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Preface

Statistical forecasting procedures are used to solve many applied problems in
engineering, economics, finance, medicine, environmental studies, etc. For the
majority of the developed statistical forecasting procedures, optimality (or asymp-
totic optimality as observation time increases) is proved w.r.t. the mean square
forecast risk under the assumptions of an underlying hypothetical model. In practice,
however, the observed data usually deviates from hypothetical models: random
observation errors may be non-Gaussian, correlated, or inhomogeneous; the data
may be contaminated by outliers, level shifts, or missing values; trend, regression,
and autoregression functions do not necessarily belong to the declared parametric
families, etc. Unfortunately, the forecasting procedures which have been proved
to be optimal under the hypothetical model often become unstable under even
small model distortions, resulting in forecast risks or mean square errors which
are significantly higher than the theoretical values obtained in the absence of
distortion. This necessitates the development of robust statistical algorithms, which
are designed to retain most of their properties under small deviations from model
assumptions.

The available textbooks on the subjects of statistical forecasting and robust
statistical methods can be split into two distinct clusters. The first cluster includes
books on theoretical and applied aspects of statistical forecasting where little or no
attention is paid to robustness. The focus of these books is on various hypothetical
models, methods, and computer algorithms used in forecasting, as well as their
performance in the absence of model distortions.

The second cluster includes books on robust statistics which are dedicated to such
diverse subjects as robust statistical parameter estimation, robust hypothesis testing
in parametric (e.g., shift-scale) families of probability distributions, regression
analysis, discriminant analysis, cluster analysis, time series analysis, etc. However,
the topic of robustness in statistical forecasting remains barely touched upon,
and little or no information is provided on such important aspects of forecasting
as analysis of risk increments due to different types and levels of distortion,
estimation of critical distortion levels for the traditional forecasting procedures,
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vi Preface

and development of robust forecasting procedures tailored to the distortion types
that are commonly encountered in applications.

This monograph is an attempt to fill the described gap in the literature by going
beyond the fundamental subjects of robust statistical estimation and robust statistical
hypothesis testing and presenting a systematic collection of known and new results
related to the following topical problems:

• Construction of mathematical models and descriptions of typical distortions in
applied forecasting problems;

• Quantitative evaluation of the robustness of traditional forecasting procedures;
• Evaluation of critical distortion levels;
• Construction of new robust forecasting procedures satisfying the minimax-risk

criterion.

Solving these problems answers the following questions, which are highly relevant
to both theoretical and applied aspects of statistical forecasting:

• Which distortion types can be accommodated by forecasting procedures?
• What are the maximal distortion levels allowing for “safe” use of the traditional

forecasting algorithms?
• How can we estimate the effect of distortions on the mean square risk of

traditional forecasting algorithms?
• Which robust forecasting statistics are the most suitable under different types of

distortions?

The monograph is organized into ten chapters. Chapter 1 serves as a general
introduction to the subject of statistical forecasting, presenting its history and some
of the possible applications. Chapter 2 describes the decision-theoretic approach
to forecasting, which is different from the general statistical approach used in
Chaps. 3–10. Chapter 3 presents mathematical models of the time series commonly
used in statistical forecasting. Chapter 4 classifies types of model distortions and
defines metrics for optimality and robustness in statistical forecasting. Chapter 5
presents methods for optimal parametric and nonparametric time series regression
forecasting. In Chap. 6, robustness of these methods is evaluated, and robust
forecasting statistics are constructed. A similar treatment of the ARIMA.p; d; q/
autoregressive integrated moving average time series model is presented in Chap. 7.
Chapter 8 presents an analysis of optimality and robustness of forecasting based on
autoregressive time series models under missing values. Robustness of multivariate
time series forecasting based on systems of simultaneous equations is investigated
in Chaps. 9, and 10 discusses forecasting of discrete time series.

The interdependence of the chapters is illustrated in Fig. 1 below; solid lines
represent prerequisites, and dashed lines indicate weaker relations.

Presentation of the material within the chapters follows the pattern “model !
method ! algorithm ! computation results based on simulated or real-world data.”
The theoretical results are illustrated by computer experiments using real-world
statistical data (eight instances) and simulated data (ten instances).
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Fig. 1 The interdependence of the chapters

The robust forecasting algorithms described in the monograph have been imple-
mented as computer programs; however, the developed software package cannot be
made available to the reader (in particular, only the Russian-language user interface
has been designed). The author has intentionally deferred from connecting the mate-
rial presented in this book to any specific software package or framework. Instead,
the methods and algorithms are presented in the most general form, allowing the
reader to implement them within a statistical package of their choice (e.g., S-
PLUS or R). This also ensures that software developers can easily incorporate the
developed methods into their products.
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The book is primarily intended for mathematicians, statisticians, and software
developers in applied mathematics, computer science, data analysis, econometrics,
financial engineering, and biometrics. It can also be recommended as a textbook for
a one-semester course for advanced undergraduate and postgraduate students of the
mentioned disciplines.

The author would like to thank Serguei Ayvazyan, Christophe Croux, Peter
Filzmoser, Ursula Gather, Peter Huber, William Mallios, Helmut Rieder, and
Peter Rousseeuw for the discussions that aroused his interest in robust statistics.
The author is grateful to the anonymous reviewers for their attention in analyzing the
manuscript, and the resulting comments and proposals on improving the book. The
author also thanks his colleagues from the Research Institute for Applied Problems
of Mathematics and Informatics, as well as the Department of Mathematical
Modeling and Data Analysis of the Belarusian State University. The author thanks
his Ph.D. students Alexander Huryn, Andrey Kostevich, Vladimir Malugin, Maksim
Pashkevich, Andrey Piatlistkiy, Valery Voloshko, and Andrey Yarmola for their
contributions to the joint research in the field of robust statistical methods and
algorithms. The author would like to give special thanks to Nikolai Kalosha for
his assistance in editing the English version of the manuscript. To conclude the list
of people who made a significant impact on the book, the author must mention the
wise counsel and helpful advice provided by Dr. Niels Peter Thomas and Veronika
Rosteck of Springer.

Minsk, Belarus Yuriy Kharin
April 2013
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Chapter 1
Introduction

Abstract The introduction defines statistical forecasting and discusses its history
and applications.

Webster encyclopedic dictionary [17] defines forecasting as “an activity aimed
at computing or predicting some future events or conditions based on rational
analysis of the relevant data.” Let us illustrate this definition by using macro-
level forecasting of economic indicators in a national economy S . Let X be
multivariate macroeconomic data (e.g., the quarterly GDP values, investments,
state expenditures, and unemployment levels) observed in the system S up to and
including a given time point T , and Y be a collection of variables representing
macroeconomic indicators for a future time point t D T C � , � > 0. The aim of
mathematical forecasting is to construct a functional mapping

OY D f .X/;

where OY is the computed prediction (estimator) for Y called the forecast or the
forecast value and f .�/ is the forecasting function (statistic).

Note that the term “forecasting” is sometimes generalized by ordering the data
X collected in the system S not over time t , but over some other variable (e.g., a
coordinate, an environment variable).

Statistical forecasting is widely used in applications, including decision making
and planning at top executive level. Let us give some practical examples of
forecasting problems [1, 2, 6–9, 14, 19, 20]:

1. Economics, finance, and business:

• Planning and state regulation of national economies;
• Forecasting the GDP, commodity prices, and various other economical

indicators;
• Forecasting future interest rates;
• Credit scoring in banking;

Y. Kharin, Robustness in Statistical Forecasting, DOI 10.1007/978-3-319-00840-0 1,
© Springer International Publishing Switzerland 2013
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2 1 Introduction

• Forecasting stock market rates and currency exchange rates;
• Forecasting future claims on insurance policies.

2. Marketing:

• Forecasting sales and projecting raw material expenditure;
• Forecasting total product demand, as well as its distribution across different

regions and consumer groups.

3. Engineering:

• Forecasting reliability of complex technological systems;
• Forecasting product quality based on various production factors.

4. Geology: forecasting deposits of natural resources.
5. Environmental studies: forecasting various environmental variables.
6. Meteorology: weather forecasting.
7. Medicine: forecasting efficiency of medical procedures.
8. Psychology: forecasting the respondent’s professional qualities based on the

results of psychological tests.
9. Sports: forecasting the future performance of an adult sportsman based on results

as a junior.

Based on the nature of the investigated process and the chosen theoretical
model, mathematical forecasting can be based on either deterministic or stochastic
methods. This book follows the stochastic approach, which is more relevant to
applications due to a high degree of uncertainty present in most practical problems.

As a rule, methods of statistical forecasting are based on the plug-in principle
and consist of two steps:

Step 1. Construct an adequate model for the investigated process based on the
collected statistical data X and prior knowledge;

Step 2. Based on the model constructed in Step 1, compute the forecast OY which
is optimal w.r.t. a certain criterion.

A general diagram of the forecasting process is shown in Fig. 1.1.
Forecast optimality is usually understood in the sense of the minimum forecast

error which is measured by averaging over some suitable metric k � k:

r D r.f / D E

n

k OY � Y k
o

! min
f .�/ ;

where Ef�g is the mathematical expectation. The solution f �.�/ of this optimization
problem defines the optimal forecasting algorithm:

OY D f �.X/:

Many applied forecasting problems in economics, finance, business, and other
fields are reduced to one of the fundamental problems in mathematical statistics—
forecasting discrete time random processes, which are also called random sequences
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Fig. 1.1 Diagram of the forecasting process

or time series. From a mathematical point of view, forecasting is equivalent to
solving the following problem: for some � 2 N, estimate the �-step-ahead future
value xTC� 2 Rd (assuming the general case of a d -variate random process) using
a realization of this process fx1; : : : ; xT g � Rd observed over T 2 N preceding
time units as sample data.

Let us briefly discuss the history of statistical forecasting. Rigorous mathematical
studies of stochastic forecasting were started in the 1930s by the founder of modern
probability theory Andrey Kolmogorov [15,16]. Two stages can be identified in the
development of statistical forecasting techniques. The first stage took place before
1974 and was characterized by construction of forecasting statistics (algorithms or
procedures) that minimized the forecast risk (the mean square error) for a number of
simple time series models, such as stationary models with fixed spectral densities,
stationary models with trends belonging to a given function family, autoregressive
models, and moving average models. Results of this type have been surveyed
in [3–5].

In the 1970s it was found that applying many of the developed “optimal” fore-
casting procedures to real-world data often resulted in much higher risks compared
to the expected theoretical values. The reason for this phenomenon was pointed
out by Peter Huber (Swiss Federal Institute of Technology) in his talk [11] at the
1974 International Congress of Mathematicians (Vancouver, Canada): “Statistical
inferences are based only in part upon the observations. An equally important base
is formed by prior assumptions about the underlying situation”. These assumptions
form the hypothetical model M0 of the process being investigated. In applications,
the behavior of the investigated processes often deviates from the model M0,
leading to instability of forecasting statistics. The following main types of deviations
from hypothetical models have been identified: non-normal observation errors,
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dependence (or correlation) of observation errors, inhomogeneous observation
errors, model specification errors, presence of outliers, change points, or missing
values in the time series [10, 13, 18]. It was suggested [12] that statisticians develop
robust statistical procedures, which would have been affected only slightly by small
deviations from the hypothetical model M0. This marked the beginning of the
second stage in the history of statistical forecasting.

In the recent years, the development of robust statistical algorithms has become
one of the major research topics in mathematical statistics. New results in this
field are presented each year at the International Conference on Robust Statistics
(ICORS). The author would like to mention the names of the following notable
modern-day researchers of robust statistical methods: Christophe Croux, Rudolf
Dutter, Luisa Fernholz, Peter Filzmoser, Ursula Gather, Marc Genton, Xuming
He, Ricardo Maronna, Douglas Martin, Stephan Morgenthaler, Hannu Oja, Daniel
Peña, Marco Riani, Helmut Rieder, Elvezio Ronchetti, Peter Rousseeuw, Stefan Van
Aelst, Roy Welsch, Gert Willems, Victor Yohai, and Ruben Zamar.

The main motivation for writing this monograph was a notable gap in the avail-
able books on robust statistics, which are mainly devoted to parameter estimation
and hypothesis testing under various types of distortions. However, little attention
is paid to robustness of statistical forecasting. This work attempts to fill this gap,
focusing on the following problems:

(a) mathematical description of the distortion types common to applied forecasting
problems;

(b) sensitivity analysis and quantitative robustness estimation of traditional
forecasting algorithms under distortions;

(c) construction and mathematical evaluation of new robust forecasting statistics.
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Chapter 2
A Decision-Theoretic Approach to Forecasting

Abstract Statistical forecasting is prediction of future states of a certain process
based on the available stochastic observations as well as the available prior
model assumptions made about this process. This chapter describes a general
(universal) approach to statistical forecasting based on mathematical decision
theory, including a brief discussion of discriminant analysis. The following fun-
damental notions are introduced: optimal and suboptimal forecasts, loss function,
risk functional, minimax, admissible, and Bayesian decision rules (BDRs), Bayesian
forecast density, decision rule randomization, plug-in principle.

2.1 The Mathematical Model of Decision Making

A generalized mathematical model of decision making has been formulated by
Abraham Wald [14] as a generalization of the models used for hypothesis testing and
parameter estimation to obtain an adequate description of settings that include
stochastic processes. The high degree of uncertainty present in most applied
forecasting problems makes the decision-making approach extremely relevant to
statistical forecasting.

A general decision-making model contains two abstract objects: the environment
(E) and the decision maker (DM), as well as the following six mathematical objects:

.‚;Y;X;w.�/; F .�/;D/:

Here ‚ � Rm is the parameter space containing all possible states � 2 ‚ of the
environment E, which includes a certain “actual state of E” denoted as �0 2 ‚ (this
actual state is assumed to be unknown to the DM at the moment when the decision
is made); Y � Rm is the decision space (each element Y 2 Y is a possible decision
of the DM); w.�/ is the loss function

w D w.�; Y /; � 2 ‚; Y 2 Y; w 2 R
1;

Y. Kharin, Robustness in Statistical Forecasting, DOI 10.1007/978-3-319-00840-0 2,
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Fig. 2.1 The process of decision making

where w is the loss taken by the DM for �0 D � and the decision Y ; the function
u D u.�; Y / D �w.�; Y / is usually called the utility function; X D B.RN / is the
sample space (a Borel 	-algebra defined over an N -dimensional Euclidean space)
where statistical data is observed; the random N -vector of observations X 2 X is
defined over the probability space .˝;F;P/, and F.X I �0/ W X �‚ ! Œ0; 1� is the
N -dimensional distribution function ofX which depends on the parameter �0;D is
the decision rule space consisting of all Borel maps d.�/ W X ! Y:

D D fY D d.X/ W X 2 X; Y 2 Yg:

Decision making within this model is illustrated in Fig. 2.1. At the moment when
the decision Y 2 Y is being made, the DM doesn’t know the “actual state of E”
�0 2 ‚, and therefore the actual loss w.�0; Y / is also unknown. However, the DM
knows the possible loss w D w.�; Y / for every possible situation .�; Y / 2 ‚ � Y.
In order to reduce the uncertainty of �0, the DM collects statistical data in the form
of an observation X 2 X, which has the probability distribution defined by �0.
Based on the knowledge of the loss function w.�/, the distribution function F.�/,
and the collected statistical data X , the DM uses a certain performance criterion to
choose the optimal decision rule dopt.�/ 2 D and to make the best possible decision
OY D dopt.X/ by following this rule.

2.2 Minimax, Admissible, and Bayesian Families
of Decision Rules

Under a generalized decision-making model presented in Sect. 2.1, consider the
problem of constructing the optimal decision rule dopt.�/ 2 D. Let us define a
criterion of decision rule optimality [10].

Definition 2.1. The conditional risk of a decision rule d.�/ 2 D for �0 D � is
defined as the conditional expectation of the loss function:
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r D r.d.�/I �/ D E� fw.�; d.X//g D
Z

RN

w.�; d.X//dF.X I �/; � 2 ‚; r 2 R
1:

(2.1)

Smaller values of the functional (2.1) correspond to more effective decision rules.
It follows from the definition that the uncertainty of the value �0 complicates the
minimization of the risk functional.

Definition 2.2. A minimax decision rule Y D d�.X/ is defined as a decision rule
minimizing the supremum of the risk functional (2.1):

rC.d�.�// D inf
d.�/2D rC.d.�//; rC.d.�// D sup

�2‚
r.d.�/I �/ (2.2)

where rC.d.�// is the guaranteed (upper) risk, i.e., the maximum possible value of
the risk functional for the decision rule d.�/.

The guaranteed risk corresponds to the least favorable state of the environment
E, and thus the minimax decision rule (2.2) is often called “pessimistic.”

Another popular approach to decision making is the Bayesian approach [10]
which is based on the assumption that there exists an a priori knownm-dimensional
probability distribution function G.�/ of the random vector �0 2 ‚ defining the
state of the environment E.

Definition 2.3. Under the assumptions of the decision-making model defined
earlier, let �0 2 ‚ � Rm be a randomm-vector characterized by a prior distribution
function G.�/. Then the Bayesian (unconditional) decision risk is defined as the
following functional:

r D r.d.�// D Efr.d.�/I �0/g D
Z

Rm

r.d.�/I �/dG.�/; d.�/ 2 D; r 2 R
1;

(2.3)

or equivalently

r D r.d.�// D Efw.�0; d.X//g D
Z

Rm

Z

RN

w.�; d.X//dF.X I �/dG.�/;

which follows from (2.1) and the total expectation formula.

Definition 2.4. A Bayesian decision rule (BDR) is a decision rule Y D d0.X/ that
minimizes the Bayesian risk (2.3):

r.d0.�// D inf
d.�/2D r.d.�//: (2.4)
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Let us introduce the last type of decision rules that will be discussed in this
chapter—the admissible decision rules.

Definition 2.5. It is said that a decision rule d 0.�/ dominates a decision rule d 00.�/,
where d 0.�/, d 00.�/ 2 D, if

r.d 0.�/I �/ � r.d 00.�/I �/ 8� 2 ‚; (2.5)

and there exists a � 2 ‚ such that the inequality in (2.5) is strict. A decision rule
Qd.�/ is said to be admissible if no other decision rule d.�/ 2 D dominates Qd.�/.

Definition 2.6. Decision rules d1.�/; d2.�/ 2 D are said to be equivalent w.r.t. the
Bayesian decision risk if they have the same Bayesian risk values:

r.d1.�// D r.d2.�//:

Equivalence w.r.t. the guaranteed risk is defined similarly:

rC.d1.�// D rC.d2.�//:

Let us establish some properties of the above decision rules (see [1] for a more
systematic treatment).

Properties of Bayesian, Minimax, and Admissible
Decision Rules

Property 2.1. A BDR d0.�/ minimizes the posterior mean loss w.Y j X/:
OY D d0.X/ D arg min

Y2Y w.Y j X/; (2.6)

where

w.Y j X/ D Efw.�0; Y / j Xg D
Z

Rm

w.�; Y /dG.� j X/; (2.7)

and G.� j X/ is the posterior probability distribution function of the random
parameter �0 given the observationX .

Proof. Using (2.3) and the total expectation formula, let us rewrite the Bayesian risk
as follows:

r.d.�// D Efw.�0; d.X//g D EfEfw.�0; d.X// j Xgg;
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where the outer expectation is computed w.r.t. the unconditional distribution of the
random vector X with a distribution function

F.X/ D
Z

Rm

F.X I �/dG.�/I

the inner conditional expectation defines the posterior loss (2.7). Thus,

r.d.�// D Efw.d.X/ j X/g D
Z

RN

w.d.X/ j X/dF.X/ � r0 WWD
Z

RN

min
Y2Y w.Y j X/dF.X/;

and it is obvious that the lower bound r0 is attained for the decision rule defined by
(2.6), (2.7). From Definition 2.4, this decision rule is a BDR. ut
Property 2.2. If a BDR Y D d0.X/ is unique, it is also admissible.

Proof. The statement will be proved by contradiction. Suppose that the BDR d0.�/
is not admissible. Then, by Definition 2.5, there exists a decision rule d 0.�/ 2 D;

d 0.�/ ¤ d.�/, such that

r.d 0.�/I �/ � r.d0.�/I �/ 8� 2 ‚; 9� 0 2 ‚ W r.d 0.�/I � 0/ < r.d0.�/I �/:

Integrating the first inequality over the probability distribution G.�/ of � and
applying (2.3) yields the inequality

r.d 0.�// � r.d0.�//:

Strictness of this inequality would contradict the definition of a BDR given in (2.4).
However, an equality is also impossible, since in that case d 0.�/ would be a different
BDR, contradicting the uniqueness of the BDR. This contradiction concludes the
proof. ut
Property 2.3. Given that the parameter space is finite, ‚ D f�.1/; : : : ; � .K/g,
K < 1, and that the prior probability distribution of �0 2 ‚ is nonsingular,

pk D Pf�0 D �.k/g > 0; k D 1; : : : ; K;

the BDR Y D d0.X/ is admissible.

Proof. Assume the opposite: d0.�/ is not an admissible decision rule. Then (2.5)
implies that there exist a decision rule d.�/ 2 D and an index i� 2 f1; : : : ; Kg
such that

r.d.�/I �k/ � r.d0.�/I �k/; k ¤ i�I r.d.�/I �i�/ < r.d0.�/I �i�/:
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Multiplying both sides of these inequalities by pk > 0 and pi� > 0, respectively,
taking a sum, and applying the equality (2.3) yield

r.d.�// D
K
X

kD1
pkr.d.�/I �.k// <

K
X

kD1
pkr.d0.�/I �.k// D r.d0.�//:

This inequality contradicts the definition of the BDR (2.4). ut
Property 2.4. If the parameter space is finite, ‚ D f�.1/; : : : ; � .K/g, K < 1, and
d.�/ is an admissible decision rule, then there exists a prior distribution

pk D P f�.0/ D �.k/g; k D 1; : : : ; K;

such that the decision rule d.�/ is the BDR w.r.t. the prior distribution fpkg. In other
words, in this case the set of admissible decision rules is included in the set of BDRs.

Proof. The proof can be obtained by repeating the argument of the previous proof.
ut

Property 2.5. If a minimax decision rule d�.�/ is unique, then it is also admissible.

Proof. Let us assume the opposite: there exists a different decision rule d.�/ 2 D,
d.�/ ¤ d�.�/, such that

r.d.�/I �/ � r.d�.�/I �/ 8� 2 ‚; 9� 0 2 ‚ W r.d.�/I � 0/ < r.d�.�/I � 0/:

From (2.2), this also yields the inequality

rC.d.�// � rC.d�.�//:

This contradicts the condition that d�.�/ is a unique minimax decision rule. ut
Property 2.6. Given that d.�/ is an admissible decision rule and that the
corresponding risk function (2.1) doesn’t depend on � 2 ‚, i.e., r.d.�/I �/ D const:,
the decision rule d.�/ is also a minimax decision rule.

Proof. Assume that the minimax condition isn’t satisfied for the decision rule d.�/
and that there exists a different minimax decision rule d 0.�/ ¤ d.�/:

rC.d 0.�// < rC.d.�//:

However, we have also assumed that rC.d.�// 	 rC.d.�/I �/, and thus

r.d 0.�/I �/ < r.d.�/I �/ 8� 2 ‚;

which contradicts the admissibility of d.�/. ut
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2.3 The Bayesian Forecast Density

Randomization of the decision rule is a commonly used decision-theoretic technique
of reducing the decision risk [1].

Definition 2.7. A randomized decision rule is a family of random variables

Y D d.X; !/ W X �˝ ! Y;

lying in the basic probability space .˝;F;P/ and defined by a critical function
�.Y IX/. For a discrete decision space Y, the function �.Y IX/ is defined as

� D �.Y IX/ WWD Pfd.X; !/ D Y j Xg; Y 2 Y;

and we have

0 � �.Y IX/ � 1;
X

Y2Y
�.Y IX/ 	 1:

In the continuous case, where Y � RM , and the Lebesgue measure mesM.Y/ is
positive, � D �.Y IX/ is defined as the M -dimensional probability density of the
random variable d.X; !/, and we have

�.Y IX/ � 0;

Z

RM

�.Y IX/dY D 1:

Let us consider applications of randomized decision rules in statistical
forecasting. Assume that a forecast is constructed for a random M -vector Y 2 Y

that describes an unknown future state of the process or the phenomenon that
is being investigated. Its probability density g.Y j �/ depends on a parameter
� 2 ‚ � Rm with an unknown true value �0 2 ‚. Following the Bayesian
paradigm, it is assumed that �0 is a randomm-vector with a given prior probability
density q.�/. Let X 2 X � RN be statistical data describing past and current states
of the process with a conditional probability density p.X j �/ given �0 D � . Thus,
the random parameter vector �0 is stochastically dependent not only on the past and
current states X but also on the future states Y . This allows forecasting of Y based
on the collected statistical data X under prior probabilistic uncertainty of �0.

The problem of constructing a forecast for Y based on X using the randomized
decision rule OY D d.X; !/ lies in finding the critical function �.Y IX/. Following
the Bayesian approach outlined above, one of the methods of constructing the
critical function is the use of the posterior probability density of Y given the
observationX :

�.Y IX/ D p.Y j X/; Y 2 Y: (2.8)
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Fig. 2.2 Stochastic
dependence between X , �0,
and Y

The conditional probability density (2.8) used in forecasting is called the Bayesian
forecast density.

Following the accepted stochastic model (Fig. 2.2) of the dependence between
X , �0, and Y , Bayes formulae, together with certain well-known properties of
multivariate probability densities, imply that

�.Y IX/ D
Z

Rm

g.Y j �/p.� j X/d�; (2.9)

where

p.� j X/ D p.X j �/q.�/
0

@

Z

Rm

p.X j � 0/q.� 0/d� 0
1

A

�1

(2.10)

is the posterior probability density of the random vector �0 given a fixed value of
the random vector X .

The Bayesian forecast density (2.9), (2.10) allows us not only to compute
the randomized forecast OY 2 Y as a result of simulating a random M -vector
with the probability density �.Y IX/, Y 2 Y but also to compute the traditional
(nonrandomized) point and interval forecasts. Numerical characteristics of the
Bayesian forecast density �.Y IX/ can be used as point forecasts of Y :

• Posterior expected forecast

OY0 D
Z

Rm

Y�.Y IX/dY I (2.11)

• Posterior mode forecast

OY1 D arg max
Y2Y �.Y IX/I (2.12)

• Posterior median forecast (forM D 1): OY2 is defined as a root of the equation
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Fig. 2.3 Construction of
point and interval forecasts
from the Bayesian forecast
density

OY2
Z

�1
�.Y IX/dY D

C1
Z

OY2

�.Y IX/dY: (2.13)

Figure 2.3 above presents an example of using the Bayesian forecast density to
construct point and interval forecasts in the univariate case (M D 1).

The following two techniques can be proposed for set (interval) forecasting.
Let the domain of � -maximal Bayesian forecast density be a subset of the possible
forecasts defined as

Y� D fY 2 Y W �.Y IX/ � ��maxg; (2.14)

where �max D max
Y2Y �.Y IX/ and the parameter � 2 .0:5; 1/ defines the size of

the domain Y� , i.e., its M -dimensional volume mesM .Y� /. Following the theory of
statistical interval estimation, let us define the posterior � -confidence region Y� as
the solution of the following conditional minimization problem:

mesM.Y� / ! min;
Z

Y�

�.Y IX/dY D �: (2.15)

In order to simplify the computations, it is often advisable to consider a parametric
family of possible confidence regions.

It should be noted that computation of Bayesian density forecasts (2.9), (2.10)
is often complicated by the necessity of multiple integration over � 2 ‚ � Rm. If
analytic computation of the integrals in (2.9) and (2.10) appears to be unfeasible,
Monte Carlo numeric integration may be used:

�.Y IX/ 
 1

K

K
X

iD1
g.Y j �.i//:
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Here �.1/; : : : ; � .K/ 2 ‚ is a sample of K independent random vectors with the
probability density function p.� j X/, which can be simulated by using standard
algorithms. As the number of Monte Carlo trials K increases to infinity, the mean
square error of this approximation decreases as K�1.

To illustrate the notions and methods of this section, let us consider a problem of
forecasting a financial company’s income.

Assume that the income Y over the next business day is a random variable
depending on the average increment �0 2 R1 of a certain currency exchange rate
over the previous day:

Y D �0 C k �0 C ";

where �0 2 R1 is the (known) guaranteed mean income that doesn’t depend on the
currency exchange market, k �0 is the income depending on �0 (here k > 0 is a
known proportionality coefficient); " is a random variation of the income modeled
by a normally distributed random variable,

Lf"g D N.0;2/;

with a known variance 2. The parameter �0 is unknown, but statistical data
x1; : : : ; xN representing the 1-day exchange rate increments over the previous day
(offered by N commercial banks) has been collected, where X D .xi / 2 RN

is assumed to be a random sample of size N taken from a normal probability
distribution, Lfxi g D N.0; 	2/, with a known variance 	2.

We would like to make point and interval forecasts of the income Y based on
statistical data X , the above model assumptions, and a prior assumption that �0 is
uniformly distributed over a given interval Œa; b� (for example, we can assume that
the minimum and maximum exchange rates a and b have been set by a central bank).

Model assumptions yield the following expressions:

g.Y j �/ D 1p
2�

exp

�

� 1

22
.Y � �0 � k�/2

�

;

p.X j �/ D.2�	2/�N=2 exp

 

� 1

2	2

N
X

iD1
.xi � �/2

!

;

q.�/ D 1

b � a
1Œa;b�.�/;

where 1A.�/ D f1; � 2 AI 0; � 62 Ag is the indicator function of the setA. Applying
(2.10) results in the Bayesian forecast density

p.� j X/ D exp
��N.2	2/�1.� � x/2

�

p
2� 	p

N

�

˚
�p

N b�x
	

�

� ˚
�p

N a�x
	

��1Œa;b�.�/;
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which is the normal probability density function N.x; 	2=N / constrained to Œa; b�,

where x D N�1 N
P

iD1
xi is the sample mean. This, together with (2.9), leads to the

equation

�.Y IX/ D
�

2�
	p
N

�

˚

�p
N
b � x

	

�

�˚
�p

N
a � x

	

����1
�

�
b
Z

a

exp

�

�1
2

�

N

	2
.� � x/2 C 1

2
.k� C �0 � Y /2

��

d�;

where the right-hand side integral can be rewritten using the standard normal
distribution function ˚.�/ by performing a substitution of the variables. Applying
this equation to (2.11)–(2.15) yields the desired forecasts.

2.4 Forecasting Discrete States by Discriminant Analysis

2.4.1 The Mathematical Model

In applications, the underlying process can often be described by a discrete
stochastic model [2, 5–8, 11]:

� 2 S D f1; 2; : : : ; Lg;

where � is the future unknown state of the system and 2 � L < C1 is the number
of possible values of � (i.e., the number of possible forecasts). Let us consider some
examples.

Example 2.1. A bank scores a prospective client (a certain company) applying for
a loan. The financial circumstances of the client are characterized by N business
indicators X D .xi / 2 RN (for instance, x1 is the total annual income, x2 is the
demand for the products made by the company, and x3 characterizes the dynamics
of the company’s bank accounts). Based on statistical data X , the bank makes a
forecast O� D d.X/, where O� D 1 stands for a “reliable client” bringing a profit to
the bank and O� D 2—an “unreliable client” failing to repay the loan and causing a
loss (in this example, L D 2).

Example 2.2. Let O� D d.X/ be a success forecast for a certain clinical treatment
based on a patient’s medical test results X 2 RN ; O� D 0 means that the patient’s
health will remain unchanged, O� D 1 corresponds to a health improvement, and
O� D 2—a health deterioration (in this example, L D 3).
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The statistical classification model or, to be precise, the discriminant analysis
model [3, 9, 11] can be used to solve this type of applied problems. Discriminant
analysis is a branch of statistical data analysis devoted to models and methods of
identifying the observed data as belonging to one of the given populations (classes,
patterns, etc.), i.e., classification of statistical observations.

Let us interpret a classification problem as a forecasting problem defined earlier.
Assume that a random observation x D .xk/ 2 RN belongs to one of the L � 2

classes ˝1; : : : ;˝L, and let the possible forecasts be the indices of these classes:
a forecast � D i corresponds to the class ˝i and vice versa. Let an observation
belonging to the class ˝i be a random N -vector Xi 2 RN with a conditional
probability density p0i .x/, i 2 S . We are going to assume the knowledge of prior
class probabilities �1; : : : ; �L:

�i D Pf� D ig > 0;
X

i2S
�i D 1:

We also assume prior knowledge of the .L � L/ forecasting (classification) loss
matrix W D .wi l /, where wi l � 0 is the loss taken if an observation belonging to
the class ˝i is classified as belonging to the class ˝l , i.e., if � D i , but O� D l . For
example, a (0–1) loss matrix W is defined as follows:

wil D 1 � ıil; i; l 2 S; (2.16)

where ıil is the Kronecker delta.
Under this model, optimal forecasting, as defined in Sects. 2.1 and 2.3, is

equivalent to constructing a BDR

O� D d0.x/ W RN ! S; (2.17)

that minimizes the mean loss resulting from the forecast. This problem is
solved differently depending on the available prior knowledge of probabilistic
characteristics of the classes f�i ; p0i .�/g.

2.4.2 Complete Prior Knowledge of f�i ; p0i .�/g

Let us introduce the following notation:

fj .xI fp0i .�/g/ D
X

i2S
�ip

0
i .x/wijI p.x/ D

X

i2S
�ip

0
i .x/: (2.18)

Here p.x/ is the unconditional probability density function of the random
observationX 2 RN determined by the stochastic model of the investigated process.
From the Bayes formula,
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Pf� D j j X D xg D �jp
0
j .x/

p.x/
; (2.19)

and thus (2.18) can be rewritten as

fj .xI fp0i .�/g/
p.x/

D
X

i2S
Pf� D i j X D xgwij D Efw�j j X D xg: (2.20)

The relation (2.20) means that, to a multiplier p.x/ not depending on j , the function
fj in (2.18) defines the posterior mean forecast loss O� D j given the observation
vector X D x.

Theorem 2.1. Under prior knowledge of the probability distributions f�i ; p0i .�/g,
assume that for all i; k; l 2 S , k ¤ l , the condition

P�0i
ffk.X I fp0j .�/g/� fi .X I fp0j .�/g/ D 0g D 0 (2.21)

is satisfied. Then the BDR (2.17) is unique and, up to a set of Lebesgue measure
zero, has the form

O� D d D d0.x/ D arg min
j2S fj .xI fp0i .�/g/; x 2 R

N ; d 2 S: (2.22)

This BDR minimizes the mean loss of forecasting (the Bayesian risk):

r0 D
Z

RN

min
j2S fj .xI fp0i .�/g/dx: (2.23)

Proof. Taking into account (2.3) and (2.18), the Bayesian risk functional can be
rewritten as

r D r.d.�/I fp0i .�/g/ D
X

i2S
�i

Z

RN

p0i .x/wid.x/ D
Z

RN

fd.x/.xI fp0i .�/g/dx; d.�/ 2 D:

(2.24)

Looking at the form of the functional (2.24), it is easy to find the lower bound of
the Bayesian risk over all possible decision rules d.�/ 2 D:

r.d.�/I fp0i .�/g/ � min
d.�/2D

Z

RN

fd.x/.xI fp0i .�/g/dx �
Z

RN

min
j2S fj .xI fp0i .�/g/dx D r0:

Therefore, the above inequality becomes an equality after substituting the decision
rule (2.22). ut
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Observe that, as in Sect. 2.2 (see Property 2.1), the obtained BDR (2.22)
minimizes the posterior mean loss.

Corollary 2.1. For a (0–1) loss matrix (2.16), the Bayesian risk can be interpreted
as the probability of making an incorrect forecast

r0 D inf
d.�/2D Pf O� ¤ �g D 1 �

Z

RN

max
i2S .�ip

0
i .x//dx;

and the expression for the BDR can be written in a simplified form:

O� D d D d0.x/ D arg max
i2S .�ip

0
i .x//; x 2 R

N ; d 2 S: (2.25)

Proof. Let us substitute (2.16) into (2.18), (2.22), and (2.24). Taking normalization
into account, we obtain

fj .xI fp0i .�/g/ D p.x/ � �jp0j .x/;

r.d.�/I fp0i .�/g/ D 1 �
Z

RN

�d.x/p
0
d.x/.x/dx;

and (2.25) follows immediately. ut
Corollary 2.2. Under the assumptions of Corollary 2.1, let the observations be
described by an N -dimensional normal (Gaussian) model:

p0i .x/ D nN .x j �i;˙i / D .2�/�N
2 j˙i j� 1

2 exp

�

�1
2
.x � �i /0˙�1

i .x � �i/

�

;

(2.26)

where �i D .�ij/ 2 RN is the mean vector and ˙i D .	ijk/ 2 RN�N is the
nonsingular covariance matrix of the random vector Xi 2 RN . Then the BDR is
quadratic:

O� D d D d0.x/ D arg min
i2S

�

.x � �i/0˙�1
i .x � �i /C ln.j˙i j=�2i /

�

: (2.27)

Proof. Substitute (2.26) into (2.25) and perform the obvious transformations. ut
Corollary 2.3. Under the assumptions of Corollary 2.1, take Fisher’s model [3]:

˙1 D ˙2 D � � � D ˙L D ˙ (2.28)
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with two classes (L D 2). In that case the BDR is linear:

O� D d D d0.x/ D 1 .l.x//C 1; x 2 RN ;
l.x/ D b0x C ˇ;

b D ˙�1.�2 � �1/;
ˇ D .�0

1˙
�1�1 � �0

2˙
�1�2/=2C ln.�2=�1/;

r0 D 1 �
�

�1˚

�



2
C 1


ln
�1

�2

�

C �2˚

�



2
� 1


ln
�1

�2

��

;

(2.29)

where ˚.�/ is the standard normal N.0; 1/ distribution function and

 D
p

.�2 � �1/0˙�1.�2 � �1/ � 0

is the so-called Mahalanobis distance between classes [3].

Proof. Rewriting the BDR as (2.27) for L D 2 and taking into account the notation
(2.28), (2.29) yields

O� D d D d0.x/ D arg min
i2S

�

��0
i˙

�1x C 1

2
�0
i˙

�1�i � ln�i

�

	 1.l.x//C 1; x 2 R
N ;

which is the first expression of (2.29).
Now let us compute the Bayesian risk (i.e., the unconditional probability of a

forecast error) for the BDR (2.29):

r0 D �1P1 C �2P2; (2.30)

where

Pi D Pf O� ¤ i j � D ig; i 2 S;

is the conditional probability of a forecast error given that the true number of the
class equals � D i . Due to (2.29), we have

P1 D Pf O� D 2 j � D 1g D Pfl.X1/ � 0g D 1 � Fl1.0/; (2.31)

where li D l.Xi/ D b0Xi C ˇ is a random variable and Fli .z/, z 2 R1, is the
distribution function of the random variable li , i 2 S . From the condition (2.26),
the probability distribution of Xi can be written as

LfXig D NN .�i ;˙i /;
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and the linear transformation theorem for normal random vectors [3] yields

Lfli g D N1.mi ; �i /;

mi D b0�i C ˇ D .�1/i2=2C ln
�2

�1
;

�i D b0˙ b D .�2 � �1/
0˙�1.�2 � �1/ D 2;

where the variance �i D 2 doesn’t depend on i 2 S . Therefore,

Fli .z/ D ˚
� z �mi



�

; i 2 S:

Substituting this equality into (2.31) results in the expression

P1 D 1 � ˚

�



2
C 1


ln
�1

�2

�

:

Similarly, we have

P2 D 1 � ˚

�



2
� 1


ln
�1

�2

�

:

Substituting P1, P2 into (2.30) yields (2.29). ut
Definition 2.8. Fisher’s linear discriminant function is defined as l.x/ D b0x C ˇ

(as implied by (2.29), its sign determines the forecast). The set

�0 D fx W b0x C ˇ D 0g � R
N

is called Fisher’s discriminant hyperplane.

Figure 2.4 illustrates Fisher’s linear decision rule for N D 2.
To conclude this subsection, let us observe that, as in Sect. 2.3, it is possible to

construct a randomized decision rule O� D Qd.x; !/ which is going to be described by
a Bayesian forecast distribution (2.9), (2.10) defined on the set of possible forecasts
A D S D f1; 2; : : : ; Lg:

�.i I x/ D Pf O� D i j X D xg D �ip
0
i .x/

p.x/
; i 2 S:

The nonrandomized forecast (2.25) is, in fact, equal to the posterior mode (2.12).
Some applications require interval forecasts H� � S defined by (2.15). In the

discrete case, this definition can be rewritten as

X

i2H�
�.i; x/ � �; jH� j ! min : (2.32)
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Fig. 2.4 Fisher’s linear
decision rule

Interval forecasts defined by (2.32) become very useful in the rather common case,
where the number of classes is large (L >> 1).

2.4.3 Prior Uncertainty

Consider a setting with a priori unknown conditional probability densities of the
observations fp0i .�/g. To overcome this prior uncertainty, we can use a so-called
classified training sample Z � RN of total size n D n1 C � � � C nL, which consists
of L independent subsamples:

Z D [
i2SZi ; Zi \Zj D ;; j ¤ i:

Here

Zi D fzij 2 R
N W j D 1; : : : ; ni g

is a random subsample of size ni taken from the class ˝i (i.e., a subset of statistical
data corresponding to the forecast value � D i ).

Let us start by considering the case of parametric prior uncertainty, where the
densities fp0i .�/g, i 2 S , belong to a given family of probability distributions, but
the distribution parameters remain unknown:

p0i .x/ D q.xI �0i /; x 2 R
N ; �0i 2 ‚;

where

Q D fq.xI �/; x 2 R
N W � 2 ‚ � R

mg
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is some given m-parametric family of N -dimensional probability densities. Fore-
casting under parametric uncertainty is usually based on one of the two approaches
described below. Recall that we are constructing a forecast O� 2 S based on the
collected statistical data Z and the recorded observation x 2 RN .

A. Construction of plug-in decision rules (PDRs).

Definition 2.9. A PDR is defined as the decision rule obtained from a BDR (2.22)
by substituting consistent statistical estimators f O�ig for the unknown true values of
the parameters f�0i g based on the training sample Z:

Q� D d1.xIZ/ D arg min
j2S fj .xI fq.xI O�i /g/; x 2 R

N ; Q� 2 S; (2.33)

where functions ffj .�/g are defined by (2.18).

The estimators f O�ig are usually the maximum likelihood estimators (MLEs):

O�i D arg max
�2‚

1

ni

ni
X

jD1
ln q.zijI �/; i 2 S: (2.34)

Theorem 2.2. If the parametric family Q of probability densities satisfies the
classical regularity conditions [4], then the forecast Q� defined by the PDR (2.33),
(2.34), converges in probability to the forecast O� defined by the BDR (2.22):

d1.xIZ/ P! d0.x/; x 2 R
N ; (2.35)

for

n0 D min
i2S ni ! 1:

Proof. Regularity conditions together with certain well-known asymptotic proper-
ties of MLEs [4] imply that

O�i P! �0i ; i 2 S:
Notation (2.18) and well-known results on functional transformations of convergent
sequences [4, 13] yield the relations

q.xI O�i / P! q.xI �0i /;

fj .xI fq.xI O�i /g/ P! fj .xI fq.xI �0i /g/; i; j 2 S; x 2 R
N :

Since S is a finite set, the convergence of the objective functions

fj .�/; j 2 S;
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implies that the minimum points also converge:

arg min
j2S fj .xI fq.xI O�i /g/ P! arg min

j2S fj .xI fq.xI �0i /g/; x 2 R
N :

This, together with (2.33) and (2.22), proves the convergence in (2.35). ut
Let us define the unconditional Bayesian risk of a PDR d1.�/ similarly to (2.24):

r.d1.�// D E

� Z

RN

fd1.xIZ/.xI fp0i .x/g/dx
	

; (2.36)

where the expectation Ef�g is computed w.r.t. the probability distribution of the
random sampleZ. Known asymptotic expansions of the deviations f O�i � �0i g [9,13]
lead to the following asymptotic expansion for the unconditional risk (2.36):

r.d1.�// D r0 C
L
X

iD1

%i

ni
CO

�

n
�3=2
0

�

; (2.37)

where the coefficients f%i g above satisfy the condition

%i D %i
�

N; f�ig; fq.�I �0i /g; fwijg
� � 0:

It is easy to see from (2.37) that for n0 ! 1 the PDR risk (2.33) converges to the
minimal Bayesian risk (2.23):

r.d1/ ! r0; (2.38)

and therefore in practice (2.33) is often called the suboptimal decision rule.
In practical applications, it is important to choose sufficiently large training

sample sizes n1; n2; : : : ; nL that guarantee a minor relative increase in the forecast
risk due to the uncertainty of f�0i g. The relation (2.37) can be used to evaluate this
increment:

r.d1/� r0

r0



L
X

iD1

%i

ni r0
� ı: (2.39)

B. Using the Bayesian forecast distribution.

Define an Lm-dimensional composite column vector of parameters for the
probability distributions

p0i D q.xI �0i /; x 2 R
N ; �0i 2 ‚ � R

m;



26 2 A Decision-Theoretic Approach to Forecasting

Fig. 2.5 Stochastic dependence between model components

where i 2 S , as

�0 D �

�001
... �002

... : : :
... �00L

�0 2 R
Lm;

and assume that �0 is a random vector with an a priori given probability density
function q.�/, � 2 RLm.

To define a Bayesian forecast distribution and construct a randomized decision
rule

Q� D d2.xIZ;!/;
we are going to use the diagram of the stochastic dependence between �,X , �0, and
Z presented in Fig. 2.5.

The Bayesian forecast distribution is defined on the decision space S in the
following way:

�.i I x;Z/ D Pf� D i j X D x;Zg D
Z

RLm

�iq.xI �i /
P

j2S
�j q.xI �j /p.� j Z/d�;

p.� j Z/ D
q.�/

L
Q

iD1

ni
Q

jD1
q.zijI �i /

R

RLm

q.�
0

/
L
Q

iD1

ni
Q

jD1
q.zijI � 0

i /d�
0

:

(2.40)

As in Sect. 2.3, (2.40) can be used to construct point and interval forecasts of �.
To conclude the section, let us briefly discuss the case of models with nonpara-

metric prior uncertainty, where the N -dimensional probability densities lie in a
distribution family P which doesn’t allow for a finite parameterization:

p01.�/; p02.�/; : : : ; p0L.�/ 2 P:
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In this setting, the approach A is still valid, requiring only a modified construction
of admissible estimators f Opi.�/g for fp0i .�/g.

Two types of nonparametric estimators f Opi .�/g are the most relevant to applica-
tions: the Rosenblatt–Parzen estimators and the k-Nearest-Neighbor estimators.

A nonparametric (kernel) Rosenblatt–Parzen estimator [12] of the density p0i .�/
based on the sample Zi is defined as the statistic

Opi .x/ D 1

ni jHi j
ni
X

jD1
K.H�1

i .x � zij //; x D .xl / 2 R
N : (2.41)

In this definition,

K.x/ D
N
Y

lD1
Kl.xl /

is an N -dimensional kernel, and each Kl.y/, y 2 R1, is a one-dimensional
kernel—a nonnegative bounded differentiable even function such that Kl.jyj/ is
nonincreasing in jyj, the conditions

C1
Z

0

ymKl.y/dy < C1 .m > 0/;

C1
Z

�1
y2Kl.y/dy D 1I

are satisfied, and Hi D diagfhilg is a diagonal .N �N/-matrix. Diagonal elements
ofHi are known as smoothing coefficients; they are strictly positive, hil > 0. Given
the convergence

hil D hil.ni / ! 0; ni jHi j ! 1

as ni ! 1, the estimator (2.41) is consistent [12].
It has been proved [9] that if P is a family of thrice differentiable densities, the

sizes of training samples fni g are comparable:

n0 D min
i2S ni ! 1; ni D cin0; 1 � ci < C1;

where fci g are certain constants, and the smoothing coefficients can be written
asymptotically as

hil D biln
� 1
NC4

i ; l D 1; : : : ; N;
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then the unconditional Bayesian risk (2.36) satisfies an asymptotic expansion similar
to (2.37):

r.d1.�// D r0 C q

n
4=.NC4/
0

C o
�

n
�4=.NC4/
0

�

; (2.42)

where q D q.N; f�ig; fp0i .�/g; fwijg/ is a known coefficient of the asymptotic
formula. The asymptotic expansion (2.42) implies that a PDR d1.�/ constructed
from Rosenblatt–Parzen estimators satisfies (2.38) and is, therefore, suboptimal.
Similarly to the parametric case (2.39), the asymptotic expansion (2.42) yields the
following explicit relation between n0 and ı:

n0 �
�

q

r0ı

�N
4 C1

: (2.43)

A generalized nonparametric k-Nearest-Neighbor (k-NN ) estimator of the
density p0i .�/ based on the sample Zi is defined as the following statistic [9]:

Opi.x/ D 1

ni%
N
i

ni
X

jD1
Li

�

x � zij

%i

�

; x 2 R
N ; i 2 S; (2.44)

where %i D %i .xIZi / > 0 is the Euclidean distance between a point x 2 RN

and the ki th nearest neighbor of the point x in Zi ; each number of neighbors ki ,
2 � ki � ni , is a positive integer parameter of the estimator; the function Li.u/,
u D .uk/ 2 RN , is a bounded integrable weight function such that

Z

RN

Li .u/du D 1;

Z

RN

juj3Li .u/du < 1;

Z

RN

ukLi .u/du D 0; k D 1; : : : ; N:

In applications, a uniform weight function is used most frequently:

Li.u/ D .2�N=2/�1N� .N=2/1Œ0;1�.juj/;

where � .�/ is the gamma function. Assuming the convergences ki D ki .ni / ! 1,
ki .ni /=ni ! 0 as ni ! 1, the estimator (2.44) is consistent.

It is known [9] that if P is a family of thrice differentiable densities, then a PDR
based on k-NN estimators (2.44) with the coefficients ki defined as

ki D Œbin
4=.NC4/
i �; i D 1; : : : ; N;

where fbi g are some constants, is suboptimal. The unconditional Bayesian risk
of this PDR satisfies the asymptotic formula (2.42) with a different value of the
coefficient q.
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The above analysis shows that parametric prior uncertainty leads to a risk
increment that can be estimated as O.n�1

0 /, and nonparametric uncertainty results

in a much larger increment—O
�

n
�4=.NC4/
0

�

. The difference between risks of

nonparametric and parametric forecasting becomes higher as N (the number of
dimensions of the observation space, or, equivalently, the number of quantities
characterizing the investigated process) increases.

To conclude the chapter, let us note that an even higher level of prior uncertainty
may be considered, where the training sample Z is assumed to be unclassified. In
that case, a forecasting algorithm can be constructed by applying methods of cluster
analysis [9].
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Chapter 3
Time Series Models of Statistical Forecasting

Abstract This chapter introduces time series models which are most commonly
used in statistical forecasting: regression models, including trend models, stationary
time series models, the ARIMA.p; d; q/model, nonlinear models, multivariate time
series models (including VARMA.p; q/ and simultaneous equations models), as
well as models of discrete time series with a specific focus on high-order Markov
chains.

3.1 Regression Models of Time Series

Construction of a sufficiently adequate mathematical model of the process that is
being forecast is a necessary stage in the development of forecasting techniques.
A universal model that is most widely used in applications is the random process
model

xt D xt .!/ W ˝ � T ! X; (3.1)

which is defined on a certain probability space .˝;F;P/. Here ˝ D f!g is the
set of all elementary events, F is a 	-algebra of subsets (random events) of ˝ ,
P D P.A/, A 2 F, is a certain probability measure defined on F; t 2 T is a
parameter of the parametric family (3.1) of random vectors fxt g which is interpreted
as time; T � R1 is the set of observation times; X � RN is the state space of
the investigated process. If T is a discrete set (without loss of generality, it can
be assumed that T D Z D f: : : ;�1; 0;C1; : : : g), then xt is called a discrete
time random process or a random sequence. If X is a discrete set, we have a
random process with a discrete (finite or countable) state space, or a discrete random
process. For N > 1, the process xt is called a vector or a multivariate random
process, and for N D 1—a scalar random process, or simply a random process.
A time series is defined as a sequence of observations ordered by observation time
t and recorded continuously or intermittently (as a rule, with the same time interval

Y. Kharin, Robustness in Statistical Forecasting, DOI 10.1007/978-3-319-00840-0 3,
© Springer International Publishing Switzerland 2013

31
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between consecutive observations). With this definition of a time series, we have
generalized the notion of a statistical sample by paying particular attention to the
dynamics of the underlying process.

For simplicity, further it is assumed that discrete time observations are separated
by identical time intervals. The sequence of observations is modeled by a discrete
time random process (3.1):

xt D xt .!/; t 2 Z:

This model is usually referred to as a random time series (similarly to a random
sample).

Let us assume that

zt 2 R
M ; t 2 Z;

is a given nonrandom sequence of vectors;

ut D ut .!/ 2 R
N ; t 2 Z

is a sequence of independent random vectors defined on .˝;F;P/ with zero vector
expectations and a covariance matrix˙ D .	jk/ 2 RN�N :

Efutg D 0N ; Covfut ; ut 0g D Efutu
0
t 0g D ıtt0˙ I (3.2)

also let

y D F.zI �0/ W RM �‚ ! R
N (3.3)

be a fixed function depending on a vector parameter �0 2 ‚ � Rm.

Definition 3.1. A regression model of a time series defined on the probability space
.˝;F;P/ is given by the following stochastic equation:

xt D F.zt I �0/C ut ; t 2 Z: (3.4)

Here F.�/ is the regression function, zt is the regressor vector (or the factor vector),
and ut is the random observation error.

By (3.2) and (3.4) we have

Efxt g D F.zt I �0/;

and thus the regression function (3.3) determines the mean trend, i.e., the depen-
dence between the expectation of a regression process and the time t .

The stochastic regression model (3.4) is defined by the function F.�/, the vector
parameter �0, and the covariance matrix ˙ .
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If F.�/ is linear w.r.t. �0, we have a linear regression time series:

xt D �0zt C ut ; t 2 Z;

where �0 2 RN�M is the matrix of regression coefficients (m D M2); otherwise we
have a nonlinear regression model.

Definition 3.2. A trend model is defined as a special case of the model (3.4), where
the time variable is used as a regressor (zt D t):

xt D f .t I �0/C ut ; t 2 Z; (3.5)

where f .�/ is the trend—a fixed function of the time t and the parameter �0.

A linear trend model of a time series for N D 1 can be defined as follows:

xt D �0
0

 .t/C ut ; t 2 Z; (3.6)

where  .t/ D . i .t// is a column vector of m linearly independent functions and
�0 D .�0i / is an m-column vector of trend coefficients:

f .t I �0/ D �0
0

 .t/:

The most commonly used special cases of the linear trend model (3.6) are the
polynomial model given by

xt D
m
X

iD1
�0i t

i�1 C ut ; t 2 Z;

and the harmonic trend model:

xt D
m
X

iD1
�0i cos.�i t C �i /C ut ; t 2 Z;

where f�ig; f�ig are, respectively, the frequencies and the initial phases of harmonic
oscillations that define the trend.

Regression models of time series have numerous applications in economics,
environmental studies, medicine, and technology [13, 16–18, 35, 39].

3.2 Stationary Time Series Models

Weak and strict stationarity of time series is defined as follows.

Definition 3.3. A time series xt 2 R, t 2 Z, defined on a probability space
.˝;F;P/ is called strictly stationary if for all n 2 N and � 2 Z the n-dimensional
probability distribution of the time series xt is invariant to time shifts t 0 D t C � .



34 3 Time Series Models of Statistical Forecasting

Definition 3.4. A time series xt , t 2 Z, is called stationary or weakly stationary if
its second order moments are bounded:

Efx2t g < C1; t 2 Z; (3.7)

the expectation is independent of time:

Efxt g D � D const; t 2 Z;

and the covariance functions depend only on the time intervals between measure-
ments:

Covfxt ; xt 0g D Ef.xt � �/.xt 0 � �/g D 	.t 0 � t/; t; t 0 2 Z:

The relation between these two definitions of stationarity follows from the well-
known property [8, 31]: if xt is strictly stationary and its second order moments are
bounded (i.e., (3.7) is satisfied), then xt is also weakly stationary.

The weak stationarity property is the most relevant to applications since estab-
lishing strict stationarity based on random observations is, usually, unfeasible.
A weakly stationary time series can be characterized by its expectation � and
covariance function 	.�/ D 	.��/, � 2 Z. If the time series xt has a “sufficiently
short memory,” i.e., if its covariance function tends to zero sufficiently quickly:

	.�/ ! 0; � ! ˙1;

and the series

C1
X

�D1
j	.�/j < C1

converges, then we can define another important characteristic of the stationary time
series xt :

S.�/ D 1

2�

C1
X

�D�1
	.�/ cos.��/; � 2 Œ��;C��: (3.8)

The quantity S.�/ is called the spectral density. It can be seen from (3.8) that the
spectral density is the cosine Fourier transform of the covariance function. The
inverse relation also holds:

	.�/ D
C�
Z

��
S.�/ cos.��/d�; � 2 Z:
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In applied forecasting, stationary time series models are used more often than
any other type of statistical model [6]. The first theoretical results in statistical
forecasting obtained by Andrey Kolmogorov [29, 30] were derived from stationary
models.

3.3 ARIMA.p; d; q/ Time Series Model

Let .˝;F;P/ be a probability space. Suppose that a stationary time series ut , t 2 Z,
satisfying the very simple discrete white noise model WN.0; 	2/ has been defined
on this probability space:

Efutg D 0; Efutut 0g D 	2ıt;t 0 ; t; t 0 2 Z: (3.9)

The relation (3.9) defines futg as a sequence of uncorrelated random variables that
have zero means and variances equal to 	2. Note that sometimes the condition (3.9)
is specialized by demanding the independence of futg and the normality of the joint
probability distribution of futg. Under these additional assumptions, (3.9) yields that
ut , t 2 Z, is a strictly stationary Gaussian time series.

To simplify the notation, time series models are defined using the lag operator
(or backshift operator) B (cf. [5]):

But D ut�1; t 2 Z: (3.10)

For arbitrary sequences futg, fvt g and constants a 2 R, d 2 N, the operator B has
the following properties:

Ba D a; B.aut / D aBut ; B.ut C vt / D But C Bvt ;

Bdut D ut�d ; .1 � aB/�1 D 1C
1
X

iD1
ai Bi :

(3.11)

Let us also define the forward difference operator�:

�ut D ut � ut�1; t 2 Z;

and the forward difference operator of order d 2 N:

�dut D �.�d�1ut / D � � � D �� : : :�
„ ƒ‚ …

d

ut ; t 2 Z: (3.12)

The relations (3.10)–(3.12) imply that the operator � and the operator B are
connected by the following identity:

�dut D .1 � B/dut :
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Definition 3.5. A time series xt is said to follow an autoregressive moving average
time series model of order .p; q/, denoted as ARMA.p; q/, if it satisfies the
following stochastic difference equation:

xt � ˛1xt�1 � � � � � ˛pxt�p D ut � �1ut�1 � � � � � �qut�q; t 2 Z; (3.13)

which can be rewritten in the shortened operator form as

˛.B/xt D �.B/ut ; t 2 Z; (3.14)

where

˛.B/ D 1 �
p
X

iD1
˛i B

i ; �.B/ D 1 �
q
X

jD1
�j B

j

are polynomials w.r.t. B , and f˛i g, fˇj g are the coefficients of these polynomials.

The ARMA.p; q/ model utilizes the following parameters:

p; q 2 N [ f0g; f˛1; : : : ; ˛pg; fˇ1; : : : ; ˇqg � R
1; 	2 > 0:

If the roots f�1; : : : ; �pg � C of the characteristic equation (cf. [3])

�p �
p
X

iD1
˛i�

p�i D 0

corresponding to the polynomial ˛.B/ lie within the unit circle in C,

j�i j < 1; i D 1; 2; : : : ; p;

then the time series xt is weakly stationary. Observe that this condition is equivalent

to demanding that all roots f�1; : : : ; �pg of the polynomial ˛.�/ D 1�
p
P

iD1
˛i�

i lie

outside the unit circle: j�i j > 1, i D 1; : : : ; p.

Definition 3.6. If q D 0, then the time series xt is said to follow an order p
autoregression model of time series, denoted as AR.p/:

˛.B/xt D xt � ˛1xt�1 � � � � � ˛pxt�p D ut ; t 2 Z: (3.15)

Definition 3.7. If p D 0, then the time series xt is said to follow a moving average
model of order q, denoted as MA.q/:

xt D �.B/ut D ut � �1ut�1 � � � � � �qut�q; t 2 Z: (3.16)

For a detailed treatment of the models introduced by Definitions 3.5–3.7, see [5].
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Thus, AR.p/ and MA.q/ are special cases of the ARMA.p; q/ model. Let us
establish the relation between the AR.p/ and MA.q/ models. If the roots of the
polynomial ˛.�/ lie outside the unit circle, then we can use a Taylor expansion
w.r.t. powers of B to define the operator ˛�1.B/. Applying this operator to both
sides of (3.15) and comparing the result to (3.16), we obtain a representation of the
AR.p/ model in the form of an MA.C1/ model (q D C1):

xt D ˛�1.B/ut ; t 2 Z:

If the roots of the polynomial �.�/ lie outside the unit circle, then applying the
operator ��1.B/ to both sides of (3.16) and comparing the result to (3.15) yields a
representation of the MA.q/ model in the form of an AR.C1/ model (q D C1):

��1.B/xt D ut ; t 2 Z:

From the above argument, under the mentioned conditions on the roots of the
polynomials ˛.�/ and �.�/, we can establish the following symbolic relations
between the models [37]:

AR.p/ 	 MA.C1/;

MA.q/ 	 AR.C1/;

ARMA.p; q/ 	 MA.C1/;

ARMA.p; q/ 	 AR.C1/:

(3.17)

It should also be noted that, as implied by (3.17), the ARMA.p; q/ model is a
special case of a so-called general linear process [37]:

xt D
C1
X

jD0
ˇj ut�j ; t 2 Z; (3.18)

where fˇj g is a given sequence of coefficients such that the following series
converges:

C1
X

jD0
ˇ2j < C1: (3.19)

Given (3.19), the general linear process (3.18) is a weakly stationary time series
with a zero mean and the covariance function

	.�/ D EfxtxtC�g D 	2
C1
X

jD0
ˇj ˇjC� ; � 2 Z:
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By (3.16) and (3.18), for an MA.q/ time series we can write ˇj D �j 1f0;1;:::;qg.j /,
and therefore

	.�/ D 	2
q��
X

jD0
�j �jC�1Œ�q;q�.�/; � 2 Z:

For an AR.p/ time series, the coefficients fˇj g can be derived from f˛i g using
well-known recurrence relations [3], and the covariances f	.�/ W � 2 Zg satisfy the
Yule–Walker equations [3]:

�
p
X

iD0
˛i	.i/ D 	2I

p
X

iD0
˛i	.� � i/ D 0; 	.��/ D 	.�/; � 2 N:

(3.20)

The ARMA.p; q/ model serves as the basis for constructing a non-stationary
ARIMA.p; d; q/ time series model.

Definition 3.8. A non-stationary time series fxt g is said to be integrated of order
d 2 N if the time series yt D �dxt , t 2 Z, consisting of finite differences of the
minimal order d is stationary.

An integrated time series xt can be expressed from the time series of its finite
differences yt by using the summation operator:

S D ��1 D .1 � B/�1 D 1C
C1
X

jD1
Bj ; Syt D

C1
X

jD0
yt�j ;

Sd D ��d D .1 � B/�d D 1C
C1
X

jD1
C d�1
d�1CjBj ; Sdyt D

C1
X

jD0
C d�1
d�1Cj yt�j :

Definition 3.9. A non-stationary time series xt is said to satisfy an integrated of
order d autoregressive of orders .p; q/ moving average model, which is denoted
as ARIMA.p; d; q/ [5], if it satisfies the following stochastic difference equation
(written in the operator form):

˛.B/�dxt D �.B/ut ; t 2 Z: (3.21)

The time series yt D �dxt , t 2 Z, follows an ARMA.p; q/ time series model
considered above:

˛.B/yt D �.B/ut ; t 2 Z:
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To conclude the section, let us present the following three equivalent representa-
tions of the ARIMA.p; d; q/ model defined by (3.21) [4, 37]:

1. ARMA.p C d; q/:

ˇ.B/xt D �.B/ut ; t 2 Z;

ˇ.B/ D ˛.B/�d D
 

1 �
p
X

iD1
˛iB

i

!

.1 � Bd/:

2. MA.C1/:

xt D ˛�1.B/.1 � B/d�.B/ut ; t 2 Z:

3. AR.C1/:

��1.B/˛.B/.1 � B/dxt D ut ; t 2 Z:

These equivalent representations are useful in constructing practical approximations
to the ARIMA.p; d; q/ model.

3.4 Nonlinear Time Series

3.4.1 A General Nonlinear Model

In the previous section, we have discussed ARIMA time series models—a classical
family of models with a long history of statistical applications. ARIMA time series
are an example of linear time series models—the generating stochastic difference
equation (3.21) is linear in both the lag values fxt�i g, fut�j g and the parameters
(coefficients) f˛ig, fˇj g.

Due to both increasingly demanding applications and an exponential increase in
computational power over the last years, modern statistical forecasting has become
increasingly reliant on nonlinear time series models [9, 14, 41]. In the most general
form, a nonlinear time series model can be represented as the following nonlinear
stochastic difference equation:

xt D F.xt�1; : : : ; xt�p; ut ; ut�1; : : : ; ut�q; vt I �/; t 2 Z; (3.22)

where ut is discrete white noise WN.0; 	2/ as defined in (3.9); vt 2 V � R1 is
some auxiliary random process defined on .˝;F;P/; integers p; q 2 N [ f0g are
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the maximal lags of the time series xt and the innovation process ut , respectively;
� 2 ‚ � Rm is the parameter vector;F.�/ W RpCqC1�‚ ! R1 is a certain nonlinear
function. Observe that if F.�/ in (3.22) is linear, then we obtain the previously
considered ARIMA model. Also note that, in the most general case, stationarity
conditions for the time series defined by (3.22) are not known.

Let us consider several well-studied special cases of (3.22) which are defined by
a particular form of F.�/.

3.4.2 Bilinear Model BL.p; q;P;Q/

Definition 3.10. A bilinear time series model BL.p; q; P;Q/ of orders p, q, P , Q
is defined by the following bilinear stochastic difference equation [19]:

xt D
p
X

iD1
aixt�i C

q
X

jD0
bjut�j C

P
X

jD1

Q
X

kD1
cjkxt�j ut�k; t 2 Z: (3.23)

The parameters of this model are 	2, p, q, P , Q, fai g, fbj g, fcjkg.
As an example of this model, let us consider the special case BL.1; 0; 1; 1/which

is often used in econometric simulations [14, 24]:

xt D �1xt�1 C ut C �2xt�1ut�1; t 2 Z: (3.24)

It is known [14] that if

Efu4t g < C1; �21 C 	2�22 < 1; (3.25)

then the model (3.24) defines a strictly stationary random process with a bounded
fourth moment: Efx4t g < C1.

3.4.3 Functional-Coefficient Autoregression Model FAR.p; d/

Definition 3.11. The functional-coefficient autoregression model FAR.p; d/ is
defined by the following stochastic difference equation [14]:

xt D �1.xt�d /xt�1 C � � � C �p.xt�d /C 	.xt�d /"t ; t 2 Z; (3.26)

where p, d are positive integers, and �1.�/; : : : ; �p.�/, 	.�/ W R1 ! R1 are some
fixed functions.
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If these functions are constant, we obtain the AR.p/ model. In applications, the
FAR.p; d/ model can be characterized by either (a) parametric prior uncertainty,
if the above functions are known up to certain parameters; or (b) nonparametric
prior uncertainty, if the above functions are unknown, and only certain smoothness
assumptions can be made (in the form of Lipschitz conditions).

3.4.4 Generalized Exponential Autoregression Model
EXPAR.p; d/

Definition 3.12. The EXPAR.p; d/model is a special case of the FAR.p; d/model
defined by the following nonlinear stochastic difference equation [36]:

xt D
p
X

iD1

�

˛i C .ˇi C �ixt�d / exp.��ix2t�d /
�

xt�i C ut ; t 2 Z;

where p; d 2 N, 	2, f˛i ; ˇi ; �i ; �i g are model parameters.

3.4.5 Threshold Autoregression Model TAR.k/

Definition 3.13. It is said [14] that a time series xt follows the threshold autore-
gression model with 2 � k < C1 regimes, denoted as TAR.k/, if it satisfies the
following nonlinear stochastic difference equation:

xt D
k
X

jD1
.�j 0 C �j1xt�1 C � � � C �j;pj xt�pj C 	j ut /1Aj .xt�d /; t 2 Z; (3.27)

where fAj g is a partition of the real line:
k
S

jD1
Aj D R1, Ai \ Aj D ; for i ¤ j ,

d; p1; : : : ; pk 2 N and 	j ; �j 0; �j1; : : : ; �j;pj 2 R1 for j D 1; : : : ; k.

The parameters of the TAR.k/ model are k, fAj g, d , fp; 	j , �j ; pj g.
TAR models have numerous applications. As an example, let us present a TAR(2)

model that was used in [14] for logarithmic scale modeling of the American GDP
growth index:

xt D
(

�0:7xt�1 C ut ; xt�1 � �0:5;
0:7xt�1 C ut ; xt�1 < �0:5:



42 3 Time Series Models of Statistical Forecasting

3.4.6 ARCH.p/Model

Definition 3.14. The autoregressive conditional heteroscedasticity time series
model of order p, or ARCH.p/, is defined by the following equation [14, 40]:

xt D 	tut ; 	2t D �0 C �1x
2
t�1 C � � � C �px

2
t�p; t 2 Z; (3.28)

where �0 > 0; �1; : : : ; �p � 0, and ut is the standard discrete white noise WN.0; 1/.

It is known [14] that the time series (3.28) is strictly stationary if and only if

p
X

jD1
�j < 1;

and in that case we also have

Efxt g D 0; Dfxt g D �0

0

@1 �
p
X

jD1
�j

1

A

�1

:

3.4.7 GARCH.p; q/Model

Definition 3.15. Generalized autoregressive conditional heteroscedasticity model
of orders p, q, denoted as GARCH.p; q/, is defined by generalizing the second
equation of (3.28) as follows [14]:

	2t D �0 C
p
X

iD1
�ix

2
t�i C

q
X

jD1
˛j 	

2
t�j :

Note that for q D 0 we obtain (3.28), implying that GARCH.p; 0/ DARCH.p/.
The parameters of the GARCH.p; q/ model are p, q, �0; �1; : : : ; �p, ˛1; : : : ; ˛q .

3.5 Multivariate Time Series Models

3.5.1 Multivariate Stationary Time Series

The models presented in Sect. 3.2 for univariate time series xt 2 R1 can be easily
generalized for the multivariate case xt 2 RN [7, 9, 11, 20, 33, 34, 37].
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An N -variate stationary time series xt D .xti/ 2 RN has the expectation

� D .�i / D Efxt g 2 R
N

that doesn’t depend on time t and the .N �N/-matrix covariance function which is
only dependent on the time difference:

	.t � s/ D .	jk.t � s// D Ef.xt � �/.xs � �/0g D Covfxt ; xsg; t; s 2 Z;

where the prime symbol denotes transposition, and

	jk.t � s/ D Covfxtk; xsjg; j; k 2 f1; : : : ; N g;

is the covariance function of the kth and the j th coordinates of the multivariate
(vector) time series xt .

Similarly to (3.8), we introduce the .N �N/-matrix spectral density:

S.�/ D .Sjk.�// D 1

2�

C1
X

�D�1
	jk.�/e

�i�� ; � 2 Œ��;C��;

where i is the imaginary unit, and Sjk.�/ is the joint spectral density of the univariate
(scalar) time series xt;j ; xt;k 2 R1.

3.5.2 Vector Autoregression Model VAR.p/

Definition 3.16. The vector autoregression model of order p, or VAR.p/, is a
multivariate generalization of the AR.p/ model defined in Sect. 3.3. It is defined
by the following system of N stochastic difference equations (written in the matrix
form):

xt D �0 C �1xt�1 C � � � C �pxt�p C ut ; t 2 Z; (3.29)

where xt D .xti/ 2 RN is the column vector of observations at time t , xtj 2 R1

is the j th coordinate at time t for j D 1; : : : ; N ; �0 D .�0i / 2 RN is a column
vector of constants; �s D .�sij/ 2 RN�N is a matrix of autoregression coefficients
corresponding to a lag s 2 f1; 2; : : : ; pg; futg � RN is the innovation process,
which is a sequence of uncorrelated identically distributed random N -vectors with
the expectation equal to zero, Efut g D 0N , and a nonsingular covariance matrix
˙ D .	ij/ 2 RN�N :

Covfut ; usg D Efutu
0
sg D ıts˙; t; s 2 Z:
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Using the lag operatorB defined in Sect. 3.3 and introducing a matrix polynomial
of degree p,

P.B/ D IN �
p
X

sD1
�sB

s;

yields an equivalent representation of the VAR.p/ model:

P.B/xt D �0 C ut ; t 2 Z: (3.30)

By increasing the number of variablesN , the VAR.p/ model can be represented
as a first order vector autoregression VAR.1/:

Xt D ‚0 C‚Xt�1 C Ut ; t 2 Z;

with the following block-matrix notation:

Xt D

0

B

B

B

@

xt

xt�1
:::

xt�pC1

1

C

C

C

A

; Ut D

0

B

B

B

@

ut
ut�1
:::

ut�pC1

1

C

C

C

A

; ‚0 D

0

B

B

B

@

�0

0N
:::

0N

1

C

C

C

A

2 R
Np;

‚ D

0

B

B

B

B

B

B

B

B

B

@

�1 �2 �3 � � � �p�1 �p

IN 0N�N 0N�N � � � 0N�N 0N�N
0N�N IN 0N�N � � � 0N�N 0N�N
:::

:::
::: � � � :::

:::

0N�N 0N�N 0N�N � � � IN 0N�N

1

C

C

C

C

C

C

C

C

C

A

2 R
Np�Np;

Q D

0

B

B

B

B

B

B

@

˙ 0N�N � � � 0N�N
0N�N 0N�N � � � 0N�N
:::

::: � � � :::

0N�N 0N�N � � � 0N�N

1

C

C

C

C

C

C

A

2 R
Np�Np:

We also have

EfUtg D 0Np; CovfUt ; Usg D Q � ıts; t; s 2 Z:
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It follows from (3.29) that the VAR.p/ model has the following parameters: p, ˙ ,
�0, �1; : : : ; �p, and the total number of unknown parameters is

rVAR D .p C 1=2/N 2 C 3N=2C 1:

If we assume that all eigenvalues f�kg of the matrix‚, which are the roots of the
following algebraic equation of order Np:

jIN�p � �1�
p�1 � �2�

p�2 � � � � � �pj D 0;

lie within the unit circle, j�j j < 1 for j D 1; : : : ;Np, then the time series (3.29) is
stationary, and its expectation equals

� D Efxt g D .IN � �1 � �2 � � � � � �p/�1�0:

The covariance function R.�/ D .Rjk.�// 2 RN�N is an .N � N/-matrix function
satisfying the Yule–Walker matrix equation [33]:

R.�/ D �1R.� � 1/C � � � C �pR.� � p/; � D p; p C 1; : : : ;

and the initial p matrices R.0/; : : : ; R.p � 1/ can be found from the following
.Np/2 � .Np/2-matrix equation:

vec

0

B

B

B

B

B

B

B

@

R.0/ R.1/ � � � R.p � 1/

R0.1/ R.0/ � � � R.p � 2/

:::
::: � � � :::

R0.p � 1/ R0.p � 2/ � � � R.0/

1

C

C

C

C

C

C

C

A

D
�

I.Np/2 �‚˝‚
��1

vec.Q/;

where the symbol ˝ denotes the Kronecker product of two matrices and vec.Q/
denotes a vector representation of a matrix.

3.5.3 Vector Moving Average Model VMA.q/

Definition 3.17. The vector moving average model of order q 2 N [ f0g, denoted
as VMA.q/, is a multivariate generalization of the MA.q/model defined in Sect. 3.3
and is defined by the following matrix representation:

xt D ut CM1ut�1 C � � � CMqut�q; t 2 Z; (3.31)

where M1; : : : ;Mq 2 RN�N are matrix coefficients and the rest of the notation is
the same as in (3.29).
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Similarly to (3.30), the following operator representation of the model (3.31) can
be written [33]:

xt D M.B/ut ; M.B/ D IN CM1B C � � � CMqB
q; t 2 Z: (3.32)

By (3.31), the parameters of the VMA.q/ model are q, ˙ , M1; : : : ;Mq , and the
total number of unknown parameters is

rVMA D .q C 1=2/N 2 CN=2C 1:

Assuming that the roots of the algebraic equation of order Nq given by

jIN CM1z C � � � CMqz
qj D 0

lie outside the unit circle, the time-reversibility condition is satisfied for the time
series (3.32):

M�1.B/xt D ut ; t 2 Z;

meaning that a VMA.q/ model can be represented as a VAR.C1/ model:

xt D
1
X

iD1
�ixt�i C ut ; t 2 Z;

where the matrix coefficients f�ig satisfy the following recurrence relation:

�1 D M1;

�i D Mi �
i�1
P

jD1
�i�jMj ; i D 2; 3; : : : :

A VMA.q/ process is strictly stationary, has a zero expectation, and its matrix
covariance function can be written as follows [33]:

R.�/ D Efxtx0
t��g D

q��
X

iD0
MiC�˙M 0

i 1Œ0;q�.�/I R.��/ D R.�/:

3.5.4 VARMA.p; q/Model

The VARMA.p; q/ model is a generalization of VAR.p/ and MA.q/ models:

xt � �1xt�1 � � � � � �pxt�p D ut CM1ut�1 C � � � CMqut�q; t 2 Z; (3.33)
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or in the operator form:

P.B/xt D M.B/ut ; t 2 Z;

where the polynomials P.B/, M.B/ are defined by (3.30), (3.32).
Under the condition formulated in Sect. 3.5.2, the time series (3.33) is strictly

stationary and can be described by an MA.C1/ model:

xt D
1
X

iD0
˚iut�i ;

where the matrix coefficients f˚ig can be computed from the following recursion:

˚0 D IN I �j D 0N�N ; j > pI Mi D 0N�N ; i > qI

˚i D Mi �
i
X

jD1
�j˚i�j ; i D 1; 2; : : : :

It should be noted that the model (3.33) can be represented as a VAR.C1/model
if the time-reversibility condition is satisfied; there also exists a representation [33]
of the N -dimensional VARMA.p; q/ model as an N.p C q/-dimensional VAR(1)
model.

3.5.5 System of Simultaneous Equations (SSE) Model

Definition 3.18. It is said that anN -variate time series xt 2 RN follows the system
of simultaneous equations model SSE.N;N0;K; p/ if it satisfies the following
system of stochastic difference equations (written in the matrix form) [11, 25, 28]:

‚0xt D ‚1xt�1 C � � � C‚pxt�p CAzt C ut ; t 2 Z; (3.34)

where xt D .xti/ 2 RN is the column vector of N endogenous (interior) variables;
‚0;‚1; : : : ; ‚p 2 RN�N , A 2 RN�N are coefficient matrices; zt D .ztj/ 2 RK is
the column vector of K exogenous (exterior) variables; fut D .uti/ 2 RN W t 2 Zg
is a sequence of uncorrelated random vectors with zero mean vectors, Efutg D 0N ,
and covariance matrices equal to Efutu0

tg D ˙ .

Comparing (3.34) and (3.29), we can observe that the SSE model can be
considered as a special case of the VAR model with exogenous variables (VARX)
[33]. However, there are two significant differences: (1) since we usually have
‚0 ¤ IN , the left-hand side of (3.34) does not explicitly contain xt ; (2) the system
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(3.34) contains 0 � N0 < N identities, therefore ˙ is singular, contains N0 zero
rows and columns, and its rank is incomplete, rank.˙/ D N �N0.

The representation (3.34) is called the structural form of the SSE model. The
structural form is used in econometrics to model the dynamics of various economic
systems [25, 28].

As a rule, the SSE model satisfies the completeness condition (by construction):
j‚0j ¤ 0. Thus, multiplying (3.34) by‚�1

0 from the left, we can obtain the reduced
form of the SSE model:

xt D B1xt�1 C � � � C Bpxt�p C C zt C vt ; t 2 Z;

where B1 D ‚�1
0 ‚1; : : : , Bp D ‚�1

0 ‚p , C D ‚�1
0 A are the “new” matrix coeffi-

cients, and fvtg is a sequence of uncorrelated random N -vectors with expectations
equal to zero and a covariance matrix given by

˙ D Efvtv0
t g D ‚�1

0 ˙.‚
�1
0 /

0:

3.6 Discrete Time Series

3.6.1 Markov Chains

In many applied forecasting problems, the state space A where the process is
observed (xt 2 A) is discrete, and without loss of generality we can assume that

A D f0; 1; : : : ; N � 1g; 2 � N � C1:

This setting becomes more and more common since modern measuring and
recording equipment stores the data digitally [2, 10, 22, 42].

A time series with a discrete state space A is called a discrete time series. In
other words, a discrete time series xt 2 A, t 2 N, is a random process defined on a
probability space .˝;F;P/ with discrete time t and a discrete (finite or countable)
state space A. It should be noted that statistical analysis of discrete time series is
significantly less investigated compared to the case of continuous time series where
A D RN [15].

The simplest model of a discrete time series is a sequence of random variables
xt , t 2 N, which are mutually independent and have a certain discrete probability
distribution:

Pfxt D ig D pi .t/; i 2 A; t 2 N: (3.35)
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If the N -column vector of elementary probabilities p.t/ D .p0.t/; : : : ; pN�1.t//0
doesn’t depend on time t , then xt is a homogeneous time series, and otherwise—an
inhomogeneous time series. If N < C1, and

p.t/ D .1=N; : : : ; 1=N /;

then we have a uniformly distributed sequence, which is sometimes called a purely
random sequence [10].

Note that the distribution law p.t/ can be periodic (when describing cyclic or
seasonal phenomena) with a period T0:

9T0 2 N W p.t C T0/ D p.t/; t 2 N:

Parametric distribution laws p.t I �0/ present another important special case. The
model (3.35) is, essentially, a discrete analogue of the trend model discussed in
Sect. 3.1.

Definition 3.19. A discrete time series xt is called a Markov chain if the Markov
dependence property is satisfied:

PfxtC1 D itC1 j xt D it ; : : : ; x1 D i1g D PfxtC1 D itC1 j xt D it g D pit ;itC1
.t/

(3.36)

for all i1; : : : ; itC1 2 A, t 2 N, where the matrix P.t/ D .pij.t// 2 Œ0; 1�N�N
known as the matrix of one-step transition probabilities is stochastic; the N-column
vector

�.1/ D .�i .1//; �i .1/ D Pfx1 D ig; i 2 A;

is the initial probability distribution.

A classification of Markov chains and their states can be found in [22]. Let us
mention one of the important classes: time-homogeneous Markov chains are defined
as satisfying the condition that P.t/ D P D const doesn’t depend on t . Observe
that the model of independent trials (3.35) is a special case of a Markov chain, where
all N rows of the matrix P.t/ are identical and equal to p0.t/.

From now on, we are going to consider finite Markov chains with finite numbers
of states, 2 � N < C1.

Note that the number of independent parameters defining a Markov chain (taking
into account the normalization condition) is equal to r1 D N2�1, and there are only
r0 D N � 1 parameters in the model of independent trials.

3.6.2 Markov Chains of Order s

Definition 3.20. A Markov chain of order s 2 N, denoted as MC.s/, is defined by
the generalized Markov property [12]:
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PfxtC1 D itC1 j xt D it ; : : : ; x1 D i1g D
D PfxtC1 D itC1 j xt D it ; : : : ; xt�sC1 D it�sC1g D pit�sC1;:::;it ;itC1

.t/ (3.37)

for all i1; : : : ; itC1 2 A, t � s.

For s D 1, the relation (3.37) is identical to (3.36). A Markov chain of order s is
characterized by an s-dimensional initial probability distribution

�i1;:::;is D Pfx1 D i1; : : : ; xs D isg; i1; : : : ; is 2 A;

and an .s C 1/-dimensional matrix of one-step transition probabilities at time t :

P.t/ D �

pi1;:::;isC1
.t/
�

;

pi1;:::;isC1
.t/ D PfxtC1 D isC1 j xt D is; : : : ; xt�sC1 D i1g; i1; : : : ; isC1 2 A:

If P.t/ doesn’t depend on t , we have a homogeneous Markov chain of order s.
Markov chains of order s can be used to model processes and dynamic systems

with a length of the memory that doesn’t exceed s. A Markov chain MC.s/ has
rs D NsC1 � 1 parameters, and the number of parameters grows exponentially
as the order s increases. Model identification (estimation of the model parameters)
requires a sample x1; x2; : : : ; xn of size n > rs , which is often impractical. This
motivates the development of so-called parsimonious (small-parametric) models of
higher order Markov chains [23, 27].

Raftery’s MTD model [38] defines a small-parametric form of the matrix P :

pi1;:::;isC1
D

s
X

jD1
�j qij ;isC1

; i1; : : : ; isC1 2 A;

whereQ D .qik/ is a stochastic .N �N/-matrix; � D .�1; : : : ; �s/
0 is an s-column

vector of elementary probabilities, �1 C � � � C �s D 1. The number of parameters in
the MTD model is equal to rMTD D N.N � 1/=2C s � 1 and grows linearly as s
increases.

The papers [23,26] present another small-parametric model, the Markov chain of
order s with r partial connections, denoted as MC.s; r/:

pi1;:::;isC1
D qim1 ;:::;imr ;isC1

; i1; : : : ; isC1 2 A;

where r 2 f1; 2; : : : ; sg is the number of connections; M D .m1; : : : ; mr/ is the
connection pattern—an arbitrary integer ordered r-vector, 1 D m1 < m2 < � � � <
mr � s; and Q D .qj1;:::;jr / is an arbitrary stochastic matrix. Observe that if r D s,
and thusM D .1; 2; : : : ; s/, thenP D Q, and MC.s; s/ is a fully connected Markov
chainMC.s/ of order s.
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3.6.3 DAR.s/ Model of Jacobs and Lewis

Definition 3.21. A discrete autoregression model of order s, denoted as DAR.s/, is
defined by the following stochastic difference equation [21]:

xt D �txt��t C .1 � �t /�t ; t > s;

where s � 2, fx1; : : : ; xsg; f�t , �t ; �t W t > sg are mutually independent discrete
random variables with probability distributions defined as follows:

Pf�t D ig D �i ; i 2 AI Pf�t D j g D �j ; j 2 f1; : : : ; sg; �s ¤ 0I
Pf�t D 1g D 1 � Pf�t D 0g D %I Pfxt D ig D �i ; i 2 A; k 2 f1; : : : ; sg:

This model was successfully used to simulate air pollution [32].

3.6.4 DMA.q/ Model

Definition 3.22. A discrete moving average model of order q 2 N, denoted as
DMA.q/, is defined by the following stochastic difference equation [32]:

xt D �t��t ; t > q;

where q � 2, and f�t ; �t g are mutually independent random variables with
probability distributions defined as follows:

Pf�t D ig D �i ; i 2 AI
Pf�t D j g D �j ; j 2 f1; : : : ; qg:

3.6.5 INAR.m/Model

Definition 3.23. An integer autoregression model of orderm, denoted as INAR.m/,
is defined by the following stochastic difference equation [1]:

xt D
m
X

jD1

xt�j
X

iD1
�
.j /
ti C �t ; t 2 N;

where

f�.j /ti W t D mC 1;mC 2; : : : I i; j 2 Ng
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are mutually independent Bernoulli random variables,

Pf�.j /ti D 1g D 1 � Pf�.j /ti D 0g D pj ;

and f�t g are integer random variables which are independent of f�.j /ti g.

This model was proposed in [1] to study time series in economics.
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Chapter 4
Performance and Robustness Characteristics
in Statistical Forecasting

Abstract In this chapter, we define optimality and robustness under distortions for
statistical forecasting. The problem of statistical forecasting is stated in the most
general form and then specialized for point or interval forecasting and different
levels of prior uncertainty. The chapter introduces performance characteristics of
forecasting statistics based on loss functions and risk functionals. In order to
define mathematically rigorous robustness characteristics, a classification of the
types of distortions common to applications is made, and the relevant mathematical
distortion models are constructed. Robustness of statistical forecasting techniques is
defined in terms of the following robustness characteristics: the guaranteed (upper)
risk, the risk instability coefficient, the ı-admissible distortion level.

4.1 A General Formulation of the Statistical Forecasting
Problem

Based on the approaches formulated in the previous chapters, let us state the
statistical forecasting problem in the most general form.

Assume that a d -variate time series xt 2 Rd , t 2 Z, defined in the probability
space .˝;F;P/ follows a certain stochastic model—for instance, one of the models
described in Chap. 3. Furthermore, assume that the two following sets of ordered
time points have been chosen in the time region Z:

T0 D ft01 ; : : : ; t0T0g; TC D ftC1 ; : : : ; tCTC

g;
t01 < t

0
2 < � � � < t0T0 < tC1 < tC2 < � � � < tCTC

;

where T0 2 N is the number of recorded observations, T0 � Z is a set of T0 time
points where the time series was observed (recorded), TC � Z is a set of TC future
time points where the values of the time series are unknown and should be forecast.
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In econometric applications, T0 is often called the basic period or the base of the
forecast, and T1—the forecast period [7].

Observations at time points that belong to T0 will be represented as a composite
random T0-vector:

X0 D

0

B

B

B

@

xt01
...

xt0T0

1

C

C

C

A

2 R
T0d ;

and the subset of the time series that is to be forecast (corresponding to time points
from TC) as a composite random TC-vector:

XC D

0

B

B

B

@

x
t
C

1

...
x
t
C

T
C

1

C

C

C

A

2 R
TCd :

Further, let g.�/ W RTCd ! R� , 1 � � � TCd; be a given Borel function
expressing certain properties of the future values XC that are of interest to the
researcher. Stated the most generally, the problem of forecasting is to construct a
statistical estimator for the observed random �-vector Y D g.XC/ 2 R� based
on the recorded observations X0 2 RT0d . We will immediately note that in most
applications, either g.XC/ D XC is an identity function (� D TCd ), and a forecast
is made of the future segment Y D XC of the time series, or g.XC/ D x

t
C

T
C

, and

only the value x
t
C

T
C

is being predicted.

Let us introduce several special cases of the general forecasting problem.
Depending on the type of the forecast, the following two cases are distin-

guished:

1. Point forecasting, where a Borel function f .�/ W RT0d ! R� is constructed,
defining a forecasting statistic

OY D f .X0/ 2 R
� I

2. Set (interval) forecasting, where based on X0 a Borel set Y� 2 B� (B� is a
Borel 	-algebra of subsets of R�) is constructed such that with a high probability
� 2 .0; 1/ we have Y 2 Y� .

Depending on the number TC 2 N of the future time series elements that are
being predicted, the following two cases are distinguished:

1. The most common case of single-point forecasting, where TC D 1, TC D ftC1 g,
tC1 D t0T0 C � , and a forecast should be made of the vector Y D g.xt0T0C� /
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depending on a single future value xt0T0C� , where � 2 N is the so-called forecast

horizon;
2. The case of interval forecasting, where a forecast is made of the vector

Y D g.x
t
C

1
; : : : ; x

t
C

T
C

/

depending on an interval of TC > 1 future values of the time series.

It is a common mistake to make interval forecasts by combining several con-
secutive single-point forecasts Ox

t
C

1
; : : : ; Ox

t
C

T
C

and constructing a plug-in forecasting

statistic as

QY D g. Ox
t
C

1
; : : : ; Ox

t
C

T
C

/:

The stochastic model of the general forecasting problem formulated above is
characterized by the joint probability distribution of the observed segment X0 and
the predicted segment XC:

P D PX0;XC.B/; B 2 B.T0CTC/d ;

the marginal probability distributions of each of the segments:

P D PX0.A/; A 2 BT0d I P D PXC.C /; C 2 BTCd ;

as well as the probability distribution of the random vector Y D g.XC/ that is being
forecast:

P D PY .D/ D PXC.g�1.D//; D 2 B� :

Depending on the level of prior uncertainty (PU) of the probability distribution
PX0;XC.�/, the following three cases are distinguished:

• PU-C is the level of complete prior information, where the probability distribu-
tion PX0;XC.�/ is completely known;

• PU-P is the level of parametric prior uncertainty, where PX0;XC.�/ is known up
to a parameter �0 2 ‚ � Rm:

P D PX0;XC.BI �/; B 2 B.T0CTC/d ; � 2 ‚I

• PU-NP is the level of nonparametric prior uncertainty, where the probability
distribution PX0;XC.�/ lies in a non-parametrizable function space.

Finally, let us consider the informational aspect of statistical forecasting. We are
going to assume that the above probability measures PX0;XC.�/, PX0.�/, PXC.�/
are absolutely continuous w.r.t. a certain measure �.�/, and thus we can write
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their respective Radon–Nikodym derivatives as pX0;XC.�/, pX0.�/, pXC.�/. Let us
introduce the functional that evaluates the Shannon information on the predicted
random vector XC which is contained in the observed random vector X0:

IX0;XC D
Z

R
.T0CT

C
/d

ln
pX0;XC.X0;XC/
pX0.X

0/pXC.XC/
pX0;XC.X0;XC/�.d.X0;XC// � 0:

If IX0;XC D 0, i.e., X0 and XC are independent, and

PX0;XC.B1 � B2/ D PX0.B1/PXC.B2/; B1 2 BT0d ; B2 2 BTCd ;

then the observation X0 provides zero information on XC, and thus the forecast
is trivial. The quantity IX0;XC can serve as the measure of potential forecasting
accuracy.

Evaluation of the robustness of point forecasts isn’t limited to the approaches
described in this section. For example, a new approach to evaluation of point
forecasts was proposed very recently by T. Gneiting [6].

4.2 The Risk Functional and Optimality of Forecasting
Statistics

Consider the general problem of statistical forecasting which was formulated in
Sect. 4.1 and consists of predicting the values of a “future” TC-segment of the time
series XC 2 RTC based on the T0-segment of recorded observationsX0 2 RT0 by a
certain Borel function (we assume d D 1 to simplify the notation):

OXC D f .X0/ D .fi .X
0// W RT0 ! R

TC ; (4.1)

which is called a forecasting statistic. For simplicity, we are considering the case
described in Sect. 4.1, where g.�/ is a functional identity, and a random vector
formed by TC futures values, Y D XC, is being predicted.

Forecast error of the forecasting statistic (4.1), defined as

� D .�i / D OXC � XC D f .X0/� XC 2 R
TC ;

is a random TC-vector. As in Sect. 2.1, let us introduce a matrix loss function

w D w.X 0; X 00/ W RTC � R
TC ! R

M ;

where w is the matrix loss if the actual “future” state is XC D X 0 and its forecast is
OXC D X 00. The risk functional is defined as the expectation of the loss function:
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R D R.f .�// D Efw.XC; f .X0//g D
Z

w.XC; f .X0//PX0;XC.d.X0;XC//;
(4.2)

which will exist provided that Efkw.XC; f .X0//kg < C1.
Let us consider a few special definitions of the loss functions w.�/ which are most

frequently used in applications.

1. For a .0 � 1/ loss function

w.X 0; X 00/ D 1 � ıX 0;X 00 2 f0; 1g;

which is an indicator of inequality between the forecasting statistic and the
actual value, the risk (4.2) is a scalar functional—the probability of an incorrect
forecast:

r D r.f .�// D Pf OXC ¤ XCg D
Z

f .X0/¤XC

PX0;XC.d.X0;XC// 2 Œ0; 1�:

(4.3)

In applications, this benchmark of forecasting performance proves itself
to be extremely rigid. In particular, for the commonly encountered setting
where the probability distribution PX0;XC.�/ is absolutely continuous w.r.t.
the Lebesgue measure, and continuous statistics f .�/ are used to construct a
forecast, the risk attains the maximum possible value r.f .�// 	 1 for any given
f .�/. Thus, the risk functional (4.3) makes it impossible to draw a comparison
between different forecasting statistics f .�/. Usefulness of the risk functional
(4.3) is therefore restricted to certain discrete time series models (see Sect. 3.6).

2. If

w.XC; OXC/ D
TC
X

iD1
j Ox
t
C

i
� x

t
C

i
jp � 0;

where p > 0 is a parameter, then the risk (4.2) is also a scalar functional:

r D r.f .�// D E

8

<

:

TC
X

iD1
j Ox
t
C

i
� x

t
C

i
jp
9

=

;

� 0: (4.4)

We can also define .r.f .�///1=p , which is called the expected forecast risk w.r.t.
the Lp-norm. If p D 2, then the definition (4.4) yields the mean square risk of
forecasting:

r D r.f .�// D Ef. OXC � XC/0. OXC � XC/g � 0; (4.5)

which is the most commonly used performance metric of forecasting algorithms.
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3. If

w.XC; OXC/ D . OXC � XC/. OXC �XC/0 2 R
TC�TC ;

then the risk (4.2) is a .TC � TC/-matrix functional:

R D R.f .�// D .rij.f .�/// D Ef. OXC �XC/. OXC �XC/0g 2 R
TC�TC : (4.6)

A diagonal element ri;i of this matrix risk is called the i th scalar risk:

rii.f .�// D Ef. Ox
t
C

i
� x

t
C

i
/2g � 0; (4.7)

which is the mean square error of forecasting a future value x
t
C

i
using the statistic

Ox
t
C

i
D fi .X

0/. A non-diagonal element

rij.f .�// D Ef. Ox
t
C

i
� x

t
C

i
/. Ox

t
C

j
� x

t
C

j
/g

characterizes the correlation dependence of the random forecast errors of the i th
and j th components, i; j 2 f1; : : : ; TCg.

Note that there exists a simple relation between the mean square risk of
forecasting (4.5) and the risks defined by (4.7):

r.f .�// D
TC
X

iD1
rii.f .�//: (4.8)

Definition 4.1. The forecasting statistic f .�/ and the forecast OXC D f .X0/

obtained through this statistic are called unbiased if

EfjXCjg < C1; Efjf .X0/jg < C1;

and the bias vector of the forecast is zero:

b.T0; TC/ D Ef OXC � XCg D Eff .X0/ �XCg D 0TC
; (4.9)

otherwise the forecast (and the forecasting statistic) are called biased. If we have

lim
T0!1 b.T0; TC/ D 0TC

;

then it is said that the forecasting statistic and the forecast are asymptotically
unbiased.
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Corollary 4.1. The matrix risk (4.6) is related to the bias vector (4.9) and the
covariance matrix of the random vector � D OXC � XC:

R D Covf OXC �XC; OXC � XCg C b b0;

and in the case of an unbiased forecast it coincides with that matrix:

R D Covf OXC � XC; OXC �XCg:

Proof. Let us apply (4.6), (4.9) and the well-known properties of expectations:

R D Ef. OXC �XC/. OXC � XC/0g 	
	 Ef.. OXC �XC/� Ef OXC � XCg C b/.�/0g D Covf�; �g C b b0: ut

From now on, unless stated otherwise, two special cases of the risk functional
(4.2) will be considered: the scalar mean square risk (4.5) and the matrix mean
square risk (4.6), which coincide for TC D 1.

Definition 4.2. The forecasting statistic OXC D f0.X
0/ is called mean square

optimal if it yields the minimum value of the mean square risk (4.5):

r.f0.�// D inf
f .�/2F r.f .�//; (4.10)

where the infimum is taken over the set F of all possible forecasting statistics. Here
r0 D r.f0.�// � 0 is the minimum risk, which is attained if the forecasting statistic
f0.�/ is used.

Definition 4.3. A forecasting statistic OXC D f0.X
0/ is called optimal w.r.t. the

matrix mean square risk (4.6) if

8f .�/ 2 F; f .�/ ¤ f 0.�/ )  D R.f /� R.f0/ � 0; (4.11)

i.e., the matrix  is positive-semidefinite.

Let us consider the problem of finding an optimal forecasting statistic, i.e., a
solution to one of the optimization problems (4.10) and (4.11), in the most general
setting defined in Sect. 4.1.

First, note that the solutions depend on the set F of the possible forecasting
statistics. This set is defined by the researcher based on prior information and the
available computational resources. As mentioned in Sect. 4.1, three levels of prior
uncertainty of the probability distribution PX0;XC.B/, i.e., the stochastic model of
the studied phenomenon, are possible when solving the problems (4.10) and (4.11).
These levels are PU-C (complete prior information), where the probability distri-
bution of PX0;XC.B/ is completely known, PU-P (parametric prior uncertainty),
where the distribution is known up to a parameter �0 2 ‚ � Rm, and PU-NP
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(nonparametric prior uncertainty), where the probability distributionPX0;XC.�/ is an
unknown element of a function space P which doesn’t allow for a finite-dimensional
parameterization.

In the case of complete prior information PU-C, solving the optimization
problems (4.10) and (4.11) yields the optimal forecasting statistic

OXC D f0.X
0IPX0;XC.�//; (4.12)

which depends on the true probability distribution PX0;XC.�/.
Let us write an explicit expression for the optimal forecasting statistic (4.12).

Theorem 4.1. If EfjXCj2g < C1, then the mean square optimal forecasting
statistic defined by the criterion (4.11) can be written as the following matrix form
conditional expectation:

OXC D f0.X
0IPX0;XC.�// WWD EfXC j X0g D

Z

R
dT

C

XCPXCjX0.dXC/: (4.13)

This forecast is unbiased, and its matrix risk can be expressed from the conditional
covariance matrix:

R0 D R.f0/ D EfCovfXC; XC j X0gg: (4.14)

Proof. Using the notation of (4.13), let us rewrite the matrix risk functional (4.6) as
the following expansion:

R.f / D E
˚

.f .X0/ �XC/.�/0
 	
	 E

˚��

f .X0/ � f0.X0/
� � �

XC � EfXC j X0g�� .�/0
 D
D E

˚�

f .X0/� f0.X
0/
�

.�/0
C E
˚�

XC � EfXC j X0g� .�/0
�
� E

n

�

f .X0/� f0.X
0/
� �

XC � EfXC j X0g�0
o

� .�/0:

Using the total expectation formula yields

R.f / D E
˚�

f .X0/� f0.X
0/
�

.�/0
C E
˚

E
˚�

XC � EfXC j X0g� .�/0 j X0


�

� E

n

�

f .X0/� f0.X
0/
�

E

n

�

XC � EfXC j X0g�0 j X0
oo

� .�/0 D
D E

˚�

f .X0/� f0.X
0/
�

.�/0
C E
˚

CovfXC; XC j X0g
 I
(4.15)

here the final equality is based on the fact that two of the summands in the initial
expression for R.f / are equal to zero. Thus,

 D R.f / �R.f0/ D Ef.f .X0/� f0.X
0//.�/0g � 0;
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and for f .�/ D f0.�/ the minimal risk (4.14) is attained. It is quite easy to see that
the forecast (4.13) is unbiased:

E
˚ OXC �XC
 D E

˚

EfXC j X0g �XC
 D EfXCg �EfXCg D 0dTC
: ut

Corollary 4.2. The optimal forecasting statistic (4.13) is defined uniquely up to a
set B0 2 BdT0 of measure zero, PX0.B0/ D 0:

Proof. It is sufficient to apply the representation (4.15) to prove this corollary. ut
Corollary 4.3. The forecasting statistic (4.13) is also optimal w.r.t. the criterion
(4.10); the minimal mean square risk (4.5) equals

r0 D r.f0/ D
TC
X

iD1
rii.f0/; rii.f0/ D E

n

Dfx
t
C

i
j X0g

o

: (4.16)

Proof. The proof easily follows from (4.5) and an expansion of the forecast risk
similar to (4.15). ut
Lemma 4.1. If X 2 Rm, Y 2 Rn are arbitrary random vectors in .˝;F;P/, and
EfjY j2g < C1, then we have the following identity:

CovfY; Y g D E fCovfY; Y j Xgg C Cov fEfY j Xg;EfY j Xgg : (4.17)

Proof. Using the total expectation formula yields

CovfY; Y g D E
˚

.Y � EY /.�/0
 	
	 E

˚

E
˚

..Y � EfY j Xg/C .EfY j Xg � EY // .�/0 j X

 D
D CovfY; Y j Xg C E

˚

E
˚

.EfY j Xg � EY /.�/0 j X

C
C E

˚

E
˚

.Y � EfY j Xg/ .EfY j Xg � EY /0 j X

C .�/0;

which coincides with the right-hand side of (4.17) since the last two summands are
equal to zero. ut
Corollary 4.4. For any random variables X; Y 2 R such that EfY 2g < C1, the
following identity is satisfied:

DfY g D E fDfY j Xgg C D fEfY j Xgg : (4.18)

The relation (4.18) is quite well known [7].
Taking into account Lemma 4.1 and its corollary, we can obtain more accurate

expressions for the minimal risks (4.14), (4.16).

Corollary 4.5. Under the conditions of Theorem 4.1, the matrix risk of the optimal
forecasting statistic (4.13) can be written as
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R0 D R.f0/ D CovfXC; XCg � Cov
˚

EfXC j X0g;EfXC j X0g
 :

Corollary 4.6. Under the conditions of Corollary 4.4, the following formula can
be written for the scalar risks:

rii.f0/ D Dfx
t
C

i
g � D

n

Efx
t
C

i
j X0g

o

� 0; i D 1; : : : ; TC: (4.19)

From (4.19) we can see that if x
t
C

i
doesn’t depend on X0, then

E

n

x
t
C

i
j X0

o

D E

n

x
t
C

i

o

D const; D

n

E

n

x
t
C

i
j X0

oo

D 0; rii.f0/ D D

n

x
t
C

i

o

:

If a dependence is found between x
t
C

i
and X0, then the forecast risk is reduced by

D

n

E
˚

x
t
C

i
j X0




o

> 0:

In the case of PU-P parametric prior uncertainty, the optimal forecast (4.12) is
undefined since it depends on an unknown parameter �0 2 ‚ � Rm:

OXC D f0

�

X0IPX0;XC

��I �0�
�

: (4.20)

The uncertainty of �0 in (4.20) can be eliminated by applying the plug-in principle.
This means replacing the unknown actual value of �0 by some consistent statistical
estimator Q� 2 R

m based on a length QT realization QX D . QxQt1 ; : : : ; QxQt
QT
/0 2 R

TCd of
the investigated time series fxt g:

Q� P�!
QT!1

�0;

QXC D f 0
�

X0IPX0;XC

�

�I Q�
��

DWW g.X0; QX/: (4.21)

Definition 4.4. The forecasting statistic (4.21) and the forecast QXC are called con-
sistent and asymptotically optimal if the following convergence holds in probability:

QXC P�!
QT!1

OXC: (4.22)

A strongly consistent forecast is defined by requiring an almost sure convergence
in (4.22).

Construction of a forecasting statistic QXC defined by (4.21) based on an auxiliary
realization QX is usually called the training stage of the forecasting algorithm, and
QX is called a training realization. Often, the observed realization X0 is also used

as the training realization, QX D X0. It should also be noted that some approaches
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to construction of forecasting statistics in a PU-P setting are based on simultaneous
estimation of XC and �0 (see, e.g., Sect. 8.2).

The plug-in approach summarized in (4.21) can also be used in the PU-NP
(nonparametric prior uncertainty) case:

QXC D f0
�

X0; QPX0;XC.�/� ; (4.23)

where QPX0;XC.�/ is a nonparametric estimator of the unknown probability distri-
bution PX0;XC.�/ based on a training sample QX . Consistent asymptotically optimal
forecasts are then defined similarly to (4.22).

A more detailed review of the methods used to construct forecasting statistics
(4.12), (4.21), (4.23) will be given in the following chapters.

4.3 Classification of Model Distortions

As mentioned in the previous section, a statistical forecast

OXC D f0.X
0/ W RdT0 ! R

dTC (4.24)

depends only partially on the observation X0; an important basis of the forecast
is the hypothetical model M0 of the experimental data, i.e., the system of prior
assumptions on the investigated process or phenomenon. Unfortunately, these model
assumptions are distorted (or disturbed) in most applications [16]. In the presence
of distortion, the optimal forecasting statistic, which minimizes the risk under the
hypothetical modelM0, often proves unstable: the forecast risk can be much higher
than the value calculated for the undistorted model.

Instability of traditional forecasting statistics in real-world applications motivates
construction of robust statistics. A statistic is said to be robust if its forecast risk is
“weakly affected by small distortions of the model M0” [8, 9, 17]. A mathematical
evaluation of robustness requires a formal description and classification of the most
commonly encountered types of distortions.

Figure 4.1 presents a classification diagram of model distortion types common to
applied statistical forecasting problems. The distortion types shown in the diagram
are briefly described below, and more detailed descriptions can be found in the
following chapters.

Following the structure of Chap. 3, let us start by assigning distortion types to
one of the two classes based on the manner in which the hypothetical model M0 is
defined:

D.1. A hypothetical model is defined explicitly as a probability distribution
PX0;XC.B/, B 2 Bd.T0CTC/, where X0 D .x0

1; : : : ; x
0
T0
/0 2 RdT0 is a vector

of T0 observations, and XC D .x0
T0C1; : : : ; x

0
T0CTC

/0 2 RdTC is a composite
vector of TC future random variables that are being predicted. To simplify the
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Fig. 4.1 Classification of model distortions in forecasting

notation introduced in Sect. 4.1, we assume that T0 D f1; : : : ; T0g, TC D
fT0 C 1; : : : ; T0 C TCg; also, for simplicity, we will assume that the random
vectors X0, XC have a joint absolutely continuous (w.r.t. the Lebesgue measure
in Rd.T0CTC/) distribution with the probability density pX0;XC.X0;XC/, where
X0 2 RdT0 , XC 2 RdTC . If the probability distribution is discrete, the results are
similar.

D.2. A hypothetical model is defined implicitly by a stochastic equation

xt D G.xt�1; : : : ; xt�s ; ut ; ut�1; : : : ; xt�LI �0/; t 2 Z; (4.25)

where ut 2 R� is a random process called the innovation process defined on
.˝;F;P/; positive integers s, L define, respectively, the lengths of the memories
of the predicted and the innovation processes; �0 2 ‚ � Rm is a parameter
vector;

G.�/ W Rds � R
�.LC1/ �‚ ! R

d

is a Borel function. Examples of time series models defined in the form (4.25)
can be found in Chap. 3.

In the class D.1, the most common distortion types are Tukey–Huber distortions
D.1.1 and distortions defined by "-neighborhoods in probability metrics D.1.2.

Tukey–Huber distortions [1, 4, 5, 10, 13–15, 18] of the observation vector X0 are
defined as mixtures of two probability distributions:

pX0.X
0/ D .1 � "/p0

X0
.X0/C " h.X0/;
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where p0.�/ is the undistorted (hypothetical) probability density, h.�/ is the so-called
contaminating probability density, " 2 Œ0; 1/ is the distortion level. If " D 0, then
pX0.�/ D p0

X0
.�/, and no distortion is present.

To define a distortion of type D.1.2, an "-neighborhood in a probability metric is
constructed:

0 � %
�

pX0.�/; p0X0.�/
� � ";

where %.�/ is a certain probability metric. Let us give some examples of probability
metrics used to define this type of distortions:

• Kolmogorov variational distance [3, 11, 12]:

%
�

p; p0
� D 1

2

Z

RdT0

ˇ

ˇp.X/ � p0.X/
ˇ

ˇ dX 2 Œ0; 1�I

• Hellinger distance [12]:

%
�

p; p0
� D 1

2

Z

RdT0

�
p

p.X/ �
p

p0.X/
�2

dX 2 Œ0; 1�I

• Kullback–Leibler distance [2]:

%
�

p; p0
� D

Z

�

p.X/ � p0.X/� ln
p.X/

p0.X/
dX 2 Œ0;C1�:

As in the previous case, " D 0 corresponds to absence of distortion.
Distortion class D.2 consists of three subclasses. The subclass D.2.1 is character-

ized by observation channel distortions:

X D H.X0;�/; (4.26)

where X0 2 RdT0 is the “unobservable history” and X 2 RdT0 are the observations,
or the “observable history” of the random process; � D .� 0

1; : : : ; �
0
T0
/0 2 RdT0 is

the unobservable random distortion vector (vector of observation channel errors);
andH.�/ is the function that describes recording of observations under distortion of
level " � 0. For example, an observation channel with additive distortions (D.2.1.1)
is defined as follows:

xt D x0t C "�t ; t 2 Z; (4.27)

where f�t g is a sequence of jointly independent random variables with zero
expectations and identical finite variances,

Ef�t g D 0; Df�tg D 	2 < C1:
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An observation channel with multiplicative distortions (D.2.1.2) is described by the
relation

xt D .1C "�t /x
0
t ; t 2 Z: (4.28)

It is said that observation channel distortions are "-inhomogeneous (D.2.1.3)
if the random distortion vectors �1; : : : ; �T0 aren’t identically distributed, but their
probability distributions differ by no more than " w.r.t. some probability metric.
Another possible definition of "-inhomogeneity is based on "-deviations of expec-
tations or variances.

The subclass D.2.1.4 is characterized by the presence of outliers:

xt D .1 � �t /x0t C �t vt ; t 2 Z; (4.29)

where �t 2 f0; 1g is a Bernoulli random variable distributed as

Pf�t D 1g D 1 � Pf�t D 0g D " 2 Œ0; 1/;
and f�t g are jointly independent; fvtg is a sequence of independent random variables
describing the outliers (in expectation or variance). If �t D 0, then the true value is
observed:

xt D x0t I
and if �t D 1, then the observation xt is an outlier:

xt D x0t C vt :

The quantity " is the outlier probability.
The subclass D.2.1.5 is defined by the presence of missing values (gaps) in the

observed statistical data X0 2 RdT0 . To formalize these observation gaps, let us
introduce a binary .T0 � d/-matrix O D .oti /, where

oti D
(

1; if x0ti is recorded;

0; if x0ti is missing:

Depending on randomness of the matrix O , two types of missing values are
distinguished, random and nonrandom. The settings where the matrix O depends
or doesn’t depend on the matrix of observationsX0 are classified separately.

The subclass D.2.2 is described by misspecification errors in (4.25) and includes
two distortion types:

• Parametric distortion means that in (4.25), instead of the true value of the
parameter �0, we have a priori specified (or found by statistical estimation) a
different value Q� with j Q� � �0j � "; the quantity " is the distortion level;



4.4 Robustness Characteristics 69

• Functional distortion, meaning that in (4.25), instead of the true function G.�/,
we have specified a different function QG.�/, and k QG.�/ � G.�/k � " holds in a
certain metric.

The subclass D.2.3 includes innovation process distortions, i.e., deviations of the
innovation process ut 2 R� , t 2 Z, in (4.25) from the model assumptions. Three
distortion types are included in this subclass:

• "-inhomogeneity (D.2.3.1), defined similarly to D.2.1.3;
• Stochastic dependence (D.2.3.2): usually, the innovation process is assumed to

be a white noise, or a sequence of independent random vectors futg; dependence
of these vectors is a deviation from the hypothetical stochastic modelM0;

• Outliers (D.2.3.3) in the observations futg, defined similarly to D.2.1.4.

4.4 Robustness Characteristics

In Sect. 4.1, we have formulated the general problem of statistical forecasting, and
Sect. 4.2 presents optimality criteria and defines mean square optimal forecasting
statistics for a fixed hypothetical model M0. However, in practice the hypothetical
model M0 is subject to distortions. In this section, we are going to introduce
functionals that characterize the robustness (stability) of forecasting statistics under
distortions of the model M0 introduced in the previous section.

Assume that the future values XC 2 R
dTC of a time series fxt g are predicted

based on observations X0 2 R
dT0 . In the absence of distortion, the investigated

time series is accurately described by the hypothetical modelM0 defined by the joint
probability distribution PX0;XC.�/, and a mean square optimal forecasting statistic
belonging to a function family F can be written as

OXC D f0.X
0/; (4.30)

where f0.�/ minimizes the mean square risk:

r0 D r.f0/ D inf
f .�/2F r.f /; (4.31)

r.f / D E

n

�

f .X0/ �XC�0 �f .X0/� XC�o � 0:

The stochastic model of the observed time series under distortions described in
Sect. 4.3 will be represented by the following family of probability measures:

n

P "
X;X0

.B/; B 2 Bd.T0CTC/ W " 2 Œ0; "C�
o

; (4.32)

where " is the model distortion level and "C � 0 is its maximal value. If "C D 0,
then no distortion is present, and the time series fully conforms to the hypothetical
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model M0. A more specific definition of the family (4.32) follows from the choice
of one of the distortion models presented in Sect. 4.3.

Under distortion (4.32), the mean square forecast risk of the forecasting statistic
f .�/ 2 F , written as

QXC D f .X0/;

depends on the distortion level:

r" D r".f / D E"

n

�

f .X0/ �XC�0 �f .X0/� XC�
o

� 0; (4.33)

where E"f�g is the expectation w.r.t. the probability measure P "
X;X0

.�/:
Definition 4.5. The guaranteed upper risk is defined as the exact upper bound for
the set of the risk values obtained under every allowed distortion of the model M0:

rC D rC.f / D sup
0�"�"C

r".f /: (4.34)

Similarly to (4.34), we can introduce the guaranteed lower risk:

r� D r�.f / D inf
0�"�"C

r".f /: (4.35)

It follows from (4.33)–(4.35) that for any distortion of the hypothetical model
M0 allowed by (4.32), the mean square risk is bounded by its guaranteed lower and
upper values:

r�.f / � r".f / � rC.f /; f .�/ 2 F:

Definition 4.6. The risk instability coefficient of the forecasting statistic f .�/ under
distortion (4.32) of the hypothetical model M0 is defined as the relative increment
of the guaranteed risk (4.34) w.r.t. the hypothetical risk r0 > 0 defined by (4.31):

� D �.f / D rC.f / � r0
r0

� 0: (4.36)

Definition 4.7. For a fixed ı > 0, the quantity

"� D "�.ı/ D supf" W �.f / � ıg � 0 (4.37)

is called the ı-admissible distortion level.

The quantity "� is the maximum distortion level such that the risk instability
coefficient doesn’t exceed a given constant ı.

Higher robustness (stability) of a forecasting statistic f .�/ 2 F under distortions
(4.32) corresponds to smaller values of � and larger values of "�.
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Definition 4.8. A forecasting statistic f�.�/ defined as

QXC D f�.X0/

is called minimax robust if it minimizes the risk instability coefficient:

�.f�/ D inf
f .�/2F �.f /: (4.38)

Let us also define the Hampel breakdown point "� in the setting of statistical
forecasting as the maximum proportion of outliers in the sample X0 such that
for arbitrary changes in their values the forecasting statistic remains bounded.
This characteristic of “qualitative robustness” was introduced in [8] for parameter
estimation problems.

To conclude the chapter, let us give a more intuitive explanation of the introduced
robustness characteristics.

The guaranteed upper risk rC.f / defined by (4.34) estimates the maximal mean
square forecast error of the forecasting statistic f .�/ 2 F under every possible
distortion of a given type and distortion level not exceeding some fixed value "C.

The interval

.f / D .r�.f /; rC.f //

is defined by (4.34) and (4.35) as the range of the mean square forecast error of the
forecasting statistic f .�/ 2 F if distortion level varies from the minimum " D 0 to
the maximal value " D "C.

The risk instability coefficient �.f / defined by (4.36) has the following meaning:
for the forecasting statistic f .�/ under distortion of level " 2 Œ0; "C�, the forecast risk
(i.e., the mean square forecast error) increases by no more than r0�.f / � 100%
compared to the hypothetical risk r0 (i.e., the minimum forecast risk which is
attained in the absence of distortion, " D 0):

r.f / � r0 C r0�.f /: (4.39)

The robust forecasting statistic f�.�/ 2 F defined by the minimax condition
(4.38) minimizes the upper bound for the risk in (4.39).

The ı-admissible distortion level "�.ı/ defined by (4.37) indicates the critical
distortion level for the forecasting statistic f .�/ 2 F . If the distortion level is higher
than this critical value, "C > "�, then the risk instability coefficient is unacceptably
high:

�.f / > ı;

and use of the statistic f .�/ is no longer justified. Instead, a robust forecasting
statistic f�.�/ should be constructed from (4.38).
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Chapter 5
Forecasting Under Regression Models of Time
Series

Abstract This chapter is devoted to statistical forecasting under regression models
of time series. These models are defined as additive mixtures of regression com-
ponents and random observation errors, where the regression components are
determined by regression functions. In the case of complete prior information, the
optimal forecasting statistic is constructed and its mean square risk is evaluated.
Consistent forecasting statistics are constructed for the different levels of parametric
and nonparametric uncertainty introduced in Chap. 3, and explicit expressions are
obtained for the forecast risk. A special case of regression—the logistic regression—
is considered.

5.1 Optimal Forecasting Under Complete Prior Information

The defining feature of regression models is the dependence of the expectation of
the observed random vector xt 2 Rd on some other known nonrandom variables
zt 2 RM called regressors. Knowing this dependence allows us to use the values
fzt W t > T0g at future time points to forecast future elements of the time series fxt W
t > T0g. Let us start with some real-world examples where it is natural to apply
regression analysis:

(1) for a certain product, establishing the dependence of the amount of sales xt on
the price of the product, prices of competing products, and the marketing budget
(these quantities form the regressor vector zt ); using the established dependence
to predict future values of xt ;

(2) predicting future GDP values by finding the dependence between the size xt
of the GDP and the variables zt , which in this case define the state economy
regulation policy; this prediction can then be used to evaluate the various
proposed economic policies;

(3) forecasting the efficiency xt of a chemical reaction chain based on the vector
zt composed of the relevant characteristics of raw materials and the reaction
environment.

Y. Kharin, Robustness in Statistical Forecasting, DOI 10.1007/978-3-319-00840-0 5,
© Springer International Publishing Switzerland 2013
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Consider a general (nonlinear) regression model of time series defined in
Sect. 3.1:

xt D F.zt I �0/C ut ; t 2 Z: (5.1)

Here F.zI �0/ W RM � ‚ ! Rd is the regression function, fzt g � RM is a known
nonrandom sequence, futg � Rd is an unobservable sequence of jointly indepen-
dent random vectors representing random observation errors. The vectors futg have
zero expectations and a finite covariance matrix˙ D .	jk/ 2 Rd�d :

Efutg D 0d ; Covfut ; ut 0g D ıt t 0˙; t; t 0 2 Z: (5.2)

First, let us consider the case of complete prior information PU-C, where F.�/, ˙ ,
fz1; : : : ; zT0 ; zT0C1g are known. Let the recorded observations be fx1; : : : ; xT0g, and
let xT0C1 be the predicted future observation.

Theorem 5.1. Under the regression model (5.1), (5.2) above, assuming prior
knowledge of the stochastic characteristics F.�/, ˙ , the following two statements
hold:

(1) a regression mean square optimal point forecast defined by (4.6) and (4.11) can
be written as

bxT0C1 D F.zT0C1I �0/I (5.3)

this forecast is unbiased,

EfbxT0C1 � xT0C1g D 0d ; (5.4)

and has the minimal risk

R0 D ˙ I r0 D tr .˙/I (5.5)

(2) if, in addition, the random errors are normally distributed, Lfutg D Nd .0d ;˙/
with a nonsingular covariance matrix ˙ , then for a confidence level " 2 .0; 1/
a .1� "/-confidence region for xT0C1 can be defined as an ellipsoid in Rd :

X1�" D
n

x 2 R
d W �x � F.zT0C1I �0/

�0
˙�1.�/ < G�1

d .1 � "/
o

; (5.6)

PfxT0C1 2 X1�"g D 1 � "; (5.7)

where G�1
d .1� "/ is the .1� "/-quantile of the standard 
2 distribution with d

degrees of freedom.

Proof. Applying Theorem 4.1 with TC D 1 (one-step-ahead forecasting) to the
regression model (5.1), (5.2) yields
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bxT0C1 D E fxT0C1 j xT0 ; : : : ; x1g D E
˚

F.zT0C1I �0/C uT0C1 j xT0 ; : : : ; x1



:

The nonrandomness of zT0C1 together with the independence of fxt W t � T0g and
uT0C1 now imply (5.3). Unbiasedness of the estimator (5.3) directly follows from
Theorem 4.1, and the forecast risk then coincides with (5.5):

R0 D E fCovfxT0C1; xT0C1 j xT0 ; : : : ; x1gg D
D E fCovfuT0C1; uT0C1 j xT0 ; : : : ; x1gg D ˙:

The second statement will be proved by directly verifying (5.7). Let us define an
auxiliary nonnegative random variable

� D �

xT0C1 � F.zT0C1I �0/
�0
˙�1 �xT0C1 � F.zT0C1I �0/

� � 0:

By (5.1) and the assumption that uT0C1 is normal, we have

� D u0
T0C1˙

�1uT0C1 	 v0
T0C1vT0C1;

where vT0C1 D ˙�1=2uT0C1. By the properties of linear transformations of normal
vectors [1], we have Lfvt g D Nd .0d ;˙�1=2˙.˙�1=2/0/ D Nd .0d ; Id /, i.e., vt has
the standard normal distribution. Then, by the definition of the 
2 distribution [1],
� has a 
2 distribution with d degrees of freedom and the probability distribution
function

Pf� < yg D Gd.y/; y � 0:

Thus, by (5.6), we have

PfxT0C1 2 X1�"g D Pf� < G�1
d .1 � "/g D Gd.G

�1
d .1 � "// D 1 � ";

proving (5.7). ut
Corollary 5.1. If d D 1 and˙ D 	2 or, in other words, if the predicted time series
is scalar, then a .1 � "/-confidence interval forecast of the future value xT0C1 2 R1

can be written as follows: xT0C1 2 X1�" D .x�
T0C1; x

C
T0C1/ with probability 1 � ",

where

xṪ0C1 D F
�

zT0C1I �0
�˙ 	˚�1.1 � "=2/;

and ˚�1.�/ is a � -quantile of the standard normal distribution.

Note that the optimal forecast (5.3) doesn’t depend on the past data fx1; : : : ; xT0g,
fz1; : : : ; zT0g, which is due to the lack of prior uncertainty (remember that we are
assuming complete prior knowledge).
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Also note that an optimal simultaneous forecast of TC > 1 future values of the
time series can be made using the same formula (5.3):

bxT0C� D F.zT0C� I �0/; � D 1; : : : ; TC:

In other words, the independence of futg implies the independence of the forecast
vector elements. The minimal mean square risk of forecasting a composite vector
XC D .xT0C1; : : : ; xT0CTC

/ can be written as r0 D TCtr .˙/:

5.2 Regression Forecasting Under Parametric
Prior Uncertainty

In most applications, complete prior knowledge of the regression model (5.1), (5.2)
is unavailable, or, in other words, the forecasting problem includes prior uncertainty
(parametric or nonparametric). In this section, we are going to discuss the PU-P
(parametric prior uncertainty) setting where the true value of the parameter vector
�0 2 ‚ � Rm defining the regression function F.zI �0/ is a priori unknown, and
the same is true of the covariance matrix ˙0 D .	0jk/ 2 Rd�d . The following three
main directions have been proposed to solve this type of forecasting problems:

(1) Bayesian approach;
(2) joint estimation of the parameters �0, ˙0 and the future value XC by applying

the maximum likelihood principle;
(3) use of the plug-in principle.

These directions will be discussed in more detail in the following subsections for
the general setting of the forecasting problem introduced in Sect. 3.1.

5.2.1 Bayesian Approach in the PU-P Setting

The Bayesian approach is based on the assumption that the unknown model
parameters �0, ˙0 are random and follow a probability distribution with a certain
a priori known probability density p�0;˙0 .�;˙/ (to simplify the argument, we are
going to restrict ourselves to the absolutely continuous case). We are also going to
assume that the probability density q˙0.u/ of the random observation error vector
ut is known up to a parameter˙0 and satisfies the conditions (5.2).

From (5.1), (5.2), and well-known properties of joint probability densities, we
can obtain the conditional probability density of XC given fixed past values X0:

pXC
jX0.XC j X0/ D pXC;X0 .XC; X0/

R

R
dT

C

pXC;X0 .XC; X0/dXC
; (5.8)
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pXC;X0 .XC; X0/ D
Z

pXC;X0
j�0;˙0.XC; X0 j �;˙/p�0;˙0.�;˙/d�d˙;

(5.9)

pXC;X0
j�0;˙0.XC; X0 j �;˙/ D

 

T0
Y

iD1

q˙

�

xt0i
� F.zt 0i I �/

�

!

�

�
0

@

TC
Y

jD1

q˙

�

x
t
C

j
� F.z

t
C

j
I �/

�

1

A : (5.10)

By Theorem 4.1, the Bayesian regression forecasting statistic which is optimal w.r.t.
matrix mean square risk (4.6) can be written in the following integral form:

bXC D fB.X
0/ WWD

R

R
dT

C

XCpXC;X0.X
C; X0/dXC

R

R
dT

C

pXC;X0.X
C; X0/dXC : (5.11)

The Bayesian forecasting statistic (5.11) is universal and possesses all of the
optimal properties mentioned in Theorem 4.1. However, in practice this statistic is
hard to compute due to the following two reasons:

(1) the prior probability density p�0;˙0 .�/ is usually unknown;
(2) the formulas (5.8)–(5.11) require multiple integration in many dimensions,

which often has an enormous computational cost.

5.2.2 Joint Estimation Using the Maximum Likelihood (ML)
Principle

Assuming the parameters �0,˙0 to be unknown, let us use the representation (5.10)
to construct a logarithmic likelihood function (LLF) for X0, XC, i.e., a logarithm
of the joint probability density of X0, XC:

l.XC; �;˙/ D lX0.�;˙/C lXC.�;˙/; (5.12)

lX0.�;˙/ D lnpX0.X
0; �;˙/ D

T0
X

iD1
ln q˙

�

xt0i
� F.zt 0i I �/

�

; (5.13)

lXC.�;˙/ D lnpXC.XCI �;˙/ D
TC
X

jD1
ln q˙

�

x
t
C

j
� F.z

t
C

j
I �/

�

: (5.14)
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Theorem 5.2. Under PU-P uncertainty in the regression model (5.1), (5.2), let the
probability density q˙.u/ have a single mode at u D 0d . Then the ML forecasting
statistic has the form

bx
t
C

j
D F.z

t
C

j
Ie�/; j D 1; : : : ; TC; (5.15)

where e� D e�.X0/ is a statistical estimator for �0 defined as a solution of the
following optimization problem

lX0.�;˙/C TC ln q˙.0d / ! max
�;˙

: (5.16)

Proof. Following the ML principle, joint estimators for �0, ˙0, XC are found by
maximizing the log likelihood function (5.12):

l.XC; �;˙/ ! max
XC;�;˙

: (5.17)

By (5.14) and the unimodality of q˙.�/, this maximum is attained at bXC D .bx
t
C

j
/,

wherebx
t
C

j
is defined by (5.15). Substituting (5.15) into (5.17) yields the optimiza-

tion problem (5.16). ut
From (5.15), (5.16) it follows that under the assumptions of Theorem 5.2, the ML

principle leads to plug-in forecasting statistics introduced in Sect. 4.2. In particular,
if ˙ is known, or if q˙.0d / doesn’t depend on ˙ , thene� defined by (5.16) is the
maximum likelihood estimator (MLE).

5.2.3 Using the Plug-In Principle

As discussed in Sect. 4.2, a plug-in regression forecasting statistic has the following
general form, which is similar to (5.15):

bx
t
C

j
D F.z

t
C

j
Ib�/; j D 1; : : : ; TC; (5.18)

where b� D b�.X0/ W RdT0 ! ‚ � Rm is a consistent statistical estimator of the
parameter vector �0 of the regression function based on observations X0. Con-
struction of the estimatorb� can be based on numerous classical estimators: MLEs
(or their generalization—minimal contrast estimators [2]), least squares estimators
(LSE), or moment estimators. The main difficulty is the estimation of the forecast
risk associated with the use of different estimators. The most common choices in
regression analysis—MLEs and LSEs—are discussed below [11].
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Theorem 5.3. Under the conditions of Theorem 5.2, if q˙.u/ D nd .u j 0d ;˙/ is
the d -dimensional normal probability density, then the plug-in regression forecast-
ing statistic based on MLEsb� , b˙ can be written in the form (5.18), whereb� , b˙ are
found by solving the following optimization problem:

ln j˙ j C 1

T0

T0
X

iD1

�

xt0i
� F.zt 0i I �/

�0
˙�1

�

xt0i
� F.zt 0i I �/

�

! min
�;˙

: (5.19)

Proof. Due to the normal distribution of futg, by (5.13) we have the following
optimization problem:

lX0.�;˙/ D
T0
X

iD1
ln

�

.2�/�
d
2 j˙ j� 1

2 exp

�

�1
2

�

xt0i
� F.zt 0i I �/

�0
˙�1.�/

��

D

D �T0d
2

ln.2�/ � T0

2
ln j˙ j � 1

2

T0
X

iD1

�

xt0i
� F.zt 0i I �/

�0
˙�1.�/ ! max

�;˙
;

which is equivalent to (5.19). ut
Note that the estimator b� defined by (5.19) is, assuming nonlinear dependence

between F.�/ and � , a nonlinear LSE (a generalized nonlinear LSE for ˙ ¤ cId ).
The most extensive theoretical results have been obtained in the case of linear
dependence between F.�/ and � :

F.zI �0/ D �0
0
 .z/; z 2 R

M ; (5.20)

where  .z/ D . i .z// 2 Rm is an m-column vector of known linearly independent
(basis) functions,

�0 D
�

�0.1/
... �0.2/

... : : :
... �0.d/

�

D .�0ij/

is an .m � d/-matrix of regression coefficients, and

�0.j / D .�0ij/ 2 R
m

is the j th m-column vector of this matrix. The multivariate regression function
(5.20) is linear w.r.t. its parameters, and thus the regression model (5.1), (5.20) is
called the multivariate linear regression model [1]. Under the assumptions (5.2),
LSEs of the parameters of this model �0, ˙ based on T0 > m observations
fxt W t 2 T0g and a priori given regressor values fzt W t 2 T0g can be written
in the following form [1]:

b� D A�1C 0; (5.21)



80 5 Forecasting Under Regression Models of Time Series

where T0 D ft01 ; : : : ; t0T0g,

A D
X

t2T0
 .zt / 

0.zt / is an .m �m/-matrix;

C D
X

t2T0
xt 

0.zt / is a .d �m/-matrix;

b˙ D 1

T0 �m

X

t2T0

�

xt �b� 0 .zt /
� �

xt �b� 0 .zt /
�0
: (5.22)

The LSEs defined by (5.21) require an additional assumption on the design of the
experiment—the dynamics of regressor vectors zt :

jAj ¤ 0: (5.23)

The estimators (5.21), (5.22) coincide with the LSE and are obtained by substituting
(5.20) into (5.19).

By Theorem 5.3, under the multivariate linear regression model (5.20) the plug-
in forecasting statistic (5.18) has the form

bx
t
C

j
Db� 0 .z

t
C

j
/; j D 1; : : : ; TC: (5.24)

Theorem 5.4. Under PU-P uncertainty in the multivariate linear regression model
(5.1), (5.2), (5.20), the plug-in forecasting statistic (5.24), (5.21) is unbiased:

Efbx
t
C

j
� x

t
C

j
g D 0d ; j D 1; : : : ; TC; (5.25)

and the respective matrix mean square forecast risk equals

R D E

n

.bx
t
C

j
� x

t
C

j
/.bx

t
C

j
� x

t
C

j
/0
o

D
�

1C  0.z
t
C

j
/A�1 .z

t
C

j
/
�

˙: (5.26)

Proof. It is known [1] that, under the conditions of the theorem, the MLE (5.21) is
unbiased. Thus, (5.24) yields

Efbx
t
C

j
� x

t
C

j
g D E

n

�0
0
 .z

t
C

j
/ � x

t
C

j

o

D Ef�u
t
C

j
g D 0d ;

which coincides with (5.25). Let us use a similar argument to calculate the forecast
risk.

Due to (5.1), (5.20), and (5.24), we have

bx
t
C

j
� x

t
C

j
D .b� � �0/0 .z

t
C

j
/� u

t
C

j
D
�

.b�.i/ � �0.i//0 .ztCj /
�

iD1;:::;d
� u

t
C

j
;
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and thus by (5.2) we can write

R D ˙ C
�

 0.z
t
C

j
/E
n

.b�.i/ � �0.i//.
b�.k/ � �0.k//0

o

 .z
t
C

j
/
�

i;kD1;:::;d
:

By applying well-known results from multivariate linear regression theory [1], we
have:

E

n

.b�.i/ � �0.i//.
b�.k/ � �0.k//0

o

D 	ikA
�1; i; k D 1; : : : ; d:

Substituting the above equality into the previous formula leads to (5.26). ut
Theorem 5.5. Under the conditions of Theorem 5.4, if, additionally, the random
observation errors are normal with the probability density q˙.u/ D nd .u j 0d ;˙/,
and the covariance matrix˙ is known, then a .1�"/-confidence forecast region for
x
t
C

j
, j D 1; : : : ; TC, can be defined as the following ellipsoid:

X1�" D

8

ˆ

<

ˆ

:

x 2 R
d W

�

x �b� 0 .z
t
C

j
/
�0
˙�1

�

x �b� 0 .z
t
C

j
/
�

1C  0.z
t
C

j
/A�1 .z

t
C

j
/

< G�1
d .1 � "/

9

>

=

>

;

;

(5.27)

where Gd .�/ is the standard 
2 distribution function with d degrees of freedom.

Proof. Using the representation (5.24), let us introduce an auxiliary random
d -column vector of the “remainders:”

� D x
t
C

j
�b� 0 .z

t
C

j
/ D x

t
C

j
�bx

t
C

j
:

Due to linearity of the LSE (5.21) w.r.t. the observations and Theorem 5.4, we
can write

Lf�g D Nd

�

0d ;
�

1C  0.z
t
C

j
/A�1 .z

t
C

j
/
�

˙
�

:

From the well-known properties of probability distributions, the quadratic form

Q D �0˙�1�
1C  0.z

t
C

j
/A�1 .z

t
C

j
/

follows the standard 
2 distribution with d degrees of freedom, LfQg D 
2d , and
thus its probability distribution function is Gd.y/.

Therefore, in the notation of (5.27), we have:

P

n

x
t
C

j
2 X1�"

o

D P
˚

Q < G�1
d .1 � "/
 D Gd

�

G�1
d .1 � "/

� D 1 � ";

proving the theorem. ut
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Corollary 5.2. Interval forecasts of a scalar quantity x
t
C

j
2 R1 (d D 1, ˙ D 	2)

have the following form: at .1 � "/-confidence, x
t
C

j
2 .x�; xC/, where

x˙ Db� 0 .z
t
C

j
/˙ g1�"=2 	

q

1C  0.z
t
C

j
/A�1 .z

t
C

j
/; (5.28)

and gu D ˚�1.u/ is a u-quantile of the N.0; 1/ distribution, u 2 .0; 1/.
Note that in applications the design of the experiment fzt 0j g usually satisfies the

Eicker condition: as the observation length tends to infinity, T0 ! C1, the minimal
characteristic value of the matrix A satisfies �min.A/ ! C1, and thus

 0.z
t
C

j
/A�1 .z

t
C

j
/ ! 0:

In this case the length of the confidence interval defined by (5.28) tends to the
length of the confidence interval in the PU-C (complete prior information) setting:

 D 2	g1�"=2:

Theorem 5.6. If, under the assumptions of Theorem 5.5, the covariance matrix of
observation errors is unknown, and T0 � mC d , then the following d -dimensional
ellipsoid is a .1 � "/-confidence forecast region for x

t
C

j
:

eX1�" D

8

ˆ

<

ˆ

:

x 2 R
d W

�

x �b� 0 .z
t
C

j
/
�0
b˙�1

�

x �b� 0 .z
t
C

j
/
�

1C  0.z
t
C

j
/A�1 .z

t
C

j
/

<

<
d.T0 �m/

T0 C 1 � .d Cm/
F�1
d;T0C1�.dCm/.1 � "/

9

>

=

>

;

;

where j D 1; : : : ; TC; F�1
m;n.p/ is a p-quantile of the standard central F-distribution

with .m; n/ degrees of freedom, p 2 .0; 1/.
Proof. Consider an auxiliary random d -column vector:

e� D
�

1C  0.z
t
C

j
/A�1 .z

t
C

j
/
��1=2

� 2 R
d :

Let us also define a quadratic form eQ D e� 0
b˙�1

e� � 0, where ˙ is defined by
(5.22).

We are going to use the following results from multivariate linear regression
theory [1]:
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(1) Lfe� g D Nd .0d ;˙/;
(2) Lf.T0 � m/b˙g D Wd.˙; T0 � m/ is the Wishart probability distribution with

the matrix ˙ and T0 �m degrees of freedom;
(3) e� and e˙ are independent random elements.

Applying the theorem on probability distributions of the generalized Hotelling’s
T 2-statistic [1], we obtain

L

(

eQ

T0 �m

T0 C 1 � .d Cm/

d

)

D Fd;T0C1�.dCm/;

and thus

P

n

x
t
C

j
2 eX1�"

o

D 1 � ": ut

Corollary 5.3. In the scalar case (d D 1), let b˙ D s2 be the sample variance of
the remainders. Then the limits of a .1 � "/-confidence interval eX1�" D .ex�;exC/
can be defined as

ex˙ Db� 0 .z
t
C

j
/˙ t�1T0�m

�

1 � "

2

�

s
q

1C  0.z
t
C

j
/A�1 .z

t
C

j
/;

where t�1f .p/ is a p-quantile of Student’s t-distribution with f degrees of freedom.

Proof. As in the proof of Theorem 5.6, we are going to rely on the following facts:

(1) Lfe�=	g D N.0; 1/;
(2) Lf.T0 �m/s2=	2g D 
2T0�m;
(3) e�, s2 are independent.

By well-known properties of probability distributions [3], we have that

L

(

e�=	
p

s2=	2

)

D L

�

e�

s

	

D tT0�m;

where tT0�m denotes Student’s t-distribution with T0�m degrees of freedom. Thus,

P

n

ex� < x
t
C

j
<exCo D 1 � ": ut

5.3 Logistic Regression Forecasting

Let us consider a commonly encountered applied problem which leads to the
logistic regression model. Assume that a complex technological process is being
studied to establish the dependence between the average ratio of defective items
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Fig. 5.1 The logit function

(e.g., computer chips) x 2 Œ0; 1� on M factors (or characteristics) of the underlying
technological process z D .zj / 2 RM . Statistical data on the process has been
obtained by sampling and is a set of T0 series of experimental data. In the t th
series, t D 1; 2; : : : ; T0, the vector of technological factors assumed the values
zt D .zt;j / 2 RM , and N0

t defective items have been found in Nt items that
have been subjected to quality control; thus, the recorded defect ratio was equal
to x D xt D N0

t =Nt . We would like to construct a forecast bxT0C1 2 Œ0; 1� for
the unknown true defect ratio xT0C1 for a given (expected or future) collection of
technological factors zT0C1 D .zT0C1;j / 2 RM . The logistic regression model proves
adequate for this type of forecasting problems [8].

Definition 5.1. The logit transformation is defined as the following Œ0; 1� $ R1

bijection (Fig. 5.1):

y D logit.x/ WWD ln
x

1 � x
: (5.29)

From (5.29) we can find the inverse function:

x D F.y/ D 1

1C e�y D 1 � 1

1C ey
D ey

1C ey
; (5.30)

which is known as the standard logistic distribution function.
The probability density of the standard logistic distribution function is

f .y/ D F 0.y/ D ey

.1C ey/2
;

the expectation is zero, � D 0, and the variance equalsD D �2=3 [7, 8].
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Thus,

y D logit.x/ D F�1.x/: (5.31)

Definition 5.2. It is said that a random variable x 2 Œ0; 1� has a logistic regression
dependence on z D .zk/ 2 RM with a coefficient vector � D .�0; �1; : : : ; �M / 2
RMC1 if the following conditions are satisfied:

(1) Efxg D p�.z/ W RM ! Œ0; 1�;
(2) there exists a positive integer N D N.x/ such that N x 2 f0; 1; : : : ; N g is a

discrete binomially distributed random variable, LfNxg D Bi.N; p�.z//;
(3) the function p�.z/ is chosen so that its logit transformation is a linear function

w.r.t. the factors z and the parameters � :

logit.p� .z// D ln
p�.z/

1 � p�.z/
D �0 C

M
X

jD1
�j zj : (5.32)

In the above example, the function p�.z/ represents the average defect ratio, i.e.,
the probability of a defect for technological factors z and coefficients � . Defini-
tion 5.2 and (5.30) imply the following nonlinear dependence of the probability
p D p�.z/ on the factors z and the coefficients � :

p D p�.z/ D F

0

@�0 C
M
X

jD1
�j zj

1

A D
0

@1C exp

0

@��0 �
M
X

jD1
�j zj

1

A

1

A

�1

: (5.33)

Due to the conditions (1), (2), and equality (5.33), we have the following
representation:

x D F

0

@�0 C
M
X

jD1
�j zj

1

AC �; Ef�g D 0; Df�g < C1; (5.34)

and thus the logistic model is a special case of the general regression model
discussed in Sect. 3.1. Thus, a suboptimal plug-in forecast for the vector of factors
z D .zj / defined by (5.18) can be written as follows:

bx D F

0

@b�0 C
M
X

jD1
b�j zj

1

A ; (5.35)

whereb� D .b�0; : : : ;b�M /
0 2 RMC1 is a consistent estimator of the logistic regres-

sion coefficients based on the collected statistical data.
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Let us consider the problem of constructing a consistent statistical estimatorb� .
Under the logistic regression model defined by conditions (1)–(3), the collected
statistical data

n

.xt ; zt / 2 R
MC1 W t D 1; 2; : : : ; T0

o

has the following properties:

.A1/ fx1; x2; : : : ; xT0g � Œ0; 1� is a sample of T0 jointly independent random
variables;

.A2/ xt is a random variable derived fromNt � 1 independent Bernoulli trials with
a binomial (after normalization) probability distribution, t D 1; : : : ; T0:

LfNtxt g D Bi .Nt ; p�0.zt // ;

p�0.zt / D F
�

�0
0
zt
�

;

where

zt D .1
... z0
t /

0 2 R
MC1

is a composite column vector of factors, and F.�/ is defined by (5.30).

Let us discuss two main methods for statistical estimation of �0.

Use of Maximum Likelihood

Theorem 5.7. The MLE b� D .b�j / 2 RMC1 for the logistic regression model
described above is the solution of M C 1 vector nonlinear equations:

T0
X

tD1
Nt
�

xt � F.� 0xt /
�

xt D 0MC1: (5.36)

Proof. The logistic regression model satisfies the conditions A1, A2. The condition
A2 implies that

P� fx D xt g D C
Ntxt
Nt

�

p�.zt /
�Ntxt

�

1 � p�.zt /
�Nt .1�xt /

;

and thus, taking into account the condition A1, the LLF can be written as

l.�/D ln
T�
Y

tD1
P0fx D xt g D

T0
X

tD1
ln
�

C
Nt xt
Nt

CNtxt lnp�.zt /CNt .1� xt / ln .1�p�.zt //
�

:

(5.37)
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The MLEb� is found from the maximality condition

l.�/ ! max
�
: (5.38)

Let us rewrite (5.37) by applying (5.32), (5.33):

l.�/ D
T0
X

tD1

�

lnCNtxt
Nt

CNtxt ln
p�.zt /

1 � p�.zt /
CNt ln .1 � p�.zt //

�

D

D const C
T0
X

tD1

�

Ntxt�
0zt �Nt ln

�

1C exp.� 0zt /
��

:

Then the necessary extremum condition (5.38) leads to a system of equations

r� l.�/ D
T0
X

tD1

�

Ntxt zt �Nt
exp.� 0zt /

1C exp.� 0zt /
zt

�

D 0MC1;

which by (5.30) is equivalent to (5.36). ut
Unfortunately, (5.36) defines an analytically unsolvable system of transcendent

equations. Thus, numerical methods must be applied, specifically linearization of
F.� 0zt / over � .

Use of the Generalized Least Squares Method

Let us define the logit transformed sample (5.29):

lt D logit.xt / D ln
xt

1 � xt
; t D 1; : : : ; T0: (5.39)

Theorem 5.8. Under the conditions of Theorem 5.7, the random variables
l1; : : : ; lT0 defined by (5.39) are jointly independent, and for Nt ! 1 the following
asymptotic relations hold for t D 1; : : : ; T0:

li
P�! logit .p�0.zt // D �0

0

zt ;

L
n
p

Nt.lt � �0
0
zt /
o

�! N1

�

0;
�

p�0.zt / .1� p�0.zt //
��1�

: (5.40)

Proof. From the condition A2 and certain well-known properties of the binomial
distribution, we have
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EfNtxt g D Ntp�0.zt /; DfNtxt g D Ntp�0.zt / .1 � p�0.zt // ;

L
n
p

Nt .xt � p�0.zt //
o

�!
Nt!1 N1

�

0; p�0.zt /
�

1 � p�0.zt /
��

;

xt
P�!

Nt!1 p�0.zt /; t D 1; : : : ; T0: (5.41)

Then (5.40) follows from (5.41) and the Anderson theorem on functional trans-
formations of asymptotically normal random sequences [1] due to (5.32) and the
following fact implied by (5.29):

d

dx
.logit.x// D 1

x.1 � x/ : ut

Given a sufficiently long series of observations (Nt ! 1; t D 1; : : : ; T0),
Theorem 5.8 allows for a representation of a logit-transformed sample (5.39) as
a random sample satisfying a heteroscedastic (corresponding to a heterogeneous
population) multiple linear regression model [8]:

lt D � 0zt C �t ; t D 1; 2; : : : ; T0; (5.42)

where f�t g are the jointly independent “induced” random errors:

Ef�t g 
 0; 	2t D Df�t g 
 �

Ntp�.zt /.1� p�.zt //
��1
: (5.43)

The relations (5.42), (5.43) allow us to apply the generalized (weighted) least
squares method using plug-in variance estimators ( 1p�.zt / D xt ):

b	2t D �

Ntxt .1� xt /
��1
; t D 1; 2; : : : ; T0I

%2.�/ D
T0
X

tD1

.lt � � 0zt /2

b	2t
D

T0
X

tD1
Ntxt .1 � xt /.lt � � 0zt /2 �! min

�
:

The necessary condition for this minimum can be written as

r�%
2.�/ D �2

T0
X

tD1
Ntxt .1 � xt /.lt � � 0zt /zt D 0;

or equivalently

T0
X

tD1
Ntxt .1 � xt /ltzt D

 

T0
X

tD1
Ntxt .1� xt /ztz

0
t

!

�:
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Thus, if the design of the experiment is nonsingular, or, formally,

ˇ

ˇ

ˇ

ˇ

ˇ

T0
X

tD1
Ntxt .1 � xt /zt z0

t

ˇ

ˇ

ˇ

ˇ

ˇ

¤ 0; (5.44)

we can find a generalized (weighted) LSE for the logistic regression coefficients:

b� D
 

T0
X

tD1
Ntxt .1 � xt /zt z0

t

!�1 T0
X

tD1
Ntxt .1 � xt /ltzt : (5.45)

Note that to satisfy the nonsingularity condition (5.44), the number of series with
different values of fzt g must be no smaller than the number of the parameters. In
particular, we must have that T0 � M C 1.

In conclusion, note that other nonlinear regression models can be constructed
similarly to the logistic model (5.33) by taking another probability distribution
function instead of the logistic function (5.30). For instance, we can base our
argument on the Cauchy probability distribution function

F.y/ D 1=2C ��1arctg.y/;

which would lead to the following nonlinear regression model:

tg ..p� .zt / � 1=2/�/ D � 0zt :

5.4 Nonparametric Kernel Regression Forecasting

As in Sects. 5.2, 5.3, consider the problem of forecasting a random vector x 2 R
d

stochastically dependent on a vector z 2 R
M of regressors (factors):

x D F.z/C u; (5.46)

where u 2 Rd is a random d -vector with a zero expectation and a finite variance,
and F.�/ W RM ! Rd is the unknown regression function. In Sects. 5.2, 5.3 we have
studied the case of PU-P parametric prior uncertainty where the regression function
F.�/ was assumed to be known up to an m-vector of parameters

�0 D .�0j / 2 R
m W F.z/ WWD F.zI �0/:

Based on statistical data f.x0
t

... z0
t /

0 2 RdCM W t D 1; 2; : : : ; T0g collected over
T0 time units, a consistent statistical estimator b� and the respective parametric
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regression function estimator bF .z/ WWD F.zIb�/ were used to forecast future values
xTC� 2 Rd :

bxTC� D F
�

zTC� Ib�
�

:

Unfortunately, a parametric representation of the regression function F.�/ is
usually unknown; in other words, we are in a PU-NP (nonparametric prior uncer-
tainty) setting. This situation will be considered in the remaining part of Chap. 5.
For brevity, let us consider the univariate case: d D M D 1; the results obtained
for univariate distributions can be easily generalized for multivariate x, z. Without
loss of generality, we assume that z 2 Œ0; 1�; any different finite range for z can be
obtained by shifting and scaling.

Let us define the general nonparametric regression model [6]:

xt D F.zt /C ut ; t D 1; 2; : : : ; T0; : : : ; (5.47)

where F.�/ 2 C.R1/ is the unknown real-valued continuous regression function;
futg are jointly independent identically distributed random observation errors,

Efutg D 0; Dfutg D Efu2t g D 	2 < C1I (5.48)

the sequence zt 2 Œ0; 1� represents the observed regressor (factor, predictor) values;
xt 2 R1 are the observed values of the dependent variable x in (5.46); T0 is the
observation length. Statistical data used to forecast the future value of xT0C� 2 R1

for a given predictor value zT0C� 2 Œ0; 1� will be represented as a .T0 � 2/-matrix:

YT0 D

0

B

@

z1 x1
:::

:::

zT0 xT0

1

C

A 2 R
T0�2:

Two predictor models are known, the model of random predictors (MRP) and the
model of deterministic predictors (MDP). In the MRP model, we assume that fzt g
is an observed random sample from a probability distribution with a distribution
function G.z/ D Pfzt < zg and a probability density function g.z/ D G0.z/, where
z 2 Œ0; 1�; in this model YT 0 is a random sample of size T0 from the joint bivariate
probability distribution of the random vector .zt ; xt / with a probability density

p.z; x/ D g.z/p.x j z/:

In the MDP model the predictor values fztg are nonrandom, and randomness of
fxt g is only due to random observation errors futg.

In order to consider MDP as a special case of MRP, let us construct an empirical
distribution function for the “sample” fztg [6]:



5.4 Nonparametric Kernel Regression Forecasting 91

GT0.z/ D 1

T0

T0
X

tD1
1.z � zt /;

and assume that the following uniform convergence holds as T0 ! 1:

sup
z2Œ0;1�

jGT0.z/ �G.z/j ! 0;

where G.�/ is some absolutely continuous probability distribution function. An
example of such “pseudorandom” sample fztg is

zt D G�1
�

t � 0:5

T0

�

; t D 1; : : : ; T0:

In order to construct a plug-in forecasting statistic under PU-NP prior uncer-
tainty, we are going to use nonparametric estimation of the regression function F.z/
based on statistical data YT 0 .

Definition 5.3. The Nadaraya–Watson nonparametric kernel estimator of the
regression function F.�/ is defined as the following statistic [6]

bF .z/ D F0.zIYT0/ D

T0
P

tD1
Kh.z � zt /xt

T0
P

tD1
Kh.z � zt /

; z 2 Œ0; 1�; (5.49)

Kh.u/ D 1

h
K
�u

h

�

; u 2 R; (5.50)

where K.�/ is the kernel—a continuous bounded even function satisfying the
normalization condition

C1
Z

�1
K.u/du D 1I (5.51)

the number h D hT0 > 0 is a scaling multiplier known as the smoothing parameter.

Let us define several kernel functions which are commonly used in appli-
cations:

• rectangular kernel

K.u/ D 1

2
1Œ�1;C1�.u/I (5.52)
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• Gauss kernel

K.u/ D 1p
2�
e�u2=2I (5.53)

• Epanechnikov kernel

K.u/ D 3

4

�

1 � u2
�

1Œ�1;C1�.u/: (5.54)

The following asymptotic properties of the Nadaraya–Watson estimator follow
directly from the definition (5.49):

(1) if h ! 0, the kernelK.u/ has a global maximum at u D 0, and all of the values
fz1; : : : ; zT0g are different, then for t 2 f1; : : : ; T0g we have

bF .zt / �! K.0/xt

K.0/
D xt ;

i.e., for h! 0 we achieve “perfect forecasting” of the observed training
data YT0 ;

(2) if h ! C1, then K ..z � zt /=h/ ! K.0/, and

bF .z/ �! 1

T0

T0
X

tD1
xt D x;

i.e., as h ! C1, the regression function estimator tends to the sample mean.

Theorem 5.9. Under a nonparametric regression model with a random predictor
(5.47), (5.48), assume that a plug-in nonparametric kernel forecast has been
constructed:

bxT0C� D bF .zT0C� / D F0.zT0C� IYT0/; � 2 N; (5.55)

where F0.�/ is defined by (5.49), and the following conditions hold:

.B1/ the regression function F0.�/ is continuous and bounded;

.B2/ the probability density function g.z/ of the random predictor zt is continuous
and bounded, and g.zT0C� / > 0;

.B3/ K.�u/ D K.u/, sup jK.u/j � c0 < C1,

C1
Z

�1
jK.u/jdu < C1I

.B4/ for T0 ! C1, the smoothing parameter satisfies

hT0 ! 0; T0hT0 ! C1:
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Then the forecast (5.55), (5.49) is consistent:

bxT0C� � bF .zT0C� /
P�!

T0!C1 0; zT0C� 2 Œ0; 1�: (5.56)

Proof. Denote

 .z/ D F.z/g.z/; bgh.z/ D 1

T0

T0
X

tD1
Kh.z � zt /;

b h.z/ D 1

T0

T0
X

tD1
Kh.z � zt /xt ; z 2 Œ0; 1�; (5.57)

where bgh.z/ is the Rosenblatt–Parzen nonparametric kernel estimator [9] for the
probability density function g.z/ of the random predictor based on the sample fztg.
From (5.55), (5.57), and (5.49), we have the following equivalent representation of
the forecasting statistic:

bxT0C� D bF .zT0C� / D
b hT0

.zT0C� /
bghT0 .zT0C� /

: (5.58)

Let us consider the asymptotic behaviors of the numerator and the denominator
in (5.58) as T0 ! C1. It is known [9] that under the conditions B2;B3; B4, the
nonparametric probability density estimatorbghT0 .�/ is consistent:

bghT0 .z/
P�!

T0!C1 g.z/; z 2 C.g/; (5.59)

where C.g/ D Œ0; 1� is the set of continuity points of g.�/.
Now let us prove the convergence

 hT0 .z/
P�!

T0!C1  .z/; z 2 C.F / D Œ0; 1�: (5.60)

By (5.57), (5.47), (5.48), and the total expectation formula, we have:

Ef h.z/g D EfKh.z � zt /xt g D
C1
Z

�1
Kh.z � u/F.u/g.u/du D

D
C1
Z

�1
Kh.z � u/ .u/du 	

C1
Z

�1
Kh.u/ .z � u/du: (5.61)
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Applying (5.61) and the conditionB3, let us evaluate the bias of the estimator b h.z/
for an arbitrary ı > 0 (by substituting � D .z � u/=h):

ˇ

ˇ

ˇEfb h.z/g �  .z/
ˇ

ˇ

ˇ 	
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C1
Z

�1
K.�/ . .z � �h/�  .z// d�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

�
Z

j�j�ı=h
.�/C

Z

j�j>ı=h
.�/ � sup

juj�ı
j .z � u/�  .z/j c0C

C j .z/j
Z

j�j>ı=h
jK.�/jd� C 1

ı
sup

j�j>ı=h
.j�j jK.�/j/

C1
Z

�1
j .u/jdu: (5.62)

In the right-hand side of (5.62), the first summand tends to zero due to the free
choice of ı > 0; the second summand tends to zero due to boundedness of  .z/
(which follows from (5.57) and the conditions B1;B2); the third summand tends to
zero due to condition B3 and boundedness of the integral

C1
Z

�1
j .u/jdu D

C1
Z

�1
jF.u/jg.u/du � c1;

since condition B1 implies that jF.u/j � c1 < C1. Thus, we have

E

n

b h.z/ �  .z/
o

D o.1/: (5.63)

Similarly to (5.62) and (5.63), the independence of f.xt ; zt /g allows us to write
the variance as

Dfb h.z/g D 1

T0

C1
Z

�1
K2
h.z � u/

�

F 2.u/C 	2
�

g.u/du � 1

T0

0

@

C1
Z

�1
Kh.z � u/ .u/du

1

A

2

D

D 1

T0h

C1
Z

�1
K2.u/

�

F 2.z C uh/C 	2
�

g.z C uh/du C o

�

1

T0h

�

:

Now, by applying the conditionsB1–B4 and using the asymptotic analysis technique
which led to (5.63), we obtain the following asymptotic expansion of the variance:

D

n

b h.z/
o

D 1

T0h

�

F 2.z/C 	2
�

g.z/

C1
Z

�1
K2.u/du C o

�

1

T0h

�

! 0: (5.64)
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The relations (5.63) and (5.64) imply that the variance of the estimator b h.z/
tends to zero:

E

n

.b h.z/ �  h.z//2
o

D D

n

b h.z/
o

C E
2
n

b h.z/ �  h.z/
o

! 0;

i.e., the following mean square convergence holds:

b h.z/
m.s.���!  .z/; z 2 Œ0; 1�:

Now the relations between different types of stochastic convergence [12] allow us
to obtain (5.60).

From (5.59), (5.60), as well as continuity and boundedness of the functional
transformation (5.57) (since by B2 we have g.zT0C� / > 0), we can write:

bxT0C� � F.zT0C� /
P�! F.zT0C� /g.zT0C� /

g.zT0C� /
� F.zT0C� / D 0;

which coincides with (5.56). ut
Let us rewrite the nonparametric estimator (5.49) in a generalized form:

bF .z/ D
T0
X

tD1
wT0txt ; wT0t D KhT0

.z � zt /
T0
P

tD1
KhT0

.z � zt /

D KhT0
.z � zt /

T0bghT0 .z/
; (5.65)

where fwT0t g are weight coefficients satisfying the normalization condition

wT01 C � � � C wT0 T0 	 1:

Like the Nadaraya–Watson estimator, certain other nonparametric kernel estimators
can be represented in the “weighted” form (5.65):

• Greblicki estimator [5] (used if the probability density g.�/ is a priori known):

wT0t D KhT0
.z � zt /=

�

T0g.z/
�I (5.66)

• Priestley–Chao estimator [10]:

wT0t D .zt � zt�1/KhT0
.z � zt /; z0 D 0I (5.67)

• Gasser–Müller estimator [4]:

wT0t D
St
Z

St�1

KhT0
.z � u/du; St D z.t/ � z.tC1/

2
; (5.68)

where 0 D z.0/ � z.1/ � � � � � z.T0/ � z.T0C1/ D 1 are order statistics of fzt g.
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As a rule, weight coefficients (5.66)–(5.68) are used in the MDP case [6].
The consistency of the forecasting statistic (5.65) can also be proved for weight
coefficients (5.66)–(5.68).

To conclude the section, let us consider the mean square risk of the nonparametric
forecasting statistic (5.65):

r D r.T0; �/ D Var
˚

bxT0C�


 D E
˚

.bxT0C�
� xT0C�

/2

 � 0: (5.69)

We are going to use the following auxiliary theorem [4].

Theorem 5.10. Assume that in a nonparametric regression model (5.47), (5.48)
with a deterministic predictor, a nonparametric regression function estimator (5.65)
is used and that the following conditions are satisfied:

.C1/ the regression function F.�/ is doubly continuously differentiable;

.C2/ the kernel K.u/ is a bounded function with a finite Œ�1;C1� support;

.C3/ for T0 ! C1, we have

max
2�t�T0

.z.t/ � z.t�1// D O.T �1
0 /I

.C4/ for T0 ! C1, we have

hT0 ! 0; T0hT0 ! C1:

Then the mean square error of the estimator for the regression function at any point
z 2 Œ�1;C1� satisfies the asymptotic expansion

E

n

.bF .z/� F.z//2
o

D 	2ck

T0hT0
C h4T0

4
d2k
�

F 00.z/
�2 C o

�

h4T0 C 1

T0hT0

�

;

where ck , dk are constants dependent on the kernel:

ck D
C1
Z

�1
K2.u/du > 0; dk D

C1
Z

�1
u2K.u/du > 0:

Corollary 5.4. The mean square forecast risk satisfies the asymptotic expansion

r.T0; �/ D 	2
�

1C ck

T0hT0

�

C h4T0
d 2k .F

00.zT0C� //
2

4
C o

�

h4T0 C 1

T0hT0

�

:

(5.70)
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Proof. By (5.47), (5.48), (5.55), and (5.65), taking into account the independence
of fx1; : : : ; xT0g and uT0C�

, the expression (5.69) can be rewritten as

r.T0; �/ D E

�

�

bF .zT0C�
/ � .F.zT0C�

/C uT0C�
/
�2
	

	

	 E

�

�

.bF .zT0C�
/ � F.zT0C�

/ � uT0C�

�2
	

D

D 	2 C E

�

�

bF .zT0C�
/ � F.zT0C�

/
�2
	

:

Substituting the asymptotic expansion of Theorem 5.10 leads to (5.70). ut
Corollary 5.5. Assume that the smoothing parameter in the forecasting statistic
(5.58) is chosen to satisfy the condition C4, and that it has the following form:

hT0 D cT �˛; c > 0; 0 < ˛ < 1; (5.71)

then the asymptotically fastest convergence of the risk r.T0; �/ as T0 ! C1 is
attained for ˛� D 1=5:

r.T0; �/ D 	2 CO.T
�4=5
0 /: (5.72)

Proof. Substituting (5.71) in the expansion (5.70), we obtain

r.T0; �/ D 	2 CO.T �1C˛
0 /CO.T �4˛

0 /C o.T �1C˛
0 C T �4˛

0 /:

The asymptotically fastest convergence of the risk is obtained when the orders of
decreasing are the same for the second and the third summand: �1C ˛ D 4˛, and
thus we obtain ˛� D 1=5 and (5.72). ut

Note that for an M -variate predictor, the expansion (5.72) has the following
general form:

r.T0; �/ D 	2 CO

�

T
� 4
MC4

0

�

:

Thus, as the number of regressors M increases (i.e., as the model becomes more
complex), the asymptotic order of convergence of the risk becomes lower. In the
PU-P case, when parametric regression forecasting is used (see Sect. 5.2), the order
of convergence is higher:

r.T0; �/ D 	2 CO.T �1
0 /:
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In conclusion, let us note that the computational complexity of the nonparametric
forecasting algorithm (5.55) can be estimated as O.T0/. For large values of T0,
special measures must be taken to make the computations feasible:

(1) choosing a kernel K.�/ with a bounded support;
(2) restricting the values of the predictor z to some finite grid;
(3) using FFT (Fast Fourier Transform) techniques.

5.5 Nonparametric k � NN-Regression Forecasting

Under the same nonparametric regression model (5.47), (5.48) as in Sect. 5.4, let us
apply a different nonparametric technique to estimate the regression function in the
forecasting algorithm (5.55).

Definition 5.4. Assume that k 2 f1; : : : ; T0g is a positive integer, z 2 RM is an
arbitrary value of the regressor (predictor) vector, %t D %.zt ; z/ D jzt � zj is the
Euclidean distance between points zt , z 2 RM , the order statistics of f%t g are
denoted as 0 � %.1/ � %.2/ � � � � � %.T0/, and the set

Jk.z/ D ft 2 f1; : : : ; T0g W %.zt ; z/ � %.k/g (5.73)

consists of time points corresponding to the k predictor values in fzt g that are closest
to z, jJk.z/j D k; then the k � NN-estimator, or the k nearest neighbors estimator
of the regression function F.�/ at the point z is defined as follows [6]:

bF .z/ D 1

k

X

t2Jk.z/
xt : (5.74)

To illustrate this definition, let us consider the following two special cases:

1. If k D T0, then by (5.73), (5.74) we have JT0.z/ D f1; : : : ; T0g and

bF .z/ D 1

T0

T0
X

tD1
xt D x

is the sample mean of the entire observed sample. Thus, in that case we have
“complete smoothing” of the data leading to a trivial forecastbxT0C� D x. Note
that this case is equivalent to kernel forecasting for h ! C1 (see Sect. 5.3).

2. If k D 1, then by (5.73), (5.74) we have bF D xt�.z/, where t�.z/ is the number
of the observation in the sample fz1; : : : ; zT0g that lies the closest to z, written
formally as t�.z/ D arg min1�t�T0 jzt � zj. The forecast is then made using the
nearest neighbor criterion:

bxT0C� D xt�.zT0C� /:
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In the general case, the forecast (5.73), (5.74) is averaged over k nearest
neighbors of zT0C� .

We are going to use the following auxiliary result (see [6] for a detailed proof).

Theorem 5.11. Under the nonparametric regression model (5.47), (5.48) with d D
M D 1 and a random predictor with a differentiable probability distribution g.z/,
z 2 R1, assume that the regression function F.�/ is twice differentiable. If we have
T0 ! C1, k D kT0 ! C1, and also kT0=T0 ! 0, then for all z W g.z/ > 0 the
bias and the variance of the k � NN-estimator (5.73), (5.74) satisfy the following
asymptotic expansions:

E

n

bF .z/ � F.z/
o

D F 00.z/g.z/C 2F 0.z/g0.z/
24g3.z/

�

kT0
T0

�2

C o

 

�

kT0
T0

�2
!

;

D

n

bF .z/
o

D 	2

kT0
C o

�

1

kT0

�

: (5.75)

From (5.75) we can see that under the conditions of this theorem, the k � NN-
estimator is consistent.

Corollary 5.6. If kT0 D T
�
0 , 0 < � < 1, then the asymptotically smallest mean

square error of the k � NN-estimator (5.73), (5.74) is attained for �� D 4=5:

E

�

�

bF .z/ � F.z/
�2
	

n

bF .z/
o

D O.T
�4=5
0 /: (5.76)

Proof. We have

E

n

.bF .z/� F.z//2
o

D D

n

bF .z/
o

C E
2
n

bF .z/ � .F.z/
o

:

Substituting (5.75) into this expression leads to

E

�

�

bF .z/� F.z/
�2
	

D c1

�

kT0

T0

�4

C c2
1

kT0
C o

 

1

kT0
C
�

kT0

T0

�4
!

D

D c1T
4.��1/
0 C c2T

�� C o
�

T 4.��1/ C T ��� ;

where c1; c2 are constants independent of T0. The asymptotically smallest sum is
obtained when the exponents are equal: 4.� � 1/ D �� , which leads to �� D 4=5

and proves (5.76). ut
Corollary 5.7. Under the conditions of Corollary 5.6, the asymptotically smallest
risk is obtained for �� D 4=5:

r.T0; �/ D E
˚

.bxT0C� � xT0C� /2

 D 	2 CO

�

T
�4=5
0

�

: (5.77)
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By comparing (5.77) and (5.72), we can see that for T0 ! 1 the asymptotics
of the minimum risk values r.T0; T / are the same for the kernel estimator and the
k � NN-estimator.

In addition to (5.73), (5.74), let us introduce another k�NN-estimator [6], which
is quite similar to the nonparametric kernel estimator described in Sect. 5.4:

bF .z/ D

P

t2Jk.z/
K
�

.z � zt /=%.k/
�

xt

P

t2Jk.z/
K
�

.z � zt /=%.k/
� ; (5.78)

where the set of k nearest neighbors Jk.z/ and the distance %.k/ between the point
z and the kth nearest neighbor are defined by relations (5.73); the kernel K.u/ of
this estimator is a continuous bounded even function satisfying the normalization
property (5.51). In particular, for a rectangular kernelK.u/ defined as

K.u/ D
(

0:5; u 2 Œ�1; 1�;
0; otherwise,

the nonparametric estimator (5.78) becomes the estimator (5.74) considered earlier.
Thus, the k � NN-estimator defined by (5.78) is:

(1) a generalization of the simplest k � NN-estimator (5.74) for the case of an
arbitrary kernel;

(2) a generalization of the kernel estimator (5.49) for the case where the smoothing
parameter h depends on statistical data, i.e., is a statistic: hT0 D %.k/.

The paper [6] proves the consistency of the estimator (5.78) and presents asymptotic
expansions of its bias and variance similar to (5.75).

Let us briefly mention another type of nonparametric k � NN-estimators [6]:

F.z/ D 1

T0hT0

T0
X

tD1
K

�

GT0.zt /�GT0.z/

hT0

�

xt ;

where GT0.z/ is the empirical distribution function of the “sample” fzt g defined in
Sect. 5.4. Compared to (5.49), this definition uses a metric based on the empirical
distribution function instead of the Euclidean metric jzt � zj to express the distance
between the points zt and z.

In conclusion, note that for k < T0 the k � NN-estimator is less computationally
intensive than the kernel estimator.
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5.6 Some Other Nonparametric Regression Forecasting
Methods

This section reviews some other methods of nonparametric regression forecasting
not mentioned in Sects. 5.4, 5.5. A more detailed treatment of these methods can be
found in [6].

5.6.1 Functional Series Expansions of Regression Functions

Assume that an orthonormal system of basis functions f�0.z/; �1.z/; : : : g is defined
on Œ�1;C1�, and that the regression function F.�/ allows for a functional series
expansion:

F.z/ D
C1
X

jD0
ˇj �j .z/; z 2 Œ�1;C1�: (5.79)

As before, a nonparametric regression forecast at time T0 C � is a statistic

bxT0C� D bF .zT0C� /; (5.80)

where bF .�/ is a nonparametric estimator of the regression function F.�/ defined as
an LT 0 partial sum of the functional series (5.79):

bF .z/ D
LT0
X

jD0
bˇj�j .z/; bˇj D

T
X

tD1
xt

Z

At

�j .u/du: (5.81)

Here A1; : : : ; AT0 is some partition of the regressor domain into T0 nonoverlapping
intervals:

Œ�1;C1� D
T0
[

tD1
At I At \ At 0 D ;; t ¤ t 0;

with zt 2 At , t D 1; : : : ; T0. Let us give an example of such partition if fzt g are
ordered:

A1 D Œ�1; z1�; A2 D .z1; z2�; : : : ; AT0 D .zT0�1;C1�:

The parameter LT0 has the same meaning as the smoothing parameter hT 0 in the
case of kernel estimators. The basis functions can be chosen to be polynomials of
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Legendre, Hermite, Lagger, Fourier, etc. For instance, Legendre polynomials, which
are written as

�0.z/ D 1p
2
; �1.z/ D

r

3

2
z; �2.z/ D

r

5

2

1

2

�

3z2 � 1
�

; : : : ;

are defined by the following well-known recurrence relation:

.l C 1/�lC1.z/ D .2l C 1/z�l.z/ � l�l�1.z/; l D 1; 2; : : : :

The following result has been proved in [6].

Theorem 5.12. If for some 0 < s < 1 we have

E

n

jut j1C 1
s

o

< C1;

and the asymptotics T0 ! C1, LT0 ! C1 are such that

T s�10

LT0
X

jD0
sup

�1�z�C1
�2j .z/ < C1; (5.82)

then the nonparametric estimator (5.81) is consistent:

bF .z/
P�! F.z/; z 2 Œ�1;C1�:

The following asymptotic relation is satisfied as j ! C1 for many practical
orthonormal systems of functions f�j .�/g:

sup
�1�z�C1

�2j .z/ D O.j %/;

% D

8

ˆ

ˆ

<

ˆ

ˆ

:

�1=4 for Hermite and Lagger polynomials,

0 for Fourier polynomials,

1=2 for Legendre polynomials.

The condition (5.82) becomes an asymptotic upper limit on LT0 as T0 ! C1:

LT0 D O

�

T
1�s
1C2%

0

�

:

For example, a system of Legendre polynomials leads to the condition

LT0 D O

�

T
1�s
2

0

�

;
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and for s D 1=2 we can write

LT0 D O
�

T
1=4
0

�

:

5.6.2 Spline Smoothing

If eF .�/ is a nonparametric estimator of the regression function F.�/, then the
measure of fitting between the collected statistical data f.xt ; zt / W t D 1; : : : ; T0g
and the estimator eF .�/ is the so-called residual sum of squares:

S2
�

eF .�/� D
T0
X

tD1

�

xt � eF .zt /
�2 � 0: (5.83)

The smaller S2.eF .�// is, the better the fitting. Taking (5.83) as the objective
functional and minimizing it over eF .�/ lying in the set of all real functions, we are
obviously going to find infinitely many estimatorseF .�/with S2 D 0. However, these
functions eF .�/ turn out to be extremely nonsmooth and result in inefficient forecasts
(the forecast risk is too high). To overcome this difficulty, Härdle [6] proposed to
impose a “roughness penalty” on eF .�/:

C1
Z

�1

�

eF 00.z/
�2
d z � 0: (5.84)

In the same monograph, Härdle has also proposed to use a different optimality
criterion for eF .�/ by introducing weights in the functionals (5.83), (5.84):

S�
�

eF .�/� D
T0
X

tD1

�

xt � eF .zt /
�2 C �

C1
Z

�1

�

eF 00.z/
�2
d z ! min

eF .�/
; (5.85)

where � D �T0 � 0 is a smoothing parameter.
In [6] it is proved that the optimization problem (5.85) has a unique solution

in the class of doubly continuously differentiable functions eF .�/—the cubic spline
eF �.�/, which is characterized by the following properties:

(1) in each interval Œz.t/; z.tC1/�, where t D 1; 2; : : : ; T0 � 1, the function eF �.�/ is a
polynomial of the third degree;

(2) the function eF �.�/, as well as its 1st and 2nd order derivatives, is continuous
at interval boundary points fzt g; this condition isn’t imposed on higher order
derivatives;

(3) the 2nd order derivative eF �00

.�/ is equal to zero at boundary points z.1/ and z.T0/.

Finding the optimal value of the smoothing parameter ��
T0

is described in [6].
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5.6.3 Regressograms and Median Smoothing

Similarly to the definition of a histogram, the rangeA of a regressor z (z 2 A � RM /

can be split into L bins:

A D
L
[

iD1
Ai ; Ai \Aj D ;; i ¤ j:

Definition 5.5. A regressogram (nonparametric regressor estimator) is defined as
the following statistic (a piecewise constant function) [13]:

bF .z/ D
L
X

iD1
�i1Ai .z/; �i D

T0
P

tD1
xt1Ai .zt /

T0
P

tD1
1Ai .zt /

:

Finally, let us mention nonparametric regression function estimators obtained by
median smoothing [6]:

bF .z/ D Med fxt W t 2 Jk.z/g ;

where Medfa1; : : : ; asg is the sample median, and k, Jk.z/ are defined as in (5.73).
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Chapter 6
Robustness of Time Series Forecasting
Based on Regression Models

Abstract This chapter presents a robustness analysis of the forecasting statistics
introduced in the previous chapter under the following distortion types: four
functional distortion varieties of the regression function, additive outliers, and
correlation between random errors. A quantitative characterization of forecasting
robustness is obtained by using the robustness indicators introduced in Chap. 4,
namely the forecast risk instability coefficient and the ı-admissible distortion
level. Robust forecasting statistics are constructed by using Huber estimators and
a specially chosen type of M-estimators for the regression function parameters.
A local-median forecasting algorithm is proposed to mitigate the influence of
outliers under regression models, and its robustness is evaluated.

6.1 Robustness of Least Squares Forecasting Under
Functional Distortions of Multiple Linear
Regression Models

6.1.1 Formulation of the Problem

As discussed in Sect. 5.2, construction of parametric regression models is one of the
most widely used approaches to forecasting dynamic behavior of stochastic systems
in engineering, economics, medicine, environmental studies, and other disciplines.
This approach can be summarized as follows:

(1) a certain hypothetical parametric model of the regression function (which
is usually linear in its parameters) is postulated, establishing the stochastic
dependence between the dependent (endogenous) variables and the nonrandom
independent (exogenous) variables (regressors or predictors); the true value of
the parameter vector �0 2 Rm of this hypothetical regression model is assumed
to be unknown;

Y. Kharin, Robustness in Statistical Forecasting, DOI 10.1007/978-3-319-00840-0 6,
© Springer International Publishing Switzerland 2013
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(2) based on observations x1, . . . , xT made until the time point T > m, a least
squares estimator O� 2 Rm for the regression function parameters is constructed;

(3) the obtained estimator O� is substituted into the regression function, and for given
values of the regressors at a future time point T C � (� � 1), a forecast of the
dependent variables is computed.

This approach yields accurate results only in a setting where the hypothetical
regression model of observations conforms exactly to the real-world data. Unfor-
tunately, in applications the hypothetical model assumptions are usually distorted
[1, 7, 9, 11, 13, 14, 22, 33]:

(A1) the hypothetical regression function is “slightly” distorted;
(A2) observations are contaminated by outliers;
(A3) the probability distribution of random observation errors is non-normal;
(A4) random observation errors are dependent (or correlated);
(A5) model parameters change with time (parameter drift).

Distortion types A2, A3 have been discussed in [1, 7, 11, 13, 33] and Sect. 6.2
of this book; distortion type A4 has been investigated w.r.t. regression model
identification in [9, 10, 23], as well as in Sect. 6.3; distortion type A5 has been
analyzed in [23,27] and Chap. 9. This section is devoted to distortion type A1; some
basic results related to this distortion type can be found in [14].

We are going to investigate the effect of distortion type A1 (functional distortion,
FD) on the forecast risk of the mean squares multiple linear regression forecasting
and evaluate its robustness characteristics. Forecasting algorithms that are robust
under FD will be constructed and analyzed in Sect. 6.5.

6.1.2 The Hypothetical Regression Model and Its Functional
Distortions

Assume that in the studied stochastic system, the observations xt 2 R satisfy the
stochastic multiple linear regression equation:

xt D
m
X

iD1
�0i  i .zt /C �.zt /C ut ; (6.1)

where t 2 N D f1; 2; : : : g is a discrete time point, zt 2 U � RM is a nonrandom
observed input influence (the vector of factors or independent variables) at time t ,
U is the set of regressor values at time points representing the design of the
experiment, f i.�/ W RM ! Rg is a given collection of m linearly independent
functions, ut 2 R is the random error (perturbation) in the observation made at time
t , �0 D .�0i / 2 Rm is the vector ofm unknown true values of the model parameters,
�.�/ W RM ! R is an unknown deterministic function describing the FD.
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The random errors futg are assumed to be jointly independent identically
distributed random variables such that

Efutg D 0; Dfutg D 	2 < C1: (6.2)

By (6.1), (6.2), for zt D z the regression function can be written as

f .z/ D f0.z/C �.z/; z 2 U; f0.z/ D
m
X

iD1
�0i  i .z/; (6.3)

where f0.z/ is the hypothetical (assumed) regression function, and the error present
in its definition due to lack of prior information, complexity of the system, or
specific properties of the observation process is denoted as �.z/ D f .z/ � f0.z/.
If �.z/ 	 0, then (6.1)–(6.3) define the hypothetical (undistorted) model.

Models of the form (6.1)–(6.3) are classified as so-called semiparametric regres-
sion models [10]. Note that taking zt 	 t yields the trend model, which is the most
commonly used forecasting model [4, 6, 8, 24].

Regression forecasting is construction of a forecastbxTC� 2 R for the unknown
value xTC� 2 R at a future time point t D T C � , where � � 1 is the given
“forecasting horizon,” based on T observations XT D .x1; x2; : : : ; xT /

0 2 RT and
predictor values z1; : : : ; zT ; zTC� 2 U .

Let us define four types of FD �.�/ in (6.1), (6.3).

FD-1. Interval distortion:

"�.z/ � �.z/ � "C.z/; z 2 U;

where "˙.z/ are known boundary functions; in particular, for "˙.z/ D ˙"
we have:

� " � �.z/ � C"; z 2 U; (6.4)

where " � 0 is the distortion level in the C -metric.
FD-2. Relative distortion:

j�.z/j
jf0.z/j � "; z 2 U;

where " � 0 is the level of relative distortion in the C -metric. Thus, the
relative error in the definition of the regression function doesn’t exceed ".

FD-3. Distortion in the lp-metric:

 

T
X

tD1
j�.zt /jp C j�.zTC� /jp

!
1
p

� ";
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where p � 1 is a parameter, and " � 0 is the distortion level in the lp-metric.
This definition limits the lp norm of the accumulated over time FD by ".

FD-4. Distortion represented as an orthogonal expansion:

�.z/ D
X

j2J
Sj �j .z/;

0

@

X

j2J
jSj jp

1

A

1
p

� "; z 2 U;

where J � N is a given index subset of size M 0 D jJ j < C1, " � 0

is the distortion level in the lp-metric, f�j .�/ W U ! Rg is an orthonormal
function system over U . In particular, distortion type FD-4 occurs when the
hypothetical regression function is a truncation of some functional series,

f0.z/ D
m
P

jD1
�0j �j .z/, and �.z/ D

w
P

jDmC1
Sj �j .z/ is a non-negligible

segment of the residual part of the series, w 2 N, w > m:

For each of the given distortion types, a special case of piecewise distortion can
be defined by assuming prior knowledge that no distortion is present in a subset
U0 � U :

U D U0 [ U1; U0 \ U1 D ;; �.z/ D 0; z 2 U0: (6.5)

6.1.3 Robustness Characteristics of Forecasting Algorithms

Consider an algorithm of forecasting xTC� 2 R based on T observationsXT 2 RT

and predictor values z1; : : : ; zT , zTC� 2 U , which is defined by a statistic F.�/:

bxTC� D F.XT I z1; : : : ; zT ; zTC� / 2 R: (6.6)

Risk of a �-step-ahead statistical forecast (6.6) based on T observations is
defined as the mean square forecast error r.T; �/ D Ef. OxTC� � xTC� /2g � 0.
By (6.1), (6.3), (6.6), the risk functional has the following form:

r.T; �/ D 	2 C E
˚

.f0.zTC� /C �.zTC� / �bxTC� /2



; (6.7)

and it depends on the distortion function �.�/. The guaranteed forecast risk will be
defined as the exact upper bound of the forecast risk,

rC.T; �/ D sup
�.z1/;:::;�.zT /;�.zTC� /

r.T; �/; (6.8)

where the range of the function �.�/ is defined by the FD type.
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Let r0.T; �/ > 0 be the risk of the statistical forecast (6.6) in the absence of
FD: �.�/ 	 0 in (6.7). We are going to assume that in the absence of distortion,
the algorithm (6.6) is consistent, and thus its risk converges from the right as
observation length tends to infinity: r0.T; �/ ! r0 C 0 for T ! 1, where r0 D 	2

is the lowest possible risk for an a priori given regression function in the absence
of distortion: bxTC� D f0.zTC� /. Motivated by this argument, let us define the
instability coefficient of the forecasting algorithm (6.6) as the relative increment
of the guaranteed risk (see Sect. 4.4):

�.T; �/ D .rC.T; �/� r0/=r0 � 0: (6.9)

For an arbitrary ı > 0 and distortion types FD-1 (defined by (6.4)) to FD-4, the
ı-admissible distortion level "C.ı/ will be defined as the highest distortion level "
such that the instability coefficient (6.9) doesn’t exceed the admissible level ı:

"C.ı/ D supf" W �.T; �/ � ıg: (6.10)

Lower values of rC.T; �/, �.T; �/ and larger values of "C.ı/ for a fixed ı correspond
to higher robustness of the forecasting algorithm (6.6) under the considered
distortion type.

6.1.4 Robustness Analysis of Least Squares Forecasting

As noted earlier, in parametric forecasting the most commonly used algorithm is
based on the method of least squares:

bxTC� D O� 0 .zTC� /; O� D .� 0
T �T /

�1� 0
T XT ;

ˇ

ˇ� 0
T �T

ˇ

ˇ ¤ 0; (6.11)

where  .z/ D . i .z// 2 Rm, �T D . .z1/
... : : :

...  .zT //0 is a .T � m/-matrix
such that the matrix product � 0

T �T is nonsingular, and O� 2 Rm is the least squares
estimator of the parameter vector �0. As usual, the prime symbol 0 denotes matrix
transpositions, and j � j is the matrix determinant. It is known [30] that the Eicker
condition on asymptotic behavior (as T ! 1) of the smallest eigenvalue of the
matrix � 0

T �T is a sufficient condition for consistency of the estimator O� :

�min.�
0
T �T / ! 1: (6.12)

Let us introduce the following notation:

�T D .�.zt // 2 R
T ; UT D .ut / 2 R

T ;

CT D .� 0
T �T /

�1� 0
T ; g.T; �/ D .gt .T; �// D C 0

T  .zTC� / 2 R
T ;

IA.z/ D f1; z 2 AI 0; z … Ag; I.z/ D I.0;C1/.z/; .z/C D max.z; 0/:
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Theorem 6.1. Forecast risk (6.11) under FD �.�/, assuming observation
model (6.1), can be written as

r.T; �/ D 	2
�

1C kg.T; �/k2
�

C �

�.zTC� /� g0.T; �/�T

�2
: (6.13)

Proof. Taking into account (6.11), we obtain:

O� � �0 D CT�T C CTUT :

Since EfUT g D 0, we have Ef O� � �0g D CT�T . Applying CTC 0
T D .� 0

T �T /
�1

yields

E

n

. O� � �0/. O� � �0/0
o

D CT�T�
0
T C

0
T C 	2.� 0

T �T /
�1:

By (6.1), (6.7), we can write

r.T; �/ D E

n

. O� 0 .zTC� /� �00 .zTC� /� �.zTC� /� �TC� /2
o

D 	2
�

1C g0.T; �/g.T; �/
�C �

�.zTC� / � g0.T C �/�T

�2
;

which coincides with (6.13). ut
Corollary 6.1. In the absence of FD, �.�/ 	 0, we have

r0.T; �/ D 	2
�

1C kg.T; �/k2
�

� r0 D 	2;

and if the condition (6.12) is satisfied, then (6.11) is a mean squares consistent
forecasting algorithm.

From (6.13) we can see that under distortion �.�/ of the model (6.1), the forecast
risk is a sum of three nonnegative components:

r.T; �/ D r0 C r1 C r2;

where r0 D 	2 is the forecast risk under complete prior information and no
distortion, r1 D 	2 kg.T; �/k2 is the risk increment due to finiteness of the
observation time T , and r2 D .�.zTC� /� g0.T; �/�T /

2 is the risk increment due to
simultaneous influence of distortion and finiteness of T .

Theorem 6.2. Under FD-1 distortions, the guaranteed risk of the forecasting
algorithm (6.11) equals

rC.T; �/ D r0.T; �/C

C max

 

T
X

tD1

�

.gt .T; �//C "˙.zt /� .�gt .T; �//C "�.zt /
� � "�.zTC� /

!2

:
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Proof. From (6.8), continuity (in �) of the risk function (6.13), and compactness of
the range of functions f�.zt /g we have

rC.T; �/ D r0.T; �/CQ.�/ D

D r0.T; �/C max
"�.zt /��.zt /�"C.zt /

 

�.zTC� / �
T
X

tD1
gt .T; �/�.zt /

!2

:

The maximum value of Q.�/ is attained if the expression

T
X

tD1
gt .T; �/�.zt / � �.zTC� /

is maximized or minimized. By varying �.zt / 2 Œ"�.zt /; "C.zt /� to obtain the
maximum, we have

Q1max D
 

T
X

tD1
gt .T; �/ .I.gt .T; �//"C.zt /C I.�gt .T; �//"�.zt // � "�.zTC� /

!2

:

Similarly, minimization yields

Q2max D
 

T
X

tD1
gt .T; �/ .I.gt .T; �//"�.zt /C I.�gt .T; �//"C.zt // � "C.zTC� /

!2

:

Thus,Qmax D max.Q1max;Q2max/. ut
Corollary 6.2. Under FD-1 distortion (6.4), the instability coefficient (6.9) and the
ı-admissible distortion level (6.10) can be written as

�.T; �/ D kg.T; �/k2 C ."=	/2

 

1C
T
X

tD1
jgt .T; �/j

!2

;

"C.ı/ D 	
�

.ı � kg.T; �/k2/C
� 1
2
=

 

1C
T
X

tD1
jgt .T; �/j

!

:

Corollary 6.3. Under piecewise distortion (6.5), we have:

rC.T; �/ D r0.T; �/C max

0

@

X

t Wzt2U1

�

.gt .T; �//C"˙.zt /�

� .�gt .T; �//C "�.zt /
�

� "�.zTC� /IU1.zTC� /

1

A

2

:
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Theorem 6.3. Under FD-2 distortion, the guaranteed risk (6.5) of the forecasting
algorithm (6.11) equals

rC.T; �/ D r0.T; �/C "2

 

ˇ

ˇ 0.zTC� /�0
ˇ

ˇC
T
X

tD1

ˇ

ˇgt .T; �/�
00 .zt /

ˇ

ˇ

!2

:

Proof. By an argument similar to the proof of Theorem 6.2, we have:

rC.T; �/ D max
˚

r.T; �/ W j�.zt /j � "
ˇ

ˇ�00 .zt /
ˇ

ˇ




:

Writing the forecast risk in the form (6.13), only the second summand of the
resulting expression depends on f�.zt /g. Maximizing this summand yields

�

�.zTC� / � gt .T; �/�.zt /
�2 �

� "2

 

ˇ

ˇ .zTC� /0�0
ˇ

ˇC
T
X

tD1

ˇ

ˇ .zTC� /0.� 0
T �T /

�1 .zt / .zt /0�0
ˇ

ˇ

!2

:

ut
Corollary 6.4. Under FD-2 distortion, the instability coefficient (6.9) and the
ı-admissible distortion level (6.10) can be written as

"C.ı/ D 	
�

.ı � kg.T; �/k2/C
� 1
2
=

 

ˇ

ˇ 0.zTC� /�0
ˇ

ˇC
T
X

tD1

ˇ

ˇgt .T; �/�
00 .zt /

ˇ

ˇ

!

;

�.T; �/ D kg.T; �/k2 C ."=	/2

 

ˇ

ˇ 0.zTC� /�0
ˇ

ˇC
T
X

tD1

ˇ

ˇgt .T; �/�
00 .zt /

ˇ

ˇ

!2

:

Corollary 6.5. Assuming FD-2 piecewise distortion (6.5), we have

rC.T; �/ D r0.T; �/C "2

0

@

ˇ

ˇ 0.zTC� /�0
ˇ

ˇ IU1.zTC� /C
X

t Wzt2U1

ˇ

ˇgt .T; �/�
00 .zt /

ˇ

ˇ

1

A

2

:

Let us continue by investigating the case of FD-3 distortion in the lp-metric. Let
us prove the following auxiliary statement.

Lemma 6.1. If x; g 2 Rn, p > 1, ˛ � 0, then

max

(

.x0g/2 W
n
X

iD1
jxi jp � ˛

)

D ˛
2
p

 

n
X

iD1
jgi j

p
p�1

!
2.p�1/
p

:
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Proof. From Hölder’s inequality, we have

.x0g/2 �
 

n
X

iD1
jxi j jgi j

!2

�
 

n
X

iD1
jxi jp

! 2
p
 

n
X

iD1
jgi j

p
p�1

!
2.p�1/
p

� ˛
2
p

 

n
X

iD1
jgi j

p
p�1

!
2.p�1/
p

:

The upper bound is attained for

xi D ˛
1
p

0

@

n
X

jD1
jgj j p

p�1

1

A

� 1
p

jgi j 1
p�1 sign.gi /; i D 1; : : : ; n;

and thus

.x0g/2 D ˛
2
p

 

n
X

iD1
jgi j

p
p�1

!
2.p�1/
p

:

ut
Theorem 6.4. Under FD-3 distortion, the guaranteed risk of the forecasting
algorithm (6.11) equals

rC.T; �/ D

8

ˆ

<

ˆ

:

r0.T; �/C "2
�

maxf1; jgt .T; �/j W t D 1; : : : ; T g�2; p D 1;

r0.T; �/C "2
�

T
P

tD1
jgt .T; �/j

p
p�1 C 1

�

2.p�1/
p

; p > 1:

Proof. By an argument similar to the proof of Theorem 6.2, we obtain:

rC.T; �/ D max

(

r.T; �/ W
T
X

tD1
j�.zt /jp C j�.zTC� /jp � "p

)

:

Let us maximize the summand depending on f�.zt /g in the representation (6.9) of
the forecast risk r.T; �/:

Q.�/ D
 

�.zTC� / �
T
X

tD1

gt .T; �/�.zt /

!2

�
 

j�.zTC� /j C
T
X

tD1

jgt .T; �/j j�.zt /j
!2

:

Depending on the value of p, the following two cases will be considered
separately.
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(I) p D 1. Let us maximizeQ.�/ over the possible values of f�g,

T
X

tD1
j�.zt /j C j�.zTC� /j � ":

Consider the following two cases:

a. There exists an index j0 such that
ˇ

ˇgjo.T C �/
ˇ

ˇ D maxj
ˇ

ˇgj .T C �/
ˇ

ˇ � 1.
Since the coefficient in front of �.zj0/ is the largest, the maximum value of
Q.�/ is attained when �.zj0/ assumes one of its boundary values, i.e., for
�.zj0/ D ˙" and �.zj / D 0, j ¤ j0.

b. Assume that maxj
ˇ

ˇgj .T; �/
ˇ

ˇ < 1. In that case, a similar argument can be
constructed for �.zTC� /. Thus, we obtain

Qmax D "2 .max f1; jg1.T C �/j ; : : : ; jgT .T C �/jg/2 :

(II) p > 1. By Lemma 6.1, we have

Qmax D "p
2
p

 

T
X

tD1
jgt .T; �/j

p
p�1 C 1

!
2.p�1/
p

:

ut
Corollary 6.6. The instability coefficient (6.9) and the ı-admissible distortion
level (6.10) can be written as

�.T; �/ D

8

ˆ

<

ˆ

:

kg.T; �/k2 C ."=	/2
�

maxf1; jgt .T; �/j W t D 1; : : : ; T g�2; p D 1;

kg.T; �/k2 C ."=	/2
�

T
P

tD1
jgt .T; �/j

p
p�1 C 1

�

2.p�1/
p

; p > 1;

"C.ı/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

	
�

.ı � kg.T; �/k2/C
� 1
2
=maxf1; jgt .T; �/j W t D 1; : : : ; T g; p D 1;

	
�

.ı � kg.T; �/k2/C
� 1
2
=

�

T
P

tD1
jgt .T; �/j

p
p�1 C 1

�
.p�1/
p

; p > 1:

Finally, let us investigate the case of distortion in the Lp-metric.

Theorem 6.5. Under FD-4 distortion, the guaranteed risk of the algorithm (6.11)
can be expressed as

rC.T; �/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

r0.T; �/C "2max
j2J

�

T
P

tD1

gt .T; �/�j .zt / � �j .zTC� /

�2

; p D 1;

r0.T; �/C "2

 

P

j2J

ˇ

ˇ

ˇ

ˇ

T
P

tD1

gt .T; �/�j .zt / � �j .zTC� /

ˇ

ˇ

ˇ

ˇ

p
p�1

!

2.p�1/
p

; p > 1:
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Proof. As in the proof of Theorem 6.2, we have

rC.T; �/ D max
�.zt /D P

j2J

Sj �j .zt /;
P

j2J

jSj jp�"p
r.T; �/:

Let us maximize the summand depending on f�.zt /g in the expression (6.13) for
r.T; �/:

Q.�/ D
 

�.zTC� /�
T
X

tD1
gt .T; �/�.zt /

!2

D

D
0

@

X

j2J
Sj

 

T
X

tD1
gt .T; �/�j .zt /� �j .zTC� /

!

1

A

2

:

(I) p D 1: Let

j0 D arg max
j2J

ˇ

ˇ

ˇ

ˇ

ˇ

T
X

tD1
gt .T; �/�j .zt /� �j .zTC� /

ˇ

ˇ

ˇ

ˇ

ˇ

;

then, since the coefficient in front of Sj0 is maximal, the maximum valueQ.�/
is obtained for jSj0 j D ", Sj D 0, j ¤ j0. This leads to the expression

Qmax D "2max
j2J

 

T
X

tD1
gt .T; �/�j .zt / � �j .zTC� /

!2

:

(II) p > 1. Then we have

S 0�� 0

S ! max; �.zt / D
X

j2J
Sj �j .zt /;

X

j2J
jSj jp � "p;

where S D .Sj /, � D .�j /, j 2 J , and �j D
T
P

tD1
gt .T; �/�j .zt / � �j .zTC� /.

Now, by Lemma 6.1, we have

Qmax D "p
2
p

0

@

X

j2J
j�j j p

p�1

1

A

2.p�1/
p

:

ut
Corollary 6.7. Under FD-4 distortion, the instability coefficient (6.9) and the
ı-admissible distortion level (6.10) can be written as
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�.T; �/ D

D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

kg.T; �/k2 C �

"
	

�2
max
j2J

�

T
P

tD1

gt .T; �/�j .zt / � �j .zTC� /

�2

; p D 1;

kg.T; �/k2 C �

"
	

�2

 

P

j2J

ˇ

ˇ

ˇ

ˇ

T
P

tD1

gt .T; �/�j .zt / � �j .zTC� /

ˇ

ˇ

ˇ

ˇ

p
p�1

!

2.p�1/
p

; p > 1I

"C.ı/ D

D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

	

q

.ı � kg.T; �/k2/C
�

max
j2J

ˇ

ˇ

ˇ

ˇ

T
P

tD1

gt .T; �/�j .zt / � �j .zTC� /

ˇ

ˇ

ˇ

ˇ

��1

; p D 1;

	

q

.ı � kg.T; �/k2/C
 

P

j2J

ˇ

ˇ

ˇ

ˇ

T
P

tD1

gt .T; �/�j .zt / � �j .zTC� /

ˇ

ˇ

ˇ

ˇ

p
p�1

!�
.p�1/
p

; p > 1:

6.2 Robustness of Least Squares Forecasting Under
Functional Distortions of Multivariate Linear
Regression Models

6.2.1 Mathematical Description of Model Distortions

Consider a multivariate linear regression model under FD, which is a generalization
of the model (6.1), (6.2) studied in the previous section.

Let the observed d -variate time series xt 2 Rd be defined by the following
stochastic equation [17, 20]:

xt D
m
X

iD1
�0.i/ i .zt /C �.zt /C ut D �0 .zt /C �.zt /C ut ; t D 1; : : : ; T; : : : ;

(6.14)

where ut 2 Rd is the random error vector at time t ; the vector

zt 2 U � R
M

is composed of M a priori known values of the independent variables (regressors)
at time t ; the set U contains the possible regressor values; f i.z/ W RM ! R1g is a
given system of m linearly independent functions such that

ˇ

ˇ

ˇ

ˇ

ˇ

T
X

tD1
 .zt / 

0.zt /

ˇ

ˇ

ˇ

ˇ

ˇ

¤ 0;  .z/ D �

 i.z/
� 2 R

mI
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�0 D .�0ij / D .�0.1/
... : : :

... �0.m// 2 Rd�m is the .d � m/-matrix of unknown

true values of the regression coefficients, �0.i/ 2 Rd denotes the i th column of

the matrix �0; �.�/ W RM ! Rd is an unknown deterministic vector function descri-
bing the multivariate functional distortion (MFD) of the hypothetical multivariate
linear regression. Random errors futg are assumed to be jointly independent and
identically distributed with

Efut g D 0d ; Covfut ; utg D Efutu
0
t g D ˙; j˙ j ¤ 0: (6.15)

Taking �.z/ 	 0 in (6.14), the expression (6.15) becomes the hypothetical model
Mo—a multivariate (or multiple for d D 1) linear regression model of time series
considered in Sect. 5.1:

f0.z/ D �

f0i .z/
� D �0 .z/:

Let us define the commonly encountered MFD types.

MFD-1. Interval distortion:

"i�.z/ � �i .z/ � "iC.z/; z 2 U; i D 1; : : : ; d;

where "˙.z/D ."i˙.z//2R
d are some boundaries defined as vector func-

tions.
MFD-2. Relative distortion:

j�i .z/j
jf0i .z/j � "i ; "i � 0; z 2 U; i D 1; : : : ; d;

where a given vector " D ."i / defines the relative distortion levels for
the components of the multivariate linear regression function; the relative
specification error of the i th component is at most "i .

MFD-3. Distortion in the lp-metric:

 

T
X

tD1

d
X

iD1
j�i.zt /jp C

d
X

iD1
j�i.zTC� /jp

!1=p

� ";

where p 2 N is a given positive integer, " � 0 is the given distortion level;
and the lp norm of the FD accumulated over time doesn’t exceed ".

Distortion type MFD-4—distortion due to discarded remainders of functional
expansions—has been studied in [18], but won’t be discussed here due to space
considerations.
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6.2.2 Robustness Evaluation of Least Squares Forecasting

In this subsection, we are going to study the sensitivity of the mean squares forecast
risk

r.T; �/ D E
˚

.bxTC� � xTC� /0.bxTC� � xTC� /

 � 0 (6.16)

to MFD-1, MFD-2, and MFD-3 distortions. We will be evaluating the respective
instability coefficient (6.9) and the ı-admissible distortion level (6.10).

Let us introduce the following matrix notation:

A D
T
X

tD1
 .zt / 

0.zt / 2 R
m�m; C D

T
X

tD1
xt 

0.zt / 2 R
d�m;

L D
T
X

tD1
�.zt / 

0.zt / 2 R
d�m; GTC� D LA�1 .zTC� / 2 R

d ;

˛t D  0.zt /A�1 .zTC� /; t D 1; : : : ; T; KT � D  0.zTC� /A�1 .zTC� / > 0:
(6.17)

First of all, note that in the absence of distortion (�.zt / 	 0) and assuming prior
knowledge of �0, the minimal risk r0 D tr .˙/ is attained for the optimal forecasting
statistic (see Sect. 5.1):

bx0TC� D �0 .zTC� /:

As a rule, in applied problems where �0 is unknown, a nonsingular design of the
experiment jAj ¤ 0 is assumed, and a least squares forecasting algorithm based on
the plug-in approach is constructed (see Sect. 5.2):

bxTC� Db� .zTC� /; b� D CA�1; (6.18)

where b� D .b�.1/
... : : :

... b�.m// 2 Rd�m is the least squares estimator for the
matrix �0.

Lemma 6.2. In a multivariate linear regression model under FD (6.14), (6.15), the
risk functional (6.16) of a least squares forecast (6.18) can be written as

r.T; �/ D r0.T; �/C kGTC� � �.zTC� /k2; r0.T; �/ D .1CKT�/tr .˙/;

(6.19)

where r0.T; �/ is the forecast risk in the absence of distortion.
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Proof. Substitute (6.18) in (6.16) and use the notation (6.17). ut
As in Sect. 6.1, if the design of the experiment fz1; : : : ; zT g � U is chosen so

that for the minimum eigenvalue we have �min.A/ ! C1 as T ! C1 (i.e., the
Eicker condition is satisfied), then the forecasting statistic (6.18) is asymptotically
optimal:

KT� ! 0; r.T; �/ ! r0:

Theorem 6.6. Under MFD-1 distortion, the risk instability coefficient for the least
squares forecasting statistic (6.18) can be written as

�.T; �/ D KT�C

C .tr˙/�1

d
X

kD1

max

 

T
X

tD1

�

.˛t /C"k˙
.zt /� .�˛t /C"k�.zt /

� � "k�.zTC� /

!2

:

(6.20)

Proof. The proof is based on Lemma 6.2; it can be constructed from (6.16) to (6.19)
similarly to the proofs of Theorems 6.1, 6.2. ut

The expression (6.20) for the risk instability coefficient contains two summands.
Under the Eicker condition, the first summand satisfies KT� ! 0 as T ! 1; it
isn’t affected by the level of MFD-1 distortion and reflects the stochastic error in
the consistent estimator for the matrix �0 of regression coefficients based on a finite
undistorted sample of size T . The second summand is due to MFD-1 distortion; it
grows as the contribution of systematic errors f"k˙.z/g increases in relation to the
total variance tr .˙/ of the random error ut .

Theorem 6.7. Under MFD-2 distortion, the risk instability coefficient for the least
squares forecasting algorithm (6.18) equals

�.T; �/ D KT� Ce" 0
=tr .˙/;

wheree" D ."21; : : : ; "
2
d /

0; 
 D .
1; : : : ; 
d /
0;


k D
 

T
X

tD1

ˇ

ˇ

�

�0 .zt /
�

k

ˇ

ˇ j˛t j C ˇ

ˇ

�

�0 .zTC� /
�

k

ˇ

ˇ

!2

; k D 1; : : : ; d:

Proof. The proof is similar to the proof of Theorem 6.3. ut
Theorem 6.8. Under d -variate distortion MFD-3, the risk instability coefficient of
the least squares forecasting algorithm (6.18) can, depending on the order p of the
lp-metric, be expressed by one of the following formulas:
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p D 1 W �.T; �/ D KT� C "2
�

maxf1; j˛1j; : : : ; j˛T jg�2.tr˙/�1I

1 < p < 2 W �.T; �/ � KT� C "2

 

T
X

tD1
j˛t j

p
p�1 C 1

!
2.p�1/
p

.tr˙/�1I

p � 2 W �.T; �/ � KT� C "2d
2.p�1/
p

 

T
X

tD1
j˛t j

p
p�1 C 1

!
2.p�1/
p

.tr˙/�1:

Proof. The proof is similar to the proof of Theorem 6.4. ut
The expressions for the risk instability coefficient obtained in Theorems 6.6–6.8
can be used to estimate the ı-admissible distortion level (6.10). For instance, under
MFD-3 distortion in the l1-metric (p D 1) we have

"C.ı/ D
p

.tr˙/.ı �KT�/C
maxf1; j˛1j; : : : ; j˛T jg :

6.3 Robustness of Least Squares Forecasting Under Outliers

In this section, we are going to consider time series under outliers (distortions of
type A2 described in Sect. 6.1.1).

Let the observed time series be one-dimensional and assume that it includes
additive distortion in the form of outliers [13, 16]:

xt D .�0/
0 .zt /C ut C �tvt ; t 2 N: (6.21)

Here, as in Sect. 6.1, zt 2U �RM is a nonrandom regressor; .�/D . i .�// is a col-
umn vector of m linearly independent functions; futg is a sequence of independent
random observation errors such that Efutg D 0, Dfutg D 	2; the column vector
�0 D .�0i / 2 Rm consists of the m unknown multiple linear regression coefficients;
f�t g is a sequence of independent Bernoulli random variables,

Pf�t D 1g D 1 � Pf�t D 0g D "I (6.22)

" 2 Œ0; "C� is the assumed outlier probability, 0 � "C < 1=2 is a given upper bound
on the outlier probability; fvtg are i.i.d. random variables,

Efvt g D a; Dfvtg D K 	2; K � 0I (6.23)

the random variables f�t g, futg, fvt g are jointly independent. Under this model, if
�t D 1 for some time point t , then an outlier is present, and an additional random
summand vt 2 R1 appears in (6.21); the case �t D 0 corresponds to an undistorted
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observation at time t . We are going to distinguish two special cases of distor-
tion (6.21): distortion in variance (a D 0, K > 1) and in the mean value (K D 0,
a ¤ 0/.

In the notation of Sect. 6.1, let us evaluate the robustness of the traditional least
squares forecasting algorithm (6.11).

Theorem 6.9. If the observed time series xt satisfies the model (6.21)–(6.23) under
outliers, then for T > m, j� 0

T �T j ¤ 0, the forecast risk of the least squares
forecasting algorithm (6.11) equals

r".T; �/ D r0.T; �/C "
�

K	2jjg.T; �/jj2 C a2
�

.1 � "/jjg.T; �/jj2 C ".g0.T; �/1T /2
��

;

(6.24)

and the instability coefficient can be written as

�.T; �/ D jjg.T; �/jj2C

C "C
�

Kjjg.T; �/jj2 C a2

	2

�

.1 � "C/jjg.T; �/jj2 C "C.g0.T; �/1T /2
�

�

:

(6.25)

Proof. Substituting (6.11) into the expression for the risk functional and apply-
ing (6.21)–(6.23), we obtain

r".T; �/ D E

�

�

.b� � �0/0 .zTC� /� uTC�
�2
	

D 	2 C  0.zTC� /V."/ .zTC� /;
(6.26)

where

V."/ D E

n

.b� � �0/.b� � �0/0
o

(6.27)

is the covariance matrix of the least squares estimator b� defined by (6.11) under
level " outliers. From (6.21) we have:

XT D �T �
0 C UT C�T VT ;

where

Xt D .xt / 2 R
T�1; UT D .ut / 2 R

T�1;

�T D diagf�1; : : : ; �T g 2 R
T�T ; VT D .vt / 2 R

T�1; t D 1; : : : ; T:

By (6.11), we can write

b� � �0 D CTUT C CT�T VT ; CT D .� 0
T �T /

�1� 0
T :
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Now from (6.22), (6.23), and (6.27) we have

V."/ D �

	2 C ".K	2 C .1 � "/a2/
�

CTC
0
T C "2a2CT 1.CT 1T /0: (6.28)

Substituting (6.28) into (6.26), performing the obvious matrix transformations, and
applying the notation leads to (6.24).

By computing a partial derivative of (6.24) in " 2 Œ0; 1=2/, we obtain

@r".T; �/

@"
D K	2kg.T; �/k2 C a2

�

.1 � 2"/jjg.T; �/jj2 C 2".g0.T; �/1T /2
�

> 0:

Thus, the risk r".T; �/ is monotonous increasing as " increases. This, together with
the definition of the instability coefficient (6.9), leads to (6.25). ut

From (6.25) we can see that the risk instability coefficient can be split into three
additive components:

�.T; �/ D �1.T; �/C �2.T; �/C �3.T; �/;

where the component

�1.T; �/ D kg.T; �/k2 > 0

is due to finiteness of the observation length T when estimating � ; the size of the
component

�2.T; �/ D "CKkg.T; �/k2 � 0

is determined by the variance of the outliers w.r.t. the random error variance ut ,
Df�tg=Dfutg D K; and the size of

�3.T; �/ D "C
a2

	2

�

.1 � "C/jjg.T; �/jj2 C "C.g0.T; �/1T /2
� � 0

is influenced by the relation between the squared expectation of the outliers and the
variance of random errors ut : .Ef�tg/2=Dfutg D a2=	2.

Corollary 6.8. Under outliers in the variance (a D 0, K > 1), the risk instability
coefficient equals �.T; �/ D �1.T; �/ C �2.T; �/, and the ı-admissible distortion
level (ı > 0) can be written as

"C.ı/ D min

�

1

2
;
1

K

�

ı

kg.T; �/k2 � 1

�

C

�

:

Proof. It is sufficient to assume a D 0 in (6.25) and apply (6.10). ut



6.4 Impact of Correlation Between Observation Errors on Forecast Risk 123

Corollary 6.9. Under outliers in the mean value (K D 0, a ¤ 0), we have
�.T; �/ D �1.T; �/ C �3.T; �/, and the ı-admissible distortion level "C.ı/ is the
smallest positive root of the quadratic equation

kg.T; �/k2 C "C
a2

	2

�

.1 � "C/jjg.T; �/jj2 C "Cg0.T; �/1T /2
� D ı:

Corollary 6.10. As T ! C1, assuming a D 0 and Eicker asymptotics for the
minimal eigenvalue of the matrix � 0

T �T ,

�min.�
0
T �T / ! C1; (6.29)

the least squares forecasting algorithm (6.11) is asymptotically robust:

�.T; �/ ! 0; � � 1: (6.30)

Proof. Applying well-known properties of matrix eigenvalues [25] to (6.29) yields

�max
�

.� 0
T �T /

�1� ! 0:

Thus, 8z 2 Rm such that jzj � C < C1, for the quadratic form defined by � 0
T �T

we have

z0.� 0
T �T /

�1z � C2�max
�

.� 0
T �T /

�1� ! 0:

This implies that kg.T; �/k ! 0, and therefore, (6.25) leads to (6.30). ut
Note that for a ¤ 0, the asymptotic robustness condition (6.30) for the least squares
forecasting algorithm requires a stricter asymptotic condition on the design of the
experiment fzt g:

1p
T
�min.�

0
T �T / ! C1:

6.4 Impact of Correlation Between Observation Errors
on Forecast Risk

In all of the time series regression models considered in Sects. 6.1–6.3, it is assumed
that the random errors futg are uncorrelated:

Covfut ; ut 0g D 0; t ¤ t 0: (6.31)

In applications, the condition (6.31) is often not satisfied, and futg are some weakly
correlated random variables (i.e., the model is subject to distortions of type A4
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defined in Sect. 6.1.1). Let us evaluate the impact of such distortions on the risk
of the traditional least squares forecasting algorithm (6.11).

In the notation of Sect. 6.3, let us define the mathematical model of the observed
time series xt 2 R1 under distortions of type A4:

xt D �0
0

 .zt /C ut ; t 2 N; (6.32)

where futg are identically distributed weakly correlated random variables which
form a strictly stationary random sequence [5]:

Efutg D 0; Dfutg D 	2; Covfut ; utC�g D EfututC�g D 	2%.�/: (6.33)

It is convenient to introduce the following two classes of weak correlation by
imposing the following conditions on the correlation function %.�/:
• uniform "-boundedness of the correlation function:

0 � j%.�/j � "; � ¤ 0I (6.34)

• 1-dependence of the random sequence futg:

j%.�/j D

8

ˆ

ˆ

<

ˆ

ˆ

:

1; if � D 0;

"; if � 2 f�1;C1g;
0; if j� j � 2:

(6.35)

In the relations (6.34) and (6.35), " 2 Œ0; 1� is the maximum allowed distortion level.
If " D 0, then futg are uncorrelated, and no distortion of type A4 is present.

Let us introduce the following notation for i; j D 1; : : : ; T :

UT D .ut / 2 R
T�1; CT D .�

0

T �T /
�1� 0

T 2 R
m�T ;

˙T D .	T ij / 2 R
T�T ; 	T ij D 	2%.ji � j j/;

GT � D .gT �i / 2 R
T�1; gT �i D %.jT C � � i j/;

g.T; �/ D C
0

T  .zTC� / 2 R
T�1:

(6.36)

Theorem 6.10. If the observed time series xt satisfies the model (6.32), (6.33)
under distortion in the form of correlated random observation errors futg, and

T > m; j� 0

T �T j ¤ 0;

then the risk of the least squares forecasting algorithm (6.11) equals

r".T; �/ D 	2 C .g.T; �//0˙T g.T; �/ � 2G 0

T �g.T; �/: (6.37)
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Proof. Similarly to (6.26), we have:

bxTC� � xTC� D .b� � �0/0 .zTC� /� uTC� ;

r".T; �/ D E
˚

.bxTC� � xTC� /2

 D

D 	2 C  0.zTC� /V."/ .zTC� / � 2E
n

uTC� .b� � �0/0
o

 .zTC� /:
(6.38)

Similarly to (6.28), the expressions (6.33), (6.36) allow us to write

b� � �0 D CTUT ; V."/ D CTEfUTU 0

T gC 0

T D CT˙T C
0

T ;

E

n

uTC� .b� � �0/
o

D CTEfuTC�UT g D CTGT � :

Substituting these equalities into (6.38) leads to (6.37). ut
Corollary 6.11. For a uniformly "-bounded correlation function (6.34), the fore-
cast risk lies in the following range:

r�.T; �/ � r".T; �/ � rC.T; �/; (6.39)

where the interval boundaries are

r˙.T; �/ D r0.T; �/˙ 2"	2

0

@

T
X

iD1
jgi .T; �/j C

X

i<j

jgi .T; �/jjgj .T; �/j
1

A :

Here r0.T; �/ denotes the forecast risk for " D 0—i.e., under the noncorrelatedness
assumption (6.31)—which can be written as r0.T; �/ D 	2.1C kg.T; �/k2/.
Proof. By (6.37), (6.34) we have

r.T; �/ D 	2 C
T
X

i;jD1

gi .T; �/gj .T; �/%.ji � j j/ � 2
T
X

iD1

gi .T; �/%.i C � � 1/ �

� 	2 C
T
X

iD1

.gi .T; �//
2	2 C 	2"

X

i¤j

jgi .T; �/gj .T; �/j C 2	2"

T
X

iD1

jgi.T; �/j;

leading to the second inequality in (6.39). The first inequality of (6.39) is proved
similarly. ut
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Corollary 6.12. For a 1-dependent random observation sequence (6.35), we have

r�.T; �/ � r".T; �/ � rC.T; �/;

r˙.T; �/ D r0.T; �/˙ 2	2"

ˇ

ˇ

ˇ

ˇ

ˇ

T�1
X

iD1
gi .T; �/giC1.T; �/� ı�;1g1.T; �/

ˇ

ˇ

ˇ

ˇ

ˇ

: (6.40)

From (6.37), (6.39), and (6.12), we can see that, unlike distortions of types
A1 and A2 discussed earlier, distortions of type A4 do not necessarily lead to an
increased forecast risk compared to the absence of distortion (" D 0). Under certain
conditions, distortions of type A4 can even yield a reduction of the forecast risk.

6.5 Robust Forecasting Based onM -Estimators Under
Functional Distortion

6.5.1 Construction of a Robust Forecasting Algorithm

To construct a robust forecasting algorithm under the regression model (6.1), let
us consider a family of forecasting algorithms based onM -estimators [7,11,13,22,
28, 33]:

OxTC� D O� 0 .zTC� /; O� D arg min
�

T
X

tD1
%
�

xt � � 0 .zt /
�

; (6.41)

where %.z/ is a loss function which is assumed to be convex, even, and doubly
differentiable almost everywhere on R. Note that the least squares forecasting
algorithm (6.11) can be viewed as a special case of the M -estimator method with
%.z/ D z2.

Let us introduce the following notation: 1T is a T -vector of ones; 0m is an
m-vector of zeroes;

�.z/ D d%.z/

d z
; �.z/ D d2%.z/

d z2
;

�.�/ D .�t t 0.�// D diag
�

�.xt � � 0 .ut //
� 2 R

T�T ; t; t 0 D 1; : : : ; T; (6.42)

�.�/ D .�t .�// D �

�.xt � � 0 .ut //
� 2 R

T ; t D 1; : : : ; T;

D.�/ D � 0
T �.�/�T ; M.�/ D � 0

T�.�/: (6.43)

Computing O� in (6.41) requires solving a convex optimization problem. We are
going to apply the standard approach of constructing an iterative solver [11, 13].
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The necessary optimality condition, which is also sufficient due to convexity, has the
form M. O�/ D 0m. Let us apply Taylor’s linear formula for �. O�/ in a neighborhood
of � D �.n/ (an approximation for O� in the nth step, n 2 N):

�. O�/ D �.�.n//� �.�.n//�T . O� � �.n//C o
��

�

�

O� � �.n/
�

�

�

�

1T ;

M.�.n// �D.�.n//. O� � �.n//C o
��

�

�

O� � �.n/
�

�

�

�

1T D 0:

An existence condition for the above iteration steps is defined in the following
theorem.

Theorem 6.11. If we have rank.�.�.n/// D k, m � k � T , then the approximation

�.nC1/ for O� in the .nC 1/th step exists and is given by

�.nC1/ D �.n/ C .D.�.n///
�1M.�.n//: (6.44)

Proof. Denote B D �
1
2 �T . Since the diagonal matrix �

1
2 has exactly T � k zero

rows, the matrix B also has T � k zero rows, and the remaining k rows are nonzero
and differ from the corresponding rows of the matrix �T by a positive multiplier.
Thus, by the definition of rank,

rank.B/ D min.m; k/ D m:

From matrix property 2.17.2 in [25], we have

rank.D.�.n/// D rank.B 0B/ D rank.B/ D m:

Then
ˇ

ˇD.�.n//
ˇ

ˇ ¤ 0, and the system of equationsM.�.n// �D.�.n//. O� � �.n// D 0

has a solution (6.44). ut
To accommodate for functional distortions FD-1 defined by (6.4), let us choose a
loss function %.�/ in (6.41) to have the following special form:

%.z/ D 0:5 1.jzj � ı"/.z � ı" sign.z//2; (6.45)

where ı" � 0 is a parameter of the algorithm (not yet defined); taking ı" D 0 yields
the least squares forecasting algorithm (6.11). In the notation (6.42), (6.43), let us
define the following functions for z ¤ ˙ı":

�.z/ D 1.jzj � ı"/.z � ı" sign.z//; �.z/ D 1.jzj � ı"/: (6.46)

Note that the conditions of Theorem 6.11 require the parameter ı" in (6.45) to be
chosen in a special way.
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Fig. 6.1 Loss function (6.45)

Let us also consider a loss function of the following form (z � 0):

%.z/ D f1.z/IŒ0;ı"�d�.z/C g.z/I.ı"�d;ı"/.z/C f2.z/IŒı";C1/.z/;

where f1.z/ D az2 is a parabola, g.z/ is a connecting function, f2.z/ D b.z�˛/2Cˇ
is another parabola, ı is the transition point between the loss function intervals, d
is the length of the connecting interval. By varying the coefficients a and b, we
can attain low, but nonzero, sensitivity to small distortions. The connecting function
g.z/ is chosen as a cubic parabola satisfying the condition of double differentiability
of %.z/ on R (z � 0):

%.z/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

az2; 0 � z � ı" � d;

b � a

3d
z3 C bd C ı".a � b/

d
z2 C .b � a/.ı" � d/2

d
z C

C .a � b/.ı" � d/3

3d
; ı" � d < z < ı";

b

�

z � 2.b � a/ı" C d.a � b/
2b

�2

C

C12ı".ı" � d/a.b � a/C d2.b C 3a/.b � a/

12b
; z � ı":

(6.47)

Figures 6.1 and 6.2 present graphs of loss functions (6.47) and (6.45) respec-
tively. In applications, it is easier to use the loss function (6.47) compared to the
function (6.45) since the former satisfies the conditions of Theorem 6.11, and thus
all iterations of the algorithm (6.44) exist for any value of the parameter ı".
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Fig. 6.2 Loss function (6.47)

6.5.2 Evaluation of the Constructed Robust Forecasting
Algorithm

Let us study the recurrence procedure (6.44)–(6.46):

�.nC1/ D G.�.n// WWD �.n/ C �

� 0
T �.�.n//�T

��1
� 0
T�.�.n//; n D 0; 1; 2; : : : :

We are going to investigate a single step of this procedure in a neighborhood of
the true value �0, assuming �.0/ WWD �0: The random variation of the “one-step”

estimator O� D �.1/ D G.�.0// can be written as O� � �0 D A�1
T BT , where by (6.1),

(6.42), (6.43), (6.46) we have:

AT D T �1
T
X

tD1
�.ut C �.zt // .zt / 

0.zt /;

BT D T �1
T
X

tD1
�.ut C �.zt // .zt / 2 R

T : (6.48)

This technique of considering only the local properties of estimators in some neigh-
borhood of the true value is commonly used in asymptotic statistical analysis [2].

Using (6.7), we obtain the following representation of the risk:

r D r.T; �/ D 	2C�2.zTC� /�2�.zTC� / 0.zTC� /bf O�gC 0.zTC� /V f O�g .zTC� /;

where bf O�g D E�0f O� � �0g is the bias vector and V f O�g D E�0f. O� � �0/. O� � �0/0g
is the mean square error matrix. The parameter ı" of the forecasting algorithm will
be chosen to minimize the guaranteed risk:

rC.T; �/ ! min
ı"
:
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As mentioned above, we are going to consider the case (6.4) of FD-1 distortion.
Let us find a maximum of the risk over �.zTC� /:

rC.T; �/ D 	2 C "2 C 2" sup
�.z1/;:::;�.zT /

�ˇ

ˇ

ˇ 0.zTC� /bf O�g
ˇ

ˇ

ˇC  0.zTC� /V f O�g .zTC� /
�

:

(6.49)

Let us obtain asymptotic representations of the bias bf O�g and the mean square
error matrix V f O�g. Let

'.z j 0; 	2/ D 1p
2�	

e
� z2

2	2

be the N.0; 	2/ normal probability density, and let

'.z/ WWD '.z j 0; 1/; ˚.z/ D 1p
2�

Z z

�1
e�0:5x2dx

be, respectively, the standard normal probability density and the standard normal
distribution function. Let us introduce the notation:

Qı" D ı"=	; Q�t D �.zt /=	; �t D Ef�.�.zt /C ut /g;
�t D Ef�.�.zt /C ut /g D Pfjut C �.zt /j > ı"g;

HT D T �1
T
X

tD1
 .zt / .zt /

0;  D T �1
T
X

tD1
 .zt / 2 R

m; Q" D "=	;

K" D 2	2
�

. Qı2" C Q"2 C 1/˚.�Qı"/�

�2 Q"2˚2.�Qı"/� Qı"'. Qı"/
� �

2˚.�Qı"/C Q"2 Qı"'. Qı"/
��2

:

We are going to investigate asymptotic behavior of the sequencesAT ,BT defined
in (6.48) as T ! 1.

Lemma 6.3. If the functions f i.u/g in the regression model (6.1) are bounded,

sup
u2U

j i.u/j � ci < C1; (6.50)

and ut has the normal probability density '.z j 0; 	2/, then the sequences of
matrices AT and vectors BT defined by (6.48) satisfy the strong law of large
numbers:

AT�T �1
T
X

tD1
�t .zt / 

0.zt /
a:s:��! 0m�m;BT�T �1

T
X

tD1
�t .zt /

a:s:��! 0m; T ! 1:
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Proof. Taking the .i; j /th element of the matrixAT and the i th element of the vector
BT , i; j D 1; : : : ; m, let us prove that the sequences AT and BT satisfy the strong
law of large numbers by verifying Kolmogorov’s sufficient condition [3], taking into
account (6.46) and (6.48). Since �.�/ 2 f0; 1g is a Bernoulli random variable, the
condition (6.50) implies that

KA D
1
X

tD1

Df�.�.zt /C ut / i .zt / j .zt /g
t2

� c2i c
2
j

1
X

tD1

1

4
t�2 < C1:

Since
ˇ

ˇ

ˇ

Q�t
ˇ

ˇ

ˇ � Q", we have

Df�.�.zt /C ut /g < 2	2
�

. Qı" C Q"/2 C 1C Qı" C Q"
�

:

Then by (6.50), taking into account (6.46) and (6.48), we obtain:

KB D
1
X

tD1
Df�.�.zt /C ut / i .zt /gt�2 < 2	2

�

. Qı" C Q"/2 C 1C Qı" C Q"
�

c2i

1
X

tD1
t�2 < C1:

Convergence of this series proves the lemma. ut
In numerical simulations [22] it was observed (and we can also see that from

Theorem 6.2) that the forecast risk grows as the level of distortion increases. That
motivates studying the case of the maximum possible distortion in the class (6.4):
�.zt / D ˙", t D 1; : : : ; T . We are going to need the following two auxiliary
lemmas.

Lemma 6.4. If ut has the normal probability density '.z j 0; 	2/, then:

�t D ˚.�Qı" � Q�t/C ˚.�Qı" C Q�t /;
�t D 	

�

. Qı" C Q�t /˚.�Qı" � Q�t /C
C.�Qı" C Q�t /˚.�Qı" C Q�t /C '. Qı" � Q�t /� '. Qı" C Q�t /

�

;

Ef�2.�.zt /C ut /gD 	2
�

�

. Qı" C Q�t /2 C 1
�

˚.�Qı" � Q�t /� . Qı" C Q�t /'. Qı" C Q�t /C

C�.�Qı" C Q�t /2 C 1
�

˚.�Qı" C Q�t /C .�Qı" C Q�t /'.�Qı" C Q�t /
�

I

and asymptotically as Q" ! 0 we have:

�t D 2	 Q�t˚.�Qı"/C o.Q"2/; �t D 2˚.�Qı"/C Qı"'. Qı"/ Q�2t C o.Q"2/;
Ef�2.�.zt /C ut /g D 2	2

�

. Qı2" C 1/˚.�Qı"/ � Qı"'. Qı"/C Q�2t ˚.�Qı"/
�

C o.Q"2/:
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Proof. The proof is based on the following simple chain of equalities:

�t D
��.zt /�ı"
Z

�1
.�.zt /C ı" C x/'.x j 0; 	2/dxC

C
C1
Z

ı"��.zt /
.�.zt / � ı" C x/'.x j 0; 	2/dx D

D 	
�

. Qı" C Q�t /˚.�Qı" � Q�t/C '. Qı" � Q�t/ � '. Qı" C Q�t /
�

I

�t D
��.zt /�ı"
Z

�1
'.x j 0; 	2/dx C

C1
Z

ı"��.zt /
'.x j 0; 	2/dx D

D ˚.�Qı" � Q�t /C ˚.�Qı" C Q�t /I

Ef�2.�.zt /C ut /g D
��.zt /�ı"
Z

�1
.�.zt /C ı" C x/2'.x j 0; 	2/dxC

C
C1
Z

ı"��.zt /
.�.zt / � ı" C x/2'.x j 0; 	2/dx D

D 	2
�

�

. Qı" C Q�t /2 C 1
�

˚.�Qı" � Q�t /� . Qı" C Q�t /'. Qı" C Q�t /C

C .. Qı" � Q�t /2 C 1/˚.�Qı" C Q�t/C . Qı" � Q�t/'. Qı" � Q�t /
�

I

�t D 	
�

. Qı" C Q�t /˚.�Qı" � Q�t/C '. Qı" � Q�t/ � '. Qı" C Q�t /
�

D

D 2	 Q�t˚.�Qı"/C o. Q�2t /I
�t D ˚.�Qı" � Q�t /C ˚.�Qı" C Q�t / D 2˚.�Qı"/C Qı"'. Qı"/ Q�2t C o. Q�2t /:

Now we can write

Ef�2.�.zt /C ut /g D 	2
�

�

. Qı" C Q�t /2 C 1
�

˚.�Qı" � Q�t /� . Qı" C Q�t /'. Qı" C Q�t /C

C �

. Qı" � Q�t /2 C 1
�

˚.�Qı" C Q�t/C . Qı" � Q�t /'. Qı" � Q�t/
�

D

D 	2
�

.2 Qı2" C 1/˚.�Qı"/ � 2 Qı"'. Qı"/C 2 Q�2t ˚.�Qı"/
�

C o. Q�2t /:

Applying the convergence
ˇ

ˇ

ˇ

Q�t
ˇ

ˇ

ˇ � Q" ! 0 concludes the proof. ut
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Lemma 6.5. Let �t D ˙", t D 1; : : : ; T , Q" ! 0 and assume that there exists a

matrix limit H0 D lim
T!1T

�1 T
P

tD1
 .zt / .zt /0; jH0j ¤ 0. Let ut have the normal

probability density '.z j 0; 	2/, then the following asymptotic expansions are
satisfied:

A1 WW D lim
T!1T �1

T
X

tD1
�t .zt / 

0.zt / D

D
�

2˚.�Qı"/C Q"2 Qı"'. Qı"/
�

H0 C o.Q"2/1m�m;

EfBT g D ˙2	 Q"˚.�Qı"/ C o.Q"2/1m;
EfBTB 0

T g D 4	2 Q"2˚2. Qı"/  0 C 2	2=T
�

. Qı2" C Q"2 C 1/˚.�Qı"/�

�2 Q"2˚2.�Qı"/� Qı"'. Qı"/
�

H0 C o.Q"2/1m�m:

Proof. By (6.48) and Lemma 6.4, for �t D ˙" we have the expression for A1, and

EfBT g D T �1
T
X

tD1
2	.˙Q"/˚.�Qı"/ .zt /C o.Q"2/1m D ˙2	 Q"˚.�Qı"/ C o.Q"2/1m:

Taking into account the convergence T �1 T
P

tD1
 .zt / 0.zt / !

T!1 H0, we obtain:

EfBTB 0
T g D 1

T 2

0

@

T
X

tD1

�

Efut C �2.�.zt //g � �2t
�

 .zt / 
0.zt /C

C
T
X

tD1
�t .zt /

 

T
X

tD1
�t .zt /

!01

A D EfBT gEfBT g0C

C 1

T 2

T
X

tD1

�

2	2
�

. Qı2" C 1/˚.�Qı"/ � Qı"'. Qı"/C Q"2˚.�Qı"/
�

C

C o.Q"2/� 4	2 Q"2˚2.�Qı"/
�

 .zt / 
0.zt / D 4	2 Q"2˚2.�Qı"/  0C

C 2	2

T

�

. Qı2" C Q"2 C 1/˚.�Qı"/� 2 Q"2˚2.�Qı"/� Qı"'. Qı"/
�

H0C

C o.Q"2/1m�m:

ut
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By Lemmas 6.3–6.5, the following asymptotic relation holds for the forecast risk
of the algorithm (6.44)–(6.46) under the condition Q" D "=	 ! 0 (i.e., if the FDs
�.zt / are much smaller than the observation errors ut ) [22]:

rC D 	2
�

1C Q"2 �1C j 0.zTC�/H�1
0  j�2

�

C o.Q"2/ as T ! 1:

Now consider the case of “large” values of Q" D "=	 . Then, by (6.48), choosing
�.zt / D ˙" yields:

EfAT g D �

˚.�Qı" � Q"/C˚.�Qı" C Q"/�HT ;

EfBT g D ˙	�. Qı" C Q"/˚.�Qı" � Q"/C .�Qı" C Q"/˚.�Qı" C Q"/C
C '. Qı" � Q"/ � '. Qı" C Q"/� :

Let us define a function of two variables:

G.x; y/ D .x C y/˚.�x � y/C .�x C y/˚.�x C y/C '.x � y/ � '.x C y/

˚.�x � y/C ˚.�x C y/
:

Note that the function G.x; y/ � 0 decreases in x for y � 0. By (6.49), the
guaranteed mean square forecast risk can be expressed asymptotically as T ! 1
in the following form [22]:

rC.T; �/ D 	2 C "2 C 2"	G. Qı"; Q"/ ˇˇ 0.zTC� /H�1
0  

ˇ

ˇC
C 	2G. Qı"; Q"/2 � 0.zTC� /H�1

0  
�2
:

Let us choose Qı" so that the asymptotic guaranteed risk is minimal. By the properties
of the functionG.x; y/, such Qı" can be found by solving the following minimization
problem:

G. Qı"; Q"/ ! min
Qı"�0

:

Since the function G. Qı"; Q"/ is decreasing in Qı" for Q" � 0, minimization of this
function implies taking the maximum value of Qı". However, as seen from (6.46)–
(6.48), increasing Qı" leads to a decrease in the rank of the matrix AT : the t th
observation gives a nonzero contribution (is included) in the matrix AT with
probabilitypt D �t D ˚.�Qı"� Q"/C˚.�Qı"CQ"/. The inclusion process is a sequence
of random Bernoulli trials, and the random number of included observations

� D
T
X

tD1
1 .j�.zt /C ut j � ı"/
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has the following expectation:

L. Qı"/ D Ef�g D
T
X

tD1
pt D T .˚.�Qı" � Q"/C˚.�Qı" C Q"//:

This L. Qı"/ decreases in Qı" since L0
Qı" .

Qı"/ D �T .'. Qı" C Q"/C'.�Qı" C Q"// < 0. Thus,

let us introduce the following restriction:

L. Qı"/ � sT;

where s characterizes the “safety margin” of the algorithm w.r.t. inclusion of the
observations, 0:5 < s < 1, s � mT�1. Then we have the following optimization
problem:

G. Qı"; Q"/ ! min
Qı"�0;L.Qı"/�sT

:

The functionsG. Qı"; Q"/, L. Qı"/ decrease in Qı", therefore, the solution of this problem,
denoted as Qı�

" , can be found from the following equation

˚.�Qı" � Q"/C˚.�Qı" C Q"/ D s: (6.51)

Since the function ˚.�x � y/C ˚.�x C y/ decreases in x and increases in y for
x > 0, this equation implies that an increase in the distortion level Q" leads to an
increase of the optimal value Qı�

" . Note that if the distortion Q" is sufficiently small,
then

Qı�
" 
 ˚�1.1 � 0:5s/:

Observe that the function QL. Qı"/ D ˚.�Qı" � Q"/C˚.�Qı" C Q"/ is decreasing with
a point of inflexion at Qı" D Q", and it tends to a step function QL1. Qı"/ D 1.Q" � Qı"/ as
Q" ! C1. In the latter case, the solution of (6.51) can be given as

Qı�
" 
 Q" �˚�1.s/:

To conclude the subsection, let us note that the above approach to robust
forecasting under FDs of multiple linear regression models (6.1) can be easily
adapted to multivariate regression models (6.14). Vector forecasts can be made
similarly to (6.41):

OxTC� D O� .zTC� /; O� D arg min
�

T
X

tD1
%.kxt � � .zt /k/;

where the loss function %.�/ is defined by (6.47).
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Fig. 6.3 Dependence between the risk and K for the loss function (6.45)

6.5.3 Numerical Examples

Robustness of the proposed algorithm (6.44) was evaluated in comparison with
the traditional least squares forecasting algorithm by performing Monte-Carlo
simulation experiments, where loss functions were chosen as (6.45) and (6.47).

Example 1. The experimental setting used the following model parameters:

T D 12I 	2 D 0:01I " D 0:5I f0.t/ D 3 � 0:5t C 0:05t2I � D 1I
m D 3I �.t/ D " cos.t/I ı" D K"; K D 0; 0:05; 0:10; : : : ; 1:10I

the number of realizations was 1,000; the loss function was chosen as (6.45).

For each value of K , point and interval estimators (at confidence level 0.9) of
the forecast risk r.T; �/ were computed (Fig. 6.3). Applying the algorithm (6.44)
for K D 0:8 resulted in a 44 % reduction of the forecast risk (from 0.24 to 0.13)
compared to least squares forecasting (K D 0). This difference is explained by
discarding observations falling in the area of probable distortion.

Example 2. The experimental setting used the following model parameters:

T D 20I 	2 D 0:01I " D 0:5I f0.t/ D 3 � 0:5t C 0:05t2I � D 1I
m D 3I �.t/ D " cos t I ı" D K"; K D 0; 0:05; 0:10; : : : ; 1:50I

the number of realizations was 1;000; the loss function was chosen as (6.47) with
a D 0:1, b D 1.

Interval estimators of the forecast risk were computed at 95 % confidence.
Figure 6.4 shows that the forecast risk of the algorithm (6.44) forK D 0:8was 24 %
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Fig. 6.4 Dependence
between the risk and K
for the loss function (6.47)

lower compared to the risk of the traditional least squares forecasting algorithm
(0.125 vs. 0.165) due to reduced responsiveness to observations falling in the area
of probable distortion.

6.6 Robust Regression Forecasting Under Outliers Based
on the Huber Estimator

Let us consider the problem of constructing and evaluating a robust forecasting
statistic in a multiple linear regression model distorted by outliers (6.21). In
Sect. 6.3, we have studied the effect of outliers on the least squares forecasting
statistic. To construct a robust forecasting statistic, let us use the M-estimator
approach described in Sect. 6.5. Let us choose the Huber function as the loss
function %.�/, following the approach of [13]:

QxTC� D Q� 0 .zTC� /; Q� D arg min
�

T
X

tD1
%H .rt= Q	/; (6.52)

rt D rt .�/ D xt � � 0 .zt /;

%H .z/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

�Lz; z � �L;
z2=2; �L < z < L;

Lz; z � L;

q.z/ D %0
H.z/ D maxf�L;minfL; zgg D

8

ˆ

ˆ

<

ˆ

ˆ

:

�L; z � �L;
z; �L < z < L;

L; z � L;
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Table 6.1 Values L D L."/

" 0 0.001 0.005 0.01 0.02 0.05 0.10 0.15 0.20 0.25 0.30 0.40

L."/ C1 2.63 2.16 1.95 1.72 1.40 1.14 0.98 0.86 0.77 0.69 0.55

where %H .�/ is the Huber loss function; Q� is the Huber estimator; Q	 is some robust
estimator of the standard deviation 	 (e.g., the estimator given in [13]);L is the root
of the equation

2.'.L/=L� ˚.�L// D ".1� "/I (6.53)

the functions '.�/,˚.�/ are, respectively, the standard normal probability density and
distribution function; and " 2 .0; 1=2/ is a given distortion level, i.e., the probability
of an outlier. Table 6.1 presents values of L D L."/ for some distortion levels ".

We are going to use the notation of Sect. 6.1 together with some additional
symbols:

H D .hij/ D �T .�
0
T �T /

�1� 0
T D �TCT (6.54)

is a symmetric .T � T /-matrix,

h D max
1�i�Thii > 0

is the maximum diagonal element of the matrix H . As shown in [13], evaluation
of the asymptotic behavior of the estimator Q� (and hence, the forecast risk of the
algorithm (6.52)) under outliers may be restricted to a simplified case where the
standard deviation 	 is a priori known: Q	 D 	 .

Theorem 6.12. Under the regression model (6.21) with outliers in the variance
(at 	 0, K � 2L2), T > m, j� 0

T �T j > 0, let the random variables ut , vt have a
normal distribution, and assume that the algorithm (6.52) with a known value of 	
is being used for forecasting. Under the asymptotics

" ! 0; T ! C1; m ! C1; h ! 0; hm2 ! 0; (6.55)

the mean square risk of forecasting xTC� satisfies the following expansion:

r".T; �/ D r0.T; �/C "	2.K � 2L2/kg.T; �/k2 CO."2/C o.h/; (6.56)

where r0.T; �/ D 	2.1 C kg.T; �/k2/ > 0 is the least squares forecast risk in the
absence of outliers (" D 0) defined in Sect. 6.1.

Proof. Given the asymptotics (6.55), the mean square error matrix of the Huber
estimator Q� in (6.52) satisfies the following asymptotic expansion [13]:

V."/ D Ef Q� � �/. Q� � �/0g D Efq2.rt .�/g
.Efq0.rt .�//g/2

.�T �
0
T /

�1 C o.h/ 1m�m: (6.57)
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Applying (6.21), (6.52)–(6.55) yields

Efq2.rt .�//g
.Efq0.rt .�//g/2

D 	2
�

1C .K � 2L2/"
�CO."2/:

Substituting this expansion into (6.57) and using the general expression (6.26)
for the risk of a plug-in forecasting algorithm leads to (6.56). ut
Corollary 6.13. The risk instability coefficient (6.9) of the forecasting algorithm
(6.52) based on the Huber estimator satisfies the following asymptotic expansion:

�H .T; �/ D rC.T; �/ � r0
r0

D kg.T; �/k2C"C.K�2L2/kg.T; �/k2CO."2C/Co.h/:
(6.58)

Proof. Maximizing (6.56) in " 2 Œ0; "C� and applying the equality r0 D 	2 yields
the expansion (6.58). ut

As established in Sect. 6.3, the risk instability coefficient of the least squares
forecasting algorithm under outliers in the variance can be written as

�LS.T; �/ D kg.T; �/k2 C "CKkg.T; �/k2: (6.59)

A comparison of (6.58) and (6.59) shows that replacing the classical least squares
estimator O� defined by (6.11) with the Huber estimator Q� defined by (6.52) in the
plug-in forecasting algorithm leads to a decreased risk instability coefficient:

�LS.T; �/� �H .T; �/ D "C2L2kg.T; �/k2 CO."2C/C o.h/:

A numerical robustness comparison of forecasting algorithms (6.11) and (6.52)
was performed via two series of Monte-Carlo simulations [15]. Ten independent
experiments were performed for each combination of independent parameters.

Series 1. The time series xt was simulated according to (6.21) with the following
conditions: T D 15, � 2 f1; 2; : : : ; 5g, zt D t (trend model),m D 3,

 0.zt / D  0.t/ D .1; t; t2/; �00 D .1; 0:1; 0:01/; " 2 f0; 0:1; 0:2; 0:25; 0:3g;
Lfutg D N.0; 	2/; Lfvt g D N.0;K	2/; 	2 D 0:09; K D 50:

Table 6.2 presents sample estimators of the risks OrLS, OrH for the least squares
forecasting algorithm and the algorithm based on the robust Huber estimator, as
well as the ratio of these two risk values denoted as

 D OrLS= OrH ;

for different distortion levels " and forecasting depths � .
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Table 6.2 Robustness characteristics, Series 1

Robustness
characteristics

"

� 0.00 0.10 0.20 0.25 0.30

1 rLS 0.161 0.518 0.875 1.054 1.233
rH 0.162 0.201 0.247 0.274 0.307
 0.994 2.577 3.543 3.847 4.016

2 rLS 0.207 0.791 1.375 1.667 1.959
rH 0.208 0.272 0.346 0.392 0.445
 0.995 2.908 3.974 4.253 4.402

3 rLS 0.272 1.185 2.097 2.553 3.009
rH 0.274 0.374 0.490 0.561 0.644
 0.993 3.168 4.280 4.551 4.672

4 rLS 0.363 1.730 3.097 3.780 4.464
rH 0.366 0.515 0.690 0.796 0.920
 0.918 3.359 4.488 4.749 4.852

5 rLS 0.485 2.460 4.435 5.422 6.410
rH 0.489 0.704 0.956 1.110 1.290
 0.992 3.494 4.639 4.885 4.969

Table 6.3 Robustness characteristics, Series 2

Robustness
characteristics

"

� 0.00 0.10 0.20 0.25 0.30

1 rLS 0.116 0.248 0.380 0.446 0.512
rH 0.117 0.131 0.148 0.158 0.170
 0.991 1.893 2.568 2.823 3.012

2 rLS 0.105 0.181 0.258 0.296 0.334
rH 0.105 0.114 0.123 0.129 0.136
 1.000 1.158 2.098 2.295 2.456

3 rLS 0.102 0.161 0.221 0.250 0.280
rH 0.102 0.108 0.116 0.121 0.126
 1.000 1.491 1.905 2.066 2.222

4 rLS 0.123 0.287 0.450 0.532 0.614
rH 0.123 0.141 0.162 0.175 0.190
 1.000 2.035 2.778 3.040 3.232

5 rLS 0.103 0.168 0.233 0.265 0.297
rH 0.103 0.110 0.118 0.123 0.129
 1.000 1.527 1.975 2.154 2.302

Series 2. In the experimental setting of Series 1, the polynomial trend of the time
series xt is replaced by the following harmonic trend:

 0.t/ D �

1; cos.t/; cos.2t/
�

; �00 D .1; 0:5; 0:6/:

Numerical results of this series of experiments are shown in Table 6.3.
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Tables 6.2 and 6.3 show that using the Huber estimator in plug-in forecasting
algorithms leads to a significant decrease of the risk. However, calculation of the
Huber estimator Q� requires exact knowledge of the outlier probability ".

6.7 Local-Median (LM) Forecasting and Its Properties

6.7.1 Description of the Method

In Sects. 6.5 and 6.6, we have used the plug-in forecasting statistic

OxTC� D f0.x1; : : : ; xT I Q�/

to construct robust algorithms of forecasting xTC� . Here f0.x1; : : : ; xT I �/ is the
mean square optimal forecasting statistic under prior knowledge of the model
parameter � and without model distortion; Q� is some robust estimator of the param-
eter � (in Sects. 6.5 and 6.6, we have considered the family of M-estimators defined
by the loss function %.�/). Let us note some disadvantages of this approach:

(1) computational difficulty of finding the estimator Q� (in particular, iteration-based
computation of Q� is sensitive to the initial approximation);

(2) knowledge of the distortion level " and other unknown characteristics is often
essential.

This section presents a different approach to robust forecasting, initially proposed
for robust trend forecasting [21]. Let us illustrate this approach and evaluate
its robustness in the setting of regression forecasting under outliers discussed in
Sect. 6.3.

Assume that observations fxt g of the investigated stochastic dynamic system are
modeled by a regression equation under outliers:

xt D �00 .zt /C ut C �tvt ; (6.60)

where t 2 Z is a discrete time point; zt 2 RM is a nonrandom regressor (predictor)
vector observed at time t ;  .z/ D . i .z// W RM ! Rm is a vector of m linearly
independent functions; �0 D .�0i / 2 Rm is the m-vector of unknown true model
parameter values (regression coefficients); ut 2 R is a random error at time t
and vt 2 R is an outlier at time t ; f�t g are i.i.d. Bernoulli random variables that
determine presence or absence of outliers, Pf�t D 1g D ", Pf�t D 0g D 1 � ",
where " 2 Œ0I 0:5/ is the outlier probability (the average proportion of outliers in the
observed sample).

It is assumed that random errors futg are i.i.d. random variables, Efutg D 0,
Dfutg D 	2 < C1; the outliers fvt g are independent random variables such that
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Efvt g D at , Dfvt g D K	2 < C1, K � 0; the random variables futg, f�t g, f�t g
are jointly independent.

Let us introduce the following notation: T is the observation length;

� .l/ D ft .l/1 ; : : : ; t .l/n g � NT WWD f1; 2; : : : ; T g; l D 1; : : : ; L;

are subsets of n (m � n � T ) observed time points, where L is the number of all
different subsets of time points (m � L � LC D Cn

T );

� D . j .zt //; j D 1; : : : ; m; t D 1; : : : ; T I
�.l/
n D . j .zt .l/i

//; i D 1; : : : ; n; j D 1; : : : ; m;

is the .n �m/-matrix obtained from the .T �m/-matrix � ,

ˇ

ˇ�.l/0
n � .l/

n

ˇ

ˇ ¤ 0I

X D .x1; x2; : : : ; xT /
0 2 RT is the observed sample;

X.l/
n D

�

x
t
.l/
1

; x
t
.l/
2

; : : : ; x
t
.l/
n

�0 2 R
n

is a subsample of size n of the sample X ; a.l/ D .a
.l/
i /D .a

t
.l/
1

; a
t
.l/
2

; : : : ; a
t
.l/
n
/0 2Rn.

As in (6.11), let us define the l th local least squares estimator for �0 based on the
l th subsample X.l/

n :

O�.l/ D .� .l/0
n � .l/

n /
�1� .l/0

n X.l/
n ; l D 1; : : : ; L; (6.61)

and use these local least squares estimators to construct a sample ofL local forecasts
of the future state xTC� for � � 1:

Ox.l/TC� D O�.l/0 .zTC� /; l D 1; : : : ; L: (6.62)

The LM forecasting statistic was proposed in [21] as the sample median of the L
local forecasts (6.62):

OxTC� D S.X/ D Med
n

Ox.1/TC� ; : : : ; Ox.L/TC�
o

: (6.63)

The subsample size n and the number of subsamples L are the parameters of the
LM method. If n D T , L D 1, then the LM forecast coincides with the traditional
least squares forecast (6.11). If L D LC, then the LM forecast (6.61)–(6.63) is
based on all of the possible subsamples of size n from the initial sample of size T .
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6.7.2 The Breakdown Point

Let us evaluate robustness of LM forecasting (6.63) by estimating the breakdown
point in the Hampel sense. As in Sect. 4.4, the breakdown point is defined as the
maximal proportion "� of “arbitrarily large outliers” in the sample X such that the
forecasting statistic S.X/ cannot be made arbitrarily big by varying the values of
the outliers [11]:

"� D max
˚

" 2 Œ0; 1� W 8X."/ jS.X."//j � C < C1


; (6.64)

where X."/ D fxt W �t D 1; 1 � t � T g is the set of observations (6.60) distorted by
outliers.

Theorem 6.13. If L D LC D Cn
T , then the breakdown point (6.64) of the

LM forecast (6.63) under the distorted model (6.60) can be found as the unique
root " 2 Œ0; 1 � nT �1� of the following algebraic equation of order n:

n�1
Y

tD0
.1 � " � tT �1/ D .1� ˛/

n�1
Y

tD0
.1 � tT �1/; (6.65)

where

˛ D b.L � 1/=2c=L D 1=2CO
�

1=C n
T

�

: (6.66)

Proof. First, let us show that (6.65) only has a unique root, and that this root "r lies
in the interval Œ0; 1�nT �1�, i.e., it is sufficient to search for the breakdown point in
this interval. Let us introduce the function

f ."/ D
n�1
Y

tD0
.1 � " � t=T / � .1 � ˛/

n�1
Y

tD0
.1 � t=T /

to define an equivalent form of (6.65): f ."/ D 0. Since the derivative can be
written as

f 0."/ D �
n�1
X

pD0

n�1
Y

tD0;t¤p
.1 � " � t=T / < 0

for " � 1 � n=T , the function f ."/ is strictly monotonous decreasing in " in the
interval Œ0; 1 � nT �1�.
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Consider the following cases:

(a) n D T ; in this case, "r D 0, and thus "r lies in the interval Œ0; 1 � nT �1�;
(b) n D 1, T > 1; in that case, "r D ˛ 2 Œ0; 1 � T �1� since ˛ � 1=2;
(c) 2 � n � T � 1. Then we have

f .0/ D ˛

n�1
Y

tD0
.1� t=T / > 0; f .1 � nT �1/ D nŠ T �n�1 � .1 � ˛/C n

T

�

< 0;

since T > 2, n � T � 1, ˛ � 1=2. The root "r of (6.65) exists and is unique
due to strict monotonicity of the function f ."/.

Let us proceed by obtaining an explicit form of (6.65). In [11], it was shown that
the breakdown point˛ of the median calculated for a sample of local forecasts (6.62)
equals

˛ D b.L � 1/=2c =L D
(

1=2�L�1; for L even;

1=2� .2L/�1; for L odd:

Denote the number of distorted observations as ˇ D "T 2 N . If " > 1 � nT �1,
then ˇ > T � n, and all local forecasts based on subsamples of size n are distorted.
Thus, the LM forecast (6.63) is also distorted. Therefore, in (6.64) it is sufficient to
consider " 2 Œ0; 1 � nT �1�.

The total number of subsamples which only contain undistorted observations
equals Cn

T�ˇ . Assuming that the local-median breakdown point is equal to ˛

implies that the number of local forecasts based on distorted subsamples should not
exceed ˛L [11]. This leads to a condition on the maximum number of undistorted
observations in the sample X : Cn

T�ˇ � .1� ˛/C n
T . Applying (6.64) and performing

equivalent transformations leads to (6.65), proving the theorem. ut
Let us compute the breakdown point "� in some special cases.

Corollary 6.14. If n � ˛T , then "� � T �1 > 0.

Corollary 6.15. If n D m D 1, then "� D ˛; if n D 2, then we have

"� D 1 � .2T /�1 �
�

�

1� .2T /�1
�2 � ˛

�

1 � T �1��1=2 :

Corollary 6.16. If n is fixed, and T ! 1, then "� ! 1�2�1=n; and the subsample
size which is optimal w.r.t. maximization of the breakdown point (6.64) is equal to
the number of unknown parameters in the model (6.60): n� D m.
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6.7.3 Probability Distribution of the LM Forecast

Let us introduce the following notation:

g.l/ D .g
.l/
i / D �.l/

n .�
.l/0
n � .l/

n /
�1 .zTC� / 2 R

n; l D 1; : : : ; LI
x0TC� D �00 .zTC� /I

'.z j �I 	2/ D .2�	2/�1=2 exp
��.z � �/2=.2	2/� ; z 2 R; (6.67)

where '.�/ is the normal probability density function (PDF);˚.�/ is the correspond-
ing probability distribution function;Nn D f1; 2; : : : ; ng;

˘n
r D

n

A
.r;n/
j W j D 1; : : : ; C r

n

o

is the set of C r
n different ordered combinations

A
.r;n/
j D

n

i
.j /
1 ; : : : ; i .j /r W i

.j /
1 < i

.j /
2 < � � � < i.j /r ; i

.j /

k 2 Nn; k D 1; : : : ; r
o

of r elements, and NA.r;n/j WWD NnnA.r;n/j ;

G.n;r/.l/ D
n
X

kDr
.g
.l/

k /
2; r D 1; : : : ; n; G.n;r/.l/ D 0; r > n;

and G.l/ D G.n;1/.l/ is the squared length of the vector g.l/, l D 1; : : : ; L.

Theorem 6.14. Under the distorted regression model (6.60), if the random vari-
ables futg, fvt g are normally distributed, then the probability density of the l th local
forecast (6.62) is a mixture of 2n normal probability densities:

p Ox.l/
TC�

.z/ D
n
X

rD0
.1 � "/r"n�r X

.k1;:::;kr /2˘n
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z j x0TC� C
n
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iDrC1
g
.l/

ki
a
.l/

ki
I 	2 �G.l/ C KG.n;rC1/.l/�

!

;

(6.68)

where fkrC1; : : : ; kng D Nnnfk1; : : : ; krg is the subset of the elements in Nn which
aren’t included in the collection .k1; : : : ; kr /.

Proof. Let us use the characteristic function approach. By model assumptions, the
characteristic functions of ut , vt , �tvt , and �t D ut C �tvt are written as
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fut .�/ D exp

�

�1
2
	2�2

�

; fvt .�/ D exp

�

iat � � K

2
	2�2

�

;
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iat � � K
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�

;

f�t .�/ D fut .�/f�t �t .�/ D .1 � "/ exp
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�1
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	2�2

�

C

C " exp

�

iat � � K C 1
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; � 2 R; t D 1; : : : ; T: (6.69)

From (6.60), (6.62), (6.67), we have

Ox.l/TC� D x0TC� C g.l/0�.l/; (6.70)

where �.l/ D .�
t
.l/
1
; : : : ; �

t
.l/
n
/0. Equations (6.69), (6.70), the independence of f�tg,

and the properties of the characteristic functions lead to
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: (6.71)

Using the inverse transformation formula [3] yields the probability density

Ox.l/TC� W p Ox.l/
TC�

.z/ D 1

2�

C1
Z

�1
e�iz�f Ox.l/

TC�

.�/d�; z 2 R:

Now substituting (6.71) and performing equivalent transformations leads to (6.68).
ut

Corollary 6.17. For l 2 f1; : : : ; Lg, the probability density function of the l th local
forecast satisfies the following asymptotic expansion as " ! 0:
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Corollary 6.18. For l 2 f1; : : : ; Lg, the probability distribution function of the l th
local forecast satisfies the following asymptotic expansion as " ! 0:
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By (6.63), the LM forecast is an order statistic of a sample that is made
up of L local forecasts. To find its probability distribution, assume that the
local forecasts (6.62) are constructed so that they are jointly independent. The
independence condition is satisfied, for instance, if

TL
lD1 � .l/ D ;.

Let 1.z/ D f1; z > 0I 0; z � 0g, and let M.z/ D
L
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Theorem 6.15. If L local forecasts (6.62) are jointly independent, and L is odd,
then, under the conditions of Theorem 6.14, the probability distribution function
of the local-median forecast (6.63) satisfies the following asymptotic expansion as
" ! 0:
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(6.79)

Proof. Consider the j th order statistic x.j / computed for a sample of L local

forecasts (6.62). Since the events fz > Ox.j /TC�g and fM.z/ � j g coincide, the
probability distribution function of the j th order statistic equals

Fx.j / .z/ D Pfz > x.j /g D
L
X

kDj
PfM.z/ D kg:
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By (6.73), the random variable 
i D 1.z � Ox.i/TC� / follows a Bernoulli probability
distribution defined as

pi D Pf
i D 1g D 1 � Pf
i D 0g D F Ox.i/TC�

.z/:

The quantity M.z/ is a sum of not identically distributed Bernoulli random
variables. Since the local forecasts (6.62) are jointly independent, we obtain the
characteristic function forM.z/:
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and thus the probability distribution function is equal to
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Since the sample median is an order statistic, the probability distribution function of
the LM forecast (6.63) has the following form:
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(6.80)

Applying the expansion (6.73) with the notation (6.74)–(6.78), and then gather-
ing the expansion terms of ordersO.1/, O."/, and O."2/ in (6.80) proves (6.79).

ut

6.7.4 Risk of the LM Forecast

The risk of a �-step-ahead statistical LM forecast (6.63) based on T observations is
equal to the mean square forecast error:

r.T; �/ D E
˚

. OxTC� � xTC� /2

 � 0: (6.81)

Let us consider the following special case (outliers in variance):

Efvt g D at D 0; t D 1; : : : ; T: (6.82)

Let the positive-definite symmetric matrix . 1
n
�
.l/0
n �

.l/
n /

�1 D Qn be independent
of the subsample number l . Then we have

G.n;r/.l/ D G.n;r/; l D 1; : : : ; L; r D 1; 2; : : : : (6.83)

Theorem 6.16. Under the conditions of Theorem 6.14, assuming (6.82), (6.83),
and independence of the local forecasts (6.62), the forecast risk (6.81) of the
LM method (6.63) satisfies the following asymptotic relation as T ! 1, L ! 1:

r.T; �/ �
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rD0

.1 � "/r"n�r .nr /
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A ! 0: (6.84)

Proof. By (6.60), (6.67), the forecast risk functional has the following form:

r.T; �/ D E
˚

. OxTC� � x0TC� � uTC� � �TC�vTC� /2



:

Since the random variables uTC� , �TC� , vTC� , and the statistic OxTC� are jointly
independent, at D 0, t D 1; : : : ; T , we have

r.T; �/ D E
˚

. OxTC� � x0TC� /2

C E

˚

.uTC� C �TC�vTC� /2



:

It can be shown that Ef.uTC� C �TC�vTC� /2g D ."K C 1/	2.
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By applying Theorem 6.14 and the conditions of this theorem, we obtain that
the local forecasts (6.62) are identically distributed and have the probability density
function

Qp.z/ D
n
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rD0
.1�"/r"n�r X

.k1;:::;kr /2˘n
r

'
�

z j x0TC� I 	2
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G.n;1/ C KG.n;rC1/�� ; z 2 R:

(6.85)

Since the LM forecast (6.63) is a median of local forecasts with the PDF (6.85),
its probability distribution is asymptotically normal as L! 1 [2] with the asymp-
totic expectation equal to x0TC� and the asymptotic variance given by

Df Ox2TC�g D �

4L Qp2.�1=2/
��1

;

where �1=2 D x0TC� is the median of the distribution (6.85). Straightforward
transformations lead to the following expression for the asymptotic variance of the
LM forecast:
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:

Applying the expressions obtained above for Ef.uTC� C�TC�vTC� /2g and Df Ox2TC�g
yields (6.84). ut
Corollary 6.19. Under the conditions of Theorem 6.16, the forecast risk of the
LM method satisfies the asymptotic relation
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as " ! 0, T ! 1, L ! 1.

Proof. As " tends to zero, we have
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which leads to (6.86). ut
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6.7.5 Robustness of LM Forecasting Compared
to the Traditional Least Squares Method

It follows from the results of Sect. 6.3 that the forecast risk of the least squares
forecasting algorithm is equal to

rLS.T; �/ D 	2 CGT 	
2 C ".K	2 CGTK	

2/;

where GT D  .zTC� /0.� 0
T �T /

�1 .zTC� / > 0.
Let us assume that the design of the experiment is orthogonal:

.� 0
T �T /

�1 D T �1Im;

where Im is the (m �m) identity matrix, .� .l/0
n �

.l/
n /

�1 D n�1Im,

GT D T �1 .zTC� /0 .zTC� /; G.n;1/ D n�1 .zTC� /0 .zTC� /:

Denote % D G.n;n/=G.n;1/ 2 .0; 1/. Then by (6.86) we have:
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Taking L D T n�1 (so that the independence condition on local forecasts is
satisfied) yields

RLM.T; �/ D 	2 C "K	2 C �

2
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�

1 � 1p
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Discarding the remainder term and solving the inequality rLM.T; �/ < rLS.T; �/ in
" leads to a criterion for preferring LM forecasting to least squares forecasting:

" > "�.K/ D �=2 � 1
K � �n

�

1 � 1p
1CK%

� for K � �n

�

1 � 1p
1CK%

�

> 0:

Figure 6.5 shows the preference threshold curves for the LM method in the
special case n� D m, % D m�1, which are defined as
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Fig. 6.5 Preference thresholds for the LM forecasting method, m D 2; 3; 5; 7; 10 (left to right)

" D "�.K/ D �=2� 1
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1 � .1CK=m/� 1
2

�
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K > m
�

2� � 1 � p
1C 4�

�

=2 
 0:8m

form D 2; 3; 5; 7; 10.
Note that the function

d.";K; n/ D 1C "K � �

2
� "�n

�

1 � 1p
1CK%

�

is monotonous increasing in " and K . Also note that this function is monotonous
decreasing in n, affirming the optimal subsample size n� D m obtained in
Corollary 6.16.

6.7.6 A Generalization of the LM Method for Multivariate
Regression

Let us consider a multivariate regression model under outliers, which is a general-
ization of the model (6.21):

xt D �0 .zt /C ut C �t#t ; t 2 N; (6.87)
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where zt 2 U � RM are nonrandom regressors;  .�/ D . i .�// is an m-column
vector of linearly independent functions; futg � Rd is a sequence of independent
random observation error vectors such that

Efutg D 0d ; Covfut ; utg D Efutu
0
tg D ˙ I

�0 D .�0ij/ 2 R
d�m is the .d � m/-matrix of regression coefficients; f�t g are

i.i.d. Bernoulli random variables describing the presence of multivariate outliers
following the probability distribution (6.22) with the distortion level equal to ";
f#tg � R

d are jointly independent random vectors such that

Ef#t g D at 2 R
d ; Covf#t ; #t g D Ef#t# 0

t g D e˙ I

and the random vectors futg; f#tg; f�t g are jointly independent.
Using the same approach as in Sect. 6.7.1, let us construct L subsets of time

points � .l/ D ft .l/1 ; : : : ; t .l/n g � f1; 2; : : : ; T g and some auxiliary matrices:

C .l/ D
X

t2� .l/
xt 

0.zt / 2 R
d�m;

A.l/ D
X

t2� .l/
 .zt / 

0.zt / 2 R
m�m; l D 1; : : : ; L:

Assuming that n D j� .l/j � m and the matrices fA.l/g are nonsingular, jA.l/j ¤ 0,
let us construct the l th local least squares estimator for the regression coefficient
matrix �0 based on a subsample fxt W t 2 � .l/g:

O�.l/ D C .l/.A.l//�1; l D 1; : : : ; L: (6.88)

These least squares estimators will be used to construct a family ofL local forecasts
of the future state xTC� for a given forecasting horizon � 2 N:

Ox.l/TC� D O�.l/ .zTC� / 2 R
d ; l D 1; : : : ; L: (6.89)

Let us define the LM forecast similarly to the univariate case d D 1 (6.63) as the
multivariate sample median of L local forecasts (6.89):

OxTC� D S
�

Ox.1/TC� ; : : : ; Ox.L/TC�
�

D Med
n

Ox.1/TC� ; : : : ; Ox.L/TC�
o

: (6.90)

Note that, unlike the univariate case, the multivariate median Medf�g in (6.90)
isn’t uniquely defined for d > 1 [26]. Let us briefly describe the five main methods
of defining and computing the multivariate median: the sample L1-median, the
modified sampleL1-median, the Tukey sample median, the simplex sample median,
and the Oja sample median.
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Sample L1-median

The sample L1-median is defined as the point minimizing the sum of Euclidean
distances between this point and the observations:

S D S.z1; : : : ; zT / D arg min
x

T
X

tD1
k.x � zT /k=T: (6.91)

For centered (at zero) distributions, the L1-median equals zero. For d D 1,
the median (6.91) coincides with the classical univariate median. Except for some
singular cases, the minimum in (6.91) is attained at a single point. The sample
L1-median is a statistic with a limited Hampel influence function and a breakdown
point at 1/2, but it isn’t affine-invariant. It is difficult to compute for higher
dimensions d [31].

Modified Sample L1-Median

Several modifications of the L1-median have been developed. These modifications
are highly effective computationally, affine invariant, and can be easily computed for
higher dimensions [12]. Hettmansperger’s modified sample L1-medianb�LH1 2 Rd

is defined as a solution of the following system of equations:

S.b�LH1
;bA�/ D T �1

T
X

tD1
bA�

�

zt �b�LH1
� �

�

�

bA�

�

zt �b�LH1
��

�

�

�1D 0d ; 0d 2 R
N ;

T �1
T
X

tD1
bA�

�

zt �b�LH1
� �

zt �b�LH1
�0
bA0
�

�

�

�

bA�

�

zt �b�LH1
��

�

�

�2D d�1Id ; (6.92)

wherebA� � 0 is a .d�d/ upper triangle matrix with a one in the top left corner. This
matrix is anM -estimator of Tayler’s multivariate sample scale [32]. In a nonsingular
case, the system of equations (6.92) has a unique solution [12].

The L1-median is modified by the following scaling of the observations
z1; : : : ; zT :

yt D bA� zt ; t D 1; : : : ; T:

The L1-median of the scaled sample fyt W t D 1; : : : ; T g is then computed:

b�y D MedL1fy1; : : : ; yT g;

and the modified sample L1-median is defined as the statistic

b�LH1
D bA�1

�
b�y:
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For centered (at zero) distributions, the modified sample L1-median equals zero;
for d D 1 it coincides with the classical univariate median. The modified sample
L1-median is easily computable and affine invariant; its breakdown point lies in the
interval Œ1=.d C 1/; 1=d �.

A simple iterative algorithm can be defined for computing the modified L1-
median [12]

dtj D kAj .zt � �j /k2; u1.x/ D 1=
p
x; u2.x/ D d=x;

�jC1 D
 

T
X

tD1
u1.dtj/

!�1 T
X

tD1
u1.dtj/zt ;

˙j D T �1
T
X

tD1
u2.dtj/.zt � �jC1/.zt � �jC1/0;

AjC1 W ˙jC1 D .A0
jC1AjC1/�1: (6.93)

Initial values for the algorithm (6.93) are chosen as follows: �1 D 0d , A1 D Id :
Several more involved algorithms, which converge more quickly, can be found
in [12].

Tukey (halfspace) Sample Median

Let U D fu 2 Rd W juj D 1g. For a pair of points p 2 Rd and u 2 U define
the following closed halfspace: H.p; u/ D fy 2 Rd W u0y � u0pg. The number of
observations lying outside the halfspace H.p; u/ equals

D.p; u/ D
T
X

tD1
1
RdnH.p;u/.zt /:

The Tukey depth (or halfspace depth) of a point p 2 Rd is the minimum number
of observations that lie outside the subspacesH.p; u/, where u 2 U :

HD.p/ D min
u2U D.p; u/:

The halfspace median (or the Tukey median) is defined as any point of Rd such
that its halfspace depth is minimal:

HM D HM.z1; : : : ; zT / D arg min
S2Rd

HD.S/ 2 R
d :

The halfspace median is affine invariant, but it isn’t uniquely defined since it
can be equal to any point in the region arg min

T2Rd
HD.T / � Rd . Computational
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complexity of the halfspace median can be estimated as O.T 2 log2 T / [29]. As
shown in [31], the breakdown point of the halfspace median lies in the interval
Œ1=.d C 1/; 1=3� .

Simplex Sample Median

Consider the following collections of d C 1 indices:

� .l/ D ˚

i
.l/
1 ; : : : ; i

.l/

dC1 W 1 � i
.l/
1 < : : : < i

.l/

dC1 � T



; l D 1; : : : ; C dC1
T :

Based on these collections, let us construct d -dimensional simplices (or tetrahedra)

S.l/ D S.l/
�

z
i
.l/
1
; : : : ; z

i
.l/

dC1

�

with the vertices z
i
.l/
1
; : : : ; z

i
.l/

dC1

.

The simplex sample depth of a point z 2 Rd is defined as the functional

SD.z/ D
�

CdC1
T

��1 C
dC1
T
X

lD1
1S.l/.z/:

The simplex sample median is defined as the value that maximizes SD.z/:

SM D SM.z1; : : : ; zT / D arg max
S2Rd

SD.S/ 2 R
d :

In other words, the simplex median is the point lying in a maximal number of
d -dimensional simplices constructed from the sample z1; : : : ; zT .

The simplex median is affine invariant. Its computational complexity is rather
high [31]: O.T 5 logT / operations in the general case andO.T 4/ operations in two
dimensions (d D 2).

Oja Sample Median

Consider collections of indices � .l/ D fi .l/1 ; : : : ; i .l/d W 1 � i
.l/
1 < : : : < i

.l/

d � T g,
where l D 1; : : : ; C d

T , and the corresponding functionals

h� .l/ .z/ D det

 

1 : : : 1 1

z
i
.l/
1

: : : z.l/id z

!

:

The collection � .l/ defines a hyperplaneH.� .l// D fz 2 Rd W h� .l/ .z/ D 0g.
Denote

V� .l/ .z/ D .d Š/�1jh� .l/ .z/j; OD.Z/ D
CdT
X

lD1
V� .l/ .z/=C

d
T :
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The Oja sample median is defined as the statistic minimizingOD.z/:

OM D OM.z1; : : : ; zT / D arg min
S2Rd

OD.S/ 2 R
d :

The Oja median is computationally efficient and affine invariant. It has a
breakdown point at zero and a limited Hampel influence function; its computational
complexity has been estimated in [26, 31] as O.T 3 log2 T /.

Some properties of the Oja median are:

• it lies in the intersection of the hyperplanes fH.� .l//g;
• the number of hyperplanes such that the Oja median lies in a positive halfspace

w.r.t. them is the same as the number of hyperplanes satisfying the opposite
(negative halfspace) condition.

In a simulation-based comparison of different multivariate medians for d D 2

(including the L1-median, the Tukey median, the Oja median, and the simplex
median, but not including the modified L1-median), the standard L1-median was
found to be optimal in a series of experiments, which included measurements of the
estimators’ proximity to the center of the hypothetical distribution, as well as their
performance and robustness [31].

6.7.7 Numerical Results

The performance of LM forecasting was evaluated by taking three examples
including real-world and simulated data.

Example 1. Under a univariate regression model with outliers (6.21), a time series
xt was simulated using the following model parameters:

T D 15; � 2 f1; 2; : : : ; 5g; zt D t (trend model); m D 3;

 0.zt / D  0.t/ D .1; t; t2/; � 0 D .1; 0:1; 0:01/;

Lfutg D N.0; 	2/; Lf#t g D N.0;K	2/; 	2 D 0:09; K D 50:

Figure 6.6 presents the dependence of the sample forecast risk estimator OrLM

computed over 10 independent realizations of a 4-step-ahead (� D 4) LM algo-
rithm (6.63) on the size of local subsamples n 2 f3; 4; : : : ; 15g for two simulated
distortion levels: " D 0 (no outliers) and " D 0:3 (on average, 30 % of outliers are
present in the time series). Dotted lines in Fig. 6.6 correspond to the risk of the least
squares forecasting algorithm for " D 0 and " D 0:3. We can see that under outliers,
the lowest LM forecast risk is attained for n D m D 3.

In Fig. 6.7, the sample risk Or of the LM algorithm (solid lines) and the least
squared algorithm (dashed lines) is plotted against the forecasting depth � for
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Fig. 6.6 Dependence between the forecast risk of the LM method and the local subsample size n

Fig. 6.7 Dependence of forecast risk on forecast depth �

n� D 3, " D 0, and " D 0:21. It is easy to see that for � 2 f1; 2; 3; 4; 5g, " D 0:21,
the sample risk of the LM algorithm is approximately three times smaller compared
to the least squares algorithm.

Example 2. In this example, the LM forecasting method was used to forecast the
future revenue of “Polimir” chemical plant (a division of Belneftekhim oil concern)
using a special case of the model (6.21) and real statistical data [15, 19]:

d D 1; m D 3;  .t/ D .1; t; t2/0; T D 14; � 2 f1; 2; 3g:

The time series fxt g was composed of logarithms of monthly revenues. A dataset
collected over 14 months was used to make a forecast for the next 1–3 months.
Graphs of the observed time series, the least squares forecast, and the LM forecast
(for n D m D 3) are shown on Fig. 6.8. The absolute forecast error of the
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Fig. 6.8 Revenue forecasting: past and “future” values taken from a real-world dataset; the least
squares and LM forecasts

LM forecasting statistic (6.63) is approximately four times smaller compared to
the forecasting statistic based on least squares.

Example 3. Multivariate LM and least squares forecasts were compared under a d -
variate (with d D 4) regression model with outliers (6.87). The following model
parameters were chosen:

T D 25; Lfutg D Nd .0d ;˙/ ; ˙ D diag.0:01; 0:01; 0:01; 0:01/;

m D 3;  .zt / D  .t/ D
0

@

1

t

t2

1

A ; �0 D

0

B

B

@

2 �7 0:16

�1 �4 1

3 2 0:4

1 5 0:7

1

C

C

A

;

� D 1; n 2 f3; 4; : : : ; 25g:

The fourth (t D 4) observation was replaced by an outlier v4 D .�1000; 0; 0; 0/.
For each value of n, 100 independent realizations of the time series were simulated;
point and interval (at confidence level 0.95) estimators of the forecast risk Or
were computed for each realization. The forecasting statistic (6.63) was based on
Hettmansperger’s median (6.92).

The solid line in Fig. 6.9 shows the dependence ofbr on the subsample size n.
A larger-scale plot of the segment n 2 f3; 4; 5; 6g is presented in Fig. 6.10. Error
bars indicate the confidence limits.

Figures 6.9 and 6.10 show that the minimum value of the LM forecast risk is
attained for n D 5:brLM D 0:0607. For this value of n, the empirical risk of the least
squares forecastbrLS D 170:27 is roughly 3,000 times higher than the LM forecast
risk.
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Fig. 6.9 Dependence of LM forecast risk on the subsample size

Fig. 6.10 LM forecast risk for n 2 f3; 4; 5; 6g

Based on multiple simulations of the LM algorithm, we recommend to choose
the subsample size n equal to the number of basis functions, n� D m.
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Chapter 7
Optimality and Robustness of ARIMA
Forecasting

Abstract This chapter discusses robustness of univariate time series forecasting
based on ARIMA time series models. Under complete prior knowledge, optimal
forecasting statistics are constructed for the following undistorted hypothetical
models: stationary time series models, AR.p/, MA.q/, ARMA.p; q/, and
ARIMA.p; d; q/ models. Plug-in forecasting statistics are constructed for different
types of prior uncertainty. Robustness of the obtained forecasting algorithms is
evaluated under the following distortion types: parametric model specification
errors, functional distortions of the innovation process in the mean value,
heteroscedasticity, AO and IO outliers, bilinear autoregression distortions.

7.1 Kolmogorov’s Method

Let us start this chapter by discussing two fundamental results of Andrey
Kolmogorov. In his 1933 paper [17], Kolmogorov studied optimization of a
k-predictor linear regression forecast based on a fixed size random sample,
proving that “it is necessary to limit the number of predictors k, as well as the
number of the variables that may be chosen as predictors; in this case the danger
of obtaining an artificially inflated correlation coefficient between the predicted
value and the predictors (and, consequently, underestimating the forecast risk)
can be significantly reduced.” This conclusion had a significant impact on applied
forecasting methods in meteorology and geophysics, and it stays relevant to modern
applied research. The paper [18], published in 1941, solves, in a general form,
the problem of optimal linear forecasting of stationary random sequences if the
covariance function or, equivalently, the spectral density of the predicted random
sequence is a priori known.

Y. Kharin, Robustness in Statistical Forecasting, DOI 10.1007/978-3-319-00840-0 7,
© Springer International Publishing Switzerland 2013
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Assume that a strictly stationary random sequence xt 2 R, t 2 Z, with a zero
expectation Efxt g D 0 (speaking without loss of generality) and an a priori known
covariance function given as

	� 	 	�� D EfxtxtC�g; � 2 ZI 	0 > 0;

is defined over a probability space .˝; F; P/. We are going to study the problem of
constructing a mean square optimal linear forecast of the future value xTC� based
on nC1 observations at time T and earlier time points fxT ; xT�1; : : : ; xT�ng, where
� � 1; n � 0 are given constants.

Let us introduce the following matrix notation:

XT�n
T D

0

B

B

B

@

xT

xT�1
:::

xT�n

1

C

C

C

A

2 R
nC1 is a column vector of observationsI

	
.�Cn/
.�/ D

0

B

B

B

@

	�
	�C1
:::

	�Cn

1

C

C

C

A

2 R
nC1 is a column vector of covariancesI

˙.nC1/ D .	ij/ 2 R
.nC1/�.nC1/ is a Toeplitz covariance matrix of order n;

where 	ij D 	ji�j j, i; j D 0; 1; : : : ; n.
We are going to search for the optimal forecast in the family of all possible linear

forecasts:

OxTC� D a0XT�n
T ; (7.1)

where a D .ai / 2 RnC1 is an arbitrary column vector of forecast coefficients.
Also let

r.nC 1; �/ D E
˚

. OxTC� � xTC� /2



(7.2)

be the mean square forecast risk of the forecasting statistic (7.1), and let

r0.nC 1; �/ D inffr.nC 1; �/ W a 2 R
nC1g (7.3)

be the exact lower bound on the forecast risk in the family of linear forecasts (7.1).
Obviously, the function r0.nC 1; �/ is nonincreasing in n.

Theorem 7.1. If
ˇ

ˇ˙.nC1/
ˇ

ˇ ¤ 0, then for the stationary random sequence model
defined above, the minimal mean square risk in the family of linear forecasts (7.1)
is equal to
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r0.nC 1; �/ D 	0 �
�

	
.�Cn/
.�/

�0
˙�1
.nC1/	

.�Cn/
.�/ (7.4)

and is obtained for the forecasting statistic

Ox�
TC� D .a�/0XT�n

T ; a� D ˙�1
.nC1/	

.�Cn/
.�/ : (7.5)

Proof. By (7.1), (7.2), and the notation, we can establish a quadratic dependence
between the risk and a:

r.nC 1; �/ D E
˚

.a0XT�n
T � xTC� /2


 D 	0 � 2a0	.�Cn/
.�/ C a0˙.nC1/a: (7.6)

Let us consider a necessary minimization condition:

rar.nC 1; �/ D 2˙.nC1/a � 2	
.�Cn/
.�/ D 0nC1:

Solving the above equation yields the point a D a� defined by (7.5). Since the
matrix r2

ar.n C 1; �/ D 2˙.nC1/ is positive-definite, the point (7.5) is the unique
minimum of the risk function. Substituting (7.5) into (7.6) proves (7.4). ut

Observe that if xt is a Gaussian stationary random sequence, then by Theorem 4.1

we have that

r0.nC 1; �/ D E
˚

DfxTC� jXT�n
T g


is the expectation of the conditional variance of the predicted random variable xTC�
given a fixed history XT�n

T .
Note that if j˙.nC1/j D 0, then the formulas (7.4), (7.5) cannot be used. Let us

consider this singular case in more detail. Without loss of generality, assume

n D min
˚

k W ˇˇ˙.k/

ˇ

ˇ ¤ 0;
ˇ

ˇ˙.kC1/
ˇ

ˇ D 0



:

Since 	0 ¤ 0, we have n � 1. The properties of covariance matrices imply that if
ˇ

ˇ˙.nC1/
ˇ

ˇ D 0, and its submatrix ˙.n/ is nonsingular, then there exists an n-vector
b D .bi / 2 Rn such that for any time point t 2 Z we have

xt
a.s.D b 0Xt�n

t�1 ; (7.7)

i.e., any n C 1 consecutive members of the random sequence are almost surely
linearly dependent; due to stationarity, the coefficient vector b doesn’t depend on t .
By (7.7), we have a system of � linear relations:
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xTC�
a.s.D b 0XTC��n

TC��1 ;

xTC��1
a.s.D b 0XTC��n�1

TC��n�2 ;

: : :

xTC1
a.s.D b 0XT�nC1

T ;

(7.8)

which allows us to obtain a linear expression for xTC� in xT , xT�1; : : : ; xT�nC1:

xTC�
a.s.D a 0�XT�nC1

T : (7.9)

Here the coefficient vector a� D .a�i / is obtained from the vector b through step-
by-step-ahead substitution of the linear relations in (7.8). For example:

• For � D 1, we have a� D b;
• For � D 2,

a�1 D b21 C b2; a�2 D b1b2 C b3; : : : ; a�;n�1 D b1bn�1 C bn; a�n D b1bn:

From (7.9), (7.1), it follows that if the forecast coefficient vector is obtained from
the relation

a� D

0

B

@

a�

0

1

C

A 2 R
nC1;

then we have faultless forecasting, and consequently zero forecast risk:

r0.nC 1; �/ D 0: (7.10)

As noted above, the minimum risk r0.nC 1; �/ is a monotonous function:

r0.nC 1; �/ � r0.n; �/; n � 0:

Let us analyze the size of the increments

.n; �/ D r0.n; �/ � r0.nC 1; �/ � 0: (7.11)

Corollary 7.1. If j˙nC1j ¤ 0, then the risk increments (7.11) satisfy the formula

.n; �/ D

�

	�Cn �
�

	
.�Cn�1/
.�/

�0
˙�1
.n/ 	

.1/

.n/

�2

	0 �
�

	
.n/

.1/

�0
˙�1
.n/ 	

.n/

.1/

� 0: (7.12)
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Proof. By (7.4), (7.11), we have

r0.nC 1; �/ D 	0 �QnC1; QnC1 D
�

	
.�Cn/
.�/

�0
˙�1
.nC1/	

.�Cn/
.�/ ;

r0.n; �/ D 	0 �Qn; Qn D
�

	
.�Cn�1/
.�/

�0
˙�1
.n/ 	

.�Cn�1/
.�/ ;

.n; �/ D QnC1 �Qn:

(7.13)

Let us rewrite the matrices included in the quadratic form QnC1 in a block
representation:

˙.nC1/ D

0

B

@

˙.n/ 	
.1/

.n/

�

	
.1/

.n/

�0
	0

1

C

A ; 	
.�Cn/
.�/ D

0

B

@

	
.�Cn�1/
.�/

	�Cn

1

C

A : (7.14)

Taking into account (7.14) and the block matrix inversion formula [21], we obtain

˙�1
.nC1/ D

0

B

B

B

B

B

B

B

B

B

@

�

˙.n/ � 1

	0
	
.1/

.n/

�

	
.1/

.n/

�0��1
� ˙�1

.n/ 	
.1/

.n/

	0 �
�

	
.1/

.n/

�0
˙�1
.n/ 	

.1/

.n/

�
�

˙�1
.n/ 	

.1/

.n/

�0

	0 �
�

	
.1/

.n/

�0
˙�1
.n/ 	

.1/

.n/

1

	0 �
�

	
.1/

.n/

�0
˙�1
.n/ 	

.1/

.n/

1

C

C

C

C

C

C

C

C

C

A

;

where due to [22] we have

�

˙.n/ � 1

	0
	
.1/

.n/

�

	
.1/

.n/

�0��1
D ˙�1

.n/ C
˙�1
.n/ 	

.1/

.n/

�

	
.1/

.n/

�0
˙�1
.n/

	0 �
�

	
.n/

.1/

�0
˙�1
.n/ 	

.n/

.1/

:

Substituting this expression into (7.13), after equivalent transformations we obtain

QnC1 D
�

	
.�Cn�1/
.�/

�0
˙�1
.n/ 	

.�Cn�1/
.�/ C

�

�

	
.�Cn�1/
.�/

�0
˙�1
.n/ 	

.1/

.n/

�2

	0 �
�

	
.n/

.1/

�0
˙�1
.n/ 	

.n/

.1/

�

� 2

�

	
.�Cn�1/
.�/

�0
˙�1
.n/ 	

.1/

.n/	�Cn

	0 �
�

	
.n/

.1/

�0
˙�1
.n/ 	

.n/

.1/

C .	�Cn/2

	0 �
�

	
.n/

.1/

�0
˙�1
.n/ 	

.n/

.1/

D
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D Qn C

�

	�Cn �
�

	
.�Cn�1/
.�/

�0
˙�1
.n/ 	

.1/

.n/

�2

	0 �
�

	
.n/

.1/

�0
˙�1
.n/ 	

.n/

.1/

:

Now (7.12) follows from (7.11), (7.13). ut
Consider a special case of a stationary sequence—the autoregression time series

of the first order AR(1) (as defined in Sect. 3.3):

xt D �xt�1 C �t ; t 2 Z; (7.15)

where � 2 .�1;C1/ is the autoregression coefficient, f�t g are jointly independent
identically distributed random variables with zero expectations, Ef�t g D 0, and
variances Df�t g D 	2.

Lemma 7.1. An AR(1) time series defined by (7.15) has the following properties:

	0 D 	2

1 � �2 ;

	
.�Cn/
.�/ D 	0

0

B

B

B

@

��

��C1
:::

��Cn

1

C

C

C

A

I the matrix ˙.n/ D 	0

0

B

B

B

B

B

@

1 � �2 : : : �n�1
� 1 � : : : �n�2
: : : : : : : : : : : : : : :

�n�1 �n�2 �n�3 : : : 1

1

C

C

C

C

C

A

is a Toeplitz matrix; and the matrix

˙�1
.n/ D 1

	0.1 � �2/

0

B

B

B

B

B

@

1 �� 0 : : : 0 0

�� 1C�2 �� : : : 0 0

: : : : : : : : : : : : : : : : : :

0 0 0 : : : 1C�2 ��
0 0 0 : : : �� 1

1

C

C

C

C

C

A

is a tridiagonal matrix.

Proof. The first three equalities have been proved in [2]. To prove the last equality,
it is sufficient to verify the relation

˙.n/˙
�1
.n/ D In: ut

Corollary 7.2. For an AR(1) time series defined by (7.15), we have

a� D .�� 0 : : : 0/0; Ox�
TC� D ��xT ;

r0.nC 1; �/ D 	2
1 � �2�
1 � �2

; .n; �/ D 0:
(7.16)
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Fig. 7.1 Dependence of the
minimum risk on the forecast
depth � , where
� D 0:9; 0:7; 0:5 (from top
to bottom)

Proof. Relations (7.16) follow from (7.4), (7.5), (7.12), and Lemma 7.1. ut
In view of Lemma 7.1, the relations (7.16) show that despite the nonzero

correlation of the predicted value xTC� and the history fxT ; xT�1; : : : ; xT�ng, the
optimal forecast Ox�

TC� D ��xT depends only on the one-step-back history (i.e., only
on the observation xT ). Thus, the minimum forecast risk doesn’t depend on n and
is monotonous increasing as the forecast depth � increases:

r0.nC 1; �/ D 	2
1 � �2�
1 � �2

:

Figure 7.1 presents a plot of the minimum risk for � 2 f0:5I 0:7I 0:9g, 	2 D 1, and
� D 1; 2; : : : ; 8.

In the most general case, Kolmogorov obtained an estimate for the limit value of
the risk as the length of the observed history of the time series tends to infinity,

r0.�/ D lim
n!C1 r0.nC 1; �/;

by using the spectral density S.�/ of the random sequence xt . The spectral density
and the covariance function 	k are linked by a Fourier cosine transform:

	k D 1

�

�
Z

0

cos.k�/S.�/d�; k 2 N:

Let us introduce the notation

P D 1

�

�
Z

0

logS.�/d�:
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Theorem 7.2. If P D �1, then r0.�/ D 0 for all � � 0 (the singular case). If the
integral P is finite, then

r0.�/ D eP .1C r21 C r22 C � � � C r2� /;

where frkg are the coefficients of the following power series expansion:

exp.a�
1 � C a�

2 �
2 C : : : / D 1C r1� C r2�

2 C : : : ;

a�
k D 1

�

�
Z

0

cos.k�/ logS.�/d�:

Theorem 7.2 was proved in [18]. Observe that if S.�/ D 0 on a set of positive
Lebesgue measure, then P D �1 and we have the singular case.

7.2 Optimal Forecasting Under ARIMA Time Series Models

7.2.1 The General Method for Stationary Time Series

Let xt , t 2 Z, be a stationary time series with a zero expectation, Efxt g D 0, the
covariance function

	� 	 	�� D EfxtxtC�g; � 2 Z; 	0 > 0;

and a spectral density S.�/, � 2 Œ��;C��, which is defined by the Fourier
cosine transform (3.8). The following theorem establishes the conditions that allow
a representation of the stationary time series xt in the form of a general linear
process (3.18).

Theorem 7.3. In the notation of Theorem 7.2, if

P D 1

�

�
Z

0

logS.�/d� > �1;

then we have the following representation of xt as a general linear process:

xt D
C1
X

jD0
�jut�j (7.17)
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(in the mean square sense), where futg are uncorrelated random variables with zero
expectations and finite variances Dfutg D 	2, and f�j g are uniquely determined
coefficients such that

�0 D 1;

C1
X

jD0
�2j < C1: (7.18)

This theorem was proved in [2]. It is easy to see that (7.17) is a moving
average model of infinite order, MA.C1/. In addition to the representation (7.17), a
stationary time series can be written as an AR.C1/ autoregression model of infinite
order. Let us introduce the following polynomials in a complex variable z 2 C:

� .z/ D
C1
X

jD0
�j zj ; B.z/ D 1

� .z/
D

C1
X

jD0
ˇj zj : (7.19)

Theorem 7.4. Assume that the spectral density S.�/ is bounded. Then the
following AR.C1/-representation:

ut D
C1
X

jD0
ˇj xt�j ; t 2 ZI ˇ0 D 1;

C1
X

jD0
ˇ2j < C1I (7.20)

holds if and only if

� .z/ ¤ 0; jzj � 1;

and for % ! 1 the integral

J D
2�
Z

0

1

j� .%ei�/j2 d�

is bounded, i.e., if the function 1=� .z/ belongs to the Hardy class H2.

Theorem 7.4 was proved in [1].

Corollary 7.3. The mean square optimal linear one-step-ahead (� D 1) forecast
based on an infinite observed history XT�1 D.: : : ; xT�2; xT�1; xT /0 equals

OxTC1 D �
C1
X

jD1
ˇj xTC1�j (7.21)
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and has the risk

r0.C1; 1/ D r0.1/ D 	2: (7.22)

Proof. From (7.20), for t D T C 1 we have

xTC1 D �
C1
X

jD1
ˇj xTC1�j C uTC1: (7.23)

By Theorem 4.1, the optimal forecasting statistic is defined as a conditional
expectation, which by (7.23) can be written as

OxTC1 D EfxTC1 j xT ; xT�1; : : : g D �
C1
X

jD1
ˇj xTC1�j ;

thus proving (7.21). The relation (7.22) follows from (7.21), (7.23), and the
definition of the forecast risk. ut
Corollary 7.4. If a finite length-.nC 1/ history of a time series fxt g is observed,

XT
T�n D .xT�n; : : : ; xT�1; xT /0 2 R

nC1;

then the optimal linear forecast is the following truncation of (7.21):

QxTC1 D �
nC1
X

jD1
ˇj xTC1�j ; (7.24)

and the respective forecast risk equals

r0.nC 1; 1/ D 	2 C E

8

ˆ

<

ˆ

:

0

@

C1
X

jDnC2
ˇj xTC1�j

1

A

2
9

>

=

>

;

� r0.1/: (7.25)

Proof. From Theorem 4.1 and the total expectation formula, we have

QxTC1 D E
˚

xTC1 j XT
T�n


 D E
˚

E
˚

xTC1 j XT
T�n; XT�n�1�1





;

where the outer expectation is computed w.r.t. the complete history XT�n�1�1 .
Applying (7.23) and the fact that Efxt g D 0 yields (7.24). The relation (7.25)
follows from (7.23), (7.24), and the definition of the forecast risk. ut

Similarly to (7.21), (7.24), performing � > 1 repeated iterations of the relation
(7.23) yields �-step-ahead optimal forecasts for the general linear process. For
example, taking � D 2 results in the two-step-ahead forecast
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OxTC2 D ˇ21xT �
C1
X

jD1
.ˇjC1 � ˇ1ˇj /xT�j :

Note that relations of the form (7.20) also hold for vector stationary time series
(see Sect. 8.2).

7.2.2 Forecasting Under the AR.p/ Model

From (3.15), the AR.p/ model is defined by the following stochastic equation:

xt � ˛1xt�1 � � � � � ˛pxt�p D ut ; 0 �
p
X

jD1
˛2j < 1; (7.26)

which is a special case of (7.20):

ˇj D �˛j ; j D 1; 2; : : : ; p I ˇj D 0; j > p:

From Corollary 7.1, for T > p the optimal forecast and its risk can be written,
respectively, as

OxTC1 D
p
X

jD1
˛j xTC1�j ; r0.T; 1/ D 	2: (7.27)

Note that the optimal forecast (7.27) only depends on p previous observations
XT
TC1�p. It may seem that this forecast is rather inaccurate, since the forecast risk is

equal to the variance of the innovation process 	2. However, the value of the forecast
risk must be considered in relation to the variance of the observed process:

R0.T; 1/ D r0.T; 1/

DfxTC1g :

Take, for instance, p D 1, then DfxTC1g D 	2=.1� ˛21/ and R0.T C 1/ D 1 � ˛21 .
Thus, the relative risk of forecasting diminishes as the quantity j˛1j tends to 1, i.e.,
as the autoregression dependence becomes stronger (recall that, from the stationarity
condition, we have 0 � j˛1j � 1).

A �-step-ahead forecast is found by � repeated applications of the recurrence
relation (7.27):

OxTC� D
p
X

jD1
.A�/1j xTC1�j ; (7.28)
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where the .p � p/-matrix A is the companion matrix of the stochastic difference
equation (7.26):

A D

0

B

B

B

B

B

@

˛1 ˛2 ˛3 : : : ˛p�1 ˛p
1 0 0 : : : 0 0

0 1 0 : : : 0 0
:::

:::
::: : : :

:::
:::

0 0 0 : : : 1 0

1

C

C

C

C

C

A

:

As shown in [9], the forecast (7.28) can be computed by applying the recurrence
relation for j D 1; 2; : : : ; � :

OxTCj D ˛1 OxTCj�1 C ˛2 OxTCj�2 C � � � C ˛p OxTCj�p; (7.29)

where Oxt D xt for t � T .

7.2.3 Forecasting Under the MA.q/ Model

From (3.16), the MA.q/ model is defined by the following stochastic difference
equation:

xt D �.B/ut D ut � �1ut�1 � � � � � �qut�q; t 2 Z;

where the second expression is written in the operator form andB is the lag operator.
Then the �-step-ahead optimal forecast has the following form [9] for � � q:

OxTC� D �� C ��C1B C � � � C �qB
q��

1C �1B C � � � C �qBq
xT ; (7.30)

or, equivalently, OxTC� D �� O"T C ��C1 O"T�1 C � � � C �q O"TC��q , where fO"tg is defined
by the recurrence relation

O"t D xt � �1 O"t�1 � �2 O"t�2 � � � � � �q O"t�q; t D T �mC 1; : : : ; T;

under the initial conditions

O"T�m�qC1 D O"T�m�qC2 D � � � D O"T�m D 0

for some sufficiently large m (optimality of the forecast is attained by passing to a
limit as m ! C1).

Note that 	� D 0 for j� j > q, i.e., the random variables xTC� and fxT ; xT�1; : : : g
are uncorrelated. Thus, we have
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OxTC� 	 0; if j� j > q: (7.31)

By (7.31), in that case the forecast is equal to the expectation EfxTC�g D 0.

7.2.4 Forecasting Under the ARMA.p; q/ Model

By (3.14), the ARMA.p; q/ model is defined by the following stochastic difference
equation:

˛.B/xt D �.B/ut ; t 2 Z;

˛.B/ D 1 �
p
X

iD1
˛iB

i ; �.B/ D 1 �
q
X

jD1
�jB

j :

Let us represent this model in the AR.C1/ form:

ut D ˛.B/

�.B/
xt ; t 2 Z;

where the quotient ˛.B/=�.B/ is rewritten by expanding 1=�.B/ as an infinite
power series and multiplying by the polynomial ˛.B/. Now the general method
of Sect. 7.2.1 can be applied to obtain the optimal forecast OxTC� jT for xTC� based
on the observationsXT

1 . This forecast can be computed recursively [9]:

OxTCsjT D

8

ˆ

ˆ

<

ˆ

ˆ

:

p
P

iD1
˛i OxTCs�i jT �

q
P

jD0
�j O"TCs�j ; s D 1; 2; : : : ; qI

p
P

iD1
˛i OxTCs�i jT ; s D q C 1; q C 2; : : : ; �;

(7.32)

where

Oxt jT D xt for t � T; O"t D xt � Oxt jt�1: (7.33)

7.2.5 Forecasting Under the ARIMA.p; d; q/ Model

This model is defined by the stochastic difference equation (3.21). By this definition,
a time series xt fits the ARIMA.p; d; q/model if and only if the time series of order
d differences

yt D �dxt ; t 2 Z;
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fits the ARMA.p; q/ model. This leads to the following optimal forecasting
algorithm (T > d ):

1. Based on the observations x1; : : : ; xT , compute T � d order d differences:

yt D �dxt ; t D d C 1; d C 2; : : : ; T I

2. Apply the results of Sect. 7.2.4 to construct optimal forecasts for the
ARMA.p; q/ model of the time series yt :

OyTC� D f�.ydC1; : : : ; yT /;

OyTC��1 D f��1.ydC1; : : : ; yT /;

: : :

OyTCd D f��d .ydC1; : : : ; yT /I

3. Based on the forecasts f Oyt g, compute the optimal forecast of xTC� :

OxTC� D g. OyTC� ; OyTC��1; : : : ; OyTC��d /: (7.34)

For example, in the ARIMA.p; 1; q/model the optimal forecast is written as

OxTC� D xT C
�
X

iD1
OyTCi :

7.3 Plug-In Forecasting Algorithms

7.3.1 Plug-In Forecasting Algorithms Based on Covariance
Function Estimators

Section 7.1 presents an optimal forecasting algorithm (7.5) for stationary time series
in a setting where the covariance function

	� D E
˚

.xt � Efxt g/.xtC� � EfxtC�g/0



; � 2 Z;

is known. In practice, this function usually remains unknown, and instead a
consistent estimator O	� constructed from the collected data is substituted into (7.5)
in place of 	� . This yields a plug-in forecasting algorithm based on an estimator of
the covariance function (we are considering the case n D T � 1):
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OxTC� D Oa0X1
T ; Oa D Ȯ �1

.nC1/ O	.�Cn/
.�/ ;

Ȯ
nC1 D . O	ij/ 2 R

.nC1/�.nC1/; O	ij D O	ji�j j;

O	.�Cn/
.�/ D . O	� ; O	�C1; : : : ; O	�Cn/0:

(7.35)

Estimation of 	� can be based on the following types of statistical data:

(a) The same time series fx1; x2; : : : ; xT g that is used in (7.35) to compute the
forecast (unless stated otherwise, this case of “most meager” experimental data
is assumed in this section);

(b) A different time series f Qx1; : : : ; QxT 0g of length T 0 independent of fx1; : : : ; xT g;
(c) Several time series independent of fx1; : : : ; xT g;
(d) Some combination of (a) and (b) or (c).

Let us present several statistical estimators O	� which can be used in (7.35). The
following two cases will be treated separately.

Case 1. Efxt g D � is a priori known.
In this case, the sample covariance function

O	� D 1

T � j� j
T�j� j
X

tD1
.xt � �/.xtCj� j � �/; � D 0;˙1; : : : ;˙.T � 1/;

(7.36)

is a consistent unbiased estimator of 	� . If we also assume normality of
the time series xt , then the variance of this estimator equals [24]:

Df O	� g D 1

T .1� j� j=T /2
T�j� j�1
X

mD�.T�j� j/C1

�

1 � jmj C j� j
T

�

�

	2m C 	mC� 	m��
�

;

(7.37)

and the following asymptotic relation holds as T ! C1:

Df O	�g D 1

T � j� j
C1
X

mD�1

�

	2m C 	mC�	m��
�C o

�

1

T

�

:

Case 2. Efxt g D � is a priori unknown.
In that case, the sample mean

O� D x D 1

T

T
X

tD1
xt (7.38)

is used as a consistent unbiased estimator of �; the variance of the sample
mean equals
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Df O�g D 1

T

T�1
X

�D�.T�1/
.1 � j� j=T /	� I

and the following asymptotic equality holds as T ! C1:

Df O�g D 2�	20
T

S.0/C o

�

1

T

�

;

where S.�/ is the spectral density.
A consistent asymptotically unbiased estimator of the covariance function
for an unknown � can be written as

O	� D 1

T � j� j
T�j� j
X

tD1
.xt � x/.xtCj� j � x/; � D 0;˙1; : : : ;˙.T � 1/:

(7.39)

For T ! 1, we have asymptotically

Ef O	�g D 	� � 2�	20
T

S.0/C o

�

1

T

�

:

Note that, under some fairly general conditions, the estimators (7.37)–(7.39) are
asymptotically normally distributed as T ! 1 [24].

7.3.2 Plug-In Forecasting Algorithms Based on AR.p/
Parameter Estimators

From the results of Sect. 7.2.2, plug-in forecasting algorithms under the AR.p/
model have the form defined by (7.28):

OxTC� D
p
X

jD1

� OA�
�

1j
xTC1�j ;

where OA is the following .p � p/-matrix:

OA D

0

B

B

B

B

B

@

Ǫ1 Ǫ2 Ǫ3 : : : Ǫp�1 Ǫp
1 0 0 : : : 0 0

0 1 0 : : : 0 0
:::

:::
:::

:::
:::

:::

0 0 0 0 1 0

1

C

C

C

C

C

A

;
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and Ǫ D . Ǫ i / 2 Rp is a column vector of consistent estimators of the unknown
autoregression coefficients. The autoregression coefficient vector will be denoted as
˛ D .˛i /.

Least squares estimators for the model parameters can be written as

Ǫ D A�1a0; O	2 D 1

T

T
X

tD1
.xt � Ǫ 0Xt�p

t�1 /
2;

A D 1

T

T
X

tD1
X
t�p
t�1 .X

t�p
t�1 /

0; a0 D 1

T

T
X

tD1
xtX

t�p
t�1 :

(7.40)

The above expressions assume knowledge of the history X
1�p
0 2 R

p; if this
assumption isn’t satisfied, then the lower bound of summation over t in the
estimators (7.40) should be replaced by t D p C 1, and the multiplier 1=T should
be replaced by 1=.T � p/. Note that if the innovation process ut is normal, then
these least squares estimators are equal to the (conditional) likelihood estimators.
This fact and the following theorem have been proved in [2].

Theorem 7.5. Let xt be a stationary AR.p/ time series, and let futg be jointly
independent. If, in addition, futg are either identically distributed or have bounded
moments of order 2C " for some " > 0,

Efjut j2C"g � m < C1;

then the least squares estimators (7.40) are consistent for T ! C1 :

Ǫ P! ˛; O	2 P! 	2:

If futg are also identically distributed, then Ǫ is asymptotically normal as
T ! C1:

LfpT . Ǫ � ˛/g ! Np.0p; 	2F �1/;

F D
C1
X

sD0
As˙As; ˙ D

0

B

B

B

@

	2 0 : : : 0

0 0 : : : 0
:::
:::
:::
:::

0 0 : : : 0

1

C

C

C

A

:

Statistical estimators of the autoregression order p follow from either the Akaike
information criterion (AIC) or the Bayesian information criterion (BIC) [24]:
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Op D arg min AIC.p/; AIC.p/ D T log O	2.p/C 2.p C 1/I

QpD arg min BIC.p/; BIC.p/DT log O	2.p/ � .T � p � 1/ log

�

1 � p C 1

T

�

C

C .p C 1/

�

logTC log

�

1

pC1
� O	2x

O	2 � 1
���

;

(7.41)

where O	2.p/ is the remainder variance defined by (7.40) during the tuning stage of
the AR.p/ model, and

O	2x D 1

T

T
X

tD1
x2t

is the sample variance (which, for an autoregression of order zero, can be considered
as a special case of O	0).

Plug-in forecasting under vector autoregression models will be discussed in
Chap. 8.

7.3.3 Plug-In Forecasting Algorithms Based on Parameter
Estimation of MA.q/ Models

As discussed in Sect. 7.2.3, plug-in forecasting algorithms under MA.q/ models
are defined by the relations (7.30), (7.31) after substituting consistent estimators
O� D . O�1; : : : ; O�q/0 in place of the unknown true values � D .�1; : : : ; �q/

0:
One of the following two methods is usually applied to construct the

estimator O� :

1. Numerical maximization of the likelihood function [2];
2. Durbin’s approximation method [6].

Let us briefly describe the second method. As noted earlier, the MA.q/ model
allows a representation in the form AR.C1/:

ut D
C1
X

iD0
ˇixt�i : (7.42)

Durbin [6] proposed to construct an estimator for � based on a finite .nC1/th order
approximation of the infinite sum (7.42):

ut D
n
X

iD0
ˇixt�i ; ˇ0 D 1; (7.43)
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where n 2 N is a parameter defining the accuracy of the estimation algorithm. Now,
similarly to Sect. 7.2.2, the sample covariance function O	� will be used to construct
an estimator for ˇ D .ˇ1; : : : ; ˇn/

0:

Ǒ D � Ȯ .�1/
.n/ 	

.n/

.1/ ;
Ǒ
0 D 1: (7.44)

This allows us to compute the estimator O� from the following relations:

O� D �C�1g; C D .cij/ 2 R
q�q; cij D

n�ji�j j
X

uD0
Ǒ
u

Ǒ
uCji�j j ;

g D .gk/ 2 R
q; gk D

k
X

uD0
Ǒ
u

Ǒ
uCk;

(7.45)

where i; j D 1; : : : ; q, k D 1; : : : ; q.
The order q can be estimated by AIC or BIC information criteria defined by

(7.41), where p is replaced by q, and the remainder variance can be found from
(7.43):

O	2 D 1

T � n
T
X

tDnC1

 

n
X

iD0
Ǒ
i xt�i

!2

: (7.46)

It is recommended to compute the estimators (7.44)–(7.46) for several increasing
values of n until the approximation (7.43) is verified to be sufficiently accurate.

7.3.4 Plug-In Forecasting Algorithms Based on ARMA.p; q/
Parameter Estimators

In Sect. 7.2.4, it was shown that a plug-in forecasting algorithm under the
ARMA.p; q/ model is defined by the relations (7.32), (7.33), where the vectors
of unknown true coefficients ˛ D .˛1; : : : ; ˛p/

0 2 R
p , � D .�1; : : : ; �q/

0 2 R
q

are replaced by the vectors of their consistent estimators Ǫ D . Ǫ i / 2 R
p ,

O� D . O�j / 2 R
q .

Let us present a method to construct the estimators Ǫ , O� based on maximization
of the conditional likelihood function L.˛; �/ under a normality assumption on the
innovation process "t [4, 9]:

L.˛; �/ D �T � p
2

log.2�/ � T � p
2

log.	2/ � 1

2	2
Q.˛; �/;

Q.˛; �/ D
T
X

tDpC1
u2t ;
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where up D up�1 D � � � D up�qC1 D 0; and for t � p C 1 the values futg are
computed recursively from the stochastic difference equation defining the ARMA
model:

ut D xt � ˛1xt�1 � � � � � ˛pxt�p C �1ut�1 C � � � C �qut�q:

Maximization of the likelihood function in ˛; � is equivalent to minimization ofQ:

Q. Ǫ ; O�/ D min
˛;�

Q.˛; �/I

this procedure is performed numerically [9]. Subsequent maximization of the
likelihood function in 	2 leads to the estimator

O	2.p;q/ D 1

T � pQ. Ǫ ; O�/:

This statistic can also be used in information criteria (7.41), where p is replaced by
p C q.

Note that there exists a modification of Durbin’s procedure [2] (see Sect. 7.3.3)
to estimate the parameters of the ARMA.p; q/ model.

7.3.5 Plug-In Forecasting Algorithms Based
on ARIMA.p; d; q/ Parameter Estimators

From the results of Sect. 7.2.5, a plug-in forecasting algorithm for a non-stationary
ARIMA.p; d; q/ model is defined by (7.34), where the vectors of unknown true
coefficients ˛ D .˛i / 2 Rp, � D .�j / 2 Rq are replaced by their consistent
estimators Ǫ D . Ǫ i / 2 Rp, O� D . O�j / 2 Rq . Assume that the integration order
d 2 N is known, then the estimators Ǫ , O� can be constructed by using the plug-in
approach, as summarized below:

1. From the observations x1; : : : ; xT , compute T � d differences of order d :

yt D �dxt ; t D d C 1; d C 2; : : : ; T I

2. Applying the results of Sect. 7.3.4, identify an ARMA.p; q/ model describing
the time series fytg; this step yields parameter estimators Ǫ , O� , O	2;

3. Substitute the estimators Ǫ , O� , O	2 in place of the unknown parameters in (7.34).

The integration parameter d can be estimated by one of the methods from [9].
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7.4 Robustness Under Parametric Model Specification
Errors

7.4.1 The General Case

Consider a problem of forecasting a future time series element xTC� 2 R1 based
on observing the history XT

1 D .x1; x2; : : : ; xT /
0 2 RT . The mean square optimal

forecast, by Theorem 4.1, can be represented in the following general form:

Ox�
TC� D f0.X

T
1 I �0/ D E�0

˚

xTC� j XT
1




; (7.47)

and its risk equals

r0.�/ D E�0
˚

. Ox�
TC� � xTC� /2


 D
D E�0

˚

D�0
˚

xTC� j XT
1





;
(7.48)

where �0 2 R
m is a parameter vector of the undistorted time series model.

A parametric time series model specification error occurs due to the uncertainty
of the true value of �0, which necessitates an application of the plug-in approach:

OxTC� D f0.X
T
1 I �/; (7.49)

where

� D �0 C� 2 R
m; (7.50)

and� 2 Rm is the parameter vector defining the specification error. In establishing
the asymptotic properties of forecasting under misspecification errors, we are going
to distinguish between the following two cases:

Case 1. Absolute specification error defined as

j� j D p

.�/0.�/ � "; (7.51)

where " � 0 is a given upper bound of the distortion level.
Case 2. Relative specification error:

j� j
j�0j � ": (7.52)

Theorem 7.6. If the plug-in forecasting algorithm (7.49) is used under the specifi-
cation error (7.50), the function f0.�/ is twice differentiable, the expectation

E�0

n

r�f0
�

XT
1 I �0� �r�0f0

�

XT
1 I �0��0

o

(7.53)
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is finite, and for all N� in an "-neighborhoodU�0 of the point �0 defined by (7.51) or
(7.52), the expectations

E�0

(

@2f0.X
T
1 I N�/

@ N�i@ N�j
@2f0.X

T
1 I N�/

@ N�k@ N�l

)

; i; j; k; l 2 f1; : : : ; mg; (7.54)

are bounded, then for " ! 0 the forecast risk satisfies the asymptotic expansion

r".�/ D r0.�/C �0� CO."2/;

� D 2E�0
˚�

f0.X
T
1 I �0/� xTC�

�r�0f0.X
T
1 I �0/
 2 R

m:
(7.55)

Proof. Let us write a first order Taylor’s expansion of the function (7.49) w.r.t. � in
an "-neighborhood of �0, expressing the remainder term in the Lagrange form:

f0.X
T
1 I �/ D f0.X

T
1 I �0/C �r�0f0.X

T
1 I �0//0� C .�

�0 r2N� f0.X
T
1 I N�/�;

where N� 2 U�0 . This expansion, together with (7.48) and the boundedness of the
expectations (7.53), (7.54), proves (7.55). ut

7.4.2 Stationary Time Series Forecasting Under
Misspecification of Covariance Functions

Let us consider a special case where the time series xt is stationary, has a zero
expectation and a covariance function 	0� D EfxtxtC�g, � 2 Z: Then the optimal
linear forecast is a special case of (7.47) defined by Theorem 7.1 for n D T � 1:

Ox�
TC� D �

a��0X1
T ; a� D

�

˙0
.T /

��1
	
0.�CT�1/
.�/ ; (7.56)

˙0
T D

0

B

B

B

@

	00 	01 � � � 	0T�1
	01 	00 � � � 	0T�2
:::

::: � � � :::

	0T�1 	0T�2 � � � 	00

1

C

C

C

A

; 	
0.�CT�1/
.�/ D

0

B

B

B

@

	0�
	0�C1
:::

	0�CT�1

1

C

C

C

A

:

Assume that the m-vector (m D � C T )

�0 D .	00 ; 	
0
1 ; : : : ; 	

0
�CT�1/0

of covariance function values [this �0 influences the vector a� of the optimal
forecast coefficients (7.56)] contains specification errors:

� D .	0; 	1; : : : ; 	�CT�1/0; 	k D 	0k C	k; k 2 f0; 1; : : : ; � C T � 1g:
(7.57)
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Once again, we define the "-neighborhood of the allowed values of � by (7.51) or
(7.52). The plug-in forecasting algorithm is based on estimation of the parameter
vector � and has the following form:

OxTC� D a0X1
T ; a D ˙�1

.T /	
.�CT�1/
.�/ ; (7.58)

where the matrices

˙.T /; 	
.�CT�1/
.�/

are constructed similarly to (7.56) with 	0k replaced by 	k .
Let us introduce the following notation:

˙.T / D

0

B

B

B

@

	0 	1 � � � 	T�1
	1 	0 � � � 	T�2
:::

::: � � � :::

	T�1 	T�2 � � � 	0

1

C

C

C

A

; 	
.�CT�1/
.�/ D

0

B

B

B

@

	.�/
	.�C1/

:::

	.�CT�1/

1

C

C

C

A

:

(7.59)

Theorem 7.7. The forecast risk of the plug-in forecasting algorithm (7.58) under
the specification errors in the covariances (7.57), (7.51), (7.52) satisfies the
following asymptotic expansion as " ! 0:

r".�/ Dr0.�/C
�

˙.T /

�

˙0
.T /

��1
	
0.�CT�1/
.�/ �	

.�CT�1/
.�/

�0 �
˙0
.T /

��1 �

�
�

˙.T /

�

˙0
.T /

��1
	
0.�CT�1/
.�/ �	

.�CT�1/
.�/

�

CO."3/:

(7.60)

Proof. Applying (7.57), (7.59), and simplifying yields

aDa�a�D
�

˙0
.T /

��1 ��˙.T /

�

˙0
.T /

��1
	
0.�CT�1/
.�/ C	.�CT�1/

.�/

�

CO."2/1T :
(7.61)

From (7.56), (7.58) we can obtain

r".�/ D E

n

�

.a� Ca/0X1
T � xTC�

�2
o

D r0 C .a/0˙0
TaC

C 2
�

.a�/0EfX1
T .X

1
T /

0g � EfxTC� .X1
T /

0g�a D r0.�/C .a/0˙0
Ta:

Substituting (7.61) into this expression yields (7.60). ut
It is easy to see that the asymptotic expansion (7.60) is more accurate than the

general result of Sect. 7.4.1: the risk increment due to misspecification is of the



186 7 Optimality and Robustness of ARIMA Forecasting

second order w.r.t. ". Also note that this risk increment grows as the matrix ˙.T /

becomes ill-conditioned—in particular, as the dependence between the elements of
the time series increases.

7.4.3 Forecasting of AR.p/ Time Series Under
Misspecification of Autoregression Coefficients

Let us consider another special case of the setting introduced in Sect. 7.4.1, where
the predicted time series fxt g follows a stationary AR.p/ model (see Sect. 7.2.2 for
the definition):

xt D �01 xt�1 C � � � C �0pxt�p C ut ; t 2 Z: (7.62)

In that case, the optimal forecasting statistic is defined by (7.28). Due to prior
uncertainty, the autoregression coefficients f�0i g are subject to specification errors
f�ig, and thus the forecast is based not on the true model parameters, but on their
distorted values:

�i D �0i C�i ; i D 1; 2; : : : ; p: (7.63)

The plug-in forecasting algorithm is based on estimation of the vector � and can be
written as follows:

OxTC� D
p
X

iD1
.A�/1ixTC1�i ; (7.64)

A D

0

B

B

B

B

B

@

�1 �2 �3 � � � �p�1 �p
1 0 0 � � � 0 0

0 1 0 � � � 0 0
:::

:::
:::

:::
:::

:::

0 0 0 � � � 1 0

1

C

C

C

C

C

A

:

To obtain a formula for the risk of the forecasting statistic (7.64), we are going
to need the following auxiliary result.

Lemma 7.2. Under the AR.p/ model defined by (7.62), the following representa-
tion holds:

X
tC��pC1
tC� D A�0X

t�pC1
t C

��1
X

kD0
Ak0UtC��k; � 2 N; t 2 Z; (7.65)
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where Ut D .ut
... 0p�1/0 2 Rp , the column vector Xn

m is defined by (7.56), and A0
is a companion .p � p/-matrix derived from (7.64) by taking � D �0.

Proof. In the above notation, due to (7.62) we have

X
tC��pC1
tC� D A0X

tC��p
tC��1 C UtC� :

Applying this recursion � � 1 times yields (7.65). ut
Let .Ak0/1� denote the 1st row of a .p � p/-matrix Ak0 .

Corollary 7.5. The following representation holds:

xTC� D .A�0/1�X
T�pC1
T C

��1
X

kD0
.Ak0/11uTC��k: (7.66)

Proof. To prove the corollary, it is sufficient to assume t D T in (7.65),
remembering that the 2nd, 3rd, . . . , pth components of the vector Ut are zeros. ut
Theorem 7.8. Under the specification errors (7.63), (7.51), (7.52) in the AR.p/
autoregression coefficients, the �-step-ahead forecast risk equals

r".�/ D r0.�/C .A� �A�0/1�˙.p/

�

.A� �A�0/1�
�0
; (7.67)

where

r0.�/ D 	2

 

1C
��1
X

kD1

�

.Ak0/11
�2

!

(7.68)

is the �-step-ahead autoregression forecast risk under prior knowledge of autore-
gression coefficients (i.e., the minimum possible risk).

Proof. By (7.64), (7.66) we have:

OxTC� � xTC� D .A�/1�XT�pC1
T �

 

.A�0/1�X
T�pC1
T C

��1
X

kD0
.Ak0/11uTC��k

!

D

D .A� �A�0/1�XT�pC1
T �

��1
X

kD0
.Ak0/11uTC��k:

Let us substitute this expression for the random forecast error in the risk functional:

r".�/ D E

8

<

:

 

.A� � A�0/1�X
T�pC1
T �

��1
X

kD0
.Ak0/11uTC��k

!2
9

=

;

D

D .A� �A�0/1�E
n

X
T�pC1
T .X

T�pC1
T /0

o

.A� � A�0/
0
1��
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� 2

��1
X

kD0
.Ak0/11.A

� � A�0/1�EfXT�pC1
T uTC��kgC

C
��1
X

k;lD0
.Ak0/11.A

l
0/11E fuTC��kuTC��lg :

From the stationarity of the time series, we have E
˚

X
T�pC1
T .X

T�pC1
T /0


 D ˙.p/.
Then the model properties (7.62) imply Efutut 0g D 	2ıt t 0 , Efxtut 00g D 0 for t < t 00.
Substituting this result into the previous expression leads to (7.67), (7.68). ut

The second nonnegative summand in the formula (7.67) is the risk increment due
to the specification error� D � � �0 in the autoregression coefficients.

Corollary 7.6. Under a specification error � in the AR.p/ model, the �-step-
ahead forecast risk satisfies the following asymptotic expansion:

r".�/ D r0.�/C .�/0B�˙.p/B
0
�� CO.j� j3/; (7.69)

where B� is a .p � p/-matrix defined as

B� D
��1
X

kD1
.Ak0/11.A

��k
0 /0:

Proof. Let us denoteA D A� A0 and write a matrix expansion

.A0 CA/� D A�0 C
��1
X

kD1
Ak0AA

��k
0 CO.jjAjj2/;

which yields the following asymptotic expansion of the first row of A� :

.A�/1� D .A�0/1� C� 0B� CO.j� j2/:

Here we have used the fact that every row of the matrixA, except for the first row,
contains only zeros. Substituting .A� � A�0/1� into (7.67) leads to (7.69). ut
Corollary 7.7. Under the AR.p/ specification error (7.51), the following asymp-
totic expansions hold for the guaranteed risk and the risk instability coefficient:

rC.�/ D r0.�/C "2�max.B�˙.p/B
0
� /CO."3/;

�.�/ D rC.�/� r0.�/

r0.�/
D "2

�max.B�˙.p/B
0
� /

r0.�/
CO."3/;

where �max.C / is the maximum eigenvalue of a matrix C .
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Proof. By (7.69) and well-known extremal properties of matrix eigenvalues [22],
we have

rC.�/ D max
j� j�"

r".�/ D r0.�/C max
.�/0��"2

�

.�/0B�˙.p/B
0
�

�CO."3/ D

D r0.�/C "2�max.B�˙.p/B�/CO."3/: ut

Corollary 7.8. Under the specification error (7.52), we have

rC.�/ D r0.�/C "2j�0j2�max.B�˙.p/B
0
� /CO."3/;

�.�/ D "2j�0j2�max.B�˙.p/B
0
� /=r0.�/CO."3/:

Note that for � D 1, i.e., in the case of one-step-ahead forecasting, the remainder
terms in the expansion (7.69) and the expansions proved by Corollaries 7.7, 7.8
become zeros.

Also note that the covariance matrix ˙.p/ in Theorem 7.7 and its corollaries can
be computed by applying one of the following three procedures:

1. Solving a Yule–Walker system of equations [2] in covariances f	0; 	1; : : : ; 	p�1g
which make up ˙.p/;

2. Evaluating the sum of a converging matrix series

˙.p/ D
1
X

kD0
Ak0˙.A

k
0/

0 D 	2
1
X

kD0
.Ak0/�1..Ak0/�1/0;

where the .p � p/-matrix˙ is made up of zero elements, except for 	11 D 	2;
3. Using the following iterative procedure [2]:

˙
.i/

.p/ D ˙ CA0˙
.i�1/
.p/ A0

0; i D 1; 2; : : : I ˙
.0/

.p/ WWD ˙:

For instance, taking � D 1, p D 1 leads to an explicit form of (7.69):

r".1/ D 	2 C 	2
.�/2

1 � .�0/2
; �.1/ D .�/2

1 � .�0/2
:

The condition �.1/ � ı leads to the following expression for the ı-admissible level
of the specification error:

j� j � "C.ı/ D
p

.1 � .�0/2/ı ;

where ı > 0; thus, the effect of specification errors becomes the largest as j�0j
approaches 1.
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7.5 Robustness Under Functional Innovation Process
Distortions in the Mean Value

Let us discuss a common situation where the autoregression model (7.62) is affected
by functional distortions in the mean value of the innovation process:

xt D .�0/0Xt�p
t�1 C Qut ; Qut D ut C �t ; t 2 N; (7.70)

where �0 D .�0i / 2 Rp is a column vector of p hypothetical autoregression
coefficients; Xt�p

t�1 D .xt�1; xt�2; : : : ; xt�p/0 2 Rp; futg are i.i.d. random variables
with zero expectations Efutg D 0 and finite variances Dfutg D 	2; an unknown
deterministic function �t 2 R1 defines the distortion; Qut is the distorted innovation
process. The hypothetical model (7.62) is obtained from (7.70) by taking �t 	 0.
Since the time series (7.70) is, in general, non-stationary, the initial condition will
be chosen as X�pC1

0 D 0p:
Let us study the effect of distortion f�t g combined with specification errors

� D � � �0 in the autoregression coefficients on the risk of the traditional
forecasting statistic (7.64).

We are going to use the following notation: let 1p.1/ be a unit column p-vector
with the first element equal to 1 and the remaining elements equal to zero, and let

a.k; �/ D �

.A� � A�0/A
k
0

�

11
2 R

1; (7.71)

where A0, A are companion .p � p/-matrices, defined in Sect. 7.4.

Theorem 7.9. Under an autoregression model (7.70) of order p in the presence of
functional distortion and specification error � D � � �0, the forecasting statistic
(7.64) has the risk

r".�/ D r0.�/C 	2
T�1
X

kD0
a2.k; �/C

 

T�1
X

kD0
a.k; �/�T�k �

��1
X

kD0
.Ak0/11�TC��k

!2

:

(7.72)

Proof. Similarly to the proof of Lemma 7.2, in the above notation (7.70) yields that

xTC� D .A�0/1�X
T�pC1
T C

��1
X

kD0
.Ak0/11uTC��k C

��1
X

kD0
.Ak0/11�TC��k;

OxTC� D .A�/1�XT�pC1
T :
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Now, applying the same reasoning as in the proof of Theorem 7.7, we can obtain

r".�/ D .A� � A�0/1� E
�

X
T�pC1
T

�

X
T�pC1
T

�0	
.A� �A�0/01�C

C
 

��1
X

kD0
.Ak0/11�TC��k

!2

C 	2
��1
X

kD0

�

.Ak0/11
�2 �

� 2.A� �A�0/1� EfXT�pC1
T g

��1
X

kD0
.Ak0/11�TC��k:

(7.73)

Similarly to Lemma 7.2, we have the following linear representation based on
the initial state X�pC1

0 D 0p:

X
T�pC1
T D AT0 X

�pC1
0 C

T�1
X

kD0
Ak0UT�k C

T�1
X

kD0
Ak0�T�k � 1p.1/ D

D
T�1
X

kD0
uT�kAk01p.1/ C

T�1
X

kD0
�T�kAk01p.1/:

Taking into account the identity Ak01p.1/ 	 .Ak0/�1, we obtain

X
T�pC1
T D

T�1
X

kD0
uT�k.Ak0/�1 C

T�1
X

kD0
�T�k.Ak0/�1:

By the properties of futg, this yields the following equalities:

E

n

X
T�pC1
T

o

D
T�1
X

kD0
�T�k.Ak0/�1;

E

n

X
T�pC1
T .X

T�pC1
T /0

o

D 	2
T�1
X

kD0
.Ak0/�1.Ak0/0�1 C

 

T�1
X

kD0
�T�k.Ak0/�1

!

.�/0 :

Substituting them into (7.73), applying (7.71), (7.68), and performing equivalent
transformations yields

r".�/ D r0.�/C 	2
T�1
X

kD0
a2.k; �/C

 

T�1
X

kD0
a.k; �/�T�k

!2

C

C
 

��1
X

kD0
.Ak0/11�TC��k

!2

� 2
 

T�1
X

kD0
a.k; �/�T�k

! 

��1
X

kD0
.Ak0/11�TC��k

!

;

proving (7.72). ut
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The right-hand side of (7.72) is composed of three summands. The first is the
forecast risk for the undistorted hypothetical model, the second is the risk increment
due to the specification error, the third is the risk increment due to both the distortion
in the mean value of the innovation process and the specification errors. Note that
the second summand is different from the risk increment obtained in Theorem 7.7
since the process in (7.70) is non-stationary with the initial state X�pC1

0 D 0p:
Now let us evaluate the guaranteed forecast risk.

Theorem 7.10. Under the conditions of Theorem 7.9, assuming that the functional
distortion in the mean value of the innovation process in (7.70) is bounded in the
l2-norm,

T �1
T
X

tD1
�2t � "2.1/; ��1

TC�
X

tDTC1
�2t � "2.2/; (7.74)

where ".1/; ".2/ � 0 are the respective distortion levels for the base (observation)
interval and the forecast interval, the guaranteed forecast risk is equal to

rC.�/Dr0.�/C	2
T�1
X

kD0
a2.k; �/C

0

@".1/

v

u

u

tT

T�1
X

kD0
a2.k; �/C ".2/

v

u

u

t�

��1
X

kD0

�

.Ak0/11
�2

1

A

2

:

(7.75)

Proof. By (7.72), finding the guaranteed risk under the conditions of the theorem
can be reduced to solving the following optimization problem:

 

T�1
X

kD0
a.k; �/�T�k �

��1
X

kD0
.Ak0/11�TC��k

!2

! max
f�t g

(7.76)

under the conditions (7.74). This is a quadratic programming problem with a
quadratic separable objective function and quadratic restrictions. Separability of the
objective function, together with the special form of the restrictions (7.74), allows
us to reduce (7.76) to a pair of independent optimization problems of the following
form:

f .z/ D b0z ! max
z
; z0z � "2;

where

b D .bi / 2 RN ; z D .zi / 2 R
N ; " > 0:
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Fig. 7.2 Forecast risk for
different distortion levels "

Since b0z D jbjjzj cos.˛/, where ˛ is the angle between vectors b and z, the
maximum is equal to

maxf .z/ D jbj
p
d jbj D "jbj2

and is attained at z� D "jbj. Using this result to solve (7.76) yields (7.75). ut
Corollary 7.9. Under specification error � and functional distortion in the mean
value f�t g satisfying (7.74), the risk instability coefficient of the �-step-ahead
autoregression forecast (7.64) based on T observations equals

�.�/ D rC.�/ � r0.�/

r0.�/
D 	2

r0.�/

T�1
X

kD0
a2.k; �/C

C 1

r0.�/

0

@".1/

v

u

u

tT �1
T�1
X

kD0
a2.k; �/C ".2/

v

u

u

t��1
��1
X

kD0

�

.Ak0/11
�2

1

A

2

� 0:

Results of Monte-Carlo simulations performed by the author [15,16] were in line
with the obtained theoretical results.

Figure 7.2 presents results of simulations based on the model (7.70) with

p D 2; �0 D .0:3; 0:4/0; � D .0:4; 0:5/0; 	2 D 1;

�t D " sin.t/; ".1/ D ".2/ D "; T D 40; � D 2:

For each simulated distortion level, 104 Monte-Carlo simulation rounds were
performed. The solid line shows the theoretical dependence between the risk r".�/
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and " as defined by (7.72), (7.71), (7.68), the dashed line is the experimental curve,
and the dotted line is the minimum risk (obtained for �t 	 0/:

rmin D r0.�/C 	2
T�1
X

kDo
a2.k; �/:

It is also possible to use the expression (7.72) for the forecast risk if the
specification error� D � � �0 2 Rp is a random vector. For instance, this may be
the case if the parameter �0 is a priori unknown and is replaced by a statistical
estimator. As stated in Sect. 7.2, a plug-in autoregression forecasting algorithm
can be obtained from (7.64) by substituting a (consistent) least squares estimator
O� D . O�i / in place of the true value �0 D .�0i / W

OxTC� D . OA�/1�XT�pC1
T ; (7.77)

OA D
0

@

O�
Ip�1 0p�1

1

A ; O� D
0

@

T
X

tDpC1
X
t�p
t�1 .X

t�p
t�1 /

0
1

A

�1
T
X

tDpC1
xtXt�1:

(7.78)

The nonlinear dependence of the forecast OxTC� on the observed time series
X D .x1; : : : ; xT /

0 2 RT and the dependence between O� and XT�pC1
T , which in

turn leads to a dependence between the factors in (7.77), make it extremely difficult
to evaluate the robustness of the forecasting statistic (7.77) explicitly. Thus, we
are going to restrict ourselves to a simplified case where computation of the least
squares estimate (7.78) is based on an auxiliary time series

QX D . Qx1; : : : ; Qx QT / 2 R
QT

of length QT , which is independent from the time series X and is unaffected by
distortion [this is the case (b) of Sect. 7.3.1]:

O� D
0

@

QT
X

tDpC1
QXt�p
t�1 . QXt�p

t�1 /
0
1

A

�1 QT
X

tDpC1
Qxt QXt�p

t�1 : (7.79)

This situation arises if the forecasting process is divided into two stages. In the
first stage (the training stage), a training sample QX is used to construct a parameter
estimator Q� defined in (7.79). In the second stage (forecasting stage), a forecast OxTC�
defined by (7.77) is computed based on the observationsX . Note that the results of
a single training stage can be used to construct multiple forecasts.

Theorem 7.11. Under the AR.p/ model (7.70), assuming functional distortion in
the mean value f�t g satisfying the conditions (7.74) for ".1/ D "C, ".2/ D 0 (i.e.,
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�t D 0 for t > T ), consider a one-step-ahead (� D 1) plug-in forecasting statistic
(7.77), (7.79), where QX is an undistorted time series independent ofX . Defining the
mean square error matrix of the estimator O� as

Ef. O� � �0/. O� � �0/0g D . QT /�1F;

the guaranteed forecast risk is equal to

QrC.1/ D 	2 C 	2

QT
T
X

tD1
.At�10 /0�1F.At�10 /�1 C "2C

T

QT �max.GT /; (7.80)

where �max.GT / is the maximum eigenvalue of the .T � T /-matrix GT D .gij/:

gij D .Ai�10 /0�1F.A
j�1
0 /�1; i; j D 1; : : : ; T: (7.81)

Proof. Let us apply (7.72), (7.68), (7.71) for ".1/ D "C, ".2/ D 0, � D 1:

a.k; 1/ D �

.A� A0/A
k
0

�

11
D � O� � �0

�0
.A0/

k�1I

r".1/ D 	2 C 	2
T�1
X

kD0

�

. O� � �0/0.Ak0/�1
�2 C

 

T�1
X

kD0

� O� � �0�0.Ak0/�1�T�k

!2

:

The mean value of this risk w.r.t. the distribution of O� , under the conditions of the
theorem and in the notation (7.81), can be written as

Efr".1/g D 	2 C 	2

QT
T�1
X

kD0
.Ak0/

0�1F.Ak0/�1 C 1

QT
T�1
X

i;jD0
�T�i�T�j gij:

Maximizing this quadratic function in f�1; : : : ; �T g under the quadratic condition

T �1
T
X

tD1
�2t � "2C

by using Lagrange multipliers leads to (7.80). ut
Corollary 7.10. Under the conditions of Theorem 7.10, the instability coefficient of
the forecast risk is equal to

�.1/ D 1

QT
T
X

tD1
.At�10 /0�1F.At�10 /�1 C "2C

T

QT
�max.GT /

	2
:
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7.6 Robustness of Autoregression Forecasting Under
Heteroscedasticity of the Innovation Process

7.6.1 The Mathematical Model

Let us consider the following rather common setting: an AR.p/ autoregression
model is complicated by heteroscedasticity (inhomogeneity w.r.t. the variances) of
the innovation process. In other words, let us assume functional distortion of the
innovation process in the variance [cf. (7.70)]:

xt D .�0/0Xt�p
t�1 C Qut ; Qut D �tut ; t 2 Z; (7.82)

where �0 D .�0i / 2 Rp is a column vector of p hypothetical autoregression
coefficient values;

X
t�p
t�1 D .xt�1; : : : ; xt�p/0 2 R

pI
random variables futg are i.i.d. and follow the N.0; 	2/ normal distribution law;

0 � �t � "; t 2 Z; (7.83)

is an unknown deterministic sequence defining the distortion; Qut is the distorted
innovation process. The expression (7.82) is reduced to the hypothetical model for
�t 	 1. Note that, in general, heteroscedasticity implies non-stationarity of the time
series (7.82):

DfQutg D 	2�2t ; t 2 Z:

We are going to assume that the hypothetical AR.p/ model is stable, i.e., every
root of the equation

xp � �1xp�1 � � � � � �p D 0

lies within the unit circle.
The model (7.82) can be represented as a first order p-variate vector autoregres-

sion VAR.1/ (see Sect. 3.5.2):

X
t�pC1
t D A0X

t�p
t�1 C �tUt ; t 2 Z; (7.84)

where

X
t�p
t�1 D

0

B

B

@

xt�1
:::

xt�p

1

C

C

A

2 R
p; Ut D

0

B

B

B

B

@

ut
0
:::

0

1

C

C

C

C

A

2 R
p; A0 D

0

@

�0

Ip�1 0p�1

1

A 2 R
p�p:
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In this notation, the maximum absolute eigenvalue of the matrix A0 satisfies the
stability condition above:

�max.A0/ < 1: (7.85)

Let us study the influence of distortion f�t g on the forecast risk of the traditional
forecasting statistic (7.64), also accounting for the specification error� D � � �0
in the definition of autoregression coefficients.

7.6.2 Presence of a Specification Error

As in Sect. 7.5, we are going to consider the situation where the autoregression
coefficient vector �0 is known up to a certain deterministic error � D � � �0,
and the plug-in forecasting statistic for xTC� based on observations fx1; : : : ; xT g is
defined from the vector � D �0 C� :

OxTC� D . OXTC��pC1
TC� /1; OXTC��pC1

TC� D A�X
T�pC1
T ; A D

0

@

� 0

Ip�1 0p�1

1

A :

(7.86)

As before, forecasting performance of (7.86) will be characterized by the mean
square forecast risk in a matrix form

R D .rij/ D R.�0; �; T; �/ D E

n� OXTC��pC1
TC� � X

TC��pC1
TC�

�

.�/0
o

(7.87)

and the scalar risk

r D r.�0; �; T; �/ D r11 D E

n

. OxTC� � xTC� /2
o

� 0: (7.88)

Let us use the following notation: 1p.1/ D .1; 0 : : : 0/0 2 R
p is a unit basis vector,

.Ak0/�1 2 R
p is the first column of the matrix Ak0 , and

S D 	2
C1
X

tD0
.At0/�1.At0/0�1�2T�t 2 R

p�p; (7.89)

ST� D 	2
��1
X

tD0
.At0/�1.At0/0�1�2TC��t 2 R

p�p: (7.90)
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Theorem 7.12. In the AR.p/ model with heteroscedasticity defined by (7.82),
(7.83), (7.85) under specification error � , the matrix forecast risk (7.87) of the
forecasting statistic (7.86) is equal to

R.�0; �; T; �/ D ST � C .A� �A�0/S.A� �A�0/0 (7.91)

for T � p.

Proof. Using the methods of [2], the following equalities can be obtained from
(7.82), (7.86):

X
TC��pC1
TC� D

C1
X

kD0
Ak0�TC��kUTC��k; OXTC��pC1

TC� D A�
C1
X

kD0
Ak0�T�kUT�k;

OXTC��pC1
TC� �XTC��pC1

TC� D
��1
X

kD0
Ak0�TC��kUTC��k C

C1
X

lD0
.A� � A�0/A

l
0�T�lUT�l :

(7.92)

Substituting (7.92) in the definition of the mean square risk (7.88) and accounting
for the independence of futg, we obtain, after equivalent matrix transformations, the
following expression for the risk:

R.�0; �; T; �/ D E

( 

��1
X

kD0
Ak0�TC��kUTC��k

!

.�/0
)

C

C E

( C1
X

lD0
.A� �A�0/Al0�T�lUT�l

!

.�/0
)

D

D	2
��1
X

kD0
�2TC��k.Ak01p.1//.�/0 C 	2

C1
X

lD0
�2T�l

�

.A��A�0/Al01p.1/
�

.�/0:

In the notation (7.89), the previous expression is equivalent to (7.91). ut
Corollary 7.11. Under the conditions of Theorem 7.12, the scalar risk of forecast-
ing the future value xTC� equals

r.�0; �; T; �/ D 	2
��1
X

tD0
..At0/11/

2�2TC��t C 	2
C1
X

tD0

���

A� �A�0
�

At0
�

11

�2
�2T�t :

(7.93)

Proof. It suffices to apply (7.88)–(7.91) and certain well-known matrix properties.
ut
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In the expression for the risk (7.93), the first summand is due to heteroscedasticity
in the forecasting interval, and the second summand is due to both heteroscedasticity
and the specification error for time points s � T .

Corollary 7.12. Under the conditions of Theorem 7.12, the minimum value of the
scalar risk over � 2 Rp is equal to

rmin.�
0; T; �/ D r.�0; �0; T; �/ D 	2

��1
X

tD0
..At0/11/

2�2TC��t :

Now let us investigate the behavior of the risk under heteroscedasticity in a
setting of asymptotically small specification errors� D � � �0 [14]:

j� j D
p

.� � �0/0.� � �0/ � �; � ! 0: (7.94)

Theorem 7.13. Under the conditions of Theorem 7.12 and in the asymptotics
(7.94), the following expansion holds for the scalar risk of forecasting (7.88):

r.�0; �; T; �/ D rmin.�
0; T; �/C .�/0ˇ.T; �/� CO.�3/; (7.95)

where ˇ is a quadratic form defined by the following symmetric positive-definite
matrix:

ˇ.T; �/ D .ˇjk.T; �// D
 

��1
X

iD0
.Ai0/11A

��i�1
0

!

S

 

��1
X

iD0
.Ai0/11A

��i�1
0

!0
:

Proof. As in the proof of Corollary 7.6, substitute a matrix expansion of .A0CA/�
into (7.93). ut
Corollary 7.13. Under the conditions of Theorem 7.13, the guaranteed forecast
risk can be written as

rC.�0; T; �; �/ D rmin.�
0; T; �/C �2�max.ˇ.T; �//CO.�3/; (7.96)

where �max.C / is the maximum eigenvalue of a matrix C .

Proof. Applying some well-known extremal properties of eigenvalues [22] allows
us to construct an argument similar to the proof of Corollary 7.7. ut

From the main term of the expansion (7.96) and Definition 4.7, we can obtain the
ı-admissible (ı > 0) distortion level for the vector of autoregression coefficients:

�C.ı/ D
s

ı
rmin.�0; T; �/

�max.ˇ.T; �//
:
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Theorems 7.12, 7.13, together with their corollaries, allow us to study another
commonly encountered specification error—incorrectly defined autoregression
order. Assume that the observed time series xt is described by an AR.p0/
autoregression model of true order p0 2 N, but the forecast (7.86) is based on an
AR.p/ model of order p 2 N different from p0. To be more specific, let us assume
p < p0 (underestimated autoregression order; the case of overestimation, where
p > p0, can be studied similarly). Let us split the matrices into blocks (the numbers
outside the brackets denote block dimensions):

�0 D
p

p0 � p

0

B

@

�0.1/

�0.2/

1

C

A ; � D
p

p0 � p

0

B

@

�.1/

�.p0�p/

1

C

A ; � D
p

p0 � p

0

B

@

�.1/ � �0.1/

��0.2/

1

C

A ;

p p0 � p

ˇ.T; �/ D
p

p0 � p

0

B

@

ˇ.11/ ˇ.12/

ˇ.21/ ˇ.22/

1

C

A :

Corollary 7.14. Under the conditions of Theorem 7.13, assuming underestimated
regression order, the scalar forecast risk satisfies the asymptotic expansion

r.�0; �; T; �/ D rmin.�
0; T; �/C .�0.2//

0ˇ.22/.T; �/�0.2/ CO.�3/I (7.97)

and the specification error is ı-admissible .ı > 0/ if

.�0.2//
0ˇ.22/.T; �/�0.2/ � ı rmin.�

0; T; �/: (7.98)

Proof. Substituting block representations of the matrices� and ˇ.T; �/ into (7.95)
leads to (7.97). The relation (7.98) follows directly from (7.97). ut

7.6.3 Least Squares Estimation of �0

Now consider a situation where the parameter vector �0 of an AR.p/ model with
heteroscedasticity (7.82) is a priori unknown, and an estimator is constructed for �0

based on T observations x1; : : : ; xT . Traditionally, a least squares estimator is used
to estimate �0 [2]. The estimator is constructed under the following assumptions:

T > p;

ˇ

ˇ

ˇ

ˇ

ˇ

T�1
X

tDp
X
t�pC1
t

�

X
t�pC1
t

�0
ˇ

ˇ

ˇ

ˇ

ˇ

¤ 0;
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and it has the form

O� D

0

B

@

O�.1/
:::
O�p

1

C

A D
 

1

T � p
T�1
X

t�p
X
t�pC1
t .X

t�pC1
t /0

!�1
1

T � p

T�1
X

tDp
xtC1Xt�pC1

t 2 R
p:

(7.99)

Let us start by studying the consistency and asymptotic normality of the
least squares estimator (7.99) under heteroscedasticity. We are going to need the
following auxiliary result [13, 15].

Lemma 7.3. Under the AR.p/ model with heteroscedasticity (7.82), if the condi-
tions (7.83), (7.85), and an additional asymptotic condition on �t ,

9 c 2 .0;C1/ W 1

T

T
X

tD1
�2t �!

T!C1 c; (7.100)

are satisfied, then the following mean square convergences hold as T ! C1:

1

T � p

T�1
X

tDp
�tC1utC1Xt�pC1

t

m.s.���! 0p;

1

T � p
T�1
X

tDp
X
t�pC1
t .X

t�pC1
t /0 m.s.���! cF; F D 	2

C1
X

iD0
.Ai0/�1.Ai0/0�1 :

Theorem 7.14. Under the conditions of Lemma 7.3, the least squares estimator of
the autoregression coefficients (7.99) is consistent in probability:

O� P�!
T!C1 �0:

Proof. From (7.82), (7.99) we have the following representation for the difference
between the estimator and the vector of true autoregression coefficients:

O� � �0 D
 

1

T � p
T�1
X

tDp
X
t�pC1
t .X

t�pC1
t /0

!�1
1

T � p

T�1
X

T�p
�tC1utC1Xt�pC1

t :

(7.101)
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Then, by Lemma 7.3 and properties of convergent random sequences [25], we have
O� � �0

P�! 0p , proving the theorem. ut
Theorem 7.15. Under the conditions of Lemma 7.3, assume that, in addition to
(7.100), we have

8 � 2 N 9 c� 2 .0;C1/ W 1

T

T
X

tD1
�2t �

2
tC� �!

T!C1 c� :

Then the least squares estimator for the autoregression coefficients (7.99) is
asymptotically normal:

p
T
� O� � �0

�

D�!
T!C1 �; Lf�g D Np

�

0p;
	2

c2
F�1FcF�1

�

;

where

Fc D
C1
X

iD0
ciC1.Ai0/�1.Ai0/0�1 2 R

p�p:

Proof. From Lemma 7.3 and Theorem 7.14, a proof can be constructed similarly to
the case where the model is free from distortion [2]. ut

Note that in the absence of heteroscedasticity we have �t 	 1, c� 	 c D 1,
Fc D F , and Theorems 7.14, 7.15 are reduced to known results [2].

Let us study the risk of a plug-in forecasting algorithm using the least squares
estimator (7.99) for the autoregression coefficients:

OxTC� D
� OA�XT�pC1

T

�

1
; OA D

0

@

O� 0

Ip�1 0p�1

1

A : (7.102)

Theorem 7.16. Under the conditions of Lemma 7.3, the forecast risk of the plug-in
algorithm (7.102) satisfies the following asymptotic expansion as T ! C1:

r D 	2
��1
X

tD0
�2TC��t

�

.At /11
�2 CO

�

T �1� : (7.103)

Proof. The expansion (7.103) follows from the representation (7.101) for the
deviation O� � �0 of the least squares estimator from the true value, the expression
for the random forecast error
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OxTC� � xTC� D � OXTC��pC1
TC� � X

TC��pC1
TC�

�

1
D

D
�

. OA� � A�0/X
T�pC1
T C �TC1A��1

0 UTC1 C � � � C �TC�UTC�
�

1
;

and Lemma 7.3. ut
Observe that the leading term of the asymptotic expansion established by

Theorem 7.16 is the minimum risk value under heteroscedasticity for an a priori
known �0 (cf. Corollary 7.12):

r D rmin.�
0; T; �/CO

�

1

T

�

:

This shows that for T ! C1 we have

r � rmin.�
0; T; �/ D O

�

1

T

�

! 0:

Thus, under the above conditions, we can say that the plug-in forecasting algorithm
(7.102), (7.99) is robust under heteroscedasticity.

7.7 Robustness of Autoregression Time Series Forecasting
Under IO-Outliers

As mentioned in Sect. 4.3, outliers are a very common type of distortions. Autore-
gression time series are affected by two types of outliers: IO (innovation outliers)
and AO (additive outliers) [20, 23].

Let us start by considering IO distortion. In that case, the observed time series is
subject to stochastic distortion of the innovation process:

xt D .�0/0Xt�p
t�1 C �tut ; t 2 Z; (7.104)

where �0 D .�0i / 2 Rp is a column vector of p hypothetical autoregression
coefficients; futg are jointly independent identically distributed N.0; 	2/ normal
random variables; f�tg are jointly independent identically distributed discrete
random variables independent of futg which assume one of the following two
values:

�t 2 f1;pKg; Pf�t D p
Kg D "; Pf�t D 1g D 1 � "; (7.105)

where K 2 .1;KC� is the outlier magnitude, " 2 Œ0; "C� is the probability that an
outlier is observed.
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It follows from (7.104), (7.105) that if at a time point t D t 0 we have �t 0 D 1, then
no outlier has been observed: the innovation process equals Qut 0 D ut 0 and has the
variance DfQut 0g D 	2; if at a certain other time point t D t 00 we have �t 00 D p

K,
then we have observed an outlier Qut 00 D p

Kut 00 with the variance which is K times
higher than hypothetical value: DfQut 00g D K	2 > 	2. In applications, it is usually
said that we are dealing with outliers in the variance, and typically we haveK  1,
"C � 0:1.

Comparing (7.104), (7.105) with (7.82), (7.83), note that the difference between
these models lies in the boundedness of the multiplier �t D �t in (7.82). Also note
that modifying the model (7.70) similarly to (7.104) leads to a model of outliers
in the mean value.

Influence of IO distortion on forecast risk can be characterized by applying the
results of Sect. 7.6. First, let us consider the case where the forecasting statistic
defined by (7.86) is based on the autoregression coefficient vector � D .�i / 2 Rp

which is distorted by a deterministic error:� D � � �0 2 Rp .

Theorem 7.17. In theAR.p/model under IO distortion (7.104), (7.105), assuming
that the stability condition (7.85) is satisfied, and a specification error� is present,
the matrix risk (7.87) of the forecasting statistic (7.86) equals

R.�0; �; T; �/ D 	2.1C ".K � 1//
 

��1
X

tD0
.At0/�1.At0/0�1C

C.A� � A�0/

C1
X

tD0
.At0/�1.At0/0�1.A� �A�0/0

!
(7.106)

if the observation length satisfies the condition T � p.

Proof. By (7.87) and the total expectation formula, we have

R.�0; �; T; �/ D E

n

E

n� OXTC��pC1
TC� � X

TC��pC1
TC�

�

.�/0 j f�TC� ; �TC��1; : : : g
oo

:

Here the conditional expectation for fixed

f�TC� ; �TC��1; : : : g
is found by applying Theorem 7.12, i.e., replacing f�TC� ; �TC��1; : : : g in the
expressions (7.89), (7.91) by, respectively, f�TC� ; �TC��1; : : : g. From (7.91), com-
puting the unconditional expectation yields

R.�0; �; T; �/ D EfST�g C .A� �A�0/EfSg.A� � A�0/
0: (7.107)

By (7.105), we have

Ef�2t g D 1C ".K � 1/ � 1; t 2 Z:

Substituting the above into (7.89), (7.107) yields (7.106). ut
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Corollary 7.15. Under the conditions of Theorem 7.17, the scalar risk of forecast-
ing the future value xTC� equals

r.�0; �; T; �/ D 	2.1C ".K � 1//

 

��1
X

tD0

�

.At0/11
�2 C

C1
X

tD0

�

..A� � A�0/A
t
0/11

�2

!

:

Proof. It is sufficient to apply the definition of the scalar risk (7.88), the expression
for the matrix risk (7.106), and certain well-known matrix properties. ut

As earlier, let us introduce the following notation for the risk under the
hypothetical model without outliers (" D 0) or specification errors (� D 0p):

r0.T; �/ D 	2
��1
X

tD0

��

At0
�

11

�2
> 0: (7.108)

Corollary 7.16. Under the conditions of Theorem 7.17, the scalar risk of forecast-
ing xTC� can be represented as follows:

r.�0; �; T; �/ D r0.T; �/C ".K � 1/r0.T; �/C

C 	2
C1
X

tD0

���

A� � A�0
�

At0
�

11

�2 C 	2".K � 1/

C1
X

tD0

���

A� �A�0
�

At0
�

11

�2
:

(7.109)

Proof. Applying Corollary 7.15 and the expression (7.108) proves this statement.
ut

The representation (7.109) of the forecast risk contains four summands. The first
is the hypothetical risk (in the absence of distortion), the second is due to outliers
(it is proportional to the outlier probability and the variance increment K � 1), the
third is due to specification error � , and the fourth results from joint influence of
the outliers and the specification error.

Let us study the case of small specification errors (7.94).
Consider the following positive-definite .p � p/-matrix:

B.T; �/ D
 

��1
X

iD0
.Ai0/11A

��i�1
0

!C1
X

tD0
.At0/�1.At0/0�1

 

��1
X

iD0
.Ai0/11A

��i�1
0

!0
: (7.110)

Theorem 7.18. Under the conditions] of Theorem 7.17, in the asymptotics (7.94),
the scalar forecast risk for xTC� satisfies the following expansion:
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r.�0; �; T; �/ D r0.T; �/C ".K � 1/r0.T; �/C 	2.�/0B.T; �/�C
C 	2".K � 1/� 0B.T; �/� CO.�3/:

(7.111)

Proof. It suffices to use a matrix expansion for A� D .A0 CA/� in (7.109) and to
apply the notation (7.110). ut
Corollary 7.17. Under the conditions of Theorem 7.18, the guaranteed forecast
risk satisfies the following asymptotic expansion:

rC.�0; T; �; �; "/ D .1C ".K � 1//
�

r0.T; �/C �2 �max.B.T; �//
�CO.�3/;

(7.112)

and the risk instability coefficient can be written as

�.�0; T; �; �; "/ D ".K � 1/C .1C ".K � 1//�2 �max.B.T; �//

r0.T; �/
CO.�3/;

(7.113)

where �max.C / is the maximum eigenvalue of a matrix C .

Proof. As in the proof of Corollary 7.7, the relation (7.112) is obtained from maxi-
mizing the expression (7.111) in� by applying extremal properties of eigenvalues.
Now (7.113) follows from the definition of the risk instability coefficient,

�.�0; T; �; �; "/ D rC.�0; T; �; �; "/� r0.T; �/
r0.T; �/

;

and the relation (7.112). ut
Setting some fixed (critical) level ı > 0 for the risk instability coefficient,

discarding the last term of (7.113), and solving the inequality � � ı in � leads
to an expression for the ı-admissible level of the specification error j� j in the
autoregression coefficient vector � :

j� j � �C.ı/ D
s

.ı � ".K � 1//C
1C ".K � 1/

r0.T; �/

�max.B.T; �//
; (7.114)

where .x/C D fx; x > 0I 0; x � 0g is the so-called ramp function of x.
It should be noted that dependence of the risk (7.109), the guaranteed risk

(7.112), the risk instability coefficient (7.113), and the ı-admissible specification
error level (7.114) on the outlier probability " and the variance incrementK � 1 can
be expressed in terms of a single auxiliary variable

� D ".K � 1/ � 0: (7.115)
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This means, for example, that a 10 % proportion of outliers forK D 4 results in the
same risk increment as a 1 % outlier proportion withK D 31. Solving the inequality
� � ı in the new variable (7.115) for a fixed specification error level � yields the
ı-admissible value of �:

� � �C.ı/ D
�

ı � �2 �max.B.T; �//

r0.T; �/

�

C

�

1C �2
�max.B.T; �//

r0.T; �/

��1
:

Let us proceed by considering a setting where the true parameters �0 of an AR.p/
model under IO distortion (7.104), (7.105) are a priori unknown. The parameter
vector �0 is estimated by using the least squares method (7.99) for the T recorded
observations x1; : : : ; xT ; the forecasting statistic is defined by (7.102).

By (7.104), (7.105), as well as independence and identical distribution of f�tg,
the strong law of large numbers is satisfied for f�2t g [19]:

1

T

T
X

tD1
�2t

a.s.�!
T!C1 c D 1C ".K � 1/ � 1:

Thus, the condition (7.100) holds almost surely. Therefore, we can apply the result
of Lemma 7.3:

1

T � p
T�1
X

tDp
�tC1utC1Xt�pC1

t

m.s.���! 0p;

1

T � p

T�1
X

tDp
X
t�pC1
t .X

t�pC1
t /0 m.s.���! cF; F D 	2

C1
X

iD0
.Ai0/�1.Ai0/0�1 :

This, in turn, proves the consistency of the least squares estimator O� under IO
distortion defined by (7.105):

O� P�!
T!C1 �0:

Using this fact, an asymptotic expansion of the risk for " ! 0, T ! C1 can be
constructed similarly to Theorem 7.16:

r D .1C ".K � 1//r0.T; �/CO.T �1/C o."/: (7.116)

The expansion (7.116) leads to asymptotic expansions for the guaranteed risk:

rC.T; �/ D .1C "C.K � 1//r0.T; �/CO.T �1/C o."/;
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and for the risk instability coefficient:

�.T; �/ D "C.K � 1/CO.T �1/C o."/:

The last expansion yields an approximation for the ı-admissible proportion
(or probability) of outliers:

"C.ı/ D ı=.K � 1/:

From (7.116), we can also see that under IO distortion the forecasting statistic
(7.102), (7.101) is consistent for T ! C1: rC.T; �/� r0.T; �/ ! 0.

7.8 Robustness of Autoregression Time Series Forecasting
Under AO Outliers

The AR.p/ model of a time series xtunder additive outliers (AO distortion) is
defined by the following three stochastic equations [10, 11, 20]:

xt D yt C ht ;

ht D �t vt ;

yt D .�0/0Y t�pt�1 C ut ; t 2 Z;

(7.117)

where �0 D .�0i / 2 Rp is a column vector of p hypothetical autoregression coef-
ficients describing the time series yt ; random variables futg are jointly independent
and have identical N.0; 	2/ normal distributions; f�tg are independent Bernoulli
random variables,

�t 2 f0; 1g; Pf�t D 1g D 1 � Pf�t D 0g D "I
fvtg are jointly independent N.0;K	2/ normal random variables independent of
f�t g, futg. The value " 2 Œ0; "C� is the outlier probability, and K 2 .1;KC� is the
outlier magnitude.

The third equation of (7.117) defines the undistorted hypothetical model of
the unobservable autoregression time series yt , and the observed time series xt is
defined by the first equation of (7.117). The time series xt is an additive mixture of
the unobservable elements yt and the distortion process

ht D �tvt ; t 2 Z: (7.118)

From (7.117) and the definition of �t , each observation is free of distortion with
probability Pfht D 0g D Pf�t D 0g D 1 � ". If �t D 1, an additive outlier is
observed:

xt D yt C vt :
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Note that these outliers are also outliers in the variance (see Sect. 7.7) since their
variance is increased compared to undistorted observations:

L fxt j �t D 1g D N
�

0;Dfytg CK	2
�

:

Consider the problem of forecasting the future value yTC� based on an observed
time series x1; : : : ; xT .

Let us introduce the notation

H
T�pC1
T D

0

B

B

B

@

hT

hT�1
:::

hT�pC1

1

C

C

C

A

; Y
TC��pC1
TC� D

0

B

B

B

@

yTC�
yTC��1

:::

yTC��pC1

1

C

C

C

A

2 R
p:

From (7.117), (7.118), and the results of Sect. 7.2, we are going to construct an
optimal forecast for Y TC��pC1

TC� , written as the following conditional expectation:

OY �TC��pC1
TC� D E

n

Y
TC��pC1
TC� j X1

T

o

: (7.119)

We are going to require the following auxiliary result on properties of p-variate
normal densities np.x j �;˙/.
Lemma 7.4. For any p 2 N, .p � p/-matrices ˙1;˙2, and points x.1/; x.2/ 2 Rp ,
the following identity is satisfied:

np.x.1/ j 0p;˙1/np.x.2/ j x.1/; ˙2/ 	 np.x.2/ j 0p;˙1 C˙2/�
� np

�

x.1/ j ˙1.˙1 C˙2/
�1x.2/; ˙1 �˙1.˙1 C˙2/

�1˙1

�

: (7.120)

Proof. Consider a composite normal .2p/-vector X D .X 0
.1/

... X 0
.2//

0 2 R2p , where
LfX.1/g D Np.0p;˙1/, and the conditional distribution of X.2/ for a fixed X.1/ D
x.1/ is normal, LfX.2/ j X.1/ D x.1/g D Np.x.1/; ˙2/. Then the left-hand side of
(7.120) is the joint probability density of X :

pX.1/;X.2/ .x.1/; x.2// D pX.1/.x.1//pX.2/jX.1/ .x.2/ j x.1//: (7.121)

One can verify directly that the joint .2p/-variate distribution ofX has the following
form:

L

8

ˆ

<

ˆ

:

0

B

@

X.1/

X.2/

1

C

A

9

>

=

>

;

D N2p

0

B

@

0

B

@

0p

0p

1

C

A ;

0

B

@

˙1 ˙1

˙1 ˙1 C˙2

1

C

A

1

C

A : (7.122)
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Similarly to (7.121), multiplication theorem for probability density functions
yields

pX.1/;X.2/ .x.1/; x.2// D pX.2/.x.2//pX.1/jX.2/ .x.1/ j x.2//: (7.123)

Applying the properties of marginal and conditional normal probability densities to
(7.122) leads to:

pX.2/.x.2// D np.x.2/ j 0p;˙1 C˙2/;

pX.1/jX.2/ .x.1/ j x.2// D np
�

x.1/ j ˙1.˙1 C˙2/
�1x.2/; ˙1 �˙1.˙1 C˙2/

�1˙1

�

:

Substituting the above expressions into (7.120) yields (7.124). ut
Let us introduce the following notation: V D f0; 1g; the set Vp is composed

of binary p-vectors J D .j1; : : : ; jp/
0, jk 2 V , k D 1; : : : ; p; Dp.J / denotes

a diagonal .p � p/-matrix with diagonal entries j1; : : : ; jp ; the norm jJ j D
p
P

kD1
jk is the Hamming weight of a binary vector J ; the mean square matrix

EfY T�pC1
T .Y

T�pC1
T /0g is denoted as ˙p .

Finally, denote

B" D B".X
T�pC1
T / D

X

J2Vp

�

"jJ j.1 � "/p�jJ jnp
�

X
T�pC1
T j 0p;˙p CK	2Dp.J /

�

�

�K	2Dp.J /.˙p CK	2Dp.J //
�1
�

�

�
0

@

X

J2Vp
"jJ j.1 � "/p�jJ jnp

�

X
T�pC1
T j 0p;˙p CK	2Dp.J /

�

1

A

�1
: (7.124)

Theorem 7.19. In the AR.p/ model with AO distortion (7.117), the mean square
optimal forecast of the p-vector Y TC��pC1

TC� for � � p based on the observations
x1; : : : ; xT is nonlinear:

OY �TC��pC1
TC� D A�

�

Ip � B"

�

X
T�pC1
T

��

X
T�pC1
T ; (7.125)

where A0 is the companion matrix (7.84).

Proof. From (7.117), (7.118), in the above notation, by Lemma 7.2, we have

Y
TC��pC1
TC� D A�0Y

T�pC1
T C

��1
X

kD0
Ak0UTC��k;

Y
T�pC1
T D X

T�pC1
T �HT�pC1

T :

(7.126)
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Taking into account the independence of fuTC1; uTC�g from X1
T , let us use

(7.119), (7.126) to compute the conditional expectation:

OY �TC��pC1
TC� D A�0E

n

X
T�pC1
T �HT�pC1

T j XT�pC1
T ; X1

T�p
o

D

D A�0

�

X
T�pC1
T � E

n

H
T�pC1
T j XT�pC1

T

o�

:

(7.127)

Here we also use the fact that fhT ; hT�1; : : : ; hT�pC1g and fxT�p; xT�p�1; : : : ;
x1g are independent.

Let us compute the auxiliary expectation in (7.127):

H
T�pC1
T D E

n

H
T�pC1
T j XT�pC1

T

o

D

D
Z

Rp

zp
H
T�pC1
T jXT�pC1

T

�

z j XT�pC1
T

�

d z;
(7.128)

where the conditional probability density equals

p
H
T�pC1
T jXT�pC1

T

�

z j XT�pC1
T

�

D
p
H
T�pC1
T ; X

T�pC1
T

�

z; XT�pC1
T

�

p
X
T�pC1
T

�

X
T�pC1
T

� : (7.129)

By (7.126), we have

X
T�pC1
T D Y

T�pC1
T CDp

�

�
T�pC1
T

�

V
T�pC1
T ; (7.130)

and applying the total expectation formula yields

p
X
T�pC1
T

�

X
T�pC1
T

�

D
X

J2Vp
P

n

�
T�pC1
T D J

o

p
Y
T�pC1
T CDp.J /V T�pC1

T

�

X
T�pC1
T

�

:

Since LfY T�pC1
T g D Np.0p;˙p/, LfV T�pC1

T g D Np.0p;K	2Ip/, and the
random variables Y T�pC1

T , V T�pC1
T are independent, from the properties of linear

transformations of normal random vectors [3] we have

p
Y
T�pC1
T CDp.J /V T�pC1

T

�

X
T�pC1
T

�

D np

�

X
T�pC1
T j 0p;˙p CK	2Dp.J /

�

:

This allows us to write

p
X
T�pC1
T

�

X
T�pC1
T

�

D
X

J2Vp
"jJ j.1�"/p�jJ jnp

�

X
T�pC1
T j 0p;˙p CK	2Dp.J /

�

:

(7.131)
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From (7.130) and the second equation of (7.126), by a similar argument, we have

p
H
T�pC1
T ; X

T�pC1
T

�

z; XT�pC1
T

�

D p
H
T�pC1
T

.z/p
Y
T�pC1
T

�

X
T�pC1
T � z

�

D

D
X

J2Vp
"jJ j.1 � "/p�jJ jnp

�

z j 0p;K	2Dp.J /
�

np

�

X
T�pC1
T j z; ˙p

�

:

Let us rewrite this relation by using Lemma 7.4 in the notation

˙1 WWD K	2Dp.J /; ˙2 WWD ˙p; x.1/ WWD z; x.2/ WWD X
T�pC1
T ;

and substitute the result, together with (7.131), into (7.129). This yields

p
H
T�pC1
T jXT�pC1

T

�

z j XT�pC1
T

�

D

D
0

@

X

J2p
"jJ j.1 � "/p�jJ jnp

�

X
T�pC1
T j 0p;˙p CK	2Dp.J /

�

1

A

�1

�

�
X

J2Vp
"jJ j.1 � "/p�jJ jnp

�

X
T�pC1
T j 0p;˙p CK	2Dp.J /

�

�

� np
�

z j K	2Dp.J /
�

˙p CK	2Dp.J /
��1

X
T�pC1
T ;

K	2Dp.J /
�

Ip �K	2
�

˙p CK	2Dp.J /
��1

Dp.J /
�

�

:

By well-known properties of multivariate normal probability densities [3], substi-
tuting this expression into (7.128) proves (7.124), (7.125). ut

Note that the expression for the conditional probability density HT�pC1
T given

a fixed p-step-back history XT�pC1
T that was used to prove Theorem 7.19 can be

rewritten as a mixture of 2p normal p-variate densities:

p
H
T�pC1
T jXT�pC1

T

�

z j XT�pC1
T

�

D
X

J2Vp
qJ np.z j �J ;�J /; z 2 R

p; (7.132)

�J D K	2Dp.J /
�

˙p CK	2Dp.J /
��1

X
T�pC1
T ;

�J D K	2Dp.J /
�

Ip �K	2 �˙p CK	2Dp.J /
��1

Dp.J /
�

;

qJ D
"jJ j.1 � "/p�jJ jnp

�

X
T�pC1
T j 0p;˙p CK	2Dp.J /

�

P

J2Vp
"jJ j.1 � "/p�jJ jnp

�

X
T�pC1
T j 0p;˙p CK	2Dp.J /

� 2 Œ0; 1�;

where
P

J2Vp
qJ 	 1.
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Corollary 7.18. The minimum conditional mean square matrix risk for the optimal
forecasting statistic (7.125) given fixed history X1

T is equal to

R?" .�
0; T; �/ D 	2

��1
X

kD0
.Ak0/�1..Ak0/�1/0C

C A�0

0

@

X

J2Vp
qJ .�J�

0
J C�J /�

0

@

X

J2Vp
qJ�J

1

A

0

@

X

J2Vp
qJ�J

1

A

01
A .A�0/

0:

(7.133)

Proof. Using (7.125), (7.126), let us obtain an expression for the random forecast
error vector:

OY ?TC��pC1
TC� � Y

TC��pC1
TC� D A�0H

T�pC1
T �A�0B"XT�pC1

T �
��1
X

kD0
Ak0UTC��k:

Applying model assumptions (7.117) together with the representation (7.132) and
taking into account the fixed history X1

T leads to an expression for the conditional
matrix risk:

R?" .�
0; T; �/ D E

n� OY ?TC��pC1
TC� � Y TC��pC1

TC�
�

.�/0 j XT�pC1
T ; X1

T�p
o

D

D A�0B"X
T�pC1
T .X

T�pC1
T /0B 0

".A
�
0/

0C
C A�0E

n

H
T�pC1
T .H

T�pC1
T /0 j XT�pC1

T

o

C

C 	2
��1
X

kD0
.Ak0/�1..Ak0/�1/0 � 2A�0B"X

T�pC1
T .B"X

T�pC1
T /0.A�0/0:

(7.134)

From (7.132), we have

E

n

H
T�pC1
T .H

T�pC1
T /0 j XT�pC1

T

o

D
X

J2Vp
qJ .�J�

0
J C�J /;

E

n

H
T�pC1
T j XT�pC1

T

o

D
X

J2Vp
qJ�J D B"X

T�pC1
T :

Substituting the above expressions into (7.134) and performing equivalent transfor-
mations proves (7.133). ut
Corollary 7.19. An optimal one-step-ahead, � D 1, forecasting statistic for a first
order autoregression model (p D 1) can be written as
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OyTC1 D �0xT

0

@ 1�"
�

1C 1

K�1 .1 � .�0/2/
��1

�

�
 

"C .1 � "/ n1
�

xT j 0; 	2= �1� .�0/2
� �

n1
�

xT j 0; 	2 .K C .1 � .�0/2//
�

!�11

A :

Proof. It suffices to assume p D 1, � D 1 in (7.124), (7.125) and to apply the
equality

˙p D 1=
�

1 � .�0/2�: ut

For an AR.p/ hypothetical model without distortion (HT
1 	 0), the autoregres-

sion statistic

QY TC��pC1
TC� D A�0X

T�pC1
T (7.135)

is optimal, as established in Sect. 7.2. Let us compare the properties of forecasting
statistics (7.125) and (7.135).

Corollary 7.20. As the outlier probability tends to zero (" ! 0), the following
asymptotic expansion holds for the optimal forecasting statistic:

OY �TC��pC1
TC� D QY TC��pC1

TC� CO."/1p: (7.136)

Proof. Since for J D 0p the matrixDp.0p/ is a zero .p�p/-matrix, the numerator
in (7.124) is of the orderO."/, and the denominator is of the order O.1/. Applying
this fact to (7.125) and using the notation (7.135) proves (7.136). ut

Note that if K ! 0, which implies

E
˚

H
T�pC1
T


 ! 0p;

then we obtain a result similar to (7.136):

OY �TC��pC1
TC� � QY TC��pC1

TC� ! 0p:

In applications, the values ", K and the distribution fvtg are usually unknown,
and therefore it is impossible to construct the optimal forecasting statistic (7.125).
Instead, the autoregression forecasting statistic (7.135) is used. Let us evaluate the
robustness of this statistic under AO distortion.

Theorem 7.20. In the AR.p/ model under AO distortion (7.117), let us construct
an autoregression forecasting statistic (7.135) to predict Y TC��pC1

TC� for � � p. Then
the matrix risk of forecasting is equal to
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R".�
0; T; �/ D 	2

��1
X

kD0
.Ak0/�1..Ak0/�1/0 C "K	2A�0.A

�
0/

0: (7.137)

Proof. From (7.125), (7.135) we can obtain an expression for the random forecast
error vector:

QY TC��pC1
TC� � Y TC��pC1

TC� D A�0H
T�pC1
T �

��1
X

kD0
Ak0UTC��k:

Substituting this expression in the formula for the matrix risk,

R".�
0; T; �/ D E

n� QY TC��pC1
TC� � Y TC��pC1

TC�
�

.�/0
o

;

and calculating the mean value under the model assumptions (7.117) yields the
formula (7.137). ut
Corollary 7.21. Under the conditions of Theorem 7.20, the risk of forecasting the
future value yTC� equals

r".�
0; T; �/ D 	2

��1
X

kD0

�

.Ak0/11
�2 C "K	2

p
X

jD1

�

.A�0/1j
�2
: (7.138)

Proof. The relation (7.138) follows from (7.137) and the definition of the scalar
risk:

r".�
0; T; �/ D E

˚

. QyTC� � yTC� /2

 D �

R".�
0; T; �/

�

11
: ut

From (7.138) and (7.108), we can see that the forecast risk can be represented as
follows:

r".�
0; T; �/ D r0.T; �/C "K	2

p
X

jD1

�

.A�0/1j
�2
;

where r0.T; �/ is the risk under the undistorted hypothetical model (" D 0).
Similarly to Theorem 7.20 and its corollaries, we can evaluate the forecast risk

under a specification error � D � � �0. Then the statistic (7.135) is replaced by
the following forecasting statistic:

QY TC��pC1
TC� D A�X

T�pC1
T ; (7.139)

where the matrix A is defined by (7.86).
As earlier, the covariance matrix of order p is defined as

˙p D E

n

Y
T�pC1
T .Y

T�pC1
T /0

o

:
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Theorem 7.21. In the AR.p/ model under AO distortion and specification error
� D ���0, � D j� j ! 0, let us construct an autoregression forecasting statistic
(7.139) for predicting Y TC��pC1

TC� , � � p. Then the matrix risk of forecasting
satisfies the following asymptotic expansion:

R".�; �
0; T; �/ D 	2

��1
X

kD0
.Ak0/�1

�

.Ak0/�1
�0 C "K	2

 

.A�0/.A
�
0/

0C

C
��1
X

kD0

�

A�0.A
��k�1
0 /0�

�

.Ak0/�1
�0 C .Ak0/�1.�/0A��k�1

0 .A�0/
0�
!

CO.�2/1p�p:

(7.140)

Proof. As in the proof of Theorem 7.20, from (7.126) and (7.139) we have

QY TC��pC1
TC� � Y TC��pC1

TC� D A�H
T�pC1
TC �

��1
X

kD0
Ak0UTC��k C .A� �A�0/Y T�pC1

T :

Substituting this result into the expression for the matrix risk and taking an average
under the model assumptions (7.117) yields

R".�; �
0; T; �/ D 	2

��1
X

kD0
.Ak0/�1..Ak0/�1/0C.A��A�0/˙p.A

��A�0/0C"K	2A�.A�/0:
(7.141)

By (7.86), we have

A D A0 CA; A D
 

.�/0

0.p�1/�p

!

2 R
p�p:

As in the proof of Corollary 7.6, we obtain

.A0 CA/� D A�0 C
��1
X

kD0
Ak0AA

��k�1
0 CO.jjAjj2/;

and, from well-known matrix properties, we can write

Ak0A D
 

.Ak0/�1 .Ak0/22

! 

.�/0

0.p�1/�p

!

D .Ak0/�1.�/0:

Substituting these relations into (7.141) and performing equivalent matrix transfor-
mations proves (7.140). ut
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Corollary 7.22. Under the conditions of Theorem 7.20, for � D j� j ! 0 the risk
of forecasting the future value yTC� equals

r".�; �
0; T; �/Dr".�0; T; �/C2"K	2

��1
X

kD0
.Ak0/11

p
X

jD1

�

A�0.A
��k�1
0 /0

�

1j
�jCO.�2/;

where the risk r".�0; T; �/ is defined by (7.138).

Proof. The proof is similar to the proof of Corollary 7.21. ut
The Corollaries 7.21, 7.22 allow us to calculate the guaranteed risk rC and the

ı-admissible level of outlier probability "C.ı/ assuming that the specification error
is bounded from above, j� j � � .

To conclude the section, let us mention that an asymptotic expansion for the risk
of a plug-in forecasting statistic based on the least squares estimator O� has been
obtained in [11]; this result will not be reproduced here due to space considerations.

7.9 Robustness of Autoregression Forecasting Under Bilinear
Distortion

7.9.1 Introduction

Although most processes in the real world are nonlinear, they are often modeled
by simpler and better-studied linear stochastic equations. When such linearization
is applied, it is quite important to quantify the effect of nonlinearity on the
mathematical results obtained under a linear model. This section introduces a
nonlinear modification of the linear time series autoregression model—the bilinear
(BL) model [7,8]. Bilinear models have many potential applications, however, most
of the available results are related to macroeconomic and financial time series. For
example, Buyers and Peel [5] have established bilinearity of currency exchange
rates, and Terdik [26] used the bilinear model to study the dynamics of the S&P
500 stock index.

Let us give a formal definition of the BL model, establish some of its properties,
and analyze the robustness of autoregression forecasting under bilinear distortion
BL.p; 0; 1; 1/ by evaluating the respective mean square forecast risk.

7.9.2 The Bilinear Model and Its Stationarity Conditions

Let us consider a time series x0t 2 R, t 2 Z, defined over a probability space
.˝;F;P/ by an AR.p/ linear autoregression model [2] of order p, p 2 N:
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x0t D
p
X

jD1
˛j x

0
t�j C ut ; t 2 Z; (7.142)

where f˛j gpjD1 are autoregression coefficients, futgt2Z are i.i.d. normal random
observation errors with zero expectations and finite variances Dfutg D 	2. Under
this model, the time series is strictly stationary [2, 7] if we have

%.A/ < 1; (7.143)

where %.A/ is the spectral radius of the matrix A 2 Rp�p defined from f˛j gpjD1 as
follows:

A D

0

B

B

B

B

B

@

�˛1 �˛2 : : : �˛p�1 �˛p
1 0 : : : 0 0

0 1 : : : 0 0

: : : : : : : : : : : : : : :

0 0 : : : 1 0

1

C

C

C

C

C

A

:

It is said [7, 8] that a time series xt 2 R, t 2 Z, defined over .˝;F;P/ satisfies a
bilinear model BL.p; 0; 1; 1/ if the following bilinear equation holds:

xt D
p
X

jD1
˛j xt�j C ˇxt�1ut�1 C ut ; t 2 Z; (7.144)

where ˇ is the bilinearity coefficient. If ˇ D 0, then the model (7.144) is equivalent
to (7.142): xt 	 x0t . If we have

�
�

A˝ AC 	2B ˝ B
�

< 1; (7.145)

then the time series (7.144) is strictly stationary [26]; here ˝ is the Kronecker matrix
product, and the elements of the matrixB 2 Rp�p are zeros except forB.1; 1/ D ˇ.

7.9.3 First and Second Order Moments in Stationary Bilinear
Time Series Models

It is known [2] that the expectation of a process defined by a stationary autoregres-
sion model (7.142) equals zero: Efx0t g D 0, and that the expectation of a stationary
bilinear process (7.144) can be written as

Efxt g D ˇ	2

0

@1 �
p
X

jD1
˛j

1

A

�1

:
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Assuming stationarity, let us introduce the following notation for the respective
second order moment functions of the random processes (7.142) and (7.144):

c0.s/ WWD Efx0t x0t�sg; c.s/ WWD Efxtxt�sg; s 2 Z:

Moments of stationary AR.p/ processes (7.142) satisfy the Yule–Walker system of
equations [2]:

c0.0/ D
p
X

jD1
˛j c0.j /C 	2;

c0.s/ D
p
X

jD1
˛j c0.j � s/; s D 1; : : : ; p ;

or, in a matrix form,

Wc0 D 	2i1;

where the matrix W is W D W1 C IpC1 CW2 2 R
.pC1/�.pC1/; the moment vector

c0 is defined as c0 D .c0.0/; : : : ; c0.p//
0 2 R

pC1; the matrix IpC1 2 R
.pC1/�.pC1/

is the identity matrix; i1 D .1; 0; : : : ; 0/ 2 R
pC1 represents the first column of the

matrix IpC1; and

W1 D

0

B

B

B

B

B

@

0 �˛1 �˛2 : : : �˛p
0 �˛2 �˛3 : : : 0

: : : : : : : : : : : : : : :

0 �˛p 0 : : : 0

0 0 0 : : : 0

1

C

C

C

C

C

A

2 R
.pC1/�.pC1/;

W2 D

0

B

B

B

B

B

@

0 0 : : : 0 0

�˛1 0 : : : 0 0

: : : : : : : : : : : : : : :

�˛p�1 �˛p�2 : : : 0 0

�˛p �˛p�1 : : : �˛1 0

1

C

C

C

C

C

A

2 R
.pC1/�.pC1/:

If the matrix W is nonsingular, then we have c0 D W �1i1.

Theorem 7.22. Under the bilinear model (7.144), (7.145), the moments of the time
series satisfy the following relations:
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.1 � ˇ2	2/c.0/ D
p
X

lD1
˛j c.j /C 	2 C ˇ2	4 C ˇ2	4.1C ˛1/

0

@1 �
p
X

jD1
˛j

1

A

�1

;

c.1/ D
p
X

jD1
˛j c.j � 1/C 2ˇ2	4

0

@1 �
p
X

jD1
˛j

1

A

�1

;

c.s/ D
p
X

jD1
˛j c.j � s/C ˇ2	4

0

@1 �
p
X

jD1
˛j

1

A

�1

; s D 2; : : : ; p:

Proof. Let us multiply every term in the stochastic difference equation (7.144) by
xt�s and compute the expectations

Efxtxt�sg D
p
X

jD1
˛jEfxt�j xt�sgCˇEfxt�1xt�sut�1gCEfxt�sutg; s D 0; : : : ; p:

(7.146)
For s D 0, the above expression becomes

Efx2t g D
p
X

jD1
˛jEfxt�j xt g C ˇEfxt�1xtut�1g C Efxtut g:

From (7.144), it follows that Efxtut g D 	2. To compute Efxt�1xtut�1g, let us
multiply each term of (7.144) by xt�1ut�1:

Efxtxt�1ut�1g D ˛1xtEfx2t�1ut�1gC

C
p
X

jD2
˛jEfxt�j xt�1ut�1g C ˇEfx2t�1u2t�1g C Efutxt�1ut�1g:

The independence between the elements of the time series and the future observation
errors, as well as the uncorrelatedness of the errors, implies that Efxt�1ut�1utg D 0.
Now it is easy to show that

Efxt�kxtutg D ˇ	4

0

@1 �
p
X

jD1
˛j

1

A

�1

; k D 1; : : : ; p;

Efx2t utg D 2ˇ	4

0

@1 �
p
X

jD1
˛j

1

A

�1

:
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Let us obtain an expression for Efx2t�1u2t�1g by squaring the relation (7.144) and
calculating the expectation

Efx2t g D E

8

ˆ

<

ˆ

:

0

@

p
X

jD1
˛j xt�j C ˇxt�1ut�1

1

A

2
9

>

=

>

;

C Efu2t g:

Similarly, let us compute Efx2t u2t g by using the normality of futgt2Z:

Efx2t u2t g D E

8

ˆ

<

ˆ

:

0

@

p
X

jD1
˛j xt�j C ˇxt�1ut�1

1

A

2
9

>

=

>

;

Efu2t g C Efu4t g D 	2Efx2t g C 2	4

since we have Efu2t g D 	2, Efu3t g D 0, Efu4t g D 3	4. Then we can write

Efxtxt�1ut�1g D ˇ	4.1C ˛1/

0

@1 �
p
X

jD1
˛j

1

A

�1

C ˇ	4 C ˇ	2Efx2t g:

Substituting the above expression into (7.146) for s D 0 and applying the notation
proves the first equality stated in the theorem, and the remaining relations follow
from (7.146) and the above expressions for Efx2t ut g and Efxtxt�kut g with k � 1.

ut
Let us rewrite the relations of Theorem 7.22 in a matrix form and obtain their

asymptotic expansions as ˇ ! 0. We are going to use the following notation:

1pC1 D .1; 1; : : : ; 1/0 2 R
pC1 and 1.pC1/�.pC1/ 2 R

.pC1/�.pC1/

denote, respectively, a .p C 1/-vector and a .p C 1/ � .p C 1/-matrix of ones, and
f is a column vector defined as

f D

0

B

@1C .1C ˛1/

0

@1 �
p
X

jD1
˛j

1

A

�1

; 2

0

@1 �
p
X

jD1
˛j

1

A

�1

;

0

@1 �
p
X

jD1
˛j

1

A

�1

; : : : ;

0

@1�
p
X

jD1
˛j

1

A

�11

C

A

0

2 R
pC1:

Corollary 7.23. Under the conditions of Theorem 7.22, the following matrix
relation holds:
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.W � ˇ2	2i1i
0
1/ c D 	2i1 C ˇ2	4f:

If jW j ¤ 0, ˇ2	2W �1.1; 1/ ¤ 1, then we also have

c D W �1�IpC1 � ˇ2	2i1i 01W �1��1.	2i1 C ˇ2	4f /: (7.147)

Theorem 7.23. Under the stationary bilinear model (7.144), (7.145), assuming
that jW j ¤ 0, the second order moment vector satisfies the following asymptotic
expansion as ˇ ! 0:

c D 	2W �1i1 C ˇ2	4.W �1f CW �1.1; 1/W �1i1/C o.ˇ2/1pC1:

Proof. By the conditions of the theorem, we have

�

IpC1 � ˇ2	2i1i 01W �1��1 D
D IpC1 C ˇ2	2i1i

0
1W

�1 C �

ˇ2	2i1i
0
1W

�1�2�IpC1 � ˇ2	2i1i
0
1W

�1��1:

Let us fix f˛j gpjD1 (consequently, the matrix W ) and the variance 	2. There exists
a sufficiently small ˇ0 such that ˇ2	2W �1.1; 1/ ¤ 1 for all ˇ < ˇ0; then we have
the following expansion:

�

IpC1 � ˇ2	2i1i
0
1W

�1��1 D IpC1 C ˇ2	2i1i
0
1W

�1 C o.ˇ2/ 1.pC1/�.pC1/:

Substituting this expression into (7.147) proves the theorem. ut
Corollary 7.24. Under the conditions of Theorem 7.23, the following asymptotic
expansion holds for c.0/ D Efx2t g as ˇ ! 0:

c.0/ D 	2W �1.1; 1/C ˇ2	4
�

i 01W �1f C .W �1.1; 1//2
�C o.ˇ2/: (7.148)

7.9.4 Robustness of Autoregression Forecasting Under
Bilinear Distortion

Under a bilinear model, let a p-segment xTC1; : : : ; xTCp of future time series
elements be forecast based on an observationX D fx1; : : : ; xT g of length T , T > p.
We are going to construct an autoregression forecast [2, 12] which is mean square
optimal under an AR.p/ linear model with a priori known parameters and depends
only on the p previous elements of the time series: fxT�pC1; : : : ; xT g. Let us
investigate the influence of the bilinear term in (7.144) on forecasting performance.
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Lemma 7.5. Stochastic difference equations (7.142), (7.144) can be rewritten in
the following equivalent form:

S1X
0TCp
TC1 D S2X

0T
T�pC1 C U

TCp
TC1 ; (7.149)

S1X
TCp
TC1 D S2X

T
T�pC1 C ˇhXU iTCp�1

T C U
TCp
TC1 ; (7.150)

where S1; S2 2 Rp�p ,

S1 D

0

B

B

@

1 �˛1 : : : �˛p�1
0 1 : : : �˛p�2
: : : : : : : : : : : :

0 0 : : : 1

1

C

C

A

; S2 D

0

B

B

@

˛p 0 : : : 0

˛p�1 ˛p : : : 0

: : : : : : : : : : : :

˛1 ˛2 : : : ˛p

1

C

C

A

;

X0m
n D .x0m; : : : ; x

0
n/

0 2 R
m�nC1; Xm

n D .xm; : : : ; xn/
0 2 R

m�nC1;

U m
n D .um; : : : ; un/

0 2 R
m�nC1; hXU imn D .xmum; : : : ; xnun/

0 2 R
m�nC1:

Proof. The relations (7.149), (7.150) follow from (7.142), (7.144) and the notation.
ut

Thus, from the vector of known values of the time series XT
1 2 Rp we need

to construct a vector of estimators for the future values OXTCp
TC1 D . OxTC� / 2 Rp ,

where each OxTC� is a �-step-ahead forecast, � D 1; : : : ; p. For a quantitative
characterization of forecasting performance, we are going to calculate the mean
square matrix risk, which is defined as

R D .R.i; j //
p
i;jD1 D E

n

�

X
TCp
TC1 � OXTCp

TC1
��

X
TCp
TC1 � OXTCp

TC1
�0o
;

and a collection of scalar “local” risks

r.�/ D R.p � � C 1; p � � C 1/ D E
˚

.xTC� � OxTC� /2



; � D 1; : : : ; p:

Under the autoregression model (7.142), (7.149), the autoregression forecast OX0TCp
TC1

is derived from the following relations [2, 12]:

S1 OX0TCp
TC1 D S2X

0T
T�pC1; OX0TCp

TC1 D S�1
1 S2X

0T
T�pC1: (7.151)

Theorem 7.24. In the stationaryAR.p/ model (7.142), (7.143), the autoregression
forecast (7.151) is unbiased:

Ef OX0TCp
TC1 � X

0TCp
TC1 g D 0p 2 R

p;
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its matrix risk equals R0 D 	2.S 0
1S1/

�1 and is minimal, i.e., for an arbitrary
forecasting statistic and its matrix risk R�

0 , the matrix difference .R�
0 �R0/ 2 Rp�p

is positive-semidefinite.

Proof. By (7.149), (7.151), we have

S1

�

X
0TCp
TC1 � OX0TCp

TC1
�

D U
TCp
TC1 ; (7.152)

and consequently

S1E
˚

X
0TCp
TC1 � OX0TCp

TC1

 D 0p:

Nonsingularity of S1 proves the unbiasedness of the forecast. From (7.152) and the
definition of the forecast risk, we have S1R0S�1

1 D 	2Ip . Since jS1j ¤ 0, we can
write R0 D 	2.S1S

0
1/

�1.
Let us prove optimality of the forecast (7.151). Consider an arbitrary forecasting

statistic OX0�TCp
TC1 2 R

p and compute its risk:

R�
0 D E

n

� OX0�TCp
TC1 � OX0TCp

TC1
�� OX0�TCp

TC1 � OX0TCp
TC1

�0oC

C E

n

� OX0�TCp
TC1 � OX0TCp

TC1
�� OX0TCp

TC1 �X0TCp
TC1

�0oC

C E

n

� OX0TCp
TC1 � X

0TCp
TC1

�� OX0�TCp
TC1 � OX0TCp

TC1
�0oCR0:

By (7.152), we have

X
0�TCp
TC1 � OX0TCp

TC1 D S�1
1 U

TCp
TC1 ;

and the second and third summands are equal to zero since a forecasting statistic
doesn’t depend on future observation errors fuTC1; : : : ; uTCpg. This proves that the
matrix R�

0 �R0 is positive-semidefinite. ut
Corollary 7.25. Under the conditions of Theorem 7.24, the local forecast risks
(7.151) can be written as

r.�/ D 	2
�
X

jD1

�

S�1
1 .1; j /

�2
; � D 1; : : : ; p:

Let us assume that the bilinearity coefficient ˇ in the stationary model (7.144),
(7.145) is sufficiently small to continue using an autoregression forecast statistic
similar to (7.151):

S1 OXTCp
TC1 D S2X

T
T�pC1; OXTCp

TC1 D S�1
1 S2X

T
T�pC1: (7.153)
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Lemma 7.6. In the stationary bilinear model (7.144), (7.145), the forecast (7.153)
is biased:

E
˚

X
TCp
TC1 � OXTCp

TC1

 D ˇ	21p ¤ 0p 2 R

p:

Proof. From (7.150), (7.153), we have

X
TCp
TC1 � OXTCp

TC1 D ˇS�1
1 hXU iTCp�1

T C S�1
1 U

TCp
TC1 :

This leads to the equality

E

n

X
TCp
TC1 � OXTCp

TC1
o

D ˇ	21p:

Since jS1j ¤ 0, we have

E

n

X
TCp
TC1 � OXTCp

TC1
o

¤ 0p;

proving the bias. ut
Theorem 7.25. In the stationary bilinear model (7.144), (7.145), the mean square
matrix risk of the autoregression forecast (7.153) equals

R D 	2.S 0
1S1/

�1 C ˇ2	2c.0/.S1/
�1.S 0

1/
�1 C ˇ2	4.S1/

�1.1p�p C Ip/.S 0
1/

�1C

C 2ˇ2	4

0

@1 �
p
X

jD
˛j

1

A

�1

.S1/
�1.I�1;0;1

p � Ip/.S 0
1/

�1; (7.154)

where I�1;0;1
p is a tridiagonal .p � p/-matrix with the elements lying on the three

diagonals equal to 1.

Proof. From (7.150) and (7.153), we have

S1
�

X
TCp
TC1 � OXTCp

TC1
� D ˇhXU iTCp�1

T C U
TCp
TC1 ;

and

S1E
n

� OXTCp
TC1 � X

TCp
TC1

��

X
TCp
TC1 � OXTCp

TC1
�0o
S 0
1 D S1RS

0
1 D

D ˇ2E
n

hXU iTCp�1
T

�hXU iTCp�1
T

�0oC ˇE
n

hXU iTCp�1
T

�

U
TCp
TC1

�0oC

C ˇE
n

U
TCp
TC1

�hXU iTCp�1
T

�0oC E

n

U
TCp
TC1

�

U
TCp
TC1

�0o
:
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Calculating the matrices in the right-hand side of this relation elementwise,
using the intermediate results from the proof of Theorem 7.22, and applying the
nonsingularity condition jS1j ¤ 0 proves (7.154). ut
Corollary 7.26. Under the conditions of Theorem 7.25, the local risks equal

r.�/ D 	2
�
X

jD1

�

S�1
1 .1; j /

�2 C ˇ2	2c.0/

�
X

jD1

�

S�1
1 .1; j /

�2 C

C ˇ2	4

0

B

@

�
X

jD1

�

S�1
1 .1; j /

�2 C
0

@

�
X

jD1
S�1
1 .1; j /

1

A

2

C

C4
0

@1 �
p
X

jD1
˛j

1

A

�1
��1
X

jD1
S�1
1 .1; j /S�1

1 .1; j C 1/

1

C

A ; � D 1; : : : ; p:

(7.155)

Corollary 7.27. If jW j ¤ 0, then asymptotically as ˇ ! 0 we have:

RD 	2.S 0
1S1/

�1 Cˇ2	4

0

@W �1.1; 1/.S1/�1.S 0
1/

�1 C .S 0
1/

�1.1p�p C Ip/.S 0
1/

�1 C

C2
�

1 �
p
X

jD1
˛j

��1
.S1/

�1.I�1;0;1
p � Ip/.S 0

1/
�1
1

AC o.ˇ2/1p�p;

(7.156)

r.�/ D 	2
�
X

jD1
.S�1
1 .1; j //2 C ˇ2	4

0

@.W �1.1; 1/C 1/

�
X

jD1
.S�1
1 .1; j //2 C

C
� �
X

jD1
S�1
1 .1; j /

�2

C4
�

1 �
p
X

jD1
˛j

��1 ��1
X

jD1
S�1
1 .1; j /S�1

1 .1; jC1/
1

AC

C o.ˇ2/; � D 1; : : : ; p:

(7.157)

Proof. Substitute (7.150) into (7.156) and (7.157). ut

7.9.5 Robustness Analysis of Autoregression Forecasting

Assume that the bilinear distortion level ˇ lies in a small interval Œ�ˇC; ˇC�,
ˇC � 0. Robustness of the autoregression forecasting statistic (7.153) will be
evaluated by using the robustness indicators defined in Sect. 4.4:
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• Risk instability coefficient �.�/:

�.�/ D rC.�/� r0.�/

r0.�/
;

where rC.�/ D sup
˚

r.�/ W ˇ 2 Œ�ˇC; ˇC�



is the guaranteed forecast risk, and

r0.�/ D 	2
�
X

jD1

�

.S1/
�1.1; j /

�2

is the minimum risk value (obtained under the undistorted model, ˇ D 0);
• ı-admissible distortion level ˇC.ı; �/:

ˇC.ı; �/ D sup
˚

ˇC W �.�/ � ı



:

Smaller values of rC.�/, �.�/ and larger values of ˇC.ı; �/ correspond to higher
robustness under bilinear distortion.

Theorem 7.26. In a stationary bilinear model (7.144), (7.145), if jW j ¤ 0;

ˇC ! 0, then

�.�/ D ˇ2C	2
0

@

�
X

jD1

�

S�1
1 .1; j /

�2

1

A

�10
B

@

�

W �1.1; 1/C 1
�

�
X

jD1

�

S�1
1 .1; j /

�2 C

C
0

@

�
X

jD1
S�1
1 .1; j /

1

A

2

C 4

0

@1 �
p
X

jD1
˛j

1

A

�1
��1
X

jD1
S�1
1 .1; j /S�1

1 .1; j C 1/

1

C

AC o.ˇ2C/:

Proof. Substitute (7.157) into the expression for �.�/. ut
Theorem 7.26 yields an approximation for ˇC.ı; �/:

ˇC.ı; �/ 
 ı1=2.	2/�1=2
0

@

�
X

jD1

�

S�1
1 .1; j /

�2

1

A

1=2

�

�

0

B

@

�

W �1.1; 1/C 1
�

�
X

jD1

�

S�1
1 .1; j /

�2 C
0

@

�
X

jD1
S�1
1 .1; j /

1

A

2

C

C4
0

@1 �
p
X

jD1
˛j

1

A

�1
��1
X

jD1
S�1
1 .1; j /S�1

1 .1; j C 1/

1

C

A

�1=2

:

(7.158)
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Fig. 7.3 The exact risk, its point and 95 % confidence interval estimates for ˇ D 0; 0.2; 0.3

Fig. 7.4 The asymptotic risk, its point and 95 % confidence interval estimates for ˇ D 0; 0.2; 0.3

7.9.6 Numerical Results

Let us consider a bilinear model BL(10,0,1,1) of order p D 10:

xt D �0:5xt�1 � 0:5xt�2 C 0:1xt�3 C 0:2xt�4 � 0:2xt�5 � 0:1xt�6 � 0:2xt�7C
C 0:2xt�8 C 0:1xt�9 � 0:1xt�10 C ˇxt�1ut�1 C ut ; Lfugt D N.0; 1/:

A total of N D 1;000 Monte-Carlo simulation rounds were performed, and point
estimates, as well as .1 � "/-confidence intervals, were computed for the forecast
risk (7.155). In Figs. 7.3 and 7.4, these estimates of the forecast risk are plotted
against forecast depth � ; circles indicate point estimates and dashed lines are the
95 % confidence limits; solid lines are the exact (Fig. 7.3) and asymptotic (Fig. 7.4)
values of risk defined by the formulas (7.155), (7.157). Figures 7.5 and 7.6 give a
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Fig. 7.5 The exact risk, its point and 95 % confidence interval estimates for � D 1; 5

Fig. 7.6 The asymptotic risk, its point and 95 % confidence interval estimates for � D 1; 5

Table 7.1 Critical levels of bilinear distortion

�
�ı

�
1 2 5

0.1 0.141 0.171 0.163
0.5 0.316 0.383 0.364
1.0 0.447 0.542 0.515

similar presentation of the dependence between the forecast risk and the bilinearity
coefficient ˇ.

Figures 7.5 and 7.6 show that as the bilinearity level ˇ increases, the risk
of the autoregression forecasting statistic, starting with some level ˇ�, is rapidly
increasing; in this case the autoregression forecast becomes unusable.

Table 7.1 presents ı-admissible distortion levels ˇC.ı; �/ computed from (7.158)
for different values of ı and � .
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Chapter 8
Optimality and Robustness of Vector
Autoregression Forecasting Under Missing
Values

Abstract In this chapter, robustness of vector autoregression time series forecast-
ing is studied under the influence of missing values—a common type of distortion
which is especially characteristic of large datasets. Assuming a non-stochastic
missing values template, a mean square optimal forecasting statistic is constructed
in the case of prior knowledge of the VAR model parameters, and its risk instability
coefficient is evaluated under missing values and model specification errors. In the
case of parametric prior uncertainty, a consistent forecasting statistic and an
asymptotic expansion of the corresponding forecast risk are obtained. The chapter
is concluded by considering plug-in forecasting under simultaneous influence of
outliers and missing values.

8.1 VAR Time Series Models Under Missing Values

Missing values are a very common distortion of experimental data [4, 14, 31].
Vector time series in econometrics [22], biometrics, engineering, and numerous
other applications often contain missing components, which are usually caused by
the following reasons [6, 26]:

(1) the data doesn’t exist (is undefined) at certain time points (for instance,
economic analysts observing only monthly, quarterly, or yearly data);

(2) recording errors (due to malfunctions or other interruptions of the measurement
process);

(3) some of the data points have been determined to be outliers and removed (for
example, incorrectly registered or anomalous experimental data).

Under this type of distortion, many statistical software packages simply fill in
the missing values based on the observed data and return to a standard forecasting
problem. However, this approach leads to an uncontrolled increase of the forecast
risk and cannot be justified from a scientific viewpoint. A fully mathematically

Y. Kharin, Robustness in Statistical Forecasting, DOI 10.1007/978-3-319-00840-0 8,
© Springer International Publishing Switzerland 2013
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justified approach to forecasting under missing values requires, first of all, a definite
mathematical model.

Assume that the observed d -variate time series Yt satisfies the VAR.1/ autore-
gression model (as mentioned in Sect. 3.5.4, this model can be used to approximate
the more complex VARMA.p; q/ model as accurately as required):

Yt D BY t�1 C Ut ; t 2 Z; (8.1)

where Yt D .Yt1; : : : ; Ytd/
0 2 Rd , B D .Bkl/ 2 Rd�d is a matrix of (generally

unknown) autoregression coefficients such that all of its eigenvalues lie inside the
unit circle; Ut D .Ut1; : : : ; Utd/ 2 Rd is the d -variate innovation process; fUtg are
jointly independent random vectors with zero expectations, EfUt g D 0d , and the
covariance matrix

EfUtU 0
t g D ˙ D .	kl/ 2 R

d�d

is positive-definite and independent of time t . Observations of the process fYtg
contain missing values. As in [10, 11], for each time point t 2 Z, we define the
missing values template—a binary vectorOt D .Ot1; : : : ; Otd/

0 2 f0; 1gd , where

Oti D
(

1; if the component Yti is observed;

0; if the component Yti is missing:

Denote the minimal and maximal time points (bounds of the observation time
period) as, respectively,

t� D min

(

t 2 Z W
d
X

iD1
Oti > 0

)

; tC D max

(

t 2 Z W
d
X

iD1
Oti > 0

)

:

Since, under the assumed conditions, the time series (8.1) is stationary, without
loss of generality we are going to assume t� D 1, tC D T , where T is the
observation length. Absence of distortion, i.e., the case of the hypothetical model
VAR.1/ without missing values, corresponds to the template

Oti 	 1; t D 1; : : : ; T I i D 1; : : : ; d:

The stationary time series (8.1) is characterized by a zero expectation, a
covariance matrix G0 and a covariance functionG� [1]:

EfYtg D 0d ; CovfYt ; Yt g D G0 D
C1
X

iD0
Bi˙.B 0/i ;

CovfYt ; YtC�g D G� D B�G01.�/CG0.B
0/j� j1.��/; � ¤ 0:

(8.2)
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In the existing literature on statistical data analysis under missing values (see,
e.g., [14]), two classes of assumptions are made about the missing values templates:
missing at random and missing at nonrandom. In the better studied first class (values
missing at random), it is assumed that fOtg are jointly independent binary random
vectors independent of the observation vectors fYt g, and the probability that a value
is missing PfOti D 0g D " is sufficiently small. Optimality of statistical algorithms
is evaluated not for a specific realization of the template fOt g, but jointly over all
possible realizations of the random process fOt g. In the second class, the missing
values template fOt g is assumed to be deterministic, and the optimal statistics are
chosen for a fixed realization of the missing values template determined by the
experimental results. We are going to follow the latter approach, assuming from
now on that fO1; : : : ; OT g is a deterministic sequence of binary vectors serving as a
parameter of the observation model.

To conclude the first section, let us formulate a family of additional assumptions
on the innovation process (A1 �A5) and the missing values template (A6 �A7) that
will be used in the remaining part of the chapter.

A1. The fourth moment of the innovation process is bounded:

9C 2 .0;C1/ W EfU 4
ti g � C 8 t 2 Z; 8 i 2 f1; : : : ; d g:

A2. The covariance matrix of the innovation process is nonsingular:

jCovfUt ; Ut gj D j˙ j ¤ 0; t 2 Z:

A3. The eighth moment of the innovation process is bounded:

9C 2 .0;C1/ W EfU 8
ti g � C 8 t 2 Z; 8 i 2 f1; : : : ; d g:

A4. The fourth moment of the innovation process is independent of time:

EfUti1 : : : Uti4g D ˙
.4/
i1;:::;i4

; t 2 Z; i1; i2; i3; i4 2 f1; : : : ; d g:

A5. The innovation process is normally distributed:

LfUtg D N.0d ;˙/; t 2 Z; j˙ j ¤ 0:

A6. For any pair of vector components, as the observation length tends to infinity,
this pair is simultaneously observed infinitely often at single time points and at
pairs of consecutive time points:

T�k
X

tD1
OtCk;iOtj �!

T!C1 C1; k 2 f0; 1g; i; j 2 f1; : : : ; d g:
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A7. The following asymptotic relations are satisfied:

T�k
P

tD1
OtCk;iOtj

T � k �!
T!C1 #k;i;j 2 .0; 1�;

T�1
P

t;t 0D1
OtCk;iOtjOt 0Ck0;i 0Ot 0j 0ıt�t 0;�

T � j� j � 1 �!
T!C1

e#�;k;k0;i;j;i 0;j 0 2 Œ0; 1�;

where #k;i;j is the limit frequency of observing a vector component pair .i; j /
at time points separated by k time units;e#�;k;k0;i;j;i 0;j 0 is the limit frequency of
observing a pair .i; j / jointly with a pair .i 0; j 0/ at time points separated by
� C k� k0 and � time units w.r.t. the first pair for � 2 Z, k; k0 2 f0; 1g, and the
indices i; j; i 0; j 0 lie in f1; : : : ; d g. Obviously, the following relation holds for
the limit frequencies:e#0;k;k;i;j;i;j D #k;i;j , where k 2 f0; 1g, i; j 2 f1; : : : ; d g.

Note some simple relations between these assumptions:

(1) A1 follows from A3.
(2) A1, A2, A3, A4 follow from A5.
(3) A6 follows from A7.

8.2 The Optimal Forecasting Statistic and Its Risk

Let us consider the problem of statistical forecasting in the autoregression model of
time series (8.1) given a fixed missing values template fOtg for three levels of prior
uncertainty in the model parameters B , ˙ :

(1) true values B , ˙ are a priori known;
(2) a specification error is present in the definition of the matrices B , ˙ ;
(3) the parameters B , ˙ are unknown.

Let us begin by considering the case of complete prior knowledge. Assume that
a �-step-ahead, � 2 N, forecast of the future value YTC� 2 Rd is constructed
for a time series satisfying the vector autoregression model (8.1) based on a time
series Y1; : : : ; YT of length T 2 N with a corresponding missing values template
O1; : : : ; OT under prior knowledge of B , ˙ .

Let us define a finite set

M D ˚

.t; i/ W t 2 f1; : : : ; T g; i 2 f1; : : : ; d g; Oti D 1





8.2 The Optimal Forecasting Statistic and Its Risk 235

which contains pairs of time points and indices of the observed components .t; i/
ordered lexicographically; let K D jM j be the total number of the observed
components. We are going to define a bijection 
.t; i/ W M $ f1; : : : ; Kg and
its inverse function N
.k/ W f1; : : : ; Kg $ M . Let us construct a K-vector of all
observed components:

X D .X1; : : : ; XK/
0 2 R

K; Xk D Y N
.k/; k 2 f1; : : : ; Kg:

For Ot D 1d , t 2 f1; : : : ; T g, the observations contain no missing values, and

K D Td; X D �

Y 0
1 ; : : : ; Y

0
T

�0 2 R
Td;


.t; i/ D i C .t � 1/d; t 2 f1; : : : ; T g; i 2 f1; : : : ; d g;
N
.k/ D ..k � 1/ Div d C 1; .k � 1/ Mod d C 1/ ; k 2 f1; : : : ; Kg;

where n Div m stands for the integer quotient of n divided by m, and n Mod m is
the residue of the division. Let

OYTC� D OYTC� .X/ W RK ! R
d

be a �-step-ahead forecasting statistic based on an observation of length T . As in
Chap. 4, the performance of the forecast will be characterized by the matrix risk of
forecasting,

R D E

�

� OYTC� � YTC�
� � OYTC� � YTC�

�0	 2 R
d�d ;

the scalar risk of forecasting: r D tr .R/ � 0, and (under assumption A2) the
forecast risk instability coefficient (see Sect. 4.4):

� D r � r0

r0
� 0; r0 D tr

 

��1
X

iD0
Bi˙.B 0/i

!

> 0;

where r0 is the minimum risk. This risk value r0 is attained for a �-step-ahead
forecast OYTC� D B�YT based on an observation of length T under prior knowledge
of the parameters B , ˙ in the absence of missing values. One can think of the
forecast risk instability coefficient as the relative risk increment due to missing
values w.r.t. the minimum risk.

Let us denote covariance matrices as follows:

F D .Fij/ D CovfX;Xg 2 R
K�K;

H D .Hij/ D CovfX; YTC�g 2 R
K�d ;

A0 D A0.B;˙/ D H 0F�1 2 R
d�K; T; � 2 N:

(8.3)
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Lemma 8.1. The following equalities hold for the covariance matrices F andH :

Fij D
�

B N
1.i/� N
1.j /G0
�

N
2.i/; N
2.j /
; i; j 2 f1; : : : ; Kg; i � j I

Hij D
�

BTC�� N
1.i/G0
�

j; N
2.i/
; i 2 f1; : : : ; Kg; j 2 f1; : : : ; dg; T; � 2 N:

Proof. To compute the matrix F , it is sufficient to observe that

Fij D Cov
˚

Xi ;Xj

 D Cov

˚

Y N
.i/; Y N
.j /

 D �

CovfY N
1.i/; Y N
1.j /g
�

N
2.i/; N
2.j / D
D �

B N
1.i/� N
1.j /G
�

N
2.i/; N
2.j / ; i; j 2 f1; : : : ; Kg; i � j:

The expression for the matrix H can be obtained similarly. ut
Assuming prior knowledge of model parameters, the following theorem con-

structs an optimal (in the maximum likelihood sense) forecast for a vector autore-
gression model of time series under missing values and gives a formula for its risk.

Theorem 8.1. In the model (8.1), if assumption A5 is satisfied, the parameters
B , ˙ are a priori known, and the covariance matrix F is nonsingular, jF j ¤ 0,
the optimal (in the sense of maximum likelihood) �-step-ahead forecasting statistic
based on an observation of length T is the following conditional expectation:

OYTC� D EfYTC� j Xg D A0X; (8.4)

and the respective matrix risk equals

R D G0 �H 0F�1H: (8.5)

Proof. Let YC D .X 0; Y 0
TC� /0 2 RKCd denote the composite vector of all observed

values and the unknown future value YTC� . Under the conditions of the theorem,
the vector YC is normally distributed. The likelihood function can be written as

L.YTC� IB;˙/ D nK .X j 0K; F / nd
�

YTC� j H 0F�1X;G0 �H 0F�1H
�

; (8.6)

where nK .X j �;˙/ is the K-variate normal probability density with parameters
�;˙ . An optimal forecast in the maximum likelihood sense is the solution of the
following optimization problem:

L.YTC� IB;˙/ ! max
YTC�2Rd

:
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The first multiplier in the right-hand side of (8.6) doesn’t depend on YTC� . Thus,
from well-known properties of joint normal distributions and (8.3), we obtain the
following unique solution:

OYTC� D H 0F�1X D A0X;

which coincides with (8.4).
From the total expectation formula, we have

R D E

n� OYTC� � YTC�
�

. OYTC� � YTC� /0
o

D
D E

˚

E
˚

.EfYTC� j Xg � YTC� / .EfYTC� j Xg � YTC� /0 j X

 D
D E fCov fYTC� ; YTC� j Xgg D E

˚

G0 �H 0F�1H

 D G0 �H 0F �1H;

leading to the expression (8.5) for the matrix risk. ut
Since the forecasting statistic (8.4) is defined as a conditional expectation, by

Theorem 4.1 it delivers the minimum risk (8.5).

Corollary 8.1. Under the conditions of Theorem 8.1, the scalar risk and the risk
instability coefficient for the statistic (8.4) can be written as

r D tr .G0/ � tr .H 0F �1H/; � D tr .G0/� tr .H 0F�1H/

tr

�

��1
P

iD0
Bi˙.B 0/i

� � 1: (8.7)

8.3 Robustness of the Optimal Forecasting Statistic Under
Specification Errors

As we can see from (8.3), (8.4), the matrix coefficientA0 of the optimal forecasting
statistic depends on model parameters—.d � d/-matrices B , ˙ . The expressions
(8.5), (8.7) define the risk under prior knowledge of B and ˙ . Let us evaluate the
forecast risk under specification errors in the model (8.1).

Assume that the parameters of a vector autoregression model under missing
values have been defined incorrectly, i.e., that the forecast

OYTC� D OA0X 2 R
d (8.8)

is based on a deterministic matrix

OA0 ¤ A0 2 R
d�K: (8.9)
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Theorem 8.2. In the model (8.1) under assumption A5, let the forecast (8.8) be
constructed from the misspecified parameters (8.9), and let jF j ¤ 0. Then the matrix
forecast risk equals

R D G0 �H 0F�1H C
�

A0 � OA0
�

F
�

A0 � OA0
�0
:

Proof. It is sufficient to perform the following equivalent transformations:

R D E

�

�

YTC� � OYTC�
� �

YTC� � OYTC�
�0	 D

D E

�

�

YTC� � A0X C A0X � OA0X
� �

YTC� � A0X C A0X � OA0X
�0	 D

D E
˚

.YTC� �A0X/ .YTC� �A0X/0

CE

�

�

A0X � OA0X
� �

A0X � OA0X
�0	 D

D G0 �H 0F �1H C
�

A0 � OA0
�

F
�

A0 � OA0
�0
: ut

Corollary 8.2. Under the conditions of Theorem 8.2, the scalar risk and the risk
instability coefficient for the forecasting statistic (8.8) can be written as

r D tr .G0/ � tr .H 0F�1H/C tr

�

�

A0 � OA0
�

F
�

A0 � OA0
�0�

; (8.10)

� D
tr .G0/ � tr .H 0F �1H/C tr

�

�

A0 � OA0
�

F
�

A0 � OA0
�0�

tr

�

��1
P

iD0
Bi˙.B 0/i

� � 1:

Looking at (8.10), it is easy to see that, under missing values, presence of a
specification error (8.9) yields a positive increment of the forecast risk.

8.4 Modified Least Squares Estimators Under Missing
Values

Now consider a situation where the parameters B , ˙ defining the optimal forecast-
ing statistic obtained in Sect. 8.2 are unknown.

Theorem 8.3. In the model (8.1) under missing values, let assumption A5 be
satisfied. If the model parameters B , ˙ are a priori unknown, and the matrix F
defined by Lemma 8.1 is nonsingular, jF j ¤ 0, then the optimal forecasting statistic
(w.r.t. the maximum likelihood) is the following plug-in statistic:

eY TC� D A0.eB; e˙/X; (8.11)
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where joint MLEs eB, e˙ for the model parameters are the solutions of the following
minimization problem:

l1.B;˙/ D X 0F�1X C ln jF j C ln jG �H 0F �1H j ! min
B;˙

: (8.12)

Proof. By (8.6), the joint ML estimators for YTC� , B , ˙ are the solutions of the
maximization problem

L.YTC� IB;˙/ ! max
YTC� ;B;˙

:

Theorem 8.1 yields (8.11), where due to (8.6) the ML estimators eB , e˙ are solutions
of the maximization problem

nk.X j 0k; F /nk.H 0F�1X j H 0F�1X;G �H 0F�1H/ ! max
B;˙

:

Taking a logarithm of the objective function of this maximization prob-
lem yields (8.12). ut

Unfortunately, solving the minimization problem (8.12) is extremely compu-
tationally intensive due to significantly nonlinear dependence of the objective
functions on the parameters B , ˙ (see Lemma 8.1). Although ML estimators
are known to be asymptotically optimal, a practical realization of the optimal
forecasting statistic (8.11), (8.12) proves difficult. In applications, this difficulty
is usually solved by applying the well-known numerical EM algorithm [14, 19].
However, multiextremality of the likelihood function implies that this algorithm
doesn’t necessarily yield the global minimum in (8.12).

Due to the above difficulties in computing ML and EM estimators, a special
modification of the least squares estimator for the parameters B , ˙ is proposed in
the case of missing values. Let us explain the construction of this modified least
squares estimator.

Assuming no missing values, i.e., Ot D 1d , t 2 f1; : : : ; T g, the least squares
estimator of the matrix coefficient B is found from the following relation [1]:

1

T � 1

T�1
X

tD1
YtC1Y 0

t D OB 1

T � 1
T�1
X

tD1
YtY

0
t :

Obviously, the matrices

1

T � 1

T�1
X

tD1
YtC1Y 0

t ;
1

T � 1

T�1
X

tD1
YtY

0
t (8.13)
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are consistent estimators for, respectively, the covariance matrices G1 and G0
defined by (8.2). Thus, knowing the equation that links the matrix coefficient B
and the covariances (8.2) allows us to construct matrix coefficient estimators by
first estimating the covariances (8.13). Let us use this idea to construct statistical
estimators for the matrix parameters B , ˙ of a vector autoregression model under
missing values.

Note that the model (8.1) includes the following equations:

G1 D BG0; G0 D BG0
1 C˙:

Given a fixed observation length T and assuming that the missing values template
Ot , t 2 f1; : : : ; T g, satisfies

T�k
X

tD1
OtCk;iOtj > 0; k 2 f0; 1g; i; j 2 f1; : : : ; d g;

which follows from A6 for a sufficiently large T , let us evaluate sample covariances
OGk 2 Rd�d , k 2 f0; 1g:

. OGk/ij D

T�k
P

tD1
YtCk;iYtjOtCk;iOtj

T�k
P

tD1
OtCk;iOtj

; k 2 f0; 1g; i; j 2 f1; : : : ; d g: (8.14)

Assuming j OG0j ¤ 0, we can use the expressions (8.14) to obtain estimators for the
parameters of a VAR.1/ model under missing values:

OB D OG1 OG�1
0 ; Ȯ D OG0 � OG1 OG�1

0
OG0
1 2 R

d�d : (8.15)

To study asymptotic properties of these estimators, we are going to require the
following auxiliary results [10, 11].

Lemma 8.2. In the model (8.1), assumingA1, the following boundedness condition
is satisfied for the covariances: 8� 2 .�max.B/; 1/ 9C 2 .0;C1/ such that
8t1; t2; t3; t4 2 Z, 8i1; i2; i3; i4 2 f1; : : : ; d g we have

jCov fYt1i1Yt2i2 ; Yt3i3Yt4i4gj � C
�

�jt1�t3jCjt2�t4j C �jt1�t4jCjt2�t3j
�

:

If, in addition, we assume A4, then for all i1; i2; i3; i4 2 f1; : : : ; d g the functional
dependence between the covariances Cov fYt1i1Yt2i2 ; Yt3i3Yt4i4g and the time points
t1; t2; t3; t4 2 Z can be rewritten to depend only on the differences t2 � t1, t3 � t1,
t4 � t1. If, in addition, we assume A5, the covariances can be written explicitly:
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Cov fYt1i1Yt2i2 ; Yt3i3Yt4i4g D .Gt1�t3 /i1i3 .Gt2�t4 /i2i4 C .Gt1�t4 /i1i4 .Gt2�t3 /i2i3 ;

t1; t2; t3; t4 2 Z; i1; i2; i3; i4 2 f1; : : : ; d g;

and the following boundedness condition is satisfied for the eighth order moments:
8� 2 .�max.B/; 1/ 9C 2 .0;C1/ such that 8t1; : : : ; t8 2 Z, 8i1; : : : ; i8 2
f1; : : : ; d g we have

jE f.Yt1i1Yt2i2 � E fYt1i1Yt2i2g/ � � � .Yt7i7Yt8i8 � E fYt7i7Yt8i8g/gj �

� C
X

.l1;:::;l8/2C8.2;2;2;2/
�jtl1�tl2 jCjtl3�tl4 jCjtl5�tl6 jCjtl7�tl8 j ;

where the set C8.2; 2; 2; 2/ of cardinality jC8.2; 2; 2; 2/j D 60 is defined as follows:

.l1; : : : ; l8/ 2 C8.2; 2; 2; 2/ ,

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

ln 2 f1; : : : ; 8g; n D 1; 2; : : : ; 8I
ln ¤ lm; 1 � n;m � 8; n ¤ mI
l1 < l2; l3 < l4; l5 < l6;

l7 < l8; l1 < l3 < l5 < l7I
.l1; l2/; .l3; l4/; .l5; l6/; .l7; l8/ …

… f.1; 2/; .3; 4/; .5; 6/; .7; 8/g :

Corollary 8.3. Under the model (8.1), let us assume A1 and consider a time series
Y
.m/
t D Pm

iD0 BiUt�i 2 R
d , t 2 Z, obtained from the time series (8.1) by

truncating to the first mC 1 terms. Then the following two statements hold:

1. Covariances of the time series Y .m/t , t 2 Z, are bounded: 8� 2 .�max.B/; 1/

9C 2 .0;C1/ such that 8m 2 N [ f0g, 8t1; t2; t3; t4 2 Z, 8i1; i2; i3; i4 2
f1; : : : ; d g we have

ˇ

ˇ

ˇCov
n

Y
.m/
t1i1
Y
.m/
t2i2
; Y

.m/
t3i3
Y
.m/
t4i4

oˇ

ˇ

ˇ � C
�

�jt1�t3jCjt2�t4j C �jt1�t4jCjt2�t3j
�

:

2. Covariances of the time series Y .m/t , t 2 Z, converge to the covariances of the
time series Yt , t 2 Z:

Cov
n

Y
.m/
t1i1
Y
.m/
t2i2
; Y

.m/
t3i3
Y
.m/
t4i4

o

�����!
m!C1 Cov fYt1i1Yt2i2 ; Yt3i3Yt4i4g ;

t1; t2; t3; t4 2 Z; i1; i2; i3; i4 2 f1; : : : ; d g:

If, in addition, we assume A4, then for all m 2 N [ f0g, i1; i2; i3; i4 2 f1; : : : ; d g
the functional dependence of the covariance Cov

n

Y
.m/
t1i1
Y
.m/
t2i2
; Y

.m/
t3i3
Y
.m/
t4i4

o

on the time
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points t1; t2; t3; t4 2 Z can be rewritten to depend only on their differences t2 � t1,
t3 � t1, t4 � t1.

The next theorem establishes unbiasedness and mean square consistency of the
sample covariances (8.14), as well as consistency in probability of the constructed
statistical estimators (8.15) of vector autoregression model parameters under miss-
ing values.

Theorem 8.4. In the vector autoregression model (8.1), let the missing values
templateOt , t 2 f1; : : : ; T g, where T is the observation length, satisfy the condition

T�k
X

tD1
OtCk;iOtj > 0; k 2 f0; 1g; i; j 2 f1; : : : ; d g: (8.16)

Then the sample covariances (8.14) are unbiased covariance estimators:

Ef OGkg D Gk; k 2 f0; 1g:

If, in addition, we assume A1 and A6, then the sample covariances (8.14) are mean
square consistent estimators:

OGk m.s.�����!
T!C1 Gk; k 2 f0; 1g:

If we also have jG0j ¤ 0, then the estimators for the parameters bB , b˙ of the vector
autoregression model under missing values (8.15) are consistent in probability:

OB P�����!
T!C1 B; Ȯ P�����!

T!C1 ˙:

Proof. It is easy to see that, under the model (8.1), the condition (8.16) implies the
unbiasedness of the sample covariances (8.14):

Ef OGkg D Gk; k 2 f0; 1g:

Under additional assumptions A1 and A6, the sample covariances (8.14) are also
mean square consistent estimators:

OGk m.s.�����!
T!C1 Gk; k 2 f0; 1g;

and from A6, it follows that there exists a minimum observation length such that
for any larger observation interval, any pair of vector components is observed
simultaneously at some time point, and there exists a pair of consecutive time points



8.4 Modified Least Squares Estimators Under Missing Values 243

such that the first and the second vector components are observed, respectively, at
the first and the second time points:

9T0 2 N W 8T � T0; 8k 2 f0; 1g; 8i; j 2 f1; : : : ; d g
T�k
X

tD1
OtCk;iOtj > 0:

Let us assume that T � T0 and write the variance of sample covariances as

D

�

� OGk
�

ij

	

D E

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0

B

B

B

@

T�k
P

tD1
YtCk;iYtjOtCk;iOtj

T�k
P

tD1
OtCk;iOtj

� .Gk/ij

1

C

C

C

A

29

>

>

>

=

>

>

>

;

D

D E

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0

B

B

B

@

T�k
P

tD1
�

YtCk;iYtj � EfYtCk;iYtjg
�

OtCk;iOtj

T�k
P

tD1
OtCk;iOtj

1

C

C

C

A

29

>

>

>

=

>

>

>

;

D

D

T�k
P

t;t 0D1
Cov

˚

YtCk;iYtj; Yt 0Ck;iYt 0j



OtCk;iOtjOt 0Ck;iOt 0j
 

T�k
P

tD1
OtCk;iOtj

!2
;

T � T0; k 2 f0; 1g; i; j 2 f1; : : : ; d g:

Applying Lemma 8.2 yields that 8� 2 .�max.B/; 1/ 9C 2 .0;C1/ such that

8T 2 N; T � T0; 8k 2 f0; 1g; 8i; j 2 f1; : : : ; d g

we have

D

�

� OGk
�

ij

	

� C

T�k
P

t;t 0D1
�jt�t 0jOtCk;iOtjOt 0Ck;iOt 0j
 

T�k
P

tD1
OtCk;iOtj

!2
�

� C

�

1C 2�C � � � C 2�T�k�1� T�k
P

tD1
OtCk;iOtj

 

T�k
P

tD1
OtCk;iOtj

!2
D C

1C 2�C � � � C 2�T�k�1
T�k
P

tD1
OtCk;iOtj

:
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Mean square consistency follows from the convergence

1C 2�C � � � C 2�T�k�1
T�k
P

tD1
OtCk;iOtj

�����!
T!C1 0

for � 2 .�max.B/; 1/, k 2 f0; 1g, i; j 2 f1; : : : ; d g.
If, in addition, the covariance matrix G0 of the time series (8.1) is positive-

definite, then the relations

G1 D BG0; G0 D BG0
1 C˙

imply that the estimators (8.15) are consistent in probability. ut
Corollary 8.4. In the model (8.1) under missing values, assuming A1, A2, and
A6, the estimators (8.15) for the autoregression model parameters are consistent in
probability:

OB P�����!
T!C1 B; Ȯ P�����!

T!C1 ˙:

Proof. It is sufficient to observe that assumption A2 implies that the covarianceG0
of the time series (8.1) is positive-definite. ut

Note that if we have Ot D 1d , t 2 f1; : : : ; T g, i.e., the time series doesn’t
contain missing values, then the results of Theorem 8.4 and Corollary 8.4 coincide
with earlier results [1].

Let us establish the conditions for asymptotic normality of the estimator (8.14).
Assume A4 and denote the covariances as follows:

gt�t 0;k;k0;i;j;i 0;j 0 D Cov
˚

YtCk;iYtj; Yt 0Ck0;i 0Yt 0j 0




;

t; t 0 2 Z; k; k0 2 f0; 1g; i; j; i 0; j 0 2 f1; : : : ; d g:

By Lemma 8.2, assumption A4 implies that for all k; k0 2 f0; 1g, i; j; i 0; j 0 2
f1; : : : ; d g the dependence of the covariance

Cov
˚

YtCk;iYtj; Yt 0Ck0;i 0Yt 0j 0




on time points t; t 0 2 Z can be expressed in terms of their differences t � t 0. Thus,
the above notation is valid.

Assuming A7, let us define some numerical characteristics of the limit behavior
of the missing values template:

C�;k;k0;i;j;i 0;j 0 D
Q#�;k;k0;i;j;i 0;j 0

#k;i;j #k0;i 0;j 0

;
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where � 2 Z, k; k0 2 f0; 1g, i; j; i 0; j 0 2 f1; : : : ; d g. Assuming that the missing
values template Ot , t 2 f1; : : : ; T g, where T is the observation length, satisfies the
condition

T�k
X

tD1
OtCk;iOtj > 0; k 2 f0; 1g; i; j 2 f1; : : : ; d g;

let us define the following functions depending on the missing values template:

c�;k;k0;i;j;i 0;j 0.T / D
T

T�1
P

t;t 0D1
OtCk;iOtjOt 0Ck0;i 0Ot 0j 0ıt�t 0;�

T�k
P

tD1
OtCk;iOtj

T�k0

P

tD1
OtCk0;i 0Otj0

for � 2 Z, k; k0 2 f0; 1g, i; j; i 0; j 0 2 f1; : : : ; d g.

Lemma 8.3. Assuming A7, we have

c�;k;k0;i;j;i 0;j 0.T / �����!
T!C1 C�;k;k0;i;j;i 0;j 0 ;

where � 2 Z, k; k0 2 f0; 1g, i; j; i 0; j 0 2 f1; : : : ; d g. The limit properties of the
missing values template satisfy the following symmetry condition:

C�;k;k0;i;j;i 0;j 0 D C��;k0;k;i 0;j 0;i;j ; � 2 Z; k; k0 2 f0; 1g; i; j; i 0; j 0 2 f1; : : : ; d g:

Proof. The convergence is obvious: under assumption A7, there exists a minimum
observation length such that for any larger observation interval, any pair of vector
components is observed simultaneously at some time point, and there exists a pair
of consecutive time points such that the first and the second vector components are
observed respectively at the first and the second time points:

9T0 2 N W 8T � T0; 8k 2 f0; 1g; 8i; j 2 f1; : : : ; d g
T�k
X

tD1
OtCk;iOtj > 0:

Functions of the missing values template satisfy the following symmetry condition:

c�;k;k0;i;j;i 0;j 0.T / D c��;k0 ;k;i 0;j 0;i;j .T /;

T 2 N; T � T0; � 2 Z; k; k0 2 f0; 1g; i; j; i 0; j 0 2 f1; : : : ; d g;

which implies the relations between the limit properties of the template. ut
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Asymptotic normality of the statistical estimator (8.15) under missing values will
be proved by applying the following central limit theorem [16,28] formT -dependent
random vectors.

Theorem 8.5. Let
n

Z
.T /
t ; t 2 f1; 2; : : : ; kT g

o

be a sequence of QmT -dependent random variables such that E
n

Z
.T /
t

o

D 0 holds for

all t and T , and let

kT ! 1 as T ! 1; ST D
kT
X

tD1
Z
.T /
t ; D2

T D E

n

S2T

o

;

ND2
T D

kT
X

tD1
E

�

�

Z
.T /
t

�2
	

; FT .x/ D P fST � DT xg ; T .x/ D jFT .x/� ˚.x/j;

where ˚.x/ is the standard normal distribution function. Also define

�ı D ı.ı C 2/

2.ı2 C 4ı C 2/
; 0 < ı � 1; "T D D�2

T Qm
3ıC2
ı

T :

Assume that

E

�
ˇ

ˇ

ˇZ
.T /
t

ˇ

ˇ

ˇ

2Cı	
< C1;

and that for a sufficiently large T0, the following conditions are satisfied:

1/ D2
T �! 1; 2/ ND2

T D O
�

D2
T

�

; 3/

kT
X

tD1
E

�
ˇ

ˇ

ˇZ
.T /
t

ˇ

ˇ

ˇ

2Cı	 D O
�

D2
T

�

;

4/ kT D O
�

D2
T

�

; 5/ D8
T Qm�6

T � k7T ; T > T0; 6/ "T �! 0:

Then for all x we have

T .x/ � C

.1C jxj/2Cı "
�ı
T ;

where C is a constant independent of T and x.

Theorem 8.6. In the model (8.1), assumingA2,A3,A4,A7, the d2-vectorization of

the d �d -matrix
p
T
� OB � B

�

is asymptotically normally distributed as T ! C1
with a zero expectation and the covariance
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Cov
�p

T
� OB � B

�

ij
;
p
T
� OB � B

�

i 0j 0

	

D

D
1
X

k;k0D0

d
X

n;m;n0;m0D1

C1
X

�D�1
.�1/kCk0 �

B1�k�
in

�

B1�k0

�

i 0n0

�

� g�;k;k0;n;m;n0;m0C�;k;k0;n;m;n0;m0

�

G�1
0

�

mj

�

G�1
0

�

m0j 0

for i; j; i 0; j 0 2 f1; : : : ; d g.

Proof. The proof is based on three facts:

(1) Theorem 8.5;
(2) Shiryaev’s theorem [30]: a random vector is asymptotically normally distributed

if and only if any linear combination of the components of this vector is
asymptotically normally distributed;

(3) theorem on continuous functional transformations of asymptotically normal
random vectors [27].

For a detailed proof, refer to [10]. ut
Let us consider some special cases of Theorem 8.6.

Corollary 8.5. Under the conditions of Theorem 8.6, assume that the number of
missing values is bounded:

9Tobs W 8T � Tobs Ot D 1d ; t 2 fTobs; : : : ; T g;

and assumption A5 is satisfied. Then for T ! C1 the vectorization of the matrixp
T
� OB � B

�

is asymptotically normally distributed with a zero expectation and

the covariances

Cov
�p

T
� OB �B

�

ij
;
p
T
� OB � B

�

i 0j 0

	

D ˙ii0

�

G�1
0

�

jj0
; i; j; i 0; j 0 2 f1; : : : ; dg:

Corollary 8.6. Under the conditions of Theorem 8.6, assume that the limit proper-
ties of the missing values template do not depend on the time lag:

C�;k;k0;i;j;i 0;j 0 D C0;k;k0;i;j;i 0;j 0 ; � 2 Z; k; k0 2 f0; 1g; i; j; i 0; j 0 2 f1; : : : ; d g;

assumption A5 holds, and the time series Yt is univariate, d D 1. Then for

T ! C1 the normalized random deviation
p
T
� OB � B

�

2 R of the estimator

OB is asymptotically normally distributed with a zero expectation and the variance

D D 1

#0;1;1
.1 � B2/:
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Corollary 8.7. Under the conditions of Theorem 8.6, assume that the time series
Yt is univariate, d D 1, the number of missing values is bounded:

9Tobs W 8T � Tobs Ot D 1d ; t 2 fTobs; : : : ; T g;
and assumption A5 is satisfied. Then for T ! C1, the normalized random

deviation
p
T
� OB � B

�

2 R of the estimator OB is asymptotically normally

distributed with a zero expectation and the variance

D D 1 � B2:

Note that if Ot D 1d , t 2 f1; : : : ; T g, i.e., in the absence of missing values, the
results of Corollaries 8.5 and 8.7 coincide with earlier results [1].

8.5 Least Squares Forecasting and Its Risk Under Missing
Values

As established in Sect. 8.4, least squares forecasting

bY TC� D A0.bB; b˙/X (8.17)

can be used to construct �-step-ahead forecasts of vector autoregression time series
(8.1) under missing values. Here bB , b˙ are modified least squares estimators defined
by (8.14), (8.15). They have the required asymptotic properties, as shown by
Theorems 8.4, 8.6. Let us give a detailed description of this forecasting algorithm.

Assume that a time series Y1; : : : ; YT of length T with a missing values template
O1; : : : ; OT is observed. Let us construct a �-step ahead, � 2 N, statistical forecast
OYTC� 2 Rd of the future value YTC� 2 Rd if the parameters B;˙ 2 Rd�d are a

priori unknown. This statistical forecasting algorithm consists of ten steps.

1. Verify the data sufficiency condition:

T�k
X

tD1
OtCk;iOtj > 0; k 2 f0; 1g; i; j 2 f1; : : : ; d g:

If the condition isn’t satisfied, increase observation length T and repeat step 1.
2. Calculate sample covariances OGk 2 Rd�d , k 2 f0; 1g:

. OGk/ij D

T�k
P

tD1
YtCk;iYtjOtCk;iOtj

T�k
P

tD1
OtCk;iOtj

; k 2 f0; 1g; i; j 2 f1; : : : ; d g:
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3. Verify nonsingularity of the sample covariance matrix:

ˇ

ˇ

ˇ

OG0
ˇ

ˇ

ˇ ¤ 0:

In the case of singularity, increase observation length T and go to step 2.
4. Construct statistical estimators

OB D OG1 OG�1
0 ; Ȯ D OG0 � OG1 OG�1

0
OG0
1:

5. Construct a discrete set

M D f.t; i/; t 2 f1; : : : ; T g; i 2 f1; : : : ; d g W Oti D 1g;

which contains pairs of time points and indices of the observed vector compo-
nents. Order the set M lexicographically.

6. Compute the total number of observed componentsK D jM j.
7. Define a bijection


.t; i/ W M $ f1; : : : ; Kg

and its inverse function

N
.k/ W f1; : : : ; Kg $ M:

8. Construct a K-vector of all observed components:

X D .X1; : : : ; XK/
0 2 R

K; Xk D Y N
.k/; k 2 f1; : : : ; Kg:

9. Substitute the estimators OB; Ȯ 2 R
d�d defined by (8.15) in place of the true

valuesB;˙ 2 R
d�d in the expressions for the covariance matrices F 2 R

K�K ,
H 2 R

K�d obtained in Lemma 8.1. This yields covariance matrix estimators
OF 2 R

K�K , OH 2 R
K�d , and for j OF j ¤ 0 we obtain

OA0 D OH 0 OF �1 2 R
d�K:

10. Apply (8.17) to construct the forecast OYTC� D OA0X .

Let us study the asymptotic behavior of the matrix risk for this forecasting
algorithm. For brevity, let us assume that OT D 1d , i.e., the vector YT has been
observed in full, and only the vectors Y1; : : : ; YT�1 may contain missing values.
The one-step-ahead (� D 1) forecasting statistic (8.17) has the simple form

OYTC1 D OBYT : (8.18)
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The next theorem [10, 11] proves an asymptotic expansion of the matrix risk of
plug-in vector autoregression forecasting under missing values.

Theorem 8.7. In the model (8.1), assumingA5, A7, andOT D 1d , consider a one-
step-ahead forecast (� D 1) based on the plug-in forecasting statistic (8.18) and the
estimators (8.15). Further, assume that 8n 2 N 9C 2 .0;C1/, 9T0 2 N:

8T � T0; 8� 2 .0; 1/ E

8

ˆ

<

ˆ

:

1
ˇ

ˇ

ˇId C �G�1
0

� OG0 �G0

�ˇ

ˇ

ˇ

2n

9

>

=

>

;

� C: (8.19)

Then the following asymptotic expansion holds for the matrix risk as T ! C1:

R D ˙ C T �1AC o
�

T �1� 1d�d ; (8.20)

where

A D .Akl/ D
d
X

i;j;i 0;j 0D1

C1
X

�D�1
BI.i; j /

�

BI.i 0; j 0/G�1
0

�0 �

� �.G� /ii0.G� /jj0 C .G�/ij0.G� /ji0
�

C�;0;0;i;j;i 0;j 0�

�
d
X

i;j;i 0;j 0D1

C1
X

�D�1

�

BI.i; j /
�

I.i 0; j 0/G�1
0

�0 C I.i 0; j 0/
�

BI.i; j /G�1
0

�0��

� �.G��1/ii0 .G� /jj0 C .G� /ij0.G��1/ji0
�

C�;0;1;i;j;i 0;j 0C

C
d
X

i;j;i 0;j 0D1

C1
X

�D�1
I.i; j /

�

I.i 0; j 0/G�1
0

�0 �

� �.G� /ii0.G� /jj0 C .G�C1/ij0 .G��1/ji0
�

C�;1;1;i;j;i 0;j 0 2 R
d�d ;

I.i; j / 2 R
d�d ; .I.i; j //kl D

(

1; if .k; l/ D .i; j /

0; if .k; l/ ¤ .i; j /
; i; j; k; l 2 f1; : : : ; dg:

Presented below are some special cases of Theorem 8.7 [10].

Corollary 8.8. Under the conditions of Theorem 8.7, let the number of missing
values be bounded:

9Tobs W 8T � Tobs Ot D 1d ; t 2 fTobs; : : : ; T g:

Then the following asymptotic expansion holds for the matrix forecast risk:

R D ˙ C dT �1˙ C o
�

1T �1� 1d�d as T ! C1:
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Corollary 8.9. In the univariate case (d D 1) of the model (8.1), assumingA5,A7,
and that the last observed vector contains no missing values (OT D 1d ), consider
the plug-in forecasting statistic (8.18) based on the estimators (8.15) for a one-step-
ahead forecast (� D 1). Then the condition (8.19) is satisfied, and the following
asymptotic expansion for the mean square risk holds as T ! C1:

R D ˙ C cAT�1 C o
�

T �1� ;

where

A D ˙

1 � B2

 

2B2

C1
X

�D�1
B2j� jC�;0;0;1;1;1;1 � 4B

C1
X

�D�1
B j��1jCj� jC�;0;1;1;1;1;1C

C
C1
X

�D�1

�

B2j� j C B j�C1jCj��1j�C�;1;1;1;1;1;1

!

:

Corollary 8.10. Under the conditions of Corollary 8.9, let the number of missing
values be bounded:

9Tobs W 8T � Tobs Ot D 1; t 2 fTobs; : : : ; T g:

Then the following asymptotic expansion of the mean square risk holds as
T ! C1:

R D ˙ C˙T �1 C o
�

T �1� :

In the absence of missing values, a result similar to Corollary 8.8 was stated by
Lutkepohl [15].

Theorem 8.7 and its corollaries imply that the risk of least squares forecasting
tends to the risk of the optimal forecasting statistic as T ! C1.

8.6 Results of Computer Experiments

Performance of the modified least squares estimators and the forecasting statistics
based on these estimators was evaluated by performing a series of computer
simulations. The simulations were based on three well-known sets of real-world
statistical data, which are adequately described by autoregression models. Then,
using different missing values templates, N D 1;000 realizations of time series
were generated, and the quality of the respective statistical inferences was evaluated
by comparing the experimental data with the theoretical values.
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Fig. 8.1 Missing values
template

8.6.1 Performance of the Estimator bB

Performance of the statistical parameter estimation algorithm (8.1) for vector
autoregression time series models under missing values was evaluated by a sim-
ulation experiment based on a real-world dataset—Wolf numbers of solar activity,
which are a sequence of yearly measurements of solar activity collected between
1610 and 1960 [1]. Yule’s autoregression model [36] was fitted to that data, yielding
the following parameters:

p D 2; .b1; b2/
0 D .1:34254;�0:65504/0; 	 D 15:41;

and the following missing values template was used in the simulations:

ot D
(

1; t 2 Dmv

0; otherwise;
(8.21)

where the domain of missing values Dmv was chosen as

Dmv D ft 2 Z W jt Mod 200� 50j � 10_
_ jt Mod 200� 100j � 10 _ jt Mod 200� 150j � 10g:

A plot of ot is shown in Fig. 8.1.
This model was reduced to the respective vector autoregression model defined

by the parameters

d D 2; B D
�

1:34254 �0:65504
1 0

�

; ˙ D
�

237:4681 0

0 0

�

;
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Fig. 8.2 Theoretical and experimental variances computed for Wolf data under missing values

and the vector missing values template

Oti D ot�iC1; t 2 Z; i 2 f1; 2g:

The results of estimating the matrix coefficient B of this vector autoregression
model under missing values are shown in Fig. 8.2, presenting the main term of
the trace of the theoretical covariance matrix (8.20) computed for the constructed
estimator (8.15), and the trace V f OBg of the sample covariance matrix of the
estimator (8.15) obtained in the simulations:

V f OBg D

N
P

iD1
P

n;mD1;2

� OB.i/
nm � Bnm

�2

N
;

where N D 1;000. The error bars indicate 95 % confidence bounds for V f OBg, and
the simulated observation length is plotted on the x-axis. Simulation results show a
high level of agreement between the theoretical and the experimental results.

8.6.2 Experimental Evaluation of the Forecast Risk

Robustness of vector autoregression (8.1) forecasting algorithms under missing
values was evaluated by simulations based on real-world data—the Beverage price
index of wheat on European markets recorded from 1670 to 1869 [1]. Anderson’s
AR.2/ autoregression model [1] with the following parameters:

p D 2; .b1; b2/
0 D .0:7368;�0:311/0; 	2 D 0:6179;
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Fig. 8.3 Theoretical and experimental risks for the Beverage dataset under missing values

and the same missing values template (8.21) as in Sect. 8.6.1 was reduced to the
corresponding vector autoregression model defined by the parameters

d D 2; B D
�

0:7368 �0:311
1 0

�

; ˙ D
�

0:6179 0

0 0

�

;

and the missing values template

Oti D ot�iC1; t 2 Z; i 2 f1; 2g:
Forecasts were based on the estimator (8.15) obtained in Theorem 8.7. The plot

in Fig. 8.3 presents the simulation results for one-step-ahead forecasts (� D 1) in a
setting where the last observation vector doesn’t contain missing values (OT D 1d ).
It includes the main term of the theoretical asymptotic matrix risk defined by (8.20),
the trace Or of the sample matrix risk of forecasting,

Or D

N
P

iD1

2
P

jD1

� OY .i/TC1;j � Y
.i/
TC1;j

�2

N
;

where N D 1;000, and the respective 95 % confidence limits. As in the previous
experiment, simulation data agrees with the theoretical results.

The third simulation-based experiment used another classical dataset—a cen-
tered time series of annual Canadian lynx trappings collected over 113 years [32].
The forecasts were based on an AR.11/ autoregression model (d D 11):

yt D 1:0938yt�1 � 0:3571yt�2 � 0:1265yt�4 C 0:3244yt�10 � 0:3622yt�11 C �t ;

where Df�t g D 	2 D 0:04405. Model parameters were estimated from observations
at times t D 1; 2; : : : ; T D 113, and the value yTC1 was simulated under this model.
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Fig. 8.4 Risk instability
coefficient for the Canadian
lynx dataset under missing
values

A single missing value at timem 2 fT�dC1; : : : ; T�1g was introduced into the
time series yt , and forecasts of yTC1 based on fyt W t D 1; : : : ; m�1;mC1; : : : ; T g
were made at two levels of prior information:

(a) prior knowledge of autoregression coefficients;
(b) parametric prior uncertainty—unknown autoregression coefficients.

The model AR.11/ above was then transformed into a model (8.1) of a vector time
series Yt D .yt ; yt�1; : : : ; yt�10/ 2 R11.

In the case (a), Fig. 8.4 shows a dependence of the theoretical value of the
risk instability coefficient �.m/ computed from (8.5) and the Corollary 8.1 on the
coordinate m of the missing value. The 95 % confidence limits for �.m/ computed
from the simulation results are also presented. The plots for the case (b) are omitted
since the confidence limits only change by 1–2 % compared to the former case.

Figure 8.4 shows that the location of a missing value can have significant effect
on the forecast risk. For example, missing values at time points T �1, T �9, T �10
have greater effect on forecasting accuracy compared to other time points.

8.7 Robust Plug-In Forecasting Under Simultaneous
Influence of Outliers and Missing Values

8.7.1 A Mathematical Model of Simultaneous Distortion
by Outliers and Missing Values

In applications, an observed time series is often simultaneously distorted by outliers
and registered with missing values. We are going to study the effect of this
simultaneous distortion on forecasting under AR.p/ autoregression models:

yt C b1yt�1 C � � � C bpyt�p D �t ; t 2 Z; (8.22)
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where b D �

b1; : : : ; bp
�0 2 Rp is a vector of unknown autoregression coefficients

satisfying the stationarity condition; f�t W t 2 Zg is a sequence of i.i.d. normally
distributed random variables,

Lf�t g D N1.0; 	
2/;

where 	2 is the unknown finite variance of the innovation process �t .
Two types of outliers will be discussed, replacement outliers and additive outliers

[2, 4, 20]. Observations under replacement outliers (the so-called RO-model: see,
e.g., [15, 17, 18]) are distributed as follows:

zt D .1 � �t /yt C �t�t ; t 2 Z; (8.23)

where f�t 2 f0; 1gg are i.i.d. Bernoulli random variables,

P f�t D 1g D 1 � P f�t D 0g D "; (8.24)

and 0 � " < 1 is the (sufficiently small) outlier probability, f�t 2 Rg are i.i.d.
random variables independent of fyt g with some unknown symmetric probability
distribution, zero means Ef�t g D 0, and finite variances Df�tg. The magnitude of
the outlier variance is determined by the value ˇ D p

Df�tg=Dfytg. Observations
under additive outliers (the so-called AO-model: cf. [15, 17]) satisfy the equation

zt D yt C �t�t ; t 2 Z: (8.25)

As in Sect. 8.1, missing values will be described by a missing values template

ot D f1; if zt is observedI 0; if zt is a missing valueg; t 2 Z: (8.26)

Let ftkg be an increasing sequence of time moments, where otk D 1. For
t� D min

k
tk , tC D max

k
tk , without loss of generality it can be assumed that t� D 1,

tC D T , where T is the length of the observation period. The observed time series
is represented as

xk D ztk ; k D 1; : : : ; K; (8.27)

whereK � T is the total number of registered observations.
Consider a problem of constructing a robust statistical forecast for the future

value yTC1 based on K registered observations xt1 ; : : : ; xtK . We are going to use
the plug-in forecasting statistic obtained by substituting robust estimators for b and
	2 into the mean square optimal forecasting statistic determined in Sect. 8.2. The
plug-in approach reduces the initial forecasting problem to statistical estimation of
the vector autoregression coefficients of a stationary AR.p/ model with possible
missing observations and additive or replacement outliers.
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Let us give a short review of published results on robust estimation of AR.p/
parameters. Analytic reviews on this topic can be found in [4, 17], and [20].
One possible approach consists of robust estimation of the covariance function
	� D covfyt ; ytC�g D EfytytC�g, � D 0; 1; : : : ; p; and construction of an estima-
tor for b by solving the Yule–Walker equations [1]. A number of robust estimators
for covariances under outliers have been developed (see, e.g., [5, 17, 33, 35]); let us
mention some of them: the Huber estimator [8], the median coefficient of correlation
and its generalizations [29], estimators based on nonparametric measures [3], and
elimination of detected outliers [7, 24]. M-estimators are another type of robust
estimators for b under outliers [8, 15, 18]:

Ob D arg min
b

T
X

tDpC1
%.xt � b1xt�1 � � � � � bpxt�p/;

where % is a specially constructed function. Finally, let us mention the approach
based on robust filters which was developed in [17].

A number of robust statistical methods have been developed for the case of
missing data values without outliers:

• imputation of missing values [25, 26];
• special MLE-estimators and iterative EM-estimators [14];
• Monte-Carlo techniques [23];
• empirical Bayesian methods;
• procedures based on special properties of the ARIMA model [13, 21].

However, robust estimation of autoregression coefficients under simultaneous
influence of outliers and missing values has, until recently, remained undeveloped.
This section presents the results of the paper [12] which was the first attempt to

(a) investigate the setting where an autoregression model is distorted by both
outliers and missing values;

(b) construct parametric robust estimators for correlations using special properties
of the Cauchy probability distribution.

8.7.2 A Family of Robust Estimators for Correlations Based
on the Cauchy Probability Distribution

Let �� be the correlation function of the time series yt defined by (8.22):

�� D Corrfyt ; ytC�g D 	�=	0; � 2 Z: (8.28)

First, let us modify the robust Huber estimator defined in [8] for the correlation
coefficient �� so that it can be applied in the case of missing values. The resulting
algorithm to compute the modified Huber robust estimator consists of three steps.
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1. Compute the values:

a D 1=Med
˚jzt j W ot D 1; t D 1; : : : ; T � �




;

b D 1=Med
˚jzt j W ot D 1; t D � C 1; : : : ; T




:

2. Compute the values:

SC D Med
˚jazt C bztC� j W ot D otC� D 1; t D 1; : : : ; T � �
;

S� D Med
˚jazt � bztC� j W ot D otC� D 1; t D 1; : : : ; T � �
:

3. Evaluate the modified Huber estimator:

O�� D S2C � S2�
S2C C S2�

: (8.29)

In computer experiments described in Sect. 8.7.6, the robustness of the new
estimators proposed by the author was evaluated against the estimator (8.29).

Construction of a new robust estimator for �� will be based on the following
special properties of the Cauchy probability distribution [12].

Lemma 8.4. If yt , t 2 Z, is a stationary normal time series with a zero mean and
a correlation function (8.28), then for any � ¤ 0 the ratio

�� D yt

ytC�

follows the Cauchy probability distribution:

Lf��g D C

�

�� ;

q

1 � �2�
�

:

Lemma 8.5. If � W R2 ! R is a bounded function which is odd w.r.t. both
arguments:

�.�u1; u2/ D �.u1;�u2/ D ��.u1; u2/ 8 u1; u2 2 R;

and zt is a time series following the RO-model defined by (8.22)–(8.24), then

Ef�.zt ; ztC� /g D .1 � "/2Ef�.yt ; ytC� /g: (8.30)

Note that under the AO-model (8.22), (8.25), (8.24), we have

Ef�.zt ; ztC� /g D .1� "/2Ef�.yt ; ytC� /g C "2Ef�.yt C �t ; ytC� C �tC� /gC
C ".1 � "/�Ef�.yt ; ytC� C �tC� /g C Ef�.yt C �t ; ytC� /g

�

;
(8.31)
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as in Lemma 8.5. The expression (8.31) is different from (8.30) in the last two
terms. These last terms of (8.31) are negligible w.r.t. the main term (8.30) for two
reasons:

(1) the main term is of the orderO.1/ and the last terms—of the orderO."/;
(2) the random variables yt and ytC�C�tC� , as well as ytC�t and ytC� , are weakly

correlated under large outliers (ˇ  1):

Corrfyt ; ytC� C �tC�g D EfytytC�g
p

Dfytg .DfytC�g C Df�tC�g/
D ��
p

1C ˇ2
:

Let us choose the function �.�/ in the following special form:

�.zt ; ztC� / D  .zt =ztC� /; j .u/j � c0 < C1;  .�u/ D � .u/; (8.32)

where  .�/ is a bounded odd function. Let us introduce the following bounded odd
function Œ�1;C1� ! R:

f .�� / WWD Ef .�� /g D
p

1 � �2�
�

C1
Z

�1

 .z/

1 � �2� C .z � �� /2
dz; (8.33)

where �.�/ is defined by (8.32), and �� D yt=ytC� . For 0 < � < T , denote:

s ;�;t D  .zt =ztC� /; N�;T D
T��
X

tD1
ototC� ;

S ;�;T D 1

N�;T

T��
X

tD1
s ;�;t ot otC� ; ˙ 

� .�/ D
X

t2Z
Covfs ;�;t ; s ;�;0g cos .t�/ :

Theorem 8.8. In the RO-model with missing values (8.22)–(8.24), (8.26), (8.25),
if the function  .�/ is chosen so that the function f .�/ defined by (8.33) has a
continuous inverse function f �1

 .�/, then for 0 < � < T , and N�;T ! 1 as the
observation time increases, T ! 1, the statistic

O�� D f �1
 

�

.1 � "/�2 S ;�;T
�

(8.34)

is a consistent estimator for the correlation coefficient �� : O�� P�! �� .

Theorem 8.8 was proved in [12]. Note that under the AO-model, the estimator
(8.34) is biased:

O�� P�! �� C�� ;
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but the remark following (8.31) implies that this bias vanishes for large outliers:

�� ! 0 as ˇ ! 1:

Choosing different functions  .�/ in (8.33) and applying Theorem 8.8 yields
a family (8.34) of robust  -estimators for �� that are consistent under replace-
ment outliers and missing values (8.23), (8.26). Let us present four examples of
 -estimators.

 s-estimator W  .x/ D sign.x/; f .�/ D 2

�
arcsin �; f �1

 .�/ D sin
�u

2
I

 a-estimator W  .x/ D arctan x; f .�/ D 1

2
arcsin �; f �1

 .�/ D sin .2u/I

 t -estimator W  .x/ D 2x

1C x2
; f .�/ D �

1C
p
1 � �2

; f �1
 .�/ D 2u

1C u2
I

 x-estimator W  .x/ D
(

x; jxj � 1;

1=x; jxj > 1;
f .�/ D � C

p
1 � �2
�

ln
1 � �

1C �
:

For example, the  s-estimator of �� is

O�� D sin

 

.N�;T /
�1 �

2.1� "/2
T��
X

tD1
sign.zt ztC� /ototC�

!

:

Theorem 8.9 below establishes asymptotic normality of  -estimators [12].

Theorem 8.9. Under the conditions of Theorem 8.8, if min�2Œ��;�� ˙ 
� .�/ > 0,

then the  -estimator (8.34) is asymptotically normal:

O�� � ��p
DT

D�!
T!1N1.0; 1/;

with the asymptotic mean �� and the asymptotic variance

DT D .1 � "/�4

N�;T

˙
 
� .�

�
T /

.f 0
 .�� //

2
; (8.35)

where ��
T 2 Œ��; ��.

8.7.3 Minimizing Asymptotic Variance of  -Estimators

To find the best estimator in the family of  -estimators (8.34), let us consider the
problem of minimizing the asymptotic variance (8.35) in  .�/. Unfortunately, the
sequence��

T depends on the index sequence of missing values (8.26) in an extremely
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complicated way, so let us minimize the integral asymptotic variance for ��
T in the

interval Œ��; ��:

.1 � "/�4
N�;T .f

0
 .�� //

2

Z �

��
˙ 
� .�/d� D 2�.1� "/�4Dfs ;�;t g

N�;T .f
0
 .�� //

2
! min

 .�/ :

Because of (8.30) in the RO-model and (8.31) in the AO-model, we have:

Dfs ;�;t g D Df .�� /g CO."/;

where �� D yt=ytC� has the Cauchy probability distribution C.�� ;
p

1 � �2� /, as
established by Lemma 8.4. Taking the main term of this expression yields the
following minimization problem:

V. ; �� / D Df .�� /g
.f 0
 .�� //

2
! min

 .�/ ; f .�� / D Ef .�� /g: (8.36)

Let us denote the Cauchy probability distribution function and its even and odd parts
as, respectively,

p.xI �/ D 1

�
p
1 � �2

�

1C .x � �/2
1� �2

��1
; x 2 RI

C.x; �/ D p.xI �/C p.�xI �/
2

; S.x; �/ D p.xI �/ � p.�xI �/
2

I

and define

I1ff g D
Z C1

�1
f .x/p.xI �/dx; I2ff g D

Z C1

�1
f .x/p0

� .xI �/dxI

! D
0

@1 �
C1
Z

�1

S2.x; �/

C.x; �/
dx

1

A

0

@

C1
Z

�1

S.x; �/S 0
� .x; �/

C.x; �/
dx

1

A

�1

:

Theorem 8.10. Assume that �� is a random variable with a probability distribution
function p.xI �/ which is differentiable in � . Then the solution of the minimization
problem (8.36) can be written as

 �.x/ D S.x; �/C !S 0
� .x; �/

C.x; �/
; V . �; �/ D !

 

f �
.�/

f 0
 �

.�/

!

�D�
:
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Note that changing a parameter of the probability distribution function p.xI �/
by taking ˛ D ˛.�/ leads to V. ; ˛/ D V. ; �/.˛0.�//2, and the solution of
the problem (8.36) remains unchanged. Based on this fact, let us make a suitable
parameter change in the Cauchy distribution C.�;

p
1 � �2/: ˛.�/ D arcsin � ; the

Cauchy distribution then assumes the form C.sin ˛; cos˛/.

Theorem 8.11. The solution of the minimization problem (8.36) within the class of
odd functions  for the Cauchy probability distribution C.sin˛; cos˛/ is

 �.x/ D 2x

1C x2

�

2.1C x2/2 cos˛

1C x4 C 2x2 cos 2˛
� 1

�

;

f �
.y/ D y

 

2

cos˛ Cp

1 � y2 � 1

1Cp

1 � y2

!

;

V . �; ˛/ D 2 cos2 ˛.1C cos˛/2

1C 2 cos˛ C cos4 ˛
: (8.37)

Theorems 8.10 and 8.11 were proved in [12].
Note that the Cramer–Rao bound for the Cauchy distribution C.sin˛; cos˛/

equals I�1.˛/ D 2 cos2 ˛, where I.˛/ is the Fisher information. Therefore, the
efficiency loss of the asymptotic variance (8.37) compared to this bound is less than
10%:

V. �; ˛/
I�1.˛/

D 1C 2 cos˛ C cos2 ˛

1C 2 cos˛ C cos4 ˛
� 13C 5

p
5

22

 1:099; ˛ 2

h

��
2
;
�

2

i

:

Corollary 8.11. The optimal function  �.�/ for the estimation of �� is

 �.xI �� / D 2x

1C x2

 

2.1C x2/2
p

1 � �2�
1C x4 C 2x2.1 � 2�2� /

� 1

!

: (8.38)

Figure 8.5 presents a parametric family (8.38) of curves  �.xI �/ in the first
quadrant for � D 0I 0:7I 0:9I 0:9999 (from top to bottom).

Note that the optimal function  � D  �.xI �� / defined by (8.38) depends on the
value of �� . Constructing the optimal  -estimator O��

� , which is going to be called
the  o-estimator, requires solving the following nonlinear equation

O��
� D G. O��

� /; G.�/ D f �1
 �

 

N�1
T

.1 � "/2
T��
X

tD1
 �
�

zt
ztC�

I �
�

ototC�

!

: (8.39)
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Fig. 8.5 The function  �.xI �/ plotted for � D 0I 0:7I 0:9I 0:9999 (from top to bottom). Modified
from [12]. Published with kind permission c	 Elsevier 2011. All Rights Reserved

By inversion, (8.39) can be represented in the form

f �.�I�/.�/ D �p
1 � �2.1C p

1 � �2/
D f �.�I�/.G.�// D

D N�1
T

.1 � "/2

T��
X

tD1
 �
�

zt
ztC�

I �
�

ototC� :

Since the right-hand side of this equation is bounded, and the left-hand side can
assume any real value, this equation has a solution

� D O��
� 2 Œ�1; 1�

which can be found by applying one of the classical numerical algorithms.
It can easily be shown that the Fisher information on the parameter �� contained

in the ratio yt=ytC� is 50% smaller compared to the Fisher information contained
in the vector .yt ; ytC� /:

Iyt =ytC�
.�� / D 1

2.1� �2� /2
; I.yt ;ytC� /.�� / D 1

.1 � �2� /
2
:

This reduction of the Fisher information obviously leads to reduced efficiency of
the  o-estimator compared to the ML-estimator in the absence of outliers, which is
due to the invariance of the  o-estimator w.r.t. the scale parameter 	 . We require
this invariance since it is currently impossible to construct consistent estimators O	
in AR models under simultaneous influence of outliers and missing values [34].
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8.7.4 Robust Estimators of Autoregression Coefficients

Let us consider the system of p C 1 Yule–Walker equations in fbig for the
autoregression model (8.22):

8

ˆ

ˆ

<

ˆ

ˆ

:

�0 C b1�1 C � � � C bp�p D 	2=	0;

��1 C b1�0 C � � � C bp�p�1 D 0;

: : :

��p C b1�1�p C � � � C bp�0 D 0:

This system can be solved by the iterative Durbin–Levinson algorithm [17]:

O�m;m D
O�m �Pm�1

iD1 O�m�i O�m�1;i
1 �Pm�1

iD1 O�i O�m�1;i
;

O�m;i D O�m�1;i � O�m;m O�m�1;m�i ; 1 � i � m� 1;

Obi D � O�p;i ; i D 1; 2; : : : ; p:

(8.40)

Thus, autoregression coefficients b D .bi / can be estimated as follows:

1. If the outlier probability " is unknown, then construct its estimator O" (see
Sect. 8.7.5 below).

2. Pick a suitable  -estimator from the estimators defined in Sect. 8.7.2 and the
optimal  o-estimator defined by (8.39). Apply Theorem 8.8 to estimate the
correlations f�� W � D 1; 2; : : : ; pg by using either the a priori known " or its
estimator O".

3. Use the iterative procedure (8.40) to compute the estimators f Obig for the
autoregression coefficients.

Let us introduce the following notation:

8n 2 N; �.n/ D �

�ij.n/
� 2 R

.nC1/�.nC1/; �ij.n/ D �i�j :

Theorem 8.12. Under the conditions of Theorem 8.9, the following convergence is
satisfied:

P

�

jj Ob � bjj � K jj O� � � jj
�

�!
T!1 1;

K D 1

�min.�.p � 1//

0

B

@1C

v

u

u

u

t

2p

�

�
Z

��
jB.eix/j2dx

1

C

A ;
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where O� D . O�i / andB.�/ D �pCb1�p�1C� � �Cbp is the characteristic polynomial
of the difference equation (8.22); �min.Q/ is the minimal eigenvalue of a matrix Q.

This theorem was proved in [12].

8.7.5 Estimation of the Contamination Level "

The proposed  -estimators (8.34) rely on prior knowledge of the contamination
level ". Let us propose an approach for statistical estimation of ". Assume, in
addition, that the outliers are normally distributed: Lf�t g D N1.0; ˇ1	

2/, where
ˇ1 > 0 determines the outlier magnitude. Under this assumption, the probability
distribution of fzt g in the RO-model (8.23) is a mixture of two normal distributions
with the mean values equal to zero and the variances 	21 D Df�t g D 	2ˇ1,
	22 D Dfyt g D 	2ˇ2, where ˇ2 D .2�/�1

R �

�� jB.eix/j�2dx. Therefore, the
corresponding characteristic function is the following mixture:

fz.�/ D " exp
˚�	21 �2=2


C .1� "/ exp
˚�	22 �2=2




; � 2 Œ��; ��:

For large outliers (ˇ  1) we have ˇ1 D ˇ2ˇ2  ˇ2, and the approximation

fz.�/ 
 .1� "/ exp
˚�	22 �2=2




(8.41)

holds for sufficiently large values of j�j. The larger the outlier magnitude ˇ, the
higher the accuracy of (8.41). Note that in the AO-model (8.25), the characteristic
function can be written as

fz.�/ D .1 � "/ exp
˚�	22 �2=2


 �

1C " exp
˚�	21 �2=2


�

;

and thus, the approximation (8.41) remains valid.
Further, using (8.41), we have:

fz.�2/=fz.�1/ 
 exp
˚�	22

�

�22 � �21
�

=2



: (8.42)

Let us fix some values of �1 and �2, �1 ¤ �2. The numerator and the denominator
in the left-hand side of (8.42) can be estimated separately by using the sample
characteristic function, thus leading to an estimator for the parameter 	2 present
in the right-hand side. Substituting this estimator into (8.41) in place of 	2 yields an
equation that can be used to obtain an estimator for ". Thus, estimation of " consists
of four steps [12]:
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1. Choose �1 and �2, �1 ¤ �2.
2. Evaluate the sample characteristic function at the chosen points:

Ofz.�i / D

T
X

tD1
ot cos .�i zt /

T
X

tD1
ot

; i D 1; 2:

3. Construct an estimator for 	22 :

O	22 D 2
�

�21 � �22
��1

ln
� Ofz.�2/

. Ofz.�1/
�

:

4. Substitute it into (8.41):

	2 WWD O	2; � WWD O	�1
2 ;

and compute

O" D 1 � p
e Ofz

� O	�1
2

�

:

The constructed algorithm includes two tuning parameters, �1 and �2.
We propose the following experimentally obtained optimal (in the sense of

minimal mean square error of O") values of these parameters [12]:

�21 D
PT

tD1 ot
PT

tD1 ot z2t
; �2 D 2�1:

8.7.6 Simulation-Based Performance Evaluation
of the Constructed Estimators and Forecasting
Algorithms

Performance of the constructed estimators was evaluated by two series of computer
simulations. The first series was based on AR.5/ models, p D 5, under RO-outliers
(8.23) or AO-outliers (8.25) and missing values (8.26) [12].

The contamination distribution was normal: Lf�t g D N1

�

0; ˇ2Dfyt g
�

with dif-
ferent values of the outlier magnitude ˇ. The missing values (8.26) were generated
by periodically repeating the pattern Qo D f1011101g in the index sequence ot (thus,
roughly 30% of the elements were missing in each of the observed time series).
Each simulation experiment consisted of 104 Monte-Carlo simulation rounds.
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Fig. 8.6 Mean square error Efjj Ob�bjj2g for ˇ D 5, " D 0:1. Modified from [12]. Published with
kind permission c	 Elsevier 2011. All Rights Reserved

Three robust estimates for autoregression coefficients fbi g were computed for
each simulated time series: the Huber estimate based on (8.29), the  o-estimate
based on (8.38) under prior knowledge of ", and the  o-estimate for an unknown ".

Results of the first series of simulations are presented in Figs. 8.6–8.10. His-
tograms obtained by estimating �1 under the RO-model are presented in Fig. 8.7.
The true value �1 D �0:9 is shown by thin vertical lines. In Figs. 8.6, 8.9, 8.10,
the mean square error Efjj Ob � bjj2g is plotted against, respectively, T , ", and ˇ.
Figure 8.8 illustrates the dependence between the MSE Efjj Ob � bjj2g and T under
missing values only (" D 0, no outliers were present in the simulated time series);
the traditional LS-estimator is used for comparison.

AR coefficients fbi g are presented in Figs. 8.6–8.10 as roots of the characteristic
polynomial B.�/ D �p C b1�

p�1 C � � � C bp in relation to the unit circle.
Figure 8.7 shows that applying the  o-estimator O�1 results in a smaller bias

compared to the Huber estimator. The plot in Fig. 8.8 indicates that in a setting
without outliers, the efficiency of the  o-estimator is only slightly lower when
evaluated against the optimal LS-estimator. In Fig. 8.9, the performance of the  o-
estimator for an unknown " is compared to the case where " is a priori known.
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Fig. 8.7 Histograms of O�1. Modified from [12]. Published with kind permission c	 Elsevier 2011.
All Rights Reserved

The efficiency loss resulting from estimation of " is shown to be small for " � 0:2.
Figure 8.6 illustrates sufficiently good performance of the o-estimators under both
AO- and RO-models. Figure 8.10 shows that the performance of the  o-estimator
under unknown " is stable w.r.t. the outlier magnitude ˇ.

The second series of simulations [12] was based on a well-known real-world
dataset—“Numbers of weekly births in Quebec from May, 15, 1981 till February,
13, 1983” from the Time Series Data Library [9]. This data was centered w.r.t. the
sample mean, and then the set of 100 observations was split into two subsets. First
T D 90 values fyt g were artificially contaminated following the distortion model
(8.23)–(8.25) with " D 0:1, ˇ D 2. The contaminated data was used to estimate
p D 10 coefficients of an AR.10/ model by applying the  t-estimator (assuming a
priori unknown ") and the Huber estimator.

Based on the calculated estimates of autoregression coefficients, plug-in forecasts
(constructed similarly to Sect. 7.3.2) were computed for the remaining time points
t D 91; 92; : : : ; 100 and compared to the actual values from the second subset of
the data.
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Fig. 8.8 Mean square error Efjj Ob � bjj2g for " D 0. Modified from [12]. Published with kind
permission c	 Elsevier 2011. All Rights Reserved

Fig. 8.9 Mean square error Efjj Ob � bjj2g for ˇ D 5, T D 500. Modified from [12]. Published
with kind permission c	 Elsevier 2011. All Rights Reserved
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Fig. 8.10 Mean square error Efjj Ob � bjj2g for " D 0:1, T D 500. Modified from [12]. Published
with kind permission c	 Elsevier 2011. All Rights Reserved

Fig. 8.11 The ten-step linear forecasts by the  t -estimator under unknown " (solid line) and by
the Huber estimator (dashed line). Modified from [12]. Published with kind permission c	 Elsevier
2011. All Rights Reserved
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In Fig. 8.11, the uncontaminated data is shown as empty circles; the outliers—as
filled circles; the observed time series for t 2 f1; 2; : : : ; 90g and the forecasts based
on the t-estimator—as a solid line; the forecasts based on the Huber estimator—as
a dashed line. It is easy to see that, for this dataset, the forecasting procedure based
on the  t-estimator is more accurate.
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Chapter 9
Robustness of Multivariate Time Series
Forecasting Based on Systems
of Simultaneous Equations

Abstract Systems of simultaneous equations (SSE) are a well-studied class of
multivariate time series models with applications to macroeconometrics. In this
chapter, we analyze robustness of forecasting statistics based on the least squares
method and its modifications under model specification errors and "-drift of model
coefficients.

9.1 Systems of Simultaneous Equations

9.1.1 SSE Model

As mentioned in Sect. 3.5.5, systems of simultaneous equations (SSE) are usually
applied in econometrics when modeling and forecasting such complex economic
systems as national economies [3, 4], major economic unions such as the EU,
and other large economic conglomerates. SSEs are also applied in engineering,
microeconomics, and social studies [2, 4, 8, 10, 15].

Following econometric conventions, the dependent (interior) variables will be
called endogenous, and the independent (exterior) variables—exogenous. Time
lagged endogenous variables, as well as current (corresponding to the current time)
and lagged exogenous variables, are called predetermined variables.

A linear system of simultaneous equations SSE.N;K/ is defined as the following
system of N stochastic equations [3]:

yjt D
X

l2Aj
˛0ljylt C

X

k2Bj
ˇ0kjxkt C �jt; j D 1; : : : ; N; t D 1; : : : ; n: (9.1)

Here ylt 2 R1 is the value of the l th endogenous variable at time t ; xkt 2 R1

is the value of the kth predetermined variable at time t ; f˛0ljg; fˇ0kjg are (generally
unknown) true values of the model parameters; �jt 2 R1 is a random variable which

Y. Kharin, Robustness in Statistical Forecasting, DOI 10.1007/978-3-319-00840-0 9,
© Springer International Publishing Switzerland 2013
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is going to be characterized later; Aj D fl1; : : : ; lNj g � f1; : : : ; N g is the set of Nj
endogenous variables (excepting yjt) which are present in the j th equation,

jAj j D Nj ; 0 � jA1 [A2 [ � � � [ AN j � N I

N is the number of equations (and also endogenous variables) in the SSE; Bj D
fk1; : : : ; kKj g � f1; : : : ; Kg is the set ofKj predetermined variables included in the
j th equation:

jBj j D Kj ; 0 � jB1 [ B2 [ � � � [ BN j D KI

K is the total number of predetermined variables included in the SSE; n is the length
of the observation period.

The system of equations (9.1) is referred to as the structural form of the SSE.
Presented below are several other equivalent representations of SSE.N;K/.

Let us introduce the following matrix notation:

yj D

0

B

@

yj1
:::

yjn

1

C

A ; xk D

0

B

@

xk1
:::

xkn

1

C

A ; �j D

0

B

@

�j1
:::

�jn

1

C

A 2 R
n;

Y j D .yl1
... : : :

... ylNj / 2 R
n�Nj

is the .n � Nj /-matrix of endogenous variables in the right-hand side of the j th
equation of (9.1);

Xj D .xk1
... : : :

... xkKj / 2 R
n�Kj

is the .n �Kj /-matrix of predetermined variables in the j th equation (9.1);

˛0j D .˛0l1j : : : ˛
0
lNj j

/0 2 R
Nj ; ˇ0j D .ˇ0k1j : : : ˇ

0
kKj j

/0 2 R
Kj

are, respectively, Nj - and Kj -vectors of the unknown true parameter values. Then
the j th equation of the system (9.1) can be rewritten in a matrix form:

yj D Y j˛0j CXjˇ0j C �j ; j D 1; : : : ; N: (9.2)

Let us introduce additional matrix notation: A0 D .˛0lj/ and B0 D .ˇ0kj/ are,
respectively, .N �N/- and .K �N/-matrices, where

˛0lj D 0 if l 62 Aj ; ˇ0kj D 0 if k 62 Bj ; j D 1; : : : ; N I

Y D .y1
... : : :

... yN / is the .n �N/-matrix of all endogenous variables in the SSE;
X D .x1

... : : :
... xK/ is the .n�K/-matrix of all predetermined variables in the SSE;



9.1 Systems of Simultaneous Equations 275

� D .�1
... : : :

... �N / is the .n � N/-matrix of random variables in the SSE. Then
the structural matrix form of the SSE (9.2) is defined as follows [3]:

Y D YA0 C XB0 C�: (9.3)

Introducing the following notation for, respectively, the vectors of endogenous,
predetermined, and the random variables at time t ,

yt D .y1t : : : yNt/
0 2 R

N ; xt D .x1t : : : xkt/
0 2 R

K; �t D .�1t : : : �Nt/
0 2 R

N ;

the system (9.3) can be rewritten in another equivalent form:

yt D A0
0

yt C B00

xt C �t ; t D 1; : : : ; n: (9.4)

The model SSE.N;K/ is called complete if jIN �A0j ¤ 0. In this case, denoting

�0 D B0.IN �A0/�1 2 R
K�N ; U D �.IN � A0/�1 D .u1

... : : :
... un/

0 2 R
n�N ;

and solving (9.3), (9.4) in Y and fyt g yields the reduced form of an SSE [3]:

Y D X�0 C U; (9.5)

yt D �0
0

xt C ut ; t D 1; : : : ; n: (9.6)

Observe that this form coincides with the definition of a multivariate linear
regression (cf. Chap. 5).

The random variables f�j1; : : : ; �jng are assumed to be jointly independent and
normally distributed:

Lf�j g D Nn.0n; 	jjIn/; Ef�i �j 0g D 	ijIn; i; j D 1; : : : ; N;

Ef�t � 0
�g D ıt�˙; t; � D 1; : : : ; n;

(9.7)

where˙ D .	ij/ � 0 is the .N �N/ covariance matrix. Note that˙ can be singular
since the initial form of the SSE may contain identities.

Recall that in Chap. 6 we have considered optimality and robustness of fore-
casting based on multivariate linear regression models. Although we have formally
reduced the SSE.N;K/ to a linear regression model (9.5), (9.6), a separate treatment
of the model (9.1)–(9.4) is necessary because of the following reasons:

1. In econometrics, it is often important to estimate the matrices A0 and B0, and
estimates of �0 (which is a function of A0, B0) are insufficient;

2. An SSE can contain identities, leading to singularity of the matrix ˙ , in which
case the established methods of regression analysis are inapplicable.
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9.1.2 Example of an SSE: Klein’s Model I

As an example of an SSE, let us consider the econometric model proposed by
Lawrence R. Klein [3] to analyze the impact of government policies on the crucial
indicators of the American economy. This dynamic model defines a dependence of
six endogenous variables (N D 6) on three exogenous variables (K D 3). Note that
this is an extremely simple model, which doesn’t quite agree with the real-world
data. In actuality, the endogenous variables of this model depend on many other
quantities. Practically applicable macroeconomic models developed in the more
recent years, such as the Wharton Econometric Forecasting Model or the Brukings
model [3], contain hundreds of equations.

Let us describe the exogenous and endogenous variables (at time t), the equations
and the identities of Klein’s Model I.
The exogenous variables:

• W 2t is the wage bill of the government sector;
• Gt is the government expenditure plus net exports;
• TXt is the amount of business taxes.

The endogenous variables:

• Ct is the private consumption expenditure;
• W1t is the wage bill of the private sector;
• ˘t is the profits net of business taxes;
• It is the (net) private investment;
• Kt is the stock of (private) capital goods;
• Yt is the gross national product.

The functional equations:

• Consumption function:

Ct D a1 C a2.W1t CW 2t/C a3˘t�1 C �1t I

• Investment function:

It D b1 C b2˘t C b3˘t�1 C b4Kt�1 C �2t I

• Labor resources demand function:

W1t D c1 C c2.Yt C TXt �W 2t/C c3.Yt�1 C TXt�1 �W 2t�1/C c4t C �3t :

The identities:

• Gross national product equation:

Yt D Ct C It �Gt � TXt I
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• Profits equation:

˘t D Yt � .W1t CW 2t /I

• Capital stock equation:

Kt D Kt�1 C It :

In [3], a three-step least squares method (3LS method) was used to estimate the
parameters of Klein’s model I, and the following representation of the model in the
form (9.4) was obtained:

yt D A0
0

yt C B00

xt C �t ;

where y0
t D .Ct ; It ;W1t ; Yt ;˘t ;Kt / is the vector of endogenous variables and

x0
t D �

1;W 2t ;W 2t�1;˘t�1;Kt�1;TXt ;TXt�1; Yt�1; Gt ; t
�

is the vector of predetermined variables; the matrices are defined by

A0 D

0

B

B

B

B

B

B

B

@

0 0 0 �1 0 0

0 0 0 1 0 1

0:7901 0 0 0 �1 0

0 0 0:4005 0 1 0

0:1249 �0:01308 0 0 0 0

0 0 0 0 0 0

1

C

C

C

C

C

C

C

A

;

B0 D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

16:44 28:18 15:08 0 0 0

0:7901 0 �0:4005 0 1 0

0 0 0:1813 0 0 0

0:1631 0:7557 0 0 0 0

0 �0:1948 0 0 0 1

0 0 0:1813 �1 0 0

0 0 0:1813 0 0 0

0 0 0:1813 0 0 0

0 0 0 1 0 0

0 0 0:1497 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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The sequence f�tg is composed of independent normal random vectors with zero
mean values and a singular covariance matrix ˙ :

˙ D

0

B

B

B

B

B

B

B

@

3:6 0:8 2:1 0 0 0

2:0 1:4 0 0 0

6:0 0 0 0

0 0 0

0 0

0

1

C

C

C

C

C

C

C

A

:

9.1.3 The Optimal Forecasting Statistic Under the SSE Model

First, let us consider a setting where the parameters f˛0ljg, fˇ0kjg defining the matrices
A0;B0 are a priori known. Let us construct an optimal forecasting statistic for
ynC1 2 RN (for simplicity, assume one-step-ahead forecasting, � D 1).

Theorem 9.1. In the complete SSE.N;K/model defined by (9.1), given a vector of
predetermined variables xnC1 and a priori known parameters f˛0ljg, fˇ0kjg, the mean
square optimal forecasting statistic is linear:

OynC1 D �0
0

xnC1; (9.8)

where the .K � N/-matrix �0 is defined as �0 D B0.IN � A0/�1; the minimum
mean square forecast risk equals

r0 D E
˚j OynC1 � ynC1j2


 D tr
�

.IN � A0/�1˙.IN �A00

/�1
�

: (9.9)

Proof. Since the model is complete, it can be rewritten in the reduced form (9.6):

ynC1 D �0
0

xnC1 C unC1: (9.10)

It is known (see Chap. 7) that the optimal forecasting statistic can be defined as the
conditional expectation

OynC1 D EfynC1 j xnC1; : : : ; x1g: (9.11)

By (9.4), (9.6), (9.7), we have

ut D .IN �A0/�1�t ; Efutg D 0N ;

Efutu
0
�g D ıt� .IN � A0/�1˙.IN � A0

0

/�1:
(9.12)
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The equalities (9.10)–(9.12) imply (9.8), as well as the expression for the risk:

r0 D Efu0
nC1unC1g D Eftr .unC1u0

nC1/g D tr
�

.IN � A0/�1˙.IN � A0
0

/�1
�

;

which coincides with (9.9). ut

9.2 Robustness of SSE-Based Forecasting Under
Specification Errors

Let us consider the situation where the parameters of the SSE.N;K/ model are
distorted by specification errors, and instead of A0;B0, the matrices

OA D A0 C ıA; OB D B0 C ıB; (9.13)

are known, where ıA and ıB are, respectively .N �N/ and .K �N/ deterministic
matrices characterizing the deviations from the true parameter values. A forecast is
made using a statistic of the form (9.8):

OynC1 D O�xnC1; O� D OB.IN � OA/�1I (9.14)

we assume that under the specification errors present in the model, the SSE remains
complete:

jIN � OAj ¤ 0:

Theorem 9.2. In the SSE model defined by (9.1) under specification errors (9.13),
the bias and the mean square forecast risk of the statistic (9.14) used to forecast
ynC1 2 RN can be written as

b D Ef OynC1 � ynC1g D DxnC1; (9.15)

r D Efj OynC1 � ynC1j2g D r0 C x0
nC1D0DxnC1; (9.16)

where the .N �K/-matrixD is equal to

D D �

IN �A0T � ıAT
��1 �

B0T ıAT
�

IN �A0T ��1 C ıBT
�

: (9.17)

Proof. Let us find OynC1 � ynC1:

OynC1 � ynC1 D
�

�

IN � OA 0��1 OB 0 � �

IN �A00
��1
B00

�

xnC1 � �

IN �A00
��1
�nC1:
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Consider the following expression:

OB�IN � OA��1�B0
�

IN �A0��1 D B0
�

�

IN � OA��1� �

IN � A0
��1�CıB.IN � OA/�1:

Let us determine
�

IN � OA��1 by using the following matrix identity [5]:

.Im � F /�1 D Im C F.Im � F /�1;

where F is a nonsingular .m �m/-matrix. Then

�

IN � OA��1 D .IN �A0 � ıA/ D .IN � .IN �A0/�1ıA/.IN �A0/�1 D
D .IN C .IN � A0/�1ıA.IN � .IN �A0/�1ıA/�1/.IN �A0/�1 D
D .IN �A0/�1 C .IN � A0/�1ıA.IN �A0 � ıA/�1:

Thus, we have

�

IN � OA��1 � .IN � A0/�1 D .IN � A0/�1ıA.IN �A0 � ıA/�1

and

OB�IN � OA��1 � B0
�

IN � A0
��1 D D0;

where

D0 D �

.IN �A0/�1ıAB0 C ıB
�

.IN � A0 � ıA/�1;

which coincides with (9.17).
Therefore, we can write

OynC1 � ynC1 D DxnC1 C
�

IN �A00

��1
�nC1:

This, in turn, leads to

b D Ef OynC1 � ynC1g D DxnC1 C
�

IN � A0
0

��1
Ef�nC1g D DxnC1;

r D Ef. OynC1 � ynC1/0 . OynC1 � ynC1/g D

D x0
nC1D0DxnC1 C E

�

� 0
nC1

�

IN � A0
��1 �

IN �A00

��1
�nC1

	

D

D r0 C x0
nC1D0DxnC1:

The last two expressions coincide, respectively, with (9.15) and (9.16). ut



9.3 Plug-In Forecasting Statistics in the SSE Model 281

Note that if ıA D 0, ıB D 0, then (9.15), (9.16) are consistent with the statement
of Theorem 9.1.

Corollary 9.1. Under the conditions of Theorem 9.2, if jxnC1j � c, then the risk
instability coefficient equals

�C D c�max.D
0D/

r0
:

Assume that ıA and ıB are matrices of the form

ıA D "A
�

IN �A0� ; ıB D "BB
0; (9.18)

where "A, "B � 0 are quantities characterizing the level of specification error, and
"A ¤ 1 (this holds since the system is complete).

Corollary 9.2. Under the conditions of Theorem 9.2, assuming (9.18), the bias and
the mean square forecast risk can be written as

b D D"xnC1; r D r0 C x0
nC1D0

"D"xnC1;

where

D" D "A C "B

1 � "A

�

IN � A0
0

��1
B00

:

To conclude the subsection, let us note that for a given maximum fore-
cast risk rmax we can estimate the admissible levels ."�

A; "
�
B/ of specification

errors (9.13), (9.18) corresponding to this maximum risk:

rmax � r0 D ."�
A C "�

B/
2

.1 � "�
A/
2
g;

where g D x0
nC1B0

�

IN �A0��1
�

IN �A00

��1
B00

xnC1:

9.3 Plug-In Forecasting Statistics in the SSE Model

In applications, the parameters f˛0ljg (or A0), fˇ0kjg (or B0), and˙ of the SSE.N;K/
model defined by (9.1) are usually unknown, making it impossible to construct the
optimal forecasting statistic (9.8). Since the dimensions N , K of the models used
to solve modern applied problems are usually quite high, and joint ML estimation
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and forecasting is highly computationally intensive, construction of the forecasting
statistics is usually split into two stages [3]:

1. Identification of the SSE to construct statistical estimators OA, OB , Ȯ based on an
observed realization y1; : : : ; yn;

2. Computing the statistical estimator O� D OB�IN � OA��1 for the matrix �0 and
constructing a plug-in forecasting statistic

OynC1 D O� 0xnC1: (9.19)

If O� is a consistent estimator (for n ! C1), then the forecasting statistic (9.19) is
also consistent:

rn D Efj OynC1 � ynC1j2g ! r0:

Known methods of SSE identification can be divided into two classes [3]. The
methods in the first class rely on statistical analysis of every equation in the SSE
independently from the other equations. This class includes such methods as the
two-step least squares method (2LS method) and the ML method with limited
information.

1. 2LS method. The least squares method for multiple linear regression is applied
to each of the equations, where the endogenous variables in the right-hand sides
are replaced by their least squares forecasts. Under the hypothetical assumptions,
this yields consistent asymptotically unbiased estimators [3].

2. ML method with limited information. For the j th equation in the system, where
j D 1; : : : ; N , under a normality assumption on the random observation error a
log likelihood function is constructed for every time point t 2 f1; 2; : : : ; ng. This
function depends on the corresponding blocks of the matrices A0, B0, ˙ ; it is
maximized numerically. The resulting estimators are consistent, asymptotically
unbiased, and asymptotically equivalent to the 2LS estimators [3].

The second class contains three so-called systemic estimation methods: the
3LS method, the ML method with complete information, and the approximation
method.

1. 3LS method. The estimators OA, OB, Ȯ are constructed by applying the 2LS
method. Then all of the identities are removed from the system, and generalized
LS method is used to estimate all of the parameters of the system, substituting an
estimator Ȯ for the unknown covariance error matrix˙ . The resulting estimators
are consistent and asymptotically unbiased [3].

2. ML method with complete information. Assuming normality of the random
errors f�t g, a log likelihood function for the sample fyt g is constructed and
maximized. The resulting estimators are consistent, asymptotically unbiased, and
asymptotically efficient. It can be shown that they are asymptotically equivalent
to the 3LS estimators [3].
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3. The approximation method for SSE identification [2]. The method lies in finding
such estimators f Q̨j ; Q̌

j g that the matrix of “adjusted values”

QY D . Qyjt/ D X QB.IN � QA/�1

is the l2-optimal approximation for the matrix of recorded experimental data
Y D .yjt/:

N
X

jD1

n
X

tD1

� Qyjt � yjt
�2 ! min

f Q̨j ; Q̌j g
: (9.20)

An exact solution of the optimization problem (9.20) is hard to obtain due to
nonlinear dependence of the objective function on the SSE coefficients. In [2], it was
proposed to approximate the objective function in (9.20) by a different objective
function, which can be easily minimized:

N
X

jD1

K
X

kD1

 

n
X

tD1
xkt

�

yjt �
�

Y j Q̨j � Xj Q̌
j

�

t

�

!2

! min
f Q̨j ; Q̌j g

: (9.21)

In the paper [9], it was shown that the estimators f Q̨j ; Q̌
j g found as explicit solutions

of the minimization problem (9.21) are consistent, and asymptotic behavior of the
bias and the mean square error of these estimators, as well as the forecast risk of the
statistic (9.19), were investigated under Tukey–Huber distortions of f�tg.

9.4 Asymptotic Properties of the Least Squares Estimator
Under Drifting Coefficients

9.4.1 Drifting Coefficient Models for SSEs

As mentioned in Sect. 9.1, SSEs (9.1) are widely used in econometric modeling
due to their ability to account for the relations between endogenous and exogenous
variables not only within the same equation but also across different equations.
Presently, some researchers are voicing their concern about the inadequacy of the
classical SSE models, where the coefficients f˛lj, ˇkjg are constant and independent
of time, for modeling real-world economic data which is often subject to parameter
drift (changes in model parameters as time passes). Influence of parameter drift on
several statistical techniques was analyzed in [6, 7, 11, 13, 14]; however, the author
was the first to evaluate the effect of drifting parameters on statistical forecast risk
under SSE models.
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Let us emphasize the p lagged endogenous variables in the reduced SSE
form (9.4) by introducing the notation

.IN � A0
0

/yt � B0xt WWD �A0yt � A1yt�1 � � � � �Apyt�p � Bxt ; �t WWD ut :

We obtain

p
X

iD0
Aiyt�i C Bxt D ut ; t 2 Z; (9.22)

where yt D .yti/ 2 RN and xt D .xtj/ 2 RK are column vectors of, respectively,
endogenous and deterministic exogenous variables at time t ; the .N �N/-matrixAi
represents the coefficients in front of the endogenous variables at time .t � i/; the
.N � K/-matrix B represents the coefficients in front of the exogenous variables
at time t ; futg are jointly independent identically distributed random vectors (the
innovation process):

Efutg D 0N ; Covfut ; u�g D Efutu
0
�g D ıt�˙: (9.23)

In the theory of statistical time series analysis, the model (9.22), (9.23) is known as
the VARX.p; 0/ model of order p with exogenous variables (see, e.g., [12]).

Let us consider the following model of drifting coefficients in the SSE (9.22):

B D B.t/ D B0 C "B1 .t/; t 2 Z; (9.24)

Ai D Ai.t/ D Ai0 C "iAi1 i .t/; i D 0; 1; : : : ; p; (9.25)

where B0, fAi0g are the hypothetical values of matrix coefficients (in the absence
of drift); "; "i � 0 are distortion levels (or drift levels);  .t/;  i .t/ 2 R1 are
nonrandom real-valued functions defining the model of parameter variation; the
matrices B1, fAi1g are fixed (independent of time).

Let us present three special cases of the general drift model (9.24), (9.25) which
are often used to model real-world statistical data [7].

1. The exponential model:

Ai.t/ D Ai0 C "iAi1 exp.��i t/;
B.t/ D B0 C "B1 exp.��t/;

where �i > 0 and � > 0 are a priori known, and for d; f 2 f0; 1g the matrices
Aid , Bf no longer depend on time. It is recommended to use this model if some
of the coefficients are monotonous increasing (or decreasing) in time and tend to
some limit (equilibrium) value.
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2. The harmonic model:

Ai.t/ D Ai0 C "iAi1 sin.t!i C �i /;

B.t/ D B0 C "B1 sin.t! C �/;

where !i ; �i ; � are given, and fAi0 > 0g, B0 are independent of time. This
model is used if the coefficients are periodic, e.g., due to seasonal factors. The
parameters f!i g are the oscillation frequencies.

3. The change point model:

Ai.t/ D
(

Ai0; t � �0;

Ai0 C "iAi1; t > �0;

B.t/ D
(

B0; t � �0;

B0 C "B1; t > �0;

(9.26)

where fAi1g,B1 are fixed nonzero matrices, and �0 is a change point. This depen-
dence is used to model processes characterized by jumps in model parameters.
For instance, the change point model can be used to simulate introduction of new
laws or regulations, as well as large-scale political events (e.g., elections).

Note that sometimes the cases where only fAl.t/g, only B.t/, or both fAl.t/g and
B.t/ depend on time are considered separately.

9.4.2 LS Parameter Estimators Under Parameter Drift

Let us evaluate the properties of LS estimators for the coefficients of the SSE
models (9.22) under drifting model parameters.

Define the following block matrices:

Yt D

0

B

B

B

B

B

@

yt

yt�1
:::

yt�pC1

1

C

C

C

C

C

A

2 R
Np; Ut D

0

B

B

B

B

B

@

ut
0

:::

0

1

C

C

C

C

C

A

2 R
Np; Xt D

0

B

B

B

B

B

@

xt

xt�1
:::

xt�pC1

1

C

C

C

C

C

A

2 R
Kp; (9.27)

A D

0

B

B

B

B

B

B

B

@

A1 A2 � � � Ap�1 Ap

�A0 0 � � � 0 0

0 �A0 � � � 0 0

:::
:::

:::
:::

:::

0 0 � � � �A0 0

1

C

C

C

C

C

C

C

A

2 R
Np�Np; (9.28)
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˛ D

0

B

B

B

B

@

A0 0 � � � 0

0 A0 � � � 0

:::
:::

:::
:::

0 0 � � � A0

1

C

C

C

C

A

; ˇ D

0

B

B

B

B

@

B 0 � � � 0

0 0 � � � 0

:::
:::

:::
:::

0 0 � � � 0

1

C

C

C

C

A

2 R
Np�Kp: (9.29)

Lemma 9.1. If jA0j ¤ 0, then the SSE (9.22) withN endogenous andK exogenous
variables (including the lagged variables) can be represented in the following
equivalent forms: the structural form

˛Yt C AY t�1 C ˇXt D Ut ; (9.30)

and the reduced form

Yt C QAYt�1 C Q̌Xt D QUt ; (9.31)

where we have

EfUt g D 0Np; Ef QUtg D 0Np;

CovfUt ; Ut g D S; Covf QUt ; QUtg D ˛�1S˛0�1;

with QA D ˛�1A, Q̌ D ˛�1ˇ, QUt D ˛�1Ut ,

S D

0

B

B

B

B

@

˙ 0N�N � � � 0N�N
0N�N 0N�N � � � 0N�N
:::

:::
:::

:::

0N�N 0N�N � � � 0N�N

1

C

C

C

C

A

2 R
Np�Np:

Proof. The relation (9.30) is obtained from (9.22) by introducing the matrix
notation (9.27)–(9.29). To obtain (9.31), it suffices to multiply (9.30) from the left
by ˛�1, which exists by the nonsingularity of A0. ut
Corollary 9.3. The Np-dimensional time series fYtg defined by (9.31) can be
represented as a linear combination of f QUtg and fXtg:

Yt D
1
X

�D0

�� QA�� QUt�� �
1
X

�D0

�� QA�� Q̌Xt�� ; (9.32)
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QA D

0

B

B

B

B

B

B

B

@

A�1
0 A1 A�1

0 A2 � � � A�1
0 Ap�1 A�1

0 Ap

�IN 0N�N � � � 0N�N 0N�N
0N�N �IN � � � 0N�N 0N�N
:::

:::
:::

:::
:::

0N�N 0N�N � � � �IN 0N�N

1

C

C

C

C

C

C

C

A

2 R
Np�Np;

Q̌ D

0

B

B

B

B

B

@

A�1
0 B 0N�K � � � 0N�K

0N�K 0N�K � � � 0N�K
:::

:::
:::

:::

0N�K 0N�K � � � 0N�K

1

C

C

C

C

C

A

2 R
Np�Kp:

Proof. To obtain (9.32), it suffices to use (9.31) as a recurrence relation. ut
Let us obtain statistical parameter estimators for an SSE model in the reduced

form. Assume that the investigated stochastic process is observed at T time points

t 2 f1; 2; : : : ; T g, and � D
0

@

QA0

Q̌0

1

A is the composite ..N C K/p � Np/-matrix of

parameters.
Define the following block matrices:

Q D
 

Q11 Q12

Q0
12 Q22

!

; s D
 

s1

s2

!

;

Q11 D 1

T

T
X

tD1
Yt�1Y 0

t�1; Q12 D 1

T

T
X

tD1
Yt�1X 0

t ; Q22 D 1

T

T
X

tD1
XtX

0
t ;

s1 D 1

T

T
X

tD1
Yt�1Y 0

t ; s2 D 1

T

T
X

tD1
XtY

0
t :

(9.33)

Then, assuming jQj ¤ 0, we have the following expression for the least squares
estimator:

O� D �Q�1s: (9.34)

Note that the condition jQj ¤ 0 implies

.N CK/Np2 < T:
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Assume that the sequence of exogenous variables fXtg is such that for T ! 1, the
following limit is defined:

lim
T!1

1

T

T
X

tD1
Xt��X 0

t�� 0 D M��� 0 ; (9.35)

whereM� is a symmetric .Kp � Kp/-matrix, and �; � 0 2 f0; 1; : : : g.
Taking into account (9.27)–(9.29), let us denote

F D
1
X

�D0
QA�E ˚ QUt�� QU 0

t��

 QA0� D

1
X

�D0
QA� Q̇ QA0� ; (9.36)

Q̇ D

0

B

B

B

B

B

B

B

B

B

B

@

A�1
0 ˙A

0�1
0 0 � � � 0

0 0 � � � 0

:::
:::

:::
:::

0 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

A

2 R
Np�Np; (9.37)

wt D �
1
X

�D0

�� QA�� Q̌Xt�� : (9.38)

Lemma 9.2. Under the assumption (9.35), the following limit expressions hold:

H D lim
T!1

1

T

T
X

tD1
wtw

0
t D

1
X

�;� 0D0

�� QA�� Q̌M��� 0
Q̌0 �� QA0�� 0

; (9.39)

L� 0 D lim
T!1

1

T

T
X

tD1
wt�1X 0

t�� 0 D �
1
X

�;� 0D0

�� QA�� Q̌M�C1�� 0 : (9.40)

Proof. By applying (9.35), (9.36)–(9.38), we obtain

lim
T!1

1

T

T
X

tD1
wtw

0
t D lim

T!1

1
X

�;� 0D0

�� QA�� Q̌ 1
T

T
X

tD1
Xt��X 0

t�� 0
Q̌0 �� QA0�� 0 D

D
1
X

�;� 0D0

�� QA�� Q̌M��� 0
Q̌0 �� QA0�� 0 I
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lim
T!1

1

T

T
X

tD1
wt�1w0

t�� 0 D lim
T!1

 

�
1
X

�D0

�� QA�� Q̌ 1
T

T
X

tD1
Xt���1X 0

t�� 0

!

D

D �
1
X

�D0

�� QA�� Q̌M�C1�� 0 : ut

Now let us assume that the matrix coefficients multiplying the variables in (9.22)
are subject to drift, i.e., are changing with time. First, we are going to consider
a general drift model (9.24) for the matrix coefficient multiplying the exogenous
variables in (9.22):

B D B.t/ D B0 C "B1 .t/;

where " � 0 is the distortion level (drift level); B0 and B1 are fixed .N � K/-
matrices (now they are assumed to be independent of time);  .t/ W R1 ! R1 is a
fixed real-valued function defining the parameter drift model.

Then, similarly to (9.32), we can define

Q̌ D Q̌.t/ D ˛�1ˇ.t/ D

0

B

B

B

B

B

@

A�1
0 B.t/ 0 � � � 0

0 0 � � � 0

:::
:::

:::
:::

0 0 � � � 0

1

C

C

C

C

C

A

D Q̌
0 C " QB1 .t/;

(9.41)
where

Q̌
0 D

0

B

B

B

B

B

@

A�1
0 B0 0 � � � 0

0 0 � � � 0

:::
:::

:::
:::

0 0 � � � 0

1

C

C

C

C

C

A

; Q̌
1 D

0

B

B

B

B

B

@

A�1
0 B1 0 � � � 0

0 0 � � � 0

:::
:::

:::
:::

0 0 � � � 0

1

C

C

C

C

C

A

:

(9.42)

Assuming that there is no parameter drift, i.e., " D 0, and B D B0, let O� be
the traditional least squares estimator defined by (9.34). Let O�" be the least squares
estimator defined by (9.34) and based on "-distorted data under parameter drift:
B D B.t/ D B0C"B1 .t/. Let us evaluate the difference between these estimators,
i.e., the deviation of the estimator in the distorted model from the undistorted case:

� D O�" � O�: (9.43)

Theorem 9.3. For an identifiable SSE (9.22), let jQj ¤ 0; Xt D 0 for t D
0;�1; : : : . Assume that the matrix coefficient multiplying the vector of exogenous
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variables is drifting,B D B.t/ D B0C"B1 .t/, where " � 0 is the distortion level;
 .�/ is a real function,  .t/ W R1 ! R1; and B0, B1 are fixed .N � K/-matrices.
Then the deviation (9.43) satisfies the following asymptotic expansion:

� D "Q�1 �q.1/Q�1s � s.1/
�CO."2/1.NCK/p�Np; (9.44)

where

s.1/ D

0

B

B

B

B

B

@

1

T

T
X

tD1
.Yt�1V 0

t C Vt�1Y 0
t /

1

T

T
X

tD1
XtV

0
t

1

C

C

C

C

C

A

I

q.1/ D

0

B

B

B

B

B

@

1

T

T
X

tD1
.Yt�1V 0

t�1 C Vt�1Y 0
t�1/

1

T

T
X

tD1
Vt�1X 0

t

1

T

T
X

tD1
XtV

0
t�1 0

1

C

C

C

C

C

A

I

Vt D �
1
X

�D0
 .t � �/ �� QA�� Q̌

1Xt�� I

Q and s are defined by the formulas (9.33), and the remainder term is understood
in the sense of almost sure convergence:

1

"2
O."2/

a:s:��! c as " ! 0; where jcj < 1:

Proof. From (9.32), (9.41), (9.42), let us obtain an expression for the observed data
under "-distortion ("-drift):

Y "t D
1
X

�D0

�� QA�� QUt�� �
1
X

�D0

�� QA�� Q̌
0Xt�� � "

1
X

�D0

�� QA��  .t � �/ Q̌
1Xt�� D

D Yt � "

1
X

�D0

�� QA��  .t � �/ Q̌
1Xt�� D Yt C "Vt ; � < t � �0;

(9.45)

where

Vt D �
1
X

�D0

�� QA��  .t � �/ Q̌
1Xt�� :
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From (9.45), (9.33) we have

Q"
11 D Q11 C "

 

1

T

T
X

tD1
Yt�1V 0

t�1 C 1

T

T
X

tD1
Vt�1Y 0

t�1

!

CO."2/1Np�Np ;

Q"
12 D Q12 C "

1

T

T
X

tD1
Vt�1X 0

t ; Q"
22 D Q22 D 1

T

T
X

tD1
XtX

0
t ;

s"1 D s1 C "

 

1

T

T
X

tD1
Yt�1V 0

t C 1

T

T
X

tD1
Vt�1Y 0

t

!

CO."2/1Np�Np ; (9.46)

s"2 D s2 C "
1

T

T
X

tD1
XtV

0
t :

Thus, we obtain

O�" D � �Q C "q.1/ C "2q.2/
��1 �

s C "s.1/ C "2s.2/
�

;

where q.1/; q.2/ can be found from the expressions (9.46).
Now applying the well-known matrix expansion [5]

.IN CX/�1 D IN � X CO.jjX jj2/ 1N�N ;

where jjX jj is the norm of the matrix X , proves the theorem. ut
In applications, statisticians often encounter the special case described by (9.24),

where the function  .t/ is the Heaviside step function:

 .t/ D 1.t � �0/ D
(

1; t > �0;

0; t � �0:

This means that the dynamic behavior of the matrix coefficient B is defined by the
jump function (9.26):

B.t/ D
(

B0; t � �0;

B0 C "B1; t > �0;

where the parameter �0 2 f1; 2; : : : ; T g is known as the change point.

Theorem 9.4. Under the conditions of Theorem 9.3, let  .t/ D 1.t � �0/, where �0
is a change point, and assume the asymptotics

T ! 1; �0 ! 1; lim
T!1

�0

T
D �0; 0 < �0 < 1:
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Then the deviation� D O�"� O� of the estimator O�" from O� has a limit in probability:

�

P�! a ¤ 0.NCK/p�Np; (9.47)

and the limit value can be written asymptotically as

a D "a0 CO."2/1.NCK/p�Np; where a0 D QQ�1 � Qq.1/ QQ�1 Qs � Qs.1/
�

; (9.48)

and the matrices QQ, Qq.1/, Qs, Qs.1/ are the following limits in probability:

QQ D p lim
T!1Q D

 

F CH L0

L0
0 M0

!

; (9.49)

Qs D p lim
T!1 s D

 �.F CH/ QA0 �L0 Q̌0

�L0
0

QA0 �M0
Q̌0

!

; (9.50)

Qs.1/ D p lim
T!1 s.1/ D �.1 � �0/�

�

0

B

B

B

B

@

1
P

�D0
L1 Q̌0

1

�� QA0�� C
1
P

�D0

�

�� QA�� Q̌
1

�

L0
�C1

�� QA��M���1 Q̌0
��0

1
P

�D0
M���1 Q̌0

1

�� QA0��

1

C

C

C

C

A

;

(9.51)

Qq.1/ D p lim
T!1 q.1/ D �.1 � �0/�

�

0

B

B

B

B

@

1
P

�D0
L�C1 Q̌0

1

�� QA0�� C
1
P

�D0
�� QA�� Q̌

1L
0
�C1

1
P

�D0
�� QA�� Q̌

1M
0���1

1
P

�D0
M���1 Q̌0

1

�� QA0�� 0

1

C

C

C

C

A

(9.52)

in the notation of (9.35)–(9.40).

Proof. If we prove (9.49)–(9.52), then (9.47)–(9.48) will follow from the expan-
sion (9.44) and the well-known relation between the convergence almost surely and
the convergence in probability.

The expression (9.49) is quite well known (see, for example, [1]).
To prove (9.50)–(9.52), we are going to use the result of Lemma 9.2 together

with (9.35), (9.36)–(9.38). By (9.31), we obtain
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Qs D p lim
T!1

0

B

B

B

B

@

� 1
T

T
P

tD1
Yt�1Y 0

t�1 QA0 � 1
T

T
P

tD1
Yt�1X 0

t
Q̌0 C 1

T

T
P

tD1
Yt�1 QU 0

t

� 1
T

T
P

tD1
XtY

0
t�1 QA0 � 1

T

T
P

tD1
XtX

0
t

Q̌0 C 1
T

T
P

tD1
Xt QU 0

t

1

C

C

C

C

A

D

D
 �.F CH/ QA0 �L0 Q̌0

�L0
0

QA0 �M0
Q̌0

!

:

To study the convergence of Qs.1/, let us consider the following expressions, taking
into account that Xt D 0 for t D 0;�1;�2; : : : :

p lim
T!1

1

T

T
X

tD1
Yt�1V 0

t D p lim
T!1

 1
X

�D0

 

� 1

T

T
X

tD1
Yt�1X 0

t�� Q̌0
1

�� QA0�� 1.t � � � �0/
!!

D

D p lim
T!1

0

@

1
X

�D0

0

@� 1

T

0

@

� C �0

� C �0

�C�0
X

tD1
Yt�1X 0

t�� Q̌0
1

�� QA0�� 1.t � � � �0/

1

A�

� 1

T

T
X

tD�C�0C1
Yt�1X 0

t�� Q̌0
1

�� QA0�� 1.t � � � �0/

1

A

1

A D

D �.1 � �0/

1
X

�D0
L� Q̌0

1

�� QA0�� :

Similarly, we have

p lim
T!1

1

T

T
X

tD1
YtV

0
t�1 D �.1 � �0/

1
X

�D0

�� QA�� Q̌
1

�

L0
�C1

�� QA� �M���1 Q̌0� ;

p lim
T!1

1

T

T
X

tD1
Xt V

0
t D �.1 � �0/

1
X

�D0
M�� Q̌0

t

�� QA0�� :

Applying the same argument yields the following expressions for the components
of Qq.1/:

p lim
T!1

1

T

T
X

tD1
Yt�1V 0

t�1 D �.1 � �0/

1
X

�D0
L�C1 Q̌0

t

�� QA0�� ;

p lim
T!1

1

T

T
X

tD1
XtV

0
t�1 D �.1 � �0/

1
X

�D0
M���1 Q̌0

1

�� QA0�� :

The limit expressions (9.49)–(9.52) have been proved. ut
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Now let us consider the case (9.25), where parameter drift is affecting the matrix
coefficients multiplying the dependent variables. As above, let us study the devia-
tion (9.43). Similarly to Corollary 9.3, we can obtain an expansion of the Np-vector
Y "t , where the symbol " indicates the presence of distortion (in this case, drift).

Lemma 9.3. If in (9.31) the block .Np � Np/-matrix of coefficients QA depends on
time,

QA D QA.t/ D QA0 C " QA1 .t/;

where " � 0, QA0 and QA1 are .Np � Np/-matrices independent of time, and  .t/ is a
scalar function, then the Np-vector Y "t , t 2 Z, can be represented as follows:

Y "t D
1
X

�D0

�
Y

iD1

�� QA.t � i C 1/
� QUt�� �

1
X

�D0

�
Y

iD1

�� QA.t � i C 1/
� Q̌Xt�� : (9.53)

Proof. Write

Y "t D � QA.t/Yt�1 � Q̌Xt C QUt D
D � QA.t/

�

� QA.t � 1/Yt�2 � Q̌Xt�1 C QUt�1
�

� Q̌Xt C QUt D

D QA.t/ QA.t � 1/Yt�2 C �� QA.t/�
�

� Q̌�Xt�1 � Q̌Xt C �� QA.t/� QUt�1 C QUt D

D � � � D
1
X

�D0

�
Y

iD1

�� QA.t � i C 1/
� QUt�� �

1
X

�D0

�
Y

iD1

�� QA.t � i C 1/
� Q̌Xt�� :

ut

Lemma 9.4. Under the conditions of Lemma 9.3, we have the following stochastic
expansion of the Np-vector Y "t :

Y "t D Yt C "V "
t CO."2/1Np�1; (9.54)

where

V "
t D

1
X

�D0

 

�
X

sD0

�� QA.0/�s QA.1/ �� QA.0/���s
 .t � s/

!

� QUt���1 C Q̌Xt���1
�

:

Proof. Similarly to (9.45), let us substitute the appropriate expressions for f QA.t/g
into (9.53). From (9.53), we have
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Y "t D
1
X

�D0

�
Y

iD1

�� QA.0/ � " QA.1/ .t � i C 1/
� QUt���

�
1
X

�D0

�
Y

iD1

�� QA.0/ � " QA.1/ .t � i C 1/
� Q̌Xt�� D

D
1
X

�D0

�� QA.0/�� QUt�� �
1
X

�D0

�� QA.0/�� Q̌Xt�� C "V "
t CO

�

"2
�

1Np�1 D

D Yt C "V "
t CO."2/1Np�1;

where the remainder term O."2/ is understood in the sense of almost sure
convergence. ut
Lemma 9.5. Under the conditions of Lemma 9.3, assuming Xt D 0 for t � 0, the
deviation (9.43) satisfies the following asymptotic expansion:

� D "Q�1 �q.1/Q�1s � s.1/
�CO."2/1.NCK/p�Np; (9.55)

s.1/ D

0

B

B

B

B

@

1
T

T
P

tD1

�

Yt�1V
0"
t C V "

t�1Y 0
t

�

1
T

T
P

tD1
XtV

0"
t

1

C

C

C

C

A

I

q.1/ D

0

B

B

B

B

@

1
T

T
P

tD1

�

Yt�1V
0"
t�1 C V "

t�1Y 0
t�1
�

1
T

T
P

tD1
V "
t�1X 0

t

1
T

T
P

tD1
XtV

0"
t�1 0

1

C

C

C

C

A

;

V "
t D

1
X

�D0

 

�
X

sD0

�� QA.0/�s QA.1/ �� QA.0/���s
 .t � s/

!

� QUt���1 C Q̌Xt���1
�

:

The remainder term in (9.55) is understood in the sense of almost sure convergence.

Proof. This lemma can be proved similarly to Theorem 9.3. ut
Now let us consider distortion in the form of a (fixed) change point �0, as defined

by (9.26):

 .t/ D 1.t � �0/;

QA.t/ D
( QA.0/; t � �0;

QA.0/ C " QA.1/; t > �0:
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Theorem 9.5. Under the conditions of Lemma 9.5, if  .t/ D 1.t � �0/, then in
the asymptotics T ! 1, �0 ! 1, lim

T!1
�0
T

D �0, 0 < �0 < 1, the deviation �

satisfies the following asymptotic relation:

�

P! a ¤ 0.NCK/p�Np;

and the following asymptotic expansion holds for the limit value:

a D "a0 CO."2/1.NCK/p�Np; a0 D QQ�1 � Qq.1/ QQ�1 Qs � Qs.1/
�

:

The following limit relations hold for QQ, Qq.1/, Qs, Qs.1/:

QQ D p lim
T!1Q D

0

B

@

F CH L0

L0
0 M0

1

C

A ; Qs D p lim
T!1 s D

0

B

@

�.F CH/ QA0 �L0 Q̌0

�L0
0

QA0 �M0
Q̌0

1

C

A ;

Qs.1/ D p lim
T!1 s.1/ D .1� �0/�

�

0

B

B

B

B

B

B

B

@

1
X

�D0

�
X

sD0

��

� QA.0/
�s QA.1/

�

� QA.0/
���s � Q̌L0

�

�� QA0� �M 0���2 Q̌0��0

1
X

�D0

�
X

sD0
M���1 Q̌0

�

�

� QA.0/
�0���s � QA.1/

�0 ��� QA.0/
�0�s

1

C

C

C

C

C

C

C

A

C

C .1 � �0/

0

B

B

B

B

B

B

B

@

1
X

�D0

�
X

sD0
L��1 Q̌0

�

�

� QA.0/
�0���s � QA.1/

�0 ��� QA.0/
�0�s

1
X

�D0

�
X

sD0
M���1 Q̌0

�

�

� QA.0/
�0���s � QA.1/

�0 ��� QA.0/
�0�s

1

C

C

C

C

C

C

C

A

;

Qq.1/ D p lim
T!1 q.1/ D .1 � �0/�

�

0

B

B

B

B

B

B

B

@

1
X

�D0

�
X

sD0
L� Q̌0

�

�

� QA.0/
�0���s � QA.1/

�0 ��� QA.0/
�0�s

.�/021

1
X

�D0

�
X

sD0

��

� QA.0/
�s QA.1/

�

� QA.0/
���s Q̌M 0���2

�

0

1

C

C

C

C

C

C

C

A

C

C .1 � �0/

0

B

B

B

@

1
X

�D0

�
X

sD0

�

� QA.0/
�s QA.1/

�

� QA.0/
���s Q̌L0

� 0

0 0

1

C

C

C

A

:
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Proof. Apply Lemmas 9.4, 9.5 as in the proof of Theorem 9.4. ut
Theorems 9.4 and 9.5 show that parameter drift generally leads to loss of

consistency of the least squares estimator O�". These theorems also allow us to find
the limit difference a between the least squares estimator and the true value � :

O�" P! � C a:

9.5 Sensitivity of Forecast Risk to Parameter Drift

Let us investigate how parameter drift affects forecasting algorithms based on least
squares estimators, with specific attention paid to forecast risk. We are going to start
by evaluating how the deviation � of the estimator O�" from O� affects the accuracy
of a one-step-ahead forecast yTC1 2 RN .

Let us introduce the following matrix notation:

C D

0

B

B

B

@

1 0 : : : 0 0 : : : 0

0 1 : : : 0 0 : : : 0
:::
::: : : :

:::
::: : : :

:::

0 0 : : : 1 0 : : : 0

1

C

C

C

A

2 R
N�Np; G D a0

0AC
0Ca0A 2 R

Np�Np;

R D a0
0ˇC

0Ca0ˇ 2 R
Kp�Kp; J D a0

0AC
0Ca0ˇ 2 R

Np�Kp;

F1 D lim
T!1 wTw0

T 2 R
Np�Np; F2 D lim

T!1 wT X
0
TC1 2 R

Np�Kp;

(9.56)

where a0A and a0ˇ are, respectively, .Np � Np/- and .Np � Kp/-matrices defined
from the limit expression established in Sect. 9.4:

� D O�" � O� D
0

@

A

ˇ

1

A

P! a D "

0

@

a0A

a0ˇ

1

ACO."2/1.NCK/p�Np :

The plug-in forecast (9.14) will be chosen for one-step-ahead prediction of the
vector yTC1 of dependent variables:

OyTC1 D
� OYTC1

�

.1/
D
� OQAYT � OQ̌XTC1

�

.1/
; (9.57)

where .�/.1/ is the subvector (block) consisting of the first N components of a

vector, OQA and OQ̌ are estimators of the respective matrices, XTC1 is the known
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column vector of nonrandom exogenous variables at a future time T C 1. Note that
OyTC1 D C OYTC1.

It has been proved that if the coefficients of the equation (9.31) are known exactly,
then the forecast (9.57) is mean square optimal in the family of linear forecasts.

Theorem 9.6. Under the conditions of Theorem 9.4, let T ! 1,XT ! X0 2 RK .
Then the mean square forecast risk

r".T / D Efk OyTC1 � yTC1k2g D Ef. OyTC1 � yTC1/0. OyTC1 � yTC1/g

satisfies the following convergence as T ! 1:

r".T / ! r" D tr
�

A�1
0 ˙

�

A�1
0

�0�C "2bI
b D .X0/0RX0 C tr ..F C F1/G/C 2tr .F2J / � 0:

(9.58)

Proof. From (9.57), we can write

OyTC1 D
�

�
� QAYT C Q̌XTC1

�

� �

AYT CˇXTC1
�

�

.1/
D

D yTC1 � A�1
0 uTC1 � .AYT /.1/

�

ˇXTC1
�

.1/
:

Therefore, we have

OyTC1 � yTC1 D �A�1
0 uTC1 � .AYT /.1/ � .ˇXTC1/.1/:

Now let us rewrite the expression for the risk r".T /:

r".T / D E
˚

. OyTC1 � yTC1/0 . OyTC1 � yTC1/

 D

D E

n

u0
TC1A

0�1
0 A�1

0 uTC1
o

C E

n

.AYT /
0
.1/.AYT /.1/

o

D

D E

n

.ˇXTC1/0.1/.ˇXTC1/.1/
o

C 2E
n

.AYT /
0
.1/.ˇXTC1/.1/

o

:

This implies the following convergence [in the notation of (9.56)]:

r".T / ! tr
�

A�1
0 ˙

�

A�1
0

�0�C "2tr

��

lim
T!1EfYT Y 0

T g
�

G

�

C

C "2tr
�

X0
�

X0
�0
R
�

C 2"2tr

��

lim
T!1EfYTX 0

TC1g
�

J

�

:

Applying (9.32) and (9.45) yields the simplified expressions:

EfYT Y 0
T g D F C wT w0

T ; EfYTX 0
TC1g D wT X

0
TC1:
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Finally, we can write

r".T / ! tr
�

A�1
0 ˙

�

A�1
0

�0�C "2tr

��

F C lim
T!1 wT w0

T g
�

G

�

C "2.X0/0RX0C

C 2"2tr

��

lim
T!1 wT X

0
TC1

�

J

�

D tr
�

A�1
0 ˙A

�1
0

�C "2b: ut

Corollary 9.4. Under the conditions of Theorem 9.6, the following asymptotic
expansion holds for the risk averaged over time:

r�
" D lim

T!1
1

T

T
X

tD1
r".t/ D tr

�

A�1
0 ˙A

�1
0

�C "2b� CO."2/;

where

b� D tr ..F CH/G/C tr .M0R/C 2 tr .L1J /:

Proof. This result follows from Theorem 9.6 and the expressions (9.35)–(9.40). ut
Corollary 9.5. Under the conditions of Theorem 9.6, the risk instability coefficient
tends to the following limit as T ! C1:

�".T / D r".T / � r0
r0

! "2
b

tr
�

A�1
0 ˙.A

�1
0 /

0� ;

and the ı-admissible distortion level "C.ı/ defined by the inequality

lim
T!1 �"C.T / � ı; ı > 0;

satisfies the following approximation:

"C.ı/ 

s

ı tr .A�1
0 ˙.A

�1
0 /

0/
b

:

Theorem 9.6, together with its corollaries, allows us to evaluate the robustness of
the least squares forecasting statistic (9.57) under parameter drift.

In conclusion, let us mention that certain methods to improve the robustness of
the forecasting statistic (9.57) have been developed in [9].
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9.6 Numerical Results for the Ludeke Econometric Model

The well-known Ludeke model [3] is the simplest model of macroeconomic
dynamics. It is represented as an SSE(4,3):

8

ˆ

ˆ

<

ˆ

ˆ

:

Ct D a0 C a1Yt C a2Ct�1 C ut1;
It D b0 C b1Yt C b2Ut�1 C ut2;

Imt D c0 C c1Yt C c2Imt�1 C ut3;
Yt D Ct C It � Imt C Gt :

The model has N D 4 dependent (endogenous) variables: consumption Ct ,
investment It , import Imt , national income Yt , andK D 3 independent (exogenous)
variables: dividends Ut , government expenditureGt , and a dummy variable.

Using the notation (9.22) in the absence of drift, this model can be represented
in the following form (p D 1):

yt D A0.t/yt C A1.t/yt�1 C B.t/xt C ut ; (9.59)

where

yt D .Ct It Imt Yt /
0 2 R

4; xt D .Ut�1 Gt 1/0; ut D .ut1 ut2 ut3/
0 2 R

3;

A0.t/ D A0 D

0

B

B

@

0 0 0 a1

0 0 0 b1
0 0 0 c1
1 1 �1 0

1

C

C

A

; A1.t/ D A1 D

0

B

B

@

a2 0 0 0

0 0 0 0

0 0 c2 0

0 0 0 0

1

C

C

A

2 R
4�4;

B.t/ D B D

0

B

B

@

0 0 a0
b2 0 b0
0 0 c0

0 1 0

1

C

C

A

2 R
4�3:

The vector of true model parameters has nine dimensions:

� D .a1; b1; c1; a2; b2; c2; a0; b0; c0/
0:

In our simulation, the value of this vector was the estimate obtained from observing
eighteen econometric indicators of German economy [3]:

� D .0:353; 0; 0:169; 0:434; 0:793; 0:628; 28:679; 10:717; �29:724/0: (9.60)

Future states of the system were simulated based on this “true” model. The
experiments used different observation lengths: T D 20; 50; 100; 150; 200; 250.
Least squares estimates of the parameter vector O� were found from (9.34). Then a
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Fig. 9.1 Estimates for the coefficient a1

Fig. 9.2 Estimates for the coefficient c1

change point �0 was artificially introduced into the system: the simulated time
series used different values of certain parameters for t � �0. In the first series of
experiments, the ratio �0=T was chosen as � D 0:75, and in the second series it was
� D 0:5. Least squares estimates of the parameter vector O�" were calculated from
this distorted data by applying (9.34).

Two series of simulations were performed for different distortion levels ".
Presented in Figs. 9.1, 9.2, 9.3 are the results of estimating, respectively, the model
coefficients a1, c1, c2 for different observation lengths T , where past the change
point �0 D 0:75T the coefficients of the model (9.59) were increased by 50%
compared to the initial values (9.60).

Figures 9.4–9.6 present similar results in a setting where model coefficients were
increased by 20% past the change point �0 D 0:5T .
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Fig. 9.3 Estimates for the coefficient c2

Fig. 9.4 Estimates for the coefficient a0

Fig. 9.5 Estimates for the coefficient b1
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Fig. 9.6 Estimates for the coefficient b2

The simulation results shown in Figs. 9.1–9.6 illustrate the inconsistency of least
squares estimators under parameter (coefficient) drift.
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Chapter 10
Forecasting of Discrete Time Series

Abstract This chapter is devoted to forecasting in the non-classical setting where
the state space of the time series is finite, necessitating the use of discrete-valued
time series models. The field of discrete statistics has remained relatively under-
developed until the recent years, when rapid introduction of digital equipment
stimulated the researchers to develop numerous discrete models and techniques.
In this chapter, we discuss optimal forecasting statistics and forecast risks for
Markov chain models, including high-order Markov chains, and the beta-binomial
model.

10.1 Forecasting by Discriminant Analysis of Markov Chains

10.1.1 The Time Series Model

As in Sect. 2.4.1, let us consider a setting where the predicted random variable � is
discrete:

� 2 f1; 2; : : : ; Lg;

where 2 � L < C1 is the number of possible values of � (and hence, the
number of possible forecasts). The statistical data X used to make the forecast O�
will be modeled by realizations of finite homogeneous Markov chains (HMCs).
This model is used in genetic engineering [36], medical diagnostics [22,30], analytic
finance [10], and other applications [15, 16, 20]. Forecasting will be based on the
discriminant analysis approach discussed in Sect. 2.4.

Let us reformulate the problem in terms of discriminant analysis. Assume that a
sequence of discrete random variables

fXtg; Xt 2 A D f1; 2; : : : ; N g; t D 1; 2; : : : ;

Y. Kharin, Robustness in Statistical Forecasting, DOI 10.1007/978-3-319-00840-0 10,
© Springer International Publishing Switzerland 2013
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is observed, and it belongs to one of the L � 2 classes˝1; ˝2; : : : ; ˝L with given
prior probabilities q1; q2; : : : ; qL (ql > 0, l D 1; : : : ; L; q1 C � � � C qL D 1).
Each class ˝l is composed of HMCs defined by initial probabilities vectors �.l/

and matrices of one-step transition probabilities P .l/:

�.l/ D
�

�
.l/
i

�

W �
.l/
i D PfX1 D i j ˝lg;

P .l/ D
�

p
.l/
ij

�

W p
.l/
ij D PfXt D j j Xt�1 D i;˝lg;

i; j 2 A; l D 1; : : : ; L:

(10.1)

We are going to assume that Markov chains in all classes are stationary and ergodic:
�
.l/
i > 0, i 2 A. Without loss of generality, we will also assume that transitions

between any two states are possible:

p
.l/
ij > 0; i; j 2 A; l 2 f1; : : : ; Lg; (10.2)

otherwise only the possible transitions should be considered. Finally, assume that
the classes f˝lg differ in the one-step transition probability matrices fP .l/g.

Let a random realization of the HMCX , which lies in one of theL classes (10.1),
be recorded over n units of time:

X D .x1; x2; : : : ; xn/; xt 2 A; t 2 1; : : : ; n: (10.3)

Let us construct a forecasting statistic or, in other words, the decision rule (DR) to
predict the value � based on the realization (10.3): O� D d.X/, O� 2 f1; 2; : : : ; Lg, and
estimate its performance at different levels of prior information. The performance of
the decision rule will be evaluated using the misclassification probability (incorrect
forecast probability):

r D Pfd.X/ ¤ �g; (10.4)

where � 2 f1; 2; : : : ; Lg is a discrete random variable with the probability
distribution Pf� D lg D ql , which represents the true unobserved number of the
class containing the HMC realized as (10.3).

10.1.2 The Bayesian Decision Rule and Its Properties

As mentioned in Sect. 2.4, the decision rule that yields the minimum misclassifica-
tion error is the Bayesian decision rule (BDR).

Let us define the following frequency estimators for the probabilities of pairs of
states based on the observed realization (10.3):
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Ŏ D
� Ŏ ij

�

W Ŏ ij D nij

n
; nij D

n�1
X

tD1
Ifxt D i; xtC1 D j g; i; j 2 A;

where If�g is the indicator function.
Due to the normalization condition on the probabilities f˘ij W i; j 2 Ag, it is

sufficient to estimate the parameters f˘ij W .i; j / 2 A˘ g, where A˘ D A2nfN;N g;
then we can write

˘NN D 1 �
X

.i;j /2A˘

˘ij:

Theorem 10.1. In the model (10.1)–(10.3), the minimum incorrect forecast proba-
bility (10.4) is attained for the BDR written as

O� D dBDR.X/ D arg max
1�l�L

0

@

1

n
log ql C 1

n
log�.l/x1 C

X

i;j2A

Ŏ ij logP .l/
ij

1

A ; X 2 An:

(10.5)

Proof. It suffices to use the definition of a BDR given in Sect. 2.4 and to construct
a log likelihood function for the observed realization X . ut
Corollary 10.1. In a setting where the set A is limited to only two possible solutions
(L D 2), the BDR can be written as

O� D dBDR.X/ D 1 .�.X//C 1; X 2 An; (10.6)

�.X/ D ��.X/C 1

n
log

q2

q1
C 1

n
log

�
.2/
x1

�
.1/
x1

; ��.X/ D
X

i;j2A
Ŏ ij log

p
.2/
ij

p
.1/
ij

;

(10.7)

where �.X/ is the discriminant function for the classes ˝1;˝2, and 1.�/ is the
Heaviside step function.

We are going to evaluate the probability of a forecast error for L D 2 when
the BDR (10.6), (10.7) is used to make a forecast in the hardest case of contigual
classes:

p
.2/
ij D p

.1/
ij .1C bij"/; " ! 0; p

.2/
ij ! p

.1/
ij ; i; j 2 A; (10.8)

where fbijg are some constant weights:
X

j2A
p
.1/
ij bij D 0; i 2 A;

and " is the contiguity parameter [26, 27].
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Let us introduce the following auxiliary variables:

al D .�1/l
X

i2A
�
.l/
i

X

j2A
p
.l/
ij log

p
.2/
ij

p
.1/
ij

> 0; (10.9)

s
.l/
ijuv D �

.l/
i p

.l/
ij

�

ıiuıiv � �.l/u p.l/uv

�C p
.l/
ij p

.l/
uv

�

�
.l/
i c

.l/
ju C �.l/u c

.l/
vi

�

; (10.10)

c
.l/
ju D

1
X

kD0

�

p
.l/
ju .k/� �.l/u

�

< 1;

	
.l/
ij uv D ıiu

�
.l/
i

�

ıjvp
.l/
ij � p

.l/
ij p

.l/
uv

�

; i; j; u; v 2 A; l 2 f1; 2g; (10.11)

where al > 0 is a weighted sum of the Kullback–Leibler information values
computed for the transition probability matrices P .1/ and P .2/; fs.l/ijuvg and f	.l/ijuvg
are defined in the form of covariances; p.l/ju .k/ D ..P .l//k/ju is the probability of a
k-step transition from state j to state u for a Markov chain belonging to the class˝l .
Note that the series c.l/ju converges exponentially, and its sum can be easily computed.

The next lemma, which was proved in [22], describes the asymptotic properties
of the auxiliary variables introduced in (10.9)–(10.11) and the stationary HMC
probability distributions in the asymptotics (10.8).

Lemma 10.1. In the asymptotics of contigual classes (10.8) of stationary
HMCs (10.1), (10.2), the following expansions are satisfied:

�
.2/
j D �

.1/
j

�

1C "hj CO."2/
�I 	

.2/
ijuv D 	

.1/
ijuv CO."/I s

.2/
ijuv ! s

.1/
ijuvI

al D "2

2

X

i;j2A
b2ij�

.l/
i p

.1/
ij CO."3/; l 2 f1; 2g; a2

a1
! 1;

where jhj j < C1, i; j; u; v 2 A.

Let us now estimate the forecast risk (10.4) in the asymptotics (10.8) if the
contiguity parameter satisfies the asymptotic condition

" D O.n�1=2/:

Denote

� D
X

i;j2A
b2ij�

.1/
i p

.1/
ij ; V D

X

.i;j /;.u;v/2A˘

.bij � bNN /s
.1/
ijuv.buv � bNN/ > 0;

(10.12)

l D C .�1/l 2 log.q2=q1/

c
p
V

;  D c�p
V
> 0; l 2 f1; 2g; (10.13)

where 0 < c < C1, and the covariances fs.1/ijuvg are defined by (10.10).
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Theorem 10.2. Assuming an increasing number n of observations and two con-
tigual classes (10.8), for

n ! 1; " D cp
n

! 0; 0 < c < C1;

the forecast risk (10.4) of the BDR (10.6) converges to a limit value:

r0 ! Qr0 D q1˚ .�1=2/C q2˚ .�2=2/ ;

where ˚.�/ is the standard normal distribution function, and the values 1, 2 are
defined by (10.13).

Proof. From (10.6), the conditional probabilities of an incorrect decision can be
written as

r1 D Pfd.X/ ¤ � j � D 1g D 1 � P f�.X/ < 0 j � D 1g ;
r2 D Pfd.X/ ¤ � j � D 2g D P f�.X/ < 0 j � D 2g :

Let us find the probability distribution of the statistic �.X/ defined by (10.7).
The summand ��.X/ is a linear combination of the random variables f Q̆ ijg. It is
known that if the observed realization X belongs to the class ˝l , then, as n ! 1,
the random variables �.l/ij D p

n. Ŏ ij �˘.l/
ij / are asymptotically normally distributed

[2] with zero expectations and the covariances Covf�.l/ij ; �
.l/
uv g D s

.1/
ijuv defined

by (10.10), where ˘.l/
ij D �

.l/
i p

.l/
ij . Thus, the conditional probability distribution of

��.X/ is also asymptotically normal under the condition � D l . The asymptotic
mean of ��.X/ is a linear combination of the means of f Ŏ ijg; it is equal to

.�1/lal . The asymptotic variance of ��.X/ is a quadratic form in fs.l/ijuvg; due to
the normalization condition on f˘ijg, the asymptotic variance equals

	2l D
X

.i;j /; .u;v/2A˘

log
p
.2/
ij

p
.1/
ij

p
.1/
NN

p
.2/
NN

log
p
.2/
uv

p
.1/
uv

p
.1/
NN

p
.2/
NN

s
.l/
ijuv > 0:

Observe that 	2l > 0 since for l D 1; 2 the covariance matrices
�

s
.l/
ij uv

�

.i;j /;.u;v/2A˘

are nonsingular [2], and P .1/ ¤ P .2/. In the asymptotics (10.8), we can write 	2l as

	2l D "2
X

.i;j /;.u;v/2A˘

.bij � bNN/s
.l/
ijuv.buv � bNN /CO."3/: (10.14)

Consider the last summand in (10.7): � D n�1 log.�.2/x1 =�
.1/
x1 /. We have
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P f�.X/ < 0 j � D lg D P

�

��.X/C 1

n
log

q2

q1
C � < 0 j � D l

	

D

D P

�p
n
��.X/ � .�1/lal

	l
C

p
n�

	l
< �p

n
.�1/lal
	l

� 1p
n	l

log
q2

q1
j � D l

	

:

From Lemma 10.1 and the expansion (10.14), it follows that � D Op."=n/,

p
n
al

	l
D p

n

1

2
"2
X

i;j2A
b2ij�

.l/
i p

.1/
ij CO."3/

s

"2
X

.i;j /; .u;v/2A˘

.bij � bNN/s
.l/
ijuv.buv � bNN/CO."3/

;

log.q2=q1/p
n	l

D log.q2=q1/
p
n

s

"2
X

.i;j /; .u;v/2A˘

.bij � bNN/s
.l/
ijuv.buv � bNN/CO."3/

;

�p
n
.�1/lal
	l

� log.q2=q1/p
n	l

�! �.�1/l 
2

� log.q2=q1/

c
p
V

;

and
p
n�=	l D Op.n

�1=2/ ! 0 in probability. By applying the well-known result
on convergence in distribution of a sum of two random variables (Theorem 15 in

[32]) to
p
n�=	l D OP .n

�1=2/ P! 0 and the asymptotically normally distributed
��.X/, we obtain

r1 D 1� Pf�.X/ < 0 j � D 1g �! 1 � ˚

�



2
� log.q2=q1/

c
p
V

�

D ˚ .�1=2/ ;

r2 D Pf�.X/ < 0 j � D 2g �! ˚

�

�
2

� log.q2=q1/

c
p
V

�

D ˚ .�2=2/ ;

and r0 D q1r1 C q2r2 ! Qr0. ut
Corollary 10.2. Assuming the equiprobability of the classes (q1 D q2 D 0:5), the
limit value of the risk equals

Qr0 D ˚.�=2/:

It follows from the proof of Theorem 10.1 that in the asymptotics (10.8), the
BDR (10.5) is equivalent to the decision rule

O� D d.X/ D arg max
1�l�L

0

@

1

n
log ql C

X

i;j2A
Ŏ ij logp.l/ij

1

A ; X 2 An:
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10.1.3 The Plug-In Decision Rule and Its Risk

Now let us consider a situation where the class parameters (10.1) are a priori
unknown, and a classified training sample is observed:

X D fX.1/; X.2/; : : : ; X.L/g;
X.L/ D

�

x
.l/
1 ; x

.l/
2 ; : : : ; x

.l/
nl

�

; x
.l/
t 2 A; t 2 f1; : : : ; nlg;

(10.15)

whereX.l/ is a realization of length nl of an HMC from the class˝l , l 2 f1; : : : ; Lg.
It is assumed that X; X.1/; : : : ; X.L/ are jointly independent.

Let us construct maximum likelihood estimators (MLEs) for the unknown matri-
ces of one-step transition probabilities P .l/ based on the training sample (10.15):

OP .l/ D
�

Op.l/ij

�

; Op.l/ij D n
.l/
ij

n
.l/
i �
; i; j 2 A; l 2 f1; : : : ; Lg;

n
.l/
ij D

nl�1
X

tD1
I
n

x
.l/
t D i; x

.l/
tC1 D j

o

; n
.l/
i � D

X

j2A
n
.l/
ij :

As mentioned above, due to the normalization condition, the reduced set of
transition probabilities is used as the unknown parameters: fp.l/ij W .i; j / 2 AP g,
where

AP D f.i; j / W i 2 A; j 2 A n fN ggI p
.l/
iN D 1 �

N�1
X

jD1
p
.l/
ij :

Substituting the MLE f OP .l/g into (10.5) in place of the unknown values fP .l/g,
let us construct the plug-in Bayesian decision rule (PBDR):

dPBDR.X;X/ D arg max
1�l�L

0

@

1

n
log ql C 1

n
log O�.l/x1 C

X

i;j2A
Ŏ ij log Op.l/ij

1

A ;

where O�.l/i D n
.l/
i � =n.
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For L D 2, the PBDR assumes the form

dPBDR.X;X/ D 1
� O�.X;X/

�

C 1;

O�.X;X/ D O��.X;X/C 1

n
log

q2

q1
C 1

n
log

O�.2/x1
O�.1/x1

;

O��.X;X/ D
X

i;j2A
Ŏ ij log

Op.2/ij

Op.1/ij

:

(10.16)

Theorem 10.3. For increasing numbers of observations n, n1, n2 and two contigual
classes (10.8):

n; nl ! 1; nl=n ! Q�l > 0; l D 1; 2I " D cn�1=2 ! 0; 0 < c < 1;

(10.17)

the error probability (10.4) of the PBDR (10.16) tends to the limit

r ! Qr D q1˚

 

�
Q1

2

!

C q2˚

 

�
Q2

2

!

;

Ql D c�
p

V C QVl
C .�1/l 2 log.q2=q1/

c
p

V C QVl
;

QVl D 1

Q�3�l
X

.i;j /; .u;v/2AP
�
.1/
i �.1/u .bij � biN /.buv � buN /	

.1/
ijuv > 0;

(10.18)

where �; V are defined by (10.12), and the covariances f	.1/ijuvg—by (10.11).

Proof. Define a random event

Z D
n

n
.l/
ij > 0; l 2 f1; 2g; i; j 2 A

o

:

If the opposite eventZ occurs, then expressions (10.16) are not defined; let us agree,
in that case, to make the decision dPBDR.X;X/ D 0.

Consider the following conditional error probabilities:

rl D P fdPBDR.X;X/ ¤ � j � D lg D P ffdPBDR.X;X/ ¤ �g \Z j � D lg C
C P

˚fdPBDR.X;X/ ¤ �g \Z j � D l



; l 2 f1; 2g:
By (10.2) and the HMC stationarity condition, in the asymptotics required by the
theorem we can write

PfZg ! 0; P
˚fdPBDR.X;X/ ¤ �g \Z j � D l


 ! 0;
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and thus it is sufficient to investigate the first summand in rl and the probability
distribution of the statistic O�.X;X/.

Consider the main term O��.X;X/ in (10.16) assuming that the realization X
belongs to ˝l . From (10.16), we can see that

O��.X;X/ D f . OP .1/; OP .2/; Ŏ /

is a function of one-step transition probability matrix estimators.
The random variables

�
.l/
ij D p

nl

�

Op.l/ij � p
.l/
ij

�

D
q

Q�ln
�

Op.l/ij � p
.l/
ij

�

are asymptotically normally distributed [2] with mean values equal to zero and the
covariances Covf�.l/ij ; �

.l/
uv g D 	

.l/
ijuv defined by (10.11). The random variables

�
.l/
ij D p

n. Ŏ ij �˘
.l/
ij /

also have asymptotically normal distributions, zero mean values, and the covari-
ances Covf�.l/ij ; �

.l/
uv g D s

.l/
ijuv defined by (10.10); ˘.l/

ij D �
.l/
i p

.l/
ij for i; j; u; v 2 A.

The independence of X , X.1/, X.2/ implies the independence of the random vari-
ables f�.l/ij g, f�.1/ij g, f�.2/ij g. By Anderson’s theorem [1] on functional transformations

of asymptotically normal random variables, the random variable O��.X;X/ has an
asymptotically normal probability distribution:

L

(

p
n

O��.X;X/� .�1/lal
Q	l j � D l

)

! N.0; 1/

with an asymptotic mean equal to

f
�

Ef OP .1/g;Ef OP .2/g;Ef Ŏ g� D .�1/lal ;

where al is defined by (10.9). The asymptotic variance Q	2l can be written as a
quadratic form w.r.t. the partial derivatives of f .�/ [1]:

Q	2l D
X

.i;j /; .u;v/2AP

@f

@ Op.1/ij

@f

@ Op.1/uv

	
.1/
ijuv

Q�1
C

C
X

.i;j /; .u;v/2AP

@f

@ Op.2/ij

@f

@ Op.2/uv

	
.2/
ijuv

Q�2
C

X

.i;j /; .u;v/2A˘

@f

@ Ŏ ij

@f

@ Ŏ uv

s
.l/
ijuv D
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D
X

.i;j /; .u;v/2AP

 

�
.l/
i p

.l/
ij

p
.1/
ij

� �
.l/
i p

.l/
iN

p
.1/
iN

! 

�
.l/
u p

.l/
uv

p
.1/
uv

� �
.l/
u p

.l/
uN

p
.1/
uN

!

	
.1/
ijuv

Q�1
C

C
X

.i;j /; .u;v/2AP

 

�
.l/
i p

.l/
ij

p
.2/
ij

� �
.l/
i p

.l/
iN

p
.2/
iN

! 

�
.l/
u p

.l/
uv

p
.2/
uv

� �
.l/
u p

.l/
uN

p
.2/
uN

!

	
.2/
ijuv

Q�2
C

C
X

.i;j /; .u;v/2A˘

log
p
.2/
ij

p
.1/
ij

p
.1/
NN

p
.2/
NN

log
p
.2/
uv

p
.1/
uv

p
.1/
NN

p
.2/
NN

s
.l/
ijuv:

This asymptotic variance is positive, Q	2l > 0, since rf .P .1/; P .2/;˘/ ¤ 0, and

the covariance matrices
n

s
.l/
ijuv W .i; j /; .u; v/ 2 A˘

o

,
n

	
.l/
ijuv W .i; j /; .u; v/ 2 AP

o

are

nonsingular (l D 1; 2). In the asymptotics (10.8), the variance Q	2l can be represented
as follows:

Q	2l D "2

Q�3�l
X

.i;j /; .u;v/2AP

�
.l/
i �

.l/
u .bij � biN /.buv � buN /	

.l/
ijuvC

C "2
X

.i;j /; .u;v/2A˘

.bij � bNN/.buv � bNN/s
.l/
ijuv CO."3/:

(10.19)

By applying Lemma 10.1, (10.17), and (10.19), we obtain

p
n
al

Q	l �! c�

2
p

V C QVl
;

log q2=q1p
n Q	l �! log.q2=q1/

c
p

V C QVl
:

Finally, let us consider the summand O� D n�1 log
�

O�.2/x1 = O�.1/x1
�

in (10.16).

The estimators f O�.l/i g for stationary distributions are consistent:

O�.l/i
P! �

.l/
i > 0; i 2 A; l D 1; 2:

Thus, by the same argument that was used to prove Theorem 10.2, we can evaluate
the asymptotic behavior of O� and conclude the proof. ut

Note that if n1; n2 are growing faster than n, so that Q�1; Q�2 ! C1, then
QV1; QV2 ! 0 and the PBDR risk tends to the risk of the BDR: Qr � Qr0 ! 0.

10.1.4 An Asymptotic Expansion of the PBDR Risk

Let us investigate the convergence of PBDR and BDR risks as the sizes of the
training samples tend to infinity, n1, n2 ! C1, and the length n of the realization
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X used to construct the forecast O� remains fixed in a setting of two (L D 2)
equiprobable classes (q1 D q2 D 0:5).

Let us introduce the following notation: Q�.X/ D q2L2.X/ � q1L1.X/ is the
discriminant function based on the conditional likelihood functions of the classes
˝1;˝2 for the realization X :

Ll.X/ D �.l/x1

Y

i;j2A

�

p
.l/
ij

�nij.X/

; l D 1; 2;

where nij.X/ is the frequency of the bigram .i; j / computed from the realizationX .
By the definition of conditional error probabilities,

r1 D P fdBDR.X/ D 2 j � D lg D
X

X2An

L1.X/1.�.X//;

r2 D 1 � P fdBDR.X/ D 2� j � D 2g D 1 �
X

X2An

L2.X/1.�.X//;

we have the following expression for the BDR risk:

r0 D q1r1 C q2r2 D q2 �
X

X2An

Q�.X/1.�.X// D q2 �
X

X2An;�.X/�0
Q�.X/:

(10.20)

Writing an expression similar to (10.20) and averaging the risk rPBDR.X/ of the
PBDR over the possible training samples (10.15) yields the following expression
for the unconditional PBDR risk:

r D q2 �
X

X2An
Q�.X/E˚1. O�.X;X//
: (10.21)

Both discriminant functions, O�.X;X/ and �.X/, depend on the one-step transition
probabilities and the stationary distributions. Let us express these discriminant
functions in terms of bigram probabilities:

O�.X;X/ D
X

i;j2A

nij.X/

n
log

Ŏ .2/
ij

Ŏ .1/
ij

�
X

i2A

ni �.X/� ıix1
n

log
Ŏ .2/
i �

Ŏ .1/
i �

;

�.X/ D
X

i;j2A

nij.X/

n
log

˘
.2/
ij

˘
.1/
ij

�
X

i2A

ni �.X/� ıix1
n

log
˘
.2/
i �

˘
.1/
i �

;

Ŏ .l/ D
� Ŏ .l/

ij

�

; Ŏ .l/
ij D n

.l/
ij

nl
; ˘.l/ D

�

˘
.l/
ij

�

; ˘
.l/
ij D�

.l/
i p

.l/
ij ; i; j 2 A;

where Ŏ .l/
i � D

X

j2A
Ŏ .l/

ij , ˘.l/
i � D P

j2A
˘
.l/
ij , l 2 f1; 2g.
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Let us introduce the following notation:

Bn.X/ D
X

i;j2A

nij.X/

n
bij C

X

i2A

ıix1
n
hi ;

Dn.X/ D �1 C �2

�1�2

X

.i;j /; .u;v/2A˘

g
.1/
ij .X/g

.1/
uv .X/s

.1/
ijuv;

g
.1/
ij .X/ D 1

n

 

nij.X/

˘
.l/
ij

� nNN.X/

˘
.l/
NN

!

� 1

n

 

ni �.X/
˘
.l/
i �

� nN �.X/
˘
.l/
N �

!

;

A.l/ D ˚

X 2 An W g.l/.X/ D 0



; g.l/.X/ D
�

g
.l/
ij .X/

�

; .i; j / 2 A˘;

where �1; �2 > 0; fhig are defined by Lemma 10.1; the functions g.l/ij .X/ are partial

derivatives of O�.X;X/ in Ŏ .l/
ij for Ŏ .1/ D ˘.1/, Ŏ .2/ D ˘.2/, l 2 f1; 2g.

Theorem 10.4. Assume that the classes˝1;˝2 are equiprobable (q1 D q2 D 0:5),
n� D minfn1; n2g, and n is fixed. In the asymptotics (10.8) of contigual classes and
increasing training sample lengths defined as

n� ! 1; nl=n� ! �l > 0; l 2 f1; 2g; " D cn
�1=2
� ! 0; 0 < c < 1;

(10.22)

the following expansion holds for the PBDR risk:

r D r0 C Qcp
n�

C o

�

1p
n�

�

;

Qc D cn

2

X

X2AnnA.1/

L1.X/Bn.X/˚.�j.X/j/ > 0; .X/ D cBn.X/
p

Dn.X/
:

(10.23)

Proof. The discriminant function O�.X;X/ D g
� Ŏ .1/; Ŏ .2/� is a function of bigram

statistics; the random variables fpn. Ŏ .l/
ij � ˘

.l/
ij /g are asymptotically normally

distributed, as established in the proof of Theorem 10.3. By Anderson’s theorem on
functional transformations of asymptotically normal random variables [1], O�.X;X/
has an asymptotically normal distribution with the asymptotic mean value

�.X/ D g
�

Ef Ŏ .1/g;Ef Ŏ .2/g�

and the asymptotic variance 	2.X/:

	2.X/ D
X

.i;j /; .u;v/2A˘

g
.1/
ij .X/g

.1/
uv .X/

s
.1/
ijuv

�1
C

X

.i;j /; .u;v/2A˘

g
.2/
ij .X/g

.2/
uv .X/

s
.2/
ijuv

�2
I
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or, in other words,

L

(

p
n�

O�.X;X/��.X/

	.X/

)

! N.0; 1/:

In the asymptotics (10.8), we have˘.2/
ij D ˘

.1/
ij

�

1C ".bij C hij/
�CO."2/. Let us

write a Taylor expansion for �.X/ and 	2.X/.
Let us start with the caseX 2 Ann.A.1/[A.2//, i.e., nij.X/ ¤ ni �.X/p.l/ij , where

l 2 f1; 2g. Then Taylor expansions of �.X/ and 	2.X/ for an arbitrary fixed X
yield

�.X/ D "Bn.X/CO."2/; 	2.X/ D Dn.X/CO."/;

where Bn.X/ D O.1/, Dn.X/ D O.1/. We have Dn.X/ > 0 since g.1/.X/ ¤ 0,
and the covariance matrix

˚

s
.1/
ijuv; .i; j /; .u; v/ 2 A˘




is nonsingular.

Now consider the case X 2 A.1/, i.e., nij.X/ D ni �.X/p.1/ij . Applying

the normalization condition
P

j2A
p
.1/
ij bij D 0, let us write the following Taylor

expansions:

�.X/ D "
X

i2A

ıix1
n
hi CO."2/;

	2.X/ D "2
X

.i;j /; .u;v/2A˘

 

ni �.X/
n�

.1/
i

bij C nN �.X/
n�

.1/
N

bNN

!

�

�
 

nu�.X/
n�

.1/
u

buv C nN �.X/
n�

.1/
N

bNN

!

s
.2/
ijuv

�2
CO."3/;

where 	2.X/ > 0 since the covariance matrix
˚

s
.1/
ijuv; .i; j /; .u; v/ 2 A˘




is
nonsingular.

A similar argument can be constructed for the case X 2 A.2/.
Thus, in the asymptotics (10.8), (10.22), we obtain:

p
n�
�.X/

	.X/
! �.X/ D

(

.X/; if X 2 AnnA.1/ [ A.2/;

sign.�.X//1; if X 2 A.1/ [ A.2/:

Therefore, under the conditions of the theorem, the expectation in (10.21) can be
written asymptotically as
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E

n

1
� O�.X;X/

�o

D 1 � P

n O�.X;X/ < 0
o

D

D 1 � P

(

p
n�

O�.X;X/��.X/
	.X/

< �p
n�
�.X/

	.X/

)

! 1 �˚.��.X//:

From the above conclusion applied to (10.21), the finiteness of n, and the relation
˚.�.X// D 1 � ˚.��.X//, we can write

r D 1

2
�
X

X2An

Q�.X/˚.��.X//C o.1/ D

D 1

2
�

X

X2An

�.X/�0

Q�.X/C
X

X2An

�.X/<0

Q�.X/�
X

X2An

Q�.X/˚.�.X//C o.1/ D

D r0 C
X

X2An

�.X/�0

Q�.X/.1 �˚.�.X/// �
X

X2An

�.X/<0

Q�.X/˚.�.X//C o.1/:

From the relation sign
� Q�.X/� D sign .�.X// D sign .�.X//, X 2 An, we have

X

X2An

�.X/�0

Q�.X/.1 � ˚.�.X/// D

D
X

X 62A.1/
S

A.2/

�.X/�0

j Q�.X/j˚.�j.X/j/C
X

X2A.1/
S

A.2/

�.X/�0

j Q�.X/j˚.�j�.X/j/;

X

X2An;
�.X/<0

Q�.X/˚.�.X// D

D
X

X 62A.1/
S

A.2/;
�.X/<0

�j Q�.X/j˚.�j.X/j/�
X

X2A.1/
S

A.2/;
�.X/<0

j Q�.X/j˚.�j�.X/j/I

˚.�j�.X/j/ D 0 for all X 2 A.1/ [A.2/. Thus, we obtain

r D r0 C
X

X 62A.1/[A.2/

j Q�.X/j˚.�j.X/j/C o.1/: (10.24)

Now consider j Q�.X/j D 1
2

jL2.X/ �L1.X/j. By writing a Taylor expansion in
", �.X/ D "Bn.X/CO."2/ for X 62 A.1/ [ A.2/, we obtain
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j Q�.X/j D L1.X/

2

ˇ

ˇ

ˇ

ˇ

L2.X/

L1.X/
� 1

ˇ

ˇ

ˇ

ˇ

D L1.X/

2

ˇ

ˇ

ˇen�.X/ � 1
ˇ

ˇ

ˇ D nL1.X/

2

ˇ

ˇ

ˇ"Bn.X/CO."2/
ˇ

ˇ

ˇ :

Substituting this expansion into (10.24), omitting the terms of order O."2/, and
making the substitution " D c=

p
n� proves (10.23). ut

10.2 HMC Forecasting Under Missing Values

Let us consider a common setting of applied statistical forecasting, where the
realizationsX D .x1; : : : ; xn/ of an HMC contain missing values. As in Chap. 8, let
us consider a missing values template

M D .m1;m2; : : : ; mn/; mt 2 f0; 1g; t 2 f1; : : : ; ng; (10.25)

which is assumed to be deterministic, known and fixed. Heremt D 0means that the
observation xt is missing, and mt D 1 means that the value xt has been recorded.
We assume that the first and the last values have been observed,m1 	 mn 	 1.

The binary vectorM is, essentially, the design of the experiment.

10.2.1 Likelihood Functions for HMCs with Missing Values

Denote by T the number of segments of the realization X which do not contain
missing values; in other words, T is equal to the number of series of ones in
the binary vector M (T � 2). Let us present the observation results .X;M/ as
consecutive segments:

X D .x1; : : : ; xn/ D �

X.1/
... X.1/

... X.2/
... : : :

... X.T�1/
... X.T /

�

;

X.t/ D .x.t/; 1; x.t/; 2; : : : ; x.t/; M�

t
/; t 2 f1; : : : ; T g;

where X.t/ is the t th segment of length M �
t in the realization X corresponding to

the t th subsequence of ones in M ; Xs is the sth missing segment of length M
�
s

corresponding to the sth subsequence of zeros in M .

Theorem 10.5. The likelihood function of the HMC parameters .�; P / under
missing values has the following form:

L.�;P IX;M/ D �x.1/; 1

 

T
Y

tD1
Lt
�

P;X.t/
�

! 

T�1
Y

tD1
px

.t/; M�

t
; x.tC1/; 1

�

M
�
t C 1

�

!

;

(10.26)
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where pij.k/ D .P k/ij is the probability of a k-step transition from state i to state
j ; Ls.P;X.s// is the probability that a segmentX.s/ is observed, taken conditionally
on the first element x.s/; 1 being observed:

Ls D Ls
�

P IX.s/
� D

M�

s �1
Y

tD1
px.s/; t ; x.s/; tC1

: (10.27)

Proof. To find the desired likelihood function, let us apply the total probability
formula and sum the likelihood function for a “complete” realization of X over
all of the missing segments:

L.�;P IX;M/ D
X

X.1/;:::;X.T�1/

�x1

n�1
Y

uD1
pxuxuC1

:

Taking the multipliers Ls.P IX.s// outside the parentheses, calculating a sum over
X.t/ D .x.t/; 1; : : : ; x.t/; M�

t
/, and applying the relation

X

X.t/

px
.t/; M�

t
;x.t/; 1

0

@

M
�

t �1
Y

uD1
px.t/; u;x.t/; uC1

1

Apx
.t/; M

�

t
; x.tC1/; 1

D px
.t/; M�

t
; x.tC1/; 1

.M
�
t C 1/

yields (10.26). ut
From (10.26), we can see that the likelihood function is a nonlinear function

which cannot be easily maximized. Let us construct an approximation of this
function.

Let

M
�
� D min

1�t�T�1M
�
t

be the length of the shortest missing value segment(s).

Theorem 10.6. If a stationary Markov chain with parameters .�; P / is observed
through a missing value template (10.25), and there exists a positive integer M0

such that

M
�
� � M0; % D 1 � min

i;j2Apij.M0/ < 1;

then the following multiplicative approximation based on the likelihood functions of
the observed segments fL.�;P IX.t//g holds for the likelihood function (10.26):
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L.�;P IX;M/ D
T
Y

tD1
L.�; P IX.t//C ı.�; P IX;M/;

ˇ

ˇ

ˇ

ˇ

ı.�; P IX;M/

L.�; P IX;M/

ˇ

ˇ

ˇ

ˇ

D O
�

T%M
�

�
M�1
0

�

;

(10.28)

where L.�;P IX.t// D �x.t/; 1Lt .P IX.t//, and Lt.� I �/ is defined by (10.27).

Proof. Consider the case of a single missing segment (X D .X.1/
... X.1/

... X.2//,
T D 2, and estimate the error of the approximation ı.�; P IX;M/:

jı.�; P IX;M/j D ˇ

ˇL.�; P IX;M/� L.�; P IX.1//L.�; P IX.2//
ˇ

ˇ D

D
ˇ

ˇ

ˇ�x.1/; 1L1L2px.1/; M�

1
; x.2/; 1 .M

�
� C 1/ �L.�; P IX.1//L.�; P IX.2//

ˇ

ˇ

ˇ D

D
ˇ

ˇ

ˇ�x.1/; 1L1L2

�

px
.1/; M�

1
; x.2/; 1 .M

�
� C 1/ � �x.2/; 1 C �x.2/; 1

�

� �x.1/; 1L1�x.2/; 1L2
ˇ

ˇ

ˇ D

D �x.1/; 1L1L2jpx.1/; M�

1
; x.2/; 1 .M

�
� C 1/ � �x.2/; 1 j:

Using the inequality

ˇ

ˇpx
.1/; M�

1
; x.2/; 1 .M

�
� C 1/� �x.2/; 1

ˇ

ˇ � c%Œ.M
�

�
C1/=M0��1

which was proved in [3] yields

ˇ

ˇ

ˇ

ˇ

ı.�; P IX;M/

L.�; P IX;M/

ˇ

ˇ

ˇ

ˇ

� c

px
.1/; M�

1
; x.2/; 1 .M

�
� C 1/

%Œ.M
�

�
C1/=M0��1:

The case T > 2 can be treated similarly. ut
Note that if M0 D 1, then % D 1 � min

i;j2Apij, % 2 .0; 1/.

Corollary 10.3. Under the conditions of Theorem 10.6, in the asymptotics where
the number of segments increases, and the lengths of the segments are increasing,

T ! 1; M
�
� ! 1; T%M

�

� ! 0; (10.29)

the following almost sure convergence holds:

ˇ

ˇ

ˇ

ˇ

ı.�; P IX;M/

L.�; P IX;M/

ˇ

ˇ

ˇ

ˇ

a:s:��! 0:
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Thus, under the conditions of Corollary 10.3, the observed “complete” segments
fX.t/g can be considered as negligibly dependent subrealizations of the same HMC
with the parameters .�; P /. We are going to assume the case of asymptotics (10.29),
where the approximation error in (10.28) is negligible:

L.�;P IX;M/ D
T
Y

tD1
L.�; P IX.t//: (10.30)

This allows us to apply the results of Sect. 10.1 in the case of HMCs with missing
values.

10.2.2 The Decision Rule for Known f�.l/; P.l/g

Let M � D
T
P

tD1
M �
t be the total number of registered values in the realization

.X;M/.

Theorem 10.7. In the asymptotics

M �; T; M �
� ! 1; T %l

M
�

� ! 0; l 2 f1; : : : ; Lg; (10.31)

the BDR based on the approximated likelihood function (10.30) for the
model (10.1), (10.3), (10.25) can be written as

d.X/ D arg max
1�l�L

0

@

1

M � log ql C 1

M �
X

i2A
�i log�.l/i C

X

i;j2A
Ŏ ij logp.l/ij

1

A ;

Ŏ ij D nij

M � ; nij D
n� 1
X

t D 1

mtmt C 1 Ifxt D i; xt C 1 D j g; �i D
T
X

t D 1

Ifx.t/; 1 D ig;
(10.32)

where i; j 2 A, %l D 1 � min
i;j2Ap

.l/
ij .

Proof. Repeat the proof of Theorem 10.1, substituting the approximation (10.30)
for the likelihood function. ut
Theorem 10.8. For L D 2, in the asymptotics (10.31) and the asymptotics of
contigual classes (10.8), if we have

" D cp
M � ! 0; "T ! 0; 0 < c < 1;
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then the error probability (10.4) for the BDR (10.32) has the following limit:

r0 ! Qr0 D q1˚ .�1=2/C q2˚ .�2=2/ ;

where 1, 2 are defined by (10.13).

Proof. Under the conditions of this theorem, we have the approximation (10.30) for
the likelihood function. Thus, the statistical estimators f Ŏ ijg based on incomplete
data have the same asymptotic properties as in the case of complete observations.
The rest of the proof is the same as in Theorem 10.2. ut

10.2.3 The Case of Unknown Parameters

Now assume that the parameters f�.l/; P .l/g are unknown, and a classified training
sample, which (like the observations considered earlier) may contain missing values,
has been observed:

X D ˚�

X.1/;M .1/
�

;
�

X.2/;M .2/
�

; : : : ;
�

X.L/;M .L/
�


;

where for the l th realization X.l/ of length nl from the class ˝l we have an a priori

known missing values template M.l/ D
�

m
.l/
1 ;m

.l/
2 ; : : : ; m

.l/
nl

�

with m.l/
t 2 f0; 1g,

t 2 f1; : : : ; nlg, l 2 f1; : : : ; Lg.
Let us introduce the following notation: Tl � 2 is the number of segments

without missing values in the realization X.l/; X.l/

.t/ is the t th observed segment

of the realization X.l/ corresponding to the t th series of ones in the missing values

template M.l/; M �
.l/t is the length of the segment X.l/

.t/ , t 2 f1; : : : ; Tlg; X
.l/

.s/ is the

sth missing segment of the realization X.l/ corresponding to the sth sequence of

zeros in M.l/; M
�
.l/s is the length of X

.l/

.s/, s 2 f1; : : : ; Tl � 1g; M �
.l/ D

Tl
P

tD1
M �
.l/; t is

the total number of recorded observations in X.l/; M
�
.l/;� D min

1�s�Tl�1
M

�
.l/; s is the

minimal length of a missing segment in X.l/, l 2 f1; : : : ; Lg.
The asymptotics

Tl ! 1; M
�
.l/;� ! 1; Tl%l

M
�

.l/;� ! 0; l 2 f1; : : : ; Lg; (10.33)

allow us to use the approximation (10.30) for all realizations from X.
As in Sect. 10.1, let us construct a PBDR:
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d.X;X/ D arg max
1�l�L

0

@

1

M � log ql C 1

M �
X

i2A
�i log O�.l/i C

X

i;j2A
Ŏ ij log Op.l/ij

1

A ;

Ŏ ij D nij

M � ; nij D
n�1
X

tD1
mtmtC1 Ifxt D i; xtC1 D j g;

Op.l/ij D n
.l/
ij

n
.l/
i �
; O�.l/i D n

.l/
i �
nl
; n

.l/
ij D

nl�1
X

tD1
m
.l/
t m

.l/
tC1 I

n

x
.l/
t D i; x

.l/
tC1 D j

o

;

(10.34)

where the bigram frequencies fn.l/ij g are computed from the observed segments of
the realization X.l/, i; j 2 A, l 2 fl; : : : ; Lg.

Theorem 10.9. For L D 2, in the asymptotics (10.31), (10.33), (10.8), if we have

M �
.l/ ! 1;

M �
.l/

M � ! Q�l > 0; " D cp
M � ! 0; T " ! 0; 0 < c < 1;

then the error probability (10.4) for the PBDR (10.34) tends to a limit:

r ! Qr D q1˚
�� Q1=2

�C q2˚
�� Q2=2

�

;

where Q1; Q2 are defined by (10.18).

Proof. Under the conditions of the theorem, we have the approximation (10.30)
for the likelihood function of .X;M/; .X.l/;M .l//. Thus, in the considered asymp-
totics, the statistical estimators f Ŏ ijg, f Op.l/ij g based on incomplete data have the same
asymptotic properties as in the case of complete observations. The rest of the proof
is the same as in Theorem 10.3. ut

10.3 Forecasting in the Beta-Binomial Model Under Additive
Distortions

10.3.1 The Beta-Binomial Model, Its Properties
and Distortions

The beta-binomial distribution (BBD) is a mixture of the binomial and beta proba-
bility distributions introduced by Pearson [31] and formalized by Skellam [34]. The
BBD is widely used to model collections of observed sequences of random binary
outcomes in medicine, economics, marketing, and other disciplines. Parameters of
BBDs are traditionally estimated by applying the moment method, the maximum
likelihood method, the 
2 minimum method, or the Bayesian approach [35].
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All of these classical methods have been extensively studied for undistorted BBD
models. In this section, we are going to evaluate the robustness of the classical
methods under stochastic distortion of the binary data and propose new parameter
estimation methods improving the robustness of statistical inferences [23].

Assume that a collection of K objects and a random event A have been defined.
A series of n trials is performed on each object in the collection. The outcomes of
the trials are described by a binary .K � n/-matrix

B D .bij/; i D 1; : : : ; K; j D 1; : : : ; n:

Here bij is 1 (or 0) if the event A has occurred (or hasn’t occurred) for the i th object
in the j th trial. Furthermore, let the following assumptions be satisfied:

A1. Stochastic properties of each object do not change between trials.
A2. Stochastic properties of the objects in the collection are not uniform. For the

i th object, the probability pi of the event A is a random variable following a
beta probability distribution with the parameters ˛; ˇ; the random variables

p1; p2; : : : ; pK

are jointly independent.

Assume that the binary matrix B is subject to binary random errors f�ijg, and a
distorted binary matrix QB D . Qbij/ is observed:

Qbij D bij ˚ �ij; Pf�ij D 1 j bij D 0g D "0; Pf�ij D 1 j bij D 1g D "1;

(10.35)

where ˚ is addition Mod 2, f�ijg are independent Bernoulli random variables,
"0; "1 2 Œ0; 1� are distortion levels. If we have "0 D "1 D 0, then we have the
undistorted hypothetical observation model.

In this section, we are going to consider the problem of statistical estimation of
the parameters ˛; ˇ based on the distorted data QB , study the robustness of classical
methods of estimating the parameters ˛; ˇ under the distortion (10.35), and finally
construct new estimators which are robust under the distortion (10.35).

Lemma 10.2. The random variable xi D
n
P

jD1
Qbij has a distorted beta-binomial dis-

tribution (DBBD) with the parameters n, ˛, ˇ, "0, "1: for i D 1; 2; : : : ; K , we have

Pr .˛; ˇ; "0; "1/ D P fxi D rg D
n
X

iD0
wri ."0; "1/ C

i
n

B.˛ C i; ˇ C n � i/

B.˛; ˇ/
;

(10.36)

wri ."0; "1/ D
min.n;iCr/
X

lDmax.i;r/

C l�r
i C l�i

n�i "l�i0 .1 � "0/
n�l "l�r1 .1 � "1/

iCr�l

where r D 0; 1; : : : ; n, and B.�; �/ is the beta function.
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Proof. The probability distribution (10.36) can be obtained from (10.35) by the
same argument as in the case without distortion ("0 D "1 D 0) [14]. ut

Note that in the absence of distortion, i.e., for "0 D "1 D 0, the above distribution
is the same as a BBD with the parameters n, ˛, ˇ [14].

10.3.2 Robustness of MM Estimators

Let us introduce the following notation: ˛0, ˇ0 are the true values of the parameters
˛, ˇ; the estimators Q̨MM."0; "1/, Q̌

MM."0; "1/ are the classical MM estimators of the
parameters ˛; ˇ computed from the distorted sample X , where the distortion level
is equal to "0, "1. Also denote

yŒz�� WWD y.y�1/ : : : .y�zC1/; yŒzC� WWD y.yC1/ : : : .yCz�1/; y 2 R; z 2 N:

Theorem 10.10. Under binary distortion of levels "0, "1 defined by (10.35), the
following stochastic expansions can be written for the MM estimators of the BBD
parameters:

Q̨MM ."0; "1/ D ˛0 C .˛0 C 2ˇ0 C 1/ � "0C
C ˛0.˛0 C 1/ˇ0

�1 "1 C o."0/C o."1/COP .1=
p
K/;

Q̌
MM ."0; "1/ D ˇ0 C ˇ0.ˇ0 C 1/=˛0

�1 "0C
C .2˛0 C ˇ0 C 1/ "1 C o."0/C o."1/COP .1=

p
K/:

Proof. By [14], the MM estimators for the BBD are equal to

Q̨MM D .n � Nx � s2= Nx/ Nx
.s2= Nx C Nx=n� 1/n

; Q̌
MM D .n � Nx � s2= Nx/.n � Nx/

.s2= Nx C Nx=n� 1/n
; (10.37)

where Nx and s2 are, respectively, the sample mean and the sample variance of the
observations fx1; : : : ; xkg. From Lemma 10.2, we have:

m1."0; "1/ D n˛=.˛ C ˇ/C nˇ.˛ C ˇ/�1 "0 � n˛.˛ C ˇ/�1 "1; (10.38)

m2."0; "1/ D m1C

C nŒ2C�

.˛ C ˇ/Œ2C�
�

˛Œ2C� C ˇŒ2C�"20 C ˛Œ2C�"21 � 2˛ˇ"0 � ˛Œ2C�"1 � 2˛ˇ"0"1
�

:

(10.39)

Since Nx and s2 are unbiased strictly consistent estimators asK ! 1, and, from [4],
Df Nxg D d."0; "1/K

�1, Dfs2g D O.1=K/, we have
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Nx D m."0; "1/COP .1=
p
K/; s2 D d."0; "1/COP .1=

p
K/:

Applying these asymptotic equalities to (10.37) and using the probability conver-
gence properties of the remainder term OP .�/ yields

Q̨MM ."0; "1/ D
�

n �m."0; "1/ � d."0; "1/=m."0; "1/
�

m."0; "1/
�

d."0; "1/=m."0; "1/Cm."0; "1/=n � 1�n COP .1=
p
K/;

Q̌
MM."0; "1/ D

�

n �m."0; "1/ � d."0; "1/=m."0; "1/
��

n �m."0; "1/
�

�

d."0; "1/=m."0; "1/Cm."0; "1/=n � 1�n COP .1=
p
K/:

Now applying (10.38), (10.39), and writing Taylor’s linear expansions in "0, "1 with
the remainder terms in the Peano form proves the theorem. ut

By Theorem 10.10, MM estimators are inconsistent under distortion (10.35).

10.3.3 Robustness of MLEs

Now let Q̨MLE."0; "1/, Q̌
MLE."0; "1/ be the classical MLEs for the parameters ˛, ˇ,

based on the distorted sample X D fx1; : : : ; xKg at distortion levels "0, "1. Let us
introduce the following notation:

pj ."0; "1/ D Pfx1 D j g; j D 0; 1; : : : ; nI Pi ."0; "1/D
i
X

j D 0

pj ."0; "1/; i D 0; 1; : : : ; nI

S˛ D
n�1
X

iD0

1� Pi .0; 0/

.˛0 C i/2
; Sˇ D

n�1
X

iD0

Pi .0; 0/

.ˇ0 C n� i � 1/2
;

S˛ˇ D
n�1
X

iD0

1

.˛0 C ˇ0 C i/2
; S˛p D �

n�1
X

iD0

.n� i/pi .0; 0/

˛0 C i
;

SC

˛p D
n�1
X

iD0

.i C 1/piC1.0; 0/

˛0 C i
; Sˇp D

n�1
X

iD0

.n� i/pi .0; 0/

ˇ0 C n� i � 1
;

S
C

ˇp D �
n�1
X

iD0

.i C 1/piC1.0; 0/

ˇ0 C n� i � 1
; G D �

Gij

�

; H D �

Hij

� 2 R
2�2;

H11 D S˛ˇ � S˛; H12 D H21 D S˛ˇ;

H22 D S˛ˇ � Sˇ; G11 D S˛p;

G12 D SC

˛p ; G21 D S
C

ˇp; G22 D Sˇp:
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Theorem 10.11. In the above setting of independent trials (10.35) under distortion
of levels "0, "1, the following stochastic expansions hold for the differences of the
BBD parameter MLEs and the true values:

�

 Q̨MLE."0; "1/

 Q̌
MLE."0; "1/

�

D

D
�

H11 H12

H21 H22

��1 �
G11 G12

G21 G22

��

"0

"1

�

C
�

o."0/C o."1/COP .1=
p
K/

o."0/C o."1/COP .1=
p
K/

�

;

where  Q̨MLE."0; "1/ D Q̨MLE."0; "1/ � ˛0,  Q̌
MLE."0; "1/ D Q̌

MLE."0; "1/� ˇ0.

Proof. The system of equations for finding the MLEs can be written as follows [14]:

n�1
X

iD0

K � Fi

˛ C i
�

n�1
X

iD0

K

˛ C ˇ C i
D 0;

n�1
X

iD0

Fi

ˇ C n � i � 1 �
n�1
X

iD0

K

˛ C ˇ C i
D 0;

(10.40)

where

Fi D f0 C f1 C � � � C fi ; fj D
K
X

tD1
ıxt ;j ; j D 0; 1; : : : ; n:

This system has a unique solution, which corresponds to the maximum value of
the likelihood function [14]. By construction, the frequencies fi are binomially
distributed:

Lffi g D Bi .K; pi ."0; "1// ; i D 0; 1; : : : ; n:

It is a well-known fact that in the case of discrete distributions, the relative fre-
quencies Qfi D fi=K are unbiased strictly consistent estimators of the corresponding
theoretical probabilities [2], and

Df Qfig D pi."0; "1/
�

1 � pi."0; "1/
�

=K;

therefore

Qfi D fi=K D pi."0; "1/COP .1=
p
K/; i D 0; 1; : : : ; n:

This leads to the following representation of the system (10.40):

n�1
X

iD0

1 � Pi."0; "1/

˛ C i
�

n�1
X

iD0

1

˛ C ˇ C i
COP

�

1p
K

�

D 0;

n�1
X

iD0

Pi ."0; "1/

ˇ C n � i � 1
�

n�1
X

iD0

1

˛ C ˇ C i
COP

�

1p
K

�

D 0:
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Linearization of this system of equations in "0, "1 in a neighborhood of the point
.˛0; ˇ0; 0; 0/ yields the expressions

A0˛ Q̨MLE."0; "1/CA0ˇ
Q̌
MLE."0; "1/CA0"0"0 C A0"1"1C
C o."0/C o."1/COP .1=

p
K/ D 0;

B0
˛ Q̨MLE."0; "1/CB0

ˇ
Q̌
MLE."0; "1/C B0

"0
"0 CB0

"1
"1C

C o."0/C o."1/COP .1=
p
K/ D 0;

where the coefficients of the system are the respective easily computed derivatives.
Expressing Q̨MLE."0; "1/;  Q̌

MLE."0; "1/ in terms of "0, "1 proves the theorem. ut
This theorem shows that under BBD models, introducing distortion into statisti-

cal samples leads to inconsistency of MLEs. Let us construct some estimators which
remain consistent under distortion.

10.3.4 MM Estimators Under Distortion of A Priori Known
Levels

Let us consider the case where the distortion levels "0, "1 are a priori known. Let us
introduce the notation

m�
1 D Nx D K�1

K
X

iD1
xi ; m�

2 D K�1
K
X

iD1
x2i :

Theorem 10.12. In the above setting of independent trials (10.35), assuming a
priori known distortion levels "0, "1, the MM estimators for the parameters ˛, ˇ
adapted for the distortion model (10.35) can be defined as

ǪMM."0; "1/ D .m�
1 � "0n/

�

m�
1 n �m�

2 C "0.n � 1/.m�
1 � .1 � "1/n/�m�

1 "1.n� 1/
�

.1 � "0 � "1/.m�
2 n�m�

1 n �m�2
1 .n � 1// ;

(10.41)

ǑMM."0; "1/ D

D .m�
1 � .1 � "1/n/

�

m�
2 Cm�

1 "1.n� 1/ �m�
1 n� "0.n� 1/.m�

1 � n.1 � "1//
�

.1 � "0 � "1/.m
�
2 n�m�

1 n�m�2
1 .n� 1//

:

(10.42)

Proof. By applying Lemma 10.1 and (10.38), (10.39), it can be shown that the MM
parameter estimators for ˛, ˇ can be found by solving a system of equations:

m�
1 D n˛=.˛ C ˇ/C nˇ=.˛ C ˇ/ "0 � n˛=.˛ C ˇ/ "1; (10.43)
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m�
2 D m�

1 C nŒ2C�

.˛ C ˇ/Œ2C�
�

˛Œ2C� C ˇŒ2C�"20 C ˛Œ2C�"21�

�2˛ˇ"0 � ˛Œ2C�"1 � 2˛ˇ"0"1
�

: (10.44)

By substituting u D ˛=.˛ C ˇ/, v D .˛ C 1/=.˛C ˇ C 1/, ˛ D u.1� v/=.v � u/,
ˇ D .1 � v/.1 � u/=.v � u/, this system can be rewritten as

m�
1 D n

�

u C .1 � u/"0 � u"1
�

;

m�
2 D m�

1 C n.n � 1/
�

vu.1 � "0 � "1/C "20 C 2u"0.1 � "0 � "1/
�

:

Solving it in u, v and then calculating ˛, ˇ proves the theorem. ut
Corollary 10.4. The estimators (10.41), (10.42) defined in Theorem 10.12 are
consistent.

Proof. Let h.�/ be a vector function constructed from the system (10.43), (10.44):
h.˛; ˇ/ D .m1.˛; ˇ/;m2.˛; ˇ//

T , where m1.˛; ˇ/, m2.˛; ˇ/ are, respectively, the
first and the second moments of the distorted beta-binomial random variable defined
by the parameters n, ˛, ˇ, "0, "1 found from Lemma 10.1 and (10.38), (10.39).
To prove the consistency of MM estimators in this setting, it suffices to show that
the function h.�/ is continuous and invertible [2]. The continuity of the function
h.�/ in its domain of definition ˛ > 0, ˇ > 0 is obvious. Invertibility follows from
Theorem 10.12. ut

Parameter estimators for ˛, ˇ defined by (10.41), (10.42) will be referred to as
modified MM estimators (MMM estimators).

10.3.5 Joint Estimation of Probability Distribution Parameters
and Distortion Levels

Now consider the case where both the parameters ˛, ˇ and the distortion levels "0,
"1 are unknown. Assume that the first five sample moments m�

1 , m�
2 , m�

3 , m�
4 , m�

5

have been computed for the sample X . Theorem 10.12 implies that the problem
of MM estimation is then reduced to solving a system of two nonlinear equations
written as

m�
3 D m3

�

˛."0; "1/; ˇ."0; "1/; "0; "1
�

;

m�
4 D m4

�

˛."0; "1/; ˇ."0; "1/; "0; "1
�

;
(10.45)

where ˛."0; "1/, ˇ."0; "1/ are the MMM estimators constructed for given values
of "0, "1 from m�

1 , m�
2 by the formulas (10.41), (10.42). Let us solve (10.45) by

applying the modified Newton’s method. The Jacobian matrix of the system (10.45)
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under the condition that the first two moments are fixed will be denoted as J cond
0 .

The system (10.45) can be solved by the following iterative procedure [7]:
�

"kC1
0

"kC1
1

�

D
�

"k0
"k1

�

C �.J cond
0 /

�

m�
3 �m3

�

˛."k0 ; "
k
1/; ˇ."

k
0; "

k
1/; "

k
0; "

k
1

�

m�
4 �m4

�

˛."k0 ; "
k
1/; ˇ."

k
0; "

k
1/; "

k
0; "

k
1

�

�

;

(10.46)

where the parameter � 2 .0; 1� ensures convergence for larger values of "0; "1.

Let
�

@f

@x

�c

0
denote the conditional partial derivative of a function f .�/ in x under

the conditions m�
1 D const, m�

2 D const, "0 D 0, "1 D 0. The following lemmas,
which follow from direct computations and the properties of ordinary DBBD
moments, will be used to compute the Jacobian in the iterative procedure (10.46).

Lemma 10.3. If m1.˛; ˇ; "0; "1/ D const, m2.˛; ˇ; "0; "1/ D const, then the
following formulas are satisfied for the conditional partial derivatives of the
functionsm3 .˛."0; "1/; ˇ."0; "1/; "0; "1/ and m4 .˛."0; "1/; ˇ."0; "1/; "0; "1/:

�

@m3

@˛

�c

0

D nŒ3��
˛Œ3C�

.˛ C ˇ/Œ3C�
2
X

iD0

�

1

˛ C i
� 1

˛ C ˇ C i

�

;

�

@m3

@̌

�c

0

D nŒ3��
˛Œ3C�

.˛ C ˇ/Œ3C�
2
X

iD0

�

� 1

˛ C ˇ C i

�

;

�

@m4

@˛

�c

0

D nŒ4��
˛Œ4C�

.˛ C ˇ/Œ4C�
3
X

iD0

�

1

˛ C i
� 1

˛ C ˇ C i

�

C 6

�

@m3

@˛

�c

0

;

�

@m4

@̌

�c

0

D nŒ4��
˛Œ4C�

.˛ C ˇ/Œ4C�
3
X

iD0

�

� 1

˛ C ˇ C i

�

C 6

�

@m3

@̌

�c

0

;

�

@m3

@"0

�c

0

D 3nŒ3��
˛Œ2C�ˇ

.˛ C ˇ/Œ3C�
;

�

@m3

@"1

�c

0

D 3nŒ3��
˛Œ3C�

.˛ C ˇ/Œ3C�
;

�

@m4

@"0

�c

0

D 14nŒ4��
˛Œ3C�ˇ

.˛ C ˇ/Œ4C�
C 6

�

@m3

@"0

�c

0

;

�

@m4

@"1

�c

0

D 4nŒ4��
˛Œ4C�ˇ

.˛ C ˇ/Œ4C�
C 6

�

@m3

@"1

�c

0

:

Lemma 10.4. Assuming fixed distortion levels "0, "1, consider MM parameter
estimators Ǫ ."0; "1/, Ǒ."0; "1/ for the DBBD defined in Theorem 10.12. We have:

�

@ Ǫ
@"0

�c

0

D �.˛0 C 2ˇ0 C 1/;

�

@ Ǫ
@"1

�c

0

D �˛0.˛0 C 1/=ˇ0;

 

@ Ǒ
@"0

!c

0

D �ˇ0.ˇ0 C 1/˛0;

 

@ Ǒ
@"1

!c

0

D �.2˛0 C ˇ0 C 1/;
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where ˛0, ˇ0 are true values of the respective parameters.

The estimators Ǫ , Ǒ, O"0, O"1 can be computed by the following algorithm.

Computing moment estimators L̨ MM; ĽMM; L"0; L"1.
Input: Sample momentsm�

1 , m�
2 , m�

3 , m�
4 , m�

5 .
Output: Estimates of the parameters L̨MM; Ľ

MM and the distortion levels L"0; L"1.
Step 1. Initialization: set L"0 D 0, L"1 D 0.
Step 2. For the current values of L"0, L"1, use formulas (10.41), (10.42) to compute

the estimates L̨MM, Ľ
MM.

Step 3. Compute J cond
0 as the Jacobian matrix of (10.45).

Step 4. Apply the uniform search algorithm to find the best approximation for the
estimates L"0, L"1 w.r.t. the minimum norm of the residual vector for the third
and the fourth momentsm�

3 , m�
4 .

Step 5. If in the previous step, the estimates L"0, L"1 are multiply defined, then
choose the values corresponding to the best approximation of the fifth
momentm�

5 .
Step 6. Applying the iterative procedure (10.46), find new estimates L"0, L"1.
Step 7. Check the stop-criterion (for the residual vector norm), if it is not satisfied,

go to Step 3, otherwise return the current values of the estimates and exit.

For brevity, the estimators for parameters ˛, ˇ obtained by joint estimation of
distribution parameters and distortion levels using the above algorithm will be called
JMM estimators.

Construction of joint MLEs (abbreviated as JMLEs) can be reduced to solving
the following log likelihood function maximization problem under additional
constraints:

l.˛; ˇ; "0; "1/ D
n
X

jD0
fj lnPj .˛; ˇ; "0; "1/ ! max

˛;ˇ;"0;"1
for ˛; ˇ > 0; "0; "1 2 Œ0; 1�;

where fj is the frequency of finding the value j in a sample fx1; : : : ; xKg, and
fPj .�/g are defined by (10.36). This maximization problem is solved numeri-
cally [23].

10.3.6 Robustness of the Classical Bayesian Predictor

In the beta-binomial model, forecasting is equivalent to estimating the probability
pi of the random event A occurring in a future .n C 1/th experiment for the i th
object (i D 1; : : : ; K) based on the collected data QB. Observe that if we are not
using the prior information on the probability model pi (given in the form of a beta
distribution with parameters ˛0i , ˇ0i ), then the nonparametric forecasting statistic is
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the relative frequency of the event A (cf. [6]):

Lpi D 1

n
x0i ; x0i D

n
X

jD1
bij: (10.47)

If the probability model pi is used, and the parameters ˛0i ; ˇ
0
i are a priori known,

then the mean square error (or risk) is minimized for the Bayesian predictor [23]:

Qpi .x0i / D �

˛0i C x0i
�

=
�

˛0i C ˇ0i C n
�

; i D 1; : : : ; K: (10.48)

Let us evaluate the change of the forecast risk under distortion (10.35), where

instead of x0i , the value xi D
n
P

jD1
Qbij is observed.

Theorem 10.13. In the beta-binomial model with additive distortion (10.35), if the
parameters ˛0i , ˇ0i are a priori known, then the mean square risk of forecasting for
the Bayesian predictor is equal to

Qri D ri0 C n
�

ˇ0i "0 C ˛0i "1
�C nŒ2��

�

.ˇ0i /
Œ2C�"20 � 2˛0i ˇ0i "0"1 C .˛0i /

Œ2C�"21
�

�

˛0i C ˇ0i
�Œ2C��

˛0i C ˇ0i C n
�2

;

(10.49)

where ri0 is the risk in the absence of distortion, "0 D "1 D 0:

ri0 D ˛0i ˇ
0
i

�

˛0i C ˇ0i
�Œ2C��

˛0i C ˇ0i C n
�
:

Proof. By definition, we have

Qri D E

n

�

pi � .˛0i C x/=.˛0i C ˇ0i C n/
�2
o

D

D Efp2i g � ˛0i Efpi g C Efxpig
˛0i C ˇ0i C n

C ˛02i C 2˛0i Efxg C Efx2g
.˛0i C ˇ0i C n/2

:

(10.50)

Due to results of [23], we can write

Efpi g D ˛0i

˛0i C ˇ0i
; Efp2i g D ˛0i .˛

0
i C 1/

.˛0i C ˇ0i /.˛
0
i C ˇ0i C 1/

;

Efxg D n"0 C n.1 � "0 � "1/Efpi g; Efxpi g D n"0Efpi g C n.1� "0 � "1/Efp2i g;

Efx2g D Efxg C n.n� 1/
�

"20 C 2"0.1 � "0 � "1/Efpi g C .1 � "0 � "1/Efp2i g
�

:

Substituting these expressions into (10.50) yields (10.49). ut



334 10 Forecasting of Discrete Time Series

From Theorem 10.13 it follows that Qri � Qri0 > 0, and thus the Bayesian
predictor (10.48) is no longer optimal under distortion (10.35). The relation (10.49)
allows us to estimate the risk instability coefficient.

In the case where the model parameters are a priori unknown, and the forecasts
are based on their estimators f Ǫ i , Ǒ

i g, the forecast risk was evaluated in [23].

10.3.7 Robust Forecasting in the Beta-Binomial Model

Theorem 10.14. In the beta-binomial model with prior knowledge of the parame-
ters ˛0i , ˇ0i , the optimal Bayesian predictor under distortion (10.35) has the form

Opi .xi / D E"0;"1fpi j xi g D
n
X

jD0
vixi j

˛0i C j

˛0i C ˇ0i C n
; xi D

n
X

jD1
Qbij; (10.51)

where weight coefficients are defined as

vixi j D Cj
n wxi jB

�

˛0i C j; ˇ0i C n � j �
 

n
X

lD0
C l
Kwxi lB

�

˛0i C l; ˇ0i C n � l
�

!�1
;

and fwkj g are defined by Lemma 10.2.

Proof. By applying the Bayes formula and Lemma 10.2, let us find the conditional
probability density of pi under the condition xi D s:

fpi .x j s/ D

n
P

jD0
wsjC

j
Kx

j .1 � x/n�j �B.˛0i ; ˇ0i /
��1

x˛
0
i �1.1 � x/ˇ

0
i �1

1
R

0

n
P

jD0
wsjC

j
Ky

j .1 � y/n�j �B.˛0i ; ˇ0i /
��1

y˛
0
i �1.1 � y/ˇ0i �1dy

:

Simplifying the above formula and using the beta distribution properties [14] yields

fpi .x j s/ D
n
X

jD0
vixi jB

�

˛0i C j; ˇ0i C n � j �x˛0i Cj�1.1 � x/ˇ
0
i Cn�j�1:

Computing the expectation for this probability distribution proves (10.51). ut
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Let us introduce the following notation:

˛0i;� D ˛0i � 1; ˇ0i;� D ˇ0i � 1; ˛0i;C D ˛0i C 1;

�0 D .˛0i C ˇ0i /x � ˛0i n
˛0i C x

; �1 D .˛0i C ˇ0i /x � ˛0i;Cn
ˇ0i;� C n � x

;

�0 D .˛0i;� C ˇ0i /x � ˛0i;�n
˛0i;� C x

; �1 D .˛0i C ˇ0i;�/x � ˛0i n

ˇ0i;� C n � x
;

G.x; ˛0i ; ˇ
0
i ; "0; "1/ D 1C �0"0 � �1"1

1C �0"0 � �1"1
:

(10.52)

Corollary 10.5. Under the conditions of Theorem 10.14, the optimal predic-
tor (10.51) can be written asymptotically as

Opi .xi / D Qpi .xi /G
�

xi ; ˛
0
i ; ˇ

0
i ; "0; "1

�C o."0; "1/: (10.53)

Proof. It is sufficient to write asymptotic expansions for the coefficients fwkj g
in (10.51) and to use the notation (10.52). ut

The asymptotic formula (10.53) shows that the optimal predictor under distortion
can be approximated by the Bayesian predictor Qpi .xi / for the undistorted model
multiplied by a correction coefficient G.xi ; ˛0i ; ˇ

0
i ; "0; "1/, and the approximation

error has the order o."0; "1/. For "0; "1 ! 0 this correction coefficient tends
to 1: G.xi ; ˛0i ; ˇ

0
i ; "0; "1/ ! 1. Thus, the statistic Opi .xi / can be viewed as a

certain “robustification” of the Bayesian predictor Qpi.xi / for the a priori known
˛0i , ˇ0i , "0, "1.

A plug-in forecasting statistic can be constructed by applying the estimators
described in Sects. 10.3.4, 10.3.5.

Several other robust estimators of f˛0i , ˇ0i g for a priori unknown parameters "0,
"1 are presented in [23].

10.3.8 Experimental Results

A series of computer simulations was performed to illustrate the theoretical results
presented in this section. The true values of the BBD were taken to be ˛ D ˛0 D 0:5,
ˇ D ˇ0 D 9:5, n D 10, and the distortion levels were chosen as "0 D "1 D 0:01.
The bias, the standard deviation, and histograms were compared for the following
BBD parameter estimators:

• Classical estimators Q̨MM, Q̌
MM and Q̨MLE, Q̌

MLE were compared with MMM-
estimators ǪMM, Ǒ

MM;
• Classical estimators Q̨MM, Q̌

MM and Q̨MLE, Q̌
MLE were compared with JMM-

estimators L̨MM, Ľ
MM and JMLE-estimators ǪJMLE, Ǒ

JMLE.



336 10 Forecasting of Discrete Time Series

Fig. 10.1 Histograms of the distributions of classical and modified estimators. Estimates of ˛ (true
value ˛0 D 0:5) are shown on the left, and estimates of ˇ (true value ˇ0 D 9:5)—on the right

In the simulations, L D 100 independent random samples X of size K D 1;000

from the DBBD with the parameters n, ˛, ˇ, "0, "1 were generated, and the above
estimators were computed for each sample. Then a histogram was plotted for each
of the estimators, and the respective means and standard deviations were computed.

Figure 10.1 presents the histograms of the classical (based on the prior knowl-
edge of "0, "1) and modified (for a priori unknown "0, "1) MM estimators and MLE
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Table 10.1 Performance of
joint parameter estimation
compared to the classical
methods

Parameters ˛ (true value 0.5) ˇ (true value 9.5)

Method MM MLE JMM MM MLE JMM

Mean 0.73 0.76 0.49 11.81 12.28 9.20
Std. dev. 0.12 0.11 0.21 2.01 1.97 2.63

Fig. 10.2 A comparison of
classical (predictor 1) and
“robustified” (predictor 2)
methods. Solid lines represent
the theoretical risk, and error
bars indicate 95 % confidence
intervals

estimators. Results of comparing MM, MLE, and JMM estimators are presented in
Table 10.1. It is easy to see that the proposed modifications result in a significant
decrease of the bias and the standard deviation of the estimators for ˛, ˇ.

The same simulated distribution was used to compare two forecasting
statistics:

1. The classical predictor (10.38), where the values f˛0i ; ˇ0i g are replaced by the
classical MLEs, and the model is assumed to be free of distortion;

2. The predictor (10.50) from Theorem 10.14, where f˛0i ; ˇ0i ; "0; "1g were replaced
by JMLEs.

In Fig. 10.2, the risks of these predictors are compared for different levels of simu-
lated distortion " D "0 D "1. It can be seen that the “robustified” predictor (10.50)
based on the JMLE approach is much less sensitive to distortion.

10.4 Forecasting of HMCs

Let us consider a setting mentioned in Sect. 3.6.1, where the time series xt , t 2 N, is
an HMC with a finite state space A D f0; 1; : : : ; N � 1g of size N , 2 � N < C1,
the initial probability distribution � D .�0; �1; : : : ; �N�1/0, and the one-step transi-
tion probability matrix P D .pij/:

Pfx1 D ig D �i ; PfxtC1 D j j xt D ig D pij; i; j 2 A: (10.54)
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The following normalization conditions are satisfied:

X

i2A
�i 	 1I

X

j2A
pij 	 1; i 2 A: (10.55)

The time series has been observed at T � 1 consecutive time points, and a
realization

XT
1 D .x1; x2; : : : ; xT /

0 2 AT

has been recorded. We would like to make a �-step-ahead forecast of the future
value xTC� 2 A, � � 1. The forecasting problem stated above is one of the topical
problems in discrete-valued time series analysis [5, 9–11, 17, 18, 28].

Theorem 10.15. If xt is an HMC with a priori known parameters � , P , then
the optimal forecasting statistic in the sense of minimum error probability (i.e.,
minimum risk under the .0� 1/ loss function defined in Sect. 2.4) has the form

OxTC� D arg max
j2A

�

P �
�

xT ;j
; (10.56)

where .P � /ij is the .i; j /th element of the matrix P � . The attained minimum risk
equals

r0.�/ D 1 �
X

i2A

�

PT �
�

i
max
j2A

�

P �
�

ij: (10.57)

Proof. Let

PXT1 ; xTC�
.K; j / D P

˚

XT
1 D K; xTC� D j




; K 2 AT ; j 2 A;

be the joint probability distribution of the observed realization XT
1 and the future

value xTC� . By the discrete analogue of Theorem 2.1, the optimal forecast is found
by maximizing the posterior probability:

OxTC� D arg max
j2A P

˚

xTC� D j j XT
1


 D arg max
j2A

PXT1 ; xTC�

�

XT
1 ; j

�

PXT1

�

XT
1

� : (10.58)

By the Markov property and (10.54), we have

PXT1 ; xTC�
.K; j / D PXT1

.K/ .P � /xT ;j ; K 2 AT ; j 2 A:

Substituting this relation into (10.58) yields (10.56).
From the total probability formula, the risk of the forecasting statistic (10.56) can

be written as



10.4 Forecasting of HMCs 339

r0.�/ D P f OxTC� ¤ xTC�g D 1 �
X

i2A
P fxT D ig ri .�/; (10.59)

where

ri .�/ D Pf OxTC� D xTC� j xT D ig

is the conditional probability of making the correct decision if xT D i . By (10.56)
and the Markov property, we have

ri .�/ D P

�

arg max
j2A.P

� /ij D xTC� j xT D i

	

D

D
X

k2A
.P � /ikI

�

arg max
j2A .P

� /ij D k

	

D max
j2A.P

� /ij: (10.60)

Applying the fact that PfxT D ig D .P T �/i and substituting (10.60) into (10.59)
proves (10.57). ut

Note that if a row xT of the matrix P � contains several maximum elements, then
we obtain several equivalent forecasts with the same risk (10.57).

Corollary 10.6. If xt is a stationary Markov chain, then the formula for the
minimum risk can be simplified:

r0.�/ D 1 �
X

i2A
�i max

j2A.P
� /ij: (10.61)

Proof. The probability distributions of elements in a stationary Markov chain are
independent of time:

PfxT D ig D .P T �/i D �i :

Thus, (10.61) follows from (10.57). ut
Corollary 10.7. Under the ergodicity condition, as the forecast horizon increases
to infinity, the minimum error probability tends to the following limit:

r0.�/ ! 1 � max
j2A �j ; � ! C1: (10.62)

Proof. By ergodicity [3], we have

.P � /ij D �j CO.%� / ! �j ; j 2 A; � ! C1;

for some % 2 .0; 1/. Applying this convergence to (10.61) yields (10.62). ut
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Note that the right-hand side of (10.62) contains the risk of the forecasting
statistic that is only based on prior information:

PfxTC� D j g D �j ; j 2 A:

To illustrate the dependence r0 D r0.�/ of the forecast risk on the forecasting
horizon � , let us consider the case of forecasting a binary (N D 2) Markov chain
with a bistochastic matrix of one-step transitions:

A D f0; 1g; P D 1

2

�

1C " 1 � "
1 � " 1C "

�

; �1 � " � C1:

For " > 0, we have a Markov chain with attraction, and for " < 0—with repulsion.
Since the matrix P is bistochastic, the stationary probability distribution is uniform:

�i D Pfxt D ig D 1=2; i 2 A:

By direct calculations, we have

P � D 1

2

�

1C "� 1 � "�
1 � "� 1C "�

�

; � 2 N;

and thus (10.61) yields an explicit expression for the forecast risk:

r0 D r0.�/ D �

1 � j"j��=2; � 2 N: (10.63)

Figure 10.3 presents a plot of the dependence (10.63) for " D 0:9I 0:5, showing
exponentially fast convergence of the error probability to the error probability of a
purely random (“coin tossing”) forecast as � ! C1:

r0.�/ ! 1=2:

If the matrix P D .pij/ is a priori unknown, then we can use (10.54), (10.55) to
construct an MLE OP D . Opij/ based on the observed realization XT

1 :

Opij D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

T�1
X

tD1
ıxt ; i ıxtC1;j

 

T�1
X

tD1
ıxt ; i

!�1
; if

T�1
X

tD1
ıxt ; i > 0;

N�1; if
T�1
X

tD1
ıxT ;i D 0:

(10.64)

Then a plug-in forecasting statistic can be obtained from (10.56):



10.5 Higher Order Markov Chain Forecasting 341

Fig. 10.3 Dependence of the
forecast risk r0.�/ on forecast
depth

OxTC� D arg max
j2A

� OP �
�

xT ;j
: (10.65)

Since (10.56) contains the conditional �-step transition probability from xT to j ,

pxT ;j .�/ D .P � /xT ;j ; (10.66)

this probability can be estimated directly by applying the frequency method:

QpxT ;j .�/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

T��
X

tD1
ıxt ; xT ıxtC� ;j

 

T��
X

tD1
ıxt ; xT

!�1
; if

T��
X

tD1
ıxt ;xT > 0;

N�1; if
T��
X

tD1
ıxt ; xT D 0:

(10.67)

This leads to another plug-in forecasting statistic:

QxTC� D arg max
j2A QpxT ;j .�/: (10.68)

Since the estimators (10.64), (10.67) are strongly consistent for T ! C1, the
risks of forecasting statistics (10.65), (10.68) converge to r0.�/—the forecast risk
for stationary HMCs defined by (10.61).

10.5 Higher Order Markov Chain Forecasting

10.5.1 Optimal Forecasting Under HMC.s/ Models

Mathematical modeling of complex systems and processes in economics,
engineering, medicine, sociology, genetics, and other applications often requires
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constructing adequate stochastic models of “long memory” discrete time series
[5,6,9–11,17,18,28,36,37]. The higher order Markov chain model is a well-studied
universal discrete stochastic model; the order s 2 N defines the length of the
memory. If s D 1, then the Markov chain is called simple [19], and if s > 1—
complex [8].

Let the observed time series xt 2 A D f0; 1; : : : ; N � 1g, t 2 N, 2 � N < 1,
be an HMC of order s, denoted as HMC.s/ (see the definition in Sect. 3.6.2), with
the s-variate initial probability distribution

�i1;:::;is D Pfx1 D i1; : : : ; xs D isg; i1; : : : ; is 2 A; (10.69)

and an .s C 1/-variate probability matrix of one-step transitions

P D .pi1;:::;isC1
/; pi1;:::;isC1

D PfxtC1 D isC1 j xt D is; : : : ; xt�sC1 D i1g;
(10.70)

where i1; : : : ; isC1 2 A, t � s.
Similarly to (10.55), the following normalization conditions are satisfied:

X

i1;:::;is2A
�i1;:::;is 	 1;

X

isC12A
pi1;:::;is ;isC1

	 1; i1; : : : ; is 2 A: (10.71)

Assume that a realization XT
1 D .x1; : : : ; xT /

0 2 AT of length T � s has been
observed.

As in the previous section, let us consider the problem of forecasting the element
xTC� 2 A, � � 1.

Let us introduce the following notation for n > m:

J nm D .jm; jmC1; : : : ; jn/0 2 An�mC1

is a multiindex over the set A,

pJ0
�sC1

;j�
.�/ D P

˚

xTC� D j� j XT
T�sC1 D J 0�sC1


 D

D
X

j1;:::;j��12A
pJ0

�sC1
;j1
pJ1

�sC2
;j2
: : : pJ ��1

�sC�
;j�
; J 0�sC1 2 A� ; j� 2 A;

(10.72)

is the conditional probability of a �-step transition between the states XT
T�sC1 D

J 0�sC1 and xTC� D j� in the HMC.s/ model. This formula is similar to the
expression (10.66) for a simple Markov chain, s D 1.

Similarly to Theorem 10.15, we can obtain an expression for the optimal
forecasting statistic:

OxTC� D arg max
j2A pXTT�sC1;j

.�/: (10.73)
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For a stationary HMC.s/, we can also prove that the minimum forecast risk equals

r0.�/ D 1 �
X

J2As

�J max
j2A pJ;j .�/: (10.74)

A plug-in forecasting statistic is obtained from the optimal statistic (10.73), (10.72)
by substituting statistical estimators of pJ;j based on the observed realization XT

1 .
However, as noted in Sect. 3.6, the number of parameters D in the model

HMC.s/ grows exponentially as the order s increases: D D Ns.N � 1/, and
identification (parameter estimation) of the model requires observing a realization
XT
1 D .x1; : : : ; xT /

0 of a very large length T > D, which is often impossible.
This motivates the search for parsimonious (small-parametric) higher order Markov
chain models mentioned in Sect. 3.6: the Jacobs–Lewis model, Raftery’s MTD
model, and the MC.s; r/ model proposed by the author.

10.5.2 Identification of the Jacobs–Lewis Model

Let a discrete time series xt described by the Jacobs–Lewis model (see Sect. 3.6) be
defined on the probability space .˝; F;P/:

xt D �txt��t C .1 � �t /�t ; t > s; (10.75)

where s � 2, fx1; : : : ; xsg, f�t ; �t ; �t W t > sg are jointly independent random
variables with probability distributions

Pf�t D ig D �i ; i 2 AI
X

i2A
�i D 1I

Pf�t D j g D �j ; j 2 f1; : : : ; sgI
s
X

jD1
�j D 1; �s ¤ 0I

Pf�t D 1g D 1 � Pf�t D 0g D %I
Pfxk D ig D �i ; i 2 A; k 2 f1; : : : ; sg:

(10.76)

The original paper by Jacobs and Lewis [13] which introduced this model presents
only the simplest probabilistic properties of (10.75), and doesn’t touch upon
statistical problems.

Theorem 10.16. The model (10.75), (10.76) defines an HMC fxt g of order s with
the initial probability distribution �i1;:::;is D �i1 � � � � ��is and an .sC1/-dimensional
probability matrix of one-step transitions
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P.�; �; %/ D .pi1;:::;isC1
/;

pi1;:::;is ;isC1
D .1 � %/�isC1

C %

s
X

jD1
�j ıis�jC1;isC1

; i1; : : : ; isC1 2 A: (10.77)

Corollary 10.8. Under the model (10.75), (10.76), MLEs for the d D N C s � 1

model parameters � , �, % based on an observed time series XT
1 D .x1; : : : ; xT /

0
are solutions of the following optimization problem:

l.�; �; %/ D
s
X

tD1
ln�xt C

T
X

tDsC1
ln

0

@.1 � p/�xt C %

s
X

jD1
�j ıxt�j ;xt

1

A ! max
�;�;%

:

(10.78)

Let us introduce the following notation: for a matrix P D P.�; �; %/, kP k2 is
the sum of squares of its elements; F.P / is the sum of squares of the elements of the
matrix P D .pi1;:::;isC1

/ that satisfy one of the conditions: fi1 D � � � D is D isC1g
or fi1 ¤ isC1; : : : ; is ¤ isC1g; QP is the sample matrix of transition probabilities
computed from XT

1 .

Theorem 10.17. If % ¤ 1, then the statistics Q� , Q�, Q% defined below are consistent
estimators for the parameters of the model (10.75), (10.76) for T ! 1:

Q�i D 1

T

T
X

tD1
ıxt ;i ; i 2 AI Q% D arg min

%
F
� QP � P.�; �; %/� I

Q� D arg min
�

�

� QP � P.�; �; %/
�

� :

Theorems 10.16, 10.17 are proved in [25]. Note that the statistics Q�, Q% can be
written explicitly. The estimators . Q� , Q�, Q%/ are used as the initial approximation in
the iterative solution of the optimization problem (10.78).

10.5.3 Identification of Raftery’s MTD Model

Let xt be an HMC of order s defined on the probability space .˝; F;P/ with an
.s C 1/-dimensional transition probability matrix P D .pi1;:::;isC1

/ defined
by (10.70). Raftery’s MTD model [33] defines a special small-parametric
(parsimonious) representation of the matrix P :

pi1;:::;isC1
D

s
X

jD1
�j qij ;isC1

; i1; : : : ; isC1 2 A; (10.79)
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where Q D .qik/ is a stochastic .N � N/-matrix, i , k 2 A, and � D .�1; : : : ; �s/
0

is an s-column vector such that

�1 > 0; �2; : : : ; �s � 0; �1 C � � � C �s D 1:

This model has d D N.N � 1/=2C s � 1 parameters.
The MTD model (10.79) can be generalized to obtain the MTDg model, where a

separate transition probability matrix is defined for each of the s time lag values:

pi1;:::;isC1
D

s
X

jD1
�j q

.j /
ij ;isC1

; i1; : : : ; isC1 2 A; (10.80)

whereQ.j / D .q
.j /
ik / is the j th stochastic matrix corresponding to the time lag s�j .

The number of parameters in the MTDg model is d D s .N.N � 1/=2C 1/� 1.

Lemma 10.5. The ergodicity of an order s Markov chain defined by the MTD
model (10.79) is equivalent to the existence of a positive integer K 2 N such that
all elements of the matrix QK are nonnegative.

Proof. The lemma can be proved constructively by applying the Markov property
and the Kolmogorov–Chapman equation. ut

Let us introduce the following notation:

�.t/ D
�

�
.t/
0 ; : : : ; �

.t/
N�1

�0

is the one-dimensional probability distribution of the Markov chain at time t 2 N,
where �.t/i D Pfxt D ig, i 2 A;

˘.t/ D
�

�
.t/
i1;:::;is

�

is the s-variate probability distribution of the vector .xt�.s�1/; : : : ; xt /0 2 As , where

�
.t/
i1;:::;is

D Pfxt�.s�1/ D i1; : : : ; xt D isg; i1; : : : ; isC1 2 AI
the distribution ˘� D .��

i1;:::;is
/, i1; : : : ; isC1 2 A, is the s-variate stationary

probability distribution of the ergodic Markov chain; �� D .��
0 ; : : : ; �

�
N�1/0 is the

respective univariate stationary probability distribution.

Theorem 10.18. Under the model (10.80), if for some K 2 N every element of the
matrix .Q.1//K is nonnegative, the stationary probability distribution˘� is

��

i1;:::;is
D

s�1
Y

lD0

0

@��

is�l
C

s
X

jDlC1

�j

 

q
.j /
ij�l ;is�l

�
N�1
X

rD0

q
.j /
r;is�l

��

r

!

1

A ; i1; : : : ; isC1 2 A:
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Corollary 10.9. Under the model (10.79), assuming that the ergodicity criterion of
Lemma 10.5 is satisfied, the stationary bivariate marginal probability distribution
of the random vector .xt�m; xt /0 satisfies the relation

��
ki .m/ D ��

k �
�
i C ��

k �s�mC1.qki � ��
i /; 1 � m � s; k 2 A: (10.81)

The proofs of Theorem 10.18 and its corollary are similar to the proof of
Theorem 10.16.

Let us construct estimators for the parameters of the MTD model by applying the
property (10.81).

From the observed realizationXT
1 D .x1; : : : ; xT /

0, define the following statistics
for i; k 2 A, j D 1; : : : ; s:

Q�i D 1

T � 2s C 1

T�sC1
X

tDsC1
ıxt ;i I Q�ki .j / D 1

T � 2s C 1

T�sCj
X

tDsCj
ıxt�j ;kıxt ;i I

zki .j / D Q�ki .s � j /= Q�k � Q�i I dki D Qqki � Q�i I

Qqki D

8

ˆ

<

ˆ

:

s
P

jD1
Q�ki .j /= Q�k � .s � 1/ Q�i ; Q�k > 0;

1=N; otherwiseI

Q� D arg min
X

i;k2A

s
X

jD1

�

zki .j / � �jdki
�2
:

(10.82)

Theorem 10.19. In the MTD model (10.79), assuming that the ergodicity criterion
of Lemma 10.5 is satisfied, the statistics (10.82) are asymptotically unbiased and
consistent estimators for, respectively, Q and � as T ! 1.

Proof. It is easy to show that the definitions of consistency and unbiasedness are
satisfied. ut

The estimators QQ, Q� defined by (10.82) are a good initial approximation for
iterative maximization of the log likelihood function, which yields the MLEs QQ; Q�:

l.Q; �/ D
T
X

tDsC1
ln

s
X

jD1
�j qxt�sCj�1;xt ! max

Q;�
:

10.5.4 Identification of the MC.s; r/ Model

To conclude the section, let us define Markov chains of order s with r partial connec-
tions—a small-parametric model family proposed by the author in 2003 [21,24,25].
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As in Sect. 10.5.3, assume that xt is an HMC of order s defined on .˝; F;P/ with
an .s C 1/-dimensional transition probability matrix

P D .pi1;:::;isC1
/; i1; : : : ; isC1 2 AI

r 2 f1; : : : ; sg is the parameter called the number of partial connections;

M0
r D .m0

1; : : : ; m
0
r / 2 M

is an arbitrary integer r-vector with ordered components 1 D m0
1 < m0

2 < � � � <
m0
r � s which is called the connection template; M is a set of cardinality K D

jM j D C r�1
s�1 which is composed of all possible connection templates with r partial

connections; and Q0 D .q0j1;:::;jrC1
/ is some .r C 1/-dimensional stochastic matrix,

where the indices j1; : : : ; jsC1 lie in A.
A Markov chain of order s with r partial connections [21], denoted as MC.s; r/,

is defined by specifying the following one-step transition probabilities:

pi1;:::;is ;isC1
D q0i

m01
;:::;i

m0r
;isC1

; i1; : : : ; isC1 2 A: (10.83)

The relation (10.83) implies that the probability of the process entering a state
isC1 at time t > s does not depend on every previous state of the process
i1; : : : ; is , but is affected only by the r chosen states im01; : : : ; im0r . Thus, instead of
D D Ns.N�1/ parameters, the model (10.83) is defined by d D Nr.N�1/Cr�1
independent parameters that determine the matrices Q0, M0

r . The reduction in the
number of parameters can be very significant: for instance, if N D 2, s D 32,
r D 3, then we haveD 
 4:1 � 109, and d D 10.

Note that if s D r , M0
r D .1; : : : ; s/, then P D Q0, and MC.s; s/ is a Markov

chain of order s. As a constructive example of an MC.s; r/ model, let us consider
a binary (N D 2) autoregression of order s with r nonzero coefficients. A special
case of such autoregression model is a linear recursive sequence defined in the ring
Z2 and generated by a degree s polynomial with r nonzero coefficients.

Let us introduce the following notation:

Js D .j1; : : : ; js/ D .Js�1; js/ 2 As

is a multiindex of order s; ıJs ;J 0

s
is the Kronecker symbol defined for pairs of

multiindices Js , J 0
s 2 As; the function

St W AT �M ! Ar ; .XT
1 IMr/ 7! .xtCm1�1; : : : ; xtCmr�1/ 2 Ar

is called a selector of order r with the parameters Mr and t , where Mr 2 M ,
t 2 f1; : : : ; T � s C 1g; ˘Ks D PfXs D Ksg is the initial s-variate probability
distribution of the Markov chain MC.s; r/;

�rC1.JrC1IMr/ D
T�s
X

tD1
I
˚

St .X
T
1 IMrC1/ D JrC1
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is the frequency of the .r C 1/-gram JrC1 2 ArC1 corresponding to the connection
template MrC1 D .Mr ; s C 1/, where JrC1 satisfies the normalization condition

X

JrC12ArC1

�rC1.JrC1IMr/ D T � s:

Finally, an index replaced by a dot denotes summation over all possible values of
this index:

�rC1.Jr �IMr/ D
X

jrC12A

�rC1.JrC1IMr/; �rC1.�jrC1/D
X

Jr2Ar

�rC 1.JrC 1IMr/

are the “accumulated” statistics.

Theorem 10.20. The model MC.s; r/ defined by (10.83) is ergodic if and only if
there exists an integer l � 0 such that

min
Js ;J 0

s2As

X

Kl2Al

sCl
Y

iD1
q0
Si

�

.Js ;Kl ;J 0

s /IM0
rC1

� > 0:

Proof. The proof is based on transforming MC.s; r/ into a special s-vector Markov
chain of order one. ut

Let us apply the plug-in principle to construct the information functional
OIrC1.Mr/ from the observed realization Xn. In other words, a sample-based
estimator for the Shannon information about the future symbol xtCs 2 A contained
in the r-tuple St.XT

1 ;Mr/ will be constructed [24].

Theorem 10.21. The MLEs OMr , OQ D . OqJrC1
/, where JrC1 2 ArC1, for the

parametersM0
r , Q0 can be defined as

OMr D arg max
Mr2M

OIrC1.Mr/;

OqJrC1
.Mr/ D

(

�rC1.JrC1I OMr/=�rC1.Jr �I OMr/; if �rC1.Jr �I OMr/ > 0;

1=N; if �rC1.Jr �I OMr/ D 0:

(10.84)

Let us introduce the following notation: for Ks 2 As , ˘�
Ks

is the stationary
probability distribution of MC.s; r/;

�rC1.JrC1IMr;M
0
r / D

X

KsC12AsC1

I fS1.KsC1IMrC1/ D JrC1g˘�

Ks
pKsC1

; JrC1 2 ArC1:
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Theorem 10.22. If MC.s; r/ defined by (10.83) is stationary, and the connection
template M0

r 2 M satisfies the identifiability condition [24, 25], then the MLEs
OMr; OQ defined by (10.84) are consistent for T ! 1:

OMr

P�!�! M0
r ;

OQ m:s:��! Q0;

and the following asymptotic expansion holds for the mean square error of OQ:

2
T D E

˚k OQ �Q0k2
 D 1

T � s
X

JrC12ArC1

�

1 � q0JrC1

�

q0JrC1

�rC1.Jr �IM0
r ;M

0
r /

C o

�

1

T

�

:

(10.85)

Theorems 10.21, 10.22 have been proved in [21].
The estimators (10.84) can be used to construct a statistical test for a null

hypothesis H0 W Q0 D Q0 against an alternative of a general form H1 D H0,
where Q0 D .q0JrC1

/ is some given stochastic matrix. The decision rule of a given
asymptotic size " 2 .0; 1/ can be written as follows:

decide in favor of fH0; if % � I H1; if % > g; (10.86)

where

% D
X

JrC1 W
q0JrC1

>0

�rC1
�

Jr �I OMr

�

� OqJrC1
� q0JrC1

�2

q0JrC1

and D G�1
L .1� "/ is the .1� "/-quantile of the 
2 distribution with L degrees of

freedom [24].
Performance of the statistical estimators (10.84) and the test (10.86) was

evaluated by Monte-Carlo simulation experiments with fixed model parameters:
N D 2, s D 256, r D 6; the chosen values of Q0 and M0

r are omitted due to
space considerations. For each simulated observation length, 104 simulation rounds
were performed.

Figure 10.4 illustrates the numerical results obtained for this MC(256,6) model:
the mean square error 2

T of the estimator OQ is plotted against the observation
length T ; the curve has been computed theoretically from the leading term of the
expansion (10.85), and the circles are the experimental values computed in the
simulations.

The models MC.s; r/ can be applied to real-world statistical forecasting
problems. To illustrate this, let us take a real-world econometric time series
presented in Fig. 10.5: the market price of copper collected from 1800 to
1997 [12,29]. Based on first differences, this data was classified into three categories
(N D 3), yielding a discrete sequence with three possible states:
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Fig. 10.4 Dependence of 2
T on T for N D 2, s D 256, r D 6

Fig. 10.5 Time series of first differences for the price of copper

(0) The price has decreased by over 34.6 dollars;
(2) The price has increased by over 31.52 dollars;
(1) Other variations.

For the obtained discrete sequence, the best fitted model in the family of Markov
chains

˚

MC.0; 0/I MC.s; r/; 1 � s � 3; 1 � r � s



was of the type MC.2; 1/;
the obtained estimate for the matrixQ was

0 1 2

OQ D
0

1

2

0

@

0:1481 0:7778 0:0741

0:0647 0:7626 0:1727

0:5000 0:4286 0:0714

1

A :

The constructed model can be used for price forecasting.
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A
AO-model, 256
ARIMA. See Autoregressive integrated moving

average (ARIMA)
ARMA.p; q/ time series model, 36
Autoregression forecasting

robustness under additive (AO) outliers,
208

robustness under bilinear distortion, 217,
222

robustness under heteroscedasticity of the
innovation process, 196

robustness under innovation (IO) outliers,
203

robustness under innovation process
distortions in the mean value, 190

robustness under misspecification of
autoregression coefficients, 186

Autoregression AR.p/ model, 36
Autoregression time series

plug-in forecasting
AR.p/ parameter estimation, 178
ARIMA.p; d; q/ parameter estimation,

182
ARMA.p; q/ parameter estimation, 181
MA.q/ parameter estimation, 180

Autoregressive integrated moving average
(ARIMA)

ARIMA.p; d; q/ model, 35
optimal forecast, 170

B
Bilinear model BL.p; q; P;Q/, 40

C
Contigual classes, 308

D
Decision rule, 8

admissible, 10
Bayesian (BDR), 9
conditional risk, 8
minimax, 9
plug-in decision rule (PBDR), 24
randomized, 13

critical function, 13
Discrete time series, 48, 305

asymptotics of the PBDR risk, 314
Bayesian decision rule, 306
beta-binomial model, 324

forecasting under additive distortions,
324

joint estimation of parameters and
distortion levels, 330

robustness of MLEs, 327
robustness of MM estimators, 326

forecasting
discriminant analysis of Markov chains,

305
Discrete white noise, 35
Discriminant analysis, 18

E
Estimation of the contamination level ", 265

F
Forecast

consistent and asymptotically optimal, 64
strongly consistent, 64

Forecast density
Bayesian, 14

Forecast distribution
Bayesian, 26
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Forecast error, 58
Forecasting

discrete time series, 305
interval forecasting, 15
set forecasting, 15

Forecasting statistic
Bayesian regression, 77
maximum likelihood (ML), 78
mean square optimal, 61
minimax robust, 71
plug-in regression, 78
unbiased, 60

Forecast risk
guaranteed upper risk, 70
mean square risk of forecasting, 59

Functional-coefficient autoregression
FAR.p; d/ model, 40

Functional distortion, 107
interval distortion, 107
lp-metric, 107
orthogonal expansions, 108
relative distortion, 107

G
General linear process, 37

H
Hampel breakdown point, 71
Homogeneous Markov chains (HMC), 306
Huber estimator, 138
Huber loss function, 138

I
Integrated non-stationary time series, 38
Interval forecast
.1� "/-confidence, 75

J
Jacobs–Lewis model

identification, 343

K
Kolmogorov’s method, 163
Kullback–Leibler information, 308

L
Least squares estimators

under additive (AO) outliers, 208
under heteroscedasticity, 200

under innovation (IO) outliers, 203
under missing values, 248
under parameter drift, 285

Least squares VAR forecasting
robustness under missing values, 248

Local forecast, 142
Local-median (LM) forecasting, 141

breakdown point, 143
generalization for multivariate regression,

153
probability distribution, 145
risk, 150
statistic, 142

Logistic regression, 85
Logistic regression forecasting, 83
Logit transformation, 84
Loss function, 58
Ludeke econometric model, 300

M
Markov chains, 48

higher order Markov chain forecasting, 341
homogeneous (HMC), 306

forecasting, 337
forecasting under missing values, 319

of order s, 49
parsimonious models, 50, 343

of order s with r partial connections, 50,
346

connection template, 347
number of partial connections, 347

MC.s; r/ model
identification, 346

M-estimators, 126
Missing values template, 232
Model distortions, 65

bilinear distortion, 217
functional distortion, 105
functional distortions

of multiple linear regression, 109
of multivariate regression, 116

innovation process distortions, 190
missing values, 231
misspecification, 68

of AR(p) coefficients, 186
"-neighborhood in a probability metric, 67
observation channel distortions, 67
outliers, 69, 120

additive (IO) outliers in AR(p), 208
innovation (IO) outliers in AR(p), 203

simultaneous influence of outliers and
missing values, 255

Tukey–Huber, 66
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Model of deterministic predictors (MDP), 90
Model of random predictors (MRP), 90
Multiple linear regression

robustness of least squares forecasting, 105,
109

robustness of least squares forecasting
under outliers, 120

robustness of M -estimator forecasting
under functional distortions, 126

Multivariate linear regression
functional distortions, 116

Multivariate stationary time series, 42
Multivariate time series models, 42

N
Nonlinear time series models, 39
Nonparametric kernel regression forecasting,

89
mean square forecast risk, 96

Nonparametric k � NN-regression forecasting,
98

O
Optimal forecasting statistic

matrix risk, 63

P
Plug-in nonparametric kernel forecast, 92
Plug-in principle, 64
Plug-in VAR forecasting

asymptotics of the matrix risk under
missing values, 250

Point forecasting, 56
regression mean square optimal, 74

Prior uncertainty, 57
complete prior information (PU-C), 57
nonparametric (PU-NP), 57
paramtetric (PU-P), 57

R
Raftery’s MTD model

identification, 344
Random observation error correlation, 124
Regression forecasting

robust forecasting under outliers, 137
robustness, 105
under parametric prior uncertainty, 76

Regression models, 32
functional distortion, 105
multiple linear regression, 106

Risk
Bayesian, 19
functional, 58
instability coefficient, 70, 238, 299

Robust  -estimators, 260
Robust estimators for correlations based on the

Cauchy distribution, 257
Robust estimators of autoregression

coefficients, 264
Robust forecasting, 69

model misspecification, 183
Robustness characteristics, 69
Robustness of ARIMA forecasting, 163
RO-model, 256

S
Set (interval) forecasting, 56, 57

� D 1� "-confidence forecast region,
81

Single-point forecasting, 56
SSE model. See Systems of simultaneous

equations (SSE) model
Stationary bilinear time series models

moments, 218
Stationary forecasting

covariance function misspecification, 184
Stationary time series

optimal � -step-ahead forecast, 173
optimal linear forecast, 172
plug-in forecasting

estimation of covariance function,
176

Systems of simultaneous equations (SSE)
model, 47, 273

drifting coefficients, 283
change point model, 285
exponential model, 284
harmonic model, 285

forecasting robustness under specification
errors, 279

optimal forecasting statistic, 278
parameter drift effect on forecast risk,

297
plug-in forecasting statistics, 281
reduced form, 48
structural form, 48

T
Time series, 31

discrete, 48, 305
(weakly) stationary, 34
strictly stationary, 33
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V
Vector autoregression forecasting

modified LSE under missing values,
238

robustness under missing values, 231
robustness under specification errors,

237

Vector autoregression VAR.p/ model, 43
Vector moving average VMA.q/ model, 45

W
Weak correlation, 124
Wolf numbers of solar activity, 252


	Preface
	Contents
	Symbols and Abbreviations
	Chapter1 Introduction
	References

	Chapter2 A Decision-Theoretic Approach to Forecasting
	2.1 The Mathematical Model of Decision Making
	2.2 Minimax, Admissible, and Bayesian Families of Decision Rules
	2.3 The Bayesian Forecast Density
	2.4 Forecasting Discrete States by Discriminant Analysis
	2.4.1 The Mathematical Model
	2.4.2 Complete Prior Knowledge of {πi,pi0(·)}
	2.4.3 Prior Uncertainty

	References

	Chapter3 Time Series Models of Statistical Forecasting
	3.1 Regression Models of Time Series
	3.2 Stationary Time Series Models
	3.3 ARIMA(p,d,q) Time Series Model
	3.4 Nonlinear Time Series
	3.4.1 A General Nonlinear Model
	3.4.2 Bilinear Model BL(p,q,P,Q)
	3.4.3 Functional-Coefficient Autoregression Model FAR(p,d)
	3.4.4 Generalized Exponential Autoregression Model EXPAR(p,d)
	3.4.5 Threshold Autoregression Model TAR(k)
	3.4.6 ARCH(p) Model
	3.4.7 GARCH(p,q) Model

	3.5 Multivariate Time Series Models
	3.5.1 Multivariate Stationary Time Series
	3.5.2 Vector Autoregression Model VAR(p)
	3.5.3 Vector Moving Average Model VMA(q)
	3.5.4 VARMA(p,q) Model
	3.5.5 System of Simultaneous Equations (SSE) Model

	3.6 Discrete Time Series
	3.6.1 Markov Chains
	3.6.2 Markov Chains of Order s
	3.6.3 DAR(s) Model of Jacobs and Lewis
	3.6.4 DMA(q) Model
	3.6.5 INAR(m) Model

	References

	Chapter4 Performance and Robustness Characteristics in Statistical Forecasting
	4.1 A General Formulation of the Statistical Forecasting Problem
	4.2 The Risk Functional and Optimality of Forecasting Statistics
	4.3 Classification of Model Distortions
	4.4 Robustness Characteristics
	References

	Chapter5 Forecasting Under Regression Models of Time Series
	5.1 Optimal Forecasting Under Complete Prior Information
	5.2 Regression Forecasting Under Parametric Prior Uncertainty
	5.2.1 Bayesian Approach in the PU-P Setting
	5.2.2 Joint Estimation Using the Maximum Likelihood (ML) Principle
	5.2.3 Using the Plug-In Principle

	5.3 Logistic Regression Forecasting
	5.4 Nonparametric Kernel Regression Forecasting
	5.5 Nonparametric k-NN-Regression Forecasting
	5.6 Some Other Nonparametric Regression Forecasting Methods
	5.6.1 Functional Series Expansions of Regression Functions
	5.6.2 Spline Smoothing
	5.6.3 Regressograms and Median Smoothing

	References

	Chapter6 Robustness of Time Series Forecasting Based on Regression Models
	6.1 Robustness of Least Squares Forecasting Under Functional Distortions of Multiple Linear Regression Models
	6.1.1 Formulation of the Problem
	6.1.2 The Hypothetical Regression Model and Its Functional Distortions
	6.1.3 Robustness Characteristics of Forecasting Algorithms
	6.1.4 Robustness Analysis of Least Squares Forecasting

	6.2 Robustness of Least Squares Forecasting UnderFunctional Distortions of MultivariateLinear Regression Models
	6.2.1 Mathematical Description of Model Distortions
	6.2.2 Robustness Evaluation of Least Squares Forecasting

	6.3 Robustness of Least Squares Forecasting Under Outliers
	6.4 Impact of Correlation Between Observation Errors on Forecast Risk
	6.5 Robust Forecasting Based on M-Estimators Under Functional Distortion
	6.5.1 Construction of a Robust Forecasting Algorithm
	6.5.2 Evaluation of the Constructed Robust Forecasting Algorithm
	6.5.3 Numerical Examples

	6.6 Robust Regression Forecasting Under Outliers Based on the Huber Estimator
	6.7 Local-Median (LM) Forecasting and Its Properties
	6.7.1 Description of the Method
	6.7.2 The Breakdown Point
	6.7.3 Probability Distribution of the LM Forecast
	6.7.4 Risk of the LM Forecast
	6.7.5 Robustness of LM Forecasting Compared to the Traditional Least Squares Method
	6.7.6 A Generalization of the LM Method for Multivariate Regression
	6.7.7 Numerical Results

	References

	Chapter7 Optimality and Robustness of ARIMA Forecasting
	7.1 Kolmogorov's Method
	7.2 Optimal Forecasting Under ARIMA Time Series Models
	7.2.1 The General Method for Stationary Time Series
	7.2.2 Forecasting Under the AR(p) Model
	7.2.3 Forecasting Under the MA(q) Model
	7.2.4 Forecasting Under the ARMA(p,q) Model
	7.2.5 Forecasting Under the ARIMA(p,d,q) Model

	7.3 Plug-In Forecasting Algorithms
	7.3.1 Plug-In Forecasting Algorithms Based on Covariance Function Estimators
	7.3.2 Plug-In Forecasting Algorithms Based on AR(p) Parameter Estimators
	7.3.3 Plug-In Forecasting Algorithms Based on Parameter Estimation of MA(q) Models
	7.3.4 Plug-In Forecasting Algorithms Based on ARMA(p,q) Parameter Estimators
	7.3.5 Plug-In Forecasting Algorithms Based on ARIMA(p,d,q) Parameter Estimators

	7.4 Robustness Under Parametric Model Specification Errors
	7.4.1 The General Case
	7.4.2 Stationary Time Series Forecasting Under Misspecification of Covariance Functions
	7.4.3 Forecasting of AR(p) Time Series Under Misspecification of Autoregression Coefficients

	7.5 Robustness Under Functional Innovation Process Distortions in the Mean Value
	7.6 Robustness of Autoregression Forecasting Under Heteroscedasticity of the Innovation Process
	7.6.1 The Mathematical Model
	7.6.2 Presence of a Specification Error
	7.6.3 Least Squares Estimation of θ0

	7.7 Robustness of Autoregression Time Series Forecasting Under IO-Outliers
	7.8 Robustness of Autoregression Time Series Forecasting Under AO Outliers
	7.9 Robustness of Autoregression Forecasting Under Bilinear Distortion
	7.9.1 Introduction
	7.9.2 The Bilinear Model and Its Stationarity Conditions
	7.9.3 First and Second Order Moments in Stationary Bilinear Time Series Models
	7.9.4 Robustness of Autoregression Forecasting Under Bilinear Distortion
	7.9.5 Robustness Analysis of Autoregression Forecasting
	7.9.6 Numerical Results

	References

	Chapter8 Optimality and Robustness of Vector Autoregression Forecasting Under Missing Values
	8.1 VAR Time Series Models Under Missing Values
	8.2 The Optimal Forecasting Statistic and Its Risk
	8.3 Robustness of the Optimal Forecasting Statistic Under Specification Errors
	8.4 Modified Least Squares Estimators Under Missing Values
	8.5 Least Squares Forecasting and Its Risk Under Missing Values
	8.6 Results of Computer Experiments
	8.6.1 Performance of the Estimator B
	8.6.2 Experimental Evaluation of the Forecast Risk

	8.7 Robust Plug-In Forecasting Under Simultaneous Influence of Outliers and Missing Values
	8.7.1 A Mathematical Model of Simultaneous Distortion by Outliers and Missing Values
	8.7.2 A Family of Robust Estimators for Correlations Based on the Cauchy Probability Distribution
	8.7.3 Minimizing Asymptotic Variance of ψ-Estimators
	8.7.4 Robust Estimators of Autoregression Coefficients
	8.7.5 Estimation of the Contamination Level 
	8.7.6 Simulation-Based Performance Evaluation of the Constructed Estimators and Forecasting Algorithms

	References

	Chapter9 Robustness of Multivariate Time Series Forecasting Based on Systems of Simultaneous Equations
	9.1 Systems of Simultaneous Equations
	9.1.1 SSE Model
	9.1.2 Example of an SSE: Klein's Model I
	9.1.3 The Optimal Forecasting Statistic Under the SSE Model

	9.2 Robustness of SSE-Based Forecasting Under Specification Errors
	9.3 Plug-In Forecasting Statistics in the SSE Model
	9.4 Asymptotic Properties of the Least Squares Estimator Under Drifting Coefficients
	9.4.1 Drifting Coefficient Models for SSEs
	9.4.2 LS Parameter Estimators Under Parameter Drift

	9.5 Sensitivity of Forecast Risk to Parameter Drift
	9.6 Numerical Results for the Ludeke Econometric Model
	References

	Chapter10 Forecasting of Discrete Time Series
	10.1 Forecasting by Discriminant Analysis of Markov Chains
	10.1.1 The Time Series Model
	10.1.2 The Bayesian Decision Rule and Its Properties
	10.1.3 The Plug-In Decision Rule and Its Risk
	10.1.4 An Asymptotic Expansion of the PBDR Risk

	10.2 HMC Forecasting Under Missing Values
	10.2.1 Likelihood Functions for HMCs with Missing Values
	10.2.2 The Decision Rule for Known {π(l),P(l)}
	10.2.3 The Case of Unknown Parameters

	10.3 Forecasting in the Beta-Binomial Model Under Additive Distortions
	10.3.1 The Beta-Binomial Model, Its Properties and Distortions
	10.3.2 Robustness of MM Estimators
	10.3.3 Robustness of MLEs
	10.3.4 MM Estimators Under Distortion of A Priori Known Levels
	10.3.5 Joint Estimation of Probability Distribution Parameters and Distortion Levels
	10.3.6 Robustness of the Classical Bayesian Predictor
	10.3.7 Robust Forecasting in the Beta-Binomial Model
	10.3.8 Experimental Results

	10.4 Forecasting of HMCs
	10.5 Higher Order Markov Chain Forecasting
	10.5.1 Optimal Forecasting Under HMC(s) Models
	10.5.2 Identification of the Jacobs–Lewis Model
	10.5.3 Identification of Raftery's MTD Model
	10.5.4 Identification of the MC(s,r) Model

	References

	Index

