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p. cm.

Includes bibliographical references and index.
ISBN 0-8176-4398-2 (alk. paper)
1. Signal processing–Statistical methods. I. Title.
TK5102.9.W69 2005

621.382’2’05195–dc22 2005053570

ISBN-10: 0-8176-4398-2 eISBN: 0-8176-4516-0
ISBN-13: 978-0-8176-4398-0

Printed on acid-free paper.

c©2006 Birkhäuser Boston
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Introduction

This book was designed as a text for a first, one-semester course in sta-
tistical signal analysis for students in engineering and physical sciences.
It had been developed over the last few years as lecture notes used by
the author in classes mainly populated by electrical, systems, computer
and biomedical engineering juniors/seniors and graduate students in
sciences and engineering who have not been previously exposed to this
material. It was also used for industrial audiences as educational and
training material and for an introductory time series analysis class.

The only prerequisite for this course is a basic two- to three-semester
calculus sequence; no probability or statistics background is assumed
except the usual high school elementary introduction. The emphasis is
on a crisp and concise but fairly rigorous presentation of fundamental
concepts in the statistical theory of stationary random signals and rela-
tionships between them. The author’s goal was to write a compact but
readable book of approximately 200 pages countering the recent trend
towards fatter and fatter textbooks.

Since Fourier series and transforms are of fundamental importance
in random signal analysis and processing, this material is developed
from scratch in Chapter 2 emphasizing the time domain vs. frequency
domain duality. Our experience showed that although harmonic anal-
ysis is normally included in the calculus syllabi, students’ practical un-
derstanding of its concepts is often hazy. Chapter 3 introduces basic
concepts of probability theory, law of large numbers and the stability of
fluctuations law, and statistical parametric inference procedures based
on the latter.

In Chapter 4 the fundamental concept of a stationary random sig-
nal and its autocorrelation structure is introduced. This time domain
analysis is then expanded to the frequency domain by discussion in
Chapter 5 of power spectra of stationary signals. How stationary sig-
nals are affected by their transmission through linear systems is the
subject of Chapter 6. This transmission analysis permits a preliminary
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study of the issues of designing filters with the optimal signal-to-noise
ratio; this is done in Chapter 7. Chapter 8 concentrates on Gaussian
signals where the autocorrelation structure completely determines all
the statistical properties of the signal. The text concludes, in Chapter 9,
with a description of algorithms for computer simulations of stationary
random signals with given power spectrum density. The routines are
based on the general spectral representation theorem for such signals,
which is also derived in this chapter.

The book is essentially self-contained, assuming the indispensable
calculus background mentioned above. Complementary bibliography,
for readers who would like to pursue the study of random signals in
greater depth, is described at the end of this volume.

Some advice to students using this book: The material is deliber-
ately written in a compact, economical style. To achieve understanding
needed for independent solving of the problems listed at the end of
each chapter in the Problems and Exercises sections, it is not sufficient
to read through the text in the manner you would read through a news-
paper or a novel. It is necessary to look at every single statement with
a “magnifying glass” and to decode it in your own technical language
so that you can use it operationally and not just be able to talk about
it. The only practical way to accomplish this goal is to go through each
section with pencil and paper, explicitly completing, if necessary, rou-
tine analytic intermediate steps that were omitted in the exposition for
the sake of the clarity of the presentation of the bigger picture. It is
the latter that the author wants you to keep at the end of the day; there
is no danger in forgetting all the little details if you know that you can
recover them by yourself when you need them.

Finally, the author would like to thank Professors Mike Branicky and
Ken Loparo of the Department of Electrical and Computer Engineering,
and Professor Robert Edwards of the Department of Chemical Engineer-
ing of Case Western Reserve University for their kind interest and help
in development of this course and comments on the original version of
this book. My graduate students Alexey Usoltsev and Alexandra Piry-
atinska also contributed to the editing process and I appreciate the time
they spent on this task. Partial support for this writing project from the
Columbus Instruments International Corporation of Columbus, Ohio,
Dr. Jan Czekajewski, President, is here also gratefully acknowledged.

Three anonymous referees spent considerable time and effort try-
ing to improve the original manuscript. I appreciate their help. Special
thanks go to Professor Craig Zirbel of the Department of Mathemat-
ics and Statistics at Bowling Green State University, who carefully read
the manuscript with his usual attention to detail, aesthetics, and peda-
gogical worthiness of the exposition. His sage advice was incorporated
almost without exception in the final version of the book.



Notation

Note: This is to be used only as a guide and not as a set of formal
definitions.

BWn equivalent-noise bandwidth of the system
BW1/2 half-power bandwidth of the system
C the set of all complex numbers
Cov(X, Y) = E[(X − EX)(Y − EY)]

covariance of X and Y
δmn Kronecker delta, = 0 if m ≠ n and = 1 if

m = n
δ(x) Dirac delta “function”
Ex energy of signal x(t)
γX(τ) = E(X(t)− μX)(X(t + τ)− μX)

autocovariance function of a stationary sig-
nal X(t)

E(X) expected value (mean) of random quan-
tity X

FX(x) cumulative distribution function (c.d.f.) of
random quantity X

fX(x) probability density function (p.d.f.) of ran-
dom quantity X

ϕX,Y = E(XY) correlation of X and Y
φX(τ) = E(X(t)(X(t + τ)) autocorrelation function of a stationary sig-

nal X(t)
h(t) impulse response function of a linear sys-

tem
H(f) transfer function of a linear system
|H(f)|2 power transfer function of a linear system
L2

0(P) space of all zero-mean random quantities
with finite variance

mα(X) = E|X|α αth absolute moment of random quantityX
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μk(X) = E(Xk) kth moment of random quantity X
N(μ,σ 2) Gaussian (normal) probability distribution

with mean μ and variance σ 2

P period of a periodic signal
P(A) probability of event A
PWx power of signal x(t)
QX(α) = F−1

X (α) α’s quantile of random quantity X
R resolution
R the set of all real numbers
ρX,Y = Cov(X, Y)/(σXσY ) correlation coefficient of X and Y
Std(X) = σX =

√
Var(X) the standard deviation of random quan-

tity X
SX(f) power spectral density of stationary signal

X(t)
SX(f) cumulative power spectrum of stationary

signal X(t)
X = (X1, X2, . . . , Xd) a random vector in dimension d
T sampling period
x(t), y(t), etc. deterministic signals
xav time average of signal x(t)
Var(X) = E(X − EX)2 = EX2 − (EX)2

the variance of random quantity X
�a� “floor” function, the largest integer not ex-

ceeding number a
u(t) Heaviside unit step function; u(t) = 0 for

t < 0, and = 1 for t ≥ 0
W(n) discrete-time white noise
W(n) cumulative discrete-time white noise
W(t) continuous-time white noise
W(t) the Wiener process
x(t)∗y(t) convolution of signals x(t) and y(t)
X(f), Y(f) Fourier transforms of signalsx(t) andy(t),

respectively
X, Y , Z random quantities (random variables)
z∗ complex conjugate of complex number z;

i.e., if z = α+ jβ, then z∗ = α− jβ
〈 . , . 〉 inner (dot, scalar) product of vectors or sig-

nals
� if, and only if
:= is defined as
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1

Description of Signals

Signals are everywhere, literally. The universe is bathed in the back-
ground radiation, the remnant of the original Big Bang, and as your eyes
scan this page, a signal is being transmitted to your brain where differ-
ent sets of neurons analyze it and process it. All human activities are
based on processing and analysis of sensory signals, but the goal of this
book is somewhat narrower. The signals we will be mainly interested
in can be described as data resulting from quantitative measurements
of some physical phenomena, and our emphasis will be on data that
display randomness that may be due to different causes, such as errors
of measurements, algorithmic complexity, or the chaotic behavior of
the underlying physical system itself.

1.1 Types of random signals

For the purposes of this book, signals will be functions of real variable
t interpreted as time. To describe and analyze signals we will adopt the
functional notation: x(t)will denote the value of a nonrandom signal at
time t. The values themselves can be real or complex numbers, in which
case we will symbolically write x(t) ∈ R, or, respectively, x(t) ∈ C. In
certain situations it is necessary to consider vector-valued signals with
x(t) ∈ Rd, where d stands for the dimension of the vector x(t) with d
real components.

Signals can be classified into different categories depending on their
features. For example, there are the following:

• Analog signals are functions of continuous time and their values form
a continuum. Digital signals are functions of discrete time dictated by
the computer’s clock, and their values are also discrete and dictated
by the resolution of the system. Of course, one can also encounter
mixed-type signals which are sampled at discrete times but whose
values are not restricted to any discrete set of numbers.
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Fig. 1.1.1. Signalx(t) = sin(t)+ 1
3 cos(3t) [V] is analog and periodic with period

P = 2π [s]. It is also deterministic.

• Periodic signals are functions whose values are periodically repeated.
In other words, for a certain number P > 0, we have x(t + P) = x(t)
for any t. The number P is called the period of the signal . Aperiodic
signals are signals that are not periodic.

• Deterministic signals are signals not affected by random noise; there
is no uncertainty about their values. Stochastic or random signals in-
clude an element of uncertainty; their analysis requires use of statis-
tical tools, and providing such tools is the principal goal of this book.

For example, signal x(t) = sin(t) + 1
3 cos(3t) [V] shown in Fig-

ure 1.1.1 is deterministic, analog, and periodic with period P = 2π [s].
The same signal, digitally sampled during the first five seconds at time
intervals equal to 0.5 s, with resolution 0.01 V, gives tabulated values:

t 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x(t) 0.50 0.51 0.93 1.23 0.71 −0.16 0.51 −0.48 −0.78 −1.21

This sampling process is called the analog-to-digital conversion:
given the sampling period T and the resolution R, the digitized signal
xd(t) is of the form

xd(t) = R
⌊
x(t)
R

⌋
for t = T ,2T , . . . , (1.1.1)

where the (convenient to introduce here) “floor” function �a� is defined
as the largest integer not exceeding real numbera. For example, �5.7� =
5, but �5.0� = 5 as well.
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Fig. 1.1.2. Signalx(t) = sin(t)+ 1
3 cos(3t) [V] digitally sampled at time intervals

equal to 0.5 s with resolution 0.01 V.
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Fig. 1.1.3. Signal x(t) = sin(t)+ 1
3 cos(3t) [V] in the presence of additive ran-

dom noise with average amplitude of 0.2 V. The magnified noise component
itself is pictured underneath the graph of the signal.

Note the role the resolution R plays in the above formula. Take,
for example, R = 0.01. If the signal x(t) takes all the continuum of
values between m = mint x(t) and M = maxt x(t), then x(t)

0.01 takes all

the continuum of values between 100m and 100M , but � x(t)0.01 � takes
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Fig. 1.1.4. Several computer-generated trajectories (sample paths) of a random
signal called the Brownian motion stochastic process or the Wiener stochastic
process. Its trajectories, although very rough, are continuous. It is often used
as a simple model of diffusion. The random mechanism that created different
trajectories was the same.

only integer values between 100m and 100M . Finally, 0.01� x(t)0.01 � takes
as its values only all the discrete numbers between m and M that are
0.01 apart.

Randomness of signals can have different origins, such as the quan-
tum uncertainty principle, the computational complexity of algorithms,
the chaotic behavior in dynamical systems, or the random fluctuations
and errors in measurement of outcomes of independently repeated ex-
periments.1 The usual way to study them is via their aggregated statis-
tical properties. The main purpose of this book is to introduce some
of the basic mathematical and statistical tools useful in the analysis
of random signals that are produced under stationary conditions, that
is, in situations where the measured signal may be stochastic and con-
tain random fluctuations, but the basic underlying random mechanism
producing it does not change over time; think here about outcomes of
independently repeated experiments, each consisting of tossing a sin-
gle coin.

At this point, to help the reader visualize the great variety of random
signals appearing in the physical sciences and engineering, it is worth-
while to review a gallery of pictures of random signals, both experi-
mental and simulated, presented in Figures 1.1.4–1.1.8. The captions
explain the context in each case.

1 See, e.g., M. Denker and W. A. Woyczyński, Introductory Statistics and Ran-
dom Phenomena: Uncertainty, Complexity, and Chaotic Behavior in Engi-
neering and Science, Birkhäuser Boston, Cambridge, MA, 1998.
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Fig. 1.1.5. Several computer-generated trajectories (sample paths) of random
signals called Lévy stochastic processes with parameter α = 1.5, 1, and 0.75,
respectively (from top to bottom). They are often used to model anomalous
diffusion processes wherein diffusing particles are also permitted to change
their position by jumping. Parameter α indicates the intensity of jumps of
different sizes. Parameter value α = 2 corresponds to the Wiener process
with trajectories that have no jumps. In each figure, the random mechanism
that created different trajectories was the same. However, different random
mechanisms led to trajectories presented in different figures.
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Fig. 1.1.6. Computer simulation of the evolution of a passive tracer density in
a turbulent Burgers velocity field with random initial distribution and random
“shot-noise” initial velocity data. The simulation was performed for 100,000
particles. The consecutive frames show the location of passive tracer particles
at times t = 0.0,0.3,0.6,1.0,2.0,3.0.

The signals shown in Figures 1.1.4–1.1.5 are, obviously, not station-
ary and have a diffusive character. However, their increments (differ-
entials) are stationary and, in Chapter 9, they will play an important
role in constructing the spectral representation of stationary signals
themselves. The signal shown in Figure 1.1.4 can be interpreted as a
trajectory , or sample path, of a random walker moving in discrete time
steps up or down a certain distance with equal probabilities 1

2 and 1
2 .
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Fig. 1.1.7. Some deterministic signals (in this case, the images) transformed by
deterministic systems can appear random. The above picture shows a series
of iterated transformations of the original image via a fixed linear 2D mapping
(matrix). The number of iterations applied is indicated in the top left corner
of each image. The curious behavior of iterations, the original image first dis-
solving into seeming randomness only to return later to an almost original
condition, is related to the so-called ergodic behavior. Thus irreverently trans-
formed is Professor Henri Poincaré (1854–1912) of the University of Paris, the
pioneer of ergodic theory of stationary phenomena. (From Scientific American;
reproduced with permission. Copyright 1986 James P. Crutchfield.)

However, in the picture these trajectories are viewed from far away, and
in accelerated time, so that both time and space appear continuous.
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Fig. 1.1.8. A signal (again, an image) representing the large-scale and appar-
ently random distribution of mass in the universe. The data come from the
APM galaxy survey and shows more than 2 million galaxies in a section of sky
centered on the South Galactic Pole. The so-called adhesion model of the large-
scale mass distribution in the universe uses the Burgers equation to model the
relevant velocity fields.

In certain situations the randomness of the signal is due to uncer-
tainty about initial conditions of the underlying phenomenon which
otherwise can be described by perfectly deterministic models such as
partial differential equations. A sequence of pictures in Figure 1.1.6
shows the evolution of the system of particles with an initially random
(and homogeneous in space) spatial distribution. The particles are then
driven by the velocity field �v(t, �x) ∈ R2 governed by the so-called 2D
Burgers equation2

∂�v(t, �x)
∂t

+ (�v(t, �x) · ∇)�v(t, �x) = D
(
∂2�v(t, �x)
∂x1

+ ∂
2�v(t, �x)
∂x2

)
, (1.1.2)

where �x = (x1, x2), the nabla operator∇ = ∂
∂x1
�i+ ∂

∂x2
�j, and the positive

constantD is the coefficient of diffusivity. The inital velocity field is also
assumed to be random.

1.2 Time domain and frequency domain descriptions

A periodic signal with period P (measured, say, in seconds [s]) can be
written in the form of an infinite series

x(t) = c0 +
∞∑
m=1

cm cos(2πmf0t + θm), (1.2.1)

2 See, e.g., W. A. Woyczyński, Burgers–KPZ Turbulence–Göttingen Lectures,
Springer-Verlag, Berlin, New York, 1998.
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where f0 = 1
P [Hz] is the fundamental frequency of the signal. This

expansion, called the Fourier expansion of the signal, is the basic tool in
the analysis of random signals; it will be reviewed in detail in Chapter 2.
The components

cm cos(2πmf0t + θm), m = 2,3, . . . ,

are called higher harmonics of the signal with the amplitudes cm, higher
frequencies mf0, and the corresponding phase shifts θm. In the case
of zero phase shifts, θm = 0, the collection of pairs

(mf0, cm), m = 1,2, . . . ,

or, equivalently, their graphical representation, is called the frequency
spectrum of the signal. Note that, for a periodic signal, the spectrum
is always concentrated on a discrete set of frequencies, namely, the
multiplicities of the fundamental frequency f0. For example, the signal

x(t) =
12∑
m=1

1
m2

cos(2πmt), (1.2.2)

shown in Figure 1.2.1, has the fundamental frequency 1 Hertz (Hz), i.e.,
one cycle per second, and the frequency spectrum

cm =
{
m−2 for m = 1,2, . . . ,12,
0 for m = 13,14, . . .

(1.2.3)

shown in Figure 1.2.2.

Fig. 1.2.1. Signal x(t) =∑12
m=1m−2 cos(2πmt) in its time domain representa-

tion.
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Fig. 1.2.2. Signal x(t) =∑12
m=1m−2 cos(2πmt) in its frequency domain (spec-

tral) representation.

If the signal is studied only in a finite time interval [0, P], it can
always be treated as a periodic signal with period P since one can extend
its definition periodically to the whole time line by copying its waveform
from the interval [0, P] to intervals [P,2P], [2P,3P], and so on.

Given the familar trigonometric formulas

cos(α+ β) = cosα cosβ− sinα sinβ

and de Moivre’s formulas

ejα = cosα+ j sinα, j =
√
−1, cosα = 1

2
(ejα + e−jα),

which tie together the trigonometric functions of the real variable α
with exponential functions of the imaginary variable jα, the spectral
representation of the signal can be rewritten either in the real phase-
less form

x(t) = a0 +
∞∑
m=1

am cos(2πmf0t)+
∞∑
m=1

bm sin(2πmf0t), (1.2.4)

with coefficients in representations (1.2.4) and (1.2.1) connected by the
formulas

a0 = c0, am = cm cosθm, bm = −cm sinθm, m = 1,2, . . . ,

or in the complex exponential form

x(t) =
∞∑

m=−∞
zmej2πmf0t, (1.2.5)
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Table 1.2.1. Trigonometric formulas and complex numbers.

sin(α± β) = sinα cosβ± sinβ cosα;

cos(α± β) = cosα cosβ∓ sinα sinβ;

sinα+ sinβ = 2 sin
α+ β

2
cos

α− β
2

;

sinα− sinβ = 2 cos
α+ β

2
sin

α− β
2

;

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β
2

;

cosα− cosβ = −2 sin
α+ β

2
sin

α− β
2

;

sin2α− sin2 β = cos2 β− cos2α = sin(α+ β) sin(α− β);
cos2α− sin2 β = cos2 β− sin2α = cos(α+ β) cos(α− β);

sinα cosβ = 1
2
[sin(α+ β)+ sin(α− β)];

cosα cosβ = 1
2
[cos(α+ β)+ cos(α− β)];

sinα sinβ = 1
2
[cos(α− β)− cos(α+ β)];

j =
√
−1, j4m = 1, j4m+1 = j, j4m+2 = −1, j4m+3 = −j,

where m is an integer;

z = a+ jb, a = Rez, b = Imz, z∗ = a− jb;

|z| =
√
a2 + b2 = √z · z∗;

Rez = z + z∗
2

= |z| cosθ, Imz = z − z∗
2j

= |z| sinθ,

where

θ = Argz = arctan
Imz
Rez

is the argument of z.

Table 1.2.2. De Moivre formulas.

eβ+jα = eβ(cosα+ j sinα),

cosα = ejα + e−jα
2

, sinα = ejα − e−jα
2j

,

(cosθ + j sinθ)n = cosnθ + j sinnθ.
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with coefficients (amplitudes) in representations (1.2.5) and (1.2.4) con-
nected by the formulas

a0 = z0, am = zm + z−m, bm = j(zm − z−m), m = 1,2, . . . .

For the complex exponential form (1.2.5) to represent a real-valued
signal, that is, fora0, am, bm, given by the above formulas to be real, the
condition z−m = z∗m, where the asterisk denotes the complex conjugate,
must be satisfied.

Nonperiodic signals can also be analyzed in terms of their spectra,
but those spectra are not discrete. We will study them later on.

At the first sight, the above introduction of complex numbers and
functions of complex numbers may seem as an unnecessary complica-
tion in the analysis of signals. However, as we will see in subsequent
chapters, the calculations within the theory of random signals actu-
ally become simpler and more transparent if one operates in the com-
plex domain. The book assumes familiarity with elementary properties
of trigonometric functions and complex numbers. However, for the
reader’s peace of mind, and by popular demand of the readers of the
preliminary versions of this book, we summarize the basic formulas in
this area in the table below and include a few exercises in Section 1.4
to review basic operational procedures on complex numbers.

1.3 Characteristics of signals

Several physical characteristics of signals are of primary interest.

• The time average of the signal : For analog, continuous-time signals,
the time average is defined by the formula

xav = lim
T→∞

1
T

∫ T
0
x(t)dt, (1.3.1)

and for digital, discrete-time signals which are defined only for the
time instants t = n, n = 0,1,2, . . . , N−1, it is defined by the formula

xav = 1
N

N−1∑
n=0

x(nT). (1.3.2)

For periodic signals, it follows from (1.3.1) that

xav = 1
P

∫ P
0
x(t)dt, (1.3.3)

so that, for signals described by their Fourier expansions, (1.2.1) and
(1.2.4)–(1.2.5), the time averages are
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xav = c0 = a0 = z0,

because the integral of the sine and cosine functions over the full
period is 0.

• Energy of the signal : For an analog signal x(t), the energy is

Ex =
∫∞

0
|x(t)|2dt, (1.3.4)

and for digital signals,

Ex = T
∞∑
n=0

|x(nT)|2. (1.3.5)

Remember that, since in what follows it will be convenient to con-
sider complex-valued signals, the above formulas include notation
for the square of the modulus of a complex number: |z|2 = (Rez)2+
(Imz)2 = z · z∗.

• Power of the signal : Again, for an analog signal, the power is

PWx = lim
T→∞

1
T

∫ T
0
|x(t)|2dt, (1.3.6)

and for a digital signal,

PWx = lim
N→∞

1
NT

N−1∑
n=0

|x(nT)|2 · T . (1.3.7)

As a consequence, for a periodic signal with period P ,

PWx = 1
P

∫ P
0
|x(t)|2dt. (1.3.8)

Sometimes it is convenient to consider signals defined for all time
instants t, −∞ < t < +∞, rather than just for positive t. In such cases,
all of the above definitions have to be adjusted in obvious ways, replac-
ing the one-sided integrals and sums by two-sides integrals and sums,
and adjusting the averaging constants correspondingly.

1.4 Problems and exercises

1.4.1. Find the real and imaginary parts of j+3
j−3 ; (1+ j√2)3; 1

2−j ; 2−3j
3j+2 .

1.4.2. Find the moduli |z| and arguments θ of complex numbers z = 5;
z = −2j; z = −1+ j; z = 3+ 4j.
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1.4.3. Find the real and imaginary components of complex numbers
z = 5ejπ/4; z = −2ej(8π+1.27); z = −1ej ; z = 3eje.

1.4.4. Show that

5
(1− j)(2− j)(3− j) =

j
2

and (1− j)4 = −4.

1.4.5. Sketch sets of points in the complex plane (x,y), z = x + jy ,
such that |z−1+j| = 1; |z+j| ≤ 3; Re(z∗−j) = 2; |2z−j| = 4;
z2 + (z∗)2 = 2.

1.4.6. Using de Moivre’s formulas, find (−2j)1/2 and Re(1 − j√3)77.
Are these complex numbers uniquely defined?

1.4.7. Write the signal x(t) = sin t + cos 3t
3 from Figure 1.1.1 in the

pure cosine form (1.2.1). Use the fact that sine can be written
as a cosine with a phase shift.

1.4.8. Using de Moivre’s formulas, write the signal x(t) = sin t+cos 3t
3

from Figure 1.1.1 in the complex exponential form (1.2.5).
1.4.9. Find the time average and power of the signal x(t) = sin t +

cos 3t
3 from Figure 1.1.1.

1.4.10. Using de Moivre’s formula, derive the complex exponential rep-
resentation (1.2.5) of the signal x(t) given by the cosine series
representation (1.2.1). Then apply this procedure to obtain the
complex exponential representation of the signal given by for-
mula (1.2.2) and shown in Figure 1.2.1.

1.4.11. Find the time average and power of the signal x(t) from Fig-
ure 1.2.1. Use a symbolic manipulation language such as Math-
ematica or Matlab if you like.

1.4.12. Verify that for the signal x(t) in (1.2.5) to be real valued, con-
dition z−m = z∗m has to be satisfied for all integers m.

1.4.13. Using a computing platform such as Mathematica, MAPLE, or
Matlab, produce plots of the signals

xn(t) = π
4
+

M∑
m=1

[
(−1)m − 1
πm2

cosmt − (−1)m

m
sinmt

]

for M = 0,1,2,3, . . . ,9 and −2π < t < 2π . Then produce
their plots in the frequency domain representation. Calculate
their power (again, using Mathematica, MAPLE, or Matlab if
you wish). Write down your observations. What is likely to
happen with the plots of these signals as we take more and
more terms of the above series, that is, as M →∞?

1.4.14. Use the analog-to-digital conversion formula (1.1.1) to digitize
signals from Problem 1.4.13 for a variety of sampling periods
and resolutions. Plot the results.
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1.4.15. Use your computing platform to produce a discrete-time sig-
nal consisting of a string of random numbers uniformly dis-
tributed on the interal [0,1]. For example, in Mathematica, the
command

Table[Random[], {20}]

may produce the following string of 20 random numbers be-
tween 0 and 1:

{0.175245, 0.552172, 0.471142, 0.910891, 0.219577,
0.198173, 0.667358, 0.226071, 0.151935, 0.42048,
0.264864, 0.330096, 0.346093, 0.673217, 0.409135,
0.265374, 0.732021, 0.887106, 0.697428, 0.7723}

Use the “random numbers” string as additive noise to produce
random versions of the digitized signals from Problem 1.4.14.
Follow the example described in Figure 1.1.3. Experiment with
different string lengths and various noise amplitudes. Then
center the noise around zero and repeat your experiments.



2

Spectral Representation of Deterministic Signals:
Fourier Series and Transforms

In this chapter we will take a closer look at the spectral, or frequency do-
main, representation of deterministic (nonrandom) signals which was
already mentioned in Chapter 1. The tools introduced below, usually
called Fourier or harmonic analysis, will play a fundamental role later
on in our study of random signals. Almost all of the calculations will
be conducted in the complex form. Compared with working in the real
domain, manipulation of formulas written in the complex form turns
out to be simpler and all the tedium of remembering various trigono-
metric formulas is avoided. All of the results written in the complex
form can be translated quickly into results for real trigonometric se-
ries expressed in terms of sines and cosines via de Moivre’s formula
ejt = cos t + j sin t, familiar from Chapter 1.

2.1 Complex Fourier series for periodic signals

A complex-valued signal x(t) that is periodic with period P (say, sec-
onds) can be written in the form of an infinite complex Fourier series

x(t) =
∞∑

m=−∞
zmej2πmf0t =

∞∑
m=−∞

zmejmω0t, (2.1.1)

where f0 = 1
P is the fundamental frequency of the signal (measured

in Hz = 1
s ), and ω0 = 2πf0 is called the fundamental angular veloc-

ity (measured in radians/s). The complex number zm, where m can
take values . . . ,−2,−1,0,1,2, . . . , is called the mth Fourier coefficient
of signal x(t).

In this text, we will carry out our calculations exclusively in terms
of the fundamental frequency f0, although one can find in the printed
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and software signal processing literature sources where all the work
is done in terms of ω0. It is an arbitrary choice, and transition from
one system to the other is easily accomplished by adjusting various
constants appearing in the formulas.

The infinite Fourier series representation (2.1.1) is unique in the
sense that two different signals will have two different sequences of
Fourier coefficients. The uniqueness is a result of the fundamental
property of complex exponentials

em(t) := ej2πmf0t, m = . . . ,−2,−1,0,1,2, . . . , (2.1.2)

called orthonormality :

The scalar product (sometimes also called inner, or dot, product) of
two complex exponentials en and em is 0 if the exponentials are different,
and it is 1 if they are the same. Indeed,

〈en, em〉 = 1
P

∫ P
0
en(t)e∗m(t)dt

= 1
P

∫ P
0
ej2π(n−m)f0tdt =

{
0 if n ≠m;

1 if n =m.
(2.1.3)

Recall that, for a complex number z = a + jb = |z|ejθ with real
component a and imaginary component b, the complex conjugate
z∗ = a − jb = |z|e−jθ . Sometimes it is convenient to describe the
orthonormality using the so-called Kronecker delta notation:

δmn =
{

0 if n ≠m;

1 if n =m.

Then, simply,
〈em, en〉 = δmn.

Using the orthonormality property we can directly evaluate the co-
efficients zm in the Fourier series (2.1.1) of signal x(t) by formally cal-
culating the scalar product of x(t) and em(t):

〈x, em〉 = 1
P

∫ P
0

( ∞∑
n=−∞

znen(t)
)
· e∗m(t)dt (2.1.4)

=
∞∑

n=−∞
zn

1
P

∫ P
0
en(t)e∗m(t)dt = zm,

so that we get an explicit formula for the Fourier coefficent of sig-
nal x(t),
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zm = 〈x, em〉 = 1
P

∫ P
0
x(t)e−j2πmf0tdt. (2.1.5)

Thus the basic Fourier expansion (2.1.1) can now be rewritten in the
form of a formal identity

x(t) =
∞∑

n=−∞
〈x, en〉en(t). (2.1.6)

It is worthwhile to observe that the above calculations on infinite
series and interchanges of the order of integration and infinite summa-
tions were purely formal, that is, the soundness of the limit procedures
was not rigorously established. The missing steps can be found in the
mathematical literature devoted to Fourier analysis.3 For our purposes,
it suffices to say that if a periodic signal x(t) has finite power

PWx = 1
P

∫ P
0
|x(t)|2dt <∞, (2.1.7)

and the concept of convergence of the functional infinite series (2.1.1) is
defined in the right way, then all of the above formal manipulations can
be rigorously justified. We will return to this issue at the end of this
section. In what follows, we will usually consider signals with finite
power.

Real-valued signals. Signal x(t) is real-valued if and only if the coeffi-
cients zm satisfy the obvious algebraic condition

z−m = z∗m, (2.1.8)

in which case cancellation of the imaginary parts in the Fourier series
(2.1.1) occurs. Indeed, under assumption (2.1.8),

zm = |zm|ejθm, θ−m = −θm, (2.1.9)

and since
ejα + e−jα

2
= cosα,

we get

x(t) = c0 +
∞∑
m=1

cm cos(2πmf0t + θm), (2.1.10)

where
3 See, e.g., A. Zygmund, Trigonometric Series, Cambridge University Press,

Cambridge, UK, 1959.
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c0 = z0 and cm = 2|zm|, m = 1,2, . . . . (2.1.11)

The power PWx of a periodic signal x(t) can also be directly calcu-
lated from its Fourier coefficient zm. Indeed, again calculating formally,
we obtain that

PWx = 1
P

∫ P
0
|x(t)|2dt = 1

P

∫ P
0
x(t)x∗(t)dt

= 1
P

∫ P
0

⎛
⎝ ∞∑
k=−∞

zkek(t)

⎞
⎠ ·

( ∞∑
m=−∞

zmem(t)
)∗
dt

=
∞∑

k=−∞

∞∑
m=−∞

zkz∗m
1
P

∫ P
0
ek(t)e∗m(t)dt =

∞∑
m=−∞

zmz∗m,

in view of the orthonormality (2.1.3) of the complex exponentials. The
multiplication of the two infinite series was carried out term by term.
The resulting relationship,

PWx = 1
P

∫ P
0
|x(t)|2dt =

∞∑
m=−∞

|zm|2, (2.1.12)

is known as the Parseval formula. A similar calculation for the scalar
product 1

P

∫ P
0 x(t)y∗(t)dt of two different periodic signals, x(t) and

y(t), gives an extended Parseval formula listed in Table 2.1.1.

Analogy between the orthonormal basis of vectors in the 3D space
R3 and the complex exponentials. It is useful to think about the com-
plex exponentials em(t) = e2πjmf0t ,m = . . . ,−1,0,1, . . . , as an infinite-
dimensional version of the orthonormal basics vectors in R3. In this
mental picture the periodic signal x(t) is now thought of as an infinite-
dimensional “vector” uniquely expandable into an infinite linear com-
bination of the complex exponentials in the same way a 3D vector
is uniquely expandable into a finite linear combination of the three
unit coordinate vectors. Table 2.1.1 describes this analogy more fully.
Note that the Parseval formula can now be seen just as an infinite-
dimensional extension of the familiar Pythagorean theorem.

Recall that a signal is called even if it is symmmetric under the
change of the direction of time, i.e., if x(t) = x(−t); it is called odd
if it is antisymmetric under the change of the direction of time, i.e., if
x(t) = −x(−t). The real Fourier expansion of an even real-valued sig-
nalx(t) = x(−t)will contain only cosine functions, and the real Fourier
expansion of an odd real-valued signal x(t) = −x(−t) will contain only
sine functions. This phenomenon will be illustrated in the following
examples. Of course, if one is only interested in the signal x(t) for pos-
itive times t > 0, then one can arbitrarily extend the signal’s values to
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Table 2.1.1. Analogy between orthonormal expansions in 3D and in the space
of periodic signals.

Objects
3D vectors Signals with finite power

�x = (x1, x2, x3) x(t) =∑∞
m=−∞ zmem(t), PWx <∞

�y = (y1, y2, y3) y(t) =∑∞
m=−∞wmem(t), PWy <∞

Bases
Unit coordinate vectors Complex exponentials

...
�e1 = (1,0,0) e1(t) = ej2πf0t

�e2 = (0,1,0) e2(t) = ej2π(2f0)t

�e3 = (0,0,1) e3(t) = ej2π(3f0)t

...
Scalar products

〈�x, �y〉 =∑3
i=1 xiyi 〈x(t),y(t)〉

= 1
P

∫ P
0 x(t)y∗(t)dt

Orthonormality

〈 �em, �em〉 = δmn 〈em(t), en(t)〉 = δmn

Expansions
Basis Fourier

�x =∑3
m=1〈�x, �em〉 �em x(t) =∑∞

i=−∞〈x, em〉em(t)

Formulas
Pythagoras’ Parseval’s

||�x||2 =∑3
m=1 x2

m PWx = 1
P

∫ P
0 |x(t)|2dt

=∑∞
m=−∞ |zm|2

Scalar product Extended Parseval’s

〈�x, �y〉 =∑3
m=1 xmym

1
P

∫ P
0 x(t)y∗(t)dt

=∑∞
m=−∞ zmw∗

m

the negative timeline to form either an odd or an even signal, and thus
obtain either its pure sine or its pure cosine expansion.

Example 2.1.1 (pure cosine expansion of an even rectangular wave-
form). Consider a rectangular waveform with period P and amplitude
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a > 0, defined by the formula

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a for 0 ≤ t < P

4 ;

0 for P
4 ≤ t < 3P

4 ;

a for 3P
4 ≤ t < P.

The signal is pictured in Figure 2.1.1 for particular values P = 1 and
a = 1.

Fig. 2.1.1. An even rectangular waveform signal from Example 2.1.1. The pe-
riod P = 1 and the amplitude a = 1.

Calculation of coefficients zm in the expansion of the signal x(t)
into a complex Fourier series is here straightforward: For m = 0,

z0 = 1
P

∫ P
0
x(t)e−j2π0t/Pdt = a

P

(
P
4
− 0+ P − 3P

4

)
= a

2
.

In the case m ≠ 0,

zm = 1
P

∫ P
0
x(t)e−j2πmt/Pdt

= a
P

(∫ P/4
0

e−j2πmt/Pdt +
∫ P

3P/4
e−j2πmt/Pdt

)

= a
P

(
P

−j2πme−j2πmt/P
∣∣∣∣
P/4

0
+ P
−j2πme−j2πmt/P

∣∣∣∣
P

3P/4

)

= a
−j2πm

(
e−j(π/2)m − 1− e−j(3π/2)m + 1

)
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= − a
πm

e−j(2π/2)m
(
ej(π/2)m − e−j(π/2)m

2j

)

= − a
πm

cosπm sin
π
2
m = − a

πm
(−1)m sin

π
2
m.

If m = 2k, then sin π
2m = 0, and if m = 2k+ 1, k = 0,±1,±2, . . . , then

sin π
2m = (−1)k, which gives, for k = ±1,±2, . . . ,

z2k = 0,

and

z2k+1 = −a
π(2k+ 1)

(−1)2k+1(−1)k = (−1)ka
π(2k+ 1)

.

Thus the complex Fourier expansion of the signal x(t) is

x(t) = a
2
+ a
π

∞∑
k=−∞

(−1)k

2k+ 1
ej2π(2k+1)t/P .

Observe that for any m = . . . ,−1,0,1, . . . , we have zm = z−m. Pairing
up complex exponentials with the exponents of opposite signs, and
using de Moivre’s formula, we arrive at the real Fourier expansion that
contains only cosine functions:

x(t) = a
2
+ a
π

(
2 cos

2πt
P

− 2
3

cos
2π3t
P

)+ · · ·
)
.

Example 2.1.2 (pure sine expansion of an odd rectangular waveform).
Consider a periodic rectangular waveform of period P which is defined
by the formula

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a for 0 ≤ t < P

4 ;

0 for P
4 ≤ t < 3P

4 ;

−a for 3P
4 ≤ t < P.

The signal is pictured in Figure 2.1.2 for particular values P = 1 and
a = 1.

For m = 0,

z0 = 1
P

∫ P
0
x(t)dt = 0,

and, for m ≠ 0,

zm = a
P

(∫ P/4
0

e−j2πmt/Pdt −
∫ P

3P/4
e−j2πmt/Pdt

)

= −a
j2πm

(e−j(π/2)m − 1− 1+ e−j(3π/2)m)
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Fig. 2.1.2. An odd rectangular waveform signal from Example 2.1.2. The period
P = 1 and the amplitude a = 1.

= − aj
2πm

[e−j(2π/2)m(ej(π/2)m + e−j(π/2)m)− 2]

= − aj
πm

(
cosπm · cos

π
2
m− 1

)
.

Since cosπm = (−1)m, and since cos(π2 )m = 0 ifm is odd and= (−1)k
when m = 2k is even, we get that

zm =
⎧⎨
⎩0 for odd m = 2k+ 1;
aj[(−1)k−1]

2πk for even m = 2k.

Thus the complex Fourier series of the signal x(t) is of the form

x(t) = a
π

∞∑
k=−∞

j[(−1)k − 1]
2k

ej2π2kt/P .

Observe that in this case, for any m = . . . ,−1,0,1, . . . , we have zm =
−z−m, so pairing up the exponentials with opposite signs in the ex-
ponents and using de Moivre’s formula, we get a real Fourier series
expansion for x(t) that contains only sine functions:

x(t) = a
π

[
2 sin

(
4πt
P

)
+ 2

3
sin

(
12πt
P

)
+ · · ·

]
.

Example 2.1.3 (a general expansion for a rectangular waveform which
is neither odd nor even). Consider a periodic rectangular waveform of
period P which is defined by the formula
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x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for 0 ≤ t < P
4 ;

a for P
4 ≤ t < P

2 ;

0 for P
2 ≤ t < P.

The signal is pictured in Figure 2.1.3 for parameter values P = 1 and
a = 1, and for simplicity’s sake, we will carry out our calculations only
in that case.

Fig. 2.1.3. A neither odd nor even rectangular waveform signal from Exam-
ple 2.1.3. The period P = 1, and the amplitude a = 1.

For m = 0,

z0 =
∫ 1/2

1/4
= 1

4
.

For m ≠ 0,

zm = |zm|eiθm =
∫ 1/2

1/4
e−j2πmtdt = 1

−j2πm[e−j2πm/2 − e−j2πm/4]

= 1
πm

e−j3πm/4
(
ejπm/4 − e−jπm/4

2j

)
= 1
πm

sin
(
π
4
m
)
e−j3πm/4.

Thus

|zm| = 1
πm

sin
(
πm

4

)
and θm = −j3πm4

,

and the complex Fourier series for x(t) is

x(t) = 1
4
+

∞∑
m=−∞,m≠0

1
πm

sin
(
πm

4

)
e−j3πm/4ej2πmt.
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Again, pairing up the complex exponentials with opposite signs in the
exponents, we obtain the real expansion in terms of the cosines, but
this time with phase shifts that depend on m:

x(t) = 1
4
+

∞∑
m=1

2
πm

sin
(
πm

4

)
cos

(
2πmt − 3πm

4

)
,

which, using the trigonometric formula cos(α + β) = cosα cosβ −
sinα sinβ, can be written as a general real Fourier series

x(t) = a0 +
∞∑
m=1

am cos(2πmt)+ bm sin(2πmt),

with

a0 = 1
4
, am = 2

πm
sin

πm
4

cos
3πm

4
,

bm = 2
πm

sin
πm

4
sin

3πm
4

.

2.2 Approximation of periodic signals by finite
Fourier sums

Up to this point the equality in the Fourier series representation

x(t) =
∞∑

m=−∞
〈x, em〉em(t)

for periodic signals, or its real version in terms of sine and/or cosine
functions, was understood only formally. But, of course, the usefulness
of such an expansion will depend on whether we can show that the
signal x(t) can be well approximated by a finite cutoff of the infinite
Fourier series, that is, on whether we can prove that

x(t) ≈ sM(t) :=
M∑

m=−M
〈x, em〉em(t) (2.2.1)

forM large enough, with the error in the above approximate equality ≈
rigorously estimated.

One can pursue here several options:

Approximation in power: Mean-square error. If the error of approxi-
mation is measured as the power of the difference between the signal
x(t) and the finite Fourier sum sM(t) in (2.2.1), then the calculation is
relatively simple and the error is often called the mean-square error.
Indeed, using the Parseval formula, we find that
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PWx−sM =
1
P

∫ P
0
|x(t)− sM(t)|2dt

= 1
P

∫ P
0

∣∣∣∣∣
∞∑

m=−∞
〈x, em〉em(t)− sM(t)

∣∣∣∣∣
2

dt

= 1
P

∫ P
0

∣∣∣∣∣∣
∑

|m|>M
〈x, em〉em(t)

∣∣∣∣∣∣
2

dt =
∑

|m|>M
|〈x, em〉|2,

which converges to 0, as M → ∞, because we assumed that the power
of the signal is finite:

PWx =
∞∑

m=−∞
|〈x, em〉|2 <∞.

Note that the unspoken assumption here is that the orthonormal sys-
tem en(t), n = 0,±1,±2, . . . , is rich enough to make the Fourier repre-
sentation possible for any finite power signal. This assumption, often
called completeness of the above orthonormal system, can actually be
rigorously proven.

Approximation at each time instant t separately. This type of approx-
imation is often called the pointwise approximation and the goal is to
verify that, for each time instant t,

lim
M→∞

sM(t) = x(t). (2.2.2)

Here the situation is delicate, as examples at the end of this section will
show, and the assumption that signal x(t) has finite power is not suf-
ficient to guarantee the pointwise approximation. Neither is a stronger
assumption that the signal is continuous. However,

if the signal is continuous and has a bounded continuous derivative,
except, possibly, at a finite number of points, then the pointwise
approximation (2.2.2) holds true.

Uniform approximation in time t. If one wants to control the error
of approximation simultaneously (uniformly) for all times t, then more
stringent assumptions on the signal are necessary. Namely, we have
the following theorem:4

4 Proofs of these two mathematical theorems and other results quoted in
this section can be found in, e.g., T. W. Körner, Fourier Analysis, Cambridge
University Press, Cambridge, UK, 1988.
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If the signal is continuous everywhere and has a bounded continu-
ous derivative except at a finite number of points, then

max
0≤t≤P

|x(t)− sM(t)| → 0 as M →∞. (2.2.3)

Note that the above statements do not resolve the question of what
happens with the finite Fourier sums at discontinuity points of a signal,
like those encountered in the rectangular waveforms in Examples 2.1.1–
2.1.3. It turns out that under the assumptions of the above-quoted
theorems, the points of discontinuity of the signal x(t) are necessarily
jumps, that is the left and right limits

x(t−) = lim
s↑t
x(s) and x(t+) = lim

s↓t
x(s) (2.2.4)

exist, and the finite Fourier sums sM(x) of x(t) converge, asM →∞, to
the average value of the signal at the jump:

lim
M→∞

sM(t) = x(t−)+ x(t+)
2

. (2.2.5)

Example 2.2.1. For the signal x(t) in Example 2.1.1, the first three
nonzero terms of its cosine expansion were

x(t) = a
2
+ a
π

(
2 cos

(
2π

t
P

)
− 2

3
cos

(
2π

3t
P

)
+ · · ·

)
.

Hence, in the case of period P = 1 and amplitude a = 1, the first
four approximating sums are as follows:

s0(t) = 1
2
, s1(t) = 1

2
+ 2
π

cos 2πt,

s2(t) = 1
2
+ 2
π

cos 2πt, s3(t) = 1
2
+ 2
π

cos 2πt − 2
3π

cos 6πt.

The graphs of s1(t) and s3(t) are compared with the original sig-
nal x(t) in Figures 2.2.1–2.2.2. Note the behavior of the Fourier sums
at the signal’s discontinuities where the Fourier sums converge to the
average value of the signal on both sides of the jump according to for-
mula (2.2.5).

Remark. A word of warning is appropriate here. Abandoning the as-
sumptions in the above two theorems leads very quickly to difficulties
with approximating the signal by its Fourier series. For example, there
are continuous signals for which, at some time instants, their finite
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Fig. 2.2.1. Graph of the Fourier sum s1(t) for the rectangular waveform signal
x(t) from Example 2.1.1, plotted against the original signal x(t).

Fig. 2.2.2. Graph of the Fourier sum s3(t) for the rectangular waveform sig-
nal x(t) from Example 2.1.1, plotted against the original signal x(t). Note
the behavior of the Fourier sum s3(t) at the signal’s discontinuities, where it
matches the average value of the signal at both sides of the jump, reflecting
the asymptotics of formula (2.2.5).

Fourier sums diverge to infinity. However, even for them, one can guar-
antee that the averages of consecutive Fourier sums converge to the
signal for each t:

s0(t)+ s1(t)+ · · · + sM(t)
M + 1

→ x(t) as M →∞.

The expression on the left-hand side of the above formula is called the
Mth Césaro average of the Fourier series. If one only assumes that the
signal x(t) is integrable, that is

∫ P
0 |x(t)|dt <∞, which is the minimum

assumption assuring that the Fourier coefficients zm = 〈x, em〉 make
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Fig. 2.2.3. Approximation of the periodic signal x(t) from Example 2.2.2 by
Fourier sums s1(t), s4(t), and s20(t). Visible is the Gibbs phenomenon demon-
strating that the shape of the Fourier sum near a point of discontinuity of the
signal does not necessarily resemble the shape of the signal itself.

sense, then one can find signals whose Fourier sums diverge to infinity,
for all time instants t.

The Gibbs phenomenon. Another observation is that the finite Fourier
sums of a signal satisfying the assumptions of the above-quoted state-
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ments, despite being convergent to the signal, may have shapes that
are very unlike the signal itself.

Example 2.2.2. Consider the signal x(t), with period P = 1, defined by
the formula

x(t) = t for − 1
2
≤ t < 1

2
.

Clearly, it is an odd signal, so z0 = 0. For m ≠ 0, integrating by parts,

zm =
∫ 1/2

−1/2
te−j2πmtdt

= t −1
j2πm

e−j2πmt
∣∣∣1/2

−1/2
− −1
j2πm

∫ 1/2

−1/2
e−j2πmtdt

= − 1
j2πm

(−1)m

because the last integral is zero. The complex Fourier expansion of
x(t) is

x(t) =
∞∑

m=−∞,m≠0

− 1
j2πm

(−1)mej2πmt,

which yields a pure sine real Fourier expansion

x(t) =
∞∑
m=1

(
− 1
j2πm

(−1)mej2πmt +− 1
j2π(−m)(−1)−mej2π(−m)t

)

=
∞∑
m=1

(−1)m+1

πm
sin(2πmt).

Figure 2.2.3 shows the approximation of the periodic signal x(t)
from Example 2.2.2 by Fourier sums s1(t), s4(t), and s20(t). Visible
is the so-called Gibbs phenomenon demonstrating that the shape of
the Fourier sum near a point of discontinuity of the signal does not
necessarily resemble the shape of the signal itself. Yet, as the order
M of the approximation increases, the oscillations move closer to the
jump so that the mean-square convergence of finite Fourier sums to the
signal x(t) still obtains.

2.3 Aperiodic signals and Fourier transforms

Periodic signals with increasing period: From Fourier series to Fourier
transform. Consider a signal xP(t) of period P and fundamental fre-
quency f0 = 1

P . We already know that such signals can be represented
by this Fourier series

xP(t) =
∞∑

m=−∞

[
1
P

∫ P/2
−P/2

x(s)e−j2πmf0sds
]
· ej2πmf0t. (2.3.1)
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Notice that, for the purposes of this section, we have written the for-
mula for the Fourier coefficients of xP(t) as an integral over a symmet-
ric interval (−P2 , P2 ] rather than the usual interval of periodicity (0, P].
Since both the signal xP(t) and complex exponentials

exp(−j2πmf0s) = cos(2πmf0s)+ j sin(2πmf0s)

are periodic with period P , any interval of length P will do.
Instead of considering aperiodic signals right off the bat, we will

make a gradual transition from the analysis of periodic to aperiodic
signals by considering what happens with the Fourier series if in the
above representation (2.3.1) period P increases to ∞; the limit case of
infinite period P = ∞would then correspond to the case of an aperiodic
signal.

To see the limit behavior of the Fourier series (2.3.1), we shall intro-
duce the following notation:

(1) The multiplicities of the fundamental frequency will become a run-
ning discrete variable fm:

fm =m · f0;

(2) The increments of the new running variable will be denoted by

Δfm = fm − fm−1 = f0 = 1
P
.

In this notation the Fourier expansion (2.2.1) can be rewritten in
the form

xP(t) =
∞∑

m=−∞

[∫ P/2
−P/2

x(s)e−j2πfmsds
]
ej2πfmtΔfm (2.3.2)

because Δfm = f0 = 1
P . Now, if the period P → ∞, which is the same

as assuming that the fundamental frequency f0 = Δfm → 0, the sum
on the right-hand side of the formula (2.3.2) converges to the integral
so that our Fourier representation (2.3.2) of a periodic signal xP(t) be-
comes the following integral identity for the aperiodic signal:

x∞(t) =
∫∞
−∞

[∫∞
−∞
x∞(s)e−j2πfsds

]
ej2πftdf . (2.3.3)

The inner transformation

X(f) =
∫∞
−∞
x(t)e−j2πftdt (2.3.4)

is called the Fourier transform of signal x(t), and the outer transform
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x(t) =
∫∞
−∞
X(f)ej2πftdf (2.3.5)

is called the inverse Fourier transform of (complex in general) function
X(f). The variable in the Fourier transform is the frequency f .

Note that since |e−j2πft| = 1, the necessary condition for the exis-
tence of the Fourier transform in the usual sense is the absolute inte-
grability of the signal: ∫∞

−∞
|x(t)|dt <∞. (2.3.6)

Later on we will try to extend its definition to some important noninte-
grable signals.

Example 2.3.1. Let us trace the above limit procedure in the case of an
aperiodic signal x∞(t) = e−|t|. If this signal is approximated by periodic
signals with period P obtained by truncatingx(t) to the interval [−P2 , P2 )
and extending it periodically, i.e.,

xP(t) = e−|t| for − P
2
≤ t < P

2
,

then the Fourier coefficients of the latter are, remembering that P = 1
f0

,

zm,P = 1
P

∫ P/2
−P/2

e−|t|e−j2πmt/Pdt

= 2f0

1+ (2πmf0)2
(1− e−1/(2f0)(cos(2πmf0)

+ 2πmf0 sin(2πmf0))).

Since the original periodic signal xP(t) was even, the Fourier coeffi-
cients zm = z−m, so that the discrete spectrum of xP(t) is symmetric.
Now, as P →∞, that is f0 = 1

P → 0, the exponentional term e−1/(2f0) → 0,
and with f0 = Δf , mf0 = f , we get that

zm,P → 2
1+ (2πf)2df .

Thus the Fourier transform of the aperiodic signal x∞(t) is

X∞(f ) = 2
1+ (2πf)2 .

Taking the inverse Fourier transform, we verify5 that∫∞
−∞

2
1+ (2πf)2 e

j2πftdf = e−|t|.

5 When faced with integrals of this sort, the reader is advised to consult a
book of integrals, or a computer package such as Mathematica or MAPLE.
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Fig. 2.3.1. Adjusted Fourier coefficients Zm,P ·P , shown as functions of contin-
uous parameter m for graphical convenience, approach the Fourier transform
X∞(f ) of the aperiodic signal x∞(t) = e−|t|. The values of P , from top to
bottom, are 1, 2, 4, 8.

Figure 2.3.1 illustrates the convergence, as period P increases, of
Fourier coefficients zm,P to the Fourier transform X∞(f ).
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2.4 Basic properties of the Fourier transform

The property that makes the Fourier transform of signals so useful
is its linearity , that is the Fourier transform of a linear composition
αx(t)+βy(t) of signals x(t) and y(t) is the same linear composition
αX(f) + βY(f) of their Fourier transforms. To facilitate notation we
will often denote the fact that X(f) is the Fourier transform of signal
x(t) by writing x(t) �→ X(f). So

αx(t)+ βy(t) �−→ αX(f)+ βY(f). (2.4.1)

The proof is instantaneous using linearity of the integral.
The familiar Parseval formula for periodic signals carries over in

the form

Ex =
∫∞
−∞
|x(t)|2dt =

∫∞
−∞
|X(f)|2df . (2.4.2)

That is, the total energy of the signal can be calculated as the integral
of the square of the modulus of its Fourier transform. An observant
reader will see immediately that integrability of the signal necessary
to define the Fourier transform is not sufficient for the validity of the
Parseval formula (2.4.2) as the finiteness of the integral

∫∞
−∞ |x(t)|dt

does not imply that the signal has finite energy Ex .
Parseval’s formula also has the following useful extension:

∫∞
−∞
x(t) ·y(t)dt =

∫∞
−∞
X(f) · Y∗(f )df . (2.4.3)

In the context of transmission of signals through linear systems the
critical property of the Fourier transform is that the convolution [x ∗
y](t) of signals x(t) and y(t),

[x ∗y](t) =
∫∞
−∞
x(s)y(t − s)ds, (2.4.4)

a fairly complex operation, has the Fourier transform that is simply the
product of the corresponding Fourier transforms

[x ∗y](t) �−→ X(f) · Y(f). (2.4.5)

Indeed,
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Table 2.4.1. Fourier transform properties.

Signal Fourier Transform

Linearity

αx(t)+ βy(t) �−→ αX(f)+ βY(f)

Convolution

[x ∗y](t) �−→ X(f) · Y(f)

Differentiation

x(n)(t) �−→ (j2πf)nX(f)

Time reversal

x(−t) �−→ X(−f)

Time delay

x(t − t0) �−→ X(f) · e−j2πt0f

Frequency translation

x(t) · ej2πf0t �−→ X(f − f0)

Frequency differentiation

(−j)ntnx(t) �−→ (2π)−1X(n)(f )

Frequency convolution

x(t)y(t) �−→ [X ∗ Y](f)

∫∞
−∞
[x ∗y](t)e−j2πftdt

=
∫∞
−∞

[∫∞
−∞
x(s)y(t − s)ds

]
e−j2πftdt

=
∫∞
−∞

∫∞
−∞
y(t − s)e−j2πf(t−s)x(s)e−j2πfsdsdt

=
∫∞
−∞
y(u)e−j2πfudu ·

∫∞
−∞
x(s)e−j2πfsds = X(f) · Y(f),

where the penultimate equality resulted from the substitution t−s = u.
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Since many electrical circuits are described by differential equations,
the behavior of the Fourier transform under differentiation of the signal
is another important issue. Here the calculation is also direct:

∫∞
−∞
x′(t)e−j2πftdt = x(t)e−j2πft|∞−∞ + j2πf

∫∞
−∞
x(t)e−j2πftdt

= 0+ j2πfXZ(f).

The first term is 0 because the signal’s absolute integrability (remem-
ber, we have to assume it to guarantee the existence of the Fourier
transform) implies that x(∞) = x(−∞) = 0. Thus we have a rule

x′(t) �−→ (j2πf) ·X(f). (2.4.6)

The above and other, simple-to-derive rules are summarized in Ta-
ble 2.4.1.

Example 2.4.1. Consider the signal x(t) = e−πt2
, which has the familiar

bell shape. Its Fourier transform is

X(f) =
∫∞
−∞
e−πt

2−j2πftdt =
∫∞
−∞
e−π(t+jf)

2
e−πf

2
dt = e−πf 2

,

because
∫∞
−∞ e−π(t+jf)

2dt = ∫∞
−∞ e−πt

2dt = 1. Indeed, changing to polar
coordinates r , θ, we can evaluate easily that

(∫∞
−∞
e−πt

2
dt
)2

=
∫∞
−∞
e−πt

2
dt ·

∫∞
−∞
e−πs

2
ds

=
∫∞
−∞

∫∞
−∞
e−π(t

2+s2)dtds =
∫ 2π

0
dθ

∫∞
0
e−πr

2
rdr = 1.

Thus the signal x(t) = e−πt2
has the remarkable property of hav-

ing the Fourier transform of exactly the same functional shape. This
fact has profound consequences in mathematical physics and Fourier
analysis.

2.5 Fourier transforms of some nonintegrable signals;
Dirac delta impulse

There exist important nonintegrable signals, such as x(t) = constant,
or x(t) = cos t that are not absolutely integrable over the whole time-
line, and the usual calculus does not permit us to define their Fourier
transforms. However, to cover these and other important cases, one
can extend the standard calculus by introduction of the so-called Dirac
delta “function” δ(f) which is an infinitely high but infinitely narrow
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spike located at f = 0 which, very importantly, has the “area,” that is
the “integral,” equal to 1.6

Intuitively, but one can also make this approach rigorous, the best
way to think about the Dirac delta is as a limit

δ(f) = lim
ε→0

rε(f ), (2.5.1)

where

rε(f ) =
{ 1

2ε for −ε ≤ f ≤ +ε;
0 elsewhere

is a family, indexed by ε, of rectangular functions all of which have area
1 underneath; see Figure 2.5.1.

Fig. 2.5.1. Approximation of the Dirac delta δ(f) by rectangular functions
rε(f ) for ε = 1, 1

3 , and 1
9 .

Obviously the choice of the rectangular functions is not unique here.
Any sequence of nonnegative functions which integrate to 1 over the
whole real line and converge to zero pointwise at every point different
from the origin would do. For example, as approximations to the Dirac
delta we can also take the family of double-sided exponential functions
of variable x,

1
2a

exp
( |f |
a

)
,

indexed by parameter a → 0+. Three functions of this family, for pa-
rameter values a = 1, 1

3 ,
1
9 , are pictured in Figure 2.5.2.

6 Of course, one can similarly introduce the time domain Dirac delta δ(t), in
which case it will be called the Dirac delta impulse.
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Fig. 2.5.2. Approximation of the Dirac delta δ(f) by two-sided exponential
functions ( 1

2a) exp(−|f |
a ) for a = 1, 1

3 , and 1
9 .

The Dirac delta is characterized by its “probing property” (also
known as the “sifting property”):

∫∞
−∞
δ(f)X(f)df = X(0); (2.5.2)

integrating a function against the Dirac delta produces a value of the
function at f = 0. Operationally, all we need is the formula (2.5.2),
which can actually be taken as a formal definition of the Dirac delta.

The “probing” formula (2.5.2) can be justified by remembering our
intuitive definition (2.5.1): Indeed, if functionX(f) is regular enough, then

∫∞
−∞
δ(f)X(f)df = lim

ε→0

∫∞
−∞
rε(f )X(f)df

= lim
ε→0

1
2ε

∫ ε
−ε
X(f)df = X(0)

in view of the fundamental theorem of calculus.
Other properties of the Dirac delta follow immediately:

∫∞
−∞
δ(f − f0)X(f)df = X(f0), (2.5.3)∫ ε

−ε
δ(f )df = 1, (2.5.4)

and
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−∞
δ(f)X(f)df = 0 if X(0) = 0, (2.5.5)

The last property is often intuitively stated as

δ(f) = 0 for f ≠ 0. (2.5.6)

Equipped with the Dirac delta technique, we can immediately obtain the
Fourier transform of some nonintegrable signals.

Example 2.5.1. Finding the Fourier transform of the harmonic oscilla-
tion signal x(t) = ej2πf0t is impossible by direct integration of∫∞

−∞
ej2πf0te−j2πftdt.

But one immediately notices that the inverse transform of the shifted
Dirac delta is, by (2.5.2),∫∞

−∞
δ(f − f0)ej2πftdf = ej2πf0t.

Thus the Fourier transform of x(t) = ej2πf0t is δ(f −f0). In particular,
the Fourier transform of a constant 1 is δ(f) itself.

Table 2.5.1 lists Fourier transforms of some common signals. Here
and subsequently, u(t) denotes Heaviside’s unit step function, equal
to 0 for t < 0 and 1 for t ≥ 0.

Example 2.5.2. The Fourier transform of the signal x(t) = cos 2πt can
be found in a similar fashion, as direct integration of∫∞

−∞
cos (2πt)e−j2πftdt

is impossible. But one observes that the inverse transform

∫∞
−∞

1
2
(δ(f − 1)+ δ(f + 1))ej2πftdf = ej2πt + e−j2πt

2
= cos 2πt,

so the Fourier transform of cos 2πt is δ(f−1)+δ(f+1)
2 .

A sample of the calculus of Dirac delta “functions.” There exists a
large theory of Dirac delta “functions,” and of similar mathematical ob-
jects called distributions (in the sense of Schwartz),7 which develops

7 For a more complete exposition of the theory and applications of the Dirac
delta and related “distributions,” see A. I. Saichev and W. A. Woyczyński,
Distributions in the Physical and Engineering Sciences, Vol. 1: Distributional
Calculus, Integral Transforms, and Wavelets, Birkhäuser Boston, Cambridge,
MA, 1998.
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Table 2.5.1. Common Fourier transforms.

Signal Fourier Transform

e−a|t| �−→ 2a
a2 + (2πf)2 , a > 0

e−πt2 �−→ e−πf
2

⎧⎨
⎩1 for |t| ≤ 1

2 ;

0 for |t| > 1
2 .

�−→ sinπf
πf

⎧⎨
⎩1− |t| for |t| ≤ 1;

0 for |t| > 1.
�−→ sin2πf

π2f 2

ej2πf0t �−→ δ(f − f0)

δ(t) �−→ 1

cos 2πf0t �−→ δ(f + f0)+ δ(f − f0)
2

sin 2πf0t �−→ jδ(f + f0)− δ(f − f0)
2

u(t) =
⎧⎨
⎩0 for t < 0;

1 for t ≥ 0.
�−→ 1

2
δ(f)+ 1

j2πf

t ·u(t) �−→ j
4π

δ′(f )− 1
4π2f 2

e−at ·u(t) �−→ 1
a+ j2πf , a > 0

tools that help carry out operations such as distributional differentia-
tion, distributional multiplication, etc. To give the reader a little taste of
it let us start here with the classical integration-by-parts formula which,
for usual, vanishing at f = ±∞ functions X(f) and Y(f), states that∫∞

−∞
X(f) · Y ′(f )df = −

∫∞
−∞
X′(f ) · Y(f)df . (2.5.7)

This identity, applied formally, can be used as the definition of the
derivative δ′(f ) of the Dirac delta by assigning to it the following prob-
ing property:∫∞

−∞
X(f) · δ′(f )df = −

∫∞
−∞
X′(f ) · δ(f)df = −X′(0). (2.5.8)
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Symbolically, we can write

X(f) · δ′(f ) = −X′(f ) · δ(f).

In the particular case X(f) = f (here, the function has to be thought of
as a limit of functions vanishing at ±∞), we get

f · δ(f) = −δ(f),

a useful computational formula which can be employed, for example,
to justify the next to the last entry in the above table of common Fourier
transforms.

2.6 Discrete and fast Fourier transforms

In practice, for many signals we only obtain the value of the signal at
discrete times, but we can imagine that the signal continues between
these times. Thus we can approximate the integrals involved in calcula-
tion of the Fourier transforms in the same way as one does in numerical
integration in calculus, using left-handed rectangles, trapezoids, Simp-
son’s rule, etc. We use the simplest approximation, which is equivalent
to assuming that the signal is constant between the times at which we
sample (and rectangular approximations of the area under the func-
tion).

Therefore, suppose that the sampling period is Ts , with the sampling
frequency fs = 1

Ts , so that the signal’s sample is given in the form of a
sequence

xk = x(kTs), k = 0,1,2, . . . , N − 1, (2.6.1)

and we interpret it as a periodic signal with period

P = 1
f0
= NTs = N

fs
, (2.6.2)

The integral in formula (2.3.1) approximating the Fourier transform of
the signal x(t) at discrete frequencies mf0, m = 0,1,2, . . . , N − 1, can
now, in turn, be approximated by the sum

Xm = X(mf0) = 1
P

N−1∑
k=0

x(kTs)e−j2πmf0kTs · Ts

= 1
N

N−1∑
k=0

xke−j2πmk/N (2.6.3)

in view of the relationships (2.6.2). The sequence
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Xm, m = 0,1,2, . . . , N − 1, (2.6.4)

is traditionally called the discrete Fourier transform (DFT ) of the signal
sample xk, k = 0,1,2, . . . , N − 1, described in (2.6.1).

Note that the calculation of the DFT via formula (2.6.3) calls for N2

multiplications xk · e−j2πmk/N , m,k = 0,1,2, . . . , N −1. One often says
that the formula’s computational (algorithmic) complexity is of the or-
der N2. This computational complexity, however, can be dramatically
reduced by cleverly grouping terms in the sum (2.6.3). The technique,
which usually is called the Fast Fourier Transform (FFT ), was known
to Carl Friedrich Gauss at the beginning of the 19th century, but was
rediscovered and popularized by Cooley and Tukey in 1965.8 We will
explain it in the special case when the signal’s sample size is a power
of 2.

So assume that N = 2n, and letωN = e−j2π/N . It is called a complex
Nth root of unity because ωN

N = 1. Obviously, for M = N
2 , we have

ω(2k)m
2M =ωkm

M , ωM+m
M =ωm

M , and ωM+m
2M = −ωm

2M. (2.6.5)

The crucial observation is to recognize that the sum (2.6.3) can be split
into two pieces

Xm = 1
2
(Xeven

m +Xodd
m ·ωm

2M), (2.6.6)

where

Xeven
m = 1

M

M−1∑
k=0

x2kωkm
M and Xodd

m = 1
M

M−1∑
k=0

x2k+1ωkm
M , (2.6.7)

and that, in view of (2.6.5),

Xm+M = 1
2
(Xeven

m −Xodd
m ·ωm

2M). (2.6.8)

As a result, only values Xm, m = 0,1,2, . . . , M − 1 = N
2−1 , have to

be calculated by laborious multiplication. The values Xm, m = M,M +
1, . . . , 2M−1 = N−1, are simply obtained by formula (2.6.8). The above
trick is then repeated at levels N

22 , N23 , . . . ,2. If we denote by CC(n) the
computational complexity of the above scheme, that is the number of
multiplications required, we see that

CC(n) = 2 CC(n− 1)+ 2n−1,

with the first term on the right being the result of halving the size of
the sample at each step, and the second term resulting from multiplica-
tions of Xodd

m byωm
2M in (2.6.6) and (2.6.8). Iterating the above recursive

relation, one obtains that
8 J. W. Cooley and O. W. Tukey, An algorithm for the machine calculation of

complex Fourier series, Math. Comput., 19 (1965), 297–301.
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CC(n) = 2n−1 log2 2n = 1
2
N log2N, (2.6.9)

a major improvement over the N2 order of the computational complex-
ity of the straightforward calculation of DFT.

2.7 Problems and exercises

2.7.1. Prove that the system of real harmonic oscillations

sin(2πmf0t), cos(2πmf0t), m = 0,1,2, . . . ,

form an orthogonal system. Is the system normalized? Use the
above information to derive formulas for coefficients am,bm,
in the expansion (1.2.4). Model this derivation on (2.1.4).

2.7.2. Using the results from Problem 2.7.1, find formulas for ampli-
tudes cm and phases θm in the expansion (1.2.1).

2.7.3. Find a general formula for the coefficients cm in the cosine
Fourier expansion for the even rectangular waveform x(t) from
Example 2.1.1.

2.7.4. Find a general formula for the coefficients bm in the sine Fourier
expansion for the odd rectangular waveform x(t) from Exam-
ple 2.1.2.

2.7.5. Carry out calculations of Example 2.1.3 in the case of arbitrary
period P and amplitude a.

2.7.6. Find three consecutive approximations by finite Fourier sums of
the signal x(t) from Example 2.1.3. Graph them and compare
the graphs with the graph of the original signal.

2.7.7. Find the complex and real Fourier series for the periodic signal
with period P defined by the formula

x(t) =
{
a for 0 ≤ t < P

2 ;

−a for P
2 ≤ t < P.

In the case P = π and a = 2.5 produce graphs comparing the
signal x(t) and its finite Fourier sums of order 1, 3, and 6.

2.7.8. Find the complex and real Fourier series for the periodic signal
with period P = 1 defined by the formula

x(t) =
{

1− t
2 for 0 ≤ t < 1

2 ;

0 for 1
2 ≤ t < 1.

Produce graphs comparing the signal x(t) and its finite Fourier
sums of order 1, 3, and 6.
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2.7.9. Find the complex and real Fourier series for the periodic signal
x(t) = | sin t|. Produce graphs comparing the signal x(t) and
its finite Fourier sums of order 1, 3, and 6.

2.7.10. Find the complex and real Fourier series for the periodic signal
with period P = π defined by the formula

x(t) = et for −π
2
< t ≤ π

2
.

Produce graphs comparing the signal x(t) and its finite Fourier
sums of order 1, 3, and 6.

2.7.11. Find an example of a signal x(t) that is absolutely integrable,
i.e.,

∫∞
−∞ |x(t)|dt <∞ but has infinite energy Ex =

∫∞
−∞ |x(t)|2dt,

and conversely, find an example of a signal which has finite en-
ergy but is not absolutely integrable.

2.7.12. Provide a detailed verification of Fourier transform properties
listed in Table 2.4.1.

2.7.13. Provide a detailed verification of the Fourier transforms table
(Table 2.5.1). Utilize the fact that the derivative δ′(f ) of the
Dirac delta impulse δ(f) is defined by the integration-by-parts
formula ∫∞

−∞
δ′(f )X(f)df = −

∫∞
−∞
δ(f)X′(f )df

for any smooth function X(f).
2.7.14. Find the Fourier transform of the periodic signal

x(t) =
∞∑

m=−∞
zmej2πmf0t.

2.7.15. Find the Fourier transform of the signal x(t) = tu(t), where
u(t) is the unit step function equal to 0 for t < 0 and 1 for
t ≥ 0.

2.7.16. Find the Fourier transform of the signals given below. Graph
both the signal and its Fourier transform:

(a) x(t) = 1
1+ t2

, −∞ < t <∞,

(b) e−t
2/2, −∞ < t <∞,

(c) x(t) =
{

sin t · e−t for t ≥ 0;

0 for t < 0.

(d) x(t) = y∗z(t), y(t) = u(t)−u(t−1), z(t) = e−|t|,
where u(t) is the unit step signal = 0 for negative t and = 1 for
t ≥ 0.
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2.7.17. Find the convolution (x∗x)(t) if x(t) = u(t)−u(t−1), where
u(t) is the unit step function. First, use the original definition
of the convolution and then verify your result using the Fourier
transform method.

2.7.18. Utilize the Fourier transform (in the space variable z) to find a
solution of the diffusion (heat) partial differential equation

∂u
∂t

= σ ∂
2u
∂z2

,

for a function u(t, z) satisfying the initial condition u(0, z) =
δ(z). The solution of the above equation is often used to de-
scribe the temporal evolution of the density of a diffusing sub-
stance.9

2.7.19. Assuming the validity of the Parseval formula
∫∞
−∞ |x(t)|2dt =∫∞

−∞ |X(f)|2df , prove its extended version
∫∞
−∞ x(t)·y∗(t)dt =∫∞

−∞X(f)·Y∗(f )df . Hint : In the case of real-valued x(t), y(t),
X(f), and Y(f), it suffices to utilize the obvious identity 4xy =
(x+y)2−(x−y)2, but in the general, complex case, first verify,
and then apply the following polarization identity :

4xy = |x +y|2 − |x −y|2 + j(|x + jy|2 − |x − jy|2).

Remember that the modulus square |z|2 = zz∗.

9 It was the search for solutions to this problem that induced Jean-Baptiste
Fourier (born March 21, 1768, in Auxerre, France; died May 16, 1830, in Paris)
to introduce in his treatise Théorie analytique de la chaleur (The Analytical
Theory of Heat ; 1822), the tools of infinite functional series and integral
transforms now known under the names of Fourier series and transforms.
Fourier was also known as an Egyptologist and administrator. The modern
author of research papers, impatient with delays in publication of his/her
work, should find solace in the fact that the appearance of Fourier’s great
memoir was held up by the referees for 15 years; it was first presented to
the Institut de France on December 21, 1807.
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Random Quantities and Random Vectors

By definition, values of random signals at a given sampling time are ran-
dom quantities which can be distributed over a certain range of values.
The tools for the precise, quantitative description of those distributions
are provided by the classical probability theory . However natural, its
development has to be handled with care since the overly heuristic ap-
proach can easily lead to apparent paradoxes.10 But the basic intuitive
idea that for independently repeated experiments, probabilities of their
particular outcomes correspond to their relative frequencies of appear-
ance, is correct. Although the concept of probability is more elementary
than the concept of cumulative probability distribution functions, we
assume that the reader is familiar with the former at the high school
level, and start our exposition with the latter, which not only applies
universally to all types of data, both discrete and continuous, but also
gives us a tool to immediately introduce the probability calculus ideas,
including the physically appealing probability density function.

Think here about an electrical engineer whose responsibility is to
monitor the voltage on the electrical outlets in the university’s circuits
laboratory. The record of a month’s worth of daily readings on a very
sensitive voltmeter may look as follows:

109.779, 109.37, 110.733, 109.762, 110.364, 110.73,
109.906, 110.378, 109.132, 111.137, 109.365, 108.968,
111.275, 110.806, 110.99, 111.522, 110.728, 109.689,
111.163, 107.22, 109.661, 108.933, 111.057, 111.055,
112.392, 109.55, 111.042, 110.679, 111.431, 112.06.

Surprisingly, the voltage varies from day to day and this variability is
visualized in Figure 3.0.1.

In the presence of such uncertainty he may want to get a better idea
of how the voltage values are distributed within its range and he is

10 See, e.g., Problem 3.7.25.
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Fig. 3.0.1. Variability of daily voltage readings on an electrical outlet.

Fig. 3.0.2. The histogram of daily voltage readings on an electrical outlet.

likely to visualize this information in the form of a histogram shown in
Figure 3.0.2.

In this chapter, we will discuss analytical tools for the study of such
random quantities. The discrete and continuous random quantities are
introduced, but we also show that, in the presence of fractal phenom-
ena, the above classification is not exhaustive.

3.1 Discrete, continuous, and singular random quantities

For the purposes of this book, random quantities (also called random
variables in the literature), denoted by capital letters X, Y , etc., will
symbolize measurements of experiments with uncertain outcomes. A
random quantity X will be fully characterized by its probability distri-
bution PX , which, for any numbers a < b, assigns the probability
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PX(a, b] = P(a < X ≤ b) = P(X ∈ (a, b])
that X takes values in the interval (a, b]. It is customary to assume that
the probability measure PX is normalized , that is,

PX(−∞,+∞) = P(−∞ < X < +∞) = 1, (3.1.1)

and it is natural to demand that, if a < b < c, than

P(a < X ≤ c) = P(a < X ≤ b)+ P(b < X ≤ b). (3.1.2)

This fundamental property of probabilities, called additivity , can be
extended from disjoint intervals to more general disjoint11 sets A and
B, yielding the formula

P(X ∈ A∪ B) = P(X ∈ A)+ P(X ∈ B).
In other words, probability measure behaves like the area measure of
planar sets.

Equivalently, one can completely characterize the probability distri-
bution P of X by its cumulative distribution function (c.d.f.)

FX(x) := P(X ≤ x),
which gives the probability that the outcomes of experiment X do not
exceed number x. Note that, in a sense, c.d.f. FX(x), which depends
only on one variable x, is a simpler object than the probability distri-
bution PX(a, b], which depends on two. Properties (3.1.1)–(3.1.2) of P
immediately imply the normalization and monotonicity of FX ,

FX(−∞) = 0, x < y ⇒ FX(x) ≤ FX(y), FX(+∞) = 1, (3.1.3)

and the formula recovering P from FX :

P(a < X ≤ b) = FX(b)− FX(a). (3.1.4)

Discrete probability distributions. A random quantity X with a dis-
crete probability distribution takes on only (finitely or infinitely many)
discrete values, say, x1, x2, . . . , so that

P(X = xi) = pi, i = 1,2, . . . , 0 < pi < 1,
∑
pi = 1. (3.1.5)

In the discrete case, the c.d.f.

FX(x) =
∞∑
i=1

piu(x − xi), (3.1.6)

where u(x) is the unit step function. In other words, the c.d.f. has
jumps of size pi at locations xi, and is constant at other points of the
real line.
11 Recall that sets A and B are called disjoint if their intersection is the empty

set, i.e., A∩ B = ∅.
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Example 3.1.1 (Bernoulli distribution). In this case the values ofX, that
is the outcomes of the experiment, are assumed to be either 1 or 0 (think
about it as a model of an experiment in which “success” or “failure” are
the only possible outcomes), with P(X = 1) = p > 0, P(X = 0) = q > 0,
with p,q satisfying condition p + q = 1. The c.d.f. of the Bernoulli
random quantity is

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < 0;

q = 1− p for 0 ≤ x < 1;

1 for 1 ≤ x.
The Bernoulli family of distributions has one parameter p which must
be a number between 0 and 1. Then q = 1− p.

Fig. 3.1.1. Cumulative distribution function FX(x) of a Bernoulli random quan-
tity X with parameter p = 0.4 has a jump of size q = 1 − 0.4 = 0.6 at x = 0
and a jump of size p = 0.4 at x = 1.

Example 3.1.2 (binomial distribution). The binomial random quantity
X can take values 0,1, . . . , n, with corresponding probabilities

pk = P(X = k) =
(
n
k

)
pk(1− p)n−k, k = 0,1,2, . . . , n,

where the binomial coefficient is defined by(
n
k

)
= n!
k!(n− k)! .

Recall, that the name “binomial coefficient” comes from the elementary
binomial formula
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(a+ b)n =
n∑
k=0

(
n
k

)
akbn−k,

familiar in the special cases:

(a+ b)2 = a2 + 2ab + b2,

(a+ b)3 = a3 + 3a2b + 3ab2 + b3,

and so on.

Fig. 3.1.2. Cumulative distribution function FX(x) of a binomial random quan-
tity X with parameters p = 0.5 and n = 5.

Probabilities pk = pk(n,p) in the binomial probability distribution
are probabilities that exactly k “successes” occur in n independent12

Bernoulli experiments in each of which the probability of “success” is p.
The normalization condition

∑
k pk = 1 (3.1.5) is here satisfied be-

cause, in view of the above-mentioned binomial formula,

1 = (p + q)n =
n∑
k=0

(
n
k

)
pk(1− p)n−k.

The binomial family of distributions has two parameters: p, which must
be between 0 and 1, and n, which can be an arbitrary positive integer.

Example 3.1.3 (Poisson distribution). The values of a Poisson random
quantity X can be arbitrary nonnegative integers 0,1,2, . . . , and their
probabilities are defined by the formula

12 A rigorous definition of the concept of independence of random quantities
will be discussed later on in this chapter.
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pk = P(X = k) = e−μ μ
k

k!
, k = 0,1,2, . . . .

The normalization condition
∑
k pk = 1 is satisfied in this case because

of the power series expansion for the exponential function:

∞∑
k=0

e−μ
μk

k!
= e−μ

∞∑
k=0

μk

k!
= e−μeμ = 1.

The family of Poisson distributions has one parameter μ > 0. Pois-
son random quantities are often used as models of numbers of arrivals
of “customers” in queuing systems (an Internet website, a line at the
checkout counter, etc.) within a given time interval.

Continuous distributions. A random quantity X is said to have a con-
tinuous probability distribution13 if its c.d.f. FX(x) can be written as an
integral of a certain nonnegative function fX(x) which traditionally is
called the probability density function (p.d.f.) of X, that is,

FX(x) = P(X ≤ x) =
∫ x
−∞
fX(z)dz. (3.1.7)

Then, of course, the probability of the random quantity to assume val-
ues between a and b is just the integral of the p.d.f. over the inter-
val [a, b]; see Figure 3.1.3, where fX(x) was selected to be 3

5
√
π e

−x2 +
2

5
√
π e

−(x−2)2 . Note that in the continuous case it does not matter
whether the interval between a and b is open or closed. Thus we have

P(a < X ≤ b) = FX(b)− FX(a) =
∫ b
a
fX(z)dz. (3.1.8)

Also, necessarily, we have the normalization condition

∫∞
−∞
fX(x)dx = 1, (3.1.9)

and, in view of (3.1.7), and the fundamental theorem of calculus, we
can obtain the p.d.f. fX(x) by differentiation of the c.d.f. FX(x):
13 Strictly speaking, c.d.f.s that admit the integral representation (3.1.7), that

is, have densities, are called absolutely continuous distributions as there ex-
ist continuous c.d.f.s which do not admit this integral representation; see
an example of a singular c.d.f. later in this section and, e.g., M. Denker
and W. A. Woyczyński, Introductory Statistics and Random Phenomena: Un-
certainty, Complexity, and Chaotic Behavior in Engineering and Science,
Birkhäuser Boston, Cambridge, MA, 1998.
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Fig. 3.1.3. The shaded area under fX(x), and above the interval [−1,2] is equal
to the probability that a random quantity X with p.d.f. fX(x) takes values in
the interval [−1,2].

d
dx

FX(x) = fX(x).

Example 3.1.4 (uniform distribution). The density of a uniformly dis-
tributed random quantity X is defined to be a positive constant within a
certain interval, say [c, d], and zero outside this interval. Thus, because
of the normalization condition (3.1.9),

fX(x) =
{
(d− c)−1 for c ≤ x ≤ d;

0 elsewhere.

The family of uniform densities is parametrized by two parameters c
and d, with c < d.

The c.d.f. of a uniform random quantity is

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < c;
x−c
d−c for c ≤ x ≤ d;

1 for d ≤ x.

Example 3.1.5 (exponential distribution). An exponentially distributed
random quantity X has the density of the form

fX(x) =
⎧⎨
⎩0 for x < 0;
e−x/μ
μ for x ≥ 0.
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Fig. 3.1.4. Top: Probability density function (p.d.f) fX(x) for a random quantity
with values uniformly distributed over the interval [0,1]. Bottom: C.d.f. FX(x)
for the same random quantity.

There is one parameter, μ > 0. The c.d.f. in this case is easily com-
putable:

FX(x) =
{

0 for x < 0;

1− e−x/μ for x ≥ 0.

An exponential p.d.f. and the corresponding c.d.f. are pictured in Fig-
ure 3.1.3.

Exponential p.d.f.s often appear in applications as probability dis-
tributions of random waiting times between Poisson events discussed
earlier in this section. For example, under certain simplifying assump-
tions, it can be proven that the time intervals between consecutive hits
of a website have an exponential probability distribution. For this rea-
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Fig. 3.1.5. Top: Probability density function (p.d.f.) fX(x) of an exponentially
distributed random quantity with parameter μ = 1. Bottom: Cumulative dis-
tribution function (c.d.f.) FX(x) for the same random quantity.

son, exponential p.d.f.s plays a crucial role in the analysis of Internet
traffic and other queuing networks.

Example 3.1.6 (Gaussian (normal) distribution). The density of a Gaus-
sian (also called normal) random quantity X is defined by the formula

fX(x) = 1√
2πσ

e−(x−μ)
2/2σ2

.

There are two parameters—μ, which is a real number, and σ > 0—
and this distribution is often called theN(μ,σ 2) p.d.f. (N for “normal”).
The Gaussian c.d.f. is of the form (see Figure 3.1.4)

FX(x) =
∫ x
−∞

1√
2πσ

e−(z−μ)
2/2σ2

dz,
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Fig. 3.1.6. Top: Probability density function (p.d.f.) fX(x) for a Gaussian ran-
dom quantity with parameters μ = 0, σ = 1. Bottom: Cumulative distribution
function (c.d.f.) FX(x) for the same random quantity.

but, unfortunately, the integral cannot be expressed in terms of the el-
ementary functions of the variable x. Thus the values of this c.d.f., and
the probabilities of a Gaussian random quantity taking values within a
given interval, have to be evaluated numerically, using tables (provided
at the end of this chapter), or mathematical software such as Matlab,
MAPLE, or Mathematica; see the continuation of Example 3.1.6 below.

However, the normalization condition for the Gaussian p.d.f. can be
verified directly analytically by a clever trick that replaces the square
of the integral by a double integral which is then evaluated in polar
coordinates r , θ. We carry out this calculation in the special case μ = 0,
σ 2 = 1: (∫∞

−∞
fX(x)dx

)2

=
∫∞
−∞
fX(x)dx ·

∫∞
−∞
fX(y)dy
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=
∫∞
−∞

∫∞
−∞
fX(x) · fX(y)dxdy

= 1
2π

∫∞
−∞

∫∞
−∞
e−x

2−y2/2dxdy

= 1
2π

∫ 2π

0

∫∞
0
e−r

2/2rdrdθ = 1.

Example 3.1.7 (calculations ofN(0, 1) probabilities). The values of the
Gaussian N(0,1) cumulative distribution, traditionally denoted Φ(x),
are tabulated at the end of this chapter. They are listed only for positive
values of variable x, because, in view of the symmetry of the N(0,1)
density, we have

Φ(−x) = 1− Φ(x).
Thus

P(−1.53 < X < 2.11) = Φ(2.11)− Φ(−1.53) = Φ(2.11)− (1− Φ(1.53))
≈ 0.9826− (1− 0.9370) = 0.9196.

Remark. The fundamental importance of the Gaussian probability dis-
tribution stems from the central limit theorem (see Section 3.5), which
asserts that for a large number of independent repetitions of experi-
ments with random outcomes, the fluctuations (errors) of the outcomes
around their mean value have, approximately, a Gaussian p.d.f.

Mixed and singular distributions. A random quantity is said to have a
c.d.f. of mixed type if it has both discrete and continuous components.
The c.d.f. thus has both discrete jumps, perhaps infinitely many, as well
as points of continuous increase where its derivative is well defined. For
example, the c.d.f.

FX(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for x < −1;
x
6 + 2

6 for −1 ≤ x < 0;
x
6 + 4

6 for 0 ≤ x < 1;

1 for 1 ≤ x,

(3.1.10)

represents a random quantitiy X which is uniformly distributed on the
interval [−1,1] with probability 1

3 , but also takes the discrete values
−1,0,1, with positive probabilites equal to the jump sizes of the c.d.f
at those points. Thus, for example,

P
(
−1

2
< X ≤ 1

2

)
= FX

(
1
2

)
− FX

(
−1

2

)
=
(

1
12
+ 4

6

)
−
(
− 1

12
+ 2

6

)
= 1

2
,

and

P(X = 0) = lim
ε→0

P(−ε < X ≤ ε) = lim
ε→0
(FX(ε)− FX(−ε))
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Fig. 3.1.7. Cumulative distribution function (c.d.f.) FX(x) of mixed type de-
scribed by formula (3.1.10). This distribution has both discrete and continuous
components.

= lim
ε→0

[(
ε
6
+ 4

6

)
−
(
−ε

6
+ 2

6

)]
= 1

3
.

Similarly,

P(X = −1) = 1
6
, P(X = 0) = 2

6
, P(X = 1) = 1

6
.

Remark. The reader will notice that the example of a p.d.f. which ap-
peared in Figure 3.1.3 is a mixture of two Gaussian p.d.f.s.

It is tempting to venture a guess that all c.d.f.s have to be either
discrete, continuous, or of mixed type. This, however, is not the case.

The limit of the so-called “devil’s staircase” c.d.f.s shown in Fig-
ure 3.1.8 is an example of a c.d.f. which, although continuous, does
not have a p.d.f.

Observe that inside the interval [0,1] its derivative is 0 on the union
of the infinite family of disjoint intervals whose lengths add up to 1.
Indeed, as is clear from the construction displayed in Figure 3.1.8, this
set has the linear measure

lim
n→∞

(
1
3
+ 2 · 1

32
+ · · · + 22 · 1

3n

)
= 1

3

∞∑
i=0

(
2
3

)i
= 1

3
· 1

1− 2
3

= 1,

in view of the formula for the sum of a geometric series. Thus inte-
gration of this derivative cannot possibly give a c.d.f. that grows from
0 to 1. Distributions of this type are called singular and they arise in
studies of fractal phenomena. One can prove that the set of points of
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Fig. 3.1.8. The construction of the singular “devil’s staircase” c.d.f. FX(x). It
continuously grows from 0 at x = 0 to 1 at x = 1, and yet it has no density;
its derivative is equal to 0 on disjoint intervals whose lengths add up to 1.

increase of the limit “devil’s staircase,” i.e., the set of points on which
the probability is concentrated, has a fractional dimension equal to
ln 2
ln 3 = 0.6309 . . . .14

Distributions of functions of random quantities. One often measures
random quantities through devices that distort the original quantity
X to produce a new random quantity, say, Y = g(X), and the natural
question is how the c.d.f. FX(x) of X is affected by such a transforma-
tion. In other words, the question is: Can FY (y) be expressed in terms
of g and FX(x)? In the case when the transforming function g(x) is
monotonically increasing the answer is simple:

Fg(X)(y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y)), (3.1.11)

where g−1(y) is the inverse function of g(x), that is g−1(g(x)) = x,
or, equivalently, if y = g(x) then x = g−1(y).

Remembering the chain rule of elementary calculus, and the formula
for the derivative of the inverse function g−1(y), we also immediately
obtain, in the case of monotonically increasing g(x), the expression of
the p.d.f. of Y = g(X) in terms of the p.d.f. of X itself :

14 See, for example, M. Denker and W. A. Woyczyński, Introductory Statistics
and Random Phenomena: Uncertainty, Complexity, and Chaotic Behavior in
Engineering and Science, Birkhäuser Boston, Cambridge, MA, 1998.
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fg(X)(y) = d
dy

FX(g−1(y)) = fX(g−1(y)) · 1
g′(g−1(y))

. (3.1.12)

Example 3.1.8 (linear transformation of a standard Gaussian random
quantity). A Gaussian random quantity X is called standard (orN(0,1))
if its p.d.f. is of the form

fX(x) = 1√
2π

e−x
2/2.

It is a special case of the general Gaussian p.d.f. introduced in Exam-
ple 3.1.6, with parameters μ and σ specified to be 0 and 1, respectively.
Consider now a new random quantity Y obtained from X by a linear
transformation

Y = aX + b, a > 0.

Think about this transformation as representing the change in units of
measurement and the choice of the origin (like changing the tempera-
ture measurements from degrees Celsius to Fahrenheit: if X represents
temperature measurements in degrees Celsius, then Y = 1.8 · X + 32
gives the same measurements in degrees Fahrenheit).

The transforming function in this case, y = g(x) = ax+b, is mono-
tonically increasing, and

g′(x) = a and g−1(y) = y − b
a

.

Formula (3.1.12) now gives the following expression for the p.d.f. of Y :

fY (y) = 1
√

2πe−((y−b)/a)
2/2 · 1

a
= 1√

2πa2
e−(y−b)

2/2a2
.

The conclusion is that the transformed random quantity Y also has a
Gaussian p.d.f., but with parameters μ = b and σ 2 = a2; in other words,
Y is N(b,a2)-distributed (in short, Y ∼ N(b,a2)).

Example 3.1.9 (calculation of general N(μ, σ2) probabilities). The re-
lationship established in Example 3.1.8 permits utilization of tables of
theN(0,1) distributions supplied at the end of this chapter to calculate
N(μ,σ 2) probabilities for arbitrary values of parameter μ and σ > 0.
Indeed, if a random quantity Y has the N(μ,σ 2) distribution, then it is
of the form

Y = σX + μ,
where X has the N(0,1) distribution, so that
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Fig. 3.1.9. Probability density functions ofN(0,1),N(0.5,0.25), andN(1,2.25)
random quantities (from left to right).

FY (y) = P(Y ≤ y) = P(σX + μ ≤ y)
= P

(
X ≤ y − μ

σ

)
= Φ

(
y − μ
σ

)
, (3.1.13)

and the values of the latter can be taken from the tables. For example,
if Y is Gaussian with parameters σ = 1.8 and μ = 32, then

P(30 < Y < 36) = Φ
(

36− 32
1.8

)
− Φ

(
30− 32

1.8

)

= Φ(2.22)− (1− Φ(−1.11))
≈ 0.9868− (1− 0.8665) = 0.8533.

In the next two examples we will consider the quadratic transfor-
mation Y = X2

2 corresponding to calculation of the (random) kinetic
energy15 Y of an object of unit mass m = 1, traveling with random
velocity X.

Example 3.1.10 (kinetic energy of a unit mass traveling with random,
exponentially distributed velocity). Suppose that the random quantity
X has an exponential c.d.f. and p.d.f. given in Example 3.1.5 with pa-
rameter μ = 1. It is transformed by a quadratic “device” g(x) = x2

2

into the random quantity Y = X2

2 . Note that the exponential p.d.f. is
concentrated on the positive half-line and that the transforming func-
tion g(x) is monotonically increasing in that domain. Then the c.d.f.
FY (y) = 0 for y ≤ 0, and for y > 0 we can repeat the argument from
formula (3.1.11) to obtain
15 Recall that an object of mass m traveling with velocity v has kinetic energy

E = mv2

2 .
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FY (y) = P(Y ≤ y) = P

(
X2

2
≤ y

)

= P
(
X ≤

√
2y

)
= FX

(√
2y

)
= 1− e−

√
2y.

Similarly, using (3.1.12), one gets the p.d.f. of X2

2 :

fY (y) = d
dy

FY (y) =
⎧⎨
⎩

0 for y ≤ 0;
e−
√

2y√
2y for y > 0.

Note that this p.d.f. has a singularity at the origin; indeed, fY (y) ↑ +∞
as y ↓ 0+. Observe, however, that the singularity does not affect the
p.d.f. normalization condition

∫∞
−∞ fY (y)dy = 1.

If the transforming function y = g(x) is not monotonically increas-
ing (or decreasing; see Problem 3.7.26 and Sections 8.1–8.2) over the
range of the random quantity X (as, for example, g(x) = x2 in the case
when X takes both positive and negative values), then a more subtle
analysis is required to find the p.d.f. of the random quantity Y = g(X).
Example 3.1.11 (square of a standard Gaussian random quantity). As-
sume thatX has the standardN(0,1) Gaussian p.d.f. and that the trans-
forming function is quadratic: y = g(x) = x2. The quadratic function
is monotonically increasing only over the positive half-line; it is mono-
tonically decreasing over the negative half-line. So, we have to proceed
with caution, and start with the analysis of the c.d.f. of Y = X2 by taking
advantage of the symmetry of the Gaussian p.d.f.:

FY (y) = P(Y ≤ y) = P(X2 ≤ y)
= 2P(0 ≤ X ≤ √y) = 2

(
FX(

√
y)− 1

2

)
.

The above formula, obviously, is valid only for y > 0; on the negative
half-line the c.d.f. vanishes. Thus the p.d.f. of Y = X2 is

fY (y) = d
dy

FY (y) =
⎧⎨
⎩

0 for y ≤ 0;
e−y/2√

2πy for y > 0.

This p.d.f. is traditionally called the chi-square probability density func-
tion. We’ll see its importance in Section 3.6, where it plays the central
role in the statistical parameter estimation problems.

3.2 Expectations and moments of random quantities

The expected value, or, in brief, the expectation of a random quantity X
is its mean value (or, for a physics-minded reader, the center of the



3.2 Expectations and moments of random quantities 63

probability mass) with different values of X given weights equal to
their probabilities. The expectation of X will be denoted EX, or E(X),
whichever is more convenient. So for a discrete random quantityX with
P(X = xi) = pi,

∑
i pi = 1, we have

EX =
∑
i
xipi, (3.2.1)

and for an (absolutely) continuous random quantity with probability
density fX(x)

EX =
∫∞
−∞
xfX(x)dx. (3.2.2)

More generally, one can consider the expectation of a function g(X)
of a random quantity X, which is defined by the formulas

E[g(X)] =
{∑

i g(xi)pi in the discrete case;∫∞
−∞ g(x)fX(x)dx in the continuous case.

(3.2.3)

In particular, if g(x) = xk, k = 1,2, . . . , then the numbers

μk(X) = Eg(X) = EXk =
{∑

i xki pi in the discrete case;∫∞
−∞ xkfX(x)dx in the continuous case

(3.2.4)
are called kth moments of X. The first moment μ1 = μ1(X) is just the
expectation of EX of the random quantity X.

If g(x) = |x|α, −∞ < α <∞, then

mk(X) = E|X|α

are calledαth absolute moments, and for g(x) = |x−μ1|α, the numbers

E|X − μ1|α = E|X − EX|α

are called αth central moments of X. The latter measure the mean
value of the αth power of the deviation of the random quantity X from
its expectation EX. In other words, they provide a family of parame-
ters which measure how the values of the random quantity are spread
around its “center of mass.” In the special case α = 2, the second
central moment

E(X − EX)2 =
{∑

i(xi − μ1)2pi in discrete case;∫∞
−∞(x − μ1)2fX(x)dx in continuous case

(3.2.5)

is called the variance of the random quantity X and denoted Var(X).
Again, for a physics-minded reader, it is worth noticing that the variance
is just the moment of inertia of the probability mass distribution. A
simple calculation gives the formula
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Var(X) = EX2 − (EX)2, (3.2.6)

which is sometimes simpler computationally than (3.2.5); the variance is
thus the difference between the second moment (sometimes also called
the mean square of a random quantity) and the square of the first mo-
ment. This rule is then often phrased as follows: Variance is equal to
the mean square minus the squared mean.

Example 3.2.1 (moments of the Bernoulli distribution). For the Ber-
noulli random quantity X, with distribution given in Example 3.1.1, all
the moments are

μk(X) = 1k · p + 0k · (1− p) = p,

and the variance is

Var(X) = (1− p)2p + (0− p)2(1− p) = p(1− p).

Example 3.2.2 (mean and variance of the uniform distribution). A uni-
formly distributed random quantity X (see Example 3.1.4) has expecta-
tion

EX =
∫ d
c
x

1
d− cdx =

d+ c
2

.

Its variance is

Var(X) =
∫ d
c

(
x − d+ c

2

)2 1
d− cdx =

(d− c)2
12

.

Notice that the expectation or expected value EX of a random quan-
tity X scales linearly , that is,

E(αX) = αE(X), −∞ < α <∞, (3.2.7)

so that the change of scale of the measurements affects the expectations
proportionally: if, for example, X is measured in meters, then EX is also
measured in meters. Indeed, in the continuous case,

E(αX) =
∫∞
−∞
(αx)fX(x)dx = α

∫∞
−∞
xfX(x)dx = αE(X),

and the discrete case can be verified in an analogous fashion.
On the other hand, the variance Var(X) has a quadratic scaling
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Var(αX) = α2 Var(X). (3.2.8)

This follows immediately from the linearity of the expectations (3.2.7)
and formula (3.2.6). Thus the mean-square deviation has a somewhat
unpleasant nonlinear property which implies that if X is measured, say,
in meters, then its variance is measured in meters squared.

For this reason, one often considers the standard deviation Std(X) of
a random quantityX which is defined as the square root of the variance:

Std(X) =
√

Var(X). (3.2.9)

The standard deviation scales linearly, at least for positive α, since

Std(αX) = |α| Std(X), −∞ < α <∞. (3.2.10)

This means that changing the measurement units affects the standard
deviation proportionately as well. If a random quantity is measured in
meters, then its standard deviation is also measured in meters.

Additionally, observe that the expectation is additive with respect to
constants, that is, for any constant β, −∞ < β <∞,

E(X + β) = E(X)+ β. (3.2.11)

The verification is again immediate and follows from the additivity
property of the integrals (or, in the discrete case, sums):

E(X + β) =
∫∞
−∞
(x + β)fX(x)dx

=
∫∞
−∞
xfX(x)dx +

∫∞
−∞
βfX(x)dx = E(X)+ β

because
∫∞
−∞ fX(x)dx = 1.

Finally, the variance is invariant under translations, that is, for any
constant β, −∞ < β <∞,

Var(X + β) = Var(X). (3.2.12)

Indeed,
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Var(X +β) = E((X +β)− E(X +β))2 = E(X +β− E(X)−β)2 = Var(X).

The above properties indicate that any random quantity X can be
standardized by first centering it and then rescaling it so that the stan-
dardized random quantity has expectation 0 and variance 1. Indeed, if

Z = X − EX
Std(X)

, (3.2.13)

then it immediately follows from (3.2.10)–(3.2.11) that EZ = 0 and
σ 2(Z) = 1.

Example 3.2.3 (mean and variance of the Gaussian distribution). Let
us begin with a random quantity X with the standard N(0,1) p.d.f. Its
expectation is

E(X) =
∫∞
−∞
x

1√
2π

e−x
2/2dx = 0

because the integrand is an odd function and is integrated over the in-
terval (−∞,∞) which is symmetric about the origin. Its variance is thus
just the second moment (mean square) of X, which can be evaluated
easily by integration by parts16

Var(X) =
∫∞
−∞
x2 1√

2π
e−x

2/2dx = 1√
2π

∫∞
−∞
x · (xe−x2/2)dx.

= 1√
2π

(
−x · e−x2/2

∣∣∣∞−∞ +
∫∞
−∞
e−x

2/2dx
)
= 1,

because limx→±∞ x · e−x2/2 = 0 and ( 1√
2π )

∫∞
−∞e−x

2/2dx = 1.
Now let us consider a general Gaussian random quantity Y with

N(μ,σ 2) p.d.f. In view of Example 3.1.8,

Y = σX + μ.

The above properties of the expectation and the variance ((3.2.7)–(3.2.8)
and (3.2.11)–(3.2.12)) immediately give

E(Y) = E(σX + μ) = σE(X)+ μ = μ

and
Var(Y) = Var(σX + μ) = Var(σX) = σ2 Var(X) = σ 2.

Thus the parameters μ and σ 2 in the Gaussian N(μ,σ 2) p.d.f. are, sim-
ply, its expectation and variance.

16 Recall the integration-by-parts formula:
∫
f(x)g′(x)dx = f(x)g(x) −∫

f ′(x)g(x)dx.
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3.3 Random vectors, conditional probabilities, statistical
independence, and correlations

A random vector X has components X1, X2, . . . , Xd, which are scalar
random quantities, that is,

X = (X1, X2, . . . , Xd),

where d is the dimension of the random vector and its statistical prop-
erties are completely determined by its joint c.d.f.

F(X1,...,Xd)(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd).
For the sake of simplicity of notation, we shall consider first the

case of dimension d = 2, and we shall write X = (X, Y). In the discrete
case, for a random vector X taking discrete values x = (x,y), the joint
probability distribution is

P(X = x) = P(X = x,Y = y) = pX(x,y), (3.3.1)

and

∑
(x,y)

pX(x,y) = 1. (3.3.2)

Example 3.3.1 (a Bernoulli random vector). The random vector (X, Y)
takes values (0,0), (0,1), (1,0), (1,1), with the following joint probabil-
ities:

p(X,Y)(0,0) = (1− p)2, p(X,Y)(0,1) = p(1− p),
p(X,Y)(0,1) = (1− p)p, p(X,Y)(1,1) = p2.

It is easy to check that

1∑
x=0

1∑
y=0

p(X,Y)(x,y) = 1.

In the special case p = 1
2 all four possible values of this random vector

are taken with the same probability equal to 1
4 .

A continuous random vector is characterized by its joint p.d.f.
f(X,Y)(x,y), which is a nonnegative function of two variables x,y ,
such that ∫∞

−∞

∫∞
−∞
f(X,Y)(x,y)dxdy = 1. (3.3.3)

In this case, the probability that the random vector (X, Y) takes values
in a certain domain A of the 2D space is calculated by evaluating the
double integral of the joint p.d.f. over the domain A:
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P((X, Y) ∈ A) =
∫ ∫

A
f(X,Y)(x,y)dxdy. (3.3.4)

For example, if the domain A is a rectangle [a, b] × [c, d] = {(x,y) :
a ≤ x ≤ b, c ≤ y ≤ d}, then

P((X, Y) ∈ A) = P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b
a

∫ d
c
f(X,Y)(x,y)dydx.

(3.3.5)
If the domain B = {(x,y) : x2 + y2 ≤ R2} is a centered disk of radius
R, then

P((X, Y) ∈ B) = P(X2 + Y 2 ≤ R2) =
∫ R
−R

∫ √R2−x2

−√R2−x2
f(X,Y)(x,y)dydx.

(3.3.6)
The graph of a 2D joint p.d.f. is a surface over the (x,y)-plane such

that the volume underneath it is equal to 1; see (3.3.3).

Example 3.3.2 (a 2D Gaussian random vector). An example of the 2D
Gaussian joint p.d.f. is given by the formula

f(X,Y)(x,y) = 1
2πσxσy

exp

[
−(x − μx)

2

2σ 2
x

− (y − μy)
2

2σ 2
y

]
. (3.3.7)

where σx,σy > 0, and μx , μy are arbitrary real numbers. Figure 3.3.1
shows the plot of the surface representing a 2D Gaussian joint p.d.f. in
the case σx,σy = 1 and μx, μy = 0.

Calculation of the probabilities P(a ≤ X ≤ b, c ≤ Y ≤ d) is here
reduced to calculation of one-dimensional Gaussian probabilities since
the joint 2D density in this case is a product of two 1D Gaussian den-
sities, one depending only on x and the other on y ,17 and the double
integral splits into a product of two single integrals. To obtain numer-
ical values, tables of (or software for) 1D N(0,1) c.d.f. have to be used;
see Section 3.5.

In the special case of equal variances σ 2
x = σ 2

y = σ 2, the proba-
bility that the above Gaussian random vector takes values in a disk of
radius R centered at (μx, μy) can, however, be carried out explicitly by
calculation of the integral in polar coordinates (θ, r):

P((X − μx)2 + (Y − μy)2 ≤ R2)

=
∫ R
−R

∫ √R2−x2

−√R2−x2

1
2πσ 2

exp

[
−x

2 +y2

2σ 2

]
dydx

17 We will have more to say about joint p.d.f.s of this type in the next few
pages. The multiplicative property is equivalent to the concept of statistical
independence of components of a random vector.
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Fig. 3.3.1. Plot of the surface representing a 2D Gaussian joint p.d.f. (3.3.7) in
the case σx,σy = 1 and μx, μy = 0.

= 1
2πσ 2

∫ 2π

0

∫ R
0

exp

[
− r 2

2σ 2

]
rdrdθ

= 1
σ 2

[
−σ 2 exp

[
− r 2

2σ 2

]]R
0

= 1− e−R2/2σ2
.

Because the joint p.d.f. gives complete information about the ran-
dom vector (X, Y), it also yields complete information about the proba-
bility distributions of each of the component random quantities. These
distributions are called marginal distributions of the random vector. In
particular, for a discrete random vector, the marginal distribution of
the component X is

pX(x) =
∑
y
p(X,Y)(x,y). (3.3.8)

To find the probability of X taking a particular value x0 we simply need
to sum, over all possible ys, the probabilities of (X, Y) taking values
(x0, y). For a continuous random vector the marginal p.d.f. of the com-
ponent X is

fX(x) =
∫∞
−∞
f(X,Y)(x,y)dy. (3.3.9)

It is important to observe that the marginal distributions of com-
ponents of a random vector do not determine its joint distribution.
Indeed, the example provided below shows that it is quite possible for
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random vectors to have the same marginal probability distributions of
their components while their joint probability distributions are differ-
ent.

Example 3.3.3 (different random vectors with the same marginal prob-
ability distributions). A random vector (X, Y) has components X and
Y that take values 1,2,3 and 1,2, respectively. The joint probability
distribution of this random vector is given in Table 3.3.1.

Table 3.3.1.

Y\X 1 2 3 Y

1 5
24

4
24

3
24

6
12

2 5
24

4
24

3
24

6
12

X 5
12

4
12

3
12

∑ = 1

Thus, for example, P((X, Y) = (3,2)) = 3
24 . The last row in the

above table gives the marginal probability distribution for the compo-
nent X, and the last column, the marginal probability distribution for
the component Y .

Now consider another random vector (W,Z) with components W
and Z which also take values 1,2,3 and 1,2, respectively. The joint
distrbution of this random vector is given by Table 3.3.2.

Table 3.3.2.

Z\W 1 2 3 Z

1 1
12

2
12

3
12

6
12

2 4
12

2
12 0 6

12

W 5
12

4
12

3
12

∑ = 1

This time, P((X, Y) = (3,2)) = 0. The last row in the above table
gives the marginal probability distribution for the component W , and
the last column, the marginal probability distribution for the compo-
nent Z . The marginal probability distributions for vectors (X, Y) and
(W,Z) are the same, while their joint distributions are different.

Conditional probabilities. Knowledge of the joint p.d.f. permits us also
to introduce the concept of the conditional probability (in the discrete
case) and the conditional density (in the continuous case). Thus, the
conditional probability of the component X taking value x, given that
the second component Y took value y , is given by the formula
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pX|Y (x|y) ≡ P(X = x|Y = y) = P(X = x,Y = y)
P(Y = y) = p(X,Y)(x,y)

pY (y)
,

(3.3.10)

and the conditional probability density function of X given Y = y is
given by the formula

fX|Y (x|y) = f(X,Y)(x,y)
fY (y)

. (3.3.11)

In other words, conditional probability distributions are distributions
of values of one component of a random vector calculated under the
assumption that the value of the other component has already been
determined.

Conditional probabilities are bona fide probabilities, as they satisfy
the normalization property. Indeed, say, in the continuous case, for
each fixed y ,

∫∞
−∞
fX|Y (x|y)dx =

∫∞
−∞ f(X,Y)(x,y)dx

fY (y)
= fY (y)
fY (y)

= 1,

in view of formula (3.3.9), which calculates the marginal density from
the joint density.

If the component X of random vector (X, Y) takes on distinct values
x1, x2, . . . , xn, then the additive property of probabilities immediately
gives the following total probability formula:

P(Y = y) =
n∑
i=1

P(Y = y|X = xi) · P(X = xi).

Remark. Heuristically, one can think about conditional probabilities as
probabiilities obtained under additional constraints. Think here about
the probability of your running into a bear during a hike. If you are
hiking in the city park, the probability of the event may be only 0.0001;
in Yellowstone the similar conditional probability may be as high as
0.75. Now assume you participate, with 51 of your classmates, in a
raffle and the prize is a trip to Yellowstone; the consolation prize is a
group hike in the city park. The total probability of your running into
a bear would then be 0.0001 · 51

52 + 0.75 · 1
52 ≈ 0.015.

One of the corollaries of the total probability formula is the cele-
brated Bayes formula for reverse conditional probabilities which, loosely
speaking, computes the conditional probability of X, given Y , in terms
of the conditional probabilities of Y , given X:
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P(X = xi|Y = y) = P(Y = y|X = xi) · P(X = xi)∑n
i=1 P(Y = y|X = xi) · P(X = xi) .

Indeed,

P(X = xi|Y = y) = P(X = xi, Y = y)
P(Y = y) · P(X = xi)

P(X = xi)
= P(Y = y|X = xi) · P(X = xi)

P(Y = y) ,

and an application of the total probability formula immediately gives
the final result.

Example 3.3.4 (transmission of a binary signal in the presence of ran-
dom errors). A channel transmits binary symbols 0 and 1 with random
errors. The probability that the symbols 0 and 1 appear at the input of
the channel are, respectively, 0.45 amd 0.55. Because of transmission
errors, if the symbol 0 appears at the input, then the probability of it
being received as 0 at the output is 0.95. The analogous conditional
probability is 0.9, for the symbol 1 to be received, given that it was
transmitted. Our task is to find the reverse conditional probability that
the symbol 1 was transmitted given that 1 was received.

The random vector here is (X, Y), where X is the input signal and Y
is the output signal. The problem’s description contains the following
information:

P(X = 0) = 0.45, P(X = 1) = 0.55,

and

P(Y = 0|X = 0) = 0.95, P(Y = 1|X = 1) = 0.9,

so that

P(Y = 1|X = 0) = 0.05, P(Y = 0|X = 1) = 0.1.

We are seeking P(X = 1|Y = 1) and the Bayes formula gives the answer:

P(X = 1|Y = 1)

= P(Y = 1|X = 1) · P(X = 1)
P(Y = 1|X = 0) · P(X = 0)+ P(Y = 1|X = 1) · P(X = 1)

= 0.9 · 0.55
0.05 · 0.45+ 0.9 · 0.55

≈ 0.9565.
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Statistical independence. Components X and Y of a random vector
X = (X, Y) are said to be statistically independent if the conditional
probabilities of X given Y are independent of Y and vice versa. In the
discrete case, this means that, for all x and y ,

P(X = x|Y = y) = P(X = x),
which is equivalent to the statement that the joint p.d.f. is the product
of the marginal p.d.f.s. Indeed, the above independence assumption
and the formula defining the conditional probabilities yield

P(X = x,Y = y) = P(X,Y)(x,y)
= PX(x) · PY (y) = P(X = x) · P(Y = y). (3.3.12)

In the continuous case, the analogous definition of independence of
X and Y can be stated via the multiplicative formula for the joint p.d.f.:

f(X,Y)(x,y) = fX(x) · fY (y). (3.3.13)

Note that both the 2D Bernoulli distribution of Example 3.3.1 and
the 2D Gaussian distribution of Example 3.3.2 have statistically inde-
pendent components X and Y . Also, components of the random vector
(X, Y) in Example 3.3.3 are independent, as the table was actually ob-
tained by multiplying the marginal probabilities in the corresponding
rows and columns. However, the components W and Z of random vec-
tor (W,Z) in Example 3.3.3 are not statistically independent. To see
this, it is sufficient to observe that

P(W = 3, Z = 2) = 0,

but

P(W = 3) · P(Z = 2) = 3
12
· 6

12
= 3

24
≠ 0.

Moments of random vectors and correlations. If a random quantity Z
is a function of a random vector (X, Y), say,

Z = g(X,Y),
then as in Section 3.2, we can calculate the expectation of Z using the
joint p.d.f. Indeed,

EZ =
∑
x

∑
y
g(x,y)p(X,Y)(x,y) (3.3.14)
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in the discrete case, and

EZ =
∫∞
−∞

∫∞
−∞
g(x,y)f(X,Y)(x,y)dxdy, (3.3.15)

in the continuous case.
A mixed second-order moment corresponding to function g(x,y) =

xy will play a pivotal role in the analysis of random signals. The num-
ber

ϕX,Y = E(X · Y) (3.3.16)

is called the correlation of random quantities X and Y . The related
parameter corresponding to g(x,y) = (x − μx)(y − μy),

Cov(X, Y) = E[(X − μX)(Y − μY )] = E(XY)− E(X)E(Y), (3.3.17)

is called the covariance of X and Y . Obviously, the covariance of X and
X is just the variance of X:

Cov(X,X) = E[(X − μX)(X − μY )] = Var(X). (3.3.18)

By the Cauchy–Schwartz inequality,18

|Cov(X, Y)| ≤ Std(X) · Std(Y). (3.3.19)

This suggests the introduction of yet another parameter for a 2D ran-
dom vector which is called the correlation coefficient of X and Y :

Cor(X, Y) ≡ ρX,Y = Cov(X, Y)
Std(X) · Std(Y)

. (3.3.20)

In view of (3.3.19) the correlation coefficient is always contained
between −1 and +1:

−1 ≤ ρX,Y ≤ 1, (3.3.21)

and, in view of (3.3.18), if random components X and Y are linearly
dependent, that is, Y = αX, then the correlation coefficient takes its
extreme values

ρX,αX = ±1, (3.3.22)

18 Recall that if a = (a1, . . . , ad) and b = (b1, . . . , bd) are two d-dimensional
vectors, then the Cauchy–Schwartz inequality says that the absolute value
of their scalar (dot) product is not larger than the product of their norms
(magnitudes), i.e., |〈a,b〉| ≤ ‖a‖·‖b‖, where 〈a,b〉 = a1b1+· · ·+adbd, and
‖a‖2 = a2

1 + · · · + a2
d; see Section 3.7.
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depending on whether α is positive or negative. In those cases we say
that the random quantities X and Y are perfectly (positively or nega-
tively) correlated.

The opposite case is that of statistically independent random quanti-
tiesX andY . Then, because of the multiplicative property f(X,Y)(x,y) =
fX(x)fY (y) (3.3.12)–(3.3.13) of the joint p.d.f., we always have

E(XY) =
∫ ∫

xyfX(x)fY (y)dxdy = EX · EY , (3.3.23)

so that

Cov(X, Y) = E(X − μX)(Y − μY ) = E(X − μX) · E(Y − μY ) = 0 (3.3.24)

and the correlation coefficient ρX,Y = 0. In other words, statistically
independent random quantities are always uncorrelated.19 The correla-
tion coefficient ρX,Y is often considered as a measure of “independence”
of random quantities X and Y ; more appropriately, it should be inter-
preted as a measure of the “linear association” of random quantities X
and Y .

Example 3.3.5 (a discrete 2D distribution with nontrivial correlation).
Consider the random vector (W,Z) from Example 3.3.3. The expecta-
tions of the components are

EW = 1
(

5
12

)
+ 2

(
4
12

)
+ 3

(
3
12

)
= 11

6
,

EZ = 1
(

6
12

)
+ 2

(
6
12

)
= 3

2
.

The variances are

Var(W) =
(

1− 11
6

)2( 5
12

)
+
(

2− 11
6

)2( 4
12

)
+
(

3− 11
6

)2( 3
12

)
= 23

36
,

Var(Z) =
(

1− 3
2

)2 ( 6
12

)
+
(

2− 3
2

)2 ( 6
12

)
= 1

4
.

The expectation of the product is

E(WZ) = (1 · 1)
(

1
12

)
+ (2 · 1)

(
2
12

)
+ (3 · 1)

(
3
12

)
+ (1 · 2)

(
4
12

)

+ (2 · 2)
(

2
12

)
+ (3 · 2)0 = 5

2
.

Thus the covariance is

Cov(W,Z) = E(WZ)− E(W)E(Z) = 5
2
−
(

11
6

)(
3
2

)
= −1

4
,

19 The opposite statement is, in general, not true; see Problem 3.7.28.
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and, finally, the correlation coefficient of W and Z is

Cor(W,Z) = Cov(W,Z)
Std(W) · Std(Z)

= −
1
4√

23
36 ·

√
1
4

= −
√

3
23

≈ −0.361.

Example 3.3.6 (a continuous 2D distribution with nontrivial correla-
tion). A random vector (X, Y) has a continuous joint p.d.f. of the form

f(X,Y)(x,y) =
{
C(1− (x +y)) for x,y ≥ 0, x +y ≤ 1;

0 elsewhere.

The constant C can be determined from the normalization condition,∫ 1

0

∫ 1−x

0
C(1− (x +y))dydx = 1,

which gives C = 6. The plot of the surface representing this density is
given in Figure 3.3.2.

Fig. 3.3.2. The plot of the surface representing the joint p.d.f. from Exam-
ple 3.3.6.

The marginal density of the component X,

fX(x) =
∫ 1−x

0
6(1− (x +y))dy = 3(1− x)2,

for 0 < x < 1. It is equal to 0 elsewhere, and its plot is pictured in
Figure 3.3.3.
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Fig. 3.3.3. The marginal density FX(x) of the X component of the random
vector from Example 3.3.6.

The expectations of X and Y are easily evaluated using the margin-
al p.d.f.:

EX = EY =
∫ 1

0
x · 3(1− x)2dx = 1

4
.

Similarly, the variances are

σ 2(X) = σ 2(Y) =
∫ 1

0

(
x − 1

4

)2

· 3(1− x)2dx = 3
80
.

Finally, the covariance is

Cov(X, Y) =
∫ 1

0

∫ 1−x

0

(
x − 1

4

)(
y − 1

4

)
· 6(1− (x +y))dydx = − 1

80
.

So the random components X and Y are not independent; they are
negatively correlated. The correlation coefficient itself is now easily
evaluated to be

ρX,Y =
− 1

80
3

80

= −1
3
.

3.4 The least-squares fit, regression line

The roles of the covariance and the correlation coefficient will become
better understood in the context of the following least-squares regres-
sion problem.

Consider a sample,

(x1, y1), (x2, y2), . . . , (xN,yN),



78 3 Random Quantities and Random Vectors

of N 2D vectors. Its representation in the (x,y)-plane is called the
scatterplot of the sample; see, for example, Figure 3.4.1. Our goal is to
find a line

y = ax + b
that would provide the best approximation to the scatterplot in the
sense of minimizing the sum of the squares of the errors of the ap-
proximation measured in the vertical direction. To be more precise,
the error of the approximation for the ith sample point is expressed by
the formula

εi(a, b) = |yi − (axi − b)|, i = 1,2, . . . , N,

and the sum of the squares of the errors,

N∑
i=1

ε2
i (a, b) =

N∑
i=1

(yi − (axi − b))2,

is a nice, differentiable function of two variables a and b. We can find
its minimum by taking partial derivatives with respect to a and b and
equating them to 0:20

∂
∂a

N∑
i=1

ε2
i (a, b) = −2

N∑
i=1

(yi − (axi + b))xi = 0,

∂
∂b

N∑
i=1

ε2
i (a, b) = −2

N∑
i=1

(yi − (axi + b)) = 0.

These two equations, sometimes called the normal equations, are linear
in a and b and can be easily solved by the substitution method. To
make the next step more transparent, we will introduce the following
simplified notation for different sample means (think here about the
means of random quantities with N possible values with each value
assigned probability 1

N ):

x = 1
N

M∑
i=1

xi, y = 1
N

M∑
i=1

yi,

x2 = 1
N

M∑
i=1

x2
i , y2 = 1

N

M∑
i=1

y2
i ,

xy = 1
N

M∑
i=1

xiyi.

20 This explains why we consider quadratic errors rather than the straight ab-
solute errors; in the latter case the calculus tools would not work so well.
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Now the normal equations for a and b can be written in the form

ax + b −y = 0 and ax2 + bx − xy = 0,

which can be immediately solved to give

b = y − ax, a = xy − x ·y
x2 − (x)2 .

The first of the above two equations indicates that the point with
coordinates formed by the sample means x and y is located on the
regression line. To better see the meaning of the second equation, ob-
serve that

xy − x ·y = 1
N

N∑
i=1

(xi − x)(yi −y) = Cov(x,y)

is just the sample covariance of the x- and y-coordinates, and that

x2 − (x)2 = Var(x), y2 − (y)2 = Var(y).

Thus the equation y = ax+b of the regression line can now be rewrit-
ten in the elegant form

y −y√
Var(y)

= ρx,y x − x√
Var(x)

, (3.4.1)

where

ρx,y = Cov(x,y)√
Var(x)

√
Var(y)

= Cov(x,y)
σxσy

,

is the sample correlation coefficient. Its significance is now clear: ρx,y is
the slope of the regression line but only after the x- and y-coordinates
were standardized (see (3.2.11)), that is, they were centered by the
means x and y , and rescaled by the standard deviations σx and σy ,
respectively.

Example 3.4.1. Consider a 2D vector sample of size 10 (see Table 3.4.1).

Table 3.4.1.

x 1.06 2.08 3.28 4.13 5.28 6.39 7.12 8.04 9.23 10.38
y 1.10 3.37 3.23 6.92 7.66 6.78 8.12 9.94 9.55 10.87

The coefficients are a = 0.9934 and b = 1.0925, so that the equation
of the regression line is

y = 0.9934 · x + 1.0925

and the correlation coefficient is
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ρx,y = 0.1063.

The scatterplot of these data as well as the plot of the regression
line are shown in Figure 3.4.1.

Fig. 3.4.1. The scatterplot and the least-squares fit regression line for data from
Example 3.4.1.

3.5 The law of large numbers and the stability of
fluctuations law

One of the fundamental theorems of statistics, called the law of large
numbers (LLN ), says that if X1, X2, . . . , Xn are independent random
quantities with identical probability distributions (i.i.d.) and finite iden-
tical expectations EXi = μX , then as n → ∞, the averages converge to
that expectation, i.e.,

Xn ≡ X1 +X2 + · · · +Xn
n

−→ μX as n→∞. (3.5.1)

Of course, the immediate issue is what do we mean by the conver-
gence of random variables Xn. For the purposes of these lectures the
convergence of Xn to μX will mean that the standard deviation of the
fluctuations of the averages Xn around the mean μX , that is, the differ-
ences Xn − μX , converge to zero as n→∞. More formally,

lim
n→∞ Std(Xn − μX) = 0. (3.5.2)

The statement (3.5.2) can be easily verified if we observe first that,
for independent random quantities X and Y with finite variances, the
variance
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Var(X + Y) = Var(X)+ Var(Y), (3.5.3)

which follows immediately from the multiplicative property (3.3.23) of
the expectations of independent random variables; see Section 3.3. In-
deed, if X and Y are independent, then X − μX and Y − μY are also
independent, so that

Var(X + Y) = E((X − μX)+ (Y − μY ))2
= E(X − μX)2 + 2E(X − μX)E(Y − μY )+ E(Y − μY )2
= Var(X)+ Var(Y),

because E(X − μX) = E(Y − μY ) = 0. Hence

Var(Xn − μX) = Var
(
X1 − μX
n

+ · · · + Xn − μX
n

)
= Var(X)

n
, (3.5.4)

which obviously approaches 0 as n → ∞. Thus the law of large num-
bers (3.5.1), also often called the law of averages, is verified, at least in
the situation when random quantities Xi have well-defined finite vari-
ances.21

A more subtle insight about the averages is provided by the follow-
ing stability of fluctuations law , usually called the central limit theorem
(CLT ) in the mathematical and statistical literature. It states that as
the averages Xn fluctuate around the expectation μX , the fluctuations,
if viewed under a “magnifying glass,” turn out to follow, asymptotically
as n → ∞, a Gaussian or normal probability distribution. More pre-
cisely, the c.d.f. of the standardized (see (3.2.13) and (3.5.4)) random
fluctuations of the averages Xn around the mean μX ,

Zn =
√
n

Std(X)
· (Xn − μX), (3.5.5)

converges to the standard N(0,1) Gaussian c.d.f., that is,

lim
n→∞P(Zn ≤ z) = Φ(z) ≡

∫ z
−∞
φ(x)dx, (3.5.6)

where the density is

φ(z) = 1√
2π

e−z
2/2. (3.5.7)

The important assumption of the central limit theorem is that the com-
mon variance of Xis is finite. It can be immediately verified that all of
Zns have mean zero and variance one; see (3.2.13) and (3.5.4), but the
21 Note that not all random quantities have well-defined, finite variances; see

Section 3.7.
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proof of the convergence to a Gaussian limit is more delicate; for its
sketch, see Section 3.7.

So the central limit theorem can be loosely rephrased as follows:

Standardized random fluctuations of averages of independent and
identically distributed random quantities around their common ex-
pected value have a limiting standard Gaussian p.d.f.

3.6 Estimators of parameters and their accuracy;
confidence intervals

The law of large numbers can be reinterpreted as follows: If X1, X2, . . . ,
Xn is an i.i.d. sample from a certain probability distribution FX(x), then
as n increases, the sample means Xn, n = 1,2, . . . , become better and
better estimators for the expectation of that distribution. In the sta-
tistical terminology the law of large numbers (3.5.1) says that Xn is a
consistent estimator for parameter μX .

The central limit theorem (3.5.5)–(3.5.7) permits us to say what is the
error of approximation of the theoretical mean μX by the sample mean
Xn, or, in other words, to establish the accuracy of the above estimation.
Indeed, for a given sample of size n, the CLT says that the difference
between the parameter μX and its estimator, the sample mean Xn, is,
after normalization by

√
n

Std(X) , approximatelyN(0,1) distributed so that,
for large n,

P
(
−εStd(X)√

n
≤ Xn − μX ≤ εStd(X)√

n

)
≈ Φ(ε)− Φ(−ε)
= 2Φ(ε)− 1 = C,

(3.6.1)

where C = C(ε) is a nonrandom constant, depending on the choice of
ε only.

If X itself has a Gaussian p.d.f., then the above approximate equal-
ity becomes exact for all n. This follows from the fact that the sum of
two independent Gaussian random quantities is again a Gaussian ran-
dom quantity, obviously with the mean and variance being the sums of
means and variances, respectively, of the corresponding random sum-
mands; see Section 3.7.

The above statement can be reformulated as follows: the parameter
μX is contained in the random interval

(
Xn − εStd(X)√

n
,Xn + εStd(X)√

n

)

with probability C . This statement is sometimes abbreviated by writing
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μX = Xn ± εStd(X)√
n

at the confidence level C . Note that it is the center of the above random
interval that is random; its length is not random unless Std(X) = σX
itself has to be estimated from the sample.

Example 3.6.1 (a 95% confidence interval for μX with knownσX ). One
hundred independently repeated measurements of a random quantity
X were conducted, resulting in X100 = 7.1. Suppose that we know that
Std(X) = 0.5. To find the 95% confidence interval for μX using (3.5.1),
we need to find ε such that 2Φ(ε) − 1 = 0.95. From the table of the
Gaussian N(0,1) c.d.f. we have z = 1.96. Thus at the 95% confidence
level,

7.1− 1.96
0.5√
100

≤ μX ≤ 7.1+ 1.96
0.5√
100

,

that is, μX = 7.1±0.098 at the 95% confidence level. The above approx-
imate confidence interval is exact if X has a Gaussian distribution.

Remark (error of the Gaussian approximation in the CLT ). To be hon-
est, we left open the essential, but delicate question of how good is the
approximate equality in the basic formula (3.5.1) or, equivalently, the
question of precise estimation of the error in the central limit theorem
(3.5.6), which just says that the difference

P(Zn ≤ z)− Φ(z)→ 0 as n→∞,

where

Zn = (X1 + · · · +Xn)−nμX√
n · Std(X)

are standardized sums X1 + · · · + Xn. It turns out that the accuracy
in CLT is actually pretty good if the Xis have finite higher absolute
moments. In particular, if the third central moment M3 = E|X −μX|3 <
∞, then, for all −∞ < x <∞ and n = 1,2, . . . ,

|P(Zn ≤ z)− Φ(z)| ≤ kM3√
nσ 3

X
,

where k is a universal (independent of n and X) constant contained in
the interval (0.4097,0.7975). Its exact value is not known.22

Of course, the above procedure used in Example 3.4.1 requires ad-
vance knowledge of the standard deviation Std(X). If that parameter is

22 This error estimate in the CLT is known as the Berry–Esseen theorem and
its proof can be found, for example, in V. V. Petrov’s monograph Sums of
Independent Random Variables, Springer-Verlag, Berlin, 1975.
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unknown, then the obvious step is to try to estimate it from the sample
X1, X2, . . . , Xn itself using the sample variance estimator

S2
n =

1
n− 1

n∑
i=1

(Xi −X)2. (3.6.2)

But in this case, even in the case of Gaussian Xi, the random quantity

T =
√
n
Sn
(X − μX) (3.6.3)

is no longer N(0,1) distributed, so a simple construction of the confi-
dence interval for μX is no longer possible.

However, in the case of a Gaussian random sample X1, X2, . . . , Xn, it
is known23 that the random quantity T has the p.d.f.

fT (x;n− 1) =
Γ
(
n
2

)
√
nπΓ

(
n−1

2

)
(

1+ x2

n− 1

)−n/2
, (3.6.4)

which traditionally is called the Student-T p.d.f. with (n−1) degrees of
freedom. The Gamma function Γ(α) appearing in the definition of fT
is defined by the formula

Γ(α) =
∫∞

0
xα−1e−xdx, α > 0. (3.6.5)

It is worth noting that

αΓ(α) = Γ(α+ 1) and Γ(n) = (n− 1)!, (3.6.6)

if n is a positive integer. Thus the Gamma function is an interesting
extension of the concept of the factorial to noninteger numbers.

Therefore, in this case, the C = (2FT (ε)− 1) confidence interval for
μX is of the form

(
Xn − ε Sn√n,Xn + ε

Sn√
n

)
. (3.6.7)

It is convenient to tabulate the quantiles QT(α;n) defined by the
condition

FT (QT(α;n)) = α, (3.6.8)
23 See, for example, M. Denker and W. A. Woyczyński, Introductory Statistics

and Random Phenomena: Uncertainty, Complexity, and Chaotic Behavior in
Engineering and Science, Birkhäuser Boston, Cambridge, MA, 1998, for more
details on the statistical issues discussed in this section.
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rather than the c.d.f. itself. Note that the quantile is just the function
inverse to c.d.f. The tables of selected quantiles QT(α;n) are provided
at the end of the chapter. Using the T -quantiles allows the C confidence
level interval for μX to be simply written in the form(
Xn −QT (1+ C2;n− 1)

Sn√
n
,Xn +QT

(
1+ C

2
;n− 1

)
Sn√
n

)
. (3.6.9)

For large n, say, n > 20, the Student-T p.d.f. with n degress of
freedom becomes almost indistinguishable from the N(0,1) p.d.f. (see
Exercise 3.7.17), and the latter can be used in the construction of con-
fidence intervals even in the case of unknown variance.

Example 3.6.2 (a 90% confidence interval forμX with unknown Std(X)).
Nine independent measurements of a Gaussian random quantity X re-
sulted in X9 = 2.56 and S9 = 0.12. With the desired confidence level
C = 0.9, the table yields the quantile

QT
(

1+ 0.9
2

; 8
)
= QT(0.95; 8) = 1.86.

Hence the 90% confidence interval for the expectation μX is of the form(
2.56− 1.86 · 0.12√

9
,2.56+ 1.86 · 0.12√

9

)
= (2.56− 0.07,2.56+ 0.07)

or, in other words, μX = 2.56± 0.07 at the 90% confidence level.

The final question in this section is, how good is the sample variance
estimator S2

n introduced in (3.6.2)? Here again, the answer is difficult
for a general c.d.f. FX . However, in the case of a Gaussian sample one
can prove that the nonnegative random quantity

χ2 = 1

σ 2
X

n∑
i=1

(Xi −Xn)2 (3.6.10)

has a p.d.f. of the form

fχ2(x;n− 1) = 1
2(n−1)/2 Γ

(
n− 1

2

)
x(n−3)/2e−x/2, x ≥ 0, (3.6.11)

which traditionally is called the chi-square p.d.f. with (n − 1) degrees
of freedom.24 Thus the C confidence level interval for σ 2

X is of the form⎛
⎝ (n− 1)S2

X

Qχ2

(
1+C

2 ;n− 1
) , (n− 1)S2

X

Qχ2

(
1−C

2 ;n− 1
)
⎞
⎠ (3.6.12)

Selected quantiles Qχ2(α;n) for the chi-square distributions are given
in the tables at the end of this chapter.
24 Compare this definition with the calculation of the p.d.f. of the square of

the N(0,1)-distributed random quantity in Example 3.1.11.
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Example 3.6.3 (a 99% confidence interval for Var(X)). Twenty-six in-
dependent measurements of a Gaussian random quantity X resulted in
the estimate S2

26 = 1.37 for the variance Var(X). With C = 0.99, the
tables yield

Qχ2

(
1+ 0.99

2
; 25

)
= Qχ2(0.995; 25) = 46.928

and

Qχ2

(
1− 0.99

2
; 25

)
= Qχ2(0.005; 25) = 10.520.

Thus the 99% confidence level interval for the variance σ 2
X is(

25 · 1.37
46.928

,
25 · 1.37
10.520

)
= (0.723,3.255).

The interval is relatively large because the confidence level demanded
is very high. Note that it is not symmetric about the estimated value
S2

26 = 1.37.

3.7 Problems, exercises, and tables

Use Mathematica, MAPLE, or Matlab as needed throughout this and
other problem sections.

3.7.1. Plot the c.d.f.s of binomial quantities X with p = 0.21 and
n = 5,13,25. Calculate the probabilities that X takes values
between 1.3 and 3.7. Repeat the same exercise for p = 0.5 and
p = 0.9.

3.7.2. Calculate the probability that a random quantity uniformly dis-
tributed over the interval [0,3] takes values between 1 and 3.
Do the same calculation for the exponentially distributed ran-
dom quantity with parameter μ = 1.5, and the Gaussian random
quantity with parameters μ = 1.5, σ 2 = 1.

3.7.3. Prove that αΓ(α) = Γ(α+ 1), and that Γ(n) = (n− 1)!. Use the
integration-by-parts formula. Verify analytically that Γ(1

2) =√
π . Use the idea employed in Example 3.1.6 to prove that the

standard Gaussian density is normalized.
3.7.4. The p.d.f. of a random variable X is expressed by the quadratic

function fX(x) = ax(1 − x), for 0 < x < 1, and is zero out-
side the unit interval. Find a from the normalization condition
and then calculate FX(x), EX, Var(X), Std(X), the nth central
moment, and P(0.4 < X < 0.9). Graph fX(x) and FX(x).

3.7.5. Find the c.d.f and p.d.f. of the random quantity Y = X3, where
X is uniformly distributed on the interval [1,3].
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3.7.6. Find the c.d.f and p.d.f. of the random quantity Y = tanX, where
X is uniformly distributed over the interval (−π2 , π2 ). Find a
physical (geometric) interpretation of this result.

3.7.7. Verify that Var(X) = EX2 − (EX)2; see formula (3.2.6).
3.7.8. Calculate the expectation and the variance of the binomial dis-

tribution from Example 3.1.2.
3.7.9. Calculate the expectation and the variance of the Poisson dis-

tribution from Example 3.1.3.
3.7.10. Calculate the expectation, the variance, and the nth moment of

the exponential distribution from Example 3.1.5.
3.7.11. Calculate the nth central moment of the Gaussian distribution

from Example 3.1.6.
3.7.12. Derive the formula for the binomial distribution from Exam-

ple 3.1.2, relying on the observation that it is the distribution of
the sum of n independent and identically distributed Bernoulli
random qunatities. Show that if p = μ

n and n → ∞, then the
binomial probabilities converge to the Poisson probabilities.

3.7.13. A random quantity X has an even p.d.f. fX(x) of the triangular
shape shown in Figure 3.7.1.

Fig. 3.7.1.

(a) How many parameters do you need to describe this p.d.f.?
Find an explicit analytic formula for p.d.f. fX(x) and c.d.f.
FX(x). Graph both of them.

(b) Find the expectation and variance of X.
(c) Let Y = X3. Find the p.d.f. fY (y) and graph it.

3.7.14. A discrete 2D random vector (X, Y) has the following joint p.d.f.:

P(X = 1, Y = 1) = 2
12
, P(X = 2, Y = 1) = 1

12
,

P(X = 3, Y = 1) = 1
12
, P(X = 1, Y = 3) = 2

12
,

P(X = 2, Y = 3) = 4
12
, P(X = 3, Y = 2) = 2

12
.
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Find the marginal distributions of X and Y , their expectations
and variances, as well as the covariance and the correlation co-
efficient of X and Y . Are X and Y independent?

3.7.15. Verify the Cauchy–Schwartz inequality (3.3.19). Hint : Take
Z = X−EX

σ(X) and W = Y−EY
σ(Y) , and consider the discriminant of

the expression E(Z + xW)2. The latter is quadratic in variable
x and necessarily always nonnegative, so it can have at most
one root.

3.7.16. The following sample of random vector (X, Y) was obtained:
(1,1.7), (2,2), (5,4.3), (7,5.9), (9,8), (9,8.7). Produce the scat-
terplot of the sample and the corresponding least-squares re-
gression line.

3.7.17. Using the table ofN(0,1) c.d.f. provided at the end of this chap-
ter calculate P(−1 ≤ Y ≤ 2) if Y ∼ N(0.7,4).

3.7.18. Produce graphs of the Student-T p.d.f. fT (x,n), for n = 2,5,
12,20, and compare them with the standard normal p.d.f.

3.7.19. Produce graphs of the chi-square p.d.f. fχ2(x,n) for n = 2,5,
12,20.

3.7.20. Find a constant c > 0 such that the function

fX(x) =
{
c(1+ x)−3 for x > 0;

0 for x ≤ 0.

is a valid p.d.f. Find P(1
5 < X < 5), E(X), and the p.d.f. fY (y)

of Y = X1/5. Show that Var(x) = ∞.
3.7.22. Measurements of voltage V and current I on a resistor yielded

the following n = 5 paired data: (1.0,2.3), (2.0,4.1), (3.0,6.4),
(4.0,8.5), (5.0,10.5). Draw the scatterplot and find the regres-
sion line providing the least-squares fit for the data.

3.7.23. Independent measurements of the leakage current I on a ca-
pacitor yielded the following data: 2.71, 2.66, 2.78, 2.67, 2.71,
2.69, 2.70, 2.73 mA. Assuming that the distribution of the ran-
dom quantity I is Gaussian, find the 95% confidence intervals
for the expectation EI and the variance σ2

X .
3.7.24. Complete the following sketch of the proof of the central limit

theorem.
(a) Define LX(u) as the Laplace transform of c.d.f. FX(x):

LX(u) =
∫∞
∞
euxdFX(x).

Find L′X(0) and L′′X(0).
(b) Calculate LX(u) for the Gaussian N(0,1) random quantity.
(c) Prove that, for independent random quantities X and Y ,

LX+Y (u) = LX(u) · LY (u).
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(d) Utilizing (c), calculate

L√n(X−μX)/ Std(X)(u),

(it is easier to work here with the logarithm of the Laplace
transform) and find its limit as n→∞. Compare it with the
Laplace transform of the GaussianN(0,1) random quantity.

3.7.25. Use the introduced above Laplace transform technique to prove
that the sum of two independent Gaussian random quantities
is again a Gaussian random quantity.

3.7.26. What is the probability P that a randomly selected chord is
shorter than the side S of an equilateral triangle inscribed in
the circle? Here are two seemingly reasonable solutions:25

(a) A chord is determined by its two endpoints. Fix one of them
to be A. For the chord to be shorter than the side S, the
other endpoint must be chosen on either the arc AB or on
the arc CA, and each of them is subtended by an engle of
120◦. Thus P = 2

3 .
(b) A chord is completely determined by its center. For the

chord to be shorter than the side S, the center must lie out-
side the circle of radius equal to the half of the radius of the
original circle and the same center. Hence, the probability
P equals the ratio of the annular area between two circles
and the area of the original circle, which is 3

4 .
These two solutions are different. How is that possible?

3.7.27. Derive formulas for the c.d.f. FY (y), and the p.d.f. fY (y), of
a transformation Y = g(X) of a random quantity X, in terms
of its c.d.f. FX(x), and p.d.f. fX(x), in the case when the trans-
forming function y = g(x) is monotonically decreasing. Follow
the line of reasoning used to derive the analogous formulas
(3.1.11)–(3.1.12) for monotonically increasing transformations.
How would you extend these formulas to transformations that
are monotonically increasing on some intervals and decreasing
on their complement?

3.7.28. Verify that the components X,Y of the random vector with
probability distribution P((X, Y) = (1,0)) = P((X, Y) = (0,1))
= P((X, Y) = (−1,0)) = P((X, Y) = (0,−1)) = 1

4 are un-
correlated but not statistically independent. Calculate proba-
bility distribution of a random vector (W,Z) with statistically
independent components and the same marginal distribution
as (X, Y).

25 For more information, see M. Denker and W. A. Woyczyński, Introductory
Statistics and Random Phenomena: Uncertainty, Complexity, and Chaotic
Behavior in Engineering and Science, Birkhäuser Boston, Cambridge, MA,
1998, Example 5.1.1.
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Table 3.7.1. Gaussian N(0,1) c.d.f. Φ(z) = (2π)−1/2
∫ z
−∞ e−x

2/2dx.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5395 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6296 .6331 .6366 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6884 .6879
0.5 .6915 .6956 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7857 .7389 .7422 .7454 .7486 7517 .7549
0.7 .7580 .7611 .7642 7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8075 .8106 .8133
0.9 .8195 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8503 .8531 .8554 .8577 .8599 .8621
1.1 .8613 .8665 .8686 .8708 .8729 .8749 .8770 .8796 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8977 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9359 .9370 .9382 .9309 .9404 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9606 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 9678. 9666. 9693. 9699. .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850. 9854 .9857
2.2 .9891 .9861 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.4 .9918 .9820 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .8876 .8876 .8877 .8877 .8878 .8878 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992. .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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Table 3.7.2. Student-T distribution quantiles QT(α;n).

n\α 0.1000 0.0500 0.0250 0.0100 0.0050 0.0010 0.0005
1 3.078 6.314 12.706 31.821 63.657 318.317 636.61
2 1.886 2.920 4.303 6.965 9.925 22.326 31.598
3 1.638 2.353 3.182 4.451 5.841 10.213 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 8.610
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.500 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.813 2.228 2.764 3.169 4.144 4.587
11 1.364 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.141
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.584 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.553 2.879 3.610 3.992
19 1.328 1.729 2.093 2.540 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.849
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.320 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.059 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.312 1.701 2.049 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.311 1.697 2.042 2.457 2.750 3.385 3.646
40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460
120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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Table 3.7.3. Chi-square distribution quantiles Qχ2(α;n).

n\α 0.9950 0.9900 0.9750 0.9500 0.9000 0.1000 0.0500 0.0250 0.0100 0.0050
1 0.000 0.000 0.001 0.004 0.016 2.706 3.843 5.025 6.637 7.882
2 0.010 0.020 0.051 0.103 0.211 4.605 5.992 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.344 12.937
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.160 9.236 11.070 12.832 15.085 16.748
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.440 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.17 14.067 16.012 18.474 20.276
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.534 20.090 21.954
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.022 21.665 23.587
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.724 26.755
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.735 27.687 29.817
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.600 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.577 32.799
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.407 7.564 8.682 10.085 24.769 27.587 30.190 33.408 35.716
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.843 7.632 8.906 10.117 11.651 27.203 30.143 32.852 36.190 38.580
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.033 8.897 10.283 11.591 13.240 29.615 32.670 35.479 38.930 41.399
22 8.643 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289 42.796
23 9.260 10.195 11.688 13.090 14.848 32.007 35.172 38.075 41.637 44.179
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558
25 10.519 11.523 13.120 14.611 16.473 34.381 37.652 40.646 44.313 46.925
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.807 12.878 14.573 16.151 18.114 36.741 40.113 43.194 46.962 49.642
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.120 14.256 16.147 17.708 19.768 39.087 42.557 45.772 49.586 52.333
30 13.787 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
31 14.457 15.655 17.538 19.280 21.433 41.422 44.985 48.231 52.190 55.000
32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328
33 15.814 17.073 19.046 20.866 23.110 43.745 47.400 50.724 54.774 57.646
34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964
35 17.191 18.508 20.569 22.465 24.796 46.059 49.802 53.203 57.340 60.272
36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581
37 18.584 19.960 22.105 24.075 26.492 48.363 52.192 55.667 59.891 62.880
38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.162 64.181
39 19.994 21.425 23.654 25.695 28.196 50.660 54.572 58.119 62.462 65.473
40 20.706 22.164 24.433 26.509 29.050 51.805 55.758 59.342 63.691 66.766
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Stationary Signals

In this chapter we introduce basic concepts necessary to study the time-
dependent dynamics of random phenomena. The latter will be modeled
as a family of random quantities indexed by a parameter, interpreted in
this book as time. The parameter may be either continuous or discrete.
Depending on the context and the tradition followed by different au-
thors, such families are called random signals, stochastic processes, or
random time series. The emphasis here is on random dynamics which
are stationary , that is governed by underlying statistical mechanisms
that do not change in time, although, of course, particular realizations
of such families will be functions that vary with time. Think here about
the random signal produced by the proverbial repeated coin tossing;
the outomes vary while the fundamental mechanics remains the same.

4.1 Stationarity, autocovariance, and autocorrelation

A random (or stochastic) signal is a time-dependent family of random
quantities X(t). Depending on the context, one can consider random
signals on the positive time line t ≥ 0, on the whole time line −∞ <
t < ∞, or on a finite time interval t0 ≤ t ≤ t1. Also it is useful to be
able to consider random vector signals and signals with discrete time
t = . . . ,−2,−1,0,1,2, . . . .

In this book we will restrict our attention to signals that are sta-
tistically stationary, which means that at least some of their statistical
characteristics do not change in time. Several choices are possible here:

First-order strictly stationary signals. In this case, the c.d.f. FX(t)(x)
does not change in time (it is time-shift invariant), that is,

FX(t)(x) = FX(t+τ)(x) for all t, τ, x. (4.1.1)
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Second-order strictly stationary signals. In this case, the joint 2D c.d.f.
F(X(t1),X(t2))(x1, x2) does not change in time, that is,

F(X(t1),X(t2))(x1, x2) = F(X(t1+τ),X(t2+τ))(x1, x2) for all t1, t2, τ, x1, x2.
(4.1.2)

In a similar fashion one can define the nth-order strict stationarity
of random signal X(t) as the time-shift invariance of the nD joint c.d.f.,
that is, the requirement that

F(X(t1),...,X(tn))(x1, . . . , xn) = F(X(t1+τ),...,X(tn+τ))(x1, . . . , xn) (4.1.3)

for all t1, . . . , tn, τ,x1, . . . , xn.
Finally, a random signal X(t) is said to be strictly stationary if, for

each n = 1,2, . . . , it is nth-order strictly stationary.
Obviously, as n increases, verifying the nth-order stationarity gets

more and more difficult, not to mention practical difficulties that arise
with checking the full strict stationarity. For this reason, a more modest
concept of second-order weakly stationary signals is useful. In this case
the invariance property is demanded only of the moments of the signal
up to order 2. More precisely, a signal X(t) is said to be second-order
weakly stationary if its expectations and covariances are time-shift in-
variant, that is, if

μX(t) ≡ E[X(t)] = E[X(t + τ)] ≡ μX(t + τ) (4.1.4)

for all t, τ , and the autocovariance function is

γX(t1, t2) ≡ Cov(X(t1),X(t2))
= Cov(X(t1 + τ),X(t2 + τ)) ≡ γX(t1 + τ, t2 + τ) (4.1.5)

for all t1, t2, τ .
It is a consequence of the above two conditions that, for any second-

order weakly stationary signal,

μX(t) = μX = constant, (4.1.6)

and the autocovariance function depends only on the time lag τ =
t2 − t1,

γX(t1, t2) = γX(t1 − t1, t2 − t1) = γX(0, t2 − t1), (4.1.7)

so that, in particular,
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Var(X(t)) ≡ σ 2
X(t) = Cov(X(t),X(t)) = γX(0,0) = σ 2

X = constant.
(4.1.8)

Thus all the first and second moments of the signal can be expressed
in terms of just two characteristics, the signal’s mean value μX and
signal’s autocovariance function

γX(t) := γX(0, t) = E[(X(0)− μX)(X(t)− μX)], (4.1.9)

which is, as a result of the stationarity assumption, a function of just a
single variable.

In the remainder of this discussion, we will restrict our attention to
second-order weakly stationary signals X(t), which we will simply call
stationary signals. We will analyze them assuming only the knowledge
of their mean value μX and their autocovariance function γX(t).

The following properties of the autocovariance function follow di-
rectly from its definition and the Schwartz inequality (see Section 3.7):

γX(−t) = γX(t), (4.1.10)

and
|γX(t)| ≤ γX(0) = σ 2

X. (4.1.11)

In other words, the covariance function is even and its absolute value
is bounded by its value at t = 0, where it is simply equal to the signal’s
variance.

In different situations it is often convenient to use close relatives of
the autocovariance function, such as the autocorrelation function26

φX(t) = E(X(t1)X(t1 + t))
= Cov(X(t1),X(t1 + t))+ E(X(t1)) · E(X(t1 + t)) = γX(t)+ μ2

X,
(4.1.12)

and the normalized autocovariance function

26 You may have noticed that in signal processing the traditional term “auto-
correlation function” is at odds with the previously introduced term “corre-
lation coefficient,” which really corresponds to the above-introduced “nor-
malized autocovariance function.” But the terminology is so well estab-
lished that we will stick with it.
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ξX(τ) = γX(t)
σ 2
X

= φX(t)− μ2
X

σ 2
X

(4.1.13)

which has the advantage of having its values always contained in the
interval [−1,1].

If the signals’ mean value is zero, then, of course, the autocovariance
and the autocorrelation functions are identical:

γX(τ) = φX(τ).

In what follows, unless explicitly stated otherwise, we will always as-
sume that the signals under consideration have zero means so that the
autocorrelation and the autocovariance are the same functions.

The reminder of this section is devoted to a series of examples of
stationary data. The first, real-life example (see Figure 4.1.1) shows a
sample of a 21-channel recording of the sleep electroencephalogram
(EEG) of a neonate. The duration of this multidimensional random sig-
nal is one minute and the sampling rate is 64 Hz. This particular EEG
was taken during the so-called mixed frequency sleep stage and, in addi-
tion to the EEG, it also shows related signals such as electrocardiogram
(EKG), breathing signal, eye muscle contraction signal, etc. The signal’s
components seem stationary for some channels while other channels
seem to violate the stationarity property. This can be due to some arti-
facts in the recordings caused, for example, by the physical movements
of the infant or by the onset of a different sleep stage (active, passive,
rapid eye movement (REM), etc.). The study of EEG signals provides
important information on the state of the brain’s neural network and,
in the case of infants, can be used to assess the maturity level of their
brains. In Section 4.2, we will provide a method to estimate the auto-
correlation function for such real-life data.

Examples 4.1.1–4.1.6 provide various mathematical models of sta-
tionary signals. In those cases, the autocorrelation functions can be
explicitely calculated.

Example 4.1.1 (a random harmonic oscillation). Consider a signal which
is a simple harmonic oscillation with nonrandom frequency f0 = 1

P but
random amplitude A such that the second moment EA2 < ∞, and ran-
dom phase Θ uniformly distributed over the period and independent
of A. In other words,

X(t) = A cos(2πf0(t +Θ)).

The signal is stationary because its mean value is
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Fig. 4.1.1. A sample of a 21-channel recording of the sleep electroencephalo-
gram (EEG) of a neonate. The duration of this multidimensional random sig-
nal is 60 seconds and the sampling rate is 64 Hz. (From A. Piryatinska’s Ph.D.
dissertation, Department of Statistics, Case Western Reserve University, Cleve-
land, 2004.)

EX(t) = EA cos 2πf0(t +Θ) = EA ·
∫ P

0
cos 2πf0(t + θ)dθP = EA · 0 = 0

and its autocovariance is

γX(t, s) = EX(t)X(s) = E[A cos 2πf0(t +Θ) ·A cos 2πf0(s +Θ)]

= EA2 ·
∫ P

0
cos 2πf0(t + θ) · cos 2πf0(s + θ)dθP

= EA2 1
2

(∫ P
0

cos 2πf0(t + s + 2θ)
dθ
P
+
∫ P

0
cos 2πf0(s − t)dθP

)

= EA2

2
cos 2πf0(s − t),
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where we used the independence of the amplitude A and the phase Θ
to split the expectations of the product into the product of the expec-
tations. As a result we see that the autocorrelation γX(t, s) is just a
function of the difference s − t, which means that the signal is station-
ary. In particular,

γX(t) = EA2

2
cos 2πf0t.

Example 4.1.2 (superposition of random harmonic oscillations). In
this example, we consider a signal which is a sum of simple har-
monic oscillations with frequencies kf0, k = 1,2, . . . , N, random am-
plitudes Ak, k = 1,2, . . . , N , such that EA2

k <∞, and random phases Θk,
k = 1,2, . . . , N, uniformly distributed over the corresponding periods.
All of the above random quantities are assumed to be independent of
each other. In other words,

X(t) =
N∑
k=1

Ak cos(2πkf0(t +Θk)).

In this case one can verify (see Section 4.3, problems and exercises) that
the signal is again stationary and the covariance function is of the form

γX(t) = 1
2

N∑
k=1

EA2
k cos(2πkf0t).

Example 4.1.3 (discrete-time white noise). In this example, the time is
discrete, that is, t = n = . . . ,−2,−1,0,1,2, . . . and the random signal
W(n) has mean zero and values at different times that are uncorrelated;
its variance is σ2

W . In other words,

μW = 0,

and

γW(n, k) = E(W(n)W(k)) =
{
σ 2
W if n− k = 0,

0 if n− k ≠ 0.

Note that the above-defined signal is stationary because its autocovari-
ance (autocorrelation, since the mean is zero) is indeed a function of
only the time lag and can be written in the form

γW(n, k) = σ 2
Wδ(n− k),

where

δ(n) =
{

1 if n = 0;

0 if n ≠ 0,
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is the discrete-time Dirac delta function. This kind of signal is called
discrete-time white noise and it has mean zero and autocorrelation func-
tion

γW(n) = σ 2
Wδ(n).

A sample path of a discrete-time white noise with σ 2
W = 1

12 is shown
in Figure 4.1.2. It was produced using a random number generator
in Mathematica, with the values of Wn uniformly distributed on the
interval [−1

2 ,
1
2].

Fig. 4.1.2. A sample discrete-time white noise random signal W(n), n =
1,2, . . . ,50, with σ 2

W = 1
12 . For the sake of the clarity of the picture, values

of W(n) for consecutive integers n were joined by straight line segments.

Example 4.1.4 (moving average of the white noise). The moving aver-
age signal X(n) is obtained from the white noise W(n) with variance
σ 2
W by the “windowing” procedure. The windowing procedure mixes

values of the white noise, W(n),W(n − 1), . . . ,W(n − q), in the time
window of fixed width q+1, extending into the past, giving values with
different time lags different weights, say, b0, b1, . . . , bq. More precisely,

X(n) = b0W(n)+ b1W(n− 1)+ · · · + bqW(n− q).
You can interpret the moving average signal as a convolution of the
white noise with the windowing weight sequence. One immediately
obtains that μX = 0. Since, for independent random quantities, the
variance of the sum is equal to the sum of the variances, the variance is
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σ 2
X = σ 2

W

q∑
i=0

b2
i .

Calculation of the autocorrelation function is a little more complicated
(see Section 4.3, problems and exercises) and here we will carry it out
only in the case of the window of width 2, when

X(n) = b0W(n)+ b1W(n− 1).

Then

γX(n, k) = EX(n)X(k)
= E((b0W(n)+ b1W(n− 1))(b0W(k)+ b1W(k− 1)))

= b2
0E(W(n)W(k))+ b0b1E(W(k)W(n− 1))

+ b0b1E(W(k− 1)W(n))+ b2
1E(W(n− 1)W(k− 1))

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(b2
0 + b2

1)σ
2
W if n = k� n− k = 0;

b0b1σ 2
W if n− 1 = k� n− k = 1;

b0b1σ 2
W if n = k− 1 � n− k = −1;

0 if |n− k| > 1.

Since γX(n, k) depends only on the difference n − k, the moving
average signal is stationary. For the sample white noise signal from
Figure 4.1.2, the moving average signal X(n) = 2W(n)+ 5W(n− 1) is
shown in Figure 4.1.3, and its corresponding autocorrelation function

γX(n) =

⎧⎪⎪⎨
⎪⎪⎩

29
12 if n = 0;
10
12 if n = ±1;

0 if n = ±2,±3, . . . .

is shown in Figure 4.1.4.

Example 4.1.5 (random switching signal). Consider a signalX(t) switch-
ing back and forth between values +1 and −1 at random times. More
precisely, the intial value of the signal, X(0), is a random quantity with
the symmetric Bernoulli distribution, that is, P(X(0) = ±1) = 1

2 , and
the interswitching times form a sequence T1, T2, . . . , of independent
random quantities with the exponential distribution:

P(Ti ≤ t) = 1− e−t, t > 0,

of mean 1. The initial value X(0) is assumed to be independent of
interswitching times Ti. A typical sample of such a signal is shown in
Figure 4.1.5.
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Fig. 4.1.3. Sample moving average signal X(n) = 2W(n) + 5W(n − 1) for the
sample white noise shown in Figure 4.1.2. Note that the moving average signal
appears smoother than the original white noise. The constrained oscillations
are a result of nontrivial, although short-term in this example, correlations.

Fig. 4.1.4. Autocovariance function for the moving average signal X(n) =
2W(n) + 5W(n − 1). Note that the values of the signal separated by more
that one time unit are uncorrelated.

Calculation of the mean and the autocorrelation function of the
switching signal depends on the knowledge of the fact that such a ran-
dom signal can be written in the form

X(0) · (−1)N(t),

where N(t) is the (nonstationary) random signal counting the number
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Fig. 4.1.5. A sample of the random switching signal from Example 4.1.5. The
values are ±1 and the initial value is +1. The interswitching times are inde-
pendent and have an exponential c.d.f. of mean 1.

of switches up to time t. One can prove27 that N(t) has increments in
disjoint time intervals that are statistically independent, with the dis-
tributions thereof depending only on the interval’s length. More strik-
ingly, these increments must have the Poisson probability distribution
with mean equal to the interval’s length, that is,

P(N(t0 + t)−N(t0) = k) = e−t · t
k

k!

for any t, t0 ≥ 0 and k = 0,1,2, . . . .
Armed with this information, we can now easily complete calcula-

tions of the mean and the autocorrelation function of the switching
signal:

μX(t) = EX(t) = EX(0) · E(−1)N(t) = 0,

and, for t < s,

γX(t, s) = E[X(t)X(s)] = EX2(0) · E[(−1)N(t)(−1)N(s)]

= 1 · E[(−1)2N(t)(−1)N(s)−N(t)]

= E(−1)N(s)−N(t)

=
∞∑
k=0

(−1)k · e
−(s−t)(s − t)k

k!
= e−2(s−t).

Therefore, the random switching signal X(t) is stationary and, because
of the symmetry property of all autocorrelation functions, its autocor-
relation function

γX(t) = e−2|t|.

27 See, for example, O. Kallenberg, Foundations of Modern Probability ,
Springer-Verlag, New York, 1997.
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Example 4.1.6 (solution of a stochastic difference equation). Consider
a stochastic difference equation

X(n) = αX(n− 1)+ βW(n), n = −2,−1,0,1,2, . . . ,

where W(n) is a discrete-time white noise with σ 2
W = 1. Observe that

the above system, rewritten in the form

X(n)−X(n− 1)
Δn

= (α− 1)X(n− 1)+βW(n), n = −2,−1,0,1,2, . . . ,

can be viewed as a discrete-time version of the stochastic differential
equation

dX(t) = (α− 1)X(t)dt + βW(t)dt,
where W(t) represents the continuous-time version of the white noise
to be discussed in later chapters.

The solution of the above stochastic difference equation can be
found by recursion. Therefore,

X(n) = α(αX(n− 2)+ βW(n− 1))+ βW(n)
= α2X(n− 2)+αβW(n− 1)+ βW(n)

= · · · = αlX(n− l)+
l−1∑
k=0

αkβW(n− k).

for any l = 1,2, . . . . Assuming that |α| < 1 and that X(n − k) remain
bounded, the first term αkX(n−k)→ 0 as k→∞. In that case, the sec-
ond term converges to the infinite sum and the solution is of the form

X(n) = β
∞∑
k=0

αkW(n− k).

This is the special form of the general moving average signal appearing
in Problem 4.3.4, with the windowing sequence

ck =
{
βαk for k = 0,1,2, . . . ;
0 for k = −1,−2, . . . .

Hence its autocorrelation function is

γX(n) =
∞∑

k=−∞
ckcn+k = β2

∞∑
k=0

αkαn+k = β2 αn

1−α2
.

Example 4.1.7 (using moving averages to filter noise out of a signal).
Consider a signal of the form
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Fig. 4.1.6. Top: Signal X(n) from Example 4.1.7 containing a nonrandom har-
monic component plus a random white noise. Bottom: The same signal after
a smoothing, moving average operation filtered out some of the white noise.
The figure shows values of both signals for times n = 1,2, . . . ,1000.

X(n) = sin(0.02n)+W(n),

where W(n) is the white noise considered in Example 4.1.3 (shown in
Figure 4.1.2), and let Y(n) be a moving average (discrete-time convolu-
tion) of signal X(n) with the windowing sequence b0 = b1 = b2 = b3 =
b4 = 1

5 , that is,

Y(n) = 1
5
X(n)+ 1

5
X(n− 1)+ 1

5
X(n− 2)+ 1

5
X(n− 3)+ 1

5
X(n− 4).

The values of both signals, X(n) and Y(n), for time instants n =
1,2, . . . ,1000, are shown in Figure 4.1.6. Clearly, the moving average
operation filtered some of the white noise out of the original signal and
the transformed signal appears smoother.
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4.2 Estimating the mean and the autocorrelation function,
ergodic signals

If one can obtain multiple independent samples of the same random
stationary signal, then the estimation of its parameters, the mean value
and the autocorrelation function, can be based on procedures described
in Section 3.6. However, very often the only available information is
a single but perhaps long (timewise) sample of the signal; think here
about the historical temperature records at a given location, Dow Jones
stock market index daily quotations over the past 10 years, or measure-
ments of the sunspot activity over a period of time; these measurements
cannot be independently repeated. Estimation of the mean and the au-
tocorrelation function of a stationary signal X(t) based on its single
sample is a delicate matter because the standard law of large numbers
and the central limit theorem cannot be applied. So one has to proceed
with caution, as we now illustrate.

Estimation of the mean μX . If a stationary signal X(t) is sampled with
the sampling interval T , that is, the known values are

X(0),X(T),X(2T), . . . , X(NT), . . . ,

then the obvious candidate for an estimator μ̂X of the signal’s mean
μX is

μ̂X(N) = 1
N

N−1∑
i=0

X(iT).

This estimator is easily seen to be unbiased as

E[μ̂X(N)] = 1
N

N−1∑
i=0

E[X(iT)] = μX. (4.2.1)

To check whether the estimator μ̂X(N) converges to μX as the observa-
tion interval NT → ∞, that is, to check the estimator’s consistency, we
will take a look at the mean-square distance (estimation error) between
μ̂X(N) and μX or, equivalently, the variance of their difference:

σ 2(μ̂X(N)) = E[(μ̂X − μX)2]

= 1
N2

E

⎡
⎣N−1∑
i=0

(X(iT)− μX)
N−1∑
k=0

(X(kT)− μX)
⎤
⎦

= 1
N2

N−1∑
i=0

N−1∑
k=0

γX(iT , kT) = 1
N2

N−1∑
i=0

N−1∑
k=0

γC((i− k)T)

= σ 2
X
N
+ 2
N

N−1∑
k=0

(
1− k

N

)
γX(kT). (4.2.2)
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So the error of replacing the true value μX by the estimator μ̂X will
converge to zero, as N → ∞, only if the sum in (4.2.2) increases more
slowly28 than N , i.e.,

N−1∑
k=0

(
1− k

N

)
γX(kT) = o(N) as N →∞. (4.2.3)

Thus, for example, if the covariance function γX(n) vanishes outside
a finite interval, as was the case for finite moving averages in Exam-
ple 4.1.2, then μ̂X is a consistent estimator for μX .

Example 4.2.1 (consistency of μ̂X for solutions of discrete-time sto-
chastic difference equations). Consider the solution X(n) of the
stochastic difference equation from Example 4.1.6. Its autocorrelation
function was found to be of the form

γX(n) = β2 αn

1−α2
, |α| < 1.

Since it decays exponentially as n → ∞, the sum in (4.2.2) converges
and condition (4.2.3) is satisfied. The mean-square error of replacing
μX by the estimator μ̂X can now be controlled:

σ 2(μ̂X(N)) = E[(μ̂X − μX)2]

= γX(0)
N

+ 2
N

N−1∑
k=0

(
1− k

N

)
β2 αk

1−α2

≤ β2

N(1−α2)

⎛
⎝1+ 2

N−1∑
k=0

αk
⎞
⎠ ≤ β2(3−α)

N(1−α2)(1−α).

Estimation of the covariance function γX(n). For simplicity’s sake as-
sume that μX = 0, the sampling interval T = 1, the signal is real-valued,
and that observations X(0), . . . , X(N) are given. The natural candidate
for an estimator of the autocorrelation function γX(n) = EX(0)X(n) is
the time average:

γ̂X(n;N) = 1
N −n

N−n−1∑
k=0

X(k)X(k+n). (4.2.4)

It is an unbiased estimator since

E[γ̂X(n,N)] = 1
N −nE

⎡
⎣N−n−1∑

k=0

X(k)X(k+n)
⎤
⎦

28 Here we use Landau’s asymptotic notation: we write that f(x) = o(g(x)),
as x → x0, and say that f(x) is little “oh” of g(x) at x0, if limx→x0

f(x)
g(x) = 0.
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= 1
N −n

N−n−1∑
k=0

γX(n) = γX(n).

One can also prove that if γX(n)→ 0 sufficiently fast,29 as n→∞, and
if γX(0) = σ 2

X < ∞, then the mean-square distance from γ̂X(n;N) to
γX(n) decreases to 0 as N →∞. In other words, the estimator (4.2.4) is
consistent.

Example 4.2.2. Figure 4.2.1 shows two samples of the central channel
recording for a full-term neonate EEG (see Figure 4.1.1 for a sample of
the full 21-channel EEG). The duration of each of the samples is three
minutes. The data in the top picture were recorded during the active
sleep stage, and in the bottom picture during the quiet sleep stage. The
estimated autocorrelation functions (ACFs) for both signals were then
calculated using formula (4.2.4), and are shown in Figure 4.2.2. The
example is taken from A. Piryatinska’s Ph.D. dissertation (Department
of Statistics, Case Western Reserve University, Cleveland, 2004), men-
tioned already in Section 4.1. Note that the ACF of the active sleep signal
decays much more slowly than the ACF of the quiet sleep, indicating
the longer-range dependence structure of the former. Information on
the rate of decay in EEG ACFs can then be used to automatically clas-
sify stationary segments of the EEG signals as those corresponding to
different sleep stages recognized by pediatric neurologists.

Remark 4.2.1 (ergodicity). If the estimator μ̂X is unbiased and consis-
tent, that is,

Eμ̂X(N) = μX and σ 2(μ̂X(N))→ 0,

as N → ∞, then one often says that the signal is ergodic in the mean.
Note that, in general, this does not imply that for every sample path of
the random signal the estimator converges to the estimated parameter.
To guarantee that, for a general test function g, the time averages

g(X(1))+ g(X(2))+ · · · + g(X(N))
N

converge to Eg(X(1)) as N → ∞, for (almost) every sample path of the
random signal, stronger ergodicity and stricter stationarity assump-
tions are needed. A more detailed analysis of the ergodic behavior
of stationary time series can be found in the above-quoted books by
M. Denker and W. A. Woyczyński and by P. J. Brockwell and R. A. Davis.

29 For a thorough exposition of these issues, see, for example, P. J. Brockwell
and R. A. Davis, Time Series: Theory and Methods, Springer-Verlag, New
York, 1991.
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Fig. 4.2.1. Top: Three-minute recording of the central channel EEG for an infant
in a quiet sleep stage. Bottom: Analogous recording for an active sleep stage.
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Fig. 4.2.2. Left : Estimated autocorrelation function (ACF) for the quiet sleep
EEG signal from Figure 4.2.1. Right : Analogous estimated ACF for the active
sleep stage.
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Remark 4.2.2 (confidence intervals). Under fairly weak assumptions one
can show that the asymptotic distributions (N → ∞) of the suitably
rescaled estimators μ̂X(N), γ̂X(n;N) are asymptotically normal. Thus
the confidence intervals for them can be constructed following the ideas
discussed in Section 3.6.

4.3 Problems and exercises

4.3.1. Consider a random signal

X(t) = A1 cos 2πf0(t +Θ1)+ · · · +An cos 2π(nf0)(t +Θn),

where A1,Θ1, . . . , An,Θn are independent random variables and
Θ1, . . . ,Θn are uniformly distributed on the time interval [0, P =
1
f0
]. Is this signal stationary? Find its mean, autocovariance, and

autocorrelation functions.
4.3.2. Consider a random signal

X(t) = A1 cos 2πf0(t +Θ0),

where A1,Θ0, are independent random variables, and Θ0 is uni-
formly distributed on the time interval [0, P3 = 1

3f0
]. Is this signal

stationary? Find its mean, autocovariance, and autocorrelation
functions.

4.3.3. Find the mean and autocorrelation functions of the discrete-time
signal

Y(n) = 3W(n)+ 2W(n− 1)−W(n− 2),

whereW(n),n = . . . ,−2,−1,0,1,2, . . . , is the discrete-time white
noise with σ 2

W = 4, that is,

EW(n) = 0

and

E(W(k)W(n)) = 4δ(n− k) =
{

4 if n− k = 0;

0 if n− k ≠ 0.

Use the calculations with the Kronecker δ explicitly.
4.3.4. Consider a general moving average signal

X(n) =
∞∑

k=−∞
ckWn−k,

where ck is a “windowing” sequence such that
∑
k |ck|2 <∞, and

W(n) is the standard white noise signal with γW(n) = δ(n).
Show that the covariance function is
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γX(n) =
∞∑

k=−∞
ckcn+k.

Use the calculations with the Kronecker δ explicitly. Apply this
formula to verify the solution to Problem 4.3.3.

4.3.5. Simulation of white noise with an arbitrary probability distribu-
tion. Formula (3.1.11), FY (y) = FX(g−1(y)), describes the c.d.f.
FY (y) of the random quantity Y = g(X) in terms of the c.d.f.
FX(x) of the random quantity X and the function g(x). It also
permits construction of an algorithm to produce random sam-
ples from any given probability distribution provided a random
sample uniformly distributed on the interval [0,1] is given. The
latter can be obtained by using the random number generator in
any computing platform; see Problem 1.4.15.

Let U be a uniformly distributed on [0,1] random quantity
U with the c.d.f.

FU(u) = u, 0 ≤ u ≤ 1, (4.3.1)

Then for a given c.d.f. FZ(z), the random quantity Z = F−1
Z (U),

where F−1
Z (u) is the function inverse to FZ(z) (that is, a solution

of the equation u = FZ(F−1
Z (u))), has the c.d.f. FZ(z). Indeed, a

simple calculation using (4.3.1) shows that

P(F−1
Z (U) ≤ z) = P(U ≤ FZ(z)) = FZ(z)

because 0 ≤ FZ(z) ≤ 1. So, for example, if the desired c.d.f. is
exponential, with FZ(z) = 1− e−z, z ≥ 0, then F−1

Z (u) = − ln(1−
u), 0 ≤ u ≤ 1, and the random quantity Z = − ln(1−U) has the
above exponential c.d.f.

The general simulation algorithm is thus as follows:
(i) Choose the sample size N , and produce a random sample,

u1, u2, . . . , uN , uniformly distributed on [0,1].
(ii) Calculate the inverse function F−1

Z (u).
(iii) Substitute the random sample, u1, u2, . . . , uN , into F−1

Z (u)
to obtain the random sample

z1 = F−1
Z (u1), z2 = F−1

Z (u2), . . . , zN = F−1
Z (uN),

which has the desired c.d.f. FZ(z).
Use the above algorithm and Problem 1.4.15 to produce and
plot examples of the white noise W(n) with (a) the double ex-

ponential p.d.f. fW(w) = e−|w|
2 and (b) the Cauchy p.d.f. fW(w) =

(π(1 + w2))−1. Start with a calculation of the corresponding
c.d.f.s. Check the result graphically by plotting the histograms
of the random samples against the theoretical p.d.f.s.
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4.3.6. Simulations of stationary random signals. Using the algorithm
from Problem 4.3.5, repeat simulations shown in Figures 4.1.2,
4.1.3, and 4.1.6, but replacing the uniformly distributed white
noise by (a) a double exponentially distributed white noise and
(b) a “white noise” with the Cauchy distribution. Experiment with
these simulations by including parameters in the above p.d.f.s,
and changing the length of the produced discrete-time random
signals.

4.3.7. Using the procedures described in Section 4.2, estimate the
means and the autocorrelation functions (ACF) for sample sig-
nals obtained in simulation in Problem 4.3.6(a). Then compare
graphically the estimated and the theoretical ACFs.

Note. Cauchy random quantities have an infinite variance (check!—
cf. Problem 3.7.20), so the correlational definition of the discrete-time
white noise is not applicable for them. In such cases, by a discrete-
time white noise W(n), . . . ,−2,−1,0,1,2, . . . , we simply mean a se-
quence of independent, identically and symmetrically distributed (i.e.,
W(n) ∼ −W(n)) random quantities. No moment requirements are
made. On the other hand, such a sequence always forms a strictly sta-
tionary random signal; cf. (3.3.24) and Problem 3.7.28.
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Power Spectra of Stationary Signals

The Fourier transformX(f) of the sample paths of a stationary random
signal X(t) does not exist in the usual sense, and analysis of the spec-
tral contents of such signals requires a different, more subtle approach
which has to rely on the concept of the mean power of the random sig-
nal. Only then we can investigate how the energy is distributed over
different frequencies. The question is, of course, of fundamental im-
portance in practical applications, as real-life signal processing devices
such as measuring instruments, amplifiers, antennas, etc., transmit dif-
ferent frequencies with different attenuation.

5.1 Mean power of a stationary signal

Mean energy E(EX) of a stationary signal X(t), that is, the expected
value of the energy, is infinite. Indeed, using the linearity property of
expectations we can interchange the order of taking the mean and the
integration to obtain that

E[EX] = E
∫∞
−∞
X2(t)dt =

∫∞
−∞

E(X2(t))dt =
∫∞
−∞
σ 2
Xdt = ∞. (5.1.1)

However, the mean power E(PWX) of a stationary signal is always finite
since

E[PWX] = E lim
T→∞

1
2T

∫ T
−T
X2(t)dt = σ 2

X <∞. (5.1.2)

To find the distribution of power PWX over different frequencies f , we
will consider a windowed signal

XT(t) =
{
X(t) for |t| ≤ T ;

0 otherwise,
(5.1.3)
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that is the original signal restricted to the time window of duration 2T .
Then, in view of the Parseval equality established in Section 2.4, with
the Fourier transform of the windowed signal defined by the equality

XT(f) =
∫∞
−∞
XT(t)e−j2πftdt =

∫ T
−T
X(t)e−j2πftdt,

we can express the mean power of the original signal by the formula

E[PWX] = E

[
lim
T→∞

1
2T

∫ T
−T
X2(t)dt

]

= E
[

lim
T→∞

1
2T

∫∞
−∞
X2
T (t)dt

]
= E

[
lim
T→∞

1
2T

∫∞
−∞
|XT(f)|2df

]

=
∫∞
−∞

lim
T→∞

E|XT(f)|2
2T

df .

Denoting

SX(f) = lim
T→∞

E|XT(f)|2
2T

, (5.1.4)

the mean power has the representation

E(PWX) =
∫∞
−∞
SX(f)df . (5.1.5)

The function SX(f) is called the power spectral density or, simply,
the power spectrum of the stationary signal X(t). It shows how the
mean power PWX of the random stationary signal X(t) is distributed
over different frequencies f , −∞ < f < ∞. The mean power concen-
trated in a frequency band f1 < f < f2 is then given by the integral

∫ f2

f1

SX(f)df .

5.2 Power spectrum and autocorrelation function

What makes the power spectrum SX(f) a practical tool in the analysis of
random stationary signals is the fact that it is simply the Fourier trans-
form of the signal’s autocorrelation function γX(t). In other words,

SX(f) =
∫∞
−∞
γX(t)e−j2πftdt. (5.2.1)
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This fundamental property can be easily verified by direct calcula-
tion. Indeed,

S(f) = lim
T→∞

E|XT(f)|2
2T

= lim
T→∞

E(XT (f)X∗T (f )
2T

= lim
T→∞

1
2T

E

[∫ T
−T
X(t)e−2πjftdt

∫ T
−T
X(s)e2πjfsds

]

= lim
T→∞

1
2T

∫ T
−T

∫ T
−T

E[X(t)X(s)]e−2πjf(t−s)dtds

= lim
T→∞

1
2T

[∫ T
−T

(∫ T−s
−T−s

γX(u)e−2πjfudu
)
ds
]

=
∫∞
−∞
γX(u)e−2πjfudu.

Given the properties of the Fourier transform and its inverse, we
also have the fact that the autocorrelation γX(τ) of signal X(t) is the
inverse Fourier transform of the power spectrum SX(f):

γX(t) =
∫∞
−∞
SX(f)ej2πftdf .

Estimation of the power spectrum SX(f). For simplicity’s sake as-
sume that the signal is real-valued, and that observationsX(0), . . . , X(N)
are given. To estimate the spectrum the natural way to proceed is to re-
place the theoretical ACF γX(t) in (5.2.1) by the estimated ACF γ̂X(n;N)
given by the formula (4.2.4) and replace the integral by the finite sum.
This yields the estimator:

ŜX(f ;N) =
N−1∑

n=−(N−1)
γ̂X(|n|;N)e−j2πfn

=
N−1∑

n=−(N−1)

1
N − |n|

N−|n|−1∑
k=0

X(k)X(k+ |n|)e−j2πfn.

which then, for large N , can be rewritten (see Section 9.2) in the form

ŜX(f ;N) ≈ IN(f ) := 1
N

∣∣∣∣∣∣
N∑
n=1

X(n)e−j2πfn
∣∣∣∣∣∣

2

. (5.2.2)

The quantity IN(f ) is usually called the periodogram of the sampled
signal X(t) based on a sample of size N .

Let us return now to two samples of neonatal sleep signals displayed
in Figure 4.2.1. Their estimated autocorrelation functions were shown
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in Figure 4.2.2. Their periodograms have been calculated using formula
(5.2.2) and are reproduced in Figure 5.2.1. Since the signal was recorded
at the sampling frequency of 64 Hz, and the duration of each record-
ing was three minutes, the total number of sample points is N = 192.
The reader will notice that the periodogram is quite noisy and, per-
haps, should be smoothed out to better reflect the true spectrum of the
random signal. Nevertheless, a comparison of these rough spectra for
quiet sleep and active sleep segments clearly shows that the active sleep
signal shows greater concentration of the spectrum at low frequencies
than the quite sleep signal.
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Fig. 5.2.1. Left : Periodogram of the neonatal quiet sleep EEG signal from Fig-
ure 4.2.1. Right : Analogous periodogram for the active sleep stage. (From
A. Piryatinska’s Ph.D. dissertation, Department of Statistics, Case Western Re-
serve University, Cleveland, 2004.)

Example 5.2.1 (simple random harmonic oscillation). In this case, the
random signal is of the form

X(t) = A cos(2πf0(t +Θ)),

where the random amplitude A has zero mean, EA = 0, and finite vari-
ance EA2 <∞. The random phase Θ is independent of A and uniformly
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distributed on the interval [0, P] with P = 1
f0

. In Chapter 4, we calcu-
lated that the autocorrelation function for this signal is

γX(τ) = E|A|2
2

cos(2πf0τ).

Hence the power spectrum of the simple random harmonic oscillation
with fundamental frequency f0 is

SX(f) =
∫∞
−∞
γX(τ)e−2πjfτdτ

=
∫∞
−∞

E|A|2
2

ej2πf0τ + e−2πjf0τ

2
e−j2πfτdτ

= E|A|2
4

(δ(f − f0)+ δ(f + f0)),

because the inverse Fourier transform of δ(f − f0) is∫∞
−∞
δ(f − f0)e2πjfτdf = e2πjf0τ.

Example 5.2.2 (superposition of random harmonic oscillations (random
periodic signal)). The signal is of the form

X(t) =
N∑
k=1

Ak cos(2πkf0(t +Θk)),

where the zero-mean amplitudes A1, . . . , AN and phases Θ1, . . . ,ΘN are
all independent random quantities and Θ1, . . . ,ΘN are uniformly dis-
tributed on the interval [0, P], P = 1

f0
. The autocovariance function of

this signal is

γX(τ) =
N∑
k=1

E|A|2
2

cos(2πf0kτ),

and, arguing as in Example 5.2.1, the power spectrum is a linear com-
bination of the Dirac deltas:

SX(f) = 1
4

N∑
k=1

E|Ak|2(δ(f − kf0)+ δ(f + kf0))

Thus in this case the power spectrum is concentrated on discrete fre-
quencies f0,2f0, . . . , Nf0.

Example 5.2.3 (the continuous-time white noise signal). By the stan-
dard white noise signal, we mean a signalW(t) with a totally flat power
spectrum

SW(f) = 1, −∞ < f <∞.
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Clearly, such a signal is not realizable physically since its mean power
is infinite:

E(PWW) =
∫∞
−∞

1df = ∞.

However, it is a very useful abstraction. The Fourier transform of its
autocorrelation function γW(τ) must satisfy the equation

∫∞
−∞
γW(τ)e−j2πfτdτ ≡ 1

for all −∞ < f <∞, which implies that

γW(τ) = δ(τ).

Loosely speaking, the above formula can be interpreted as follows: we
can say that, for t ≠ s, the white noise has values X(t) and X(s) that
are uncorrelated and, for t = s, the correlation between X(t) and X(s)
is infinite. This autocorrelation function is thus not a true function,
but its Dirac delta impulse shape is not surprising if you compare it
to the shape of the autocorrelation function for the discrete-time white
noise discussed in Chapter 4. Because of the form of its autocorrelation
function, the white noise is sometimes called a delta-correlated signal .

If a random signalW(t) has the spectrum SW(f) ≡N0 > 0, then we
shall call W(t) a white noise of amplitude N0.

Example 5.2.4 (band-limited noise). The white noise model can be ad-
justed to produce a physically realizable signal by assuming that the
power spectrum is flat but only over a limited band of spectrum fre-
quencies. More precisely, we shall call a signalX(t) a band-limited white
noise if its spectrum is

SX(f) =
{N0 for −fmax < f < fmax;

0 elsewhere.

The mean power of the band-limited white noise is finite:

PWX =
∫∞
−∞
SX(f)df =

∫ fmax

−fmax

N0df = 2fmaxN0.

The autocorrelation function of the band-limited white noise can
be easily calculated by taking the inverse Fourier transform. Thus we
obtain

γX(τ) =
∫∞
−∞
SX(f)ej2πfτdf =N0

∫ fmax

−fmax

ej2πfτdf

= N0

j2πτ
(ej2πfmaxτ − e−j2πfmaxτ) = N0

πτ
sin(2πfmaxτ).
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Fig. 5.2.2. Top: Power spectrum of the band-limited white noise X(t) from
Example 5.2.4. The bandwidth is 2fmax and the mean power is PWX = 2. Bot-
tom: Autocorrelation function of the above band-limited noise. Observe that
as the bandwidth expands to infinity the autocorrelation function approaches
the Dirac delta, the autocorrelation function of ideal white noise.

Figure 5.2.2 shows both the power spectrum of a band-limited white
noise and its autocorrelation function for fmax = 1 and N0 = 1. Ob-
serve that, not surprisingly, as the bandwidth 2fmax expands to infinity
the autocorrelation function approaches the Dirac delta, the autocorre-
lation function of the ideal white noise. Note that the maximum value
of the autocorrelation function γX(τ) is attained at τ = 0 and is equal
to the mean power PWX = 2fmax which diverges to +∞ as the band-
width increases. However,

∫∞
−∞γX(τ)dτ = SX(0) = 1, and the value of

the power spectrum at zero frequency is independent of the bandwidth
and remains constant.

Example 5.2.5 (random switching signal). The random switching sig-
nal X(t) discussed in Chapter 4 has the autocorrelation function
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Fig. 5.2.3. Top: Autocorrelation function of the random switching signal from
Example 5.2.5. Bottom: The corresponding power spectrum.

γX(τ) = e−2|τ|.

Thus its power spectral density can be directly calculated by taking
the Fourier transform of the autocorrelation function:

SX(f) =
∫∞
−∞
e−2|t|e−j2πftdt =

∫∞
0
e−(2+j2πf)tdt +

∫ 0

−∞
e−(−2+j2πf)tdt

= 1
2

1
1+ jπf +

1
2

1
1− jπf =

1
1+ (πf)2

Observe that the autocorrelation function decays here exponentially
as the time lag increases while the power spectrum decays only like the
inverse square of the frequency when the latter goes to infinity. The
situation is pictured in Figure 5.2.3.
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5.3 Power spectra of interpolated digital signals

A random signal sampled at discrete sampling time interval Ts , that
is, with sampling frequency fs = 1

Ts , produces a sequence of random
quantities

. . . , X(−2Ts), X(−Ts), X(0),X(Ts), X(2Ts), . . . . (5.3.1)

To fill in the gaps in the signal produced by discrete sampling at times
nTs we shall interpolate the discrete signal30 by extending its definition
to other times t via the formula

X(t) = X(nTs) for nTs ≤ t < (n+ 1)Ts, (5.3.2)

and n = . . . ,−2,−1,0,1,2, . . . . Having extended the definition of the
signal to continuous time, we can obtain its power spectrum following
the method developed in Section 5.1. In the present case, the windowed
signal is of the form

XN(t) =
{
X(t) for −NTs ≤ t < NTs ;
0 elsewhere,

with the window size being 2NTS .
Now the mean power is

E(PWX) = E lim
N→∞

1
2NTs

N−1∑
n=−N

X2(nTs)Ts

= E lim
N→∞

1
2NTs

∫∞
−∞
|XN(f)|2df =

∫∞
−∞

lim
N→∞

E|XN(f)|2
2NTs

df

(5.3.3)

=
∫∞
−∞
S(f)df ,

with the power spectral density

S(f) = lim
N→∞

E|XN(f)|2
2NTs

, (5.3.4)

and the equality in (5.3.3) resulting from the Parseval formula.
In the next step, we evaluate the Fourier transform XN(f) of the

windowed interpolated signal which is needed in formula (5.3.4):

XN(f) =
∫∞
−∞
XN(t)e−j2πftdt =

N−1∑
n=−N

∫ (n+1)Ts

nTs
X(t)e−j2πftdt

30 The material of this section should be compared with the analysis of the
discrete and the fast Fourier transforms carried out in Section 2.7 for non-
random, deterministic signals.
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= 1
−j2πf

N−1∑
n=−N

X(nTs)(e−j2πf(n+1)Ts − e−j2πfnTs )

= 1− e−j2πfTs
j2πf

N−1∑
n=−N

X(nTs)e−j2πfnTs .

Substituting this result into (5.3.4), we get the following structure of
the power spectrum of X(t):

S(f) = lim
N→∞

|1− e−j2πfTs |2
4π2f 2

· E|∑N−1
n=−N X(nTs)e−2πjfnTs |2

2NTs

= 1− cos 2πfTs
2π2f 2

lim
N→∞

N−1∑
k=−N

N−1∑
n=−N

γX((n− k)Ts)e−2πj(n−k)fTs 1
2NTs

.

Changing the second summation variable by substituting n = m + k,
we get

S(f) = 1− cos 2πfTs
2π2f 2

lim
N→∞

N−1∑
k=−N

N−1−k∑
m=−N−k

γX(mTs)e−j2πmfTs
1

2NTs

= 1− cos 2πfTs
2π2f 2T 2

s
·

∞∑
m=−∞

γX(mTs)e−j2πmfTsTs.

Hence the power spectrum can be written as a product

S(f) = S1(f )S2(f ), (5.3.5)

where the factor

S1(f ) = 1− cos 2πfTs
2π2f 2T 2

s
(5.3.6)

decays to 0 at infinite frequencies (f → ±∞) and is indepedent of the
statistical properties of the signal (that is, of the autocorrelation func-
tion γX(nTs)). The second factor,

S2(f ) =
∞∑

m=−∞
γX(mTs)e−j2πmfTsTs, (5.3.7)

is a periodic function with period fs = 1
Ts , represented by the Fourier

series with coefficients given by the discrete-time autocorrelation func-
tion of the discretely sampled signal.

Therefore, if instead of the original power spectrum we consider the
ratio S(f)

S1(f ) , then we obtain clean relationships paralleling the symmetry
of formulas for continuous-time signals:

S(f)
S1(f )

=
∞∑

m=−∞
γX(mTs)e−j2πmfTsTs (5.3.8)
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and

γX(mTs) =
∫ fs/2
−fs/2

S(f)
S1(f )

ej2πmfTsdf . (5.3.9)

Remark 5.3.1. It is clear that all the relevant information about the spec-
trum of the signal sampled with the sampling interval Ts is contained
in the frequency interval (−fs2 ,+fs2 ). Power assigned to higher frequen-
cies, appearing in the side “lobes” of the spectrum (see Figure 5.3.1)
is simply an artifact of the interpolation. Should we select a different
interpolation scheme, the factor S1(f ) responsible for the decay of the
“lobes” would look different (see Section 5.4).

Fig. 5.3.1. Power spectrum of the interpolated moving average of the discrete-
time white noise signal. The sampling rate is fs = 1

Ts = 1, and the relevant

spectrum is concentrated in the interval (− fs
2 ,+ fs

2 ). The side “lobes” are an
artifact of the interpolation scheme.

Example 5.3.1 (interpolated moving average of the discrete-time white
noise). Let the sampling interval Ts = 1, and letW(n) be a discrete-time
white noise signal (EW(n) = 0, γW(n) = δ(n)

2 ). For the moving average
signal

Y(n) = 1
2
W(n)+ 1

2
W(n− 1),

we have calculated in Chapter 4 that

γY (0) = 1
4
, γY (±1) = 1

8
, γY (k) = 0 for |k| ≥ 2.

Thus the periodic S2(f ) factor of the power spectrum of the inter-
polated Y(n) is of the form
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S2(f ) = 1
8
ej2πf ·1 + 1

4
+ 1

8
e−j2πf ·1 = 1

4
(1+ cos 2πf),

and the power spectral density itself of the interpolated Y is

SY (f ) = S1(f )S2(f ) = 1− cos 2πf
2π2f 2

· 1
4
(1+ cos 2πf)

= 1
2

[
sin(2πf)

2πf

]2

.

5.4 Problems and exercises

In the first three problems, follow Example 5.3.1.

5.4.1. Consider the first-order moving average signal

Y(n) = 0.4W(n)− 0.6W(n− 1),

where W(n) is the discrete-time white noise signal with σ 2
W = 1.

Calculate and plot the power spectrum density of Y .
5.4.2. With W(n) being the discrete-time white noise signal with σ 2

W =
5, let

Y(n) = W(n)+ 0.5W(n− 1)− 0.3W(n− 2).

Derive and sketch the power spectrum density of Y .
5.4.3. For a given window size q, find the power spectrum density of a

general moving average signal

Y(n) = b0W(n)+ b1W(n− 1)+ · · · + bqW(n− q),
where W(n) is the discrete-time white noise with σ 2

W = 1.
5.4.4. Discrete sampling with linear interpolation. Consider a signal X

sampled at sampling interval Ts . Its interpolation to continuous-
time signal is given by the following formula:

X(t) =
∞∑

m=−∞
X(mTs)Λ(t −mTs),

where the interpolating kernel is

Λ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1− t
Ts for 0 < t < Ts ;

1+ t
Ts for −Ts < t < 0;

0 elsewhere.

(a) Plot the kernel Λ(t) and the interpolated X(t) for an example
of the sampled signal selected by you. Explain the interpola-
tion effect.
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(b) Demonstrate that the Fourier transform of the interpolated
signal is of the form

XN(f) =
N∑

m=−N
X(mTs)e−2πjmTsfΛ(f ),

where Λ(f ) is the Fourier transform of the kernel Λ(t). Pro-
duce a plot of Λ(f ).

(c) Verify that the power spectrum density for the interpolated
signal X(t) is

S(f) = lim
N→∞

E|XN(f)|2
(2N + 1)Ts

= Λ2(f )
1
Ts

∞∑
m=−∞

γX(mTs)e−2πjmfTs .

5.4.5. A stationary signal X(t) has the autocorrelation function

γX(τ) = 16e−5|τ| cos 20πτ + 8 cos 10πτ.

(a) Find the variance of this signal.
(b) Find the power spectrum density of this signal.
(c) Find the value of the spectral density at zero frequency.

5.4.6. A stationary signal X(t) has the spectral density of the form

SX(f) =
{

5 for 10
2π ≤ |f | ≤ 20

2π ;

0 elsewhere.

(a) Find the mean power of X.
(b) Find the autocorrelation function of X.
(c) Find the value of the autocorrelation at τ = 0.

5.4.7. A stationary signal X(t) has the spectral density of the form

SX(f) = 9
(2πf)2 + 64

.

At what frequency does the spectral density fall to one-half of its
maximal value? (This value is called the half-power bandwidth.)
(a) Write an expression for the spectral density of a band-limited

white noise Y that has the same value at zero frequency and
the same mean power as X. What is its bandwidth? It is
called the equivalent-noise bandwidth of X. Compare it with
the half-power bandwidth.

(b) Find the autocorrelation function of signal X.
(c) Find the autocorrelation function of signal Y .
(d) Compare the values of these two autocorrelation functions

at τ = 0.
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5.4.8. Use formula (5.2.2) for the periodogram to estimate spectra of
signals simulated in Figures 4.1.3, 4.1.5, and 4.1.6 and Prob-
lem 4.3.6. Then check your results by superimposing the pe-
riodograms on the corresponding theoretical spectral densities.
You may want to eliminate some noise from the periodograms
by using the moving average technique applied in Chapter 4 to
random signals themselves.



6

Transmission of Stationary Signals through
Linear Systems

Signals produced in nature are almost never experienced in their orig-
inal form. Usually, we have access to them after they pass through
various sensing and/or transmission devices such as a voltmeter, for
electric signals, the ear, for acoustic signals, the eye, for visual signals, a
fiber optic cable, for wide-band Internet signals, etc. All of them impose
restrictions on the signal being transmitted by attenuating different fre-
quency components of the signal to a different degree. This process is
generally called filtering and the devices that change the signal’s spec-
trum are traditionally called filters.

A typical example here is the so-called band-pass filter , which per-
mits transmission of the components of the signal only in a certain
frequency band, attenuating the frequencies in that band in a uniform
fashion, but totally “killing” the frequencies outside this band. Fig-
ure 6.0.1 shows results of filtering a portion of the EEG signal from
Figure 4.1.1 through four band-pass filters with frequency bands (top
to bottom) 0.5–3.5 Hz, 4–7.5 Hz, 8–12.5 Hz, and 13–17 Hz. In neu-
rological literature the contents of the EEG signal within these fre-
quency bands are traditionally called delta, theta, alpha, and beta waves,
respectively.

In this chapter we study how statistical characteristics of random
stationary signals are affected by transmission through linear filters.
The linearity assumption means that we suppose that there is a linear
relationship between the signals on the input and on the output of the
filter. In real life this is not always the case, but the study of nonlinear
filters is much more difficult than the linear theory presented below,
and beyond the scope of this book.
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Fig. 6.0.1. A portion of the EEG signal from Figure 4.1.1 filtered through four
band-pass filters with frequency bands (top to bottom) 0.5–3.5 Hz, 4–7.5 Hz,
8–12.5 Hz, and 13−−17 Hz, respectively.

6.1 The time domain analysis

In this section we conduct the time domain analysis of transmission of
random signals through a linear system shown schematically below:

X(t) −→ h(t) −→ Y(t).

The input signal X(t) is assumed to be random and stationary with
meanmX = EX(t) and autocorrelation function γX(τ) = EX(t)X(t+τ).
The system is identified by a function h(t), and the output signal Y(t)
is defined as the continuous-time moving average (convolution):

Y(t) =
∫∞
−∞
X(s)h(t − s)ds =

∫∞
−∞
X(t − s)h(s)ds. (6.1.1)

Note that in the case of a nonrandom Dirac delta impulse input δ(t)
the nonrandom output signal is

y(t) =
∫∞
−∞
δ(s)h(t − s)ds = h(t − 0) = h(t).
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For this reason the system-identifying time domain function h(t) is
usually called the impulse response function.

The mean value of the output signal is easily calculated in terms of
the input signal and of the impulse response function:

EY(t) =
∫∞
−∞

E[X(t − s)]h(s)ds =mX

∫∞
−∞
h(s)ds. (6.1.2)

The above formula makes sense only if the last integral is well defined.
For this reason, we will always assume that the system is realizable,
that is, ∫∞

−∞
|h(s)|ds <∞. (6.1.3)

In view of (6.1.2), for realizable systems, if the input signal has zero
mean then the output signal has also zero mean:

mX = 0 =⇒mY = 0.

In this situation, henceforth we will restrict our attention only to zero-
mean signals.

The calculation of the autocorrelation function of the output signal
Y(t) is a little bit more involved. Replacing the product of the integrals
by the double integral, we obtain that

γY (τ) = E(Y(t)Y(t + τ))

= E
[∫∞

−∞
X(t − s)h(s)ds

∫∞
−∞
X(t + τ −u)h(u)du

]

=
∫∞
−∞

∫∞
−∞

E[X(t − s)X(t + τ −u)]h(s)h(u)dsdu.

Then in view of the stationarity assumption,

E[X(t − s)X(t + τ −u)] = E[X(−s)X(τ −u)] = γX(τ −u+ s),

so that, finally,

γY (τ) =
∫∞
−∞

∫∞
−∞
γX(τ −u+ s)h(s)h(u)dsdu. (6.1.4)

A system is said to be causal if the current values of the output
depend only on the past and present values of the input. This property
can be equivalently stated as the requirement that the impulse response
function satisfy

h(t) = 0 for t ≤ 0. (6.1.5)
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In other words, the moving average is performed only over the past.
This condition, in particular, implies that the second output integral in
(6.1.1) is restricted to the positive half-line

Y(t) =
∫∞

0
X(t − s)h(s)ds, (6.1.6)

and the autocorrelation function formula (6.1.4) becomes

γY (τ) =
∫∞

0

∫∞
0
γX(τ −u+ s)h(s)h(u)dsdu. (6.1.7)

In what follows, we will just consider causal systems.

Example 6.1.1 (an integrating circuit). A standard integrating circuit
with a single capacitor is shown in Figure 6.1.1.

CX (t) Y (t)

Fig. 6.1.1. A standard integrating circuit. The voltage Y(t) on the output is the
integral of the current X(t) on the input.

The impulse response function for this system is the unit step func-
tion u(t) multiplied by 1

C , where the constant C represents the capaci-
tance of the capacitor:

h(s) = 1
C
u(s) =

{
0 for s < 0;
1
C for s ≥ 0.

The output is

Y(t) = 1
C

∫∞
−∞
X(s)U(t − s)ds = 1

C

∫ t
−∞
X(s)ds.

Obviously, this system, although causal, is not realizable since

∫∞
−∞
|h(t)|dt =

∫∞
0

1
C
dt = ∞.

To avoid this difficulty, we need to restrict the integrating circuit to
a finite time interval and assume that the adjusted impulse response
function is of the form
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h(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 for s < 0;
1
C for 0 ≤ s ≤ T ;

0 for s > T .
(6.1.8)

In this situation, the system is realizable and the output is

Y(t) =
∫∞
−∞
X(s)h(t − s)ds = 1

C

∫ t
t−T

X(s)ds.

The autocorrelation is

γY (τ) =
∫ T

0

∫ T
0
γX(τ −u+ s)h(s)h(u)dsdu

= 1
C2

∫ T
0

∫ T
0
γX(u− (τ + s))dsdu (6.1.9)

because of the symmetry of the autocorrelation function.
Therefore, if the input signal is the standard white noise X(t) =

W(t) with the autocorrelation γW(t) = δ(t), then for τ ≥ 0, the output
autocorrelation function is

γY (τ) =
∫ T

0

∫ T
0
δ(u− (τ + s))duds =

∫ T
0
ζ(s)ds,

where

ζ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for τ + s < 0;
1
2 for τ + s = 0;

1 for 0 < τ + s < T ;
1
2 for τ + s = T ;

0 for τ + s > T .
Hence

γY (s) =

⎧⎪⎪⎨
⎪⎪⎩

0 for τ < −T ;

T − |τ| for −T ≤ τ ≤ T ;

0 for τ > T.
(6.1.10)

If the input signalX(t) is a simple random harmonic oscillation with
the autocorrelation function γX(τ) = cosτ , then the output autocorre-
lation is

γY (τ) =
∫∞

0

∫∞
0

cos(τ−u+s)dsdu = − cos(τ+T)+2 cosτ−cos(τ−T).
(6.1.11)

As simple as the formula (6.1.9) for the output autocorrelation func-
tion seems to be, the analytic evaluation of the double convolution may
get tedious very quickly. Consider, for example, an input signal X(t)
with the autocorrelation function
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Fig. 6.1.2. The output autocorrelation function γY (τ) (6.1.10) of the integrat-
ing system (6.1.8) with T = 1, in the case of the standard white noise input
X(t) = W(t).

γX(τ) = 1
1+ τ2

, (6.1.12)

which corresponds to the exponentially decaying power spectrum (see
Section 6.4).

In this case,

γY (τ) =
∫ T

0

∫ T
0

1
1+ (τ −u+ s)2dsdu (6.1.13)

= 1
2
(2(T − τ) arctan(T − τ)− 2τ arctanτ − log(1+ (T − τ)2)

+ log(1+ τ2))

+ 1
2
(−2τ arctan(τ)+ 2(τ + T) arctan(τ + T)+ log(1+ τ2)

+ log(1+ T 2 + 2Tτ + τ2)).

So even for a relatively simple input autocorrelation function the output
autocorrelation is quite complex and unreadable. Yes, you guessed
right—we have obtained this formula using Mathematica. Figure 6.1.4
traces graphically the dependence of γY (τ) on T .

Example 6.1.2 (an RC filter). A standard RC filter is shown in Fig-
ure 6.1.5.

The impulse response function of this circuit is of the form

h(t) = 1
RC

exp
(
− t
RC

)
·u(t), (6.1.14)

where u(t) is the unit step function, R is the resistivity, and C is the
capacitance. The product RC represent the so-called time constant of
the circuit.
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Fig. 6.1.3. The output autocorrelation functions γY (τ) (6.1.11) of the integrat-
ing system (6.1.8) with T = 0.3, 1, and 3 (top to bottom) in the case of a simple
random harmonic oscillation input with γX(τ) = cosτ . Note the increasing
amplitude of γY (τ) as T increases.

In the case of the white noise input signal with γX(τ) = δ(τ), the
output autocorrelation function, for τ > 0, is

γY (τ) =
∫∞

0

∫∞
0
δ(u− (s + τ))h(u)h(s)duds =

∫∞
0
h(s + τ)h(s)ds

=
∫∞

0

1
RC

es+τ/RC · 1
RC

es/RCds = 1
2RC

e−τ/RC.
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Fig. 6.1.4. The output autocorrelation functions γY (τ) (6.1.13) of the integrat-
ing system (6.1.8) with T = 0.3, 1.3, and 9 (clockwise from top left corner), in
the case of input with γX(τ) = 1

1+τ2 . Note the growing maximum and spread
of γY (τ) as T increases.

X (t) Y (t)

R

C

Fig. 6.1.5. A standard RC filter with the impulse response function h(t) =
1
RC exp(− t

RC ) ·U(t).

So

γY (τ) = 1
2RC

exp
(
−|τ|
RC

)
. (6.1.15)

The shape of the output autocorrelation function for small and large
values of the RC constant is shown in Figure 6.1.6.

For the simple random harmonic oscillation with autocorrelation
γX(τ) = cosτ as the input, the output autocorrelation is

γY (τ) =
∫∞

0

∫∞
0

cos(τ −u+ s) 1
RC

exp
(−s
RC

)
1
RC

exp
(
− u
RC

)
dsdu

= cosτ
1+ (RC)2 .
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Fig. 6.1.6. The output autocorrelation function γY (τ) for the RC filter (6.1.14)
with a standard white noise input with γX(τ) = δ(τ). The top figure shows
the case of small time constant RC = 1 and the bottom the case of the larger
time constant RC = 3. Note the difference in the maximum and the spread of
γY (τ) in these two cases.

But a slightly more complex input autocorrelation function

γX(τ) = e−2|τ|,

corresponding to the switching input signal, produces the output auto-
correlation function of the form

γY (τ) = 1
(RC)2

∫∞
0

∫∞
0
e−|τ−u+s|e−(s+u)/(RC)dsdu (6.1.16)

= 1
(RC)2

[∫ τ
0

∫∞
0
e−(τ−u+s)e−(s+u)/(RC)dsdu

+
∫∞
τ

(∫ u−τ
0

eτ−u+se−(s+u)/(RC)ds

+
∫∞
u−τ

e−(τ−u+s)e−(s+u)/(RC)ds
)
du

]
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which, although doable (see Section 6.4, problems and exercises), is not
fun to evaluate.

6.2 Frequency domain analysis and system bandwidth

Examples provided in the preceding section demonstrated analytic diffi-
culties related to the time domain analysis of random stationary signals
transmitted through linear systems. In many cases analysis becomes
much simpler if it is carried out in the frequency domain. For this
purpose, let us consider the Fourier transform H(f) of the system’s
impulse response function h(t):

H(f) =
∫∞
−∞
h(t)e−2πjftdt, (6.2.1)

which traditionally is called the system’s transfer function.
Now the task is to calculate the power spectrum

SY (f ) =
∫∞
−∞
γY (τ)e−2πjfτdτ (6.2.2)

of the output signal given the power spectrum

SX(f) =
∫∞
−∞
γX(τ)e−2πjfτdτ

of the input signal. Since the output autocorrelation function γY (t) has
been calculated in Section 6.1, substituting the expression obtained in
(6.1.4) into (6.2.1), we get

SY (f ) =
∫∞
−∞

(∫∞
−∞

∫∞
−∞
γX(τ − s +u)h(s)h(u)dsdu

)
e−2πjfτdτ

=
∫∞
−∞

∫∞
−∞

(∫∞
−∞
γX(τ − s +u)e−2πjf(τ−s+u)dτ

)
h(s)e−2πjfsds

· h(u)e2πjfudu.

Making the substitution τ − s + u = w in the inner integral, we arrive
at the final formula

SY (f ) = SX(f) ·H(f) ·H∗(f ) = SX(f) · |H(f)|2. (6.2.3)

So the output power spectrum is obtained simply by multiplying
the input power spectrum by a fixed factor |H(f)|2, which is called the
system’s power transfer function.
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The appearance of power transfer function |H(f)|2 in formula
(6.2.3) suggests introduction of the concept of the system’s bandwidth.
As in the case of signals (see Section 5.4) several choices are possible.

The equivalent-noise bandwidth BWn is defined as the cutoff fre-
quency fmax of the limited-band white noise with the amplitude equal
to the value of the system’s power transfer function at 0 and the mean
power equal to the integral of the system’s power transfer function,
that is,

2 BWn |H(0)|2 =
∫∞
−∞
|H(f)|2df ,

which gives

BWn = 1
2|H(0)|2

∫∞
−∞
|H(f)|2df . (6.2.4)

The half-power bandwidth BW1/2 is defined as the frequency where
the system’s power transfer function declines to one-half of its max-
imum value which is always equal to |H(0)|2. Thus it is obtained by
solving, for BW1/2, the equation

|H(BW1/2)|2 = 1
2
|H(0)|2. (6.2.5)

Obviously, the above bandwidth concepts make the most sense for
lowpass filters, that is, in the case when the system’s power transfer
function has a distinctive maximum at 0, dominating its values else-
where. But for other systems such as band-pass filters, similar band-
width definitions can be easily devised.

Example 6.2.1 (an RC filter). Recall that in this case the impulse re-
sponse function is given by

h(t) = 1
RC

e−
t
RC ·u(t).

So the transfer function is

H(f) =
∫∞
−∞
h(t)e−2πjftdt =

∫∞
0

1
RC

e−
t
RC e−2πjftdt = 1

1+ 2πjRCf
,

and, consequently, the power transfer function is

|H(f)|2 = 1
1+ 2πjRCf

· 1
1− 2πjRCf

= 1
1+ (2πRCf)2 . (6.2.6)

The half-power bandwidth of the RC filter is easily computable from
the equation

1
1+ (2πRC(BW1/2))2

= 1
2
,

which gives
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BW1/2 = 1
2πRC

.

The bandwidth decreases hyperbolically with the increase of the RC
constant.

The output power spectra for an RC filter are thus easily evaluated.
In the case of the standard white noise input with SX(f) ≡ 1, the output
power spectrum is

SY (f ) = 1
1+ (2πRCf)2 .

If the input signal is a random oscillation with the power spectrum

SX(f) = A2
0

2
(δ(f − f0)+ δ(f + f0)),

then the output power spectrum is

SY (f ) = A2
0

2
(δ(f − f0)+ δ(f + f0)) · 1

1+ (2πRCf)2 .

If the input is a switching signal with the power spectrum

SX(f) = 1
1+ (af)2 ,

then the output power spectrum is

SY (f ) = 1
1+ (af)2 ·

1
1+ (2πRCf)2 .

Example 6.2.2 (bandwidth of the finite-time integrating circuit). Let us
calculate the bandwidths BWn and BW1/2 for the finite-time integrator
with the impulse response function

h(t) =
{

1 for 0 ≤ t ≤ T ;

0 elsewhere.

In this case, the transfer function is

H(f) =
∫ T

0
e−2πjftdt = 1

2πjf
(1− e−2πjfT ),

so that the power transfer function is

|H(f)|2 = (1− e−2πjfT )(1− e2πjfT )
(2πf)2

= 2(1− cos 2πfT)
(2πf)2

. (6.2.7)

Finding directly the integral of the power transfer function is a little
tedious, but fortunately, by Parseval’s formula,
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Fig. 6.2.1. Power transfer functions |H(f)|2 = 1
1+(2πRCf)2 for the RC filter with

the RC constants 0.1 (thick line), 0.5 (medium line), and 2.0 (thin line). The
half-power bandwidths BW1/2 are, respectively, 1.6, 0.32, and 0.08.

Fig. 6.2.2. Top: Power transfer function (6.2.7) of the finite-time integrating
circuit with T = 1. Bottom: Magnified portion of the power transfer function
for f between 0.44 and 0.45. This graphical analysis gives the half-power
bandwidth BW1/2 = 0.443.
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∫∞
−∞
|H(f)|2df =

∫∞
−∞
h2(t)dt =

∫ T
0
dt = T ,

and

H(0) =
∫ T

0
h(t)dt = T .

Thus the equivalent-noise bandwidth (6.2.4) is

BWn = 1
2T 2

· T = 1
2T
.

Finding the half-power bandwidth requires solving equation (6.2.5):

2(1− cos 2π(BW1/2)T)
(2π(BW1/2))2

= T 2

2
,

which can be done only numerically. Indeed, a quick graphical analysis
(see Figure 6.2.1) for T = 1 gives the half-power bandwidth BW1/2 =
0.443, slightly less than the corresponding equivalent-noise bandwidth
BWeqn = 0.500.

6.3 Digital signal, discrete-time sampling

In this section we will take a look at transmission of random stationary
signals through linear systems when the signals are sampled at discrete
times with the sampling interval Ts . The system can be schematically
represented as follows:

X(nTs) −→ h(nTs) −→ Y(nTs).

The input signal now forms a stationary random sequence

X(nTs), n = · · · − 1,0,1, . . . , (6.3.1)

and the output signal

Y(nTs), n = · · · − 1,0,1, . . . , (6.3.2)

is produced by discrete-time convolution of the input signal X(nTs)
with the discrete-time impulse reponse sequence h(nTs):

Y(nTs) =
∞∑

i=−∞
X(iTs)h(nTs − iTs)Ts. (6.3.3)

In the discrete-time case, the realizability condition is
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∞∑
n=−∞

|h(nTs)| <∞,

and the causality condition means that

h(nTs) = 0 for n < 0.

With discrete-time inputs and outputs the autocorrelation functions are
just discrete sequences and are defined by the formulas

γX(kTs) = E(X(nTs)X(nTs + kTs)),
γY (kTs) = E(Y(nTs)Y(nTs + kTs)).

Then after a direct application of (6.3.3), one obtains the following for-
mula for the output autocorrelation sequence as a function of the input
autocorrelation sequence and the impulse response sequence:

γY (kTs) =
∞∑

l=−∞

∞∑
i=−∞

γX(kTs − lTs + iTs)h(lTs)h(iTs)T 2
s . (6.3.4)

To move into the frequency domain one can either directly apply the
discrete or fast Fourier transforms or, as in Section 6.3, use the straight
continuous-time Fourier transform technique assuming that both the
signal and the impulse response function have been interpolated by
constants between sampling points. We will follow the latter approach.
Therefore, using formula (5.3.5), we get

SX(f) = S1(f ) · S2,X(f ), (6.3.5)

with

S2,X(f ) =
∞∑

m=−∞
γX(mTs)e−j2πmfTsTs,

and

SY (f ) = S1(f ) · S2,Y (f ), (6.3.6)

with

S2,Y (f ) =
∞∑

m=−∞
γY (mTs)e−j2πmfTsTs,

and

S1(f ) = 1− cos 2πfTs
2π2f 2T 2

s
.

Remember that all the relevant information about the discrete sampled
signal is contained in the frequency interval (−fs2 , fs2 ) (see Remark 5.3.1).
The transfer function of this system is
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H(f) =
∫∞
−∞
h(t)e−j2πftdt =

∞∑
k=−∞

h(kTs)
∫ (k+1)Ts

kTs
e−j2πftdt

= 1− ej2πfTs
−j2πfTs

∞∑
k=−∞

h(kTs)e−j2πfkTsTs, (6.3.7)

so that the power transfer function

|H(f)|2 = 1− cos 2πfTs
2π2f 2T 2

s

∞∑
k=−∞

∞∑
n=−∞

h(kTs)h(nTs)e−j2πf(k−n)TsT 2
s .

(6.3.8)
Again, all the relevant information about the discrete power transfer
function contained in the frequency interval (−fs2 , fs2 ) (see Remark 5.3.1).

Finally, since we already know from Section 6.2 that

SY (f ) = |H(f)|2SX(f),
we also get from (6.3.5)–(6.3.6) that

S2,Y (f ) = |H(f)|2S2,X(f ). (6.3.9)

or, equivalently,
∞∑

m=−∞
γY (mTs)e−j2πmfTsTs = |H(f)|2 ·

∞∑
m=−∞

γX(mTs)e−j2πmfTsTs.

(6.3.10)

Example 6.3.1 (autoregressive moving average system (ARMA)). We
now take the sampling period Ts = 1 and the output Y(n) determined
from the inputX(n) via the autoregressive moving average scheme with
parameters p and q (in brief, ARMA(p, q)):

Y(n) =
q∑
l=0

b(l)X(n− l)−
p∑
l=1

a(l)Y(n− l). (6.3.11)

Defining a(0) = 1, we can then write
p∑
l=0

a(l)Y(n− l) =
q∑
l=0

b(l)X(n− l).

Since the Fourier transform of the convolution is a product of
Fourier transforms, we have

X(f)
q∑
l=0

b(l)e−2πjflT = Y(f)
p∑
l=0

a(l)e−2πjflT ,

so the transfer function

H(f) = Y(f)
X(f)

=
∑q
l=0 b(l)e

−2πjflT∑p
l=0 a(l)e−2πjflT

. (6.3.12)
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Example 6.3.2 (a solution of the stochastic difference equation). This
example was considered in Chapter 4, but let us observe that it is a
special case of Example 6.3.1, with parameters p = 1, q = 0, and the
input signal being the standard discrete white noiseW(n) with σ2

W = 1.
In other words,

Y(n) = −a1Y(n− 1)+ b0W(n).

In view of (6.3.12), the power transfer function is

|H(f)|2 = b0

1+ a1e−2πjf ·
b0

1+ a1se2πjf =
b2

0

1+ a2
1 + 2a1 cos 2πf

,

with, again, all the relevant information contained in the frequency in-
terval −1

2 < f <
1
2 .

Given that the input is the standard white noise, we have that

SY (f ) = |H(f)|2 · 1 = b2
0

1+ a2
1 + 2a1 cos 2πf

. (6.3.13)

One way to find the output autocorrelation sequence γY (n) would be
to take into account the relationship (6.3.10) and expand (6.3.13) into
the Fourier series; its coefficients will form the desired autocorrelation
sequence. This procedure is streightforward and requires only an appli-
cation of the formula for the sum of a geometric series (see Section 6.4).

However, we would like to explore here a different route and em-
ploy a recursive procedure to find the output autocorrelation sequence.
First, observe that

γY (k) = E(Y(n)Y(n+ k))
= E(−a1Y(n− 1)+ b0X(n)) · (−a1Y(n+ k− 1)+ b0X(n+ k))
= a2

1E(Y(n− 1)Y(n+ k− 1))− a1b0E(Y(n− 1)X(n+ k)))
− a1b0E(X(n)Y(n+ k− 1))+ b2

0E(X(n)X(n+ k))
= a2

1γY (k)− a1b0γXY (k− 1)+ b0)2γX(k),

where
γXY (k) = E(X(n)Y(n+ k)),

is the cross-correlation sequence of signals X(n) and Y(n). Thus

γY (k) = b0

1− a2
1
(−a1γXY (k− 1)+ b0γX(k)).

For k = 0,

γY (0) = σ 2
Y =

b0

1− a2
1
(−a1E(X(n)Y(n− 1))+ b0γX(0))
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= b2
0

1− a2
1
γX(0) = b2

0

1− a2
1
.

For k = 1,

γY (1) = b0

1− a2
1
(−a1γXY (0)+ b0γX(1)) = b0(−a1)

1− a2
1

E(X(0)Y(0))

= b0(−a1)
1− a2

1
E(X(0)(a1Y(−1)+ b0X(0))) = b2

0(−a1)
1− a2

1
.

For a general k > 1,

γY (k) = b0

1− a2
1
(−a1γXY (k− 1)+ b0γX(k)),

and, as above,

γXY (k− 1) = E(X(0)Y(k− 1))
= E(X(0)(−a1Y(k− 2)+ b0X(k− 1)))
= (−a1)E(X(0)Y(k− 2))
= (−a1)γXY (k− 2)

= · · · = (−a1)k−1γXY (0) = b(0)(−a1)k−1.

Since the autocorrelation sequence must be an even function of variable
k, we finally get, for any k = . . . ,−2,−1,0,1,2, . . . ,

γY (k) = b2
0

1− a2
1
(−a1)|k|,

thus recovering the result from Chapter 4.

6.4 Problems and exercises

In the first three exercises, also try solving the problem by first finding
the autocorrelation function of the output to see how hard the problem
is in the time domain framework.

6.4.1. The impulse response function of a linear system is h(t) = 1− t
for 0 ≤ t ≤ 1 and 0 elsewhere.
(a) Produce a graph of h(t).
(b) Assume that the input is the standard white noise. Find the

autocorrelation function of the output.
(c) Find the power transfer function of the system, its equivalent-

noise bandwidth and half-power bandwidth.
(d) Assume that the input has the autocorrelation function γX(t)
= 3

1+4t2 . Find the power spectrum of the output signal.
(e) Assume that the input has the autocorrelation function γX(t)
= exp(−4|t|). Find the power spectrum of the output signal.
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(f) Assume that the input has the autocorrelation functionγX(t) =
1− |t| for |t| < 1 and 0 elsewhere. Find the power spectrum
of the output signal.

6.4.2. The impulse response function of a linear system is h(t) = e−2t

for 0 ≤ t ≤ 2 and 0 elsewhere.
(a) Produce a graph of h(t).
(b) Assume that the input is the standard white noise. Find the

autocorrelation function of the output.
(c) Find the power transfer function of the system, its equivalent-

noise bandwidth and half-power bandwidth.
(d) Assume that the input has the autocorrelation functionγX(t) =

3
1+4t2 . Find the power spectrum of the output signal.

(e) Assume that the input has the autocorrelation functionγX(t) =
exp(−4|t|). Find the power spectrum of the output signal.

(f) Assume that the input has the autocorrelation functionγX(t) =
1− |t| for |t| < 1 and 0 elsewhere. Find the power spectrum
of the output signal.

6.4.3. The impulse response function of a linear system is h(t) =
e−0.05t for t ≥ 10 and 0 elsewhere.
(a) Produce a graph of h(t).
(b) Assume that the input is the standard white noise. Find the

autocorrelation function of the output.
(c) Find the power transfer function of the system, its equivalent-

noise bandwidth and half-power bandwidth.
(d) Assume that the input has the autocorrelation functionγX(t) =

3
1+4t2 . Find the power spectrum of the output signal.

(e) Assume that the input has the autocorrelation functionγX(t) =
exp(−4|t|). Find the power spectrum of the output signal.

(f) Assume that the input has the autocorrelation functionγX(t) =
1− |t| for |t| < 1 and 0 elsewhere. Find the power spectrum
of the output signal.

6.4.4. Cross-correlation ρXY and cross-covariance γXY for random sig-
nals X(t) and Y(t) are defined, respectively, as follows:

ρXY (t, s) = E(X(t)Y(s)),
γXY (t, s) = E((X(t)− μX(t))(Y(s)− μY (s)).

Random signals X(t) and Y(t) are said to be jointly stationary if
they are stationary and

ρXY (t, s) = ρXY (t − s,0).

Consider random signals

X(t) = a cos(2π(f0t +Θ)), Y(t) = b sin(2π(f0t +Θ)),
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where a and b are nonrandom constants and Θ is uniformly dis-
tributed on [0,1]. Find the cross-correlation function for X and
Y . Are these signals jointly stationary?

6.4.5. Consider the circuit shown in Figure 6.4.1

C

X (t)

Y (t)

R Z (t)

Fig. 6.4.1.

Assume that the input is the standard white noise.
(a) Find the power spectra SY (f ) and SZ(f) of the outputs Y(t)

and Z(t).
(b) Find the cross-correlation

γYZ(τ) = E(Z(t)Y(t + τ))
between those two outputs.

6.4.6. Find the output autocorrelation sequence for the discrete-time
system representing a stochastic difference equation described
in Example 6.3.2. Use the Fourier series expansion of formula
(6.3.13).

6.4.7. Consider the circuit shown in Figure 6.4.2.

X (t) Y (t)

R1 R2

C1 C2

Fig. 6.4.2.

Assume that the input is the standard white noise. Find the
power spectrum SY (f ) and the autocorrelation function γY (τ)
of the output Y(t).

6.4.8. Find the half-power and equivalent-noise bandwidth of the sys-
tem shown in Figure 6.4.2.
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Optimization of Signal-to-Noise Ratio
in Linear Systems

Useful, deterministic signals passing through various transmission de-
vices often acquire extraneous random components due to, say, thermal
noise in conducting materials, radio clutter or aurora borealis magnetic
field fluctuations in the atmosphere, or deliberate jamming in warfare.
If there exists some prior information about the nature of the original
useful signal and the contaminating random noise it is possible to de-
vise algorithms to improve the relative power of the useful compenent
of the signal or, in other words, to increase the signal-to-noise ratio of
the signal, by passing it through a filter designed for the purpose. In
this short chapter, we give a few examples of such designs just to show
how the previously introduced techniques of analysis of random signals
can be applied in this context.

7.1 Fixed filter structure, known input signal

The general problem of optimization (maximization) of the signal-to-
noise ratio in a linear system schematically pictured here,

x(t)+N(t) −→ h(t) −→ y(t)+M(t),

can be formulated as follows: Consider a linear filter (system) charac-
terized by its impulse response function h(t)with the input signal X(t)
of the form

X(t) = x(t)+N(t), (7.1.1)

where x(t) is a deterministic “useful” signal and N(t) is a random
stationary “noise” signal with zero mean and autocorrelation function
γN(t). Given the linearity of the system, the output signal Y(t) is of
the form

Y(t) = y(t)+M(t), (7.1.2)
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where the deterministic “useful” output component is

y(t) =
∫∞
−∞
x(s)h(t − s)ds, (7.1.3)

and the “noise” output is a stationary zero-mean signal with the auto-
correlation function

γM(τ) =
∫∞
−∞

∫∞
−∞
γN(τ − s +u)h(s)h(u)dsdu.

The task is as follows: Given the shape of the input signal, design the
structure of the filter which would maximize the signal-to-noise power
ratio on the output. More precisely, we need to find an impulse response
function h(t) such that, for a given detection time t, the signal-to-noise
ratio

S
N = PWy(t)

E(PWM)
(7.1.4)

is maximized over all possible impulse response functions; in brief, we
want to find h(t) for which

S
N = max .

Here, PWy(t) = y2(t) is the instantaneous power of the output signal,
and E(PWM) = γM(0) = σ 2

M is the mean power of the output noise.
Hence the optimization problem is to find h(t), and also the detection
time t0, such that

S
N = y2(t0)

γM(0)
= y2(t0)

σ 2
M

= max . (7.1.5)

In the present section we will take a look at a relatively simple sit-
uation when the general structure of the filter is essentially fixed and
only certain parameters, including the detection time t0, need to be
optimized.

To show the essence of our approach, we will just consider the RC
filter with the impulse response function

h(t) = be−bt ·u(t), (7.1.6)

with a single parameter b = 1
RC to be determined in addition to the

optimal detection time t0.
Suppose that the “useful” input signal we are trying to detect on the

output is a rectangular impulse

x(t) =
{
A for 0 ≤ t ≤ T ;

0 elsewhere
(7.1.7)
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and that the input noise is a white noise with the autocovariance
γN(t) = N0δ(t).

The deterministic “useful” output signal is

y(t) =
∫∞
−∞
x(s)h(−(s − t))ds

=
⎧⎨
⎩
∫ t
0 Abe−b(t−s)ds for 0 < t < T ;∫ T
0 Abe−b(t−s)ds for t ≥ T ,

=
{
A(1− e−bt) for 0 < t ≤ T ;

A(1− e−bT )e−b(t−T) for t ≥ T . (7.1.8)

It is pictured in Figure 7.1.1.

Fig. 7.1.1. Response y(t) (7.1.8) of the RC filter (7.1.6) to the rectangular input
signal x(t) (7.1.7). The parameter values are T = 1, A = 1, and b = 1

RC = 1.
The maximum is clearly attained for t0 = T .

Clearly, the maximum of the output signal is attained at t0 = T . On
the other hand, as calculated in Chapter 6, the autocorrelation function
of the output noise is

γM(τ) = N0
b
2
e−bτ,

so that, at the already optimized detection time t0 = T ,

S
N = y2(T)

γM(0)
= A2[1− e−bT ]2

bN0
2

.

To simplify our calculations we will substitute z = bT . Now our final
task is to find the maximum of the function

S
N (z) = 2A2T

N0
· (1− e

−z)2

z
(7.1.9)
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of one variable z. Function S
N (z), although simple-looking, is a little

tricky and we will start the exploration of its maximum by graphing it;
see Figure 7.1.2.

Fig. 7.1.2. Graph of the factor (1−e−z)2
z in formula (7.1.9) for the signal-to-noise

ratio S
N (z).

To find the location of the maximum we calculate the derivative and
try to solve the equation

d
dz

(1− e−z)2
z

= 2(1− e−z)e−zz − (1− e−z)2
z2

= 0.

Although the above equation can be easily simplified to the equation

ez − 1− 2z = 0,

the latter cannot be solved explicitly. So, as usual, as the first step we
explore the solution graphically; see Figure 7.1.3.

The nontrivial zero is approximately at zmax = 1.25, which gives
bmax = 1.25

T so that the optimal RC constant is

RCmax ≈ 1
bmax

= T
1.25

= 0.8T . (7.1.10)

Evaluated at the optimal values of parameters t0 and b, the maxi-
mum available signal-to-noise ratio is

S
N max

≈ y2(T)
bmaxN0

2

= 2A2[1− e−bmaxT ]2

bmaxN0
= 0.81 · A

2T
N0

. (7.1.11)
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Fig. 7.1.3. A plot of function ez − 1 − 2z = 0. The nontrivial zero is approxi-
mately at zmax = 1.25.

7.2 Filter structure matched to signal

In this section we will solve a more ambitious problem of designing the
structure of the filter to maximize the signal-to-noise ratio on the out-
put rather than just optimizing filter parameters. To be more precise,
the task at hand is to find an impulse response function h(t) and the
detection time t0 such that

S
N = y2(t0)

σ 2
M

= max (7.2.1)

for a given deterministic (nonrandom) input signal x(t) transmitted in
the presence of the white noise input N(t) with autocorrelation func-
tion γN(t) = N0δ(t), where, as before, x(t) = 0 for t ≤ 0 and

y(t) =
∫∞

0
x(t − s)h(s)ds. (7.2.2)

For the output noise,

σ 2
M = γM(0) =

∫∞
0

(∫∞
0
δ(u− s)h(u)du

)
h(s)ds = N0

∫∞
0
h2(s)ds.

(7.2.3)
In this situation,

S
N = y2(t0)

σ 2
M

= (
∫∞
0 x(t0 − s)h(s)ds)2
N0

∫∞
0 h2(s)ds

. (7.2.4)

In view of the Cauchy–Schwartz inequality,

S
N ≤

∫∞
0 x2(t0 − s)ds ·

∫∞
0 h2(s)ds

N0
∫∞
0 h2(s)ds

= 1
N0

∫∞
0
x2(t0 − s)ds, (7.2.5)
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with the equality, that is, the maximum for S
N , achieved when the two

factors, h(s) and x(t0 − s), in the scalar product in the numerator of
(7.2.4) are linearly dependent. In other words, for any constant c, the
impulse response function

h(s) = cx(t0 − s)u(s) = cx(−(s − t0))u(s) (7.2.6)

gives the optimal structure of the filter and maximizes the S
N ratio.

This so-called matching filter has the impulse response function equal
to the input signal x(t) run backwards in time, then shifted to the right
by t0, and, finally, cut off at 0.

With the selection of the matching filter, in view of (7.2.4), the max-
imal value of the S

N ratio is

S
N max

= (
∫∞
0 x(t0 − s)cx(t0 − s)u(s)ds)2
N0

∫∞
0 (cx(t0 − s)u(s))2ds

=
∫∞
0 x2(t0 − s)ds

N0
. (7.2.7)

Example 7.2.1 (matching filter for a rectangular input signal). Con-
sider a rectangular input signal of the form

x(t) =
{
A for 0 < t < T ;

0 elsewhere,

transmitted in the presence of an additive white noise with autocorrela-
tion function γN(t) = N0δ(t). According to formula (7.2.6), its match-
ing filter at detection time t0 is

h(t) =
{
A for 0 < t < t0;

0 elsewhere

if 0 ≤ t0 ≤ T and

h(t) =
{
A for t0 − T < t < t0;

0 elsewhere

if t0 > T . So the S
N max, as a function of the detection time t0, is

S
N max

(t0) =
⎧⎨
⎩
A2t0
N0

for 0 < t0 < T ;
A2T
N0

for t0 > T.

Clearly, the earliest detection time t0 to maximize S
N max(t0) is t0 = T

(see Figure 7.2.1).

At the optimal detection time t0 = T , or any later detection time,

S
N max

= A2T
N0

. (7.2.8)
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Fig. 7.2.1. The dependence of the optimal signal-to-noise ratio on the detection
time t0 for the matching filter from Example 7.2.1. The input signal is the sum
of a rectangular signal of amplitude A = 1, duration T = 1, and the white noise
with autocorrelation function γN(t) = δ(t).

Fig. 7.2.2. The response y(t) of the matching filter for the rectangular input
signal with amplitude A = 1 and duration T = 1 (see Example 7.2.1). Top: For
detection time t0 = 0.25 < T = 1. Bottom: For detection time t0 = 1.25 > T
= 1.
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This result should be compared with the maximum signal-to-noise
ratio 0.81A

2T
N0

(see (7.1.11)) obtained in Section 7.1 by optimally tuning
the RC filter: the best-matching filter gives about a 25% gain in the
signal-to-noise ratio over the best RC filter.

It is also instructive to trace the behavior of the deterministic part
y(t) of the output signal for the matching filter as a function of detec-
tion time t0. The formula (7.2.2) applied to the matching filter immedi-
ately gives that, for 0 < t0 < T ,

y(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A2t for 0 < t < t0;

A2t0 for t0 < t < T ;

−A2(t − (t0 + T)) for T < t < t0 + T ;

0 elsewhere

(7.2.9)

and, for t0 ≥ T ,

y(t) =

⎧⎪⎪⎨
⎪⎪⎩
A2(t − (t0 − T)) for t0 − T < t < t0;

−A2(t − (t0 + T)) for t0 < t < t0 + T ;

0 elsewhere.
(7.2.10)

These two output signals are pictured in Figure 7.2.2.

7.3 The Wiener filter

Acausal filter. Given stationary random signals X(t) and Y(t), the
problem is to find a (not necessarily causal) impulse response function
h(t) such that the mean-square distance between Y(t) and the output
signal,

Yh(t) =
∫∞
−∞
X(t − s)h(s)ds,

is the smallest possible. In other words, we need h(t) to minimize the
error quantity

E(Y(t)− Yh(t))2.
In the space of all finite variance (always zero-mean) random quantities
equipped with the covariance as the scalar product, the best approxima-
tion Yh(t) of a random quantity Y(t) by elements of the linear subspace
X spanned by linear combinations of values of X(t−s), −∞ < s <∞, is
given by the orthogonal projection of X(t) onX.31 That means that the
difference Y(t)−Yh(t)must be orthogonal to all X(t−s), −∞ < s <∞,
or, more formally,
31 This argument is analagous to the one encountered in Chapter 2, when we

discussed the best approximation in power (for a definition, see Section 2.2)
of deterministic periodic signals by their Fourier series.
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E((Y(t)− Yh(t)) ·X(t − s))

= E(Y(t) ·X(t − s))− E
(∫∞

−∞
X(t −u)h(u)du ·X(t − s)

)

= γYX(s)−
∫∞
−∞
γX(s −u)h(u)du = 0,

for all s, −∞ < s <∞. Hence the optimal h(t) can be found by solving,
for each s, the integral equation

γYX(s) =
∫∞
−∞
γX(s −u)h(u)du, (7.3.1)

which involves only the autocorrelation function γX(s) and the cross-
correlation function γYX(s). The solution is found readily in the fre-
quency domain. Remembering that the Fourier transform of a convo-
lution is the product of Fourier transforms, and denoting by H(f) the
transfer function (the Fourier transform of the impulse response func-
tion) of the optimal h(t), (7.3.1) can be rewritten in the form

SYX(f) = SX(f) ·H(f),
which immediately gives the explicit formula for the transfer function
of the optimal filter:

H(f) = SYX(f)
SX(f)

. (7.3.2)

The minimal error can then also be calculated explicitly:

E(Y(t)− Yh(t))2 = γY (0)−
∫∞
−∞
γYX(s)h(s)ds, (7.3.3)

or, in terms of the optimal transfer function, using the Parseval formula
for the last integral, we have

E(Y(t)− Yh(t))2 =
∫∞
−∞
(SY (f )− S∗YX(f )H(f))df . (7.3.4)

Example 7.3.1. Assume that signal X(t) is the sum of a “useful” signal
Y(t) and noise N(t), that is, X(t) = Y(t) + N(t), where Y(t) has the
power spectrum

SY (f ) = 1
1+ f 2

,

and is uncorrelated with the white noiseN(t), which is assumed to have
the power spectrum SN(f) ≡ 1. Then

SYX(f) = SY (f ) = 1
1+ f 2

and SX(f) = SY (f )+ SN(f) = 2+ f 2

1+ f 2
.

The transfer function of the optimal filter is then
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H(f) = SYX(f)
SX(f)

= 1
2+ f 2

,

with the corresponding impulse response function

h(t) = 1
2
√

2
e−
√

2|t|,

and the error

E(Y(t)− Yh(t))2 =
∫∞
−∞

(
1

1+ f 2
− 1

1+ f 2
· 1

2+ f 2

)
df

=
∫∞
−∞

1
2+ f 2

df = π√
2
.

Causal filter. For given stationary random signals X(t) and Y(t), the
construction of the optimal causal filter requires finding a causal im-
pulse response function h(t) = 0, for t ≤ 0, such that the error

E
(
Y(t)−

∫∞
0
X(t − s)h(s)ds

)2

is minimal. In other words, we are trying to find the best mean-square
approximation to Y(t) by (continuous) linear combinations of the past
values of X(t). Using the same orthogonality argument we applied for
the acausal optimal filter, we obtain another integral equation for the
optimal h(t):

γYX(s) =
∫∞

0
γX(s −u)h(u)du,

this time valid only for all s > 0. This equation is traditionally called the
Wiener–Hopf equation. It is clear that to solve the above equation via
an integral transform method we have to replace the Fourier transform
used in the acausal case by the Laplace transform. However, the details
here are more involved, and for the solution, we refer the reader to the
literature of the subject.32

7.4 Problems and exercises

7.4.1. The triangular signal x(t) = 0.01t for 0 < t < 0.01 and 0 else-
where is combined with white noise having a flat power spectrum
of 2V

2

Hz . Find the value of the RC-constant such that the signal-
to-noise ratio at the output of the RC filter is maximal at t = 0.01
second.

32 N. Wiener’s original Extrapolation, Interpolation, and Smoothing of Station-
ary Time Series, MIT Press and Wiley, New York, 1950, is still very readable,
but also see Chapter 10 of A. Papoulis, Signal Analysis, McGraw–Hill, New
York, 1977.
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7.4.2. A signal of the form x(t) = 5e−(t+2)u(t) is to be detected in the
presence of white noise with a flat power spectrum of 0.25V

2

Hz
using a matched filter.
(a) For t0 = 2 find the value of the impulse response of the

matched filter at t = 0,2,4.
(b) Find the maximum output signal-to-noise ratio that can be

achieved if t0 = ∞.
(c) Find the detection time t0 that should be used to achieve

an output signal-to-noise ratio that is equal to 95% of the
maximum signal-to-noise ratio discovered in part (b).

(d) The signal x(t) = 5e−(t+2)u(t) is combined with white noise
having a power spectrum of 2V

2

Hz . Find the value of RC such
that the signal/noise at the output of the RC filter is maximal
at t = 0.01 second.

7.4.3. Repeat construction of the optimal filter from Example 7.3.1 in
the case when the useful signal Y(t) has a more general power
spectrum

SY (f ) = a
b2 + f 2

,

and the uncorrelated white noise N(t) has arbitrary power spec-
trum SN(f) ≡ N . Discuss the properties of this filter when the
noise power is much bigger than the power of the useful signal,
that is, when N � SY (f ). Construct the optimal acausal filters
for other selected spectra of Y(t) and N(t).
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Gaussian Signals, Correlation Matrices,
and Sample Path Properties

In general, determination of the shape of the sample paths of a random
signal X(t) requires knowledge of n-point probabilities

P(a1 < X(t1) < b1, . . . , an < X(tn) < bn)

for an arbitrary n, and arbitrary windows a1 < b1, . . . , an < bn. But
usually this information cannot be recovered if the only signal char-
acteristic known is the autocorrelation function. The latter depends
on the two-point distributions but does not uniquely determine them.
However, in the case of Gaussian signals, the autocorrelations deter-
mine not only the two-point probability distributions but also all the
n-point probability distributions, so that complete information is avail-
able within the second-order theory. For example, this means that you
only have to estimate means and covariances to make the model. Also,
in the Gaussian universe, weak stationarity implies strict stationarity
as defined in Chapter 4. For the sake of simplicity all signals in this
chapter are assumed to be real-valued. The chapter ends with a more
subtle analysis of sample path properties of stationary signals such as
continuity and differentiability; in the Gaussian case the information is
particularly complete.

Of course, faced with real-world data the proposition that they are
distributed according to a Gaussian distribution must be tested rigor-
ously. Many such tests have been developed by the statisticians.33 In
other cases, one can make an argument in favor of such a hypothesis
based on the central limit theorem (3.5.5)–(3.5.6).

33 See, e.g., M. Denker and W. A. Woyczyński’s book mentioned in previous
chapters.
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8.1 Linear transformations of random vectors

In Chapter 3, we have calculated probability distributions of trans-
formed random quantities. Repeating that procedure in the case of
a linear transformation of the 1D random quantity X given by the for-
mula

Y = aX, a > 0, (8.1.1)

we can obtain the cumulative distribution function (c.d.f.) FY (y) of the
random quantity Y in terms of the c.d.f. FX(x) of the random quantity
X as follows:

FY (y) = P(Y ≤ y) = P(aX ≤ y) = P
(
X ≤ y

a

)
= FX

(
y
a

)
. (8.1.2)

To obtain an analogous formula for the probability density functions
(p.d.f.s), it suffices to differentiate both sides of (8.1.2) to see that

fY (y) = d
dy

FY (y) = 1
a
fX

(
u
a

)
. (8.1.3)

Example 8.1.1. Consider a standard Gaussian random quantity X ∼
N(0,1) with the p.d.f.

fX(x) = 1√
2π

exp

(
−x2

2

)
. (8.1.4)

Then the random quantity Y = aX, a > 0, has the p.d.f.

fY (y) = 1√
2πa

exp

(
− x2

2a2

)
. (8.1.5)

Obviously, the expectation EY = E(aX) = aEX = 0 and the variance of
Y is

σ 2
Y = E(aX)2 = a2EX2 = a2. (8.1.6)

If we conduct the same argument for a < 0, the p.d.f. of Y = aX will be

fY (y) = 1√
2π(−a) exp

(
− x2

2a2

)
. (8.1.7)

Thus formulas (8.1.6) and (8.1.7) can be unified in a single statement:
If X ∼ N(0,1), then for any a ≠ 0, random quantity Y = aX has p.d.f.

fY (y) = 1√
2π|a| exp

(
− x2

2a2

)
. (8.1.8)

Using the above elementary reasoning as a model we will now derive
the formula for a d-dimensional p.d.f.

f�Y ( �y) = f�Y (y1, . . . , yd)
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of a random vector

�Y =

⎛
⎜⎜⎝
Y1
...
Yd

⎞
⎟⎟⎠

obtained by a nondegenerate (invertible) linear transformation

�Y = A �X (8.1.9)

consisting of multiplication of the random vector

�X =

⎛
⎜⎜⎝
X1
...
Xd

⎞
⎟⎟⎠

with a known p.d.f.
f�X(�x) = f�X(x1, . . . , xd)

by a fixed nondegenerate nonrandom matrix

A =
⎛
⎜⎝ a11, · · · , a1d

· · ·
ad1, · · · , add

⎞
⎟⎠ .

In other words, we assume that det(A) ≠ 0, or, equivalently, that the
rows of the matrix A form a linearly independent system of vectors.

In terms of its coordinates the result of the linear transformation
(8.1.9) can be written in the explicit form

�Y =

⎛
⎜⎜⎜⎝
a11X1 + a12X2 + · · · + a1dXd
a21X1 + a22X2 + · · · + a2dXd
· · · · · · · · · · · ·
ad1X1 + ad2X2 + · · · + addXd

⎞
⎟⎟⎟⎠ .

To calculate the probability distribution of �Y following the 1D method,
we must use the assumption that the matrix A is invertible, an analogue
of the assumption a ≠ 0 in the 1D case. Then, for a domain D in the
d-dimensional space Rd,

P(�Y ∈ D) = P(A �X ∈ D) = P( �X ∈ A−1D). (8.1.10)

This identity can be rewritten in terms of p.d.f.s of �Y and �X as follows:∫
D
f�Y ( �y)dy1 · · · · · dyd =

∫
A−1D

f�X(�x)dx1 · · · · · dxd.

Making a substitution �x = A−1�z in the second integral, in view of the
d-dimensional change of variables formula, we get that
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D
f�Y ( �y)dy1 · · · · · dyd =

∫
D
f�X(A

−1�z) · |det(A−1)|dz1 · · · · · dzd,

where det(A−1) is just the Jacobian of the substitution �x = A−1�z. Re-
membering that the determinant of the inverse matrix A−1 is the recip-
rocal of the determinant of the matrix A, we get the identity

∫
D
f�Y ( �y)dy1 · · · · · dyd =

∫
D

f�X(A
−1�z)

|det(A)| dz1 · · · · · dzd.

Since this identity holds true for any domain D, the integrands on both
sides must be equal, which gives the final formula for the p.d.f. of �Y :

f�Y ( �y) =
f�X(A

−1 �y)
|det (A)| if det(A) ≠ 0. (8.1.11)

The 1D formula (8.1.3) is, obviously, the special case of the above
general result.

8.2 Gaussian random vectors

As in the one-dimensional case, all nondegenerate zero-mean d-dimen-
sional Gaussian random vectors can be obtained as nondegenerate lin-
ear transformations of a standard dD Gaussian random vector

�X =

⎛
⎜⎜⎝
X1
...
Xd

⎞
⎟⎟⎠

in which the coordinates X1, . . . , Xd, are independent N(0,1) random
quantities. Because of their independence, the d-dimensional p.d.f. of
�X is the product of 1D N(0,1) p.d.f.s and is thus of the product form

f�X(�x) =
e−x

2
1/2√

2π
· · · · · e

−x2
d/2√

2π

= 1
(2π)d/2

e−
1
2 (x

2
1+···+x2

d) = 1
(2π)d/2

e−
1
2 �x

T �x, (8.2.1)

where the superscript T denotes the transpose of a matrix. Indeed,

�xT �x = (x1, . . . , xd) ·

⎛
⎜⎜⎝
x1
...
xd

⎞
⎟⎟⎠ = x2

1 + · · · + x2
d.
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It is the latter form in (8.2.1) that will be useful now in applying formula
(8.1.11). Indeed, substituting the last expression for f�X(�x) in (8.2.1)
into (8.1.11), one immediately gets, remembering that (MN)T = NTMT ,
(MN)−1 = N−1M−1, and (MT )−1 = (M−1)T ,

f�Y ( �y) =
1

(2π)d/2|det(A)|e
− 1

2 (A
−1 �y)T ·(A−1 �y)

= 1
(2π)d/2|det(A)|e

− 1
2 �y

T (AAT )−1 �y . (8.2.2)

Thus formula (8.2.2) gives the general form of the d-dimensional zero-
mean Gaussian p.d.f., and just as we identified the parameter a2 in the
1D case (8.1.5)–(8.1.6) as the variance of the random quantity Y , we can
identify entries of the matrix

Γ = AAT (8.2.3)

appearing in the exponent in (8.2.2) as statistically significant parame-
ters of the random vector �Y .

To see what they are, let us first calculate the entries γij , i, j =
1,2, . . . , d, of matrix Γ :

γij = ai1aj1 + ai2aj2 + · · · + aidajd. (8.2.4)

On the other hand, correlations (really, covariances, since we are work-
ing with zero-mean vectors) of different components of random vector
�Y are

E(YiYj) = E((ai1X1 + · · · + aidXd) · (aj1X1 + · · · + ajdXd))
= ai1aj1 + ai2aj2 + · · · + aidajd (8.2.5)

because EXiXj = 1 if i = j and = 0 if i ≠ j.
Therefore, it turns out that

Γ = (γij) = (EYiYj), (8.2.6)

and matrix Γ = (γij) is simply the correlation matrix of the general
zero-mean Gaussian random vector �Y . Thus, since

det(Γ) = det(AAT ) = det(A) · det(AT ) = (det(A))2,

we finally get that the p.d.f. of �Y can be written in the form

f�Y ( �y) =
1

(2π)d/2|det(Γ)|1/2 e
− 1

2 �y
T Γ−1 �y , (8.2.7)

where Γ is the correlation matrix of �Y satisfying the nondegeneracy
condition det(Γ) ≠ 0.
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Remark 8.2.1 (Gaussian random vectors with nonzero mean). Of course,
to get the p.d.f. of a general Gaussian random vector with nonzero ex-
pectation

E�Y = �μ = (μ1, . . . , μd)T ,

it suffices to shift the p.d.f. (8.2.7) by �μ to obtain that

f�Y ( �y) =
1

(2π)d/2|det(Σ)|1/2 e
− 1

2 ( �y−�μ)TΣ−1( �y−�μ), (8.2.8)

where
Σ = (σij) = (E(Yi − μi)(Yj − μj)) (8.2.9)

is the covariance matrix of �Y . A Gaussian random vector with joint
p.d.f. given by formulas (8.2.8)–(8.2.9) is often called a normal N(�μ,Σ)
random vector.

Example 8.2.1 (2D zero-mean Gaussian random vectors). Let us carry
out the above calculation explicitly in the special case of dimension
d = 2. Then the correlation matrix is

Γ =
(

EY1Y1 EY1Y2

EY2Y1 EY2Y2

)
=
(

σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
,

where the variances of the coordinate vectors are

σ 2
1 = EY 2

1 , σ 2
2 = EY 2

2 ,

and the correlation coefficient of the two components is

ρ = EY1Y2

σ1σ2
.

The determinant of the correlation matrix is

det(Γ) = σ 2
1σ

2
2 (1− ρ2),

and its inverse is

Γ−1 = 1

σ 2
1σ

2
2 (1− ρ2)

(
σ 2

2 −σ1σ2ρ
−σ1σ2ρ σ 2

1

)
.

Hence the p.d.f. of a general zero-mean Gaussian random vector is of
the form

f�Y(y1, y2) = 1

(2π)2/2σ1σ2

√
1− ρ2

× exp

⎡
⎢⎢⎢⎢⎣−

1
2
(y1, y2)

(
σ 2

2 −σ1σ2ρ
−σ1σ2ρ σ 2

1

)

σ 2
1σ

2
2 (1− ρ2)

(
y1

y2

)
⎤
⎥⎥⎥⎥⎦ ,
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which, after performing prescribed matrix algebra, leads to the final
expression

f�Y(y1, y2) = 1

2πσ1σ2

√
1− ρ2

× exp

[
− 1

2(1− ρ2)

(
y2

1

σ 2
1
− 2ρ

y1y2

σ1σ2
+ y

2
2

σ 2
2

)]
. (8.2.10)

8.3 Gaussian stationary signals

By definition, a nondegenerate zero-mean random signal X(t) is Gaus-
sian if, for any positive integer N , and any selection of sampling times
t1 < t2 < · · · < tN , the random vector

�X(t1,...,tN) =

⎛
⎜⎜⎜⎜⎝
X(t1)
X(t2)

...
X(tN)

⎞
⎟⎟⎟⎟⎠ (8.3.1)

is a Gaussian zero-mean random vector with a nondegenerate correla-
tion matrix. Thus, in view of results of Section 8.2, its N-dimensional
joint p.d.f. f(t1,...,tN)(x1, . . . , xN) is given by the formula34

f(t1,...,tN)(x1, . . . , xN) = 1
(2π)N/2|det(Γ)|1/2 · e

− 1
2 �x

T Γ−1 �x, det(Γ) ≠ 0,

(8.3.2)

where Γ is the N ×N correlation matrix

Γ = Γ (t1,...,tN) = (γX(ti, tj)) = (EX(ti)X(tj)). (8.3.3)

Thus, in view of (8.3.1)–(8.3.2), the only information needed to com-
pletely determine all finite-dimensional joint probability distributions of
a zero-mean Gaussian random signal X(t) is the knowledge of its auto-
correlation function

γX(s, t) = EX(t)X(s).

For stationary Gaussian signals the situation is simpler yet as the
autocorrelation function γX(s, t) is just a function of a single variable:
34 Note that for some simple Gaussian stationary signals, like, e.g., X(t) =
X ·ejt , where X ∼ N(0,1), one can choose the tis so that the determinant of
the correlation matrix is zero; take, for example, N = 2 and t1 = π , t2 = 2π .
Then the joint p.d.f. of the Gaussian random vector (X(t1), . . . , X(tN))T is
not of the form (8.3.2). Such signals are called degenerate.
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γX(t, s) = γX(t − s).

Thus the correlation matrix Γ for a stationary random signal X(t) sam-
pled at t1, t2, . . . , tN , is of the form

Γ (t1,...,tN) =

⎛
⎜⎜⎜⎝

γX(0) γX(t2 − t1) γX(t3 − t1) · · · γX(tN − t1)
· · · γX(0) · · · · · · · · ·
· · · · · · · · · · · · · · ·

γX(tN − t1) γX(tN − t2) · · · · · · γX(0)

⎞
⎟⎟⎟⎠ ,

and it is obviously invariant under translations, that is, for any t,

Γ (t1,...,tN) = Γ (t1+t,...,tN+t), (8.3.4)

which, in view of (8.3.2)–(8.3.3), implies that all finite-dimensional
p.d.f.s of X(t) are also invariant under translations; that is, for any
positive integer N , any sampling times t1, . . . , tN , and any time shift t,

f(t1,...,tN)(x1, . . . , xN) = f(t1+t,...,tN+t)(x1, . . . , xN). (8.3.5)

In other words,

a Gaussian weakly stationary signal is strictly stationary .

In the particular case when the sampling times are uniformly spaced
with the intersampling time interval Δt, the correlation matrix Γ of the
signal X(t) sampled at times

t, t +Δt, t + 2Δt, . . . , t + (N − 1)Δt,

is

Γ =

⎛
⎜⎜⎜⎝

γX(0) γX(Δt) γX(2Δt) · · · γX((N − 1)Δt)
γX(Δt) γX(0) γX(Δt) · · · γX((N − 2)Δt)
· · · · · · · · · · · · · · ·

γX((N − 1)Δt) γX((N − 2)Δt) · · · · · · γX(0)

⎞
⎟⎟⎟⎠ .

Example 8.3.1. Consider a Gaussian signal X(t) with autocorrelation
function

γX(t) = e−0.3|t|.

We are interested in finding the joint p.d.f. of the signal at times t1 = 1,
t2 = 2, and the probability that the signal has values between −0.6 and
1.4 at t1 and between 0.7 and 2.6 at t2.

The first step is then to find the correlation matrix

Γ (1,2) =
(
γX(0) γX(1)
γX(1) γX(0)

)
=
(
e0 e−0.3

e−0.3 e0

)
=
(

1 0.74
0.74 1

)
.
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The correlation coefficient of X(1) and X(2) is then

ρ = γX(1)
γX(0)

= 0.74

and, in view of Example 8.2.1 (see (8.2.10)), the joint p.d.f. of X(1) and
X(2) is of the form

f(1,2)(x1, x2) = 1

2π
√

1− 0.742

· exp
[ −1

2(1− 0.742)
(x2

1 − 2 · 0.74x1x2 + x2
2)
]

= 0.24 · exp[−1.11(x2
1 − 1.48x1x2 + x2

2)].

Finally, the desired probability is

P(−0.6 ≤ X(1) ≤ 1.4 and 0.7 ≤ X(2) ≤ 2.6)

=
∫ 1.4

−0.6

∫ 2.6

0.7
0.24 · e−1.11(x2

1−1.48x1x2+x2
2)dx1dx2 = 0.17,

where the last integral has been evaluated numerically in Mathematica
with a two-digit precision.

8.4 Sample path properties of general and Gaussian
stationary signals

Mean-square continuity and differentiability. It is clear that the local
properties of the autocorrelation function γX(τ) of a stationary signal
X(t) affect properties of the sample paths of the signal itself in the
mean-square sense, that is in terms of the behavior of the expectation of
the square of signal’s increments, i.e., the variances of the increments.35

Indeed, with no distributional assumptions on X(t), we have

σ 2(τ) = E(X(t + τ)−X(t))2 = 2(γX(0)− γX(τ));

the variance of the increment is independent of t. Hence we have the
following result:

A stationary signal X(t) is continuous in the mean-square sense, that
is, for any t > 0,

lim
τ→0

E(X(t + τ)−X(t))2 = 0,

if and only if the autocorrelation function γX(τ) is continuous at τ = 0,
35 Recall that the sequence (Xn) of random quantities is said to converge to
X, in the mean-square, if E|Xn −X|2 → 0, as n→∞.
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that is,
lim
τ→0

γX(τ) = γX(0).

In particular, signals with autocorrelation functions γX(τ) = e|τ| or
γX(τ) = 1

1+τ2 are mean-square continuous.
A similar, mean-square analysis of the limit at τ = 0 of the differen-

tial ratio,

E
(
X(t + τ)−X(t)

τ

)2

= 2
γX(0)− γX(τ)

τ2
,

shows that a stationary signal with autocorrelation function γX(τ) =
e|τ| cannot be possibly mean-square differentiable because in this case

lim
τ→0

γX(0)− γX(τ)
τ2

= lim
τ→0

1− e−|τ|
τ2

= ∞,

whereas the differentiability cannot be excluded for the signal with au-
tocorrelation γX(τ) = 1

1+τ2 because in this case

lim
τ→0

γX(0)− γX(τ)
τ2

= lim
τ→0

1− 1
1+τ2

τ2
= 1.

Of course, the above brief discussion just verifies the boundedness
of the variance of the signal’s differential ratio as τ → 0, not whether the
latter has a limit. So, let us take a closer look at the issue of the mean-
square differentiability of a stationary signal, that is the existence of the
random quantity X′(t), for a fixed t. First, observe that this existence
is equivalent to the statement that36

lim
τ1→0

lim
τ2→0

E
(
X(t + τ1)−X(t)

τ1
− X(t + τ2)−X(t)

τ2

)2

= 0

But the expression under the limit signs is equal to

E
(
X(t + τ1)−X(t)

τ1

)2

+ E
(
X(t + τ2)−X(t)

τ2

)2

− 2E
(
X(t + τ1)−X(t)

τ1
· X(t + τ2)−X(t)

τ2

)
.

So, the existence of the derivativeX′(t) in the mean-square is equivalent
to the fact that the first two terms converge to γX′(0) and the third to
36 This argument relies on the so-called Cauchy criterion of convergence for

random quantities with finite variance: A sequence Xn converges in the
mean-square as n → ∞, that is, there exists a random quantity X such that
limn→∞ E(Xn −X)2 = 0, if and only if limn→∞ limm→∞ E(Xn −Xm)2 = 0. This
criterion permits the verification of the convergence without knowing what
the limit is; see, e.g., Theorem 11.4.2 in W. Rudin, Principles of Mathematical
Analysis, McGraw–Hill, New York, 1976.



8.4 General and Gaussian stationary signals 169

−2γX′(0). But the convergence of the last term means the existence of
the limit

lim
τ1→0

lim
τ2→0

1
τ1τ2

E((X(t + τ1)−X(t)) · (X(t + τ2)−X(t)))

= lim
τ1→0

lim
τ2→0

1
τ1τ2

(γX(τ2 − τ1)− γX(τ1)− γX(τ2)+ γX(0))

= lim
τ1→0

lim
τ2→0

1
τ1τ2

Δ−τ1Δτ2γX(0),

whereΔτf (t) := f(t+τ)−f(t) is the usual difference operator. Indeed,

Δ−τ1Δτ2γX(0) = Δτ1(γX(τ2)− γX(0))
= (γX(τ2 − τ1)− γX(−τ1))− (γX(τ2)− γX(0)).

Since the existence of the last limit appearing above means twice dif-
ferentiability of the autocorrelation function of X at τ = 0 we arrive at
the following criterion:

A stationary signal X(t) is mean-square differentiable if and only
if its autocorrelation function γX(τ) is twice differentiable at τ = 0.
Moreover, in this case, the cross-correlation of the signal X(t) and its
derivative X′(t) is

EX(t)X′(s) = lim
τ→0

γX(t + τ − s)− γX(t − s)
τ

= ∂
∂t
γX(t − s), (8.4.1)

and the autocorrelation of the derivative signal is

EX′(t)X′(s) = lim
τ→0

(
∂
∂t
γX(t + τ − s)− ∂

∂t
γX(t − s)

)
= ∂2

∂t∂s
γX(t − s).

(8.4.2)

In a similar fashion one can calculate the cross-correlation of higher
derivatives of the signal X(t) to obtain that37

EX(n)(t)X(m)(s) = ∂n+m

∂tn∂sm
γX(t − s). (8.4.3)

Sample path continuity. A study of properties of the individual sample
paths (trajectories, realizations) of stationary random signals is a more
delicate matter, with the most precise results obtainable only in the case
of Gaussian signals. Indeed, we have observed in the previous sections
that, for a Gaussian signal, the autocorrelation function determines all
the finite-dimensional probability distributions of the signal, meaning
37 For details, see M. Loeve, Probability Theory , Van Nostrand, Princeton, NJ,

1963, Section 34.3.
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that for any finite sequence of windows, [a1, b1], [a2, b2], . . . , [aN, bN],
and any collection of time instants t1, t2, . . . , tN , we can find the proba-
bility that the signal fits into those windows at prescribed times, that is,

P(a1 < t1 < b1, a2 < t2 < b2, . . . , aN < tN < bN).

So it seems that by taking N to ∞, and making the time instants closer
to each other and the windows narrower, one could find the probability
that the signal’s sample path has any specific shape or property. This
idea is, roughly speaking, correct, but only in a subtle sense that will be
explained below.

The discussion of the sample path properties of stationary signals
will be based here on the following theorem of the theory of general
random signals (stochastic processes) due to N. N. Kolmogorov.

Theorem 8.4.1. Let g(h) be an even function, nondecreasing for h > 0,
and such that g(h) → 0 as h → 0. Furthermore, suppose that X(t) is a
random signal such that

P(|X(t + h)−X(t)| > g(h)) ≤ q(h), (8.4.4)

for a function q(h) satisfying the following three conditions:

q(h)→ 0 as h→ 0; (8.4.5)
∞∑
n=1

2nq(2−n) <∞; (8.4.6)

∞∑
n=1

g(2−n) <∞; (8.4.7)

Then, with probability 1, the sample paths of the signal X(t) are contin-
uous.

Although the proof of the above theorem is beyond the scope of this
book,38 the intuitive meaning of the assumptions (8.4.4)–(8.4.7) is clear:
for the signal to have continuous sample paths, the increments of the
signal over small time intervals can be permitted to be large only with
a very small probability.

Applied to the second-order (not necessarily stationary) signals,
Theorem 8.4.1 immediately gives the following.

38 For a more complete discussion of this theorem and its consequences for
sample path continuity and differentiability of random signals, see, for ex-
ample, M. Loève, Probability Theory , Van Nostrand, Princeton, NJ, 1963, Sec-
tion 35.3.
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Corollary 8.4.1. If there exists a τ0 such that, for all τ, 0 ≤ τ < τ0, and
all t in a finite time interval,

E(X(t + τ)−X(t))2 ≤ C|τ|1+ε (8.4.8)

for some constants C , ε > 0, then the sample paths of the signal X(t)
are continuous with probability 1.

To see how Corollary 8.4.1 follows from Theorem 8.4.1,39 observe
first that for any random quantity Z and any constant a > 0.

P(Z > a) ≤
∫∞
a
fZ(z)dz ≤

∫∞
a

z2

a2
fZ(z)dz ≤ EZ2

a2
.

Condition (8.4.8) then implies that

P(X(t + τ)−X(t)| > g(τ)) ≤ C|τ|1+ε
g2(τ)

,

so that by selecting g(τ) = |τ|ε/4, and

q(τ) = C|τ|1+ε
g2(τ)

= C|τ|1+ε/2,

we easily see that g(τ) and q(τ) are continuous functions vanishing
at τ = 0, and that the conditions (8.4.6)–(8.4.7) of the theorem are also
satisfied. Indeed,

∞∑
n=1

2nq(2−n) = C
∞∑
n=1

2n(2−n)1+ε/2 = C
∞∑
n=1

2−nε/2 <∞,

and
∞∑
n=1

g(2−n) =
∞∑
n=1

2−nε/4 <∞.

In the special case of a stationary signal we have E(X(t + τ) −
X(t))2 = 2(γX(0)−γX(τ)), so the sample path continuity is guaranteed
by the following condition on the autocorrelation function:

|γX(0)− γX(τ)| ≤ C|τ|1+ε, (8.4.9)

39 This inequality is known as the Chebyshev inequality, and its proof here has
been carried out only in the case of absolutely continuous probability dis-
tributions. The proof in the discrete case is left to the reader as an exercise;
see Section 8.5.
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for some constant ε > O, and small enough τ .
In particular, for the autocorrelation function γX(τ) = 1

1+τ2 ,

|γX(0)− γX(τ)| = 1− 1
1+ τ2

= τ2

1+ τ2
≤ τ2,

and the condition (8.4.8) is satisfied, thus giving the sample path con-
tinuity.

However, for a signal with autocorrelation function γX(τ) = e−|τ|,
the difference γX(0) − γX(τ) behaves asymptotically like τ for τ → 0.
Therefore, there is no positive ε for which condition (8.4.9) is satisfied
and we cannot claim the continuity of the sample path in this case—not
a surprising result if one remembers that the exponential autocorrela-
tion was first encountered in the context of the obviously sample path
discontinuous switching signal. Nevertheless, as we observed at the
beginning of this section, a signal with an exponential autocorrelation
is mean-square continuous.

For a Gaussian stationary signal X(t), Theorem 8.4.1 can be applied
in a more precise fashion since the probabilities P(X(t+τ)−X(t) > a)
are known exactly. Indeed, since for any positive z,∫∞

z
e−x

2/2dx ≤
∫∞
z

x
z
e−x

2/2dx = 1
z
e−z

2/2,

because x
z ≥ 1 in the interval of integration, we have, for any nonnega-

tive function g(τ) and positive constant C ,

P(|X(t + τ)−X(t)| > Cg(τ)) ≤
√

2
π
σ(τ)
Cg(τ)

exp

(
−1

2
C2g2(τ)
σ 2(τ)

)
,

(8.4.10)
where σ 2(τ) = E(X(t + τ)−X(t))2 = 2(γX(0)− γX(τ)). This estimate
yields the following result.

Corollary 8.4.2. If there exists τ0 such that, for all τ, 0 ≤ τ ≤ τ0, the
autocorrelation function γX(τ) of a stationary Gaussian signal X(t) sat-
isfies the condition

γX(0)− γX(τ) ≤ K
| ln |τ||δ , (8.4.11)

for some constants K > 0 and δ > 3, then the signal X(t) has continuous
sample paths with probability 1.

The proof of the corollary is completed by selecting

g(τ) = | ln |τ||−ν,
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with any number ν satisfying condition 1 < ν < δ−1
2 , choosing

q(C, τ) = K′

C| ln |τ||δ/2−ν exp

(
−C

2

2K
| ln |τ||δ−2ν

)

and verifying the convergence of the two series in conditions (8.4.6)–
(8.4.7); see the exercise in Section 8.5.

Returning to the case of a stationary random signal with an expo-
nential autocorrelation function, we see that if the signal is Gaussian,
then Corollary 8.4.2 guarantees the continuity of its sample paths with
probability 1. Indeed, condition (8.4.11) is obviously satisfied since (e.g.,
picking δ = 4) we have

lim
τ→0

(γX(0)− γX(τ)) · | ln |τ||4 = lim
τ→0

(1− e−|τ|) · | ln |τ||4 = 0

in view of l’Hospital’s rule.

8.5 Problems and exercises

8.5.1. A zero-mean Gaussian random signal has the autocorrelation
function of the form

γX(τ) = 10e−0.1|τ| cos 2πτ.

Write the covariance matrix for the signal sampled at four time
instants separated by 0.5 seconds.

8.5.2. Find the joint p.d.f. of the signal from Exercise 8.5.1 at t1 = 1
and t2 = 2.5. Write the integral formula for

P(0 ≤ X(1) ≤ 1,0 ≤ X(2.5) ≤ 2).

Evaluate the above probability numerically.
8.5.3. Find the joint p.d.f. of the signal from Exercise 8.5.1 at t1 = 1,

t2 = 1.5, and t3 = 2.5. Write the integral formula for

P(0 ≤ X(1) ≤ 1,−1 ≤ X(1.5) ≤ 3,0 ≤ X(2.5) ≤ 2).

Evaluate the above probability numerically.
8.5.4. Show that if a 2D Gaussian random vector �Y = (Y1, Y2) has un-

correlated components Y1, Y2, then those components are sta-
tistically independent random quantities.

8.5.5. Produce 2D surface plots for p.d.f.s of three Gaussian random
vectors: (X(1.0),X(1.1))T , (X(1.0),X(2.0))T , (X(1.0),X(5.0))T ,
where X(t) is the stationary signal described in Example 8.3.1.
Comment on similarities and differences in the three plots.
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8.5.6. Prove that if there exists a τ0 such that, for all τ < τ0 and all t
in a finite time interval,

E(X(t + τ)−X(t))2 ≤ C |τ|
| ln |τ||1+δ ,

for some C > 0 and δ > 2, then the sample paths of the signal
X(t) are continuous with probability 1. Hint : This result is
a little more delicate than Corollary 8.4.1, but the idea of the
proof is similar: take g(τ) = | ln |τ||−β, for a β between 1 and
δ
2 , from which we have

q(τ) = |τ|
| ln |τ||1+δ−2β ,

and check conditions (8.4.4)–(8.4.7) in Theorem 8.4.1.
8.5.7. Verify the Chebyshev inequality, P(|Z| > a) ≤ EZ2

a2 , a > 0, for a
discrete random quantity Z .

8.5.8. Produce plots of several 2D Gaussian densities with selected
means and covariance matrices.

8.5.9. Random signalX(t) has an autocorrelation function of the form
γX(τ) = exp(−|τ|α) with 0 < α ≤ 2. For which values of pa-
rameter α can you claim the continuity of sample paths of X(t)
with probability 1?

8.5.10. Verify formula (8.4.3) for the cross-correlation of higher deriva-
tives of a stationary signal.

8.5.11. Verify the convergence of the series (8.4.6)–(8.4.7) in the proof
of Corollary 8.4.2.
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Discrete Signals and Their Computer Simulations

Given an arbitrary power spectrum, our ability to simulate the corre-
sponding stationary random signals, using only the random number
generator which produces, say, discrete white noise, depends on the
observation that in some sense all stationary random signals can be
approximated by superpositions of random harmonic oscillations de-
sciribed in Example 4.1.2. The observation itself is not obvious at all
and, of course, the key to applying it is in the details: In what is sense
the approximation meant? What is the precise algorithm for obtaining
such an approximation?

In this chapter we work with discrete-time signals, and the rigor-
ous answer to the above questions is contained in the so-called spectral
representation theorem for stationary random signals which is derived
in this chapter. On the way to its formulation we introduce the neces-
sary concepts including the crucial construction of stochastic integrals
with respect to a white noise signal, often called the white noise inte-
grals. We conclude with a computer algorithm based on the spectral
representation theorem.

9.1 Autocorrelation as a positive definite function

In this chapter we will study random stationary signals in discrete time,
that is, sequences of complex-valued random quantities

. . . , X(−2),X(−1),X(0),X(1),X(2), . . .

with time n extending all the way from minus to plus infinity. The
stationarity is meant in the second-order, weak sense, that is, we will
assume that the means EX(n) = 0 and the autocorrelation function,
now really a sequence,

EX(n)X∗(m) = γ(n−m), m,n = . . . ,−2,−1,0,1,2, . . . ,
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depends only on the time lag n −m. The following properties of the
autocorrelation sequence are immediately verified:

For any n,

E|X(n)|2 = EX(n)[X(n)]∗ = E|X(0)|2 = γX(0) ≥ 0, (9.1.1)

γX(−n) = γ∗X(n), (9.1.2)

|γX(n)| ≤ γX(0). (9.1.3)

The last inequality is a direct consequence of the Cauchy–Schwartz in-
equality.

Also, importantly, the autocorrelation sequence is positive definite,
that is, for any positive integerN , arbitrary integers, n1, n2, . . . , nN , and
arbitrary complex numbers λ1, λ2, . . . , λN ,

N∑
i,k=1

γX(ni −nk)λiλ∗k ≥ 0. (9.1.4)

Indeed,

N∑
i,k=1

γX(ni −nk)λiλ∗k =
N∑

i,k=1

E[X(ni)X∗(nk)]λiλ∗k

= E
N∑

i,k=1

[λiX(ni)] · [λkX(nk)]∗

= E
N∑
i=1

λiX(ni) ·
N∑
k=1

[λkX(nk)]∗

= E

∣∣∣∣∣∣
N∑
i=1

λiX(ni)

∣∣∣∣∣∣
2

≥ 0.

9.2 Cumulative power spectrum of discrete-time
stationary signal

The development of this section will be analogous to the development
of the concept of the power spectrum of continuous-time signals in Sec-
tion 5.2. However, we will proceed in a slightly different fashion, and
with more mathematical precision. The basic structural result regard-
ing the autocorrelation function of a discrete-time stationary signal can
be formulated as follows:

Herglotz Theorem. The following statements about sequence γ(n), n =
. . . ,−2,−1,0,1,2, . . . , of complex numbers are equivalent:
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(i) Sequenceγ(n) is an autocorrelation sequence of a stationary discrete-
time signal, that is, there exists a stationary signal X(n) such that
γ(n) = γX(n).

(ii) The sequence γ(n) is positive definite, that is, it satisfies condition
(9.1.4).

(iii) There exists a nondecreasing bounded function SX(f), defined on
the interval [0,1], such that

γ(n) =
∫ 1

0
ej2πnfdS(f ), n = . . . ,−2,−1,0,1,2, . . . . (9.2.1)

The function SX(f) is called the cumulative power spectrum of sig-
nal X.

Remark 9.2.1 (power spectrum density). The integral of the form
∫
a(f)dS(f ),

called the Stieltjes integral, is to be understood as the limit of sums∑
a(fi) ·ΔS(fi), with ΔS(fi) = S(fi)−S(fi−1).
If the cumulative power spectrum has a spectral density S(f), 0 ≤

f ≤ 1, that is,

S(f ) =
∫ f

0
S(g)dg,

dS(f )
df

= S(f) ≥ 0,

then formula (9.1.1) takes the form of the usual Riemann integral

γ(n) =
∫ 1

0
ej2πnf S(f)df , n = . . . ,−2,−1,0,1,2, . . . , (9.2.2)

and the sequence γ(−n) can be simply viewed as the sequence of
Fourier coefficients of power spectrum density S(f).

In the special case when the cumulative power spectrum is constant,
except for jumps, that is,

S(f ) =
∑
l
slu(f − fl),

where u(t) is the unit step function, then
∫
a(f)dS(f) =

∑
l
a(fl)sl,

so that



178 9 Discrete Signals and Their Computer Simulations

γ(n) =
∑
l
slej2πnfl , n = . . . ,−2,−1,0,1,2, . . . . (9.2.3)

and the power spectrum density can be understood as a sum of the
Dirac deltas.

S(f) =
∑
l
slδ(f − fl).

However, it is worth remembering that there are so-called singular
cumulative power spectra that are not of either of the two types de-
scribed above (nor their mixtures).40

The implication (i) =⇒ (ii) has been proved following the defini-
tion (9.1.4).

We shall now prove that (ii) =⇒ (iii). So, assume that γ(n) is pos-
itive definite. In view of (9.1.4), selecting ni = i, λi = e−j2πif , i =
1,2, . . . , N, we have

0 ≤
N∑

i,k=1

γ(i− k)e−j2πif ej2πkf =
N∑

i,k=1

γ(i− k)e−j2π(i−k)f

=
N−1∑

m=−N+1

(N − |m|)γ(m)e−j2πmf ,

after substitution m = i− k. Define

SN(f) := 1
N

N−1∑
m=−N+1

(N − |m|)γ(m)e−j2πmf .

Then

SN(f) ≥ 0 and
∫ 1

0
SN(f)df = γ(0). (9.2.4)

By a fundamental real analysis result called the Arzela–Ascoli theo-
rem,41 conditions (9.2.4) guarantee the existence of a function S(f )
and a sequence Ni ↗ ∞, i→∞ such that, for each bounded and smooth
function a(f),

∫ 1

0
a(f)SNi(f )df −→

∫ 1

0
a(f)dS(f ).

Therefore, selecting a(f) = ej2πmf , we have

∫ 1

0
ej2πmfdS(f ) = lim

i→∞

∫ 1

0
ej2πmfSNi(f )df = γ(m)

40 See Section 3.1 or, e.g., M. Denker and W. A. Woyczyński, Introductory Statis-
tics and Random Phenomena: Uncertainty, Compexity, and Chaotic Behavior
in Engineering and Science, Birkhäuser Boston, Cambridge, MA, 1998.

41 See, e.g., G. B. Folland, Real Analysis, Wiley, New York, 1984.
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because, for each m such that |m| ≤ Ni,∫ 1

0
ej2πmfSNi(f )df = γ(m)

(
1− |m|

Ni

)
.

Thus the existence of the cumulative spectral measure for each discrete-
time stationary signal has been established.

The implication (iii) =⇒ (ii) can be verified directly. Indeed,

N∑
i,k=1

γ(ni −nk)λiλ∗k =
N∑

i,k=1

∫ 1

0
ej2π(ni−nk)fdS(f ) · λiλ∗k

=
∫ 1

0

N∑
i,k=1

[λiej2πnif ] · [λkej2πnkf ]∗dS(f )

=
∫ 1

0

∣∣∣∣∣∣
N∑
i=1

λiej2πnif
∣∣∣∣∣∣

2

dS(f ) ≥ 0.

The implication (ii) =⇒ (i) follows from the following fact es-
tablished in Section 8.2. For any given positive definite matrix Γ =
(γik), i, k = 1,2, . . . , N, there exists a Gaussian random vector X =
(X1, X2, . . . , XN), with covariance matrix Γ . Now, for any N , it suffices
to take Γ = (γ(i− k)), i, k = 1,2, . . . , N, and define

X(1) = X1, X(2) = X2, . . . , X(N) = XN.
This proves the existence of a finite discrete-time stationary random
signal with an autocorrelation sequence given by a prescribed positive
definite sequence.42

9.3 Stochastic integration with respect to signals with
uncorrelated increments

Recall that our goal in this chapter is to develop a simulation algorithm
for discrete-time stationary signals with a given power spectrum, and
one of the methods used for that purpose involves representation of the
random signal as a stochastic integral with respect to another random
signal which has independent increments which is easy to simulate.
The purpose of this section is to introduce the latter concept.

The finite variance, zero-mean real-valued signal W(w) of continu-
ous or discrete parameterw is said to have uncorrelated increments if,
for any w1 ≤ w2 ≤ w3,
42 A step proving the existence of an infinite such sequence requires an applica-

tion of the so-called Kolmogorov extension theorem; see, e.g., P. Billingsley,
Probability and Measure, Wiley, New York, 1986.
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E[(W(w3)−W(w2)) · (W(w2)−W(w1))] = 0. (9.3.1)

In other words, such signals have uncorrelated increments over disjoint
intervals of parameter w. Observe that condition (9.3.1) can be rewrit-
ten in terms of the autocorrelation function γW (v,w) = EW(v)W(w)
(which here is truly a function of two variables v,w, and not just the
parameter lag w − v as is the case for stationary signals) as follows:

E[(W(w3)−W(w2)) · (W(w2)−W(w1))] (9.3.2)

= EW(w3)W(w2)− EW(w2)W(w2)− EW(w3)W(w1)
+ EW(w2)W(w1)

= γW (w3,w2)− γW (w2,w2)− γW (w3,w1)+ γW (w2,w1) = 0.

Example 9.3.1 (the cumulative white noise in discrete time). In dis-
crete time, the white noise W(n) was defined simply as a sequence of
zero-mean uncorrelated random quantities with equal variance, that is,

γW(n,m) = γW(m−n) = EW(n)W(m) =
{

0 if n−m ≠ 0;

σ 2 if n−m = 0.

We will define the cumulative white noise as the random signal

W(n) = W(1)+W(2)+ · · · +W(n), n = 1,2, . . . ,

with the convention W(0) = 0. The cumulative white noise has uncor-
related increments. Indeed, if n1 ≤ n2 ≤ n3, then

E[(W(n3)−W(n2)) · (W(n2)−W(n1))]

= E

⎡
⎣
⎛
⎝ n3∑
n=1

W(n)−
n2∑
n=1

W(n)

⎞
⎠ ·

⎛
⎝ n2∑
n=1

W(n)−
n1∑
n=1

W(n)

⎞
⎠
⎤
⎦

= E[(W(n2 + 1)+ · · · +W(n3)) · (W(n1 + 1)+ · · · +W(n2))]
= 0.

For any signal W(w) with uncorrelated increments, we will intro-
duce a cumulative control function

C(w) := E[W(w)−W(0)]2 ≥ 0. (9.3.3)

which simply measures the variance of the increment of the signal from
0 tow. Since the variance of the sum of uncorrelated random quantities
is the sum of their variances, the cumulative control function is always
nondecreasing because, for 0 ≤ v ≤ w,

C(w) = E[(W(w)−W(0)]2

= E[(W(w)−W(v))+ (W(v)−W(0))]2
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= E[(W(w)−W(v))]2 + E[(W(v)−W(0))]2
≥ E[(W(v)−W(0))]2 = C(v). (9.3.4)

Observe that, under condition W(0) = 0, the cumulative control
function determines the correlation structure of W(w) and vice versa.
If, say, 0 ≤ v ≤ w, then

γW (v,w) = EW(v)W(w)
= E[W(v)−W(0)] · [(W(w)−W(v))+ (W(v)−W(0)]
= E[W(v)−W(0)] · [(W(v)−W(0)] = C(v)

because the increments over intervals [0, v] and [v,w] are uncorre-
lated. Since an analogous reasoning holds true in the case 0 ≤ w ≤ v ,
we get the general formula

γW (v,w) = C(min(v,w)). (9.3.5)

An important class of signals with uncorrelated increments are
those that also have stationary increments, that is for which the c.d.f. of
the increment W(w)−W(v) is the same as the c.d.f. of the increment
W(w + z)−W(v + z), for any z. In this case, the cumulative control
function satisfies the condition

C(w + v) = C(w)+C(v) (9.3.6)

because E[W(w +v)−W(0)]2 = E[W(w +v)−W(v)]2 + E[W(v)−
W(0)]2 = E[W(w) −W(0)]2 + E[W(v) −W(0)]2. Condition (9.3.6)
forces the cumulative function to be of the form

CW (w) = const ·w, (9.3.7)

and, in view of (9.2.4), the autocorrelation structure of a signal with
stationary and uncorrelated increments is of the form

γW (v,w) = const ·min(v,w). (9.3.8)

Example 9.3.2 (the Wiener process). A continuous-time Gaussian sig-
nal with stationary and independent increments with

CW (w) = w, γW (v,w) = min(v,w).

is called the Wiener stochastic process (or the Brownian motion pro-
cess). Its sample trajectories are shown in Figure 1.1.4. Notice that in
this case the autocorrelation function gives a complete description of
all finite-dimensional distributions of W(w). Indeed, given parameter
values

w1 ≤ w2 ≤ · · · ≤ wN,
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the random vector

(W(w1),W(w2), . . . ,W(wN))

is a Gaussian random vector with the covariance matrix

Γ = (min(wi,wk)),

so that its joint c.d.f. can be explicitly calculated:

P(W(w1) ≤ a1,W(w2) ≤ a2, . . . ,W(wN) ≤ aN) (9.3.9)

=
∫ a1

−∞

∫ a2

−∞
. . .
∫ aN
−∞

e−ζ
2
1/2w1√

2πw1
· e

−(ζ2−ζ1)2/2(w2−w1)√
2π(w2 −w1)

× · · ·

× · · · × e
−(ζN−ζN−1)2/2(wN−wN−1)√

2π(wN −wN−1)
× dζN · · · · · dζ2 · dζ1.

Now, we shall introduce the stochastic integral

∫ 1

0
x(w)dW(w),

with respect to a signal W(w) with uncorrelated increments, for a de-
terministic, possibly complex-valued function x(w). If x(w) is a step
function of the form

x(w) =
N∑
i=1

xi1(wi−1,wi](w), (9.3.10)

with 0 = w0 < w1 < · · · < wN−1 < wN = 1, and 1A(w) denoting the
indicator function of set A,43 then, obviously,

∫ 1

0
x(w)dW(w) :=

N∑
i=1

xi · (W(wi)−W(wi−1)). (9.3.11)

Note that the variance of this stochastic integral

E
∣∣∣∣
∫
x(w)dW(w)

∣∣∣∣2

= E

∣∣∣∣∣∣
N∑
i=1

xi · (W(wi)−W(wi−1))

∣∣∣∣∣∣
2

=
N∑
i=1

|xi|2E(W(wi)−W(wi−1))2

=
N∑
i=1

|xi|2(C(wi)−C(wi−1))

43 Recall that the indicator function 1A(w) is defined as being equal to 1 for
w belonging to set A and 0 for w outside A.
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=
∫ 1

0
|x(w)|2dC(w) (9.3.12)

because, in view of (9.3.4), for any 0 < v < w,

E(W(w)−W(v))2 = C(w)−C(v). (9.3.13)

Since any function x(w) such that

∫ 1

0
|x(w)|2dC(w) <∞ (9.3.14)

is a limit of a sequence xn(w) of step functions,44 in the sense that

∫ 1

0
|xn(w)− x(w)|2dC(w)→ 0 as n→∞,

the definition (9.3.11) of the stochastic integral for step functions can
now be extended to any x(w) satisfying condition (9.3.14) by setting

∫ 1

0
x(w)dW(w) := lim

n→∞

∫ 1

0
xn(w)dW(w), (9.3.15)

where the limit is understood as the limit in the mean-square of random
quantities. In view of this procedure, the general stochastic integral
for a function x(w) satisfying condition (9.3.14) enjoys the “isometric”
property

E

∣∣∣∣∣
∫ 1

0
x(w)dW(w)

∣∣∣∣∣
2

=
∫ 1

0
|x(w)|2dC(w). (9.3.16)

Example 9.3.3 (Gaussian stochastic integrals). Note that if the cumu-
lative control function C(w) of a Gaussian process with independent
increments V (w) has a density c(w), that is,

C(w) =
∫w

0
c(v)dv,

dC(w)
dw

= c(w) ≥ 0, 0 ≤ w ≤ 1,

then, in view of (9.3.16),

E(V (w))2 = E
(∫w

0
dV (v)

)2

=
∫w

0
c(v)dv =

∫w
0

(√
c(v)

)2

dv,

which implies that, for any x(w) satisfying (9.3.14), the statistical prop-
erties of the stochastic integrals
44 See, e.g., G. B. Folland, Real Analysis, Wiley, New York, 1984.
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∫ 1

0
x(v)dV (v) and

∫ 1

0
x(w)

√
c(w)dW(w), (9.3.17)

where W(w) is the Wiener process, are the same. Later on this fact
will serve as the basis for computer simulation of stationary random
signals with a given spectrum.

Because, for any complex numbers ξ, η, we have the so-called “po-
larization formulas,”

Re[ξ · η∗] = 1
4
(|ξ + η|2 − |ξ − η|2),

Im[ξ · η∗] = 1
4
(|ξ + jη|2 − |ξ − jη|2),

which express the product in terms of the squared moduli, the “iso-
metric” relation (9.3.16) extends from the mean-squares to scalar prod-
ucts. In other words, for any x(w), y(w), satisfying condition (9.3.14),
we have

E

[∫ 1

0
x(w)dW(w) ·

(∫ 1

0
y(w)dW(w)

)∗]
=
∫ 1

0
x(w)·y∗(w)dC(w).

(9.3.18)

9.4 Spectral representation of stationary signals

The fundamental result about the structure of discrete-time stationary
signals is that they are, essentially, sequences of random Fourier co-
efficients of stochastic processes with uncorrelated increments. More
precisely, we have the following.

Spectral Representation Theorem. A discrete-time random signalX(n),
n = . . . ,−2,−1,0,1,2, . . . , is stationary if and only if it has the represen-
tation

X(n) =
∫ 1

0
ej2πnfdW(f ) (9.4.1)

for a certain random process W(f ), 0 ≤ f ≤ 1, which has uncorre-
lated increments. Moreover, the cumulative spectral function of X(n) is
identical to the cumulative control function of W(f ), that is,

SX(f) = CW (f ), 0 ≤ f ≤ 1. (9.4.2)
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Proof. If random signal X(n) is of the form (9.4.1), then it is stationary
because it has zero mean and because, in view of the “isometry” (9.3.17),

E[X(n)X∗(m)] = E

[∫ 1

0
ej2πnfdW(f ) ·

(∫ 1

0
ej2πmfdW(f )

)∗]

=
∫ 1

0
ej2π(n−m)fdCW (f ).

The above calculation also identifies the cumulative control function
of process W(f ) as the cumulative spectral function of the random
signal X(n).

The proof of the reverse implication is more delicate as it requires
identification, for each signal X(n), of a process W(f ) yielding rep-
resentation (9.4.1). Therefore, assume that X(n) is a stationary signal
with autocorrelation sequence

γX(n) =
∫ 1

0
ej2πnfdSX(f).

Denote by L2
0(P) the space of random quantities with zero mean

and finite variance and by L2(dSX(f)) the space of complex functions
on [0,1] which are square integrable with respect to the cumulative
spectral function SX(f). Next, consider a linear mapping I from L2

0(P)
into L2(dSX(f)) defined by the identity

I[X(n)] := ej2πnf , n = . . . ,−2,−1,0,1,2, . . . , (9.4.3)

on complex exponentials and extended, in a natural way, to all their
combinations. In other words, for any complex numbers c−N, . . . ,
c−1, c0, c1, . . . , cN ,

I

⎡
⎣ N∑
n=−N

cnX(n)

⎤
⎦ = N∑

n=−N
cnej2πnf . (9.4.4)

Mapping I is an isometry45 on such linear combinations because

E

∣∣∣∣∣∣
N∑

n=−N
cnX(n)

∣∣∣∣∣∣
2

=
N∑

n,m=−N
cnc∗mE[X(n)X∗(m)]

=
N∑

n,m=−N
cnc∗m

∫ 1

0
ej2π(n−m)fdSW (f )

=
∫ 1

0

∣∣∣∣∣∣
N∑

n=−N
cnej2πnf

∣∣∣∣∣∣
2

dSX(f),

45 In the sense that it preserves the norms: the standard deviation in space
L2

0(P) and ‖a‖ = (∫ 1
0 |a(f)|2dSX(f))1/2 for an a(f) in L2(dSX(f)).
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and, as such, it extends to the linear isometry

I : L[X(n), n = . . . ,−2,−1,0,1,2, . . . ] �−→ L2(dSX(f)),

where L[X(n),n = . . . ,−2,−1,0,1,2, . . . ] is the subspace of L2(P) con-
sisting of linear combinations of X(n)s and their mean-square limits.
Since any isometry is necessarily a one-to-one mapping, I has a well-
defined inverse

I−1 : L2(dSX(f)) �−→ L[X(n), n = . . . ,−2,−1,0,1,2, . . . ],

which is also a linear isometry.
Now we will define a stochastic process W(f ) by the formula

W(f ) := I−1(1[0,f ]),

where 1[0,f ](g),0 ≤ g ≤ 1, is the indicator function of the interval
[0, f ]. This process has zero mean and uncorrelated increments since,
for f1 ≤ f2 ≤ f3, in view of the isometric property of I−1,

E[(W(f3)−W(f2)) · (W(f2)−W(f1))]

= E[(I−1(1[0,f3])− I−1(1[0,f2])) · (I−1(1[0,f2])− I−1(1[0,f1]))]

= E[I−1(1[0,f3])− 1[0,f2])) · (I−1(1[0,f2])− 1[0,f1]))]

= E[I−1(1(f2,f3]) · (I−1(1(f1,f2])]

=
∫ 1

0
1(f2,f3](f ) · 1(f1,f2](f )dSX(f) = 0.

The same calculation shows that

EW 2(f ) =
∫ 1

0
12
[0,f ](g)dSX(g) = SX(f),

so the control function CW (f ) = SX(f). Now, proceeding again via
step functions as in Section 9.2, using the linearity and isometry prop-
erties of I−1, we have for any function a(f) in space L2(dCX(f)),

I−1(a) =
∫ 1

0
a(f)dW(f ).

In particular, selecting a(f) = ej2πnf , we obtain that

X(n) = I−1(ej2πnf ) =
∫ 1

0
ej2πnfdW(f ),

which concludes the proof of the spectral representation theorem. ��
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Example 9.4.1 (white noise signal). Let W(f ) be the Wiener process.
Its cumulative control function

CW (f ) = f =
∫ f

0
df

has a control density function CW (f ) ≡ 1. The stationary, discrete-time
signal

X(n) =
∫ 1

0
ej2πnfdW(f )

has the spectral density function SX(f) = CW (f ) ≡ 1 and the autocor-
relation sequence

γX(n) = EX(n)X∗(0) =
∫ 1

0
ej2πnfdf = δ(n) =

{
0 if n ≠ 0;

1 if n = 0.

Hence X(n) is the discrete-time white noise discussed in Chapter 5.

Example 9.4.2 (filtered white noise). Let X(n) be the white noise dis-
cussed above. Consider the (acausal) filtered white noise signal

Y(n) =
∞∑

k=−∞
ckX(n− k) =

∫ 1

0

⎛
⎝ ∞∑
k=−∞

ckej2π(n−k)f
⎞
⎠dW(f )

for n = . . . ,−2,−1,0,1,2, . . . . Its autocorrelation sequence is

γY (n) = EY(n)Y∗(0) = E

⎛
⎝ ∞∑
k=−∞

ckX(n− k) ·
∞∑

k=−∞
c∗k X

∗(−k)
⎞
⎠

= E
∞∑

k,l=−∞
ckc∗l X(n− k)X∗(−l) =

∞∑
k,l=−∞

ckc∗l δ(n− (k− l))

=
∞∑

k,l=−∞
ckc∗l

∫ 1

0
ej2π(n−(k−l))fdf =

∫ 1

0
|c(f)|2ej2πnfdf ,

where

c(f) =
∞∑

k=−∞
cke−j2πkf ,

is well defined as long as
∑∞
k=−∞ |ck|2 < ∞. Hence the power spectral

density of the filtered white noise is

SY (f ) = |c(f)|2.
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9.5 Computer algorithms

Given a spectral density SX(f) of a discrete-time, stationary Gaussian
signal X(n), we can simulate a sample path of X(n), n = 1,2, . . . , N, by
first calculating the autocorrelation functionγX(n) using formula (9.2.2),

γX(n) =
∫ 1

0
ej2πnf SX(f)df , (9.5.1)

and then by producing a sample of an N-dimensional Gaussian random
vector X = (X1, X2, . . . , Xn) with the covariance matrix Γ = (γX(n −
m),n,m = 1,2, . . . , N), using standard statistical software. This, how-
ever, would be computationally expensive, and even infeasible if n
is large.

Therefore, in this section we will describe a different, explicit al-
gorithm for such a simulation based on the spectral representation of
Section 9.4. The algorithm is mathematically justified by the discus-
sions of the preceding sections, and it has the advantage of not being
restricted to Gaussian signals.

The starting point is, of course, the spectral representation theorem
and, in particular, formula (9.4.1) which writes the signal X(n) as a
random Fourier coefficient,

X(n) =
∫ 1

0
ej2πnfdW(f ), n = 1,2, . . . , N, (9.5.2)

of a process W(f ) with uncorrelated increments and cumulative con-
trol function CW (f ) equal to the desired cumulative spectrum SX(f).

We will assume that the spectrum ofX(n) is (absolutely) continuous,
that is, it has a power spectrum density SX(f) such that

CW (f ) = SX(f) =
∫ f

0
SX(g)dg. (9.5.3)

For computational purposes the random integral (9.5.2) has to be
discretized. More precisely, we have to chose an integerK, and partition

f0 = 0, f1 = 1
K
, f2 = 2

K
, . . . , fK−1 = 1

K − 1
, fK = 1,

of the interval [0,1], and replace the right-hand side of (9.5.2) by
the sums

X(n) =
K∑
k=1

ej2πnfk(W(fk)−W(fk−1))

=
K∑
k=1

ej2πn(k/K)
(
W

(
k
K

)
−W

(
k− 1
K

))
.
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The increments

W
(

1
K

)
−W

(
0
K

)
, W

(
2
K

)
−W

(
1
K

)
, . . . , W

(
K
K

)
−W

(
k− 1
K

)

are zero-mean, uncorrelated and have, respectively, variances

σ 2
1 =

∫ 1/K

0
SX(f)df ,

σ 2
2 =

∫ 2/K

1/K
SX(f)df , . . . ,

σ 2
K =

∫ 1

(K−1)/K
SX(f)df .

Thus the simulation algorithm calls for the following steps:

Step 0. Select a positive integer K determining the accuracy of our sim-
ulation.

Step 1. Generate, via a random number generator, a sequence

ξ1, ξ2, . . . , ξK

of zero-mean, variance one, uncorrelated random values of an
otherwise arbitrary distribution.

Step 2. Calculate variances
σ 2

1 , σ
2
2 , . . . , σ

2
K

defined above via the desired power spectrum density.
Step 3. Calculate numbers

xn =
K∑
k=1

ej2πn(k/K)σkξk, n = 1,2, . . . , N.

They represent an approximate sample of our desired random
signal.

Step 4. Plot the sequencexn,n = 1,2, . . . , N, as a function of variablen.

Remark 9.5.1. It should be observed that if the power spectrum density
is symmetric about the midpoint f = 1

2 , that is, SX(1
2 + f) = SX(1

2 − f),
then the autocorrelation function is real-valued because

γX(n) =
∫ 1

0
ej2πnf SX(f)df =

∫ 1

0
cos(2πnf)SX(f)df .

In those cases, we will just simulate the real parts of the sequence xn,
that is, the sequence

Rexn =
K∑
k=1

cos
(

2πn
(
k
K

))
σkξk, n = 1,2, . . . , N.

We shall illustrate the above algorithm on a concrete example im-
plemented in the symbolic manipulation language Mathematica.
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Example 9.5.1. We shall simulate a discrete-time signal X(n), n = 1,2,
. . . ,150, with the spectral density function SX(f) = f(1−f), 0 ≤ f ≤ 1,
pictured in Figure 9.5.1.

Fig. 9.5.1.

Step 0. Select a positive integer K determining the accuracy of the sim-
ulation.

In[1] := K = 100

Out[1] = 100

Step 1. Generate, via a random number generator, a sequence

ξ1, ξ2, . . . , ξK,

of zero-mean, variance one, uncorrelated random values of an
otherwise arbitrary distribution. Here we start with a sample
η1, . . . , η100 of 100 random numbers uniformly distributed on
the interval [0,1].

In[2] := Table[Random[Real,{0,1}],{100}]

Out[2] = {0.85403, 0.4953, 0.87823, 0.77297,
0.28679, 0.73909, 0.43157, 0.86123,
0.5221, 0.34007, 0.35229, 0.71826,
0.42662, 0.75551, 0.49997, 0.25472,
0.34842, 0.49913, 0.44984, 0.044822,
0.18391, 0.63281, 0.59046, 0.48641,
0.32988, 0.1373, 0.71224, 0.71345,
0.043092, 0.39825, 0.280669, 0.85222,
0.52095, 0.058176, 0.92837, 0.133959,
0.094325, 0.30266, 0.428401, 0.879233,
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0.745903, 0.80353, 0.978561, 0.834411,
0.561987, 0.17072, 0.388094, 0.347992,
0.2321, 0.033379, 0.675853, 0.634539,
0.189008, 0.63513, 0.395184, 0.782319,
0.668056, 0.576953, 0.466811, 0.64836,
0.573731, 0.274294, 0.038411, 0.769127,
0.827828, 0.470764, 0.05985, 0.934716,
0.26584, 0.300044, 0.671756, 0.586724,
0.03374, 0.266664, 0.995903, 0.952186,
0.844731, 0.631534, 0.600718, 0.169866,
0.176675, 0.054581, 0.133907, 0.521506,
0.602944, 0.780287, 0.095496, 0.75238,
0.775117, 0.309523, 0.035647, 0.817664,
0.509276, 0.0094794, 0.363891, 0.230939,
0.475537, 0.742815, 0.367988, 0.278754}

The uniform random quantity η has mean 1
2 and variance 1

12 .
Using the standard normalization formula

ξ = η− 1
2√

1
12

,

we obtain a zero-mean, variance one, sample ξ1, . . . , ξ100.

In[3] := xi = Table[(eta[[k]]-1/2)/Sqrt[1/12],
{k,1,100}]

Out[3] = { 1.22639, -0.0156935, 1.31022,
0.945582, -0.738565, 0.828234,
-0.237045, 1.25135, 0.0766943,
-0.554004, -0.51166, 0.756076,
-0.254171, 0.885137, -0.0000963994,
-0.849654, -0.525082, -0.00301462,
-0.17376, -1.57678, -1.09495,
0.460067, 0.313388, -0.0470465,
-0.589289, -1.25629, 0.735221,
0.739423, -1.58278, -0.352474,
-0.759784, 1.22012, 0.0725808,
-1.53052, 1.48393, -1.268,
-1.4053, -0.683607, -0.248027,
1.3137, 0.851834, 1.05146,
1.65778, 1.15843, 0.21473,
-1.14066, -0.387655, -0.526572,
-0.928031, -1.61642, 0.609174,
0.466056, -1.07731, 0.468105,
-0.363092, 0.977983, 0.582164,
0.266574, -0.114969, 0.513934,
0.255412, -0.78187, -1.59899,
0.932282, 1.13563, -0.101277,
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-1.52473, 1.5059, -0.811153,
-0.692669, 0.594981, 0.300422,
-1.61517, -0.808299, 1.71786,
1.56642, 1.19418, 0.455647,
0.348899, -1.14362, -1.12003,

-1.54298, -1.26818, 0.0745002,
0.356609, 0.970942, -1.40124,
0.874269, 0.953032, -0.659831,

-1.60857, 1.10042, 0.0321342,
-1.69921, -0.471497, -0.932054,
-0.084744, 0.841137, -0.457303,
-0.76642}

Step 2. Calculate the standard deviations,

σ1, σ2, . . . , σK,

defined via the above power spectrum density.

In[4] := SX[f_] := f*(1-f)

In[5] := sigma = Table[Sqrt[NIntegrate[SX[f],
{f,(k-1)/100, (k)/100}]], {k,1,100}]

Out[5] = {0.00704746, 0.0121518, 0.0156098,
0.0183757, 0.0207284, 0.0227962,
0.0246509, 0.0263376, 0.0278867,
0.0293201, 0.030654, 0.0319009,
0.0330706, 0.0341711, 0.0352089,
0.0361893, 0.0371169, 0.0379956,
0.0388287, 0.039619, 0.0403691,
0.0410812, 0.0417572, 0.0423989,
0.0430078, 0.0435852, 0.0441324,
0.0446505, 0.0451405, 0.0456034,
0.0460398, 0.0464507, 0.0468366,
0.0471982, 0.047536, 0.0478505,
0.0481422, 0.0484114, 0.0486587,
0.0488842, 0.0490884, 0.0492714,
0.0494335, 0.0495749, 0.0496957,
0.0497963, 0.0498765, 0.0499366,
0.0499767, 0.0499967, 0.0499967,
0.0499767, 0.0499366, 0.0498765,
0.0497963, 0.0496957, 0.0495749,
0.0494335, 0.0492714, 0.0490884,
0.0488842, 0.0486587, 0.0484114,
0.0481422, 0.0478505, 0.047536,
0.0471982, 0.0468366, 0.0464507,
0.0460398, 0.0456034, 0.0451405,
0.0446505, 0.0441324, 0.0435852,
0.0430078, 0.0423989, 0.0417572,
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0.0410812, 0.0403691, 0.039619,
0.0388287, 0.0379956, 0.0371169,
0.0361893, 0.0352089, 0.0341711,
0.0330706, 0.0319009, 0.030654,
0.0293201, 0.0278867, 0.0263376,
0.0246509, 0.0227962, 0.0207284,
0.0183757, 0.0156098, 0.0121518,
0.00704746}

Step 3. Calculate the numbers

Rexn =
K∑
k=1

cos
(

2πn
k
K

)
σkξk, n = 1,2, . . . , N,

for N = 150. They represent an approximate sample of our
desired random signal.

In[6] ReXi = Table[N[Sum[Cos[2*Pi*n*(k/100)]
* sigma[[k]] * xi[[k]], {k,1,100}]],
{n,1,150}]

Out[6] = {-0.0744418, 0.204584, 0.134502,
-0.0940191, 0.231016, -0.698734,
0.506229, -0.0506985, 0.629228,
-0.316749, -0.614843, 0.409999,
0.0202642, 0.281374, -0.137281,
-0.239042, 0.1893, 0.00635446,
-0.370783, -0.117887, -0.0400732,
-0.0451926, 0.110532, -0.701752,
0.728623, 0.0365847, -0.132731,
0.581089, 0.0573342, -0.723034,
0.0928521, -0.061326, -0.129562,
0.106508, 0.144272, -0.154514,
0.531261, -0.270855, -0.201814,
0.159987, 0.0433187, -0.206561,
0.329139, -0.0594249, -0.263336,
-0.251674, 0.0751697, 0.00108184,
0.027182, 0.36114, 0.027182,
0.00108184, 0.0751697, -0.251674,
-0.263336, -0.0594249, 0.329139,
-0.206561, 0.0433187, 0.159987,
-0.201814, -0.270855, 0.531261,
-0.154514, 0.144272, 0.106508,
-0.129562, -0.061326, 0.0928521,
-0.723034, 0.0573342, 0.581089,
-0.132731, 0.0365847, 0.728623,
-0.701752, 0.110532, -0.0451926,
-0.0400732, -0.117887, -0.370783,
0.00635446, 0.1893, -0.239042,
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-0.137281, 0.281374, 0.0202642,
0.409999, -0.614843, -0.316749,
0.629228, -0.0506985, 0.506229,

-0.698734, 0.231016, -0.0940191,
0.134502, 0.204584, -0.0744418,

-0.264185, -0.0744418, 0.204584,
0.134502, -0.0940191, 0.231016,

-0.698734, 0.506229, -0.0506985,
0.629228, -0.316749, -0.614843,
0.409999, 0.0202642, 0.281374,

-0.137281, -0.239042, 0.1893,
0.00635446, -0.370783, -0.117887,

-0.0400732, -0.0451926, 0.110532,
-0.701752, 0.728623, 0.0365847,
-0.132731, 0.581089, 0.0573342,
-0.723034, 0.0928521, -0.061326,
-0.129562, 0.106508, 0.144272,
-0.154514, 0.531261, -0.270855,
-0.201814, 0.159987, 0.0433187,
-0.206561, 0.329139, -0.0594249,
-0.263336, -0.251674, 0.0751697,
0.00108184, 0.027182, 0.36114}

Step 4. Plot the sequencexn as a function of variablen (see Figure 9.5.2).
The consecutive values x1, . . . , x150 were joined to better show
their progression in time.

Fig. 9.5.2.

In[7] := ListPlot[ReXi, PlotJoined -> True,
Frame -> True, GridLines -> Automatic]

Out[7] -Graphics-
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Fig. 9.5.3. Examples of simulated discrete-time stationary signals (right col-
umn) with prescribed spectral density functions (left column). Note that the
spectral densities in these simulations are even and concentrated on the inter-
val −2π ≤ω ≤ 2π .

Note that, for K = 100, the smallest frequency present in the repre-
sentation is f = 1

100 . Thus the produced signal sample is periodic with
period P = 100.

Remark 9.5.2. The above simulation can be adapted to any dicrete-time
signalX(tn)with tn = n·Δt, extending the procedures described above
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in the case Δt = 1 (see Problem 4.3.3). In the theoretical limit, Δt → 0,
one obtains the spectral representation of continuous time (see Prob-
lem 4.3.4).

Remark 9.5.3. The fact that the spectral density was concentrated on
the interval [0,1] was related to the selection of the complex expo-
nentials of the form ej2πnf in the spectral representation theorem. A
different selection of complex exponentials would lead to different in-
tervals. For example, choosing the complex exponentials of the form
ejnω, that is, conducting spectral analysis in terms of the angular ve-
locity rather than the frequency, would lead to spectral densities con-
centrated on the interval [0,2π]. Figure 9.5.3 shows several examples
of such spectral densities and the sample paths of the corresponding
stationary signals.

9.6 Problems and exercises

9.6.1. Verify the polarization formulas preceding the “isometric” for-
mula (9.3.17).

9.6.2. Given a discrete-time stationary signal X(n) with cumulative
power spectrum SX(f), find the cumulative power spectrum for
the filtered signal Y(n) =∑∞

k=−∞ ckX(n−k). Follow calculations
in Example 9.4.2. Repeat the calculation in the case when X(n)
has the power spectral density.

9.6.3. Extend the spectral representation (and the algorithm based on
it) in the case of a discrete-time signal X(tn), with tn = n · Δt,
extending the procedures described above in the case Δt = 1.

9.6.4. Find the theoretical spectral representation for continuous-time
stationary signals, taking Δt → 0 in Problem 9.6.3.

9.6.5. Use the simulation algorithm described in Section 9.5 to simulate
signals with the following spectral density functions defined on
the interval 0 ≤ f ≤ 1.

(a) S(f) = 1√
f(1− f)

,

(b) S(f) = 2
3
,

(c) S(f) = cos(πf),

(d) S(f) = 1− f ,
(e) S(f) = | sin(8πf)|.

9.6.6. Produce plots of several sample paths of the cumulative discrete-
time white noise defined in Section 9.3.

9.6.7. Verify that the additivity property (9.3.7) of any function forces
its linear form (9.3.8).
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