
λ∗
)
− λ∗

(
λ+

√
λλ∗ +

1

3
λ∗2

)}

=
2

πy3/4

[√
λλ∗2 +

2

3
λ∗3

]
.

Let c2 = 1+y
2
√

y . Since λ+ v ≥ c−2a and

(
√
λ+ v +

√
λ)2 ≥ λ+ v + 2

√
λ(λ+ v) ≥ 2

√
λv + 2

√
λc−2a,

we have
√
λ

(
√
λ+ v +

√
λ)2

≤ c

2
√
a+ 2c

√
v
≤ c

2
√
a+ 2

√
v
,

1

(
√
λ+ v +

√
λ)3

≤ 2c

(
√
a+

√
v)v

,

where the last inequality follows from

(
√
λ+ v +

√
λ)3 ≥

√
λ+ vv

≥ 1

2

[√
c−2a+

√
vv
]

≥ 1

2c

[√
v +

√
a
]
v.

Hence

Φ(λ) ≤ 2

πy3/4
· 11c

6(
√
a+

√
v)
v2 =

11
√

2(1 + y)

6πy

1√
v + (1 −√

y)
v2.

This completes the proof of the lemma.

8.4.2 Integral of Tail Probability

This lemma estimates the integral of the tail probability, which is needed
when applying Theorem B.14.

Lemma 8.16. Under condition (8.3.1) and the additional assumption

|xij | < n1/4, (8.4.1)

we have ∫ ∞

B

|EFp(x) − Fy(x)|dx = o(n−t), (8.4.2)
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where B = b + 1, b = b(y) is defined below (8.3.2) and the constant t > 0 is
fixed but can be arbitrarily large.

Proof. By Theorem 5.9, we have

P(λmax(Sn) ≥ B + x) ≤ Cn−t−1(B + x− ε)−2. (8.4.3)

Note that
1 − Fp(x) ≤ I[λmax(Sn)≥x] for x ≥ 0. (8.4.4)

We have
∫ ∞

B

|EFp(x) − F (x)|dx ≤
∫ ∞

B

P (λp ≥ x)dx

≤
∫ ∞

B

Cn−t−1(B + x− ε)−2dx

= o(n−t). (8.4.5)

The proof is complete.

8.4.3 Bounds of Stieltjes Transforms of the M-P Law

We frequently need the bounds of the Stieltjes transform of the M-P law in
the proof of Theorem 8.10.

Lemma 8.17. For the Stieltjes transform of the M-P law, we have

|sy(z)| ≤
√

2√
yvy

,

where vy =
√
a+

√
v = 1 −√

y +
√
v.

Proof. Recall that

sy(z) = −y + z − 1 −
√

(1 + y − z)2 − 4y

2yz
,

which is a root of the quadratic equation

yzs2 + (y + z − 1)s+ 1 = 0.

Write the other root of the equation as

s∗y(z) = −y + z − 1 +
√

(1 + y − z)2 − 4y

2yz
.

We claim that, for any z ∈ C+,
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|sy(z)| < |s∗y(z)|. (8.4.6)

Set
α+ iβ =

√
(1 + y − z)2 − 4y, β ≥ 0.

Then,

αβ = v(u− y − 1), (8.4.7)

β2 − α2 = (b− u)(u− a) + v2. (8.4.8)

If β = 0, then u = 1 + y, which violates equation (8.4.8). Thus, β > 0 for all
cases. Now,

|sy(z)| < |s∗y(z)| ⇔ |y + z − 1 − α− iβ|2 < |y + z − 1 + α+ iβ|2
⇔ α(y − 1 + u) + βv > 0.

This is trivially true if

α(y − 1 + u) ≥ 0 ⇔ (y − 1 + u)(u− y − 1) ≥ 0 ⇔ |1 − u| > y.

If (8.4.6) is not always true, then there is a z ∈ C
+ such that

|sy(z)| = |s∗y(z)| ⇒ α(y − 1 + u) + βv = 0,

which together with (8.4.7) implies that

β2 = v−1βα(1 − y − u) = (1 − y − u)(u− y − 1)

= y2 − (1 − u)2 ≤ (b− u)(u− a).

The above leads to a contradiction to (8.4.8). Assertion (8.4.6) is proved.
With the observation that sy(z)s∗y(z) = 1/yz, we obtain

|sy(z)| < 1/
√
y|z|. (8.4.9)

Next, we shall get a better estimate for |sy(z)| when |z| is small. When
u < a − v, both the real and imaginary parts are positive and increasing.
Thus, the maximum of |sy(z)| can only be reached when u > a−v. If a < 2v,
then

|sy(z)| ≤ 1/
√
yv ≤

√
2√

y(
√
a+

√
v)
.

If a > 2v, then

√
|z| ≥ 4

√
a2/4 + v2 ≥ 1√

2
(
√
a+

√
v).

We also have the same estimate. Thus, the proof of the lemma is complete.
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8.4.4 Bounds for b̃n

Similar to (8.3.7), we may expand sp(z) as

sp(z) =
1

p

p∑

k=1

1

skk − z − n−2α∗
k(Snk − zIp−1)−1αk

= −b̃n + δ̃, (8.4.10)

where

ε̃k = (skk − 1) + y + yzsp(z) −
1

n2
α∗

k(Snk − zIp−1)
−1αk,

δ̃ = δp = −1

p

p∑

k=1

b̃nβkεk,

b̃n = b̃n(z) =
1

z + y − 1 + yzsp(z)
,

βk = βk(z) =
1

z + y − 1 + yzsp(z) − ε̂k
. (8.4.11)

Also, similar to the proof of (8.3.9), one may prove that, for all z ∈ C+,

sp(z) = −
z + y − 1 − yzδ̃ −

√
(z + y − 1 + ysδ̃)2 − 4yz

2yz
. (8.4.12)

We will prove the following lemma.

Lemma 8.18. For all z ∈ C+,

|b̃n| <
1√
y|z|

.

Similarly, we have

|bn| <
1√
y|z|

.

Proof. By (8.4.10) and (8.4.12),

−b̃n = sp(z) − δ̃ = −
z + y − 1 + yzδ̃ −

√
(z + y − 1 + yzδ̃)2 − 4yz

2yz
.

By the convention made to square roots of complex numbers (see (2.3.2)),
we have

√
a =

{√
a/b

√
b, if arg(a) >arg(b),

−
√
a/b

√
b, if arg(a) <arg(b),
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where the angle arg(z) of the complex number z is defined to be the one in
the range [0, 2π). Therefore, we have

−√
yzb̃n =





ssemi((z + y − 1 + yzδ̃)/
√
yz), if z ∈ D1,

−ssemi(−(z + y − 1 + yzδ̃)/
√
yz), if z ∈ D2,

s−1
semi((z + y − 1 + yzδ̃)/

√
yz), if z ∈ D3,

−s−1
semi

(−(z + y − 1 + yzδ̃)/
√
yz), if z ∈ D4,

where ssemi(·) is the Stieltjes transform of the semicircular law defined in
Section 2.3 (using different notation to avoid possible confusion with that of
the M-P law) and

D1 = {z ∈ C
+,ℑ((z + y − 1 + yzδ̃)/

√
yz) > 0

and arg[(z + y − 1 + yzδ̃)2 − 4yz] > arg(yz)},
D2 = {z ∈ C

+,ℑ((z + y − 1 + yzδ̃)/
√
yz) < 0

and arg[(z + y − 1 + yzδ̃)2 − 4yz] < arg(yz)},
D3 = {z ∈ C

+,ℑ((z + y − 1 + yzδ̃)/
√
yz) > 0

and arg[(z + y − 1 + yzδ̃)2 − 4yz] < arg(yz)},
D4 = {z ∈ C

+,ℑ((z + y − 1 + ỹzδ)/
√
yz) < 0

and arg[(z + y − 1 + yzδ̃)2 − 4yz] > arg(yz)}.

By (8.1.11), if z ∈ D1 or D2, then the conclusion of Lemma 8.18 holds.
Then, we shall complete the proof of the first conclusion by showing that
D3 = D4 = ∅.

We claim that D1 6= ∅. As v = ℑ(z) is large enough, we have the following
estimates:

(i) ℑ
(

y−1√
yz

)
> 0,

(ii) ℑ
(√

z/y
)
∼
√
v/y,

(iii) |√yzδ̃| = o(
√
v) as v → ∞.

These three estimates show that, for any fixed u and all large v,

ℑ((z + y − 1 + yzδ̃)/
√
yz) > 0. (8.4.13)

Also, by (8.4.10),

z + y − 1 + yzδ̃ = z + y − 1 + yzsp(z) +
1

z + y − 1 + yzsp(z)
.

Note that



8.4 Some Elementary Calculus 211

z + y − 1 + yzsp(z) = z − 1 + y

∫ ∞

0

x

x− z
dFp(x),

from which it is easy to deduce that, as v → ∞,

ℑ(z + y − 1 + yzsp(z)) ≥ v → ∞,

and ℜ(z+ y− 1+ yzsp(z)) = u− 1+ o(1). Therefore, for any fixed u < 1 and
all large v,

ℑ((z + y − 1 + yzδ̃)2 − 4yz)

= ℑ[(z + y − 1 + yzsp(z))
2 − 4yz] + o(1)

= (u + y − 1 + ℜ(yzsp(z)))(v + ℑ(yzsp(z)) − 4yv) < 0.

In this case, arg((z + y − 1 + yzδ̃)2 − 4yz) > π >arg(yz). Hence, D1 is not
empty.

Next, we claim that D3 = D4 = ∅. If not, then we may choose z1 ∈ D1

and z2 ∈ D3 ∪D4. Draw a continuous curve from z1 to z2. Let z0 be a point
on the intersection of the curve and the boundary of D3 ∪ D4. No matter
whether z0 ∈ ∂D1 ∩∂D3 or the other three cases, by (8.1.11) we always have

|ssemi((z0 + y − 1 + yz0δ̃)/
√
yz0)| = 1,

which implies that

(z0 + y − 1 + yz0δ̃)/
√
yz0 = ±2

and
ssemi((z0 + y − 1 + yz0δ̃)/

√
yz0) = ±1.

Recall that

√
yz0b̃n(z0) = ssemi((z0 + y − 1 + yz0δ̃(z0))/

√
yz0)

= s−1
semi((z0 + y − 1 + yz0δ̃(z0))/

√
yz0) = ±1.

These show that z0 is a root of the equation yz0b̃
2
n = 1, or equivalently

yz0 = (y + z0 − 1 + yz0sp(z0))
2. (8.4.14)

Note that sp(z) is analytic on C+. Because we can draw infinitely many
disjoint curves from z1 to z2, we can find infinitely many distinct z0’s, roots of
(8.4.14). By the unique extension theorem of analytic functions, we conclude
that (8.4.14) holds for all z ∈ C+. This contradicts the fact that D1 is not
empty.

We conclude that C+ ⊂ D1∪D2. Hence, the first conclusion of the lemma
follows from (8.1.11) and the continuity.
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The second conclusion can be proved along the same lines, and thus the
proof of the lemma is complete.

8.4.5 Integrals of Squared Absolute Values of
Stieltjes Transforms

Applying Lemma B.20, we obtain

∫
|sy(z)|2du ≤ 2π√

y(1 − y)
(8.4.15)

since the density function has an upper bound 1/(π
√
y(1 − y)).

It should be noted that this bound tends to infinity when y tends to zero
or one. This is reasonable for the case where y → 0 because the distribution
tends to be degenerate. For the case y → 1 or even y = 1, the distribution is
still continuous, although the density for y = 1 is unbounded. One may want
to have a finite bound (probably depending on v). We have the following
inequality.

Lemma 8.19. For any y ≤ 1, we have

∫
|sy(z)|2du ≤ 2π(1 +

√
y)

yvy
. (8.4.16)

Proof. Using the notation and going through the same lines of the proof of
Lemma B.20, we find that

I =:

∫
|sy(z)|2du

= 4πv

∫ b

a

∫ b

a

1

(u− x)2 + 4v2
φ(x)φ(u)dxdu

= 8πv

∫ b

a

∫ b

x

1

(u− x)2 + 4v2
φ(x)φ(u)dxdu (by symmetry)

≤ 4vy−1
√
b

∫ ∞

0

∫ b

a

φ(x)
1√

w + a(w2 + 4v2)
dwdx

= 2y−1
√
b

∫ ∞

0

1√
2vw + a(w2 + 1)

dw.

If a ≥ v, we have

I ≤ 2y−1
√
b

∫ ∞

0

1√
a(w2 + 1)

dw
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= πy−1
√
b/a ≤ 2π

√
2b

y(
√
a+

√
v)
.

If a < v, then

I ≤ 2y−1
√
b

∫ ∞

0

1√
2wv(w2 + 1)

dw

= πy−1
√
b/v ≤ 2π

√
b

y(
√
a+

√
v)
.

Here we used the fact that
∫ ∞

0

1√
w(w2 + 1)

dw =
π√
2
,

which may be computed by using the residue theorem and the equality

∫ ∞

0

1√
w(w2 + 1)

dw =
1

1 − i

∫ ∞

−∞

1√
z(z2 + 1)

dz.

This completes the proof of Lemma 8.19.

8.4.6 Higher Central Moments of Stieltjes Transforms

Lemma 8.20. If |z| < A, v > n−1/2, and ℓ ≥ 1, then

E|sp(z) − Esp(z)|2ℓ ≤ C

n2ℓv−4ℓy2ℓ
(∆+ v/vy)ℓ, (8.4.17)

where A is a positive constant and vy = 1 − √
y +

√
v, which is defined in

Lemma 8.17.

Proof. Write Ek(·) as the conditional expectation given {xij ; i ≤ k, j ≤ n},
with the convention that E0 is the unconditional expectation. Then

sp(z) − Esp(z) =
1

p

p∑

k=1

γk,

where

γk = Ektr(Sn − zIp)
−1 − Ek−1tr(Sn − zIp)

−1

= Ekσk − Ek−1σk

and
σk = βk(1 + n−2α∗

k(Snk − zIp−1)
−2αk).
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By Lemma 2.13, we have

E|sp(z) − Esp(z)|2ℓ

≤ Cn−2ℓ



E

(
p∑

k=1

Ek−1|γ2
k|
)ℓ

+

p∑

k=1

E|γk|2ℓ



 . (8.4.18)

Define

bnk =
1

z + y − 1 + z
n tr(Snk − zIp−1)−1

,

ε̃k = skk − 1 − 1

n2
α∗

k(Snk−zIp−1)
−1αk +

1

n
tr(Snk−zIp−1)

−1Snk.

Note that

|b̃−1
n − b−1

nk | =

∣∣∣∣
z

n
[tr(Sn − zIp)

−1 − tr(Snk − zIp−1)
−1]

∣∣∣∣ <
|z|
nv
.

By Lemma 8.18, when v > 1/
√
n, we have

|bnk| = |b̃n||1 + bnk(b̃−1
n − b−1

nk )| ≤
(

1 +
|z|
nv2

)
|b̃n| ≤ C/

√
y|z|. (8.4.19)

Note that σk = −bnk − bnkσkε̃k and |σk| ≤ 1/v, which follows from the
observation that

|1 + n−2α∗
k(Snk − zIp−1)

−1αk| ≤ v−1ℑ(β−1
k ).

We can rewrite γk as

γk = −n−2Ekbnkx
′
kX

∗
nk(Snk − zIp−1)

−2Xnkx̄k

−tr(X∗
nk(Snk − zIp−1)

−2Xnk) − (Ek − Ek−1)bnkε̃kσk.

In what follows, we shall repeatedly use the identity

(Snk − zIp−1)
−1Snk = Ip−1 + z(Snk − zIp−1)

−1

and the inequality

(I + B)ℓ[(I + B)∗]ℓ ≤ C[I + Bℓ[B∗]ℓ],

for any normal matrix B; that is, it satisfies BB∗ = B∗B, where A ≤ B
means that B− A is a nonnegative definite matrix.

Applying Lemma B.26 and (8.4.19), similar to (8.1.34), we obtain

n−4Ek−1|bnkx
′
kX

∗
nk(Snk − zIp−1)

−2Xnkx̄k

−tr(X∗
nk(Snk − zIp−1)

−2Xnk)|2
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≤ 1

n2
Ek−1|bnk|2tr((Snk − zIp−1)

−2Snk(Snk − z̄Ip−1)
−2Snk)

≤ C

nv2y|z|tr((Snk − zIp−1)
−1Snk(Snk − z̄Ip−1)

−1Snk)

≤ C

nv2y|z|
[
n+ |z|2tr((Snk − zIp−1)

−1(Snk − z̄Ip−1)
−1)
]

≤ Cv−3n−1Ek−1(1 + ℑ(sp(z)) (8.4.20)

and

E|(Ek − Ek−1)bnkε̃kσk|2
≤ v−2Ek−1|bnk|2|ε̃k|2
≤ 2v−2Ek−1|bnk|2

[
|skk − 1|2 + n−4|x′

kX
∗
nk(Snk − zIp−1)

−1Xnkx̄k

−tr(X∗
nk(Snk − zIp−1)

−1Xnk)|2
]

≤ Cv−2Ek−1|bnk|2
[
n−1

+n−2|tr((Snk − zIp−1)
−1Snk(Snk − z̄Ip−1)

−1Snk)
]

≤ Cv−3n−1Ek−1 (1 + ℑ(sp(z))) . (8.4.21)

By (8.4.20) and (8.4.21), for large n,

E

(
p∑

k=1

Ek−1|γ2
k|
)ℓ

≤ Cn−2ℓv−3ℓE(1 + ℑ(sp(z)))
ℓ.

Furthermore, we have

n−4ℓE|bnkx
′
kX

∗
nk(Snk − zIp−1)

−2Xnkx̄k

−tr(X∗
nk(Snk − zIp−1)

−2Xnk)|2ℓ

≤ C

n2ℓ
E|bnk|2ℓ

[
ν4ℓtr

(
(Snk − zIp−1)

−2Snk(Snk − z̄Ip−1)
−2Snk

)ℓ

+
[
ν4tr

(
(Snk − zIp−1)

−2Snk(Snk − z̄Ip−1)
−2Snk

)]ℓ]

≤ C

n2ℓyℓ|z|ℓ E
[
ν4ℓv

−2ℓtr
(
Ip−1 + |z|2ℓ(Snk−zIp−1)

−ℓ(Snk−z̄Ip−1)
−ℓ
)

+νℓ
4v

−2ℓ
[
n+ |z|2tr

(
(Snk − zIp−1)

−1(Snk − z̄Ip−1)
−1
)ℓ]]

≤ C

n2ℓyℓ|z|ℓ E
[
nℓv−2ℓ

(
1 + |z|2ℓv−2ℓ+1ℑsp(z)

)
(using ν4ℓ ≤ Cnℓ−1)

+nℓv−2ℓ
(
1 + |z|2v−1ℑsp(z)

)ℓ ]

≤ C

nℓyℓv3ℓ
E
[
1 + v−ℓ+1ℑsp(z) + (ℑsp(z))

ℓ
]
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≤ C

nℓyℓv3ℓ
E
(
1 + v−ℓ+1ℑsp(z)

)
(8.4.22)

and

E|(Ek − Ek−1)bnkε̃kσk|2ℓ

≤ v−2ℓE|bnk|2ℓ|ε̃k|2ℓ

≤ C

v2ℓyℓ|z|ℓ E
[
|skk − 1|2ℓ + n−4ℓ|x′

kX
∗
nk(Snk − zIp−1)

−1Xnkx̄k

−tr(X∗
nk(Snk − zIp−1)

−1Xnk)|2ℓ
]

≤ C

v2ℓyℓ|z|ℓ E
[
n−2ℓ(nν4ℓ + (ν4n)ℓ)

+n−2ℓ
(
ν4ℓtr((Snk − zIp−1)

−ℓ(Snk − z̄Ip−1)
−ℓS2ℓ

nk)

+
(
ν4tr((Snk − zIp−1)

−1(Snk − z̄Ip−1)
−1S2

nk)
)ℓ )]

≤ C

nℓv2ℓyℓ|z|ℓ E
[
1 + |z|2ℓℑsp(z)v

−2ℓ+1 + v−ℓ|z|2ℓ
(
ℑ(sp(z))

)ℓ]

≤ C

nℓv3ℓyℓ

(
1 + ℑsp(z)v

−ℓ+1
)
. (8.4.23)

By (8.4.22) and (8.4.23), for large n,

p∑

k=1

E|γk|2ℓ ≤ C

n3ℓ+1yℓv3ℓ
(1 + Eℑ(sp(z))v

−ℓ+1).

Consequently,

|sp(z) − Esp(z)|2ℓ

≤ C

n2ℓv3ℓyℓ
(1 + E(ℑ(sp(z)))

ℓ + n−ℓ+1v−ℓ+1Eℑ(sp(z))). (8.4.24)

When ℓ = 1, we have

|sp(z) − Esp(z)|2 ≤ C

n2v3y
(1 + E(ℑ(sp(z)))

≤ C

n2v3y
(1 + |Esp(z) − sy(z)| + |sy(z)|)

≤ C

n2v3y
(1 +∆/v + 1/

√
yvy).

This shows that the lemma holds for ℓ = 1. For ℓ ∈ (2t−1, 2t], the lemma will
be proved by induction for t = 0, 1, 2, · · ·. To this end, we shall extend the
lemma to the case ℓ ∈ (1

2 , 1). We have, by Lemma 2.12 and the result for the
case of ℓ = 1,
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|sp(z) − Esp(z)|2ℓ ≤ C

n2ℓ
E

(
p∑

k=1

|γk|2
)ℓ

≤ C

n2ℓ

(
p∑

k=1

E|γk|2
)ℓ

= C
(
E|sp(z) − Esp(z)|2

)ℓ

≤ C

n2ℓv4ℓy2ℓ
(∆+ v/vy)ℓ.

This shows that the lemma holds when ℓ ∈ (2−1, 20]. Assume that the lemma
holds for ℓ ∈ (1

2 , 2
t−1]. Consider the case where ℓ ∈ (2t−1, 2t]. By (8.4.24), we

have

|sp(z) − Esp(z)|2ℓ

≤ C

n2ℓv3ℓyℓ
(1 + E|sp(z) − Esp(y)|ℓ + |Esp(z)|ℓ

+n−ℓ+1v−ℓ+1|Esp(z)|)

≤ C

n2ℓv3ℓyℓ

(
1 +

(∆+ v/vy)ℓ/2

nℓv2ℓyℓ
+ |∆/v + 1/

√
yvy |ℓ

+n−ℓ+1v−ℓ+1(∆/v + 1/
√
yvy)

)

≤ C

n2ℓv4ℓy2ℓ
(∆+ v/vy)ℓ.

This completes the proof of the lemma.

8.4.7 Integral of δ

Lemma 8.21. If |δn| < v/[10(A+1)2] for all |z| < A, then there is a constant
M such that

∆ ≤Mv/vy,

where A is defined in Corollary B.15 for the M-P law with index y ≤ 1.

Proof. By (3.3.1) and (8.3.9), we have

|sp(z) − sy(z)|

≤
∣∣∣∣
δn
2

∣∣∣∣

[
1+

|2(z + y − 1) − yzδn|
|
√

(z + y − 1)2 − 4yz +
√

(z + y − 1 + yzδn)2 − 4yz|

]
.

(8.4.25)
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By the convention on the sign of square roots of complex numbers (see
(2.3.2)), the signs of the real parts of

√
(z + y − 1)2 − 4yz and

√
(z + y − 1 + yzδn)2 − 4yz

are sign(u− y − 1) and

sign(u+ y − 1 + ℜ(yzδn))(v + ℑ(yzδn)) − 2yv

= sign(v(u − y − 1)+(u+ y − 1)ℑ(yzδn)+ℜ(yzδn)(v + ℑ(yzδn))).

By the condition on δn, we have

|(u+ y − 1)ℑ(yzδn) + ℜ(yzδn)(v + ℑ(yzδn))| < v/5(A+ 1).

If |u − y − 1| ≥ 1/5(A + 1), then the real parts of
√

(z + y − 1)2 − 4yz

and
√

(z + y − 1 + yzδn)2 − 4yz have the same sign. Since they both have
positive imaginary parts, it follows that

|sp(z) − sy(z)| ≤
1

2
|δ|
[
1 +

2A+ 2√
|(u− y − 1)2 − v2 − 4y|

]
. (8.4.26)

If |u− y − 1| < 1/[5(A+ 1)], then, for all large n, we have

|
√

(z − y − 1)2 − 4y − 2i
√
y| =

|z − y − 1|2
|
√

(z − y − 1)2 − 4y + 2i
√
y|

≤ 1

50
√
y(A+ 1)2

.

Therefore, for |u− y − 1| < 1/[5(A+ 1)], we have

|sp(z) − sy(z)| ≤ 1

2
|δ|
[
1 +

2A+ 2

ℑ(
√
|(u − y − 1)2 − v2 − 4y|)

]

≤ 1

2
|δ|
[
1 +

2A+ 2√
y

]
. (8.4.27)

Combining (8.4.26) and (8.4.27), for |Z| ≤ A, we have

|sn(z) − sy(z)| ≤




C1|δ|, if |u− y − 1| < 1/[5(A+ 1)],

1
2 |δ|

[
1 + 2A+2√

|(u+y−1)2−v2−4yu|

]
, otherwise,

(8.4.28)

where C1 = C1(y) is a positive constant depending upon y, say, and here it
may take A+2√

y .

By (8.4.28), one finally gets
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∫ A

−A

|sn(z) − sy(z)|du

=

∫

[|u−y−1|≥1/[5(A+1)],|u|≤A]

|sn(z) − sy(z)|du

+

∫

[|u−y−1|<1/[5(A+1)],|u|≤A]

|sn(z) − sy(z)|du

≤ Cv

∫ A

−A

1√
|(u+ y − 1)2 − v2 − 4yu|

du+ C

∫ A

−A

|δ|du

≤ ηv + Cv = C0v, (8.4.29)

where C0 is some constant. The proof of the lemma is complete.

8.5 Rates of Convergence in Probability and Almost
Surely

In this section, we further extend the results of the last section to the con-
vergence in probability and almost surely. We have the following theorems.

Theorem 8.22. Under the assumptions in (8.3.1), we have

‖Fp − Fyp‖ =

{
Op(n

−1/6), if a < n−1/3,
Op(n

−2/5a−2/5), if n−1/3 ≤ a < 1.
(8.5.30)

Proof. We prove the two theorems simultaneously. By the arguments in Sub-
section 8.3.2, we can assume that the additional condition (8.4.1) holds. Then,
by Theorem B.14, we have

E(‖Fp − Fyp‖) ≤
(∫ A

−A

E(|sp(z) − sy(z)|)du

+v−1 sup
x

∫

|y|≤2av

|Fy(x+ y) − Fy(x)|dy +

∫ ∞

B

E(Fp(x))dx

)

≤ C

(∫ A

−A

E(|sp(z) − E(sp(z))|)du

+

∫ A

−A

|E(sp(z)) − sy(z)|du+ v/vy + o(n−2)

)
. (8.5.31)

By Lemma 8.20,

E(|sp(z) − E(sp(z))|) ≤ [E(|sp(z) − E(sp(z))|2)]−1/2

≤ Cn−1v−2(∆+ v/vy)1/2.
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When a < n−1/3, choosing v = M1n
−1/3 and noting that ∆ = O(n−1/6), we

obtain

E(|sp(z) − E(sp(z))|) ≤ Cn−1v−2(∆+ v/vy)1/2

≤ Cn−5/12. (8.5.32)

In the proof of Theorem 8.10, it has been proved that the second integral on
the right-hand side of (8.5.31) is O(n−1/3). Substituting these into (8.5.31),
we obtain

E‖Fp − Fy‖ = (n−1/6).

This proves the conclusion for the case a < n−1/3 of Theorem 8.22.
Now, assume that a > n−1/3. In this case, we have ∆ = O(n−1/2a−1).

Choose v = M2n
−2/5a1/10, similar to (8.5.31), and we have

E(|sp(z) − E(sp(z))|) ≤ Cn−1v−2(∆+ v/vy)1/2

≤ Cn−1v−1.5a−1/4

= Cn−2/5a−2/5 = Cva−1/2. (8.5.33)

Then, by (8.5.31), we have

E‖Fp − Fy‖ = O(n−2/5a−2/5).

This proves the second case of Theorem 8.22.

Theorem 8.23. Under the assumptions in (8.3.1), we have, for any η > 0,

‖Fp − Fyp‖ =

{
Oa.s.(n

−1/6), if a < n−1/3,
Oa.s.(n

−2/5+ηa−2/5), if n−1/3 ≤ a < 1.
(8.5.34)

Proof. The proof of this theorem is almost the same as that of Theorem 8.22.
We only need to show that, for the case of a < n−1/3 with v = M1n

−1/3,

∫ A

−A

E(|sp(z) − sy(z)|)du = Oa.s.(n
−1/6), (8.5.35)

and for the case a > n−1/3 with v = M2n
−2/5a1/10,

∫ A

−A

E(|sp(z) − sy(z)|)du = Oa.s.(n
−2/5+ηa−2/5). (8.5.36)

By Lemma 8.20, we have

n2ℓ/6E(|sp(z) − sy(z)|2ℓ) ≤ Cn−2ℓv−4ℓ(∆+ v/vy)ℓ.

When a ≤ n−1/3, ∆ = O(n−1/6). Thus, with v = M1n
−1/3,
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n2ℓ/6E(|sp(z) − sy(z)|2ℓ) ≤ Cn−ℓ/2.

Then (8.5.35) follows by choosing ℓ ≥ 3.
When a > n−1/3, then ∆ = O(n−1/2a−1). Consequently, by choosing

v = M2n
−2/5a1/10, we have

n2ℓ(2/5−η)a4ℓ/5E(|sp(z) − sy(z)|2ℓ) ≤ Cn−2ℓη.

Then, (8.5.36) follows by choosing ℓ > 1/2η. This completes the proof of
Theorem 8.23.



Chapter 9

CLT for Linear Spectral Statistics

9.1 Motivation and Strategy

As mentioned in the introduction, many important statistics in multivariate
analysis can be written as functionals of the ESD of some random matrices.
The strong consistency of the ESD with LSD is not enough for more efficient
statistical inferences, such as the test of hypotheses, confidence regions, etc.
In this chapter, we shall introduce some results on deeper properties of the
convergence of the ESD of large dimensional random matrices.

Let Fn be the ESD of a random matrix that has an LSD F . We shall call

θ̂ =

∫
f(x)dFn(x) =

1

n

n∑

k=1

f(λk)

a linear spectral statistic (LSS), associated with the given random matrix,
which can be considered as an estimator of θ =

∫
f(x)dF (x). To test hy-

potheses about θ, it is necessary to know the limiting distribution of

Gn(f) = αn(θ̂ − θ) =

∫
f(x)dXn(x),

whereXn(x) = αn(Fn(x)−F (x)) and αn → ∞ is a suitably chosen normalizer
such that Gn(f) tends to a nondegenerate distribution.

Ideally, if for some choice of αn, Xn(x) tends to a limiting process X(x)
in the C space or D space equipped with the Skorohod metric, then the lim-
iting distribution of all LSS can be derived. Unfortunately, there is evidence
indicating that Xn(x) cannot tend to a limiting process in any metric space.

An example is given in Diaconis and Evans [94], in which it is shown that
if Fn is the empirical distribution function of the angles of eigenvalues of a
Haar matrix, then for 0 ≤ α < β < 2π, the finite-dimensional distributions
of

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,

© Springer Science+Business Media, L C 2010 
Second Edition, Springer Series in Statistics, DOI 10.1007/978-1-4419-0661-8_9,
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πn√
logn

(Fn(β) − Fn(α) − E[Fn(β) − Fn(α)])

converge weakly to Zα,β , jointly normal variables, standardized, with covari-
ances

Cov(Zα,β , Zα′,β′) =





0.5, if α = α′ and β 6= β′,
0.5, if α 6= α′ and β = β′,
−0.5, if α = β′ or β = α′,
0, otherwise.

This covariance structure cannot arise from a probability space on which
Z0,x is defined as a stochastic process with measurable paths in D[a, b] for
any 0 < a < b < 2π. Indeed, if so, then with probability 1, for x decreasing to
a, Z0,x−Z0,a would converge to 0, which implies its variance would approach
0. But its variance remains at 1. Furthermore, this result also shows that with
any choice of αn, Xn(x) cannot tend to a nontrivial process in any metric
space.

Therefore, we have to withdraw our attempts at looking for the limiting
process of Xn(x). Instead, we shall consider the convergence of Gn(f) with
αn = n. The earliest work dates back to Jonsson [169], in which he proved the
CLT for the centralized sum of the r-th power of eigenvalues of a normalized
Wishart matrix. Similar work for the Wigner matrix was obtained in Sinai
and Soshnikov [269]. Later, Johansson [165] proved the CLT of linear spectral
statistics of the Wigner matrix under density assumptions.

Because Xn tending to a weak limit implies the convergence of Gn(f) for
all continuous and bounded f , Diaconis and Evans’ example shows that the
convergence of Gn(f) cannot be true for all f , at least for indicator functions.
Thus, in this chapter, we shall confine ourselves to the convergence of Gn(f)
to a normal variable when f is analytic in a region containing the support of
F for Wigner matrices and sample covariance matrices.

Our strategy will be as follows: Choose a contour C that encloses the
support of Fn and F . Then, by the Cauchy integral formula, we have

f(x) =
1

2πi

∮

C

f(z)

z − x
dz. (9.1.1)

By this formula, we can rewrite Gn(f) as

Gn(f) = − 1

2πi

∮

C
f(z)[n(sn(z) − s(z)]dz, (9.1.2)

where sn and s are Stieltjes transforms of Fn and F , respectively. So, the
problem of finding the limit distribution of Gn(f) reduces to finding the
limiting process of Mn(z) = n(sn(z) − s(z)).

Before concluding this section, we present a lemma on estimation of mo-
ments of quadratic forms that is useful for the proofs of the CLT of LSS of
both Wigner matrices and sample covariance matrices.
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Lemma 9.1. Suppose that xi, i = 1, · · · , n, are independent, with Exi = 0,
E|xi|2 = 1, supE|xi|4 = ν <∞, and |xi| ≤ η

√
n with η > 0. Assume that A

is a complex matrix. Then, for any given 2 ≤ p ≤ b log(nν−1η4) and b > 1,
we have

E|α∗Aα − tr(A)|p ≤ νnp(nη4)−1(40b2‖A‖η2)p,

where α = (x1, · · · , xn)T .

Proof. In the proof, we shall use the trivial inequality

attb ≤
{
adcb, if d ≤ −b/ log a,
addb, if −b/ log a < d ≤ t,

(9.1.3)

where 0 < a < 1, b, d, c, t are positive, and b ≤ −c log a.
Now, let us begin the proof of the lemma. Without loss of generality, we

may assume that p = 2s is an even integer. Write A = (aij). We first consider

S1 =
∑

i=1

aii(|xi|2 − 1) :=

n∑

i=1

aiiMi.

By noting |aii| ≤ ‖A‖ and p ≤ 2b log(nν−1η4), we apply (9.1.3) to get

E |S1|p ≤
s∑

ℓ=1

∑

1≤j1<···<jℓ≤n

∑

i1+···+iℓ=p

i1,···,iℓ≥2

p!
ℓ∏

t=1

|ait

jtjt
|E|M it

jt
|

(it)!

≤ ‖A‖p
s∑

ℓ=1

nℓνℓ
∑

i1+···+iℓ=p

i1,···,iℓ≥2

(nη2)p−2ℓ p!

(i1)! · · · (iℓ)!

≤ (n‖A‖η2)p
s∑

ℓ=1

(
ν−1nη4

)−ℓ
ℓp

≤
{
νnps(‖A‖η2)p(nη4)−1(2b)p, if p/ log(nν−1η4) ≥ 1,
νnps(‖A‖η2)p(nη4)−1, if p/ log(nν−1η4) < 1,

≤ νnp(2b‖A‖s1/pη2)p(nη4)−1.

Next, let us consider

S2 =
∑

1≤i6=j≤n

aijxix̄j .

Then, we have

E |S2|p =
∑

ai1j1 āk1,ℓ1 · · ·aisjs āks,ℓsExi1 x̄k1 x̄j1xℓ1 · · ·xis x̄ks x̄jsxℓs .

Draw a directional graph G of p = 2s edges that link it to jt and ℓt to kt,
t = 1, · · · , s. Note that if G has a vertex whose degree is 1, then the graph
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corresponds to a term with expectation 0. That is, for any nonzero term,
the vertex degrees of the graph are not less than 2. Write the noncoincident
vertices as v1, · · · , vm with degrees p1, · · · , pm greater than 1. We have m ≤ s.
By assumption, we have

|Exi1 x̄k1 x̄j1xℓ1 · · ·xis x̄ks x̄jsxℓs | ≤ (nη2)p−m.

Now, suppose that the graph consists of q connected components G1, · · · , Gq

with m1, · · · ,mq noncoincident vertices, respectively. Let us consider the con-
tribution by G1 to E|S2|p. Assume that G1 has s1 edges, e1, · · · , es1 . Choose
a tree G′

1 from G1, and assume its edges are e1, · · · , em1−1, without loss of
generality. Note that

∑

v1,···,vm1≤n

m1−1∏

t=1

|aet |2 ≤ ‖A‖2m1−2n

and
∑

v1,···,vm1≤n

s1∏

t=m1

|aet |2 ≤ ‖A‖2s1−2m1+2nm1−1.

Here, the first inequality follows from the fact that
∑

v1
|av1v2 |2 ≤ ‖A‖2 since

it is a diagonal element of AA∗. The second inequality follows from the fact
that

∑
v1

|av1v2 |ℓ ≤ ‖A‖ℓ for any ℓ ≥ 2 and that s1 ≥ m1 since all vertices
have degrees not less than 2. Therefore, the contribution of G1 is bounded
by

∑

v1,···,vm1≤n

s1∏

t=1

|aet |

≤
( ∑

v1,···,vm1≤n

m1−1∏

t=1

|aet |2
∑

v1,···,vm1≤n

s1∏

t=m1

|aet |2
)1/2

≤ ‖A‖s1nm1/2.

Noting that m1 + · · · + mq = m and s1 + · · · + sq = 2s, eventually we
obtain that the contribution of the isomorphic class for a given canonical
graph is ‖A‖2snm/2. Because the two vertices of each edge cannot coincide,
we have q ≤ m/2. The number of canonical graphs is less than

(
m
2

)p ≤ m2p.
We finally obtain

E |S2|p ≤ ‖A‖2s
s∑

m=2

nm/2(nη2)p−mm2p

≤ np(‖A‖η2)p
s∑

m=2

(n1/2η2)−mm2p
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≤
{
nps(‖A‖η2)p(n1/2η2)−2(4b)2p, if 2p/ log(n1/2η2) > 2,
nps(‖A‖η2)p(n1/2η2)−222p, otherwise

= np(nη4)−1(16s1/pb2‖A‖η2)p.

Since E|S1 + S2|p ≤ 2p−1(E|S1|p + E|S2|p) and 16s1/p ≤ 16e1/2e ≤ 20, the
proof of the lemma is complete.

9.2 CLT of LSS for the Wigner Matrix

In this section, we shall consider the case where Fn is the ESD of the nor-
malized Wigner matrix Wn. More precisely, let µ(f) denote the integral of
a function f with respect to a signed measure µ. Let U be an open set of
the complex plane that contains the interval [−2, 2]; i.e., the support of the
semicircular law F .

To facilitate the exposition, complex Wigner matrices will be called the
complex Wigner ensemble (CWE) and real Wigner matrices will be called
the real Wigner ensemble (RWE). In both cases, the entries are not neces-
sarily identically distributed. If in addition the entries are Gaussian (with
σ2 = 1 and 2 for the CWE and RWE, respectively), the ensembles above are
the classical Gaussian unitary ensemble (GUE) and the Gaussian orthogonal
ensemble (GOE) of random matrices.

Next define A to be the set of analytic functions f : U 7→ C. We then
consider the empirical process Gn := {Gn(f)} indexed by A; i.e.,

Gn(f) := n

∫ ∞

−∞
f(x)[Fn − F ](dx) , f ∈ A. (9.2.1)

To study the weak limit of Gn, we need conditions on the moments of the
entries xij of the Wigner matrices

√
nWn. Note that the distributions of

entries xij are allowed to depend on n, but the dependence on n is suppressed.
Let:

[M1] For all i, E|xii|2 = σ2 > 0, for all i < j, E|xij |2 = 1, and for CWE,
Ex2

ij = 0.

[M2] (homogeneity of fourth moments) M = E|xij |4 for i 6= j.

[M3] (uniform tails) For any η > 0, as n→ ∞,

1

η4n2

∑

i,j

E[|xij |4I(|xij | ≥ η
√
n)] = o(1).

Note that condition [M3] implies the existence of a sequence ηn ↓ 0 such that
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(ηn

√
n)−4

∑

i,j

E[|xij |4I(|xij | ≥ ηn

√
n)] = o(1). (9.2.2)

Note that ηn → 0 may be assumed to be as slow as desired. For definiteness,
we assume that ηn > 1/ logn.

The main result of this section is the finite-dimensional convergence of
the empirical process Gn to a Gaussian process. That is, for any k elements
f1, · · · , fk of A, the vector (Gn(f1), · · · , Gn(fk)) converges weakly to a p-
dimensional Gaussian distribution.

Let {Tk} be the family of Tchebychev polynomials and define, for f ∈ A
and any integer ℓ ≥ 0,

τℓ(f) =
1

2π

∫ π

−π

f(2 cos(θ))eiℓθdθ

=
1

2π

∫ π

−π

f(2 cos(θ)) cos(ℓθ)dθ

=
1

π

∫ 1

−1

f(2t)Tℓ(t)
1√

1 − t2
dt. (9.2.3)

In order to give a unified statement for both ensembles, we introduce the
parameter κ with values 1 and 2 for the complex and real Wigner ensembles,
respectively. Moreover, set β = E(|x12|2 −1)2−κ. In particular, for the GUE
we have κ = σ2 = 1 and for the GOE we have κ = σ2 = 2, and in both cases
β = 0.

We shall prove the following theorem that extends a result given in Bai
and Yao [35].

Theorem 9.2. Under conditions [M1]–[M3], the spectral empirical process
Gn = (Gn(f)) indexed by the set of analytic functions A converges weakly
in finite dimension to a Gaussian process G := {G(f) : f ∈ A} with mean
function E[G(f)] given by

κ− 1

4
{f(2) + f(−2)} − κ− 1

2
τ0(f) + (σ2 − κ)τ2(f) + βτ4(f) (9.2.4)

and the covariance function c(f, g) := E[{G(f) − EG(f)}{G(g) − EG(g)}]
given by

σ2τ1(f)τ1(g) + 2(β + 1)τ2(f)τ2(g) + κ

∞∑

ℓ=3

ℓτℓ(f)τℓ(g) (9.2.5)

=
1

4π2

∫ 2

−2

∫ 2

−2

f ′(t)g′(s)V (t, s)dtds, (9.2.6)

where

V (t, s) =
(
σ2 − κ+

1

2
βts
)√

(4 − t2)(4 − s2)
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+κ log

(
4 − ts+

√
(4 − t2)(4 − s2)

4 − ts−
√

(4 − t2)(4 − s2)

)
. (9.2.7)

Note that our definition implies that the variance of G(f) equals c(f, f̄).
Let δa(dt) be the Dirac measure at a point a. The mean function can also be
written as

E[G(f)] =

∫

R

f(2t)dν(t) (9.2.8)

with signed measure

dν(t) =
κ− 1

4
[δ1(dt) + δ−1(dt)]

+
1

π

[
−κ− 1

2
+ (σ2 − κ)T2(t) + βT4(t)

]
1√

1 − t2
I([−1, 1])(t)dt.

(9.2.9)

In the cases of GUE and GOE, the covariance reduces to the third term
in (9.2.5). The mean E[G(f)] is always zero for the GUE since in this case
σ2 = κ = 1 and β = 0. As for the GOE, since β = 0 and σ2 = κ = 2, we have

E[G(f)] =
1

4
{f(2) + f(−2)} − 1

2
τ0(f).

Therefore the limit process is not necessarily centered.

Example 9.3. Consider the case where A = {f(x, t)} and the stochastic pro-
cess is

Zn(t) =

n∑

k=1

f(λk, t) − n

∫ 2

−2

f(x, t)F (dx).

If both f and ∂f(x, t)/∂t are analytic in x over a region containing [−2, 2], it
follows easily from Theorem 9.2 that Zn(t) converges to a Gaussian process.
Its finite-dimensional convergence is exactly the same as in Theorem 9.2,
while its tightness can be obtained as a simple consequence of the same
theorem.

9.2.1 Strategy of the Proof

Let C be the contour made by the boundary of the rectangle with vertices
(±a ± iv0), where a > 2 and 1 ≥ v0 > 0. We can always assume that the
constants a− 2 and v0 are sufficiently small so that C ⊂ U .

Then, as mentioned in Section 9.1,

Gn(f) = − 1

2πi

∮

C
f(z)n[sn(z) − s(z)]dz, (9.2.10)
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where sn and s are Stieltjes transforms of Wn and the semicircular law,
respectively. The reader is reminded that the equality above may not be
correct when some eigenvalues of Wn run outside the contour. A corrected
version of (9.2.10) should be

Gn(f)I(Bc
n) = − 1

2πi
I(Bc

n)

∮

C
f(z)n[sn(z) − s(z)]dz,

where Bn = {|λext(Wn)| ≥ 1 + a/2} and λext denotes the smallest or largest
eigenvalue of the matrix Wn. But this difference will not matter in the proof
because by Remark 5.7, after truncation and renormalization, for any a > 2
and t > 0,

P(Bn) = o(n−t). (9.2.11)

This property will also be used in the proof of Corollary 9.8 later.
This representation reduces our problem to showing that the process

Mn := (Mn(z)) indexed by z 6∈ [−2, 2], where

Mn(z) = n[sn(z) − s(z)], (9.2.12)

converges to a Gaussian process M(z), z 6∈ [−2, 2]. We will show this conclu-
sion by the following theorem.

Throughout this section, we set C0 = {z = u+ iv : |v| ≥ v0}.

Theorem 9.4. Under conditions [M1]–[M3], the process {Mn(z); C0} con-
verges weakly to a Gaussian process {M(z); C0} with the mean and covari-
ance functions given in Lemma 9.5 and Lemma 9.6.

Since the mean and covariance functions of M(z) are independent of v0,
the process {M(z); C0} in Theorem 9.4 can be taken as a restriction of a
process {M(z)} defined on the whole complex plane except the real axis.
Further, by noting the symmetry, M(z̄) = M(z), and the continuity of the
mean and covariance functions ofM(z) on the real axis except for z ∈ [−2, 2],
we may extend the process to {M(z); ℜz 6∈ [−2, 2]}.

Split the contour C as the union Cu + Cl + Cr + C0, where Cl = {z =
−a + iy, ζnn

−1 < |y| ≤ v1}, Cr = {z = a + iy, ζnn
−1 < |y| ≤ v1}, and

C0 = {z = ±a+ iy, |y| ≤ n−1ζn}, where ζn → 0 is a slowly varying sequence
of positive constants. By Theorem 9.4, we get the weak convergence

∫

Cu

Mn(z)dz ⇒
∫

Cu

M(z)dz.

To prove Theorem 9.2, we only need to show that, for j = l, r, 0,

lim
v1↓0

lim sup
n→∞

E

∣∣∣∣∣

∫

Cj

Mn(z)I(Bc
n)dz

∣∣∣∣∣

2

= 0 (9.2.13)
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and

lim
v1↓0

E

∣∣∣∣∣

∫

Cj

M(z)dz

∣∣∣∣∣

2

= 0. (9.2.14)

Estimate (9.2.14) can be verified directly by the mean and variance functions
of M(z). The proof of (9.2.13) for the case j = 0 will be given at the end of
Subsection 9.2.2, and the proof of (9.2.13) for j = l and r will be postponed
until the proof of Theorem 9.4 is complete.

9.2.2 Truncation and Renormalization

Choose ηn > 1/ logn according to (9.2.2), and we first truncate the variables
as x̂ij = xijI(|xij | ≤ ηn

√
n). We need to further normalize them by setting

x̃ij = (x̂ij − Ex̂ij)/σij for i 6= j and x̃ii = σ(x̂ii − Ex̂ii)/σii, where σij is the
standard deviation of x̂ij .

Let F̂n and F̃n be the ESD of the random matrices ( 1√
n
x̂ij) and ( 1√

n
x̃ij),

respectively. According to (9.2.1), we similarly define Ĝn and G̃n. First ob-
serve that

P(Gn 6= Ĝn) ≤ P(Fn 6= F̂n) = o(1). (9.2.15)

Indeed,

P(Fn 6= F̂n) ≤ P { for some i, j, x̂ij 6= xij}
≤
∑

i,j

P
{
|xij | ≥ ηn

√
n
}

≤ (ηn

√
n)−4

∑

i,j

E[|xij |4I(|xij | ≥ ηn

√
n)] = o(1).

Secondly, as f is analytic, by conditions [M2] and [M3] we have

E
∣∣∣G̃n(f) − Ĝn(f)

∣∣∣
2

≤ CE




n∑

j=1

|λ̃nj − λ̂nj |




2

≤ CnE
n∑

j=1

|λ̃nj − λ̂nj |2

≤ CnE
∑

ij

|n−1/2(x̃ij − x̂ij)|2
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≤ C

[∑

i6=j

[E|xij |2|1 − σ−1
ij |2 + |E(x̂ij)|2σ−2

ij ]

+
∑

i

[E|xii|2|1 − σσ−1
ii |2 + |E(x̂ii)|2σ−2

ii ]

]

≤ C

[∑

ij

[(nη2
n)−2 + 2(nη2

n)−3]E2|x4
ij |I(|xij | ≥

√
nηn)

]

= op(1),

where λ̃nj and λ̂nj are the j-th largest eigenvalues of the Wigner matrices
n−1/2(x̃ij) and n−1/2(x̂ij), respectively. Therefore the weak limit of the vari-
ables (Gn(f)) is not affected if the original variables xij are replaced by the
normalized truncated variables x̃ij .

From the normalization, the variables x̃ij all have mean 0 and the same
absolute second moments as the original variables. However, the fourth
moments of the off-diagonal elements are no longer homogenous and, for
the CWE, Ex2

ij is no longer 0. However, this does not matter because∣∣∣
∑

i 6=j [E|x4
ij | − E|x̃ij |4]

∣∣∣ = o(n−2) and maxi<j |Ex̃2
ij | = O(1/n).

We now assume that the conditions above hold, and we still use xij to
denote the truncated and normalized x̃ij variables.

The proof of (9.2.13) for j = 0. When Bn does not occur, for any z ∈ C0 we
have |sn(z)| ≤ 2/(a− 2) and |s(z)| ≤ 1/(a− 2). Hence,

∫

C0

E|Mn(z)I(Bc
n)|dz ≤ 4n(2/(a− 2))‖C0‖ → 0,

where ‖C0‖ denotes the length of the segment C0.

9.2.3 Mean Function of Mn

Recalling (8.1.18), for z ∈ C0 we have

EMn(z) = n[Esn(z) − s(z)] = [1 + s′(z)]nEδ(z){1 + o(1)}.

Lemma 9.5. The mean function EMn(z) uniformly tends to

b(z) = [1 + s′(z)]s(z)3
[
σ2 − 1 + (κ− 1)s′(z)βs2(z)

]

for z ∈ C0 and for both ensembles CWE and RWE.

Proof. For use in the proof of (9.2.13) with j = l, r, we show a stronger result
that
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EMn(z) − b(z) → 0

uniformly in z ∈ Cn = Cu + Cl + Cr.
By (2.3.6), we have

nδn(z) = −
n∑

k=1

bn(z)Eεkβk,

where bn(z) and βk are defined above (8.1.19). By (8.1.18), to prove the
lemma, it is enough to show that

nδn − d(z) → 0 (9.2.16)

uniformly in z ∈ Cn, where d(z) = s(z)3
[
σ2 − 1 + (κ− 1)s′(z)βs2(z)

]
.

Using the identity for any integer p,

1

u− ε
=

1

u

[
1 +

ε

u
+ · · · + εp

up
+

εp+1

up(u− ε)

]
,

we get

nδn(z) = −
n∑

k=1

b2nEεk −
n∑

k=1

b3nEε2k −
n∑

k=1

b3nEβkε
3
k

= S1 + S2 + S3.

First we prove that S3 = o(1). To this end, we shall frequently use the fact
that if supz∈Cn

|H(z)|IBc
nk
< K and supz∈Cn

|H(z)| < Knι for some constant
ι > 0, where Bnk = {|λext(Wk)| ≥ 1 + a/2}, then, for any t,

sup
z∈Cn

E|H(z)| < K + o(n−t). (9.2.17)

This inequality is an easy consequence of (9.2.11) with the fact that Bnk ⊂
Bn. Further, we claim that if |H(z)| ≤ nι uniformly in z ∈ Cn for some ι > 0,
then

E|βkH(z)| ≤ 2E|H(z)|+ o(n−t) (9.2.18)

uniformly in z ∈ Cn.
Examining the proof of (8.1.19), one can prove that

∣∣∣b̃n
∣∣∣ < 1 (9.2.19)

along the same lines, where b̃n = 1
z+sn(z) .

Then |βk| > 2 implies that |ε̃k| = |β−1
k − b̃−1

n | > 1
2 , where
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ε̃k =
1√
n
xkk − 1

n

(
α∗

kD
−1
k αk − trD−1

)
, (9.2.20)

Dk = Wk − zI, and D = W − zI.
Note that ∣∣∣∣

1√
n
xkk

∣∣∣∣ ≤ ηn → 0

and
∣∣∣trD−1

k − tr(D−1)
∣∣∣IBc

n

≤




n−1∑

j=1

|λj − λkj |
|(λj − z)(λkj − z)| +

1

|λn − z|


 IBc

n

≤ K




n−1∑

j=1

(λj − λkj) + 1


 IBc

n

≤ K[λ1 − λn + 1]IBc
n

(by the interlacing theorem)

≤ K(2a+ 1), (9.2.21)

where λj and λkj are the eigenvalues of W and Wk in decreasing order,
respectively.

Therefore, for all large n, by Lemma 9.1 we have

E|βkH(z)| ≤ 2E|H(z)|+ nιP

(
|ε̃k| ≥

1

2

)

≤ 2E|H(z)| + nιP
(
|α∗

kD
−1
k αx − trD−1

k | ≥ n

4
, Bc

nk

)
+ nιP(Bn)

≤ 2E|H(z)| + o(n−t) +KnιE
∣∣∣ 1
n

(α∗
kD

−1
k αx − trD−1

k )
∣∣∣
ℓ

IBc
nk

≤ 2E|H(z)| + o(n−t) +Knι−1(Kηn)ℓ−4 = 2E|H(z)|+ o(n−t)

uniformly in z ∈ Cn, provided that ℓ is chosen as η
−1/2
n log(nν−1η4

n).
Now, let us apply (9.2.18) to prove S3 = o(1) uniformly in z ∈ Cn. Choose

H = |εk|3. By noting |βk| ≤ 1/v and |εk| ≤ Knv−1, one needs only to verify
that

E|εk|3 ≤ (n−3/2)

uniformly in z ∈ Cn and k ≤ n.
By estimation from (9.2.11) and Lemma 9.1, we have

E

∣∣∣∣
1

n
(α∗

kD
−1
k αx − trD−1

k )

∣∣∣∣
3

≤ Kn−1η2
nE‖Dk‖3

≤ Kn−1η2
n +Kv−3P (Bn)
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≤ o(n−1)

uniformly in z ∈ Cn and k ≤ n.
By the martingale decomposition (see Lemma 8.7) and Burkholder in-

equality (Lemma 2.12), for any fixed t ≥ 2,

E|sn − Esn(z)|t = n−3E

∣∣∣∣∣
n∑

k=1

γk

∣∣∣∣∣

t

≤ Kn−tE

(
n∑

k=1

|γk|2
)t/2

≤ Kn−t/2−1
n∑

k=1

E|γk|t. (9.2.22)

Recall that

γk = −(Ek − Ek−1)βk

(
1 +

1

n
α∗

kD
−2
k αk

)

= − 1

n
Ekb̃n(α∗

kD
−2
k αk − trD−2

k )

−(Ek − Ek−1)b̃nβkε̃k(1 + α∗
kD

−2
k αk).

Applying Lemma 9.1 and using (9.2.17), it follows that

E

∣∣∣∣
1

n
Ekb̃n(α∗

kD
−2
k αk − trD−2

k )

∣∣∣∣
t

≤ Kn−1η2t−4
n E‖D−1

k ‖2t

≤ Kn−1η2t−4
n .

Also, applying (9.2.18) twice and Lemma 9.1, we obtain

E|(Ek − Ek−1)b̃nβkε̃k(1 + α∗
kD

−2
k αk)|t

≤ 4E|ε̃k(1 + α∗
kD

−2
k αk)|t + o(n−t)

≤ K
(
E|ε̃k|2tE|1 + α∗

kD
−2
k αk|2t

)1/2

+ o(n−t)

≤ o(n−1/2),

so that from (9.2.22) it follows that

E|sn − Esn(z)|t ≤ o(n−(t+1)/2) (9.2.23)

uniformly in z ∈ Cn.
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Finally, taking t = 3 in (9.2.23) and using (9.2.21) and the fact that

E
∣∣∣ 1√

n
xkk

∣∣∣
3

≤ Kn−3/2, we conclude that

E|εk|3 = o(n−1),

which completes the proof that

S3 = o(1)

uniformly for z ∈ Cn.
Next, we find the limit of Eεk. We have

Eεk = E
(xk,k√

n
− n−1α∗

kD
−1
n αk

)
+ Esn(z)

= n−1[EtrD−1 − EtrD−1
n ]

= − 1

n
Eβk(1 + n−1α∗

kD
−2
k αk).

By (9.2.17) and Lemma 9.1, we have

E|n−1[α∗
kD

−2
k αk − trD−2

k ]|
≤ n−1(E|α∗

kD
−2
k αk − trD−2

k |2)1/2

≤ Kn−1/2(E‖D−1
k ‖4)1/2

≤ o(1).

If Fnk denotes the ESD of Wk, then by the interlacing theorem, we have

‖Fn − Fnk‖ ≤ 1

n
.

Since Fn → F , by the semicircular law with probability 1 and ‖Fnk −Fn‖ ≤
1/n by the interlacing theorem, we have

max
k≤n

‖Fnk − F‖ → 0, a.s.

Again, by (9.2.17) we have

sup
z∈Cn

E
∣∣∣ 1
n

trD−2
k − s′(z)‖

= sup
z∈Cn

∣∣∣∣
n− 1

n

∫
dFnk(x)

(x− z)2
−
∫

dF (x)

(x− z)2

∣∣∣∣
= o(1). (9.2.24)

Applying (9.2.18), we obtain
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n∑

k=1

Eεk = −1 + s′(z)
n

n∑

k=1

Eβk + o(1) = (1 + s′(z))Esn(z) + o(1),

where o(1) is uniform for z ∈ Cn.
Applying (9.2.17) and ‖Fn − F‖ → 0 a.s., we have

sup
z∈Cn

|Esn(z) − s(z)| ≤ o(1),

which implies that

n∑

k=1

Eεk = s(z)(1 + s′(z)) + o(1). (9.2.25)

Now, let us find the approximation of Eε2k. By the previous estimation for
Eεk, we have

n∑

k=1

Eε2k =

n∑

k=1

E(εk − Eεk)2 +O(n−1),

where O(n−1) is uniform in z ∈ Cn.
Furthermore, by the definition of εk, we have

εk − Eεk =
1√
n
xkk − n−1[α∗

kD
−1
k αk − ED−1

k ]

=
1√
n
xkk − n−1[α∗

kD
−1
k αk − trD−1

k ] + n−1[trD−1
k − EtrD−1

k ] .

Therefore

E[εk − Eεk]2 =
σ2

n
+

1

n2
E[α∗

kD
−1
k αk − trD−1

k ]2

+
1

n2
E[trD−1

k − EtrD−1
k ]2. (9.2.26)

From (9.2.23) with t = 2, we have

n−2E
[
trD−1

k − EtrD−1
k

]2
= o(n−3/2).

By simple calculation, for matrices A = (aij) and B = (bij), we have the
identity

E(α∗
kAαk − trA)(α∗

kBαk − trB)

= trAB +
∑

i,j

aijbjiEx
2
ikEx̄2

jk +

n∑

i=1

aiibii(E|xik|4 − 2 − |Ex2
ik|2).
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Combining this identity and the assumption that Ex2
ij = o(1) for the CWE

and Ex2
ij = 1 for the RWE, we have

E[α∗
kD

−1
k αk − trD−1

k ]2 = κE
[
trD−2

k

]
+ βE

[∑

i

d2
ii

]
+ o(n), (9.2.27)

where dii are the diagonal entries of the matrix D−1
k .

Furthermore, by Lemma 9.9 to be given later,

lim sup
n

max
i,k

∑

z∈Cn

E|dii − s(z)|2 = 0.

Since |dii| ≤ max{ 2
a−2 , 1/v0} when Bc

nk occurs, then by (9.2.17)

lim
n

max
i,k

∑

z∈Cn

E|d2
ii − s2(z)|

≤ lim sup
n

max
i,k

∑

z∈Cn

[E|dii − s(z)|2 + 2E|(dii − s(z))s(z)|] = 0.

Hence, by (9.2.24), we obtain

n∑

k=1

Eε2k = σ2 + κs′(z) + βs(z)2 + oL1(1),

where oL1(1) is uniform for z ∈ Cn in the sense of L1-convergence.
Summarizing the three terms and noting |bn| < 1, we get

nδ ≤ K,

which implies that bn(z) = −s(z + δ) = −s(z) + o(1) and thus

nδ(z) = s3
(
σ2 − 1 + (κ− 1)s′ + βs2

)
+ o(1).

The lemma is proved.

9.2.4 Proof of the Nonrandom Part of (9.2.13) for
j = l, r

Using the notation defined and results obtained in the last section, it follows
that, for j = l or r,

lim
v1↓0

lim sup
n→∞

∫

Cj

|EMn(z) − b(z)| dz (9.2.28)
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≤ lim
v1↓0

lim sup
n→∞

∫

Cj

|EMn(z)| dz +

∫

Cj

|b(z)|dz = 0, (9.2.29)

where the first limit follows from the fact that supz∈Cn
|EMn(z) − b(z)| →

0 and the second follows from the fact that b(z) is continuous, and hence
bounded.

9.3 Convergence of the Process Mn − EMn

9.3.1 Finite-Dimensional Convergence of Mn − EMn

Following the martingale decomposition given in Section 2.3, we may rewrite

Mn(z) − EMn(z) =

n∑

k=1

γk,

where

γk = (Ek−1 − Ek)trD−1

= (Ek−1 − Ek)(trD−1 − trD−1
k )

= (Ek−1 − Ek)ak − Ek−1dk ,

ak = −βkb̃kgk(1 + n−1α∗
kD

−2
k αk),

b̃k =

(
z +

1

n
trDk

)−1

, (9.3.1)

dk = hk b̃k(z),

gk := n−1/2xkk − n−1(α∗
kD

−1
k αk − trD−1

k ),

hk := n−1(α∗
ktrD−2

k αk − trD−2
k ). (9.3.2)

We have

ak = −βkb̃k(z)gk(1 + n−1α∗
kD

−2
k αk)

= −b̃2k(z)gk(1 + n−1trD−2
k ) − hkgk b̃

2
k(z)

−βk b̃
2
k(z)(1 + n−1α∗

kD
−2
k αk)g2

k

:= ak1 + ak2 + ak3.

By noting |b̃n| < 1, (9.2.18), (9.2.17), and using Lemma 9.1, we obtain

E

∣∣∣∣∣
n∑

k=1

(Ek−1 − Ek)ak3

∣∣∣∣∣

2

=

n∑

k=1

E |(Ek−1 − Ek)ak3|2
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≤ 4
n∑

k=1

E
∣∣∣(1 + n−1α∗

kD
−2
k αk)2g4

k

∣∣∣

≤ K

n∑

k=1

[
E
∣∣∣(1 + n−1trD−2

k )2g4
k

∣∣∣+ E|h2
kg

4
k|
]

≤ K
n∑

k=1

[
E|(1 + n−1trD−2

k )2|[n−2 + n−1η4
n‖Dk‖4

+(n−1η4
n‖Dk‖4)(n−1η12

n ‖Dk‖4)]1/2
]

= o(1), (9.3.3)

where o(1) is uniform in z ∈ Cn.
For the same reason, we have

E

∣∣∣∣∣
n∑

k=1

(Ek−1 − Ek)ak2

∣∣∣∣∣

2

=

n∑

k=1

E |(Ek−1 − Ek)ak2|2

≤
n∑

k=1

E |hkgk|2

≤ 1

v4
0

n∑

k=1

(E|hk|4E|gk|4)1/2 = o(1). (9.3.4)

Hence, we have

Mn(z) − EMn(z)

=
n∑

k=1

Ek−1

[
−b̃2n(1 + n−1trD−2

k )gk − dk

]
+ oL2(1)

=

n∑

k=1

Ek−1ψk(z) + oL2(1),

where ψk(z) =
d

dz
φk(z), φk(z) = b̃ngk, and oL2(1) is uniform in z ∈ Cn.

Let {zt, t = 1, · · · ,m} be m different points belonging to C0 (now, we
return to assuming z ∈ C0). The problem is then reduced to determining
the weak convergence of the vector martingale

Zn :=
n∑

k=1

Ek−1(ψk(z1), · · · , ψk(zm)) =:
n∑

k=1

Ek−1Ψk. (9.3.5)

Lemma 9.6. Assume conditions [M1]–[M3] are satisfied. For any set of m
points {zs, s = 1, · · · ,m} of C0, the random vector Zn converges weakly to
an m-dimensional zero-mean Gaussian distribution with covariance matrix
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given, with sj = s(zj), by

Γ (zi, zj) =
∂2

∂zi∂zj

[
(σ2 − κ)sisj +

1

2
β(sisj)

2 − κ log(1 − sisj)

]

= s′is
′
j

[
σ2 − κ+ 2βsisj +

κ

(1 − sisj)2

]
. (9.3.6)

Proof. We apply the CLT to the martingale Zn defined in (9.3.5). Consider
its hook process:

Γn(zi, zj) :=

n∑

k=1

Ek

[
Ek−1

d

dzi
φk(zi)Ek−1

d

dzj
φk(zj)

]
.

Then we have to check the following two conditions:

[C.1] Lyapounov’s condition: for some a > 2,

n∑

k=1

E
∥∥∥Ek−1Ψk

∥∥∥
a

→ 0.

[C.2] Γn converges in probability to the matrix Γ .

Indeed, the assertion [C.1] follows from Lemma 9.1 with p = 4. Now, we
begin to derive the limit Γ .

For any z1, z2 ∈ C0,

Γn(z1, z2) =
∂2

∂z1∂z2

n∑

k=1

Ekφk(z1)Ek−1φk(z2).

Applying Vitali’s lemma (see Lemma 2.14), we only need to find the limit of

n∑

k=1

Ekφk(z1)Ek−1φk(z2)

=

n∑

k=1

Ek b̃k(z1)gk(z1)Ek−1b̃k(z2)gk(z2).

Recalling that 1
n trD−1 = sn(z)

L2→ s(z), we obtain

n∑

k=1

Ekφk(z1)Ek−1φk(z2)

= s(z1)s(z2)

n∑

k=1

Ek [Ek−1gk(z1)Ek−1gk(z2)] + oL2(1)
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:= s(z1)s(z2)Γ̃n(z1, z2) + oL2(1).

By the definition of gk, we have

Ek [gk(z1)Ek−1gk(z2)]

=
σ2

n
+

1

n2
Ek(α∗

k(Wk − z1I)
−1αk − tr(Wk − z1I)

−1)

×Ek−1(α
∗
k(Wk − z2I)

−1αk − tr(Wk − z2I)
−1).

To evaluate the second term, write Ek−1D
−1
k (zℓ) = (b

(ℓ)
ijk), ℓ = 1, 2. By a

computation similar to that leading to (9.2.27), we get

Ek

[
Ek−1(α

∗
kD

−1
k (z1)αk − trD−1

k (z1))

×Ek−1(α
∗
kD

−1
k (z2)αk − trD−1

k (z2))
]

= κ
∑

ij>k

b
(1)
ijkb

(2)
jik + β

∑

i>k

b
(1)
iikb

(2)
iik + oL2(1).

Therefore

Γ̃n(z1, z2) = σ2 +
κ

n2

n∑

k=1

∑

ij>k

b
(1)
ijkb

(2)
jik +

β

n2

n∑

k=1

∑

i>k

b
(1)
iikb

(2)
iik + oL2(1)

= σ2 + κS1 + S2 + oL2(1). (9.3.7)

By Lemma 9.9 to be given later, we find that

S2 → 1

2
βs(z1)s(z2) in L2.

In the following, let us find the limit of S1.

9.3.2 Limit of S1

To evaluate the sum S1 in (9.3.7), we need the following decomposition. Let
ej (j = 1, · · · , k−1, k+1, · · · , n) be the (n−1)-vectors whose j-th (or (j−1)-
th) element is 1 and others are 0 if j < k (or j > k correspondingly). By
definition,

Dk =
∑

i,j 6=k

n−1/2xijeie
′
j − zIn−1.

Multiplying both sides by D−1
k gives the identity

zD−1
k + In−1 =

∑

i,j 6=k

n−1/2xijeie
′
jD

−1
k . (9.3.8)
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Let (i, j) be two different indices of k. Define

Wkij = Wn(k) − 1√
n
δij(xijeie

′
j + xjieje

′
i), (9.3.9)

where Dkij = Wkij −zIn−1, δij = 1 for i 6= j, and δii = 1
2 . It is easy to verify

that

D−1
k − D−1

kij = − 1√
n
D−1

kijδij(xijeie
′
j + xjieje

′
i)D

−1
k . (9.3.10)

From (9.3.8) and (9.3.10), we get

zEk−1D
−1
k

= −In−1 +
∑

i,j>k

n−1/2xijeie
′
jEk−1D

−1
kij ,

−
∑

i,j 6=k

n−1Ek−1xijeie
′
jD

−1
kij (9.3.11)

δij(xijeie
′
j + xjieje

′
i)D

−1
k

= −In−1 + Ak(z) + Bk(z) + Ck(z) + Ek(z) + Fk(z), (9.3.12)

where

Ak(z) =
1√
n

∑

i,j>k

xijeie
′
jEk−1D

−1
kij ,

Bk(z) = −s(z)n− 3/2

n

∑

i6=k

eie
′
iEk−1D

−1
k ,

Ck(z) = − 1

n

∑

i,j 6=k

δijEk−1

(
|xij |2[e′jD−1

kijej − s(z)]
)

eie
′
iD

−1
k ,

Ek(z) = − 1

n

∑

i,j 6=k

δijEk−1(|xij |2 − 1)s(z)eie
′
iD

−1
k ,

Fk(z) = − 1

n

∑

i,j 6=k

δijEk−1x
2
ijD

−1
kijeie

′
jD

−1
k .

By (A.2.2), it is easy to see that the norm of a matrix is not less than that
of its submatrices. Therefore, we have

∣∣∣∣∣
∑

ℓ2>k

e′ℓ1D
−1
k (z1)eℓ2e

′
ℓ2Ek−1D

−1
k (z2)eℓ1

∣∣∣∣∣ ≤ v−2
0 . (9.3.13)

Then, for any k < ℓ1, ℓ2 ≤ n, by applying Lemma 9.9,
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E

∣∣∣∣∣
∑

ℓ2>k

e′ℓ1Ck(z1)eℓ2e
′
ℓ2Ek−1D

−1
k (z2)eℓ1

∣∣∣∣∣

=
1

n
E

∣∣∣∣∣∣
∑

j,ℓ2>k

δℓ1jEk−1|xℓ1j

∣∣∣∣∣∣

2

[ejD
−1
kℓ1j(z1)ej − s(z1)]

×e′ℓ1D
−1
k (z1)eℓ2e

′
ℓ2Ek−1D

−1
k (z2)eℓ1 |

≤ 1

nv2
0

∑

j>k

E|xℓj |2|e′jD−1
kℓ1j(z1)ej − s(z1)|

= o(1). (9.3.14)

Again, using (9.3.13) and employing the Cauchy-Schwarz inequality, we ob-
tain

E

∣∣∣∣∣
∑

ℓ2>k

e′ℓ1Ek(z1)eℓ2e
′
ℓ2Ek−1D

−1
k (z2)eℓ1

∣∣∣∣∣

=
1

n
E

∣∣∣∣∣
∑

j,ℓ2>k

δℓ1jEk−1(|xℓj |2 − 1)s(z1)e
′
ℓ1D

−1
k (z1)eℓ2

×e′ℓ2Ek−1D
−1
k (z2)eℓ1

∣∣∣∣∣

≤ 1

nv2
0

E

∣∣∣∣∣
∑

j>k

δℓ1j(|xℓ1j |2 − 1)

∣∣∣∣∣ = O(n−1/2). (9.3.15)

Next, we estimate Fk(z1). Let H be the matrix whose (i, j)-th entry is

∑

ℓ>k

e′iD
−1
k (z1)eℓe

′
ℓEk−1D

−1
k (z2)ej .

Obviously, H is the product of the submatrices of the last n − k rows of
D−1

k (z1) and the last n − k columns of Ek−1D
−1
k (z2). Hence, ‖H‖ ≤ v−2

0 .
Using these, we have

∑

ij 6=k

E

∣∣∣∣∣
∑

ℓ>k

e′ℓD
−1
kij(z1)eie

′
jHeℓ

∣∣∣∣∣

2

≤ 2
∑

ij 6=k

E

∣∣∣∣∣
∑

ℓ>k

e′ℓD
−1
k (z1)eie

′
jHeℓ

∣∣∣∣∣

2

+
2√
n

∑

ij 6=k

E

∣∣∣∣∣
∑

ℓ>k

e′ℓD
−1
k (z1)δij(xijeie

′
j + xjieje

′
i)D

−1
kij(z1)eie

′
jHeℓ

∣∣∣∣∣

2
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≤ 2nv−6
0 +

4

v2
0

√
n


∑

ij 6=k

E|xij |4
∑

ij 6=k

E|
∑

ℓ>k

e′ℓD
−1
k (z1)eie

′
jHeℓ|2

+|
∑

ℓ>k

e′ℓD
−1
k (z1)eje

′
jHeℓ|2

)1/2

= O(n3/2),

where the last step follows from the fact that, for any i, j 6= k,

∣∣∣∣∣
∑

ℓ>k

e′ℓD
−1
k (z1)eie

′
jHeℓ

∣∣∣∣∣ ≤ v−3
0 .

Applying this inequality, we obtain

1

n
E

∣∣∣∣∣
∑

ℓ1,ℓ2>k

e′ℓ1Ek(z1)eℓ2e
′
ℓ2Ek−1D

−1
k (z2)eℓ1

∣∣∣∣∣

≤ 1

n2

∑

ij 6=k

δijE

∣∣∣∣∣x
2
ij

∑

ℓ1,ℓ2>k

e′ℓ1D
−1
kij(z1)ei

×e′jD
−1
k (z1)eℓ2e

′
ℓ2Ek−1D

−1
k (z2)eℓ1

∣∣∣∣∣

≤ 1

n2

(∑

ij 6=k

δijE|x4
ij |
∑

ij 6=k

E|
∑

ℓ1,ℓ2>k

e′ℓ1D
−1
kij(z1)ei

e′jD
−1
k (z1)eℓ2Ek−1e

′
ℓ2D

−1
k (z2)eℓ1 |2

)1/2

= O(n−1/4). (9.3.16)

The inequalities above show that the matrices Ck, Ek, and Fk are negligible.
Now, let us evaluate the contributive components. First, for any k < ℓ ≤ n,
by Lemma 9.9, we have

e′ℓ(−In−1)Ek−1D
−1
k (z2)eℓ

L2−→ −s2. (9.3.17)

Next, let us estimate
∑

ℓ2>k e′ℓAk(z1)eℓ2e
′
ℓ2

Ek−1D
−1
k (z2)eℓ. We claim that

1√
n

∑

j,ℓ2>k

xℓje
′
jEk−1D

−1
kℓj(z1)eℓ2

×e′ℓ2Ek−1D
−1
kℓj(z2)eℓ

L2−→ 0. (9.3.18)

To prove this, we consider its squared terms first. We have
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1

n

∑

j>k

E

∣∣∣∣∣xℓj

∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)eℓ

∣∣∣∣∣

2

=
1

n

∑

j>k

E

∣∣∣∣∣
∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)eℓ

∣∣∣∣∣

2

.

If we replace Wkℓj by Wk on the right-hand side of the equality above, then
it becomes

1

n
Ee′ℓEk−1H

∗Ek−1Heℓ = O(n−1).

To consider the difference caused by this replacement, we apply (9.3.10) to
both D−1

kℓj(z1) and D−1
kℓj(z2). The difference will also be of the order O(n−1).

As an illustration, we give the estimation of the difference caused by the
replacement in D−1

kℓj(z2), which is

1

n2

∑

j>k

E

∣∣∣∣∣
∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)

×δℓ,j(xj,ℓejeℓ + xℓ,jeℓe
′
j)D

−1
k (z2)eℓ

∣∣∣∣∣

2

≤ 1

n2v6
0

∑

j>k

E|x2
ℓ,j| = O(n−1),

where we have used the fact that, for t = j or ℓ, |e′tD−1
k (z2)eℓ| ≤ v−1

0 and

∣∣∣∣∣
∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)et

∣∣∣∣∣ ≤ v−2
0

by noting that the left-hand side of the inequality above is the (ℓ, t)-th element
of the product of the matrices of the last n−k rows of Ek−1D

−1
kℓj(z1) and the

n− k columns of Ek−1D
−1
kℓj(z2).

Next, let us consider the sum of cross terms, which is

1

n

∑

j 6=j′>k

Exℓjx̄ℓj′
∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)eℓ

×
∑

ℓ3>k

e′ℓEk−1D
−1
kℓj′ (z̄2)eℓ3e

′
ℓ3Ek−1D

−1
kℓj′ (z̄1)ej′ .

To estimate it, we define Wij
ki′j′ = Wki′j′ − 1√

n
δij(xijeie

′
j + xjieje

′
i) and

Dij
ki′j′ = (Wij

ki′j′ − zIn−1) for {i, j} 6= {i′, j′}. By independence, the quantity

above will be 0 if the matrix Wkℓj′ is replaced by Wℓj
kℓj′ . Then, by a formula

similar to (9.3.10), the difference caused by this replacement of the first Wkℓj′
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is controlled by

1

n3/2

∑

j 6=j′>k

E|xℓj |2|xℓj′ |
∣∣∣∣∣
∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)eℓ

∣∣∣∣∣

×
[∣∣∣∣∣
∑

ℓ3>k

e′ℓEk−1D
ℓj
kℓj′ (z̄2)

−1eℓejD
−1
kℓj′ (z̄2)eℓ3e

′
ℓ3Ek−1D

−1
kℓj′ (z̄1)ej′

∣∣∣∣∣

+

∣∣∣∣∣
∑

ℓ3>k

e′ℓ(D
ℓj
kℓj′ (z̄2)

−1ejeℓD
−1
kℓj′ (z̄2)eℓ3e

′
ℓ3D

−1
kℓj′ (z̄1)ej′

∣∣∣∣∣

]

= O(n−1/2).

Here, the last estimation follows from Hölder’s inequality. The mathematical
treatment for the two terms is similar. As an illustration of their treatment,
the first term is bounded by

1

n3/2

( ∑

j 6=j′>k

E|xℓj |4
∣∣∣∣∣
∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)eℓ

∣∣∣∣∣

2

×
∑

j 6=j′>k

E|xℓj′ |2
∣∣∣∣∣
∑

ℓ3>k

e′ℓEk−1D
ℓj
kℓj′ (z̄2)

−1eℓejD
−1
kℓj′ (z̄2)eℓ3

e′ℓ3Ek−1D
−1
kℓj′ (z̄1)ej′

∣∣∣∣∣

2)1/2

≤ C

n3/2v0

( ∑

j 6=j′>k

E

∣∣∣∣∣
∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)eℓ

∣∣∣∣∣

2

×
∑

j 6=j′>k

E

∣∣∣∣∣
∑

ℓ3>k

ejD
−1
kℓj′ (z̄2)eℓ3e

′
ℓ3Ek−1D

−1
kℓj′ (z̄1)ej′

∣∣∣∣∣

2)1/2

= O(n−1/2).

Here, for the first factor in the brackets, note that by (9.3.10) we have

∑

j 6=j′>k

j′ fixed

E

∣∣∣∣∣
∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)eℓ

∣∣∣∣∣

2

=
∑

j 6=j′>k

j′ fixed

E

∣∣∣∣∣
∑

ℓ2>k

e′jEk−1D
−1
k (z1)eℓ2e

′
ℓ2Ek−1D

−1
k (z2)eℓ

∣∣∣∣∣

2

+O(1)
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= O(1).

Hence the order of the first factor is O(n). The second factor can be shown
to have the order O(n) by a similar approach.

Now, by (9.3.18), we have

∑

ℓ2>k

e′ℓAk(z1)eℓ2e
′
ℓ2Ek−1D

−1
k (z2)eℓ

=
1

n1/2

∑

j,ℓ2>k

xℓje
′
jEk−1D

−1
kℓj(z1)eℓ2e

′
ℓ2

×Ek−1[D
−1
k (z2) − D−1

kℓj(z2)]eℓ + oL2(1)

= − 1

n

∑

j,ℓ2>k

δℓjx
2
ℓje

′
jEk−1D

−1
kℓj(z1)eℓ2

×e′ℓ2Ek−1[D
−1
kℓj(z2)eℓe

′
jD

−1
k (z2)]eℓ

− 1

n

∑

j,ℓ2>k

δℓj |x2
ℓj |e′jEk−1D

−1
kℓj(z1)eℓ2e

′
ℓ2

×Ek−1[D
−1
kℓj(z2)eje

′
ℓD

−1
k (z2)]eℓ + oL2(1). (9.3.19)

Furthermore, by the Cauchy-Schwarz inequality,

E

∣∣∣∣∣
∑

j,ℓ2>k

δℓjx
2
ℓje

′
jEk−1D

−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1[D

−1
kℓj(z2)eℓe

′
jD

−1
k (z2)]eℓ

∣∣∣∣∣

2

≤


∑

j>k

E

∣∣∣∣∣x
4
ℓj ||

∑

ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)eℓ

∣∣∣∣∣

2

×
∑

j>k

E|e′jD−1
k (z2)eℓ|2




1/2

≤


v−2

0

∑

j>k

E|e′jEk−1D
−1
kℓj(z1)Ek−1D

−1
kℓj(z2)eℓ|2




1/2

= O(1).

Therefore, we only need to consider the second term in (9.3.19). By Lemma
9.9, it follows that

∑

ℓ2>k

e′ℓAk(z1)eℓ2e
′
ℓ2Ek−1D

−1
k (z2)eℓ

= −s2
n

∑

j,ℓ2>k

δℓj |x2
ℓj |e′jEk−1D

−1
kℓj(z1)eℓ2e

′
ℓ2
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×Ek−1D
−1
kℓj(z2)ej + oL2(1).

We claim that

∑

ℓ2>k

e′ℓAk(z1)eℓ2e
′
ℓ2Ek−1D

−1
k (z2)eℓ

= −s2
n

∑

j,ℓ2>k

e′jEk−1D
−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)ej + oL2(1).

(9.3.20)

Obviously, (9.3.20) is a consequence of

1

n

∑

j,ℓ2>k

E|δℓj[|x2
ℓj | − 1]e′jEk−1D

−1
kℓj(z1)eℓ2e

′
ℓ2Ek−1D

−1
kℓj(z2)ej |2

= oL2(1).

Noticing that the mean of the left-hand side is 0, it then can be proven in
the same way as in the proof of (9.3.18). The details are left to the reader as
an exercise.

We trivially have, for any k < ℓ ≤ n,

∑

ℓ,ℓ1>k

e′ℓBk(z1)eℓ1e
′
ℓ1Ek−1D

−1
k (z2)eℓ

= −s1
∑

ℓ,ℓ1>k

e′ℓEk−1D
−1
k (z1)eℓ1e

′
ℓ1Ek−1D

−1
k (z2)eℓ + oL2(1).

(9.3.21)

Collecting the estimates above from (9.3.14) to (9.3.21), we find that

z1 + s1
n

∑

ℓ,ℓ1>k

Ek−1D
−1
k (z1)eℓ1e

′
ℓ1Ek−1D

−1
k (z2)

= −
(

1 − k

n

)
s2 −

1

n

(
1 − k

n

)
s2
∑

j,ℓ1>k

e′jEk−1D
−1
k (z1)eℓ1

×e′ℓ1Ek−1D
−1
k (z2)ej + op(1),

which, together with the fact that z1 + s1 = −1/s1, implies that

1

n

∑

j,ℓ>k

e′ℓEk−1D
−1
k (z1)eje

′
jEk−1D

−1
k (z2)eℓ

=

(
1 − k

n

)
s1s2 +

1

n

(
1 − k

n

)
s1s2

∑

j,ℓ>k

e′jEk−1D
−1
k (z1)eℓ

×e′ℓEk−1D
−1
k (z2)ej + op(1)
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=
(1 − k

n )s1s2

1 − (1 − k
n )s1s2

+ op(1). (9.3.22)

Therefore,

lim
n
S1 = lim

n

1

n2

n∑

k=1

∑

i,j>k

b
(1)
ijkb

(2)
jik

= lim
n

1

n

n∑

k=1

(1 − k
n )s1s2

1 − (1 − k
n )s1s2

=

∫ 1

0

ts1s2
1 − ts1s2

dt

= −1 − 1

s1s2
log(1 − s1s2).

Finally, Γ̃n(z1, z2) converges in probability to

Γ̃ (z1, z2) = σ2 − κ+
1

2
βs1s2 − κ(s1s2)

−1 log(1 − s1s2).

The proof of Lemma 9.6 is then complete.

9.3.3 Completion of the Proof of (9.2.13) for j = l, r

Since we have proved (9.2.29), to complete the proof of (9.2.13) we only need
to show that

lim
v1↓0

lim sup
n→∞

∫

Cj

E |Mn(z) − EMn(z)|2 dz = 0. (9.3.23)

Using the notation defined in the last section, we have

E|Mn − EMn|2 ≤ K

n∑

k=1

[E|ak1|2 + E|ak2|2 + E|ak3|2 + E|dk|2].

By Lemma 9.1 and (9.2.17),

sup
z∈Cn

E|dk|2 ≤ sup
z∈Cn

Kn−1E|b̃k|2‖D−1
k ‖2 ≤ K/n,

where we have used the fact that |b̃k| < 1, which can be proven along the
same lines as for (8.1.19).

Similarly,
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sup
z∈Cn

E|ak1|2 ≤ sup
z∈Cn

Kn−1E|b̃k|2‖D−1
k ‖4

∣∣∣1 +
1

n
trD−1

k

∣∣∣
2

≤ K/n.

By (9.3.3) and (9.3.4), we obtain

lim
v1↓0

lim sup
n→∞

∫

Cj

E |Mn(z) − EMn(z)|2 dz

≤ lim
v1↓0

lim sup
n→∞

K

∫

Cj

n∑

k=1

[E|ak1|2 + E|dk|2]dz

≤ lim
v1↓0

Kv1 = 0.

The proof is complete.

9.3.4 Tightness of the Process Mn(z) − EMn(z)

It is enough to establish the following Hölder condition: for some positive
constant K and z1, z2 ∈ C0,

E|Mn(z1) −Mn(z2) − E(Mn(z1) −Mn(z2))|2 ≤ K|z1 − z2|2. (9.3.24)

Recalling the martingale decomposition given in Section 2.3, we have

E|Mn(z1) −Mn(z2) − E(Mn(z1) −Mn(z2))|2

=

n∑

k=1

E|γk(z1) − γk(z2)|2,

where

γk(z) = (Ek − Ek−1)σk(z),

σk(z) = βk(z)

(
1 +

1

n
γ∗kD

−2
k αk

)
,

βk(z) = − 1
1√
n
xkk − z − 1

nαkD
−1
k αk

.

Using the notation defined in (9.3.2), we decompose γk(z1) − γk(z2) as

(Ek − Ek−1)

[
βk(z1)(hk(z1) − hk(z2))

+βk(z1)σk(z2)(gk(z1) − gk(z2))

+
1

n
βk(z1)b̃n(z1)[trD

−2
k (z1) − D−2

k (z2)]gk(z1)
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+
1

n
b̃k(z1)b̃k(z2)tr[D

−1
k (z1) − D−1

k (z2)]hk(z2)

+
1

n
βk(z1)b̃k(z1)σk(z2)tr[D

−1
k (z1) − D−1

k (z2)]gk(z1)

+
1

n
b̃k(z1)b̃k(z2)σk(z2)tr[D

−1
k (z1) − D−1

k (z2)]gk(z2)

]
.

Since β−1
k (z) ≥ v0 and |γk(z)| ≤ v−1

0 , we have

n∑

k=1

E|βk(z1)(hk(z1) − hk(z2))|2

≤ v−2
0

n∑

k=1

E|hk(z1) − hk(z2)|2

≤ C

n2v2
0

n∑

k=1

Etr[D−2
k (z1) − D−2

k (z2)][D
−2
k (z̄1) − D−2

k (z̄2)]

≤ 4C|z1 − z2|2
v8
0

.

Similarly,

n∑

k=1

E|βk(z1)σk(z2)(gk(z1) − gk(z2))|2

≤ v−4
0

n∑

k=1

E|gk(z1) − gk(z2)|2

≤ 4C|z1 − z2|2
v8
0

.

For the other four terms, the similar estimates follow trivially from the fact
that

E|gk(z)|2 ≤ C/n and E|hk(z)|2 ≤ C/n.

Hence (9.3.24) is proved and the tightness of the process Mn − EMn holds.

9.4 Computation of the Mean and Covariance Function
of G(f)

9.4.1 Mean Function

Let C be a contour as defined in Subsection 9.2.1. By (9.2.10) and Lemma
9.5, we have
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E(Gn(f)) = − 1

2πi

∮

C
f(z)EMn(z)dz

→ E(G(f)) = − 1

2πi

∮

C
f(z)EM(z)dz

= − 1

2πi

∮

C
f(z)[1 + s′(z)]s3(z)

[
σ2 − 1 + (κ− 1)s′(z) + βs2(z)

]
dz.

Select ρ < 1 but so close to 1 that the contour

C′ = {z = −(ρeiθ + ρ−1e−iθ) : 0 ≤ θ < 2π}

is completely contained in the analytic region of f . Note that when z runs
a cycle along C′ anticlockwise, s runs a cycle along the circle |s| = ρ anti-
clockwise because z = −(s+ s−1)1 By Cauchy’s theorem, the integral along
C above equals the integral along C′. Thus, by changing variable z to s and
noting that s′ = s2/(1 − s2), we obtain

E(G(f))

= − 1

2πi

∮

|s|=ρ

f(−s− s−1)s

[
σ2 − 1 + (κ− 1)

s2

1 − s2
+ βs2

]
ds.

By setting s = −eiθ and then t = cos θ, using Tk(cos θ) = cos(kθ),

− 1

2πi

∮

|s|=1

f(−s− s−1)s

[
σ2 − 1 + (κ− 1)

s2

1 − s2
+ βs2

]
ds

= − 1

2π

∫ π

−π

f(2 cos θ)

[
(σ2 − 1)e2iθ + (κ− 1)

e4iθ

1 − e2iθ
+ βe4iθ

]
dθ

= − 1

π

∫ π

0

f(2 cos θ)

[
(σ2 − 1) cos 2θ

−1

2
(κ− 1)(1 + 2 cos 2θ) + β cos 4θ

]
dθ

=
1

π

∫ 1

−1

f(2t)

[
−1

2
(κ− 1) + (σ2 − κ)T2(t) + βT4(t)

]
1√

1 − t2
dt

= −1

2
(κ− 1)τ0(f) + (σ2 − κ)τ2(f) + βτ4(f).

Let us evaluate the difference

1

2πi

[∮

|s|=1

−
∮

|s|=ρ

]
f(−s− s−1)s

[
σ2 − 1 + (κ− 1)

s2

1 − s2
+ βs2

]
ds.

1 The reason for choosing |s| = ρ < 1 is due to the fact that the mode of the Stieltjes
transform of the semicircular law is less than 1; see (8.1.11).
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Note that the integrand has two poles on the circle |s| = 1 with residuals
− 1

2f(±2) at points s = ∓1. By contour integration, we have

1

2πi

[∮

|s|=1

−
∮

|s|=ρ

]
f(−s− s−1)s

[
σ2 − 1 + (κ− 1)

s2

1 − s2
+ βs2

]
ds

=
κ− 1

4
(f(2) + f(−2)).

Putting together these two results gives the formula (9.2.4) for E[G(f)].

9.4.2 Covariance Function

Let Cj, j = 1, 2, be two disjoint contours with vertices ±(2 + εj) ± ivj . The
positive values of εj and vj are chosen sufficiently small so that the two
contours are contained in U . By (9.2.10) and Theorem 9.4, we have

Cov(Gn(f), Gn(g))

= − 1

4π2

∮

C1

∮

C2

f(z1)g(z2)Cov(Mn(z1),Mn(z2))dz1dz2

= − 1

4π2

∮

C1

∮

C2

f(z1)g(z2)Γn(z1, z2)dz1dz2 + o(1)

−→ c(f, g) = − 1

4π2

∮

C1

∮

C2

f(z1)g(z2)Γ (z1, z2)dz1dz2,

where Γ (z1, z2) is given in (9.3.6).
By the proof of Lemma 9.6, we have

Γ (z1, z2) =
∂2

∂z1∂z2
s(z1)s(z2)Γ̃ (z1, z2).

Integrating by parts, we obtain

c(f, g) = − 1

4π2

∮

C1

∮

C2

f ′(z1)g
′(z2)s(z1)s(z2)Γ̃ (z1, z2)dz1dz2

= − 1

4π2

∮

C1

∮

C2

A(z1, z2)dz1dz2,

where

A(z1, z2) = f ′(z1)g
′(z2)

[
s(z1)s(z2)(σ

2 − κ) +
1

2
βs2(z1)s

2(z2)
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−κ log(1 − s(z1)s(z2))

]
.

Let vj → 0 first and then εj → 0. It is easy to show that the integral along
the vertical edges of the two contours tends to 0 when vj → 0. Therefore, it
follows that

c(f, g)

=− 1

4π2

∫ 2

−2

∫ 2

−2

[A(t−1 , t
−
2 )−A(t−1 , t

+
2 )−A(t+1 , t

−
2 )+A(t+1 , t

+
2 )]dt1dt2,

where t±j := tj ± i0. Since f ′ and g′ are continuous in U , we have f ′(t±1 ) =

f ′(t1) and g′(t±2 ) = g′(t2). Recalling that s(t ± i0) = 1
2 (−t ± i

√
4 − t2), we

have

f ′(t1)g
′(t2)[s(t

−
1 )s(t−2 ) − s(t+1 )s(t−2 ) − s(t−1 )s(t+2 ) + s(t+1 )s(t+2 )]

= −f ′(t1)g
′(t2)

√
4 − t21

√
4 − t22,

f ′(t1)g
′(t2)[s

2(t−1 )s2(t−2 ) − s2(t+1 )s2(t−2 )

−s2(t−1 )s2(t+2 ) + s2(t+1 )s2(t+2 )]

= −f ′(t1)g
′(t2)t1t2

√
4 − t21

√
4 − t22,

f ′(t1)g
′(t2)[log(1 − s(t−1 )s(t−2 )) − log(1 − s(t+1 )s(t−2 ))

− log(1 − s(t−1 )s(t+2 )) + log(1 − s(t+1 )s(t+2 ))]

= f ′(t1)g
′(t2) log

∣∣∣∣
1 − s(t−1 )s(t−2 )

1 − s(t−1 )s(t+2 )

∣∣∣∣
2

= −f ′(t1)g
′(t2) log

(
4 − t1t2 −

√
(4 − t21)(4 − t22)

4 − t1t2 +
√

(4 − t21)(4 − t22)

)
.

Therefore, we have formula (9.2.6).
To derive the first representation of the covariance (i.e., formula (9.2.5)),

let ρ1 < ρ2 < 1 and define contours C′
j as in the last subsection. Then,

c(f, g) = − 1

4π2

∮

C′
1

∮

C′
2

f(z1)g(z2)Γ (z1, z2)dz1dz2

= − 1

4π2

∮

|s1|=ρ1

∮

|s2|=ρ2

f(−s1 − s−1
1 )g(−s2 − s−1

2 )

×
(
σ2 − κ+ 2βs1s2 +

κ

(1 − s1s2)2

)
ds1ds2.
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By Cauchy’s theorem, we may change ρ2 = 1 without affecting the value of
the integral. Rewriting ρ1 = ρ, expanding the fraction as a Taylor series, and
then making variable changes s1 = −ρeiθ1 and s2 = −eiθ2 , we obtain

c(f, g)

=
1

4π2

∫

[−π,π]2
f(ρeiθ1 + ρ−1e−iθ1)g(2 cos θ2)

[
σ2ρei(θ1+θ2)

+2(β + 1)ρ2ei2(θ1+θ2) + κ

∞∑

k=3

kρkeik(θ1+θ2)

]
dθ1dθ2

= σ2ρτ1(f, ρ)τ1(g) + 2(β + 1)ρ2τ2(f, ρ)τ2(g)

+κ

∞∑

k=3

kρkτk(f, ρ)τk(g),

where τk(f, ρ) = 1
2π

∫ π

−π
f(ρeiθ + ρ−1e−iθ)eikθdθ. By integration by parts, for

k ≥ 3 we have

τk(f, ρ) =
ρ−1

k
τk−1(f

′, ρ) − ρ

k
τk+1(f

′, ρ)

=
ρ2

k(k + 1)
τk+2(f

′′, ρ) − 2

k2 − 1
τk(f ′′, ρ) +

ρ−2

k(k − 1)
τk−2(f

′′, ρ).

Since f ′′ is uniformly bounded in U , we have |τk(f, ρ)| ≤ K/k(k−1) uniformly
for all ρ close to 1. Then (9.2.5) follows from the dominated convergence
theorem and letting ρ→ 1 under the summation.

9.5 Application to Linear Spectral Statistics and
Related Results

First note that Wn/(2
√
n) is a scaled Wigner matrix in the sense that the

limit law is the scaled Wigner semicircular law 2
π

√
1 − x2dx on the interval

[−1, 1]. To deal with this scaling, we define, for any function f , its scaled
copy f̃ by the relation f(2x) = f̃(x) for all x.

9.5.1 Tchebychev Polynomials

Consider first a Tchebychev polynomial Tk with k ≥ 1, and define φk such
that φ̃k = Tk. Set δij = 1 for i = j and δij = 0 elsewhere. Using the
orthogonality property
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1

π

∫ 1

−1

Ti(t)Tj(t)
1√

1 − t2
dt =

{
δij , if i = 0
1
2δij , elsewhere,

it is easily seen that τℓ(φk) = 1
2δkℓ for any integer ℓ ≥ 0. Thus, by (9.2.4), we

have for the mean

mk := E[G(φk)] =
κ− 1

4
(Tk(1) + Tk(−1)) +

1

2
(σ2 − κ)δk2 +

1

2
βδk4

=
1

2

[
(κ− 1)e(k) + (σ2 − κ)δk2 + βδk4

]
, (9.5.1)

with e(k) = 1 if k is even and e(k) = 0 elsewhere.
For two Tchebychev polynomials Tk and Tℓ, by (9.2.5) the asymptotic

covariance between Gn(φk) and Gn(φℓ) equals 0 for k 6= ℓ, and for k = ℓ,

Σℓℓ =

(
1

2

)2 [
(σ2 − κ)δℓ1 + (4β + 2κ)δℓ2 + κℓ

]
. (9.5.2)

An application of Theorem 9.2 readily yields the following corollary.

Corollary 9.7. Assume conditions [M1]–[M3] hold. Let T1, · · · , Tp be p first

Tchebychev polynomials and define the φk’s such that φ̃k = Tk. Then the
vector [Gn(φ1), · · · , Gn(φp)] converges in distribution to a Gaussian vector
with mean wp = (mk) and a diagonal covariance matrix Dp = (Σkk) with
their elements defined in equations (9.5.1) and (9.5.2), respectively.

In particular, these Tchebychev polynomial statistics are asymptotically
independent. Consider now the Gaussian case. For the GUE ensemble, we
have κ = σ2 = 1 and β = 0. Then mk = 0 and Σkk = k(1

2 )2. As for
the GOE ensemble, since κ = σ2 = 2 and β = 0, we get mk = 1

2e(k)
and Σkk = 2k(1

2 )2. Therefore, with Corollary 9.7 we have recovered the
CLT established by Johansson [165] for linear spectral statistics of Gaussian
ensembles (see Theorem 2.4 and Corollary 2.8 there).

9.6 Technical Lemmas

With the notation defined in the previous sections, we prove the following
two lemmas that were used in the proofs in previous sections.

Lemma 9.8. For any positive constants ν and t, when z ∈ C0, all of the
following probabilities have order o(n−t):

P (|εk| ≥ ν), P (|gk| ≥ ν), P (|hk| ≥ ν).

When z 6∈ C0 but |ℜ(z)| ≥ a, the same estimates remain true.
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Proof. The estimates for P (|gk| ≥ ν) and P (|hk| ≥ ν) directly follow from
Lemma 9.1 and the Chebyshev inequality.

Recalling the definition of εk, we have

|εk| =

∣∣∣∣n−1/2xkk − 1

n
α∗

k(Wk − zIn−1)
−1αk + Esn(z)

∣∣∣∣
≤ |gk(z)| + n−1|tr(Wk − zIn−1)

−1 − (W − zIn)−1|
+|sn(z) − Esn(z)|.

Noting that the second term is less than 1/nv0, the estimate for P (|εk| ≥ ν)
follows from Lemmas 9.1 and 8.7.

The proof of the lemma is complete.

Lemma 9.9. Suppose v0 > 0 is a fixed constant. Then, for any z ∈ C0, we
have

sup
z∈Cn

max
i,j,k,ℓ

E|Eke
′
ℓD

−1
kijeℓ − s(z)|2 → 0,

where the maximum is taken over all k, i, j 6= k, and all ℓ.

Proof. Recall identity (9.3.10). Since |xij | ≤ ηn
√
n, by (9.2.17) we have

sup
z∈Cn

E|e′ℓ(Dkij − Dk)eℓ|2 ≤ Kηn sup
z∈Cn

E‖Dkij‖−1‖2D−1
k ‖2 → 0.

Again, by (9.2.17),
E|e′ℓ(D−1

k − D−1)eℓ|2 → 0.

Moreover, by definition,

e′ℓD
−1eℓ =

1

n−1/2xℓℓ − z − n−1α∗
ℓD

−1
ℓ αℓ

=
1

−z − s(z)
+

−s(z)− [n−1/2xℓℓ − n−1α∗
ℓD

−1
ℓ αℓ]

(n−1/2xℓℓ − z − n−1α∗
ℓD

−1
ℓ αℓ)[−z − s(z)]

= s(z) + s(z)βℓ[s(z) + n−1/2xℓℓ − n−1α∗
ℓD

−1
ℓ αℓ].

By (9.2.18), (9.2.17), and Lemma 9.1, it follows that

E|e′ℓD−1eℓ − s(z)|2
≤ E|s(z)βℓ[s(z) + n−1/2xℓℓ − n−1α∗

ℓD
−1
ℓ αℓ]|2

≤ 2E|s(z) + n−1/2xℓℓ − n−1α∗
ℓD

−1
ℓ αℓ|2 + o(1)

≤ KE|s(z)− n−1trD−1
ℓ |2 + n−2E|α∗

ℓD
−1
ℓ αℓ − trD−1

ℓ |2 + o(1)

≤ o(1)

uniformly for any z ∈ Cn.
The lemma follows.
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9.7 CLT of the LSS for Sample Covariance Matrices

In this section, we shall consider the CLT for the LSS associated with the
general form of a sample covariance matrix considered in Chapter 6,

Bn =
1

n
T1/2XnX∗

nT1/2.

Some limiting theorems on the ESD and the spectrum separation of Bn

have been discussed in Chapter 6. In this section, we shall consider more
special properties of the LSS constructed using eigenvalues of Bn.

It has been proven that, under certain conditions, with probability 1, the
ESD of Bn tends to a limit F y,H whose Stieltjes transform is the unique
solution to

s =

∫
1

λ(1 − y − yzs) − z
dH(λ)

in the set {s ∈ C+ : − 1−y
z + ys ∈ C+}.

Define Bn ≡ (1/n)X∗
nTnXn, and denote its LSD and limiting Stieltjes

transform as F y,H and s = s(z). Then the equation takes on a simpler form
when F y,H is replaced by

F y,H ≡ (1 − y)I[0,∞) + yF y,H ;

namely

s(z) ≡ sF y,H (z) = −1 − y

z
+ ys(z)

has inverse

z = z(s) = −1

s
+ y

∫
t

1 + ts
dH(t). (9.7.1)

Now, let us consider the linear spectral statistics defined as

µn(f) =

∫
f(x)dFBn(x).

Theorem 9.10, presented below, shows that µn(f)−
∫
f(x)dF yn,Hn(x) has

convergence rate 1/p. Since the convergence of yn → y and Hn → H may be
very slow, the difference p(µn(f)−

∫
f(x)dF y,H(x)) may not have a limiting

distribution. More importantly, from the point of view of statistical infer-
ence, Hn can be viewed as a description of the current population and yn

is the ratio of dimension to sample size for the current sample. The limit∫
f(x)dF y,H(x) should be viewed as merely a mathematical convenience

allowing the result to be expressed as a limit theorem. Thus we consider
p(µn(f) −

∫
f(x)dF yn,Hn(x)).

For notational purposes, write
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Xn(f) =

∫
f(x)dGn(x),

where Gn(x) = p(FBn(x) − F yn,Hn(x)).
The main result is stated in the following theorem, which extends a result

presented in Bai and Silverstein [30].

Theorem 9.10. Assume that the X-variables satisfy the condition

1

np

∑

ij

E|x4
ij |I(|xij | ≥

√
nη) → 0 (9.7.2)

for any fixed η > 0 and that the following additional conditions hold:

(a) For each n, xij = x
(n)
ij , i ≤ p, j ≤ n are independent. Exi j = 0, E|xi j |2 =

1, maxi,j,n E|xi j |4 <∞, p/n→ y.

(b) Tn is p×p nonrandom Hermitian nonnegative definite with spectral norm

bounded in p, with FTn
D→ H a proper c.d.f.

Let f1, · · · , fk be functions analytic on an open region containing the in-
terval

[
lim inf

n
λTn

minI(0,1)(y)(1 −√
y)2, lim sup

n
λTn

max(1 +
√
y)2
]
. (9.7.3)

Then

(1) the random vector
(Xn(f1), · · · , Xn(fk)) (9.7.4)

forms a tight sequence in n.

(2) If xij and Tn are real and E(x4
ij) = 3, then (9.7.4) converges weakly to a

Gaussian vector (Xf1 , · · · , Xfk
) with means

EXf = − 1

2πi

∫

C
f(z)

y
∫ s(z)3t2dH(t)

(1+ts(z))3(
1 − y

∫ s(z)2t2dH(t)
(1+ts(z))2

)2 dz (9.7.5)

and covariance function

Cov(Xf , Xg)

= − 1

2π2

∫

C1

∫

C2

f(z1)g(z2)

(s(z1) − s(z2))2
s′(z1)s

′(z2)dz1dz2 (9.7.6)

(f, g ∈ {f1, · · · , fk}). The contours in (9.7.5) and (9.7.6) (two in (9.7.6),
which may be assumed to be nonoverlapping) are closed and are taken in
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the positive direction in the complex plane, each enclosing the support of
F y,H.

(3) If xij is complex with E(x2
ij) = 0 and E(|xij |4) = 2, then (2) also holds,

except the means are zero and the covariance function is 1/2 times the
function given in (9.7.6).

This theorem can be viewed as an extension of results obtained in Jonsson
[169], where the entries of Xn are Gaussian, Tn = I, and fk = xk.

9.7.1 Truncation

We begin the proof of Theorem 9.10 here with the replacement of the entries
of Xn with truncated and centralized variables. By condition (9.7.2), we may
select ηn ↓ 0 and such that

1

npη4
n

∑

ij

E|xij |4I(|xij | ≥ ηn

√
n) → 0. (9.7.7)

The convergence rate of the constants ηn can be arbitrarily slow and hence
we may assume that ηnn

1/5 → ∞. Let B̂n = (1/n)T1/2X̂nX̂∗
nT1/2 with X̂n

p× n having (i, j)-th entry x̂ij = xijI{|xij |<ηn
√

n}.
We have then

P(Bn 6= B̂n) ≤
∑

ij

P(|xij | ≥ ηn

√
n)

≤ 1

npη−4
n

∑

ij

E|xij |4I(|xij | ≥ ηn

√
n) = o(1).

Define B̃n = (1/n)T1/2X̃nX̃∗
nT1/2 with X̃n p × n having (i, j)-th entry

x̃ij = (x̂ij − Ex̂ij)/σij , where σ2
ij = E|x̂ij − Ex̂ij |2. From Theorem 5.11, we

know that both lim supn λ
B̂n
max and lim supn λ

B̃n
max are almost surely bounded

by lim supn ‖Tn‖(1+
√
y)2. We use Ĝn(x) and G̃n(x) to denote the analogues

of Gn(x) with the matrix Bn replaced by B̂n and B̃n, respectively. Let λA
i

denote the i-th smallest eigenvalue of Hermitian A. Using the approach and
bounds that are used in the proof of Corollary A.42, we have, for each j =
1, 2, · · · , k,

E

∣∣∣∣
∫
fj(x)dĜn(x) −

∫
fj(x)dG̃n(x)

∣∣∣∣ ≤ Kj

n∑

k=1

E|λB̂n

k − λB̃n

k |

≤ 2Kj

(
EtrT1/2(X̂n − X̃n)(X̂n − X̃n)∗T1/2

)1/2
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×
(
n−2EtrT1/2(X̂nX̂∗

n + X̃nX̃∗
n)T1/2

)1/2

,

where Kj is a bound on |f ′
j(z)|. From (9.7.7), maxij |σij − 1| → 0. Thus, we

have

∑

ij

(σ−1
ij − 1)2 ≤ K

∑

ij

(E|xij |2I(|xij | ≥ ηn

√
n))2

≤ 1

n2η4
n

∑

ij

(E|xij |4I(|xij | ≥ ηn

√
n))2 = o(1).

Moreover,

∑

ij

|Ex̂ij |2 ≤ 1

n3η6
n

∑

ij

(E|x4
ij |I(|xij | ≥ ηn

√
n))2 = o(1).

These give us

EtrT1/2(X̂n − X̃n)(X̂n − X̃n)∗T1/2

≤ 2
∑

ij

[(1 − 1/σij)
2E|x̂ij |2 + σ−2

ij |Ex̂ij |2]

≤ 2
∑

ij

[(1 − 1/σij)
2 + |Ex̂ij |2]

= o(1).

Similarly,

n−2EtrT1/2(X̂nX̂∗
n + X̃nX̃∗

n)T1/2

≤ 1

n2

∑

ij

E[|x̂ij |2 + |x̃ij |2]

≤ 3

n2

∑

ij

E|xij |2 ≤ K.

From the estimates above, we obtain

∫
fj(x)dGn(x) =

∫
fj(x)dG̃n(x) + op(1).

Therefore, we only need to find the limiting distribution of {
∫
fj(x)dG̃n(x),

j = 1, · · · , k}. Hence, in what follows, we shall assume the underlying vari-
ables are truncated at ηn

√
n, centralized, and renormalized. For simplicity,

we shall suppress all sub- or superscripts on the variables and assume that
|xij | < ηn

√
n, Exij = 0, E|xij |2 = 1, E|xij |4 < ∞, and for the assumption

made in Part (2) of Theorem 9.10, E|xij |4 = 3+o(1), while for the assumption
in (3), Ex2

ij = o(1/n) and E|xij |4 = 2 + o(1).
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After truncation, centralization, and renormalization, with modifications
in the proof of Theorem 5.10, for any µ1 > lim sup ‖Tn‖(1 +

√
y)2 and 0 <

µ2 < lim infn λ
Tn

minI(0,1)(y)(1 −√
y)2, we have

P (‖Bn‖ ≥ µ1) = o(n−ℓ) (9.7.8)

and
P (λBn

min ≤ µ2) = o(n−ℓ). (9.7.9)

The modifications are given in Subsection 9.12.5. The main proof of Theorem
9.10 will be given in the following sections.

9.8 Convergence of Stieltjes Transforms

After truncation and centralization, our proof of the main theorem relies on
establishing limiting results on

Mn(z) = p[sFBn (z) − sF yn,Hn (z)] = n[sFB
n
(z) − sF yn,Hn (z)],

or more precisely on M̂n(·), a truncated version of Mn(·) when viewed
as a random two-dimensional process defined on a contour C of the com-
plex plane, described as follows. Let v0 > 0 be arbitrary. Let xr be any
number greater than the right endpoint of interval (9.7.3). Let xl be any
negative number if the left endpoint of (9.7.3) is zero. Otherwise choose
xl ∈ (0, lim infn λ

Tn

minI(0,1)(y)(1 −√
y)2). Let

Cu = {x+ iv0 : x ∈ [xl, xr]}.

Then define

C+ ≡ {xl + iv : v ∈ [0, v0]} ∪ Cu ∪ {xr + iv : v ∈ [0, v0]}

and C = C+∪C+. Further, we now define the subsets Cn of C+ on which Mn(·)
agrees with M̂n(·). Choose sequence {εn} decreasing to zero satisfying, for
some α ∈ (0, 1),

εn ≥ n−α. (9.8.1)

Let

Cl =

{
{xl + iv : v ∈ [n−1εn, v0]}, if xl > 0,
{xl + iv : v ∈ [0, v0]}, if xl < 0,

and
Cr = {xr + iv : v ∈ [n−1εn, v0]}.
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Then Cn = Cl ∪ Cu ∪ Cr. The process M̂n(·) can now be defined. For
z = x+ iv, we have

M̂n(z) =




Mn(z), for z ∈ Cn,
Mn(xr + in−1εn), for x = xr, v ∈ [0, n−1εn],
Mn(xl + in−1εn), for x = xl, v ∈ [0, n−1εn].

(9.8.2)

M̂n(·) is viewed as a random element in the metric space C(C+,R2) of con-
tinuous functions from C+ to R2. All of Chapter 2 of Billingsley [57] applies
to continuous functions from a set such as C+ (homeomorphic to [0, 1]) to
finite-dimensional Euclidean space, with |·| interpreted as Euclidean distance.

We first prove the following lemma.

Lemma 9.11. Under conditions (a) and (b) of Theorem 9.10, {M̂n(·)} forms
a tight sequence on C+. Moreover, if assumptions in (2) or (3) of Theorem

9.10 on xi j hold, then M̂n(·) converges weakly to a two-dimensional Gaussian
process M(·) satisfying for z ∈ C+ under the assumptions in (2)

EM(z) =
y
∫ s(z)3t2dH(t)

(1+ts(z))3(
1 − y

∫ s(z)2t2dH(t)
(1+ts(z))2

)2 (9.8.3)

and, for z1, z2 ∈ C,

Cov(M(z1),M(z2)) ≡ E[(M(z1) − EM(z1))(M(z2) − EM(z2))

= 2

(
s′(z1)s′(z2)

(s(z1) − s(z2))2
− 1

(z1 − z2)2

)
, (9.8.4)

while under the assumptions in (3) EM(z) = 0 and the “covariance” function
analogous to (9.8.4) is 1/2 the right-hand side of (9.8.4).

We now show how Theorem 9.10 follows from the lemma above. We use
the identity ∫

f(x)dG(x) = − 1

2πi

∫

C
f(z)sG(z)dz, (9.8.5)

valid for any c.d.f. G and f analytic on an open set containing the support of
G. The complex integral on the right is over any positively oriented contour
enclosing the support of G and on which f is analytic. Choose v0, xr, and xl

so that f1, · · · , fk are all analytic on and inside the resulting C.
Due to the a.s. convergence of the extreme eigenvalues of (1/n)XnX∗

n and
the bounds

λAB
max ≤ λA

maxλ
B
max, λAB

min ≥ λA
minλ

B
min,

valid for n× n Hermitian nonnegative definite A and B, we have with prob-
ability 1

lim inf
n→∞

min
(
xr − λBn

max, λ
Bn

min − xl

)
> 0.
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It also follows that the support of F yn,Hn is contained in

[
λTn

minI(0,1)(yn)(1 −√
yn)2, λTn

max(1 +
√
yn)2

]
.

Therefore, for any f ∈ {f1, · · · , fk}, with probability 1

∫
f(x)dGn(x) = − 1

2πi

∫

C
f(z)Mn(z)dz

for all large n, where the complex integral is over C. Moreover, with M̂n(z) =

M̂n(z̄) for z ∈ C+, we have with probability 1, for all large n,

∣∣∣∣
∫

C
f(z)(Mn(z) − M̂n(z))dz

∣∣∣∣
≤ 4Kεn(|max(λTn

max(1 +
√
yn)2, λBn

max) − xr|−1

+|min(λTn

minI(0,1)(yn)(1 −√
yn)2, λBn

min) − xl|−1),

which converges to zero as n→ ∞. Here K is a bound on f over C.
Since

M̂n(·) −→
(
− 1

2πi

∫
f1(z) M̂n(z)dz, · · · ,− 1

2πi

∫
fk(z) M̂n(z)dz

)

is a continuous mapping of C(C+,R2) into R2k, it follows that the vector
above and subsequently (9.7.4) form tight sequences. Letting M(·) denote

the limit of any weakly converging subsequence of {M̂n(·)}, we have the
weak limit of (9.7.4) equal in distribution to

(
− 1

2πi

∫

C
f1(z)M(z)dz, · · · ,− 1

2πi

∫

C
fk(z)M(z)dz

)
.

The fact that this vector, under the assumptions in (2) or (3), is multivariate
Gaussian follows from the fact that Riemann sums corresponding to these
integrals are multivariate Gaussian and that weak limits of Gaussian vectors
can only be Gaussian. The limiting expressions for the mean and covariance
follow immediately.

The interval (9.7.3) in Theorem 9.10, on which the functions fi are assumed
to be analytic, can be reduced to a smaller one, due to the results in Chapter
6, relaxing the assumptions on the fi’s. Indeed, the fi’s need only be defined
on an open interval I containing the closure of

lim sup
n

SF yn,Hn =
∞⋂

m=1

⋃

n≥m

SF yn,Hn
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since closed intervals in the complement of I will satisfy (f) of Theorem 6.3, so
with probability 1, all eigenvalues will stay within I for all large n. Moreover,
when y[1 −H(0)] > 0, which implies p > n, we have, by (2) of Theorem 6.3,
the existence of x0 > 0 for which λBn

n , the n-th largest eigenvalue of Bn,

which is λ
B

n

min, converges almost surely to x0. Therefore, in this case, for all
sufficiently small ǫ > 0, with probability 1,

Xn(f) =

∫ ∞

x0−ǫ

f(x)dGn(x)

for all large n. Therefore the left endpoint of I can be taken to be x0 − ǫ.
When lim infn λ

Tn

min > 0, a lower bound for x0 can be taken to be any number

less than lim infn λ
Tn

min(1−√
y)2. For the proof of Theorem 9.10, the contour

C could be adjusted accordingly.
Notice the assumptions in (2) and (3) require xij to have the same first,

second, and fourth moments of either a real or complex Gaussian variable,
the latter having real and imaginary parts i.i.d. N(0, 1/2). We will use the
terms “RSE” and “CSE” to refer to the real and complex sample covariance
matrices with these moment conditions.

The reason why concrete results are at present only obtained for the as-
sumptions in (2) and (3) is mainly due to the identity

E(x∗
t Axt − trA)(x∗

t Bxt − trB)

=

p∑

i=1

(E|xit|4 − |Ex2
it|2 − 2)aiibii

+trAxB
T
x + trAB (9.8.6)

valid for p× p A = (aij) and B = (bij), where xt is the t-th column of Xn,
Ax = (Ex2

itaij), and Bx = (Ex2
itbij) (note t is fixed). This formula will be

needed in several places in the proof of Lemma 9.11. The assumptions in (3)
leave only the last term on the right, whereas those in (2) leave the last two,
but in this case the matrix B will always be symmetric. This also accounts
for the relation between the two covariance functions and the difficulty in ob-
taining explicit results more generally. As will be seen in the proof, whenever
(9.8.6) is used, little is known about the limiting behavior of

∑
aiibii even

when we assume the underlying distributions are identical.
Simple substitution reveals

RHS of (9.7.6) = − 1

2π2

∫

C1

∫

C2

f(z(s1))g(z(s2))

(s1 − s2)2
d(s1)d(s2). (9.8.7)

However, the contours depend on the z1, z2 contours and cannot be arbitrarily
chosen. It is also true that



9.8 Convergence of Stieltjes Transforms 267

RHS of (9.7.6) =
1

π2

∫∫
f ′(x)g′(y) log

∣∣∣∣
s(x) − s(y)

s(x) − s(y)

∣∣∣∣ dxdy

=
1

2π2

∫∫
f ′(x)g′(y) log

(
1 + 4

si(x)si(y)

|s(x) − s(y)|2
)
dxdy (9.8.8)

and

EXf =
1

2π

∫
f ′(x) arg

(
1 − y

∫
t2s2(x)

(1 + ts(x))2
dH(t)

)
dx. (9.8.9)

Here, for 0 6= x ∈ R,

s(x) = lim
z→x

s(z), z ∈ C
+, (9.8.10)

known to exist and satisfying (9.7.1), and si(x) = ℑ s(x). The term

j(x) = arg

(
1 − y

∫
t2s2(x)

(1 + ts(x))2
dH(t)

)

in (9.8.9) is well defined for almost every x and takes values in (−π/2, π/2).
Section 9.12 contains proofs of all the expressions above. Subsections 9.12.1
and 9.12.2 contain the proof of (9.8.8) and (9.8.9) along with showing

k(x, y) ≡ log

(
1 + 4

si(x)si(y)

|s(x) − s(y)|2
)

(9.8.11)

to be Lebesgue integrable on R2. It is interesting to note that the support of
k(x, y) matches the support of fy,H on R − {0}:

k(x, y) = 0 ⇐⇒ min(fy,H(x), fy,H(y)) = 0.

We also have fy,H(x) = 0 =⇒ j(x) = 0.
Subsection 9.12.3 contains derivations of the relevant quantities associated

with Example 1.1. The linear spectral statistic (1/p)Tn has a.s. limit d(y) as
stated in Example 1.1. The quantity Tn − pd(p/n) converges weakly to a
Gaussian random variable Xlog with

EXlog =
1

2
log(1 − y) (9.8.12)

and
VarXlog = −2 log(1 − y). (9.8.13)

Jonsson [169] derived the limiting distribution of trSr
n − EtrSr

n when nSn

is a standard Wishart matrix. As a generalization to this work, results on
both trSr

n − ESr
n and p[

∫
xrdFSn(x) − E

∫
xrdFSn(x)] for positive integer r

are derived in Section 9.12.4, where the following expressions are presented
for means and covariances in this case (H = I[1,∞)). We have
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EXxr =
1

4
((1 −√

y)2r + (1 +
√
y)2r) − 1

2

r∑

j=0

(
r

j

)2

yj (9.8.14)

and

Cov(Xxr1 , Xxr2 )

= 2yr1+r2

r1−1∑

k1=0

r2∑

k2=0

(
r1
k1

)(
r2
k2

)(
1 − y

y

)k1+k2 r1−k1∑

ℓ=1

ℓ

(
2r1−1−(k1 + ℓ)

r1 − 1

)

×
(

2r2−1−k2 + ℓ

r2 − 1

)
. (9.8.15)

It is worth mentioning here a consequence of (9.8.8), namely that if the
assumptions in (2) or (3) of Theorem 9.10 were to hold, then Gn, considered
as a random element in D[0,∞) (the space of functions on [0,∞) that are
right-continuous with left-hand limits, together with the Skorohod metric),
cannot form a tight sequence in D[0,∞). Indeed, under either assumption, if
G(x) is a weak limit of a subsequence, then, because of Theorem 9.10, it is
straightforward to conclude that for any x0 in the interior of the support of
F and positive ε, ∫ x0+ε

x0

G(x)dx

would be Gaussian and therefore so would

G(x0) = lim
ε→0

1

ε

∫ x0+ε

x0

G(x)dx.

However, the variance would necessarily be

lim
ε→0

1

2π2

1

ε2

∫ x0+ε

x0

∫ x0+ε

x0

k(x, y)dxdy = ∞.

Still, under the assumptions in (2) or (3), a limit may exist for {Gn} when
Gn is viewed as a linear functional,

f −→
∫
f(x)dGn(x);

that is, a limit expressed in terms of a measure in a space of generalized
functions. The characterization of the limiting measure of course depends on
the space, which in turn relies on the set of test functions, which for now
is restricted to functions analytic on the support of F . Work in this area is
currently being pursued.

The proof of Lemma 9.11 is divided into three sections. Sections 9.9 and
9.10 handle the limiting behavior of the centralized Mn, while Section 9.11
analyzes the nonrandom part.
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We mention here some simple extensions of results in Billingsley [57]
needed in the analysis.

Bi. In the Arzela-Ascoli theorem on p. 221, (8) can be replaced by

sup
x∈A

|x(t0)| <∞

for some t0 ∈ [0, 1]. Subsequently (i) of Theorem 12.3, p. 95, can be replaced
by

The sequence {Xn(t0)} is tight for some t0 ∈ [0, 1].

Bii. If the sequence {Xn} of random elements in C[0, 1] is tight, and the
sequence {an} of nonrandom elements in C[0, 1] satisfies the first part of Bi.
above with A = {an} and is uniformly equicontinuous ((9) on p. 221), then
the sequence {Xn + an} is tight.

Biii. For any countably dense subset T of [0, 1], the finite-dimensional
sets (see pp. 19–20) formed from points in T uniquely determine probability
measures on C[0, 1] (that is, it is a determining class). This implies that a
random element of C[0, 1] is uniquely determined by its finite-dimensional
distributions having points in T .

9.9 Convergence of Finite-Dimensional Distributions

Write for z ∈ Cn, Mn(z) = M1
n(z) +M2

n(z), where

M1
n(z) = p[sFBn (z) − EsFBn (z)]

and
M2

n(z) = p[sEFBn (z) − sF yn,Hn (z)],

and define M̂1
n(z), M̂2

n(z) for z ∈ C+ in terms of M1
n, M2

n as in (9.8.2). In
this section, we will show for any positive integer r the sum

r∑

i=1

αiM
1
n(zi) (ℑ zi 6= 0)

whenever it is real, tight, and, under the assumptions in (2) or (3) of Theorem
9.10, will converge in distribution to a Gaussian random variable. Formula
(9.8.4) will also be derived. From this and the result to be obtained in Section
9.11, we will have weak convergence of the finite-dimensional distributions of
M̂n(z) for all ∈ C+, except at the two endpoints. Because of Biii, this will
be enough to ensure the uniqueness of any weakly converging subsequence of
{M̂n}.

We begin by quoting the following result.
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Lemma 9.12. (Theorem 35.12 of Billingsley [56]). Suppose that for each n,
Yn1, Yn2, · · · , Ynrn is a real martingale difference sequence with respect to the
increasing σ-field {Fnj} having second moments. If, as n→ ∞,

rn∑

j=1

E(Y 2
nj |Fn,j−1)

i.p.−→ σ2, (9.9.1)

where σ2 is a positive constant, and, for each ε > 0,

rn∑

j=1

E(Y 2
njI(|Ynj |≥ε)) → 0, (9.9.2)

then
rn∑

j=1

Ynrn

D→ N(0, σ2).

Recalling the truncation and centralization steps, if C is a matrix with
‖C‖ ≤ K on Bc

n and ‖C‖ < nd on Bn for some constant d, then by Lemma
9.1, (9.7.8), and (9.7.9), we get (similar to (9.2.17))

E|x∗
t Cxt − trC|p ≤ Kp‖C‖pη2p−4

n np−1 ≤ Kpη
2p−4
n np−1, p ≥ 2, (9.9.3)

where Bn = {‖Bn‖ > µ1 or λBn

min < µ2}.
Let v = ℑ z. For the following analysis, we will assume v > 0. To facilitate

notation, we will let T = Tn. Because of assumption (b) of Theorem 9.10,
we may assume ‖T‖ ≤ 1 for all n. Constants appearing in inequalities will be
denoted by K and may take on different values from one expression to the
next.

In what follows, we use the notation rj , D(z), Dj(z), αj , δj , γj , γ̂j , γ̄j ,
βj , β̄j defined in subsections 6.2.2 and 6.2.3 and define

bj =
1

1 + n−1EtrTD−1
j

and b =
1

1 + n−1EtrTD−1
. (9.9.4)

Each of βj, β̄j , bj, and b is bounded in absolute value by |z|/v (see (6.2.5)).
We have

D−1(z) − D−1
j (z) = −D−1

j (z)rjr
∗
jD

−1
j (z)βj(z),

and from Lemma 6.9 for any p× p A,

|tr(D−1(z) − D−1
j (z))A| ≤ ‖A‖

ℑ z . (9.9.5)

For nonrandom p×pAk, k = 1, · · · ,m and Bl, l = 1, · · · , q, we shall establish
the following inequality:
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∣∣∣∣E
( m∏

k=1

r∗t Akrt

q∏

l=1

(r∗t Blrt − n−1trTBl)

)∣∣∣∣

≤ Kn−(1∧q)η(2q−4)∨0
n

m∏

k=1

‖Ak‖
q∏

l=1

‖Bl‖, m ≥ 0, q ≥ 0. (9.9.6)

When m = 0 and q = 1, the left side is 0. When m = 0 and q > 1, (9.9.6) is
a consequence of (9.9.3) and Hölder’s inequality. If m ≥ 1, then by induction
on m we have

∣∣∣∣E
(∏m

k=1 r∗t Akrt

∏q
l=1(r

∗
t Blrt − n−1trTBl)

)∣∣∣∣

≤
∣∣∣∣E
(∏m−1

k=1 r∗t Akrt(r
∗
t Aprt − n−1trTAp)

∏q
l=1(r

∗
t Blrt − n−1trTBl)

)∣∣∣∣

+pn−1‖Ap‖
∣∣∣∣E
(∏m−1

k=1 r∗t Akrt

∏q
l=1(r

∗
t Blrt − n−1trTBl)

)∣∣∣∣

≤ Kn−1η
(2q−4)∨0
n

∏m
k=1 ‖Ak‖

∏q
l=1 ‖Bl‖.

We have proved the case where q > 0. When q = 0, (9.9.6) is a trivial
consequence of (9.9.3).

Let E0(·) denote expectation and Ej(·) denote conditional expectation
with respect to the σ-field generated by r1, · · · , rj .

Using the martingale decomposition, we have

p[sFBn (z) − EsFBn (z)] = tr[D−1(z) − ED−1(z)]

= −
n∑

j=1

(Ej − Ej−1)βj(z)r
∗
jD

−2
j (z)rj .

Write

βj(z) = β̄j(z) − βj(z)β̄j(z)γ̂j(z)

= β̄j(z) − β̄2
j (z)γ̂j(z) + β̄2

j (z)βj(z)γ̂
2
j (z).

Then we have

(Ej − Ej−1)βj(z)r
∗
jD

−2
j (z)rj

= Ej

(
β̄j(z)αj(z) − β̄2

j (z)γ̂j(z)
1

n
trTD−2

j (z)

)

−(Ej − Ej−1)β̄
2
j (z)(γ̂j(z)αj(z) − βj(z)rjD

−2
j (z)rj γ̂

2
j (z)).

Using (9.9.6), we have
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E

∣∣∣∣∣∣

n∑

j=1

(Ej − Ej−1)β̄
2
j (z)γ̂j(z)αj(z)

∣∣∣∣∣∣

2

=
n∑

j=1

E|(Ej − Ej−1)β̄
2
j (z)γ̂j(z)αj(z)|2

≤ 4

n∑

j=1

E|β̄2
j (z)γ̂j(z)αj(z)|2 = o(1).

Therefore,

n∑

j=1

(Ej − Ej−1)β̄
2
j (z)γ̂j(z)αj(z) converges to zero in probability.

By the same argument, we have

n∑

j=1

(Ej − Ej−1)βj(z)rjD
−2
j (z)rj γ̂

2
j (z)

i.p.−→ 0.

Therefore we need only consider the sum

r∑

i=1

αi

n∑

j=1

Yj(zi) =
n∑

j=1

r∑

i=1

αiYj(zi),

where

Yj(z) = −Ej

(
β̄j(z)αj(z) − β̄2

j (z)γ̂j(z)
1

n
trTD−2

j (z)

)

= −Ej
d

dz
β̄j(z)γ̂j(z).

Again, by using (9.9.6), we obtain

E|Yj(z)|4 ≤ K

( |z|4
v4

E|αj(z)|4 +
|z|8
v16

( p
n

)4

E|γ̂j(z)|4
)

= o(n−1),

which implies, for any ε > 0,

n∑

j=1

E

(∣∣∣∣
r∑

i=1

αiYj(zi)

∣∣∣∣
2

I

(∣∣∣∣
r∑

i=1

αiYj(zi)

∣∣∣∣ ≥ ε

))

≤ 1

ε2

n∑

j=1

E

∣∣∣∣
r∑

i=1

αiYj(zi)

∣∣∣∣
4

→ 0

as n→ ∞. Therefore condition (ii) of Lemma 9.12 is satisfied and it is enough
to prove, under the assumptions in (2) or (3), for z1, z2 ∈ C with ℑ(zj) 6= 0,
that
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n∑

j=1

Ej−1[Yj(z1)Yj(z2)] (9.9.7)

converges in probability to a constant (and to determine the constant).
We show here for future use the tightness of the sequence

{∑r
i=1 αiM

1
n(zi)}. From (9.9.6) we easily get E|Yj(z)|2 = O(n−1), so that

E

∣∣∣∣
r∑

i=1

αi

n∑

j=1

Yj(zi)

∣∣∣∣
2

=

n∑

j=1

E

∣∣∣∣
r∑

i=1

αiYj(zi)

∣∣∣∣
2

≤ r

n∑

j=1

r∑

i=1

|αi|2E
∣∣∣∣Yj(zi)

∣∣∣∣
2

≤ K. (9.9.8)

Consider the sum

n∑

j=1

Ej−1[Ej(β̄j(z1)γ̂j(z1))Ej(β̄j(z2)γ̂j(z2))]. (9.9.9)

In the j-th term (viewed as an expectation with respect to rj+1, · · · , rn), we
apply the d.c.t. to the difference quotient defined by β̄j(z)γ̂j(z) to get

∂2

∂z2∂z1
(9.9.9) = (9.9.7).

Let v0 be a lower bound on |ℑzi|. For each j, let Ai
j =

(1/n)T1/2EjD
−1
j (zi)T

1/2, i = 1, 2. Then trAi
jA

i
j
∗ ≤ p(v0n)−2. Using (9.9.3)

we therefore see that (9.9.9) is bounded.
We can then appeal to Lemma 2.14. Suppose (9.9.9) converges in probabil-

ity for each zk, zl ∈ {zi}, bounded away from the imaginary axis and having
a limit point. Then, by a diagonalization argument, for any subsequence of
the natural numbers, there is a further subsequence such that, with probabil-
ity 1, (9.9.9) converges for each pair zk, zl. Applying Lemma 2.14 twice, we
see that almost surely (9.9.7) will converge on the subsequence for each pair.
That is enough to imply convergence in probability of (9.9.7). Therefore we
need only show that (9.9.9) converges in probability.

By the definition of β1 and b1, using the martingale decomposition to
trTDj(zi) − EtrTDj(zi), we get

E|β̄1(zi) − b1(zi)|2
≤ |z|4v−4

0 n−2E|trTD1(zi) − EtrTD1(zi)|2

≤ K
|zi|4
v6
0

n−1.

Similarly, we have
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E|β̄j(zi) − bj(zi)|2 ≤ K
|zi|4
v6
0

n−1.

This, together with (9.9.6), implies that

E|Ej−1[Ej(β̄j(z1)γ̂j(z1))Ej(β̄j(z2)γ̂j(z2))]

−Ej−1[Ej(bj(z1)γ̂j(z1))Ej(bj(z2)γ̂j(z2))]|
= o(n−1),

from which

n∑

j=1

Ej−1[Ej(β̄j(z1)γ̂j(z1))Ej(β̄j(z2)γ̂j(z2))]

−
n∑

j=1

bj(z1)bj(z2)Ej−1[Ej(γ̂j(z1))Ej(γ̂j(z2))]

i.p.−→ 0.

Thus the goal is to show that

n∑

j=1

bj(z1)bj(z2)Ej−1[Ej(γ̂j(z1))Ej(γ̂j(z2))] (9.9.10)

converges in probability and to determine its limit. The latter’s second mixed
partial derivative will yield the limit of (9.9.7).

We now assume the CSE case, namely EX2
11 = o(1/n) and E|X11|4 =

2 + o(1), so that, using (9.8.6), (9.9.10) becomes

1

n2

n∑

j=1

bj(z1)bj(z2)(trT
1/2Ej(D

−1
j (z1))TEj(D

−1
j (z2))T

1/2 + o(1)An),

where

|An| ≤ K(trTEj(D
−1
j (z1))TEj(D̄

−1
j (z1))

×trTEj(D
−1
j (z2))TEj(D̄

−1
j (z2)))

1/2 = O(n).

Thus we need only to study the limit of

1

n2

n∑

j=1

bj(z1)bj(z2)trEj(D
−1
j (z1))TEj(D

−1
j (z2))T. (9.9.11)

The RSE case (T, X11 real, E|X11|4 = 3 + o(1)) will be double that of the
limit of (9.9.11).

Let Dij(z) = D(z) − rir
∗
i − rjr

∗
j ,
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βij(z) =
1

1 + r∗i D
−1
ij (z)ri

, and bi,j(z) =
1

1 + n−1EtrTD−1
i j (z)

.

We write

Dj(z1) + z1I −
n− 1

n
bj(z1)T =

∑

i6=j

rir
∗
i − n− 1

n
bj(z1)T.

Multiplying by (z1I − n−1
n bj(z1)T)−1 on the left, D−1

j (z1) on the right, and
using

r∗i D
−1
j (z1) = βij(z1)r

∗
i D

−1
ij (z1),

we get

D−1
j (z1) = −

(
z1I−

n− 1

n
bj(z1)T

)−1

+
∑

i 6=j

βij(z1)

(
z1I−

n− 1

n
bj(z1)T

)−1

rir
∗
i D

−1
ij (z1)

−n− 1

n
bj(z1)

(
z1I −

n− 1

n
bj(z1)T

)−1

TD−1
j (z1)

= −
(
z1I −

n− 1

n
bj(z1)T

)−1

+ bj(z1)A(z1)

+B(z1) + C(z1), (9.9.12)

where

A(z1) =
∑

i 6=j

(
z1I−

n− 1

n
bj(z1)T

)−1

(rir
∗
i − n−1T)D−1

ij (z1),

B(z1) =
∑

i 6=j

(βij(z1) − bj(z1))

(
z1I −

n− 1

n
bj(z1)T

)−1

rir
∗
i D

−1
ij (z1),

and

C(z1) = n−1bj(z1)

(
z1I −

n− 1

n
bj(z1)T

)−1

T
∑

i6=j

(D−1
ij (z1) − D−1

j (z1)).

It is easy to verify, for any real t, that

∣∣∣∣∣1 − t

z(1 + n−1EtrTD−1
j (z))

∣∣∣∣∣

−1

≤
|z(1 + n−1EtrTD−1

j (z))|
ℑ z(1 + n−1EtrTD−1

j (z))

≤ |z|(1 + p/(nv0))

v0
.
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Thus ∥∥∥∥
(
z1I−

n− 1

n
bj(z1)T

)−1∥∥∥∥ ≤
1 + p

nv0

v0
. (9.9.13)

Let M be p× p and let ‖M‖ denote a nonrandom bound on the spectral
norm of M for all parameters governing M and under all realizations of M.
From (9.9.5),

|bi,j(z1) − bj(z1)| ≤ K/n

and
E|βij − bi,j|2 ≤ K/n.

Then, by (9.9.6) and (9.9.13), we get

E|trB(z1)M| ≤
∑

i 6=j

E1/2(|βi,j(z1) − bj(z1)|2)

×E1/2

(∣∣∣∣r∗i D
−1
ij (z1)M

(
z1I−

n− 1

n
bj(z1)T

)−1

ri

∣∣∣∣
2)

≤ K‖M‖n1/2. (9.9.14)

From (9.9.5), we have
|trC(z1)M| ≤ K‖M‖. (9.9.15)

From (9.9.6) and (9.9.13), we get for M nonrandom and any j,

E|trA(z1)M|

≤ K

n

∑

i6=j

E1/2trT1/2D−1
ij (z1)M

(
z1I −

n− 1

n
bj(z1)T

)−1

T

×
(
z̄1I−

n− 1

n
bj(z̄1)T

)−1

M∗D−1
ij (z̄1)T

1/2

≤ K‖M‖n1/2. (9.9.16)

We write (using the identity above (9.9.5))

tr[EjA(z1)]TD−1
j (z2)T = A1(z1, z2) +A2(z1, z2) + A3(z1, z2), (9.9.17)

where

A1(z1, z2) = −tr
∑

i<j

(
z1I −

n− 1

n
bj(z1)T

)−1

rir
∗
i [EjD

−1
ij (z1)]

×Tβij(z2)D
−1
ij (z2)rir

∗
i D

−1
ij (z2)T

= −
∑

i<j

βij(z2)r
∗
i [EjD

−1
ij (z1)]TD−1

ij (z2)rir
∗
i D

−1
ij (z2)T
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×
(
z1I −

n− 1

n
bj(z1)T

)−1

ri,

A2(z1, z2) = −tr
∑

i<j

(
z1I −

n− 1

n
bj(z1)T

)−1

n−1T[EjD
−1
ij (z1)]T

×
(
D−1

j (z2) − D−1
ij (z2)

)
T,

and

A3(z1, z2) = tr
∑

i<j

(
z1I −

n− 1

n
bj(z1)T

)−1

(rir
∗
i − n−1T)

×[EjD
−1
ij (z1)]TD−1

ij (z2)T.

We get, from (9.9.5) and (9.9.13),

|A2(z1, z2)| ≤ K, (9.9.18)

and, similar to (9.9.14), we have

E|A3(z1, z2)| ≤ Kn1/2.

Using (9.9.3) and (9.9.6), we have, for i < j,

E

∣∣∣∣∣βij(z2)r
∗
i [EjD

−1
ij (z1)]TD−1

ij (z2)rir
∗
i D

−1
ij (z2)T

×
(
z1I−

n− 1

n
bj(z1)T

)−1

ri − bj(z2)n
−2tr([EjD

−1
ij (z1)]T

×D−1
ij (z2)T)tr

(
D−1

ij (z2)T
(
z1I−

n− 1

n
bj(z1)T

)−1

T

)∣∣∣∣∣

≤ Kn−1/2

(K now depending as well on zi and yn). Using (9.9.5), we have

∣∣∣∣∣tr
([

EjD
−1
ij (z1)

]
TD−1

ij (z2)T

)
tr

(
D−1

ij (z2)T
(
z1I −

n− 1

n
bj(z1)T

)−1

T

)

−tr

([
EjD

−1
j (z1)

]
TD−1

j (z2)T

)
tr

(
D−1

j (z2)T
(
z1I −

n− 1

n
bj(z1)T

)−1

T

)∣∣∣∣∣
≤ Kn.

It follows that

E

∣∣∣∣∣A1(z1, z2) +
j − 1

n2
bj(z2)tr

([
EjD

−1
j (z1)

]
TD−1

j (z2)T

)
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×tr

(
D−1

j (z2)T
(
z1I −

n− 1

n
bj(z1)T

)−1

T

)∣∣∣∣∣
≤ Kn1/2. (9.9.19)

Therefore, from (9.9.12) to (9.9.19), we can write

tr
([

EjD
−1
j (z1)

]
TD−1

j (z2)T
)[

1 +
j − 1

n2
bj(z1)bj(z2)

tr

(
D−1

j (z2)T

(
z1I −

n− 1

n
bj(z1)T

)−1

T

)]

= −tr

((
z1I−

n− 1

n
bj(z1)T

)−1

TD−1
j (z2)T

)
+A4(z1, z2),

where
E|A4(z1, z2)| ≤ Kn1/2.

Using the expression for D−1
j (z2) in (9.9.12) and (9.9.14)–(9.9.16), we find

that

tr(Ej(D
−1
j (z1))TD−1

j (z2)T)

×
[
1 − j − 1

n2
bj(z1)bj(z2)tr

((
z2I−

n− 1

n
bj(z2)T

)−1

T

×
(
z1I −

n− 1

n
bj(z1)T

)−1

T

)]

= tr

((
z2I −

n− 1

n
bj(z2)T

)−1

T

(
z1I −

n− 1

n
bj(z1)T

)−1

T

)

+A5(z1, z2),

where
E|A5(z1, z2)| ≤ Kn1/2.

From (9.9.5), we have

|bj(z) − b(z)| ≤ Kn−1

and
|bj(z) − Eβj(z)| ≤ Kn−1/2.

From the formula

sn = − 1

zn

n∑

j=1

βj(z)

(see (6.2.4)), we get 1
n

∑n
j=1 Eβj(z) = −zEsn(z). It will be shown in Section

9.11 that
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|Esn(z) − s0n(z)| ≤ Kn−1.

Therefore we have

max
j

|bj(z) + zs0n(z)| ≤ Kn−1/2, (9.9.20)

so that we can write

tr(Ej(D
−1
j (z1))TD−1

j (z2)T)
[
1 − j − 1

n2
s0n(z1)s

0
n(z2)tr((I + s0n(z2)T)−1T(I + s0n(z1)T)−1T)

]

=
1

z1z2
tr((I + s0n(z2)T)−1T(I + s0n(z1)T)−1T) +A6(z1, z2),

(9.9.21)

where
E|A6(z1, z2)| ≤ Kn1/2.

Rewrite (9.9.21) as

tr(Ej(D
−1
j (z1))TD−1

j (z2)T)
[
1 − j − 1

n
yns

0
n(z1)s

0
n(z2)

∫
t2 dHn(t)

(1 + ts0n(z1))(1 + ts0n(z2))

]

=
nyn

z1z2

∫
t2 dHn(t)

(1 + ts0n(z1))(1 + ts0n(z2))
+A6(z1, z2).

Using (6.2.14), (6.2.21), and (9.9.20), we find

∣∣∣∣yns
0
n(z1)s

0
n(z2)

∫
t2 dHn(t)

(1 + ts0n(z1))(1 + ts0n(z2))

∣∣∣∣

=

∣∣∣∣∣∣∣∣
yn

∫ t2 dHn(t)
(1+ts0

n
(z1))(1+ts0

n
(z2))(

−z1 + yn

∫ t dHn(t)
1+ts0

n
(z1)

)(
−z2 + yn

∫ t dHn(t)
1+ts0

n
(z2)

)

∣∣∣∣∣∣∣∣
(9.9.22)

≤


yn

∫ t2 dHn(t)
|1+ts0

n(z1)|2∣∣∣−z1 + yn

∫ t dHn(t)
1+ts0

n(z1)

∣∣∣
2




1/2
yn

∫ t2 dHn(t)
|1+ts0

n(z2)|2∣∣∣−z2 + yn

∫ t dHn(t)
1+ts0

n(z2)

∣∣∣
2




1/2

=




ℑ s0n(z1)yn

∫ t2 dHn(t)
|1+ts0

n
(z1)|2

ℑ z1 + ℑ s0n(z1)yn

∫ t2 dHn(t)
|1+ts0

n(z1)|2




1/2

×




ℑ s0n(z2)yn

∫ t2 dHn(t)
|1+ts0

n
(z2)|2

ℑ z2 + ℑ s0n(z2)yn

∫ t2 dHn(t)
|1+ts0

n
(z2)|2




1/2

< 1 (9.9.23)
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since
ℑ z

ℑ s0n(z)yn

∫ t2 dHn(t)
|1+ts0

n(z)|2

is bounded away from 0. Therefore, using (9.9.20) and letting an(z1, z2) de-
note the expression inside the absolute value sign in (9.9.22), we find that
(9.9.11) can be written as

an(z1, z2)
1

n

n∑

j=1

1

1 − j−1
n an(z1, z2)

+A7(z1, z2),

where
E|A7(z1, z2)| ≤ Kn−1/2.

We see then that

(9.9.11)
i.p.−→ a(z1, z2)

∫ 1

0

1

1 − ta(z1, z2)
dt =

∫ a(z1,z2)

0

1

1 − z
dz,

where

a(z1, z2) = ys(z1)s(z2)

∫
t2 dH(t)

(1 + ts(z1))(1 + ts(z2))

=
s(z1)s(z2)

s(z2) − s(z1)

(
y

∫
t dH(t)

1 + ts(z1)
− y

∫
t dH(t)

1 + ts(z2)

)

= 1 +
s(z1)s(z2)(z1 − z2)

s(z2) − s(z1)
.

Thus the limit of (9.9.7) in probability under the CSE case is

∂2

∂z2∂z1

∫ a(z1,z2)

0

1

1 − z
dz =

∂

∂z2

(
∂

∂z1
a(z1, z2)

1 − a(z1, z2)

)

= − ∂

∂z2

(
s′(z1)
s(z1)

+
1

z1 − z2
+

s′(z1)
s(z2) − s(z1)

)

=
s′(z1)s′(z2)

(s(z2) − s(z1))2
− 1

(z1 − z2)2
,

which is half of (9.8.4).

9.10 Tightness of M1
n(z)

We proceed to prove tightness of the sequence of random functions M̂1
n(z)

for z ∈ C+. We will use Theorem 12.3 (p. 95) of Billingsley [57]. From (9.9.8)



9.10 Tightness of M1
n(z) 281

we see that the condition in Bi is satisfied. We will verify condition (ii) of
Theorem 12.3 by proving the moment condition (12.51) of Billingsley [57].
We will show

sup
n;z1,z2∈C+

E|M̂1
n(z1) − M̂1

n(z2)|2
|z1 − z2|2

is finite. It is straightforward to verify that this will be true if we can find a
K > 0 for which

sup
n;z1,z2∈Cn

E|M1
n(z1) −M1

n(z2)|2
|z1 − z2|2

≤ K.

From Bii, the results in this and the next section will establish tightness
of {M̂n}.

We claim that moments of ‖D−1(z)‖, ‖D−1
j (z)‖, and ‖D−1

ij (z)‖ are
bounded in n and z ∈ Cn. This is clearly true for z ∈ Cu and for z ∈ Cl

if xl < 0. For z ∈ Cr or z ∈ Cl, if xl > 0, we use (9.7.8), (9.7.9), and (9.8.1)
on, for example, B(1) = Bn − r1r

∗
1, to get

E‖D−1
1 (z)‖p ≤ K1 + v−pP

(
‖B(1)‖ ≥ ηr or λ

B(1)

min ≤ ηl

)

≤ K1 +K2n
pε−pn−ℓ ≤ K

for suitably large ℓ. Here, ηr is any fixed number between lim supn ‖T‖(1 +√
y)2 and xr, and, if xl > 0, ηl is any fixed number between xl and

lim infn λ
T
min(1 − √

y)2 (take ηl < 0 if xl < 0). Therefore, for any positive
p,

max(E‖D−1(z)‖p,E‖D−1
j (z)‖p,E‖D−1

ij (z)‖p) ≤ Kp. (9.10.1)

We can use the argument above to extend (9.9.6). Using (9.7.7) and (9.9.6),
we get

∣∣∣∣E
(
a(µ, ν)

q∏

l=1

(r∗1Bl(ν)r1 − n−1trTBl(ν))

)∣∣∣∣

≤ Kn−(1∧q)η(2q−4)∨0
n , q ≥ 0, (9.10.2)

where now the matrices Bl(v) are independent of r1 and

‖Bl(ν)‖ ≤ K(1 + nνI(‖Bn‖ ≥ ηr or λB̃
min ≤ ηl))

and
|a(µ, ν)| ≤ K

(
1 + |r|µ + nνI(‖Bn‖ ≥ ηr or λB̃

min ≤ ηl)
)

for some positive µ and ν, with B̃ being Bn, or Bn with one or two of the
rj ’s removed.
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We would like to inform the reader that, in applications of (9.10.2), a(µ, ν)
is a product of factors of the form β1(z) or r∗1A(z)r1 and A is a product of
one or several D−1

j (z) D−1
j (zi), i = 1, 2, or similarly defined D−1 matrices.

The matrices Bl also have this form. For example, we have, for any z ∈ Cn,

|r∗1D−1
1 (z1)D

−1
1 (z2)r1| ≤ |r1|2‖D−1

1 (z1)D
−1
1 (z2)‖

≤ K|r1|2 + n5I(‖Bn‖ ≥ ηr or λ
B(1)

min ≤ ηl),

where K can be taken to be max((xr −ηr)
−2, (ηl−xl)

−2, v−2
0 ). We have ‖Bl‖

obviously satisfying this condition. Since

r∗jD
−1rj =

r∗jD
−1
j rj

1 + r∗jD
−1
j rj

= 1 − βj ,

we assert that βj(z) also satisfies this condition since

|βj(z)| = |1 − r∗jD
−1rj |

≤ 1 +K|rj |2 + n3I(‖Bn‖ ≥ ηr or λBn

min ≤ ηl).

In what follows, we shall freely use (9.10.2) without verifying these conditions,
even similarly defined βj functions and A, B matrices.

For later use, we have

D−1(z) − D−1
j (z) = −

D−1
j (z)rjr

∗
jD

−1
j (z)

1 + r∗jD
−1
j (z)rj

= −βj(z)D
−1
j (z)rjr

∗
jD

−1
j (z). (9.10.3)

Let
γj(z) = r∗jD

−1
j (z)rj − n−1Etr(D−1

j (z)T).

We first derive bounds on the moments of γj(z) and γ̂j(z). Using (9.10.2),
we have

E|γ̂j(z)|p ≤ Kpn
−1η2p−4

n , p even. (9.10.4)

It should be noted that constants obtained do not depend on z ∈ Cn.
Using Lemma 2.12, (9.10.2), and Hölder’s inequality, we have, for all even

p,

E|γ1(z) − γ̂1(z)|p

= E

∣∣∣∣
1

n

n∑

j=2

EjtrTD1(z)
−1 − Ej−1trTD−1

1 (z)

∣∣∣∣
p

=E

∣∣∣∣
1

n

n∑

j=2

EjtrT(D−1
1 (z)−D−1

1j (z))−Ej−1trT(D−1
1 (z)−D−1

1j (z))

∣∣∣∣
p
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=
1

np
E

∣∣∣∣
n∑

j=2

(Ej − Ej−1)β1j(z)r
∗
jD

−1
1j (z)TD−1

1j (z)rj

∣∣∣∣
p

≤ Kp

np
E




n∑

j=2

∣∣∣∣(Ej − Ej−1)β1j(z)r
∗
jD

−1
1j (z)TD−1

1j (z)rj

∣∣∣∣
2



p/2

≤ Kp

n1+p/2

n∑

j=2

E|(Ej − Ej−1)β1j(z)r
∗
jD

−1
1j (z)TD−1

1j (z)rj |p

≤ Kpn
−p/2E|β12(z)r

∗
2D

−1
12 (z)TD−1

12 (z)r2|p ≤ Kpn
−p/2.

It is easy to see that the inequality above is true for all j; i.e.,

E|γj − γ̂j |p ≤ Kpn
−p/2.

Therefore
E|γj |p ≤ Kpn

−1η2p−4
n , p ≥ 2. (9.10.5)

We next prove that bj(z) are uniformly bounded for all n and z ∈ Cn.
From (9.10.2), we find, for any p ≥ 1,

E|βj(z)|p ≤ Kp. (9.10.6)

Since bj = βj(z) + βj(z)bj(z)γj(z), we get from (9.10.5) and (9.10.6),

|bj(z)| = |Eβj(z) + Eβj(z)bj(z)γ1(z)| ≤ K1 +K2|bj(z)|n−1/2.

Thus, for all large n,

|bj(z)| ≤
K1

1 −K2n−1/2
,

and subsequently bj(z) is bounded for all n.
From (9.10.3), we have

D−1(z1)D
−1(z2) − D−1

j (z1)D
−1
j (z2)

= (D−1(z1) − D−1
j (z1))(D

−1(z2) − D−1
j (z2))

+(D−1(z1) − D−1
j (z1))D

−1
j (z2) + D−1

j (z1)(D
−1(z2) − D−1

j (z2))

= βj(z1)βj(z2)D
−1
j (z1)rjr

∗
jD

−1
j (z1)D

−1
j (z2)rjr

∗
jD

−1
j (z2)

−βj(z1)D
−1
j (z1)rjr

∗
jD

−1
j (z1)D

−1
j (z2) − βj(z2)D

−1
j (z1)

×D−1
j (z2)rjr

∗
jD

−1
j (z2).

Therefore,

tr
(
D−1(z1)D

−1(z2) − D−1
j (z1)D

−1
j (z2)

)

= βj(z1)βj(z2)(r
∗
jD

−1
j (z1)D

−1
j (z2)rj)

2 − βj(z1)r
∗
jD

−2
j (z1)D

−1
j (z2)rj
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−βj(z2)r
∗
jD

−2
j (z2)D

−1
j (z1)rj . (9.10.7)

We write

sn(z1) − sn(z2) =
1

p
tr(D−1(z1) − D−1(z2))

=
1

p
(z1 − z2)trD

−1(z1)D
−1(z2).

Therefore, from (9.10.7), we have

p
sn(z1) − sn(z2) − E(sn(z1) − sn(z2))

z1 − z2

=

n∑

j=1

(Ej − Ej−1)trD
−1(z1)D

−1(z2)

=

n∑

j=1

(Ej − Ej−1)βj(z1)βj(z2)(r
∗
jD

−1
j (z1)D

−1
j (z2)rj)

2

−
n∑

j=1

(Ej − Ej−1)βj(z1)r
∗
jD

−2
j (z1)D

−1
j (z2)rj

−
n∑

j=1

(Ej − Ej−1)βj(z2)r
∗
jD

−2
j (z2)D

−1
j (z1)rj . (9.10.8)

Our goal is to show that the absolute second moment of (9.10.8) is
bounded. We begin with the second sum in (9.10.8). We have

n∑

j=1

(Ej − Ej−1)βj(z1)r
∗
jD

−2
j (z1)D

−1
j (z2)rj

=

n∑

j=1

(Ej − Ej−1)
(
bj(z1)r

∗
jD

−2
j (z1)D

−1
j (z2)rj

− βj(z1)bj(z1)r
∗
jD

−2
j (z1)D

−1
j (z2)rjγj(z1)

)

=

n∑

j=1

bj(z1)Ej(r
∗
jD

−2
j (z1)D

−1
j (z2)rj

−n−1trT1/2D−2
j (z1)D

−1
j (z2)T

1/2)

−
n∑

j=1

bj(z1)(Ej − Ej−1)βj(z1)r
∗
jD

−2
j (z1)D

−1
j (z2)rjγj(z1)

≡ W1 −W2.

Using (9.10.2), we have
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E|W1|2 =
n∑

j=1

|bj(z1)|2E|Ej(r
∗
jD

−2
j (z1)D

−1
j (z2)rj

−n−1trT1/2D−2
j (z1)D

−1
j (z2)T

1/2)|2 ≤ K.

Using (9.10.5) and the bounds for β1(z1) and r∗1D
−2
1 (z1)D

−1
1 (z2)r1 given in

the remark to (9.10.2), we have

E|W2|2

=

n∑

j=1

|bj(z1)|2E|(Ej − Ej−1)βj(z1)r
∗
jD

−2
j (z1)D

−1
j (z2)rjγj(z1)|2

≤ Kn[E|γ1(z1)|2 + v−10p2P (‖Bn‖ > ηr or λ
B(1)

min < ηl)] ≤ K.

This argument of course handles the third sum in (9.10.8).
For the first sum in (9.10.8), we have

n∑

j=1

(Ej − Ej−1)βj(z1)βj(z2)(r
∗
jD

−1
j (z1)D

−1
ij (z2)rj)

2

=

n∑

j=1

bj(z1)bj(z2)(Ej − Ej−1)[(r
∗
jD

−1
j (z1)D

−1
j (z2)rj)

2

−(n−1trT1/2D−1
j (z1)D

−1
j (z2)T

1/2)2]

−
n∑

j=1

bj(z2)(Ej − Ej−1)βj(z1)βj(z2)(r
∗
jD

−1
j (z1)D

−1
ij (z2)rj)

2γj(z2)

−
n∑

j=1

bj(z1)bj(z2)(Ej − Ej−1)βj(z1)(r
∗
jD

−1
j (z1)D

−1
ij (z2)rj)

2γj(z1)

= Y1 − Y2 − Y3.

Both Y2 and Y3 are handled the same way as W2 above. Using (9.10.2),
we have

E|Y1|2

≤K
n∑

j=1

E

∣∣∣∣(r∗jD−1
j (z1)D

−1
j (z2)rj)

2−
(

1

n
trT1/2D−1

j (z1)D
−1
j (z2)T

1/2

)2∣∣∣∣
2

≤K
n∑

j=1

2E|r∗jD−1
j (z1)D

−1
j (z2)rj −

1

n
trT1/2D−1

j (z1)D
−1
j (z2)T

1/2|4

+Ky2
n

1

n

n∑

j=1

E

∣∣∣∣
(
r∗jD

−1
j (z1)D

−1
j (z2)rj−

1

n
trT1/2D−1

j (z1)D
−1
j (z2)T

1/2

)
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× ‖D−1
j (z1)D

−1
j (z2)‖

∣∣∣∣
2

≤ K.

Therefore, condition (ii) of Theorem 12.3 of Billingsley [57] is satisfied,

and we conclude that {M̂1
n(z)} is tight.

9.11 Convergence of M2
n(z)

The proof of Lemma 9.11 is completed with the verification of {M̂2
n(z)} for

z ∈ C+ to be bounded and forms a uniformly equicontinuous family and
convergence to (9.8.3) under the assumptions in (2) and to zero under those
in (3). As in the previous section, it is enough to verify these statements on
{M2

n(z)} for z ∈ Cn.
Similar to (6.2.25), we have

(Esn − s0n)


1 −

yn

∫ t2 dHn(t)
(1+tEs

n
)(1+ts0

n
)(

−z + yn

∫ t dHn(t)
1+tEs

n
−Rn

)(
−z + yn

∫ t dHn(t)
1+ts0

n

)




= (Esn − s0n)


1 −

yn

∫ s0
n

t2 dHn(t)

(1+tEs
n
)(1+ts0

n
)

−z + yn

∫ t dHn(t)
1+tEs

n
−Rn




= Esns
0
nRn, (9.11.1)

where Rn = ynn
−1
∑n

j=1 Eβjdj(Esn)−1,

dj = dj(z) = −q∗
jT

1/2(B(j) − zI)−1(EsnT + I)−1T1/2qj

+(1/p)tr(EsnT + I)−1T(Bn − zI)−1,

β−1
j = 1 + r∗j (B(j) − zI)−1rj .

Thus, by noting M2
n(z) = n(Esn(z)− s0n), to prove (9.8.3) it suffices to show

yn

∫ s0
nt2 dHn(t)

(1+tEs
n
)(1+ts0

n
)

−z + yn

∫ t dHn(t)
1+tEs

n
−Rn

→ y

∫
s2t2dH(t)

(1 + ts)2
(9.11.2)

and

yn

n∑

j=1

Eβjdj →





y
∫

s2t2dH(t)

(1+ts)3

1−y
∫

s2t2dH(t)

(1+ts)2

, for the RSE case,

0, for the CSE case,

(9.11.3)
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uniformly for z ∈ Cn.
To prove the two assertions above, we first prove

sup
z∈Cn

|Esn(z) − s(z)| → 0 as n→ ∞. (9.11.4)

In order to simplify the exposition, we let C1 = Cu or Cu ∪ Cl if xl < 0 and
C2 = C2(n) = Cr or Cr ∪ Cl if xl > 0.

Since FB
n

D→ F y,H almost surely, we get from the dct (dominated con-

vergence theorem) EFB
n

D→ F y,H . It is easy to verify that EFB
n is a proper

c.d.f. Since, as z ranges in C1, the functions (λ − z)−1 in λ ∈ [0,∞) form a
bounded, equicontinuous family, it follows (see, e.g. , Billingsley [57], Problem
8, p. 17) that

sup
z∈C1

|Esn(z) − s(z)| → 0.

For z ∈ C2, we write (ηl, ηr defined as in Section 9.10)

Esn(z) − s(z) =

∫
1

λ− z
I[ηl,ηr](λ)d(EF

Bn(λ) − F y,H(λ))

+E

∫
1

λ− z
I[ηl,ηr]c(λ)dF

B
n(λ).

As above, the first term converges uniformly to zero. For the second term,
we use (9.7.8) and (9.7.9) with ℓ ≥ 2 to get

sup
z∈C2

∣∣∣∣E
∫

1

λ− z
I[ηl,ηr]c(λ)dF

Bn(λ)

∣∣∣∣

≤ (εn/n)−1P(‖Bn‖ ≥ ηr or λBn

min ≤ ηl) ≤ Knε−1
n n−ℓ → 0.

Thus (9.11.4) holds.

From the fact that F yn,Hn
D→ F y,H along with the fact that C lies outside

the support of F y,H , it is straightforward to verify that

sup
z∈C

|s0n(z) − s(z)| → 0 as n→ ∞. (9.11.5)

We then show that, for some constant K,

sup
n z∈Cn

‖(Esn(z)T + I)−1‖ < K. (9.11.6)

From Lemma 6.10(a), ‖(Esn(z)T + I)−1‖ is bounded by max(2, 4v−1
0 ) on

Cu. Let x = xl or xr. Since x is outside the support of F y,H , it follows
from Lemma 6.1 and equation (6.1.6), for any t in the support of H , that
s(x)t+1 6= 0. Choose any t0 in the support of H . Since s(z) is continuous on
C0 ≡ {x+ iv : v ∈ [0, v0]}, there exist positive constants δ1 and µ0 such that
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inf
z∈C0

|s(z)t0 + 1| > δ1 and sup
z∈C0

|s(z)| < µ0.

Using Hn
D→ H and (9.11.4), for all large n, there exists an eigenvalue λT

of T such that |λT − t0| < δ1/4µ0 and supz∈Cl∪Cr
|Esn(z) − s(z)| < δ1/4.

Therefore, we have

inf
z∈Cl∪Cr

|Esn(z)λT + 1| > δ1/2,

which completes the proof of (9.11.6).
Assuming (9.11.3), with (9.12.1) given later, we see that supz∈Cn

|Rn| →
0. This, (9.12.1), (9.11.4)–(9.11.6), and the dct imply the truth of (9.11.2).
Therefore, our task remains to prove (9.11.3).

Using the identity βj = β̄j − β̄2
j γ̂j + β̄2

jβj γ̂
2
j and (9.10.2), we have

yn

n∑

j=1

Eβjdj = −yn

n∑

j=1

Eβj

[
q∗

jT
1/2D−1

j (EsnT + I)−1T1/2qj

−1

p
tr(EsnT + I)−1TD−1

j

]

+
1

n
E
[
βjtr(EsnT + I)−1T(D−1 − D−1

j )
]

= yn

n∑

j=1

Eβ̄2
j

[
q∗

jT
1/2D−1

j (EsnT + I)−1T1/2qj

−1

p
tr(EsnT + I)−1TD−1

j

]
γ̂j

− 1

n
Eβ2

j r
∗
jD

−1
j (EsnT + I)−1TD−1

j rj + o(1).

Using (9.10.2), it can be proven that all of βj , β̄j , and bj and similarly defined
quantities can be replaced by −zs(z). Thus we have

1

n
Eβ2

j r
∗D−1

j (EsnT + I)−1TD−1
j rj

=
z2s2

n2
EtrD−1

j (sT + I)−1TD−1
j T + o(1). (9.11.7)

Now, assume the assumptions for CSE hold. By (9.8.6) and (9.10.2),

−yn

n∑

j=1

Eβ̄2
j

[
q∗

jT
1/2D−1

j (EsnT + I)−1T1/2qj

−1

p
tr(EsnT + I)−1TD−1

j

]
γ̂j
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= −z
2s2

n2

n∑

j=1

EtrD−1
j (sT + I)−1TD−1

j T + o(1). (9.11.8)

This proves (9.8.3) for the CSE case.
Now, assume the conditions for the RSE case hold. Let us continue to

derive the limit for yn

∑n
j=1 Eβjdj . By (9.8.6), we have

yn

n∑

j=1

Eβjdj =
z2s2

n2

n∑

j=1

EtrD−1
j (EsnT + I)−1TD−1

j T + o(1)

=
z2s2

n2

n∑

j=1

EtrD−1
j (sT + I)−1TD−1

j T + o(1). (9.11.9)

Using the decomposition (9.9.12) and estimates given there, we have

yn

n∑

j=1

Eβjdj =
s2

n Etr(sT + I)−3T2

+
z4s4

n2

∑n
j=1 EtrA(sT + I)−1TAT + o(1), (9.11.10)

where

A =

n∑

i 6=j

(
zI− n− 1

n
bj(z)T

)−1[
rir

∗
i − 1

n
T

]
D−1

i,j

=

n∑

i 6=j

D−1
i,j

[
rir

∗
i − 1

n
T

](
zI− n− 1

n
bj(z)T

)−1

,

where the equivalence of the two expressions of A above can be seen from
the fact that A(z) = (A(z̄))∗. Substituting the first expression of A into
(9.11.10) for the A on the left and the second expression for the A on the
right, and noting that n−1

n bj(z) can be replaced by −zs, inducing a negligible
error uniformly on C+, we obtain

z4s4

n2

n∑

j=1

EtrA(sT + I)−1TAT

=
z2s4

n2

n∑

j=1

∑

i,ℓ6=j

Etr(sT + I)−2T
(
rir

∗
i − 1

n
T
)
D−1

i,j (sT + I)−1

×D−1
ℓ,j

(
rℓr

∗
ℓ − 1

n
T
)

+ o(1). (9.11.11)

We claim that the sum of cross terms in (9.11.11) is negligible. Note that the
cross terms will be 0 if either Di,j or Dℓ,j is replaced by Dℓ,i,j , where



290 9 CLT for Linear Spectral Statistics

Dℓ,i,j = Di,j − rℓr
∗
ℓ = Dℓ,j − rir

∗
i .

Therefore, our assertion follows by the following estimate.
For i 6= ℓ, by (9.10.2),

∣∣∣∣Etr(sT + I)−2T
(
rir

∗
i − 1

n
T
)
(D−1

i,j − D−1
i,ℓ,j)(sT + I)−1

×(Dℓ,j − D−1
i,ℓ,j)

(
rℓr

∗
ℓ − 1

n
T
)∣∣∣∣

=

∣∣∣∣Etr(sT + I)−2T
(
rir

∗
i − 1

n
T
)
βi,j,ℓ(D

−1
i,ℓ,jrℓr

∗
ℓD

−1
i,ℓ,j)(sT + I)−1

×βj,ℓ,iD
−1
i,ℓ,jrir

∗
i D

−1
i,ℓ,j

(
rℓr

∗
ℓ − 1

n
T
)∣∣∣∣

=

∣∣∣∣Etr(sT + I)−2T
(
rir

∗
i − 1

n
T
)
(D−1

i,ℓ,jrℓr
∗
ℓD

−1
i,ℓ,j)(sT + I)−1

×D−1
i,ℓ,jrir

∗
i D

−1
i,ℓ,j

(
rℓr

∗
ℓ − 1

n
T
)
εj,ℓ,iεj,i,ℓβj,ℓ,iβj,i,ℓβ̄

2
j,i,ℓ

∣∣∣∣

= E1/4

∣∣∣∣r∗i D
−1
i,ℓ,j

(
rℓr

∗
ℓ − 1

n
T
)
(sT + I)−2T

(
rir

∗
i − 1

n
T
)
D−1

i,ℓ,jrℓ

∣∣∣∣
4

×E1/4|r∗ℓD−1
i,ℓ,j(sT + I)−1D−1

i,ℓ,jri|4 × o(n−1/2) = o(n−1),

where

β−1
j,i,ℓ = 1 + r∗ℓD

−1
i,ℓ,jrℓ,

β̄−1
j,i,ℓ = 1 +

1

n
trD−1

i,ℓ,jT,

εj,i,ℓ = r∗ℓD
−1
i,ℓ,jrℓ −

1

n
trD−1

i,ℓ,j.

Here, we have used the fact that with Hermitian M independent of ri and
rℓ,

E|r∗i Mrℓ|4 ≤ KE(r∗i M
2ri)

2

≤ K[(trM2)2 + trM4],

and by estimation term by term in the expansion,

E

∣∣∣∣∣r
∗
i D

−1
i,ℓ,j

(
rℓr

∗
ℓ − 1

n
T
)
(sT + I)−2T

(
rir

∗
i − 1

n
T
)
D−1

i,ℓ,jrℓ

∣∣∣∣∣

4

≤ K.

Hence, we have proved
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yn

n∑

j=1

Eβjdj

=
s2

n
Etr(sT + I)−3T2 +

z2s4

n2

∑

i6=j

Etr(sT + I)−2T

(
rir

∗
i − 1

n
T

)

×D−1
i,j (sT + I)−1D−1

i,j

(
rir

∗
i − 1

n
T

)
+ o(1)

=
s2

n
Etr(sT + I)−3T2

+
z2s4

n2

∑

i 6=j

Etr(sT + I)−2Trir
∗
i D

−1
ij (sT + I)−1D−1

ij rir
∗
i + o(1)

=
s2

n
Etr(sT + I)−3T2 +

z2s4

n4

∑

i6=j

tr(sT + I)−2T2

×trD−1
ij (sT + I)−1D−1

ij T + o(1)

=
s2

n
Etr(sT + I)−3T2 +

z2s4

n3

n∑

j=1

tr(sT + I)−2T2

×trD−1
j (sT + I)−1D−1

j T + o(1). (9.11.12)

Recalling (9.11.9), we obtain

yn

n∑

j=1

Eβjdj =
s2

n Etr(sT + I)−3T2

1 − s2

n tr((sT + I)−2T2)
+ o(1)

=
y
∫ s2t2dH(t)

(1+ts)3

1 − y
∫ t2s2dH(t)

(1+ts)2

+ o(1). (9.11.13)

Therefore, we conclude that in the RSE case

sup
z∈Cn

∣∣∣∣M2
n(z) −

y
∫ s(z)3t2dH(t)

(1+ts(z))3(
1 − y

∫ s(z)2t2dH(t)
(1+ts(z))2

)2

∣∣∣∣→ 0 as n→ ∞.

Therefore we get (9.8.3).
Finally, for general standardized xi j , we see that in light of the work above,

in order to show that {M2
n(z)} for z ∈ Cn is bounded and equicontinuous, it

is sufficient to prove that {f ′
n(z)} is bounded, where

fn(z)≡
n∑

j=1

E[(r∗jD
−1
j rj − n−1trD−1

j T)(r∗jD
−1
j (EsnT + I)−1rj

−n−1trD−1
j (EsnT + I)−1T)].
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Using (9.9.6), we find

|f ′
n(z)| ≤ Kn−2

n∑

j=1

(
(E(trD−2

j TDj
−2

T)E(trD−1
j (EsnT + I)−1

T(EsnT + I)−1Dj
−1

T))1/2 + (E(trD−1
j TDj

−1
T)

×E(trD−2
j (EsnT + I)−1T(EsnT + I)−1Dj

−2
T))1/2

+|Es′n|(E(trD−1
j TDj

−1
T)E(trD−1

j (EsnT + I)−2

×T3(EsnT + I)−2Dj
−1

T))1/2

)
.

Using the same argument that resulted in (9.10.1), it is a simple matter to
conclude that Es′n(z) is bounded for z ∈ Cn. All the remaining expected
values are O(n) due to (9.10.1) and (9.11.6), and we are done.

9.12 Some Derivations and Calculations

This section contains proofs of formulas stated in Section 9.8. We begin by
deriving some properties of s(z).

9.12.1 Verification of (9.8.8)

We claim that, for any bounded subset S of C+,

inf
z∈S

|s(z)| > 0. (9.12.1)

Suppose not. Then there exists a sequence {zn} ⊂ C+ that converges to a
number for which s(zn) → 0. From (9.7.1), we must have

y

∫
ts(zn)

1 + ts(zn)
dH(t) → 1.

But, because H has bounded support, the limit of the left-hand side of the
above is obviously 0. The contradiction proves our assertion.

Next, we find a lower bound on the size of the difference quotient (s(z1)−
s(z2))/(z1 − z2) for distinct z1 = x + iv1, z2 = y + iv2, v1, v2 6= 0. From
(9.7.1), we get

z1 − z2 =
s(z1) − s(z2)

s(z1)s(z2)

(
1 − y

∫
s(z1)s(z2)t

2dH(t)

(1 + ts(z1))(1 + ts(z2))

)
.
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Therefore, from (9.9.22) we can write

s(z1) − s(z2)

z1 − z2
=

s(z1)s(z2)

1 − y
∫ s(z1)s(z2)t2dH(t)

(1+ts(z1))(1+ts(z2))

and conclude that
∣∣∣∣
s(z1) − s(z2)

z1 − z2

∣∣∣∣ ≥
1

2
|s(z1)s(z2)|. (9.12.2)

We proceed to show (9.8.8). Choose f, g ∈ {f1, · · · , fk}. Let SF denote the
support of F y,H , and let a 6= 0, b be such that SF is a subset of (a, b) on
whose closure f and g are analytic.

Assume the z1 contour encloses the z2 contour. Using integration by parts
twice, first with respect to z2 and then with respect to z1, we get

RHS of (9.7.6)

=
1

2π2

∫ ∫
f(z1)g

′
(z2)

(s(z1) − s(z2))

d

dz1
s(z1)dz2dz1

= − 1

2π2

∫ ∫
f

′
(z1)g

′
(z2)log(s(z1) − s(z2))dz1dz2

(where log is any branch of the logarithm)

=− 1

2π2

∫∫
f ′(z1)g

′(z2)[log |s(z1) − s(z2)| + i arg(s(z1) − s(z2))]dz1dz2.

We choose the contours to be rectangles with sides parallel to the axes.
The inside rectangle intersects the real axis at a and b, and the horizontal
sides are a distance v < 1 away from the real axis. The outside rectangle
intersects the real axis at a− ε, b+ ε (points where f and g remain analytic),
with height twice that of the inside rectangle. We let v → 0.

We need only consider the logarithm term and show its convergence since
the real part of the arg term disappears (f and g are real-valued on R) in
the limit, and the sum (9.7.6) is real. Therefore the arg term also approaches
zero.

We split up the log integral into 16 double integrals, each one involving
a side from each of the two rectangles. We argue that any portion of the
integral involving a vertical side can be neglected. This follows from (9.12.1),
(9.12.2), and the fact that z1 and z2 remain a positive distance apart, so
that |s(z1) − s(z2)| is bounded away from zero. Moreover, at least one of
|s(z1)|, |s(z2)| is bounded, while the other is bounded by 1/v, so the integral
is bounded by Kv log v−1 → 0.
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Therefore we arrive at

− 1

2π2

∫ b

a

∫ b+ε

a−ε

[(f ′(x+ i2v)g′(y + iv) + f̄ ′(x+ i2v)ḡ′(y + iv))

× log |s(x + i2v) − s(y + iv)| − (f ′(x+ i2v)ḡ′(y + iv)

+f̄ ′(x + i2v)g′(y + iv)) log |s(x+ i2v) − s(y + iv)|]dxdy.
(9.12.3)

Using subscripts to denote real and imaginary parts, we find

(9.12.3) = − 1

π2

∫ b

a

∫ b+ε

a−ε

[(f ′
r(x+ i2v)g′r(y + iv)

−f ′
i(x + i2v)g′i(y + iv)) log |s(x+ i2v) − s(y + iv)|

−(f ′
r(x+ i2v)g′r(y + iv) + f ′

i(x+ i2v)g′i(y + iv))

× log |s(x + i2v) − s(y + iv)|]dxdy

=
1

π2

∫ b

a

∫ b+ε

a−ε

f ′
r(x + i2v)g′r(y + iv)

× log

∣∣∣∣
s(x+ i2v) − s(y + iv)

s(x+ i2v) − s(y + iv)

∣∣∣∣ dxdy (9.12.4)

+
1

π2

∫ b

a

∫ b+ε

a−ε

f ′
i(x + i2v)g′i(y + iv) log |(s(x+ i2v)

−s(y + iv))(s(x + i2v) − s(y + iv))|dxdy. (9.12.5)

We have for any real-valued h analytic on the bounded interval [α, β] for
all v sufficiently small,

sup
x∈[α,β]

|hi(x+ iv)| ≤ K|v|, (9.12.6)

where K is a bound on |h′(z)| for z in a neighborhood of [α, β]. Using this
and (9.12.1) and (9.12.2), we see that (9.12.5) is bounded in absolute value
by Kv2 log v−1 → 0.

For (9.12.4), we write

log

∣∣∣∣
s(x+ i2v) − s(y + iv)

s(x+ i2v) − s(y + iv)

∣∣∣∣

=
1

2
log

(
1 +

4si(x+ i2v)si(y + iv)

|s(x+ i2v) − s(y + iv)|2
)
. (9.12.7)

From (9.12.2), we get

RHS of (9.12.7) ≤ 1

2
log

(
1 +

16si(x+ i2v)si(y + iv)

(x− y)2|s(x+ i2v)s(y + iv)|2
)
.
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From (9.12.1), we have

sup
x,y∈[a−ε,b+ε]

v∈(0,1)

si(x+ i2v)si(y + iv)

|s(x + i2v)s(y + iv)|2 <∞.

Therefore, there exists a K > 0 for which the right-hand side of (9.12.7)
is bounded by

1

2
log

(
1 +

K

(x − y)2

)
(9.12.8)

for x, y ∈ [a− ε, b+ ε]. It is straightforward to show that (9.12.8) is Lebesgue
integrable on bounded subsets of R2. Therefore, from (9.8.10) and the domi-
nated convergence theorem, we conclude that (9.8.11) is Lebesgue integrable
and that (9.8.8) holds.

9.12.2 Verification of (9.8.9)

From (9.7.1), we have

d

dz
s(z) =

s2(z)

1 − y
∫ t2s2(z)

(1+ts(z))2 dH(t)
.

In Silverstein and Choi [267], it is argued that the only places where s′(z)
can possibly become unbounded are near the origin and the boundary, ∂SF ,
of SF . It is a simple matter to verify

EXf =
1

4πi

∫
f(z)

d

dz
Log

(
1 − y

∫
t2s2(z)

(1 + ts(z))2
dH(t)

)
dz

= − 1

4πi

∫
f ′(z)Log

(
1 − y

∫
t2s2(z)

(1 + ts(z))2
dH(t)

)
dz,

where, because of (9.9.22), the arg term for log can be taken from (−π/2, π/2).
We choose a contour as above. From (6.2.22), there exists a K > 0 such that,
for all small v,

inf
x∈R

∣∣∣∣1 − y

∫
t2s2(x+ iv)

(1 + ts(x+ iv))2
dH(t)

∣∣∣∣ ≥ Kv2. (9.12.9)

Therefore, we see that the integrals on the two vertical sides are bounded by
Kv log v−1 → 0. The integral on the two horizontal sides is equal to

1

2π

∫ b

a

f ′
i(x+ iv) log

∣∣∣∣1 − y

∫
t2s2(x+ iv)

(1 + ts(x + iv))2
dH(t)

∣∣∣∣ dx
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+
1

2π

∫ b

a

f ′
r(x+ iv) arg

(
1 − y

∫
t2s2(x+ iv)

(1 + ts(x + iv))2
dH(t)

)
dx.

(9.12.10)

Using (9.9.22), (9.12.6), and (9.12.9), we see that the first term in (9.12.10)
is bounded in absolute value by Kv log v−1 → 0. Since the integrand in the
second term converges for all x /∈ {0} ∪ ∂SF (a countable set), we therefore
get (9.8.9) from the dominated convergence theorem.

9.12.3 Derivation of Quantities in Example (1.1)

We now derive d(y) (y ∈ (0, 1)) in (1.1.1), (9.8.12), and the variance in
(9.8.13). The first two rely on Poisson’s integral formula

u(z) =
1

2π

∫ 2π

0

u(eiθ)
1 − r2

1 + r2 − 2r cos(θ − φ)
dθ, (9.12.11)

where u is harmonic on the unit disk in C, and z = reiφ with r ∈ [0, 1).
Making the substitution x = 1 + y − 2

√
y cos θ, we get

d(y) =
1

π

∫ 2π

0

sin2 θ

1 + y − 2
√
y cos θ

log(1 + y − 2
√
y cos θ)dθ

=
1

2π

∫ 2π

0

2 sin2 θ

1 + y − 2
√
y cos θ

log |1 −√
yeiθ|2dθ.

It is straightforward to verify that

f(z) ≡ −(z − z−1)2(log(1 −√
yz) +

√
yz) −√

y(z − z3)

is analytic on the unit disk and that

ℜ f(eiθ) = 2 sin2 θ log |1 −√
yeiθ|2.

Therefore, from (9.12.11), we have

d(y) =
f(
√
y)

1 − y
=
y − 1

y
log(1 − y) − 1.

For (9.8.12), we use (9.8.9). From (9.7.1), with H(t) = I[1,∞)(t), we have
for z ∈ C+

z = − 1

s(z)
+

y

1 + s(z)
. (9.12.12)

Solving for s(z), we find



9.12 Some Derivations and Calculations 297

s(z) =
−(z + 1 − y) +

√
(z + 1 − y)2 − 4z

2z

=
−(z + 1 − y) +

√
(z − 1 − y)2 − 4y

2z
,

the square roots defined to yield positive imaginary parts for z ∈ C+. As
z → x ∈ [a(y), b(y)] (limits defined below (1.1.1)), we get

s(x) =
−(x+ 1 − y) +

√
4y − (x− 1 − y)2 i

2x

=
−(x+ 1 − y) +

√
(x− a(y))(b(y) − x) i

2x
.

Identity (9.12.12) still holds with z replaced by x, and from it we get

s(x)

1 + s(x)
=

1 + xs(x)

y
,

so that

1 − y
s2(x)

(1 + s(x))2

= 1 − 1

y

(
−(x− 1 − y) +

√
4y − (x− 1 − y)2 i

2

)2

=

√
4y − (x− 1 − y)2

2y

(√
4y − (x− 1 − y)2 + (x− 1 − y)i

)
.

Therefore, from (9.8.9),

EXf =
1

2π

∫ b(y)

a(y)

f ′(x) tan−1

(
x− 1 − y√

4y − (x− 1 − y)2

)
dx

=
f(a(y)) + f(b(y))

4
− 1

2π

∫ b(y)

a(y)

f(x)√
4y − (x− 1 − y)2

dx. (9.12.13)

To compute the last integral when f(x) = log x, we make the same substitu-
tion as before, arriving at

1

4π

∫ 2π

0

log |1 −√
yeiθ|2dθ.

We apply (9.12.11), where now u(z) = log |1−√
yz|2, which is harmonic, and

r = 0. Therefore, the integral must be zero, and we conclude that

EXlog =
log(a(y)b(y))

4
=

1

y
log(1 − y).
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To derive (9.8.13), we use (9.8.7). Since the z1, z2 contours cannot enclose
the origin (because of the logarithm), neither can the resulting s1, s2 contours.
Indeed, either from the graph of x(s) or from s(x), we see that x > b(y) ⇐⇒
s(x) ∈ (−(1 +

√
y)−1, 0) and x ∈ (0, a(y)) ⇐⇒ s(x) < (

√
y − 1)−1. For our

analysis, it is sufficient to know that the s1, s2 contours, nonintersecting and
both taken in the positive direction, enclose (y − 1)−1 and −1, but not 0.
Assume the s2 contour encloses the s1 contour. For fixed s2, using (9.12.12)
we have

∫
log(z(s1))

(s1 − s2)2
ds1 =

∫ 1
s2
1
− y

(1+s1)2

− 1
s1

+ y
1+s1

1

(s1 − s2)
ds1

=

∫
(1 + s1)

2 − ys21
ys1(s1 − s2)

(
−1

s1 + 1
+

1

s1 − 1
y−1

)
ds1

= 2πi

(
1

s2 + 1
− 1

s2 − 1
y−1

)
.

Therefore,

VarXlog =
1

πi

∫ (
1

s+ 1
− 1

s− 1
y−1

)
log(z(s))ds

=
1

πi

∫ [
1

s+ 1
− 1

s− 1
y−1

]
log

(
s− 1

y−1

s+ 1

)
ds

− 1

πi

∫ [
1

s+ 1
− 1

s− 1
y−1

]
log(s)ds.

The first integral is zero since the integrand has antiderivative

−1

2

[
log

(
s− 1

y−1

s+ 1

)]2

,

which is single-valued along the contour. Therefore, we conclude that

VarXlog = −2[log(−1) − log((y − 1)−1)] = −2 log(1 − y).

9.12.4 Verification of Quantities in Jonsson’s Results

Finally, we compute expressions for (9.8.14) and (9.8.15). Using (9.12.13), we
have
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EXxr =
(a(y))r + (b(y))r

4
− 1

2π

∫ b(y)

a(y)

xr

√
4y − (x− 1 − y)2

dx

=
(a(y))r + (b(y))r

4
− 1

4π

∫ 2π

0

|1 −√
yeiθ|2rdθ

=
(a(y))r + (b(y))r

4
− 1

4π

∫ 2π

0

r∑

j,k=0

(
r

j

)(
r

k

)
(−√

y)j+kei(j−k)θdθ

=
1

4
((1 −√

y)2r + (1 +
√
y)2r) − 1

2

r∑

j=0

(
r

j

)2

yj ,

which is (9.8.14).
For (9.8.15), we use (9.8.7) and rely on observations made in deriving

(9.8.13). For y ∈ (0, 1), the contours can again be made enclosing −1 and not
the origin. However, because of the fact that (9.7.6) derives from (9.8.5) and
the support of F y,I[1,∞) on R+ is [a(y), b(y)], we may also take the contours in
the same way when y > 1. The case y = 1 simply follows from the continuous
dependence of (9.8.7) on y.

Keeping s2 fixed, we have on a contour within 1 of −1,

∫
(− 1

s1
+ y

1+s1
)r1

(s1 −m2)2
ds1

= yr1

∫ (
1

s1 + 1
+

1 − y

y

)r1

(1 − (s1 + 1))−r1(s2 + 1)−2

×
(

1 − s1 + 1

s2 + 1

)−2

ds1

= yr1

∫ r1∑

k1=0

(
r1
k1

)(
1 − y

y

)k1

(1 + s1)
k−r1

×
∞∑

j=0

(
r1 + j − 1

j

)
(s1 + 1)j(s2 + 1)−2

∞∑

ℓ=1

ℓ

(
s1 + 1

s2 + 1

)ℓ−1

ds1

=2πiyr1

r1−1∑

k1=0

r1−k1∑

ℓ=1

(
r1
k1

)(
1 − y

y

)k1
(

2r1 − 1 − (k1 + ℓ)

r1 − 1

)
ℓ(s2+1)−ℓ−1.

Therefore,

Cov(Xxr1 , Xxr2 ) = − i

π
yr1+r2

r1−1∑

k1=0

r1−k1∑

ℓ=1

(
r1
k1

)(
1 − y

y

)k1

×
(

2r1 − 1 − (k1 + ℓ)

r1 − 1

)
ℓ

∫
(s2 + 1)−ℓ−1

r2∑

k2=0

(
r2
k2

)(
1 − y

y

)k2
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×(s2 + 1)k2−r2

∞∑

j=0

(
r2 + j − 1

j

)
(s2 + 1)jds2

= 2yr1+r2

r1−1∑

k1=0

r2∑

k2=0

(
r1
k1

)(
r2
k2

)

×
(

1 − y

y

)k1+k2 r1−k1∑

ℓ=1

ℓ

(
2r1−1−(k1 + ℓ)

r1 − 1

)(
2r2−1 −k2 + ℓ

r2 − 1

)
,

which is (9.8.15), and we are done.

9.12.5 Verification of (9.7.8) and (9.7.9)

We verify these two bounds by modifying the proof in Theorem 5.10. We
present the following theorem.

Theorem 9.13. For each fixed n, suppose that xij = x
(n)
ij , i = 1, · · · , p,

j = 1, · · · , n are independent complex random variables satisfying Exi j = 0,
maxi

∑n
j=1 |1 − E|xi j |2| = o(n), maxi,j,n E|xij |4 < ∞, and |xij | ≤ ηn

√
n,

where ηn are positive constants with ηn → 0 and ηnn
1/4 → ∞. Let Sn =

(1/n)XX∗, where X = (Xij) is p × n with p/n → y > 0 as n → ∞. Then,
for any µ > (1 +

√
y)2 and any ℓ > 0,

P(λmax(Sn) > µ) = o(n−ℓ).

Moreover, if y ∈ (0, 1), then for any µ < (1 −√
y)2 and any ℓ > 0,

P(λmin(Sn) < µ) = o(n−ℓ).

Proof. We assume first that y ∈ (0, 1). We follow along the proof of Theorem
5.10. The conclusions of Lemmas 5.12 and 5.13–5.15 need to be improved
from “almost sure” statements to ones reflecting tail probabilities. We shall
denote the augmented lemmas with primes (′) after the numbers.

For Lemma 5.12, it has been shown that for the Hermitian matri-
ces T(l) defined there, and even integers mn satisfying mn/ logn → ∞,

mnη
1/3
n / logn→ 0, and mn/(ηn

√
n) → 0,

EtrT2mn(l) ≤ n2((2l + 1)(l + 1))2mn(p/n)mn(l−1)(1 + o(1))4mnl

(see (5.2.18)). Therefore, writing mn = kn logn, for any ε > 0 there exists an
a ∈ (0, 1) such that, for all large n,

P(trT(l) > (2l + 1)(l + 1)y(l−1)/2 + ε)

≤ n2amn = n2+kn log a = o(n−ℓ) (9.12.14)



9.12 Some Derivations and Calculations 301

for any positive ℓ. We call (9.12.14) Lemma 5.12′.
We next replace Lemma 5.13 with the following one.

Lemma 5.13′. Under the conditions of Theorem 9.13, for any ε > 0, f ≥ 2,
and ℓ > 0,

P

(
n−f/2 max

i≤p

∣∣∣∣
n∑

j=1

(|xij |f − E|xij |f )

∣∣∣∣ > ε

)
= o(n−ℓ).

Proof. Similar to the estimation for moments of S1 given in the proof of

Lemma 9.1, choosing an even integer kn ∼ η
−1/2
n ν−1 logn, we have

E

∣∣∣∣n−f/2
n∑

j=1

(|xij |f − E|xij |f )

∣∣∣∣
k

≤
∑

1≤s≤k/2

n−sη−4s
n νssk

≤ ν(nη4
n)−1(40ηn)kf = o(nℓ),

for f ≥ 2 and any fixed ℓ, where ν is the super bound of the fourth moments
of the underlying variables. This completes the proof of the lemma.

Redefining the matrix Y
(f)
n in Lemma 5.13 to be [|Xuv|f ], Lemma 5.13′

states that, for any ε and ℓ,

P(λmax{n−1Y(1)
n Y(1)

n

∗} > 7 + ε) = o(n−ℓ),

P(λmax{n−2Y(2)
n Y(2)

n

∗} > y + ε) = o(n−ℓ),

P(λmax{n−fY(f)
n Y(f)

n

∗} > ε) = o(n−ℓ) for any f > 2.

For the first estimation, we have

λmax{n−1Y(1)
n Y(1)

n

∗} ≤ Tn(1) +
1

n
max

i

n∑

j=1

|xij |2.

Thus,

P(λmax{n−1Y(1)
n Y(1)

n

∗} > 7 + ε)

≤ P(‖Tn(1)‖ ≥ 6 + ε/2) + P

(
1

n
max

i

n∑

j=1

|xij |2 ≥ 1 + ε/2

)

≤ o(n−ℓ),

where we have used Lemma 5.12′ for P(‖Tn(1)‖ ≥ 6 + ε/2) = o(n−ℓ). The
second probability can be estimated by Lemma 5.13′.



302 9 CLT for Linear Spectral Statistics

For the second and the third estimations, we use the Gerŝgorin bound2

λmax{n−fY(f)
n Y(f)

n

∗}

≤ max
i
n−f

n∑

j=1

|xij |2f

+ max
i
n−f

∑

k 6=i

n∑

j=1

|xij |f |xkj |f

≤ max
i
n−f

n∑

j=1

|xij |2f +

(
max

i
n−f/2

n∑

j=1

|xij |f
)

×
(

max
j
n−f/2

p∑

k=1

|xkj |f
)
. (9.12.15)

When f > 1, then

n−f
n∑

j=1

E|x2f
ij | ≤ η2f−2

n → 0.

Thus, in application of Lemma 5.13′, we may use

P

(
max

i
n−f/2

n∑

j=1

|xij |f ≥ ε = o(n−ℓ)

)
, for f > 1,

P
(
λmax{n−2Y(2)

n Y(2)
n

∗} > y + ε
)

≤ P

(
max

i
n−2

n∑

j=1

|xij |4 ≥ ε

2

)
+ P

(
max

i

1

n

n∑

j=1

|x2
ij | ≥ 1 +

ε

2 + y

)

+P

(
max

j

1

n

p∑

i=1

|xij |2 ≥ y +
ε

2 + y

)

= o(n−ℓ).

For f > 2, we have

2 Gerŝgorin’s theorem states that any eigenvalue of the matrix A = (aij) must be enclosed
in one of the circles with center akk and radius

∑
j 6=k

|ajk |. Its proof is simple. Let λ be

an eigenvalue of A with eigenvector x = (x1, · · · , xk)′. Suppose |xk| = maxj(|xj |). Then
the conclusion follows from the equality

(akk − λ)xk = −
∑

j 6=k

akjxj .



9.12 Some Derivations and Calculations 303

P(λmax{n−fY(f)
n Y(f)

n

∗} > ε)

≤ P

(
n−f max

i

n∑

j=1

|x1j |2f > ε/2

)
+ P

(
n−f/2 max

i

n∑

j=1

|xij |f >
√
ε/2

)

+P

(
n−f/2 max

j

p∑

k=1

|Xkj |f >
√
ε/2

)

= o(n−ℓ).

The proofs of Lemmas 5.14′ and 5.15′ are handled using the arguments in
the proof of Theorem 5.10 and those used above: each quantity Ln in the proof
of Theorem 5.10 that is o(1) a.s. can be shown to satisfy P(|Ln| > ε) = o(n−ℓ).

From Lemmas 5.12′ and 5.15′, there exists a positive C such that, for every
integer k > 0 and positive ε and ℓ,

P(‖T− yI‖k > Ck42kyk/2 + ε) = o(n−ℓ). (9.12.16)

For given ε > 0, let integer k > 0 be such that

|2√y(1 − (Ck4)1/k)| < ε/2.

Then

2
√
y + ε > 2

√
y(Ck4)1/k + ε/2 ≥ (Ck42kyk/2 + (ε/2)k)1/k.

Therefore, from (9.12.16), we get, for any ℓ > 0,

P(‖T− yI‖ > 2
√
y + ε) = o(n−ℓ). (9.12.17)

From Lemma 9.1 with A = I and p = [logn], and (9.12.17), we get for any
fixed positive ε and ℓ,

P(‖Sn − (1 + y)I‖ > 2
√
y + ε)

≤ P(‖Sn − I − T‖ > ε/2) + o(n−ℓ)

= P

(
max
i≤p

∣∣∣∣n−1
n∑

j=1

|Xij |2 − 1

∣∣∣∣ > ε/2

)
+ o(n−ℓ) = o(n−ℓ).

Therefore, for any positive µ > (1 +
√
y)2 and ℓ > 0,

P(λmax(Sn) > µ)

= P(λmax(Sn − (1 + y)I) > µ− (1 +
√
y)2 + 2

√
y)

≤ P(‖Sn − (1 + y)I‖ > 2
√
y + µ− (1 +

√
y)2) = o(n−ℓ).

Similarly, if µ < (1 −√
y)2 and ℓ > 0,

P(λmin(Sn) < µ)
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≤ P(‖Sn − (1 + y)I‖ > 2
√
y + (1 −√

y)2 − µ) = o(n−ℓ).

For y > 1 and µ > (1+
√
y)2, choose µ such that (1+1/

√
y)2 < µ < (n/p)µ

for all n sufficiently large. Then, for these n and any ℓ > 0,

P(λmax(Sn) > µ) = P(λmax(1/p)X
∗X > (n/p)µ)

≤ P(λmax(1/p)X
∗X > µ) = o(n−ℓ).

Finally, for y = 1 and any µ > 4, let y < 1 be such that yµ > (1+
√
y)2. Let

mn be a sequence of positive integers for which p/(n+mn) → y. Notice that
n/(n+mn) also converges to y. Let X be p×mn with entries independent of

X and distributed the same as those of X. Choose µ satisfying (1 +
√
y)2 <

µ < (n/(n+mn))µ for all large n. For these n and any ℓ > 0, we have

P(λmax(Sn) > µ) ≤ P(λmax(Sn + (1/n)XX∗) > µ)

≤ P(λmax(1/(n+mn))(XX∗ + XX∗) > µ) = o(n−ℓ)

and we are done.

9.13 CLT for the F -Matrix

The multivariate F -matrix, its LSD, and the Stieltjes transform of its LSD
are defined and derived in Section 4.4. To facilitate the reading, we repeat
them here. If p/n1 → y1 ∈ (0,∞) and p/n2 → y2 ∈ (0, 1), then the LSD has
density

p(x) =

{ √
4x−((1−y1)+x(1−y2))2

2πx(y1+y2x) , when 4x− ((1 − y1) + x(1 − y2))
2 > 0,

0, otherwise.

=

{
(1−y2)

√
(b−x)(x−a)

2πx(y1+y2x) , when a < x < b,

0, otherwise,

where a, b =
(

1∓√
y1+y2−y1y2

1−y2

)2

. The LSD will have a point mass 1− 1/y1 at

the origin when y1 > 1.
Its Stieltjes transform (see Section 4.4) is

s(z) =
(1 − y1) − z(y1 + y2) +

√(
(1 − y1) + z(1 − y2)

)2

− 4z

2z(y1 + zy2)
,

from which we have
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s(z) =
y1(1 − y1) − z(2y2 − y1y2 + y2

1) + y1

√(
(1 − y1) + z(1 − y2)

)2

− 4z

2z(y1 + zy2)
,

where s(z) = − 1−y1

z + y1s(z).
The CLT of the F -matrix has many important applications in multivariate

statistical analysis. For example, in multivariate linear regression modelsX =
βZ + ǫ, where β = (β1, β2) is a parameter matrix, the log likelihood ratio
statistic T , up to a constant multiplier, for the testing problem

H0 : β1 = β∗
1 vs. H1 : β1 6= β∗

1

can be expressed as a functional of the empirical spectral distribution of the
F -matrix,

T =

∫
f(x)dF {n1,n2}(x) = −1

p

∑

i

log(1 + λi),

where the λi’s are the eigenvalues of an F -matrix, F {n1,n2}(x) its ESD, and
f(x) = − log(1 + x). Similarly, it is known that the log likelihood ratio test
of equality of covariance matrices of two populations H0 : Σ1 = Σ2 is equiv-
alent to a functional of the empirical spectral distribution of the F -matrix
with f(x) = y1+y2

y2
log(y2x+ y1)− log(x). It is known that the Wilks approx-

imation for log likelihood ratio statistics does not work well as the dimension
p proportionally increases with the sample size and thus we have to find an
alternative limiting theorem to form the hypothesis test. We see then the
importance in investigating the CLT of the LSS associated with multivariate
F -matrices.

Throughout this section, we assume that

yn1 = p/n1 → y1 ∈ (0,∞) and yn2 = p/n2 → y2 ∈ (0, 1)

as min(n1, n2) → ∞.
Let s{n1,n2}(z) denote the Stieltjes transform of the ESD F {n1,n2}(x) of

the F -matrix S1S
−1
2 and s{y1,y2}(z) denote the Stieltjes transform of the

LSD F {y1,y2}(x). Let s{n1,n2}(z) = − 1−yn1

z +yn1s
{n1,n2}(z) and s{y1,y2}(z) =

− 1−y1

z + y1s
{y1,y2}(z). For brevity, s{y1,y2}(z) and s{y1,y2}(z) will simply be

written as s(z) and s(z).
Let sn2(z) denote the Stieltjes transform of the ESD Fn2(x) of S2 and

sy2(z) denote the Stieltjes transform of the LSD Fy2(x) of S2. Let sn2
(z) =

− 1−yn2

z + yn2sn2(z) and sy2
(z) = − 1−y2

z + y2sy2(z).

Let Hn2(x) and Hy2(x) denote the ESD and LSD of S−1
2 . Note that 1

λ is a

positive eigenvalue of S2 if λ is a positive eigenvalue of S−1
2 . Hence, we have

Hn2(x− 0) = 1 − Fn2(1/x) and Hy2(x) = 1 − Fy2(1/x) for all x > 0.
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9.13.1 CLT for LSS of the F -Matrix

Let F {n1,n2}(x) and F {yn1 ,yn2}(x) denote the ESD and LSD of the F -matrix
S1S

−1
2 . The LSS of the F -matrix for functions f1, . . . , fk is

(∫
f1(x)dG̃n1,n2(x), · · · ,

∫
fk(x)dG̃n1,n2(x)

)
,

where
G̃{n1,n2}(x) = p

(
F {n1,n2}(x) − F {yn1 ,yn2}(x)

)
.

In fact, we have

∫
fi(x)dG̃n1,n2(x) =

∫
fi(x) d

[
p ·
(
F {n1,n2}(x) − F {yn1 ,yn2}(x)

)]

=

p∑

j=1

fi(λj) − p ·
bn∫

an

fi(x) · (1 − yn2)
√

(bn − x)(x− an)

2πx · (yn1 + yn2x)
dx

for i = 1, · · · , k, where an = (1−hn)2

(1−yn2)2 and bn = (1+hn)2

(1−yn2)2 , h
2
n = yn1 + yn2 −

yn1yn2 , and the λj ’s are the eigenvalues of the F -matrix S1S
−1
2 .

We shall establish the following theorem due to Zheng [310].

Theorem 9.14. Assume that the X-variables satisfy the condition

1

n1p

∑

ij

E|X4
ij | · I(|Xij | ≥

√
nη) → 0,

for any fixed η > 0, and the Y -variables satisfy a similar condition. In addi-
tion, we assume:

(a) {Xi1j1 , Yi2j2 , i1, j1, i2, j2} are independent. The moments satisfy
EXi1j1 = EYi2j2 = 0, E|Xi1j1 |2 = E|Yi2j2 |2 = 1, E|Xi1j1 |4 = βx +κ+1, and
E|Xi2j2 |4 = βy + κ+ 1, where κ = 2 if both the X-variables and Y -variables
are real and κ = 1 if they are complex. Furthermore, we assume EX2

i1j1 = 0

and EY 2
i2j2

= 0 if the variables are all complex.
(b) yn1 = p

n1
→ y1 ∈ (0,+∞) and yn2 = p

n2
→ y2 ∈ (0, 1).

(c) f1, · · · , fk are functions analytic in an open region containing the in-
terval [a, b], where

a =
(1 −√

y1)
2

(1 − y2)2
and b =

(1 +
√
y1)

2

(1 − y2)2
.

Let h2 = y1 + y2 − y1y2. Then the random vector
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


∫
f1(x)dG̃n1,n2(x)

...∫
fk(x)dG̃n1,n2(x)




=




p∑

j=1

f1(λj) − p

bn∫

an

f1(x)(1 − yn2)
√

(bn − x)(x − an)

2πx · (yn1 + yn2x)
dx

...
p∑

j=1

fk(λj) − p

bn∫

an

fk(x)(1 − yn2)
√

(bn − x)(x − an)

2πx · (yn1 + yn2x)
dx




converges weakly to a Gaussian vector (Xf1 , · · · , Xfk
)′ with means

EXf = lim
r↓1

[(9.13.1) + (9.13.2) + (9.13.3) + (9.13.4)] ,

where

κ− 1

4πi

∮

|ξ|=1

fi

( |1 + hξ|2
(1 − y2)2

)[
1

ξ − r−1
+

1

ξ + r−1
− 1

ξ −
√

y2

h

− 1

ξ +
√

y2

h

]
dξ

(9.13.1)
βx · y1(1 − y2)

2

2πi · h2

∮

|ξ|=1

fi

( |1 + hξ|2
(1 − y2)2

)
1

(ξ + y2

h )3
dξ (9.13.2)

κ− 1

4πi

∮

|ξ|=1

fi

( |1 + hξ|2
(1 − y2)2

)[
1

ξ −
√

y2

h

+
1

ξ +
√

y2

hr

− 2

ξ + y2

h

]
dξ (9.13.3)

βy · (1 − y2)

4πi

∮

|ξ|=1

fi

( |1 + hξ|2
(1 − y2)2

)
ξ2 − y2

h2

(ξ + y2

h )2

[
1

ξ −
√

y2

h

1

ξ +
√

y2

h

− 2

ξ + y2

h

]
dξ

(9.13.4)
and covariance functions

Cov(Xfi , Xfj ) = lim
r↓1

[(9.13.5) + (9.13.6) + (9.13.7)] ,

where

− κ

4π2

∮

|ξ1|=1

∮

|ξ2|=1

fi

(
|1+hξ1|2
(1−y2)2

)
fj

(
|1+hξ2|2
(1−y2)2

)

(ξ1 − rξ2)2
dξ1dξ2 (9.13.5)

−βx · y1(1 − y2)
2

4π2h2

∮

|ξ1|=1

fi

(
|1+hξ1|2
(1−y2)2

)

(ξ1 + y2

h )2
dξ1

∮

|ξ2|=1

fj

(
|1+hξ2|2
(1−y2)2

)

(ξ2 + y2

h )2
dξ2 (9.13.6)
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−βy · y2(1 − y2)
2

4π2h2

∮

|ξ1|=1

fi

(
|1+hξ1|2
(1−y2)2

)

(ξ1 + y2

h )2
dξ1

∮

|ξ2|=1

fj

(
|1+hξ2|2
(1−y2)2

)

(ξ2 + y2

h )2
dξ2. (9.13.7)

9.14 Proof of Theorem 9.14

Before proceeding with the proof of Theorem 9.14, we first present some
lemmas.

9.14.1 Lemmas

Throughout this section, we assume that both the X- and Y -variables are
truncated and renormalized as described in the next subsection. Also, we will
use the notation defined in Subsections 6.2.2 and 6.2.3 with T = S−1

2 .

Lemma 9.15. Suppose the conditions of Theorem 9.14 hold. Then, for any
z with ℑz > 0, we have

max
i,j

∣∣∣∣e′iEjT
1/2D−1

j (z)T1/2ei +
1 + zs(z)

zy1s(z)

∣∣∣∣
i.p.−→ 0 (9.14.1)

and

max
i,j

∣∣∣∣e′iEjT
1/2D−1

j (z)T1/2 (s(z)T + I)−1 ei +
1

z

∫
x · dFy2(x)

(x+ s(z))2

∣∣∣∣
i.p.−→ 0,

(9.14.2)
where ei = (0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0)′ and Ej denotes the conditional expectation

with respect to the σ-field generated by X·1, · · ·, X·j and S2 with the conven-
tion that E0 is the conditional expectation given S2.

Similarly, we have

max
i,j

∣∣∣∣∣e
′
iE−j

(
S2 −

1

n2
Y·jY

∗
·j − zI

)−1

ei +
1

z
· 1

sy2
(z) + 1

∣∣∣∣∣→ 0 in p,

(9.14.3)
where E−j for j ∈ [1, n2] denotes the conditional expectation given
Yj ,Yj+1, ...,Yn2 , while E−n2−1 denotes unconditional expectation.

Proof. First, we claim that for any random matrix M with a nonrandom
bound ‖M‖ ≤ K, for any fixed t > 0, i ≤ p, and z with |ℑz| = v > 0, we
have
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P( sup
j≤n2

|Eje
′
iT

1/2D−1
j (z)T1/2Mei−Eje

′
iT

1/2D−1(z)T1/2Mei| ≥ ε) = o(p−t).

(9.14.4)
In fact,

|Eje
′
iT

1/2D−1
j (z)T1/2Mei − Eje

′
iT

1/2D−1(z)T1/2Mei|

=

∣∣∣∣Ej

e′iT
1/2D−1

j (z)rjr
∗
jD

−1
j T1/2Mei

1 + r∗jD
−1
j rj

∣∣∣∣ ≤ KEj|e′iT1/2D−1
j (z)rj |2.

By noting 1
n

∣∣∣∣e′i(T1/2D−1
j (z)TD−1

j (z)T1/2)ei

∣∣∣∣ ≤ K/n and applying Lemma

9.1 by choosing l = [log n], one can easily prove (9.14.4).
To show the convergence of (9.14.1), we consider

e′iT
1/2EjD

−1(z)T1/2ei = Eje
′
iT

1/2D−1(z)T1/2ei.

Note that
T1/2D−1(z)T1/2 = (S1 − z · S2)

−1 ≡ D̃−1(z).

That is, the limits of the diagonal elements of

EjT
1/2D−1(z)T1/2 = EjD̃

−1(z)

are identical. To this end, employing Kolmogorov’s inequality for martingales,
we have

Ii,l ≡ P

(
sup

−n2≤j≤n1

∣∣∣Eje
′
iT

1/2D−1(z)T1/2ei − Ee′iT
1/2D−1(z)T1/2ei

∣∣∣ ≥ ε

)

≤ ε−4E
∣∣∣En1e

′
iT

1/2D−1(z)T1/2ei − E−n2−1e
′
iT

1/2D−1(z)T1/2ei

∣∣∣
4

= ε−4E

∣∣∣∣∣
n1∑

k=−n2

(Ek − Ek−1)e
′
iD̃

−1(z)ei

∣∣∣∣∣

4

= E

∣∣∣∣∣
n1∑

k=−n2

(Ek − Ek−1)e
′
i

(
D̃−1(z) − D̃−1

j k (z)
)
ei

∣∣∣∣∣

4

,

where

D̃k =

{
D̃ − 1

n1
XkX

∗
k, if k > 0,

D̃ + z
n2

Y−k+1Y
∗
−k+1, if k ≤ 0.

Thus, by Burkholder’s inequality,

Ii,l ≤
K

ε4n4
1

E

∣∣∣∣∣
n1∑

k=1

(Ek − Ek−1)
e′iD̃

−1
k X·kX∗

·kD̃
−1
k ei

1 + X∗
·kD̃

−1
k X·k/n1

∣∣∣∣∣

4
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+
K

ε4n4
2

E

∣∣∣∣∣
0∑

k=−n2

(Ek − Ek−1)
ze′iD̃

−1
−k+1Y·−k+1Y

∗
·−k+1D̃

−1
−k+1ei

1 − zY∗
·−k+1D̃

−1
−k+1Y·−k+1/n2

∣∣∣∣∣

4

≤ K

ε4n4
1

·


E




n1∑

k=1

Ek−1

∣∣∣∣∣
e′iD̃

−1
k X·kX∗

·kD̃
−1
k ei

1 + X∗
·kD̃

−1
k X·k/n1

∣∣∣∣∣

2



2

+

n1∑

k=1

E

∣∣∣∣∣
e′iD̃

−1
k X·kX∗

·kD̃
−1
k ei

1 + X∗
·kD̃

−1
jk X·k/n1

∣∣∣∣∣

4



+
K

ε4n4
2


E




0∑

k=−n2

Ek−1

∣∣∣∣∣
ze′iD̃

−1
−k+1Y·−k+1Y

∗
·−k+1D̃

−1
−k+1ei

1 − zY∗
·−k+1D̃

−1
−k+1Y·−k+1/n2

∣∣∣∣∣

2



2

+
0∑

k=−n2

∣∣∣∣∣E
ze′iD̃

−1
−k+1Y·−k+1Y

∗
·−k+1D̃

−1
−k+1ei

1 − zY∗
·−k+1D̃

−1
−k+1Y·−k+1/n2

∣∣∣∣∣

4

 .

When k > 0 and |ℑz| = v > 0, (i.e., z is on the horizontal part of the contour
C), it has been proved that

∣∣∣∣∣
1

1 + X∗
·kD̃

−1
k X·k/n1

∣∣∣∣∣ ≤
|z|
v
.

Therefore, by Lemma 9.1, we have

K

ε4n4
1

· E




n1∑

k=1

Ek−1

∣∣∣∣∣
e′iD̃

−1
k X·kX∗

·kD̃
−1
k ei

1 + X∗
·kD̃

−1
jk X·k/n1

∣∣∣∣∣

2



2

≤ K

ε4n4
1

· E
(

n1∑

k=1

Ek−1

∣∣∣e′iD̃−1
k X·kX

∗
·kD̃

−1
k ei

∣∣∣
2
)2

= O(n−2
1 )

and

K

n4
1

·
n1∑

k=1

E

∣∣∣∣∣
e′iD̃

−1
k X·kX∗

·1D̃
−1
k ei

1 + X·kD̃
−1
k X·k/n1

∣∣∣∣∣

4

≤ K|z|4
v4n3

1

·
n1∑

k=1

E
∣∣∣e′iD̃−1

k X·kX
∗
·1D̃

−1
k ei

∣∣∣
4

= o(n−1
1 ).

Furthermore, by noting that

∣∣∣∣
1

1 − zY∗
·−k+1D̃

−1
k Y·−k+1/n2

∣∣∣∣ =

∣∣∣∣
z̄

z̄ − |z|2Y∗
·−k+1D̃

−1
k Y·−k+1/n2

∣∣∣∣ ≤
|z|
v
,
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we can similarly prove that

K

ε4n4
2

E




0∑

k=−n2

Ek−1

∣∣∣∣∣
ze′iD̃

−1
−k+1Y·−k+1Y

∗
·−k+1D̃

−1
−k+1ei

1 − zY∗
·−k+1D̃

−1
−k+1Y·−k+1/n2

∣∣∣∣∣

2



2

= O(n−2
2 )

and

K|z|4
n4

2

·
0∑

k=−n2

E

∣∣∣∣∣
e′iD̃

−1
k Y·−k+1Y

∗
·−k+1D̃

−1
jk ei

1 − zY∗
·−k+1D̃

−1
k Y·−k+1/n2

∣∣∣∣∣

4

= o(n−1
2 ).

We therefore obtain

max
i,j

∣∣∣Eje
′
iT

1/2D−1(z)T1/2ei − Ee′iT
1/2D−1(z)T1/2ei

∣∣∣→ 0 in p.

If the X and Y variables are identically distributed, then

Ee′iT
1/2D−1(z)T1/2ei =

1

p
trET1/2D−1(z)T1/2.

Similar to (9.9.20), we have

Ee′iT
1/2D−1(z)T1/2ei =

1

p
E
[
tr
(
TD−1(z)

)]
=
n1

p
·
(

1

bp(z)
− 1

)

→ −1 + zs(z)

zy1s(z)
= −

∫
dFy2(x)

z(x+ s)
.

Thus, (9.14.1) follows.
We should in fact show that the limit above holds true under the conditions

of Theorem 9.14. Let D̃j,w = D̃ − 1
n1

XjX
∗
j + 1

n1
WjW

∗
j , where Wj consists

of iid entries distributed as X11; that is, we change the j-th term 1
n1

XjX
∗
j

with an analogue 1
n1

WjW
∗
j with iid entries. We have

Ee′iD̃
−1ei − Ee′iD̃

−1
j,wei = Ee′i(D̃

−1 − D̃−1
j )ei − Ee′i(D̃

−1
j,w − D̃−1

j )ei

= n−1
1 Ee′iD̃

−1
j

[
XjX

∗
jβj − WjW

∗
jβj,w

]
D̃−1

j ei,

where βj,w = (1 + n−1
1 W∗

j D̃
−1
j Wj)

−1. Let β̂j = (1 + n−1
1 trD̃−1

j )−1, γ̂j =

n−1
1 [X∗

jD̃
−1
j Xj − trD̃j ], and γ̂j,w = n−1

1 [W∗
j D̃

−1
j Wj − trD̃j ]. Noting that

βj,w = β̂j − β̂jβj,wγ̂j,w and a similar decomposition for βj , we have

∣∣∣∣Ee′iD̃
−1ei − Ee′iD̃

−1
j,wei

∣∣∣∣

= n−1
1

∣∣∣∣Ee′iD̃
−1
j

[
XjX

∗
j β̂jβj γ̂j − WjW

∗
jβj,wβ̂j γ̂j,w

]
D̃−1

j ei

∣∣∣∣
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≤ K

n1

[(
E|e′iD̃−1

j Xj |4E|γ̂j |2
)1/2

+
(
E|e′iD̃−1

j Wj |4E|γ̂j,w|2
)1/2

]

= O(n
−3/2
1 ).

Using the same approach, we can replace all terms 1
n1

XjX
∗
j in S1 by

1
n1

WjW
∗
j . The total error will be bounded by O(n

−1/2
1 ). Also, we replace

all terms in S2 by iid entries with a total error bounded by O(n
−1/2
2 ). Then,

using the argument in the last paragraph, we can show that (9.14.1) holds
under the conditions of Theorem 9.14.

In (9.14.1), letting y2 → 0 or T = I, we obtain

max
i,j

∣∣∣∣e
′

iEj (S1 − zI)−1 ei +
1

z(sy1
(z) + 1)

∣∣∣∣→ 0 in p.

By symmetry of S1 and S2, we have

max
i,j

∣∣∣∣e′iEj,y (S2 − zI)
−1

ei +
1

z(sy2
(z) + 1)

∣∣∣∣→ 0 in p.

This proves (9.14.3). Note that − 1
z(s

y2
(z)+1) = sy2

(z).

Finally, we consider the limits of e′iT
1/2D−1(z)(sT + I)−1T1/2ei. Using

the decomposition (9.9.12) and the similar arguments (9.9.13)–(9.9.16), one
can prove that

e′iT
1/2D−1(z)(sT + I)−1T1/2ei = −z−1e′iT

1/2(I + s(z)T)−2T1/2ei + o(1),

where o(1) is uniform in i ≤ p. To find the limit of the RHS of the above, we
note that

e′iT
1/2(I + s(z)T)−2T1/2ei = e′i(S2 + s(z)I)−2S2ei

= e′i(S2 + s(z)I)−1ei − s(z)e′i(S2 + s(z)I)−2ei

= e′i(S2 + s(z)I)−1ei + s(z)
d

ds
e′i(S2 + sI)−1ei|s = s(z).

By (9.14.3), we have

e′iT
1/2(I + s(z)T)−2T1/2ei

→
∫

dFy2(x)

(x+ s(z))2
−
∫
s(z)dFy2(x)

(x + s(z))2
=

∫
xdFy2(x)

(x + s(z))2
.

This is (9.14.2). The proof of Lemma 9.15 is complete.

Lemma 9.16. Let s0(z) = sy2
(−s(z)). Then the following identities hold

z = −s0(z)(s0(z) + 1 − y1)

(1 − y2)s0(z) + 1
and s(z) =

(1 − y2)s0(z) + 1

s0(z)(s0(z) + 1)
,
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1 − y1

∫
s2(z)dFy2(x)

(x+ s(z))2
=

(1 − y2)s
2
0(z) + 2s0(z) + 1 − y1

(1 − y2)s20(z) + 2s0(z) + 1
,

∫
dFy2(x)

x+ s(z)
=

s0(z)

(1 − y2)s0(z) + 1
,

∫
x · dFy2(x)

(x+ s(z))2
=

s20(z)

(1 − y2)s20(z) + 2s0(z) + 1
,

s′0(z) = − ((1 − y2)s0(z) + 1)
2

(1 − y2)s20(z) + 2s0(z) + 1 − y1
,

and

s′(z) =
−(1 − y2)

(
s0(z) + 1

1−y2

)2

+ y2

(1−y2)

s20(z) · (s0(z) + 1)2
· s′0(z)

= − (1 − y2)s
2
0 + 2s0 + 1

s20(s0 + 1)2
· s′0(z).

Proof. Because

sy2
(z) = −1 − y2

z
+ y2 · sy2(z), (9.14.5)

we get s′y2
(z) = − 1−y2

y2
· 1

z2 + 1
y2

· s′y2
(z); that is,

s′y2
(−s(z)) = −1 − y2

y2

1

(s(z))2
+

1

y2
· s′y2

(−s(z)).

So we have
∫

dFy2(x)

(x + s(z))2
= s′y2

(−s(z)) = −1 − y2
y2

· 1

(s(z))2
+

1

y2
· s′y2

(−s(z)). (9.14.6)

Therefore,

z = − 1

s(z)
+

∫
y1dFy2(x)

x+ s(z)

= − 1

s(z)
− y1(1 − y2)

y2s(z)
+
y1
y2
sy2

(−s(z))

=
y1 + y2 − y1y2

y2
· 1

−s(z) +
y1
y2
sy2

(−s(z)).

(9.14.7)

Using the notation h2 = y1 + y2 − y1y2 and differentiating both sides of
the identity above, we obtain
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1 =
h2

y2(s(z))2
s′(z) − y1

y2
s′y2

(−s(z))s′(z).

This implies s′(z) =
y2(s(z))2

h2−y1(s(z))2s′
y2

(−s(z)) or

y1(s(z))
2s′y2

(−s(z)) = h2 − y2(s(z))
2

s′(z)
. (9.14.8)

We herewith remind the reader that s′y2
(−s(z)) = d

dξ sy2
(ξ)|ξ=−s(z)

instead of
d
dz sy2

(−s(z)). So, by (9.14.6) and (9.14.8), we have

1 − y1

∫
(s(z))2dFy2(x)

(x+ s(z))2
=
h2

y2
− y1(s(z))

2s′2(−s(z))
y2

=
(s(z))2

s′(z)
. (9.14.9)

The Stieltjes transform s2(z) satisfies z = − 1
s

y2
(z) + y2

1+s
y2

(z) . Differentiating

both sides, we obtain 1 =
(

1
(s

y2
(z))2 − y2

(1+s
y2

(z))2

)
s′y2

(z). Therefore, s′y2
(z) =

(s
y2

(z))2

1−y2(sy2
(z))2(1+sy2

(z))−2 and thus

s′y2
(−s(z)) =

[sy2
(−s(z))]2

1 − y2 · [sy2
(−s(z))]2 · [1 + sy2

(−s(z))]−2
. (9.14.10)

Because z = − 1
s

y2
(z) + y2

1+s
y2

(z) , then we have

−s(z) = − 1

sy2
(−s(z)) +

y2
1 + sy2

(−s(z)) = −
(1 − y2)sy2

(−s(z)) + 1

sy2
(−s(z)) · (sy2

(−s(z)) + 1)
.

Recall that s0 = sy2
(−s(z)). By (9.14.7), we then obtain the first two con-

clusions of the lemma,

s(z) =
(1 − y2)s0 + 1

s0 · (s0 + 1)
and z = −s0(s0 + 1 − y1)

(1 − y2)s0 + 1
. (9.14.11)

Differentiating the second identity in (9.14.11), we obtain

1 = − [(2s0 + 1 − y1) ((1 − y2)s0 + 1) − s0(s0 + 1 − y1)(1 − y2)] s
′
0

((1 − y2)s0 + 1)
2 .

Solving s′0, we obtain the sixth assertion of the lemma

s′0 = − ((1 − y2)s0 + 1)2

(1 − y2)s20 + 2s0 + 1 − y1
.

By the identity sy2
(−s(z)) = 1−y2

s(z) + y2 · sy2(−s(z)), we obtain
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∫
dFy2(x)

x+ s(z)
= sy2(−s(z)) =

sy2
(−s(z))
y2

− 1 − y2
y2

· 1

s(z)

=
sy2

(−s(z))
y2

− 1 − y2
y2

·
sy2

(−s(z))(sy2
(−s(z)) + 1)

(1 − y2)sy2
(−s(z)) + 1

=
sy2

(−s(z))
(1 − y2)sy2

(−s(z)) + 1
=

s0
(1 − y2)s0 + 1

.

This is the fourth conclusion of the lemma. By (9.14.9), (9.14.10), and
(9.14.11), we obtain the third conclusion of the lemma,

1 − y1s
2

∫
dFy2(x)

(x+ s)2
=
h2

y2
− y1
y2

((1 − y2)s0 + 1)2 · s20(1 + s0)
2

s20(s0 + 1)2 · [(1 + s0)2 − y2 · s20]

=
(1 − y2)s

2
0 + 2s0 + 1 − y1

(1 − y2)s20 + 2s0 + 1
, (9.14.12)

where s20 + 2
1−y2

s0 + 1−y1

1−y2
=
(
s0 + 1+h

1−y2

)
·
(
s0 + 1−h

1−y2

)
. Thus,

∫
x · dFy2(x)

(x+ s(z))2
=

∫
dFy2(x)

x+ s(z)
− s(z)

∫
dFy2(x)

(x+ s(z))2

=
s0

(1 − y2)s0 + 1
− s0(s0 + 1)

[(1 − y2)s20 + 2s0 + 1] · (1 − y2)(s0 + 1
1−y2

)

=
s20

(1 − y2)s20 + 2s0 + 1
.

This is the fifth line of the lemma.
By (9.14.11), we obtain the last line of the lemma,

s′(z) =
(1 − y2)

(
s0(s0 + 1) − (s0 + 1

1−y2
)(2s0 + 1)

)
s′0

s20(s0 + 1)2

=
−(1 − y2)

(
s0 + 1

1−y2

)2

+ y2

(1−y2)

m2
0 · (s0 + 1)2

s′0 = − (1 − y2)s
2
0 + 2s0 + 1

s20(s0 + 1)2
· s′0.

The proof of Lemma 9.16 is completed.

Lemma 9.17. Let Bn = S
−1/2
2 S1S

−1/2
2 with T = S−1

2 , under condition (a)
of Theorem 9.14. When applying Lemma 9.11, the additional terms for the
mean and covariance functions are

βx · y1 · s3(z) ·
∫ dFy2 (x)

x+s(z)

∫ x·dFy2(x)

(x+s(z))2

1 − y1
∫
s2(z)(x+ s(z))−2dFy2(x)

(9.14.13)
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and

βx · y1 ·
∫
s′(z1) · x · dFy2(x)

(x+ s(z1))2

∫
s′(z2) · x · dFy2(x)

(x+ s(z2))2
. (9.14.14)

For Bn = S2 with T = I, under condition (a) of Theorem 9.14, the additional
terms for mean and covariance functions, with z replaced by −s, reduce to

βy · y2 · s3y2
(−s(z)) · (1 + sy2

(−s(z)))−3

1 − y2 · s2y2
(−s(z)) · (1 + sy2

(−s(z)))−2
(9.14.15)

and

βy · y2 ·
s′y2

(−s(z1))
(1 + sy2

(−s(z1)))2
· s′y2

(−s(z2))
(1 + sy2

(−s(z2)))2
. (9.14.16)

Proof. We consider the case Bn = T1/2S1T
1/2, where T = S−1

2 and Dj(z) =
Bn−zI−γjγ

∗
j , γj = 1√

n1
T1/2X·j in more general conditions. Going through

the proof of Lemma 9.11 under the conditions of Theorem 9.14, we find that
the process

Mn(z) = n1

[
s{n1,n2}(z) − s

F{yn1 ,Hn2}(z)
]

is still tight, where sF{yn1 ,Hn2}(z) is the unique root, which has the same sign
for the imaginary part as that of z, to the equation

z = − 1

sF{yn2 ,Hn2}
+ yn2

∫
t

1 + tsF{yn2 ,Hn2}
dHn2(t).

Also, its finite-dimensional distribution still satisfies the Lindeberg condition
and thus Mn(z) tends to a Gaussian process. Thus, we need only recalculate
the asymptotic mean and covariance functions. Checking the proof of Lemma
9.11, one finds that the equations (9.9.7) and (9.11.1) give the covariance and
mean functions of the limiting process M(z) as

Cov(M(z1),M(z2)) =
∂2D(z1, z2)

∂z1∂z2

and

EM(z) =
−s(z)Ap(z)

1 − y1
∫
s2(z)(x+ s(z))−2dFy2(t)

,

where D(z1, z2) is the limit of

Dp(z1, z2) = bp(z1)bp(z2)

n1∑

j=1

Ej−1

[
Ej

(
1

n1
X∗

·jT
1/2D−1

j (z1)T
1/2X·j

(9.14.17)

− 1

n1
trTD−1

j (z1)

)
× Ej

(
1

n1
X∗

·jT
1/2D−1

j (z2)T
1/2X·j −

1

n1
trTD−1

j (z2)

)]
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and A(z) is the limit of

Ap(z)

=
b2p
n2

1

n∑

j=1

{
EtrD−1

j (sT + I)−1TD−1
j T − n2

1E

[(
r∗jD

−1
j rj −

1

n1
trD−1

j T

)

×
(
r∗jD

−1
j (s(z)T + I)−1rj −

1

n1
trD−1

j (sT + I)−1T

)]}
. (9.14.18)

Applying (9.8.6) to the limits of Dp and Ap, under the conditions of Theorem
9.14, the limit of the term induced by the first term on the RHS of (9.8.6)
should be added to the expression of the asymptotic covariance; that is,
(9.14.14). Also, the limit of tr(T1/2D−1

1 (z)(sT+I)−1T1/2◦T1/2D−1
1 (z)T1/2)

should be added to the asymptotic mean; that is, (9.14.13). Please note that
these terms may not have limits for general T as assumed in Theorem 9.10,
but for T = S−1

2 their limits do exist because of Lemma 9.15. Except for
the terms of the mean and covariance functions given in Lemma 9.11, the
additional terms to these functions are derived as follows.

We first consider EM(z). By Lemma 9.15, we have

Ap =
b2p
n2

1

n∑

j=1

{
βx

p∑

i=1

e′iT
1/2D−1

j T1/2ei · e′iT1/2D−1
j (sT + I)−1T1/2ei

−(κ− 1)EtrD−1
j T(sT + I)−1D−1

j T

}
+ o(1)

= y1βxs
2

∫
dFy2(x)

x+ s(z)

∫
x · dFy2(x)

(x+ s(z))2

− (κ− 1)z2s2

n1

{
EtrD−1T(sT + I)−1D−1T

}
+ o(1).

The limit of the second term on the RHS of the above can be derived being
the same as given in Section 9.11. Thus the additional term to the mean is
as given in Lemma 9.17; that is,

βxy1 · s3(z)
∫ dFy2 (x)

x+s(z)

∫ x·dFy2(x)

(x+s(z))2

1 − y1
∫
s2(z)(x+ s(z))−2dFy2(x)

.

The additional term to Dp is

βxbp(z1)bp(z2)

n2
1

n1∑

j=1

p∑

i=1

e′iT
1/2EjD

−1
j (z1)T

1/2ei · e′iT1/2EjD
−1
j (z2)T

1/2ei,

which, by applying Lemma 9.15, tends to
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βxy1

∫
s(z1)dFy2(x)

x+ s(z1)

∫
s(z2)dFy2 (x)

x+ s(z2)
.

Thus the additional term for Cov(M(z1),M(z2)) is

βxy1 ·
∫
s′(z1) · x · dFy2(x)

(x + s(z1))2

∫
s′(z2) · x · dFy2(x)

(x+ s(z2))2
.

The proof of the second part is just a simple application of the first part. The
proof of Lemma 9.17 is completed.

9.14.2 Proof of Theorem 9.14

Following the techniques of truncation, centralization, and normalization pro-
cedures as done in Subsection 9.7.1, we can assume the following additional
conditions hold:

• There is a sequence η = ηn ↓ 0 such that |Xjk| ≤ η
√
p and |Yjk| ≤ η

√
p.

• EXjk = EYjk = 0 and E|X2
jk| = E|Y 2

jk| = 1.

• |EX4
jk| = βx + κ+ 1 + o(1) and E|Y 4

jk| = βy + κ+ 1 + o(1).

• For the complex case, EX2
jk = o(p−1) and EY 2

jk = o(p−1).

Write

n1

[
s{n1,n2}(z) − s{yn1 ,yn2}(z)

]
= n1

[
s{n1,n2}(z) − s{yn1 ,Hn2}(z)

]

+n1

[
s{yn1 ,Hn2}(z) − s{yn1 ,yn2}(z)

]
,

where s{yn1 ,Hn2}(z) and s{yn1 ,yn2}(z) are unique roots, whose imaginary parts
have the same sign as that of z, to the equations

z = − 1

s{yn1 ,Hn2}
+ yn1 ·

∫
t · dHn2(t)

1 + ts{yn1 ,Hn2}

= − 1

s{yn1 ,Hn2}
+ yn1 ·

∫
dFn2(t)

t+ s{yn1 ,Hn2}

and

z = − 1

s{yn1 ,yn2}
+ yn1 ·

∫
dFyn2

(t)

t+ s{yn1 ,yn2}
.

We proceed with the proof in two steps.
Step 1. Consider the conditional distribution of

n1

[
s{n1,n2}(z) − s{yn1 ,Hn2}(z)

]
, (9.14.19)
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given the σ-field generated by all the possible Sn2 ’s, which we will call S2.
By Lemma 9.17, we have proved that the conditional distribution of

n1

[
s{n1,n2}(z) − s{yn1 ,Hn2}(z)

]
= p

[
s{n1,n2}(z) − s{yn1 ,Hn2}(z)

]

given S2 converges to a Gaussian process M1(z) on the contour C with mean
function

E (M1(z)|S2) =
(κ− 1)y1

∫
s(z)3x[x+ s(z)]−3dFyn2

(x)
[
1 − y1

∫
s2(z)(x+ s(z))−2dFyn2

(x)
]2 + (9.14.13)

(9.14.20)
for z ∈ C and the covariance function

Cov(M1(z1),M1(z2)|S2) = κ ·
(

s′(z1) · s′(z2)
(s(z1) − s(z2))2

− 1

(z1 − z2)2

)
+ (9.14.14)

(9.14.21)
for z1, z2 ∈ C. Note that the mean and covariance of the limiting distribution
are independent of the conditioning S2, which shows that the limiting dis-
tribution of this part is independent of the limit of the next part because the
asymptotic mean and covariances are nonrandom.

Step 2. We consider the CLT of

n1[s
{yn1 ,Hn2}(z)−s{yn1 ,yn2}(z)] = p[s{yn1 ,Hn2}(z)−s{yn1 ,yn2}(z)]. (9.14.22)

By (9.7.1), under the conditions of Theorem 9.14, we have the equation

z = − 1

s{yn1 ,yn2}
+ yn1 ·

∫
t

1 + ts{yn1 ,yn2}
dHyn2

(t)

= − 1

s{yn1 ,yn2}
+ yn1 ·

∫
dFyn2

(t)

t+ s{yn1 ,yn2}
.

On the other hand, syn1 ,Hn2 is the solution to the equation

z = − 1

s{yn1 ,Hn2}
+ yn1 ·

∫
t · dHn2(t)

1 + t · s{yn1 ,Hn2}

= − 1

s{yn1 ,Hn2}
+ yn1 ·

∫
dFn2(t)

t+ s{yn1 ,Hn2}
.

By the definition of the Stieltjes transform, the two equations above become

z = − 1

s{yn1 ,yn2}
+ yn1 · syn2

(−s{yn1 ,yn2}),

z = − 1

s{yn1 ,Hn2}
+ yn1 · sn2(−s{yn1 ,Hn2}).

Upon taking the difference of the two identities above, we obtain
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0 =
s{yn1 ,Hn2} − s{yn1 ,yn2}

s{yn1 ,yn2} · syn1 ,Hn2

+ yn1

[
sn2(−s{y1,Hn2}) − sn2(−s{yn1 ,yn2})

+sn2(−s{yn1 ,yn2}) − syn2
(−s{yn1 ,yn2})

]

=
syn1 ,Hn2 − s{yn1 ,yn2}

s{yn1 ,yn2} · syn1 ,Hn2

− yn1

∫
(syn1 ,Hn2 − s{yn1 ,yn2})dFn2(t)

(t+ syn1 ,Hn2 )(t+ s{yn1 ,yn2})

+yn1

[
sn2(−s{yn1 ,yn2}) − syn2

(−s{yn1 ,yn2})
]
.

Therefore, we have

n1 ·
[
s{yn1 ,Hn2}(z) − s{yn1 ,yn2}(z)

]

= −yn1 · s{yn1 ,yn2} · s{yn1 ,Hn2} ·
n1

[
sn2(−s{yn1 ,yn2}) − syn2

(−s{yn1 ,yn2})
]

1 − yn1 ·
∫ s{yn1 ,yn2}·s{yn1 ,Hn2}dFn2(t)

(t+s{yn1 ,yn2})·(t+s{yn1 ,Hn2})

= −s{yn1 ,yn2} · syn1 ,Hn2 ·
n2

[
sn2

(−s{yn1 ,yn2}) − syn2
(−s{yn1 ,yn2})

]

1 − yn1 ·
∫ s{yn1 ,yn2}· s{yn1 ,Hn2}dFn2(t)

(t+s{yn1 ,yn2}) (t+s{yn1 ,Hn2})

.

Consider the CLT for

n2 ·
[
sn2

(
−s{yn1 ,yn2}(z)

)
− syn2

(
−s{yn1 ,yn2}(z)

)]
.

Because, for any z ∈ C+, s{yn1 ,yn2}(z) → s(z), to consider the limiting
distribution of

n2 ·
[
sn2

(
−s{yn1 ,yn2}(z)

)
− syn2

(
−s{yn1 ,yn2}(z)

)]
,

one only needs to consider the CLT for

n2 ·
[
sn2

(−s(z)) − syn2
(−s(z))

]
,

it can be shown that when z runs along C clockwise, −s(z) will enclose the
support of Fy2 clockwise without intersecting the support. Then, by Lemma
9.17 and Lemma 9.11 (with minor modification), we have n2[sn2

(−s(z)) −
syn2

(−s(z))] converging weakly to a Gaussian process M2(·) on z ∈ C with
mean function

E(M2(z)) = (κ− 1) · y2 · [sy2
(−s(z))]3 · [1 + sy2

(−s(z))]−3

[
1 − y2 ·

(
sy2

(−s(z))

1+s
y2

(−s(z))

)2
]2 + (9.14.15)

(9.14.23)
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and Cov(M2(z1),M2(z2)) =

κ ·
(

s′y2
(−s(z1)) · s′y2

(−s(z2))
[sy2

(−s(z1)) − sy2
(−s(z2))]2

− 1

(s(z1) − s(z2))2

)
+(9.14.16). (9.14.24)

for z1, z2 ∈ C. Because
−s{yn1 ,yn2}(z) · s{yn1 ,Hn2}(z)

1 − yn1 ·
∫ s{yn1 ,yn2}(z)·s{yn1 ,Hn2}dFn2(t)

(t+s{yn1 ,yn2}(z)) (t+s{yn1 ,Hn2})

converges to

−s′(z) =
−s2(z)

1 − y1 · s2(z) ·
∫ dFy2(t)

[t+s(z)]2

, we then conclude that

n1 ·
[
s{yn1 ,Hn2}(z) − s{yn1 ,yn2}(z)

]

converges weakly to a Gaussian process M3(·) satisfying

M3(z) = −s′(z) ·M2(z),

with the means E(M3(z)) = −s′(z) · EM2(z) and covariance functions
Cov(M3(z1),M3(z2)) = s′(z1)s′(z2) ·Cov(M2(z1),M2(z2)). Because the limit
of

n1 ·
[
s{n1,n2}(z) − s{yn1 ,Hn2}(z)

]

conditioned on S2 is independent of the ESD of Sn2 , we know that the limits
of

n1 ·
[
s{n1,n2}(z) − s{yn1 ,Hn2}(z)

]
and n1 ·

[
s{yn1 ,Hn2}(z) − s{yn1 ,yn2}(z)

]

are asymptotically independent. Thus
we have n1 ·

[
s{n1,n2}(z) − s{yn1 ,yn2}(z)

]
converging weakly to a Gaussian

process M1(z) +M3(z), where M1(z) and M3(z) are independent. Thus, the
mean function will be

E(M1(z) +M3(z)) = (9.14.25) + (9.14.26) + (9.14.27) + (9.14.28),

where

(κ− 1) · y1
∫
s3(z)x[x+ s(z)]−3dFy2(x)[

1 − y1
∫
s2(z)(x+ s(z))−2dFy2(x)

]2 (9.14.25)

+βx ·
y1 · s3(z) ·

∫ dFy2 (x)

x+s(z)

∫ x·dFy2(x)

(x+s(z))2

1 − y1
∫
s2(z)(x+ s(z))−2dFy2(x)

(9.14.26)

−(κ− 1) · s′(z)
y2 · [sy2

(−s(z))]3 · [1 + sy2
(−s(z))]−3

[
1 − y2 ·

(
s

y2
(−s(z))

1+sy2
(−s(z))

)2
]2 (9.14.27)
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−βy · s′(z) y2 · s3y2
(−s(z)) · (1 + sy2

(−s(z)))−3

1 − y2 · s2y2
(−s(z)) · (1 + sy2

(−s(z)))−2
(9.14.28)

and

Cov(M1(z1) +M3(z1),M1(z2) +M3(z2))

= (9.14.29) + (9.14.30) + (9.14.31)− κ

(z1 − z2)2
,

where

βx · y1 ·
∫
s′(z1) · x · dFy2(x)

(x+ s(z1))2

∫
s′(z2) · x · dFy2(x)

(x+ s(z2))2
(9.14.29)

κ · s
′(z1)s′(z2)s′y2

(−s(z1)) · s′y2
(−s(z2))

[sy2
(−s(z1)) − sy2

(−s(z2))]2
(9.14.30)

βy · y2 ·
s′(z1)s′y2

(−s(z1))
(1 + sy2

(−s(z1)))2
· s

′(z2)s′y2
(−s(z2))

(1 + sy2
(−s(z2)))2

. (9.14.31)

If we choose the contour C enclosing the interval [a, b], where a, b = (1∓h)2

(1−y2)2
,

we show that
∫
f(x)dG(x) = − 1

2πi

∫
C f(z)sG(z)dz with probability 1 for all

large n. In fact, if yn1 < 1, then by the exact spectrum separation theorem,
with probability 1, for all large p, all eigenvalues of the F -matrix fall within
the contour C and hence the equality above is true. When y1 > 1, by the exact
spectrum separation, the F -matrix has exactly p−n zero eigenvalues and all
the n positive eigenvalues fall in the contour C. The equality of

∫
f(x)dG(x) =

− 1
2πi

∫
C f(z)sG(z)dz remains true for all large p.

Then, we obtain that the CLT for the LSS of the F -matrix

(∫
f1(x)G̃n1,n2(x), · · · ,

∫
fk(x)dG̃n1,n2(x)

)

converges weakly to a Gaussian vector (Xf1 , · · · , Xfk
), where

EXfi = − 1

2πi

∮
fi(z)E(M1(z) +M3(z))dz

and

Cov(Xfi , Xfj )

= − 1

4π2

∮ ∮
fi(z)fj(z)Cov(M1(z1) +M3(z1),M1(z2) +M3(z2))dz1dz2.

Recall that s0(z) = sy2
(−s(z)). Then, by Lemma 9.16, we have

−
∮
fi(z) · (9.14.25)dz

2πi
=
κ− 1

4πi

∮
fi(z)d log

(
(1 − y2)s

2
0(z) + 2s0(z) + 1 − y1

(1 − y2)s20(z) + 2s0(z) + 1

)
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−
∮
fi(z) · (9.14.26)dz

2πi
=
βx · y1
2πi

∮
fi(z)

(s0(z) + 1)
3 ds0(z)

−
∮
fi(z) · (9.14.27)dz

2πi
=
κ− 1

4πi

∮
fi(z) d log

(
1 − y2 · s20(z)

(1 + s0(z))2

)

−
∮
fi(z) · (9.14.28)dz

2πi

=
βy

4πi

∮
fi(z)

(
1 − y2 · s20(z)

(1 + s0(z))2

)
d log

(
1 − y2 · s20(z)

(1 + s0(z))2

)

and

−
∮ ∮

fi(z1)fj(z2) · (9.14.29)dz

4π2
= −βx · y1

4π2

∮ ∮
fi(z1)fj(z2)ds0(z1)ds0(z2)

(m0(z1) + 1)2(s0(z2) + 1)2

−
∮ ∮

fi(z1)fj(z2) · (9.14.30)dz

4π2
= − κ

4π2

∮ ∮
fi(z1)fj(z2)ds0(z1)ds0(z2)

(s0(z1) − s0(z2))2

−
∮ ∮

fi(z1)fj(z2) · (9.14.31)dz

4π2
= −βy · y2

4π2

∮ ∮
fi(z1)fj(z2)ds0(z1)ds0(z2)

(s0(z1) + 1)2(s0(z2) + 1)2
.

The support set of the limiting spectral distribution Fy1,y2(x) of the F -matrix
is [

a =
(1 − h)2

(1 − y2)2
, b =

(1 + h)2

(1 − y2)2

]
, (9.14.32)

when y1 ≤ 1 or the interval above with a singleton {0} when y1 > 1. Because
−s(a) and −s(b) are real numbers outside the support set [(1 −√

y2)
2, (1 +√

y2)
2] of Fy2(x), then by (9.14.11) we know that sy2

(−s(a)) and sy2
(−s(b))

are real numbers that are the real roots of equations

a =
sy2

(−s(a)) · [sy2
(−s(a)) + 1 − y1][

sy2
(−s(a)) − 1

y2−1

]
· (y2 − 1)

and

b =
sy2

(−s(b)) · [sy2
(−s(b)) + 1 − y1][

sy2
(−s(b)) − 1

y2−1

]
· (y2 − 1)

.

So we obtain sy2
(−s(b)) = − 1+h

1−y2
and sy2

(−s(a)) = − 1−h
1−y2

. Clearly,

when z runs in the positive direction around the support interval [a, b] of
F {y1,y2}(x), sy2

(−s(z)) runs in the positive direction around the interval

I =

(
− 1 + h

1 − y2
, − 1 − h

1 − y2

)
.
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Let s0(z) = − 1+hrξ
1−y2

, where r > 1 but very close to 1, |ξ| = 1. Then, by
Lemma 9.16, we have

z = − s0(z)(s0(z) + 1 − y1)

(1 − y2)(s0(z) + 1
1−y2

)
.

This shows that when ξ runs a cycle along the unit circle anticlockwise, z
runs a cycle anticlockwise and the cycle encloses the interval [a, b], where

a, b = (1∓h)2

(1−y2)2
. Therefore, one can make r ↓ 1 as finding their values, so we

have

− 1

2πi

∮
fi(z) · (9.14.25)dz =

κ− 1

4πi
lim
r↓1

∮

|ξ|=1

fi

( |1 + hξ|2
(1 − y2)2

)

×
[

1

ξ − r−1
+

1

ξ + r−1
− 1

ξ −
√

y2

h

− 1

ξ +
√

y2

h

]
dξ (9.14.33)

− 1

2πi

∮
fi(z) · (9.14.26)dz =

βx · y1 · (1 − y2)
2

2πi · h2

×
∮

|ξ|=1

fi

( |1 + hξ|2
(1 − y2)2

)
1

(ξ + y2

h )3
dξ (9.14.34)

− 1

2πi

∮
fi(z) · (9.14.27)dz =

κ− 1

4πi

∮

|ξ|=1

fi

×
( |1 + hξ|2

(1 − y2)2

)[
1

ξ −
√

y2

hr

+
1

ξ +
√

y2

h

− 2

ξ + y2

h

]
dξ (9.14.35)

− 1

2πi

∮
fi(z) · (9.14.28)dz =

βy · (1 − y2)

4πi

∮

|ξ|=1

fi

( |1 + hξ|2
(1 − y2)2

)

×ξ
2 − y2

h2r2

(ξ + y2

hr )2

[
1

ξ −
√

y2

h

+
1

ξ +
√

y2

h

− 2

ξ + y2

h

]
dξ. (9.14.36)

By Lemma 9.16, we have

s′(z) = − (1 − y2)s
2
0(z) + 2s0 + 1

s20(z) · (s0(z) + 1)2
·s′0(z) =

(1 − y2)
2

hr
·

(
ξ +

√
y2

hr

)(
ξ −

√
y2

hr

)
ξ′

(
ξ + y2

hr

)2 (
ξ + 1

hr

)2

and

s(z) = − (1 − y2)
2

hr

ξ

(ξ + 1
hr )(ξ + y2

hr )
.

Making the variable change gives s0(zj) = − 1+hrjξj

1−y2
, where r2 > r1 > 1.

Because the quantities are independent of r2 > r1 > 1 provided they are
small enough, one can make r2 ↓ 1 when finding their values. That is,
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− 1

4π2

∮ ∮
fi(z1)fj(z2) · (9.14.29)dz1dz2 =

−βx · y1(1 − y2)
2

4π2 · h2

∮

|ξ1|=1

fi

(
|1+hξ1|2
(1−y2)2

)

(ξ1 + y2

h )2
dξ1

∮

|ξ2|=1

fj

(
|1+hξ2|2
(1−y2)2

)

(ξ2 + y2

h )2
dξ2 (9.14.37)

− 1

4π2

∮ ∮
fi(z1)fj(z2) · (9.14.30)dz1dz2 =

− κ

4π2
lim
r↓1

∮

|ξ1|=1

∮

|ξ2|=1

fi

(
|1+hξ1|2
(1−y2)2

)
fj

(
|1+hξ2|2
(1−y2)2

)

(ξ1 − rξ2)2
dξ1dξ2 (9.14.38)

− 1

4π2

∮ ∮
fi(z1)fj(z2) · (9.14.31)dz1dz2 = −βy · y2(1 − y2)

2

4π2 · h2

∮

|ξ1|=1

fi

(
|1+hξ1|2
(1−y2)2

)

(ξ1 + y2

h )2
dξ1

∮

|ξ2|=1

fj

(
|1+hξ2|2
(1−y2)2

)

(ξ2 + y2

h )2
dξ2. (9.14.39)

This finishes the proof of Theorem 9.14.

9.15 CLT for the LSS of a Large Dimensional
Beta-Matrix

As a consequence of the result on the F -matrix, we establish a CLT for
the LSS of the beta-matrix β{n1,n2} = S2(S2 + d · S1)

−1, a matrix function
of the F -matrix, where d is a positive number. If λ is an eigenvalue of the
beta-matrix β{n1,n2}, then 1

d

(
1
λ − 1

)
is an eigenvalue of the F -matrix S1S

−1
2 ,

therefore, the ESD of the beta-matrix is

F
{n1,n2}
β (x) = 1 − F {n1,n2}

(
1

d

(
1

x
− 1

)

−

)
, x > 0,

where F {n1,n2}(x−) is the left-limit at x; that is 1−F {n1,n2} ( 1
d

(
1
x − 1

))
− 1

p
if x is an eigenvalue of β{n1,n2}. Similarly, we obtain

F
{yn1 ,yn2}
β (x) = 1 − F {yn1 ,yn2}

(
1

d

(
1

x
− 1

)

−

)
.

Then, we have the following lemma.

Lemma 9.18. For the beta-matrix S2 (S2 + d · S1)
−1

, where d is a positive
number, we have
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(∫
f1(x)dĜn1,n2(x), · · · ,

∫
fk(x)dĜn1,n2(x)

)

= −
(∫

f1

(
1

dx+1

)
dG̃n1,n2(x), · · · ,

∫
fk

(
1

dx+1

)
dG̃n1,n2(x)

)
,

where Ĝn1,n2(x) = p
(
F

{n1,n2}
β (x) − F

{yn1 ,yn2}
β (x)

)
and F

{y1,y2}
β (x) is the

LSD of the beta-matrix.

As an application of the F -matrix, the following theorem establishes a
CLT for the LSS of a beta-matrix that is a matrix function of the F -matrix
and is useful in large dimensional data analysis.

Theorem 9.19. The LSS of the beta-matrix S2(S2 + dS1)
−1, where d is a

positive number, is

(∫
f1(x)dĜn1,n2(x), · · · ,

∫
fk(x)dĜn1,n2(x)

)
. (9.15.1)

Under the conditions in (a), (b) and (i), (ii), (9.15.1) converges weakly to a
Gaussian vector (Xf1 , · · · , Xfk

) whose means and covariances are the same

as in Theorem 9.14 except fi(x) and fj(x) are replaced by −fi

(
1

d·x+1

)
and

−fj

(
1

d·x+1

)
, respectively.

9.16 Some Examples

Here, we give asymptotic means and variance-covariances of some often-used
LSSs of the F -matrix when S1 and S2 are real variables. These results can
be used directly for many problems in multivariate statistical analysis.

Example 9.20. If f = log(a+ bx), f ′ = log(a′ + b′x), and a, a′, b, b′ > 0, then

EXf =
1

2
log

(
(c2 − d2)h2

(ch− y2d)2

)

and

Cov(Xf , Xf ′) = 2 log

(
cc′

(cc′ − dd′)

)
,

where c > d > 0, c′ > d′ > 0 satisfying c2 + d2 = a(1 − y2)
2 + b(1 + h2),

c
′2 + d

′2 = a′(1 − y2)
2 + b′(1 + h2), cd = bh, and c′d′ = b′h.

Proof. In fact, we have

E(Xf ) = lim
r↓1

1

4πi

∮

|ξ|=1

log(|c+ dξ|2)
(

1

rξ + 1
+

1

rξ − 1
− 2

ξ + h−1y2

)
dξ
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= lim
r↓1

1

4πi

∮

|ξ|=1

log(|c+ dξ−1|2)
(

1

rξ−1 + 1
+

1

rξ−1 − 1

− 2

ξ−1 + h−1y2

)
ξ−2dξ

= lim
r↓1

{
1

8πi

∮

|ξ|=1

log(|c+ dξ|2)
(

1

rξ + 1
+

1

rξ − 1
− 2

ξ + h−1y2

+
1

ξ(r + ξ)
+

1

ξ(r − ξ)
− 2

ξ(1 + h−1y2ξ)

)
dξ

}

= lim
r↓1

ℜ
{

1

8πi

∫

|ξ|=1

log((c+ dξ)2)

(
1

rξ + 1
+

1

rξ − 1
− 2

ξ + h−1y2

+
1

ξ(r + ξ)
+

1

ξ(r − ξ)
− 2

ξ(1 + h−1y2ξ)

)
dξ

}

=
1

4

(
log[(c2 − d2)2] − 2 log[(c− y2dh

−1)2]

)
=

1

2
log

(
(c2 − d2)h2

(ch− y2d)2

)
.

Furthermore,

Cov(Xf , Xf ′)

= − lim
r↓1

1

2π2

∮ ∮

|ξ1|=|ξ2|=1

log(|c+ dξ1|2) log(|c′ + d′ξ2|2)
dξ1dξ2

(ξ1 − rξ2)2

= − lim
r↓1

1

4π2

∮

|ξ1|=1

log(|c+ dξ1|2)dξ1
[ ∮

|ξ2|=1

(
log((c′ + d′ξ2)

2) + log((c′ + d′ξ̄2)
2)
) dξ2

(ξ1 − rξ2)2

]

(
since log(|c′ + d′ξ2|2) =

1

2

[
log((c′ + d′ξ2)

2) + log((c′ + d′ξ̄2)
2)
])

= − lim
r↓1

1

4π2

∮

|ξ1|=1

log(|c+ dξ1|2)dξ1
[ ∮

|ξ2|=1

log((c′ + d′ξ2)
2

)

(
1

(ξ1 − rξ2)2
+

1

(ξ1ξ2 − r)2

)
dξ2

]
(transforming ξ−1

2 = ξ̄2 → ξ2)

= lim
r↓1

d′

πi

∮

|ξ1|=1

1

c′r2 + d′rξ1
log(|c+ dξ1|2)dξ1(second term is analytic)

=
d′

2πi

∮

|ξ1|=1

1

c′ + d′ξ1

(
log((c+ dξ1)

2) + log((c+ dξ̄1)
2)
)
dξ1

=
d′

2πi

∮

|ξ1|=1

log((c+ dξ1)
2)

(
1

c′ + d′ξ1
+

1

ξ1(c′ξ1 + d′)

)
dξ1

= log(c2) − log(c− dd′/c′)2 = 2 log

(
cc′

cc′ − dd′

)
.
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The proof is complete.

Example 9.21. For any positive integers k ≥ r ≥ 1 and f(x) = xr and g(x) =
xk, we have

E(Xf )

=
1

4πi
lim
l↓1

∮

|ξ|=1

(1 + hξ)r(1 + hξ−1)r

(1 − y2)2r

(
1

ξ + l−1
+

1

ξ − l−1
− 2

ξ + y2

hl

)
dξ

=
1

2(1 − y2)2r

[
(1 − h)2r + (1 + h)2r − 2(1 − y2)

r

(
1 − h2

y2

)r

−
∑

i≤r, j≥0, k≥0
i−j=2k+1

(
r

j

)(
r

i

)
hj+i + 2

∑

i≤r, j≥0, k≥0
i−j=k+1

(
r

j

)(
r

i

)
hj+i

(
− h

y2

)k−1
]

and

Cov(Xf , Xg)

= − 1

2π2
lim
l↓1

∮∮

|ξ1|=|ξ2|=1

|1 + hξ1|2r · |1 + hξ2|2k

(1 − y2)2r+2k · (ξ1 − lξ2)2
dξ1dξ2

=
2 · r! · k!

(y2 − 1)2r+2k

r−1∑

j=0

(j + 1)·







[ 1+j+r
2 ]∑

l3=j+1

(y1 + y2 − y1y2 + 1)r−2l3 · (y1 + y2 − y1y2)
l3

(−1 − j + l3)! · (1 + j + r − 2l3)! · l3!




×




[ k−j−1
2 ]∑

l′3=0

(y1 + y2 − y1y2 + 1)k−2l′3 · (y1 + y2 − y1y2)
l′3

(j + 1 + l′3)! · (k − j − 1 − 2l′3)! · l′3!







,

where [a] is the integer part of a; that is, the maximum integer less than or
equal to a.

Example 9.22. If f = ex, then

E(Xf ) =
1

2

[
e

(1−h)2

(1−y2)2 + e
(1+h)2

(1−y2)2 − 2e

(
1− h2

y2

)
(1−y2)2

−e
2

(1−y2)2
∑

j, k, l≥0
j−k=2l+1

hj+k

j!k!(1 − y2)2j+2k

−2e
2

(1−y2)2
∑

j, k, l≥0
j−k=2l+1

hj+k

j!k!(1 − y2)2j+2k

(
− h

y2

)l−1
]
.
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Var(Xf ) = − 1

2π2
lim
l↓1

∮

|ξ1|=1

∮

|ξ2|=1

e
|1+hξ1|2

(1−y2)2 · e
|1+hξ2|2

(1−y2)2

(ξ1 − lξ2)2
dξ1dξ2

=

+∞∑

j, k=1

1

j!k!

[
lim
1↓1

(
− 1

2π2

∮

|ξ1|=1

∮

|ξ2|=1

|1 + hξ1|2j · |1 + hξ2|2k

(1 − y2)2j+2k · (ξ1 − rξ2)2
dξ1dξ2

)]
.



Chapter 10

Eigenvectors of Sample Covariance
Matrices

Thus far, all results in this book have been concerned with the limiting be-
havior of eigenvalues of large dimensional random matrices. As mentioned in
the introduction, the development of RMT has been attributed to the inves-
tigation of the energy level distribution of a large number of particles in QM;
in other words, the original interests of RMT were confined to eigenvalue dis-
tributions of large dimensional random matrices. In the beginning, most of
the important results in RMT were related to a certain deterministic behav-
ior, to the extent that their empirical distributions tend toward nonrandom
ones as the dimension tends to infinity. Moreover, this behavior is invariant
under the distribution of the variables making up the matrix.

Along with the rapid development and wide application of modern com-
puter techniques in various disciplines, large dimensional data analysis has
sprung up, resulting in wide application of the theory of spectral analysis of
large dimensional random matrices to various areas, such as statistics, sig-
nal processing, finance, and economics. Stemming from practical applications,
RMT has deepened its interest toward the investigation of second-order accu-
racy of the ESD, as introduced in the previous chapter. Meanwhile, practical
applications of RMT have also raised the need to understand the limiting
behavior of eigenvectors of large dimensional random matrices. For example,
in PCA (principal component analysis), the eigenvectors corresponding to
a few of the largest eigenvalues of random matrices (that is, the directions
of the principal components) are of special interest. Therefore, the limiting
behavior of eigenvectors of large dimensional random matrices becomes an
important issue in RMT.

However, the investigation on eigenvectors has been relatively weaker than
that on eigenvalues in the literature due to the difficulty of mathematical for-
mulation since the dimension increases with the sample size. In the literature
there were found only five papers, by Silverstein, up to 1990, concerning real
sample covariance matrices, until Bai, Miao, and Pan [22]. In this chapter,
we shall introduce some known results and some conjectures.

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,
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10.1 Formulation and Conjectures

As an introduction, we first consider the behavior of eigenvectors of the p×p
sample covariance matrix Sp studied in Chapter 3 when the xij are real,
standardized, and iid. We will examine properties on the orthogonal p × p
matrix Op, with columns containing the eigenvectors of S, which we will call
the eigenmatrix of Sp, when viewed as a random element in Op, the space
of p× p orthogonal matrices. This space is measurable when considered as a
metric space with the metric taken as the operator norm of the difference of
two matrices. Ambiguities do arise in defining the eigenmatrix of Sp, due to
the fact that there are 2p different choices by changing the directions of the
column eigenvectors. Whenever an eigenvalue has multiplicity greater than
1, the eigenmatrix will have infinitely many different choices for a given Sp.
However, it is later shown that there is a natural way to define a measure νp

on Op for which we can write Sp in its spectral decomposition OpΛpO
′
p with

Λp diagonal, its diagonal entries being the eigenvalues of Sp, arranged, say,
in ascending order, Op orthogonal, columns consisting of the eigenvectors of
Sp, and Op being νp-distributed.

We will investigate the behavior of Op both with respect to its random
versus deterministic tendencies and possible nondependence on the distribu-
tion of x11. The former issue is readily settled when one considers x11 to be
N(0, 1). Indeed, in this case, nSp is a Wishart matrix, and the behavior of
its eigenvectors is known. Before a description of this behavior can be made,
some further definitions and properties need to be introduced.

10.1.1 Haar Measure and Haar Matrices

Besides being measurable, Op forms a group under matrix multiplication. It
is also a compact topological group: it is compact and the mappings f1 : Op×
Op → Op and f2 : Op → Op defined by f1(O1,O2) = O1O2 and f2(O) = O−1

are continuous. The space Op is typically called the p× p orthogonal group.
Because of these properties on Op, there exists a unique probability measure
hp, called the uniform or Haar measure, defined as follows.

Definition 10.1. The probability measure hp defined on the Borel σ-field
Bop of Borel subsets of Op is called Haar measure if, for any Borel setA ∈ Bop

and orthogonal matrix O ∈ Op, hp(OA) = hp(A), where OA denotes the set
of all OA, A ∈ A.

If a p-dimensional random orthogonal matrix Hp is distributed according
to Haar measure hp, then it is called a p-dimensional Haar matrix.

(Haar measures defined on general topological groups can be found in Halmos
[145].) It is remarked here that the definition of Haar measure is equivalent
to hp(AO) = hp(A), with AO analogously defined (Halmos [145]).
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Now, we quote some simple properties of Haar matrices.

Property 1. If Hp is hp-distributed, then for any unit p-vector xp, yp =
Hpxp is uniformly distributed on the unit p-sphere.

Proof. For any orthogonal p×p matrix O, Oyp = OHxp
D
= Hxp = yp. Thus

we have the distribution of yp invariant under orthogonal transformations.
Using the fact that this uniquely characterizes the uniform distribution on
the unit p-sphere (see, for example, Silverstein [265]), we get our result.

Property 2. If Hp is hp-distributed, then H′
pis also hp-distributed.

Proof. Let O ∈ Op, A be a Borel subset of Op, and A′ denote the set of all
transposes of elements in A. Then

P(OH′
p ∈ A) = P(Hp ∈ A′O) = hp(A

′) = P(Hp ∈ A′) = P(H′
p ∈ A),

which implies H′
p is Haar-distributed.

Property 3. If Z is a p × p matrix with entries iid N(0, 1), then U =
Z(Z′Z)−1/2 and V = (ZZ′)−1/2Z are hp-distributed.

The proof for U follows from the fact that, for any orthogonal matrix O,

OU = OZ(Z′Z)−1/2 = OZ((OZ)′OZ)−1/2 D
= Z(Z′Z)−1/2 = U. The proof

for V is similar.

Property 4. Assume that on a common probability space, for each p, Hp is
hp-distributed and xp is a unit p-vector. Let yp = (y1, · · · , yp)

′ = H′
pxp and

f a bounded continuous function. Then, as p→ ∞,

1

p

p∑

j=1

f(
√
pyj) →

∫
f(x)ϕ(x)dx, a.s., (10.1.1)

where ϕ(x) is the density of N(0, 1).

Proof. Let Φ denote the standard normal distribution function. By Proper-
ties 1 and 2, yp is uniformly distributed over the unit p-sphere, and hence
its distribution is the same as zp/‖zp‖, where zp = (z1, · · · , zp)

′, whose en-
tries are iid N(0, 1). We may assume yp = zp/‖zp‖. Consider the empirical
distribution function of the entries of

√
pyp,

Fp(x) =
1

p

p∑

i=1

I(−∞,x](
√
pyi) =

1

p

p∑

i=1

I(−∞,(‖zp‖/
√

p)x](zi),

IA denoting the indicator function on the set A. By the strong law of large
numbers, we have ‖zp‖/√p a.s.−→ 1. Therefore, for any ǫ > 0, we have with
probability 1
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lim inf
p

1

p

p∑

i=1

I(−∞,x−ǫ](zi) ≤ lim inf
p

Fp(x)

≤ lim sup
p

Fp(x) ≤ lim sup
p

1

p

p∑

i=1

I(−∞,x+ǫ](zi).

By the strong law of large numbers, the two extremes are equal almost surely
to Φ(x− ǫ) and Φ(x + ǫ), respectively. Since ǫ is arbitrary, we get

Fp
D→ Φ, a.s., as p→ ∞,

where
D→ denotes weak convergence on probability measures on R. The result

follows.

Property 5. Let D([0, 1]) denote the space of functions on [0, 1] with discon-
tinuities of the first kind (right-continuous with left-hand limits, abbreviated
to rcll), endowed with the Skorohod metric. If yp is defined as in Property 4
for an arbitrary unit xp ∈ Rp, then as p→ ∞, the random element

Xp(t) =

√
p

2

[pt]∑

j=1

(
|y2

j | −
1

p

)
D→W0, (10.1.2)

where
D→ denotes weak convergence on D[0, 1], [a] is the integer part of a,

and W0 is a Brownian bridge (also called tied down Brownian motion).

Proof. As in the previous property, we can assume yp = zp/‖zp‖, the entries
of zp being iid N(0, 1). Therefore,

Xp(t) =

√
p

2

[pt]∑

j=1

( z2
j

‖z‖2
− 1

p

)

=
p

‖z‖2

1√
2

1√
p

(
[pt]∑

j=1

(z2
j − 1) − [pt]

p

p∑

k=1

(z2
k − 1)

)
.

Using Donsker’s theorem and consequences of measurable mappings on
D[0, 1], along with the fact that ‖z‖2/p→ 1, a.s., with W denoting standard

Brownian motion, we get Xp
D→W (t) − tW (1) = W0(t).

Property 6. Let nSp be a p × p standard Wishart matrix with degrees of
freedom n and Op be the eigenmatrix of Sp. Assume also that the signs of
the first row of Op are iid, each symmetrically distributed. Then Op is hp-
distributed.

We refer the reader to Anderson [5].
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10.1.2 Universality

We then see from the last property that when the entries making up Sp are
N(0, 1), Op, the eigenmatrix of Sp, is Haar-distributed. Thus, for large p,
in contrast to the eigenvalues of Sp behaving in a deterministic manner, the
eigenvectors display completely chaotic behavior from realization to realiza-
tion. Indeed, Hp is equally likely to be contained in any ball in Op having
the same radius (since any ball can be transformed to any other ball with the
same radius by multiplying each element of the first ball with an orthogonal
matrix).

As is seen for the eigenvalues of large dimensional random matrices, their
limiting properties under certain moment conditions made on the underlying
distributions are the same as when the entries are normally distributed. Thus,
it is conceivable that the same is true in some sense for eigenmatrices of real
sample covariance matrices as p/n→ y > 0. We shall address the possibility
that, for large p, and x11 not N (0,1), νp (the distribution of Op) and hp are
in some way “close” to each other. We use the term asymptotic Haar or Haar

conjecture to characterize this imprecise definition on sequences {µp} where,
for each p, µp is a Borel probability measure on Op.

Formal definitions of asymptotic Haar on {µp} can certainly be made. For
example, we could require for all ǫ > 0 that we have, for all p sufficiently large,
|µp(A) − hp(A)| < ǫ for every Borel set A ⊂ Op. However, because atomic
(discrete) measures would not satisfy this definition, it would eliminate all
µp arising from discrete x11. Let Sp,o denote the collection of all open balls
in Op. Then an appropriate definition of asymptotic Haar that would not
immediately eliminate atomic µp could be the following: for every ǫ > 0, we
have for all p sufficiently large |µp(A) − hp(A)| < ǫ for every A ∈ Sp,o.

In view of Properties 1 and 2, as an indication that {µp} is asymptotic
Haar, one may consider the vector yp = O′

pxp, ‖xp‖ = 1, when Op is µp-
distributed, and define asymptotic uniformity on the unit p-sphere, for ex-
ample, by requiring for any ǫ > 0 and open ball A of the unit p-sphere that
we have |P(yp ∈ A) − sp(A)| < ǫ for all sufficiently large p, where sp is the
uniform probability measure on the unit p-sphere.

Instead of seeking a particular definition of asymptotic Haar or its con-
sequences, attention should be drawn to the properties the sequence {hp}
possesses, which are listed in the previous section, in particular Properties
4 and 5. They involve sequences of mappings, which have potential analyt-
ical tractability from Sp, and map the Op’s into a common space. Property
4 maps Op to the real line and considers nonrandom limit behavior. Simu-
lations strongly suggest that the result holds for more general {νp}, but a
strategy to prove it has not been made.

The remainder of this chapter will focus on Property 5. There the mappings
from the Op’s go into D[0, 1] and we consider distributional behavior. We
convert this property to one on general {µp}. We say that {µp} satisfies
Property 5′ if for Op µp-distributed we have for any sequence {xp}, xp ∈ Rp of
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unit vectors, with Xp defined as in Property 5 from the entries of yp = O′
pxp,

as p→ ∞,

Xp
D→W0.

10.2 A Necessary Condition for Property 5′

It seems reasonable to consider Property 5′ as a necessary condition for
asymptotic Haar. However, when investigating the eigenvectors of the sample
convariance matrix Sp, we get the following somewhat surprising result.

Theorem 10.2. Assume that E(x4
11) <∞. If {νp} satisfies Property 5′, then

E(x4
11) = 3.

Proof. Since we are dealing with distributional behavior, we may assume the
xij stem from a double array of iid random variables. With λmax denoting
the largest eigenvalue of Sp, we then have from Theorem 5.8

lim
p→∞

λmax = (1 +
√
y)2 a.s. (10.2.1)

We present here a review of the essentials of the Skorohod topologies on
two metric spaces of rcll functions without explicitly defining the metric. On
D[0, 1], elements xn in this set converge to x in this set if and only if there
exist functions λn : [0, 1] → [0, 1], continuous and strictly increasing with
λn(0) = 0, λn(1) = 1, such that

lim
n→∞

sup
t∈[0,1]

max(|xn(λn(t)) − x(t)|, |λn(t) − t|) = 0.

Billingsley [57] introduces D[0, 1] in detail.
Let D0[0,∞) denote the space of rcll functions x(t) defined on [0,∞)

such that limt→∞ x(t) exists and is finite. Elements xn converge to x in its
topology if and only if there exist functions λn : [0,∞) → [0,∞), continuous
and strictly increasing with λn(0) = 0, limt→∞ λn(t) = ∞, such that

lim
n→∞

sup
t∈[0,∞)

max(|xn(λn(t)) − x(t)|, |λn(t) − t|) = 0

(see Lindvall [198]).
For both D[0, 1] and D0[0,∞), it is straightforward to verify that when the

limiting x is continuous, convergence in the Skorohod topology is equivalent
to uniform convergence.

We let D [0, 1] and D0[0,∞) denote the respective σ-fields of Borel sets of
D[0, 1] and D0[0,∞).

From Theorem 3.6, we know that FSp , the ESD of Sp, converges a.s. in
distribution to Fy(x) defined in (3.1.1) (with σ2 = 1), the standard M-P law.
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Since the limit is continuous on [0,∞), this convergence is uniform:

sup
t∈[0,∞)

|FSp(t) − Fy(t)| a.s.−→ 0 as p→ ∞.

It follows then that

FSp a.s.−→ Fy as p→ ∞ in D0[0,∞). (10.2.2)

Let D0[0,∞) denote the collection of all subprobability distribution func-
tions on [0,∞). Clearly D0[0,∞) ⊂ D0[0,∞) and is closed in the Skorohod
topology. Let D0[0,∞) denote its σ-field of Borel sets.

Assume now that {νp} satisfies Property 5′. We have that (Xp, F
Sp) are

random elements of the product space D[0, 1] ×D0[0,∞). Since the limit of
the FSp is nonrandom, we have from (10.2.2) and Theorem 4.4 of Billingsley
[57] that

(Xp, F
Sp)

D→ (W0, Fy) as p→ ∞. (10.2.3)

The mapping ψ : D[0, 1] × D0[0,∞) → D0[0,∞) defined by ψ(x, ϕ) =
x ◦ ϕ is well defined, and using the same argument as in Billingsley [57],
p. 232, it is measurable; that is, ψ−1D0[0,∞) ⊂ D [0, 1] × D0[0,∞). (Note
that the proof of measurability relies on the fact that the mappings πt1,...,tk

:
D0[0,∞) → Rk defined by πt1,...,tk

(x) = (x(t1), . . . , x(tk)) are measurable for
all k and nonnegative t1, . . . , tk, and their inverse images over all Borel sets
in Rk generate D0; see Lindvall [198] p. 117.) Using the same argument as
in Billingsley [57], p. 145, we see that the mapping ψ is continuous whenever
both x and ϕ are continuous.

For a positive integerm ≤ p, letD(p,m) denote the p×pmatrix containing
zeros, except for 1’s in its first m diagonal positions. We then have

ψ(Xp, F
Sp)(x) = Xp(F

Sp(x)) =

√
p√
2
(x′

pOpD(p, [pFSp(x)])O′
pxp − FSp(x)).

We see that x′
pOpD(p, [pFSp(x)])O′

pxp is a (random) probability distri-
bution function, the mass points being the eigenvalues of Sp, while the mass
values are the squares of the components of O′

pxp.
Since P(W0 ∈ C[0, 1]) = 1, where C[0, 1] denotes the space of continu-

ous functions on [0, 1] (Billingsley [57]) and Fy is continuous, we get from
Corollary 1 to Theorem 5.1 of Billingsley

Xp(F
Sp)

D→ W0(Fy(x))

≡ W y
x in D0[0,∞) as p→ ∞. (10.2.4)

For every positive integer r, using integration by parts, we have

√
p√
2
(x′

pS
r
pxp − (1/p)trSr

p) =

∫ ∞

0

xrdXp(F
Sp(x))
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= −
∫ ∞

0

rxr−1Xp(F
Sp(x))dx, (10.2.5)

where we have used the fact that, with probability 1, Xp(F
Sp(x)) is zero

outside a bounded set.
It is straightforward to verify that, for any b > 0, the mapping that takes

φ ∈ D0[0,∞) to
∫ b

0
rxr−1yφ(x)dx is continuous. Therefore, from (10.2.4) and

Corollary 1 to Theorem 5.1 of Billingsley [57], we have

∫ b

0

rxr−1Xp(F
Sp(x))dx

D→
∫ b

0

rxr−1W y
x dx p→ ∞. (10.2.6)

From (10.2.1), we see that when b > (1 +
√
y)2

∫ ∞

0

rxr−1Xp(F
Sp(x))dx −

∫ b

0

rxr−1Xp(F
Sp(x))dx

a.s.−→ 0 as p→ ∞.

This, (10.2.5), and (10.2.6) yield

√
p√
2
(x′

pS
r
pxp − (1/p)trSr

p)
D→ −

∫ b

0

rxr−1W y
x dx = −

∫ (1+
√

y)2

(1−√
y)2

rxr−1W y
x dx

(10.2.7)
as p→ ∞. The limiting distribution, being the limit of Riemann sums, each
sum being Gaussian, must necessarily be Gaussian, with mean 0 and covari-
ance

σ2
y,r1,r2

=

∫∫ (1+
√

y)2

(1−√
y)2

r1r2s
r1−1tr2−1[Fy(s ∧ t) − Fy(s)Fy(t)]dsdt,

where Fy is the distribution function of the M-P law with index y. By the
extended Hoeffding lemma,1 we conclude that

1 The Hoeffding [150] lemma says that

Cov(X, Y ) =

∫∫
[P(X ≤ x, Y ≤ y) − P(X ≤ x)P(Y ≤ y)]dxdy.

From this, for any square integrable differentiable functions f, g, if both are increasing, by
letting x → f(x), y → g(y),

Cov(f(X), g(Y ))

=

∫∫
[P(f(X) ≤ x, g(Y ) ≤ y) − P(f(X) ≤ x)P(g(Y ) ≤ y)]dxdy

=

∫ ∫
f ′(x)g′(y)[P(X ≤ x, Y ≤ y) − P(X ≤ x)P(Y ≤ y)]dxdy.

For functions of bounded variation, the equality above can be proved by writing f and g

as differences of two increasing functions.
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σ2
y,r1,r2

= Cov(M r1
y ,M r2

y ) = βr1+r2 − βr1βr2 , (10.2.8)

where My is the random variable distributed according to the M-P law and

βr =

r−1∑

j=0

1

j + 1

(
r

j

)(
r − 1

j

)
yj.

Especially, when r = 1, σ2
y,1,1 = β2 − β2

1 = y. Hence, we have

−
∫ (1+

√
y)2

(1−√
y)2

W y
x dx = N(0, y). (10.2.9)

With xp = (1, 0, . . . , 0)′, by ordinary CLT, we have

√
p√
2
(x′

pSpxp − 1)
√
p/n

1√
2n

∑

j

(x2
1j − 1)

D→ N(0, (y/2)(E(x4
11) − 1)).

Because Property 5′ requires that the limits be independent of the choice of
xp, we conclude that y

2 (Ex4
11 − 1) = y, which implies Ex4

11 = 3. The proof of
the theorem is complete.

Thus property 5′ requires, under the assumption of a finite fourth moment,
the first, second, and fourth moments of x11 to be identical to those of a
Gaussian variable. This suggests the possibility that only Wishart Sp will
satisfy this property, which at present has not been established.

We see from the proof that Property 5′ and E(x4
11) < ∞ yield (10.2.7),

which can be viewed as the convergence of moments of Xp(F
Sp). It is worth-

while to consider whether this limiting result is true, partly for its own con-
tribution in displaying eigenvector behavior but mainly because it will be
shown later to be important in verifying weak convergence of Xp under cer-
tain assumptions on xp and the distribution of x11. The next section gives a
complete analysis of (10.2.7).

10.3 Moments of Xp(F
Sp)

In this section, we will prove the following theorem.

Theorem 10.3. Assume no a priori conditions on the moments of x11.
(a) We have

{
√
p/2(x′

pS
r
pxp − (1/p)trSr)}∞r=1

D→
{
−
∫ (1+

√
y)2

(1−√
y)2

rxr−1W y
x dx

}∞

r=1
(10.3.1)

in R∞ as p→ ∞ for every sequence xp, xp ∈ Rp ‖xp‖ = 1 if and only if
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E(x11) = 0, E(x2
11) = 1, E(x4

11) = 3. (10.3.2)

(b) If
∫∞
0 xdXp(Fp(x)) is to converge in distribution to a random variable

for each of the xp sequences

{(1, 0, . . . , 0)′}, {(1/√p, . . . , 1/√p)′},

then necessarily E(x4
11) <∞ and E(x11) = 0.

(c) If E(x4
11) <∞ but

E(x11 − E(x11))
4

Var2(x11)
6= 3,

then there exist sequences {xp} of unit vectors for which

(∫ ∞

0

xdXp(Fp(x)),

∫ ∞

0

x2dXp(Fp(x))

)

fails to converge in distribution.

The proof will be given in the following subsections.

10.3.1 Proof of (10.3.1) ⇒ (10.3.2)

Assume (10.3.1). By choosing xp = (1, 0, · · · , 0)′, by (10.3.1) with r = 1 and
(10.2.9), we have

(p− 1)√
2pn

n∑

j=1

x2
1j −

1√
2pn

p∑

i=2

n∑

j=1

x2
ij

D→ N(0, y). (10.3.3)

By necessary and sufficient conditions for the CLT of sums of independent
random variables (see Loève [200], Section 23.5, p. 238), we conclude that

(p− 1)2

2np
Var(x2

11I(|x2
11| <

√
n)) +

(p− 1)

2pn
Var(X2

11I(|x2
11| <

√
pn)) → y.

(10.3.4)

Noting (p−1)2

2np → y
2 , the limit above implies that Var(X2

11) = 2 and then

Ex4
11 <∞.
Next, consider the convergence for xp = 1/

√
p. We will have

1√
2pn

∑

i 6=k≤p

n∑

j=1

(xijxkj)
D→ N(0, y). (10.3.5)
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The expectation and variance of the left-hand side are
√

p(p−1)√
2

(Ex11)
2 and

p−1
n Var(x11x12), which imply Ex11 = 0 for otherwise the LHS tends to infin-

ity.
Finally, consider the convergence for xp = 1√

2
(1, 1, 0, · · · , 0)′. Then, by

(10.3.1), we have

1√
2pn

[
p− 2

2

∑

i=1,2
j≤n

(x2
ij −Ex11)−

∑

3≤i≤p
j≤n

(x2
ij −Ex2

11)+p

n∑

j=1

x1jx2j

]
D→ N(0, y).

On the other hand, by the CLT, we know that the LHS tends to normal with
mean zero and variance y

2 (1+(Ex2
11)

2). Equating it to y, we obtain Ex2
11 = 1.

Then, by Var(x2
11) = 2 shown before, we obtain Ex4

11 = 3. This completes
the proof of (10.3.2).

10.3.2 Proof of (b)

When
∫∞
0 xdXp(Fp(x)) converges in distribution to a random variable for

xp = (1, 0, . . . , 0)′, we conclude that the LHS of (10.3.3) tends to a random
variable in distribution that must be an infinitely divisible law. By Section
23.4, p. 323, of Loève [200], we conclude that the LHS of (10.3.4) tends to a
nonnegative constant. By the same reasoning as argued in the last subsection,
we conclude that Ex4

11 <∞.
When

∫∞
0 xdXp(Fp(x)) with xp = 1/

√
p converges in distribution to a

random variable, we conclude that the LHS of (10.3.5) tends to a random
variable in distribution. Similarly, by considering its mean and variance, we
obtain Ex11 = 0. This completes the proof of (b).

10.3.3 Proof of (10.3.2) ⇒ (10.3.1)

Assume (10.3.2). As in Theorem 10.2, we can assume (10.2.1). We begin
by truncating and centralizing the xij . Following the truncation given in
Subsection 5.2.1, we may select a sequence δ = δn → 0 and let x̂ij = x̂ij(p) =

xijI(|xij | ≤ δ
√
p) and Ŝp = (1/n)X̂pX̂

′
p, where X̂p = (x̂ij). Then we can

prove that with probability 1, for all large p, Sp = Ŝp (that is, for any
measurable function fp on p× p matrices),

|fp(Sp) − fp(Ŝp)| a.s.−→ 0 as p→ ∞. (10.3.6)

Let S̃p = (1/n)(X̂p − E(x̂11)1p1
′
n)(X̂p − E(x̂11)1p1

′
n)′, where 1m denotes

the m-dimensional vector consisting of 1’s. By Theorem A.46, we have
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max
j≤p

√
p|λ1/2

j (Ŝp) − λ
1/2
j (S̃p)| ≤ ‖(

√
p/n)E(x̂11)1p1

′
n‖

= p|E(x̂11)| → 0 as p→ ∞, (10.3.7)

where we have used the fact that E(x11) = 0, E(x4
11) < ∞ implies E(x11) =

o(p−3/2). Consequently, λmax(S̃p)
a.s.−→ (1 +

√
y)2 as p→ ∞.

It is straightforward to show for any p×pmatrices A, B, and integer r ≥ 1
that ‖(A + B)r − Br‖ ≤ r‖A‖(‖A‖ + ‖B‖)r−1. Therefore, with probability
1, for all large p,

√
p|x′

p(S̃p)
rxp − x′

p(Ŝp)
rxp| ≤

√
p‖(S̃p)

r − (Ŝ′
p)

r‖
≤ √

pr‖S̃p − Ŝp‖(λmax(S̃p) + 2λmax(Ŝp))
r−1

≤ √
pr3r−1(1 +

√
y)2r−2‖S̃p − Ŝp‖.

We also have for any p× n matrices A, B of the same dimension ‖AA′ −
BB′‖ ≤ ‖A − B‖(‖A‖ + ‖B‖). Therefore,

√
p‖S̃p − Ŝp‖ ≤ √

p‖(1/√n)E(x̂11)1p1
′
n‖(λ1/2

max(S̃p) + λ1/2
max(Ŝp))

= p|E(x̂11)|(λ1/2
max(S̃p) + λ1/2

max(Ŝp))
a.s.−→ 0 as p→ ∞.

Therefore

√
p|x′

p(S̃p)
rxp − x′

p(Ŝp)
rxp| a.s.−→ 0 as p→ ∞. (10.3.8)

Let λ̃i, λ̂i denote the respective eigenvalues of S̃p, Ŝp, arranged in nonde-
creasing order. We have

√
p|(1/p)tr(S̃p)

r − (1/p)tr(Ŝp)
r| ≤ √

pmax
i≤p

|λ̃r
i − λ̂r

i |

≤ 2r
√
pmax

i≤p
|λ̃1/2

i − λ̂1/2
i |
(

max(λmax(S̃p), λmax(Ŝp))
) 1

2 (2r−1) a.s.−→ 0 (10.3.9)

as p→ ∞. Therefore, by (10.3.6), (10.3.7), (10.3.8), and (10.3.3), we have for
each integer r ≥ 1,

|
√
p/2(x′

pS
r
pxp − (1/p)tr(Sr

p)) −
√
p/2(x′

pS̃
r
pxp − (1/p)tr(S̃r

p))|
a.s.−→ 0

as p→ ∞. We see then that, returning to the original notation, it is sufficient
to prove (10.3.2) assuming E(x11) = 0, |x11| ≤ δ

√
p, E(x2

11) → 1, E(x4
11) → 3,

as p→ ∞. By the existence of the fourth moment, we also have

E(|x11|ℓ) = o(p(ℓ−4)/2) for ℓ > 4. (10.3.10)

We proceed with verifying two lemmas.
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Lemma 10.4. After truncation, for any integer r ≥ 1, p−1/2(tr(Sr
p) −

E(tr(Sr
p)))

i.p.−→ 0 as p→ ∞.

Proof. After truncation, by (3.2.4), we have E|tr(Sr
p) − E(tr(Sr

p))|4 = o(p2),
which proves the lemma.

Lemma 10.5. For any integer r ≥ 1,
√
p(E(x′

pS
r
pxp)−E((1/n)tr(Sr

p))) → 0
as p→ ∞.

Proof. Using the fact that the diagonal elements of Sr
p are identically dis-

tributed, we have

nr

(
E(x′

pS
r
pxp) − E

(
1

p
tr(Sr

p)

))
=
∑

i6=j

xixj

∑

i2,...,ir

k1,...,kr

E(xik1xi2k1 · · ·xjkr ).

(10.3.11)
In accordance with Subsection 3.1.2, we draw a chain graph of 2r edges,

it → kt and kt → it+1, where i1 = i, ir+1 = j, and t = 1, · · · , r. An example
of such a graph is shown in Fig. 10.1.

j

=
1

ii

k k k3 42k

i 3 42i

Fig. 10.1 A chain graph.

If there is a single edge, the corresponding term is 0. Therefore, we need
only consider graphs that have no single edges. Suppose there are ℓ noncoin-
cident edges with multiplicities ν1, · · · , νℓ. We have the constraint that νt ≥ 2
and ν1 + · · · + νℓ = 2r. Because the vertices i and j are the initial and end
vertices of the chain and i 6= j, the degrees of the vertices i and j must be
odd. Hence, there is at least one noncoincident edge connecting each of the
vertices i and j and having a multiplicity ≥ 3. Therefore, the term is bounded
by
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B(δ
√
n)2r−2ℓ−2 ≤ Bnr−ℓ−1.

Because the graph is connected, the number of noncoincident vertices is not
greater than ℓ+ 1 (including i and j).

Noting that |∑i6=j xixj | ≤ p− 1, the RHS of (10.3.11) is bounded by

Bn−rnr−ℓ−1nℓ−1
∑

i6=j

|xixj | ≤ O(n−1).

From this the lemma follows.
Because of Lemmas 10.4 and 10.5, we see that (10.3.1) is equivalent to

{
√
p/2(x′

pS
r
pxp − E(x′

pS
r
pxp))}∞r=1

D→ {Nr}∞r=1 (10.3.12)

in R
∞ as p → ∞, where {Nr} are jointly normally distributed with mean

0 and covariance σ2
y,r1,r2

given in (10.2.8). We will use a multidimensional
version of the method of moments (see Section B.1) to show that all mixed
moments of the entries in (10.3.12) are bounded and that any asymptotic
behavior depends solely on E(x11), E(x2

11), and E(x4
11). We know that (10.3.1)

is true when x11 is N(0, 1) and, because of the two lemmas, (10.3.12) holds
as well. Bounded mixed moments will imply, when x11 is N(0, 1), that the
mixed moments of (10.3.12) converge to their proper values. The dependence
of the limiting behavior of the mixed moments on E(x11), E(x2

11), and E(x2
11)

implies that the moments in general will converge to the same values. The
fact that a multivariate normal distribution is uniquely determined by its
moments will then imply (10.3.12).

To apply the moment convergence theorem, we need a second step of
truncation and centralization. Let x̃ij = xijI(|xij | < log p) − ExijI(|xij | <
log p) and write S̃p = n−1

∑n
k=1 x̃ikx̃jk . To this end, we need the following

lemma.
Select index sets

I = {i11, i12, · · · , im1 , im2 },
J = {j12 , · · · , j1r1

, · · · , jm
2 , · · · , jm

rm
},

K = {k1
1, · · · , k1

r1
, · · · , km

1 , · · · , km
rm

},

where r1, · · · , rm and the indices are positive integers. For each t = 1, · · · ,m,
construct a chain graph Gt with vertices {it1, it2, jt

2, · · · , jt
rt
, kt

1, · · · , kt
rt
} and

2rt edges:

{(it1, kt
1), (k

t
1, j

t
2), (j

t
2, k

t
2), · · · , (jt

rt
, kt

rt
), (kt

rt
, it2)}.

Combine the chain graphs G =
⋃m

t=1Gt. An example of G with m = 2 is
shown in Fig. 10.2. The indices are called I-, J-, and K-indices in accordance
with the index set they belong to. A noncoincident vertex is called an L-
vertex if it consists of only one I-index and some J-indices. A noncoincident
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vertex is called a J-(orK-)vertex if it consists of only J-(K- correspondingly)
indices. A vertex is called a D-vertex if it is a J- or K-vertex. Denote the
numbers of D- or L-vertices by d and l, respectively. We also denote by r′ the
number of noncoincident edges and write r = r1 + · · ·+ rm. Let ια denote the
number of noncoincident edges of multiplicity α. Then we have the following
lemma.

Lemma 10.6. If G does not have single edges and no subgraph Gt is sepa-
rated from all others by edges (i.e., having at least one edge coincident with
edges of other subgraphs), we have

d ≤
{
r − 3

4 l− 1
2m− 1

2g = 2r′ − 3
4 l − 1

2 (m+ 2ι2 + ι3), if m ≤ 2,
r − 3

4 l− 1
2m− 1

4g, for any m > 2,

where g = ι5 + 2ι6 + · · ·.

2

i

k
2k

2i

k
1
= k1

1

1

1 i 2

1

i
2
2

2
2

j 2 1 =j

Fig. 10.2 A chain graph. The solid arrows form one chain and the broken arrows form
another chain.

Proof. Consider the graph G̃ of noncoincident edges and their vertices of G.
A subgraph Γ of G̃ is called a regular subtree if (i) it is a tree, (ii) all its edges
have multiplicity 2, (iii) all its vertices consist of Id-indices, and (iv) only one

root connects to the rest of G̃. A regular subtree is called maximal if it is not
a proper subgraph of another regular subtree. Note that all edges of a regular
subtree must come from one subgraph Gt. If a maximal regular subtree of µ
edges is removed from G̃, what is left is a graph combined from m subgraphs
of sizes r1, · · · , rt−1, rt − µ, rt+1, · · · , rm. Now, remove all maximal regular
subtrees. Suppose the total number of edges of all maximal regular subtrees
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is ν1. In the remaining graph, the numbers r, r′, d, and ι2 are reduced by ν1,
and other numbers do not change.

Next, we consider the remaining graph Γ . If there is a root of multiplicity
2, its end vertex must be a K-vertex of subgraph Gt and the suspending
vertex must consist of an I-index and a J-index, both of which belong to
Gt, for otherwise it would have been removed if both are J-indices or the
subgraph Gt is separated from others by edges if both are I-indices. Such a
root is called an irregular root. If we remove this root and relabel the J-index
as the removed I-index, the resulting graph is still a graph of the same kind
with rt, d, and ι2 reduced by 1 and other numbers remain unchanged. Denote
the number of irregular roots by ν2. After removing all irregular roots, in the
final remaining graph Γ , the numbers r, r′, d, and ι2 will be further reduced
by ν2 and other numbers remain unchanged.

In the remaining graph, if an Id-vertex is an end vertex, the multiplicity
of the edge connecting the Id-vertex is larger than or equal to 4. Otherwise,
the Id-vertex connects at least two noncoincident edges. In both cases, the
degree of the Id-vertex is not less than 4. Because the degree of an Id-vertex
must be even, the number of noncoincident edges of odd multiplicities must
be even. Now, we first consider the dk K-vertices. If a K-vertex Ki connects
ια(i) noncoincident edges of multiplicity α, then its degree is

ϑi =
∑

α≥2

αια(i) ≥ 4 +
∑

α≥3
odd

(α− 2)ια(i) +
∑

α≥4
even

(α − 4)ια(i).

Summing these inequalities, we obtain

2r̃ ≥ 4dk +
∑

α≥3
odd

(α− 2)ια +
∑

α≥4
even

(α− 4)ια

≥ 4dk + l + g,

where we have used the fact that each I-vertex must connect at least one
noncoincident edge of odd multiplicity. Therefore, we obtain

r̃ ≥ 2dk +
1

2
(l + g).

Next, we consider the r̃−m J-indices. There are at least l J-indices coin-
cident with the l L-vertices, and thus we obtain

r̃ −m ≥ 2dj + l,

where dj is the number of J-vertices. Combining the two inequalities above

and noting that d̃ = dk + dj , we obtain

d̃ ≤ r̃ − 3

4
l − 1

2
m− 1

4
g.
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This proves the case where m > 2. If m ≤ 2, there are at most four I-indices.
In this case, an edge of multiplicity α > 4 always has a vertex consisting of
at least (α − 4)/2 J-indices. If the vertex is an L-vertex, then it consists of
(α− 1)/2 J-indices. Therefore, the second inequality becomes

r̃ −m ≥ 2dj + l + g/2.

Then

d̃ ≤ r̃ − 3

4
l − 1

2
(m+ g).

The lemma then follows by noting that r = r̃ + ν1 + ν2 and d = d̃+ ν1 + ν2.

Second step of truncation and centralization
Expanding both x′

pSpxp − Ex′
pS̃pxp, we obtain

pE[(x′
pS

r
pxp − E(x′

pS
r
pxp)) − (x′

pS̃
r
pxp − E(x′

pS̃
r
pxp))]

2

= pn−2r
∑∗

xi11
xi12
xi21
xi22

E

[(
xi11k1

1
xj1

2k1
1
xj1

2k1
2
· · ·xj1

r1
k1

r
xi12k1

r

−E(xi11k1
1
xj1

2k1
1
xj1

2k1
2
· · ·xj1

r k1
r
xi12k1

r
) + x̃i11k1

1
x̃j1

2k1
1
x̃j1

2k1
2
· · · x̃j1

r1
k1

r
x̃i12k1

r

−E(x̃i11k1
1
x̃j1

2k1
1
x̃j1

2k1
2
· · · x̃j1

r k1
r
x̃i12k1

r
)
)(
xi21k2

1
xj2

2k2
1
xj2

2k2
2
· · ·xj2

r1
k2

r
xi22k2

r

−E(xi21k2
1
xj2

2k2
1
xj2

2k2
2
· · ·xj2

r k2
r
xi22k2

r
) − x̃i21k2

1
x̃j2

2k2
1
x̃j2

2k2
2
· · · x̃j2

r k2
r
x̃i22k1

r

+E(x̃i21k2
1
x̃j2

2k2
1
x̃j2

2k2
2
· · · x̃j2

r k2
r
x̃i22k2

r
)
)]
, (10.3.13)

where the summation
∑∗

is taken for

i11, i
1
2, j

1
2 , . . . , j

1
r ≤ p, k1

1 , . . . , k
1
r ≤ n,

i21, i
2
2, j

2
2 , . . . , j

2
r ≤ p, km

1 , . . . , k
m
r ≤ n.

Using these indices, we construct graphs G1, G2, and the combined G and
use the notation defined in Lemma 10.6.

The absolute value of the sum of terms corresponding to a graph with
numbers d, l, and g of the RHS of (10.3.13) is less than

Cpn−2rpd+l/2(δp
√
p)g,

where we have used the inequality
∑ |xi| ≤ √

p. By Lemma 10.6, the sum
tends to 0 if g > 0 or l > 0 or d < 2r − 1. When g = l = 0 and d = 2r − 1,
there are two cases: either ι2 = 2r or ι2 = 2r − 2 and ι4 = 1. That means
the expansion of the expectation in (10.3.13) contains only the second and
fourth moments of x11 and x̃11. Because of the truncation, both the second
and fourth moments of x11 and x̃11 will tend to the same corresponding value.
Thus we conclude that the absolute value of the expectation in (10.3.13) tends
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to 0 and thus the LHS of (10.3.13) tends to 0.

Completion of the proof of (10.3.1)
We shall complete the proof of (10.3.1) by showing (10.3.12) under the as-
sumption |xij | ≤ log p.

Any mixed moment can be written as

pm/2E[(x′
pS

r1
p xp − E(x′

pS
r1
p xp)) · · · (x′

pS
rm
p xp − E(x′

pS
rm
p xp))], (10.3.14)

where the integer m ≥ 2 and positive integers r1, . . . , rm are arbitrary. Ex-
panding further, we have

(nrp−m/2) × (10.3.14)

=
∑∗∗

xi1
1
xi1

2
· · ·xim

1
xim

2
E

[(
xi1

1
k1
1
xj1

2
k1
1
xj1

2
k1
2
· · ·xj1

r1
k1

r1
xi1

2
k1

r1

−E(xi11k1
1
xj1

2k1
1
xj1

2k1
2
· · ·xj1

r1
k1

r1
xi12k1

r1
)
)

· · ·
(
xim

1 km
1
xjm

2 km
1
xjm

2 km
2
· · ·xjm

rm
km

rm
xim

2 km
rm

−E(xim
1

km
1
xjm

2
km
1
xjm

2
km
2
· · ·xjm

rm
km

rm
xim

2
km

rm
)
)]
, (10.3.15)

where the summation
∑∗∗

is taken for

i11, i
1
2, j

1
2 , . . . , j

1
r1

≤ p, k1
1 , . . . , k

1
r1

≤ n

...

im1 , i
m
2 , j

m
2 , . . . , j

m
rm

≤ p, km
1 , . . . , k

m
rm

≤ n.

Using the notation of Lemma 10.6, we use the indices it1, i
t
2, j

t
2, . . . , j

t
rt

(≤
p), kt

1, . . . , k
t
rt

(≤ n) to construct a graph Gt and let G = G1 ∪ · · · ∪Gm.
We see a zero term if in the corresponding graph

(1) there is a single edge in G, or
(2) there is a graph Gt that does not have any coincident edges with another
graph Gt′ , t

′ 6= t.
Then the contribution to (10.3.15) of those terms associated with such a

graph G is bounded in absolute value by

Kp(l/2)+dE(|xi1k1
1
· · ·xj1k1

r1
· · ·ximkm

1
· · ·xjmkm

rm
|). (10.3.16)

Here we have used the fact that |∑xi| ≤ p1/2.
The expectation is bounded by

C(log p)
∑

2r

α=5
(α−4)ια ≤

{
C(log p)g ≤ (log p)r if g > 0,
C otherwise.

(10.3.17)



10.4 An Example of Weak Convergence 349

By (10.3.16), (10.3.17), and Lemma 10.6, we conclude that the sum of all
terms in the expansion of (10.3.14) corresponding to a graph with g > 0 or
l > 0 or d < r −m/2 will tend to 0. When d = r −m/2, l = 0, and g = 0,
the limit of (10.3.14) will only depend on Ex2

11 and Ex4
11 and the powers

r1, · · · , rm.
Hence the proof of (10.3.1) is complete.

10.3.4 Proof of (c)

To verify (c), we see that because of (b) we can assume E(x11) = 0 and
without loss of generality we can assume E(x2

11) = 1. We expand

E((
√
p/2x′

pSpxp − E(
√
p/2x′

pSpxp))(
√
p/2x′

pS
2
pxp − E(

√
p/2x′

pS
2
pxp)))

∼
(∑

i6=j

x2
ix

2
j

)
(2y + y2) +

(∑

i

x4
i

)
(E(x4

11) − 1)(y + (1/2)y2)

= (2y + y2) +

(∑

i

x4
i

)
(E(x4

11) − 1)(y + (1/2)y2 − (2y + y2)). (10.3.18)

The coefficient of
∑

i x
4
i is zero if and only if E(x4

11) = 3. If E(x4
11) 6= 3, then

since
∑

i x
4
i can range between 1/p and 1, sequences {xp} can be formed

where (10.3.18) will not converge. Since we have shown, after truncation,
that all mixed moments are bounded, for these sequences the ordered pair of
variables in (c) will not converge in distribution. Therefore, (c) follows.

10.4 An Example of Weak Convergence

We see now that, when E(x4
11) < ∞, the condition E(x4

11) = 3, which is
necessary (because of Theorem 10.2) for Property 5′ to hold, is enough for the
moments of the processXp(F

Sp) to converge weakly to those ofW y
a . Theorem

10.3 could be viewed as a display of similarity between {νp} and {hp} when
the first, second, and fourth moments of x11 match those of a Gaussian. But
its importance will be demonstrated in the main theorem presented in this
section, which is a partial solution to the question of whether {νp} satisfies
Property 5′.

Theorem 10.7. Assume x11 is symmetric (that is, symmetrically distributed
about 0) and E(x4

11) < ∞. Then, when xp = (± 1√
p ,± 1√

p , · · · ,± 1√
p )′, Op is

ν-distributed, and Xp is defined as in the equality of (10.1.2), then the limit
of (10.1.2) holds.
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From the theorem, one can easily argue other choices of xp for which the
limit (10.1.2) holds, namely vectors close enough to those in the theorem so
that the resulting Xp approaches in the Skorohod metric random functions
satisfying (10.1.2). It will become apparent that the techniques used in the
proof of Theorem 10.7 cannot easily be extended to xp having more variability
in the magnitude of its components, while the symmetry requirement may be
weakened with a deeper analysis. At present, the possibility exists that only
for the x11 mean-zero Gaussian will (10.1.2) be satisfied for all {xp}.

Theorem 10.7 adds another possible way of classifying the distribution
of Op as to its closeness to Haar measure. The eigenvectors of Sp with x11

symmetric and fourth moment finite display a certain amount of uniform
behavior, and Op can possibly be even more closely related to Haar measure
if E(v4

11) = 3, due to Theorem 10.3.
For the proof of Theorem 10.7, we first recall in the proof of Theorem 10.2

that it is shown that (10.1.2), (10.2.1), and (10.2.2) imply (10.2.4). The proof
of Theorem 10.7 verifies the truth of the implication in the other direction
and then the truth of (10.2.4). The proof of Theorem 10.3 will be modified
to show (10.3.1) still holds for the xp’s and x11 assumed in Theorem 10.7
and without a condition on the fourth moment of x11 other than its being
finite. It will be seen that (10.3.1) yields uniqueness of weakly converging
subsequences whose limits are continuous functions. With the assumptions
made on xp and x11, tightness of {Xp(F

Sp)} and the continuity of weakly
convergent subsequences can be proven. This is the main issue for whether
(10.1.2) holds more generally, due to Theorem 10.3 and parts of the proof
that hold in a general setting.

The proof will be carried out in the next three subsections. Subsection
10.4.1 presents a formal description of Op to account for the ambiguities
mentioned at the beginning, followed by a result that converts the problem
to one of showing weak convergence of Xp(F

Sp) on D[0,∞), the space of rcll
functions on [0,∞). Subsection 10.4.2 contains results on random elements
in D[0, b] for any b > 0 that are extensions of certain criteria for weak conver-
gence given in Billingsley [57]. In Subsection 10.4.3, the proof is completed by
showing the conditions in Subsection 10.4.2 are met. Some of the results will
be stated more generally than presently needed to render them applicable for
future use.

Throughout the remainder of this section, we let Fp denote FSp .

10.4.1 Converting to D[0, ∞)

Let us first give a more detailed description of the distribution of Op that
will lead us to a concrete construction of yp ≡ O′

pxp. For an eigenvalue λ of
Sp with multiplicity r, we assume the corresponding r columns of Op to be
generated uniformly; that is, its distribution is the same as Op,rOr, where
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Op,r is p× r containing r orthonormal columns from the eigenspace of λ, and
Or ∈ Or is Haar-distributed, independent of Sp. The Or’s corresponding
to distinct eigenvalues are also assumed to be independent. Thus we have a
natural way of constructing the random orthogonal matrix of eigenvectors of
Sp, resulting in a unique measure νp on Op.

The coordinates of yp corresponding to λ are then of the form

(Op,rOr)
′xp = O′

rO
′
p,rxp = ‖O′

p,rxp‖wr,

where wr is uniformly distributed on the unit sphere in Rr. We will use the
fact that the distribution of wr is the same as that of a normalized vector
of iid mean-zero Gaussian components. Notice that ‖O′

p,rxp‖ is the length of
the projection of xp on the eigenspace of λ. Thus, yp can be represented as
follows.

Enlarge the sample space defining Sp to allow the construction of
z1, z2, . . . , zn, iid N (0,1) random variables independent of Sp. For a given
Sp, let λ(1) < λ(2) < · · · < λ(t) be the t distinct eigenvalues with multiplici-
ties m1,m2, . . . ,mt. For i = 1, 2, . . . , t, let ai be the length of the projection
of xp on the eigenspace of λ(i). Define m0 = 0. Then, for each i, we define
the coordinates

(ym1+···+mi−1+1, ym1+···+mi−1+2, . . . , ym1+···+mi)
′

of yp to be the respective coordinates of

ai ·
(zm1+···+mi−1+1, zm1+···+mi−1+2, . . . , zm1+···+mi)

′
√∑mi

k=1 z
2
m1+···+mi−1+k

. (10.4.1)

We are now in a position to prove the following theorem

Theorem 10.8. If Xp(Fp)
D→ W y

x in D[0,∞), Fp
i.p.−→ Fy, and λmax

i.p.−→
(1 +

√
y)2, then we have Xp

D→W0.

Proof. By the extended Skorohod theorem (see the footnote on page 68),
we may assume that convergence of Fp and λmax is a.s. We will continue to
rely on basic results in Billingsley [57] showing weak convergence of random
elements of a metric space (most notably Theorems 4.1 and 4.4 and Corollary
1 to Theorem 5.1), in particular the results on the function spaces D[0, 1]
and C[0, 1]. For the topology and conditions of weak convergence in D[0,∞),
see Lindvall [198]. For our purposes, the only information needed regarding
D[0,∞) beyond that of Billingsley [57] is the fact that weak convergence of
a sequence of random functions on D[0,∞) is equivalent to the following: for
every B > 0, there exists a constant b > B such that the sequence on D[0, b]
(under the natural projection) converges weakly. Let ρ denote the sup metric
used on C[0, 1] and D[0, 1] (used only in the latter when limiting distributions
lie in C[0, 1] with probability 1), that is, for x, y ∈ D[0, 1],
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ρ(x, y) = sup
t∈[0,1]

|x(t) − y(t)|.

Similar to the proof in Theorem 10.2, we need one further general result
on weak convergence, which is an extension of the material on pp. 144–145
in Billingsley [57] concerning random changes of time. Let

D[0, 1] = {x ∈ D[0, 1] : x is nonnegative and nondecreasing}.

Since it is a closed subset of D[0, 1], we take the topology of D[0, 1] to be the
Skorohod topology of D[0, 1] relativized to it. The mapping

h : D[0,∞) ×D[0, 1] −→ D[0, 1]

defined by h(x, ϕ) = x◦ϕ is measurable (the same argument as in Billingsley
[57], p. 232, except the range of the integer i in (39) is now extended to all
natural numbers). It is a simple matter to show that h is continuous for each

(x, ϕ) ∈ C[0,∞) × (C[0, 1] ∩D[0, 1]).

Therefore, we have (by Corollary 1 to Theorem 5.1 of Billingsley [57])

(Yn, Φn)
D→ (Y, Φ) in D[0,∞) ×D[0, 1]

P(Y ∈ C[0,∞)) = P(Φ ∈ C[0, 1]
)

= 1 (10.4.2)

⇒ Yn ◦ Φn
D→ Y ◦ Φ in D[0, 1].

We can now proceed with the proof of the theorem. For t ∈ [0, 1], let
F−1

p (t) = largest λj such that Fp(λj) ≤ t (0 for t < Fp(0)). We have
Xp(Fp(F

−1
p (t))) = Xp(t) (although Fp(F

−1
p (t)) 6= t) except on intervals

[m/n, (m + 1)/n), where λm = λm+1. Let F−1
y (t) be the inverse of Fy(x)

for x ∈
(
(1 −√

y)2, (1 +
√
y)2
]
.

We consider first the case y ≤ 1. Let F−1
y (0) = (1 − √

y)2. It is straight-

forward to show, for all t ∈ (0, 1], F−1
p (t)

a.s.−→ F−1
y (t). Let F̃−1

p (t) =

max((1 −√
y)2, F−1

p (t)
)
. Then, for all t ∈ [0, 1], F̃−1

p (t) → F−1
y (t), and since

λmax
a.s.−→ (1 +

√
y)2, we have ρ(F̃−1

p , F−1
y )

a.s.−→ 0. Therefore, from (10.4.2)
(and Theorem 4.4 of Billingsley [57]) we have

Xp(Fp(F̃
−1
p )

) D→ W y

F−1
y

= W0(Fy(F−1
y )) = W0, in D[0, 1].

Since Fy(x) = 0 for x ∈ [0, (1 − √
y)2], we have Xp(Fp)

D→ 0 in D[0, (1 −
√
y)2], which implies Xp(Fp)

i.p.−→ 0 in D[0, (1 − √
y)2], and since the zero

function lies in C[0, (1 −√
y)2], we conclude that
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sup
x∈[0,(1−√

y)2]

|Xp(Fp(x))| i.p.−→ 0.

We then have

ρ
(
Xp

(
Fp(F

−1
p )

)
, Xp

(
Fp(F̃

−1
p )

))
≤ 2 × sup

x∈[0,(1−√
y)2]

|Xp(Fp(x))| i.p.−→ 0.

Therefore, we have (by Theorem 4.1 of Billingsley [57])

Xp(Fp(F
−1
p ))

D→W0 in D[0, 1].

Notice that if x11 has a density, then we would be done with this case of
the proof since for p ≤ n the eigenvalues would be distinct with probability
1, so that Xp(Fp(F

−1
p )) = Xp almost surely. However, for more general x11,

the multiplicities of the eigenvalues need to be accounted for.
For each Sp, let λ(1) < λ(2) < · · · < λ(ν), (m1,m2, . . . ,mν), and

(a1, a2, . . . , aν) be defined above (10.4.1). We have from (10.4.1) that

ρ(Xp, Xp(Fp(F
−1
p ))) = max

1≤i≤ν

1≤j≤mi

√
p

2

∣∣∣∣∣

∑j
ℓ=1 z

2
m1+···+mi−1+ℓ∑mi

k=1 z
2
m1+···+mi−1+k

− j

p

∣∣∣∣∣ . (10.4.3)

The measurable function h on D[0, 1] defined by

h(x) = ρ(x(·), x(· − 0))

is continuous on C[0, 1] (note that h(x) = limδ↓0w(x, δ), where w(x, δ) is the
modulus of continuity of x) and is identically zero on C[0, 1]. Therefore (using

Corollary 1 to Theorem 5.1 of Billingsley [57]) h
(
Xp(Fp(F

−1
p (·)))

) D→ 0, which
is equivalent to

max
1≤i≤ν

√
p

2

∣∣∣∣a2
i −

mi

p

∣∣∣∣
i.p.−→ 0. (10.4.4)

For each i ≤ ν and j ≤ mi, we have

√
p

2

(
a2

i

∑j
ℓ=1 z

2
m1+···+mi−1+ℓ∑mi

k=1 z
2
m1+···+mi−1+k

− j

p

)

=

√
p

2

(
a2

i −
mi

p

)∑j
ℓ=1 z

2
m1+···+mi−1+ℓ∑mi

k=1 z
2
m1+···+mi−1+k

(a)

+

√
p

2

mi

p

(
a2

i

∑j
ℓ=1 z

2
m1+···+mi−1+ℓ∑mi

k=1 z
2
m1+···+mi−1+k

− j

mi

)
. (b)

From (10.4.4), we have that the maximum of the absolute value of (a)
over 1 ≤ i ≤ ν converges in probability to zero. For the maximum of (b),
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we see that the ratio of chi-square random variables is beta-distributed with
parameters p = j/2, q = (mi − j)/2. Such a random variable with p =
r/2, q = (m − r)/2 has mean r/m and fourth central moment bounded by
Cr2/m4, where C does not depend on r and m. Let bmi,j represent the
expression in parentheses in (b). Let ǫ > 0 be arbitrary. We use Theorem
12.2 of Billingsley after making the following associations: Sj =

√
mibmi,j ,

m = mi, uℓ =
√
C/mi, γ = 4, α = 2, and λ = ǫ

√
2p/mi. We then have the

existence of C′ > 0 for which

P

(
max

1≤j≤mi

∣∣∣∣
√
p

2

mi

p
bmi,j

∣∣∣∣ > ǫ

∣∣∣∣Sp

)
≤ C′m2

i

4p2ǫ4
.

By Boole’s inequality, we have

P


 max

1≤i≤ν

1≤j≤mi

∣∣∣∣
√
p

2

mi

p
bmi,j

∣∣∣∣ > ǫ

∣∣∣∣Sp


 ≤ C′

4ǫ4
max
1≤i≤ν

mi

p
.

Therefore

P


 max

1≤i≤ν

1≤j≤mi

∣∣∣∣
√
p

2

mi

p
bmi,j

∣∣∣∣ > ǫ


 ≤ C′

4ǫ4
E

(
max
1≤i≤ν

mi

p

)
. (10.4.5)

Because Fy is continuous on (−∞,∞), we have Fp(x)
a.s.−→ Fy(x) ⇒

supx∈[0,∞) |Fp(x) − Fy(x)| a.s.−→ 0 ⇒ supx∈[0,∞) |Fp(x) − Fp(x − 0)| a.s.−→ 0,

which is equivalent to max1≤i≤ν mi/p
a.s.−→ 0. Therefore, by the dominated

convergence theorem, we have the LHS of (10.4.5) → 0. We therefore have

(10.4.3)
i.p.−→ 0, and we conclude (again from Theorem 4.1 of Billingsley [57])

that Xp
D→W0 in D[0, 1].

For y > 1, we assume p is sufficiently large that p/n > 1. Then Fp(0) =
m1/p ≥ 1 − (n/p) > 0. For t ∈ [0, 1 − (1/y)], define F−1

y (t) = (1 −√
y)2. For

t ∈ (1 − (1/y), 1], we have F−1
p (t)

a.s.−→ F−1
y (t). Define as before F̃−1

p (t) =

max((1 − √
y)2, F−1

p (t)). Again, ρ(F̃−1
p , F−1

y )
a.s.−→ 0, and from (10.4.2) (and

Theorem 4.4 of Billingsley) we have

Xp(Fp(F̃
−1
p ))

D→W0(Fy(F−1
y )) =

{
W0(1 − (1/y)), for t ∈ [0, 1 − (1/y)],
W0(t), for t ∈ [1 − (1/y), 1],

in D[0, 1].
Since the mapping h defined on D[0, b] by h(x) = supt∈[0,b] |x(t)− x(b)| is

continuous for all x ∈ C[0, b], we have by Theorem 5.1 of Billingsley [57]

ρ(Xp(Fp(F
−1
p )), Xp(Fp(F̃

−1
p )))
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= sup
x∈[0,(1−√

y)2]

|Xp(Fp(x)
)
−Xp(Fp((1 −√

y)2))|

D→ sup
x∈[0,(1−√

y)2]

|W0(Fy(x)) −W0(Fy((1 −√
y)2))| = 0,

which implies

ρ(Xp

(
Fp(F

−1
p )), Xp(Fp(F̃

−1
p )))

i.p.−→ 0.

Therefore (by Theorem 4.1 of Billingsley [57])

Xp(Fp(F
−1
p ))

D→W0(Fy(F−1
y )).

For t < Fp(0) + 1
p ,

Xp(t) =

√
p

2

(
a2
1

∑[pt]
i=1 z

2
i∑pFp(0)

ℓ=1 z2
ℓ

− [pt]

p

)

=
a2
1√

Fp(0)

√
pFp(0)

2

( ∑[pt]
i=1 z

2
i∑pFp(0)

ℓ=1 z2
ℓ

− [pt]

pFp(0)

)
+

[pt]

pFp(0)

√
p

2
(a2

1 − Fp(0)).

Notice that
√p

2 (a2
1 − Fp(0)) = Xp(Fp(0)).

For t ∈ [0, 1], let ϕp(t) = min(t/Fp(0), 1), ϕ(t) = min(t/(1 − (1/y)), 1),
and

Yp(t) =

√
p

2

(∑[pt]
i=1 z

2
i∑p

ℓ=1 z
2
ℓ

− [pt]

p

)
.

Then ϕn
i.p.−→ ϕ in D0 ≡ {x ∈ D[0, 1] : x(1) ≤ 1} (see Billingsley [57], p. 144

), and for t < Fp(0) + 1
p

YpFp(0)(ϕp(t)) =

√
pFp(0)

2

( ∑[pt]
i=1 z

2
i∑pFp(0)

ℓ=1 z2
ℓ

− [pt]

pFp(0)

)
.

For all t ∈ [0, 1], let

Hp(t) =
a2
1√

Fp(0)
YpFp(0)(ϕp(t))

+Xp(Fp(0))

(
[pFp(0)ϕp(t)]

pFp(0)
− 1

)
+Xp(Fp(F

−1
p (t))).

Then Hp(t) = Xp(t) except on intervals [m/p, (m+ 1)/p), where 0 < λm =

λm+1. We will show Hp
D→W0 in D[0, 1].

Let ψp(t) = Fp(0)t, ψ(t) = (1 − (1/y))t, and



356 10 Eigenvectors of Sample Covariance Matrices

Vp(t) =
1√
2p

[pt]∑

i=1

(z2
i − 1).

Then ψp
i.p.−→ ψ in D0 and

Yp(t) =
Vp(t) − ([pt]/p)Vp(1)

1 +
√

2/pVp(1)
. (10.4.6)

Since Xp(Fp(F
−1
p )) and Vp are independent, we have (using Theorems 4.4

and 16.1 of Billingsley [57])

(Xp(Fp(F
−1
p )), Vp, ϕp, ψp)

D→ (W0(Fy(F−1
y )),W , ϕ, ψ),

where W is a Weiner process, independent of W0. We immediately get
(Billingsley [57], p. 145)

(Xp(Fp(F
−1
p )), Vp ◦ ψp, ϕp)

D→ (W0(Fy(F−1
y )),W ◦ ψ, ϕ).

Since Vp(ψp(t)) =
√
Fp(0)VpFp(0)(t), we have

ρ(Vp◦ψp,
√

1 − (1/y)VpFp(0)) =

∣∣∣∣
√
Fp(0)−

√
1 − (1/y)

∣∣∣∣ sup
t∈[0,1]

|VpFp(0)(t)|
i.p.−→ 0.

Therefore

(Xp(Fp(F
−1
p )), VpFp(0), ϕp)

D→
(
W0(Fy(F−1

y )),
1√

1 − (1/y)
W ◦ ψ, ϕ

)
.

(10.4.7)
Notice that 1√

1−(1/y)
W ◦ ψ is again a Weiner process, independent of W0.

From (10.4.6), we have

Yp(t) − (Vp(t) − tVp(1)) = Vp(t)
t− [pt]/p+

√
2/p(tVp(1) − Vp(t))

1 +
√

2/pVp(1)
.

Therefore
ρ(YpFp(0)(t), VpFp(0)(t) − tVpFp(0)(1))

i.p.−→ 0. (10.4.8)

From (10.4.7), (10.4.1), and the fact that W (t) − tW (1) is a Brownian
bridge, it follows that

(Xp(Fp(F
−1
p )), YpFp(0), ϕp)

D→ (W0(Fy(F−1
y )), Ŵ0, ϕ),

where Ŵ0 is another Brownian bridge, independent of W0.
The mapping h : D[0, 1]×D[0, 1] ×D0 → D[0, 1] defined by
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h(x1, x2, z) =
√

1 − (1/y)x2 ◦ z + x1(0)(z − 1) + x1

is measurable and continuous on C[0, 1]×C[0, 1]× (D0 ∩C[0, 1]). Also, from

(10.4.4) we have a2
1

i.p.−→ 1 − (1/y). Finally, it is easy to verify

[pFp(0)ϕp]

pFp(0)

i.p.−→ ϕ in D0.

Therefore, we can conclude (using Theorem 4.1 and Corollary 1 of Theorem
5.1 of Billingsley [57]) that

Hp
D→
√

1 − (1/y) Ŵ0 ◦ ϕ+W0(1 − (1/y))(ϕ− 1) +W0(Fy(F−1
y )) ≡ H.

It is immediately clear thatH is a mean 0 Gaussian process lying in C[0, 1].
It is a routine matter to verify for 0 ≤ s ≤ t ≤ 1 that

E(HsHt) = s(1 − t).

Therefore, H is a Brownian bridge.
We see that ρ(Xp, Hp) is the same as the RHS of (10.4.3) except i = 1

is excluded. The arguments leading to (10.4.4) and (10.4.5) (2 ≤ i ≤ t) are

exactly the same as before. The fact that max2≤i≤tmi/p
i.p.−→ 0 follows from

the case y ≤ 1 since the nonzero eigenvalues (including multiplicities) of AA′

and A′A are identical for any rectangular A. Thus

ρ(Xp, Hp)
i.p.−→ 0

and we have Xp converging weakly to a Brownian bridge.

10.4.2 A New Condition for Weak Convergence

In this section, we establish two results on random elements of D[0, b] needed
for the proof of Theorem 10.7. In the following, we denote the modulus of
continuity of x ∈ D[0, b] by w(x, ·):

w(x, δ) = sup
|s−t|<δ

|x(s) − x(t)|, δ ∈ (0, b].

To simplify the analysis, we assume, for now, b = 1.

Theorem 10.9. Let {Xp} be a sequence of random elements of D[0, 1] whose
probability measures satisfy the assumptions of Theorem 15.5 of Billingsley
[57]; that is, {Xp(0)} is tight, and for every positive ǫ and η, there exists a
δ ∈ (0, 1) and an integer n0, such that, for all n > n0, P(w(Xp, δ) ≥ ǫ) ≤ η.
If there exists a random element X with P(X ∈ C[0, 1]) = 1 and such that
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{∫ 1

0

trXp(t)dt

}∞

r=0

D→
{∫ 1

0

trX(t)dt

}∞

r=0

as n→ ∞ (10.4.9)

((D) in (10.4.9) denoting convergence in distribution on R∞), then Xp
D→ X.

Proof. Note that the mappings

x→
∫ 1

0

trx(t)dt

are continuous in D[0, 1]. Therefore, by Theorems 5.1 and 15.5 of Billingsley

[57], Xp
D→ X will follow if we can show that the distribution of X is uniquely

determined by the distribution of

{∫ 1

0

trX(t)dt

}∞

r=0

. (10.4.10)

Since the finite-dimensional distributions of X uniquely determine the dis-
tribution of X , it suffices to show for any integer m and numbers ai, ti,
i = 0, 1, . . . ,m with 0 = t0 < t1 < · · · < tm = 1 that the distribution of

m∑

i=0

aiX(ti) (10.4.11)

is uniquely determined by the distribution of (10.4.10).
Let {fn}, f be uniformly bounded measurable functions on [0,1] such that

fn → f pointwise as n→ ∞. Using the dominated convergence theorem, we
have ∫ 1

0

fn(t)X(t)dt →
∫ 1

0

f(t)X(t)dt as n→ ∞. (10.4.12)

Let ǫ > 0 be any number less than half the minimum distance between
the ti’s. Notice that for the indicator function I([a, b]) we have the sequence
of continuous “ramp” functions {Rn(t)} with

Rn(t) =

{
1 t ∈ [a, b],
0 t ∈ [a− 1/n, b+ 1/n]c

and linear on each of the sets [a−1/n, a], [b, b+1/n], satisfying Rn ↓ I([a, b]) as
n→ ∞. Notice also that we can approximate any ramp function uniformly on
[0,1] by polynomials. Therefore, using (10.4.12) for polynomials appropriately
chosen, we find that the distribution of

m−1∑

i=0

ai

∫ ti+ǫ

ti

X(t)dt+ am

∫ 1

1−ǫ

X(t)dt (10.4.13)
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is uniquely determined by the distribution of (10.4.10).
Dividing (10.4.13) by ǫ and letting ǫ → 0, we get a.s. convergence to

(10.4.11) (since X ∈ C[0, 1] with probability 1) and we are done.

Theorem 10.10. Let X be a random element of D[0, 1]. Suppose there ex-
ist constants B > 0, γ ≥ 0, α > 1, and a random nondecreasing, right-
continuous function F : [0, 1] → [0, B] such that, for all 0 ≤ t1 ≤ t2 ≤ 1 and
λ > 0,

P(|X(t2) −X(t1)| ≥ λ) ≤ 1

λγ
E[(F (t2) − F (t1))

α]. (10.4.14)

Then, for every ǫ > 0 and δ an inverse of a positive integer, we have

P(w(X, δ) ≥ 3ǫ) ≤ KB

ǫγ
E

[
max
j<δ−1

(F ((j + 1)δ) − F (jδ))α−1

]
, (10.4.15)

where j ranges on positive integers and K depends only on γ and α.

The theorem is proven by modifying the proofs of the first three theorems
in Section 12 of Billingsley [57]. It is essentially an extension of part of a result
contained in Theorem 12.3 of Billingsley [57]. The original arguments, for the
most part, remain unchanged. We will indicate only the specific changes and
refer the reader to Billingsley [57] for details. The extensions of two of the
theorems in Billingsley [57] will be given below as lemmas. However, some
definitions must first be given.

Let ξ1, . . . , ξm be random variables, and Sk = ξ1 + · · · + ξk (S0 = 0). Let

Mm = max
0≤k≤m

|Sk|,

M ′
m = max

0≤k≤m
min(|Sk|, |Sm − Sk|).

Lemma 10.11. (Extension to Theorem 12.1 of Billingsley [57]). Suppose
u1, . . . , um are nonnegative random variables such that

P(|Sj − Si| ≥ λ, |Sk − Sj | ≥ λ) ≤ 1

λ2γ
E

[( ∑

i<ℓ≤k

uℓ

)2α]
<∞,

0 ≤ i ≤ j ≤ k ≤ m

for some α > 1
2 , γ ≥ 0, and for all λ > 0. Then, for all λ > 0,

P(M ′
m ≥ λ) ≤ K

λ2γ
E[(u1 + · · · + um)2α], (10.4.16)

where K = Kγ,α depends only on γ and α.

Proof. We follow Billingsley [57], p. 91. The constant K is chosen in the same
way, and the proof proceeds by induction on m. The arguments for m = 1
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and 2 are the same except that for the latter (u1 + u2)
2α is replaced by

E(u1 + u2)
2α. Assuming (10.4.16) is true for all integers less than m, we find

an integer h, 1 ≤ h ≤ m, such that

E[(u1 + · · · + uh−1)
2α]

E[(u1 + · · · + um)2α]
≤ 1

2
≤ E[(u1 + · · · + uh)2α]

E[(u1 + · · · + um)2α]
,

the sum on the left-hand side being 0 if h = 1.
Since 2α > 1, we have for all nonnegative x and y

x2α + y2α ≤ (x+ y)2α.

We then have

E[(uh+1 + · · · + um)2α] ≤ E[(u1 + · · · + um)2α] − E[(u1 + · · · + uh)2α]

≤ E
[
(u1 + · · · + um)2α

](
1 − 1

2

)
=

1

2
E[(u1 + · · · + um)2α].

Therefore, defining U1, U2, D1, D2 as in Billingsley [57], we get the same in-
equalities as in (12.30)–(12.33) of Billingsley [57], p. 92, with u2α replaced by
E[(u1 + · · · + um)2α]. The rest of the proof follows exactly.

Lemma 10.12. (Extension to Theorem 12.2 of Billingsley [57]). If, for ran-
dom nonnegative uℓ, there exist α > 1 and γ ≥ 0 such that, for all λ > 0,

P(|Sj − Si| ≥ λ) ≤ 1

λγ
E

[( ∑

i<ℓ≤j

uℓ

)2α]
<∞, 0 ≤ i ≤ j ≤ m,

then

P(Mn ≥ λ) ≤ K ′
γ,α

λγ
E[(u1 + · · · + um)2α], K ′

γ,α = 2γ(1 +Kγ/2,α/2).

Proof. Following Billingsley [57], we have for 0 ≤ i ≤ j ≤ k ≤ m

P(|Sj − Si| ≥ λ, |Sk − Sj | ≥ λ) ≤ P
1
2 (|Sj − Si| ≥ λ)P

1
2 (|Sk − Sj | ≥ λ)

≤ 1

λγ
E

[( ∑

i<ℓ≤k

uℓ

)2α]
,

so Lemma 10.4.9 is satisfied with constants γ/2, α/2. The rest follows exactly
as in Billingsley [57], p. 94, with (u1 + · · · + um)α in (12.46) and (12.47)
replaced by the expected value of the same quantity.

We can now proceed with the proof of Theorem 10.10. Following the proof
of Theorem 12.3 of Billingsley [57], we fix positive integers j < δ−1 and m
and define
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ξi = X

(
jδ +

i

m
δ

)
−X

(
jδ +

i− 1

m
δ

)
, i = 1, 2, . . . ,m.

The partial sums of the ξi’s satisfy Lemma 10.12 with

ui = F

(
jδ +

i

m
δ

)
− F

(
jδ +

i− 1

m
δ

)
.

Therefore

P

(
max

1≤i≤m

∣∣∣∣X
(
jδ +

i

m
δ

)
−X (jδ)

∣∣∣∣ ≥ ǫ

)
≤ K

ǫγ
E[(F ((j + 1)δ) − F (jδ))α]

with K = K ′
γ,α.

Since X ∈ D[0, 1], we have

P

(
sup

jδ≤s≤(j+1)δ

|X(s) −X(jδ)| > ǫ

)

= P

(
max

1≤i≤m

∣∣∣∣X
(
jδ +

i

m
δ

)
−X (jδ)

∣∣∣∣ > ǫ for all m sufficiently large

)

≤ lim inf
m

P

(
max

1≤i≤m

∣∣∣∣X
(
jδ +

i

m
δ

)
−X (jδ)

∣∣∣∣ ≥ ǫ

)

≤ K

ǫγ
E[(F ((j + 1)δ) − F (jδ))α].

By considering a sequence of numbers approaching ǫ from below, we get from
the continuity theorem on probability measures

P

(
sup

jδ≤s≤(j+1)δ

|X(s) −X(jδ)| ≥ ǫ

)
≤ K

ǫγ
E[(F ((j + 1)δ) − F (jδ))α].

(10.4.17)
Summing both sides of (10.4.17) over all j < δ−1 and using the corollary to
Theorem 8.3 of Billingsley [57], we get

P(w(X, δ) ≥ 3ǫ) ≤ K

ǫγ
E

[ ∑

j<δ−1

(F ((j + 1)δ) − F (jδ))α

]

≤ K

ǫγ
E

[
max
j<δ−1

(F ((j + 1)δ) − F (jδ))α−1(F (1) − F (0))

]

≤ KB

ǫγ
E

[
max
j<δ−1

(F ((j + 1)δ) − F (jδ))α−1

]
,

and we are done.
For general D[0, b], we simply replace (10.4.9) by
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{∫ b

0

trXp(t)dt

}∞

r=0

D→
{∫ b

0

trX(t)dt

}∞

r=0

as n→ ∞ (10.4.18)

and (10.4.15) by

P(w(X, bδ) ≥ 3ǫ) ≤ KB

ǫγ
E

[
max
j<δ−1

(F (b(j + 1)δ) − F (bjδ))α−1

]
, (10.4.19)

j and δ−1 still positive integers.

10.4.3 Completing the Proof

We finish up by verifying the conditions of Theorem 10.9.

Theorem 10.13. Let E(x11) = 0, E(x2
11) = 1, and E(x4

11) <∞. Suppose the
sequence of vectors {xp}, xp = (xp1, xp2, . . . , xpp)

′, ‖xp‖ = 1 satisfies

p∑

i=1

x4
pi → 0 as n→ ∞. (10.4.20)

Then (10.3.1) holds.

Proof. We return to the proof of Theorem 10.3 and consider the sum of non-
negligible terms contributing to (10.3.14) in the limit. If there is an I1-vertex
consisting of four or more I1-indices, such terms are negligible because of
condition (10.4.20). Thus, all I1-indices must be pairwise matched. Also, by
Lemma 10.6, the nonnegligible terms should satisfy d = r − m/2. This is
impossible if m is odd. Thus, the limit of the mixed moment is 0 if m is odd.

Now, let us consider the case where m is even. Due to the fact that (2) is
avoided, the graph G consists of at most m/2 connected subgraphs. Also, a
graph of r′ noncoincident edges has at most r′ +m/2 noncoincident vertices.
Because there are exactly m noncoincident vertices, each of which matches
with two I1-indices, we have d ≤ r′ − m/2. Therefore r = r′, which im-
plies that all noncoincident edges have multiplicity 2. We conclude that the
asymptotic behavior of (10.3.14) depends only on E(x2

11), and we are done.
Let R+ = [0,∞) and B+, B4

+ denote the Borel σ-fields on, respectively,
R+ and R

4
+. For any p × p symmetric, nonnegative definite matrix Bp and

any A ∈ B+, let PBp(A) denote the projection matrix on the subspace of
Rp spanned by the eigenvectors of Bp having eigenvalues in A (the collection
of projections {PBp((−∞, a]) : a ∈ R} is usually referred to as the spectral
family of Bp). We have trPBp(A) equal to the number of eigenvalues of Bp

contained in A. If Bp is random, then it is straightforward to verify the
following facts.
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Fact 1. For every xp ∈ Rp, ‖xp‖ = 1, x′
pP

Bp(·)xp is a random probability
measure on R+ placing mass on the eigenvalues of Bp.

Fact 2. For any four entries P
Bp

i1j1
(·), PBp

i2j2
(·), PBp

i3j3
(·), PBp

i4j4
(·) of PBp(·),

the function defined on rectangles A1 ×A2 ×A3 ×A4 ∈ B4
+ by

E
(
P

Bp

i1j1
(A1)P

Bp

i2j2
(A2)P

Bp

i3j3
(A3)P

Bp

i4j4
(A4)

)
(10.4.21)

generates a signed measure m
Bp
p = m

Bp,(i1,j1,...,i4,j4)
p on (R4

+,B
4
+) such that

|mBp
n (A)| ≤ 1 for every A ∈ B4

+.
When Bp = Sp we also have the following facts.
Fact 3. For any A ∈ B+, the distribution of PSp(A) is invariant under per-

mutation transformations; that is, PSp(A)
D
= OpP

Sp(A)O′
p for any permuta-

tion matrix Op

(
using the fact that PBp(·) is uniquely determined by {Br

p}∞r=1

along with OpP
Bp(·)O′

p = POpBpO′
p(·) and {Sr

p}∞r=1
D
= {(OpSpO

′
p)

r}∞r=1

)
.

Fact 4. For 0 ≤ x1 ≤ x2,

1

p
trPSp([0, x1]) = Fp(x1),

Xp(Fp(x1)) =

√
n

2

(
x′

pP
Sp([0, x1])xp − 1

p
tr(PSp([0, x1]))

)
,

and

Xp(Fp(x2)) −Xp(Fp(x1)) =

√
p

2

(
x′

pP
Sp((x1, x2])xp − 1

p
tr(PSp((x1, x2]))

)
.

Lemma 10.14. Assume x11 is symmetric. If one of the indices i1, j1, · · · ,
i4, j4 appears an odd number of times, then m

Sp
p ≡ 0.

Proof. Let Oi be the diagonal matrix with diagonal entries 1 except the i-th,

which is −1. Then, by assumption we have Sp
D
= OiSpOi and hence m

Sp
p =

m
OiSpOi
p . On the other hand, similar to Fact 3, one can show that POiSpOi =

OiP
SpOi and hence m

OiSpOi
p = (−1)αm

Sp
p , where α is the frequency of i

among {i1, j1, · · · , i4, j4}. Thus the lemma follows.

Theorem 10.15. Assume x11 is symmetric and xp = (±1/
√
p,±1/

√
p,

· · · ,±1/
√
p)′. Let Gp(x) = 4Fp(x). Then

E
(
(Xp(Fp(0)))4

)
≤ E

(
(Gp(0))2

)
, (10.4.22)

and for any 0 ≤ x1 ≤ x2

E
(
(Xp(Fp(x2)) −Xp(Fp(x1)))

4
)
≤ E

(
(Gp(x2) −Gp(x1))

2
)
. (10.4.23)
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Proof. With A = {0} in (10.4.22), and A = (x1, x2] in (10.4.23), we use Fact
4 to find the LHS of (10.4.22) and (10.4.23) equal to

1

4p2
E

(∑

i6=j

γijP
Sp

ij (A)

)4

, (10.4.24)

where γij = sgn((xp)i(xp)j). For the remainder of the argument, we sim-
plify the notation by suppressing the dependence of the projection matrix on
Sp and A. Upon expanding (10.4.24), we use Fact 3 to combine identically
distributed factors, and Lemma 10.14 to arrive at

(10.4.24) =
(p− 1)

p

(
12(p− 2)E(P 2

12P
2
13) + 3(p− 2)(p− 3)E(P 2

12P
2
34)

+12(p− 2)(p− 3)E(P12P23P34P14) + 2E(P 4
12)
)
. (10.4.25)

We can write the second and third expected values in (10.4.25) in terms
of the first expected value and expected values involving P11, P22, and P12

by making further use of Fact 3 and the fact that P is a projection matrix
(i.e., P2 = P). For example, we take the expected value of both sides of the
identity

P12P23

(∑

j≥4

P3jP1j + P31P11 + P32P12 + P33P13

)
= P12P23P13

and get

(p− 3)E(P12P23P34P14) + 2E(P11P12P23P31) + E(P 2
12P

2
13) = E(P12P23P13).

Proceeding in the same way, we find

(p− 2)E(P11P12P23P31) + E(P 2
11P

2
12) + E(P11P22P

2
12) = E(P11P

2
12)

and
(p− 2)E(P12P23P13) + 2E(P11P

2
12) = E(P 2

12).

Therefore,
(p− 2)(p− 3)E(P12P23P34P14)

= E(P 2
12) + 2E(P11P22P

2
12) + 2E(P 2

11P
2
12) − (p− 2)E(P 2

12P
2
13) − 4E(P11P

2
12).

Since P11 ≥ max(P11P22, P
2
11) and P 2

12 ≤ P11P22 (since P is nonnegative
definite), we have

(p− 2)(p− 3)E(P12P23P34P14) ≤ E(P11P22) − (p− 2)E(P 2
12P

2
13).

Similar arguments will yield
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(p− 3)E(P 2
12P

2
34) + 2E(P 2

12P
2
13) + E(P 2

12P
2
33) = E(P 2

12P33),

(p− 2)E(P 2
12P

2
13) + E(412) + E(P 2

11P
2
12) = E(P11P

2
12).

After multiplying the first equation by n− 2 and adding it to the second, we
get

(p− 2)(p− 3)E(P 2
12P

2
34) + 3(p− 2)E(P 2

12P
2
13)

= (p− 2)E(P 2
12P33) − (p− 2)E(P 2

12P
2
33) + E(P11P

2
12) − E(P 2

11P
2
12) − E(P 4

12)

= E(P11P22) + E(P 2
11P

2
22) − 2E(P11P

2
22) − E(P 4

12)

≤ E(P11P22) − E(P 4
12).

Combining the expressions above, we obtain

(10.4.24) ≤ 15
(p− 1)

p
E(P11P22).

Therefore, using Facts 3 and 4, we get

(10.4.24) ≤ 15

p2
E


∑

i6=j

PiiPjj


 ≤ E

((
4

p
trP

)2
)

=

{
E
(
(Gp(0))2

)
for A = {0},

E
(
(Gp(x2) −Gp(x1))

2
)

for A = (x1, x2],

and we are done.
We can now complete the proof of Theorem 10.7. Choose any b > (1+

√
y)2.

As in the proof of Theorem 10.2, we may assume (10.2.1) and, by Theorem
10.13, (10.3.1), which implies

{∫ b

0

xrXp(Fp(x))dx

}∞

r=0

D→
{∫ b

0

xrW y
x dx

}∞

r=0

as n→ ∞,

so that (10.4.18) is satisfied. By Theorems 10.10 and 10.15, we have (10.4.19)
with X = Xp(Fp), F = 4Fp, B = 4, γ = 4, and α = 2. From Theorem 3.6
and Theorem 5.1 of Billingsley [57], we have, for every δ ∈ (0, b],

w(Fp, δ)
i.p.−→ w(Fy , δ) as p→ ∞.

Since Fy is continuous on [0,∞), we apply the dominated convergence theo-
rem to the RHS of (10.4.19) and find that, for every ǫ > 0, P(w(Xp(Fp), δ) ≥
ǫ) can be made arbitrarily small for all p sufficiently large by choosing δ ap-

propriately. Therefore, by Theorem 10.4.9, Xp(Fp)
D→ W y

x in D[0, b], which

implies Xp(Fp(·)) D→W y
x in D[0,∞), and by Theorem 10.8 we conclude that

Xp
D→W ◦.
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10.5 Extension of (10.2.6) to Bn = T1/2SpT
1/2

First, we point out that the random variables Xp(F
Sp
p (x)) can be written as

Xp(F
Sp
p (x)) =

√
p/2(F

Sp
∗ (x) − FSp

p (x)),

where F
Sp
∗ is another empirical spectral distribution that puts mass |yi|2 at

the place λi. We shall call it the eigenvector ESD or simply VESD. Through-
out this section, we shall consider the linear functionals of Xp(F

Bn
p ) associ-

ated with the matrix Bn = T1/2SpT
1/2, where the random variables may be

complex.

10.5.1 First-Order Limit

Theorem 10.16. Suppose:

(1) For each p xij = x
(p)
ij , i, j = 1, 2, · · · , are iid complex random variables

with Ex11 = 0 and E|x2
11| = 1.

(2) xp ∈ C
p
1 = {x ∈ Cp, ‖x‖ = 1} and lim

p→∞
p
n = y ∈ (0,∞).

(3) T is p× p nonrandom Hermitian (or symmetric in the real case) non-

negative definite with its spectral norm bounded in p, with Hp = FT D→ H
a proper distribution function and with x∗

p(T − zI)−1xp → sF H (z), where
sF H (z) denotes the Stieltjes transform of H(t).

Then, it holds that

F
Bp
∗ (x) → F y,H(x) a.s.

Remark 10.17. If T = bI for some positive constant b or more generally
λmax(T) − λmin(T) → 0, the condition x∗

p(T − zI)−1xp → mF H (z) holds
uniformly for all xp ∈ C

p
1. In other cases, this condition may not hold for all

xp ∈ C
p
1. However, there always exists some xp ∈ C

p
1 such that this condition

holds, say xp = (u1 + · · · + up)/
√
p, where u1, · · · ,un are the orthonormal

eigenvectors in the spectral decomposition of T.

Applying Theorem 10.16, we get the following interesting results.

Corollary 10.18. Let (Bm
p )ii,m = 1, 2, · · · , denote the i-th diagonal ele-

ments of matrices Bm
p . Under the conditions of Theorem 10.16 for xp = epi,

we have, for any fixed m,

lim
p→∞

∣∣∣∣(Bm
p )ii −

∫
xmdF y,H(x)

∣∣∣∣→ 0 a.s.,
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where epi is the p-vector with i-th element 1 and others 0.

Remark 10.19. If T = bI for some positive constant b or more generally
λmax(T) − λmin(T) → 0, there is a better result,

lim
n→∞

max
i

∣∣∣∣(Bm
p )ii −

∫
xmdF y,H(x)

∣∣∣∣→ 0 a.s. (10.5.26)

(The proof of this corollary follows easily from the uniform convergence of
condition (3) of Theorem 10.16 for all xp ∈ C

p
1, with careful checking of the

proof of Theorem 10.16.)

More generally, we have the following corollary.

Corollary 10.20. If f(x) is a bounded function and the assumptions of The-
orem 10.16 are satisfied, then

p∑

j=1

|y2
j |f(λj) −

1

p

p∑

j=1

f(λj) → 0 a.s.

10.5.2 CLT of Linear Functionals of Bp

Theorem 10.21. In addition to the conditions of Theorem 10.16, we assume
that E|x4

11| <∞ and

(4) g1, · · · , gk are defined and analytic on an open region D of the complex
plane that contains the real interval

[
lim inf

p
λT

minI(0,1)(y)(1 −√
y)2, lim sup

p
λT

max(1 +
√
y)2
]
. (10.5.27)

(5) sup
z

√
n

∣∣∣∣x∗
p(sF yn,Hn (z)T + I)−1xp −

∫
1

sF yn,Hn (z)t+ 1
dHn(t)

∣∣∣∣→ 0 as

n→ ∞.

Then the following conclusions hold:

(a) The random vectors

(∫
g1(x)dGn(x), · · · ,

∫
gk(x)dGn(x)

)
(10.5.28)

form a tight sequence.
(b) If x11 and T are real and Ex4

11 = 3, the random vector above converges
weakly to a Gaussian vector Xg1 , · · · , Xgk

, with zero means and covariance
function
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Cov(Xg1 , Xg2) (10.5.29)

= − 1

2π2

∫

C1

∫

C2

g1(z1)g2(z2)
(z2m(z2) − z1m(z1))

2

y2z1z2(z2 − z1)(m(z2) −m(z1))
dz1dz2.

The contours C1 and C2 in the equality above are disjoint, both contained
in the analytic region for the functions (g1, · · · , gk) and both enclosing the
support of F yn,Hn for all large p.

(c) If x11 is complex, with Ex2
11 = 0 and E|x11|4 = 2, then the conclusions (a)

and (b) still hold but the covariance function reduces to half of the quantity
given in (10.5.29).

Remark 10.22. If T = bI for some positive constant b or more generally√
p(λmax(T) − λmin(T)) → 0, then condition (5) holds uniformly for all

xp ∈ C
p
1.

Theorem 10.23. Besides the assumptions of Theorem 10.21, H(x) satisfies

∫
dH(t)

(1 + tm(z1))(1 + ts(z2))
−
∫

dH(t)

(1 + ts(z1))

∫
dH(t)

(1 + ts(z2))
= 0 (10.5.30)

Then all results of Theorem 10.21 remain true. Moreover, formula (10.5.29)
can be simplified to

Cov(Xg1 , Xg2) (10.5.31)

=
2

y

(∫
g1(x)g2(x)dF

y,H(x) −
∫
g1(x1)dF

y,H(x1)

∫
g2(x2)dF

y,H(x2)

)
.

Remark 10.24. Obviously, (10.5.30) holds when T = bI. Actually, (10.5.30)
holds if and only if H(x) is a degenerate distribution. To see it, one only
needs to choose z2 to be the complex conjugate of z1.

10.6 Proof of Theorem 10.16

Without loss of generality, we assume that ‖T‖ ≤ 1, where ‖ · ‖ denotes the
spectral norm on the matrices; i.e., the largest singular values.

For C > 0, let x̃ij = xijI(|xij | ≤ C) − ExijI(|xij | ≤ C) and B̃p =
1
nT

1
2 X̃pX̃

∗
pT

1
2 , where X̃p = (x̃ij).

Let v = ℑz > 0. Since xij − x̃ij = xijI(|xij | > C) − ExijI(|xij | > C) and
‖(Bp − zI)−1‖ is bounded by 1

v , by Theorem 5.8 we have

|x∗
p(Bp − zI)−1xp − x∗

p(B̃p − zI)−1xp|
≤ ‖(Bp − zI)−1‖‖(Bp − B̄p)‖‖(B̃p − zI)−1‖

≤ 1

nv2
‖Xp − X̃p‖‖X∗

p‖ + ‖X̃p‖‖X∗
p − X̃∗

p‖ (10.6.1)



10.6 Proof of Theorem 10.16 369

→ (1 +
√
y)2

v2
[E1/2|x11 − x̃11|2(E1/2|x̃11|2 + E1/2|x11|2)] a.s.

≤ 2(1 +
√
y)2

v2
E1/2|x11|2I(|x11| > C).

The bound above can be made arbitrarily small by choosing C sufficiently
large. Since lim

C→∞
E|x̄11|2 = 1, after proper rescaling of x̃ij , the difference can

still be made arbitrarily small. Hence, in what follows, it is enough to assume
|xij | ≤ C,Ex11 = 0, and E|x11|2 = 1.

Next, we will show that

x∗
p(Bp − zI)−1xp − x∗

pE(Bp − zI)−1xp → 0 a.s. (10.6.2)

Let rj denote the j-th column of 1√
n
T

1
2 Xp, D(z) = Bp − zI, Dj(z) =

D(z) − rjr
∗
j ,

αj(z) = r∗jD
−1
j (z)xpx

∗
p(Esp(z)T+ I)−1rj −

1

n
x∗

p(Esp(z)T+ I)−1TD−1
j (z)xp,

ξj(z) = r∗jD
−1
j (z)rj −

1

n
trTD−1

j (z),

γj = r∗jD
−1
j (z)xpx

∗
pD

−1
j (z)rj −

1

n
x∗

pD
−1
j (z)TD−1

j (z)xp (10.6.3)

and

βj(z) =
1

1 + r∗jD
−1
j (z)rj

, bj(z) =
1

1 + n−1trTD−1
j (z)

.

Noting that |βj(z)| ≤ |z|/v, ‖D−1
j (z)‖ ≤ 1/v, by Lemma B.26, we have

E|r∗jD−1
j (z)xpx

∗
pD

−1
j (z)rj |r = O

(
1

nr

)
, E|ξj(z)|r = O

(
1

nr/2

)
. (10.6.4)

Define the σ-field Fj = σ(r1, · · · , rj), and let Ej(·) denote conditional
expectation with respect to the σ-field Fj and E0(·) denote unconditional
expectation. Note that

x∗
p(Bp − zI)−1xp − x∗

pE(Bp − zI)−1xp (10.6.5)

=

n∑

j=1

x∗
pEjD

−1(z)xp − x∗
pEj−1D

−1(z)xp

=

n∑

j=1

x∗
pEj(D

−1(z) − D−1
j (z))xp − x∗

pEj−1(D
−1(z) − D−1

j (z))xp

= −
n∑

j=1

(Ej − Ej−1)βj(z)r
∗
jD

−1
j (z)xpx

∗
pD

−1
j (z)rj
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= −
n∑

j=1

[Ejbj(z)γj(z) − (Ej − Ej−1)r
∗
jD

−1
j (z)xpx

∗
pD

−1
j (z)rjβj(z)bj(z)ξj(z).

By the fact that | 1
1+r∗

j
D

−1
j

(z)rj
| ≤ |z|

v and making use of the Burkholder

inequality, (10.6.4), and the martingale expression (10.6.5), we have

E|x∗
p(Bp − zI)−1xp − x∗

pE(Bp − zI)−1xp|r

≤ E

[
n∑

j=1

Ej−1|(Ej − Ej−1)βj(z)r
∗
jD

−1
j (z)xpx

∗
pD

−1
j (z)rj |2

] r
2

+E

n∑

j=1

|(Ej − Ej−1)βj(z)r
∗
jD

−1
j (z)xpx

∗
pD

−1
j (z)rj |r

≤ E

[
n∑

j=1

K|z|2
v2

Ej−1|γj(z)|2 + Ej−1|r∗jD−1
j (z)xpx

∗
pD

−1
j (z)rjξj(z)|2

] r
2

+

n∑

j=1

K|z|r
vr

E|r∗jD−1
j (z)xpx

∗
pD

−1
j (z)rj |r

≤ K[p−
r
2 + p−r+1].

Thus, (10.6.2) follows from the Borel-Cantelli lemma, by taking r > 2.
Write

D(z) − (−zEsp(z)T− zI) =

n∑

j=1

rjr
∗
j − (−zEsp(z))T.

Using equalities
r∗jD

−1(z) = βj(z)r
∗
jD

−1
j (z)

and

sp(z) = − 1

zn

n∑

j=1

βj(z) (10.6.6)

(see (6.2.4)), we obtain

ED−1(z) − (−zEsp(z)T − zI)−1

= (zEsp(z)T + zI)−1E

[
n∑

j=1

rjr
∗
j − (−zEsp(z))TD−1(z)

]

=
1

z

n∑

j=1

Eβj(z)

[
(Esp(z)T + I)−1rjr

∗
jD

−1
j (z) − 1

n
(Esp(z)T + I)−1TED−1(z)

]
.

Multiplying by x∗
p on the left and xp on the right, we have
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x∗
pED−1(z)xp − x∗

p(−zEsp(z)T− zI)−1xp

= n
1

z
Eβ1(z)[r

∗
1D

−1
1 (z)xpx

∗
p(Esp(z)T + I)−1r1 (10.6.7)

− 1

n
x∗

p(Esp(z)T + I)−1TED−1(z)xp]

△
= δ1 + δ2 + δ3,

where

δ1 =
n

z
Eβ1(z)α1(z),

δ2 =
1

z
E[β1(z)x

∗
p(Esp(z)T + I)−1T(D−1

1 (z) − D−1(z))xp],

δ3 =
1

z
E[β1(z)x

∗
p(Esp(z)T + I)−1T(D−1(z) − ED−1(z))xp].

Similar to (10.6.4), by Lemma B.26, for r ≥ 2, we have

E|αj(z)|r = O

(
1

nr

)
.

Therefore,

δ1 =
n

z
Eb1(z)β1(z)ξ1(z)α1(z) = O(n−1/2).

It follows that

|δ2| =
1

|z| |E[β2
1(z)x∗

p(Esp(z)T + I)−1TD−1
1 (z)r1r

∗
1D

−1
1 (z)xp]|

≤ K
(
E|x∗

p(Esp(z)T + I)−1TD−1
1 (z)r1|2E|r∗1D−1

1 (z)xp|2
)1/2

= O(n−1)

and

|δ3| =
1

|z| |E[β1(z)b1(z)ξ1(z)x
∗
p(Esp(z)T + I)−1T(D−1(z) − ED−1(z))xp]|

≤ KE|ξ1(z)| = O(n−1/2).

Combining the three bounds above and (10.6.7), we can conclude that

x∗
pED−1(z)xp − x∗

p(−zEsp(z)T− zI)−1xp → 0. (10.6.8)

It has been proven in Section 9.11 that, under the conditions of Theorem
10.16, Esp(z) → s(z), which is the solution to equation (9.7.1). We then
conclude that

x∗
pED−1(z)xp − x∗

p(−zs(z)T− zI)−1xp → 0.
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By condition (3) of Theorem 10.16, we finally obtain

x∗
pED−1(z)xp →

∫
dH(t)

−zst− z
,

which completes the proof of Theorem 10.16.

10.7 Proof of Theorem 10.21

The proof of Theorem 10.21 will be separated into several subsections.

10.7.1 An Intermediate Lemma

To complete the proof of Theorem 10.21, we need the intermediate Lemma
10.25 below.

Write
Mp(z) =

√
n(s

F
Bp
∗

(z) − sF yp,Hp (z)),

which is defined on a contour C in the complex plane, where C and the
numbers ur, ul, µ1, µ2, and v0 > 0 are the same as defined in Section 9.8.

Similar to Section 9.8, we consider M∗
p (z), a truncated version of Mp(z).

Choose a sequence of positive numbers {δp} such that for 0 < ρ < 1

δp ↓ 0, δp ≥ p−ρ. (10.7.1)

Write

M∗
p (z) =





Mp(z)
if z ∈ C0 ∪ C̄0

pv+δp

2δp
Mp(ur + in−1δp) +

δp−pv
2δp

Mp(ur − ip−1δp)

if u = ur, v ∈ [−p−1δp, p
−1δp]

pv+δp

2δp
Mp(ul + ip−1δp) +

δp−pv
2δp

Mp(ul − ip−1δp)

if u = ul > 0, v ∈ [−p−1δp, p
−1δp].

M∗
p (z) can be viewed as a random element in the metric space C(C,R2) of

continuous functions from C to R2. We shall prove the following lemma.

Lemma 10.25. Under the assumptions of Theorem 10.16 and (4) and (5) of
Theorem 10.21, M∗

p (z) forms a tight sequence on C. Furthermore, when the
conditions in (b) and (c) of Theorem 10.21 on x11 hold, for z ∈ C, M∗

p (z)
converges to a Gaussian process M(·) with zero mean and for z1, z2 ∈ C,
under the assumptions in (b),
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Cov(M(z1),M(z2)) =
2(z2s(z2) − z1s(z1))

2

y2z1z2(z2 − z1)(s(z2) − s(z1))
, (10.7.2)

while under the assumptions in (c), a covariance function similar to (10.7.2)
is half of the value of (10.7.2).

To prove Theorem 10.21, it suffices to prove Lemma 10.25. Before proving the
lemma, we first truncate and recentralize the variables xij . Choose ηp → 0
and such that E|x4

11|I(|x11| > ηp
√
p) = o(η4

n). Truncate the variables xij

at ηpp
1/2 and recentralize them. Similar to Subsection 10.3.3, one can prove

that the truncation and recentralization do not affect the limiting result.
Therefore, we may assume that the following additional conditions hold:

|xij | ≤ ηp
√
p,Ex11 = 0,E|x11|2 = 1 + o(p−1)

and
{

E|x11|4 = 3 + o(1), for the real case,
Ex2

11 = o(p−1),E|x11|4 = 2 + o(1), for the complex case.

The proof of Lemma 10.25 will be given in the next two subsections.

10.7.2 Convergence of the Finite-Dimensional
Distributions

For z ∈ C0, let
M1

p (z) =
√
n(s

F
Bp
∗

(z) − Es
F

Bp
∗

(z))

and
M2

p (z) =
√
n(Es

F
Bp
∗

(z) − sF yp,Hp (z)).

Then
Mp(z) = M1

p (z) +M2
p (z).

In this part, for any positive integer r and complex numbers a1, · · · , ar, we
will show that

r∑

i=1

aiM
1
p (zi) (ℑzi 6= 0)

converges in distribution to a Gaussian random variable and will derive the
covariance function (10.7.2).

Before proceeding with the proofs, we first recall some known facts and
results. For any nonrandom matrices C and Q and positive constant 2 ≤ ℓ ≤
8 log p, by using Lemma 9.1 for some constant K, we have

E|r∗1Cr1 − n−1trTC|ℓ ≤ Kℓ‖C‖ℓη2ℓ−4
p p−1, (10.7.3)
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E|r∗1Cxpx
∗
pQr1 − n−1x∗

pQTCxp|ℓ ≤ Kℓ‖C‖ℓ‖Q‖ℓη2ℓ−4
p p−2, (10.7.4)

E|r∗1Cxpx
∗
pQr1|ℓ ≤ Kℓ‖C‖ℓ‖Q‖ℓη2ℓ−4

p p−2. (10.7.5)

Let v = ℑz. To facilitate the analysis, we will assume v > 0. By (10.6.5),
we have

√
n(s

F
Bp
∗

(z)−Es
F

Bp
∗

(z)) = −√
n

n∑

j=1

(Ej−Ej−1)βj(z)r
∗
jD

−1
j (z)xpx

∗
pD

−1
j (z)rj .

Since

βj(z) = bj(z) − βj(z)bj(z)ξj(z) = bj(z) − b2j(z)ξj(z) + b2j(z)βj(z)ξ
2
j (z),

we then get

(Ej − Ej−1)βj(z)r
∗
jD

−1
j (z)xpx

∗
pD

−1
j (z)rj

= Ejbj(z)γj(z) − Ej

(
b2j(z)ξj(z)

1

n
x∗

pD
−1
j (z)TD−1

j (z)xp

)

+(Ej − Ej−1)(b
2
j(z)βj(z)ξ

2
j (z)r∗jD

−1
j (z)xpx

∗
pD

−1
j (z)rj − b2j(z)ξj(z)γj(z)),

where γj = r∗jD
−1
j (z)xpx

∗
pD

−1
j (z)rj − 1

nx∗
pD

−1
j (z)TD−1

j (z)xp.
Applying (10.7.3),

E

∣∣∣∣∣∣
√
n

n∑

j=1

Ej

(
b2j(z)ξj(z)

1

n
x∗

pD
−1
j (z)TD−1

j (z)xp

)∣∣∣∣∣∣

2

=
1

n

n∑

j=1

E|Ej(b
2
j(z)ξj(z)x

∗
pD

−1
j (z)TD−1

j (z)xp)|2 ≤ K
|z|4
v8

E|ξ1(z)|2 = O(p−1),

which implies that
√
n

n∑
j=1

Ej(b
2
j(z)ξj(z)

1
nx∗

pD
−1
j (z)TD−1

j (z)xp)
i.p.→ 0.

By (10.7.3), (10.7.5), and Hölder’s inequality with ℓ = log p and l =
log p/(log p− 1), we have

E

∣∣∣∣∣∣
√
n

n∑

j=1

(Ej − Ej−1)(b
2
j (z)βj(z)ξ

2
j (z)r∗jD

−1
j (z)xpx

∗
pD

−1
j (z)rj

∣∣∣∣∣∣

2

≤ K
( |z|
v

)6

n

n∑

j=1

(
E|ξ4j (z)||γ2

j (z)| + 1

n2
E|ξ4j (z)||x∗

pD
−1
j (z)TD−1

j (z)xp|2
)

≤ K
( |z|
v

)6

n

n∑

j=1

(
E|ξ4ℓ

j (z)|
)1/ℓ (

E|γ2l
j (z)|

)1/l
+O(p−1)
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≤ Kn2
(
η8ℓ−4

p p−1
)1/ℓ (

η4l−4
p p−2

)1/l
+O(p−1)

= o(1),

which implies that

√
n

n∑

j=1

(Ej − Ej−1)b
2
j(z)βj(z)ξ

2
j (z)r∗jD

−1
j (z)xpx

∗
pD

−1
j (z)rj

i.p.−→ 0.

Using a similar argument, we have

√
n

n∑

j=1

(Ej − Ej−1)b
2
j(z)ξj(z)γj(z)

i.p.→ 0.

The estimates (6.2.36), (9.9.20), and (10.7.4) yield

E|(bj(z) + zs(z))γj(z)|2 = E[E(|(bj(z) + zs(z))γj(z)|2|B(ri, i 6= j))]

= E[|bj(z) + zs(z)|2E(|γj(z)|2|B(ri, i 6= j))] = o(p−2),

which gives us
√
n

n∑

j=1

Ej [(bj(z) + zs(z))γj(z)]
i.p.→ 0,

where B(·) denotes the Borel field generated by the random variables indi-
cated in the brackets.

Note that the results above also hold when ℑz ≤ −v0 by symmetry. Hence,
for the finite dimensional convergence, we need only consider the sum

r∑

i=1

ai

n∑

j=1

Yj(zi) =

n∑

j=1

r∑

i=1

aiYj(zi),

where Yj(zi) = −√
nzis(zi)Ejγj(zi) and γj is defined in (10.6.3).

Next, we will show that Yj(zi) satisfies the Lindeberg condition; that is,
for any ε > 0,

n∑

j=1

E|Yj(zi)|2I(|Yj(zi)| ≥ ε) → 0. (10.7.6)

Write γj(zi) = γ
(1)
j + γ

(2)
j + γ

(3)
j + γ

(4)
j , where

γ
(1)
j =

1

n

∑

k 6=l

e′kD
−1
j (zi)xpx

∗
pD

−1
j (zi)elx̄kjxlj ,

γ
(2)
j =

1

n

p∑

k=1

e′kD
−1
j (zi)xpx

∗
pD

−1
j (zi)ek
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×[|x2
kj |I(|x2

kj | < log p) − E|x2
kj |I(|x2

kj | < log p)],

γ
(3)
j =

1

n

p∑

k=1

e′kD
−1
j (zi)xpx

∗
pD

−1
j (zi)ek

×[|x2
kj |I(|x2

kj | ≥ log p) − E|x2
kj |I(|x2

kj | ≥ log p)]

γ
(4)
j =

1

n

p∑

k=1

e′kD
−1
j (zi)xpx

∗
pD

−1
j (zi)ek[E|x2

kj | − 1] = O(p−1).

Similar to the proof of Lemma B.26, we can prove that

E|γ(1)
j |4 = O(p−4), E|γ(2)

j |4 = O(p−4 log2 p), and E|γ(3)
j |2 = o(p−2),

(10.7.7)
where the o(1) comes from the fact that E|x4

kj ||(|x2
kj | ≥ log p) → 0. Conse-

quently, (10.7.6) follows from the observation that

n∑

j=1

E|Yj(zi)|2I(|Yj(zi)| ≥ ε)

≤ 4

n∑

j=1

4∑

l=1

E
∣∣Y (l)

j (zi)
∣∣2I
(
|Y (l)

j (zi)| ≥ ε/4
)

≤ 64

ε2

n∑

j=1

2∑

l=1

E
∣∣Y (l)

j (zi)
∣∣4 +

n∑

j=1

E
∣∣Y (3)

j (zi)
2
∣∣→ 0,

where Y
(l)
j (zi) = −√

nzis(zi)γ
(l)
j , l ≤ 4.

By Lemma 9.12, we only need to show that, for z1, z2 ∈ C\R,

n∑

j=1

Ej−1(Yj(z1)Yj(z2)) (10.7.8)

converges in probability to a constant under the assumptions in (b) or (c). It
is easy to verify that

|trEj(D
−1
j (z1)xpx

∗
pD

−1
j (z1))TEj(D

−1
j (z2)xpx

∗
pD

−1
j (z2)T)| ≤ 1

|v1v2|2
,

(10.7.9)
where v1 = ℑ(z1) and v2 = ℑ(z2). It follows that, for the complex case,
applying (9.8.6), (10.7.8) now becomes

z1z2s(z1)s(z2)
1

n

n∑

j=1

Ej−1trEj(D
−1
j (z1)xpx

∗
pD

−1
j (z1))T

×Ej(D
−1
j (z2)xpx

∗
pD

−1
j (z2)T) + op(1)
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= z1z2s(z1)s(z2)
1

n

n∑

j=1

Ej−1(x
∗
pD

−1
j (z1)TD̆−1

j (z2)xp)

×(x∗
pD̆

−1
j (z2)TD−1

j (z1)xp) + op(1), (10.7.10)

where D̆−1
j (z2) is similarly defined as D−1

j (z2) by (r1, · · · , rj−1, r̆j+1, · · · , r̆n),
where r̆j+1, · · · , r̆N are iid copies of rj+1, · · · , rn.

For the real case, (10.7.8) will be twice the amount of (10.7.10).
Define

Dij(z) = D(z) − riR
∗
i − rjr

∗
j , H−1(z1) =

(
z1I −

n− 1

n
bp1(z1)T

)−1

,

βij(z) =
1

1 + r∗i D
−1
ij (z)ri

, and bp1(z) =
1

1 + n−1EtrTD−1
12 (z)

.

Write

x∗
p(D

−1
j (z1) − Ej−1D

−1
j (z1))TD̆−1

j (z2)xp

=

n∑

t=j

x∗
p(EtD

−1
j (z1) − Et−1D

−1
j (z1))TD̆−1

j (z2)xp. (10.7.11)

By (10.7.11), we notice that

Ej−1(x
∗
pD

−1
j (z1)TD̆−1

j (z2)xp)(x
∗
pD̆

−1
j (z2)TD−1

j (z1)xp) (10.7.12)

=

n∑

t=j

Ej−1x
∗
p(EtD

−1
j (z1) − Et−1D

−1
j (z1))TD̆−1

j (z2)xpx
∗
pD̆

−1
j (z2)

×T(EtD
−1
j (z1) − Et−1D

−1
j (z1))xp

+Ej−1(x
∗
p(Ej−1D

−1
j (z1)T)D̆−1

j (z2)xp)(x
∗
pD̆

−1
j (z2)T(Ej−1D

−1
j (z1))xp)

= Ej−1(x
∗
p(Ej−1D

−1
j (z1)T)D̆−1

j (z2)xp)

×(x∗
pD̆

−1
j (z2)T(Ej−1D

−1
j (z1))xp) +O(p−1),

where we have used the fact that

|Ej−1x
∗
p(EtD

−1
j (z1) − Et−1D

−1
j (z1))TD̆−1

j (z2)xp×

x∗
pD̆

−1
j (z2)T(EtD

−1
j (z1) − Et−1D

−1
j (z1))xp|

≤ 4
(
Ej−1

∣∣βtj(z1)x
∗
p(D

−1
tj (z1)rtr

∗
t (D

−1
tj (z1)TD̆−1

j (z2)xp

∣∣2

×Ej−1

∣∣βtj(z1)x
∗
pD̆

−1
j (z2)T(D−1

tj (z1)rtr
∗
t B

−1
j (z1))xp

∣∣2
)1/2

= O(p−2).

Similarly, one can prove that
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Ej−1(x
∗
p(Ej−1D

−1
j (z1)T)D̆−1

j (z2)xp)(x
∗
pD̆

−1
j (z2)T(Ej−1D

−1
j (z1))xp)

= Ej−1(x
∗
pD

−1
j (z1)TD̆−1

j (z2)xp)Ej−1(x
∗
pD̆

−1
j (z2)TD−1

j (z1)xp) +O(p−1).

Then, using the decomposition (9.9.12), we obtain

Ej−1(x
∗
pD

−1
j (z1)TD̆−1

j (z2)xp)Ej−1(x
∗
pD̆

−1
j (z2)TD−1

j (z1)xp)

= −Ej−1(x
∗
pD

−1
j (z1)TD̆−1

j (z2)xp)Ej−1(x
∗
pD̆

−1
j (z2)TH−1(z1)Txp)

+A(z1, z2) + B(z1, z2) + C(z1, z2), (10.7.13)

where

A(z1, z2) = bp1(z1)Ej−1(x
∗
pD

−1
j (z1)TD̆−1

j (z2)xp)Ej−1(x
∗
pD̆

−1
j (z2)TA(z1)xp),

B(z1, z2) = Ej−1(x
∗
pD

−1
j (z1)TD̆−1

j (z2)xp)Ej−1(x
∗
pD̆

−1
j (z2)TB(z1)xp),

and

C(z1, z2) = Ej−1(x
∗
pD

−1
j (z1)TD̆−1

j (z2)xp)(x
∗
pD̆

−1
j (z2)TC(z1)xp).

We next prove that

E|B(z1, z2)| = o(1) and E|C(z1, z2)| = o(1). (10.7.14)

Note that although B and C depend on j implicitly, E|B(z1, z2)| and
E|C(z1, z2)| are independent of j since the entries of Xp are iid.

Then, we have

E|B(z1, z2)| ≤
1

|v1v2|
E|x∗

pD̆
−1
j (z2)TB(z1)xp|

≤ 1

|v1v2|
∑

i6=j

(E|βij(z1) − bp1(z1)|2

×E|r∗i D−1
ij (z1)xpx

∗
p(D̆

−1
j (z2))TH−1(z1)ri|2)1/2.

When i > j, ri is independent of D̆−1
j (z2). As the proof of (10.6.4), we have

E|r∗i D−1
ij (z1)xpx

∗
p(D̆

−1
j (z2))TH−1(z1)ri|2 = O(p−2). (10.7.15)

When i < j, substituting D̆−1
j (z2) by D̆−1

ij (z2)− β̆ij(z2)D̆
−1
ij (z2)rir

∗
i D̆

−1
ij (z2),

we can also obtain the inequality above. Noting that

E|βij(z1) − bp1(z1)|2 = E|βij(z1)bp1(z1)ξij |2 = O(n−1), (10.7.16)

where ξij(z) = r∗i D
−1
ij (z)ri − 1

nD−1
ij (z) and β̆ij(z2) is similarly defined as

βij(z2), combining (10.7.15)–(10.7.16), we conclude that
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E|B(z1, z2)| = o(1).

The argument for C(z1, z2) is similar to that of B(z1, z2), just simpler, and
is therefore omitted. Hence (10.7.14) holds.

Next, write

A(z1, z2) = A1(z1, z2) + A2(z1, z2) + A3(z1, z2), (10.7.17)

where

A1(z1, z2) =
∑

i<j

bp1(z1)Ej−1x
∗
pβij(z1)D

−1
ij (z1)rir

∗
i D

−1
ij (z1)TD̆−1

j (z2)xp

×Ej−1x
∗
pD̆

−1
j (z2)TH−1(z1)(rir

∗
i − n−1T)D−1

ij (z1)xp,

A2(z1, z2) =
∑

i<j

bp1(z1)Ej−1x
∗
pD

−1
ij (z1)TD̆−1

ij (z2)rir
∗
i D̆

−1
ij (z2)β̆ij(z2)xp

×Ej−1x
∗
pD̆

−1
j (z2)TH−1(z1)(rir

∗
i − n−1T)D−1

ij (z1)xp,

and

A3(z1, z2) =
∑

i<j

bp1(z1)Ej−1x
∗
pD

−1
ij (z1)TD̆−1

ij (z2)xp

×Ej−1x
∗
pD̆

−1
j (z2)TH−1(z1)(rir

∗
i − n−1T)D−1

ij (z1)xp.

Splitting D̆−1
j (z2) as the sum of D̆−1

ij (z2) and −β̆ij(z2)D̆
−1
ij (z2)rir

∗
i D̆

−1
ij (z2)

as in the proof of (10.7.16), one can show that

E|A1(z1, z2)| ≤
∑

i<j

|bp1(z1)|
(
E|x∗

pβij(z1)D
−1
ij (z1)rir

∗
i D

−1
ij (z1)TD̆−1

j (z2)xp|2

× E|x∗
pD̆

−1
j (z2)TH−1(z1)(rir

∗
i − n−1T)D−1

ij (z1)xp|2
)1/2

= O(n−1/2).

By the same argument, we have

E|A2(z1, z2)| = O(n−1).

To deal with A3(z1, z2), we again split D̆−1
j (z2) into the sum of D̆−1

ij (z2)

and −β̆ij(z2)D̆
−1
ij (z2)rir

∗
i D̆

−1
ij (z2). We first show that

A31(z1, z2) =
∑

i<j

bp1(z1)Ej−1x
∗
pD

−1
ij (z1)TD̆−1

ij (z2)xp

×Ej−1x
∗
pD̆

−1
ij (z2)TH−1(z1)(rir

∗
i − n−1T)D−1

ij (z1)xp
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= op(1). (10.7.18)

Further, we have

E|A31(z1, z2)|2

=
∑

i1,i2<j

|bp1(z1)|2EEj−1x
∗
pD

−1
i1j(z1)TD̆−1

i1j(z2)xpEj−1x
∗
pD

−1
i2j(z̄1)TD̆−1

i2j(z̄2)xp

×Ej−1x
∗
pD̆

−1
i1j(z2)TH−1(z1)(ri1r

∗
i1 − n−1T)D−1

i1j(z1)xpx
∗
pD̆

−1
i2j(z̄2)

×TH−1(z̄1)(ri2r
∗
i2 − n−1T)D−1

i2j(z̄1)xp.

When i1 = i2, the term in the expression above is bounded by

KE|x∗
pD̆

−1
i1j(z2)TH−1(z1)(ri1r

∗
i1 − n−1T)D−1

ij (z1)xp|2 = O(n−2).

For i1 6= i2 < j, define

βi1i2j(z1) =
1

1 + r∗i2D
−1
i1i2j(z1)ri2

, Di1i2j(z1) = D(z1)− ri1r
∗
i1 − ri2r

∗
i2 − rjr

∗
j ,

and similarly define β̆i1,i2,j(z2) and D̆i1i2j(z2).
We have

|EEj−1x
∗
pD

−1
i1,i2,j(z1)ri2r

∗
i2D

−1
i1,i2,j(z1)βi1,i2,j(z1)TD̆−1

i1j(z2)

×xpEj−1x
∗
pD

−1
i2j(z̄1)TD̆−1

i2j(z̄2)xp

×Ej−1x
∗
pD̆

−1
i1j(z2)TH−1(z1)(ri1r

∗
i1 − n−1T)D−1

i1j(z1)xp

×x∗
pD̆

−1
i2j(z̄2)TH−1(z̄1)(ri2r

∗
i2 − n−1T)D−1

i2j(z̄1)xp|
≤ K(E|x∗

pD
−1
i1,i2,j(z1)ri2r

∗
i2D

−1
i1,i2,j(z1)βi1,i2,j(z1)TD̆−1

i1j(z2)xp|2)1/2

×(E|x∗
pD̆

−1
i1j(z2)TH−1(z1)(ri1r

∗
i1 − n−1T)D−1

i1j(z1)xp|4)1/4

×(E|x∗
pD̆

−1
i2j(z2)TH−1(z1)(ri2r

∗
i2 − n−1T)D−1

i2j(z1)xp|4)1/4

= O(n−5/2),

|EEj−1x
∗
pD

−1
i1,i2,j(z1)TD̆−1

i1,i2,j(z2)ri2r
∗
i2D̆

−1
i1,i2,j(z2)β̆i1,i2,j(z2)xp

×Ej−1x
∗
pD

−1
i2j(z̄1)TD̆−1

i2j(z̄2)xp

×Ej−1x
∗
pD̆

−1
i1j(z2)TH−1(z1)(ri1r

∗
i1 − n−1T)D−1

i1j(z1)xp

×x∗
pD̆

−1
i2j(z̄2)TH−1(z̄1)(ri2r

∗
i2 − n−1T)D−1

i2j(z̄1)xp|
≤ K(E|x∗

pD
−1
i1,i2,j(z1)TD̆−1

i1,i2,j(z2)ri2r
∗
i2D̆

−1
i1,i2,j(z2)β̆i1,i2,j(z2)xp|2)1/2

×(E|x∗
pD̆

−1
i1j(z2)TH−1(z1)(ri1r

∗
i1 − n−1T)D−1

i1j(z1)xp|4)1/4

×(E|x∗
pD̆

−1
i2j(z2)TH−1(z1)(ri2r

∗
i2 − n−1T)D−1

i2j(z1)xp|4)1/4
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= O(n−5/2)

and, by (9.8.6),

|EEj−1x
∗
pD

−1
i1,i2,j(z1)TD̆−1

i1,i2,j(z2)xpEj−1x
∗
pD

−1
i2j(z̄1)TD̆−1

i2j(z̄2)xp

×Ej−1x
∗
pD̆

−1
i1,i2,j(z2)ri2r

∗
i2D̆

−1
i1,i2,j(z2)β̆i1,i2,j(z2)TH−1(z1)(ri1r

∗
i1 − n−1T)

D−1
i1j(z1)xpx

∗
pD̆

−1
i2j(z̄2)TH−1(z̄1)(ri2r

∗
i2 − n−1T)D−1

i2j(z̄1)xp|
≤ K(E|x∗

pD̆
−1
i1,i2,j(z2)ri2r

∗
i2D̆

−1
i1,i2,j(z2)β̆i1,i2,j(z2)TH−1(z1)(ri1r

∗
i1 − n−1T)

×D−1
i1j(z1)xp|2)1/2(E|x∗

pD̆
−1
i2j(z2)TH−1(z1)(ri2r

∗
i2 − n−1T)D−1

i2j(z1)xp|2)1/2

≤ K(E|x∗
pD̆

−1
i1,i2,j(z2)ri2r

∗
i2D̆

−1
i1,i2,j(z2)TH−1(z1)

×(ri1r
∗
i1 − n−1T)D−1

i1j(z1)xp|2)1/2 ×O(n−1)

≤ K(Ex∗
pD̆

−1
i1,i2,j(z2)ri2r

∗
i2D̆

−1
i1,i2,j(z2)TH−1(z1)TH−1(z̄1)TD̆−1

i1,i2,j(z̄2)ri2

×r∗i2D̆
−1
i1,i2,j(z̄2)xpx

∗
pD

−1
i1,j(z̄1)TD−1

i1j(z1)xp)
1/2 ×O(n−2)

≤ K(E|x∗
pD̆

−1
i1,i2,j(z2)ri2r

∗
i2D̆

−1
i1,i2,j(z̄2)xp|2)1/4

×(E|r∗i2D̆−1
i1,i2,j(z2)TH−1(z1)TH−1(z̄1)TD̆−1

i1,i2,j(z̄2)r
2
i2 )

1/4 ×O(n−2)

= O(n−9/4).

Then, the conclusion (10.7.18) follows from the three estimates above.
Therefore,

A3(z1, z2) = A32(z1, z2) + op(1)

A32(z1, z2) = −
∑

i<j

bp1(z1)Ej−1x
∗
pD

−1
ij (z1)TD̆−1

ij (z2)xp

×Ej−1x
∗
pD̆

−1
ij (z2)rir

∗
i D̆

−1
ij (z2)β̆ij(z2)TH−1(z1)(rir

∗
i − n−1T)D−1

ij (z1)xp

= −
∑

i<j

bp1(z1)Ej−1x
∗
pD

−1
ij (z1)TD̆−1

ij (z2)xp

×Ej−1x
∗
pD̆

−1
ij (z2)rir

∗
i D̆

−1
ij (z2)β̆ij(z2)TH−1(z1)rir

∗
i D

−1
ij (z1)xp + op(1).

By (6.2.36), (10.7.3), and (10.7.5), for i < j, we have

E
∣∣∣x∗

pD̆
−1
ij (z2)rir

∗
i D

−1
ij (z1)xp

(
r∗i D̆

−1
ij (z2)β̆ij(z2)TH−1(z1)ri (10.7.19)

−n−1bp1(z2)trTD̆−1
ij (z2)TH−1(z1)

) ∣∣∣

≤ (E|x∗
pD̆

−1
ij (z2)rir

∗
i D

−1
ij (z1)x

2
p)

1/2
[
(E|β̆ij(z2)|2|r∗i D̆−1

ij (z2)TH−1(z1)ri

−n−1trTD̆−1
ij (z2)TH−1(z1)|2)1/2
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+(E|β̆ij(z2) − bp1(z2)|2|n−1trTD̆−1
ij (z2)TH−1(z1)|2)1/2

]

= O(n−3/2).

Collecting the proofs from (10.7.13) to (10.7.19), we have shown that

A(z1, z2) = −bp1(z1)bn1(z2)
∑

i<j

Ej−1x
∗
pD

−1
ij (z1)TD̆−1

ij (z2)xpEj−1

×
(
x∗

pD̆
−1
ij (z2)rir

∗
i D

−1
ij (z1)xpn

−1trTtrTD̆−1
ij (z2)TH−1(z1)

)
+ op(1).

Similar to the proof of (10.7.18), we may further replace rir
∗
i in the expression

above by n−1T; that is

A(z1, z2) = −bp1(z1)bp1(z2)n
−2
∑

i<j

Ej−1x
∗
pD

−1
ij (z1)TD̆−1

ij (z2)xpEj−1

×
(
x∗

pD̆
−1
ij (z2)TD−1

ij (z1)xptrTD̆−1
ij (z2)TH−1(z1)

)
+ op(1).

Reversing the procedure above, one finds that we may also replace D−1
ij (z1)

and D̆−1
ij (z2) in A(z1, z2) by D−1

j (z1) and D−1
j (z2), respectively; that is,

A(z1, z2) = −bn1(z1)bn1(z2)(j − 1)

n2
Ej−1x

∗
pD

−1
j (z1)TD̆−1

j (z2)xpEj−1

×
(
x∗

pD̆
−1
j (z2)TD−1

j (z1)xptrTD̆−1
j (z2)TH−1(z1)

)
+ op(1).

Using the martingale decomposition (10.7.11), one can further show that

A(z1, z2) = −bp1(z1)bp1(z2)(j − 1)

n2
Ej−1x

∗
pD

−1
j (z1)TD̆−1

j (z2)xp

×Ej−1x
∗
pD̆

−1
j (z2)TD−1

j (z1)xpEj−1trTD̆−1
j (z2)TH−1(z1) + op(1).

It is easy to verify that

n−1tr(TM(z2)TH−1(z1)) = op(1)

when M(z2) is either Ă(z2), B̆(z2), or C̆(z2). Thus, substituting the decom-

position (9.9.12) for D̆−1
j (z2) in the approximation above for A(z1, z2), one

finds that

A(z1, z2) =
bp1(z1)bp1(z2)(j−1)

n2 Ej−1x
∗
pD

−1
j (z1)TD̆−1

j (z2)xpEj−1x
∗
pD̆

−1
j (z2)

×TD−1
j (z1)xpEj−1trTH−1(z2)TH−1(z1) + op(1). (10.7.20)

Finally, let us consider the first term of (10.7.13). Using the expression for
D−1

j (z1) in (9.9.12), we get
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−Ej−1x
∗
pD

−1
j (z1)TD̆−1

j (z2)xpEj−1x
∗
pD̆

−1
j (z2)TH−1(z1)xp

= W1(z1, z2) +W2(z1, z2) +W3(z1, z2) +W4(z1, z2), (10.7.21)

where

W1(z1, z2) = Ej−1x
∗
pH

−1(z1)TD̆−1
j (z2)xpEj−1x

∗
pD̆

−1
j (z2)TH−1(z1)xp,

W2(z1, z2) = −bp1(z1)Ej−1x
∗
pA

−1(z1)TD̆−1
j (z2)xp

×Ej−1x
∗
pD̆

−1
j (z2)TH−1(z1)xp,

W3(z1, z2) = −Ej−1x
∗
pB

−1(z1)TD̆−1
j (z2)xpEj−1x

∗
pD̆

−1
j (z2)TH−1(z1)xp,

and

W4(z1, z2) = −Ej−1x
∗
pC

−1(z1)TD̆−1
j (z2)xpEj−1x

∗
pD̆

−1
j (z2)TH−1(z1)xp.

By the same argument as in (10.7.14), one can get

E|W3(z1, z2)| = o(1) and E|W4(z1, z2)| = o(1). (10.7.22)

Furthermore, as when dealing with A(z1, z2), the first D̆−1
j (z2) in

W2(z1, z2) can be replaced by −bp1(z2)D̆
−1
ij (z2)rir

∗
i D̆

−1
ij (z2); that is,

W2(z1, z2)

= bp1(z1)bp1(z2)
∑

i<j

Ej−1x
∗
pH

−1(z1)(rir
∗
i − n−1T)D−1

ij (z1)T

×D̆−1
ij (z2)rir

∗
i D̆

−1
ij (z2)xpEj−1x

∗
pD̆

−1
j (z2)TH−1(z1)xp + op(1)

= bp1(z1)bp1(z2)
∑

i<j

Ej−1x
∗
pH

−1(z1)rir
∗
i D

−1
ij (z1)T

×D̆−1
ij (z2)rir

∗
i D̆

−1
ij (z2)xpEj−1x

∗
pD̆

−1
j (z2)TH−1(z1)xp + op(1)

=
bp1(z1)bp1(z2)(j − 1)

n2
Ej−1

(
x∗

pH
−1(z1)TD̆−1

j (z2)xptrTD−1
j (z1)TD̆−1

j (z2)
)

×Ej−1x
∗
pD̆

−1
j (z2)TH−1(z1)xp + op(1).

It can also be verified that

x∗
pM(z2)TH−1(z1)xp = op(1)

when M(z2) takes Ă(z2), B̆(z2), or C̆(z2). Therefore, W2(z1, z2) can be fur-
ther approximated by

W2(z1, z2) =
bp1(z1)bp1(z2)(j − 1)

n2

(
x∗

pH
−1(z1)TH−1(z2)xp

)2

×Ej−1tr(TD−1
j (z1)TD̆−1(z2)) + op(1). (10.7.23)
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In (9.9.21), it is proven that

Ej−1tr(TD−1
j (z1)TD̆−1

j (z2))

=
tr(TH−1(z1)TH−1(z2)) + op(1)

1 − j−1
n2 z1z2s(z1)s(z2)tr(TH−1(z1)TH−1(z2))

.

In the same way, W1(z1, z2) can be approximated by

W1(z1, z2)

= x∗
pH

−1(z1)TH−1(z2)xpx
∗
pH

−1(z2)TH−1(z1)xp + op(1). (10.7.24)

Consequently, from (10.7.13)–(10.7.24), we obtain

Ej−1x
∗
pD

−1
j (z1)TEj(D̆

−1
j (z2)xpEj−1x

∗
pD̆

−1
j (z2))TD−1

j (z1)xp

×
[
1 − j − 1

n
bp1(z1)bp1(z2)

1

n
trH−1(z2)TH−1(z1)T

]

= x∗
pH

−1(z1)TH−1(z2)xpx
∗
pH

−1(z2)TH−1(z1)xp
(
1 +

j − 1

n
bp1(z1)bp1(z2)

1

n
Ej−1tr(D

−1
j (z1)TD̆−1

j (z2)T)
)

+ op(1). (10.7.25)

Recall that bp1(z) → −zs(z) and FT → H . Hence,

d(z1, z2) := lim bp1(z1)bp1(z2)
1

N
tr(H−1(z1)TH−1(z2)T)

=

∫
ct2s(z1)s(z2)

(1 + ts(z1))(1 + ts(z2))
dH(t)

= 1 +
s(z1)s(z2)(z1 − z2)

s(z2) − s(z1)
. (10.7.26)

By the conditions of Theorem 10.21,

h(z1, z2) = lim z1z2s(z1)s(z2)x
∗
pH

−1(z1)TH−1(z2)xpx
∗
pH

−1(z2)TH−1(z1)xp

=
s(z1)s(z2)

z1z2

(∫
t2s(z1)s(z2)

(1 + ts(z1))(1 + ts(z2))
dH(t)

)2

=
s(z1)s(z2)

z1z2

(∫
tdH(t)

(1 + ts(z1))(1 + ts(z2))

)2

=
s(z1)s(z2)

z1z2

(
z1m(z1) − z2m(z2)

(s(z2) − s(z1))

)2

. (10.7.27)

From (10.7.13) and (10.7.25)–(10.7.27), we get

(10.7.10)
i.p.−→ h(z1, z2)

(∫ 1

0

1

(1 − td(z1, z2))
dt+

∫ 1

0

td(z1, z2)

(1 − td(z1, z2))2
dt

)
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=
h(z1, z2)

1 − d(z1, z2)
=

(z2s(z2) − z1s(z1))
2

c2z1z2(z2 − z1)(s(z2) − s(z1))
.

10.7.3 Tightness of M1
n(z) and Convergence of M2

n(z)

First, we proceed to the proof of the tightness of M1
n(z) by verifying that

E
|M1

n(z1) −M1
n(z2)|2

|z1 − z2|2
≤ K if z1, z2 ∈ C. (10.7.28)

By (10.7.4), we obtain

E

∣∣∣∣∣∣

n∑

j=1

Yj(zi)

∣∣∣∣∣∣

2

=

n∑

j=1

E|Yj(zi)|2 ≤ K.

Therefore, we only need to consider z1, z2 when they are close to each other.
Write

Q(z1, z2) =
√
nxp(D − z1I)

−1(D − z2I)
−1xp.

Recalling the definition of M1
n, we have

|M1
n(z1) −M1

n(z2)|
|z1 − z2|

≤





|Q(z1, z2) − EQ(z1, z2)| , if min(|ℑ(z1)|, |ℑ(z2)|) ≥ δpp
−1,∑

∗=+,−
|Q(z1, z∗) − EQ(z1, z∗)| , if |ℑ(z1)| ≥ δpp

−1 & |ℑ(z2)| ≤ δpp
−1,

∑

∗=+,−
|Q(z2, z∗) − EQ(z2, z∗)| , if |ℑ(z2)| ≥ δpp

−1 & |ℑ(z1)| ≤ δpp
−1,

|Q(z+, z−) − EQ(z+, z−)| , otherwise,

where ℜ(z±) = ur or ul, and ℑ(z±) = ±δpp−1. We only give a proof of
(10.7.28) for the case ℑ(z1),ℑ(z2) ≥ δpp

−1.
From the identity above (9.10.7), we get

M1
n(z1) −M1

n(z2)

z1 − z2
=

√
n

n∑

j=1

(Ej − Ej−1)x
∗
pD

−1(z1)D
−1(z2)xp (10.7.29)

= V1(z1, z2) + V2(z1, z2) + V3(z1, z2),

where

V1(z1, z2) =
√
n

n∑

j=1

(Ej − Ej−1)βj(z1)βj(z2)r
∗
jD

−1
j (z1)×
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D−1
j (z2)rjr

∗
jD

−1
j (z2)xpx

∗
pD

−1
j (z1)rj ,

V2(z1, z2) =
√
n

n∑

j=1

(Ej − Ej−1)βj(z1)r
∗
jD

−1
j (z1)D

−1
j (z2)xpx

∗
pD

−1
j (z1)rj ,

and

V3(z1, z2) =
√
n

n∑

j=1

(Ej − Ej−1)βj(z2)r
∗
jD

−1
j (z2)xpx

∗
pD

−1
j (z1)D

−1
j (z2)rj .

Applying (10.7.1) and the bounds for βj(z) and r∗jD
−1
j (z1)D

−1
j (z2)rj ar-

gued below (9.10.2), we obtain

E|V1(z1, z2)|2 (10.7.30)

= n

n∑

j=1

E|(Ej − Ej−1)βj(z1)βj(z2)r
∗
jD

−1
j (z1)D

−1
j (z2)rj

r∗jD
−1
j (z2)xpx

∗
pD

−1
j (z1)rj |2

≤ Kn2(E|r∗jD−1
j (z2)xpx

∗
pD

−1
j (z1)rj |2 + v−12n2P (‖Bp‖ > ur orλ

Bp

min < ul))

≤ K.

Here, to derive the inequality above, we have also used (9.7.8) and (9.7.9).
It is easy to see that (9.7.8) and (9.7.9) hold for our truncated variables as
well. Similarly, the argument above can also be used to handle V2(z1, z2) and
V3(z1, z2). Therefore, we have completed the proof of (10.7.28).

Next we will consider the convergence of M2
n(z). Note that

sF yp,Hp (z) = −1

z

∫
1

1 + tsF yp,Hp (z)
dHp(t). (10.7.31)

Substituting (10.6.7) into (10.7.31), we obtain

z
√
n((x∗

pE(D−1)(z)xp − sF yp,Hp (z))) (10.7.32)

=
√
p(x∗

p(−Esp(z)T − I)−1xp +

∫
1

1 + tsF yp,Hp (z)
dHp(t))

+
√
nz(δ1 + δ2 + δ3 + δ4).

For δ4, we have

|z√nδ4| ≤ K
√
n[E|ξ21 |+v−5n

3
2P (‖Bp‖ > ur orλ

Bp

min < ul)] = o(1). (10.7.33)
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Here and in the following, we use the notation o(·) for a limit uniform in
z ∈ C. Similarly, by (10.7.5) and the Hölder inequality, it is straightforward
to verify that

|z√nδ3| → 0.

Appealing to (9.8.6), whether for the complex case or the real case, we have

E[ξ1(z)(r
∗
1D

−1
1 (z)xpx

∗
p(Esp(z)T + I)−1r1

−n−1x∗
p(Esp(z)T + I)−1TD−1

1 (z)xp)] = O(n−2).

It follows that
|n 3

2 E[b1(z)β1(z)ξ1(z)α1(z)]|

≤ n
3
2 |E[b21(z)ξ1(z)α1(z)]| + n

3
2 |E[b21(z)β1(z)ξ

2
1(z)α1(z)]| = o(1), (10.7.34)

where we have used the fact that

E[b21(z)ξ1(z)α1(z)] = E{b21(z)E[ξ1(z)α1(z)|σ(rj , j > 1)]}

and that
|E[b21(z)β1(z)ξ

2
1(z)α1(z)]|

≤ K[(E|ξ1(z)|4E|α1(z)|2)
1
2 + v−6p2P (‖B‖ > ur orλ

B
min < ul)] = O(n−2).

Then (10.7.33) and (10.7.34) give

|z√nδ4| → 0.

According to Section 9.11, we have

sup
z

√
n(sF yp,Hp (z) − Esp(z)) → 0. (10.7.35)

Following lines similar to (9.11.6) and (9.11.5), we get

sup
p,z∈C

‖(sF yp,Hp (z)T + I)−1‖ <∞.

It follows that, via (9.11.6) and the assumption of Theorem 10.21,

sup
p,z∈C0

∫
t

(1 + tsF yp,Hp (z))(tEsp(z) + 1)
dHp(t) <∞. (10.7.36)

Appealing to (9.11.4), (9.11.6), (10.7.35), and (10.7.36), we can conclude that

√
n

(
x∗

p(Esp(z)T + I)−1xp −
∫

1

Esp(z)t+ 1
dHp(t)

)
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=
√
n

(
x∗

p(sF yp,Hp (z)T + I)−1xp −
∫

1

sF yp,Hp (z)t+ 1
dHp(t)

)
+ o(1).

Using (10.7.35) and (10.7.36), we also have

√
n

(∫
1

Esp(z)t+ 1
dHp(t) −

∫
1

1 + tsF yp,Hp (z)
dHp(t)

)

=
√
n(sF yp,Hp (z) − Esp(z))

∫
t

(1 + tsF yp,Hp (z))(tEsp(z) + 1)
dHp(t) = o(1).

Combining the arguments above, we get that

(10.7.32) → 0.

10.8 Proof of Theorem 10.23

In this part, when T = I, we will prove that (10.5.31) is a consequence of
(10.5.29) under the conditions of Theorem 10.23.

Note that

z = − 1

s(z)
+ y

∫
t

1 + ts(z)
dH(t). (10.8.1)

It then follows that

z1 − z2 =
(s(z1) − s(z2))

s(z1)s(z2)

(
1 − y

∫
t2s(z1)s(z2)dH(t)

(1 + s(z1))(1 + s(z2))

)
(10.8.2)

and

z2s(z2) − z1s(z1) = y(s(z2) − s(z1))

∫
tdH(t)

(1 + ts(z1))(1 + ts(z2))
. (10.8.3)

Combining (10.8.1)–(10.8.3), (10.5.29) equals

= − 1

2π2

∫

C1

∫

C2

g1(z1)g2(z2)s
2(z1)s

2(z2)∫ (cts(z1)−1−ts(z1))
1+ts(z1)

dH(t)
∫ (cts(z2)−1−ts(z2))

1+ts(z2)
dH(t)

×

( ∫ tdH(t)
(1+ts(z1))(1+ts(z2))

)2

dz1dz2
(
1 − c

∫ s(z1)s(z2)t2

(1+ts(z1))(1+ts(z2))
dH(t)

) , (10.8.4)

where the contours are defined as before.
On the other hand, by Cauchy’s theorem, we get that
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(10.5.31) = − 1

2cπ2

∫

C1

∫

C2

g1(z1)g2(z2)
(s(z1) − s(z2)

z1 − z2
− s(z1)s(z2)

)
dz1dz2.

(10.8.5)
Applying (10.8.1)–(10.8.3) and the relation between s(z) and s(z) given above
(9.7.1), we get that

(s(z1) − s(z2)

z1 − z2
− s(z1)s(z2)

)
=

M1 +M2s(z1)s(z2)

1 − y
∫ s(z1)s(z2)t2

(1+ts(z1))(1+ts(z2))
dH(t)

,

where

M1 =
ys2(z1)s

2(z2)
∫ dH(t)

1+ts(z1)

∫ dH(t)
1+ts(z1)

∫ t2dH(t)
(1+ts(z1))(1+ts(z2))∫ (yts(z1)−1−ts(z1))

1+ts(z1)
dH(t)

∫ (yts(z2)−1−ts(z2))
1+ts(z2)

dH(t)

and

M2

=

∫ (yts(z1)−1−ts(z1))
1+ts(z1) dH(t)

∫ (yts(z2)−1−ts(z2))
1+ts(z2)

dH(t) − y
∫ dH(t)

1+ts(z1)

∫ dH(t)
1+ts(z2)

y
∫ (yts(z1)−1−ts(z1))

1+ts(z1)
dH(t)

∫ (yts(z2)−1−ts(z2))
1+ts(z2)

dH(t)
.

Observe that
∫

(yts(z1) − 1 − ts(z1))

1 + ts(z1)
dH(t)

∫
(yts(z2) − 1 − ts(z2))

1 + ts(z2)
dH(t)

−y
∫

dH(t)

1 + ts(z1)

∫
dH(t)

1 + ts(z2)

= (1 − y)
(
1 − y

∫
s(z1)s(z2)t

2

(1 + ts(z1))(1 + ts(z2))
dH(t)

)
,

which implies that

1

2yπ2

∫

C1

∫

C2

g1(z1)g2(z2)
M2s(z1)s(z2)

1 − y
∫ s(z1)s(z2)t2

(1+ts(z1))(1+ts(z2))
dH(t)

dz1dz2

=
1

2π2

∫

C1

∫

C2

g1(z1)g2(z2)
(1 − y)

y2z1z2
dz1dz2 = 0 (10.8.6)

since the z1 and z2 contours do not enclose the origin. Note that

∫
dH(t)

1 + ts(z1)

∫
dH(t)

1 + ts(z2)

∫
s(z1)s(z2)t

2dH(t)

(1 + ts(z1))(1 + ts(z2))

−
∫

s(z2)tdH(t)

(1 + ts(z1))(1 + ts(z2))

∫
s(z1)tdH(t)

(1 + ts(z1))(1 + ts(z2))
(10.8.7)
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=

(∫
dH(t)

(1 + ts(z1))(1 + ts(z2))
−
∫

dH(t)

(1 + ts(z1))
−
∫

dH(t)

(1 + ts(z2))

)

×
(∫

dH(t)

(1 + ts(z1))

∫
dH(t)

(1 + ts(z2))
−
∫

dH(t)

(1 + ts(z1))(1 + ts(z2))

)
. (10.8.8)

Here one should note that the first item of the difference (10.8.7) is a factor of
M1 and that the second item is a factor of (10.8.4). Consequently, combining
(10.8.4)–(10.8.8) and condition (10.5.30) (for identity matrix, the condition
(10.5.30) holds automatically), one can conclude that

(10.5.29) = (10.5.31).

Thus we are done.



Chapter 11

Circular Law

11.1 The Problem and Difficulty

This is a famous conjecture that has been open for more than half a cen-
tury. At present, only some partial answers are known. The conjecture is
stated as follows. Suppose that Xn is an n × n matrix with entries xkj ,
where {xkj , k, j = 1, 2, · · ·} forms an infinite double array of iid complex
random variables of mean zero and variance one. Using the complex eigen-
values λ1, λ2, · · · , λn of 1√

n
Xn, we can construct a two-dimensional empirical

distribution by

µn(x, y) =
1

n
# {i ≤ n : ℜ(λk) ≤ x, ℑ(λk) ≤ y} ,

which is called the empirical spectral distribution of the matrix 1√
n
Xn.

Since the early 1950s, it has been conjectured that the distribution µn(x, y)
converges to the so-called circular law; i.e., the uniform distribution over the
unit disk in the complex plane. The first answer was given by Mehta [212]
for the case where xij are iid complex normal variables. He used the joint
density function of the eigenvalues of the matrix 1√

n
Xn, which was derived

by Ginibre [120]. The joint density is

p(λ1, · · · , λn) = cn
∏

i<j

|λi − λj |2
n∏

i=1

e−n|λi|2 ,

where λi, i ≤ n, are the complex eigenvalues of the matrix 1√
n
Xn and cn is

a normalizing constant.
Partial answers under more general assumptions are made in Girko [123,

124] and Bai [14]. The problem under the only condition of finite second
moment is still open. For details of the history of this problem, the reader is
referred to Bai [14]. Some recent developments are given in Section 11.10.

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,

© Springer Science+Business Media, L C 2010 
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11.1.1 Failure of Techniques Dealing with Hermitian
Matrices

In this section, we show that the methodologies to deal with Hermitian ma-
trices do not apply to non-Hermitian matrices.

1. Failure of truncation method
It was seen in previous chapters that a small change to all entries or a large
change to a small number of entries of Hermitian matrices will cause a small
change in their empirical spectral distributions, and thus the truncation tech-
nique has played an important role in the spectral theory of large dimensional
Hermitian matrices. However, it is not the case for non-Hermitian matrices.
See the following example.

Example 11.1. Consider the following two n× n matrices:

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
0 0 0 0 · · · 0




and B =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
1

n3 0 0 0 · · · 0



.

It is easy to see that all the n eigenvalues of A are 0, while those of B are

λk = n−3/ne2kπ/n, k = 0, 1, · · · , n− 1.

When n is large, |λk| = n−3/n ∼ 1. This example shows that the empiri-
cal spectral distributions of A and B are very different, although they only
have one different entry, which is as small as n−3. Therefore, the truncation
technique does not apply.

2. Failure of moment method
Although the moment method has successively been used as a powerful tool
in establishing the spectral theory of Hermitian (symmetric) large matrices,
it fails to apply to nonsymmetric matrices. The reason can be seen from
the following fact. For any complex random variable Z, its distribution can

be uniquely determined by all mixed moments EZkZ
ℓ
, k, ℓ ≥ 0, with some

additional Carleman type conditions. However, for any square matrix X with
order larger than 1, there is no way to find a simple functional of X that gives

1

n

n∑

j=1

λk
j (X)λ̄ℓ

j(X) (11.1.1)

unless k or ℓ is 0. Knowledge of just the latter is not sufficient. Indeed, if we
only know
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EZk = 0, (11.1.2)

then this relation is satisfied by any complex random variable Z that is
uniformly distributed over any disk with center 0. Thus, even if we had proved

1

n
tr

(
1√
n
Xn

)k

→ 0, a.s., (11.1.3)

we could not claim that the spectral distribution of 1√
n
Xn tends to the cir-

cular law because (11.1.2) does not uniquely determine the distribution of
Z.

3. Difficulty of the method of Stieltjes transform
When |z| > 1, by Theorem 5.18, we may write

sn(z) =:
1

n
tr

(
1√
n
Xn − z

)−1

= −1

z

(
1 +

∞∑

k=1

1

zk

(
1

n
tr

(
1√
n
Xk

n

)))
.

(11.1.4)
By (11.1.3), we should have

sn(z) → −1

z
, a.s. (11.1.5)

The limit is the same as the Stieltjes transform of any uniform distribution
over a disk with center 0 and radius ρ ≤ 1. Although the Stieltjes transform
of 1√

n
Xn can uniquely determine all eigenvalues of 1√

n
Xn, even only using

values at z with |z| > 1, limit (11.1.5) cannot determine convergence to the
circular law.

Therefore, to establish the circular law by Stieltjes transforms, one has
to consider the convergence of sn(z) for z with |z| ≤ 1. Unlike the case for
Hermitian matrices, the Stieltjes transform sn(z) is not bounded for |z| ≤ 1,
which is even impossible for any bound depending on n. This leads to serious
difficulties in the mathematical analysis of sn(z).

11.1.2 Revisiting Stieltjes Transformation

Despite the difficulty shown in the last subsection, one usable piece of in-
formation is that the function sn(z) uniquely determines all eigenvalues of
1√
n
Xn. We make some modification to it so that the resulting version is easier

to deal with.
Denote the eigenvalues of 1√

n
Xn by

λk = λkr + iλki, k = 1, 2, · · · , n,
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and z = s+ it. Then,

sn(z) =
1

n

n∑

k=1

1

λk − z
. (11.1.6)

Because sn(z) is analytic at all z except the n eigenvalues, the real (or
imaginary) part can also determine the eigenvalues of 1√

n
Xn. Write sn(z) =

snr(z) + isni(z). Then we have

snr(z) =
1

n

n∑

k=1

λkr − s

|λk − z|2

= − 1

2n

n∑

k=1

∂

∂s
log(|λk − z|2)

= −1

2

∂

∂s

∫ ∞

0

log xνn(dx, z), (11.1.7)

where νn(·, z) is the ESD of the Hermitian matrix Hn = ( 1√
n
Xn−zI)( 1√

n
Xn−

zI)∗.
Now, let us consider the Fourier transform of the function snr(z). We have

−2

∫∫
snr(z)e

i(us+vt)dtds

=

∫∫
ei(us+vt) ∂

∂s

∫ ∞

0

log xνn(dx, z)dtds

=
2

n

n∑

k=1

∫∫
s− λkr

(λkr − s)2 + (λki − t)2
ei(us+vt)dtds

=
2

n

n∑

k=1

∫∫
s

s2 + t2
ei(us+vt)+i(uλkr+vλki)dtds. (11.1.8)

We note here that in (11.1.8) and throughout the following, when inte-
gration with respect to s and t is performed on unbounded domains, it is
iterated, first with respect to t and then with respect to s. Fubini’s theorem
cannot be applied since s/(s2 + t2) is not integrable on R2 (although it is
integrable on bounded subsets of the plane).

Recalling the characteristic function of the Cauchy distribution, we have

1

π

∫ |s|
s2 + t2

eitvdt = e−|sv|.

Therefore,

∫ [∫ s

s2 + t2
ei(us+vt)dt

]
ds



11.1 The Problem and Difficulty 395

= π

∫
sgn(s)eius−|sv|ds

= 2iπ

∫ ∞

0

sin(su)e−|v|sds

=
2iπu

u2 + v2
.

Substituting the above into (11.1.8), we have

∫∫
ei(us+vt) ∂

∂s

∫ ∞

0

log xνn(dx, z)dtds

=
4iπu

u2 + v2

∫∫
1

n

n∑

k=1

ei(uλkr+tλki).

Therefore, we have established the following lemma.

Lemma 11.2. For any uv 6= 0, we have

cn(u, v) =:

∫∫
eiux+ivyµn(dx, dy)

=
u2 + v2

4iuπ

∫∫
∂

∂s

[∫ ∞

0

lnxνn(dx, z)

]
eius+ivtdtds, (11.1.9)

where z = s+ it, i =
√
−1, and

µn(x, y) =
1

n
#{k ≤ n : λkr ≤ x, λki ≤ y},

the empirical spectral distribution of 1√
n
Xn.

Remark 11.3. The identity in the lemma was first given by Girko [123], which
reveals a way toward proving the circular law conjecture.

If we assume the fourth moment of the underlying distribution is finite,
then by Theorem 5.18, with probability 1, the family of distributions µn(x, y)
is tight. In fact, by Lemma 11.6 given later, together with Theorem 3.7,
one sees that the family of distributions µn(x, y) is also tight under only
the finiteness of the second moment. Therefore, to prove the circular law,
applying Lemma 11.2, one need only show that the right-hand side of (11.1.9)
converges to its counterpart generated by the circular law.

Note that the function lnx is not bounded at both infinity and zero. There-
fore, the convergence of the right-hand side of (11.1.9) cannot simply reduce
to the convergence of νn. In view of Theorem 5.8, the upper limit of the inner
integral does not pose a serious problem since the support of νn is bounded
from the right by (2+ε+|z|)2 under the assumption of a finite fourth moment.
The most difficult part is in dealing with the lower limit of the integral.
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11.2 A Theorem Establishing a Partial Answer to the
Circular Law

We shall prove the following theorem by using Lemma 11.2.

Theorem 11.4. Suppose that the underlying distribution of elements of Xn

has finite (2 + η)-th moment and that the joint distribution of the real and
imaginary parts of the entries has a bounded density. Then, with probability
1, the ESD µn(x, y) of 1√

n
Xn tends to the uniform distribution over the unit

disk in the complex plane.

The proof of the theorem will be presented by showing that with proba-
bility one, cn(u, v) → c(u, v) for every pair (u, v) such that uv 6= 0. The proof
will be rather tedious. For ease of understanding, an outline of the proof is
sketched as follows.

1. Reducing the range of integration. We need to reduce the range of
integration to a finite rectangle, so that the dominated convergence theorem
is applicable. As will be seen, the proof of the circular law reduces to showing
that, for every large A > 0 and small ε > 0,

∫∫

T

[
∂

∂s

∫ ∞

0

lnxνn(dx, z)

]
eius+ivtdsdt

→
∫∫

T

[
∂

∂s

∫ ∞

0

lnxν(dx, z)

]
eius+ivtdsdt, (11.2.1)

where T = {(s, t); |s| ≤ A, |t| ≤ A3, |
√
s2 + t2−1| ≥ ε} and ν(x, z) is the LSD

of the sequence of matrices Hn = ( 1√
n
Xn−zI)( 1√

n
Xn−zI)∗ that determines

the circular law. The rest of the proof will be divided into the following steps.
2. Identifying the limiting spectrum ν(·, z) of νn(·, z) and showing that it

determines the circular law.
3. Establishing a convergence rate of νn(x, z) to ν(x, z) uniformly in every

bounded region of z.
Then, we will be able to apply the convergence rate to establish (11.2.1).

As argued earlier, it is sufficient to show the following.
4. For a suitably defined sequence εn with probability 1,

lim sup
n→∞

∫∫

T

∣∣∣∣
∫ ∞

εn

lnx(νn(dx, z) − ν(dx, z))

∣∣∣∣ = 0, (11.2.2)

lim sup
n→∞

∣∣∣∣
∫∫

T

∫ εn

0

lnxνn(dx, z)dsdt

∣∣∣∣ = 0, (11.2.3)

and, for any fixed s,

lim sup
n→∞

∣∣∣∣∣

∫

(s,t)∈T

∫ εn

0

lnxνn(dx, z)dt

∣∣∣∣∣ = 0. (11.2.4)
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11.3 Lemmas on Integral Range Reduction

Let νn(x, z) denote the empirical distribution of the Hermitian matrix

H = Hn =

(
1√
n
Xn − zI

)(
1√
n
Xn − zI

)∗

for each fixed z = s+ it ∈ C.
To establish Theorem 11.4, we need to find the limiting counterpart to

gn(s, t) =
∂

∂s

∫ ∞

0

log xνn(dx, z).

To this end, we have the following lemma.

Lemma 11.5. For all uv 6= 0, we have

c(u, v) =
1

π

∫∫

x2+y2≤1

eiux+ivydxdy

=
u2 + v2

4iuπ

∫ [∫
g(s, t)eius+ivtdt

]
ds, (11.3.1)

where

g(s, t) =

{
2s

s2+t2 , if s2 + t2 > 1,

2s, otherwise.

Proof. As in the proof of Lemma 11.2, we have seen that, for all uv 6= 0,

∫ [∫ s

s2 + t2
ei(us+vt)dt

]
ds =

2iπu

u2 + v2
.

Therefore,

c(u, v) =
1

π

∫∫

x2+y2≤1

eiux+ivydxdy

=
u2 + v2

2π2iu

∫∫

x2+y2≤1

∫ [∫ s

s2 + t2
ei(us+vt)dt

]
dseiux+ivydxdy

=
u2 + v2

4iuπ

∫∫ [
1

π

∫∫

x2+y2≤1

2(s− x)

(s− x)2 + (t− y)2
dxdy

]
eius+ivtdtds

=
u2 + v2

4iuπ

∫ [∫
g(s, t)eius+ivtdt

]
ds. (11.3.2)

Note that the changes in the limits of integration are justified because

∫
s

s2 + t2
eivtdt = sgn(s)e−|svv|
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is an integrable function of s on R and, for each s, s/(s2 + t2) is an integrable
function of t.

To complete the proof of the lemma, one need only note that

g(s, t) =
1

π

∫∫

x2+y2≤1

2(s− x)

(s− x)2 + (t− y)2
dxdy

= ℜ
(

2

π

∫∫

x2+y2≤1

1

(s− x) + i(t− y)
dxdy

)

= ℜ
(

2

π

∫ 1

0

[∫ 2π

0

ρdθ

z − ρeiθ

]
dρ

)
(by polar transformation)

= ℜ
(

2

iπ

∫ 1

0

[∫

|ζ|=ρ

dζ

ζ(z − ζ)

]
ρdρ

)
(by setting ζ = ρeiθ)

= ℜ
(

2

iπ

∫ 1∧|z|

0

[−2πi

z

]
ρdρ

)
(by residue theorem)

= 2ℜ((|z| ∧ 1)2z−1).

This completes the proof of the lemma.

Lemma 11.6. Let λj and ηj denote the eigenvalues and singular values of
an n× n matrix A, respectively. Then, for any k ≤ n,

k∑

j=1

|λj |2 ≤
k∑

j=1

η2
j

if ηj is arranged in descending order.

Proof. For any order arrangement of the eigenvalues of A, by the Schur
decomposition we can find a unitary matrix U such that

A = UDU∗,

where D = (dij) is an upper-triangular matrix with dij = 0 for i > j and
dii = λi. By Lemma A.11, we have

k∑

j=1

η2
j = sup

E∗E=F∗F=Ik

|tr(E∗AA∗F)|

≥ tr ( Ik 0 )DD∗
(

Ik

0

)

=
∑

j≤i≤k

|dij |2

≥
k∑

j=1

|λj |2.
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The proof is complete.

Lemma 11.7. For any uv 6= 0 and A > 2, we have

∣∣∣∣∣

∫

|s|≥A

∫ ∞

−∞
gn(s, t)eius+ivtdtds

∣∣∣∣∣ ≤
4π

|v| e
− 1

2 |v|A +
2π

n|v|
n∑

k=1

I

(
|λk| ≥

1

2
A

)

(11.3.3)
and

∣∣∣∣∣

∫

|s|≤A

∫

|t|≥A3

gn(s, t)eius+ivtdsdt

∣∣∣∣∣ ≤
8A

A2 − 1
+

4πA

n

n∑

k=1

I (|λk| ≥ A) .

(11.3.4)
Furthermore, if the function gn(s, t) is replaced by g(s, t), the two inequalities
above hold without the second terms.

Proof. We have

∣∣∣∣∣

∫

|s|≥A

∫ ∞

−∞
gn(s, t)eius+ivtdsdt

∣∣∣∣∣

=

∣∣∣∣∣

∫

|s|≥A

∫ ∞

−∞

1

n

n∑

k=1

2(s−ℜ(λk))

(s−ℜ(λk))2 + (t−ℑ(λk))2
eius+ivtdsdt

∣∣∣∣∣

=

∣∣∣∣∣
π

n

n∑

k=1

∫

|s|≥A

sign(s−ℜ(λk))eius−|v(s−ℜ(λk))|ds

∣∣∣∣∣

≤
∣∣∣∣∣
π

n

n∑

k=1

∫

|s|≥A

e−
1
2 |vs|ds+

∫
e−|v(s−ℜ(λk))|dsI

(
|λk| ≥

1

2
A

)∣∣∣∣∣

≤ 4π

|v| e
− 1

2 |v|A +
2π

n|v|
n∑

k=1

I

(
|λk| ≥

1

2
A

)
, (11.3.5)

and
∣∣∣∣∣

∫

|s|≤A

∫

|t|≥A3

gn(s, t)eius+ivtdsdt

∣∣∣∣∣

≤ 1

n

n∑

k=1

∫

|s|≤A

∫

|t|≥A3

2|s−ℜ(λk)|
(s−ℜ(λk))2 + (t−ℑ(λk))2

dtds

≤ 1

n

n∑

k=1

(∫

|t|≥A3

8A2

(|t| −A)2
dt+ 4AπI(|λk| ≥ A)

)

≤ 8A

(A2 − 1)
+

4πA

n

n∑

k=1

I(|λk| ≥ A). (11.3.6)
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Similarly, one can prove the two inequalities above for g(s, t). The proof of
Lemma 11.7 is complete.

Under the conditions of Theorem 11.4, we have, by Lemma 11.6 and Kol-
mogorov’s law of large numbers,

1

n

n∑

k=1

I(|λk| ≥ A) ≤ 1

n2A2
tr(XnX∗

n) → 1

A2
, a.s.

From Lemma 11.7, one sees that the right-hand sides of (11.3.3) and (11.3.4)
can be made arbitrarily small by making A large enough. The same is true
when gn(s, t) is replaced by g(s, t). Therefore, the proof of the circular law is
reduced to showing

∫

|s|≤A

∫

|t|≤A3

[gn(s, t) − g(s, t)]eius+ivtdsdt→ 0. (11.3.7)

Next, we define sets

T = {(s, t) : |s| ≤ A, |t| ≤ A3 and ||z| − 1| ≥ ε}

and
T1 = {(s, t) : ||z| − 1| < ε},

where z = s+ it.

Lemma 11.8. For all fixed A and 0 < ε < 1,

∫∫

T1

|gn(s, t)|dsdt ≤ 32
√
ε. (11.3.8)

Furthermore, when gn(s, t) in (11.3.8) is replaced by g(s, t), estimation
(11.3.8) still holds.

Proof. For any u and v, by a polar transformation, we obtain

∫∫

T1

2|s− u|dtds
(s− u)2 + (t− v)2

=

∣∣∣∣
∫ 2π

0

2D(θ)| cos θ|dθ
∣∣∣∣ ,

where D(θ) is the total length of the intersection of the ring T1 and the
straight line (s − u) cos θ + (t − v) sin θ = 0, which consists of at most two
pieces of segments. In fact, one can prove that the maximum value of D(θ)
can be reached when the straight line is a tangent of the inner circle of the
ring T1 and hence max

θ,u.v
D(θ) = 2

√
(1 + ε)2 − (1 − ε)2 = 4

√
ε.

The proof of (11.3.8) for gn(s, t) is then complete by noting that∫ 2π

0
| cos θ|dθ = 4. The proof of (11.3.8) for g(s, t) is straightforward and

is thus omitted. The proof of Lemma 11.8 is complete.
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Note that the right-hand side of (11.3.8) can be made arbitrarily small by
choosing ε small. Thus, by Lemmas 11.7 and 11.8, to prove the circular law,
one need only show that, for each fixed A > 0 and ε ∈ (0, 1),

∫∫

T

[gn(s, t) − g(s, t)]eius+ivtdsdt→ 0, a.s. (11.3.9)

Before proving the main theorem, we first characterize the circular law.

11.4 Characterization of the Circular Law

In this section, we consider the cubic equation

∆3 + 2∆2 +
α+ 1 − |z|2

α
∆+

1

α
= 0, (11.4.1)

where α = x + iy. The solution of the equation has three analytic branches
when α 6= 0 and when there is no multiple root. Lemma 11.10 below proves
multiple roots only occur on the real line. In Lemma 11.14, it is shown that,
with probability 1, the Stieltjes transform of νn(·, z) converges to a root of
(11.4.1) for an infinite number of α ∈ C+ possessing a finite limit point.
We claim there is only one of the three analytic branches, which we will
henceforth denote by ∆(α), to which the Stieltjes transforms are converg-
ing to. Let m2(α) and m3(α) denote the other two branches. If, say, m2(α)
is another Stieltjes transform, for α real converging to −∞, from the fact
that ∆(α) + m2(α) + m3(α) = −2, we would have m3(α) → −2. But from
α∆(α)m2(α)m3(α) = −1 and the fact that α∆(α) converges as α → −∞,
we would have m3(α) unbounded, a contradiction. The reader is reminded
that ∆, m2, and m3 are also functions of |z|.

By Theorem B.9, there exists a distribution function ν(·, z) such that

∆(α) =

∫
1

u− α
ν(du, z).

Furthermore, by Theorem B.10, ν(·, z) has a density that is denoted by p(·, z).
We now discuss the properties of ν.

Lemma 11.9. The limiting distribution function ν(x, z) satisfies

|ν(w + u, z)− ν(w, z)| ≤ 2π−1 max{2
√

3|u|, |u|} for all z. (11.4.2)

Also, the limiting distribution function ν(u, z) has support in the interval
[x1, x2] when |z| > 1 and [0, x2] when |z| ≤ 1, where

x1 =
1

8|z|2 [−1 + 20|z|2 + 8|z|4 − (
√

1 + 8|z|2)3],
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x2 =
1

8|z|2 [(
√

1 + 8|z|2)3 − 1 + 20|z|2 + 8|z|4].

Proof. Since p(u, z) is the density of the limiting spectral distribution ν(·, z),
p(u, z) = 0 for all u < 0. By (11.4.1), p(u, z) is continuous for u > 0. Let
u > 0 be a point in the support of ν(·, z). Write ∆(u) = g(u) + ih(u). Then,
to prove (11.4.2), it suffices to show

h(u) ≤ max{
√

3/u, 1}.

Change (11.4.1) (for α = x > 0) as

∆2 + 2∆+ 1 +
1 − |z|2

x
+

1

x∆
= 0.

Comparing the imaginary and real parts of both sides of the equation above,
we obtain

2(g(x) + 1) =
1

x(g2(x) + h2(x))

and

h2(x) =
1 − |z|2

x
+ (g(x) + 1)2 +

g(x)

x(g2(x) + h2(x))

=
1

x
+

g(x) + 1

2x(g2(x) + h2(x))
+

g(x)

x(g2(x) + h2(x))

=
1

x
+

3(g(x) + 1)

2x(g2(x) + h2(x))

≤
{

1, if h(x) ≤ 1,
3
x , otherwise.

(11.4.3)

Here, the last inequality follows from the fact that (g + 1)/(g2 + 1) reaches
maximum at g =

√
2 − 1. Thus, (11.4.2) is established.

Now, we proceed to find the boundaries of the support of ν(., z). Since
ν(., z) has no mass on the negative half line, we need only consider x > 0.
Suppose h(x) > 0. Comparing the real and imaginary parts for both sides of
(11.4.1) and then making x approach the boundary (namely, h(x) → 0), we
obtain

x(g3 + 2g2 + g) + (1 − |z|2)g + 1 = 0

and
x(3g2 + 4g + 1) + 1 − |z|2 = 0. (11.4.4)

Thus, substituting x(g + 1) = −(1 − |z|2)/(3g + 1) from the second identity
into the first, we obtain

[(1 − |z|2)g + 1](3g + 1) = (1 − |z|2)g(g + 1).
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For |z| 6= 1, the solution to this quadratic equation in g is

g =
−3 ±

√
1 + 8|z|2

4 − 4|z|2
(
g = −1

3
, if |z| = 1

)
, (11.4.5)

which, together with (11.4.4), implies that, for |z| 6= 1,

x1,2 = − 1 − |z|2
(g + 1)(3g + 1)

= − 1

8|z|2
{

1 − 20|z|2 − 8|z|4 ± (
√

1 + 8|z|2)3
}
. (11.4.6)

Note that 0 < x1 < x2 when |z| > 1. Hence, the interval [x1, x2] is the support
of ν(., z) since p(x, z) = 0 when x is very large. When |z| < 1, x1 < 0 < x2.
Note that for the case |z| < 1, g(x1) < 0, which contradicts the fact that
∆(x) > 0 for all x < 0 and hence x1 is not a solution of the boundary.
Thus, the support of ν(., z) is the interval (0, x2). For |z| = 1, there is only
one solution, x2 = −1/[g(g + 1)2] = 27/4, which can also be expressed by
(11.4.6). In this case, the support of ν(·, z) is (0, x2). The proof of Lemma
11.9 is complete.

Next, we consider the separation between ∆ and the other two solutions
of equation (11.4.1).

Lemma 11.10. For any given constants N > 0, A > 0, and ε ∈ (0, 1) (recall
that A and ε are used to define the region T ), there exist positive constants
ε1 and ε0 (ε0 may depend on ε1) such that for all large n:

(i) for |α| ≤ N, y ≥ 0, and z ∈ T ,

max
j=2,3

|∆(α) −mj(α)| ≥ ε0, (11.4.7)

(ii) for |α| ≤ N, y ≥ 0, |α − x2| ≥ ε1 (and |α − x1| ≥ ε1 if |z| ≥ 1 + ε),
and z ∈ T ,

min
j=2,3

|∆(α) −mj(α)| ≥ ε0, (11.4.8)

(iii) for z ∈ T and |α− x2| < ε1,

min
j=2,3

|∆(α) −mj(α)| ≥ ε0
√
|α− x2|, (11.4.9)

(iv) for |z| > 1 + ε, z ∈ T , and |α− x1| < ε1,

min
j=2,3

|∆(α) −mj(α)| ≥ ε0
√
|α− x1|. (11.4.10)

Proof. We first prove (11.4.8). Because ε1 is actually selected in the proofs
of conclusions (iii) and (iv), here ε1 is assumed to have already been chosen.
Suppose that for some z ∈ T and some α with y ≥ 0, ∆(α) is a multiple root
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of equation (11.4.1). Then, ∆(α) should also be a root of the derivative of
equation (11.4.1),

3∆2 + 4∆+
α+ 1 − |z|2

α
= 0. (11.4.11)

Since ∆(α) satisfies both the above and (11.4.1), Euclidean division then
yields

∆(α) =
1 + 8|z|2

2α− 6 + 6|z|2 − 1. (11.4.12)

Since ℑ∆(α) > 0 for α ∈ C+, we conclude that (11.4.1) can have multiple
roots only when α ∈ R. Note that equation (11.4.11) is the same as (11.4.4).
Thus, the only possible values for α are x1 and x2.

We claim that (11.4.8) is true. If not, then we have, for each positive integer
k, that there exist αk and zk with zk ∈ T and |α−x2| ≥ ε1 and |α−x1| ≥ ε1
if |zk| ≥ 1 + ε such that

min
j=2,3

|∆(αk) −mj(αk)| < 1

k
.

Then, we may select a subsequence {k′} such that the following are true:
αk′ → α0 and zk′ → z0; z0 ∈ T and |α0 − x2| ≥ ε1. If |z0| ≥ 1 + ε, then
|α0 − x1| ≥ ε1. For at least one of j = 2 or 3, say j = 2,

|∆(αk′ ) −m2(αk′ )| < 1

k′
. (11.4.13)

If α0 6= 0, by continuity of ∆(α) and m2(α), we shall have ∆(α0) = m2(α0),
which contradicts the fact that ∆(α) does not coincide with m2(α) except for
α = x2 or α = x1 when |z| > 1. If α0 = 0, then for z0 6= 1 it is straightforward
to argue that one root must be bounded and hence converges to 1/(|z0|2−1),
while the other two become unbounded as αk′ → 0. Thus, limit (11.4.13)
requires that both ∆(αk′ ) and m2(αk′ ) are unbounded. On the other hand,
since ∆(αk′ ) +m2(α

′
k) +m3(α

′
k) = −2, we should have

|∆(αk′ ) −m2(αk′ )| = | − 2 − 2m2(αk′ ) −m3(αk′ )| → ∞.

This contradiction shows that α0 = 0 is impossible. This concludes the proof
of (11.4.8).

For (11.4.7) we argue as above and assume there are αk′ → α0, zk′ →
z0 ∈ T such that all three roots of (11.4.1) converge to each other. From the
above we see immediately that α0 cannot equal zero. For α0 6= 0 we would
have from the second derivative of (11.4.1) ∆(α0) = −2/3. Again from the
above, α has to be x1 or x2 and, from (11.4.6),

∆(α0) = − 2

3 ±
√

1 + 8|z0|2
,
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which clearly cannot equal −2/3 since |z| 6= 1.
We now prove (11.4.9). Let ∆+ ρ be either m2 or m3. Since both ∆ and

∆+ ρ satisfy (11.4.1), we obtain

ρ(α) = −3∆2(α) + 4∆(α) + 1 + (1 − |z|2)/α
3∆(α) + 2 + ρ(α)

. (11.4.14)

Write ρ̂ = ∆(α) −∆(x2). By (11.4.4), we have

3∆2(α) + 4∆(α) + 1 + (1 − |z|2)/α
= 3∆2(α) + 4∆(α) + 1 + (1 − |z|2)/α

−3∆2(x2) + 4∆(x2) + 1 + (1 − |z|2)/x2

= ρ̂[6∆(x2) + 4 + 3ρ̂] +
(1 − |z|2)(x2 − α)

x2α
. (11.4.15)

From (11.4.1) and (11.4.4), it follows that

0 = [3∆2(x2) + 4∆(x2) + 1 + (1 − |z|2)/α]ρ̂+ [3∆(x2) + 2]ρ̂2 + ρ̂3

+
(x2 − α)(∆(x2)(1 − |z|2) + 1)

x2α

= [3∆(x2) + 2 + ρ̂]ρ̂2 +
((∆(x2) + ρ̂)(1 − |z|2) + 1)(x2 − α)

x2α
.

(11.4.16)

LetM > 1 be a bound on all |z|, |α|, and x2. Then∆(x2) = − 2

3+
√

1+8|z|2
∈

(
− 1

2 ,− 2
3+

√
1+8M2

)
. When |ρ̂| < 2

3+
√

1+8M2
, we have

|3∆(x2) + 2 + ρ̂| =

∣∣∣∣∣

√
1 + 8|z|2

3 +
√

1 + 8|z|2
+ ρ̂

∣∣∣∣∣ < 2.

Also, since ∆(x2) + ℜρ̂ < 0, we have |(∆(x2) + ρ̂)(1 − |z|2) + 1| > 1 when
|z| > 1 and > −4

3+
√

1+8M2
+1 > 1/3 when |z| < 1. Therefore, regardless of the

size of ρ̂, equation (11.4.16) implies

|ρ̂| ≥ min

(
2

3 +
√

1 + 8M2
,

1

2M2

√
|x2 − α|

)
≥ c1

√
|x2 − α| (11.4.17)

for some positive constant c1. Note that ∆ is continuous in an open set
containing the rectangle {(α, z); z ∈ T, x2,min ≤ x ≤ x2,max, 0 ≤ y ≤ N},
where x2,min = 4 (corresponding to z = 0) and x2,max = 1

8M2 [(1+8M2)3/2 −
1 + 20M2 + 8M4] (corresponding to |z| = M). Therefore, we may select a
positive constant ε1 ≤ min(1, c21/M

4) such that, for all |z| ≤M and |α−x2| ≤
ε1, we have |ρ̂| ≤ min(1

8 , c
2
1/M

4). Then, from (11.4.14) and (11.4.15) and the
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fact that when |ρ(α)| ≤ 1
8

|3∆(α) + 2 + ρ(α)| = |3∆(x2) + 3ρ̂+ 2 + ρ(α)| ≤ 4,

we conclude that

|ρ(α)| ≥ 1

4
min

(
1

2
,

∣∣∣∣ρ̂[6∆(x2) + 4 + 3ρ̂] +
(1 − |z|2)(x2 − α)

x2α

∣∣∣∣
)

≥ 1

4
min

(
1

2
,

1

2
c1
√
|x2 − α| − 1

9
M2|x2 − α|

)

≥ c2
√
|x2 − α|. (11.4.18)

This concludes the proof of (11.4.9).
The proof of (11.4.10) is similar to that of (11.4.9). Checking the proof

of (11.4.9), one finds that equations (11.4.14)–(11.4.16) are still true if x2 is
replaced by x1. The rest of the proof depends on the fact that, for all z ∈ T ,
|z| ≥ 1+ ε, and |α−x1| ≤ ε1, |3∆(α)+ 2+ ρ(α)| has a uniform upper bound
and ρ̂ can be made arbitrarily small provided ε1 is small enough. Indeed,
these can be done because x1 has a minimum x1,min at |z| = 1 + ε that is
strictly greater than 0 and hence ∆(α) is uniformly continuous in an open set
containing the rectangle {(α, z); z ∈ T, x1,min−ε1 ≤ x ≤ x1,max, 0 ≤ y ≤ N},
provided ε1 is chosen so that x1,min − ε1 > 0.

The proof of Lemma 11.10 is then complete.
The purpose of the following lemma is to show that ν(·, z) defines the

circular law.

Lemma 11.11. We have

∂

∂s

∫ ∞

0

lnxν(dx, z) = g(s, t). (11.4.19)

Proof. From (11.4.1) and the fact that ∆ is the Stieltjes transform of ν(·, z),
we have, for x < 0,

∆(x)





> 0, if x < 0,
→ 0, as x→ −∞,

≤
√

2(1−|z|2)
|x| , as x ↑ 0 if |z| < 1,

≤ |x|−1/3, as x ↑ 0 if |z| = 1,
↑ 1

|z|2−1 , as x ↑ 0 if |z| > 1.

Thus, for any C > 0, the integral
∫ 0

−C ∆(x)dx exists. We have, using integra-
tion by parts,

∫ 0

−C

∆(x)dx =

∫ C

0

∆(−x)dx =

∫ C

0

∫ ∞

0

1

u+ x
ν(du, z)dx
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=

∫ ∞

0

[log(C + u) − log u]ν(du, z)

= logC +

∫ ∞

0

log(1 + u/C)ν(du, z) −
∫ ∞

0

log uν(du, z).

Differentiating both sides with respect to s, we get

∂

∂s

∫ ∞

0

log uν(du, z)

=
∂

∂s

∫ ∞

0

log(1 + u/C)ν(du, z) − ∂

∂s

∫ 0

−C

∆(x)dx. (11.4.20)

Differentiating both sides of (11.4.1) with respect to s and x, respectively,
we obtain

∂

∂s
∆(x)

[
3∆2(x) + 4∆(x) +

x+ 1 − |z|2
x

]
=

2s∆(x)

x
(11.4.21)

and

∂

∂x
∆(x)

[
3∆2(x) + 4∆(x) +

x+ 1 − |z|2
x

]
=
∆(x)(1 − |z|2) + 1

x2
.

Comparing the two equations, we get

∂

∂s
∆(x) =

2sx∆(x)

1 +∆(x)(1 − |z|2)
∂

∂x
∆(x) = − 2s

(1 +∆(x))2
∂

∂x
∆(x), (11.4.22)

where the last equality follows from the fact that

x =
1 +∆(x)(1 − |z|2)
∆(x)(1 +∆(x))2

.

We now determine the behavior of ∂
∂s∆(x) near the boundary of the sup-

port of ν(·, z). For the following, x1 will denote the left endpoint of the sup-
port of ν(·, z) regardless of the value of z. Let x̂ denote x2 or, when |z| > 1,
x1 > 0. Using (11.4.21), it is a simple matter to show

lim
x→x̂

∂

∂x

[
3∆2(x) + 4∆(x) +

x+ 1 − |z|2
x

]2

= lim
x→x̂

∂

∂x
∆(x)

[
3∆2(x) + 4∆(x) +

x+ 1 − |z|2
x

] [
12∆(x) + 8

]

− lim
x→x̂

[
3∆2(x) + 4∆(x) +

x+ 1 − |z|2
x

]
(1 − |z|2)

x2

=
[∆(x̂)(1 − |z|2) + 1](12∆(x̂) + 8)

x̂2
,
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which is continuous in z. This implies that, for x near x̂,

∣∣∣∣3∆2(x) + 4∆(x) +
x+ 1 − |z|2

x

∣∣∣∣ ≥ K1

√
|x− x̂|,

so that from (11.4.21) we get that, for x near x̂,

∣∣∣∣
∂

∂s
∆(x)

∣∣∣∣ ≤
K2√
|x− x̂|

.

When |z| ≤ 1 (so that x1 = 0), it follows from (11.4.1) that, as x → 0,
x∆2(x) → −1+ |z|2 when |z| < 1 and x∆3(x) → −1 when |z| = 1. Therefore,
from (11.4.21) we have, for x small,

∣∣∣∣
∂

∂s
∆(x)

∣∣∣∣ ≤ K3|x|−a,

where a = 1/2 when |z| < 1 and is 2/3 when |z| = 1.
The bounds on ∂

∂s∆(x) above, together with the dominated convergence
theorem, justify the interchange of differentiation and integration about to
be performed below.

Substituting (11.4.22) into the second term on the right-hand side of
(11.4.20), it follows that

∂

∂s

∫ 0

−C

∆(x)dx =

∫ 0

−C

∂

∂s
∆(x)dx = −

∫ 0

−C

∂

∂x
∆(x)

2s

(1 +∆(x))2
dx

= −2s

∫ ∆(0−)

∆(−C)

1

(1 +∆)2
d∆

=
2s

1 +∆(0−)
− 2s

1 +∆(−C)
. (11.4.23)

Taking x ↑ 0 in (11.4.1), we get

∆(0−) =

{∞, if |z|2 ≤ 1,
1

|z|2−1 , if |z|2 > 1.

We also have ∆(−C) → 0 as C → ∞. Thus, we get

∫ 0

−C

∂

∂s
∆(x)dx → −g(s, t). (11.4.24)

By noting that ν(dx, z)/dx = π−1ℑ(∆(x)), we have

∣∣∣∣
∂

∂s

∫ ∞

0

log(1 + u/C)ν(du, z)

∣∣∣∣ =
∣∣∣∣
∂

∂s

∫ x2

x1

log(1 + u/C)ν(du, z)

∣∣∣∣
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=

∣∣∣∣
1

π
ℑ
(∫ x2

x1

log(1 + u/C)
∂

∂s
(∆(u))du

)∣∣∣∣

=

∣∣∣∣
1

π
ℑ
(∫ x2

x1

log(1 + u/C)
2s

(1 +∆(u))2
∂

∂u
∆(u)du

)∣∣∣∣

=

∣∣∣∣
2s

π
ℑ
(

log(1 + x1/C)

1 +∆(x1 + 0)
− log(1 + x2/C)

1 +∆(x2)

+

∫ x2

x1

1

(1 +∆(u))(C + u)
du

)∣∣∣∣
→ 0 as C → ∞. (11.4.25)

Assertion (11.4.19) then follows from (11.4.20), (11.4.24), and (11.4.25),
and the proof of Lemma 11.11 is complete.

11.5 A Rough Rate on the Convergence of νn(x, z)

In this section, we shall establish a convergence rate of νn(x, z) to a limiting
distribution ν(x, z) and discuss properties of the limiting distribution ν(x, z).
In the remainder of this chapter, if the quantities represented by the symbols
o(1) or O(1) are involved with indices j, ℓ, or k, or variables α or z, then
their order is uniform with respect to these indices and variables.

11.5.1 Truncation and Centralization

Let X̂n and X̃n be the n× n matrices with entries

x̂ij = xijI(|xij | < nδ) − ExijI(|xij | < nδ)

and x̃ij = x̂ij/
√

E|x̂ij |2, respectively, where δ ∈ (0, 1
4 ). Further, denote by

ν̂n(·, z) and ν̃n(·, z) the empirical spectral distributions of Ĥ = ( 1√
n
X̂n −

zI)( 1√
n
X̂n − zI)∗ and H̃ = ( 1√

n
X̃n − zI)( 1√

n
X̃n − zI)∗. Then, by Corollary

A.42, we have

L4(νn(·, z), ν̂n(·, z))

≤ 2

n3

[
tr(H + Ĥ)tr((Xn − X̂n)(Xn − X̂n)∗)

]
(11.5.1)

and

L4(ν̂n(·, z), ν̃n(·, z))
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≤ 2

n3

[
tr(Ĥ + H̃)tr(X̂nX̂∗

n)
(
1 − 1/

√
E|x̂2

11|
)2
]
. (11.5.2)

By Kolmogorov’s law of large numbers, it is easy to see that

1

n
trH =

1

n2

∑

ij

|xij |2 − 2ℜ
(

z̄

n3/2

n∑

k=1

xkk

)
+ |z|2 → (1 + |z|), a.s.

Similarly, it can be proved that 1
n trĤ → 1 + |z|2, a.s.

Furthermore, by the assumption that E|x11|2+η <∞, for any L > 0,

lim sup
n→∞

nδη 1

n2
tr(Xn − X̂n)(Xn − X̂n)∗

= lim sup
n→∞

nδη 1

n2

∑

ij

|xijI(|xij | > nδ) − Ex11I(|x11| > nδ)|2

≤ 2 lim sup
n→∞

nδη


E|x11|2I(|x11| > nδ) +

1

n2

∑

ij

|xij |2I(|xij | > nδ)




≤ 2 lim
n→∞


E|x11|2+ηI(|x11| > L) +

1

n2

∑

ij

|xij |2+ηI(|xij | > L)




= 4E|x11|2+ηI(|x11| > L), a.s.,

which can be made arbitrarily small be making L suitably large. This, to-
gether with (11.5.1), implies that

L2(νn(·, z), ν̂n(·, z)) = oa.s.(n
−δη).

Here the convergence rate is uniform for any |z| ≤M .
Again, by the assumption that E|x11|2+η <∞, it is easy to show that

1 −
√

E|x̂11|2 ≤ 1 − E|x̂11|2 = o(n−ση).

Thus, by (11.5.2),

L4(ν̂n(·, z), ν̃n(·, z)) = oa.s.(n
−2δη).

Combining the above, we have proved that

L(νn(·, z), ν̃n(·, z)) = oa.s.(n
−δη/4), (11.5.3)

where the convergence rate oa.s.(n
−δη/4) is uniform for |z| ≤M .
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11.5.2 A Convergence Rate of the Stieltjes Transform
of νn(·, z)

In this subsection, we assume the conditions of Theorem 11.4 hold. Also,
according to what was proved in the last subsection, we assume that the
additional condition |xij | ≤ nδ holds.

Lemma 11.12. If δ is chosen to be < 1
4 , then, for any fixed k, we have

EtrHk = O(n),

where the order O(n) is uniform for |z| ≤M .

Proof. Write 1√
n
Xn − zIn = W = (wij)

n
i,j=1. Then, we have

|wii| ≤ |z| + nδ−1/2 ≤M + 1,

Ewij = 0, if i 6= j,

E|wij |µ ≤ n−µ/2+δ(µ−2), if i 6= j and µ ≥ 2.

We have

Etr(Hk) =
∑∗

Ewi1,j1w̄i2,j1wi2,j2w̄i3,j2 · · ·wik ,j2k
w̄i1,j2k

,

where the summation
∑∗

is taken for i1, j1, · · · , ik, jk run over 1, · · · , n. Simi-
lar to the proof of Theorem 3.6, we may construct a G(i, j)-graph. We further
distinguish a vertical edge as a perpendicular or skew edge if its I-vertex and
J-vertex have equal value or not, respectively.

If there is a single skew edge in G(i, j), the value of the corresponding term
is zero. For other graphs G(i, j), let r denote the number of distinguished
values of its vertices and s denote the number of noncoincident skew edges
with multiplicities ν1, · · · , νs. Note that a new vertex value must be led by a
skew edge which implies that r ≤ s + 1. For such a graph, the contribution
of the term is dominated by

(M + 1)2k−ν1−···−ν2n−sn−( 1
2−δ)(ν1+···+ν2−2s).

For an isomorphism class, there are n(n− 1) · · · (n− r + 1) ∼ nr isomorphic
graphs and there are a finite number of isomorphism classes. The lemma then
follows.

Remark 11.13. With more accurate counting, one can prove that

1

n
tr(Hk) → µk(|z|2) a.s. as n→ ∞.

From this, one may conclude that νn(·, z) tends to a limiting spectral distri-
bution. However, we need a convergence rate, which has to be obtained by an
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alternate way. Thus, we shall omit the details here. Interested readers may
try to derive it themselves as an exercise.

Denote by

∆n(α, z) =

∫
νn(dx, z)

x− α
,

where α = x+ iy with y > 0, the Stieltjes transforms of νn(·, z). For brevity,
the variable z will be suppressed when there is no confusion.

In this subsection, we shall prove that νn tends to the limiting spectral
distribution ν with a certain rate by the following lemmas.

Lemma 11.14. Suppose the conditions of Theorem 11.4 hold, and each
|xij | ≤ nδ. Write

∆n(α)3 + 2∆n(α)2 +
α+ 1 − |z|2

α
∆n(α) +

1

α
= rn. (11.5.4)

If δ is chosen such that δη < 1/14 and δ < 1/14, then the remainder term
rn satisfies

sup{|rn| : α = x+ iy with −∞ < x <∞, y ≥ yn, |z| ≤M}
= oa.s.(δn), (11.5.5)

yn = n−δη and δn = n−δη.

Remark 11.15. As shown earlier, only one branch of (11.4.1) can be a Stieltjes
transform. Using Theorem B.9, this, together with the a.s. convergence of
(1/n)trH (which shows {νn} to be almost surely tight), proves that, with
probability one, νn converges in distribution to ν.

Proof. Consider the case where |α| > n2δη, y ≥ yn, and |z| ≤ M , where M
is a given constant. Then, by Lemma 11.12,

sup
|α|>n2δη,y≥yn, |z|≤M

|∆n(α)| ≤ 2n−2δη + y−1I

(
Λmax(Hn) >

1

2
n2δη

)

≤ 2n−2δη + 2ky−1n−2kδηtr(Hk
n))

= oa.s.(n
−δη),

provided k is chosen such that (k − 1)δη > 1.
Consequently,

sup
|α|>n2δη ,y≥yn, |z|≤M

|rn|

= sup
|α|>nδη , |z|≤M

∣∣∣∣∆3
n + 2∆2

n +
α+ 1 − |z|2

α
∆n +

1

α

∣∣∣∣

≤ oa.s.(δn). (11.5.6)
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Let α′ = x′ + iy′. If |α− α′| ≤ n−6δη and y, y′ ≥ yn, then, for k = 1, 2, 3,

|∆k
n(α) −∆k

n(α′)| ≤ ky−k−1
n |α− α′| = o(δ4−k

n ),

which implies
sup

|α−α′|≤n−6δη

y, y′≥yn, |z|≤M

|rn(α) − rn(α′)| = o(δn). (11.5.7)

Let Λk(z) (arranging in increasing order) denote the eigenvalues of the
matrix Hn(z) = ( 1√

n
Xn − zI)( 1√

n
Xn − zI)∗. In the proof of Corollary A.42,

we have seen that

(
n∑

k=1

|Λk(z) − Λk(z′)|
)2

≤ 2(trHn(z) + trHn(z′))tr(|z − z′|2In).

Thus we have, for k = 1, 2, 3,

sup
|z|,|z′|≤M,|z−z′|≤n−6δη

y≥yn

|∆k
n(α, z) −∆k

n(α, z′)|

≤ sup
|z|,|z′|≤M,|z−z′|≤n−6δη

y≥yn

ky−k+1|∆n(α, z) −∆n(α, z′)|

≤ sup
|z|,|z′|≤M,|z−z′|≤n−6δη

y≥yn

ky−k+1 1

n

n∑

k=1

|Λk(z) − Λk(z′)|
|Λk(z) − α||Λk(z′) − α|

≤ sup
|z|,|z′|≤M,|z−z′|≤n−6δη

y≥yn

y−k−1|z − z′|
(

2

n
tr(Hn(z) + Hn(z′))

)1/2

= oa.s.(δ
4−k
n ). (11.5.8)

Here, we have used the fact that 1
n tr(Hn(z)) → 1 + |z|2 a.s. uniformly for

|z| ≤M .
This, together with (11.5.6) and (11.5.7), shows that in order to finish the

proof of (11.5.5), it is sufficient to show that

max
ℓ≤µn, j≤µ′

n

{|rn(αℓ, zj)|} = oa.s.(δn), (11.5.9)

where αℓ = x(ℓ)+ iy(ℓ), ℓ = 1, 2, · · · , µn, and zj , j = 1, 2, · · · , µ′
n, are selected

so that |αℓ| ≤ n2δη, yn ≤ y(ℓ), and for each |α| ≤ n2δη with y ≥ yn, there is
an ℓ such that |α− αℓ| < n−6δη, and for each |z| ≤M , there is a j such that
|z − zj| ≤ n−6δη.

By the conditions on the αℓ and zj’s, we may assume that

µn ≤ 2n18δη and µ′
n ≤ 3M2n12δη.
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In the rest of the proof of this lemma, we shall suppress the indices ℓ and j
from the variables αℓ and zj . The reader should remember that we shall only
consider those αℓ and zj that were selected as above.

Now the proof of (11.5.5) reduces to showing

sup
αℓ,zj

∣∣∣∣(E∆n(αℓ))
3 + 2(E∆n(αℓ))

2 +
αℓ + 1 − |z|2

αℓ
E∆n(αℓ) +

1

αℓ

∣∣∣∣
= o(δn) (11.5.10)

and
sup
αℓ,zj

|∆n(αℓ) − E∆n(αℓ)| = oa.s.(δ
3
n). (11.5.11)

Use the notation W = Wn(z) = 1√
n
Xn −zIn = (wij), where wij = 1√

n
xij

for i 6= j and wii = 1√
n
xii − z. Then, H = WW∗. We first prove (11.5.11).

As before, we use the method of martingale decomposition. Let Ek denote
the conditional expectation given {xij , i ≤ k, j ≤ n}. Then,

∆n(α) − E∆n(α) =
1

n

n∑

k=1

γk,

where E0 = E,

γk = Ektr(H− αI)−1 − Ek−1tr(H− αI)−1

= (Ek − Ek−1)
1 + w′

kW
∗
k(Hk − αIn−1)

−2Wkwk

|wk|2 − α− w′
kW

∗
k(Hk − αIn−1)−1Wkwk

,

w′
k denotes the k-th row vector of W, Wk consists of the rest of the n − 1

rows of W when w′
k is removed, and Hk = WkW

∗
k. By the fact that

|1 + w′
kW

∗
k(Hk − αIn−1)

−2Wkwk|
≤ 1 + w′

kW
∗
k[(Hk − xIn−1)

2 + y2In−1]
−1Wkwk

= −y−1ℑ(|wk|2 − α− w′
kW

∗
k(Hk − αIn−1)

−1Wkwk),

it follows that
|γk| ≤ 2y−1.

Then, by Lemma 2.12, we obtain

δ−6m
n E|∆n(α) − E∆n(α)|2m ≤ Cmn

−2m+6mδηE

(
n∑

k=1

|γk|2
)m

≤ Cm2mn−m+6mδηy−2m ≤ Cmn
−mδη. (11.5.12)

Then, conclusion (11.5.11) follows by choosing m such that (m− 30)δη > 1.
Next, we proceed to the proof of (11.5.10). We have
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∆n(α) =
1

n
tr (H − αI)−1 =

1

n

n∑

k=1

βk, (11.5.13)

where

βk =
1

|wk|2 − α− w′
kW

∗
k(Hk − αIn−1)−1Wkwk

.

Since distributions of the βk’s are the same, we have from (11.5.13)

E∆n(α) = bn + Eε21b
2
nβ1, (11.5.14)

where

bn =
1

E(|w1|2 − α− w′
1W

∗
1(H1 − αIn−1)−1W1w1)

,

ε1 = β−1
1 − b−1

n = β−1
1 − Eβ−1

1

= |w1|2 − (1 + |z|2) − w′
1W

∗
1(H1 − αIn−1)

−1W1w1

+Ew′
1W

∗
1(H1 − αIn−1)

−1W1w1.

Since the imaginary parts of the denominators of both β1 and bn are at least
y, we have |β1| ≤ y−1 and |bn| < y−1, so that

|E∆n(α)E(|w1|2 − α− w′
1W

∗
1(H1 − αIn−1)

−1W1w1) − 1|

≤ 1

y2
E|ε1|2. (11.5.15)

Now, let us split the estimation of E|ε1|2 into several parts. Since E|x11|4 ≤
bnδ(2−η), where b is a bound for E|x11|2+η, we have

E
∣∣|w1|2 − (1 + |z|2)

∣∣2

= E

∣∣∣∣∣∣
1

n

n∑

j=1

(|x1j |2 − 1) − 2√
n
ℜ(z̄x11)

∣∣∣∣∣∣

2

≤ n− 1

n2
E|x11|4 + E

∣∣∣∣
1

n
(|x11|2 − 1) − 2√

n
ℜ(z̄x11)

∣∣∣∣
2

≤ n+ 1

n2
E|x11|4 +

4|z|2
n

= O(n−1+δ(2−η)).

Write W∗
1(H1 − αIn−1)

−1W1 = (aij)
n−1
i,j=1 := A. By Lemma B.26, we have

the following estimates

E

∣∣∣∣
1

n
(x′

1Ax1 − trA)

∣∣∣∣
2
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≤ C

n2
E|x11|4Etr(AA∗)

=
C

n2
E|x11|4Etr((H1 − αIn−1)

−1H1(H1 − ᾱIn−1)
−1H1)

≤ C

n2
E|x11|4E

[
|α|2tr(H1 − αIn−1)

−1(H1 − ᾱIn−1)
−1 + n− 1

]

≤ C

n2
nδ(2−η)[ny−2|α|2 + n]

≤ Cn−1+2δ+5δη,

E

∣∣∣∣ 1√
n
z̄e′1Ax1

∣∣∣∣
2

=
|z|2
n

Ee′1AA∗e1

≤ 2|z|2
n

(1 + |z|2y−2)

≤ Cn−1y−2

≤ Cn−1+2δη,

E

∣∣∣∣
1

n
trA− E

1

n
trA

∣∣∣∣
2

= n−2E|tr(H1 − αIn−1)
−1H1 − Etr(H1 − αIn−1)

−1H1|2
= n−2|α|2E|tr(H1 − αIn−1)

−1 − Etr(H1 − αIn−1)
−1|2

≤ n−2|α|2
[
E
∣∣|tr(H− αIn)−1 − Etr(H − αIn)−1| + 2y−1

∣∣2
]

≤ Cn−2|α|2
[
ny−2 + y−2

]
(by (11.5.12))

≤ Cn−1+6δη.

Finally, we need to estimate

E|e′1Ae1 − Ee′1Ae1|2

=
1

n2
[E|v∗

1(H1 − αIn−1)
−1v1 − Ev∗

1(H1 − αIn−1)
−1v1|2],

where 1√
n
v1 is the first column vector (of dimension n− 1) of W1, which is

also the first column of 1√
n
Xn with the first element removed.

Let Xn1 be the matrix obtained from Xn by removing its first row and col-
umn. Note that H1 = Ĥ1 + 1

nv1v
∗
1 , where Ĥ1 = ( 1√

n
Xn1 − zIn−1)(

1√
n
Xn1 −

zIn−1)
∗. Note that

1

n
v∗

1(H1 − αIn−1)
−1v1
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= 1 − 1

1 + 1
nv∗

1(Ĥ1 − αIn−1)−1v1

= 1 − 1

1 + 1
nEtr(Ĥ1 − αIn−1)−1

−
1
n (v∗

1(Ĥ1 − αIn−1)
−1v1 − Etr(Ĥ1 − αIn−1)

−1)

(1 + 1
nv∗

1(Ĥ1 − αIn−1)−1v1)(1 + 1
nEtr(Ĥ1 − αIn−1)−1)

.

Also,

ℑ
(
α

(
1 +

1

n
v′

1(Ĥ1 − αIn−1)
−1v̄1

))
≥ y. (11.5.16)

The two observations above yield

1

n2
E|v∗

1(H1 − αIn−1)
−1v1 − Ev1 ∗ (H1 − αIn−1)

−1v1|2

≤ E

∣∣∣∣∣
1
n (v∗

1(Ĥ1 − αIn−1)
−1v1 − Etr(Ĥ1 − αIn−1)

−1)

(1 + 1
nv∗

1(Ĥ1 − αIn−1)−1v1)(1 + 1
nEtr(Ĥ1 − αIn−1)−1)

∣∣∣∣∣

2

≤ |α|2y−2n−2E|v∗
1(Ĥ1 − αIn−1)

−1v1 − Etr(Ĥ1 − αIn−1)
−1|2

≤ |α|2y−2n−2

[
E
∣∣∣v∗

1(Ĥ1 − αIn−1)
−1v1 − tr(Ĥ1 − αIn−1)

−1
∣∣∣
2

+ E
∣∣∣tr(Ĥ1 − αIn−1)

−1 − Etr(Ĥ1 − αIn−1)
−1
∣∣∣
2
]

≤ Cn−1|α|2y−4 ≤ Cn−1+8δη. (11.5.17)

Here, in the last inequality, the first term is less than Cny−2 by Lemma B.26
and the second term is less than Cny−2, which can be proved by the same
method as for (11.5.12). Combining the above, we obtain

1

ny2
E|ε1|2 = o(δ3n).

Substituting this into (11.5.15), we get

|E∆n(α)E(|w1|2 − α− w′
1W1(H1 − αIn−1)

−1W1w̄1) − 1|
≤ o(δ3n). (11.5.18)

To conclude the proof of the lemma, we need to estimate

E(|w1|2 − α− w′
1W

∗
1(H1 − αIn−1)

−1W1w1). (11.5.19)

First, we have
E|w1|2 = 1 + |z|2.

Second, we have
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Ew′
1W

∗
1(H1 − αIn−1)

−1W1w1

=
1

n
Etr(W∗

1(H1 − αIn−1)
−1W1)

+|z|2Ee′1W
∗
1(H1 − αIn−1)

−1W1e1

=
n− 1

n
+
α

n
Etr(H1 − αIn−1)

−1

+|z|2
(

1 − E
1

1 + 1
nv∗

1(Ĥ1 − αIn−1)−1v1

)
.

By Lemma A.1.12, we have

∣∣∣∣
1

n
Etr(H1 − αIn−1)

−1 − E∆n(α)

∣∣∣∣ ≤
1

ny
.

By (6.9), we have

|tr(Ĥ1 − αIn−1)
−1 − tr(H1 − αIn−1)

−1| ≤ 1

y
.

Furthermore, by the above, Lemma B.26, (11.5.16), and (11.5.12),

∣∣∣∣∣E
1

1 + 1
nv∗

1(Ĥ1 − αIn−1)−1v1

− 1

1 + E∆n(α)

∣∣∣∣∣

≤
∣∣∣∣∣
E 1

nv∗
1(Ĥ1 − αIn−1)

−1v1 − E∆n(α)

(1 + E∆n(α))2

∣∣∣∣∣

+E
| 1nv∗

1(Ĥ1 − αIn−1)
−1v1 − E∆n(α)|2

|(1 + E∆n(α))2(1 + 1
nv∗

1(Ĥ1 − αIn−1)−1v1)|

≤ 2|α|2n−1y−3 + |α|3y−3E

∣∣∣∣
1

n
v∗

1(Ĥ1 − αIn−1)
−1v1 − E∆n(α)

∣∣∣∣
2

≤ 2|α|2n−1y−3 + C|α|2y−3

[
E

∣∣∣∣
1

n
v∗

1(Ĥ1 − αIn−1)
−1v1

− 1

n
tr(Ĥ1 − αIn−1)

−1

∣∣∣∣
2

+ n−2y−2 + E|∆n(α) − E∆n(α)|2
]

≤ Cn−1(|α|2y−3 + |α|3y−5)

≤ Cn−1+8δη. (11.5.20)

Combining the above, we obtain an approximation for quantity (11.5.19) as

E(|w1|2 − α− w′
1W

∗
1(H1 − αIn−1)

−1W1w1)

= −α− αE∆n(α) +
|z|2

1 + E∆n(α)
+O(n−1+8δη).
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Substituting this into (11.5.18), the proof of the lemma is complete.

Lemma 11.16. Under the conditions of Theorem 11.4, for any M2 > M1 >
0, and δ defined in Lemma 11.14,

sup
M1≤|z|≤M2

||νn(·, z) − ν(·, z)|| := sup
x,M1≤|z|≤M2

|νn(x, z) − ν(x, z)|

= Oa.s.(n
−δη/2). (11.5.21)

Remark 11.17. Lemma 11.16 is used only in proving (11.2.2) for a suitably
chosen εn. From the proof of the lemma and comparson with Theorem 8.10,
one can see that a better rate of this convergence can be obtained by more
detailed calculus. As the rate given in (11.5.21) is enough for our purpose,
we restrict ourselves to the weaker result (11.5.21) by using a simpler proof
rather than trying to get a better rate by long and tedious arguments.

Proof. We shall prove (11.5.21) by employing Corollary B.15. The supports
of all ν(·, z) are bounded for all z ∈ T . Therefore, we may select a constant
N such that, for some absolute constant C,

‖νn(·, z) − ν·, z)‖

≤ C

(∫

|x|≤N

|∆n(α) −∆(α)|dx

+y−1
n sup

x

∫

|y|≤2yn

|νn(x+ y, z) − ν(x, z)|dy
)

≤ C

(∫

|x|≤N

|∆n(α) −∆(α)|dx +
√
yn

)
, (11.5.22)

where α = x + iyn and the last step of the inequality above follows from
(11.4.2).

To complete the proof of the lemma, we need only estimate the integral
of (11.5.22). To this end, consider a realization in which (11.5.5) holds. We
first prove that for α = x + iy, |x| ≤ N , |x − x2| ≥ ε1 (also |x − x1| ≥ ε1 if
|z| < 1), y ≥ yn, M1 ≤ |z| ≤M2, and all large n,

|∆n(α) −∆(α)| < 1

3
ε0δn, (11.5.23)

where ε0 (and ε1 in what follows) is defined in Lemma 11.10.
Equation (11.4.1) has three solutions denoted by m1(α) = ∆(α), m2(α),

and m3(α). As mentioned earlier, all three solutions are analytic in α on the
upper half complex plane.

By Lemma 11.10, we assume that (11.4.7)–(11.4.10). By Lemma 11.14,
there is an integer n0 such that, for all n ≥ n0,

|(∆n −m1)(∆n −m2)(∆n −m3)| = o(δn) ≤ 4

27
ε30δn. (11.5.24)
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Now, choose an α0 = x0 + iy0 with |x0| ≤ N , y0 > 0, and mink=1,2(|x0 −
xk|) ≥ ε1. Fix z ∈ T . We first show that (11.5.23) holds for α = α0. As argued
earlier, ∆n(α0) converges to ∆(α0). Therefore, we can find an n1 > n0 such
that |∆n(α0) −∆(α0)| < ε0/3 for all n > n1. Therefore, for these n,

min
k=2,3

(|∆n(α0) −mk(α0)|)

≥ min
k=2,3

(|∆(α0) −mk(α0)| − |∆n(α0) −∆(α0)|) >
2

3
ε0.

This and (11.5.24) imply

|∆n(α0) −∆(α0)| = o(δn) ≤ 1

3
ε0δn. (11.5.25)

Next, we claim that (11.5.23) is true for all n > n0, y ≥ yn, and |x| ≤ N ,
maxk=1,2(|x − xk|) ≥ ε1.

By (11.4.8) and (11.5.24), one sees that (11.5.23) is implied by

min
k=2,3

(|∆n(α) −mk(α)|) > 2

3
ε0. (11.5.26)

Note that both ∆n and mj(α), j = 2, 3, are continuous functions in both
α and z. Therefore, if (11.5.23) is ever false, an α and z would exist for
which |∆n(α)−∆(α)| = 1

3ε0δn. As with α = α0, this equality, together with
(11.4.8), implies (11.5.26), a contradiction.

Finally, we consider the case where |α− xk| ≤ ε1, with k = 1 or 2. We see
that (11.4.7), (11.4.9), and (11.4.10) imply that

|∆n(α) −∆(α)| ≤ o(δn/
√
|α− xk|). (11.5.27)

This, together with (11.5.22) and (11.5.23), implies (11.5.21). The proof of
Lemma 11.16 is complete.

11.6 Proofs of (11.2.3) and (11.2.4)

For this section, we return to the original assumptions on the variables. Note
that truncation techniques cannot be applied from this point on. The proofs of
(11.2.3) and (11.2.4) are almost the same. Thus, we shall only show (11.2.3),
that is, with probability 1,

∫

z∈T

∣∣∣∣
∫ εn

0

log xνn(dx, z)

∣∣∣∣ dtds→ 0, (11.6.1)

where εn = e−nδη

.
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Recall that W(z) = 1√
n
Xn − zI is nonsingular when z ∈ T and z does

not coincide with any eigenvalues of 1√
n
Xn, an almost sure event. For the

following, we may assume W(z) is nonsingular. Now, denote respectively by
Z1 and Z the matrix of the first two columns of W(z) and that formed by the
last n− 2 columns. Let Λ1 ≤ · · · ≤ Λn denote the eigenvalues of the matrix
W∗(z)W(z) and η1 ≤ · · · ≤ ηn−2 denote the eigenvalues of Z∗Z. Then, for
any k ≤ n − 2, by the interlacing theorem (see Theorem A.43), we have
Λk ≤ ηk ≤ Λk+2. We also have det(W∗(z)W(z)) = det(Z∗Z)det(Z∗

1QZ1),
where Q = I− Z(Z∗Z)−1Z∗. This identity can be written as

n∑

k=1

log(Λk) = log(det(Z∗
1QZ1)) +

n−2∑

k=1

log(ηk).

If ℓ is the smallest integer such that ηℓ ≥ εn, then Λℓ−1 < εn and Λℓ+2 > εn.
Therefore, we have

0 >

∫ εn

0

log xν(dx, z) =
1

n

∑

Λk<εn

logΛk

≥ 1

n
min{log(det(Z∗

1QZ1)), 0} +
1

n

∑

ηk<εn

log(ηk)

− 2

n
log(max(Λn, 1)). (11.6.2)

To prove (11.6.1), we first estimate the integral of 1
n log(det(Z∗

1QZ1)) with
respect to s and t. Note that Q is a projection matrix of rank 2. Hence,
there are two orthogonal complex unit vectors γ1 and γ2 such that Q =
γ1γ

∗
1 + γ2γ

∗
2. Denote the i-th column vector of W by wi. Then we have

1

n
log(det(Z∗

1QZ1)) =
1

n
log(|γ∗

1w1γ
∗
2w2 − γ∗

2w1γ
∗
1w2|2).

Define the random sets

E =

{
(s, t) : |γ∗

1w1γ
∗
2w2 − γ∗

2w1γ
∗
1w2| ≥ n−14,

∣∣∣ 1√
n
X1

∣∣∣ ≤ n,
∣∣∣ 1√
n
X2

∣∣∣ ≤ n

}

and

F =
{
(s, t) :

∣∣γ∗
1w1γ

∗
2w2 − γ∗

2w1γ
∗
1w2

∣∣ < n−14,
∣∣∣ 1√
n
x1

∣∣∣ ≤ n,
∣∣∣ 1√
n
x2

∣∣∣ ≤ n
}
,

where xi is the i-th column of Xn. It is trivial to see that
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P
(∣∣∣ 1√

n
x1

∣∣∣ > n or
∣∣∣ 1√
n
x2

∣∣∣ > n
)
< 2n−2. (11.6.3)

When | 1√
n
x1| ≤ n and | 1√

n
x2| ≤ n, we have det(Z∗

1QZ1) = |γ∗
1w1γ

∗
2w2 −

γ∗
2w1γ

∗
1w2|2 ≤ Cn4. Thus,

1

n

∫

z∈T

|IE log(det(Z∗
1QZ1))| dtds ≤ Cn−1 logn→ 0. (11.6.4)

On the other hand, for any ε > 0, we have

P

(
1

n

∫

z∈T

|IF log(det(Z∗
1QZ1))| dtds ≥ ε

)

≤ 1

εn

∫

z∈T

E
∣∣IF log(|γ∗

1w1γ
∗
2w2 − γ∗

2w1γ
∗
1w2|2)

∣∣ dtds. (11.6.5)

Note that the elements of
√
nw1 = x1 − z

√
ne1 and

√
nw2 = x2 − z

√
ne2

are independent of each other and the joint densities of their real and imag-
inary parts have a common upper bound Kd. Also, they are independent of
γ1 and γ2. Therefore, by Corollary 11.21, the conditional joint density of
the real and imaginary parts of

√
nγ∗

1w1,
√
nγ∗

2w2,
√
nγ∗

2w1, and
√
nγ∗

1w2,
when γ1 and γ2 are given, is bounded by (2Kdn)4. Hence, the conditional
joint density of the real and imaginary parts of γ∗

1w1, γ∗
2w2, γ∗

2w1, and γ∗
1w2,

when γ1 and γ2 are given, is bounded by K4
d24n8. Set x = (γ∗

1w1,γ
∗
2w1)

′

and y = (w∗
2γ2,−w∗

2γ1)
′. Note that, by Corollary 11.21, the joint density of

x and y is bounded by K4
d24n8.

If | 1√
n
x1| ≤ n, | 1√

n
x2| ≤ n, then max(|x|, |y|) ≤ 2n + 2|z| ≤ 2n + 2M .

Applying Lemma 11.22 with f(t) = log t, M = µ = 1, we obtain

2

n

∫

z∈T

∣∣∣E
(
I(|y∗x|<n−14, | 1√

n
x1|≤n, | 1√

n
x2|≤n) log(|y∗x|)

∣∣∣γ1,γ2

)∣∣∣ dtds

≤ Cn12n−14 ≤ Cn−2 (11.6.6)

for some positive constant C.
From (11.6.3), (11.6.5), and (11.6.6), it follows that

1

n

∫

z∈T

|IF log(det(Z∗
1QZ1))| dtds→ 0, a.s. (11.6.7)

Next, we estimate the second term in (11.6.2). Using the fact that x lnx
is decreasing on (0, e−1), we have

1

n

∣∣∣∣∣
∑

ηk<εn

log(ηk)

∣∣∣∣∣ ≤ nδη−1εn

n−2∑

k=1

1

ηk
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= nδη−1εntr(Z∗Z)−1 = nδη−1εn

n∑

k=3

1

w∗
kQkwk

= nδη−1εn

n∑

k=3

1

|w∗
kγk1|2 + |w∗

kγk2|2 + |w∗
kγk3|2

, (11.6.8)

where, for each k, γkj , j = 1, 2, 3, are orthonormal complex vectors such that
Qk = γk1γ

∗
k1 + γk2γ

∗
k2 + γk3γ

∗
k3, which is the projection matrix onto the

orthogonal complement of the space spanned by the third,· · · , k − 1st,k +
1st,· · · , n-th columns of W(z).

As in the proof of (11.6.7), one can show that the conditional joint density
of the real and imaginary parts of w∗

kγk1, w∗
kγk2, and w∗

kγk3 when γkj ,
j = 1, 2, 3, are given, is bounded by CK3

dn
6. Therefore, we have

nδη−1εn

n∑

k=3

∫

z∈T

E

(
dtds

|w∗
kγk1|2 + |w∗

kγk2|2 + |w∗
kγk3|2

)

≤ Cnδη−1εn

(
K3

dn
7

∫
· · ·
∫

u2
1+···+u2

6<1

du1 · · · du6

u2
1 + · · · + u2

6

+ 1

)

≤ Cn6+δηεn by a polar transformation

≤ Cn−2. (11.6.9)

Therefore, by the Borel-Cantelli lemma,

nδη−1εn

n∑

k=3

∫

z∈T

(
dtds

|w∗
kγk1|2 + |w∗

kγk2|2 + |w∗
kγk3|2

)
→ 0, a.s.,

and hence, with probability 1,

1

n

∫

z∈T

∣∣∣∣∣
∑

ηk<εn

log(ηk)

∣∣∣∣∣ dtds ≤ nδη−1εn

∫

z∈T

∣∣∣∣∣
n−2∑

k=1

1

ηk

∣∣∣∣∣ dtds→ 0. (11.6.10)

Finally, we estimate the integral of the third term in (11.6.2). By Theorem
3.7, we have

1

n
max(Λn, 1) ≤ 2

n

(
max

(
‖ 1√

n
Xn‖2, 1

)
+ |z|2

)

≤ 2

∫ ∞

1

xdFSn(x) +
|z|2
n

→ 2

∫ 4

1

xdF1(x), a.s. (11.6.11)

We conclude that
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2

n

∫

z∈T

log(max(Λn, 1))dtds→ 0, a.s. (11.6.12)

Hence, (11.6.1) follows from (11.6.7), (11.6.10), and (11.6.12).

11.7 Proof of Theorem 11.4

In Section 11.3, the problem is reduced to showing (11.3.9). Recalling the
definitions of gn(s, t) and g(s, t), we have, by integration by parts,

∣∣∣∣
∫

z∈T

(gn(s, t) − g(s, t))eius+itvdtds

∣∣∣∣

=

∣∣∣∣∣−
∫

z∈T

iuτ(s, t)dtds+

∫

|t|≤A3

[τ(A, t)dt − τ(−A, t)]dt

−
∫

|t|≤1+ε

[τ(
√

(1 + ε)2 − t2, t) + τ(−
√

(1 + ε)2 − t2, t)]dt

+

∫

|t|≤1−ε

[τ(
√

(1 − ε)2 − t2, t) − τ(−
√

(1 − ε)2 − t2, t)]dt

∣∣∣∣∣ ,

(11.7.1)

where

τ(s, t) = eius+itv

∫ ∞

0

log xd(νn(x, z) − ν(x, z)).

Let εn = e−nδη

. In the last section, we proved that

∫

z∈T

∣∣∣∣
∫ εn

0

log xνn(dx, z)

∣∣∣∣ dtds→ 0, a.s.

By (11.4.2), we have

∫

z∈T

∣∣∣∣
∫ εn

0

log xν(dx, z)

∣∣∣∣ dtds→ 0.

By (11.6.11), we have the existence of an, for which the support of νn(·, z)
lies in [0, ann] for all z ∈ T and converges to a nonrandom value. Therefore,
from Lemma 11.16, with probability 1,

∫

z∈T

∣∣∣∣
∫ ∞

εn

log xd(νn(x, z) − ν(x, z))

∣∣∣∣ dtds

=

∫

z∈T

∣∣∣∣
∫ an

εn

log xd(νn(x, z) − ν(x, z))

∣∣∣∣ dtds
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≤ [| log(εn)| + log(an)] max
z∈T

‖νn(·, z) − ν(·, z)‖ → 0.

This proves that

iu

∫

z∈T

τ(s, t)dtds → 0.

By applying (11.2.4), we can similarly prove that

∫

|t|≤A3

τ(±A, t)dt → 0, a.s.,

∫

|t|≤1+ε

τ(±
√

(1 + ε)2 − t2, t)dt → 0, a.s.,

and ∫

|t|≤1−ε

τ(±
√

(1 − ε)2 − t2, t)dt → 0, a.s.

The proof of Theorem 11.4 is complete.

11.8 Comments and Extensions

11.8.1 Relaxation of Conditions Assumed in Theorem
11.4

1. On the smoothness of the underlying distribution
The assumption that the real and imaginary parts of the entries of the matrix
Xn have a bounded joint density is too restrictive because the circular law for
a real Gaussian matrix does not follow from Theorem 11.4. In what follows, we
shall extend Theorem 11.4 to a more general case to cover the real Gaussian
case and in general to random variables with bounded densities.

Theorem 11.18. Assume that there are two directions such that the condi-
tional density of the projection of the underlying random variable onto one
direction given the projection onto the other direction is uniformly bounded,
and assume that the underlying distribution has zero mean and finite 2 + η
moment. Then the circular law holds.

Sketch of the proof. Suppose that the two directions are (cos(θj), sin(θj)),
j = 1, 2. Then, the density condition is equivalent to:

The conditional density of the linear combination ℜ(x11) cos(θ1)+ℑ(x11) sin(θ1) =
ℜ(e−iθ1x11) given ℜ(x11) cos(θ2) + ℑ(x11) sin(θ2) = ℜ(e−iθ2x11) = ℑ(ie−iθ2x11)
is bounded.
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Consider the matrix Yn = (yjk) = e−iθ2+iπ/2Xn. The circular law 1√
n
Xn is

obviously equivalent to the circular law for 1√
n
Yn. Then, the density condi-

tion for Yn then becomes:

The conditional density of ℜ(y11) sin(θ2 − θ1) +ℑ(y11) cos(θ2 − θ1) given ℑ(y11) is
bounded.

This condition simply implies that sin(θ2 − θ1) 6= 0. Thus, the density condi-
tion is further equivalent to:

The conditional density of ℜ(y11) given ℑ(y11) is bounded.

Therefore, we shall prove Theorem 11.18 under this latter condition.
Examining the proof of Theorem 11.4, one finds that it is sufficient to prove

inequalities (11.6.7) and (11.6.10) under the new density condition. We start
with the proof of (11.6.7) from (11.6.5). Rewrite

log(|y∗x|2) = log(|y|2) + log(|ỹ∗x|2),

where ỹ = y/|y|.
Denote by xjr and xji the real and imaginary parts of the vector xj .

Since iγ1 also yields γ1γ
∗
1, we may, without loss of generality, assume that

|γ1r| ≥ 1/
√

2. Then, we have

|y|2 = w∗
2(γ1γ

∗
1 + γ2γ

∗
2)w2

≥ (γ ′
1rw2r + γ′

1iw2i)
2.

Applying Lemma 11.20, we find that the conditional density of γ′
1rw2r +

γ′
1iw2i when γ1, γ2, and w2i are given is bounded by 2Kdn. Therefore,

1

n

∫

z∈T

∣∣∣E
(
I(|y|2<n−14, | 1√

n
x2|≤n) log(|y|2)

)∣∣∣ dtds

≤ 1

n

∫

z∈T

E

(
I

(
|γ′

1rw2r + γ ′
1iw2i|2 < n−14,

∣∣∣ 1√
n
x2

∣∣∣ ≤ n

)

×| log(|γ ′
1rw2r + γ′

1iw2i|2)|
∣∣∣∣γ1,γ2,w2i

)
dtds

≤ CKd

∫ n−7

0

| log x|dx ≤ Cn−7 log n (11.8.1)

for some positive constant C.
Rewrite

|ỹ∗x|2 = (β1w1r + ζ1w1i)
2 + (β2w1r + ζ2w1i)

2,

where
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β1 = (ỹ′
r , ỹ

′
i)(γ1r,γ2r,−γ1i,−γ2i)

′,

β2 = (ỹ′
r , ỹ

′
i)(−γ1i,−γ2i,−γ1r,−γ2r)

′,

ζ1 = (ỹ′
r , ỹ

′
i)(γ1i,γ2i,γ1r,γ2r)

′,

ζ2 = (ỹ′
r , ỹ

′
i)(γ1r,γ2r,−γ1i,−γ2i)

′.

It is easy to verify that |β1|2 + |β2|2 = 1. Thus, we may assume that |β1| ≥
1/

√
2. By Lemma 11.20, the conditional density of β′

1w1r + ζ′
1w1i when γ1,

γ2, y, and w1i are given is bounded by 2Kdn. Consequently, we can prove
that

1

n

∫

z∈T

∣∣E
(
I(|ỹ∗x| < n−7) log(|ỹ∗x|2)

∣∣γ1,γ2,y,w1i

)∣∣ dtds

≤ 1

n

∫

z∈T

∣∣∣∣E
(
I(|β′

1w1r + ζ ′
1w1i|2| < n−7)

× log(|β′
1w1r + ζ′

1w1i|2)
∣∣∣∣γ1,γ2,y,w1i

)∣∣∣∣dtds

≤ CKd

∫ n−7

0

log xdx ≤ Cn−7 logn.

This, together with (11.8.1), completes the proof of (11.6.7).
Now, we prove (11.6.10) under the new condition. For each k, consider

the 2n× 6 matrix A whose first three columns are (γ ′
kjr ,−γ′

kji)
′, j = 1, 2, 3,

and other three columns are (γ′
kji,γ

′
kjr)

′. Since γkj are orthonormal, we have
A′A = I6. Using the same approach as in the proof of Lemma 11.20, one may
select a 6 × 6 submatrix A1 of A such that |det(A1)| ≥ n−3. Within the six
rows of A1, either its first three rows come from the first n rows of A or its
last three come from the last n rows. Without loss of generality, assume that
the first three rows of A1 come from the first n rows of A. Then, consider
the Laplace expansion of the determinant of A1 with respect to these three
rows. Within the 20 terms, we may select one with an absolute value not
less than 1

20n
−3. This term is the product of a minor from those three rows

of A1 and its cofactor. Note that the absolute value of the entries of A is
not greater than 1. Thus, the absolute value of the cofactor is not greater
than 6. Therefore, the absolute value of the minor is not less than 1

120n
−3.

Suppose the three columns of the minor come from the first, second, and
fourth columns of A; i.e., they come from γk1r, γk2r, and γk1i (the proof of
the other 19 cases is similar). Then, as in the proof of Lemma 11.20, one can
prove that the conditional joint density of γ ′

k1rwkr , γ ′
k2rwkr , and γ′

k1iwkr

when γkj and wki are given is uniformly bounded by 120K3
dn

4.5. Finally,
from (11.6.8), we have

nδη−1εn

n∑

k=3

(
|w∗

kγk1|2 + |w∗
kγk2|2 + |w∗

kγk3|2
)−1
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≤ nδη−1εn

n∑

k=3

(
(w′

krγk1r + w′
kiγk1i)

2 + (w′
krγk2r + w′

kiγk2i)
2

+(w′
krγk1i − w′

kiγk1r)
2

)−1

.

Using this and the same approach as given in Section 11.7, one may prove that
the right-hand side of the above tends to zero almost surely. Thus, (11.6.10)
is proved and consequently Theorem 11.18 follows.
2. Extension to the nonidentical case
Reviewing the proofs of Theorems 11.4 and 11.18, one finds that the moment
condition was used only in establishing the convergence rate of νn(·, z). To
this end, we only need, for any δ > 0 and some constant η > 0,

1

n2

∑

ij

E|xij |2+ηI(|xij | ≥ nδ) → 0. (11.8.2)

After the convergence rate is established, the proof of the circular law then
reduces to showing (11.2.3) and (11.2.4). To guarantee this, we need only the
following:

There are two directions such that the conditional density of the

projection of each random variable xij onto one direction given

the projection onto the other direction is uniformly bounded.

(11.8.3)

Therefore, we have the following theorem.

Theorem 11.19. Assume that the entries of Xn are independent and have
mean zero and variance 1. Also, we assume that conditions (11.8.2) and
(11.8.3) are true. Then the circular law holds.

11.9 Some Elementary Mathematics

Lemma 11.20. Let X = (x1, · · · ,xn) be a p×n real random matrix of n inde-
pendent column vectors whose probability densities f1, · · · , fn, have a common
bound Kd, and let α1, · · · ,αk (k < n) be k orthogonal real unit n-vectors.
Then, the joint density of the random p-vectors yj = Xαj, j = 1, · · · , k, is
bounded by Kk

dn
kp/2.

Proof. Write C = (α1, · · · ,αk)′, and let C(j1, · · · , jk) denote the k × k sub-
matrix formed by the j1 · · · jk-th columns of C. By Bennett’s formula, we
have ∑

1≤j1<···<jk≤n

det2(C(j1, · · · , jk)) = det(CC′) = 1.
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Thus, we may select 1 ≤ j1 < · · · < jk ≤ n, say 1, 2, · · · , k for simplicity,
such that |det(C(1, · · · , k))| ≥ n−k/2. Write C = (C(1, 2, · · · , k),C2) and
X = (X1,X2), where X1 is p× k. Let Y = (y1, · · · ,yk). It is straightforward
to show that the transformation Y = X1C

′(1, 2, · · · , k) + X2C
′
2, Z = X2,

has Jacobian detp(C(1, 2, · · · , k)). Furthermore, denote by c1, · · · , ck, the row
vectors of the matrix C−1(1, 2, · · · , k). Then, the joint density of y1, · · · ,yk

is given by

p(y1, · · · ,yk) = |det−p(C(1, 2, · · · , k))|E
(

k∏

i=1

fi((Y − X2C
′
2)c

′
i)

)
,

≤ Kk
dn

kp/2,

where Y = (y1, · · · ,yk). The proof of the lemma is complete.
For the complex case, we have the following corollary.

Corollary 11.21. Assume the vectors and matrices in Lemma 11.20 are
complex and the joint distribution density of the real and imaginary parts
of xj are uniformly bounded by Kd, and define yj = Xαj. Then, the joint
density of the real and imaginary parts of y1, · · · ,yk is bounded by K2k

d (2n)kp.

Proof. The proof is similar to the lemma above. Form the p × 2n matrix
(Xr,Xi), where respective j-th columns in Xr and Xi are the real and imag-
inary parts of xj . Each αj yields two real unit 2n-vectors, (α′

jr , α
′
ji)

′ and
(α′

ji,−α′
jr)

′, resulting in 2k orthonormal vectors. As above, form the 2k×2n
matrix C so that Y = (Xr,Xi)C

′ is the p × 2k matrix containing the real
and imaginary parts of the yj’s. Let C1 be the 2k × 2k submatrix for which
|detC1| ≥ (2n)−k. With a rearrangement of the columns of (Xr,Xi), we can
write the transformation Y = X1C

′
1 + X2C

′
2, Z = X2, with X1 p × 2k, X2

p× (2n− 2k), and C2 2k× (2n− 2k). Its Jacobian is detp(C1). Notice there
are at most 2k columns of X2, each of whose counterpart is a column of X1,
or, in other words, there are at least n− 2k densities whose pairs of real and
imaginary variables are present in X2. Therefore, the joint density of Y is
bounded by

|det−p(C1)|K2k
d ≤ K2k

d (2n)kp.

Lemma 11.22. Suppose that f(t) is a function such that
∫ δ

0 t|f(t)|dt ≤Mδµ

for some µ > 0 and all small δ. Let x and y be two complex random k-
vectors (k > 1) whose joint density of the real and imaginary parts of x and
y is bounded by Kd. Then,

E(f(|x∗y|)I(|x∗y| < δ, |x| ≤ Ke, |y| ≤ Ke)) ≤ CkMδµKdK
4k−4
e , (11.9.1)

where Ck is a positive constant depending on k only.

Proof. Note that the measure of the set on which x = 0 is zero. For each
x 6= 0, define a unitary k × k matrix U with x/|x| as its first column. Now,
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make a change of variables u = x and v = U∗y. It is known that the Jacobian
of this variable transformation is 1. This leads to |x∗y| = |u||v1|. Thus,

E
(
f(|x∗y|)I(|x∗y| < δ, |x| ≤ Ke, |y| ≤ Ke)

)

=

∫
···
∫
f(|u||v1|)I(|u||v1| < δ, |u| ≤ Ke, |v| ≤ Ke)p(u, Uv)dudv

≤ Kds2k2π(2Ke)
2k−2

∫ Ke

0

ρ2k−1
1 dρ1

∫ δ/ρ1

0

ρ2f(ρ1ρ2)dρ2 (11.9.2)

≤ Kds2k2π(2Ke)
2k−2(2k − 2)−1(Ke)

2k−2

∫ δ

0

tf(t)dt, (11.9.3)

where s2k denotes the surface area of the 2k-dimensional unit sphere. Here,
inequality (11.9.2) follows from a polar transformation for the real and imag-
inary parts of u (dimension = 2k) and from a polar transformation for the
real and imaginary parts (dimension= 2) of v1. The lemma now follows from
(11.9.3).

11.10 New Developments

From the truncation and the proof of Lemma 11.14, we can see, if we only
require that the Stieltjes transform Σn(α) converge to a limit ∆(α) for any
z ∈ C and α ∈ C+, that it is enough to assume E(x11) = 0 and E|x2

11| = 1.
The assumption E|x11|2+η < ∞ is merely to establish some rate for rn so

that the rate of εn = e−nδη

= e−1/rn in (11.2.4) can be very fast and hence
helps the proof of (11.2.4).

On the other hand, the density condition is only needed for the proof of
(11.2.4); that is, to handle the convergence of the smallest eigenvalues of
H. For removing the density assumption, we thank Rudelson and Vershynin
[247], who proved the following theorem.

Theorem 11.23. Let ξ1, · · · , ξn be independent centered random variables
with variances at least 1 and fourth moments at most B. Let A be an n× n
matrix whose rows are independent copies of the random vector (ξ1, · · · , ξn).
Let K ≥ 1. Then, for every ε > 0, one has

P(sn(A) ≤ εn−1/2) ≤ Cε+ cn + P(‖A‖ > Kn1/2), (11.10.4)

where sn(A) denotes the smallest singular value and C > 0 and c ∈ (0, 1)
depend (polynomially) only on B and K.

To apply the estimate of the smallest singular values to the proof of the
circular law, Pan and Zhou [227] extended Theorem 11.23 as follows.
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Theorem 11.24. Let W = X + An, where An is an n × n non-random
complex matrix and X = (Xjk)n×n, a random matrix.

Assume {Xjk} are iid complex random variables with EX11 = 0, E|X2
11| =

1, and E|X3
11| < B. Let K ≥ 1. Then, for every ε > 0, that may depend on

n,
P(sn(W) ≤ εn−1/2) ≤ Cε+ cn + P(‖W‖ > Kn1/2), (11.10.5)

where C > 0 and c ∈ (0, 1) depend only on K,B, Eℜ(X11)
2, Eℑ(X11)

2, and
Eℜ(X11)ℑ(X11).

It should be noted that the extension to Rudelson and Vershynin’s theorem
is crucial because we can apply it to X−zI, whose entries are no longer iid or
centered. Based on their extension, Pan and Zhou [227] proved the following
circular law.

Theorem 11.25. Suppose that {Xjk} are iid complex random variables with
EX11 = 0, E|X2

11| = 1, and E|X4
11| < ∞. Then, with probability 1, the

empirical spectral distribution µn(x, y) converges to the uniform distribution
over the unit disk in two-dimensional space.

Tao and Vu [273] further generalized Theorem 11.24 to reduce the moment
requirement to the existence of the 2 + η-th moment; i.e., E|X11|2+η <∞.

Because the proof involves the estimation of small ball probability, which
may be beyond the knowledge of most graduates and junior researchers, we
omit the proofs of these theorems. We refer readers who are interested in the
detailed proofs to Tao and Vu [273].



Chapter 12

Some Applications of RMT

In recent decades, data sets have become large in both size and dimension,
and thus statisticians are confronted with large dimensional data analysis
in both theoretical investigation and real applications. Consequently, RMT
has found applications to modern statistics and many applied disciplines. As
an illustration, we briefly mention some basic concepts and applications in
wireless communications and statistical finance.

12.1 Wireless Communications

In the past decade, RMT has found wide application in wireless communica-
tions. Random matrices are employed to describe the propagation of two im-
portant wireless communication systems: the multiple-input multiple-output
(MIMO) antenna system and the direct-sequence code-division multiple-
access (DS-CDMA) system. In an MIMO antenna system, multiple antennas
are used at the transmitter side for simultaneous data transmission and at the
receiver side for simultaneous reception. For a rich multipath environment,
the channel responses between the transmit antennas and the receive anten-
nas can be simply modeled as independent and identically distributed (iid)
random variables. Thus the wireless channel for such a communication sce-
nario can be described by a random matrix. DS-CDMA is a multiple- access
scheme supporting multiple users communicating with a single base station
using the same time and frequency resources but different spreading codes.
CDMA is the key physical layer air interface in third-generation (3G) cellular
mobile communications. In a frequency-flat, synchronous DS-CDMA uplink
system with random spreading codes, the channel can also be described by a
random matrix.

Foschini [113] and Telatar [274] may have been the first to introduce RMT
into wireless communications. They have proven that, for a given power bud-
get and a given bandwidth, the ergodic capacity of an MIMO Rayleigh fading
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channel increases with the minimum number of transmit antennas and receive
antennas. Furthermore, it is this promising result that makes MIMO an at-
tractive solution for achieving high-speed wireless connections over a limited
bandwidth (for details, we refer the reader to the monograph [232]).

Further applications of RMT to wireless communications may be at-
tributed to [135], [215], [281], [286], where it was derived that, by using
spectral theory of large dimensional random matrices, for a frequency-flat
synchronous DS-CDMA uplink with random spreading codes, the output
signal-to-interference-plus-noise ratios (SINRs) using well-known linear re-
ceivers such as matched filter, decorrelator, and minimum mean-square-error
(MMSE) receivers converge to deterministic values for large systems; i.e.,
when both spreading gain and number of users proportionally tend to infin-
ity. These provide us a fundamental guideline in designing system parameters
and predicting the system performance without requiring the exact knowl-
edge of the specific spreading codes for each user.

Some important application results of RMT to wireless communications
are listed below, among many others.

(i) limiting capacity and asymptotic capacity distribution for random MIMO
channels [286], [284];

(ii) asymptotic SINR distribution analysis for random channels [282], [194];
(iii) limiting SINR analysis for linearly precoded systems, such as the multi-

carrier CDMA using linear receivers [86];
(iv) limiting SINR analysis for random channels with interference cancellation

receivers [151], [280], [195];
(v) asymptotic performance analysis for reduced-rank receivers [152], [226];
(vi) limiting SINR analysis for coded multiuser systems [70];
(vii) design of receivers, such as the reduced-rank minimum mean-square-error

(MMSE) receiver [187]; and
(viii) the asymptotic normality study for multiple-access interference (MAI)

[309] and linear receiver output [142].

For more details, the reader is referred to Tulino and Verdú in [284].
For recent applications of RMT to an emerging area in wireless commu-

nications, the “cognitive radio” networks, we refer the reader to [307], [308],
[190], [214], and [148].

In the following subsections, our main objective is to show that there
are indeed many wireless channels and problems that can be modeled using
random matrices and to review some of the typical applications of RMT in
wireless communications. Since there are new results published every year,
we are not in a position to review all of the results. Instead, we concentrate
on some of the representative examples and main results. Hopefully this part
of the book can help readers from both mathematical and engineering back-
grounds see the link between the two different societies, identify new problems
to work on, and promote interdisciplinary collaborations.
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12.1.1 Channel Models

1. Basics of wireless communication systems
The working principle of a wireless communication system is illustrated in
Fig. 12.1, the block diagram of a wireless communication system, which con-
sists of three basic parts: transmitter, channel, and receiver. The objective
of the transmitter design is to transform the information bits into a signal
format that is suitable for transmission over the wireless channels. The key
components in the transmitter side include channel coding, modulation, and
linear or nonlinear precoding. When the signal passes through the channel,
the signal strength will be attenuated due to propagation loss, shadowing, and
multipath fading, and the received signal waveform will be different from the
transmitted signal waveform due to multipath delay, time/frequency selec-
tivity of the channel, and the addition of noise and unwanted interference.
Finally, at the receiver side, the transmitted information bits are to be re-
covered through the operations of equalization, demodulation, and channel
decoding.

Fig. 12.1 Block diagram of wireless communication system.

2. Mathematical formulation of channels by matrices
In this and the next subsection, we formulate the input-output model arising
from wireless communication systems,

x =

n∑

i=1

hisi + u

= Hs + u, (12.1.1)

where
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s = [s1, s2, · · · , sn]′

represents the transmitted signal vector of dimension n×1; hi represents the
channel vector of dimension p× 1, corresponding to symbol si;

x = [x1, x2, · · · , xp]
′,

u = [u1, u2, · · · , up]
′,

denote the received signal vector and received noise vector, respectively, both
with dimension p× 1; and

H = [h1,h2, · · · ,hn]

is the p × n channel matrix. In (12.1.1), n and p are referred to as the sig-
nal dimension and observation dimension, respectively. The matrix model in
(12.1.1) can be derived either in the time, frequency, space, or code domain,
or any combination of them. In the following subsections, we describe two
popular matrix models in wireless communications: random matrix channels
and linearly precoded channels.

12.1.2 random matrix channelRandom Matrix
Channels

Random matrix channels include DS-CDMA uplink, MIMO antenna systems,
and spatial division multiple access (SDMA) uplink.

1. DS-CDMA uplink
In a DS-CDMA system, all users within the same cell communicate with a
single base station using the same time and frequency resources. The trans-
mission from the users to the base station is called uplink, while the trans-
mission from the base station to the users is referred to as downlink. The
block diagram of the DS-CDMA uplink is illustrated in Fig. 12.2. In order
to achieve user differentiation, each user is assigned a unique spreading se-
quence. The matrix model in (12.1.1) directly represents the frequency-flat
synchronous DS-CDMA uplink, where si and hi represent the transmitted
symbol and spreading sequence of user i, respectively. In this case, n and
p denote the number of active users and processing gain, respectively. In
the third-generation (3G) wideband CDMA system, which is one of the 3G
physical layer standards, the uplink spreading codes are designed as random
codes, and thus the equivalent propagation channel from the users to the
base station can be modeled as a random matrix channel.
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2. MIMO antenna systems
Figure 12.3 shows the block diagram of a MIMO antenna system. The trans-
mitter has n transmit antennas and the receiver has p receive antennas. The
matrix model in (12.1.1) can also be used to represent such a system, where
si and hi denote respectively the transmitted symbol from the i-th transmit
antenna and the channel responses from that transmit antenna to all re-
ceive antennas. While the MIMO channel modeling is related to the antenna
configurations at both the transmitter and receiver sides, as well as to the
multipath environment [232], when there are rich local scatters surrounding
both sides, hi can be simply modeled as an iid vector (i.e., a vector of iid
entries), and thus the channel in (12.1.1) becomes a random matrix channel.

Fig. 12.2 Block diagram of DS-CDMA uplink.

3. SDMA uplink
In an SDMA system, the base station supports multiple users for simultane-
ous transmission using the same time and frequency resources [119, 238, 239].
This is achieved by equipping the base station with multiple antennas, and
by doing so the spatial channels for different users are different, which allows
the signals from different users to be distinguishable. Figure 12.4 shows the
block diagram of the SDMA uplink, where n users communicate with the
same base station equipped with p antennas. The matrix channel in (12.1.1)
can be used to represent the uplink scenario, where si and hi denote respec-
tively the transmitted symbol from user i and the channel responses from
this user to all receive antennas at the base station. When the base station
antennas and the users are surrounded with rich scatters, the channel ma-
trix can be modeled as an iid matrix (that is, a matrix of iid entries). Note
that SDMA and CDMA can be further combined to generate SDMA-CDMA
systems [192, 193].
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Fig. 12.3 Block diagram of MIMO antenna system.

Fig. 12.4 Block diagram of SDMA uplink.

12.1.3 Linearly Precoded Systems

In broadband communications, the wireless channels usually have memories
and thus are frequency selective. The frequency selectiveness of the channel
introduces intersymbol interferences (ISI) at the receiver side. Linear or non-
linear equalizers are designed to suppress the ISI. To simplify the complexity
of the equalizers, linear precoding at the transmitter side can be applied.
The matrix channel in (12.1.1) can be used to represent wireless channels of
cyclic-prefix (CP)-based block transmissions, which include, for example, or-
thogonal frequency division multiplexing (OFDM), single-carrier CP (SCCP)
systems, multicarrier CDMA (MC-CDMA), and CP-CDMA.
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1. CP-based block transmissions
The block diagram of a CP-based block transmission system is illustrated in
Fig. 12.5. Consider the case where a CP portion ofM symbols is inserted prior
to the transmission of each data block of p symbols. Suppose the frequency-
selective channel can be represented by (L + 1) equally spaced time domain
taps, h0, h1, · · · , hL. Here, L is also referred to as the channel memory. The
insertion of CP alleviates the interblock interference if the CP length M is
larger than the channel memory and, more importantly, it transforms the
linear convolution operation into a circular convolution operation.

Let y be the signal block before CP insertion at the transmitter and z the
received signal block after CP removal at the receiver, with circular convolu-
tion. The relation between y and z is given by

z = W∗
pΛpWpy + ũ, (12.1.2)

where Wp ∈ Cp×p is the p× p discrete Fourier transform matrix,

W =
1√
p




1 1 · · · 1

1 e
−j2π

p · · · e
−j2π×(p−1)

p

· · ·
1 e

−j2π×(p−1)
p · · · e

−j2π×(p−1)(p−1)
p


 .

Λp = diag{[f0, · · · , fp−1]} is the p × p diagonal matrix with fk =∑L
l=0 hle

−j 2πkl
p , and ũ is the received noise vector.

The data block y is the linear transform of the modulated block s with
size n × 1 and is described as y = W∗

pQps, where Qp ∈ Cp×n is the first
precoding matrix. Performing discrete Fourier transformation (DFT) on the
CP-removed block z, we then have the input-output relation

x = ΛpQps + u, (12.1.3)

where x = Wpz and u = Wpũ.
In (12.1.3), if we choose Q∗

pQp = In, the system is referred to as an
isometrically precoded system. If Qp is chosen as an iid matrix, then the
system is called a randomly precoded system. Finally, if Λp = Ip and Qp is an
iid matrix, the system is equivalent to a random MIMO system [281, 286].
2. Orthogonal frequency division multiplexing (OFDM) systems
In OFDM systems, we choose n = p and Qp = Ip. Thus, we have

y = W∗
ps, (12.1.4)

x = Λps + u. (12.1.5)

In (12.1.5), since Λp is a diagonal matrix, the received signals have been
completely decoupled; i.e.,
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Fig. 12.5 Block diagram of CP-based block transmission system.

xi = fisi + ui

for i = 0, · · · , p − 1, where xi and ui are the i-th elements of x and u, re-
spectively. Thus the signal detection problem for recovering the transmitted
signals becomes very simple to implement. Therefore, OFDM has become the
most popular scheme to handle the ISI issue and has been adopted in various
wireless standards; e.g., IEEE802.11 wireless local area networks, IEEE802.16
wireless metropolitan area networks, and third-generation long-term evolu-
tion (3G-LTE).

3. Single-Carrier CP (SCCP) systems
In an OFDM system, from (12.1.4), y is the IDFT (inverse DFT) output of
the modulated symbols s, and thus the signals transmitted may suffer from a
high peak-to-average power ratio (PAPR), which causes difficulty in practical
implementation. In an SCCP system, we directly choose n = p and y = s,
and thus we have

x = ΛpWps + u.

Obviously, SCCP is an isometrically precoded system. From (12.1.6), it can
be seen that the transmitted symbols are mixed up together and thus the
equalization for SCCP is more complicated compared with that for an OFDM
system. However, due to its simplicity on the transmitter side and lower
PAPR, SCCP has been adopted in IEEE802.16, and its multiuser version,
interleaved frequency division multiple access (IFDMA), has been adopted
in 3G-LTE uplink.
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4. MC-CDMA
A single-user scenario is considered in OFDM and SCCP systems. In order
to support multiple users simultaneously, in the next two subsections we will
introduce downlink models for MC-CDMA and CP-CDMA. To do so, we use
the following common notations: G for processing gain common to all users;
T for the number of active users; D(q) for the long scrambling codes used at
the q-th block, where

D(q) = diag {[d(q; 0), · · · , d(q; p− 1)]} ,

with |d(q; k)| = 1; and ci for the short codes of user i, where

ci = [ci(0), · · · , ci(G− 1)]′

with c′icj = 1 for i = j and c′icj = 0 for i 6= j. From now on, we look at the
channel model from the base station to one particular mobile user.

MC-CDMA performs frequency domain spreading by transmitting the
chip signals associated with each modulated symbol over different subcar-
riers within the same time block [147]. Denote Q as the number of symbols
transmitted in one block for each user, G as the processing gain, T as the
number of users, and p = QG as the total number of subcarriers. There are
then n = TQ multiuser symbols in each block.

At the receiver side, the q-th received block after CP removal and FFT
operation can be represented as

x(q) = ΛpD(q)Cs(q) + u(q), (12.1.6)

where

x(q) = [x(q; 0), · · · , x(q; p− 1)]
′
,

s(q) =
[
s̄′1(q), · · · , s̄′Q(q)

]′
,

u(q) = [u(q; 0), · · · , u(q; p− 1)]
′
,

C = diag
{
C̄, · · · , C̄

}
,

with s̄i(q) = [s0(q; i), · · · , sT−1(q; i)]
′
and C̄ = [c0, · · · , cT−1].

5. CP-CDMA
CP-CDMA is the single-carrier dual of MC-CDMA. The Q = p/G symbols of
each user are first spread out with user-specific spreading codes and then the
chip sequence for all users is summed up; the total chip signal of size p is then
passed to a CP inserter, which adds a CP. Using the duality between CP-
CDMA and MC-CDMA, from (12.1.6), the q-th received block of CP-CDMA
after FFT can be written as

x(q) = ΛpWpD(q)Cs(q) + u(q), (12.1.7)
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where x(q), C, s(q), and u(q) are defined the same way as in the MC-CDMA
case. Again, there are P = TQ multiuser symbols in each block.

For MC-CDMA downlink, Qp = D(q)C, and for CP-CDMA downlink,
Qp = WpD(q)C. Since Q∗

pQp = In, both systems belong to the isometrically
precoded category.

12.1.4 Channel Capacity for MIMO Antenna Systems

Channel capacity is a fundamental performance indicator used in commu-
nication theory study; it describes the maximum rate of data transmission
that the channel can support with an arbitrarily small probability of error
incurred due to the channel impairment. The channel capacity for additive
white Gaussian noise channels was derived by Claude Shannon in 1948 [84].
For single-input single-output systems, the capacity limits for fading channels
have been well documented for example in [130, 55, 69, 54]. In this section,
we consider the channel capacity of MIMO antenna systems in the fading
channel environment.

1. Single-input single-output channels
Let us first consider the AWGN channel

x(q) = s(q) + u(q) (12.1.8)

and assume that (i) the transmitted signal s(q) is zero-mean iid Gaussian
with E[|s(q)|2] = σ2

s and (ii) the noise u(q) is zero-mean iid Gaussian with
E[|u(q)|2] = σ2

u, and denote Γ = σ2
s/σ

2
u as the signal-to-noise ratio (SNR) of

the channel.
The capacity of the channel is determined by the mutual information be-

tween the input and output, which is given by

C = log2(1 + Γ ).

Here the unit of capacity is bits per second per Hertz (bits/sec/Hz). In the
high-SNR regime, the channel capacity increases by 1 bit/sec/Hz for every 3
dB increase in SNR. Note that the channel capacity determines the maximum
rate of codes that can be transmitted over the channel and recovered with
arbitrarily small error.

Next, we consider the SISO block fading channel

x(q) = hs(q) + u(q) (12.1.9)

and assume that (i) the transmitted signal s(q) is zero-mean iid Gaussian with
E[|s(q)|2] = σ2

s ; (ii) the noise u(q) is zero-mean iid Gaussian with E[|u(q)|2] =
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σ2
u, and denote Γ = Es/σ

2
u; and (iii) the fading state h is a random variable

with E[|h|2] = 1.
Let us first introduce the concept of a block fading channel. A block fading

channel refers to a slow fading channel whose coefficient is constant over an
interval of large time T and changes to another independent value, which
is again constant over an interval of time T , and so on. The instantaneous
mutual information between s(q) and x(q) of channel (12.1.9) conditional on
channel state h is given by

I(s;x|h) = log2(1 + |h|2Γ ).

Since h is a random variable, the instantaneous mutual information is also a
random variable. Thus, if the distribution of |h|2 is known, the distribution
of I(s;x|h) can be calculated accordingly.

The channel capacity of a fading channel can be quantified either in an
ergodic sense or in an outage sense, yielding ergodic capacity and outage
capacity.

The ergodic capacity of the SISO fading channel (12.1.9) is defined as

C = E[log2(1 + |h|2Γ )],

where the expectation is taken over the channel state variable h. Physically
speaking, the ergodic capacity defines the maximum (constant) rate of codes
that can be transmitted over the channel and recovered with arbitrarily small
probability of error when the codes are long enough to cover all the possible
channel states.

In Fig. 12.6, we compare the capacities of the AWGN channel and the
SISO Rayleigh fading channel with respect to the received SNR. Here, for
the fading channel case, we have used the average received SNR. It can be
seen that, at high SNR, the capacity of the fading channel increases by 1
bit/sec/Hz for every 3 dB increase in SNR, which is the same as for the
AWGN channel.

Since the instantaneous mutual information is a random variable, if a code
with constant rate C0 is transmitted over the fading channel, this code cannot
be correctly recovered at the receiver at a fading block whose instantaneous
mutual information is lower than the code rate C0, thus causing an outage
event. We define the outage probability as the probability that the instanta-
neous mutual information is less than the rate of C0; i.e.,

Pout(C0) = Pr(I(s;x|h) < C0).

Based on this, the α% outage capacity Cout,α% is defined as the maximum
information rate of codes transmitted over the fading channel for which the
outage probability does not exceed α%.



444 12 Some Applications of RMT

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

SNR (dB)

Capacity (bits/sec/Hz)

AWGN
Rayleigh fading

Fig. 12.6 The capacity comparison for AWGN channels and SISO Rayleigh fading chan-
nels.

2. MIMO fading channels
In order to analyze the capacity of MIMO fading channels, we make the
following assumptions:

(A1) The channel vectors hi can be represented as

hi = [X1i, X2i, · · · , Xpi]
′ (12.1.10)

for i = 1, · · · , n, where Xki’s are iid random variables with zero mean and
unit variance; i.e., E[|Xki|2] = 1 for all k’s and i’s.

(A2) The n symbols constituting the transmitted signal vector are drawn from
a Gaussian codebook with Rx = E[x(q)x∗(q)] and tr(Rx) = σ2

s . This is the
total power constraint.

(A3) The elements of u(q) are zero-mean, circularly symmetric complex Gaus-
sian with Ru = E[u(q)u∗(q)] = σ2

uI.

The following two cases need to be considered separately when we study
the MIMO channel capacity. In the first case, the channel state information
(CSI) H is available at the transmitter side. This case is called the CSI-known
case. In the second case, the CSI is unavailable at the transmitter side. This
case is referred to as the CSI-unknown case. In both cases, we assume that
the CSI is perfectly known at the receiver side.

Let us first look at the instantaneous mutual information under one CSI
realization H. Based on the distribution of H, the distribution of the in-
stantaneous mutual information can be derived. Similar to the SISO fading
channel case, we study the ergodic capacity and outage capacity of MIMO
fading channels.



12.1 Wireless Communications 445

Using singular-value decomposition (SVD), the p × n channel matrix H
can be represented as

H = UΣV∗,

where matrix U is a p× p unitary matrix (U∗U = Ip) and is called the left
singular vector matrix of H; matrix V is an n×n unitary matrix (V∗V = In),
which is referred to as the right singular vector matrix of H; and Σ is the
p × n singular value matrix, the elements of which are zeros except that
(Σ)i,i = σi ≥ 0, where σ1 ≥ . . . ≥ σM ≥ 0 (M = min(n, p)) are the singular
values of H. Note that HH∗ = UΣΣ∗U∗, and thus λi = σ2

i , ∀ i are the
nonzero eigenvalues of HH∗.

(i). MIMO fading channels for CSI-known case
When CSI is available at the transmitter, joint transmit and receive beam-
forming can be used to decouple the MIMO fading channel into M SISO
fading channels. Figure 12.7 shows the block diagram of the decoupling pro-
cess.

Fig. 12.7 Block diagram of joint transmit and receive eigen-beamforming.

At the transmitter side, we precode the transmitted signals using transmit
beamforming:

x = Vs.
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Then the received signal vector is given by

y = UΣV∗Vs + u

= UΣs + u.

At the receiver side, if we premultiply y with U∗ (this processing is called
receive eigenbeamforming), we then have

z = Σs + U∗u

= Σs + ũ.

Note that ũ = U∗u, and thus Rũ = E[ũũ∗] = E[U∗uu∗U] = σ2
uI. Therefore,

we have

zi = σisi + ũi, i = 1, . . . ,M.

From the above, it can be seen that with CSI known, the MIMO channel
has been decoupled into M SISO channels through joint transmit and receive
beamforming. That is to say,M data streams can be transmitted in a parallel
manner.

Suppose the transmission power to the i-th data stream is γi = E[|si|2].
Then the SNR for this data stream is given by

SNRi =
σ2

i E[|si|2]
E[|ũi|2]

=
σ2

i γi

σ2
u

.

Note that the total power over the M data streams has to be less than or
equal to σ2

s ; i.e.,
∑M

i=1 γi ≤ σ2
s .

The capacity of the MIMO channel under channel state H is equal to the
sum of the individual SISO channel’s capacity

IH =

M∑

i=1

log2

(
1 +

σ2
i γi

σ2
u

)
=

M∑

i=1

log2

(
1 +

λiγi

σ2
u

)

under the power constraint
∑M

i=1 γi ≤ σ2
s (see Fig 12.8).

If equal power is allocated to each data stream (i.e., γi =
σ2

s

M ), then

I(EP)

H =

M∑

i=1

log2

(
1 +

λiσ
2
s

Mσ2
u

)
. (12.1.11)

In order to achieve maximum capacity, we can allocate different powers to
the data streams using the Lagrangian method. Define the objective function

J(γ1, · · · , γM ) =

M∑

i=1

log2

(
1 +

λiγi

σ2
u

)
− µ1

(
M∑

i=1

γi − σ2
s

)
.
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Fig. 12.8 A MIMO channel is equivalent to a set of parallel SISO channels.

Calculating ∂J(γ1,···,γM)
∂γi

and setting ∂J(γ1,···,γM )
∂γi

= 0 for all i’s, we obtain the
water-filling solution

γ∗i =

(
µ− σ2

u

λi

)+

, i = 1, · · · ,M,

where µ is the water level for which the equality power constraint is satisfied,
(x)+ = x for x ≥ 0, and (x)+ = 0 for x < 0. With the water-filling power
allocation, the channel capacity can then be calculated as

I(WF)

H =

M∑

i=1

log2

(
1 +

λiγ
∗
i

σ2
u

)
.

For block fading channels, both I(EP)

H and I(WF)

H are random variables. If
the distribution of the eigenvalues is known, we can then calculate the dis-
tributions of I(EP)

H and I(WF)

H .
Taking expectations on I(EP)

H and I(WF)

H over the random matrix H, we
obtain the ergodic capacities of the MIMO fading channels as

C(EP) = EH[I(EP)

H ] = EΛ

[
M∑

i=1

log2

(
1 +

λiσ
2
s

Mσ2
u

)]
,

C(WF) = EH[I(WF)

H ] = EΛ

[
M∑

i=1

log2

(
1 +

λiγ
∗
i

σ2
u

)]
.
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Since I(WF)

H ≥ I(EP)

H , thus C(WF) ≥ C(EP). In the high SNR regime, however,
these two capacities tend to be equal.

The expressions of the ergodic capacities can be derived based on the eigen-
value distributions [196]. Alternatively, we may quantify the performance gain
of using multiple antennas by looking at the lower bound of the ergodic ca-
pacity. In fact, for the CSI-known case with equal power allocation, a lower
bound of the ergodic capacity of MIMO Rayleigh fading channels is given by
([224])

C = C(Γ ) ≥M log2


1 +

Γ

M
exp


 1

M

M∑

j=1

Q−j∑

k=1

1

k
− γ




 , (12.1.12)

where γ ≈ 0.57721566 is Euler’s constant, Γ =
σ2

s

σ2 , and Q = max(n, p).

Let us define spatial multiplexing gain as r = limΓ→∞
C(Γ )

log2(Γ ) . From

(12.1.12), we can see that r = limΓ→∞
C(Γ )

log2(Γ ) = M . Therefore, in the high

SNR regime, the ergodic capacity increases by M bits/sec/Hz for every 3 dB
increase in the average SNR, Γ . Recall that for SISO AWGN channels and
SISO Rayleigh fading channels, the capacity increases by 1 bit/sec/Hz for
every 3 dB increase of SNR in the high SNR regime. This shows the tremen-
dous capacity gain by using MIMO antenna systems.

(ii). MIMO fading channels for CSI-unknown case
In Part 3, we have proved that, when the CSI is known at the transmitter
side, the spatial multiplexing gain for a p× n MIMO channel is equal to M ,
which is the minimum number of transmit and receive antennas. In practice,
the CSI may not be available at the transmitter, so can we still achieve a
spatial multiplexing gain of M? We deal with this question in this part.

For MIMO flat fading channels, when the input signals are iid Gaussian,
the instantaneous mutual information between x and y under channel state
H is given by ([113], [274])

IH = log2 {det(πeRy)} − log2 {det(πeRu)} .

Since Ry = E[yy∗] = Ru + HRxH
∗ and Ru = σ2

uIp, we have

IH = log2

{
det

(
Ip +

HRxH
∗

σ2
u

)}
.

For the CSI-unknown case, we will choose the transmitted signal vector x

such that Rx =
σ2

s

n In. Thus, if n ≥ p,1

1 Suppose matrices A and B are of dimensions m × q and q × m, respectively. Then we
have the equality det(Im + AB) = det(Iq + BA).
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IH = log2

{
det

(
Ip +

σ2
s

Kσ2
u

HH∗
)}

= log2

{
det

(
Ip +

σ2
s

Kσ2
u

UΣΣ∗U∗
)}

= log2

{
det

(
Ip +

σ2
s

Kσ2
u

ΣΣ∗U∗U

)}

=

M∑

i=1

log2

(
1 +

σ2
sσ

2
i

nσ2
u

)
=

M∑

i=1

log2

(
1 +

σ2
sλi

Kσ2
u

)
= IΛ, (12.1.13)

where again σi is the i-th singular value of H and λi is the i-th eigenvalue of
HH∗. On the other hand, if n < p,

IH = log2

{
det

(
Ip +

σ2
s

nσ2
u

HH∗
)}

= log2

{
det

(
In +

σ2
s

nσ2
u

H∗H

)}

= log2

{
det

(
In +

σ2
s

nσ2
u

VΣ∗ΣV∗
)}

= log2

{
det

(
In +

σ2
s

nσ2
u

Σ∗ΣV∗V

)}

=

M∑

i=1

log2

(
1 +

σ2
sλi

nσ2
u

)
= IΛ. (12.1.14)

Combining (12.1.13) with (12.1.14) yields

IH =

M∑

i=1

log2

(
1 +

σ2
sλi

Kσ2
u

)
.

When n ≤ p, the formula above is the same as (12.1.11). That is to say, if
the number of transmit antennas is not greater than the number of receive
antennas, even when the CSI is unknown at the transmitter, the capacity of
the MIMO channel is the same as that for the CSI-known case when equal
power allocation is applied.

Taking the expectation on IH over the random matrix H, we obtain the
ergodic capacity of the MIMO fading channel as

C = EH[IH] = EΛ

[
M∑

i=1

log2

(
1 +

σ2
sλi

nσ2
u

)]
.

For MIMO Rayleigh fading channels, similar to the CSI-known case, we
have the inequality
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C ≥M log2


1 +

σ2
s

nσ2
u

exp


 1

M

M∑

j=1

Q−j∑

k=1

1

k
− γ




 .

Thus a spatial multiplexing gain of M can be achieved for MIMO Rayleigh
fading channels even when the CSI is unavailable at the transmitter side.

Figure 12.9 illustrates the ergodic capacities of MIMO fading channels
with different antenna configurations for the CSI-unknown case. Here we
also plot the lower bound of the ergodic capacity for 4 × 4 MIMO channels.
It is seen that this lower bound is tight when the SNR is greater than 25
dB. Further, for asymmetric antenna configurations, for a given M and at
high SNR regime, there exists a fixed SNR loss when the transmit antenna
number is larger than the receive antenna number.
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Fig. 12.9 The ergodic capacity comparison for MIMO Rayleigh fading channels with
different numbers of antennas.

12.1.5 Limiting Capacity of Random MIMO Channels

In the previous section, we studied the ergodic capacity of MIMO fading
channels with limited dimensions of n and p and showed that for a random
matrix channel with Rayleigh fading coefficients, the MIMO channel achieves
a spatial multiplexing gain of M , which is the minimum of the transmit
antenna number and receive antenna number.

In this section, we are interested in the limiting performance of the instan-
taneous mutual information for any given random channel realization when
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n → ∞, p → ∞ with p
n → y (constant). For the sake of brevity, we assume

that n and p scale up with the same speed; i.e., n
p = 1/y for every p.

According to the spectral theory of large random matrices, under assump-
tion (A1) in Part 2 of Subsection 12.1.4 and for the limiting case, the empirical
distribution of the eigenvalues of 1

pHH∗ converges almost surely to the M-P

law (see Chapter 3) whose density function is given by

fy(x) = (1 − 1/y)+δ(x) +

√
(x− a)+(b − x)+

2πxy
,

where

a = (1 −√
y)2, b = (1 +

√
y)2.

1. CSI-unknown case
Now, let us look at the limiting capacity of MIMO fading channels with
CSI unavailable at the transmitter side. We are interested in the normalized
mutual information

ĨH =
1

p
log2

{
det

(
Ip +

σ2
s

nσ2
HH∗

)}

=
1

p

p∑

i=1

log2

(
1 +

σ2
sλi

nσ2
u

)
.

In the previous subsection, we defined λi’s as the eigenvalues of HH∗. In the
limiting case, the ESD of λ̃i = λi

n , i = 1, · · · , p, converges to yfy(x) almost
surely for x ∈ (a, b). Thus we have ([286])

ĨH =
1

p

p∑

i=1

log2

(
1 +

σ2
s λ̃i

σ2
u

)

→
∫ b

a

log2(1 + Γx)fy(x)dx, (12.1.15)

△
= Ĩ1(Γ, y),

where Γ =
σ2

s

σ2
u
. The limit above is termed the Shannon transform of the M-P

law, and the closed-form expression for the limit can be found in Chapter 3.

2. CSI-known case
We are interested in the normalized mutual information

ĨH =
1

p
log2

{
det

(
Ip +

σ2
s

pσ2
u

HH∗
)}
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=
1

p

p∑

i=1

log2

(
1 +

σ2
sλi

pσ2

)

→
∫ b

a

log2(1 +
1

y
Γx)fy(x)dx (12.1.16)

△
= Ĩ2(Γ, y).

Note that Ĩ1(Γ, y) and Ĩ1(Γ, y) are only derived for the case y < 1. For the
case y ≥ 1, the formulas (12.1.15) and (12.1.16) still hold, although the M-P
laws are different in the point mass at the origin for the two cases.

12.1.6 A General DS-CDMA Model

In this section, we return to the DS-CDMA system and consider a more
general model where information is simultaneously transmitted to multiple
antennas. We assume we have n users with p-dimensional spreading sequence
hi assigned to user i. We let xi ∈ R denote user i’s transmitted symbols,
assumed to be iid standardized random variables across users, and Ti ∈ R+

user i’s transmission power. We let L denote the number of antennas and
γi(ℓ) the fading channel gain from user i to antenna ℓ. With xℓ and uℓ

denoting, respectively, the received signal vector and the received noise vector
to antenna ℓ, we have the matrix model in (12.1.1) for the transmission to
the ℓ-th antenna with si = si(ℓ) = xi

√
Tiγi(ℓ); that is,

xℓ =

n∑

i=1

xi

√
Tiγi(ℓ)hi + uℓ.

The matrix H remains the same for all antennas. We assume the components
of all the uℓ are iid with mean zero and expected second absolute moment
equal to σ2.

Let x = [x′
1,x

′
2, . . . ,x

′
L]′. Estimating xi for each user is done by taking

the inner product of x with an appropriate vector ci ∈ Cpℓ, called the linear
receiver for user i. Define

ĥi =
√
T i[γi(1)h′

i, γi(2)h′
i, · · · , γi(ℓ)h

′
i]
′.

The quantity

|c∗1ĥ1|2
σ2‖c1‖2 +

∑n
i=2 |c∗1ĥi|2

is called the signal-to-interference ratio associated with user 1 and is typically
used as a measure for evaluating the performance of the linear receiver. It can
be shown that the choice of c1 that minimizes E(c∗1x − x1)

2 also maximizes
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the signal-to-interference ratio associated with user 1, the maximum value
equal to

SIR1 = ĥ∗
1

(
K∑

i=2

ĥiĥ
∗
i + σ2I

)−1

ĥ1,

where I is the pL× pL identity matrix.
Although SIR1 does not depend on eigenvalues of a random matrix, when n

and p are large, tools used in RMT, notably Lemma B.26 and basic properties
of matrices, can be implemented to prove a limit theorem as n and p approach
infinity, while their ratio approaches a positive constant. The following is
proven in Bai and Silverstein [28] (see also Cottatellucci and Müller [83]
and Hanly and Tse [146], the latter containing a simplified version of this
model):

Theorem 12.1. Let {hij : i, j = 1, 2, . . .} be a doubly infinite array of iid
complex random variables with exph11 = 0, exp |h11|2 = 1. Define for i =
1, 2, . . . , n hi = hi(n) = (h1 i, h2 i, . . . , hp i)

′. We assume n = n(p) and n/p→
y > 0 as p → ∞. For each p, let γi(ℓ) = γp

i (ℓ) ∈ C, Ti = T p
i ∈ R+,

i = 1, . . . , n, ℓ = 1, . . . , L be random variables, independent of h1, . . . ,hn.
For each p and i, let

αi = α
p
i =

√
Ti(γi(1), . . . , γi(L))′.

Assume almost surely that the empirical distribution of α1, . . . ,αn weakly
converges to a probability distribution H in CL.

Let βi = βi(p) =
√
Tk(γi(1)h′

i, . . . , γi(L)h′
i)

′ and

C = C(p) =
1

p

n∑

i=2

βiβ
∗
i .

Define

SIR1 =
1

p
β∗

1(C + σ2I)−1β1.

Then, with probability 1,

lim
p→∞

SIR1 = T1

L∑

ℓ,ℓ′=1

γ̄1(ℓ)γ1(ℓ
′)aℓ,ℓ′ ,

where the L×L matrix A = (aℓ,ℓ′) is nonrandom, Hermitian positive definite,
and is the unique Hermitian positive definite matrix satisfying

A =

(
y E

αα∗

1 + α∗Aα
+ σ2IL

)−1

,

where α ∈ CL has distribution H and IL is the L× L identity matrix.
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The theorem assumes the entries of the spreading sequences are iid with
mean zero and variance 1/p. The scaling by 1/

√
p is removed from the defi-

nition of the hi’s.
Clearly SIR1 defined in this theorem is the same as the one initially intro-

duced, with the only difference in notation being the removal of the scaling
by 1/

√
n in the definition of the hi’s.

Two separate assumptions are imposed in Hanly and Tse. One of them
restricts applications to scenarios where all the antennas are near each other.
The other assumptions imposed lift the restrictions but assume for each user
that independent spreading sequences are going to the L antennas, which is
completely unrealistic. Both assumptions assume the entries of the spreading
sequences to be mean-zero complex Gaussian. Clearly Theorem 12.1 allows
arbitrary scenarios to be considered. There is no restriction as to the place-
ment of the antennas. Moreover, the general assumptions made on the entries
of the hi’s can allow them to be ±1, which is typically done in practice.

The proof of Theorem 12.1, besides relying on Lemma B.26, which essen-
tially handles the random nature of SIR1, uses identities involving inverses
of matrices expressed in block form, most notably the following.

Lemma 12.2. Suppose A1, ...,AL are p × n, and σ2 > 0. Define the ℓ, ℓ′

block of the pL × pL matrix A by Aℓ,ℓ′ = AℓA
∗
ℓ′ and, splitting (A + σ2I)−1

into L2 p× p matrices, let (A + σ2I)−1
ℓ,ℓ′ denote its ℓ, ℓ′ block. Then

(A + σ2I)−1
ℓ,ℓ′ = σ−2

(
δℓ,ℓ′Ip − Aℓ

(∑

ℓ

A∗
ℓAℓ + σ2In

)−1

A∗
ℓ′

)
.

For further details, we refer the reader to Bai and Silverstein [28].

12.2 Application to Finance

Today, the financial environment is widely recognized to be riskier than it
had been in past decades. The change was significant during the second half
of the twentieth century. Price indices went up and the volatility of foreign
exchange rates, interest rates, and commodity prices all increased. All firms
and financial institutions are facing uncertainty due to changes in the financial
markets. The markets for risk management products have grown dramatically
since the 1980s. Risk management has become a key technique for all market
participants. Risk should be carefully measured. Var (Value at risk) matrix
and credit matrix have become popular terminologies in banks and fund
management companies.

The wide adoption of modern computers in all financial institutions and
markets has made it possible to do exchanges expeditiously and prices to
vary abruptly. Also, the emergence of various mutual funds makes the in-
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vestigation on finance global, and hence large dimensional data analysis has
received tremendous attention in financial research. Over the last one or two
decades, the application of RMT has appeared in many research papers and
risk management institutions. For example, the correlation matrix and factor
models that work on internal or external measures for financial risk have be-
come well known in all financial institutions. In this section, we shall briefly
introduce some applications of RMT to finance problems.

12.2.1 A Review of Portfolio and Risk Management

Optimal portfolio selection is a very useful strategy for investors. Since being
proposed by Markowitz [205], it has received great attention and interest
from both theoreticians and practitioners in finance.

The use of these criteria was defined in terms of the theory of rational
behavior under risk and uncertainty as developed by von Neumann and Mor-
genstern [220] and Savage [250]. The relationship between many-period and
single-period utility analyses was explained by Bellman [49], and algorithms
were provided to compute portfolios that minimize variance or semivariance
for various levels of expected returns once requisite estimates concerning se-
curities are provided.

Portfolio theory refers to an investment strategy that seeks to construct
an optimal portfolio by considering the relationship between risk and return.
The fundamental issue of capital investment should no longer be to pick out
good stocks but to diversify the wealth among different assets. The success
of investment depends not only on return but also on risk. Risk is influenced
by correlations between different assets such that the portfolio selection rep-
resents an optimization problem.

1. Optimal portfolio selection—mean-variance model
Suppose there are p assets whose returns R1, · · ·Rp are random variables with
known means ERi and covariances Cov(Ri, Rj). Denote R = (R1, · · ·Rp)

′,
r = ER = (r1, · · · rp)′, Σ = VarR = E(R − r)(R − r)′ = (σij). Consider
P , a portfolio; i.e., a vector of weights (the ratio of different stocks in a
portfolio, or loadings in some literature) w = (w1, · · · , wp)

′. We impose a
budget constraint

p∑

i=1

wi = w′1 = 1,

where 1 is a vector of ones. If additionally ∀i, wi ≥ 0, the short sale is
excluded.

If the return of a whole portfolio P is denoted by RP , then
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RP =

p∑

i=1

wiRi = w′R

and

rP = ERP =

p∑

i

wiERi =

p∑

i

wiri = w′r.

The variance (or risk) of return is σ2
P = w′Σw.

According to Markowitz, a rational investor always searches for w that
minimizes the risk at a given level of expected return R0,

min
{
w′Σw

∣∣∣w′r ≥ R0 and w′1 = 1, wi ≥ 0
}
,

or its dual version to maximize the expected return under a given risk level
σ2

0 ,

max
{
w′r

∣∣∣w′Σw ≤ σ2
0 and w′1 = 1, wi ≥ 0

}
.

When we use absolute deviation to measure risk, we get the mean absolute
deviation model that minimizes E |w′R − w′r|. If semivariance is considered,
we minimize w′V w, where

V = Cov((Ri − ri) , (Rj − rj) )

(Ri − ri) = [−(Ri − ri)] ∨ 0.

Sometimes a utility function is used to evaluate the investment perfor-
mance, say lnx. The utility of a portfolio P is

∑p
i=1 ln ri. Let Σ̃ = (σ̃ij) be

the semivariance as a measure of risk, where

σ̃ij = Cov((lnRi − ln ri) , (lnRj − ln rj) ).

Then, we come to the log-utility model:

min

{
w′Σ̃w

∣∣∣
p∑

i=1

wi ln ri ≥ R0, w′1 = 1, wi ≥ 0

}
.

A portfolio is said to be legitimate if it satisfies constraints Aw = b,w ≥ 0.
The reader should note that the expected return of a portfolio is denoted by
E and the variance of the portfolio by V (V = w′Σw or w′Σ̃w in different
models). An E-V pair (E0, V0) is said to be obtainable if there is a legiti-
mate portfolio w0 such that E0 = w′

0r and V0 = w′
0Σw0. An E-V pair is

said to be efficient if (1) the pair (E0, V0) is obtainable and (2) there is no
obtainable (E1, V1) such that either E1 > E0 while V1 ≤ V0 or E1 ≥ E0 while
V1 < V0. A portfolio w is efficient if it is legitimate and if its E-V pair is
efficient. The problem is to find the set of all efficient E-V pairs and a legiti-
mate portfolio for each efficient E-V pair. Kuhn and Tucker’s results [179] on
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nonlinear programming are applicable in solving optimization problems. A
simplex method is also applicable to the quadratic programming for portfolio
selection, as shown by Wolfe [298].

2. Financial correlations and information extraction
Because the means and covariances of the return are practically unknown,
to estimate the risk of a given portfolio it is natural to use the sam-
ple means vector and covariances of Ri,t and Rj,t of some historical data
{Rt = (R1,t, · · · , Rp,t)

′} observed at discrete time instants t = 1, . . . , n,

r̂i = R̄i =
1

n

n∑

t=1

Ri,t, σ̂ij = Ĉov(Ri, Rj) =
1

n

n∑

t=1

(Ri,t − R̄i)(Rj,t − R̄j).

Theoretically, the covariances can be well estimated from the historical data.
But in real practice it is not the case. The empirical covariance matrix from
historical data is in fact random and noisy. That means the optimal risk and
return of a portfolio are in fact neither well estimated nor controllable. We
are facing the problems of covariance matrix cleaning in order to construct
an efficient portfolio.

To estimate the correlation matrix C = (Cij), recalling Σ = DCD, D =
diag(σ1, . . . σp), where σ2

i is the variance of Ri, we need to determine the
p(p+ 1)/2 coefficients from the p-dimensional time series of length n. De-
noting y = p/n, only when y ≪ 1 can we accurately determine the true
correlation matrix. Denote Xi,t = (Ri,t − R̄i)/σi, and the empirical correla-
tion matrix (ECM) is H = (hij), where

hij =
1

n

n∑

t=1

Xi,tXj,t.

If n < p, the matrix H has rank(H) = n < p and thus has p − n zero
eigenvalues. The risk of a portfolio can then be measured by

1

n

∑

i,j,t

wiσiXi,tXj,twjσj .

It is expected to be close to
∑

i,j wiσjCijσjwj . The estimation above is unbi-

ased with mean square error of order 1
n . But the portfolio is not constructed

by a linear function of H, so the risk of a portfolio should be carefully eval-
uated.

Potters et al. [236] defined the in-sample, out-sample, and true minimum
risk as

Σin = w′
HHwH =

R2
0

r′H−1r
,

Σtrue = w′
CCwC =

R2
0

r′C−1r
,
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Σout = w′
HCwH = R2

0

r′H−1CH−1r

(r′H−1r)2
,

where

wC = R0
C−1r

r′C−1r
.

Since E(H) = C, for large n and p we have approximately

r′H−1r ∼ E(r′H−1r) ≥ r′C−1r.

So, with high probability, we have

Σin ≤ Σtrue ≤ Σout.

This indicates that the in-sample risk provides an underestimation of true
risk, while the out-sample risk is an overestimation. Even when both the in-
sample and out-sample risks are not unbiased estimators of the true risk, one
might be thinking that the difference would become smaller when the sample
size increased. However, that is not the case. When the true correlation matrix
is the identity matrix I and p/n→ y ∈ (0, 1), Pafka et al. [225] showed that

Σtrue =
R2

0

r′r

and
Σin ≃ Σtrue

√
1 − y ≃ Σout(1 − y).

When and only when y → 0 will all three coincide.
Denote by λk and (V1,k, · · · , Vp,k)′ the eigenvalues and eigenvectors of the

correlation matrix H. Then the empirical loading weights are approximately

wi ∝
∑

k,j

λ−1
k Vi,kVj,krj = ri +

∑

k,j

(λ−1
k − 1)Vi,kVj,krj .

When σi = 1, the optimal portfolio should invest proportionally to get the
expected return ri, which is the first term of the RHS of the expression
above. The second term is in fact an error caused by the estimation error
of the eigenvalues of the correlation matrix according to λ > 1 or λ < 1.
It is possible that the Markowitz solution will allocate a large weight to a
small eigenvalue and cause the domination of measurement noise. To avoid
the instability of empirical risk, people might use

wi ∝ ri −
∑

k≤k∗;j

Vi,kVj,krj ,

projecting out the k∗ eigenvectors corresponding to the largest eigenvalues.
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3. Cleaning of ECM
Therefore, various methods of cleaning the ECM are developed in the litera-
ture; see Papp et al. [228], Sharifi et al. [253], and Conlon et al. [82], among
others.

Shrinkage estimation is a way of correlation cleaning. Let Hc denote the
cleaned correlation matrix

Hc = αH + (1 − α)I,

λc,k = 1 + α(λk − 1),

where λc,k is the k-th eigenvalue of H. The parameter α is related to the
expected signal-to-noise ratio, α ∈ (0, 1). That α → 0 means the noise is
large. Laloux et al. [182] suggest the eigenvalue cleaning method

λc,k =

{
1 − δ, if k > k∗,
λk, if k ≤ k∗,

where k∗ is the number of meaningful sectors and δ is chosen to preserve the
trace of the matrix. The choice of k∗ is based on random matrix theory. The
key point is to fix k∗ such that eigenvalue λk∗ of H is close to the theoretical
left edge of the random part of the eigenvalue distribution.

4. Spectral Theory of ECM
The spectrum discussed in Chapter 3 set up the foundation for applications
here. Consider an ECM H of p assets and n data points, both large with y =
p/n finite. Under existence of the second moments, the LSD of a correlation
matrix

R =
1

n
AA′

is

P (x) =
1

2πyσ2x

√
(b − x)(x− a) x ∈ (a, b) (the M-P law),

where A is a p × n matrix with iid entries of zero mean and unit variance,
a, b = σ2(1 ∓√

y)2 being the bounds of the M-P law. Comparing the eigen-
values of ECM with P (x), one can identify the deviating eigenvalues. These
deviating eigenvalues are said to contain information about the system un-
der consideration. If the correlation matrix C has one eigenvalue larger than
1+

√
y, it has been shown by Baik et al. [44] that the largest eigenvalue of the

ECM H will be Gaussian with a center outside the “M-P sea” and a width
∼ 1√

n
, smaller than the uncertainty on the bulk eigenvalues (of order ∼ √

y).

Then the number k∗ can be determined by the expected edge of the bulk
eigenvalues. The cleaned correlation matrix is used to construct the portfo-
lio. Other cleaning methods include clustering analysis, by R. N. Mantegna.
Empirical studies have reported that the risk of the optimized portfolio ob-
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tained using the cleaned correlation matrix is more reliable (see LaLoux et
al. [182]), and less than 5% of the eigenvalues appear to carry most of the
information.

To extract information from noisy time series, we need to assess the de-
gree to which an ECM is noise-dominated. By comparing the eigenspectra
properties, we identify the eigenstates of the ECM that contain genuine in-
formation content. Other remaining eigenstates will be noise-dominated and
unstable. To analyze the structure of eigenvectors lying outside the ‘M-P sea,’
Ormerod [223], and Rojkova et al. [242], calculate the inverse participation
ratio (IPR) (see Plerou et al. [235, 234]). Given the k-th eigenvalue λk and
the corresponding eigenvector Vk with components Vk,i, the IPR is defined
by

Ik =

p∑

i=1

(V 4
k,i).

It is commonly used in localization theory to quantify the contribution of
different components of an eigenvector to the magnitude of that eigenvector.
Two extreme cases are those where the eigenvector has identical compo-
nents Vk,i = 1√

p or has only one nonzero component. For the two cases, we

get Ik = 1
p and 1, respectively. When applied to finance, IPR is the recip-

rocal of the number of eigenvector components significantly different from
zero (i.e., the number of economies contributing to that eigenvector). By
analyzing the quarterly levels of GDP over the period 1977–2000 from the
OECD database for EU economics, France, Germany, Italy, Spain and the
UK, Ormerod shows that the co-movement over time between the growth
rates of the EU economies does contain a large amount of information.

12.2.2 Enhancement to a Plug-in Portfolio

As mentioned in the last subsection, the plug-in procedure will cause the op-
timal portfolio selection to be strongly biased, and hence such a phenomenon
is called “Markowitz’s enigma” in the literature. In this subsection, we will
introduce an improvement to the plug-in portfolio by using RMT. The main
results are given in Bai it et al. [20].

1. Optimal Solution to the Portfolio Selection
As mentioned earlier, maximizing the return and minimizing the risk are
complementary. Thus, we consider the maximization problem as

R = max w′µ subject to w′1 ≤ 1 and w′Σw ≤ σ2
0 . (12.2.17)

We remark here that the condition w′1 = 1 has been weakened to w′1 ≤ 1
in order to prevent the maximization from having no solution if σ2

0 is too
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small. If σ2
0 is large enough, the optimization solution automatically satisfies

w′1 = 1.
The solution is given as follows:

1. If
1′Σ−1µσ0√

µ′Σ−1µ
≤ 1,

then the optimal return R and corresponding investment portfolio w will
be

R = σ0

√
µ′Σ−1µ

and
w =

σ0√
µ′Σ−1µ

Σ−1µ.

2. If

1′Σ−1µσ0√
µ′Σ−1µ

> 1,

then the optimal return R and corresponding investment portfolio w will
be

R =
1′Σ−1µ

1′Σ−11
+ b

(
µ′Σ−1µ − (1′Σ−1µ)2

1′Σ−11

)

and

w =
Σ−11

1′Σ−11
+ b

(
Σ−1µ − 1′Σ−1µ

1′Σ−11
Σ−11

)
,

where

b =

√
1′∑−1 1σ2

0 − 1

µ′Σ−1µ1′Σ−11− (1′Σ−1µ)2
.

2. Overprediction of the Plug-in Procedure
As mentioned earlier, the substitution of the sample mean and covariance
matrix into Markowitz’s optimal selection (called the plug-in procedure) will
always cause the empirical return to be much higher than the theoretical op-
timal return. We call this phenomenon “overprediction” of the plug-in pro-
cedure. The following theorem theoretically proves this phenomenon under
very mild conditions.

Theorem 12.3. Assume that y1, · · · ,yn are n independent random p-vectors
of iid entries with mean zero and variance 1. Suppose that xk = µ + zk with
zk = Σ

1
2 yk, where µ is an unknown p-vector and Σ is an unknown p × p

covariance matrix. Also, we assume that the entries of yk’s have finite fourth
moments and that as p/n→ y ∈ (0, 1) we have

µ′Σ−1µ

n
→ a1 ,

1′Σ−11

n
→ a2 ,

1′Σ−1µ

n
,→ a3,
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satisfying a1a2 − a2
3 > 0. Then, with probability 1, we have

lim
n→∞

ˆ̂
Rp√
n

=





√
γa1 > lim

n→∞
R(1)

√
n

=
√
a1, when a3 < 0,

σ0

√
γ(a1a2−a2

3)

a2
> lim

n→∞
R(2)

√
n

= σ0

√
a1a2 − a2

3

a2
, when a3 > 0,

where R(1) and R(2) are the returns for the two cases given in the last para-

graph, γ =
∫ b

a
1
xdFy(x) = 1

1−y > 1, a = (1 −√
y)2, and b = (1 +

√
y)2.

Remark 12.4. The optimal return takes the form R(1) if 1′Σ−1µ <√
µ′Σ−1µ. When a3 < 0, for all large n, the condition for the first case

holds, and hence we obtain the limit for the first case. If a3 > 0, the con-
dition 1′Σ−1µ <

√
µ′Σ−1µ is eventually not true for all large n and hence

the return takes the form R(2). When a3 = 0, the case becomes very com-

plicated. The return may attain the value in both cases and, hence,
ˆ̂
Rp√

n
may

jump between the two limit points.

To illustrate the overprediction phenomenon, for simplicity we generate p-
branch standardized security returns from a multivariate normal distribution
with mean µ = (µ1, · · · , µp)

′ and identity covariance matrix Σ = I. Given the
level of risk with the known population mean vector, µ, and known population
covariance matrix, Σ, we can compute the theoretical optimal allocation w
and thereafter compute the theoretical optimal return, R, for the portfolios.
Using this data set, we compute the sample mean, x, and covariance matrix,
S, and then the plug-in return, R̂p, and its corresponding plug-in allocation,
ŵp. We finally plot the theoretical optimal returns R and the plug-in returns

R̂p against different values of p with the fixed sample size n = 500 in Fig.
12.10. We present the simulated theoretical optimal returns R and the plug-
in returns R̂p in Table 12.1 for two different cases: (A) for different values of
p with the same dimension-to-sample-size ratio p/n (= 0.5) and (B) for the
same value of p (= 252) but different dimension-to-sample-size ratios p/n.

From Fig. 12.10 and Table 12.1, we find the following: (1) the plug-in re-
turn R̂p is close to the theoretical optimal return R when p is small (≤ 30);
(2) when p is large (≥ 60), the difference between the theoretical optimal re-
turn R and the plug-in return R̂p becomes dramatically large; (3) the larger
the p, the greater the difference; and (4) when p is large, the plug-in return
R̂p is always larger than the theoretical optimal return R. These confirm the

“Markowitz optimization enigma” that the plug-in return R̂p should not be
used in practice.

3. Enhancement by bootstrapping
Now, we construct a parametric bootstrap-corrected estimate R̂p as follows.
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Fig. 12.10 Empirical and theoretical optimal returns. Solid line—the theoretic optimal
return R = w′µ; dashed line—the plug-in return R̂p = w′

plµ.

Table 12.1 Performance of R̂p and
ˆ̂
Rp.

p p/n R R̂p
ˆ̂
Rp

100 0.5 9.77 13.89 13.96
200 0.5 13.93 19.67 19.73
300 0.5 17.46 24.63 24.66
400 0.5 19.88 27.83 27.85
500 0.5 22.29 31.54 31.60

p p/n R R̂p
ˆ̂
Rp

252 0.5 14.71 20.95 21.00
252 0.6 14.71 23.42 23.49
252 0.7 14.71 26.80 26.92
252 0.8 14.71 33.88 34.05
252 0.9 14.71 48.62 48.74

Note: In the table,
ˆ̂
Rp = ŵ′X is the estimated return. The table compares the

performance between R̂p and
ˆ̂
Rp for the same p/n ratio with different numbers of assets,

p, and for the same p with different p/n ratios where n is the number of samples and R is
the optimal return defined in (12.2.17).

To avoid the singularity of the resampled covariance matrix, we employ the
parametric bootstrap method. Suppose that χ = {x1, · · · ,xn} is the data
set. Denote its sample mean and covariance matrix by x̄ and S. First, draw a
resample χ∗ = {x∗

1, · · · ,x∗
n} from the p-variate normal distribution with mean

vector x and covariance matrix S. Then, invoking Markowitz’s optimization
procedure again on the resample χ∗, we obtain the bootstrapped “plug-in”
allocation, ŵ∗

p, and the bootstrapped “plug-in” return, R̂∗
p, such that

R̂∗
p = ĉ∗T

p x∗, (12.2.18)
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where x∗ = 1
n

∑n
1 x∗

k.

We remind the reader that the bootstrapped “plug-in” allocation ŵ∗
p will

be different from the original “plug-in” allocation ŵp and, similarly, the boot-

strapped “plug-in” return R̂∗
p is different from the “plug-in” return R̂p, but

by Theorem 12.3 one can easily prove the following theorem.

Theorem 12.5. Under the conditions in Theorem 12.3 and using the boot-
strapped plug-in procedure as described above, we have

√
γ(R− R̂p) ≃ R̂p − R̂∗

p, (12.2.19)

where γ is defined in Theorem 12.3, R is the theoretical optimal return, R̂p

is the plug-in return estimate obtained by the original sample χ, and R̂∗
p is

the bootstrapped plug-in return obtained by the bootstrapped sample χ∗.

This theorem leads to the bootstrap-corrected return estimate R̂b and the
bootstrap-corrected portfolio ŵb,

R̂b = R̂p +
1√
γ

(R̂p − R̂∗
p),

ŵb = ŵp +
1√
γ

(ŵp − ŵ∗
p). (12.2.20)

4. Monte Carlo study
Now, we present some simulation results showing the superiority of both R̂b

and ŵb over their plug-in counterparts R̂p and ŵp. To this end, we first define
the bootstrap-corrected difference, dR

b , for the return as the difference between

the bootstrap-corrected optimal return estimate R̂b and the theoretical opti-
mal return R; that is,

dR
b = R̂b −R, (12.2.21)

which will be used to compare with the plug-in difference,

dR
p = R̂p −R. (12.2.22)

To compare the bootstrapped allocation with the plug-in allocation, we
define the bootstrap-corrected difference norm dw

b and the plug-in difference
norm dw

p by

dw
b = ‖ŵb − w‖ and dw

p = ‖ŵp − w‖. (12.2.23)

In the Monte Carlo study, we resample 30 times to get the bootstrapped allo-
cations and then use the average of the bootstrapped allocations to construct
the bootstrap-corrected allocation and return for each case of n = 500 and
p = 100, 200, and 300. The results are depicted in Fig. 12.11.

From Fig. 12.11, we find the desired property that dR
b (dw

b ) is much smaller
than dR

p (dw
p ) for all cases. This suggests that the estimate obtained by uti-
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Fig. 12.11 Comparison of portfolio allocations and returns. Solid line—dR
p and dw

p , re-

spectively; dashed line—dR
b and dw

b , respectively.

lizing the bootstrap-corrected method is much more accurate in estimating
the theoretical value than that obtained by using the plug-in procedure. Fur-
thermore, as p increases, the two lines of dR

p and dR
b (or dw

p and dw
b ) on each

level as shown in Fig. 12.11 separate further, implying that the magnitude of
improvement from dR

p (dw
p ) to dR

b (dw
b ) is remarkable.

To further illustrate the superiority of our estimate over the traditional
plug-in estimate, we simulated the mean square errors (MSEs) of the various
estimates for different p and plot these values in Fig. 12.12. In addition, we
define their relative efficiencies (REs) for both allocations and returns to be

REw
p,b =

MSE(dw
p )

MSE(dw
b )

and RER
p,b =

MSE(dR
p )

MSE(dR
b )

(12.2.24)

and report their values in Table 12.2.

5. Comments and discussions
Comparing the MSE of dR

b (dw
b ) with that of dR

p (dw
p ) in Table 12.2 and Fig.

12.12, the MSEs of both dR
b and dw

b have been reduced dramatically from
those of dR

p and dw
p , indicating that our proposed estimates are superior. We

find that the MSE of dR
b is only 0.04, improving 6.25 times over that of dR

p

when p = 50. When the number of assets increases, the improvement becomes
much more substantial. For example, when p = 350, the MSE of dR

b is only
1.59 but the MSE of dR

p is 220.43, improving 138.64 times over that of dR
p .
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Fig. 12.12 MSE comparison between the empirical and corrected portfolio alloca-
tions/returns. Solid Line—the MSE of dR

p and dc
p, respectively; dashed line—the MSE

of dR
b and dc

b, respectively.

Table 12.2 MSE and relative efficiency comparison.

p MSE(dR
p ) MSE(dR

b
) MSE(dw

p ) MSE(dw
b

) RER
p,b

REw
p,b

p = 50 0.25 0.04 0.13 0.12 6.25 1.08
p = 100 1.79 0.12 0.32 0.26 14.92 1.23
p = 150 5.76 0.29 0.65 0.45 19.86 1.44
p = 200 16.55 0.36 1.16 0.68 45.97 1.71
p = 250 44.38 0.58 2.17 1.06 76.52 2.05
p = 300 97.30 0.82 4.14 1.63 118.66 2.54
p = 350 220.43 1.59 8.03 2.52 138.64 3.19

This is an unbelievable improvement. We note that when both n and p are
bigger, the relative efficiency of our proposed estimate over the traditional
plug-in estimate could be much larger. On the other hand, the improvement
from dc

p to dw
b is also tremendous.

We illustrate the superiority of our approach by comparing the estimates of
the bootstrap-corrected return and the plug-in return for daily S&P500 data.
To match our simulation of n = 500 as shown in Table 12.2 and Fig. 12.12, we
choose 500 daily data backward from December 30, 2005, for all companies
listed in the S&P500 as the database for our estimation. We then choose
the number of assets (p) from 5 to 400, and, for each p, we select p stocks
from the S&P500 database randomly without replacement and compute the
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plug-in return and the corresponding bootstrap-corrected return. We plot the
plug-in returns and the corresponding bootstrap-corrected returns in Fig.
12.13 and report these returns and their ratios in Table 12.3 for different
p. We also repeat the procedure (m =) 10 and 100 times for checking. For
each m and for each p, we first compute the bootstrap-corrected returns
and the plug-in returns. Thereafter, we compute their averages for both the
bootstrap-corrected returns and the plug-in returns and plot these values in
Panels 2 and 3 of Fig. 12.13, respectively, for comparison with the results in
Panel 1 for m = 1.

Fig. 12.13 Comparison in returns. Solid line—plug-in return; dashed line—bootstrap-
corrected return.

From Table 12.2 and Fig. 12.13, we find that, as the number of assets
increases, (1) the values of the estimates from both the bootstrap-corrected
returns and the plug-in returns for the S&P500 database increase, and (2)
the values of the estimates of the plug-in returns increase much faster than
those of the bootstrap-corrected returns and thus their differences become
wider. These empirical findings are consistent with the theoretical discovery
of the “Markowitz optimization enigma,” that the estimated plug-in return
is always larger than its theoretical value and their difference becomes larger
when the number of assets is large.

Comparing Figs. 12.12 and 12.13 (or Tables 12.3 and 12.1), one will find
that the shapes of the graphs of both the bootstrap-corrected returns and
the corresponding plug-in returns are similar to those in Fig. 12.10. This
suggests that our empirical findings based on the S&P500 are consistent
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Table 12.3 Plug-in returns and bootstrap-corrected returns.

p m=1 m=10 m=100

R̂p R̂b R̂b/R̂p R̂p R̂b R̂b/R̂p R̂p R̂b R̂b/R̂p

5 0.142 0.116 0.820 0.106 0.074 0.670 0.109 0.072 0.632
10 0.152 0.092 0.607 0.155 0.103 0.650 0.152 0.097 0.616
20 0.179 0.09 0.503 0.204 0.120 0.576 0.206 0.121 0.573
30 0.218 0.097 0.447 0.259 0.154 0.589 0.254 0.148 0.576
50 0.341 0.203 0.597 0.317 0.171 0.529 0.319 0.174 0.541
100 0.416 0.177 0.426 0.482 0.256 0.530 0.459 0.230 0.498
150 0.575 0.259 0.450 0.583 0.271 0.463 0.592 0.279 0.469
200 0.712 0.317 0.445 0.698 0.298 0.423 0.717 0.315 0.438
300 1.047 0.387 0.369 1.023 0.391 0.381 1.031 0.390 0.377
400 1.563 0.410 0.262 1.663 0.503 0.302 1.599 0.470 0.293

with our theoretical and simulation results, which, in turn, confirms that our
proposed bootstrap-corrected return performs better.

One may doubt the existence of bias in our sampling, as we choose only
one sample in the analysis. To circumvent this problem, we also repeat the
procedure m (=10, 100) times. For each m and for each p, we compute the
bootstrap-corrected returns and the plug-in returns and then compute the
averages for each. Thereafter, we plot the averages of the returns in Fig.
12.13 and report these averages and their ratios in Table 12.3 for m = 10
and 100. When comparing the values of the returns for m = 10 and 100 with
m = 1, we find that the plots have basically similar values for each p but
become smoother, suggesting that the sampling bias has been eliminated by
increasing the value of m. The results for m = 10 and 100 are also consistent
with the plot in Fig. 12.10 in our simulation, suggesting that our bootstrap-
corrected return is a better estimate for the theoretical return in the sense
that its value is much closer to the theoretical return when compared with
the corresponding plug-in return.



Appendix A

Some Results in Linear Algebra

In this chapter, the reader is assumed to have a college-level knowledge of
linear algebra. Therefore, we only introduce those results that will be used
in this book.

A.1 Inverse Matrices and Resolvent

A.1.1 Inverse Matrix Formula

Let A = (aij) be an n × n matrix. Denote the cofactor of aij by Aij . The
Laplace expansion of the determinant states that, for any j,

det(A) =

n∑

i=1

aijAij . (A.1.1)

Let Aa = (Aij)
′ denote the adjacent matrix of A. Then, applying the formula

above, one immediately gets

AAa = det(A)In.

This proves the following theorems.

Theorem A.1. Let A be an n×n matrix with a nonzero determinant. Then,
it is invertible and

A−1 =
1

det(A)
Aa. (A.1.2)

Theorem A.2. We have

tr(A−1) =

n∑

k=1

Akk/det(A). (A.1.3)

469
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A.1.2 Holing a Matrix

The following is known as Hua’s holing method:

(
I O

−CA−1 I

)(
A B
C D

)
=

(
A B
O D− CA−1B

)
. (A.1.4)

In application, this formula can be considered as making a row Gaussian

elimination on the matrix

(
A B
C D

)
to eliminate the (2,1)-th block. A similar

column transformation also holds. An important application of this formula
is the following theorem.

Theorem A.3. If A is a squared nonsingular matrix, then

det

(
A B
C D

)
= det(A)det(D − CA−1B). (A.1.5)

This theorem follows by taking determinants on both sides of (A.1.4).
Note that the transformation (A.1.4) does not change the rank of the

matrix. Therefore, it is frequently used to prove rank inequalities.

A.1.3 Trace of an Inverse Matrix

For n × n A, define Ak, called a major submatrix of order n − 1, to be the
matrix resulting from deleting the k-th row and column from A. Applying
(A.1.2) and (A.1.5), we obtain the following useful theorem.

Theorem A.4. If both A and Ak, k = 1, 2, · · · , n, are nonsingular, and if
we write A−1 =

[
akℓ
]
, then

akk =
1

akk − α′
kA

−1
k βk

, (A.1.6)

and hence

tr(A−1) =

n∑

k=1

1

akk − α′
kA

−1
k βk

, (A.1.7)

where akk is the k-th diagonal entry of A, Ak is defined above, α′
k is the

vector obtained from the k-th row of A by deleting the k-th entry, and βk is
the vector from the k-th column by deleting the k-th entry.

If A is an n×n symmetric nonsingular matrix and all its major submatrices
of order (n−1) are nonsingular, then from (A.1.7) it follows immediately that
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tr(A−1) =
n∑

k=1

1

akk − α′
kA

−1
k αk

. (A.1.8)

If A is an n×n Hermitian nonsingular matrix and all its major submatrices
of order (n− 1) are nonsingular, similarly we have

tr(A−1) =
n∑

k=1

1

akk − α∗
kA

−1
k αk

,

where ∗ denotes the complex conjugate transpose of matrices or vectors.
In this book, we shall frequently consider the resolvent of a Hermitian

matrix X = (xjk) (i.e., A = (X− zI)−1), where z is a complex number with
positive imaginary part. In this case, we have

tr((X − zI)−1) =

n∑

k=1

1

xkk − z − x∗
kH

−1
k xk

, (A.1.9)

where Hk is the matrix obtained from X−zI by deleting the k-th row and the
k-th column and xk is the k-th column of X with the k-th element removed.

A.1.4 Difference of Traces of a Matrix A and Its
Major Submatrices

Suppose that the matrix Σ is positive definite and has the partition as given

by

(
Σ11 Σ12

Σ21 Σ22

)
. Then, the inverse of Σ has the form

Σ−1 =




Σ−1
11 + Σ−1

11 Σ12Σ
−1
22.1Σ21Σ

−1
11 −Σ−1

11 Σ12Σ
−1
22.1

−Σ−1
22.1Σ21Σ

−1
11 Σ−1

22.1


 ,

where Σ22.1 = Σ22 −Σ21Σ11Σ12. In fact, the formula above can be derived
from the identity (by applying (A.1.4))

(
I O

−Σ21Σ
−1
11 I

)(
Σ11 Σ12

Σ21 Σ22

)(
I −Σ−1

11 Σ12

O I

)

=

(
Σ11 O
O Σ22 − Σ21Σ

−1
11 Σ12

)

and the fact that

(
I 0

−Σ21Σ
−1
11 I

)−1

=

(
I O

Σ21Σ
−1
11 I

)
.
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Making use of this identity, we obtain the following theorem.

Theorem A.5. If the matrix A and Ak, the k-th major submatrix of A of
order (n− 1), are both nonsingular and symmetric, then

tr(A−1) − tr(A−1
k ) =

1 + α′
kA

−2
k αk

akk − α′
kA

−1
k αk

. (A.1.10)

If A is Hermitian, then α′
k is replaced by α∗

k in the equality above.

A.1.5 Inverse Matrix of Complex Matrices

Theorem A.6. If Hermitian matrices A and B are commutative and such
that A2 +B2 is nonsingular, then the complex matrix A+ iB is nonsingular
and

(A + iB)−1 = (A − iB)(A2 + B2)−1. (A.1.11)

This can be directly verified.
Let z = u+ iv, v > 0, and let A be an n× n Hermitian matrix. Then

∣∣tr(A − zIn)−1 − tr(Ak − zIn−1)
−1
∣∣ ≤ v−1. (A.1.12)

Proof. By (A.1.10), we have

tr(A − zIn)−1 − tr(Ak − zIn−1)
−1 =

1 + α∗
k(Ak − zIn−1)

−2αk

akk − z − α∗
k(A− zIn−1)−1αk

.

If we denote Ak = E∗diag[λ1 · · ·λn−1]E and α∗
kE

∗ = (y1, · · · , yn−1), where
E is an (n− 1) × (n− 1) unitary matrix, then we have

|1 + α∗
k(Ak − zIn−1)

−2αk| = |1 +
n−1∑

ℓ=1

|y2
ℓ |(λℓ − z)−2|

≤ 1 +
n−1∑

ℓ=1

|y2
ℓ |((λℓ − u)2 + v2)−1

= 1 + α∗
k((Ak − uIn−1)

2 + v2In−1)
−1αk.

On the other hand, by (A.1.11) we have

ℑ(akk − z − α∗
k(A − zIn−1)

−1αk)

= v(1 + α∗
k((Ak − uIn−1)

2 + v2In−1)
−1αk). (A.1.13)

From these estimates, (A.1.12) follows.
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A.2 Inequalities Involving Spectral Distributions

In this section, we shall establish some inequalities to bound the differences
between spectral distributions in terms of characteristics of the matrices,
say norms or ranks. These inequalities are important in the truncation and
centralization techniques.

A.2.1 Singular-Value Inequalities

If A is a p × n matrix of complex entries, then its singular values s1 ≥
· · · ≥ sq ≥ 0, q = min(p, n), are defined as the square roots of the q largest
eigenvalues of the nonnegative definite Hermitian matrix AA∗. If A (n×n) is
Hermitian, then let λ1 ≥ λ2 ≥ · · · ≥ λn denote its eigenvalues. The following
results are well known and are referred to as the singular decomposition and
spectral decomposition, respectively.

Theorem A.7. Let A be a p × n matrix. Then there exist q p-dimensional
orthonormal vectors u1, · · ·uq and q n-dimensional orthonormal vectors
v1, · · · ,vq such that

A =

q∑

j=1

sjujv
∗
j . (A.2.1)

From this expression, we immediately get the well-known Courant-Fischer
formula

sk = min
w1,···,wk−1

max
‖v‖2=1

v⊥w1,···,wk−1

‖Av‖2. (A.2.2)

If A is an n × n Hermitian matrix, then there exist n n-dimensional or-
thonormal vectors u1, · · ·un such that

A =

n∑

j=1

λjuju
∗
j . (A.2.3)

Similarly, we have the formula

λk = min
w1,···,wk−1

max
‖v‖2=1

v⊥w1,···,wk−1

v∗Av. (A.2.4)

The following theorem due to Fan [103] is useful for establishing rank
inequalities, which will be discussed in the next section.

Theorem A.8. Let A and C be two p× n complex matrices. Then, for any
nonnegative integers i and j, we have

si+j+1(A + C) ≤ si+1(A) + sj+1(C). (A.2.5)
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Proof. Let w1, · · · ,wi be the left eigenvectors of A, corresponding to the
singular values s1(A), · · · , si(A), and let wi+1, · · · ,wi+j be the left eigenvec-
tors of C, corresponding to the singular values s1(C), · · · , sj(C). Then, by
(A.2.2), we obtain

si+j+1(A + C) ≤ max
‖v‖2=1

v⊥w1,···,wi+j

‖(A + C)v‖2

≤ max
‖v‖2=1

v⊥w1,···,wi+j

[‖Av‖2 + ‖Cv‖2]

≤ max
‖v‖2=1

v⊥w1,···,wi

‖Av‖2

+ max
{‖v‖2=1

v⊥wi+1,···,wi+j}

‖Cv‖2

= si+1(A) + sj+1(C).

The proof is complete.
In the language of functional analysis, the largest singular value is re-

ferred to as the operator norm of the linear operator (matrix) in a Hilbert
space. The following theorem states that the norm of the product of linear
transformations is not greater than the product of the norms of the linear
transformations.

Theorem A.9. Let A and C be complex matrices of order p×n and n×m.
We have

s1(AC) ≤ s1(A)s1(C). (A.2.6)

This theorem follows from the simple fact that

s1(AC) = sup
‖x‖=1

‖ACx‖ = sup
‖x‖=1

∥∥∥∥A
Cx

‖Cx‖

∥∥∥∥ ‖Cx‖

≤ sup
‖y‖=1

‖Ay‖ sup
‖x‖=1

‖Cx‖ = s1(A)s1(C).

There are some extensions to Theorem A.9 that are very useful in the
theory of spectral analysis of large dimensional random matrices.

The first is the following due to Fan Ky [103].

Theorem A.10. Let A and C be complex matrices of order p×n and n×m.
For any i, j ≥ 0, we have

si+j+1(AC) ≤ si+1(A)sj+1(C), (A.2.7)

where when i > rank(A), define si(A) = 0.

Proof. First we consider the case where C is an invertible square matrix.
Then, we have
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si+j+1(AC) = inf
w1,···,wi+j

sup
x⊥{w1,···,wi+j}

‖x‖=1

‖ACx‖

= inf
w1,···,wi+j

sup
x⊥{(C∗)w1,···,(C∗)wi,wi+1,···,wi+j}

‖x‖=1

‖ACx‖

= inf
w1,···,wi+j

sup
Cx⊥{w1,···,wi}

x⊥{wi+1,···,wi+j}
‖x‖=1

‖ACx‖
‖Cx‖ ‖Cx‖

≤ inf
w1,···,wi+j

sup
y⊥{w1,···,wi}

x⊥{wi+1,···,wi+j}
‖x‖=1,‖y‖=1

‖Ay‖‖Cx‖

= si+1(A)sj+1(C).

For the general case, let the singular decomposition of C be given by

C = EDF,

where D is the r × r diagonal matrix of positive singular values of C and E
(n × r) and E (r ×m) are such that E∗E = FF∗ = Ir. Then, by what has
been proved,

si+j+1(AC) = si+j+1(AED)

≤ si+1(AE)sj+1(D)

≤ si+1(A)sj+1(C).

Here, in the last step, we have used the simple fact that

si+1(AE) = inf
w1,···,wi

sup
x⊥{w1,···,wi}

‖x‖=1

‖x∗AE‖

≤ inf
w1,···,wi

sup
x⊥{w1,···,wi}

‖x‖=1

‖x∗A‖ = si+1(A). (A.2.8)

To prove another extension, we need the following lemma.

Lemma A.11. Let A be an m × n matrix with singular values si(A), i =
1, 2, · · · , p = min(m,n), arranged in decreasing order. Then, for any integer
k (1 ≤ k ≤ p),

k∑

i=1

si(A) = sup
{E∗E=F∗F=Ik}

|tr(E∗AF)|, (A.2.9)

where the orders of E are m× k and those of F are n× k.

Proof of Lemma A.11. By Theorem A.7, if we choose E = (u1, · · · ,uk) and
F = (v1, · · · ,vk), then we have
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tr(E∗AF) =

k∑

i=1

si(A).

Therefore, to finish the proof of (A.2.9), one needs only to show that

|tr(E∗AF)| ≤
k∑

i=1

si(A)

for any E∗E = F∗F = Ik.
In fact, by the Cauchy-Schwarz inequality, we have

|tr(E∗AF)| =

∣∣∣∣∣

p∑

i=1

si(A)v∗
i FE∗ui

∣∣∣∣∣

≤
(

p∑

i=1

si(A)v∗
i FF∗vi

)1/2( p∑

i=1

si(A)u∗
i EE∗ui

)1/2

.

Because F∗F = Ik and {v1, · · · ,vn} forms an orthonormal basis in Cn, we
have

0 ≤ v∗
i FF∗vi ≤ 1 (A.2.10)

and
n∑

i=1

v∗
i FF∗vi = k. (A.2.11)

From these two facts, it follows that

p∑

i=1

si(A)v∗
i FF∗vi ≤

k∑

i=1

si(A).

Similarly, we have

p∑

i=1

si(A)u∗
i EE∗ui ≤

k∑

i=1

si(A).

The proof of the lemma is complete.
In (A.2.9), letting k = m = n and taking E = F = In, we immediately get

the following corollary.

Corollary A.12. For any n× n complex matrix A,

|tr(A)| ≤
n∑

j=1

sj(A).
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Similar to the proof of Lemma A.11, the conclusion of Corollary A.12 can
be extended to the following theorem.

Theorem A.13. Let A = (aij) be a complex matrix of order n and f be an
increasing and convex function. Then we have

n∑

j=1

f(|ajj |) ≤
n∑

j=1

f(sj(A)). (A.2.12)

Note that when A is Hermitian, sj(A) can be replaced by eigenvalues and
f need not be increasing.

Proof. By singular-value decomposition, we can write

ajj =

n∑

k=1

sk(A)ukjvkj ,

where ukj and vkj satisfy

n∑

j=1

|ukj |2 =

n∑

j=1

|vkj |2 = 1.

By applying the Jensen inequality, we obtain

n∑

j=1

f(|ajj |) ≤
n∑

j=1

f

(
1

2

n∑

k=1

sk(A)
(
|ukj |2 + |vkj |2

)
)

≤
n∑

j=1

(
1

2

n∑

k=1

f(sk(A))
(
|ukj |2 + |vkj |2

)
)

=

n∑

k=1

f(sk(A)).

This completes the proof of the theorem.
The extension to Theorem A.9 is stated as follows.

Theorem A.14. Let A and C be complex matrices of order p×n and n×m.
We have

k∑

j=1

sj(AC) ≤
k∑

j=1

sj(A)sj(C). (A.2.13)

Before proving this theorem, we first prove an important special case of
Theorem A.14 due to von Neumann [219].

Theorem A.15. Let A and C be complex matrices of order p× n. We have

p∧n∑

j=1

sj(A
∗C) ≤

p∧n∑

j=1

sj(A)sj(C), (A.2.14)
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where p ∧ n = min{p, n}. The following immediate consequence of the in-
equality above is the famous von Neumann inequality:

|tr(A∗C)| ≤
p∧n∑

j=1

sj(A)sj(C).

Proof. Without loss of generality, we can assume that p ≤ n. Also, without
change of the singular values of the matrices of A, C, and A∗C, we can
assume the two matrices are

A =



s1(A) · · · 0 · · · 0

0
. . . 0 · · · 0

0 · · · sp(A) · · · 0


U

and

C = V∗



s1(C) · · · 0 · · · 0

0
. . . 0 · · · 0

0 · · · sp(C) · · · 0


 ,

where U (n×n) and V (p×p) are unitary matrices. In the expression below,
E and F are n × n unitary. Write FE∗U∗ = Q = (qij), which is an n × n
unitary matrix, and V∗ = (vij) (p× p). Then, by Lemma A.11, we have

p∑

j=1

sj(A
∗C) = sup

E,F
|tr(E∗A∗CF)|

≤ sup
Q

∣∣∣∣∣∣

p∑

i=1

p∑

j=1

si(A)sj(C)qjivij

∣∣∣∣∣∣

≤ sup
Q

∣∣∣∣∣∣

p∑

i=1

p∑

j=1

si(A)sj(C)|qij |2
∣∣∣∣∣∣

1/2

sup
V

∣∣∣∣∣∣

p∑

i=1

p∑

j=1

si(A)sj(C)|vji|2
∣∣∣∣∣∣

1/2

.

Noting that both Q and V are unitary matrices, we have the following rela-
tions:

p∑

i=1

|qij |2 ≤ 1,

p∑

j=1

|qij |2 ≤ 1,

p∑

i=1

|vij |2 = 1,

p∑

j=1

|vij |2 = 1.

By linear programming, one can prove that
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sup
Q

∣∣∣∣∣∣

p∑

i=1

p∑

j=1

si(A)sj(C)|qij |2
∣∣∣∣∣∣
≤

p∑

i=1

si(A)si(C)

and

sup
W

∣∣∣∣∣∣

p∑

i=1

p∑

j=1

si(A)sj(C)|wji|2
∣∣∣∣∣∣
≤

p∑

i=1

si(A)si(C).

The proof of the theorem is then complete.
To prove Theorem A.14, we also need the following lemma, which is a

trivial consequence of (A.2.8).

Lemma A.16. Let A be a p×n complex matrix and U be an n×m complex
matrix with U∗U = Im. Then, for any k ≤ p,

k∑

j=1

sj(AU) ≤
k∑

j=1

sj(A).

Proof of Theorem A.14. By Lemma A.11, Theorem A.15, and Lemma A.16,

k∑

j=1

sj(AC) = sup
E∗E=F∗F=Ik

|tr(E∗A∗CF)|

≤ sup
E∗E=F∗F=Ik

k∑

j=1

sj(AE)sj(CF)

= sup
E∗E=F∗F=Ik

k−1∑

i=1

[si(AE) − si+1(AE)]
i∑

j=1

sj(CF)

+sk(AE)

k∑

j=1

sj(CF)

≤ sup
E∗E=F∗F=Ik

k−1∑

i=1

[si(AE) − si+1(AE)]

i∑

j=1

sj(C)

+sk(AE)

k∑

j=1

sj(C)

= sup
E∗E=Ik

k∑

j=1

sj(AE)sj(C)

≤
k∑

j=1

sj(A)sj(C).
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Here, the last inequality follows by arguments similar to those of the proof
of removing F. The proof of the theorem is complete.

A.3 Hadamard Product and Odot Product

Definition. Let A = (aij) and B = (bij) be two m× n matrices. Then, the
m×n matrix (aijbij) is called the Hadamard product and denoted by A◦B.

In this section, we shall quote some results useful for this book. For more
details about Hadamard products, the reader is referred to the book by Horn
and Johnson [154].

Lemma A.17. Let x = (x1, · · · , xn)′ and y = (y1, · · · , yn)′ be two indepen-
dent random vectors with mean zero and covariance matrices Σx and Σy,
respectively. Then, the covariance matrix of x ◦ y is Σx ◦Σy. In fact,

Σx◦y = E(xiyixjyj) = (E(xixj)E(yjyj)) = Σx ◦Σy. (A.3.1)

By (A.3.1), it is easy to derive the Schur product theorem.

Theorem A.18. If A and B are two n × n nonnegative definite matrices,
then so is A ◦B. If A is positive definite and B nonnegative definite with no
zero diagonal elements, then A ◦ B is positive definite. In particular, when
the two matrices are both positive definite, then so is A ◦ B.

Proof. Let A and B be the covariance matrices of the random vectors x
and y. Then A ◦ B is the covariance matrix of x ◦ y. Therefore, A ◦ B is
nonnegative definite.

Suppose that A is positive definite and B is nonnegative definite with
no zero diagonal elements. Let x be distributed as N(O,A) and let y be
distributed as N(O,B) and independent of x. Since the distribution of x
is absolutely continuous and y has no zero entries, we conclude that the
distribution of x◦y is absolutely continuous. Therefore, its covariance matrix
A ◦ B is positive definite.

Next, we introduce an inequality concerning singular values of Hadamard
products due to Fan [104].

Theorem A.19. Let A and B be two m × n matrices with singular values
si(A) and si(B), i = 1, 2, · · · , p = min(m,n), arranged in decreasing order.
Denote the singular values of A ◦ B by si(A ◦ B), i = 1, 2, · · · , p. Then, for
any integer k (1 ≤ k ≤ p),

k∑

i=1

si(A ◦B) ≤
k∑

i=1

si(A)si(B). (A.3.2)
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Proof of Theorem A.19. Suppose that the singular decompositions of A and
B are given by

A =

p∑

i=1

si(A)uiv
∗
i

and

B =

p∑

i=1

si(B)xiy
∗
i .

Then, by Lemma A.11, we have

k∑

i=1

si(A ◦ B)

= sup
{E∗E=F∗F=Ik}

|tr(E∗(A ◦ B)F)|

≤
p∑

i=1

p∑

j=1

si(A)sj(B)
∣∣tr
(
E∗((uiv

∗
i ) ◦ (xjy

∗
j ))F

)∣∣

=

p∑

i=1

p∑

j=1

si(A)sj(B) |(vi ◦ yj)
∗FE∗(ui ◦ xj)|

≤




p∑

i=1

p∑

j=1

si(A)sj(B)(vi ◦ yj)
∗FF∗(vi ◦ yj)

p∑

i=1

p∑

j=1

si(A)sj(B)(ui ◦ xj)
∗EE∗(ui ◦ xj)




1/2

.

Thus, to finish the proof of Theorem A.19, it is sufficient to show that

p∑

i=1

p∑

j=1

si(A)sj(B)(vi ◦ yj)
∗FF∗(vi ◦ yj) ≤

k∑

i=1

si(A)si(B).

This inequality then follows easily from the following observations:

0 ≤ (vi ◦ yj)
∗FF∗(vi ◦ yj) ≤ 1,

m∑

i=1

(vi ◦ yj)
∗FF∗(vi ◦ yj) ≤ 1,

n∑

j=1

(vi ◦ yj)
∗FF∗(vi ◦ yj) ≤ 1,

and
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m∑

i=1

n∑

j=1

(vi ◦ yj)
∗FF∗(vi ◦ yj) = k.

Corollary A.20. Let A1, · · · ,Aℓ be ℓ m× n matrices whose singular values
are denoted by si(A1), · · · , si(Aℓ), i = 1, 2, · · · , p = min(m,n), arranged in
decreasing order. Denote the singular values of A1◦· · ·◦Aℓ by si(A1◦· · ·◦Aℓ),
i = 1, 2, · · · , p. Then, for any integer k (1 ≤ k ≤ p),

k∑

i=1

si(A1 ◦ · · · ◦ Aℓ) ≤
k∑

i=1

si(A1) · · · si(Aℓ). (A.3.3)

Proof. When ℓ = 2, the conclusion is already proved in Theorem A.19. Sup-
pose that (A.3.3) is true for ℓ. Then, by Theorem A.19 and the induction
hypothesis, we have

k∑

i=1

si(A1 ◦ · · · ◦ Aℓ+1)

≤
k∑

i=1

si(A1 ◦ · · · ◦ Aℓ)si(Aℓ+1)

=

k−1∑

j=1

j∑

i=1

si(A1 ◦ · · · ◦ Aℓ)[sj(Aℓ+1) − sj+1(Aℓ+1)]

+

k∑

i=1

si(A1 ◦ · · · ◦ Aℓ)sk(Aℓ+1)

≤
k−1∑

j=1

j∑

i=1

si(A1) · · · si(Aℓ)[sj(Aℓ+1) − sj+1(Aℓ+1)]

+

k∑

i=1

si(A1) · · · si(Aℓ)sk(Aℓ+1)

=

k∑

i=1

si(A1) · · · si(Aℓ+1).

This completes the proof of Corollary A.20.
Taking k = 1 in the corollary above, we immediately obtain the following

norm inequality for Hadamard products.

Corollary A.21. Let A1, · · · ,Aℓ be ℓ m× n matrices. We have

‖A1 ◦ · · · ◦Aℓ‖ ≤ ‖A1‖ · · · ‖Aℓ‖. (A.3.4)

Note that the singular values of a Hermitian matrix are the absolute values
of its eigenvalues. Applying Corollary A.20, we obtain the following corollary.
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Corollary A.22. Suppose that Aj, j = 1, 2, · · · , ℓ, are ℓ p × p Hermitian
matrices whose eigenvalues are bounded by Mj; i.e., |λi(Aj)| ≤ Mj, i =
1, 2, · · · , p, j = 1, 2, · · · , ℓ. Then,

|tr (A1 ◦ · · · ◦ Aℓ)| ≤ pM1 · · ·Mℓ. (A.3.5)

Definition. Let Tj = (t
(j)
iℓ ), j = 1, 2, · · · , k, be k complex matrices with di-

mensions nj×nj+1, respectively. Define the Odot product of the k matrices
by

T1 ⊙ · · · ⊙ Tk =
(∑

t
(1)
ai2
t
(2)
i2i3

· · · t(k−1)
ik−1ik

t
(k)
ikb

)
, (A.3.6)

where the summation runs for ij = 1, 2, · · · , nj, j = 2, · · · , k, subject to
restrictions i3 6= a, i4 6= i2, · · ·, ik 6= ik−2, and ik−1 6= b. If k = 2, we require
a 6= b, namely, the diagonal elements of T1 ⊙ T2 are zero.

The dimensions of the odot product are n1 ×nk+1. The following theorem
will be needed in establishing the limit of smallest eigenvalues of large sample
covariance matrices.

Theorem A.23. Let Tj = (t
(j)
iℓ ), j = 1, 2, · · · , k, be k complex matrices with

dimensions nj × nj+1, respectively. Then, we have

‖T1 ⊙ · · · ⊙Tk‖ ≤ 2k−1‖T1‖ · · · ‖Tk‖.

Proof. When k = 1, Theorem A.23 is trivially true. When k = 2, Theorem
A.23 follows from the fact that T1⊙T2 = T1T2−diag(T1T2), where diag(A)
is the diagonal matrix of the diagonal elements of the matrix A. Let k > 2.
Note that

T1 ⊙ · · · ⊙Tk

= T1 (T2 ⊙ · · · ⊙Tk) − diag(T1T2) (T3 ⊙ · · · ⊙Tk)

+(T1 ⋄T′
2 ⋄ T3) ⊙ T4 ⊙ · · · ⊙Tk,

where T1 ⋄T′
2 ⋄T3 =

(
t
(1)
ab t

(2)
ba t

(3)
ab

)
with dimensions n1 × n4. Here, the (a, b)

entry of the matrix T1 ⋄T′
2 ⋄T3 is zero if b > n2 or a > n3. By Lemma A.16

and Corollary A.21, we have ‖T1 ⋄ T′
2 ⋄ T3‖ ≤ ‖T1‖‖T2‖‖T3‖.

Then, the conclusion of the theorem follows by induction.

A.4 Extensions of Singular-Value Inequalities

In this section, we shall extend the concepts of vectors and matrices to multi-
ple vectors and matrices, especially graph-associated multiple matrices, which
will be used in deriving the LSD of products of random matrices.
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A.4.1 Definitions and Properties

Definition A.24. A collection of ordered numbers

α(i) = {ai1,···,it ; i1 = 1, · · · , n1, · · · , it = 1, · · · , nt}

is called a multiple vector (MV) with dimensions n = {n1, · · · , nt}, where
i = {i1, · · · , it} and t ≥ 1 is an integer.

Its norm is defined by

‖α‖2 =
∑

i

|ai|2.

Definition A.25. A multiple matrix (MM) is defined as a collection of or-
dered numbers

A = {ai;j, i1 = 1, 2, · · · ,m1, · · · , is = 1, 2, · · · ,ms,

and j1 = 1, 2, · · · , n1, · · · , jt = 1, 2, · · · , nt},
where i = {i1, · · · , is} and j = {j1, · · · , jt}. The integer vectors m =
{m1, · · · ,ms} and n = {n1, · · · , nt} are called its dimensions.

Similarly, its norm is defined as

‖A‖ = sup

∣∣∣∣∣∣
∑

j

ai;jgihj

∣∣∣∣∣∣
,

where the supremum is taken subject to
∑

i |gi|2 = 1 and
∑

j |hj|2 = 1.

The domains of g and h are both compact sets. Thus, the supremum in
the definition of ‖A‖ is attainable. By choosing

hj =

∑
i ai;jgi√∑

v |∑u au;vgu|2

or

gi =

∑
j ai;jhj√∑

u |∑v au;vhv|2
,

we know that the definition of ‖A‖ is equivalent to

‖A‖2 = sup
‖g‖=1

∑

j

∣∣∣∣∣
∑

i

ai;jgi

∣∣∣∣∣

2

(A.4.1)

= sup
‖h‖=1

∑

i

∣∣∣∣∣∣
∑

j

ai;jhj

∣∣∣∣∣∣

2

. (A.4.2)
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We define a product of two MMs as follows.

Definition A.26. If an MM B = {b
j′;ℓ}, where j′ = {j′1, · · · , jt′1) ⊂ j, ℓ =

(ℓ1, · · · , ℓu), and ℓ1 = 1, 2, · · · , p1, · · · , ℓu = 1, 2, · · · , pu, then the product of
A and B is defined by

A · B
i,
˜ℓ

=
∑

j′

ai;jbj′;ℓ,

where ℓ = {ℓ1, · · · , ℓu} and ℓ̃ = ℓ ∪ j\j′. The product is then an MM of
dimensions m×p, where p contains all p’s as well as those n’s corresponding
to the j-indices not contained in j′.

Theorem A.27. Using the notation defined above, we have

‖A ·B‖ ≤ ‖A‖ · ‖B‖. (A.4.3)

Proof. Using definition (A.4.1), we have

‖A ·B‖2 = sup
‖h‖=1



∑

i

∣∣∣∣∣∣
∑

j;ℓ

ai;jbj′;ℓh˜ℓ

∣∣∣∣∣∣

2



≤ ‖A‖2 sup
‖h‖=1



∑

j

∣∣∣∣∣∣
∑

ℓ

b
j′;ℓh˜ℓ

∣∣∣∣∣∣

2



≤ ‖A‖2 sup
‖h‖=1



∑

j′′

∑
j′

∣∣∣
∑

ℓ bj′;ℓh˜ℓ

∣∣∣
2

∑
ℓ |h˜ℓ

|2
∑

ℓ

|h˜ℓ
|2



≤ ‖A‖2 · ‖B‖2 sup
‖h‖=1

∑

j′′

∑

ℓ

|h˜ℓ
|2

= ‖A‖2 · ‖B‖2,

where j′′ = j\j′.
Conclusion (A.4.3) then follows.

A.4.2 Graph-Associated Multiple Matrices

Now, we describe a kind of graph-associated MM as follows.
Suppose that G = (V,E, F ) is a directional graph where V = V1 +V2 +V3,

V1 = {1, · · · , s}, V2 = {s+ 1, · · · , t1}, V3 = {t1 + 1, · · · , t}, E = {e1, · · · , ek},
and F = (fi, fe) is a function from E into V × V3; i.e., for each edge, its
initial vertex can be in V1, V2, or V3 and its end vertex can only be in V3. We



486 A Some Results in Linear Algebra

assume that the graphG is V1-based; i.e., each vertex in V1 is an initial vertex
of at least one edge and each vertex in V3 is an end vertex of at least one
edge that starts from V1. Between V2 and V3 there may be some edges or no
edges at all. We call the edges initiated from V1, V2, or V3 the first, second,
or third type edges, respectively. Furthermore, assume that there are k

matrices T(j) = (t
(j)
uv ) of dimensions mj × nj, corresponding to the k edges,

subject to the consistent dimension restriction (that is, coincident vertices
corresponding to equal dimensions); e.g., if ei and ej have a coincident initial
vertex, then mi = mj , if they have a coincident end vertex, then ni = nj , and
if the initial vertex of ei coincides with the end vertex of ej , then mi = nj ,
etc. In other words, each vertex corresponds to a dimension. In what follows,
the dimension corresponding to the vertex j is denoted by pj .

Without loss of generality, assume that the first k1 edges of the graph G
are of the first type and the next k2 edges are of the second type. Then the
last k − k1 − k2 are of the third type. Define an MM T (G) by

T(G)u;v =

k1∏

j=1

t(j)ufi(ej ),vfe(ej )

k∏

j=k1+1

t(j)vfi(ej ),vfe(ej )
,

where u = {u1, u2, · · · , us}, v1 = {vs+1, vs+2, · · · , vt1}, v2 = {vt1+1, · · · , vt},
and v = {v1,v2}.
Theorem A.28. Using the notation defined above, let A = {ai;(u,v1)} be an
MM. Define a product MM of the MM A and the quasi-MM T(G) as given
by

A · T(G) =

{∑

u

ai;(u,v1)T (G)u;v

}
.

Then, we have

‖A · T(G)‖ ≤ ‖A‖
k∏

j=1

‖T(j)‖. (A.4.4)

Proof. Using definition (A.4.1) and noting that |t(j)u,v| ≤ ‖T(j)‖, we have

‖A ·T(G)‖2 = sup
‖g‖=1

∑

v

∣∣∣∣∣
∑

i

gi
∑

u

ai;(u,v1)T (G)u;v

∣∣∣∣∣

2

≤
k∏

j=k1+1

‖T(j)‖2 sup
‖g‖=1

∑

v

∣∣∣∣∣∣
∑

i,u

giai;(u,v1)

k1∏

j=1

t(j)ufi(ej ),vfe(ej)

∣∣∣∣∣∣

2

.

By the singular decomposition of T(j) (see Theorem A.7), we have

t(j)uv =

rj∑

ℓ=1

λ
(j)
ℓ η

(j)
uℓ ξ

(j)
vℓ ,
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where rj = min(mj , nj), j = 1, · · · , k1. By the definition of the graph G, all
noncoincident u vertices in {ufi(ej), j = 1, · · · , k1} are the indices in u and
all noncoincident v vertices in {vfe(ej), j = 1, · · · , k1} are the indices in v2.
Let ṽ2 = (v1, · · · , vk1), where vj runs over 1, · · · , nj independently; that is,

not restricted by the graph G. Similarly, define ℓ̃ = (ℓ̃1, · · · , ℓ̃k1), where ℓ̃j
runs 1, · · · ,mj independently. Then, substituting these expressions into the
inequality above, we obtain

‖A ·T(G)‖2

≤
k∏

j=k1+1

‖T(j)‖2 sup
‖g‖=1

∑

v1,v2

∣∣∣∣∣∣
∑

i,u

giai;(u,v1)

k1∏

j=1

t(j)ufi(ej ),vfe(ej )

∣∣∣∣∣∣

2

≤
k∏

j=k1+1

‖T(j)‖2 sup
‖g‖=1

∑

v1,v2

∣∣∣∣∣∣
∑

i,u

giai;(u,ṽ1)

k1∏

j=1

t(j)ufi(ej ),vj

∣∣∣∣∣∣

2

=

k∏

j=k1+1

‖T(j)‖2 sup
‖g‖=1

∑

v1,ṽ2

∣∣∣∣∣∣
∑

ℓ

λ
(1)
ℓ1

· · ·λ(k1)
ℓk1

∑

i,u

giai;(u,v1)ηu;ℓξṽ2;ℓ

∣∣∣∣∣∣

2

=

k∏

j=k1+1

‖T(j)‖2 sup
‖g‖=1

∑

v1

∑

ℓ

(λ
(1)
ℓ1

· · ·λ(k1)
ℓk1

)2

∣∣∣∣∣∣
∑

i,u

giai;(u,v1)ηu;ℓ

∣∣∣∣∣∣

2

≤
k∏

j=1

‖T(j)‖2 sup
‖g‖=1

∑

v1

∑

ℓ

∣∣∣∣∣∣
∑

i,u

giai;(u,v1)ηu;ℓ

∣∣∣∣∣∣

2

≤
k∏

j=1

‖T(j)‖2 sup
‖g‖=1

∑

v1

∑

ℓ̃

∣∣∣∣∣∣
∑

i,u

giai;(u,v1)ηu;ℓ̃

∣∣∣∣∣∣

2

=
k∏

j=1

‖T(j)‖2 sup
‖g‖=1

∑

u,v1

∣∣∣∣∣
∑

i

giai;(u,v1)

∣∣∣∣∣

2

=

k∏

j=1

‖T(j)‖2‖A‖, (A.4.5)

where

ℓ = (ℓ1, · · · , ℓk1)
′,

ηu;ℓ =

k1∏

j=1

η
(j)
ufi(ej),ℓj

,
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ξṽ2;ℓ =

k1∏

j=1

ξ
(j)
vj ,ℓj

.

Here, the second identity in (A.4.5) follows from the fact that

∑

ṽ2

ξṽ2,ℓξ̄ṽ2,ℓ′ = δℓ,ℓ′

and the third identity from

∑

ℓ̃

ηu,ℓ̃η̄u′,ℓ̃ = δu,u′ ,

and δa,b is the Kronecker delta; i.e., δa,a = 1 and δa,b = 0 for a 6= b.
This completes the proof of Theorem A.28.

Remark A.29. When V1 = V3 = {1} and V2 = ∅, Theorem A.28 reduces to
Corollary A.22.

A.4.3 Fundamental Theorem on Graph-Associated
MMs

Definition A.30. A graph G = (V,E, F ) is called two-edge connected if,
removing any one edge from G, the resulting subgraph is still connected.

The following theorem is fundamental in finding the existence of the LSD
of a product of two random matrices. It was initially proved in Yin and
Krishnaiah [304] for a common nonnegative definite matrix T. Now, it is
extended to any complex matrices with consistent dimensions.

Theorem A.31. (Fundamental theorem for graph-associated matrix). Sup-
pose that G = (V,E, F ) is a two-edge connected graph with t vertices and
k edges. Each vertex i corresponds to an integer mi ≥ 2 and each edge ej

corresponds to a matrix T(j), j = 1, · · · , k, with consistent dimensions; that
is, if F (ej) = (g, h), then the matrix T(j) has dimensions mg ×mh. Define
v = (v1, · · · , vt) and

T =
∑

v

k∏

j=1

t(j)vfi(ej),vfe(ej)
,

where the summation
∑

v is taken for vi = 1, 2, · · · ,mi, i = 1, 2, · · · , t. Then,
for any i ≤ t,

|T | ≤ mi

k∏

j=1

‖T(j)‖. (A.4.6)
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Because the graph G = (V,E, F ) is two-edge connected, the degree of
vertex 1 is at least 2. Divide the edges connecting vertex 1 into two (non-
empty) sets. Define a new graph G∗ by splitting vertex 1 into two vertices
1′ and 1′′ and connecting the edges of the two sets to the vertices 1′ and
1′′, respectively. The correspondence between the edges and the matrices
remains unchanged (both vertices 1′ and 1′′ correspond to the integer m1).
For brevity, we denote the vertices 1′ and 1′′ by 1 and 2 and other vertices
by 3, · · · , t+ 1. Define an m1 ×m1 matrix T(G∗) with entries

Tv1,v2(G
∗) =

∑

v∗

k∏

j=1

t(j)vfi(ej),vfe(ej )
,

where v∗ = (v3, · · · , vt+1).
One finds that T is the trace of the matrix T and hence Theorem A.31 is

an easy consequence of the following theorem.

Theorem A.32.

‖T‖ ≤
k∏

j=1

‖T(j)‖. (A.4.7)

To prove Theorem A.32, we need to define a new graph Gp of t̃ vertices

and k̃ edges associated with a new class of matrices T̃(j) with consistent
dimensions such that the similarly defined matrix T(Gp) = T(G∗), where

T̃(Gp) =


∑

ṽ

k∏

j=1

t̃(j)vfi(ẽj),vfe(ẽj )




and ṽ = (v3, · · · , vt̃).

The graph Gp is directional and satisfies the following properties:

1. Every edge of Gp is on a directional path from vertex 1 to 2 (a path is
a proper chain without cycles).

2. The graph Gp is direction-consistent; that is, it has no directional cycles.

3. Vertex 1 meets with only arrow tails and vertex 2 meets with only arrow
heads, and all other vertices connect with both arrow heads and tails.

Remark A.33. Due to the second property, we have in fact established a par-
tial order on the vertex set of Gp; in other words, we say that a vertex u is
prior to vertex w if there is a directional path from u to w.

Construction of graph Gp

Arbitrarily choose a circuit passing through vertex 1 of G, and split the edges
connecting to vertex 1 into two sets so that the two edges connecting to vertex
1 do not belong to one set simultaneously (a circuit is a cycle without proper
subcycles). Then, this circuit becomes a chain of G∗ starting from vertex
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1 and ending at vertex 2. (We temporarily denote the vertices of G∗ by
1, · · · , t + 1, and the numbering of vertices will automatically shift forward
when new vertices are added.) Then, we may mark each edge of the chain as
an arrow so that the chain forms a directional path from vertex 1 to vertex 2.
Then, the directional chain, regarded as the directionalized subgraph of G∗,
satisfies the three properties above.

Suppose we have directionalized or extended (if necessary) the graph G∗

to G∗d with a directionalized subgraph Gd (of G∗d) starting from vertex 1 to
vertex 2 and satisfying the three properties above.

If this subgraph Gd does not contain all edges of G∗d, we can find a simple
path P with two distinct ends at two different vertices a ≺ b (say, of Gd or
a circuit C with only one vertex A on Gd) since G is two-edge-connected.
Consider the following cases.

Case 1. Suppose that path P ends at two distinct vertices a ≺ c of a
directional path of the directionalized subgraph Gd. As an example, see Fig.
A.1. Then, we mark arrows on the edges of P as a directional path from
a to c. As shown in Fig. A.1(left), suppose that the undirectionalized path
P = adec intersects the directionalized path abc at vertices a and c. Since
the arrows on the path abc are from a to c, we mark arrows on path adec
from a to c.

f

a

b

c

d

e

a

c

b

d

e

Fig. A.1 Directionalize a path attaching to a directional chain.

Now, let us show that the new subgraph Gd ∪ P satisfies the three condi-
tions given above, where P is the directionalized path P .

Since Gd satisfies condition 1, there is a directional path from 1 to a and a
directional path from c to 2, so we conclude that the directional graph Gd∪P
satisfies condition 1.

If Gd∪P contains a directional cycle (say F), then F must contain an edge
of P and an edge of Gd because Gd and P have no directional cycles. Since P
is a simple path, F must contain the whole path P. Thus, the remaining part
of F contained in Gd forms a directional chain from c to a. As shown in the
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right graph of Fig. A.1(right), the directional chains (cfa) and (abc) form a
directional cycle of Gd. Because Gd also contains a directional path from a to
c, we reach a contradiction to the assumption that Gd is direction-consistent.
Thus, Gd ∪ P satisfies condition 2.

Condition 3 is trivially seen.
Case 2. Suppose that path P meets Gd at two distinct vertices a and c

between which there are no directional paths in the directionalized subgraph
Gd. As an example, see Fig. A.2. Then, we mark arrows on the edges of P as a
directional path from a to c, say. As shown in the left graph of Fig. A.2(left),
suppose that the undirectionalized path P = abc intersects Gd at vertices
a and c. We make arrows on path abc from a to c (or the other direction
without any harm).

f

a

c
c

b b

a

ed

Fig. A.2 Directionalize a path attaching to incomparable vertices.

Because Gd satisfies condition 1 and contains an edge leading to vertex a if
a 6= 1, there is a directional path from 1 to a. Similarly, there is a directional
path from c to the vertex 2 if c 6= 2. Thus, the directionalized graph Gd ∪ P
satisfies condition 1.

As shown in the right graph of Fig. A.2, if there is a directional cycle in
the extended directional subgraph, then there would be a directional path
cdefa from c to a in Gd, which violates our assumption that a and c are
not comparable. Thus, Gd ∪ P satisfies condition 2. Condition 3 is trivially
satisfied.

Case 3. Suppose that there is a simple cycle C (or a loop), say. As an
example (shown in Fig. A.3), the cycle abcd intersects Gd at vertex a. Cut
the graph G∗d off at a, separate vertex a as a′ and a′′ and add an arrowed
edge from a′′ to a′, connect edges with a as initial vertices to a′ and edges
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with a as end vertices to a′′, stretch the cycle C (abcd in Fig. A.3(left)) as
a directional path from a′′ to a′, and finally connect other undirectionalized
edges with a as end vertices to a′′ or a′ arbitrarily.

"a

a

a

b

c

d

b

c

d

’

Fig. A.3 Directionalize a loop.

We can similarly show that the resulting directionalized subgraph satisfies
the three conditions. If the newly added edge is made to correspond to an
identity matrix of dimension ma, the matrix T defined by the extended graph
is the same as defined by the original graph.

By induction, we have eventually directionalized the graph G∗, with possi-
ble extensions, to a directional graph Gp, which satisfies the three properties.

Proof of Theorem A.32. By the argument above, we may assume that G∗ is
a directional graph and satisfies the properties above.

Now, we define a function g mapping the vertex set of G∗ to nonnegative
integers. We first define g(1) = 0. For a given vertex u > 1, there must be
one but may be several directional paths from 1 to u. We define g(u) to be
the maximum number of edges among the directional paths from 1 to u.

For each nonnegative integer ℓ, define a vertex subset V (ℓ) = {u ∈
V ; g(u) = ℓ} with V (0) = {1}. If k0 is the maximum number such that
V (k0) 6= ∅, then V (k0) = {2}.

Note that the vertex sets V (ℓ) are disjoint and there are no edges connect-
ing vertices of V (ℓ). Fixing an integer ℓ < k0, for each vertex b ∈ V (ℓ + 1),
there is at least one vertex a ∈ V (ℓ) such that (a, b) ∈ E.

For each 0 < ℓ ≤ k0, define an MM T(ℓ) by
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T(ℓ) =




∏

fi(ej)∈V (0)+···+V (ℓ−1)

fe(ej )∈V (ℓ)

t
(j)
ifi(ej ),ife(ej )




and an MM A(ℓ) by

A(ℓ) =



∑

i

∏

fi(ej )∈V (0)+···+V (ℓ−1)

fe(ej)∈V (1)+···+V (ℓ)

t
(j)
ifi(ej),ife(ej)


 ,

where i = {ia : g(a) ≤ ℓ & ∀g(b) > ℓ, (a, b) 6∈ E}.
Intuitively, t(ℓ) is the MM defined by the subgraph of all edges starting

from V (0)+· · ·+V (ℓ−1) and ending in V (ℓ) and their corresponding matrices,
while A(ℓ) is the MM defined by the subgraph of all edges starting from
V (0) + · · · + V (ℓ− 1) and endeding in V (0) + · · · + V (ℓ).

The left index of A(ℓ) is i1 and its right indices are

vℓ = {ia : g(a) ≤ ℓ,& ∃g(b) > ℓ, (a, b) ∈ E}.

The left indices of T(ℓ) are

uℓ = { ia : g(a) ≤ ℓ− 1,& ∃g(b) = ℓ,

(a, b) ∈ E& ∀g(c) > ℓ, (a, c) 6∈ E}

and its right indices are

vℓ = {ib : b ∈ V (ℓ)} ∪ { ia : g(a) ≤ ℓ− 1,& ∃g(b) = ℓ,

g(c) > ℓ, (a, b), (a, c) ∈ E}.

It is obvious that uℓ ⊂ vℓ−1 and

A(ℓ) = A(ℓ−1) ·T(ℓ) =
∑

u

A(ℓ−1)(i1,v
(ℓ−1))T(ℓ)(u,v

ℓ
1).

Applying Theorem A.28, we obtain

‖A(ℓ)‖ ≤ ‖A(ℓ−1)‖
∏

fi(ej)∈V (0)+···+V (ℓ−1)

fe(ej )∈V (ℓ)

‖T(j)‖.

For the case ℓ = 1, we have A(1) =
(
A(1)(i1;v

1)
)

= T(1). It is easy to see
that
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‖A(1)‖ =

∥∥∥∥∥∥∥∥




∏

fi(ej)=1

fe(ej )∈V (1)

t
(j)
i1,ife(ej )




∥∥∥∥∥∥∥∥
≤

∏

fi(ej )=1

fe(ej)∈V (1)

‖T(j)‖.

Applying induction, it is proven that

‖A(ℓ)‖
∏

fe(ej)∈V (1)+···+V (ℓ)

‖Tj‖.

Especially, for ℓ = k0,

‖T‖ = ‖A(k0)‖ ≤
k∏

j=1

‖Tj‖. (A.4.8)

This completes the proof of the theorem.
Now, let us consider a connected graph G of k edges.

Definition A.34. An edge e is called a cutting edge if removing this edge
will result in a disconnected subgraph.

Whether an edge is a cutting edge or not remains the same when a cut-
ting edge is removed. Now, removing all cutting edges, the resulting subgraph
consists of disjoint two-edge connected subgraphs, isolated loops, and/or iso-
lated vertices, which we call the MC blocks. On the other hand, contracting
these two-edge connected subgraphs results in a tree of cutting edges and
their vertices. Suppose that corresponding to each edge eℓ there is a matrix
Tℓ and dimensions of the matrices are consistent.

Theorem A.35. Suppose that the edge set E = E1 +E2, where E1 = E−E2

and E2 is the set of all cutting edges. If G is connected, then we have

∣∣∣∣∣∣
∑

iw∈V

k∏

j=1

t
ifi(ej ),i

(j)

fe(ej )

∣∣∣∣∣∣
≤ p0

∏

ej∈E1

‖T(j)‖
∏

ej∈E2

‖T(j)‖0, (A.4.9)

where p0 = min{nℓ; ℓ ∈ V }, ‖T(j)‖0 = n(ej)maxgh |t(j)g,h|, and n(ej) =

max(mj , nj) is the maximum of the dimensions of the T(j).

Furthermore, let V ∗
2 be a subset of the vertex set V . Denote by

∑

{−V ∗
2 }

the summation running for iw = 1, · · · ,mw subject to the restriction that
iw1 6= iw2 if both w1, w2 ∈ V ∗

2 . Then, we have

∣∣∣∣∣∣
∑

{−V ∗
2 }

k∏

j=1

tifi(ej ),ife(ej),j

∣∣∣∣∣∣
≤ Ckp0

∏

ej∈E1

‖Tj‖
∏

ej∈E2

‖Tj‖0, (A.4.10)

where Ck is a constant depending on k only.
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Remark A.36. The second part of the theorem will be used for the inclusion-
exclusion principle to estimate the values of MMs associated with graphs.
The useful case is for V ∗

2 = V ; that is, the indices for noncoincident vertices
are not allowed to take equal values.

Proof. If the graph contains only one MC block, Theorem A.35 reduces to
Theorem A.31. We shall prove the theorem by induction with respect to the
number of MC blocks. Suppose that Theorem A.35 is true when the number
of MC blocks of the graph G is less than u.

Now, we consider the case where G contains u (> 1) MC blocks. Select a
vertex v0 such that it corresponds to the smallest dimension of the matrices.
Since the cutting edges form a tree if the MC blocks are contracted, we
can select an MC block B that connects with only one cutting edge, say
ec = (v1, v2), and does not contain the vertex v0. Suppose that v1 ∈ B and
v2 ∈ G − B − ec. Remove the MC block B and the cutting edge ec from G
and add a loop attached at the vertex v2. Write the resulting graph as G′.
Let the added loop correspond to the diagonal matrix

T0 = diag

[ ∑

iw , w∈B

t
(c)
ifi(ec),1

∏

ej∈B

t
(j)
ifi(ej),ife(ej)

, · · · ,

· · · ,
∑

iw , w∈B

t
(c)
ifi(ec),nv2

∏

ej∈B

t
(j)
ifi(ej ),ife(ej )

]
.

By Theorem A.31, we have

‖T0‖ ≤ n(ec)max
ij

|t(c)i,j |
∏

ej∈B

‖T(j)‖ = ‖Tc‖0

∏

ej∈B

‖T(j)‖.

Note that graph G′ has u− 1 MC blocks. Then, by induction, we have

∣∣∣∣∣∣
∑

iw∈V

k∏

j=1

tifi(ej ),ife(ej ),j

∣∣∣∣∣∣
≤ p0

∏

ej∈E1−B

‖Tj‖
∏

ej∈E2−ec

‖Tj‖0‖T0‖

= p0

∏

ej∈E1

‖Tj‖
∏

ej∈E2

‖Tj‖0.

The proof of (A.4.9) is complete.
Note that (A.4.9) is a special case of (A.4.10) when V ∗

2 is empty. We shall
prove (A.4.10) by induction with respect to the cardinality of the set V ∗

2 . We
have already proved that (A.4.10) is true when ‖V ∗

2 ‖ = 0. Now, assume that
(A.4.10) is true for ‖V ∗

2 ‖ ≤ a− 1 ≥ 0. We shall show that (A.4.10) is true for
‖V ∗

2 ‖ = a.

Suppose that w1, w2 ∈ V ∗
2 and w1 6= w2. Write Ṽ ∗

2 = V ∗
2 − {w2}. Let Ĝ

denote the graph obtained from G by gluing the vertices w1 and w2 as one
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vertex, still denoted by w1. Then, we have
∥∥∥Ṽ ∗

2

∥∥∥ = a − 1. Without loss of

generality, let vertex w1 correspond to a smaller dimension, say p1. If the
edge êj of Ĝ is obtained from the edge ej of G with w2 as a vertex, then,

corresponding to êj , we define a matrix T̂(j) by the first p1 rows (or columns)
of the matrix T(j) when w2 is the initial (or end, respectively) vertex of ej .

For all other edges, we define the associated matrices by T̂(j) = T(j). Note
that ∥∥∥T̂(j)

∥∥∥ ≤
∥∥∥T(j)

∥∥∥ ≤
∥∥∥T(j)

∥∥∥
0

and ∥∥∥T̂(j)
∥∥∥

0
≤
∥∥∥T(j)

∥∥∥
0
.

For definiteness, write
∑

{G,−V ∗
2 }

=
∑

{−V ∗
2 }

. Then, we have

∑

G, {−V ∗
2 }

=
∑

G, {−Ṽ ∗
2 }

−
∑

Ĝ, {−V̂ ∗
2 }

.

By the induction hypothesis, we have

∣∣∣∣∣∣∣

∑

G, {−Ṽ ∗
2 }

k∏

j=1

tifi(ej ),ife(ej),j

∣∣∣∣∣∣∣
≤ Ck,1p0

∏

ej∈E1

‖Tj‖
∏

ej∈E2

‖Tj‖0. (A.4.11)

When constructing the graph Ĝ, some cutting edge of G may be changed to
a noncutting edge of Ĝ, while the noncutting edge of G remains a noncutting
edge of Ĝ. By induction, we also have

∣∣∣∣∣∣∣

∑

Ĝ, {−V̂ ∗
2 }

k∏

j=1

tifi(ej ),ife(ej),j

∣∣∣∣∣∣∣
≤ Ck,2p0

∏

ej∈E1

‖Tj‖
∏

ej∈E2

‖Tj‖0. (A.4.12)

Combining (A.4.11) and (A.4.12) and by induction, we complete the proof of
(A.4.10) and hence the remaining part of the theorem.

A.5 Perturbation Inequalities

Theorem A.37. (i) Let A and B be two n× n normal matrices with eigen-
values λk and δk, k = 1, 2, · · · , n, respectively. Then

min
π

n∑

k=1

|λk − δπ(k)|2 ≤ tr[(A−B)(A−B)∗] ≤ max
π

n∑

k=1

|λk − δπ(k)|2, (A.5.1)
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where π = (π(1), · · · , π(n)) is a permutation of 1, 2, · · · , n.
(ii) In (i), if A and B are two n×p matrices and λk and δk, k = 1, 2, · · · , n,

denote their singular values, then the conclusion in (A.5.1) remains true. If
the singular values are arranged in descending order, then we have

ν∑

k=1

|λk − δk|2 ≤ tr[(A − B)(A − B)∗],

where ν = min{p, n}.
Proof. Because a normal matrix is similar to a diagonal matrix through a
unitary matrix, without loss of generality, we can assume that A = diag(λk)
and assume B = U∆U∗, where ∆ = diag(δk) and U = (ukj) is a unitary
matrix. Then we have

tr(AA∗) =

n∑

k=1

|λk|2,

tr(BB∗) =
n∑

k=1

|δk|2,

2ℜ[tr(AB∗)] = 2ℜ


∑

kj

λk δ̄j |ukj |2

 .

From these, we obtain

tr[(A−B)(A−B)∗ ] =
n∑

k=1

|λk|2 +
n∑

k=1

|δk|2−2ℜ


∑

kj

λk δ̄j |ukj |2

 . (A.5.2)

The proof of the first assertion of the theorem will be complete if one can
show that there are two permutations πj , j = 1, 2, of 1, 2, · · · , n such that

ℜ
n∑

k=1

λk δ̄π1(k) ≤ ℜ


∑

kj

λk δ̄j|ukj |2

 ≤ ℜ

n∑

k=1

λk δ̄π2(k). (A.5.3)

Assertion (A.5.3) is a trivial consequence of the following real linear pro-
gramming problem:

max
∑

k,j akjxkj subject to constraints;

aij real;
xkj ≥ 0 for all 1 ≤ k, j ≤ n;∑n

k=1 xkj = 1 for all 1 ≤ j ≤ n;∑n
j=1 xkj = 1 for all 1 ≤ k ≤ n.

(A.5.4)

In fact, we can show that
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min
π

n∑

i=1

ai,π(i) ≤
∑

ij

aijxij ≤ max
π

n∑

i=1

ai,π(i). (A.5.5)

If (xij) forms a permutation matrix (i.e., each row (and column) has one
element 1 and others 0), then for this permutation π0 (i.e., for all i, xi,π0(i) =
1)

min
π

n∑

i=1

ai,π(i) ≤
∑

ij

aijxij =

n∑

i=1

ai,π0(i) ≤ max
π

n∑

i=1

ai,π(i).

That is, assertion (A.5.5) holds. If (xij) is not a permutation matrix, then
we can find a pair of integers i1, j1 such that 0 < xi1,j1 < 1. By the con-
dition that the rows sum up to 1, there is an integer j2 6= j1 such that
0 < xi1,j2 < 1. By the condition that the columns sum up to 1, there is an
i2 6= i1 such that 0 < xi2,j2 < 1. Continuing this procedure, we can find
integers i1, j1, i2, j2, · · · , ik, jk such that

i1 6= i2, i2 6= i3, · · · , ik−1 6= ik,

j1 6= j2, j2 6= j3, · · · , jk−1 6= jk,

0 < xit,jt < 1, 0 < xit,jt+1 < 1, t = 1, 2, · · · , k.

During the process, there must be a k such that jk+1 = js for some 1 ≤ s ≤ k
and hence we find a cycle on whose vertices the x-values are all positive. Such
an example is shown in Fig. A.4(right), where we started from (i1, j2), stopped
at (i5, j5) = (i2, j2), and obtain a cycle

(i2, j2) → (i2, j3) → · · · → (i4, j5) → (i2, j2).

Consider the cycle

(is, js) → (s1, js+1) → (ik, jk) → (ik, js) → (is, js),

which has the property that at the vertices of this route, all xij ’s take positive
values.

If

ais,js + ais+1,js+1 + · · · + aik,jk
≥ ais,js+1 + ais+1,js+2 + · · · + aik,jk+1

,

define

x̃it,jt = xit,jt + δ, t = s, s+ 1, · · · , k,
x̃it,jt+1 = xit,jt+1 − δ, t = s, s+ 1, · · · , k,

x̃ij = xij , for other elements,

where δ = min{xit,jt+1 , t = s, s+ 1, · · · , k} > 0.
If
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(i1, j1) (i1, j2)

(i2, j2) = (i5, j5)(i2, j3)

(i3, j3) (i3, j4)

(i4, j4) (i4, j5)

t t

tt

t t

t t

-

?�

6
-

? -

6

Fig. A.4 Find a cycle of positive xij ’s.

ais,js + ais+1,js+1 + · · · + aik,jk
< ais,js+1 + ais+1,js+2 + · · · + aik,jk+1

,

define

x̃it,jt = xit,jt − δ, t = s, s+ 1, · · · , k,
x̃it,jt+1 = xit,jt+1 + δ, t = s, s+ 1, · · · , k,

x̃ij = xij , for other elements,

where δ = min{xit,jt , t = s, s+ 1, · · · , k} > 0.
For both cases, it is easy to see that

∑

ij

aijxij ≤
∑

ij

aij x̃ij

and {x̃ij} still satisfies condition (A.5.4). Note that the set {x̃ij} has at least
one more 0 entry than {xij}. If (x̃ij) is still not a permutation matrix, re-
peat the procedure above until the matrix is transformed to a permutation
matrix. The inequality on the right-hand side of (A.5.5) follows. The inequal-
ity on the left-hand side follows from the inequality on the right-hand side
by considering

∑
ij(−aij)xij . Consequently, conclusion (i) of the theorem is

proven.
In applying the linear programming above to our maximization problem,

akj = ℜ(λk δ̄j) and xkj = |ukj |2.
As for the proof of the second part of the theorem, by the singular

decomposition theorem, we may assume that A = diag[λ1, · · · , λν ] and
B∗ = Udiag[δ1, · · · , δν ]V, where U = (uij) (p × ν) and V = (vij) (n × ν)
satisfy U∗U = V∗V = Iν . Also, we may assume that λ1 ≥ · · · ≥ λν ≥ 0 and
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δ1 ≥ · · · ≥ δν ≥ 0. Similarly, we have

tr[(A − B)(A − B)∗]

= trAA∗ + trBB∗ − 2ℜtrAB∗

=

n∑

k=1

λ2
k +

n∑

k=1

δ2k − 2




ν∑

k,j=1

λiδjℜ(uijvji)




≥
n∑

k=1

λ2
k +

n∑

k=1

δ2k − 2

ν∑

i,j=1

λiδj |uijvji|.

Thus, the second conclusion follows if one can show that

ν∑

i,j=1

λiδj|uijvji| ≤
ν∑

i=1

λiδi. (A.5.6)

Note that
ν∑

i=1

|uijvji| ≤
(

ν∑

i=1

|uij |2
ν∑

i=1

|vji|2
)1/2

≤ 1

and similarly
ν∑

i=1

|uijvji| ≤ 1.

Thus, (A.5.6) is a special case of the problem

max
ν∑

i,j=1

λiδjxij =
ν∑

i=1

λiδi (A.5.7)

under the constraints

xij ≥ 0,
ν∑

i=1

xij ≤ 1, for all j,

ν∑

j=1

xij ≤ 1, for all i.

Now, let

u1 = λ1 − λ2 ≥ 0, v1 = δ1 − δ2 ≥ 0,
...... ......

uν−1 = λν−1 − λν ≥ 0, vν−1 = δν−1 − δν ≥ 0,
uν = λν ≥ 0, vν = δν ≥ 0,

as,t =
∑s

i=1

∑t
j=1 xij ≤ min(s, t).
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Then,

ν∑

i,j=1

λiδjxij =

ν∑

i,j=1

ν∑

s=i

us

ν∑

t=j

usvtxij

=

ν∑

s,t

usvtast.

From this, it is easy to see that the maximum is attained when as,t =
min(s, t), which implies that xii = 1 and xij = 0. This completes the proof
of the theorem.

Theorem A.38. Let {λk} and {δk}, k = 1, 2, · · · , n, be two sets of complex
numbers and their empirical distributions be denoted by F and F . Then, for
any α > 0, we have

L(F, F )α+1 ≤ min
π

1

n

n∑

k=1

|λk − δπ(k)|α, (A.5.8)

where L is the Levy distance between two two-dimensional distribution func-
tions F and G defined by

L(F,G) = inf{ε : F (x−ε, y−ε)−ε ≤ G(x, y) ≤ F (x+ε, y+ε)+ε}. (A.5.9)

Remark A.39. For one-dimensional distribution functions F and G, we may
regard them as two-dimensional distributions in the following manner:

F̃ (x, y) =

{
F (x), if y ≥ 0,
0, otherwise,

and

G̃(x, y) =

{
G(x), if y ≥ 0,
0, otherwise.

Then, the Levy distance L(F̃ (x, y), G̃(x, y)) reduces to the usual definition
of the Levy distance for one-dimensional distributions L(F,G).

Remark A.40. It is not difficult to show that convergence in the metric L
implies convergence in distribution.

Proof. To prove (A.5.8), we need only show that

L(F, F )α+1 ≤ 1

n

n∑

k=1

|λk − δk|α. (A.5.10)

Inequality (A.5.10) is trivially true if d = 1
n

∑n
k=1 |λk−δk|α ≥ 1. Therefore,

we need only consider the case where d < 1. Take ε such that 1 > εα+1 > d.
For fixed x and y, let m = #(A(x, y)\B(x, y), where
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A(x, y) = {k ≤ n;ℜ(λk) ≤ x, ℑ(λk) ≤ y}

and
B(x, y) = {k ≤ n; ℜ(δk) ≤ x+ ε,ℑ(δk) ≤ y + ε}.

Then, we have

F (x, y) − F (x+ ε, y + ε) ≤ m

n

≤ 1

nεα

n∑

k=1

|λk − δk|α

≤ ε.

Here the first inequality follows from the fact that the elements k ∈
A(x, y)\B(x, y) contribute to F (x, y) but not to F (x, y), and the second in-
equality from the fact that for each k ∈ A(x, y)\B(x, y), |λk − δk| ≥ ε.

Similarly, we may prove that

F (x− ε, y − ε) − F (x, y) ≤ ε.

Therefore, L(F, F ) ≤ ε, which implies the assertion of the lemma.
Combining Theorems A.37 and A.38 with α = 2, we obtain the following

corollaries.

Corollary A.41. Let A and B be two n×n normal matrices with their ESDs
FA and FB. Then,

L3(FA, FB) ≤ 1

n
tr[(A − B)(A − B)∗]. (A.5.11)

Corollary A.42. Let A and B be two p× n matrices and the ESDs of S =

AA∗ and S = BB∗ be denoted by FS and FS. Then,

L4(FS, FS) ≤ 2

p2
(tr(AA∗ + BB∗)) (tr[(A − B)(A − B)∗]) . (A.5.12)

Proof. Denote the singular values of the matrices A and B by λk and δk,
k = 1, 2, · · · , p. Applying Theorems A.37 and A.38 with α = 1, we have

L2(FS, FS) ≤ 1

p

p∑

k=1

|λ2
k − δ2k|

≤ 1

p

(
p∑

k=1

(λk + δk)2

)1/2( p∑

k=1

|λk − δk|2
)1/2

≤ 1

p

(
2

p∑

k=1

(λ2
k + δ2k)

)1/2( p∑

k=1

|λk − δk|2
)1/2
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≤
(

2

p
tr(AA∗ + BB∗)

)1/2 (
1

p
tr[(A − B)(A − B)∗]

)1/2

. (A.5.13)

A.6 Rank Inequalities

In cases where the underlying variables are not iid, Corollaries A.41 and A.42
are not convenient in showing strong convergence. The following theorems are
powerful in this case.

Theorem A.43. Let A and B be two n× n Hermitian matrices. Then,

‖FA − FB‖ ≤ 1

n
rank(A− B). (A.6.1)

Throughout this book, ‖f‖ = supx |f(x)|.
Proof. Since both sides of (A.6.1) are invariant under a common unitary

transformation on A and B, we may transform A − B as

(
C 0
0 0

)
, where

C is a full rank matrix. To prove (A.6.1), we may assume

A =

(
A11 A12

A21 A22

)
and B =

(
B11 A12

A21 A22

)
,

where the order of A22 is (n− k) × (n− k) and rank(A − B) = rank(A11 −
B11) = k. Denote the eigenvalues of A, B, and A22 by λ1 ≤ · · · ≤ λn,
η1 ≤ · · · ≤ ηn, and λ̃1 ≤ · · · ≤ λ̃(n−k), respectively. By the interlacing

theorem,1 we have the relation that max(λj , ηj) ≤ λ̃j ≤ min(λ(j+k), η(j+k)),

and we conclude that, for any x ∈ (λ̃(j−1), λ̃j),

j − 1

n
≤ FA(x) (and FB(x)) <

j + k

n
,

which implies (A.6.1).

Theorem A.44. Let A and B be two p× n complex matrices. Then,

‖FAA∗ − FBB∗‖ ≤ 1

p
rank(A − B). (A.6.2)

More generally, if F and D are Hermitian matrices of orders p×p and n×n,
respectively, then we have

1 The interlacing theorem says that if C is an (n − 1) × (n − 1) major sub-matrix of the
n × n Hermitian matrix A, then λ1(A) ≥ λ1(C) ≥ λ2(A) ≥ · · · ≥ λn−1(C) ≥ λn(A),
where λi(A) denotes the i-th largest eigenvalues of the Hermitian matrix A. A reference
for this theorem may be found in Rao and Rao [237]. In fact, this theorem may be easily
proven by the formula λi(A) = infy1,···,yi−1

∑
x⊥y1,···,yi−1

x∗Ax/x∗x.
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‖FF+ADA∗ − FF+BDB∗‖ ≤ 1

p
rank(A − B). (A.6.3)

Proof. Let C = B−A. Write rank(C) = k. Then, applying Theorem A.8, it
follows that for any nonnegative integer i ≤ p− k,

σi+k+1(A) ≤ σi+1(B) and σi+k+1(B) ≤ σi+1(A).

Thus, for any x ∈ (σi+1(B), σi(B)), we have

FBB∗
(x) = 1 − i

p
= 1 − i+ k

p
+
k

p

≤ FAA∗
(x) +

k

p
.

This has in fact proved that, for all x,

FBB∗
(x) − FAA∗

(x) ≤ k

p
.

Similarly, we have

FAA∗
(x) − FBB∗

(x) ≤ k

p
.

This completes the proof of (A.6.2).
The proof of (A.6.3) follows from the interlacing theorem and the following

observation. If rank(A−B) = k, then we may choose a p× p unitary matrix
U such that

U(A − B) =

(
C1 : k × n
0 : (p− k) × n

)
.

Write F̃ = UFU∗ =

(
F11 F12

F21 F22

)
,

Ã = UA =

(
A1 : k × n
A2 : (p− k) × n

)
,

and

B̃ = UB =

(
B1 : k × n
A2 : (p− k) × n

)
,

with A1 − B1 = C1. Then,

FF+ADA∗
= F F̃+ÃD̃Ã∗

and FF+BDB∗
= F F̃+B̃DB̃∗

.

Note that

F̃ + ÃD̃Ã∗ =

(
F11 + A1DA∗

1 F12 + A1DA∗
2

F21 + A2DA∗
1 F22 + A2DA∗

2

)
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and

F̃ + B̃D̃B̃∗ =

(
F11 + B1DA∗

B F12 + B1DA∗
2

F21 + A2DB∗
1 F22 + A2DA∗

2

)
.

The bound (A.6.3) can be proven by similar arguments in the proof of Theo-

rem A.43 and the comparison of eigenvalues of F̃ + ÃD̃Ã∗, F̃ + B̃D̃B̃∗, and
F22 + A2DA∗

2. The theorem is proved.

A.7 A Norm Inequality

The following theorems will be used to remove the diagonal elements of a
random matrix or the mean matrix due to truncation in establishing the
convergence rate of the ESDs.

Theorem A.45. Let A and B be two n× n Hermitian matrices. Then,

L(FA, FB) ≤ ‖A− B‖. (A.7.1)

The proof of the theorem follows from L(FA, FB) ≤ maxk |λk(A)−λk(B)|
and a theorem due to Horn and Johnson [154] given as follows.

Theorem A.46. Let A and B be two n× p complex matrices. Then,

max
k

|sk(A) − sk(B)| ≤ ‖A− B‖. (A.7.2)

If A and B are Hermitian, then the singular values can be replaced by eigen-
values; i.e.,

max
k

|λk(A) − λk(B)| ≤ ‖A− B‖. (A.7.3)

Proof. By (A.2.2), the first conclusion follows from

sk(A) = min
y1,···,yk−1

max
x⊥y1,···,yk−1

‖x‖=1

‖Ax‖




≤ min
y1,···,yk−1

max
x⊥y1,···,yk−1

‖x‖=1

‖Bx‖ + ‖A− B‖ = sk(B) + ‖A− B‖,

≥ min
y1,···,yk−1

max
x⊥y1,···,yk−1

‖x‖=1

‖Bx‖ − ‖A− B‖ = sk(B) − ‖A− B‖.

Similarly, the second conclusion follows from

λk(A) = min
y1,···,yk−1

max
x⊥y1,···,yk−1

‖x‖=1

x∗Ax





≤ min
y1,···,yk−1

max
x⊥y1,···,yk−1

‖x‖=1

x∗Bx + ‖A− B‖ = λk(B) + ‖A− B‖,

≥ min
y1,···,yk−1

max
x⊥y1,···,yk−1

‖x‖=1

x∗Bx − ‖A− B‖ = λk(B) − ‖A− B‖.
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Theorem A.47. Let A and B be two p× n complex matrices. Then,

L(FAA∗
, FBB∗

) ≤ 2‖A‖‖A− B‖ + ‖A− B‖2. (A.7.4)

This theorem is a simple consequence of Theorem A.45 or Theorem A.46.



Appendix B

Miscellanies

B.1 Moment Convergence Theorem

One of the most popular methods in RMT is the moment method, which uses
the moment convergence theorem (MCT). That is, suppose {Fn} denotes a
sequence of distribution functions with finite moments of all orders. The
MCT investigates under what conditions the convergence of moments of all
fixed orders implies the weak convergence of the sequence of the distributions
{Fn}. In this chapter, we introduce Carleman’s theorem.

Let the k-th moment of the distribution Fn be denoted by

βn,k = βk(Fn) :=

∫
xkdFn(x). (B.1.1)

Lemma B.1. (Unique limit). A sequence of distribution functions {Fn} con-
verges weakly to a limit if the following conditions are satisfied:

1. Each Fn has finite moments of all orders.

2. For each fixed integer k ≥ 0, βn,k converges to a finite limit βk as
n→ ∞.

3. If two right-continuous nondecreasing functions F and G have the same
moment sequence {βk}, then F = G+ const.

Proof. By Helly’s theorem, {Fn} has a subsequence {Fni} vaguely convergent
to (i.e., convergent at each continuity point of) a right-continuous nondecreas-
ing function F .

Let k ≥ 0 be an integer. We have the inequality

∣∣∣∣∣

∫

|x|≥K

xkdFni (x)

∣∣∣∣∣ ≤
1

Kk+2

∫

|x|≥K

x2k+2dFni(x)

≤ 1

Kk+2
sup

n
βn,2k+2 <∞.

507
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From this inequality, we can conclude that
∫
|x|≥K

xkdFni → 0 uniformly in i

as K → ∞, and ∫
xkdFni →

∫
xkdF (x).

Thus,
∫
xkdF (x) = βk, and F is a distribution function (set k = 0).

If G is the vague limit of another vaguely convergent subsequence, then G
must also be a distribution function and the moment sequence of G is also
{βk}. So, applying (3), F = G. Therefore, the whole sequence Fn converges
vaguely to F . Since F is a distribution function, Fn converges weakly to F .

When we apply Lemma B.1, one needs to verify condition (3) of the lemma.
The following lemmas give conditions that imply (3).

Lemma B.2. (M. Riesz). Let {βk} be the sequence of moments of the distri-
bution function F . If

lim inf
k→∞

1

k
β

1
2k

2k <∞, (B.1.2)

then F is uniquely determined by the moment sequence {βk, k = 0, 1, · · ·}.

This lemma is a corollary of the next lemma due to Carleman. However,
we give a proof of Lemma B.2 because its proof is much easier than the latter
and it is powerful enough in spectral analysis of large dimensional random
matrices. The uninterested reader may skip the proof of Carleman’s theorem.

Proof. Let F and G be two distributions with common moments βk for all
integers k ≥ 0. Denote their characteristic functions by f(t) and g(t) (Fourier-
Stieltjes transforms). We need only show that f(t) = g(t) for all t ≥ 0. Since
F and G have common moments, we have, for all j = 0, 1, · · · ,

f (j)(0) = g(j)(0) = ijβj .

Define
t0 = sup{ t ≥ 0; f (j)(s) = g(j)(s),

for all 0 ≤ s ≤ t and j = 0, 1, · · ·}.
Then Lemma B.2 follows if t0 = ∞. Suppose that t0 < ∞. We have, for any
j, ∫ ∞

−∞
xjeit0x[F (dx) −G(dx)] = 0.

By condition (B.1.2), there is a constant M > 0 such that

β2k ≤ (Mk)2k for infinitely many k.

Choosing s ∈ (0, 1/(eM)), applying the inequality that k! > (k/e)k, and

|eia − 1 − ia− · · · − (ia)k/k!| ≤ |a|k+1/(k + 1)! (B.1.3)
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(see Loève [200]), for any fixed j ≥ 0, we have

|f (j)(t0 + s) − g(j)(t0 + s)|

=

∣∣∣∣
∫ ∞

−∞
xjei(t0+s)x[F (dx) −G(dx)]

∣∣∣∣

=

∣∣∣∣∣

∫ ∞

−∞
xjeit0x

[
eisx − 1 − isx− · · · − (isx)2k−j−1

(2k − j − 1)!

]

×[F (dx) −G(dx)]

∣∣∣∣∣

≤ 2
s2k−jβ2k

(2k − j)!
≤ 2

(sMk)2k

sj(2k − j)!

≤ 2(esMk/(2k− j))2k(2k/s)j → 0,

as k → ∞ along those k such that β2k ≤ (Mk)2k. This violates the definition
of t0. The proof of Lemma B.2 is complete.

Lemma B.3. (Carleman). Let {βk = βk(F )} be the sequence of moments of
the distribution function F . If the Carleman condition

∑
β
−1/2k
2k = ∞ (B.1.4)

is satisfied, then F is uniquely determined by the moment sequence {βk, k =
0, 1, · · ·}.

Proof. Let F and G be two distribution functions with the common moment
sequence {βk} satisfying condition (B.1.4). Let f(t) and g(t) be the charac-
teristic functions of F and G, respectively. By the uniqueness theorem for
characteristic functions, we need only prove that f(t) = g(t) for all t > 0.

By the relation β
1/2k
2k ≤ β

1/(2k+2)
2k+2 , it is easy to see that Carleman’s condi-

tion is equivalent to
∞∑

k=1

2kβ−2−k

2k = ∞. (B.1.5)

For any integer n ≥ 6 and k ≥ 1, define

hn,k = n−12k
(
β4

2k/β
5/2

2k+1

)2−k

.

We first show that, for any n,

∞∑

k=1

hn,k = ∞. (B.1.6)

Let c < 1/2 be a positive constant and define
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K1 = {1}
⋃

{k : β2−k

2k ≥ cβ2−k−1

2k+1 }

and
K2 = {k 6∈ K1} = {k : β2−k

2k < cβ2−k−1

2k+1 }.
We first show that ∑

k∈K1

2kβ−2−k−1

2k+1 = ∞. (B.1.7)

Suppose that k ∈ K1 and k + 1, · · · , k + s ∈ K2. Then, we have

β−2−k−s−1

2k+s+1 < cβ−2−k−s

2k+s < · · · < csβ−2−k−1

2k+1 .

From this and the fact that K1 is nonempty, one can easily derive that

∑

k∈K2

2kβ−2−k−1

2k+1 ≤ 1

1 − 2c

∑

k∈K1

2kβ−2−k−1

2k+1 ,

from which, along with condition (B.1.5), assertion (B.1.7) follows.
For each k ∈ K1, we have

hn,k ≥ c4n−12kβ−2−k−1

2k+1 . (B.1.8)

Then, by (B.1.7), for each fixed n, we have

∞∑

k=1

hn,k ≥ c4n−1
∑

k∈K1

2kβ−2−k−1

2k+1 = ∞.

Thus, for any t > 0, there is an integer m such that tn,m−1 ≤ t < tn,m, where
tn,j = hn,1 + · · · + hn,j , j = 1, 2, · · · ,m− 1.

For simplicity of notation, we write hn,m = t − tn,m−1, tn,0 = 0, and
tn,m = t. Write H = F −G, qn,1(x) = exp(ihn,1x) − 1 − ihn,1x and

qn,k(x) =

(∏k−1
j=1

(
1 + ihn,jx+ · · · + (ihn,jx)2

j−1

(2j−1)!

))

×
(

exp(ihn,kx) − 1 − ihn,kx− · · · − (ihn,kx)2
k−1

(2k−1)!

)
.

For k ≤ m, by inequality (B.1.3), we have

|qn,k(x)| ≤ Qn,k(x)

:=




k−1∏

j=1

(
1 + hn,j |x| + · · · + (hn,j |x|)2

j−1

(2j − 1)!

)
 (hn,k|x|)2

k

(2k)!
.

Since
∫
xjH(dx) = 0, we have
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|f(t) − g(t)| =

∣∣∣∣
∫ ∞

−∞
eitxH(dx)

∣∣∣∣

=

∣∣∣∣∣∣
∑

k≤m

∫ ∞

−∞
exp[i(t− tn,k)x]qn,k(x)H(dx)

∣∣∣∣∣∣

≤
∑

k≤m

∫ ∞

−∞
Qn,k(x)(F (dx) +G(dx))

= 2
∑

k≤m

∫ ∞

−∞
Qn,k(x)F (dx). (B.1.9)

Expanding Qn,k(x), the general terms have the form

hν1
n,1

ν1!
· · ·

h
νk−1

n,k−1

νk−1!

h2k

n,k|x|ν
(2k)!

,

where ν = ν1 + · · ·+ νk−1 +2k and 0 ≤ νj ≤ 2j − 1. By the definition of hn,k,
the integral of this term is bounded by

hν1
n,1

ν1!
· · ·

h
νk−1

n,k−1

νk−1!

h2k

n,kβν

(2k)!

≤ n−ν2µβ2ν1

2 β
4−1(4ν2−5ν1)
4 · · ·β2−k+1(4νk−1−5νk−2)

2k−1

ν1!ν2! · · · νk−1!

×β
2−k(2k+2−5νk−1)

2k β
2−k−1ν−5/2

2k+1

(2k)!
, (B.1.10)

where µ = ν1 + 2ν2 + · · · + (k − 1)νk−1 + k2k.
Note that

4ν1 + (4ν2 − 5ν1) + · · · + (4νk−1 − 5νk−2) + (2k+2 − 5νk−1)

= 2k+2 − ν1 − · · · − νk−1 = 2k+2 + 2k − ν > 0.

Applying β2s ≤ β2−k−1+s

2k+1 , which is a consequence of Hölder’s inequality, we
obtain

β2ν1
2 β

4−1(4ν2−5ν1)
4 · · ·β2−k+1(4νk−1−5νk−2)

2k−1 β
2−k(2k+2−5νk−1)

2k

≤ β
2−k−1(4ν1+(5ν2−5ν1)+···+(4νk−1−5νk−2)+(2k+2−5νk−1))

2k+1 = β
5/2−2−k−1ν

2k+1 .

From this and (B.1.10), we obtain

hν1
n,1

ν1!
· · ·

h
νk−1

n,k−1

νk−1!

h2k

n,kβν

(2k)!
≤ n−ν2µ

ν1!ν2! · · · νk−1!(2k)!
.
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Therefore, noting that ν ≥ 2k, we have

∫ ∞

−∞
Qn,k(x)F (dx)

≤
∑

ν1+···+νk−1+2k=ν

(n−12)ν1 · · · (n−12k−1)νk−1(n−12k)2
k

ν1! · · · νk−1!(2k)!

≤
∑

ν1+···+νk=ν

ν≥2k

(n−12)ν1 · · · (n−12k)νk

ν1! · · · νk!

=
∞∑

ν=2k

(n−1(2 + · · · + 2k))ν/ν! ≤
∞∑

ν=2k

(2e/n)ν

= (2e/n)2
k n

n− 2e
.

Substituting this into (B.1.9), we get

|f(t) − g(t)| ≤ n

n− 2e

∞∑

k=1

(2e/n)2
k → 0, letting n→ ∞.

The lemma then follows.

Remark B.4. Generally, the condition (B.1.4) cannot be further relaxed,
which will be seen in examples given below. However, for one-sided distribu-
tions, this condition can be weakened. This is given in the following corollary.
For ease of statement, in the following corollary, we assume the distributions
are of nonnegative random variables. It is easy to see that the following corol-
lary is true for one-sided distributions if we change the moments βk to their
absolute moments.

Corollary B.5. Let F and G be two distribution functions with F (0−) =
G(0−) = 0, βk(F ) = βk(G) = βk, for all integers k ≥ 1, and

∞∑

k=1

β
−1/2k
k = ∞. (B.1.11)

Then, F = G.

Proof. Define F̃ by F̃ (x) = 1 − F̃ (−x) = 1
2 (1 + F (x2)) for all x > 0 and

similarly define G̃. Then, we have

β2k−1(F̃ ) = β2k−1(G̃) = 0 and β2k(F̃ ) = β2k(G̃) = βk.

Applying Carleman’s lemma, we get F̃ = G̃. Consequently, F = G. The proof
is complete.
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The following example shows that, for distributions of nonnegative random
variables, condition (B.1.11) cannot be further weakened as for some α > 0,

∞∑

k=1

kαβ
−1/2k
k = ∞. (B.1.12)

Example B.6. For each α > 0, there are two different distributions F and
G with F (0) = G(0) = 0 such that, for each positive integer k, βk(F ) =
βk(G) = βk and

∞∑

k=1

kαβ
−1/2k
k = ∞. (B.1.13)

The example can be constructed in the following way. Set δ = 1/(2+2α) <
1/2 and define the densities of F and G by

f(x) =

{
ce−xδ

, if x > 0,
0, otherwise,

and

g(x) =

{
ce−xδ

(1 + sin(axδ)), if x > 0,
0, otherwise,

where a = tan(πδ) and c−1 =
∫∞
0 e−xδ

dx. It is obvious that all moments of
both F and G are finite. We begin our proof by showing that, for each k,
βk(F ) = βk(G) = βk. To this end, it suffices to show that

∫ ∞

0

xk exp(−xδ) sin(axδ)dx = 0. (B.1.14)

Note that the integral on the left-hand side of the equality above is the
negative imaginary part of the integral in the first line below:

∫ ∞

0

xk exp(−(1 + ia)xδ)dx

= δ−1

∫ ∞

0

x(k+1)/δ−1 exp(−(1 + ia)x)dx

= δ−1(1 + ia)(k+1)/δΓ ((k + 1)/δ).

Note that 1 + ia = exp(iπδ)/ cos(πδ), which implies that (1 + ia)(k+1)/δ is
real and hence the imaginary part of

∫∞
0
xk exp(−(1 + ia)xδ)dx is zero. The

proof of (B.1.14) is complete.
Note that

βk = c

∫ ∞

0

xk exp(−xδ)dx = cδ−1Γ
(k + 1

δ

)
.
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Thus, by applying Stiring’s formula,

kαβ
−1/2k
k ∼ kα

(eδ
k

)1/2δ

=
1

k
(eδ)1/δ,

which implies that
∑
kαβ

−1/2k
k = ∞.

Example B.7. For each α > 0, there are two different distributions F and G
such that, for each positive integer k, βk(F ) = βk(G) = βk and

∞∑

k=1

kαβ
−1/2k
2k = ∞. (B.1.15)

In fact, construct F̂ and Ĝ according to Example 1.4.1 with βk(F̂ ) =

βk(Ĝ) = β2k. For all x > 0, define F (x) = 1 − F (−x) = 1
2 (1 + F̂ (x2)) and

G(x) = 1 −G(−x) = 1
2 (1 + Ĝ(x2)). Then, F and G are the solutions.

B.2 Stieltjes Transform

Stieltjes transforms (also called Cauchy transforms in the literature) of func-
tions of bounded variation are another important tool in RMT. If G(x) is a
function of bounded variation on the real line, then its Stieltjes transform is
defined by

sG(z) =

∫
1

λ− z
dG(λ), z ∈ D,

where z ∈ D ≡ {z ∈ C : ℑz > 0}.

B.2.1 Preliminary Properties

Theorem B.8. (Inversion formula). For any continuity points a < b of G,
we have

G{[a, b]} = lim
ε→0+

1

π

∫ b

a

ℑ sG(x + iε)dx.

If G is considered a finite signed measure, then Theorem B.8 shows a one-
to-one correspondence between the finite signed measures and their Stieltjes
transforms.

Proof. Note that

1

π

∫ b

a

ℑ sG(x+ iε)dx
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=
1

π

∫ b

a

∫
εdG(y)

(x− y)2 + ε2
dx

=

∫
1

π
[arctan(ε−1(b − y)) − arctan(ε−1(a− y))]dG(y).

Letting ε → 0 and applying the dominated convergence theorem, we find
that the right-hand side tends to G[a, b].

The importance of Stieltjes transforms also relies on the next theorem,
which shows that to establish the convergence of ESD of a sequence of ma-
trices, one needs only to show that convergence of their Stieltjes transforms
and the LSD can be found by the limit Stieltjes transform.

Theorem B.9. Assume that {Gn} is a sequence of functions of bounded vari-
ation and Gn(−∞) = 0 for all n. Then,

lim
n→∞

sGn(z) = s(z) ∀z ∈ D (B.2.1)

if and only if there is a function of bounded variation G with G(−∞) = 0
and Stieltjes transform s(z) and such that Gn → G vaguely.

Proof. If Gn → G vaguely, then (B.2.1) follows from the Helly-Bray theorem
(see Loève [200]) since, for any fixed z ∈ D, both real and imaginary parts of

1
x−z are continuous and tending to 0 as x→ ±∞.

Conversely, suppose that (B.2.1) holds. For any subsequence of {Gn}, by
Helly’s selection theorem, we may select a further subsequence converging
vaguely to a signed measure G. By (B.2.1) and the sufficiency part of the
theorem, the Stieltjes transform of G is s(z). Then, by Theorem B.8, the
limit signed measure is unique. The proof of the theorem is complete.

Compared with the Fourier transform, an important advantage of Stieltjes
transforms is that one can easily find the density function of a signed measure
via its Stieltjes transform. We have the following theorem.

Theorem B.10. Let G be a function of bounded variation and x0 ∈ R. Sup-
pose that lim

z∈D→x0

ℑ sG(z) exists. Call it ℑ sG(x0). Then G is differentiable at

x0, and its derivative is 1
πℑ sG(x0).

Proof. Given ε > 0, let δ > 0 be such that |x − x0| < δ, 0 < y < δ implies
1
π |ℑ sG(x + iy) −ℑ sG(x0)| < ε

2 . Since all continuity points of G are dense in
R, there exist x1, x2 continuity points such that x1 < x2 and |xi − x0| <
δ, i = 1, 2. From Theorem B.8, we can choose y with 0 < y < δ such that

∣∣∣∣G(x2) −G(x1) −
1

π

∫ x2

x1

ℑ sG(x+ iy)dx

∣∣∣∣ <
ǫ

2
(x2 − x1).

For any x ∈ [x1, x2], we have |x− x0| < δ. Thus
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∣∣∣∣
G(x2) −G(x1)

x2 − x1
− 1

π
ℑ sG(x0)

∣∣∣∣

≤ 1

x2 − x1

∣∣∣∣G(x2) −G(x1) −
1

π

∫ x2

x1

ℑ sG(x+ iy)dx

∣∣∣∣

+
1

x2 − x1

∫ x2

x1

∣∣∣∣
1

π
(ℑ sG(x+ iy) −ℑ sG(x0))

∣∣∣∣ dx < ε.

Therefore, for all {xn} a sequence of continuity points of G with xn → x0

as n→ ∞,

lim
n,m→∞

G(xn) −G(xm)

xn − xm
=

1

π
ℑ sG(x0).

This implies {G(xn)} is a Cauchy sequence. Thus, limx↑x0 G(x) =
limx↓x0 G(x), and therefore G is continuous at x0.

Therefore, by choosing the sequence {x1, x0, x2, x0, . . .}, we have

lim
n→∞

G(xn) −G(x0)

xn − x0
=

1

π
ℑ sG(x0). (B.2.2)

To complete the proof of the theorem, we need to extend (B.2.2) to any
sequence {xn → x0}, where xn may not necessarily be continuity points of
G. To this end, let {xn} be a real sequence with xn 6= x0 and xn → x0. For
each n, we define xnb, xnu as follows. If there is a sequence ynm of continuity
points of G such that ynm → xn and G(yn,m) → G(xn) as m → ∞, then we
may choose yn,mn such that

∣∣∣∣
G(xn) −G(x0)

xn − x0
− G(yn,mn) −G(x0)

yn,mn − x0

∣∣∣∣ <
1

n
,

and then we define xnb = xnu = yn,mn . Otherwise, by the property of
bounded variation, G should satisfy either G(xn−) < G(xn) < G(xn+) or
G(xn−) > G(xn) > G(xn+). In the first case, we may choose continuity
points xnb and xnu such that

xn − 1

n
< xnb < xn < xnu < xn +

1

n

and
G(xnb) −G(x0)

xnb − x0
<
G(xn) −G(x0)

xn − x0
<
G(xnu) −G(x0)

xnu − x0
.

In the second case, we may choose continuity points xnb and xnu such that

xn − 1

n
< xnu < xn < xnb < xn +

1

n

and
G(xnb) −G(x0)

xnb − x0
<
G(xn) −G(x0)

xn − x0
<
G(xnu) −G(x0)

xnu − x0
.
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In all cases, we have xnb → x0, xnu → x0, xnb and xnu are continuity points
of G and

G(xnb) −G(x0)

xnb − x0
− 1

n
<
G(xn) −G(x0)

xn − x0
<
G(xnu) −G(x0)

xnu − x0
+

1

n
.

Letting n → ∞ and applying (B.2.2) to the sequences xnb, and xnu, the
inequality above proves that (B.2.2) is also true for the general sequence xn

and hence the proof of this theorem is complete.
In applications of Stieltjes transforms, its imaginary part will be used in

most cases. However, we sometimes need to estimate its real part in terms of
its imaginary part. We present the following result.

Theorem B.11. For any distribution function F , its Stieltjes transform s(z)
satisfies

|ℜ(s(z))| ≤ v−1/2
√
ℑ(s(z)).

Proof. We have

|ℜ(s(z))| =

∣∣∣∣
∫

(x− u)dF (x)

(x− u)2 + v2

∣∣∣∣

≤
∫

dF (x)√
(x− u)2 + v2

≤
(∫

dF (x)

(x− u)2 + v2

)1/2

.

Then, the theorem follows from the observation that

ℑ(s(z)) = v

∫
dF (x)

(x− u)2 + v2
.

B.2.2 Inequalities of Distance between Distributions in
Terms of Their Stieltjes Transforms

The following theorems create a methodology for establishing convergence
rates of the ESD of RMs.

Theorem B.12. Let F be a distribution function and let G be a function of
bounded variation satisfying

∫
|F (x) − G(x)|dx < ∞. Denote their Stieltjes

transforms by f(z) and g(z), respectively. Then, we have

||F −G|| := sup
x

|F (x) −G(x)|

≤ 1

π(2γ − 1)

[∫ ∞

−∞
|f(z) − g(z)|du
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+
1

v
sup

x

∫

|y|≤2va

|G(x+ y) −G(x)|dy
]
, (B.2.3)

where z = u+ iv, v > 0, and a and γ are constants related to each other by

γ =
1

π

∫

|u|<a

1

u2 + 1
du >

1

2
. (B.2.4)

Proof. Write ∆ = supx |F (x) − G(x)|. Without loss of generality, we can
assume that ∆ > 0. Then, there is a sequence {xn} such that F (xn) −
G(xn) −→ ∆ or −∆.

We shall first consider the case where F (xn) −G(xn) −→ ∆. For each x,
we have

1

π

∫ ∞

−∞
|f(z)− g(z)|du

≥ 1

π

∫ x

−∞
ℑ(f(z) − g(z))du

=
1

π

∫ x

−∞

[∫ ∞

−∞

vd(F (y) −G(y))

(y − u)2 + v2

]
du

=
1

π

∫ x

−∞

[∫ ∞

−∞

2v(y − u)(F (y) −G(y))dy

((y − u)2 + v2)2

]
du

=
1

π

∫ ∞

−∞
(F (y) −G(y))

[∫ x

−∞

2v(y − u)du

((y − u)2 + v2)2

]
dy

=
1

π

∫ ∞

−∞

(F (x − vy) −G(x− vy))dy

y2 + 1
. (B.2.5)

Here, the second equality follows from integration by parts, while the third
follows from Fubini’s theorem due to the integrability of |F (y)−G(y)|. Since
F is nondecreasing, we have

1

π

∫

|y|<a

(F (x− vy) −G(x− vy))dy

y2 + 1

≥ γ(F (x−va)−G(x−va))− 1

π

∫

|y|<a

|G(x−vy)−G(x−va)|dy

≥ γ(F (x−va)−G(x−va))− 1

πv
sup

x

∫

|y|<2va

|G(x+y)−G(x)|dy.

(B.2.6)

Take x = xn + va. Then, (B.2.5) and (B.2.6) imply that

1

π

∫ ∞

−∞
|f(z) − g(z)|du
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≥ γ(F (xn) −G(xn))

− 1

πv
sup

x

∫

|y|<2va

|G(x+ y) −G(x)|dy − (1 − γ)∆

−→ (2γ − 1)∆− 1

πv
sup

x

∫

|y|<2va

|G(x+ y) −G(x)|dy,

which implies (B.2.3).
Now we consider the case where F (xn) − G(xn) −→ −∆. Similarly, we

have, for each x,

1

π

∫ ∞

−∞
|f(z) − g(z)|du

≥ 1

π

∫ ∞

−∞

(G(x− vy) − F (x− vy))dy

y2 + 1

≥ γ(G(x + va) − F (x+ va))

− 1

πv
sup

x

∫

|y|<2va

|G(x+ y) −G(x)|dy − (1 − γ)∆. (B.2.7)

By taking x = xn − va, we have

1

π

∫ ∞

−∞
|f(z) − g(z)|du

≥ γ(G(xn) − F (xn))

− 1

πv
sup

x

∫

|y|<2va

|G(x+ y) −G(x)|dy − (1 − γ)∆

−→ (2γ − 1)∆− 1

πv
sup

x

∫

|y|<2va

|G(x+ y) −G(x)|dy,

which implies (B.2.3) for the latter case. This completes the proof of Theorem
B.12.

Remark B.13. In the proof of Theorem B.12, one may find that the following
version is stronger than Theorem B.12:

||F −G|| ≤ 1

π(2γ − 1)

[∫ ∞

−∞
|ℑ(f(z) − g(z))|du

+
1

v
sup

x

∫

|y|≤2va

|G(x + y) −G(x)|dy
]
. (B.2.8)

However, in applying the inequalities, we did not find any significant superi-
ority of (B.2.8) over (B.2.3).

Sometimes the functions F and G may have light tails, or both may even
have bounded support. In such cases, we may establish a bound for ‖F −G‖
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by means of the integral of the absolute difference of their Stieltjes transforms
on only a finite interval. We have the following theorem.

Theorem B.14. Under the assumptions of Theorem B.12, we have

‖F −G‖ ≤ 1

π(1 − κ)(2γ − 1)

[∫ A

−A

|f(z) − g(z)|du

+2πv−1

∫

|x|>B

|F (x) −G(x)|dx

+ v−1 sup
x

∫

|y|≤2va

|G(x+ y) −G(x)|dy
]
, (B.2.9)

where A and B are positive constants such that A > B and

κ =
4B

π(A−B)(2γ − 1)
< 1. (B.2.10)

The following corollary is immediate.

Corollary B.15. In addition to the assumptions of Theorem B.12, assume
further that, for some constant B > 0, F ([−B,B]) = 1 and |G|((−∞,−B)) =
|G|((B,∞)) = 0, where |G|((a, b)) denotes the total variation of the signed
measure G on the interval (a, b). Then, we have

||F −G|| ≤ 1

π(1 − κ)(2γ − 1)

[∫ A

−A

|f(z) − g(z)|du

+v−1 sup
x

∫

|y|≤2va

|G(x+ y) −G(x)|dy
]
,

where A, B, and κ are defined in (B.2.10).

Remark B.16. The benefit of using Theorem B.14 and Corollary B.15 is that
we need only estimate the difference of Stieltjes transforms of the two dis-
tributions of interest on a finite interval. When Theorem B.14 is applied to
establish the convergence rate of the spectral distribution of a sample covari-
ance matrix in Chapter 3, it is crucial to the proof of Theorem 8.10 that A
is independent of the sample size n. It should also be noted that the integral
limit A in Girko’s [122] inequality should tend to infinity with a rate of A−1

faster than the convergence rate to be established. Therefore, our Theorem
B.14 and Corollary B.15 are much easier to use than Girko’s inequality.

Proof of Theorem B.14. Using the notation given in the proof of Theorem
B.12, we have

∫ ∞

A

|f(z) − g(z)|du
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=

∫ ∞

A

∣∣∣∣
∫ ∞

−∞

(F (x) −G(x))dx

(x− z)2

∣∣∣∣ du

≤
∫ ∞

A

∣∣∣∣∣

∫ B

−B

(F (x) −G(x))dx

(x− z)2

∣∣∣∣∣ du+
∫ ∞

−∞

∣∣∣∣∣

∫

|x|>B

(F (x) −G(x))dx

(x − z)2

∣∣∣∣∣ du

≤ 2B∆

∫ ∞

A

du

(u −B)2 + v2
+ πv−1

∫

|x|>B

|F (x) −G(x)|dx

≤ 2B∆/(A−B) + πv−1

∫

|x|>B

|F (x) −G(x)|dx. (B.2.11)

By symmetry, we get the same bound for
∫ −A

−∞ |f(z) − g(z)|du. Substituting
the inequality above into (B.2.3), we obtain (B.2.9) and the proof is complete.

B.2.3 Lemmas Concerning Levy Distance

Lemma B.17. Let L(F,G) be the Levy distance between the distributions F
and G. Then we have

L2(F,G) ≤
∫

|F (x) −G(x)|dx. (B.2.12)

Proof. Without loss of generality, assume that L(F,G) > 0. For any r ∈
(0, L(F,G)), there exists an x such that

F (x− r) − r > G(x) (or F (x+ r) + r < G(x)).

Then the square between the points (x − r, F (x− r) − r), (x, F (x − r) − r),
(x − r, F (x − r)), and (x, F (x − r)) (or (x, F (x + r)), (x + r, F (x + r)),
(x, F (x + r) + r), and (x + r, F (x + r) + r) for the latter case) is located
between F and G (see Fig. B.1). Then (B.2.12) follows from the fact that the
right-hand side of (B.2.12) equals the area of the region between F and G.
The proof is complete.

Lemma B.18. If G satisfies supx |G(x+ y) −G(x)| ≤ D|y|α for all y, then

L(F,G) ≤ ‖F −G‖ ≤ (D + 1)Lα(F,G), for all F. (B.2.13)

Proof. The inequality on the left-hand side is actually true for all distribu-
tions F and G. It can follow easily from the argument in the proof of Lemma
B.17.

To prove the right-hand-side inequality, let us consider the case where, for
some x,

F (x) > G(x) + ρ,

where ρ ∈ (0, ‖F −G‖). Since G satisfies the Lipschitz condition, we have
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Fig. B.1 Levy distance.

G(x+ (ρ/(D + 1))1/α) + (ρ/(D + 1))1/α ≤ G(x) + ρ < F (x)

(see Fig. B.2), which implies that

L(F,G) ≥ (ρ/(D + 1))1/α.

Then, the right-hand-side inequality of (B.2.13) follows by making ρ →
‖F−G‖. The proof of the inequality for the other case (i.e., G(x) > F (x)+ρ)
can be similarly proved.

Lemma B.19. Let F1, F2 be distribution functions and let G satisfy
supx |G(x + u) − G(x)| ≤ g(u), for all u, where g is an increasing and con-
tinuous function such that g(0) = 0. Then

‖F1 −G‖ ≤ 3 max{‖F2 −G‖, L(F1, F2), g(L(F1, F2))}. (B.2.14)

Proof. Let 0 < ρ < ‖F1 − G‖, and assume that ‖F2 − G‖ < ρ/3. Then, we
may find an x0 such that F1(x0) − G(x0) > ρ (or F1(x0) − G(x0)) < −ρ
alternatively). Let η > 0 be such that g(η) = ρ/3. By the condition on
G, for any x ∈ [x0, x0 + η] (or [x0 − η, x0] for the alternate case), we have
F2(x) ≤ G(x) + 1

3ρ ≤ G(x0) + 2
3ρ and F1(x) ≥ F1(x0) > G(x0) + ρ. This

shows that the rectangle {x0 < x < x0 + η,G(x0) + 2
3ρ < y < G(x0) + ρ} is

located between F1 and F2 (see Fig. B.3). That means

L(F1, F2) ≥ min
(
η,

1

3
ρ
)
.
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x+(  /(D+1))
1/α

ρ G

F

x ρ

Fig. B.2 Relationship between Levy and Kolmogorov distances.

If η < 1
3ρ, then η ≤ L(F1, F2), which implies that

1

3
ρ = g(η) ≤ g(L(F1, F2)).

Combining the three cases above, we conclude that

ρ ≤ 3 max{‖F2 −G‖, L(F1, F2), g(L(F1, F2))}.

The lemma follows by letting ρ→ ‖F1 −G‖. The proof is complete.

B.3 Some Lemmas about Integrals of Stieltjes
Transforms

Lemma B.20. Suppose that φ(x) is a bounded probability density supported
on a finite interval [A,B]. Then,

∫ ∞

−∞
|s(z)|2du < 2π2Mφ,
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Fig. B.3 Further relationship between Levy and Kolmogorov distances.

where s(z) is the Stieltjes transform of φ, Mφ is the upper bound of φ, and,
in the integral, u is the real part of z.

Proof. We have

I :=

∫ ∞

−∞
|s(z)|2du

=

∫ ∞

−∞

∫ B

A

∫ B

A

φ(x)φ(y)dxdy

(x − z)(y − z̄)
du

=

∫ B

A

∫ B

A

φ(x)φ(y)dxdy

∫ ∞

−∞

1

(x− z)(y − z̄)
du (by Fubini)

=

∫ B

A

∫ B

A

2πi

y − x+ 2vi
φ(x)φ(y)dxdy (residue theorem).

Note that

∫ B

A

∫ B

A

ℜ
(

1

y − x+ 2vi

)
φ(x)φ(y)dxdy

=

∫ B

A

∫ B

A

(
y − x

(y − x)2 + 4v2

)
φ(x)φ(y)dxdy = 0 by symmetry.

We finally obtain

I = −2π

∫ B

A

∫ B

A

ℑ
(

1

y − x+ 2vi

)
φ(x)φ(y)dxdy
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= 4πv

∫ B

A

∫ B

A

(
1

(y − x)2 + 4v2

)
φ(x)φ(y)dxdy

≤ 4πvMφ

∫ ∞

−∞

∫ B

A

φ(y)

(
1

w2 + 4v2

)
dwdy (making w = x− y)

= 2π2Mφ.

The proof is complete.

Corollary B.21. When φ is the density of the semicircular law, we have

∫
|s(z)|2du ≤ 2π. (B.3.1)

Lemma B.22. Let G be a function of bounded variation satisfying ‖G‖ =:
supx |G(x)| < ∞. Let g(z) denote its Stieltjes transform. When z = u + iv
with v > 0, we have

I := sup
u

|g(z)| ≤ πv−1‖G‖. (B.3.2)

Proof. Using integration by parts, we have

|g(z) =

∣∣∣∣
∫

G(x)

(x− z)2
dx

∣∣∣∣

≤ ‖G‖
∫

1

(x − u)2 + v2
dx

= πv−1‖G‖,

which proves the lemma.

Lemma B.23. Let G be a function of bounded variation satisfying V (G) =:∫
|G(du)| <∞. Let g(z) denote its Stieltjes transform. When z = u+ iv with

v > 0, we have ∫
|g(z)|2du ≤ 2πv−1V (G)‖G‖. (B.3.3)

Proof. Following the same lines as in the proof of Lemma B.20, we may obtain

I = 4πv

∫∫ ( 1

(u − x)2 + 4v2

)
G(dx)G(du)

= 8πv

∫ [∫
(u− x)G(x)dx

((u − x)2 + 4v2)2

]
G(du) (integration by parts)

≤ 2πv−1V (G)‖G‖.

Remark B.24. The two lemmas above give estimations for the difference of
Stieltjes transforms of two distributions.
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B.4 A Lemma on the Strong Law of Large Numbers

The Marcinkiewicz-Zygmund strong law of large numbers was first proved in
[202], which gives necessary and sufficient conditions for the partial sample
means from a single array of iid random variables with a rate of n−(1−α),
where α > 1

2 . The following lemma is a generalization of this result to the
case of multiple arrays of iid random variables.

Lemma B.25. Let {Xij , i, j = 1, 2, · · ·} be a double array of iid complex
random variables and let α > 1

2 , β ≥ 0, and M > 0 be constants. Then, as
n→ ∞,

max
j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

(Xij − c)

∣∣∣∣∣→ 0 a.s. (B.4.1)

if and only if the following hold:

(i) E|X11|(1+β)/α <∞;

(ii) c =

{
E(X11), if α ≤ 1,
any number, if α > 1.

Furthermore, if E|X11|(1+β)/α = ∞, then

lim sup max
j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

(Xij − c)

∣∣∣∣∣ = ∞ a.s.

Proof of sufficiency. Without loss of generality, assume that c = E(X11) = 0
for the case α ≤ 1.

Define Xijk = XijI(|Xij | ≤ 2kα). Then, by condition (i),

P

(
max

j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

Xij

∣∣∣∣∣ 6= max
j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

Xijk

∣∣∣∣∣ , i.o.

)

≤
∞∑

k=K

P




2k+1−1⋃

n=2k

n⋃

i=1

⋃

j≤Mnβ

{|Xij | ≥ nα}




≤
∞∑

k=K

P




2k+1−1⋃

n=2k

2k+1⋃

i=1

⋃

j≤M2(k+1)β

{
|Xij | ≥ 2kα

}



≤
∞∑

k=K

P




2k+1⋃

i=1

⋃

j≤M2(k+1)β

{
|Xij | ≥ 2kα

}



≤
∞∑

k=K

M2(k+1)(β+1)P
(
|X11| ≥ 2kα

)
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=
∞∑

k=K

M2(k+1)(β+1)
∞∑

ℓ=k

P
(
2ℓα ≤ |X11| < 2(ℓ+1)α

)

=

∞∑

ℓ=K

P
(
2ℓα ≤ |X11| < 2(ℓ+1)α

) ℓ∑

k=K

M2(k+1)(β+1)

≤
∞∑

ℓ=K

M2(ℓ+2)(β+1)P
(
2ℓα ≤ |X11| < 2(ℓ+1)α

)

≤ M2β+1E|X11|(β+1)/αI(|X11| ≥ 2Kα) → 0

as K → ∞.
This proves that the convergence (B.4.1) is equivalent to

max
j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

Xijk

∣∣∣∣∣→ 0 a.s., as 2k < n ≤ 2k+1 → ∞. (B.4.2)

Note that

max
j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

E(Xijk)

∣∣∣∣∣ = n−α+1|EX11k|

≤
{
n−α+12−k(β+1)E|X11|(β+1)/αI(|X11| > 2kα), if α ≤ 1
n−(α−1)/2 + n−α+12k(α−1)E|X11|(β+1)/αI(|X11| ≥ n(α−1)/2), if α > 1

}

→ 0.

Therefore, the proof of (B.4.2) further reduces to showing that

max
j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

(Xijk − EX11k)

∣∣∣∣∣→ 0 a.s., as 2k < n ≤ 2k+1 → ∞. (B.4.3)

For any ε > 0, choose an integer m = [(β + 1)/(2α− 1)] + 1. We have

P

(
max

j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

(Xijk − EX11k)

∣∣∣∣∣ ≥ ε, i.o.

)

≤ lim
N→∞

∞∑

k=N

P

(
max

2k<n≤2k+1
max

j≤M2(k+1)β

∣∣∣∣∣
n∑

i=1

(Xijk − EX11k)

∣∣∣∣∣ ≥ ε2kα

)

≤ lim
N→∞

∞∑

k=N

M2(k+1)βP

(
max

n≤2k+1

∣∣∣∣∣
n∑

i=1

(Xi1k − EX11k)

∣∣∣∣∣ ≥ ε2kα

)

≤ Mε−2m lim
N→∞

∞∑

k=N

2(k+1)(β−2mα)E

∣∣∣∣∣∣

2k+1∑

i=1

(Xi1k − EX11k)

∣∣∣∣∣∣

2m

. (B.4.4)
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Here, the first two inequalities are trivial, while the third follows from an
extension of Kolmogorov’s inequality that can be found in any textbook on
martingales.1

By multinomial expansion,

E

∣∣∣∣∣
n∑

i=1

(Xi1k − EX11k)

∣∣∣∣∣

2m

≤
m∑

ℓ=1

∑

i1+···+iℓ=2m

i1,···,iℓ≥2

(2m)!nℓ

i1! · · · iℓ!ℓ!
E|X11k − EX11k|i1 · · ·E|X11k − EX11k|iℓ .

Choose an integer ν such that 0 ≤ ν − 1 ≤ (β + 1)/α < ν. For each i ≥ 2, we
have

|EX i
11k| ≤




CE|X11k|ν2(i−ν)αk, if i ≥ ν,
C2(i−(β+1)/α)αk ≤ C2(iα−1)k, if i > (β + 1)/α,
C ≤ C2(iα−1)k, if i ≤ (β + 1)/α.

Then, for some constant C,

E|X11k − EX11k|i1 · · ·E|X11k − EX11k|iℓ

≤
{
CE|X11k − EX11k|ν2(2m−ν)αk−(ℓ−1)k, if max{i1, · · · , iℓ} ≥ ν,
C, otherwise.

Hence,

E

∣∣∣∣∣
n∑

i=1

(Xi1k − EX11k)

∣∣∣∣∣

2m

≤ CE|X11k − EX11k|ν2(2m−ν)αk+k + C2km.

Substituting this with n = 2k+1 into (B.4.4), we have

∞∑

k=N

2(k+1)(β−2mα+m) → 0 since β − 2mα+m < −1,

and

∞∑

k=N

2(k+1)(β−2mα)E|X11k − EX11k|ν2(2m−ν)αk+k

≤ C

∞∑

k=N

2k(β+1−να)E|X11k|ν

1 The inequality states that, for any martingale sequence {sn}, any constant ε > 0, and
p > 1, we have P(maxi≤n |sn| ≥ ε) ≤ ε−pE|sn|p.
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=C

∞∑

k=N

2k(β+1−να)
k∑

ℓ=1

[E|X11|νI(2α(ℓ−1)< |X11| ≤ 2αℓ)+E|X11|νI(|X11| ≤1)]

= C

∞∑

ℓ=1

E|X11|νI(2α(ℓ−1) < |X11| ≤ 2αℓ)
∑

k=ℓ∨N

2k(β+1−να) +

∞∑

k=N

2k(β+1−να)

≤ C

∞∑

ℓ=1

2(ℓ∨N)(β+1−να)E|X11|νI(2α(ℓ−1) < |X11| ≤ 2αℓ) +

∞∑

k=N

2k(β+1−να)

≤ C

∞∑

ℓ=1

2(ℓ∨N)(β+1−να)+ℓ(να−β−1)E|X11|(β+1)/αI(2α(ℓ−1) < |X11| ≤ 2αℓ)

+

∞∑

k=N

2k(β+1−να)

≤ CE|X11|(β+1)/αI(|X11| ≥ 2αN/2) + CE|X11|(β+1)/α2N(β+1−να)/2

+

∞∑

k=N

2k(β+1−να) → 0

as N → ∞. Consequently, these, together with (B.4.4), imply that

max
j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

(Xijk − EX11k)

∣∣∣∣∣→ 0, a.s.

The proof of the sufficiency of the lemma is complete.

Proof of necessity. From (B.4.1), one can easily derive

max
j≤M(n−1)β

n−α|Xnj | → 0 a.s.,

which, together with the Borel-Cantelli lemma, implies that

∑

n

P

(
max

j≤M(n−1)β
|X1j | ≥ nα

)
<∞.

By the convergence theorem for an infinite product, the inequality above is
equivalent to the convergence of the product

∞∏

n=1

P

(
max

j≤M(n−1)β
|X1j | < nα

)
=

∞∏

n=1

P (|X11| < nα)
[M(n−1)β ]

.

Again, using the same theorem, the convergence above is equivalent to the
convergence of the series

∑

n

(n− 1)βP (|X11| ≥ nα) <∞.
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From this, it is routine to derive E|X11|(β+1)/α <∞. Applying the sufficiency
part, the second condition of the lemma follows.

(The divergence). Assume that E|X11|(1+β)/α = ∞. Then, for any N > 0,
we have ∑

k=1

M2(β+1)kP(|x11| ≥ N2αk) = ∞.

Then, by the convergence theorem of infinite products, the equality above is
equivalent to

∞∏

k=1

(
P(|x11| < N2αk)

)[M2β+1)k]
= 0

⇐⇒
∑

k=1

P( max
2k<n≤2K−1,M2(k−1)β<j≤M2kβ

|xnj | ≥ N2αk) = ∞.

By the Borel-Cantelli lemma, we have

P

(
max

2k<n≤2K−1,M2(k−1)β<j≤M2kβ
|xnj | ≥ N2αk, i.o.

)
= 1.

Therefore,

lim sup max
j≤Mnβ

∣∣∣∣∣n
−α

n∑

i=1

(Xij − c)

∣∣∣∣∣ ≥ N/2 a.s.

This proves the second conclusion of the lemma. The proof is complete.

B.5 A Lemma on Quadratic Forms

Lemma B.26. Let A = (aij) be an n × n nonrandom matrix and X =
(x1, · · · , xn)′ be a random vector of independent entries. Assume that Exi = 0,
E|xi|2 = 1, and E|xj |ℓ ≤ νℓ. Then, for any p ≥ 1,

E|X∗AX − trA|p ≤ Cp

((
ν4tr(AA∗)

)p/2
+ ν2ptr(AA∗)p/2

)
,

where Cp is a constant depending on p only.

In the proof of this lemma, we need a lemma from Dilworth [95].

Lemma B.27. Let {Fk} be a sequence of increasing σ-fields and {Xk} be a
sequence of integrable random variables. Then, for any 1 ≤ q ≤ p < ∞, we
have

E

( ∞∑

k=1

∣∣E(Xk|Fk)
∣∣q
)p/q

≤
(p
q

)p/q

E

( ∞∑

k=1

|Xk|q
)p/q

.

Proof of Lemma B.26. We use the expression
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X∗AX − trA =

n∑

i=1

aii(|Xi|2 − 1) +

n∑

i=1

i−1∑

j=1

(ajiX̄jXi + aijXjX̄i). (B.5.1)

By Theorem A.13, it is seen that

E|X∗AX − trA|

≤
n∑

i=1

|aii|E
∣∣|Xi|2 − 1

∣∣+
(

E
∣∣∣

n∑

i=1

i−1∑

j=1

ajiX̄jXi + aijXjX̄i

∣∣∣
2
)1/2

≤ C
[
tr(AA∗)1/2 + (ν4trAA∗)1/2

]
,

which proves the lemma for the case p = 1. Note that here we have used the
fact that ν4 ≥ 1.

Now, assume 1 < p ≤ 2. By Lemma 2.12 and Theorem A.13, we have

E

∣∣∣∣∣
n∑

i=1

aii(|Xi|2 − 1)

∣∣∣∣∣

p

≤ CE

(
n∑

i=1

|aii|2
∣∣|Xi|2 − 1

∣∣2
)p/2

≤ C
n∑

i=1

|aii|pE||Xi|2 − 1|p ≤ Cν2ptr(AA∗)p/2.

Furthermore, by the Hölder inequality,

E

∣∣∣∣∣
n∑

i=1

i−1∑

j=1

(aijX̄jXi + ajiXjX̄i)

∣∣∣∣∣

p

≤ C

[
E

∣∣∣∣∣
n∑

i=1

i−1∑

j=1

(aijX̄jXi + ajiXjX̄i)

∣∣∣∣∣

2]p/2

≤ C(ν4trAA∗)p/2.

Combining the two inequalities above, we complete the proof of the lemma
for the case 1 < p ≤ 2.

Now, we proceed with the proof of the lemma by induction on p. Assume
that the lemma is true for 1 ≤ p ≤ 2t, and then consider the case 2t < p ≤
2t+1 with t ≥ 1. By Lemma 2.13 and Theorem A.13,

E

∣∣∣∣∣
n∑

i=1

aii(|Xi|2 − 1)

∣∣∣∣∣

p

≤ Cp

(( n∑

i=1

|aii|2E(|Xii|2 − 1)2
)p/2

+

n∑

i=1

|aii|pE
∣∣|Xii|2 − 1

∣∣p
)

≤ C
((
ν4trAA∗)p/2

+ ν2ptr(AA∗)p/2
)
.
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For the same reason, with notation Ei for the conditional expectation given
{X1, · · · , Xi}, we have

E

∣∣∣∣∣
n∑

i=1

i−1∑

j=1

aijX̄jXi

∣∣∣∣∣

p

≤ Cp

(
E

( n∑

i=1

Ei−1

∣∣∣∣
i−1∑

j=1

aijX̄iXj

∣∣∣∣
2)p/2

+

n∑

i=1

E

∣∣∣∣
i−1∑

j=1

aijX̄iXj

∣∣∣∣
p)

≤ Cp

(
E

( n∑

i=1

∣∣∣∣
i−1∑

j=1

aijXj

∣∣∣∣
2)p/2

+

n∑

i=1

νpE

∣∣∣∣
i−1∑

j=1

aijXj

∣∣∣∣
p)

≤ Cp

(
E

( n∑

i=1

∣∣∣∣Ei−1

n∑

j=1

aijXj

∣∣∣∣
2)p/2

+
n∑

i=1

νp

( i−1∑

j=1

|aij |2
)p/2

+ ν2
p

i−1∑

j=1

|aij |p
)

≤ Cp

(
E

( n∑

i=1

Ei−1

∣∣∣∣
n∑

j=1

aijXj

∣∣∣∣
2)p/2

+ νp

n∑

i=1

(
(AA∗)ii

)p/2

+ ν2ptr(AA∗)p/2

)
.

(B.5.2)

Using Lemma B.27 with q = 1 applied to the first term and the induction
hypothesis with A replaced by A∗A, we obtain

E

( n∑

i=1

Ei−1

∣∣∣∣
n∑

j=1

aijXj

∣∣∣∣
2)p/2

≤ CpE

( n∑

i=1

∣∣∣∣
n∑

j=1

aijXj

∣∣∣∣
2)p/2

= CpE(X∗A∗AX)p/2

≤ Cp

(
(trA∗A)p/2 + E

∣∣∣X∗A∗AX − trA∗A
∣∣∣
p/2
)

≤ Cp

(
(trA∗A)p/2 + [ν4tr(A

∗A)2]p/4 + νptr(A
∗A)p/2

)
.

Note that tr(A∗A)2 ≤ (trA∗A)2 and
∑n

i=1

(
(AA∗)ii

)p/2

≤ tr(A∗A)p/2 by

Lemma A.13. Substituting the above into (B.5.2), the proof of the lemma is
complete.
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The aim of the book is to introduce basic concepts, main results, and
widely applied mathematical tools in the spectral analysis of large dimen-
sional random matrices. The core of the book focuses on results established
under moment conditions on random variables using probabilistic methods,
and is thus easily applicable to statistics and other areas of science. The
book introduces fundamental results, most of them investigated by the au-
thors, such as the semicircular law of Wigner matrices, the Marčenko-Pastur
law, the limiting spectral distribution of the multivariate F -matrix, limits of
extreme eigenvalues, spectrum separation theorems, convergence rates of em-
pirical distributions, central limit theorems of linear spectral statistics, and
the partial solution of the famous circular law. While deriving the main re-
sults, the book simultaneously emphasizes the ideas and methodologies of the
fundamental mathematical tools, among them being: truncation techniques,
matrix identities, moment convergence theorems, and the Stieltjes transform.
Its treatment is especially fitting to the needs of mathematics and statistics
graduate students and beginning researchers, having a basic knowledge of ma-
trix theory and an understanding of probability theory at the graduate level,
who desire to learn the concepts and tools in solving problems in this area.
It can also serve as a detailed handbook on results of large dimensional ran-
dom matrices for practical users. This second edition includes two additional
chapters, one on the authors’ results on the limiting behavior of eigenvectors
of sample covariance matrices, another on applications to wireless commu-
nications and finance. While attempting to bring this edition up-to-date on
recent work, it also provides summaries of other areas which are typically
considered part of the general field of random matrix theory.
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