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1W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_1, 
© Springer Science+Business Media New York 2013

 OpenStat, among others, are ongoing projects that I have created for use by students, 
teachers, researchers, practitioners and others. The software is a result of an “over-
active” hobby of a retired professor (Iowa State University.) I make no claim or 
warranty as to the accuracy, completeness, reliability or other characteristics desir-
able in commercial packages (as if they can meet these requirement also.) They are 
designed to provide a means for analysis by individuals with very limited  fi nancial 
resources. The typical user is a student in a required social science or education 
course in beginning or intermediate statistics, measurement, psychology, etc. Some 
users may be individuals in developing nations that have very limited resources for 
purchase of commercial products. 

 Because I do not warrant them in any manner, you should insure yourself that the 
routines you use are adequate for your purposes. I strongly suggest analyses of text 
book examples and comparisons to other statistical packages where available. You 
should also be aware that I revise the program from time to time, correcting and 
updating OpenStat. For that reason, some of the images and descriptions in this 
book may not be exactly as you see when you execute the program. I update this 
book from time to time to try and keep the program and text coordinated.      

    Chapter 1   
 Introduction                 
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 OpenStat has been successfully installed on Windows 95, 98, ME, XT, NT, VISTA 
and Windows 7 systems. A free setup package (INNO) has been used to distribute 
and install OpenStat. Included in the setup  fi le (OpenStatSetup.exe) is the execut-
able  fi le and Windows Help  fi les. Sample data  fi les that can be used to test the analy-
sis programs are also available. Several Linux system users have also found that the 
free WINE software will allow OpenStat to run on a Linux platform. 

 To install OpenStat for Windows, follow these steps:

    1.    Connect to the internet address:   http://statprograms4U.com      
    2.    Click the download link for the OpenStatSetup.exe  fi le  
    3.    After the  fi le has been downloaded, double click that program to initiate the 

installation of OpenStat. At the same website in 1 above, you will also  fi nd a link 
to a zip  fi le containing sample data  fi les that are useful for acquainting yourself 
with OpenStat. In addition, there are multiple tutorial  fi les in Windows Media 
Video (.WMV) format as well as Power Point slide presentations.          

    Chapter 2   
 Installing OpenStat                    

http://statprograms4U.com


5W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_3, 
© Springer Science+Business Media New York 2013

 To begin using a Windows version of OpenStat simply click the Windows “Start” 
button in the lower left portion of your screen, move the cursor to the “Programs” 
menu and click on the OpenStat entry. The following form should appear (Fig   .  3.1 ):  

 The form contains several important areas. The “grid” is where data values are 
entered. Each column represents a “variable” and each row represents an “observa-
tion” or case. A default label is given for the  fi rst variable and each case of data you 
enter will have a case number. At the top of this “main” form there is a series of 
“drop-down” menu items. When you click on one of these, a series of options (and 
sometimes sub-options) that you can click to select. Before you begin to enter case 
values, you probably should “de fi ne” each variable to be entered in the data grid. 
Select the “VARIABLES” menu item and click the “De fi ne” option. More will be 
said about this in the following pages.      
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  Fig. 3.1    OpenStat main form       
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 The “heart” of    OpenStat or any other statistics package is the data  fi le to be created, 
saved, retrieved and analyzed. Unfortunately, there is no one “best” way to store 
data and each data analysis package has its own method for storing data. Many 
packages do, however, provide options for importing and exporting  fi les in a variety 
of formats. For example, with Microsoft’s Excel package, you can save a  fi le as a 
 fi le of “tab” separated  fi elds. Other program packages such as SPSS can import 
“tab”  fi les. Here are the types of  fi le formats supported by OpenStat:

    1.    OPENSTAT binary  fi les    (with the  fi le extension of .BIN .)  
    2.    Tab separated  fi eld  fi les (with the  fi le extension of .TAB.)  
    3.    Comma separated  fi eld  fi les    (with the  fi le extension of .CSV.)  
    4.    Space separated  fi eld  fi les    (with the  fi le extension of .SSV.)  
    5.    Text  fi les    (with the extension .TEX) NOTE: the  fi le format in this text  fi le is 

unique to OpenStat!  
    6.    Epidata  fi les    (this is a format used by Epidemiologists)  
    7.    Matrix  fi les    previously saved by OpenStat  
    8.    Fixed Format  fi les    in which the user speci fi es the record format     

 My preference is to save  fi les as .TEX  fi les. Alternatively, tab separated  fi eld  fi les 
are often used. This gives you the opportunity to analyze the same data using a 
variety of packages. For relatively small  fi les (say, for example, a  fi le with 20 vari-
ables and 1,000 cases), the speed of loading the different formats is similar and quite 
adequate. The default for OPENSTAT is to save as a binary  fi le with the extension 
.TEX to differentiate it from other types of  fi les. 

   Creating a File    

 When OPENSTAT begins, you will see a “grid” of two rows and two columns. The 
left-most column will automatically contain the word “Case” followed by a number 
(1 for the  fi rst case.) The top row will contain the names of the variables that you 
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assign when you start entering data for the  fi rst variable. If you click your mouse on 
the “Variables” menu item, a drop-down list will appear that contains the word 
“de fi ne”. If you click on this label, the above form appears: 

 In the above  fi gure (Fig.  4.1 ) you will notice that a variable name has automati-
cally been generated for the  fi rst variable. To change the default name, click the box 
with the default name and enter the variable name that you desire. It is suggested 
that you keep the length of the name to eight characters or less. Do NOT have any 
blanks in the variable name. An underscore (_) character may be used. You may also 
enter a long label for the variable. If you save your  fi le as an OPENSTAT  fi le, this 
long name (as well as other descriptive information) will be saved in the  fi le (the use 
of the long label has not yet been implemented for printing output but may be in 
future versions.) To proceed, simply click the Return button in the lower right of 
this form. The default type of variable is a “ fl oating point” value, that is, a number 
which may contain a decimal fraction. If a data  fi eld (grid cell) is left blank, the 
program will usually assume a missing value for the data. The default format of 
a data value is eight positions with two positions allocated to fractional decimal 
values (format 8.2.) By clicking on any of the speci fi cation  fi elds you can modify 

  Fig. 4.1    The Variables De fi nition    form       
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these defaults to your own preferences. You can change the width of your  fi eld, the 
number of decimal places (0 for integers.) Another way to specify the default format 
and missing values is by modifying the “Options”  fi le. When you click on the 
Options menu    item and select the change options, the above form appears (Fig.  4.2 ):   

 In the options form you can specify the Data Entry Defaults as well as whether 
you will be using American or European formatting of your data (American’s use a 
period (.) and Europeans use a comma (,) to separate the integer portion of a number 
from its fractional part.) The Printer Spacing section is currently ignored but may be 
implemented in a future version of OpenStat. You can also specify the directory in 
which to  fi nd the data  fi les you want to process. I recommend that you save data in 
the same directory that contains the OpenStat program (the default directory.)  

  Fig. 4.2    The Options form          
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   Entering Data    

 When you enter data in the grid of the main form there are several ways to navigate 
from cell to cell. You can, of course, simply click on the cell where you wish to enter 
data and type the data values. If you press the “enter” key following the typing of a 
value, the program will automatically move you to the next cell to the right of the 
current one or down to the next cell if you are at the last variable. You may also press 
the keyboard “down” arrow to move to the cell below the current one. If it is a new 
row for the grid, a new row will automatically be added and the “Case” label added 
to the  fi rst column. You may use the arrow keys to navigate left, right, up and down. 
You may also press the “Page Up” button to move up a screen at a time, the “Home” 
button to move to the beginning of a row, etc. Try the various keys to learn how they 
behave. You may click on the main form’s Edit menu and use the delete column or 
delete row options. Be sure the cursor is sitting in a cell of the row or column you 
wish to delete when you use this method. A common problem for the beginner is 
pressing the “enter” key when in the last column of their variables. If you do acciden-
tally add a case or variable you do not wish to have in your  fi le, use the edit menu and 
delete the unused row or variable. If you have made a mistake in the entry of a cell 
value, you can change it in the “Cell Edit” box just below the menu. In this box you 
can use the delete key, backspace key, enter characters, etc. to make the corrections 
for a cell value. When you press your “Enter” key, the new value will be placed in 
the corresponding cell. Notice that as you make grid entries and move to another cell, 
the previous value is automatically formatted according to the de fi nition for that vari-
able. If you try to enter an alphabetic character in an integer or  fl oating point variable, 
you will get an error message when you move from that cell. To correct the error, 
click on the cell that is incorrect and make the changes needed in the Cell Edit box.  

   Saving a File    

 Once you have entered a number of values in the grid, it is a good idea to save your 
work (power outages do occur!) Go to the main form’s File menu and click it. You 
will see there are several ways to save your data. The  fi rst time you save your data 
you should click the “Save a Text Type of File” option. A “dialog box” will then 
appear as shown below (Fig.  4.3 ):  

 Simply type the name of the  fi le you wish to create in the File name box and click 
the Save button. After this initial save as operation, you may continue to enter data 
and save with the Save button on the  fi le menu. Before you exit the program, be sure 
to save your  fi le if you have made additions to it. 

 If you do not need to save speci fi cations other than the short name of each vari-
able, you may prefer to “export” the  fi le in a format compatible to other programs. 
The “Export Tab File option under the File menu will save your data in a text  fi le in 
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which the cell values in each row are separated by a tab key character. A  fi le with the 
extension .TAB will be created. The list of variables from the  fi rst row of the grid are 
saved  fi rst, then the  fi rst row of the data, etc. until all grid rows have been saved. 

 Alternatively, you may export your data with a comma or a space separating the 
cell values. Basic language programs frequently read  fi les in which values are sepa-
rated by commas or spaces. If you are using the European format of fractional num-
bers, DO NOT USE the comma separated  fi les format since commas will appear 
both for the fractions and the separation of values - clearly a design for disaster!  

   Help    

 Users of Microsoft Windows are used to having a “help” system available to them 
for instant assistance when using a program. Most of these systems provide the user 
the ability to press the “F1” key for assistance on a particular topic or by placing 
their cursor on a particular program item and pressing the right mouse button to get 
help. OpenStat for the Microsoft Windows does have a help  fi le. Place the cursor on 
a menu topic and press the F1 key to see what happens! You can use the help system 
to learn more about OpenStat procedures. Again, as the program is revised, there 
may not yet be help topics for all procedures and some help topics may vary slightly 
from the actual procedure’s operation. Vista and Windows 7 users may have to 
download a  fi le from MicroSoft to provide the option for reading “.hlp”  fi les.  

  Fig. 4.3    The form for saving a  fi le       
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   The Variables Menu    

 Across the top of the “Main Form” is a series of “menu” items. Like the “File” 
menu, each of these menu items “drops-down” a series of options and these options 
may have sub-options. The “Variables” menu contains a variety of options to assist 
you in working with the variables (columns of data). These options include:

    1.    De fi ne  
    2.    Transform  
    3.    Print Dictionary  
    4.    Sort  
    5.    Create An Expanded File from a Frequencies File  
    6.    Enter an Equation to Combine Variables to Create a New Variable     

 The  fi rst option lets you enter or change a variable de fi nition (see Fig.  4.1  above.) 
 Another option lets you “transform” an existing variable to create a new vari-

able. A variety of transformations are possible. If you elect this option, you will see 
the following dialogue form (Fig.  4.4 ):  

 You will note that you can transform a variable by adding, subtracting, multiply-
ing, dividing or raising a value to a power. To do this you select a variable to trans-
form by clicking on the variable in the list of available variables and then clicking 
the right arrow. You then enter a constant by clicking on the box for the constant and 
entering a value. You select the transformation with a constant from among the  fi rst 
10 possible transformations by clicking on the desired transformation (you will see 

  Fig. 4.4    The Variable Transformation    form       
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it entered automatically in the lower right box.) Next you enter a name for the new 
variable in the box labeled “Save new variable as:” and click the OK button. 

 Sometimes you will want to transform a variable using one of the common expo-
nentiation or trigonometric functions. In this case you do not need to enter a con-
stant - just select the variable, the desired transformation and enter the variable 
name before clicking the OK button. 

 You can also select a transformation that involves two variables. For example, 
you may want a new variable that represents the sum, product, difference, etc. of 
two variables. In this case you select the two variables for the  fi rst and second argu-
ments using the appropriate right-arrow key after clicking one and then the other in 
the available variables list. 

 The “Print Dictionary” option simply creates a list of variable de fi nitions on an 
“output” form which may be printed on your printer for future reference. 

 The option to create a new variable by means of an equation can be useful in a 
variety of situations. For example, you may want to create a new variable that is 
simply the sum of several other variables (or products of, etc.) We have selected a 
 fi le labeled “cansas.tab” from our sample  fi les and will create a new variable labeled 
“physical” that adds the  fi rst three variables. When we click the equation option, the 
above form appears (Fig.  4.5 ):  

 To use the above, enter the name of your new variable in the box provided. 
Following this box are three additional “edit” boxes with “drop-down” boxes above 
each one. For the  fi rst variable to be added, click the drop-down box labeled 
“Variables” and select the name of your  fi rst variable. It will be automatically placed 
in the third box. Next, click the “Next Entry” button. Now click the “Operations” 
drop-down arrow and select the desired operation (plus in our example) and again 

  Fig. 4.5    The Variables Equation option          
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select a variable from the Variables drop-down box. Again click the “Next Entry” 
button. Repeat the Operations and Variables for the last variable to be added. Click 
the “Finished” button to end the creation of the equation. Click the Compute button 
and then the Return button. An output of your equation will be shown  fi rst as below: 

  Equation Used for the New Variable  
  physical = weight + waist + pulse  

 You will see the new variable in the grid (Fig.  4.6 ):  
 The “Sort” option involves clicking on a cell in the column on which the cases 

are to be sorted and then selecting the Variables/Sort option. You then indicate 
whether you want to sort the cases in an ascending order or a descending order. The 
form above demonstrates the sort dialogue form (Fig.  4.7 ):   

  Fig. 4.6    Result of using the Equation option       

  Fig. 4.7    The Sort    form       
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   The Edit Menu 

 The Edit menu is provided primarily for deleting, cutting and pasting of cells, rows 
or columns of data. It also provides the ability to insert a new column or row at a 
desired position in the data grid. There is one special “paste” operation provided for 
users that also have the Microsoft Excel    program and wish to copy cells from an 
Excel spreadsheet into the OpenStat grid. These operations involve clicking on a 
cell in a given row and column and the selecting the edit operation desired. The user 
is encourage to experiment with these operations in order to become familiar with 
them. The following options are available:

    1.    Copy  
    2.    Delete  
    3.    Paste  
    4.    Insert a New Column  
    5.    Delete a Column  
    6.    Copy a Column  
    7.    Paste a Column  
    8.    Insert a New Row  
    9.    Delete a Row  
    10.    Copy a Row  
    11.    Paste a row  
    12.    Format Grid Values  
    13.    Select Cases  
    14.    Recode  
    15.    Switch USA to Euro or Vice Versa  
    16.    Swap Rows and Columns  
    17.    Open Output Form / Word Processor     

 The  fi rst 11 of these options involve copying, deleting, pasting a row, column or 
block of grid cells or inserting a new row or column. You can also “force” grid values 
to be reformatted by selecting option 12. This can be useful if you have changed the 
de fi nition of a variable ( fl oating point to integer, number of decimal places, etc.) 

 In some cases you may need to swap the cell values in the rows and columns so 
that what was previously a row is now a column. If you receive  fi les from an indi-
vidual using a different standard than yourself, you can switch between European 
and USA standards for formatting decimal fraction values in the grid. Another use-
ful option lets you “re-code” values in a selected variable. For example, you may 
need to recode values that are currently 0 to a 1 for all cases in your  fi le. 

 The “Select Cases   ” option lets you analyze only those cases (rows) which you 
select. When you press this option you will see the following dialogue form 
(Fig.  4.8 ):  

 Notice that you may select a random number of cases, cases the exhibit a speci fi c 
range of values or cases if a speci fi c condition exists. Once selection has been made, 
a new variable is added to the grid called the “Filter” variable. You can subsequently 
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use this  fi lter variable to delete unneeded cases from your  fi le if desired. Each of the 
selection procedures invokes a dialogue form that is speci fi c to the type of selection 
chosen. For example, if you select the “if condition is satis fi ed” button, you will see 
the following dialogue form (Fig.  4.9 ):  

 An example has been entered on this form to demonstrate a typical selection 
criteria. Notice that compound statements involve the use of opening and closing 
parentheses around each expression You can directly enter values in the “if” box or 
use the buttons provided on the pad. 

 Should you select the “random” option in Fig.  4.8  you would see the following 
form (Fig.  4.10 ):  

 The user may select a percentage of cases or select a speci fi c number from a 
speci fi ed number of cases. 

 Finally, the user may select a speci fi ed range of cases   . This option produces the 
following dialogue form (Fig.  4.11 ):  

 The Variables/Recode option    is used to change the value of cases in a given vari-
able. For example, you may have imported a  fi le which originally coded gender as 

  Fig. 4.8    The Select Cases    form       
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  Fig. 4.9    The Select If       form       

  Fig. 4.10    Random selection    of cases form       
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“M” or “F” but the analysis you want requires a coding of 0 and 1. You can select 
the recode option and get the above form to complete (Fig.  4.12 ):  

 Notice that you  fi rst click on the column of the variable to recode, enter the old 
value (or value range) and also enter the new value before clicking the Apply button. 
You can repeat the process for multiple old values before returning to the Main 
Form. 

 Some  fi les may require the user to change all column values to row values and 
row values to column values. For example, a user may have created a  fi le with rows 
that represent subjects measured on 10 variables. One of the desired analysis how-
ever requires the calculation of correlations among subjects, not variables. To obtain 
a matrix of this form the user can swap rows and columns. Clicking on this option 
will switch the rows and columns. In doing this, the original variable labels are lost. 
The previous cases are now labeled Var1, Var2, etc. and the original variables are 

  Fig. 4.11    Selection of a 
range of cases       

  Fig. 4.12    The Recode form       
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labeled CASE 1, CASE 2, etc. Clearly, one should save the original  fi le before 
completing this operation! Once the swap has occurred, you can save the new  fi le 
under a different name. 

 The last option under the variables menu lets you switch between the American 
and European format for decimal fractions. This may be useful when you have 
imported a  fi le from another country that uses the other format. OpenStat will 
attempt to convert commas to periods or vice-versa as required.  

   The Analyses Menu    

 The heart of any statistics package is the ability to perform a variety of statistical 
analyses. Many of the typical analyses are included in the options and sub-options 
of the Analyses menu. The  fi gure below (Fig.  4.13 ) shows the options and the sub-
options under the descriptive option. No attempt will be made at this point in the 
text to describe each analysis - these are described further in the text.   

  Fig. 4.13    Selection of an analysis from the main menu       
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   The Simulation Menu    

 As you read about and learn statistics, it is helpful to be able to simulate data for an 
analysis and see what the distribution of the values looks like. In addition, the con-
cepts of “type I error”, “type II error”, “Power”, correlation, etc. may be more read-
ily grasped if the student can “play” with distributions and the effects of choices 
they might make in a real study. Under the simulation menu the user may generate 
a sequence of numbers, may generate multivariate data, may generate data that are 
a sample from a theoretical population or generate bivariate-normal data for a cor-
relation. One can even generate data for a two-way analysis of variance!  

   Some Common Errors   ! 

   Empty Cells 

 The beginning user will often see a message something like “” is not a valid 
 fl oating point value. The most common cause of this error occurs when a proce-
dure attempts to read a blank cell, that is, a cell that has been left empty by the 
user. The new user will typically use the down-arrow to move to the next row in 
the data grid in preparation to enter the next row of values. If you do this after 
entering the values for the last case, you will create a row of empty cells. You 
should put the cursor on one of these empty cells and use the Edit- > Delete Row 
menu to remove this blank row. 

 The user should de fi ne the “Missing Value” for each variable when they de fi ne 
the variable. One should also click on the Options menu and place a missing value 
in that form. OpenStat attempts to place that missing value in empty cells when a 
 fi le is saved as .TEX  fi le. Not all OpenStat procedures allow missing values so you 
may have to delete cases with missing values for those procedures.  

   Incorrect Format for Floating Point Values 

 A second reason you might receive a “not valid” error is because you are using the 
European standard for the format of values with decimal fractions. Most of the sta-
tistical procedures contain a small “edit” window that contains a con fi dence level or 
a rejection area such as 95.0 or 0.05. These will NOT be valid  fl oating point values 
in the European standard and the user will need to click on the value and replace it 
with the correct form such as 95,0 or 0,05. This has been done for the user in some 
procedures but not all!  
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   String Labels    for Groups 

 Users of other statistics packages such as SPSS or Excel may have used strings of 
characters to identify different groups of cases (subjects or observations.) OpenStat 
uses sequential integer values only in statistical analyses such as analyses of vari-
ance or discriminant function analysis. An edit procedure has been included that 
permits the conversion of string labels to integer values and saves those integers in 
a new column of the data grid. An attempt to use a string (alphanumeric) value will 
cause an “not valid” type of error. Several procedures in OpenStat have been 
modi fi ed to let you specify a string label for a group variable and automatically cre-
ate an integer value for the analysis in a few procedures but not all. It is best to do 
the conversion of string labels to integers and use the integer values as your group 
variable.  

   Floating Point Errors 

 Sometimes a procedure will report an error of the type “Floating Point Division 
Error”. This is often the outcome of a procedure attempting to divide a quantity by 
zero (0.) As an example, assume you have entered data for several variables obtained 
on a group of subjects. Also assume that the value observed for one of those vari-
ables is the same (a constant value) for all cases. In this situation there is no vari-
ability among the cases and the variance and standard deviation will be zero! Now 
an attempt to use that zero variance or standard deviation in the calculation of z 
scores, a correlation with another variable or other usage will cause an error (divi-
sion by zero is not de fi ned.)  

   Values Too Large (or Small) 

 In some  fi elds of study such as astronomy the values observed may be very, very 
large. Computers use binary numbers to represent quantities. Nearly all OpenStat 
procedures use “double precision” storage for  fl oating point values. The double 
precision value is stored in 64 binary “bits” in the computer memory. In most com-
puters this is a combination of 8 binary “bytes” or words. The values are stored with 
a characteristic and mantissa similar to a scienti fi c notation. Of course bits are also 
used to represent the sign of these parts. The maximum value for the characteristic 
is typically something like 2 raised to the power of 55 and the mantissa is 2 to the 
7th power. Now consider a situation where you are summing the product of several 
of very large values such as is done in obtaining a variance or correlation. You may 
very well exceed the 64 bit storage of this large sum of products! This causes an 
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“over fl ow” condition and a subsequent error message. The same thing can be said 
of values too small. This can cause an “under fl ow” error and associated error 
message. 

 The solution for these situations of values too large or too small is to “scale” your 
initial values. This is typically done by dividing or multiplying the original values 
by a constant to move the decimal point to decrease (or increase) the value. This 
does, of course, affect the “precision” of your original values but it may be a sacri fi ce 
necessary to do the analysis. In addition, the results will have to be “re-scaled” to 
re fl ect the original measurement scale.        



23W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_5, 
© Springer Science+Business Media New York 2013

   Using the Distribution Parameter Estimates    Procedure 

 One of the procedures which may be executed in your OpenStat package is the 
Analyses/Statistics/Central Tendency and Variability procedure. The procedure will 
compute the mean, variance, standard deviation, range, skew, minimum, maximum 
and number of cases for each variable you have speci fi ed. To use it, you enter your 
data as a column of numbers in the data grid or retrieve the data of a  fi le into the data 
grid. Click on the Statistics option in the main menu and click on the Mean, Variance, 
Std.Dev, Skew, Kurtosis option under the Descriptive sub-menu. You will see the 
following form (Fig   .  5.1 ):  

 Select the variables to analyze by clicking the variable name in the left column 
followed by clicking the right arrow. You may select ALL by clicking the All but-
ton. Click on the Continue button when you have selected all of your variables. 
Notice that you can also convert each of the variables to standardized z scores as an 
option. The new variables will be placed into the data grid with variable names cre-
ated by combining z with the original variable names. The results will be placed in 
the output form which may be printed by clicking the Print button of that form.  

   Using the Breakdown Procedure    

 The Breakdown procedure is an OpenStat program designed to produce the means 
and standard deviations of cases that have been classi fi ed by one or more other (cat-
egorical) variables. For example, a sample may contain subjects for which have 
values for interest in school, grade in school, gender, and rural/urban home environ-
ment. A researcher might be interested in reporting the mean and standard deviation 
of “interest in school” for persons classi fi ed by combinations of the other three 
(nominal scale) variables grade, gender and rural/urban. 

    Chapter 5   
 Distributions         
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 The Breakdown program summarizes the means and standard deviations for 
each level of the variable entered last within levels of the next-to-last variable, etc. 
In our example, the statistics would be given for rural and urban codes within male 
and female levels  fi rst, then statistics for males and females within grade level and 
 fi nally, the overall group means and standard deviations. The order of speci fi cation 
is therefore important. The variable receiving the  fi nest breakdown is listed last, the 
next-most relevant breakdown next-to-last, etc. If the order of categorical variables 
for the above example were listed as 2, 4, 3 then the summary would give statistics 
for males and females within rural and urban codes, and rural and urban students 
(genders combined) within grade levels. Optionally, the user may request one-way 
analysis of variance results. An ANOVA table will be produced for the continuous 
variable for the categories of each of the nominal variables.  

  Fig. 5.1    Central tendency and variability estimates       
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   Using the Distribution Plots    and Critical Values Procedure 

 This simulation procedure generates three possible distributions, i.e. (a) z scores, 
(b) Chi-squared statistics or (c) F ratio statistics. If you select either the Chi-squared 
or the F distribution, you will be asked to enter the appropriate degrees of freedom. 
You are also asked to enter the probability of a Type I error. The default value of 
0.05 is commonly used. You may also elect to print the distribution that is created.       
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   Frequencies    

 Selecting the Descriptive   /Distribution Frequencies option from the Analyses menu 
results in the following form being displayed. The cansas.TEX  fi le has been loaded 
and the weight variable has been selected for analysis. The option to display a his-
togram has also been selected, the three dimensional vertical bars has been selected 
and the plotting of the normal distribution has been checked (Fig.  6.1 ).  

 When the OK button is clicked, each variable is analyzed in sequence. The  fi rst 
thing that is displayed is a form shown below (Fig.  6.2 ):  

 You will notice that the number of intervals shown for the  fi rst variable (weight) 
is 16. You can change the interval size (and press return) to increase or decrease the 
number of intervals. If we change the interval size to 10 instead of the current 1, we 
would end up with 11 categories. 

    Chapter 6   
 Descriptive Analyses         
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  Fig. 6.1    Frequency analysis form       

  Fig. 6.2    Frequency interval 
form       
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    FREQUENCY ANALYSIS BY BILL MILLER  
  Frequency Analysis for waist  

  FROM TO FREQ. PCNT CUM.FREQ. CUM.PCNT. %ILE RANK  
  31.00 32.00 1 0.05 1.00 0.05 0.03  
  32.00 33.00 1 0.05 2.00 0.10 0.07  
  33.00 34.00 4 0.20 6.00 0.30 0.20  
  34.00 35.00 3 0.15 9.00 0.45 0.38  
  35.00 36.00 2 0.10 11.00 0.55 0.50  
  36.00 37.00 3 0.15 14.00 0.70 0.63  
  37.00 38.00 3 0.15 17.00 0.85 0.78  
  38.00 39.00 2 0.10 19.00 0.95 0.90  
  39.00 40.00 0 0.00 19.00 0.95 0.95  
  40.00 41.00 0 0.00 19.00 0.95 0.95  
  41.00 42.00 0 0.00 19.00 0.95 0.95  
  42.00 43.00 0 0.00 19.00 0.95 0.95  
  43.00 44.00 0 0.00 19.00 0.95 0.95  
  44.00 45.00 0 0.00 19.00 0.95 0.95  
  45.00 46.00 0 0.00 19.00 0.95 0.95  
  46.00 47.00 1 0.05 20.00 1.00 0.97  

 Now when the OK button on the speci fi cations form is clicked the following 
results are displayed:  

 The above results of the output form show the intervals, the frequency of scores 
in the intervals, the percent of scores in the intervals, the cumulative frequencies 
and percents and the percentile ranks. Clicking the Return button then results in the 
display of the frequencies expected under the normal curve for the data: 

      Interval ND Freq.  
    1  0.97  
    2   1.42  
    3   1.88  
    4   2.26  
    5   2.46  
    6   2.44  
    7   2.19  
    8   1.79  
    9   1.33  
   10  0.89  
   11  0.54  
   12  0.30  
   13  0.15  
   14  0.07  
   15  0.03  
   16  0.01  
   17  0.00  
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  When the Return button is again pressed the histogram is produced as illustrated 
above (Fig.  6.3 ):   

   Cross-Tabulation    

 A researcher may observe objects classi fi ed into categories on one or more nominal 
variables. It is desirable to obtain the frequencies of the cases within each “cell” of 
the classi fi cations. An example is shown in the following description of using the 
cross-tabulation procedure. Select the cross-tabulation option from the Descriptive 
option of the Statistics menu. You see a form like that below (Fig.  6.4 ):  

  Fig. 6.3    Frequency Distribution plot       
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 In this example we have opened the chisquare.tab  fi le to analyze. Cases are 
classi fi ed by “row” and “col” variables. When we click the OK button we obtain: 

  CROSSTABULATION ANALYSIS PROGRAM  

  VARIABLE SEQUENCE FOR THE CROSSTABS:  
  row (Variable 1) Lowest level = 1 Highest level = 3  
  col (Variable 2) Lowest level = 1 Highest level = 4  

  FREQUENCIES BY LEVEL:  
  For Cell Levels: row : 1 col: 1 Frequency = 5  
  For Cell Levels: row : 1 col: 2 Frequency = 5  
  For Cell Levels: row : 1 col: 3 Frequency = 5  
  For Cell Levels: row : 1 col: 4 Frequency = 5  
  Number of observations for Block 1 = 20  
  For Cell Levels: row : 2 col: 1 Frequency = 10  
  For Cell Levels: row : 2 col: 2 Frequency = 4  
  For Cell Levels: row : 2 col: 3 Frequency = 7  
  For Cell Levels: row : 2 col: 4 Frequency = 3  
  Number of observations for Block 2 = 24  
  For Cell Levels: row : 3 col: 1 Frequency = 5  
  For Cell Levels: row : 3 col: 2 Frequency = 10  
  For Cell Levels: row : 3 col: 3 Frequency = 10  
  For Cell Levels: row : 3 col: 4 Frequency = 2  
  Number of observations for Block 3 = 27  
  Cell Frequencies by Levels  

  col  
       1     2  3  4  
  Block 1   5.000   5.000   5.000  5.000  
  Block 2  10.000   4.000   7.000  3.000  
  Block 3   5.000  10.000  10.000  2.000  

  Grand sum for all categories = 71  

  Fig. 6.4    Cross-Tabulation dialog form       
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 Note that the count of cases is reported for each column within rows 1, 2 and 3. 
If we had speci fi ed the col variable prior to the row variable, the procedure would 
summarize the count for each row within columns 1 through 4.  

   Breakdown    

 If a researcher has observed a continuous variable along with classi fi cations on one 
or more nominal variables, it may be desirable to obtain the means and standard 
deviations of cases within each classi fi cation combination. In addition, the researcher 
may be interested in testing the hypothesis that the means are equal in the popula-
tion sampled for cases in the categories of each nominal variable. We will use sam-
ple data that was originally obtained for a three-way analysis of variance (threeway.
tab.) We then select the Breakdown option from within the Descriptive option on 
the Statistics menu and see (Fig.  6.5 ):  

  Fig. 6.5    The Breakdown form       
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 We have elected to obtain a one-way analysis of variance for the means of cases 
classi fi ed into categories of the “Slice” variable for each level of the variable “Col.” 
and variable “Row”. When we click the Continue button we obtain the  fi rst part of 
the output which is: 

  BREAKDOWN ANALYSIS PROGRAM  

  VARIABLE SEQUENCE FOR THE BREAKDOWN:  
  Row   (Variable 1) Lowest level = 1 Highest level = 2  
  Col.  (Variable 2) Lowest level = 1 Highest level = 2  
  Slice (Variable 3) Lowest level = 1 Highest level = 3  

  Variable levels:  
  Row   level = 1  
  Col.  level = 1  
  Slice level = 1  

  Freq.    Mean    Std. Dev.  
    3       2.000   1.000  

  Variable levels:  
  Row   level = 1  
  Col.  level = 1  
  Slice level = 2  

  Freq.    Mean    Std. Dev.  
    3        3.000   1.000  

  Variable levels:  
  Row   level = 1  
  Col.  level = 1  
  Slice level = 3  

  Freq.    Mean    Std. Dev.  
    3       4.000   1.000  

  Number of observations across levels = 9  
  Mean across levels = 3.000  
  Std. Dev. across levels = 1.225  

 We obtain similar output for each level of the “Col.” variable within each level 
of the “Row” variable as well as the summary across all rows and columns. The 
procedure then produces the one-way ANOVA’s for the breakdowns shown. For 
example, the  fi rst ANOVA table for the above sample is shown below: 

  Variable levels:  
  Row    level = 1  
  Col.   level = 2  
  Slice  level = 1  

  Freq.    Mean    Std. Dev.  
    3       5.000   1.000  
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  Variable levels:  
  Row   level = 1  
  Col.  level = 2  
  Slice level = 2  

  Freq.    Mean    Std. Dev.  
    3       4.000   1.000  

  Variable levels:  
  Row        level = 1  
  Col.       level = 2  
  Slice      level = 3  

  Freq.    Mean    Std. Dev.  
    3       3.000   1.000  

  Number of observations across levels = 9  
  Mean across levels = 4.000  
  Std. Dev. across levels = 1.225  

  ANALYSES OF VARIANCE SUMMARY TABLES  

  Variable levels:  
  Row        level = 1  
  Col.       level = 1  
  Slice      level = 1  

  Variable levels:  
  Row        level = 1  
  Col.       level = 1  
  Slice      level = 2  

  Variable levels:  
  Row        level = 1  
  Col.       level = 1  
  Slice      level = 3  

  SOURCE   D.F.   SS     MS     F       Prob.>F  
  GROUPS    2     6.00   3.00   3.000   0.3041  
  WITHIN    6     6.00   1.00  
  TOTAL     8    12.00  

 The last ANOVA table is: 

  ANOVA FOR ALL CELLS  

  SOURCE   D.F.   SS       MS      F        Prob.>F  
  GROUPS   11     110.75   10.07   10.068   0.0002  
  WITHIN   24      24.00    1.00  
  TOTAL    35     134.75  
  FINISHED  
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 You should note that the analyses of variance completed do NOT consider the 
interactions among the categorical variables. You may want to compare the results 
above with that obtained for a three-way analysis of variance completed by either 
the 1,2, or 3 way randomized design procedure or the Sum of Squares by Regression 
procedure listed under the Analyses of Variance option of the Statistics menu.  

   Distribution Parameters 

 The distribution parameters procedure was previously described.  

   Box Plots    

 Box plots    are useful graphical devices for viewing both the central tendency and the 
variability of a continuous variable. There is no one “correct” way to draw a box 
plot hence various statistical packages draw them in somewhat different ways. Most 
box plots are drawn with a box that depicts the range of values between the 25th 
percentile and the 75 percentile with the median at the center of the box. In addition, 
“whiskers” are drawn that extend up from the top and down from the bottom to the 
90th percentile and 10th percentile respectively. In addition, some packages will 
also place dots or circles at the end of the whiskers to represent possible “outlier” 
values (values at the 99th percentile or 1 percentile. Outliers are NOT shown in the 
box plots of OpenStat. In OpenStat, the mean is plotted in the box so one can also 
get a graphical representation of possible “skewness” (differences between the 
median and mean) for a set of values. 

 Now lets plot some data. In the Breakdown procedure described above, we ana-
lyzed data found in the threeway.tab  fi le. We will obtain box plots for the continuous 
variable classi fi ed by the three categories of the “Slice” variable. Select Box Plots 
from the Descriptives option of the Statistics menu. You should see (after selecting 
the variables) (Fig.  6.6 ):  
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 Having selected the variables and option, click the Return button. In our example 
you should see (Fig.  6.7 ): 

  Box Plot of Groups  

  Results for group 1, mean = 3.500  
  Centile      Value  
  Ten          1.100  
  Twenty  fi ve   2.000  
  Median       3.500  
  Seventy  fi ve  5.000  
  Ninety       5.900  
  Score Range    Frequency  Cum.Freq.  Percentile Rank  
  ______________ _________ _________ _______________  
     0.50 - 1.50    2.00      2.00        8.33  
     1.50 - 2.50    2.00      4.00       25.00  
     2.50 - 3.50    2.00      6.00       41.67  
     3.50 - 4.50    2.00      8.00       58.33  
     4.50 - 5.50    2.00     10.00       75.00  
     5.50 - 6.50    2.00     12.00       91.67  
     6.50 - 7.50    0.00     12.00      100.00  
     7.50 - 8.50    0.00     12.00      100.00  

  Fig. 6.6    The Box Plot form       
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     8.50 - 9.50    0.00     12.00      100.00  
     9.50 -10.50    0.00     12.00      100.00  
   10.50 -11.50    0.00     12.00      100.00  

  Results for group 2, mean = 4.500  
  Centile Value  
  Ten           2.600  
  Twenty  fi ve    3.500  
  Median        4.500  
  Seventy  fi ve   5.500  
  Ninety 6.400  
  Score Range    Frequency  Cum.Freq.  Percentile Rank  
  ______________ _________ _________ _______________  
     0.50 - 1.50    0.00      0.00        0.00  
     1.50 - 2.50    1.00      1.00        4.17  
     2.50 - 3.50    2.00      3.00       16.67  
     3.50 - 4.50    3.00      6.00       37.50  
     4.50 - 5.50    3.00      9.00       62.50  
     5.50 - 6.50    2.00     11.00       83.33  
     6.50 - 7.50    1.00     12.00       95.83  
     7.50 - 8.50    0.00     12.00      100.00  
     8.50 - 9.50    0.00     12.00      100.00  
     9.50 -10.50    0.00     12.00      100.00  
   10.50 -11.50    0.00     12.00      100.00  

  Results for group 3, mean = 4.250  
  Centile Value  
  Ten 1.600  
  Twenty  fi ve    2.500  
  Median        3.500  
  Seventy  fi ve   6.500  
  Ninety        8.300  
  Score Range Frequency Cum.Freq. Percentile Rank  
  ______________ _________ _________ _______________  
     0.50 - 1.50    1.00      1.00        4.17  
     1.50 - 2.50    2.00      3.00       16.67  
     2.50 - 3.50    3.00      6.00       37.50  
     3.50 - 4.50    2.00      8.00       58.33  
     4.50 - 5.50    1.00      9.00       70.83  
     5.50 - 6.50    0.00      9.00       75.00  
     6.50 - 7.50    1.00     10.00       79.17  
     7.50 - 8.50    1.00     11.00       87.50  
     8.50 - 9.50    1.00     12.00       95.83  
     9.50 -10.50    0.00     12.00      100.00  
   10.50 -11.50    0.00     12.00      100.00    
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   Three Variable Rotation    

 The option for 3D rotation of 3 variables under the Descriptive option of the 
Statistics menu will rotate the case values around the X, Y and Z axis! In the exam-
ple below we have again used the cansas.tab data  fi le which consists of six variables 
measuring weight, pulse rate, etc. of individuals and measures of their physical 
abilities such as pull ups, sit ups, etc. By “dragging” the X, Y or Z bars up or down 
with your mouse, you may rotate up to 180° around each axis (see Figs.  6.8 – 6.9     
below (Fig.  6.8 )):   

  Fig. 6.7    Box and whiskers plot       
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  Fig. 6.8    Three Dimension plot with rotation       

   X Versus Y Plots    

 As mentioned above, plotting one variable’s values against those of another variable 
in an X versus Y scatter plot often reveals insights into the relationships between two 
variables. Again we will use the same cansas.tab data  fi le to plot the relationship 
between weight and waist measurements. When you select the X Versus Y Plots 
option from the Statistics/Descriptive menu, you see the form below (Fig.  6.9 ):  
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 In the above form we have elected to print descriptive statistics for the two vari-
ables selected and to plot the linear regression line and con fi dence band for pre-
dicted scores about the regression line drawn through the scatter of data points. 
When you click the Compute button, the following results are obtained for the 
descriptive statistics in the output form: 

  X versus Y Plot  

  X = weight , Y = waist from  fi le:
C:\Projects\Delphi\OpenStat\cansas.txt  

  Variable    Mean      Variance    Std.Dev.  
  weight      178.60    609.62      24.69  
  waist        35.40     10.25       3.20  
  Correlation = 0.8702, Slope = 0.11, Intercept = 15.24  
  Standard Error of Estimate =  1.62  

 When you press the Return button on the output form, you then obtain the desired 
plot (Fig.  6.10 ):  

  Fig. 6.9    X Versus Y Plot form       
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 Notice that the measured linear relationship between the two variables is fairly 
high (.870) however, you may also notice that one data point appears rather extreme 
on both the X and Y variables. Should you eliminate the case with those extreme 
scores (an outlier?), you would probably observe a reduction in the linear relation-
ship! I would personally not eliminate this case however since it “seems reason-
able” that the sample might contain a subject with both a high weight and high waist 
measurement.  

   Histogram/Pie Chart    of Group Frequencies 

 You may obtain a histogram or pie chart plot of frequencies for a variable using the 
Analyses/Descriptive options of either the Histogram of Group Frequencies of Pie 
Chart of Group Frequencies option. Selecting either of these procedures results in 
the following dialogue form (Fig.  6.11 ):  

 In this example we have loaded the chisqr.TEX OpenStat  fi le and have chosen to 
obtain a pie chart of the col variable. The result is shown below (Fig.  6.12 ):   

  Fig. 6.10    Plot of regression line in X versus Y       

 



  Fig. 6.12    Pie chart       

  Fig. 6.11    Form for a pie chart       
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   Stem and Leaf Plot    

 One of the earliest plots in the annals of statistics was the “Stem and Leaf” plot. This 
plot gives the user a view of the major values found in a frequency distribution. To 
illustrate this plot, we will use the  fi le labeled “   StemleafTest2.TAB”. If you select 
this option from the Descriptive option of the Analyses menu, you will see the 
dialogue form below (Fig.  6.13 ):  

  Fig. 6.13    Stem and Leaf form       
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 We will choose to plot the zx100 variable to obtain the following results: 

  STEM AND LEAF PLOTS  
  Stem and Leaf Plot for variable: zx100  
  Frequency Stem & Leaf  
    1        -3    0  
    6        -2    0034  
  12        -1    0122234  
    5        -1    6789  
  71             0    0001111111222222222333333344444444444  
  78              0    555555556666666677777777788888889999999  
  16         1    00011223  
    7         1    56789  
    2         2    03  
    2         2    57  
  Stem width = 100.00, max. leaf depth = 2  
  Min. value = -299.000, Max. value = 273.600  
  No. of good cases = 200  

 The results indicate that the Stem has values ranging from −300 to +200 with the 
second digits shown as leaves. For example, the value 111.6 has a stem of 100 and 
a leaf of 1. The leaf “depth” indicates the number of values that each leaf value 
represents. The shape of the plot is useful in examining whether the distribution is 
somewhat “bell” shaped,  fl at, skewed, etc.  

   Compare Observed and Theoretical Distributions    

 In addition to the Stem and Leaf Plot described above, one can also plot a sample 
distribution along with a theoretical distribution using the cumulative proportion of 
values in the observed distribution. To demonstrate, we will again use the same vari-
able and  fi le in the stem and leaf plot described above. We will examine the normal 
distribution values expected for the same cumulative proportions of the observed 
data. When you select this option from the Descriptive option, you see the form 
shown below (Fig.  6.14 ):  

 When you click the Compute Button, you obtain the plot. Notice that our distri-
butions are quite similar!  

   QQ and PP Plots    

 In a manner similar to that shown above, one can also obtain a plot of the theoretical 
versus the observed data. You may select to plot actual values observed and expected 
or the proportions (probabilities) observed and expected. Show below is the dialogue 
form and a QQ plot for the save data of the previous section (Figs.  6.15 ,  6.16 ):    
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  Fig. 6.14    Dialog form for examining theoretical and observed distributions       

  Fig. 6.15    The QQ / PP Plot Speci fi cation form       
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   Normality Tests    

 A large number of statistical analyses have an underlying assumption that the data 
analyzed or the errors in predicting the data are, in fact, normally distributed in the 
population from which the sample was obtained. Several tests have been devel-
oped to test this assumption. We will again use the above sample data to demon-
strate these tests. The speci fi cation form and the results are shown below 
(Fig.  6.17 ):  

 The Shapiro-Wilkes statistic indicates a relatively high probability of obtain-
ing the sample data from a normal population. The Liliefors test statistic also 
suggests there is no evidence against normality. Both tests lead us to accept the 
hypothesis that the sample was obtained from a normally distributed population 
of scores.  

  Fig. 6.16    A QQ plot       
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   Resistant Line    

 Tukey (1970, Chap. 10) proposed the three point resistant line as an data analysis tool 
for quickly  fi tting a straight line to bivariate data (x and y paired data.) The data are 
divided into three groups of approximately equal size and sorted on the x variable. 
The median points of the upper and lower groups are  fi tted to the middle group to 
form two slope lines. The resulting slope line is resistant to the effects of extreme 
scores of either x or y values and provides a quick exploratory tool for investigating 
the linearity of the data. The ratio of the two slope lines from the upper and lower 
group medians to the middle group median provides a quick estimate of the linearity 
which should be approximately 1.0 for linearity. Our example uses the “Cansas.
TEX”  fi le. The dialogue for the analysis appears as (Fig.  6.18 ):  

  Fig. 6.17    Normality tests       
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 The results obtained are (Fig.  6.19 ): 

  Group   X Median    Y Median    Size  
    1     155.000     155.000     6  
    2     176.000      34.000     8  
    3     197.500      36.500     6  

  Half Slopes = -5.762 and 0.116  
  Slope = -2.788  
  Ratio of half slopes = -0.020  
  Equation: y = -2.788 * X + ( -566.361)    

  Fig. 6.18    Resistant Line dialog       
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   Repeated Measures Bubble Plot    

 Bubble plots are useful for comparing repeated measures for multiple objects. In 
our example, we have multiple schools which are being compared across years for 
student achievement. The size of the bubbles that are plotted represent the ratio of 
students to teachers. We are using the BubblePlot2.TEX  fi le in the sample data 
 fi les. 

 Shown below is the dialog for the bubble plot procedure followed by the plot and 
the descriptive data of the analysis (Figs.  6.20 ,  6.21 ):   

  Fig. 6.19    Resistant Line plot       

 



  Fig. 6.20    Dialog for the repeated measures bubble plot       

  Fig. 6.21    Bubble plot       
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  MEANS FOR Y AND SIZE VARIABLES  

  Grand Mean for Y = 18.925  
  Grand Mean for Size = 23.125  

  REPLICATION MEAN Y VALUES (ACROSS OBJECTS)  
  Replication    1 Mean =    17.125  
  Replication    2 Mean =    18.875  
  Replication    3 Mean =    18.875  
  Replication    4 Mean =    19.250  
  Replication    5 Mean =    20.500  

  REPLICATION MEAN SIZE VALUES (ACROSS OBJECTS}  
  Replication    1 Mean =    25.500  
  Replication    2 Mean =    23.500  
  Replication    3 Mean =    22.750  
  Replication    4 Mean =    22.500  
  Replication    5 Mean =    21.375  

  MEAN Y VALUES FOR EACH BUBBLE (OBJECT)  
  Object    1 Mean =    22.400  
  Object    2 Mean =    17.200  
  Object    3 Mean =    19.800  
  Object    4 Mean =    17.200  
  Object    5 Mean =    22.400  
  Object    6 Mean =    15.800  
  Object    7 Mean =    20.000  
  Object    8 Mean =    16.600  

  MEAN SIZE VALUES FOR EACH BUBBLE (OBJECT)  
  Object    1 Mean =    19.400  
  Object    2 Mean =    25.200  
  Object    3 Mean =    23.000  
  Object    4 Mean =    24.600  
  Object    5 Mean =    19.400  
  Object    6 Mean =    25.800  
  Object    7 Mean =    23.200  
  Object    8 Mean =    24.400   

   Smooth Data    by Averaging 

 Measurements made on multiple objects often contain “noise” or error variations 
that mask the trend of data. One method for reducing this “noise” is to smooth the 
data by averaging the data points. In this method, three contiguous data points are 
averaged to obtain a new value for the  fi rst of the three points. The next point is 
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the average of three points, etc. across all points. Only the  fi rst and last data points 
are left unchanged. To illustrate this procedure, we will use the  fi le labeled “bolt-
size.TEX”. The dialog is shown followed by a comparison of the original data 
with the smoothed data using the procedure to compare two distributions 
(Figs.  6.22 ,  6.23 ,  6.24 ):     

   X Versus Multiple Y Plot    

 You may have collected multiple measurements for a group of objects and wish to 
compare these measurements in a plot. This procedure lets you select a variable for 
the X axis and multiple Y variables to plot as points or lines. To illustrate we have 
selected a  fi le labeled “multiplemeas.TEX” and have plotted a group of repeated 
measures against the  fi rst one. The dialog is shown below followed by the plot 
(Figs.  6.25 ,  6.26 ):  

  Fig. 6.22    Dialog for smoothing data by averaging       

 



  Fig. 6.24    Cumulative frequency of smoothed data       

  Fig. 6.23    Smoothed data frequency distribution plot       

 

 



54 6 Descriptive Analyses

  Fig. 6.25    Dialog for an X versus multiple Y plot       
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  X VERSUS MULTIPLE Y VALUES PLOT  
  CORRELATION MATRIX  

   Correlations  
       VAR2    VAR3   VAR4   VAR5   VAR6   VAR1  
  VAR2     1.000   0.255  0.542  0.302  0.577  0.325  
  VAR3     0.255   1.000 -0.048  0.454  0.650  0.763  
  VAR4     0.542  -0.048  1.000  0.125 -0.087  0.005  
  VAR5     0.302   0.454  0.125  1.000  0.527  0.304  
  VAR6     0.577   0.650 -0.087  0.527  1.000  0.690  
  VAR1     0.325   0.763  0.005  0.304  0.690  1.000  

  Means     

  Variables   VAR2  VAR3  VAR4  VAR5  VAR6  VAR1  
                              8.894 9.682 5.021 9.721 9.451 6.639  

  Standard Deviations  

  Variables   VAR2   VAR3   VAR4   VAR5   VAR6  VAR1  
                           12.592 16.385 17.310 13.333 16.157 11.834  

  No. of valid cases = 30    

  Fig. 6.26    X versus multiple Y plot       
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   Compare Observed to a Theoretical Distribution    

 Observed data may be distributed in a manner similar to a variety of theoretical 
distributions. This procedure lets you plot the observed scores against various theo-
retical distributions to see if the data tends to be more similar to one than another. 
We will demonstrate using a set of simulated data that we created to follow an 
approximately normal distribution. We smoothed the data using the smoothing pro-
cedure and then compared the smoothed data to the normal distribution by means of 
this procedure. Shown below is the dialog utilized and the resulting plot of the data 
(Figs.  6.27 ,  6.28 ):    

  Fig. 6.27    Dialog for comparing observed and theoretical distributions       
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   Multiple Groups X versus Y Plot    

 You may have observed objects within groups such as male and female (coded 0 
and 1 for example) and wish to plot the relationship between two other measures 
for those groups. To demonstrate this procedure we will use the sample data  fi le 
labeled “anova2.TEX” and plot the lines for the relationship of the dependent vari-
able x and the covariate2 in the  fi le. The dialog is shown below followed by the plot 
(Figs.  6.29 ,  6.30 ):  

  Fig. 6.28    Comparison of an observed and theoretical distribution       

 



  Fig. 6.29    Dialog for 
multiple groups X versus 
Y plot       

  Fig. 6.30    X versus Y plot for multiple groups       
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  X VERSUS Y FOR GROUPS PLOT  
  VARIABLE  MEAN  STANDARED DEVIATION  
    X     4.083  1.962  
    Y     3.917  1.628         
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   The Product Moment Correlation    

 It seems most living creatures observe relationships, perhaps as a survival instinct. 
We observe signs that the weather is changing and prepare ourselves for the winter 
season. We observe that when seat belts are worn in cars that the number of fatalities 
in car accidents decrease. We observe that students that do well in one subject tend 
to perform will in other subjects. This chapter explores the linear relationship 
between observed phenomena. 

 If we make systematic observations of several phenomena using some scales of 
measurement to record our observations, we can sometimes see the relationship 
between them by “plotting” the measurements for each pair of measures of the 
observations. As a hypothetical example, assume you are a commercial artist and 
produce sketches for advertisement campaigns. The time given to produce each 
sketch varies widely depending on deadlines established by your employer. Each 
sketch you produce is ranked by  fi ve marketing executives and an average ranking 
produced (rank 1 = best, rank 5 = poorest.) You suspect there is a relationship between 
time given (in minutes) and the average quality ranking obtained. You decide to 
collect some data and observe the following:  

 Average rank (Y)  Minutes (X) 

 3.8  10 
 2.6  35 
 4.0  5 
 1.8  42 
 3.0  30 
 2.6  32 
 2.8  31 
 3.2  26 
 3.6  11 
 2.8  33 

    Chapter 7   
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 Using OpenStat Descriptive menu’s Plot X vs. Y procedure to plot these values 
yields the scatter-plot shown above following page. Is there a relationship between 
the time and ranks? (Fig   .  7.1 ).   

   Testing Hypotheses for Relationships Among Variables: 
Correlation 

 To further understand and learn to interpret the product–moment correlation, 
OpenStat provides a means of simulating pairs of data, plotting those pairs, drawing 
the “best- fi tting line” to the data points and showing the marginal distributions of 
the X and Y variables. Go to the Simulation menu and click on the Bivariate Scatter 
Plot. The  fi gure below shows a simulation for a population correlation of −.95 with 
population means and variances as shown. A sample of 100 cases are generated. 
Actual sample means and standard deviations will vary (as sample statistics do!) 
from the population values speci fi ed (Fig.  7.2 ). 

  POPULATION PARAMETERS FOR THE SIMULATION  
  Mean X :=   100.000, Std. Dev. X :=    15.000  
  Mean Y :=   100.000, Std. Dev. Y :=    15.000  
  Product-Moment Correlation :=    -0.900  
  Regression line slope :=    -0.900, constant :=   190.000  
  SAMPLE STATISTICS FOR 100 OBSERVATIONS FROM THE POPULATION  
  Mean X :=    99.988, Std. Dev. X :=    14.309  
  Mean Y :=   100.357, Std. Dev. Y :=    14.581  
  Product-Moment Correlation :=    -0.915  
  Regression line slope :=    -0.932, constant :=   193.577    

  Fig. 7.1    Correlation regression line       
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   Simple Linear Regression    

 The product–moment correlation discussed in the previous section is an index of the 
linear relationship between two continuous variables. But what is the nature of that 
linear relationship? That is, what is the slope of the line and where does the line 
intercept the vertical (Y variable) axis? This unit will examine the straight line “ fi t” 
to data points representing observations with two variables. We will also examine 
how this straight line may be used for prediction purposes as well as describing the 
relationship to the product–moment correlation coef fi cient. 

 OpenStat contains a procedure for completing a z test for data like that presented 
above. 

 Under the Statistics menu, move your mouse down to the Comparisons sub-
menu, and then to the option entitled “One Sample Tests”. When the form below 
displays, click on the Correlation button and enter the sample value .5, the popula-
tion value .6, and the sample size 50. Change the con fi dence level to 90.0 %. 

 Shown below is the z-test for the above data (Figs.  7.3 ,  7.4 ):  

  ANALYSIS OF A SAMPLE CORRELATION  
  Sample Correlation = 0.600  
  Population Correlation = 0.500  
  Sample Size = 50  
  z Transform of sample correlation = 0.693  
  z Transform of population correlation = 0.549  
  Standard error of transform = 0.146  
  z test statistic = 0.986 with probability 0.838  
  z value required for rejection = 1.645  
  Con fi dence Interval for sample correlation = ( 0.425, 0.732)  

  Fig. 7.2    Simulated bivariate scatterplot       

 



  Fig. 7.3    Single sample tests form for correlations       

  Fig. 7.4    Comparison of two independent correlations       
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   Testing Equality of Correlations    in Two Populations    

  COMPARISON OF TWO CORRELATIONS  
  Correlation one = 0.500  
  Sample size one = 30  
  Correlation two = 0.600  
  Sample size two = 40  
  Difference between correlations = -0.100  
  Con fi dence level selected = 95  
  z for Correlation One = 0.549  
  z for Correlation Two = 0.693  
  z difference = -0.144  
  Standard error of difference = 0.253  
  z test statistic = -0.568  
  Probability > |z| = 0.715  
  z Required for signi fi cance = 1.960  
  Note: above is a two-tailed test.  
  Con fi dence Limits = (-0.565, 0.338)   

   Differences Between Correlations in Dependent 
Samples    

 Again, OpenStat provides the computations for the difference between dependent 
correlations as shown in the  fi gure below (Fig.  7.5 ):  

  COMPARISON OF TWO CORRELATIONS  
  Correlation x with y = 0.400  
  Correlation x with z = 0.600  
  Correlation y with z = 0.700  
  Sample size = 50  
  Con fi dence Level Selected = 95.0  
  Difference r(x,y) - r(x,z) = -0.200  
  t test statistic = -2.214  
  Probability > |t| = 0.032  
  t value for signi fi cance = 2.012    
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   Binary Receiver Operating Characteristics    

 Two or more groups, for example a control group and treatment groups, may be 
compared by a variety of means such as with analysis of variance, a t-test or a non-
parametric test. It is often of interest to know that point in comparing the groups 
which minimizes false positive results and maximizes true effects. This procedure 
produces a graph which plots false positives against true positives for the two 
groups. In our example,  fi ve groups are examined for possible presence of an abnor-
mal medical condition. A count of negative or positive observation of this condition 
is recorded and analyzed. The  fi le we have selected to demonstrate this procedure is 
labeled “binaryroc.TEX” and contains  fi ve groups (cases) with counts of the normal 
and positive results. The dialog for the analysis is shown below followed by the 
results and plot (Figs.  7.6 ,  7.7 ): 

  Fig. 7.5    Comparison of correlations for dependent samples       
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  Fig. 7.6    Dialog for the ROC analysis       

  Fig. 7.7    ROC plot       
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  CASES FOR FILE C:\Users\wgmiller\Projects\Data\BinaryROC.TEX  

   UNITS Category Normal Positive  
   CASE 1 1 30 5  
   CASE 2 2 19 6  
   CASE 3 3 8 5  
   CASE 4 4 2 12  
   CASE 5 5 1 22   

  Categorical ROC Analysis Results  
  No. of Cases = 5  

  No. of Categories = 5  
  Low category = 5, Highest category = 1  
  Total negative count = 60  
  Total positive count = 50  

  TOTAL  
  CATEGORY COUNT  

   1 35  
   2 25  
   3 13  
   4 14  
   5 23  

  Observed Operating Points  
  NORMAL POSITIVE  
  0.0000 0.0000  
  0.0167 0.4400  
  0.0500 0.6800  
  0.1833 0.7800  
  0.5000 0.9000  
  1.0000 1.0000  

  INITIAL VALUES OF PARAMETERS: A = 1.3281, B = 0.6292  
  i =   1  Z(i) = -0.0000  
  i =   2  Z(i) =  0.9027  
  i =   3  Z(i) =  1.6449  
  i =   4  Z(i) =  2.1280  

  LOGL =  -143.8050  
  GOODNES OF FIT CHI-SQUARE = 110.0000 WITH 2 D.F. p = 0.0000  
  Final values of parameters: A = 1.3155 B = 0.6071  
  z(1) = -0.2013  
  Z(2) =  1.0547  
  Z(3) =  1.7149  
  Z(4) =  2.1485  
  LOGL =  -146.8468  
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  GOODNES OF FIT CHI-SQUARE = 110.0000 WITH 2 D.F. p = 0.0000  
  Correlation Matrix:  
  A      1.0000  0.6397  0.3730  0.2853  0.0742 -0.0706  
  B      0.6397  1.0000  0.2097 -0.0848 -0.4566 -0.6404  
  Z(1)   0.3730  0.2097  1.0000  0.5289  0.2423  0.1130  
  Z(2)   0.2853 -0.0848  0.5289  1.0000  0.6195  0.4638  
  Z(3)   0.0742 -0.4566  0.2423  0.6195  1.0000  0.8299  
  Z(4)  -0.0706 -0.6404  0.1130  0.4638  0.8299  1.0000  
  AREA =  0.8696  Std.Dev. (AREA) =  0.0381  

  Estimated Binormal ROC Curve with Lower and Upper  
  Bounds on Asymetric 95_on fi dence Interval for  
  True-Positive Fraction at each speci fi ed  
  False-Positive fraction:  
   FPF TPF (Lower bound, Upper bound)  
   0.005 0.4020 0.1878, 0.6516  
   0.010 0.4615 0.2504, 0.6842  
   0.020 0.5274 0.3277, 0.7203  
   0.030 0.5689 0.3795, 0.7435  
   0.040 0.5997 0.4190, 0.7611  
   0.050 0.6243 0.4509, 0.7755  
   0.060 0.6449 0.4777, 0.7879  
   0.070 0.6626 0.5008, 0.7988  
   0.080 0.6781 0.5210, 0.8085  
   0.090 0.6920 0.5389, 0.8174  
   0.100 0.7045 0.5550, 0.8256  
   0.110 0.7160 0.5695, 0.8331  
   0.120 0.7265 0.5828, 0.8402  
   0.130 0.7362 0.5950, 0.8468  
   0.140 0.7453 0.6063, 0.8531  
   0.150 0.7537 0.6167, 0.8590  
   0.200 0.7895 0.6597, 0.8844  
   0.250 0.8175 0.6923, 0.9048  
   0.300 0.8406 0.7184, 0.9216  
   0.400 0.8773 0.7590, 0.9474  
   0.500 0.9058 0.7907, 0.9658  
   0.600 0.9291 0.8178, 0.9789  
   0.700 0.9488 0.8427, 0.9881  
   0.800 0.9661 0.8676, 0.9944  
   0.900 0.9818 0.8962, 0.9983  
   0.950 0.9897 0.9156, 0.9994  

  ESTIMATES OF EXPECTED OPERATING POINTS ON FITTED ROC  
  CURVE, WITH LOWER AND UPPER BOUNDS OF ASYMMETRIC 95%  
  CONFIDENCE INTERVALS ALONG THE CURVE FOR THOSE POINTS:  
  EXPECTED OPERATING POINT LOWER BOUND UPPER BOUND  
  (FPF , TPF) ( FPF , TPF) ( FPF , TPF )  
  {0.0158, 0.5045) (0.0024, 0.3468) (0.0693, 0.6614  
  {0.0432, 0.6081) (0.0136, 0.4900) (0.1109, 0.7170  
  {0.1458, 0.7502) (0.0801, 0.6783) (0.2403, 0.8125  
  {0.5798, 0.9247) (0.4543, 0.8936) (0.6976, 0.9484    
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   Partial and Semi_Partial Correlations    

   Partial Correlation 

 OpenStat provides a procedure for obtaining partial and semi-partial correlations. 
You can select the Analyses/Correlation/Partial procedure. We have used the can-
sas.tab  fi le to demonstrate how to obtain partial and semi-partial correlations as 
shown below (Fig.  7.8 ):  

  Fig. 7.8    Form for calculating partial and semi-partial correlations       
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  Partial and Semi-Partial Correlation Analysis  
  Dependent variable = chins  

  Predictor VarList:  
  Variable 1 = weight  
  Variable 2 = waist  

  Control Variables:  
  Variable 1 = pulse  

  Higher order partialling at level = 2  

  CORRELATION MATRIX  

   Correlations  
   chins weight waist pulse  
  chins 1.000 -0.390 -0.552 0.151  
  weight -0.390 1.000 0.870 -0.366  
  waist -0.552 0.870 1.000 -0.353  
  pulse 0.151 -0.366 -0.353 1.000  

  Means  

  Variables chins weight waist pulse  
   9.450 178.600 35.400 56.100  

  Standard Deviations  

  Variables chins weight waist pulse  
   5.286 24.691 3.202 7.210  

  No. of valid cases = 20  

  Squared Multiple Correlation with all Variables = 0.340  

  Standardized Regression Coef fi cients:  
   weight = 0.368  
   waist = -0.882  
   pulse = -0.026  

  Squared Multiple Correlation with control Variables = 0.023  

  Standardized Regression Coef fi cients:  
   pulse = 0.151  

  Partial Correlation = 0.569  

  Semi-Partial Correlation = 0.563  

  F = 3.838 with probability = 0.0435, D.F.1 =  2 and D.F.2 = 16    
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   Autocorrelation    

 Now let us look at an example of auto-correlation   . We will use a  fi le named strikes.
tab. The  fi le contains a column of values representing the number of strikes which 
occurred each month over a 30 month period. Select the auto-correlation procedure 
from the Correlations sub-menu of the Analyses main menu. Below is a representa-
tion of the form as completed to obtain auto-correlations, partial auto-correlations, 
and data smoothing    using both moving average smoothing and polynomial regres-
sion smoothing (Fig.  7.9 ):  

 When we click the Compute button, we  fi rst obtain a dialog form for setting the 
parameters of our moving average. In that form we  fi rst enter the number of values 
to include in the average from both sides of the current average value. We selected 
2. Be sure and press the Enter key after entering the order value. When you do, two 
theta values will appear in a list box. When you click on each of those thetas, you 
will see a default value appear in a text box. This is the weight to assign the leading 

  Fig. 7.9    The Autocorrelation form       
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and trailing averages ( fi rst or second in our example.) In our example we have 
accepted the default value for both thetas (simply press the Return key to accept the 
default or enter a value and press the Return key.) Now press the Apply button. 
When you do this, the weights for all of the values (the current mean and the 1, 2, 
… order means) are recalculated. You can then press the OK button to proceed with 
the process (Fig.  7.10 ).  

 The procedure then plots the original (30) data points and their moving average 
smoothed values. Since we also asked for a projection of 5 points, they too are plot-
ted. The plot should look like that shown below (Fig.  7.11 ):  

 We notice that there seems to be a “wave” type of trend with a half-cycle of about 
15 months. When we press the Return button on the plot of points we next get the 
following (Fig.  7.12 ):  

 This plot shows the original points and the difference (residual) of the smoothed 
values from the original. At this point, the procedure replaces the original points 
with the smoothed values. Press the Return button and you next obtain the following 
(Fig.  7.13 ):  

 This is the form for specifying our next smoothing choice, the polynomial 
regression smoothing. We have elected to use a polynomial value of 2 which will 
result in a model for a data point Y 

t−1
  = B * t 2  + C for each data point. Click the OK 

button to proceed. You then obtain the following result (Fig.  7.14 ):  

  Fig. 7.10    Moving 
Average form       

 



  Fig. 7.11    Smoothed plot using moving average       

  Fig. 7.12    Plot of residuals obtained using moving averages       

  Fig. 7.13    Polynomial 
regression smoothing    form       
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 It appears that the use of the second order polynomial has “removed” the cyclic 
trend we saw in the previously smoothed data points. Click the return key to obtain 
the next output as shown below (Fig.  7.15 ):  

  Fig. 7.14    Plot of polynomial smoothed points       

  Fig. 7.15    Plot of residuals from polynomial smoothing       
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 This result shows the previously smoothed data points and the residuals obtained 
by subtracting the polynomial smoothed points from those previous points. Click 
the Return key again to see the next output shown below: 

  Overall mean = 4532.604, variance = 11487.241  
  Lag Rxy MeanX MeanY Std.Dev.X Std.Dev.Y Cases LCL UCL  

   0 1.0000 4532.6037 4532.6037 109.0108 109.0108 30 1.0000 1.0000  
   1 0.8979 4525.1922 4537.3814 102.9611 107.6964 29 0.7948 0.9507  
   2 0.7964 4517.9688 4542.3472 97.0795 106.2379 28 0.6116 0.8988  
   3 0.6958 4510.9335 4547.5011 91.3660 104.6337 27 0.4478 0.8444  
   4 0.5967 4504.0864 4552.8432 85.8206 102.8825 26 0.3012 0.7877  
   5 0.4996 4497.4274 4558.3734 80.4432 100.9829 25 0.1700 0.7287  
   6 0.4050 4490.9565 4564.0917 75.2340 98.9337 24 0.0524 0.6679  
   7 0.3134 4484.6738 4569.9982 70.1928 96.7340 23 -0.0528 0.6053  
   8 0.2252 4478.5792 4576.0928 65.3196 94.3825 22 -0.1470 0.5416  
   9 0.1410 4472.6727 4582.3755 60.6144 91.8784 21 -0.2310 0.4770  
   10 0.0611 4466.9544 4588.8464 56.0772 89.2207 20 -0.3059 0.4123  
   11 -0.0139 4461.4242 4595.5054 51.7079 86.4087 19 -0.3723 0.3481  
   12 -0.0836 4456.0821 4602.3525 47.5065 83.4415 18 -0.4309 0.2852  

 In the output above we are shown the auto-correlations obtained between the 
values at lag 0 and those at lags 1 through 12. The procedure limited the number of 
lags automatically to insure a suf fi cient number of cases upon which to base the 
correlations. You can see that the upper and lower 95 % con fi dence limits increases 
as the number of cases decreases. Click the Return button on the output form to 
continue the process. 

  Matrix of Lagged Variable: VAR00001 with 30 valid cases.  
  Variables  

   Lag 0 Lag 1 Lag 2 Lag 3 Lag 4  
  Lag 0 1.000 0.898 0.796 0.696 0.597  
  Lag 1 0.898 1.000 0.898 0.796 0.696  
  Lag 2 0.796 0.898 1.000 0.898 0.796  
  Lag 3 0.696 0.796 0.898 1.000 0.898  
  Lag 4 0.597 0.696 0.796 0.898 1.000  
  Lag 5 0.500 0.597 0.696 0.796 0.898  
  Lag 6 0.405 0.500 0.597 0.696 0.796  
  Lag 7 0.313 0.405 0.500 0.597 0.696  
  Lag 8 0.225 0.313 0.405 0.500 0.597  
  Lag 9 0.141 0.225 0.313 0.405 0.500  
  Lag 10 0.061 0.141 0.225 0.313 0.405  
  Lag 11 -0.014 0.061 0.141 0.225 0.313  
  Lag 12 -0.084 -0.014 0.061 0.141 0.225  
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  Variables  

   Lag 5 Lag 6 Lag 7 Lag 8 Lag 9  
  Lag 0 0.500 0.405 0.313 0.225 0.141  
  Lag 1 0.597 0.500 0.405 0.313 0.225  
  Lag 2 0.696 0.597 0.500 0.405 0.313  
  Lag 3 0.796 0.696 0.597 0.500 0.405  
  Lag 4 0.898 0.796 0.696 0.597 0.500  
  Lag 5 1.000 0.898 0.796 0.696 0.597  
  Lag 6 0.898 1.000 0.898 0.796 0.696  
  Lag 7 0.796 0.898 1.000 0.898 0.796  
  Lag 8 0.696 0.796 0.898 1.000 0.898  
  Lag 9 0.597 0.696 0.796 0.898 1.000  
  Lag 10 0.500 0.597 0.696 0.796 0.898  
  Lag 11 0.405 0.500 0.597 0.696 0.796  
  Lag 12 0.313 0.405 0.500 0.597 0.696  

  Variables  

   Lag 10 Lag 11 Lag 12  
  Lag 0 0.061 -0.014 -0.084  
  Lag 1 0.141 0.061 -0.014  
  Lag 2 0.225 0.141 0.061  
  Lag 3 0.313 0.225 0.141  
  Lag 4 0.405 0.313 0.225  
  Lag 5 0.500 0.405 0.313  
  Lag 6 0.597 0.500 0.405  
  Lag 7 0.696 0.597 0.500  
  Lag 8 0.796 0.696 0.597  
  Lag 9 0.898 0.796 0.696  
  Lag 10 1.000 0.898 0.796  
  Lag 11 0.898 1.000 0.898  
  Lag 12 0.796 0.898 1.000  

 The above data presents the inter-correlations among the 12 lag variables. Click 
the output form’s Return button to obtain the next output: 

  Partial Correlation Coef fi cients with 30 valid cases.  

  Variables Lag 0 Lag 1 Lag 2 Lag 3 Lag 4  
   1.000 0.898 -0.051 -0.051 -0.052  

  Variables Lag 5 Lag 6 Lag 7 Lag 8 Lag 9  
   -0.052 -0.052 -0.052 -0.052 -0.051  

  Variables Lag 10 Lag 11  
   -0.051 -0.051  
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 The partial auto-correlation    coef fi cients represent the correlation between lag 0 
and each remaining lag with previous lag values partialled out. For example, for lag 
2 the correlation of −0.051 represents the correlation between lag 0 and lag 2 with 
lag 1 effects removed. Since the original correlation was 0.796, removing the effect 
of lag 1 made a considerable impact. Again click the Return button on the output 
form. Next you should see the following results (Fig.  7.16 ):  

 This plot or “correlogram” shows the auto-correlations    and partial auto-correlations    
obtained in the analysis. If only “noise” were present, the correlations would vary 
around zero. The presence of large values is indicative of trends in the data.       

  Fig. 7.16    Auto and partial autocorrelation    plot       
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   One Sample Tests    

 OpenStat provides the ability to perform tests of hypotheses based on a single 
 sample. Typically the user is interested in testing the hypothesis that

    1.    A sample mean does not differ from a speci fi ed hypothesized mean,  
    2.    A sample proportion does not differ from a speci fi ed population proportion,  
    3.    A sample correlation does not differ from a speci fi ed population correlation, or  
    4.    A sample variance does not differ from a speci fi ed population variance.     

 The One Sample Test for means, proportions, correlations and variances is started 
by selecting the Comparisons option under the Statistics menu and moving the 
mouse to the One Sample Tests option which you then click with the left mouse but-
ton. If you do this you will then see the speci fi cation form for your comparison as 
seen below. In this form there is a button corresponding to each of the above type of 
comparison. You click the one of your choice. There are also text boxes in which you 
enter the sample statistics for your test and select the con fi dence level desired for the 
test. We will illustrate each test. In the  fi rst one we will test the hypothesis that a 
sample mean of 105 does not differ from a hypothesized population mean of 100. 
The standard deviation is estimated to be 15 and our sample size is 20 (Fig.  8.1 ).  

    Chapter 8   
 Comparisons         
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 When we click the Continue button on the form we then obtain our results in an 
output form as shown below: 

  ANALYSIS OF A SAMPLE MEAN  

  Sample Mean = 105.000  
  Population Mean = 100.000  
  Sample Size = 20  
  Standard error of Mean = 3.354  
  t test statistic = 1.491 with probability 0.152  
  t value required for rejection = 2.093  
  Con fi dence Interval = (97.979,112.021)  

 We notice that our sample mean is “captured” in the 95% con fi dence interval and 
this would lead us to accept the null hypothesis that the sample is not different from 
that expected by chance alone from a population with mean 100. 

 Now let us perform a test of a sample proportion. Assume we have an elective 
high school course in Spanish I. We notice that the proportion of 30 students in the 
class that are female is only 0.4 (12 students) yet the population of high school stu-
dents in composed of 50% male and 50% female. Is the proportion of females 
enrolled in the class representative of a random sample from the population? To test 
the hypothesis that the proportion of .4 does not differ from the population propor-
tion of .5 we click the proportion button of the form and enter our sample data as 
shown below (Fig.  8.2 ):  

  Fig. 8.1    Single Sample Tests Dialog form       
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 When we click the Continue button we see the results as shown below: 

  ANALYSIS OF A SAMPLE PROPORTION  

  Two tailed test at the 0.950 con fi dence level  
  Sample Proportion = 0.9705882  
  Population Proportion = 0.9500000  
  Sample Size = 340  
  Standard error of sample proportion = 0.0091630  
  z test statistic = 2.2469 with probability > z = 0.0123  
  z test statistic = 2.2469 with probability < z = 0.9877  
  z value required for rejection = 2.4673  
  Con fi dence Interval = (0.9526290,0.9885474)  

 We note that the z statistic obtained for our sample has a fairly low probability of 
occurring by chance when drawn from a population with a proportion of .5 so we 
are led to reject the null hypothesis. 

 We examined the test for a hypothesis about a sample correlation being obtained 
from a population with a given correlation. See the Correlation chapter (  Chap. 7    ) to 
review that test. 

 It occurs to a teacher that perhaps her Spanish students are from a more homoge-
neous population than that of the validation study reported in a standardized Spanish 
aptitude test. If that were the case, the correlation she observed might well be atten-
uated due to the differences in variances. In her class of 30 students she observed a 
sample variance of 25 while the validation study for the instrument reported a vari-
ance of 36. Let’s examine the test for the hypothesis that her sample variance does 
not differ signi fi cantly from the “population” value. Again we invoke the One 
Sample Test from the Univariate option of the Analyses menu and complete the 
form as shown below (Fig.  8.3 ):  

  Fig. 8.2    Single Sample Proportion test          
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 Upon clicking the Continue button our teacher obtains the following results in 
the output form: 

  ANALYSIS OF A SAMPLE VARIANCE  

  Sample Variance = 25.000  
  Population Variance = 36.000  
  Sample Size = 30  
  Chi-square statistic = 20.139 with probability > chisquare = 
0.889 and D.F. = 29  
  Chi-square value required for rejection = 16.035  
  Chi-square Con fi dence Interval = (45.725,16.035)  
  Variance Con fi dence Interval = (15.856,45.215)  

 The chi-square statistic obtained leads our teacher to accept the hypothesis of no 
difference between her sample variance and the population variance. Note that the 
population variance is clearly within the 95% con fi dence interval for the sample 
variance.  

   Proportion Differences    

 A most common research question arises when an investigator has obtained two 
sample proportions. One asks whether or not the two sample proportions are really 
different considering that they are based on observations drawn randomly from a 
population. For example, a school nurse observes during the  fl u season that 13 
eighth grade students are absent due to  fl u symptoms while only 8 of the ninth grade 
students are absent. The class sizes of the two grades are 110 and 121 respectively. 
The nurse decides to test the hypothesis that the two proportions (.118 and .066) do 
not differ signi fi cantly using the OpenStat program. The  fi rst step is to start the 

  Fig. 8.3    Single Sample Variance test          

 



83Proportion Differences

Proportion Differences procedure by clicking on the Analyses menu, moving the 
mouse to the Univariate option and the clicking on the Proportion Differences 
option. The speci fi cation form for the test then appears. We will enter the required 
values directly on the form and assume the samples are independent random sam-
ples from a population of eighth and ninth grade students (Fig.  8.4 ).  

 When the nurse clicks the Continue button the following results are shown in the 
Output form: 

  COMPARISON OF TWO PROPORTIONS  

  Test for Difference Between Two Independent Proportions  

  Entered Values  

  Sample 1: Frequency = 13 for 110 cases.  
  Sample 2: Frequency = 8 for 121 cases.  
  Proportion 1 = 0.118, Proportion 2 = 0.066, Difference = 0.052  
  Standard Error of Difference = 0.038  
  Con fi dence Level selected = 95.0  
  z test statistic = 1.375 with probability = 0.0846  
  z value for con fi dence interval = 1.960  
  Con fi dence Interval: ( -0.022, 0.126)  

  Fig. 8.4    Test of equality of two proportions       
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 The nurse notices that the value of zero is within the 95% con fi dence interval as 
therefore accepts the null hypothesis that the two proportions are not different than 
that expected due to random sampling variability. What would the nurse conclude 
had the 80.0% con fi dence level been chosen? 

 If the nurse had created a data  fi le with the above data entered into the grid 
such as:  

 CASE/VAR  FLU  GROUP 
 CASE 1  0  1 
 CASE 2  1  1 
 I.  -- 
 CASE 110  0  1 
 CASE 111  0  2 
 –  -- 
 CASE 231  1  2 

  then the option would have been to analyze data in a  fi le. 
 In this case, the absence or presence of  fl u symptoms for the student are entered 

as zero (0) or one (1) and the grade is coded as 1 or 2. If the same students, say the 
eighth grade students, are observed at weeks 10 and 15 during the semester, than the 
test assumptions would be changed to Dependent Proportions. In that case the form 
changes again to accommodate two variables coded zero and one to re fl ect the 
observations for each student at weeks 10 and 15 (Fig.  8.5 ).   

  Fig. 8.5    Test of Equality of Two Proportions form       
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  Fig. 8.6    Comparison of Two Sample Means    form       

   t-Tests    

 Among the comparison techniques the “Student” t-test    is one of the most commonly 
employed. One may test hypotheses regarding the difference between population 
means for independent or dependent samples which meet or do not meet the assump-
tions of homogeneity of variance. To complete a t-test, select the t-test option from 
the Comparisons sub-menu of the Statistics menu. You will see the form below 
(Fig.  8.6 ):  

 Notice that you can enter values directly on the form or from a  fi le read into the 
data grid. If you elect to read data from the data grid by clicking the button corre-
sponding to “Values Computed from the Data Grid” you will see that the form is 
modi fi ed as shown below (Fig.  8.7 ).  
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 We will analyze data stored in the Hinkle247.tab  fi le. 
 Once you have entered the variable name and the group code name you click the 

Continue button. The following results are obtained for the above analysis: 

  COMPARISON OF TWO MEANS  

  Variable Mean   Variance  Std.Dev.  S.E.Mean N  
  Group 1  49.44  107.78    10.38     3.46 9  
  Group 2  68.88  151.27    12.30     4.35 8  
  Assuming = variances, t = -3.533 with probability = 0.0030 and 
15 degrees of freedom  
  Difference = -19.43 and Standard Error of difference = 5.50  
  Con fi dence interval = ( -31.15, -7.71)  
  Assuming unequal variances, t = -3.496 with probability = 0.0034 
and 13.82 degrees of freedom  
  Difference = -19.43 and Standard Error of difference = 5.56  
  Con fi dence interval = ( -31.37, -7.49)  
  F test for equal variances = 1.404, Probability = 0.3209  

 The F test for equal variances indicates it is reasonable to assume the sampled 
populations have equal variances hence we would report the results of the  fi rst test. 

  Fig. 8.7    Comparison of two sample means       
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Since the probability of the obtained statistic is rather small (0.003), we would 
likely infer that the samples were drawn from two different populations. Note that 
the con fi dence interval for the observed difference is reported.  

   One, Two or Three Way Analysis of Variance    

 An experiment often involves the observation of some continuous variable under 
one or more controlled conditions or factors. For example, one might observe two 
randomly assigned groups of subjects performance under two or more levels of 
some treatment. The question posed is whether or not the means of the populations 
under the various levels of treatment are equal. Of course, if there is only two levels 
of treatment for one factor then we could analyze the data with the t-test described 
above. In fact, we will analyze the same “Hinkle.txt”  fi le data with the anova pro-
gram. Select the “One, Two or Three Way ANOVA   ” option from the Comparisons 
sub-menu of the Statistics menu. You will see the form below (Fig.  8.8 ):  

 Since our  fi rst example involves one factor only we will click the VAR1 variable 
name and click the right arrow button to place it in the Dependent Variable box. We 
then click the “group” variable label and the right arrow to place it in the Factor 1 
Variable box. We will assume the levels represent  fi xed treatment levels. We will 
also elect to plot the sample means for each level using three dimension bars. When 
we click the Continue button we will obtain the results shown below: 

  Fig. 8.8    One, two or three way ANOVA dialog       
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  ONE WAY ANALYSIS OF VARIANCE RESULTS  

  Dependent variable is: VAR1, Independent variable is: group  

      SOURCE D.F. SS MS F PROB.>F OMEGA SQR.  

      BETWEEN 1 1599.02 1599.02 12.49 0.00 0.40  
  WITHIN 15 1921.10 128.07  
  TOTAL 16 3520.12  
    

  MEANS AND VARIABILITY OF THE DEPENDENT VARIABLE FOR LEVELS OF 
THE INDEPENDENT VARIABLE  

      GROUP MEAN VARIANCE STD.DEV. N      

   1 49.44 107.78 10.38  9  
   2 68.88 151.27 12.30  8      

  TOTAL 58.59 220.01 14.83 17      

  TESTS FOR HOMOGENEITY OF VARIANCE  

      Hartley Fmax test statistic = 1.40 with deg.s freedom: 2 and 8.  
  Cochran C statistic = 0.58 with deg.s freedom: 2 and 8.  
  Bartlett Chi-square = 0.20 with 1 D.F. Prob. = 0.347      

 In this example, we note that the F statistic (12.49) is simply the square of the 
previously observed t statistic (within rounding error.) The Bartlett Chi-square test 
for homogeneity    of variance and the Hartley Fmax test    also agree approximately 
with the F statistic for equal variance in the t-test procedure. 

 The plot of the sample means obtained in our analysis are shown below 
(Fig.  8.9 ):  

 Now let us run an example of an analysis with one  fi xed and one random factor. 
We will use the data  fi le named “Threeway.txt” which could also serve to demon-
strate a three way analysis of variance (with  fi xed or random effects.) We will 
assume the row variable is  fi xed and the column variable is a random level. We 
select the One, Two and Three Way ANOVA option from the Comparisons sub-
menu of the Statistics menu. The  fi gure below (Fig.  8.10 ) shows how we speci fi ed 
the variables and their types:  
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  Fig. 8.9    Plot of sample means from a one-way ANOVA       

  Fig. 8.10    Speci fi cations for a two-way ANOVA       
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 Now when we click the Continue button we obtain: 

  Two Way Analysis of Variance  

  Variable analyzed: X  

  Factor A (rows) variable: Row (Fixed Levels)  
  Factor B (columns) variable: Col (Fixed Levels)  

  SOURCE D.F. SS MS F PROB.> F Omega Squared  

  Among Rows  1  12.250 12.250  5.765 0.022 0.074  
  Among Columns  1  42.250 42.250 19.882 0.000 0.293  
  Interaction  1  12.250 12.250  5.765 0.022 0.074  
  Within Groups 32  68.000  2.125  
  Total 35 134.750  3.850  

  Omega squared for combined effects = 0.441  

  Note: Denominator of F ratio is MSErr  

  Descriptive Statistics  

  GROUP Row Col. N MEAN VARIANCE STD.DEV.  
  Cell 1 1  9 3.000 1.500 1.225  
  Cell 1 2  9 4.000 1.500 1.225  
  Cell 2 1  9 3.000 3.000 1.732  
  Cell 2 2  9 6.333 2.500 1.581  
  Row 1  18 3.500 1.676 1.295  
  Row 2  18 4.667 5.529 2.351  
  Col 1  18 3.000 2.118 1.455  
  Col 2  18 5.167 3.324 1.823  
  TOTAL   36 4.083 3.850 1.962  

  TESTS FOR HOMOGENEITY OF VARIANCE      

  Hartley Fmax test statistic = 2.00 with deg.s freedom: 4 and 8.  
  Cochran C statistic = 0.35 with deg.s freedom: 4 and 8.  
  Bartlett Chi-square statistic = 3.34 with 3 D.F. Prob. = 0.658      

 You will note that the denominator of the F statistic for the two main effects are 
different. For the  fi xed effects factor (A or rows) the mean square for interaction is 
used as the denominator while for the random effects factor and interaction of  fi xed 
with random factors the mean square within cells is used. 

   Analysis of Variance: Treatments by Subjects Design    

   An Example 

 To perform a Treatments by Subjects analysis of variance, we will use a sample data 
 fi le labeled “ABRData.txt” which you can  fi nd as a “.tab” type of  fi le in your sample 
of data  fi les. We open the  fi le and select the option “Within Subjects Anova” in the 
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Comparisons sub-menu under the Statistics menu. The  fi gure above (Fig.  8.11 ) is 
then completed as shown:  

 Notice that the repeated measures are the columns labeled C1 through C4. You 
will also note that this same procedure will report intraclass reliability estimates if 
elected. If you now click the Compute button, you obtain the results shown below: 

  Treatments by Subjects (AxS) ANOVA Results.  

  Data File = C:\Projects\Delphi\OpenStat\ABRData.txt      

  SOURCE DF SS MS F Prob. > F      

  SUBJECTS 11  181.000 330.500  
  WITHIN SUBJECTS 36 1077.000  29.917  

  TREATMENTS  3  991.500 330.500 127.561 0.000  
  RESIDUAL 33   85.500   2.591      

  TOTAL 47 1258.000 26.766      

  TREATMENT (COLUMN) MEANS AND STANDARD DEVIATIONS  
  VARIABLE MEAN STD.DEV.  
  C1 16.500 2.067  
  C2 11.500 2.431  
  C3  7.750 2.417  
  C4  4.250 2.864  

  Mean of all scores = 10.000 with standard deviation = 5.174  

  Fig. 8.11    Within subjects ANOVA dialog       
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  BOX TEST FOR HOMOGENEITY OF VARIANCE-COVARIANCE MATRIX  

  SAMPLE COVARIANCE MATRIX with 12 valid cases.  

  Variables  

    C1 C2 C3 C4  
   C1 4.273 2.455 1.227 1.318  
   C2 2.455 5.909 4.773 5.591  
   C3 1.227 4.773 5.841 5.432  
   C4 1.318 5.591 5.432 8.205  

  ASSUMED POP. COVARIANCE MATRIX with 12 valid cases.  

  Variables  
    C1 C2 C3 C4  
   C1 6.057 0.693 0.693 0.693  
   C2 0.114 5.977 0.614 0.614  
   C3 0.114 0.103 5.914 0.551  
   C4 0.114 0.103 0.093 5.863  

  Determinant of variance-covariance matrix = 81.7  
  Determinant of homogeneity matrix = 1.26E3  
  ChiSquare = 108.149 with 8 degrees of freedom  
  Probability of larger chisquare = 9.66E-7    

   One Between, One Repeated Design 

   An Example Mixed Design 

 We select the AxS ANOVA    option in the Comparisons sub-menu of the Statistics 
menu and complete the speci fi cations on the form as show below (Fig.  8.12 ):  
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 When the Compute button is clicked you should see these results: 

  ANOVA With One Between Subjects and One Within Subjects Treatments      

  Source df SS MS F Prob.      

  Between 11  181.000  
   Groups (A)  1   10.083  10.083   0.590 0.4602  
   Subjects w.g. 10  170.917  17.092  
  Within Subjects 36 1077.000  
   B Treatments  3  991.500 330.500 128.627 0.0000  
   A X B inter.  3    8.417   2.806   1.092 0.3677  
   B X S w.g. 30   77.083   2.569  

  TOTAL 47 1258.000      

  Means  
  TRT. B 1 B 2 B 3 B 4 TOTAL  
   A  
   1 16.167 11.000 7.833 3.167  9.542  
   2 16.833 12.000 7.667 5.333 10.458  
  TOTAL 16.500 11.500 7.750 4.250 10.000  

  Fig. 8.12    Treatment by subjects ANOVA dialog       
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  Standard Deviations  
  TRT. B 1 B 2 B 3 B 4 TOTAL  
   A  
   1 2.714 2.098 2.714 1.835 5.316  
   2 1.329 2.828 2.338 3.445 5.099  
  TOTAL 2.067 2.431 2.417 2.864 5.174  

 Notice there appears to be no signi fi cant difference between the two groups of 
subjects but that within the groups, the  fi rst two treatment means appear to be 
signi fi cantly larger than the last two. 

 Since we elected to plot the means, we would also obtain the  fi gure shown above 
(Fig.  8.13 ):  

 The graphics again demonstrate the greatest differences appear to be among the 
repeated measures and not the groups (A1 and A2). 

 You may also have a design with two between-groups factors and repeated 
 measures within each cell composed of subjects randomly assigned to the factor 
A and factor B level combinations. If you have such a design, you can employ the 
AxBxR Anova procedure in the OpenStat package.   

  Fig. 8.13    Plot of treatment by subjects ANOVA means       

 



95One, Two or Three Way Analysis of Variance

   Two Factor Repeated Measures Analysis    

 Repeated measures designs have the advantage that the error terms are typically 
smaller that designs using independent groups of observations. This was true for 
the Student t-test using matched or correlated scores. On the down-side, repeated 
measures on the same objects pose a special problem, particularly when the 
objects are human subjects. The main problem is “practice” or “learning” effects 
that may be greater for one treatment level than another. These effects are com-
pletely confounded with the actual treatment effects. While random or counter-
balanced assignment of the treatments may reduce the cumulative effects to 
some degree, it does not remove the effects speci fi c to a given treatment. It is 
also assumed that the covariance matrices are equal among the treatment levels. 
Users of these designs with human subjects should be careful to minimize the 
practice effects. This can sometimes be done by having subjects do tasks that 
are similar to those in the actual experiment before beginning trials of the 
experiment. 

 In this analysis, subjects (or objects) are observed (measured) under two differ-
ent treatment levels (Factors A and B levels) . For example, there might be two 
levels of a Factor A and three levels of a Factor B for a total of 2 × 3 = 6 treatment 
level combinations. Each subject would be observed 6 times in all. There must be 
the same subjects in each of the combinations. 

 The data  fi le analyzed must consist of 4 columns of information for each obser-
vation: a variable containing an integer identi fi cation code for the subject (1..N), an 
integer from 1 to A for the treatment level of A, an integer from 1 to B for the treat-
ment level of the Factor B, and a  fl oating point variable for the observation 
(measurement). 

 A sample  fi le (tworepeated.tex or tworepeated.TAB) was created from the 
example given by Quinn McNemar in his text book “Psychological Statistics”, 
fourth edition, John Wiley and Sons, Inc., 1969, page 367. The data represent an 
experiment in which four subjects are observed under two levels of illumination 
and three levels of Albedo (Factors A and B.) The data  fi le therefore contains 24 
observations (4 × 2 × 3.) The analysis is initiated by loading the  fi le and clicking 
on the “Two Within Subjects” option in the Analyses of Variance menu. The form 
which appears is shown below. Notice that the options have been selected to plot 
means of the two main effects and the interaction effects. An option has also been 
clicked to obtain post-hoc comparisons among the 6 means for the treatment com-
binations. When the “Compute” button is clicked the following output is obtained 
(Figs.  8.14 ,  8.15 ,  8.16 ,  8.17 ):     
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  Fig. 8.14    Dialog for the two-way repeated measures ANOVA       

 



  Fig. 8.15    Plot of factor A means in the two-way repeated measures analysis       

  Fig. 8.16    Plot of factor B in the two-way repeated measures analysis       
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      SOURCE DF SS MS F Prob.>F      

  Factor A 1   204.167  204.167  9.853 0.052  
  Factor B 2  8039.083 4019.542 24.994 0.001  
  Subjects 3  1302.833  434.278  
  A x B Interaction 2    46.583   23.292  0.803 0.491  
  A x S Interaction 3    62.167   20.722  
  B x S Interaction 6   964.917  160.819  
  A x B x S Inter. 6   174.083   29.01      

  Total 23 10793.833      

  Group 1 : Mean for cell A 1 and B 1 = 17.250  
  Group 2 : Mean for cell A 1 and B 2 = 26.000  
  Group 3 : Mean for cell A 1 and B 3 = 60.250  
  Group 4 : Mean for cell A 2 and B 1 = 20.750  
  Group 5 : Mean for cell A 2 and B 2 = 35.750  
  Group 6 : Mean for cell A 2 and B 3 = 64.500  

  Fig. 8.17    Plot of factor A and factor B interaction in the two-way repeated measures analysis       
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  Means for Factor A  
  Group 1 Mean = 34.500  
  Group 2 Mean = 40.333  

  Means for Factor B  
  Group 1 Mean = 19.000  
  Group 2 Mean = 30.875  
  Group 3 Mean = 62.375  

 The above results re fl ect possible signi fi cance for the main effects of Factors A 
and B but not for the interaction. The F ratio of the Factor A is obtained by dividing 
the mean square for Factor A by the mean square for interaction of subjects with 
Factor A. In a similar manner, the F ratio for Factor B is the ratio of the mean square 
for Factor B to the mean square of the interaction of Factor B with subjects. Finally, 
the F ratio for the interaction of Factor A with Factor B uses the triple interaction of 
A with B with Subjects as the denominator. 

 Between 5 and 6 of the post-hoc comparisons were not signi fi cant among the 15 
possible comparisons among means using the 0.05 level for rejection of the hypoth-
esis of no difference.  

   Nested Factors Analysis of Variance    Design 

 Shown below is an example of a nested analysis using the  fi le ABNested.tab.. When 
you select this analysis, you see the dialog below (Fig.  8.18 ):  

  Fig. 8.18    The nested ANOVA dialog       
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 The results are shown below: 

  NESTED ANOVA by Bill Miller  

  File Analyzed: C:\Documents and Settings\Owner\My Documents\
Projects\Clanguage\OpenStat\ABNested.tab  

  CELL MEANS  
  A LEVEL B LEVEL MEAN STD.DEV.  
   1 1 2.667 1.528  
   1 2 3.333 1.528  
   1 3 4.000 1.732  
   2 4 3.667 1.528  
   2 5 4.000 1.000  
   2 6 5.000 1.000  
   3 7 3.667 1.155  
   3 8 5.000 1.000  
   3 9 6.333 0.577  

  A MARGIN MEANS  
  A LEVEL MEAN STD.DEV.  
   1 3.333 1.500  
   2 4.222 1.202  
   3 5.000 1.414  

  GRAND MEAN = 4.185  

  ANOVA TABLE  
  SOURCE D.F. SS MS F PROB.  
  A  2 12.519 6.259 3.841 0.041  
  B(A)  6 16.222 2.704 1.659 0.189  
  w.cells 18 29.333 1.630  
  Total 26 58.074  

 Of course, if you elect to plot the means, additional graphical output is 
included.   

   A, B and C Factors with B Nested in A 

 Shown below is the dialog for this ANOVA design and the results of analyzing the 
 fi le ABCNested.TAB (Fig.  8.19 ):  
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 The results are: 

  NESTED ANOVA by Bill Miller  
  File Analyzed: C:\Documents and Settings\Owner\My Documents\
Projects\Clanguage\OpenStat\ABCNested.TAB  

  CELL MEANS  
  A LEVEL B LEVEL C LEVEL MEAN STD.DEV.  
   1 1 1 2.667 1.528  
   1 1 2 3.333 1.155  
   1 2 1 3.333 1.528  
   1 2 2 3.667 2.082  
   1 3 1 4.000 1.732  
   1 3 2 5.000 1.732  
   2 4 1 3.667 1.528  
   2 4 2 4.667 1.528  
   2 5 1 4.000 1.000  
   2 5 2 4.667 0.577  
   2 6 1 5.000 1.000  
   2 6 2 3.000 1.000  
   3 7 1 3.667 1.155  
   3 7 2 2.667 1.155  
   3 8 1 5.000 1.000  

  Fig. 8.19    Three factor nested ANOVA    dialog       
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   3 8 2 6.000 1.000  
   3 9 1 6.667 1.155  
   3 9 2 6.333 0.577  

  A MARGIN MEANS  
  A LEVEL MEAN STD.DEV.  
   1 3.667 1.572  
   2 4.167 1.200  
   3 5.056 1.731  

  B MARGIN MEANS  
  B LEVEL MEAN STD.DEV.  
   1 3.000 1.265  
   2 3.500 1.643  
   3 4.500 1.643  
   4 4.167 1.472  
   5 4.333 0.816  
   6 4.000 1.414  
   7 3.167 1.169  
   8 5.500 1.049  
   9 6.500 0.837  

  C MARGIN MEANS  
  C LEVEL MEAN STD.DEV.  
   1 4.222 1.577  
   2 4.370 1.644  

  AB MEANS  
  A LEVEL B LEVEL MEAN STD.DEV.  
   1 1 3.000 1.265  
   1 2 3.500 1.643  
   1 3 4.500 1.643  
   2 4 4.167 1.472  
   2 5 4.333 0.816  
   2 6 4.000 1.414  
   3 7 3.167 1.169  
   3 8 5.500 1.049  
   3 9 6.500 0.837  

  AC MEANS  
  A LEVEL C LEVEL MEAN STD.DEV.  
   1 1 3.333 1.500  
   1 2 4.000 1.658  
   2 1 4.222 1.202  
   2 2 4.111 1.269  
   3 1 5.111 1.616  
   3 2 5.000 1.936  

  GRAND MEAN = 4.296  
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  ANOVA TABLE  
  SOURCE     D.F.   SS       MS      F       PROB.  
  A           2     17.815   8.907   5.203   0.010  
  B(A)        6     42.444   7.074   4.132   0.003  
  C           1      0.296   0.296   0.173   0.680  
  AxC         2      1.815   0.907   0.530   0.593  
  B(A) x C    6     11.556   1.926   1.125   0.368  
  w.cells    36     61.630   1.712  
  Total      53    135.259   

   Latin and Greco-Latin Square Designs    

 We have prepared an example  fi le for you to analyze with OpenStat. Open the  fi le 
labeled LatinSqr.TAB in your set of sample data  fi les. We have entered four cases 
for each unit in our design for instructional mode, college and home residence. 
Once you have loaded the  fi le, select the Latin squares designs option under the sub-
menu for comparisons under the Analyses menu. You should see the form below for 
selecting the Plan 1 analysis (Fig.  8.20 ).  

 When you have selected Plan 1 for the analysis, click the OK button to continue. 
You will then see the form below for entering the speci fi cations for your analysis. 
We have entered the variables for factors A, B and C and entered the number of 
cases for each unit (Fig.  8.21 ):  

  Fig. 8.20    Latin and Greco-Latin squares dialog       
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 We have completed the entry of our variables and the number of cases and are 
ready to continue. 

 When you press the OK button, the following results are presented on the output 
page: 

  Latin Square Analysis Plan 1 Results  
  -----------------------------------------------------------  
  Source     SS     DF    MS      F    Prob.>F  
  -----------------------------------------------------------  
  Factor A   92.389   2    46.194    12.535   0.000  
  Factor B   40.222   2    20.111         5.457   0.010  
  Factor C   198.722   2    99.361    26.962   0.000  
  Residua    l33.389   2    16.694     4.530   0.020  
  Within     99.500   27     3.685  
  Total     464.222   35  
  -----------------------------------------------------------  

  Fig. 8.21    Latin squares analysis dialog       
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  Experimental Design  
  ------------------------------  
  Instruction   1   2   3  
  ------------------------------  
   College  
     1      C2   C3   C1  
     2      C3   C1   C2  
     3      C1   C2   C3  
  ------------------------------  

  Cell means and totals  
  --------------------------------------------------  
  Instruction   1     2     3    Total  
  --------------------------------------------------  
   College  
     1     2.750  10.750  3.500   5.667  
     2     8.250   2.250  1.250   3.917  
     3     1.500   1.500  2.250   1.750  
  Total      4.167     4.833  2.333   3.778  
  --------------------------------------------------  

  --------------------------------------------------  
   Residence    1      2      3     Total  
  --------------------------------------------------  
           2.417   1.833   7.083   3.778  
  --------------------------------------------------  

 A partial test of the interaction effects can be made by the ratio of the MS for 
residual to the MS within cells. In our example, it appears that our assumptions of 
no interaction effects may be in error. In this case, the main effects may be con-
founded by interactions among the factors. The results may never the less suggest 
differences do exist and we should complete another balanced experiment to deter-
mine the interaction effects. 

   Plan 2 

 We have included the  fi le “LatinSqr2.TAB” as an example for analysis. Load the 
 fi le in the grid and select the Latin Square Analyses, Plan 2 design. The form 
below shows the entry of the variables and the sample size for the analysis 
(Fig.  8.22 ):  
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 When you click the OK button, you will see the following results: 

  Latin Square Analysis Plan 2 Results  
  -----------------------------------------------------------  
  Source      SS   DF     MS      F    Prob.>F  
  -----------------------------------------------------------  
  Factor A   148.028   2   74.014   20.084    0.000  
  Factor B      5.444   2     2.722    0.739    0.483  
  Factor C    66.694   2   33.347    9.049    0.000  
  Factor D    18.000   1   18.000    4.884    0.031  
  A x D         36.750   2   18.375    4.986    0.010  
  B x D     75.000   2   37.500   10.176    0.000  
  C x D        330.750   2   165.375   44.876    0.000  
  Residual    66.778   4   16.694    4.530    0.003  
  Within      199.000  54     3.685  
  Total       946.444  71  
  -----------------------------------------------------------  

  Fig. 8.22    Four factor Latin square design dialog       
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  Experimental Design for block 1  
  ------------------------------  
     Drug    1    2   3  
  ------------------------------  
   Hospital  
     1     C2   C3   C1  
     2     C3   C1   C2  
     3     C1   C2   C3  
  ------------------------------  

  Experimental Design for block 2  
  ------------------------------  
     Drug    1    2   3  
  ------------------------------  
   Hospital  
     1     C2   C3   C1  
     2     C3   C1   C2  
     3     C1   C2   C3  
  ------------------------------  

  BLOCK 1  

  Cell means and totals  
  --------------------------------------------------  
     Drug     1     2     3    Total  
  --------------------------------------------------  
   Hospital  
     1     2.750  10.750   3.500   5.667  
     2     8.250   2.250   1.250   3.917  
     3     1.500   1.500   2.250   1.750  
  Total     4.167   4.833   2.333   4.278  
  --------------------------------------------------  

  BLOCK 2  

  Cell means and totals  
  --------------------------------------------------  
     Drug     1     2     3    Total  
  --------------------------------------------------  
   Hospital  
     1     9.250   2.250   3.250   4.917  
     2     3.750   4.500   11.750   6.667  
     3     2.500   3.250   2.500   2.750  
  Total     5.167   3.333   5.833   4.278  
  --------------------------------------------------  

  --------------------------------------------------  
   Category      1     2     3    Total  
  --------------------------------------------------  
           2.917   4.958   4.958   4.278  
  --------------------------------------------------  
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 Notice that the interactions with Factor D are obtained. The residual however 
indicates that some of the other interactions confounded with the main factors may 
be signi fi cant and, again, we do not know the portion of the differences among the 
main effects that are potentially due to interactions among A, B, and C.  

   Plan 3 Latin Squares Design 

 The  fi le “LatinSqr3.tab” contains an example of data for the Plan 3 analysis. 
Following the previous plans, we show below the speci fi cations for the analysis and 
results from analyzing this data (Fig.  8.23 ):  

  Fig. 8.23    Another Latin Square Speci fi cation form       
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  Latin Square Analysis Plan 3 Results  
  -----------------------------------------------------------  
  Source      SS    DF    MS      F    Prob.>F  
  -----------------------------------------------------------  
  Factor A   26.963    2   13.481    3.785   0.027  
  Factor B   220.130    2   110.065   30.902   0.000  
  Factor C   213.574    2   106.787   29.982   0.000  
  Factor D   19.185    2    9.593    2.693   0.074  
  A x B      49.148    4   12.287    3.450   0.012  
  A x C     375.037    4   93.759   26.324   0.000  
  B x C      78.370    4   19.593    5.501   0.001  
  A x B x C  118.500    6   19.750    5.545   0.000  
  Within    288.500   81    3.562  
  Total    1389.407   107  
  -----------------------------------------------------------  

  Experimental Design for block 1  
  ------------------------------  
     Drug    1    2   3  
  ------------------------------  
   Hospital  
     1     C1   C2   C3  
     2     C2   C3   C1  
     3     C3   C1   C2  
  ------------------------------  

  Experimental Design for block 2  
  ------------------------------  
     Drug    1    2   3  
  ------------------------------  
   Hospital  
     1     C2   C3   C1  
     2     C3   C1   C2  
     3     C1   C2   C3  
  ------------------------------  

  Experimental Design for block 3  
  ------------------------------  
     Drug    1    2   3  
  ------------------------------  
   Hospital  
     1     C3   C1   C2  
     2     C1   C2   C3  
     3     C2   C3   C1  
  ------------------------------  



110 8 Comparisons

  BLOCK 1  

  Cell means and totals  
  --------------------------------------------------  
     Drug    1     2     3     Total  
  --------------------------------------------------  
   Hospital  
     1    2.750   1.250   1.500   1.833  
     2    3.250   4.500   2.500   3.417  
     3    10.250   8.250   2.250   6.917  
  Total    5.417   4.667   2.083   4.074  
  --------------------------------------------------  

  BLOCK 2  

  Cell means and totals  
  --------------------------------------------------  
     Drug    1     2     3     Total  
  --------------------------------------------------  
   Hospital  
     1    10.750   8.250   2.250   7.083  
     2    9.250   11.750   3.250   8.083  
     3    3.500   1.750   1.500   2.250  
  Total    7.833   7.250   2.333   4.074  
  --------------------------------------------------  

  BLOCK 3  

  Cell means and totals  
  --------------------------------------------------  
     Drug    1     2     3     Total  
  --------------------------------------------------  
   Hospital  
     1    3.500   2.250   1.500   2.417  
     2    2.250   3.750   2.500   2.833  
     3    2.750   1.250   1.500   1.833  
  Total    2.833   2.417   1.833   4.074  
  --------------------------------------------------  

  Means for each variable  
  --------------------------------------------------  
   Hospital    1      2     3    Total  
  --------------------------------------------------  
           3.778   4.778   3.667   4.074  
  --------------------------------------------------  

  --------------------------------------------------  
   Drug       1     2     3    Total  
  --------------------------------------------------  
           5.361   4.778   2.083   4.074  
  --------------------------------------------------  
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  --------------------------------------------------  
   Category    1     2     3     Total  
  --------------------------------------------------  
           4.056   5.806   2.361   4.074  
  --------------------------------------------------  

  --------------------------------------------------  
   Block      1     2     3     Total  
  --------------------------------------------------  
           4.500   4.222   3.500   4.074  
  --------------------------------------------------  

 Here, the main effect of factor D is partially confounded with the ABC 
interaction.  

   Analysis of Greco-Latin Squares 

 The speci fi cations for the analysis are entered as (Fig.  8.24 ):  

  Fig. 8.24    Latin Square Design form       
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 The results are obtained as: 

  Greco-Latin Square Analysis (No Interactions)  
  -----------------------------------------------------------  
  Source      SS    DF     MS     F    Prob.>F  
  -----------------------------------------------------------  
  Factor A   64.889   2    32.444   9.733   0.001  
  Factor B   64.889   2    32.444   9.733   0.001  
  Latin Sqr.  24.889   2    12.444   3.733   0.037  
  Greek Sqr.  22.222   2    11.111   3.333   0.051  
  Residual   -      -    -      -      -  
  Within    90.000   27     3.333  
  Total    266.889   35  
  -----------------------------------------------------------  

  Experimental Design for Latin Square  
  ------------------------------  
       B    1    2    3  
  ------------------------------  
       A  
   1       C1   C2   C3  
   2       C2   C3   C1  
   3       C3   C1   C2  
  ------------------------------  

  Experimental Design for Greek Square  
  ------------------------------  
       B    1    2    3  
  ------------------------------  
       A  
   1       C1   C2   C3  
   2       C3   C1   C2  
   3       C2   C3   C1  
  ------------------------------  
  Cell means and totals  
  --------------------------------------------------  
       B    1      2      3     Total  
  --------------------------------------------------  
       A  
   1      4.000   6.000   7.000    5.667  
   2      6.000   12.000   8.000    8.667  
   3      7.000   8.000   10.000    8.333  
  Total    5.667   8.667   8.333    7.556  
  --------------------------------------------------  

  Means for each variable  
  --------------------------------------------------  
     A    1     2     3     Total  
  --------------------------------------------------  
        5.667   8.667   8.333   7.556  
  --------------------------------------------------  
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  --------------------------------------------------  
     B     1     2     3     Total  
  --------------------------------------------------  
         5.667   8.667   8.333   7.556  
  --------------------------------------------------  

  --------------------------------------------------  
   Latin     1     2     3      Total  
  --------------------------------------------------  
         6.667   7.333   8.667    7.556  
  --------------------------------------------------  

  --------------------------------------------------  
   Greek     1     2     3      Total  
  --------------------------------------------------  
         8.667   7.000   7.000    7.556  
  --------------------------------------------------  

 Notice that in the case of 3 levels that the residual degrees of freedom are 0 hence 
no term is shown for the residual in this example. For more than 3 levels the test of 
the residuals provides a partial check on the assumptions of negligible interactions. 
The residual is sometimes combined with the within cell variance to provide an 
over-all estimate of variation due to experimental error.  

   Plan 5 Latin Square Design 

 The speci fi cations for the analysis of the sample  fi le “LatinPlan5.TAB” is shown 
below (Fig.  8.25 ):  

 If you examine the sample  fi le, you will notice that the subject Identi fi cation 
numbers (1,2,3,4) for the subjects in each group are the same even though the sub-
jects in each group are different from group to group. The same ID is used in each 
group because they become “subscripts” for several arrays in the program. The 
results for our sample data are shown below: 
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  Sums for ANOVA Analysis  

  Group (rows) times A Factor (columns) sums with 36 cases.  

  Variables  
          1     2     3     Total  
    1    14.000  19.000  18.000   51.000  
    2    15.000  18.000  16.000   49.000  
    3    14.000  21.000  18.000   53.000  
  Total    43.000  58.000  52.000   153.000  

  Group (rows) times B (cells Factor) sums with 36 cases.  

  Variables  
          1     2     3     Total  
    1    19.000  18.000  14.000   51.000  
    2    15.000  18.000  16.000   49.000  
    3    18.000  14.000  21.000   53.000  
  Total    52.000  50.000  51.000   153.000  

  Fig. 8.25    Latin Square Plan 5 Speci fi cations form       
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  Groups (rows) times Subjects (columns) matrix with 36 cases.  

  Variables  
          1     2     3     4     Total  
    1    13.000  11.000  13.000  14.000   51.000  
    2    10.000  14.000  10.000  15.000   49.000  
    3    13.000   9.000  17.000  14.000   53.000  
  Total    36.000  34.000  40.000  43.000   153.000  

  Latin Squares Repeated Analysis Plan 5 (Partial Interactions)  

  -----------------------------------------------------------  
  Source       SS     DF   MS    F   Prob.>F  
  -----------------------------------------------------------  
  Betw.Subj.   20.083    11  
   Groups      0.667    2   0.333  0.155  0.859  
   Subj.w.g.   19.417    9   2.157  

  Within Sub   36.667    24  
   Factor A     9.500    2   4.750  3.310  0.060  
   Factor B    0.167    2   0.083  0.058  0.944  
   Factor AB    1.167    2   0.583  0.406  0.672  
   Error w.    25.833    18   1.435  
  Total      56.750    35  
  -----------------------------------------------------------  

  Experimental Design for Latin Square  
  ------------------------------  
   A (Col)   1   2   3  
  ------------------------------  
  Group (row)  
     1     B3   B1   B2  
     2     B1   B2   B3  
     3     B2   B3   B1  
  ------------------------------  

  Cell means and totals  
  --------------------------------------------------  
   A (Col)    1     2     3     Total  
  --------------------------------------------------  
  Group (row)  
     1     3.500   4.750   4.500   4.250  
     2     3.750   4.500   4.000   4.083  
     3     3.500   5.250   4.500   4.417  
  Total     3.583   4.833   4.333   4.250  
  --------------------------------------------------  

  Means for each variable  
  --------------------------------------------------  
   A (Col)   1      2     3     Total  
  --------------------------------------------------  
         4.333   4.167   4.250   4.250  
  --------------------------------------------------  
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  --------------------------------------------------  
   B (Cell)   1      2     3     Total  
  --------------------------------------------------  
         4.250    4.083   4.417   4.250  
  --------------------------------------------------  

  --------------------------------------------------  
  Group (row)   1      2     3     Total  
  --------------------------------------------------  
           4.250    4.083   4.417    4.250  
  --------------------------------------------------   

   Plan 6 Latin Squares Design 

 LatinPlan6.TAB is the name of a sample  fi le which you can analyze with the Plan 6 
option of the Latin squares analysis procedure. Shown below is the speci fi cation 
form for the analysis of the data in that  fi le (Fig.  8.26 ):  

  Fig. 8.26    Latin square plan 6 speci fi cation       
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 The results obtained when you click the OK button are shown below: 

  Latin Squares Repeated Analysis Plan 6  

  Sums for ANOVA Analysis  

  Group - C (rows) times A Factor (columns) sums with 36 cases.  

  Variables  
           1      2      3     Total  
     1    23.000   16.000   22.000   61.000  
     2    22.000   14.000   18.000   54.000  
     3    24.000   21.000   21.000   66.000  
  Total    69.000   51.000   61.000   181.000  

  Group - C (rows) times B (cells Factor) sums with 36 cases.  

  Variables  
           1      2      3     Total  
     1    16.000   22.000   23.000   61.000  
     2    22.000   14.000   18.000   54.000  
     3    21.000   24.000   21.000   66.000  
  Total    59.000   60.000   62.000   181.000  

  Group - C (rows) times Subjects (columns) matrix with 36 
cases.  

  Variables  
           1      2      3      4     Total  
     1    16.000   14.000   13.000   18.000   61.000  
     2    12.000   13.000   14.000   15.000   54.000  
     3    18.000   19.000   11.000   18.000   66.000  
  Total    46.000   46.000   38.000   51.000   181.000  

  Latin Squares Repeated Analysis Plan 6  
  -----------------------------------------------------------  
  Source       SS    DF    MS    F    Prob.>F  
  -----------------------------------------------------------  
  Betw.Subj.   26.306   11  
   Factor C    6.056    2    3.028  1.346   0.308  
   Subj.w.g.   20.250    9    2.250  

  Within Sub   70.667   24  
   Factor A    13.556    2    6.778  2.259   0.133  
   Factor B    0.389    2    0.194  0.065   0.937  
   Residual    2.722    2    1.361  0.454   0.642  
   Error w.    54.000   18    3.000  
  Total      96.972   35  
  -----------------------------------------------------------  
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  Experimental Design for Latin Square  
  ------------------------------  
   A  (Col)   1   2   3  
  ------------------------------  
   G   C  
   1   1    B3   B1   B2  
   2   2    B1   B2   B3  
   3   3    B2   B3   B1  
  ------------------------------  

  Cell means and totals  
  --------------------------------------------------  
   A (Col)    1     2     3     Total  
  --------------------------------------------------  
   Group+C  
     1    5.750   4.000   5.500    5.083  
     2    5.500   3.500   4.500    4.500  
     3    6.000   5.250   5.250    5.500  
  Total    5.750   4.250   5.083    5.028  
  --------------------------------------------------  

  Means for each variable  
  --------------------------------------------------  
   A (Col)    1     2     3     Total  
  --------------------------------------------------  
          4.917   5.000   5.167    5.028  
  --------------------------------------------------  

  --------------------------------------------------  
   B (Cell)   1      2      3      Total  
  --------------------------------------------------  
          5.083   4.500    5.500    5.028  
  --------------------------------------------------  

  --------------------------------------------------  
   Group+C    1      2      3      Total  
  --------------------------------------------------  
          5.083   4.500   5.500     5.028  
  --------------------------------------------------   

   Plan 7 for Latin Squares 

 Shown below is the speci fi cation for analysis of the sample data  fi le labeled 
LatinPlan7.TAB and the results of the analysis (Fig.  8.27 ):  
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  Sums for ANOVA Analysis  

  Group (rows) times A Factor (columns) sums with 36 cases.  

  Variables  
          1      2      3     Total  
    1    23.000   16.000   22.000   61.000  
    2    22.000   14.000   18.000   54.000  
    3    24.000   21.000   21.000   66.000  
  Total    69.000   51.000   61.000   181.000  

  Group (rows) times B (cells Factor) sums with 36 cases.  

  Variables  
          1      2      3     Total  
    1    23.000   16.000   22.000   61.000  
    2    18.000   22.000   14.000   54.000  
    3    21.000   21.000   24.000   66.000  
  Total    62.000   59.000   60.000   181.000  

  Group (rows) times C (cells Factor) sums with 36 cases.  

  Fig. 8.27    Latin Squares Repeated Analysis Plan 7 form       
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  Variables  
          1      2      3     Total  
    1    23.000   22.000   16.000   61.000  
    2    14.000   22.000   18.000   54.000  
    3    21.000   21.000   24.000   66.000  
  Total    58.000   65.000   58.000   181.000  

  Group (rows) times Subjects (columns) sums with 36 cases.  

  Variables  
          1      2      3      4     Total  
    1    16.000   14.000   13.000   18.000   61.000  
    2    12.000   13.000   14.000   15.000   54.000  
    3    18.000   19.000   11.000   18.000   66.000  
  Total    46.000   46.000   38.000   51.000   181.000  

  Latin Squares Repeated Analysis Plan 7 (superimposed squares)  
  -----------------------------------------------------------  
  Source       SS    DF    MS    F    Prob.>F  
  -----------------------------------------------------------  
  Betw.Subj.   26.306   11  
   Groups      6.056    2   3.028   1.346   0.308  
   Subj.w.g.   20.250    9   2.250  

  Within Sub   70.667   24  
   Factor A    13.556    2   6.778   2.259   0.133  
   Factor B    0.389    2   0.194   0.065   0.937  
   Factor C    2.722    2   1.361   0.454   0.642  
   residual    -      0   -  
   Error w.    54.000   18   3.000  
  Total      96.972   35  
  -----------------------------------------------------------  

  Experimental Design for Latin Square  
  ------------------------------  
   A (Col)   1   2     3  
  ------------------------------  
    Group  
    5.    BC11  BC23  BC32  
    5.    BC22  BC31  BC13  
    5.    BC33  BC12  BC21  
  ------------------------------  

  Cell means and totals  
  --------------------------------------------------  
   A (Col)    1     2      3     Total  
  --------------------------------------------------  
    Group  
     1    5.750   4.000   5.500    5.083  
     2    5.500   3.500   4.500    4.500  
     3    6.000   5.250   5.250    5.500  
  Total    5.750   4.250   5.083    5.028  
  --------------------------------------------------  
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  Means for each variable  

  --------------------------------------------------  
   A (Col)    1     2      3    Total  
  --------------------------------------------------  
          5.750   4.250   5.083   5.028  
  --------------------------------------------------  

  --------------------------------------------------  
   B (Cell)    1     2      3    Total  
  --------------------------------------------------  
          5.167   4.917   5.000   5.028  
  --------------------------------------------------  

  --------------------------------------------------  
   C (Cell)    1     2      3    Total  
  --------------------------------------------------  
          4.833   5.417   4.833   5.028  
  --------------------------------------------------  

  --------------------------------------------------  
   Group      1     2      3    Total  
  --------------------------------------------------  
          5.083   4.500   5.500   5.028  
  --------------------------------------------------   

   Plan 9 Latin Squares 

 The sample data set labeled “LatinPlan9.TAB” is used for the following analysis. 
The speci fi cation form shown below has the variables entered for the analysis. 
When you click the OK button, the results obtained are as shown following the form 
(Fig.  8.28 ).  
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  Sums for ANOVA Analysis  

  ABC matrix  

  C level 1  
     1  2  3  
   1 13.000  3.000  9.000  
   2  6.000  9.000  3.000  
   3 10.000 14.000 15.000  

  C level 2  
     1  2  3  
   1 18.000 14.000 18.000  
   2 19.000 24.000 20.000  
   3  8.000 11.000 10.000  

  Fig. 8.28    Latin Squares Repeated Analysis Plan 9 form       
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  C level 3  
     1  2  3  
   1 17.000 12.000 20.000  
   2 14.000 13.000  9.000  
   3 15.000 12.000 17.000  

  AB sums with 18 cases.  

  Variables  
    1 2 3 Total  
   1 48.000 29.000 47.000 124.000  
   2 39.000 46.000 32.000 117.000  
   3 33.000 37.000 42.000 112.000  
   Total 120.000 112.000 121.000 353.000  

  AC sums with 18 cases.  

  Variables  
    1 2 3 Total  
   1 25.000 50.000 49.000 124.000  
   2 18.000 63.000 36.000 117.000  
   3 39.000 29.000 44.000 112.000  
  Total   82.000 142.000 129.000 353.000  

  BC sums with 18 cases.  

  Variables  
    1 2 3 Total  
   1 29.000 45.000 46.000 120.000  
   2 26.000 49.000 37.000 112.000  
   3 27.000 48.000 46.000 121.000  
   Total 82.000 142.000 129.000 353.000  

  RC sums with 18 cases.  

  Variables  
    1 2 3 Total  
   1 16.000 42.000 36.000 94.000  
   2 37.000 52.000 47.000 136.000  
   3 29.000 48.000 46.000 123.000  
   Total 82.000 142.000 129.000 353.000  

  Group totals with 18 valid cases.  

  Variables 1 2 3 4 5  
   16.000 37.000 29.000 42.000 52.000  

  Variables 6 7 8 9 Total  
   48.000 36.000 47.000 46.000 353.000  

  Subjects sums with 18 valid cases.  
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  Variables 1 2 3 4 5  
   7.000 9.000 14.000 28.000 15.000  

  Variables 6 7 8 9 10  
   21.000 16.000 21.000 22.000 30.000  

  Variables 11 12 13 14 15  
   28.000 19.000 10.000 19.000 23.000  

  Variables 16 17 18 Total  
   25.000 28.000 18.000 0.000  

  Latin Squares Repeated Analysis Plan 9  

      Source SS DF MS F Prob.>F  

      Betw.Subj. 267.426 17  
  Factor C 110.704 2 55.352 5.058 0.034  
  Rows 51.370 2 25.685 2.347 0.151  
  C x row 6.852 4 1.713 0.157 0.955  
  Subj.w.g. 98.500 9 10.944  

  Within Sub 236.000 36  
  Factor A 4.037 2 2.019 0.626 0.546  
  Factor B 2.704 2 1.352 0.420 0.664  
  Factor AC 146.519 4 36.630 11.368 0.000  
  Factor BC 8.519 4 2.130 0.661 0.627  
  AB prime 7.148 2 3.574 1.109 0.351  
  ABC prime 9.074 4 2.269 0.704 0.599  
  Error w. 58.000 18 3.222  
  Total 503.426 53      

  Experimental Design for Latin Square      

  FactorA 1 2 3      

  Group  
  1 B2 B3 B1  
  2 B1 B2 B3  
  3 B3 B1 B2  
  4 B2 B3 B1  
  5 B1 B2 B3  
  6 B3 B1 B2  
  7 B2 B3 B1  
  8 B1 B2 B3  
  9 B3 B1 B2      
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  Latin Squares Repeated Analysis Plan 9  

  Means for ANOVA Analysis  

  ABC matrix  

  C level 1  

    1  2  3  
   1 6.500  1.500  4.500  
   2 3.000  4.500  1.500  
   3 5.000  7.000  7.500  

  C level 2  
    1  2  3  
   1 9.000  7.000  9.000  
   2 9.500 12.000 10.000  
   3 4.000  5.500  5.000  

  C level 3  
    1  2  3  
   1 8.500  6.000 10.000  
   2 7.000  6.500  4.500  
   3 7.500  6.000  8.500  

  AB Means with 54 cases.  

  Variables  
    1 2 3 4  
   1 8.000 4.833 7.833 6.889  
   2 6.500 7.667 5.333 6.500  
   3 5.500 6.167 7.000 6.222  
   Total 6.667 6.222 6.722 6.537  

  AC Means with 54 cases.  

  Variables  
    1 2 3 4  
   1 4.167 8.333 8.167 6.889  
   2 3.000 10.500 6.000 6.500  
   3 6.500 4.833 7.333 6.222  
   Total 4.556 7.889 7.167 6.537  

  BC Means with 54 cases.  

  Variables  
    1 2 3 4  
   1 4.833 7.500 7.667 6.667  
   2 4.333 8.167 6.167 6.222  
   3 4.500 8.000 7.667 6.722  
  Total  4.556 7.889 7.167 6.537  

  RC Means with 54 cases.  
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  Variables  
    1 2 3 4  
   1 2.667 7.000 6.000 5.222  
   2 6.167 8.667 7.833 7.556  
   3 4.833 8.000 7.667 6.833  
   Total 4.556 7.889 7.167 6.537  

  Group Means with 54 valid cases.  

  Variables 1 2 3 4 5  
   2.667 6.167 4.833 7.000 8.667  

  Variables 6 7 8 9 Total  
   8.000 6.000 7.833 7.667 6.537  

  Subjects Means with 54 valid cases.  

  Variables 1 2 3 4 5  
   3.500 4.500 7.000 14.000 7.500  

  Variables 6 7 8 9 10  
   10.500 8.000 10.500 11.000 15.000  

  Variables 11 12 13 14 15  
   14.000 9.500 5.000 9.500 11.500  

  Variables 16 17 18 Total  
   12.500 14.000 9.000 6.537    

   2 or 3 Way Fixed ANOVA with 1 Case Per Cell    

 There may be an occasion where you have collected data with a single observation 
within two or three factor combinations. In this case one cannot obtain an estimate 
of the variance within a single cell of the two or three factor design and thus an 
estimate of the mean squared error term typically used in a 2 or 3 way ANOVA. The 
estimate of error must be made using all cell values. To demonstrate, the following 
data are analyzed: 

  CASES FOR FILE C:\Users\wgmiller\Projects\Data\OneCase2Way.TEX  

   0 Row Col Dep  
   CASE 1 1 1 1.000  
   CASE 2 1 2 2.000  
   CASE 3 1 3 3.000  
   CASE 4 2 1 3.000  
   CASE 5 2 2 5.000  
   CASE 6 2 3 9.000  

 The dialog for this procedure and the resulting output are shown below (Figs.  8.29 , 
 8.30 ,  8.31 ,  8.32 ):  
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  Fig. 8.29    Dialog for 2 or 3 way ANOVA with one case per cell       

  Fig. 8.30    One case ANOVA plot for factor 1       
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  Fig. 8.31    Factor 2 plot for one case ANOVA       

  Fig. 8.32    Interaction plot of two factors for one case ANOVA       
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  Two Way Analysis of Variance  

  Variable analyzed: Dep  

  Factor A (rows) variable: Row  
  Factor B (columns) variable: Col  

  SOURCE D.F. SS MS F PROB.> F Omega Squared  

  Among Rows 1 20.167 20.167 9.308 0.093 0.419  
  Among Columns 2 16.333 8.167 3.769 0.210 0.279  
  Residual 2 4.333 2.167  
  NonAdditivity 1 4.252 4.252 52.083 0.088  
  Balance 1 0.082 0.082  

  Total 5 40.833 8.167  

  Omega squared for combined effects = 0.698  

  Descriptive Statistics  

  GROUP Row Col. N MEAN VARIANCE STD.DEV.  
  Cell 1 1 1 1.000 0.000 0.000  
  Cell 1 2 1 2.000 0.000 0.000  
  Cell 1 3 1 3.000 0.000 0.000  
  Cell 2 1 1 3.000 0.000 0.000  
  Cell 2 2 1 5.000 0.000 0.000  
  Cell 2 3 1 9.000 0.000 0.000  
  Row 1  3 2.000 1.000 1.000  
  Row 2  3 5.667 9.333 3.055  
  Col 1  2 2.000 2.000 1.414  
  Col 2  2 3.500 4.500 2.121  
  Col 3  2 6.000 18.000 4.243  
  TOTAL   6 3.833 8.167 2.858      

   Two Within Subjects ANOVA    

 You may have observed the same subjects under two “treatment” factors. As an 
example, you might have observed subject responses on a visual acuity test before 
and after consuming an alcoholic beverage. In this case we do not have a “between 
subjects” analysis but rather a “repeated measures” analysis under two conditions. 
As an example, we will analyze data from a  fi le labeled “”. The data, the dialog and 
the results are shown below (Figs.  8.33 ,  8.34 ,  8.35 ,  8.36 ):     
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  Fig. 8.34    Factor one plot for two within subjects ANOVA       

  Fig. 8.33    Dialog for two within subjects ANOVA       
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  Fig. 8.35    Factor two plot for two within subjects ANOVA       

  Fig. 8.36    Two way interaction for two within subjects ANOVA       
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      SOURCE DF SS MS F Prob.>F      

  Factor A 1 204.167 204.167 9.853 0.052  
  Factor B 2 8039.083 4019.542 24.994 0.001  
  Subjects 3 1302.833 434.278  
  A x B Interaction 2 46.583 23.292 0.803 0.491  
  A x S Interaction 3 62.167 20.722  
  B x S Interaction 6 964.917 160.819  
  A x B x S Inter. 6 174.083 29.01      

  Total 23 10793.833      

  Group 1 : Mean for cell A 1 and B 1 =     17.250  
  Group 2 : Mean for cell A 1 and B 2 =     26.000  
  Group 3 : Mean for cell A 1 and B 3 =     60.250  
  Group 4 : Mean for cell A 2 and B 1 =     20.750  
  Group 5 : Mean for cell A 2 and B 2 =     35.750  
  Group 6 : Mean for cell A 2 and B 3 =     64.500  

  Means for Factor A  
  Group 1 Mean =     34.500  
  Group 2 Mean =     40.333  

  Means for Factor B  
  Group 1 Mean =     19.000  
  Group 2 Mean =     30.875  
  Group 3 Mean =     62.375   

   Analysis of Variance Using Multiple Regression Methods    

   An Example of an Analysis of Covariance 

 We will demonstrate the analysis of covariance procedure using multiple regression 
by loading the  fi le labeled “Ancova2.tab”. In this  fi le we have a treatment group 
code for four groups, a dependent variable (X) and two covariates (Y and Z.) The 
procedure is started by selection the “Analysis of Covariance by Regression” option 
in the Comparisons sub-menu under the Statistics menu. Shown below is the com-
pleted speci fi cation form for our analysis (Fig.  8.37 ):  
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 When we click the Compute button, the following results are obtained: 

  ANALYSIS OF COVARIANCE USING MULTIPLE REGRESSION  

  File Analyzed: C:\Projects\Delphi\OpenStat\Ancova2.txt  

  Model for Testing Assumption of Zero Interactions with Covariates  

  MEANS with 40 valid cases.  

  Variables X Z A1 A2 A3  
   7.125 14.675 0.000 0.000 0.000  

  Variables XxA1 XxA2 XxA3 ZxA1 ZxA2  
   0.125 0.025 0.075 -0.400 -0.125  

  Variables ZxA3 Y  
   -0.200 17.550  

  VARIANCES with 40 valid cases.  

  Variables X Z A1 A2 A3  
   4.163 13.866 0.513 0.513 0.513  

  Variables XxA1 XxA2 XxA3 ZxA1 ZxA2  
   28.010 27.102 27.712 116.759 125.035  

  Variables ZxA3 Y  
   124.113 8.254  

  STD. DEV.S with 40 valid cases.  

  Fig. 8.37    Analysis of covariance dialog       
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  Variables X Z A1 A2 A3  
   2.040 3.724 0.716 0.716 0.716  

  Variables XxA1 XxA2 XxA3 ZxA1 ZxA2  
   5.292 5.206 5.264 10.806 11.182  

  Variables ZxA3 Y  
   11.141 2.873  

  R      R2      F     Prob.>F   DF1   DF2  
      0.842    0.709    6.188    0.000    11    28  

  Adjusted R Squared = 0.594  

  Std. Error of Estimate = 1.830  

   Variable Beta B Std.Error t  Prob.>t  
   X 0.599 0.843 0.239 3.531 0.001  
   Z 0.123 0.095 0.138 0.686 0.498  
   A1 -0.518 -2.077 2.381 -0.872 0.391  
   A2 0.151 0.606 2.513 0.241 0.811  
   A3 0.301 1.209 2.190 0.552 0.585  
   XxA1 -1.159 -0.629 0.523 -1.203 0.239  
   XxA2 0.714 0.394 0.423 0.932 0.359  
   XxA3 0.374 0.204 0.334 0.611 0.546  
   ZxA1 1.278 0.340 0.283 1.200 0.240  
   ZxA2 -0.803 -0.206 0.284 -0.727 0.473  
   ZxA3 -0.353 -0.091 0.187 -0.486 0.631  

   Constant = 10.300  

  Analysis of Variance for the Model to Test Regression Homogeneity  
   SOURCE Deg.F. SS MS F Prob>F  
   Explained 11 228.08 20.73 6.188 0.0000  
   Error 28 93.82 3.35  
   Total 39 321.90  

  Model for Analysis of Covariance  

  MEANS with 40 valid cases.  

  Variables X Z A1 A2 A3  
   7.125 14.675 0.000 0.000 0.000  

  Variables Y  
   17.550  
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  VARIANCES with 40 valid cases.  

  Variables X Z A1 A2 A3  
   4.163 13.866 0.513 0.513 0.513  

  Variables Y  
   8.254  

  STD. DEV.S with 40 valid cases.  

  Variables X Z A1 A2 A3  
   2.040 3.724 0.716 0.716 0.716  

   Variables Y  
    2.873  
      R    R2     F    Prob.>F    DF1    DF2  
     0.830  0.689   15.087   0.000     5     34  

  Adjusted R Squared = 0.644  

  Std. Error of Estimate = 1.715  

   Variable Beta B Std.Error   t Prob.>t  
   X 0.677 0.954 0.184 5.172 0.000  
   Z 0.063 0.048 0.102 0.475 0.638  
   A1 -0.491 -1.970 0.487 -4.044 0.000  
   A2 0.114 0.458 0.472 0.972 0.338  
   A3 0.369 1.482 0.470 3.153 0.003  
   Constant = 10.046  

  Test for Homogeneity of Group Regression Coef fi cients  
  Change in R2 = 0.0192. F =   0.308  Prob.> F = 0.9275 with d.f. 
6 and   28  

  Analysis of Variance for the ANCOVA Model  

    SOURCE      Deg.F.  SS    MS    F     Prob>F  
     Explained    5    221.89  44.38  15.087  0.0000  
     Error      34    100.01   2.94  
    Total      39    321.90  

  Intercepts for Each Group Regression Equation for Variable: Group  

  Intercepts with 40 valid cases.  

  Variables Group 1 Group 2 Group 3 Group 4  
   8.076 10.505 11.528 10.076  

  Adjusted Group Means for Group Variables Group  

  Means with 40 valid cases.  
  Variables Group 1 Group 2 Group 3 Group 4  
   15.580 18.008 19.032 17.579  
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  Multiple Comparisons Among Group Means  
  Comparison of Group 1 with Group 2  
  F = 9.549, probability = 0.004 with degrees of freedom 1 and 34  
  Comparison of Group 1 with Group 3  
  F = 19.849, probability = 0.000 with degrees of freedom 1 and 34  
  Comparison of Group 1 with Group 4  
  F = 1.546, probability = 0.222 with degrees of freedom 1 and 34  
  Comparison of Group 2 with Group 3  
  F = 1.770, probability = 0.192 with degrees of freedom 1 and 34  
  Comparison of Group 2 with Group 4  
  F = 3.455, probability = 0.072 with degrees of freedom 1 and 34  
  Comparison of Group 3 with Group 4  
  F = 9.973, probability = 0.003 with degrees of freedom 1 and 34  

  Test for Each Source of Variance  
   SOURCE Deg.F. SS MS F Prob>F  
   A 3 60.98 20.33 6.911 0.0009  
   Covariates 2 160.91 80.45 27.352 0.0000  
   Error 34 100.01 2.94  
   Total 39  321.90  

 The results reported above begin with a regression model that includes group 
coding for the four groups (A1, A2 and A3) and again note that the fourth group is 
automatically identi fi ed by members NOT being in one of the  fi rst three groups. 
This model also contains the covariates X and Z as well as the cross-products of 
group membership and covariates. By comparing this model with the second model 
created (one which leaves out the cross-products of groups and covariates) we can 
assess the degree to which the assumptions of homogeneity of covariance among 
the groups is met. In this particular example, the change in the R2 from the full 
model to the restricted model was quite small (0.0192) and we conclude that the 
assumption of homogeneity of covariance is reasonable. The analysis of variance 
model for the restricted model indicates that the X covariate is probably contribut-
ing signi fi cantly to the explained variance of the dependent variable Y. The tests for 
each source of variance at the end of the report con fi rms that not only are the covari-
ates related to Y but that the group effects are also signi fi cant. The comparisons of 
the group means following adjustment for the covariate effects indicate that group 1 
differs from groups 2 and 3 and that group 3 appears to differ from group 4.   

   Sums of Squares by Regression    

 The General Linear Model (GLM) procedure is an analysis procedure that encom-
passes a variety of analyses. It may incorporate multiple linear regression as 
well as canonical correlation analysis as methods for analyzing the user’s data. 
In some commercial statistics packages the GLM method also incorporates non-linear 
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analyses, maximum-likelihood procedures and a variety of tests not found in the 
OPENSTAT version of this model. The version in OpenStat is currently limited to a 
single dependent variable (continuous measure.) You should complete analyses 
with multiple dependent variables with the Canonical Correlation procedure. 

 One can complete a variety of analyses of variance with the GLM procedure 
including multiple factor ANOVA and repeated and mixed model ANOVAs. 

 The output of the GLM can be somewhat voluminous in that the effects of treat-
ment variables and covariates are analyzed individually by comparing regression 
models with and without those variables. Several examples are explored below. 

 When you elect the Sum of Squares by Regression procedure from either the 
Regression options or the Multivariate options of the Analyses menu, you will see 
the form shown below. In our  fi rst example we will select a data  fi le for completion 
of a repeated measures analysis of variance that involves two between-groups fac-
tors and one within groups factor (the SSRegs2.TAB  fi le.) The data  fi le contains 
codes for Factor A treatment levels, Factor B treatment levels, the replications fac-
tor (Factor C levels), and a code for each subject. In our analysis we will de fi ne the 
two-way and the one three-way interactions that we wish to include in our model. 
We should then be able to compare our results with the Repeated Measures ANOVA 
procedure applied to the same data in the  fi le labeled ABRData.TAB (and hopefully 
see the same results!) (Fig.  8.38 ).  

  Fig. 8.38    Sum of squares by regression       
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  SUMS OF SQUARES AND MEAN SQUARES BY REGRESSION  

  TYPE III SS - R2 = Full Model - Restricted Model  

  VARIABLE SUM OF SQUARES D.F.  
  Row1 10.083 1  
  Col1 8.333 1  
  Rep1 150.000 1  
  Rep2 312.500 1  
  Rep3 529.000 1  
  C1R1 80.083 1  
  R1R1 0.167 1  
  R2R1 2.000 1  
  R3R1 6.250 1  
  R1C1 4.167 1  
  R2C1 0.889 1  
  R3C1 7.111 1  

  ERROR 147.417 35  
  TOTAL 1258.000 47  

  TOTAL EFFECTS SUMMARY  

      SOURCE  SS D.F. MS      

   Row 10.083 1 10.083  
   Col 8.333 1 8.333  
   Rep 991.500 3 330.500  
   Row*Col 80.083 1 80.083  
   Row*Rep 8.417 3 2.806  
   Col*Rep 12.167 3 4.056      

      SOURCE  SS D.F. MS      

  BETWEEN SUBJECTS 181.000 11  
   Row 10.083 1 10.083  
   Col 8.333 1 8.333  
   Row*Col 80.083 1 80.083  
  ERROR BETWEEN 82.500 8 10.312      

  WITHIN SUBJECTS  1077.000 36  
   Rep 991.500 3 330.500  
   Row*Rep 8.417 3 2.806  
   Col*Rep 12.167 3 4.056  
  ERROR WITHIN 64.917 27 2.404  

      TOTAL 1258.000      
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 You can compare the results above with an analysis completed with the Repeated 
Measures procedure. 

 As a second example, we will complete and analysis of covariance on data that 
contains three treatment factors and two covariates. The  fi le analyzed is labeled 
ANCOVA3.TAB. Shown above is the dialog for the analysis (Fig.  8.39 ) followed 
by the output. You can compare this output with the output obtained by analyzing 
the same data  fi le with the Analysis of Covariance procedure.  

  SUMS OF SQUARES AND MEAN SQUARES BY REGRESSION  

  TYPE III SS - R2 = Full Model - Restricted Model  

  VARIABLE SUM OF SQUARES D.F.  
   Cov1 1.275 1  
   Cov2 0.783 1  
   Row1 25.982 1  
   Col1 71.953 1  
   Slice1 13.323 1  
   Slice2 0.334 1  

  Fig. 8.39    Example 2 of sum of squares by regression       

 



140 8 Comparisons

   C1R1 21.240 1  
   S1R1 11.807 1  
   S2R1 0.138 1  
   S1C1 13.133 1  
   S2C1 0.822 1  
   S1C1R1 0.081 1  
   S2C1R1 47.203 1  

  ERROR 46.198 58  
  TOTAL 269.500 71  

  TOTAL EFFECTS SUMMARY  

       SOURCE SS D.F. MS      

   Cov1 1.275 1 1.275  
   Cov2 0.783 1 0.783  
   Row 25.982 1 25.982  
   Col 71.953 1 71.953  
   Slice 13.874 2 6.937  
   Row*Col 21.240 1 21.240  
   Row*Slice 11.893 2 5.947  
   Col*Slice 14.204 2 7.102  
   Row*Col*Slice 47.247 2 23.624          

   SOURCE SS D.F. MS      

  BETWEEN SUBJECTS 208.452 13  
   Covariates 2.058 2 1.029  
   Row 25.982 1 25.982  
   Col 71.953 1 71.953  
   Slice 13.874 2 6.937  
   Row*Col 21.240 1 21.240  
   Row*Slice 11.893 2 5.947  
   Col*Slice 14.204 2 7.102  
   Row*Col*Slice 47.247 2 23.624  
   ERROR BETWEEN 46.198 58 0.797          

   TOTAL 269.500 71           

=============================================================
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   The General Linear Model    

 We have seen in the above discussion that the multiple regression method may be 
used to complete an analysis of variance for a single dependent variable. The model 
for multiple regression is:

     1

k

i j j i
j

y B X e
=

= +∑
   

where the jth B value is a coef fi cient multiplied times the jth independent predictor 
score, Y is the observed dependent score and e is the error (difference between the 
observed and the value predicted for Y using the sum of weighted independent scores. 

 In some research it is desirable to determine the relationship between multiple 
dependent variables and multiple independent variables. Of course, one could com-
plete a multiple regression analysis for each dependent variable but this would 
ignore the possible relationships among the dependent variables themselves. For 
example, a teacher might be interested in the relationship between the sub-scores on 
a standardized achievement test (independent variables) and the  fi nal examination 
results for several different courses (dependent variables.) Each of the  fi nal exami-
nation scores could be predicted by the sub-scores in separate analyses but most 
likely the interest is in knowing how well the sub-scores account for the combined 
variance of the achievement scores. By assigning weights to each of the dependent 
variables as well as the independent variables in such a way that the composite 
dependent score is maximally related to the composite independent score we can 
quantify the relationship between the two composite scores. We note that the squared 
product–moment correlation coef fi cient re fl ects the proportion of variance of a 
dependent variable predicted by the independent variable. 

 We can express the model for the general linear model as:

     YM BX E= +    

where Y is an n (the number of subjects) by m (the number of dependent variables) 
matrix of dependent variable values, M is a m by s (number of coef fi cient sets), X 
is a n by k (the number of independent variables) matrix, B is a k by s matrix of 
coef fi cients and E is a vector of errors for the n subjects.  

   Using OpenStat to Obtain Canonical Correlations    

 You can use the OpenStat package to obtain canonical correlations for a wide vari-
ety of applications. In production of bread, for example, a number of “dependent” 
quality variables may exist such as the average size of air bubbles in a slice, the 
density of a slice, the thickness of the crust, etc. Similarly, there are a number of 
“independent” variables which may be related to the dependent variables with 
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examples being minutes of baking, temperature of baking, humidity in the oven, 
barometric pressure, time and temperature during rising of the dough, etc. The rela-
tionship between these two sets of variables might identify the “key” variables to 
control for maximizing the quality of the product. 

 To demonstrate use of OpenStat to obtain canonical correlations we will use the 
 fi le labeled “cansas.txt” as an example. We will click on the Canonical Correlation 
option under the Correlation sub-menu of the Statistics menu. In the Figure above 
we show the form which appears and the data entered to initiate the analysis 
(Fig.  8.40 ):  

 We obtain the results as shown below: 

  CANONICAL CORRELATION ANALYSIS  

  Right Inverse x Right-Left Matrix with 20 valid cases.  

  Variables  
    weight waist pulse  
   chins -0.102 -0.226 0.001  
   situps -0.552 -0.788 0.365  
   jumps 0.193 0.448 -0.210  

  Left Inverse x Left-Right Matrix with 20 valid cases.  

  Variables  
    chins situps jumps  
   weight 0.368 0.287 -0.259  
   waist -0.882 -0.890 0.015  
   pulse -0.026 0.016 -0.055  

  Fig. 8.40    Canonical Correlation Analysis form       
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  Canonical Function with 20 valid cases.  
  Variables  
    Var. 1 Var. 2 Var. 3  
   Var. 1 0.162 0.172 0.023  
   Var. 2 0.482 0.549 0.111  
   Var. 3 -0.318 -0.346 -0.032  

  Trace of the matrix:= 0.6785  
  Percent of trace extracted: 100.0000  

    Canonical R Root % Trace Chi-Sqr D.F. Prob.  
   2 0.795608 0.633 93.295 16.255 9 0.062  
   3 0.200556 0.040 5.928 0.718 4 0.949  
   4 0.072570 0.005 0.776 0.082 1 0.775  

  Overall Tests of Signi fi cance:  
   Statistic Approx. Stat. Value D.F. Prob.>Value  
  Wilk’s Lambda Chi-Squared 17.3037    9 0.0442  
  Hotelling-Lawley Trace F-Test 2.4938 9 38 0.0238  
  Pillai Trace F-Test 1.5587 9 48 0.1551  
  Roys Largest Root F-Test 10.9233 3 19 0.0002  

  Eigenvectors with 20 valid cases.  

  Variables  
    Var. 1 Var. 2 Var. 3  
   Var. 1 0.210 -0.066 0.051  
   Var. 2 0.635 0.022 -0.049  
   Var. 3 -0.431 0.188 0.017  

  Standardized Right Side Weights with 20 valid cases.  

  Variables  
    Var. 1 Var. 2 Var. 3  
   weight 0.775 -1.884 0.191  
   waist -1.579 1.181 -0.506  
   pulse 0.059 -0.231 -1.051  

  Standardized Left Side Weights with 20 valid cases.  

  Variables  
    Var. 1 Var. 2 Var. 3  
   chins 0.349 -0.376 1.297  
   situps 1.054 0.123 -1.237  
   jumps -0.716 1.062 0.419  

  Standardized Right Side Weights with 20 valid cases.  
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  Variables  
    Var. 1 Var. 2 Var. 3  
   weight 0.775 -1.884 0.191  
   waist -1.579 1.181 -0.506  
   pulse 0.059 -0.231 -1.051  

  Raw Right Side Weights with 20 valid cases.  

  Variables  
    Var. 1 Var. 2 Var. 3  
   weight 0.031 -0.076 0.008  
   waist -0.493 0.369 -0.158  
   pulse 0.008 -0.032 -0.146  

  Raw Left Side Weights with 20 valid cases.  

  Variables  
    Var. 1 Var. 2 Var. 3  
   chins 0.066 -0.071 0.245  
   situps 0.017 0.002 -0.020  
   jumps -0.014 0.021 0.008  

  Right Side Correlations with Function with 20 valid cases.  

  Variables  
    Var. 1 Var. 2 Var. 3  
   weight -0.621 -0.772 0.135  
   waist -0.925 -0.378 0.031  
   pulse 0.333 0.041 -0.942  

  Left Side Correlations with Function with 20 valid cases.  

  Variables  
    Var. 1 Var. 2 Var. 3  
   chins 0.728 0.237 0.644  
   situps 0.818 0.573 -0.054  
   jumps 0.162 0.959 0.234  

  Redundancy Analysis for Right Side Variables  

    Variance Prop. Redundancy  
   1 0.45080 0.28535  
   2 0.24698 0.00993  
   3 0.30222 0.00159  



145Binary Logistic Regression

  Redundancy Analysis for Left Side Variables  

    Variance Prop. Redundancy  
   1 0.40814 0.25835  
   2 0.43449 0.01748  
   3 0.15737 0.00083   

   Binary Logistic Regression    

 When this analysis is selected from the menu, the form below is used to select the 
dependent and independent variables (Fig.  8.41 ):  

  Fig. 8.41    Logistic Regression form       
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 Output for the example analysis speci fi ed above is shown below: 

  Logistic Regression Adapted from John C. Pezzullo  
  Java program at http://members.aol.com/johnp71/logistic.html  

  Descriptive Statistics  
  6 cases have Y=0; 4 cases have Y=1.  
  Variable Label Average Std.Dev.  
   1 Var1 5.5000 2.8723  
   2 Var2 5.5000 2.8723  

  Iteration History  
  -2 Log Likelihood = 13.4602 (Null Model)  
  -2 Log Likelihood =  8.7491  
  -2 Log Likelihood =  8.3557  
  -2 Log Likelihood =  8.3302  
  -2 Log Likelihood =  8.3300  
  -2 Log Likelihood =  8.3300  
  Converged  

  Overall Model Fit… Chi Square = 5.1302 with df = 2 and prob. = 0.0769  

  Coef fi cients and Standard Errors…  
  Variable Label Coeff. StdErr p  
   1 Var1 0.3498 0.6737 0.6036  
   2 Var2 0.3628 0.6801 0.5937  
  Intercept    -4.6669  

  Odds Ratios and 95% Con fi dence Intervals…  
  Variable O.R. Low   -- High  
   Var1 1.4187 0.3788 5.3135  
   Var2 1.4373 0.3790 5.4506  

   X X Y Prob  
   1.0000 2.0000 0 0.0268  
   2.0000 1.0000 0 0.0265  
   3.0000 5.0000 0 0.1414  
   4.0000 3.0000 0 0.1016  

   5.0000 4.0000 1 0.1874  
   6.0000 7.0000 0 0.4929  
   7.0000 8.0000 1 0.6646  
   8.0000 6.0000 0 0.5764  
   9.0000 10.0000 1 0.8918  
   10.0000 9.0000 1 0.8905   
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   Cox Proportional Hazards Survival Regression    

 The speci fi cation form for this analysis is shown below with variables entered for a 
sample  fi le (Fig.  8.42 ):  

  Fig. 8.42    Cox Proportional Hazards Survival Regression form       
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 Results for the above sample are as follows: 

  Cox Proportional Hazards Survival Regression Adapted from John 
C. Pezzullo’s Java program at http://members.aol.com/johnp71/
prophaz.html  

  Descriptive Statistics  
  Variable Label Average Std.Dev.  
   1 VAR1 51.1818 10.9778  
  Iteration History…  
  -2 Log Likelihood =    11.4076 (Null Model)  

  -2 Log Likelihood =     6.2582  
  -2 Log Likelihood =     4.5390  
  -2 Log Likelihood =     4.1093  
  -2 Log Likelihood =     4.0524  
  -2 Log Likelihood =     4.0505  
  -2 Log Likelihood =     4.0505  
  Converged  

  Overall Model Fit…  
  Chi Square =   7.3570 with d.f. 1 and probability =   0.0067  

  Coef fi cients, Std Errs, Signif, and Con fi dence Intervals  

  Var  Coeff. StdErr p Lo95% Hi95%  
   VAR1 0.3770 0.2542 0.1379 -0.1211 0.8752  

  Risk Ratios and Con fi dence Intervals  

  Variable Risk Ratio Lo95% Hi95%  
   VAR1 1.4580 0.8859 2.3993  

  Baseline Survivor Function (at predictor means)…  
   2.0000 0.9979  
   7.0000 0.9820  
   9.0000 0.9525  
   10.0000 0.8310   

   Weighted Least-Squares Regression    

 Shown below is the dialog box for the Weighted Least Squares Analysis and an 
analysis of the cansas.tab data  fi le (Figs.  8.43 ,  8.44 ,  8.45 ).  
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  Fig. 8.43    Weighted least squares regression       

  Fig. 8.44    Plot of ordinary least squares regression       
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  OLS REGRESSION RESULTS  
  Means  
  Variables weight waist pulse chins situps jumps  
   178.600 35.400 56.100 9.450 145.550 70.300  

  Standard Deviations  
  Variables weight waist pulse chins situps jumps  
   24.691 3.202 7.210 5.286 62.567 51.277  

  No. of valid cases = 20  

  CORRELATION MATRIX  
   VARIABLE  
   weight waist pulse chins situps jumps  
  weight 1.000 0.870 -0.366 -0.390 -0.493 -0.226  
  waist 0.870 1.000 -0.353 -0.552 -0.646 -0.191  
  pulse -0.366 -0.353 1.000 0.151 0.225 0.035  
  chins -0.390 -0.552 0.151 1.000 0.696 0.496  
  situps -0.493 -0.646 0.225 0.696 1.000 0.669  
  jumps -0.226 -0.191 0.035 0.496 0.669 1.000  

  Dependent variable: jumps  

  Fig. 8.45    Plot of weighted least squares regression       
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  Variable Beta B Std.Err. t Prob.>t VIF TOL  
   weight -0.588 -1.221 0.704 -1.734 0.105 4.424 0.226  
   waist 0.982 15.718 6.246 2.517 0.025 5.857 0.171  
   pulse -0.064 -0.453 1.236 -0.366 0.720 1.164 0.859  
   chins 0.201 1.947 2.243 0.868 0.400 2.059 0.486  
   situps 0.888 0.728 0.205 3.546 0.003 2.413 0.414  
   Intercept 0.000 -366.967 183.214 -2.003 0.065  

  SOURCE      DF        SS        MS        F      Prob.>F  
  Regression  5  31793.741  6358.748     4.901     0.0084  
  Residual   14  18164.459  1297.461  
  Total      19  49958.200  

  R2 = 0.6364, F =     4.90, D.F. = 5 14, Prob>F = 0.0084  
  Adjusted R2 = 0.5066  

  Standard Error of Estimate = 36.02  

  REGRESSION OF SQUARED RESIDUALS ON INDEPENDENT VARIABLES  

  Means  
  Variables weight waist pulse chins situps ResidSqr  
   178.600 35.400 56.100 9.450 145.550 908.196  

  Standard Deviations  

  Variables weight waist pulse chins situps ResidSqr  
   24.691 3.202 7.210 5.286 62.567 2086.828  

  No. of valid cases = 20  

  CORRELATION MATRIX  
   VARIABLE  
   weight waist pulse chins situps ResidSqr  
  weight 1.000 0.870 -0.366 -0.390 -0.493 -0.297  
  waist 0.870 1.000 -0.353 -0.552 -0.646 -0.211  
  pulse -0.366 -0.353 1.000 0.151 0.225 -0.049  
  chins -0.390 -0.552 0.151 1.000 0.696 0.441  
  situps -0.493 -0.646 0.225 0.696 1.000 0.478  
  ResidSqr -0.297 -0.211 -0.049 0.441 0.478 1.000  

  Dependent variable: ResidSqr  

  Variable Beta B Std.Err. t Prob.>t VIF TOL  
   weight -0.768 -64.916 36.077 -1.799 0.094 4.424 0.226  
   waist 0.887 578.259 320.075 1.807 0.092 5.857 0.171  
   pulse -0.175 -50.564 63.367 -0.798 0.438 1.164 0.859  
   chins 0.316 124.826 114.955 1.086 0.296 2.059 0.486  
   situps 0.491 16.375 10.515 1.557 0.142 2.413 0.414  
   Intercept 0.000 -8694.402 9389.303 -0.926 0.370  
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  SOURCE      DF        SS        MS           F        Prob.>F  
  Regression  5  35036253.363 7007250.673    2.056      0.1323  
  Residual   14  47705927.542 3407566.253  
  Total      19  82742180.905  

  R2 = 0.4234, F =     2.06, D.F. = 5 14, Prob>F = 0.1323  
  Adjusted R2 = 0.2175  

  Standard Error of Estimate =  1845.96  
  X versus Y Plot  
  X = ResidSqr, Y = weight from  fi le: C:\Documents and Settings\
Owner\My Documents\Projects\Clanguage\OpenStat\cansaswls.TAB  

  Variable     Mean   Variance  Std.Dev.  
  ResidSqr    908.20  4354851.63   2086.83  
  weight      178.60    609.62     24.69  
  Correlation = -0.2973, Slope =    -0.00, Intercept =   181.79  
  Standard Error of Estimate =    23.57  
  Number of good cases = 20   

  WLS REGRESSION RESULTS  
  Means  
  Variables weight waist pulse chins situps jumps  
   -0.000 0.000 -0.000 0.000 -0.000 0.000  

  Standard Deviations  
  Variables weight waist pulse chins situps jumps  
   7.774 1.685 2.816 0.157 3.729 1.525  

  No. of valid cases = 20  

  CORRELATION MATRIX  
   VARIABLE  
   weight waist pulse chins situps jumps  
  weight 1.000 0.994 0.936 0.442 0.742 0.697  
  waist 0.994 1.000 0.965 0.446 0.783 0.729  
  pulse 0.936 0.965 1.000 0.468 0.889 0.769  
  chins 0.442 0.446 0.468 1.000 0.395 0.119  
  situps 0.742 0.783 0.889 0.395 1.000 0.797  
  jumps 0.697 0.729 0.769 0.119 0.797 1.000  

  Dependent variable: jumps  

  Variable Beta B Std.Err. t Prob.>t VIF TOL  
   weight -2.281 -0.448 0.414 -1.082 0.298 253.984 0.004  
   waist 3.772 3.415 2.736 1.248 0.232 521.557 0.002  
   pulse -1.409 -0.763 0.737 -1.035 0.318 105.841 0.009  
   chins -0.246 -2.389 1.498 -1.594 0.133 1.363 0.734  
   situps 0.887 0.363 0.165 2.202 0.045 9.258 0.108  
   Intercept 0.000 -0.000 0.197 -0.000 1.000  
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  SOURCE      DF        SS        MS        F      Prob.>F  
  Regression  5     33.376     6.675     8.624     0.0007  
  Residual   14     10.837     0.774  
  Total      19     44.212  
  R2 = 0.7549, F =     8.62, D.F. = 5 14, Prob>F = 0.0007  
  Adjusted R2 = 0.6674  
  Standard Error of Estimate =     0.88    

   2-Stage Least-Squares Regression    

 In the following example, the cansas.TAB  fi le is analyzed. The dependent variable 
is the height of individual jumps. The explanatory (predictor) variables are pulse 
rate, no. of chinups and no. of situps the individual completes. These explanatory 
variables are thought to be related to the instrumental variables of weight and waist 
size. In the dialog box for the analysis, the option has been selected to show the 
regression for each of the explanatory variables that produces the predicted vari-
ables to be used in the  fi nal analysis. Results are shown below (Fig.  8.46 ):  

  Fig. 8.46    Two Stage Least Squares Regression form       
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  FILE: C:\Documents and Settings\Owner\My Documents\Projects\
Clanguage\OpenStat\cansas.TAB  
  Dependent = jumps  
  Explanatory Variables:  
  pulse  
  chins  
  situps  
  Instrumental Variables:  
  pulse  
  chins  
  situps  
  weight  
  waist  
  Proxy Variables:  
  P_pulse  
  P_chins  
  P_situps  

  Analysis for P_pulse  

  Dependent: pulse  
  Independent:  
  chins  
  situps  
  weight  
  waist  

  Means  
  Variables chins situps weight waist pulse  
   9.450 145.550 178.600 35.400 56.100  

  Standard Deviations  
  Variables chins situps weight waist pulse  
   5.286 62.567 24.691 3.202 7.210  

  No. of valid cases = 20  

  CORRELATION MATRIX  
   VARIABLE  
   chins situps weight waist pulse  
  chins 1.000 0.696 -0.390 -0.552 0.151  
  situps 0.696 1.000 -0.493 -0.646 0.225  
  weight -0.390 -0.493 1.000 0.870 -0.366  
  waist -0.552 -0.646 0.870 1.000 -0.353  
  pulse 0.151 0.225 -0.366 -0.353 1.000  

  Dependent variable: pulse  
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  Variable Beta B Std.Err. t Prob.>t VIF TOL  
   chins -0.062 -0.084 0.468 -0.179 0.860 2.055 0.487  
   situps 0.059 0.007 0.043 0.158 0.876 2.409 0.415  
   weight -0.235 -0.069 0.146 -0.471 0.644 4.360 0.229  
   waist -0.144 -0.325 1.301 -0.249 0.806 5.832 0.171  
   Intercept 0.000 79.673 32.257 2.470 0.026  

  SOURCE      DF        SS        MS        F      Prob.>F  
  Regression  4    139.176    34.794     0.615     0.6584  
  Residual   15    848.624    56.575  
  Total      19    987.800  

  R2 = 0.1409, F =     0.62, D.F. = 4 15, Prob>F = 0.6584  
  Adjusted R2 = -0.0882  
  Standard Error of Estimate =     7.52  

  Analysis for P_chins  

  Dependent: chins  
  Independent:  
  pulse  
  situps  
  weight  
  waist  

  Means  
  Variables pulse situps weight waist chins  
   56.100 145.550 178.600 35.400 9.450  

  Standard Deviations  
  Variables pulse situps weight waist chins  
   7.210 62.567 24.691 3.202 5.286  

  No. of valid cases = 20  

  CORRELATION MATRIX  
   VARIABLE  
   pulse situps weight waist chins  
  pulse 1.000 0.225 -0.366 -0.353 0.151  
  situps 0.225 1.000 -0.493 -0.646 0.696  
  weight -0.366 -0.493 1.000 0.870 -0.390  
  waist -0.353 -0.646 0.870 1.000 -0.552  
  chins 0.151 0.696 -0.390 -0.552 1.000  

  Dependent variable: chins  
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  Variable Beta B Std.Err. t Prob.>t VIF TOL  
   pulse -0.035 -0.026 0.142 -0.179 0.860 1.162 0.861  
   situps 0.557 0.047 0.020 2.323 0.035 1.775 0.564  
   weight 0.208 0.045 0.080 0.556 0.586 4.335 0.231  
   waist -0.386 -0.638 0.700 -0.911 0.377 5.549 0.180  
   Intercept 0.000 18.641 20.533 0.908 0.378  

  SOURCE      DF        SS        MS        F      Prob.>F  
  Regression  4    273.089    68.272     3.971     0.0216  
  Residual   15    257.861    17.191  
  Total      19    530.950  

  R2 = 0.5143, F =     3.97, D.F. = 4 15, Prob>F = 0.0216  
  Adjusted R2 = 0.3848  
  Standard Error of Estimate =     4.15  

  Analysis for P_situps  

  Dependent: situps  
  Independent:  
  pulse  
  chins  
  weight  
  waist  

  Means  
  Variables pulse chins weight waist situps  
   56.100 9.450 178.600 35.400 145.550  

  Standard Deviations  
  Variables pulse chins weight waist situps  
   7.210 5.286 24.691 3.202 62.567  

  No. of valid cases = 20  

  CORRELATION MATRIX  
   VARIABLE  
   pulse chins weight waist situps  
  pulse 1.000 0.151 -0.366 -0.353 0.225  
  chins 0.151 1.000 -0.390 -0.552 0.696  
  weight -0.366 -0.390 1.000 0.870 -0.493  
  waist -0.353 -0.552 0.870 1.000 -0.646  
  situps 0.225 0.696 -0.493 -0.646 1.000  

  Dependent variable: situps  
  Variable Beta B Std.Err. t Prob.>t VIF TOL  
   pulse 0.028 0.246 1.555 0.158 0.876 1.162 0.861  
   chins 0.475 5.624 2.421 2.323 0.035 1.514 0.660  
   weight 0.112 0.284 0.883 0.322 0.752 4.394 0.228  
   waist -0.471 -9.200 7.492 -1.228 0.238 5.322 0.188  
   Intercept 0.000 353.506 211.726 1.670 0.116  
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  SOURCE      DF        SS        MS        F      Prob.>F  
  Regression  4  43556.048 10889.012     5.299     0.0073  
  Residual   15  30820.902  2054.727  
  Total      19  74376.950  

  R2 = 0.5856, F =     5.30, D.F. = 4 15, Prob>F = 0.0073  
  Adjusted R2 = 0.4751  
  Standard Error of Estimate =    45.33  

  Second Stage (Final) Results  

  Means  
  Variables P_pulse P_chins P_situps jumps  
   56.100 9.450 145.550 70.300  

  Standard Deviations  
  Variables P_pulse P_chins P_situps jumps  
   2.706 3.791 47.879 51.277  

  No. of valid cases = 20  

  CORRELATION MATRIX  
   VARIABLE  
   P_pulse P_chins P_situps jumps  
  P_pulse 1.000 0.671 0.699 0.239  
  P_chins 0.671 1.000 0.847 0.555  
  P_situps 0.699 0.847 1.000 0.394  
  jumps 0.239 0.555 0.394 1.000  

  Dependent variable: jumps  

  Variable Beta B Std.Err. t Prob.>t VIF TOL  
   P_pulse -0.200 -3.794 5.460 -0.695 0.497 2.041 0.490  
   P_chins 0.841 11.381 5.249 2.168 0.046 3.701 0.270  
   P_situps -0.179 -0.192 0.431 -0.445 0.662 3.979 0.251  
   Intercept 0.000 203.516 277.262 0.734 0.474  

  SOURCE      DF        SS        MS        F      Prob.>F  
  Regression  3  17431.811  5810.604     2.858     0.0698  
  Residual   16  32526.389  2032.899  
  Total      19  49958.200  

  R2 = 0.3489, F =     2.86, D.F. = 3 16, Prob>F = 0.0698  
  Adjusted R2 = 0.2269  
  Standard Error of Estimate =    45.09   
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   Non-linear Regression    

 As an example, I have created a “parabola” function data set labeled parabola.TAB. 
To generate this  fi le I used the equation y = a + b * x + c * x * x. I let a = 0, b = 5 and 
c = 2 for the parameters and used a sequence of x values for the independent vari-
ables in the data  fi le that was generated. To test the non-linear  fi t program, I initiated 
the procedure and entered the values shown below (Fig.  8.47 ):  

 You can see that y is the dependent variable and x is the independent variable. 
Values of 1 have been entered for the initial estimates of a, b and c. The equation 
model was selected by clicking the parabola model from the drop-down models 
box. I could have entered the same equation by clicking on the equation box and 
typing the equation into that box or clicking parameters, math functions and vari-
ables from the drop-down boxes on the right side of the form. Notice that I selected 
to plot the x versus y values and also the predicted versus observed y values. I also 
chose to save the predicted scores and residuals (y - predicted y.) The results are as 
follows (Fig.  8.48 ):  

 The printed output shown below gives the model selected followed by the indi-
vidual data points observed, their predicted scores, the residual, the standard error 
of estimate of the predicted score and the 95% con fi dence interval of the predicted 
score. These are followed by the obtained correlation coef fi cient and its square, root 
mean square of the y scores, the parameter estimates with their con fi dence limits 
and t probability for testing the signi fi cance of difference from zero (Fig.  8.49 ). 

  Fig. 8.47    Non-linear Regression Speci fi cations form       
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  Fig. 8.48    Scores predicted by non-linear regression versus observed scores       

  Fig. 8.49    Correlation plot between scores predicted by non-linear regression and observed 
scores       
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  y = a + b * x1 + c * x1 * x1  
   x y yc y-yc SEest YcLo YcHi  
   0.39800 2.31000 2.30863 0.00137 0.00161 2.30582 2.31143  
   -1.19700 -3.13000 -3.12160 -0.00840 0.00251 -3.12597 -3.11723  
   -0.48600 -1.95000 -1.95878 0.00878 0.00195 -1.96218 -1.95538  
   -1.90800 -2.26000 -2.26113 0.00113 0.00522 -2.27020 -2.25205  
   -0.84100 -2.79000 -2.79228 0.00228 0.00206 -2.79586 -2.78871  
   -0.30100 -1.32000 -1.32450 0.00450 0.00192 -1.32784 -1.32115  
   0.69600 4.44000 4.45208 -0.01208 0.00168 4.44917 4.45500  
   1.11600 8.08000 8.07654 0.00346 0.00264 8.07195 8.08112  
   0.47900 2.86000 2.85607 0.00393 0.00159 2.85330 2.85884  
   1.09900 7.92000 7.91612 0.00388 0.00258 7.91164 7.92061  
   -0.94400 -2.94000 -2.93971 -0.00029 0.00214 -2.94343 -2.93600  
   -0.21800 -0.99000 -0.99541 0.00541 0.00190 -0.99872 -0.99211  
   0.81000 5.37000 5.36605 0.00395 0.00183 5.36288 5.36923  
   -0.06200 -0.31000 -0.30228 -0.00772 0.00185 -0.30549 -0.29907  
   0.67200 4.26000 4.26629 -0.00629 0.00165 4.26342 4.26917  
   -0.01900 -0.10000 -0.09410 -0.00590 0.00183 -0.09728 -0.09093  
   0.00100 0.01000 0.00525 0.00475 0.00182 0.00209 0.00841  
   0.01600 0.08000 0.08081 -0.00081 0.00181 0.07766 0.08396  
   1.19900 8.88000 8.87635 0.00365 0.00295 8.87122 8.88148  
   0.98000 6.82000 6.82561 -0.00561 0.00221 6.82177 6.82945  

  Corr. Coeff. =    1.00000  R2 =    1.00000  

  RMS Error =    5.99831, d.f. = 17  SSq =  611.65460  

  Parameter Estimates …  
  p1=    0.00024  +/-     0.00182  p=    0.89626  
  p2=    5.00349  +/-     0.00171  p=    0.00000  
  p3=    2.00120  +/-     0.00170  p=    0.00000  

  Covariance Matrix Terms and Error-Correlations…  

  B(1,1)=             0.00000; r=   1.00000  
  B(1,2)=B(2,1)=     -0.00000; r=  -0.28318  
  B(1,3)=B(3,1)=     -0.00000; r=  -0.67166  
  B(2,2)=             0.00000; r=   1.00000  
  B(2,3)=B(3,2)=      0.00000; r=   0.32845  
  B(3,3)=             0.00000; r=   1.00000  

  X versus Y Plot  
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  X = Y, Y = Y’ from  fi le: C:\Documents and Settings\Owner\My 
Documents\Projects\Clanguage\OpenStat\Parabola.TAB  

  Variable     Mean   Variance  Std.Dev.  
  Y             1.76     16.29      4.04  
  Y’            1.76     16.29      4.04  

  Correlation = 1.0000, Slope =     1.00, Intercept =     0.00  

  Standard Error of Estimate =     0.01  

  Number of good cases = 20   

 You can see that the  fi t is quite good between the observed and predicted scores. 
Once you have obtained the results you will notice that the parameters, their stan-
dard errors and the t probabilities are also entered in the dialog form. Had you 
elected to proceed in a step-fashion, these results would be updated at each step so 
you can observe the convergence to the best  fi t (the root mean square shown in the 
lower left corner.) (Fig.  8.50 ).        

  Fig. 8.50    Completed non-linear regression parameter estimates of regression coef fi cients       
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   Discriminant Function / MANOVA    

   An Example 

 We will use the  fi le labeled ManoDiscrim.txt for our example. A  fi le of the same 
name (or a .tab  fi le) should be in your directory. Load the  fi le and then click on the 
Statistics / Multivariate / Discriminant Function option. You should see the form 
below completed for a discriminant function analysis    (Fig.  9.1 ):  

 You will notice we have asked for all options and have speci fi ed that classi fi cation 
use the a priori (sample) sizes for classi fi cation. When you click the Compute button, 
the following results are obtained (Fig.  9.2 ): 

    Chapter 9   
 Multivariate         
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  Fig. 9.1    Speci fi cations for a discriminant function analysis       

  Fig. 9.2    Plot of cases in the discriminant space       
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  MULTIVARIATE ANOVA / DISCRIMINANT FUNCTION  
  Reference: Multiple Regression in Behavioral Research  
  Elazar J. Pedhazur, 1997, Chapters 20-21  
  Harcourt Brace College Publishers  

  Total Cases := 15, Number of Groups := 3  

  SUM OF CROSS-PRODUCTS forGroup 1, N = 5 with 5 valid cases.  

  Variables  
    Y1 Y2  
   Y1 111.000 194.000  
   Y2 194.000 343.000  

  WITHIN GROUP SUM OF DEVIATION CROSS-PROD with 5 valid cases.  

  Variables  
    Y1 Y2  
   Y1 5.200 5.400  
   Y2 5.400 6.800  

  MEANS FOR GROUP 1, N := 5 with 5 valid cases.  

  Variables Y1 Y2  
   4.600 8.200  

  VARIANCES FOR GROUP 1 with 5 valid cases.  

  Variables Y1 Y2  
   1.300 1.700  

  STANDARD DEVIATIONS FOR GROUP 1 with 5 valid cases.  

  Variables Y1 Y2  
   1.140 1.304  

  SUM OF CROSS-PRODUCTS forGroup 2, N = 5 with 5 valid cases.  

  Variables  
    Y1 Y2  
   Y1 129.000 169.000  
   Y2 169.000 223.000  

  WITHIN GROUP SUM OF DEVIATION CROSS-PROD with 5 valid cases.  
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  Variables  
    Y1 Y2  
   Y1 4.000 4.000  
   Y2 4.000 5.200  

  MEANS FOR GROUP 2, N := 5 with 5 valid cases.  

  Variables Y1 Y2  
   5.000 6.600  

  VARIANCES FOR GROUP 2 with 5 valid cases.  

  Variables Y1 Y2  
   1.000 1.300  

  STANDARD DEVIATIONS FOR GROUP 2 with 5 valid cases.  

  Variables Y1 Y2  
   1.000 1.140  

  SUM OF CROSS-PRODUCTS forGroup 3, N = 5 with 5 valid cases.  

  Variables  
    Y1 Y2  
   Y1 195.000 196.000  
   Y2 196.000 199.000  

  WITHIN GROUP SUM OF DEVIATION CROSS-PROD with 5 valid cases.  

  Variables  
   Y1 Y2  
   Y1 2.800 3.800  
   Y2 3.800 6.800  

  MEANS FOR GROUP 3, N := 5 with 5 valid cases.  

  Variables Y1 Y2  
   6.200 6.200  

  VARIANCES FOR GROUP 3 with 5 valid cases.  

  Variables Y1 Y2  
   0.700 1.700  

  STANDARD DEVIATIONS FOR GROUP 3 with 5 valid cases.  
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  Variables Y1 Y2  
   0.837 1.304  

  TOTAL SUM OF CROSS-PRODUCTS with 15 valid cases.  

  Variables  
    Y1 Y2  
   Y1 435.000 559.000  
   Y2 559.000 765.000  

  TOTAL SUM OF DEVIATION CROSS-PRODUCTS with 15 valid cases.  

  Variables  
    Y1 Y2  
   Y1 18.933 6.000  
   Y2 6.000 30.000  

  MEANS with 15 valid cases.  

  Variables Y1 Y2  
   5.267 7.000  

  VARIANCES with 15 valid cases.  

  Variables Y1 Y2  
   1.352 2.143  

  STANDARD DEVIATIONS with 15 valid cases.  

  Variables Y1 Y2  
   1.163 1.464  

  BETWEEN GROUPS SUM OF DEV. CPs with 15 valid cases.  

  Variables  
    Y1 Y2  
   Y1 6.933 -7.200  
   Y2 -7.200 11.200  

  UNIVARIATE ANOVA FOR VARIABLE Y1  
  SOURCE    DF       SS        MS        F         PROB > F  
  BETWEEN     2     6.933     3.467     3.467     0.065  
  ERROR      12    12.000     1.000  
  TOTAL      14    18.933  
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  UNIVARIATE ANOVA FOR VARIABLE Y2  
  SOURCE    DF       SS        MS        F         PROB > F  
  BETWEEN     2    11.200     5.600     3.574     0.061  
  ERROR      12    18.800     1.567  
  TOTAL      14    30.000  

  Inv. of Pooled Within Dev. CPs Matrix with 15 valid cases.  

  Variables  
    Y1 Y2  
   Y1 0.366 -0.257  
   Y2 -0.257 0.234  

  Number of roots extracted := 2  
  Percent of trace extracted := 100.0000  
  Roots of the W inverse time B Matrix  

   No. Root Proportion Canonical R Chi-Squared D.F. Prob.  
   1 8.7985 0.9935 0.9476 25.7156 4 0.000  
   2 0.0571 0.0065 0.2325 0.6111 1 0.434  

  Eigenvectors of the W inverse x B Matrix with 15 valid cases.  

  Variables  
    1 2  
   Y1 -2.316 0.188  
   Y2 1.853 0.148  

  Pooled Within-Groups Covariance Matrix with 15 valid cases.  

  Variables  
    Y1 Y2  
   Y1 1.000 1.100  
   Y2 1.100 1.567  

  Total Covariance Matrix with 15 valid cases.  

  Variables  
    Y1 Y2  
   Y1 1.352 0.429  
   Y2 0.429 2.143  

  Raw Function Coeff.s from Pooled Cov. with 15 valid cases.  

  Variables  
    1 2  
   Y1 -2.030 0.520  
   Y2 1.624 0.409  

  Raw Discriminant Function Constants with 15 valid cases.  
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  Variables 1 2  
    -0.674 -5.601  

  Fisher Discriminant Functions  
  Group 1 Constant := -24.402  
  Variable Coef fi cient  
   1 -5.084  
   2 8.804  

  Group 2 Constant := -14.196  
  Variable Coef fi cient  
   1 1.607  
   2 3.084  

  Group 3 Constant := -19.759  
  Variable Coef fi cient  
   1 8.112  
   2 -1.738  

  CLASSIFICATION OF CASES  
  SUBJECT ACTUAL HIGH PROBABILITY SEC.D HIGH DISCRIM  
  ID NO. GROUP IN GROUP P(G/D) GROUP P(G/D) SCORE  
   1 1 1 0.9999 2 0.0001 4.6019  
         -1.1792  
   2 1 1 0.9554 2 0.0446 2.5716  
         -0.6590  
   3 1 1 0.8903 2 0.1097 2.1652  
         0.2699  
   4 1 1 0.9996 2 0.0004 3.7890  
         0.6786  
   5 1 1 0.9989 2 0.0011 3.3826  
         1.6075  
   6 2 2 0.9746 3 0.0252 -0.6760  
         -1.4763  
   7 2 2 0.9341 1 0.0657 0.9478  
         -1.0676  
   8 2 2 0.9730 1 0.0259 0.5414  
         -0.1387  
   9 2 2 0.5724 3 0.4276 -1.4888  
         0.3815  
   10 2 2 0.9842 1 0.0099 0.1350  
         0.7902  
   11 3 3 0.9452 2 0.0548 -2.7062  
         -0.9560  
   12 3 3 0.9999 2 0.0001 -4.7365  
         -0.4358  
   13 3 3 0.9893 2 0.0107 -3.1126  
         -0.0271  
   14 3 3 0.9980 2 0.0020 -3.5191  
         0.9018  
   15 3 3 0.8007 2 0.1993 -1.8953  
          1.3104  
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  CLASSIFICATION TABLE  

    PREDICTED GROUP  
  Variables  
    1 2 3 TOTAL  
   1 5 0 0 5  
   2 0 5 0 5  
   3 0 0 5 5  
   TOTAL 5 5 5 15  

  Standardized Coeff. from Pooled Cov. with 15 valid cases.  

  Variables  
    1 2  
   Y1 -2.030 0.520  
   Y2 2.032 0.511  

  Centroids with 15 valid cases.  

  Variables  
    1 2  
   1 3.302 0.144  
   2 -0.108 -0.302  
   3 -3.194 0.159  

  Raw Coef fi cients from Total Cov. with 15 valid cases.  

  Variables  
    1 2  
   Y1 -0.701 0.547  
   Y2 0.560 0.429  

  Raw Discriminant Function Constants with 15 valid cases.  

  Variables 1 2  
    -0.674 -5.601  

  Standardized Coeff.s from Total Cov. with 15 valid cases.  

  Variables  

    1 2  
   Y1 -0.815 0.636  
   Y2 0.820 0.628  

  Total Correlation Matrix with 15 valid cases.  
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  Variables  

    Y1 Y2  
   Y1 1.000 0.252  
   Y2 0.252 1.000  

  Corr.s Between Variables and Functions with 15 valid cases.  

  Variables  

    1 2  
   Y1 -0.608 0.794  
   Y2 0.615 0.788  

  Wilk’s Lambda = 0.0965.  
  F = 12.2013 with D.F. 4 and 22 . Prob > F = 0.0000  
  Bartlett Chi-Squared = 26.8845 with 4 D.F. and prob. = 0.0000  
  Pillai Trace = 0.9520   

 You will notice that we have obtained cross-products and deviation cross-
products for each group as well as the combined between and within groups as well 
as descriptive statistics (means, variances, standard deviations.) Two roots were 
obtained, the  fi rst signi fi cant at the 0.05 level using a chi-square test. The one-way 
analyses of variances completed for each continuous variable were not signi fi cant at 
the 0.05 level which demonstrates that a multivariate analysis may identify group 
differences not caught by individual variable analysis. The discriminant functions 
can be used to plot the group subjects in the (orthogonal) space of the functions. 
If you examine the plot you can see that the individuals in the three groups analyzed 
are easily separated using just the  fi rst discriminant function (the horizontal axis.) 
Raw and standardized coef fi cients for the discriminant functions are presented as 
well as Fisher’s discriminant functions for each group. The latter are used to classify 
the subjects and the classi fi cations are shown along with a table which summarizes 
the classi fi cations. Note that in this example, all cases are correctly classi fi ed. 
Certainly, a cross-validation of the functions for classi fi cation would likely encoun-
ter some errors of classi fi cation. Since we asked that the discriminant scores be 
placed in the data grid, the data grid will now contain two new variables the Fisher 
discriminant scores.   
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   Cluster Analyses    

   Hierarchical Cluster Analysis 

 To demonstrate the Hierarchical Clustering program, the data to be analyzed is the 
one labeled cansas.TAB. You will see the form above with speci fi cations for the 
grouping (Fig.  9.3 ):  

 Results for the hierarchical analysis that you would obtain after clicking the 
Compute button are presented below (Fig.  9.4 ): 

  Fig. 9.3    Hierarchical Cluster Analysis    form       
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  Hierarchical Cluster Analysis  

  Number of object to cluster = 20 on 6 variables.  

  Variable Means  

  Variables weight waist pulse chins situps jumps  
   178.600 35.400 56.100 9.450 145.550 70.300  

  Variable Variances  

  Variables weight waist pulse chins situps jumps  
   609.621 10.253 51.989 27.945 3914.576 2629.379  

  Variable Standard Deviations  

  Variables weight waist pulse chins situps jumps  
   24.691 3.202 7.210 5.286 62.567 51.277  

SCATTERPLOT - Plot of Errorvs No.of Groups

Size of Error
| |- 18.06
| |- 17.20
| |- 16.34

. | |- 15.48
| |- 14.62
| |- 13.76
| |- 12.90

. | |- 12.04
| |- 11.18
| |- 10.32

------------------------------------------------------------|-  9.46
. | |-  8.60

. . | |-  7.74
| |-  6.88
| |-  6.02
| |-  5.16

. . | |-  4.30
. | |-  3.44

* . . . |-  2.58
| . . . . . |-  1.72

_______________________________________________________________
| | | | | | | | | |

No.of Groups
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

  Fig. 9.4    Plot of grouping errors in the discriminant analysis       
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  19 groups after combining group 1 (n = 1 ) and group 5 (n = 1) 
error = 0.386  
  18 groups after combining group 17 (n = 1 ) and group 18 (n = 1) 
error = 0.387  
  17 groups after combining group 11 (n = 1 ) and group 17 (n = 2) 
error = 0.556  
  16 groups after combining group 1 (n = 2 ) and group 16 (n = 1) 
error = 0.663  
  15 groups after combining group 3 (n = 1 ) and group 7 (n = 1) 
error = 0.805  
  14 groups after combining group 4 (n = 1 ) and group 10 (n = 1) 
error = 1.050  
  13 groups after combining group 2 (n = 1 ) and group 6 (n = 1) 
error = 1.345  
  12 groups after combining group 1 (n = 3 ) and group 14 (n = 1) 
error = 1.402  
  11 groups after combining group 0 (n = 1 ) and group 1 (n = 4) 
error = 1.489  
  10 groups after combining group 11 (n = 3 ) and group 12 (n = 1) 
error = 2.128  
  Group 1 (n= 5)  
   Object = CASE 1  
   Object = CASE 2  
   Object = CASE 6  
   Object = CASE 15  
   Object = CASE 17  
  Group 3 (n= 2)  
   Object = CASE 3  
   Object = CASE 7  
  Group 4 (n= 2)  
   Object = CASE 4  
   Object = CASE 8  
  Group 5 (n= 2)  
   Object = CASE 5  
   Object = CASE 11  
  Group 9 (n= 1)  
   Object = CASE 9  
  Group 10 (n= 1)  
   Object = CASE 10  
  Group 12 (n= 4)  
   Object = CASE 12  
   Object = CASE 13  
   Object = CASE 18  
   Object = CASE 19  
  Group 14 (n= 1)  
   Object = CASE 14  
  Group 16 (n= 1)  
   Object = CASE 16  
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  Group 20 (n= 1)  
   Object = CASE 20  

 (…. for 9 groups, 8 groups, etc. down to 2 groups) 

  4 groups after combining group 4 (n = 6 ) and group 9 (n = 1) 
error = 11.027  
  Group 1 (n= 8)  
   Object = CASE 1  
   Object = CASE 2  
   Object = CASE 3  
   Object = CASE 6  
   Object = CASE 7  
   Object = CASE 15  
   Object = CASE 16  
   Object = CASE 17  
  Group 4 (n= 4)  
   Object = CASE 4  
   Object = CASE 8  
   Object = CASE 9  
   Object = CASE 20  
  Group 5 (n= 7)  
   Object = CASE 5  
   Object = CASE 10  
   Object = CASE 11  
   Object = CASE 12  
   Object = CASE 13  
   Object = CASE 18  
   Object = CASE 19  
  Group 14 (n= 1)  
   Object = CASE 14  

  3 groups after combining group 0 (n = 8 ) and group 13 (n = 1) 
error = 13.897  
  Group 1 (n= 9)  
   Object = CASE 1  
   Object = CASE 2  
   Object = CASE 3  
   Object = CASE 6  
   Object = CASE 7  
   Object = CASE 14  
   Object = CASE 15  
   Object = CASE 16  
   Object = CASE 17  
  Group 4 (n= 4)  
   Object = CASE 4  
   Object = CASE 8  
   Object = CASE 9  
   Object = CASE 20  
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  Group 5 (n= 7)  
   Object = CASE 5  
   Object = CASE 10  
   Object = CASE 11  
   Object = CASE 12  
   Object = CASE 13  
   Object = CASE 18  
   Object = CASE 19  

  2 groups after combining group 3 (n = 4 ) and group 4 (n = 7) 
error = 17.198  
  Group 1 (n= 9)  
   Object = CASE 1  
   Object = CASE 2  
   Object = CASE 3  
   Object = CASE 6  
   Object = CASE 7  
   Object = CASE 14  
   Object = CASE 15  
   Object = CASE 16  
   Object = CASE 17  
  Group 4 (n= 11)  
   Object = CASE 4  
   Object = CASE 5  
   Object = CASE 8  
   Object = CASE 9  
   Object = CASE 10  
   Object = CASE 11  
   Object = CASE 12  
   Object = CASE 13  
   Object = CASE 18  
   Object = CASE 19  
   Object = CASE 20   

 If you compare the results above with a discriminant analysis analysis on the 
same data, you will see that the clustering procedure does not necessarily replicate 
the original groups. Clearly, “nearest neighbor” grouping in Euclidean space does 
not necessarily result in the same a priori groups from the discriminant analysis. 

 By examining the increase in error (variance of subjects within the groups) as a 
function of the number of groups, one can often make some decision about the 
number of groups they wish to interpret. There is a large increase in error when 
going from 8 groups down to 7 in this analysis which suggests there are possibly 7 
or 8 groups which might be examined. If we had more information on the objects of 
those groups, we might see a pattern or commonality shared by objects of those 
groups.  
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   K-Means Clustering Analysis    

 With this procedure, one  fi rst speci fi es the number of groups to be formed among 
the objects. The procedure uses a procedure to load each of the k groups with one 
object in a somewhat random manner. The procedure then iteratively adds or sub-
tracts objects from each group based on an error measure of the distance between 
the objects in the group. The procedure ends when subsequent iterations do not 
produce a lower value or the number of iterations has been exceeded. 

 In this example, we loaded the cansas.TAB  fi le to group the 20 subjects into four 
groups. The results may be compared with the other cluster methods of this chapter 
(Fig.  9.5 ).  

 Results are: 

  K-Means Clustering. Adapted from AS 136 APPL. STATIST. (1979) 
VOL.28, NO.1  

  File = C:\Documents and Settings\Owner\My Documents\Projects\
Clanguage\OpenStat\cansas.TAB  
  No. Cases = 20, No. Variables = 6, No. Clusters = 4  

  NUMBER OF SUBJECTS IN EACH CLUSTER  
  Cluster = 1 with 1 cases.  
  Cluster = 2 with 7 cases.  
  Cluster = 3 with 9 cases.  
  Cluster = 4 with 3 cases.  

  PLACEMENT OF SUBJECTS IN CLUSTERS  
  CLUSTER SUBJECT  
   1 14  
   2 2  
   2 6  
   2 8  
   2 1  
   2 15  

  Fig. 9.5    The K Means Clustering form       
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   2 17  
   2 20  
   3 11  
   3 12  
   3 13  
   3 4  
   3 5  
   3 9  
   3 18  
   3 19  
   3 10  
   4 7  
   4 16  
   4 3  

  AVERAGE VARIABLE VALUES BY CLUSTER  
   VARIABLES  

   CLUSTER 1 2 3 4 5 6  
   1 0.11 1.03 -0.12 -0.30 -0.02 -0.01  
   2 -0.00 0.02 -0.02 -0.19 -0.01 -0.01  
   3 -0.02 -0.20 0.01 0.17 0.01 0.01  
   4 0.04 0.22 0.05 0.04 -0.00 0.01  

  WITHIN CLUSTER SUMS OF SQUARES  
  Cluster 1 = 0.000  
  Cluster 2 = 0.274  
  Cluster 3 = 0.406  
  Cluster 4 = 0.028   

   Average Linkage Hierarchical Cluster Analysis    

 This cluster procedure clusters objects based on their similarity (or dissimilarity) as 
recorded in a data matrix. The correlation among objects is often used as a measure 
of similarity. In this example, we  fi rst loaded the  fi le labeled “cansas.TAB”. We then 
“rotated” the data using the rotate function in the Edit menu so that columns repre-
sent subjects and rows represent variables. We then used the Correlation procedure 
(with the option to save the correlation matrix) to obtain the correlation among the 
20 subjects as a measure of similarity. We then closed the  fi le. Next, we opened the 
matrix  fi le we had just saved using the File / Open a Matrix File option. We then 
clicked on the Analyses / Multivariate / Cluster / Average Linkage option. Shown 
below is the dialogue box for the analysis (Fig.  9.6 ):  
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 Output of the analysis includes a listing of which objects (groups) are combined 
at each step followed by a dendogram of the combinations. You can compare this 
method of clustering subjects with that obtained in the previous analysis. 

  Average Linkage Cluster Analysis. Adopted from ClusBas by John 
S. Uebersax  
  Group  18 is joined by group  19. N is   2 ITER =   1 SIM =     0.999  
  Group   1 is joined by group   5. N is   2 ITER =   2 SIM =     0.998  
  Group   6 is joined by group   7. N is   2 ITER =   3 SIM =     0.995  
  Group  15 is joined by group  17. N is   2 ITER =   4 SIM =     0.995  
  Group  12 is joined by group  13. N is   2 ITER =   5 SIM =     0.994  
  Group   8 is joined by group  11. N is   2 ITER =   6 SIM =     0.993  
  Group   4 is joined by group   8. N is   3 ITER =   7 SIM =     0.992  
  Group   2 is joined by group   6. N is   3 ITER =   8 SIM =     0.988  
  Group  12 is joined by group  16. N is   3 ITER =   9 SIM =     0.981  
  Group  14 is joined by group  15. N is   3 ITER =  10 SIM =     0.980  
  Group   2 is joined by group   4. N is   6 ITER =  11 SIM =     0.978  
  Group  12 is joined by group  18. N is   5 ITER =  12 SIM =     0.972  
  Group   2 is joined by group  20. N is   7 ITER =  13 SIM =     0.964  
  Group   1 is joined by group   2. N is   9 ITER =  14 SIM =     0.962  
  Group   9 is joined by group  12. N is   6 ITER =  15 SIM =     0.933  
  Group   1 is joined by group   3. N is  10 ITER =  16 SIM =     0.911  
  Group   1 is joined by group  14. N is  13 ITER =  17 SIM =     0.900  
  Group   1 is joined by group   9. N is  19 ITER =  18 SIM =     0.783  
  Group   1 is joined by group  10. N is  20 ITER =  19 SIM =     0.558  

  No. of objects = 20  
  Matrix d     e fi ned similarities among objects.    

  Fig. 9.6    Average Linkage dialog form       
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   Path Analysis    

 To illustrate path analysis, you could utilize an example from page 788 of the book 
by Elazar J. Pedhazur (Multiple Regression in Behavioral Science, 1997.) Four 
variables in the study are labeled SES (Socio-Economic Status), IQ (Intelligence 
Quotient), AM (Achievement Motivation) and GPA (Grade Point Average.) Our 
theoretical speculations lead us to believe that AM is “caused” by SES and IQ and 
that GPA is “caused” by AM as well as SES and IQ. You would enter the correla-
tions among these variables into the data grid of OpenStat then analyze the matrix 
with the path analysis procedure. 

   Example of a Path Analysis 

 In this example we will use the  fi le CANSAS.TXT. The user begins by selecting the 
Path Analysis option of the Statistics / Multivariate menu. In the  fi gure below 
(Fig.  9.7 ) we have selected all variables to analyze and have entered our  fi rst path 
indicating that waist size is “caused” by weight:  

 We will also hypothesize that pulse rate is “caused” by weight, chin-ups are 
“caused” by weight, waist and pulse, that the number of sit-ups is “caused” by 
weight, waist and pulse and that jumps are “caused” by weight, waist and pulse. 
Each time we enter a new causal relationship we click the scroll bar to move to a 
new model number prior to entering the “caused” and “causing” variables. Once we 
have entered each model, we then click on the Compute button. Note we have 
elected to print descriptive statistics, each models correlation matrix, and the repro-
duced correlation matrix which will be our measure of how well the models “ fi t” the 
data. The results are shown below:              

  Fig. 9.7    Path Analysis dialog form       
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      PATH ANALYSIS RESULTS  

  CAUSED VARIABLE: waist  
   Causing Variables:  
   weight  
  CAUSED VARIABLE: pulse  
   Causing Variables:  
   weight  
  CAUSED VARIABLE: chins  
   Causing Variables:  
   weight  
   waist  
   pulse  
  CAUSED VARIABLE: situps  
   Causing Variables:  
   weight  
   waist  
   pulse  
  CAUSED VARIABLE: jumps  
   Causing Variables:  
   weight  
   waist  
   pulse  

      Correlation Matrix with 20 valid cases.  

  Variables  
    weight waist pulse chins situps  
   weight 1.000 0.870 -0.366 -0.390 -0.493  
   waist 0.870 1.000 -0.353 -0.552 -0.646  
   pulse -0.366 -0.353 1.000 0.151 0.225  
   chins -0.390 -0.552 0.151 1.000 0.696  
   situps -0.493 -0.646 0.225 0.696 1.000  
   jumps -0.226 -0.191 0.035 0.496 0.669  

  Variables  
    jumps  
   weight -0.226  
   waist -0.191  
   pulse 0.035  
   chins 0.496  
   situps 0.669  
   jumps 1.000  

  MEANS with 20 valid cases.  
  Variables weight waist pulse chins situps  
   178.600 35.400 56.100 9.450 145.550  
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  Variables jumps  
    70.300  
  VARIANCES with 20 valid cases.  
  Variables weight waist pulse chins situps  
   609.621 10.253 51.989 27.945 3914.576  

  Variables jumps  
   2629.379  

  STANDARD DEVIATIONS with 20 valid cases.  

  Variables weight waist pulse chins situps  
   24.691 3.202 7.210 5.286 62.567  

  Variables jumps  
   51.277  

  Dependent Variable = waist  

  Correlation Matrix with 20 valid cases.  

  Variables  
    weight waist  
   weight    1.000    0.870  
   waist     0.870    1.000  

  MEANS with 20 valid cases.  
  Variables weight waist  
                178.600   35.400  

  VARIANCES with 20 valid cases.  
  Variables weight waist  
   6 09.621 10.253  

  STANDARD DEVIATIONS with 20 valid cases.  
  Variables weight waist  
   24.691 3.202  
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      Dependent Variable = waist  

        R        R2         F     Prob.>F  DF1  DF2  
    0.870     0.757    56.173     0.000    1   18  
  Adjusted R Squared = 0.744  

  Std. Error of Estimate =      1.621  

  Variable       Beta      B      Std.Error t         Prob.>t  
  weight        0.870     0.113     0.015   7.495     0.000  

  Constant = 15.244  

      Dependent Variable = pulse  

  Correlation Matrix with 20 valid cases.  

  Variables  
               weight        pulse   
  weight        1.000       -0.366  
  pulse        -0.366        1.000  

  MEANS with 20 valid cases.  
  Variables      weight        pulse  
                 178.600       56.100  

  VARIANCES with 20 valid cases.  

  Variables      weight        pulse  
                 609.621       51.989   

  STANDARD DEVIATIONS with 20 valid cases.  

  Variables      weight        pulse  
                 24.691        7.210   

  Dependent Variable = pulse  

         R        R2         F     Prob.>F  DF1  DF2  
     0.366     0.134     2.780     0.113    1   18  
  Adjusted R Squared = 0.086  

  Std. Error of Estimate = 6.895  

  Variable      Beta      B      Std.Error  t         Prob.>t  
    weight     -0.366    -0.107  0.064     -1.667     0.113  

  Constant = 75.177  
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      Dependent Variable = chins  

  Correlation Matrix with 20 valid cases.  

   Variables  
    weight waist pulse chins  
   weight 1.000 0.870 -0.366 -0.390  
   waist 0.870 1.000 -0.353 -0.552  
   pulse -0.366 -0.353 1.000 0.151  
   chins -0.390 -0.552 0.151 1.000  

  MEANS with 20 valid cases.  

   Variables weight waist pulse chins  
    178.600 35.400 56.100 9.450  

  VARIANCES with 20 valid cases.  

   Variables weight waist pulse chins  
    609.621 10.253 51.989 27.945  

  STANDARD DEVIATIONS with 20 valid cases.  

   Variables weight waist pulse chins  
    24.691 3.202 7.210 5.286  

      Dependent Variable = chins  
         R        R2         F     Prob.>F  DF1  DF2  
     0.583     0.340     2.742     0.077    3   16  
  Adjusted R Squared = 0.216  
  Std. Error of Estimate =      4.681  

  Variable      Beta     B        Std.Error t         Prob.>t  
     weight     0.368    0.079    0.089     0.886     0.389  
     waist     -0.882   -1.456    0.683    -2.132     0.049  
     pulse     -0.026   -0.019    0.160    -0.118     0.907  
  Constant =   47.968  
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      Dependent Variable = situps  

  Correlation Matrix with 20 valid cases.  

  Variables  
    weight waist pulse situps  
   weight 1.000 0.870 -0.366 -0.493  
   waist 0.870 1.000 -0.353 -0.646  
   pulse -0.366 -0.353 1.000 0.225  
   situps -0.493 -0.646 0.225 1.000  

  MEANS with 20 valid cases.  

   Variables weight waist pulse situps  
    178.600 35.400 56.100 145.550  

  VARIANCES with 20 valid cases.  

   Variables weight waist pulse situps  
    609.621 10.253 51.989 3914.576  

  STANDARD DEVIATIONS with 20 valid cases.  

   Variables weight waist pulse situps  
    24.691 3.202 7.210 62.567  

      Dependent Variable = situps  

         R        R2         F     Prob.>F  DF1  DF2  
     0.661     0.436     4.131     0.024    3   16  
  Adjusted R Squared = 0.331  

  Std. Error of Estimate = 51.181  

  Variable      Beta     B        Std.Error t        Prob.>t    
   weight     0.287    0.728    0.973    0.748     0.466  
      waist    -0.890  -17.387    7.465   -2.329     0.033  
      pulse     0.016    0.139    1.755    0.079     0.938  

  Constant = 623.282  
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      Dependent Variable = jumps  

  Correlation Matrix with 20 valid cases.  

  Variables  
    weight waist pulse jumps  
   weight 1.000 0.870 -0.366 -0.226  
   waist 0.870 1.000 -0.353 -0.191  
   pulse -0.366 -0.353 1.000 0.035  
   jumps -0.226 -0.191 0.035 1.000  

  MEANS with 20 valid cases.  

   Variables weight waist pulse jumps  
    178.600 35.400 56.100 70.300  

  VARIANCES with 20 valid cases.  

   Variables weight waist pulse jumps  
    609.621 10.253 51.989 2629.379  

  STANDARD DEVIATIONS with 20 valid cases.  

   Variables weight waist pulse jumps  
    24.691 3.202 7.210 51.277  

      Dependent Variable = jumps  
         R        R2         F     Prob.>F  DF1  DF2  
     0.232     0.054     0.304     0.822    3   16  
  Adjusted R Squared = -0.123  

  Std. Error of Estimate = 54.351  

  Variable      Beta       B        Std.Error   t     Prob.>t  
     weight    -0.259    -0.538     1.034    -0.520    0.610  
      waist     0.015     0.234     7.928     0.029    0.977  
      pulse    -0.055    -0.389     1.863    -0.209    0.837  

  Constant =    179.887  
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      Matrix of Path Coef fi cients with 20 valid cases.  

  Variables  

    weight waist pulse chins situps  
   weight 0.000 0.870 -0.366 0.368 0.287  
   waist 0.870 0.000 0.000 -0.882 -0.890  
   pulse -0.366 0.000 0.000 -0.026 0.016  
   chins 0.368 -0.882 -0.026 0.000 0.000  
   situps 0.287 -0.890 0.016 0.000 0.000  
   jumps -0.259 0.015 -0.055 0.000 0.000  

  Variables  

    jumps  
   weight -0.259  
   waist 0.015  
   pulse -0.055  
   chins 0.000  
   situps 0.000  
   jumps 0.000  

      SUMMARY OF CAUSAL MODELS  
   Var. Caused Causing Var. Path Coef fi cient  
   waist weight 0.870  
   pulse weight -0.366  
   chins weight 0.368  
   chins waist -0.882  
   chins pulse -0.026  
   situps weight 0.287  
   situps waist -0.890  
   situps pulse 0.016  
   jumps weight -0.259  
   jumps waist 0.015  
   jumps pulse -0.055  
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 We note that pulse is not a particularly important predictor of chin-ups or sit-ups. 
The largest discrepancy of 0.562 between an original correlation and a correlation 
reproduced using the path coef fi cients indicates our model of causation may have 
been inadequate.   

   Factor Analysis    

 The sample factor analysis completed below utilizes a data set labeled CANSAS.
TXT as used in the previous path analysis example . The canonical factor analysis 
method was used and the varimax rotation method was used. 

 Shown below is the factor analysis form selected by choosing the factor analysis 
option under the Statistics / Multivariate menu (Fig.  9.8 ):  

 Note the options elected in the above form. The results obtained are shown below 
(Fig.  9.9 ):  

      Reproduced Correlation Matrix with 20 valid cases.  

  Variables  

    weight waist pulse chins situps  
   weight 1.000 0.870 -0.366 -0.390 -0.493  
   waist 0.870 1.000 -0.318 -0.553 -0.645  
   pulse -0.366 -0.318 1.000 0.120 0.194  
   chins -0.390 -0.553 0.120 1.000 0.382  
   situps -0.493 -0.645 0.194 0.382 1.000  
   jumps -0.226 -0.193 0.035 0.086 0.108  

  Variables  
    jumps  
   weight -0.226  
   waist -0.193  
   pulse 0.035  
   chins 0.086  
   situps 0.108  
   jumps 1.000  

  Average absolute difference between observed and reproduced  
  coef fi cients := 0.077  
  Maximum difference found := 0.562  
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  Fig. 9.8    Factor Analysis dialog form       

  Fig. 9.9    Screen plot of eigenvalues       
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Factor Analysis
See Rummel, R.J., Applied Factor Analysis
Northwestern University Press, 1970

Canonical Factor Analysis
Original matrix trace = 18.56
Roots (Eigenvalues) Extracted:

1 15.512
2  3.455
3  0.405
4  0.010
5 -0.185
6 -0.641

Unrotated Factor Loadings

FACTORS with 20 valid cases.

Variables
  Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
 weight 0.858 -0.286 0.157 -0.006 0.000
 waist 0.928 -0.201 -0.066 -0.003 0.000
 pulse -0.360 0.149 -0.044 -0.089 0.000
 chins -0.644 -0.382 0.195 0.009 0.000
 situps -0.770 -0.472 0.057 -0.009 0.000
 jumps -0.409 -0.689 -0.222 0.005 0.000

Variables

  Factor 6
 weight 0.000
 waist 0.000
 pulse 0.000
 chins 0.000
 situps 0.000
 jumps 0.000
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Percent of Trace In Each Root:
   1 Root := 15.512 Trace := 18.557 Percent :=  83.593
   2 Root :=  3.455 Trace := 18.557 Percent :=  18.621
   3 Root :=  0.405 Trace := 18.557 Percent :=   2.180
   4 Root :=  0.010 Trace := 18.557 Percent :=   0.055
   5 Root := -0.185 Trace := 18.557 Percent :=  -0.995
   6 Root := -0.641 Trace := 18.557 Percent :=  -3.455

COMMUNALITY ESTIMATES
   1 weight 0.844
   2 waist 0.906
   3 pulse 0.162
   4 chins 0.598
   5 situps 0.819
   6 jumps 0.692

Proportion of variance in unrotated factors
   1 48.364
   2 16.475

Communality Estimates as percentages:
   1 81.893
   2 90.153
   3 15.165
   4 56.003
   5 81.607
   6 64.217

Varimax Rotated Loadings with 20 valid cases.

Variables
  Factor 1 Factor 2
 weight -0.882 -0.201
 waist -0.898 -0.310
 pulse 0.385 0.059
 chins 0.352 0.660
 situps 0.413 0.803
 jumps -0.009  0.801
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Percent of Variation in Rotated Factors
Factor   1 33.776
Factor   2 31.064
Total Percent of Variance in Factors : 64.840

Communalities as Percentages
1 for weight 81.893
2 for waist 90.153
3 for pulse 15.165
4 for chins 56.003
5 for situps 81.607
6 for jumps 64.217



194 9 Multivariate

 We note that two factors were extracted with eigenvalues greater than 1.0 and 
when rotated indicate that the three body measurements appear to load on one factor 
and that the performance measures load on the second factor. The data grid also now 
contains the “least-squares” factor scores for each subject. Hummm! I wonder what 
a hierarchical grouping of these subjects on the two factor scores would produce!  

   General Linear Model (Sums of Squares by Regression) 

 Two examples will be provided in this section. The  fi rst example demonstrates the 
use of the GLM procedure for completing a three-way analysis of variance. The 
second will demonstrate the use of the GLM procedure a repeated measures analy-
sis of variance. Alternative procedures will also be presented to aid in the interpreta-
tion of the results. 

Labels:
 1 = situps
 2 = jumps
 3 = chins
 4 = pulse
 5 = weight
 6 = waist

SUBJECT FACTOR SCORE RESULTS:

Regression Coefficients with 20 valid cases.

Variables
  Factor 1 Factor 2
 weight -0.418 0.150
 waist -0.608 0.080
 pulse 0.042 -0.020
 chins -0.024 0.203
 situps -0.069 0.526
 jumps -0.163 0.399
Standard Error of Factor Scores:
Factor 1    0.946
Factor 2    0.905
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   Example 1 

 The  fi le labeled Ancova3.tab is loaded. Next, select the Analyses / Multivariate / 
Sums of Squares by Regression option from the menu. Shown below is the form for 
specifying a three-way, analysis of covariance. The dependent variable X has been 
entered in the continuous dependent variable list. The independent variables Row, 
Column, Slice have been entered in the  fi xed effects dependent list box. The two 
covariates have been entered in the covariates box. The coding method elected for 
creating vectors representing the categories of the independent variables is the 
orthogonal coding method. To specify the interactions for the analysis model, the 
button “begin de fi nition of an interaction” is clicked followed by clicking of each 
term to be included in the interaction. The speci fi cation of the interaction is ended 
by clicking the “end de fi nition of an interaction” button. This procedure was repeated 
for each of the interactions desired: row by column, row by slice, column by slice 
and row by column by slice. You will note that these interaction de fi nitions are sum-
marized using abbreviations in the list of de fi ned interactions. You may also select 
the output options desired before clicking the “Compute” button. It is suggested that 
you select the option for all multiple regression results only if you wish to fully 
understand how the analysis is completed since the output is voluminous. The out-
put shown below is the result of NOT selecting any of the options (Fig.  9.10 ).  

  Fig. 9.10    The GLM dialog form       
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 The results obtained are shown below. Each predictor (coded vector) is entered 
one-by-one with the increment in variance (squared multiple correlation). This is then 
followed by computing the full model (the model with all variables entered) minus 
each independent variable to obtain the decrement in variance associated with each 
speci fi c independent variable. Again, for brevity, this part of the output is not shown. 
A summary table then provides the results of the incremental and decrement effect of 
each variable. The  fi nal table summarizes the results for the analysis of variance. You 
will notice that, through the use of orthogonal coding, we can verify the indepen-
dence of the row, column and slice effect variables. The inter-correlation among the 
coding vectors for a balanced design will be zero (0.0). Attempting to do a three-way 
analysis of variance using the traditional “partitioning of variance” method may 
result in a program error when a design is unbalanced, that is, the cell sizes are not 
equal or proportional across the factors. The unique contributions of each factor can, 
however, be assessed using multiple regression as in the general linear model. 

    SUMS OF SQUARES AND MEAN SQUARES BY REGRESSION  
  TYPE III SS - R2 = Full Model - Restricted Model  

  VARIABLE       SUM OF SQUARES  D.F.  
             Cov1      1.275        1  
             Cov2      0.783        1  
             Row1     25.982        1  
             Col1     71.953        1  
           Slice1     13.323        1  
           Slice2      0.334        1  
             C1R1     21.240        1  
             S1R1     11.807        1  
             S2R1      0.138        1  
             S1C1     13.133        1  
             S2C1      0.822        1  
           S1C1R1      0.081        1  
           S2C1R1     47.203        1  
  ERROR               46.198       58  
  TOTAL              269.500       71  

  TOTAL EFFECTS SUMMARY  

      SOURCE                 SS  D.F.      MS      

             Cov1     1.275   1     1.275  
             Cov2     0.783   1     0.783  
              Row    25.982   1    25.982  
              Col    71.953   1    71.953  
            Slice    13.874   2     6.937  
          Row*Col    21.240   1    21.240  
        Row*Slice    11.893   2     5.947  
        Col*Slice    14.204   2     7.102  
    Row*Col*Slice    47.247   2    23.624          
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  SOURCE                     SS  D.F.       MS      

  BETWEEN SUBJECTS      208.452   13  
           Covariates     2.058    2      1.029  
                  Row    25.982    1     25.982  
                  Col    71.953    1     71.953  
                Slice    13.874    2      6.937  
              Row*Col    21.240    1     21.240  
            Row*Slice    11.893    2      5.947  
            Col*Slice    14.204    2      7.102  
        Row*Col*Slice    47.247    2     23.624  
  ERROR BETWEEN          46.198   58      0.797      

      TOTAL                 269.500   71      

 The output above may be compared with the results obtained using the analysis 
of covariance procedure under the Analysis of Variance menu. The results from that 
analysis are shown next. You can see that the results are essentially identical although 
the ANCOVA procedure also includes some tests of the assumptions of 
homogeneity. 

  Test for Homogeneity of Group Regression Coef fi cients  
  Change in R2 = 0.1629. F = 31.437 Prob.> F = 0.0000 with d.f. 22 and 36  

  Unadjusted Group Means for Group Variables Row  
  Means  
  Variables    Group 1     Group 2    
                  3.500       4.667    

  Intercepts for Each Group Regression Equation for Variable: Row  
  Intercepts  
  Variables    Group 1     Group 2    
                  4.156       5.404    

  Adjusted Group Means for Group Variables Row  
  Means  
  Variables    Group 1     Group 2    
                  3.459       4.707    

  Unadjusted Group Means for Group Variables Col  
  Means  
  Variables    Group 1     Group 2    
                  3.000       5.167    
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  Intercepts for Each Group Regression Equation for Variable: Col  
  Intercepts  
  Variables    Group 1     Group 2    
                4.156       5.404    

  Adjusted Group Means for Group Variables Col  
  Means  
  Variables    Group 1     Group 2  
                2.979       5.187    

  Unadjusted Group Means for Group Variables Slice  
  Means  
  Variables    Group 1     Group 2     Group 3    
                3.500       4.500       4.250    

  Intercepts for Each Group Regression Equation for Variable: Slice  
  Intercepts  
  Variables    Group 1     Group 2     Group 3    
                4.156       3.676       6.508    
  Adjusted Group Means for Group Variables Slice  
  Means  
  Variables    Group 1     Group 2     Group 3    
                3.493       4.572       4.185    
  Test for Each Source of Variance Obtained by Eliminating   from 
the Regression Model for ANCOVA the Vectors Associated   with 
Each Fixed Effect.  

      SOURCE     Deg.F.     SS         MS        F           Prob>F      

   Cov1 1 1.27 1.27 1.600 0.2109  
   Cov2 1 0.78 0.78 0.983 0.3255  
   A 1 25.98 25.98 32.620 0.0000  
   B 1 71.95 71.95 90.335 0.0000  
   C 2 13.87 6.94 8.709 0.0005  
   AxB 1 21.24 21.24 26.666 0.0000  
   AxC 2 11.89 5.95 7.466 0.0013  
   BxC 2 14.20 7.10 8.916 0.0004  
   AxBxC 2 47.25 23.62 29.659 0.0000      

   ERROR 58 46.20 0.80      

   TOTAL 71 269.50          

  ANALYSIS FOR COVARIATES ONLY  
  Covariates 2 6.99 3.49 0.918 0.4041       
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   Example Two 

 The second example of the GLM procedure involves a repeated measures analysis 
of variance similar to that you might complete with the “two between and one within 
anova” procedure. In this example, we have used the  fi le labeled REGSS2.TAB. 
The data include a dependent variable, row and column variables, a repeated mea-
sures variable and a subject code for each of the row and column combinations. 
There are three subjects within each of the row and column combinations and four 
repeated measures within each row-column combination. The speci fi cation for the 
analysis is shown above (Fig.  9.11 ):  

  Fig. 9.11    GLM Speci fi cations for a repeated measures ANOVA       
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 The results of the analysis are as follows: 

  SUMS OF SQUARES AND MEAN SQUARES BY REGRESSION  
  TYPE III SS - R2 = Full Model - Restricted Model  
  VARIABLE       SUM OF SQUARES  D.F.  
             Row1     10.083        1  
             Col1      8.333        1  
             Rep1    150.000        1  
             Rep2    312.500        1  
             Rep3    529.000        1  
             C1R1     80.083        1  
             R1R1      0.167        1  
             R2R1      2.000        1  
             R3R1      6.250        1  
             R1C1      4.167        1  
             R2C1      0.889        1  
             R3C1      7.111        1  
           R1C1R1      6.000        1  
           R2C1R1      0.500        1  
           R3C1R1      6.250        1  
  ERROR              134.667       32  
  TOTAL             1258.000       47  

  TOTAL EFFECTS SUMMARY      

  SOURCE                 SS  D.F.      MS      

              Row    10.083   1    10.083  
              Col     8.333   1     8.333  
              Rep   991.500   3   330.500  
          Row*Col    80.083   1    80.083  
          Row*Rep     8.417   3     2.806  
          Col*Rep    12.167   3     4.056  
      Row*Col*Rep    12.750   3     4.250          

  SOURCE                     SS  D.F.       MS      

  BETWEEN SUBJECTS      181.000   11  
                  Row    10.083    1     10.083  
                  Col     8.333    1      8.333  
              Row*Col    80.083    1     80.083  
  ERROR BETWEEN          82.500    8     10.312      
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  WITHIN SUBJECTS      1077.000   36  
                  Rep   991.500    3    330.500  
              Row*Rep     8.417    3      2.806  
              Col*Rep    12.167    3      4.056  
          Row*Col*Rep    12.750    3      4.250  
  ERROR WITHIN           52.167   24      2.174  

      TOTAL                1258.000   47      

 A comparable analysis may be performed using the  fi le labeled ABRData.tab. In 
this  fi le, the repeated measures for each subject are entered along with the row and 
column codes on the same line. In the previously analyzed  fi le, we had to code the 
repeated dependent values on separate lines and include a code for the subject and 
a code for the repeated measure. Here are the results for this analysis (Fig.  9.12 ):  

  Fig. 9.12    A × B × R ANOVA dialog form       
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      SOURCE              DF      SS       MS       F         PROB.      

  Between Subjects    11   181.000  
     A Effects         1   10.083    10.083    0.978     0.352  
     B Effects         1    8.333     8.333    0.808     0.395  
     AB Effects        1   80.083    80.083    7.766     0.024  
     Error Between     8    82.500   10.312  

  Within Subjects     36  1077.000  
     C Replications    3  991.500   330.500  152.051     0.000  
     AC Effects        3    8.417     2.806    1.291     0.300  
     BC Effects        3    12.167    4.056    1.866     0.162  
     ABC Effects       3    12.750    4.250    1.955     0.148  
     Error Within     24    52.167    2.174      

  Total               47  1258.000      

  ABR Means Table  
               Repeated Measures  
                    C1         C2         C3         C4   
  A1 B1          17.000     12.000      8.667      4.000   
  A1 B2          15.333     10.000      7.000      2.333   
  A2 B1          16.667     10.000      6.000      2.333   
  A2 B2          17.000     14.000      9.333      8.333   

  AB Means Table  
               B Levels  
                    B1         B2   
  A1             10.417      8.667   
  A2              8.750     12.167   

  AC Means Table  
               C Levels  
                   C1         C2         C3         C4   
  A1             16.167     11.000      7.833      3.167   
  A2             16.833     12.000      7.667      5.333   

  BC Means Table  
               C Levels  
                   C1         C2         C3         C4   
  B1             16.833     11.000      7.333      3.167   
  B2             16.167     12.000      8.167      5.333   
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 It may be observed that the sums of squares and mean squares for the two analyses 
above are identical. The analysis of variance procedure (second analysis) does give 
the F tests as well as means (and plots if elected) for the various variance compo-
nents. What is demonstrated however is that the analysis of variance model may be 
completely de fi ned using multiple regression methods. It might also be noted that 
one can choose NOT to include all interaction terms in the GLM procedure if there 
is an adequate basis for expecting such interactions to be zero. Notice that we might 
also have included covariates in the GLM procedure. That is, one can complete a 
repeated measures analysis of covariance which is not an option in the regular anova 
procedures!   

   Median Polish Analysis    

 Our example uses the  fi le labeled “GeneChips.TEX” which is an array of cells with 
one observation per cell. The dialogue for the analysis appears as (Fig.  9.13 ):  

  Fig. 9.13    Dialog for the Median Polish analysis       
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 The results obtained are: 

  Observed Data  
  ROW            COLUMNS  
             1         2         3         4         5  
    1    18.000    11.000     8.000    21.000     4.000   
    2    13.000     7.000     5.000    16.000     7.000   
    3    15.000     6.000     7.000    16.000     6.000   
    4    19.000    15.000    12.000    18.000     5.000  

  Adjusted Data  
  MEDIAN      1       2       3       4        5      Residuals  
  -------------------------------------------------  
    0.000    0.500    0.000   -1.250    1.750   -2.250     0.000   
    0.000   -0.500    0.000   -0.250    0.750    4.750     0.000   
    0.000    0.000   -2.500    0.250   -0.750    2.250     0.000   
    0.000    0.000    2.500    1.250   -2.750   -2.750     0.000   
  --------------------------------------------------  
  Col.Resid.    0.000     0.000     0.000     0.000     0.000   
  Col.Median    0.000     0.000     0.000     0.000     0.000  

  Cumulative absolute value of Row Residuals  
  Row = 1  Cum.Residuals =    10.250  
  Row = 2  Cum.Residuals =    21.750  
  Row = 3  Cum.Residuals =    17.250  
  Row = 4  Cum.Residuals =    10.250  

  Cumulative absolute value of Column Residuals  
  Column = 1  Cum.Residuals =    1.000  
  Column = 2  Cum.Residuals =    1.000  
  Column = 3  Cum.Residuals =    2.000  
  Column = 4  Cum.Residuals =    7.000  
  Column = 5  Cum.Residuals =    6.000   

   Bartlett Test of Sphericity    

 This test is often used to determine the degree of sphericity in a matrix. A chi-
squared test is used to determine the probability of the degree of sphericity found. 
As an example, the “cansas.TEX”  fi le provides a signi fi cant degree of sphericity as 
shown in the analysis below (Fig.  9.14 ):  
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  CORRELATION MATRIX  
   Variables weight waist pulse chins situps jumps  
   weight 1.000 0.870 -0.366 -0.390 -0.493 -0.226  
   waist 0.870 1.000 -0.353 -0.552 -0.646 -0.191  
   pulse -0.366 -0.353 1.000 0.151 0.225 0.035  
   chins -0.390 -0.552 0.151 1.000 0.696 0.496  
   situps -0.493 -0.646 0.225 0.696 1.000 0.669  
   jumps -0.226 -0.191 0.035 0.496 0.669 1.000  

  Determinant = -3.873, log of determinant = 0.000  

  Chi-square = 69.067, D.F. = 15, Probability greater value = 0.0000   

  Fig. 9.14    Dialog for the Bartlett Test of Sphericity       
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   Correspondence Analysis    

 This procedure analyzes data such as that found in the “smokers.TEX”  fi le and 
shown below: 

  CASES FOR FILE C:\Users\wgmiller\Projects\Data\Smokers.TEX  

   UNITS Group None Light Medium Heavy  
   CASE 1 Senior_Mgr. 4 2 3 2  
   CASE 2 Junior_Mgr. 4 3 7 4  
   CASE 3 Senior_Emp. 25 10 12 4  
   CASE 4 Junior_Emp. 18 24 33 13  
   CASE 5 Secretaries 10 6 7 2  

 The dialog for the analysis appears as (Fig.  9.15 ):  
 The results obtained are (Figs.  9.16 ,  9.17 ,  9.18 ): 

  Fig. 9.15    Dialog for Correspondence Analysis       

 



  Fig. 9.16    Correspondence Analysis plot 1       

  Fig. 9.17    Correspondence Analysis plot 2       
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  CORRESPONDENCE ANALYSIS  
  Based on formulations of Bee-Leng Lee  
  Chapter 11 Correspondence Analysis for ViSta  
  Results are based on the Generalized Singular Value Decomposition  
  of P = A x D x B’ where P is the relative frequencies observed,  
  A are the left generalized singular vectors,  
  D is a diagonal matrix of generalized singular values, and  
  B’ is the transpose of the right generalized singular vectors.  
  NOTE: The  fi rst value and corresponding vectors are 1 and are  
  to be ignored.  
  An intermediate step is the regular SVD of the matrix Q = UDV’  
  where Q = Dr^-1/2 x P x Dc^-1/2 where Dr is a diagonal matrix  
  of total row relative frequencies and Dc is a diagonal matrix  
  of total column relative frequencies.  
  Chi-square Analysis Results  
  No. of Cases = 193  

  Fig. 9.18    Correspondence Analysis plot 3       
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  OBSERVED FREQUENCIES  
   Frequencies  
   None Light Medium Heavy Total  
  Senior_Mgr. 4 2 3 2 11  
  Junior_Mgr. 4 3 7 4 18  
  Senior_Emp. 25 10 12 4 51  
  Junior_Emp. 18 24 33 13 88  
  Secretaries 10 6 7 2 25  
  Total 61 45 62 25 193  

  EXPECTED FREQUENCIES  

   Expected Values  
   None Light Medium Heavy  
  Senior_Mgr. 3.477 2.565 3.534 1.425  
  Junior_Mgr. 5.689 4.197 5.782 2.332  
  Senior_Emp. 16.119 11.891 16.383 6.606  
  Junior_Emp. 27.813 20.518 28.269 11.399  
  Secretaries 7.902 5.829 8.031 3.238  

  PROPORTIONS OF TOTAL N  

   Proportions  
   None Light Medium Heavy Total  
  Senior_Mgr. 0.021 0.010 0.016 0.010 0.057  
  Junior_Mgr. 0.021 0.016 0.036 0.021 0.093  
  Senior_Emp. 0.130 0.052 0.062 0.021 0.264  
  Junior_Emp. 0.093 0.124 0.171 0.067 0.456  
  Secretaries 0.052 0.031 0.036 0.010 0.130  
  Total 0.316 0.233 0.321 0.130 1.000  

  Chi-square =   16.442 with D.F. = 12. Prob. > value =    0.172  

  Liklihood Ratio =   16.348 with prob. > value = 0.1758  

  phi correlation = 0.2919  

  Pearson Correlation r = 0.0005  

  Mantel-Haenszel Test of Linear Association = 0.000 with probability 
> value = 0.9999  

  The coef fi cient of contingency = 0.280  

  Cramer’s V = 0.169  

  Inertia = 0.0852   
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  Row Dimensions  

   (Ignore Column 1)  
   None Light Medium Heavy  
  Senior_Mgr. 1.000 -0.066 0.194 0.071  
  Junior_Mgr. 1.000 0.259 0.243 -0.034  
  Senior_Emp. 1.000 -0.381 0.011 -0.005  
  Junior_Emp. 1.000 0.233 -0.058 0.003  
  Secretaries 1.000 -0.201 -0.079 -0.008  

  Column Dimensions  
   (Ignore Column 1)  
   None Light Medium Heavy  
  None 1.000 -0.393 0.030 -0.001  
  Light 1.000 0.099 -0.141 0.022  
  Medium 1.000 0.196 -0.007 -0.026  
  Heavy 1.000 0.294 0.198 0.026     

   Log Linear Screening   , A¥B and A¥B¥C Analyses 

 The chi-squared test is often used for testing the independence of observed frequen-
cies in a two-way table. However, there may be three classi fi cations in which objects 
counted. Moreover, one may be interested in the model that best describes the 
observed values. OpenStat contains three procedures to analyzed cross-classi fi ed 
data. The  fi rst is an “over-all” screening, the second is for analyzing a two-way 
classi fi cation table and the third is to analyze a three-way classi fi cation table. To 
demonstrate these procedures, we will use a  fi le labeled “ABCLogLinData.TEX” 
from the sample data  fi les (Figs.  9.19 ,  9.20 ,  9.21 ). 
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  Fig. 9.20    Dialog for the A × B Log Linear Analysis       

  Fig. 9.19    Dialog for Log Linear Screening       
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   The Screening Procedure    

  FILE: C:\Users\wgmiller\Projects\Data\ABCLogLinData.tex  

  Marginal Totals for Row  
  Level Frequency  
   1 63  
   2 84  

  Marginal Totals for Col  
  Level Frequency  
   1 54  
   2 93  

  Marginal Totals for Slice  
  Level Frequency  
   1 42  
   2 54  
   3 51  

  Total Frequencies = 147  

  Fig. 9.21    Dialog for the A × B × C Log Linear Analysis       

 



213

  FILE: C:\Users\wgmiller\Projects\Data\ABCLogLinData.tex  

  EXPECTED CELL VALUES FOR MODEL OF COMPLETE INDEPENDENCE  

  Cell Observed Expected Log Expected  
   1 1 1 6 6.61 1.889  
   2 1 1 6 8.82 2.177  
   1 2 1 15 11.39 2.433  
   2 2 1 15 15.18 2.720  
   1 1 2 9 8.50 2.140  
   2 1 2 15 11.34 2.428  
   1 2 2 12 14.64 2.684  
   2 2 2 18 19.52 2.972  
   1 1 3 12 8.03 2.083  
   2 1 3 6 10.71 2.371  
   1 2 3 9 13.83 2.627  
   2 2 3 24 18.44 2.914  
  Chisquare =     11.310 with probability = 0.004      (DF = 2)  
  G squared =     11.471 with probability = 0.003      (DF = 2)  

  U (mu) for general loglinear model = 2.45  

  First Order LogLinear Model Factors and N of Cells in Each  
   CELL   U1 N Cells U2 N Cells U3 N Cells  
   1 1 1 -0.144 6 -0.272 6 -0.148 4  
   2 1 1 0.144 6 -0.272 6 -0.148 4  
   1 2 1 -0.144 6 0.272 6 -0.148 4  
   2 2 1 0.144 6 0.272 6 -0.148 4  
   1 1 2 -0.144 6 -0.272 6 0.103 4  
   2 1 2 0.144 6 -0.272 6 0.103 4  
   1 2 2 -0.144 6 0.272 6 0.103 4  
   2 2 2 0.144 6 0.272 6 0.103 4  
   1 1 3 -0.144 6 -0.272 6 0.046 4  
   2 1 3 0.144 6 -0.272 6 0.046 4  
   1 2 3 -0.144 6 0.272 6 0.046 4  
   2 2 3 0.144 6 0.272 6 0.046 4  

  Second Order Loglinear Model Terms and N of Cells in Each  
   CELL   U12 N Cells U13 N Cells U23 N Cells  
   1 1 1 -0.416 3 -0.292 2 -0.420 2  
   2 1 1 -0.128 3 -0.005 2 -0.420 2  
   1 2 1 0.128 3 -0.292 2 0.123 2  
   2 2 1 0.416 3 -0.005 2 0.123 2  
   1 1 2 -0.416 3 -0.041 2 -0.169 2  
   2 1 2 -0.128 3 0.247 2 -0.169 2  
   1 2 2 0.128 3 -0.041 2 0.375 2  
   2 2 2 0.416 3 0.247 2 0.375 2  
   1 1 3 -0.416 3 -0.098 2 -0.226 2  
   2 1 3 -0.128 3 0.190 2 -0.226 2  
   1 2 3 0.128 3 -0.098 2 0.317 2  
   2 2 3 0.416 3 0.190 2 0.317 2  

Log Linear Screening, A´B and A´B´C Analyses



214 9 Multivariate

  SCREEN FOR INTERACTIONS AMONG THE VARIABLES  
  Adapted from the Fortran program by Lustbader and Stodola printed in  
  Applied Statistics, Volume 30, Issue 1, 1981, pages 97-105 as Algorithm  
  AS 160 Partial and Marginal Association in Multidimensional Contingency 
Tables  
  Statistics for tests that the interactions of a given order are zero  
  ORDER STATISTIC D.F. PROB.  
   1 15.108 4 0.004  
   2 6.143 5 0.293  
   3 5.328 2 0.070  

  Statistics for Marginal Association Tests  
   VARIABLE ASSOC. PART ASSOC. MARGINAL ASSOC. D.F. PROB  
   1 1 3.010 3.010 1 0.083  
   1 2 10.472 10.472 1 0.001  
   1 3 1.626 1.626 2 0.444  
   2 1 2.224 1.773 1 0.183  
   2 2 1.726 1.275 2 0.529  
   2 3 3.095 2.644 2 0.267   

   The A × B Log Linear Analysis       

  ANALYSES FOR AN I BY J CLASSIFICATION TABLE  

  Reference: G.J.G. Upton, The Analysis of Cross-tabulated Data, 1980  

  Cross-Products Odds Ratio =  1.583  
  Log odds of the cross-products ratio =  0.460  

  Saturated Model Results  

  Observed Frequencies  
   ROW/COL 1 2 TOTAL  
   1 27.00 36.00 63.00  
   2 27.00 57.00 84.00  
   TOTAL 54.00 93.00 147.00  

  Log frequencies, row average and column average of log frequencies  
   ROW/COL 1 2 TOTAL  
   1 3.30 3.58 3.44  
   2 3.30 4.04 3.67  
  TOTAL 3.30 3.81 3.55  

  Expected Frequencies  
   ROW/COL 1 2 TOTAL  
   1 27.00 36.00 63.00  
   2 27.00 57.00 84.00  
  TOTAL 54.00 93.00 147.00  
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  Cell Parameters  
   ROW COL MU LAMBDA ROW LAMBDA COL LAMBDA ROW x COL  
   1 1 3.555 -0.115 -0.259 0.115  
   1 2 3.555 -0.115 0.259 -0.115  
   2 1 3.555 0.115 -0.259 -0.115  
   2 2 3.555 0.115 0.259 0.115  

  Y squared statistic for model  fi t = -0.000 D.F. = 0  

  Independent Effects Model Results  

  Expected Frequencies  
   ROW/COL 1 2 TOTAL  
   1 23.14 39.86 63.00  
   2 30.86 53.14 84.00  
  TOTAL 54.00 93.00 147.00  

  Cell Parameters  
  ROW COL MU LAMBDA ROW LAMBDA COL LAMBDA ROW x COL  
   1 1 3.557 -0.144 -0.272 0.000  
   1 2 3.557 -0.144 0.272 0.000  
   2 1 3.557 0.144 -0.272 0.000  
   2 2 3.557 0.144 0.272 0.000  

  Y squared statistic for model  fi t = 1.773 D.F. = 1  
  Chi-squared = 1.778 with 1 D.F.  

  No Column Effects Model Results  

  Expected Frequencies  
   ROW/COL 1 2 TOTAL  
   1 31.50 31.50 63.00  
   2 42.00 42.00 84.00  
  TOTAL 73.50 73.50 147.00  
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  Cell Parameters  
  ROW COL MU LAMBDA ROW LAMBDA COL LAMBDA ROW x COL  
   1 1 3.594 -0.144 0.000 -0.000  
   1 2 3.594 -0.144 0.000 -0.000  
   2 1 3.594 0.144 0.000 -0.000  
   2 2 3.594 0.144 0.000 -0.000  

  Y squared statistic for model  fi t = 12.245 D.F. = 2  

  No Row Effects Model Results  

  Expected Frequencies  
   ROW/COL 1 2 TOTAL  
   1 27.00 46.50 73.50  
   2 27.00 46.50 73.50  
  TOTAL 54.00 93.00 147.00  

  Cell Parameters  
  ROW COL MU LAMBDA ROW LAMBDA COL LAMBDA ROW x COL  
   1 1 3.568 0.000 -0.272 0.000  
   1 2 3.568 0.000 0.272 0.000  
   2 1 3.568 0.000 -0.272 0.000  
   2 2 3.568 0.000 0.272 0.000  

  Y squared statistic for model  fi t = 4.783 D.F. = 2  

  Equiprobability Effects Model Results  

  Expected Frequencies  
   ROW/COL 1 2 TOTAL  
   1 36.75 36.75 36.75  
   2 36.75 36.75 36.75  
  TOTAL 36.75 36.75 147.00  

  Cell Parameters  
  ROW COL MU LAMBDA ROW LAMBDA COL LAMBDA ROW x COL  
   1 1 3.604 0.000 0.000 0.000  
   1 2 3.604 0.000 0.000 0.000  
   2 1 3.604 0.000 0.000 0.000  
   2 2 3.604 0.000 0.000 0.000  

  Y squared statistic for model  fi t = 15.255 D.F. = 3   
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   The A × B × C Log Linear Analysis       

  Log-Linear Analysis of a Three Dimension Table  
  Observed Frequencies  
   1 1 1 6.000  
   1 1 2 9.000  
   1 1 3 12.000  
   1 2 1 15.000  
   1 2 2 12.000  
   1 2 3 9.000  
   2 1 1 6.000  
   2 1 2 15.000  
   2 1 3 6.000  
   2 2 1 15.000  
   2 2 2 18.000  
   2 2 3 24.000  
  Totals for Dimension A  
  Row 1 63.000  
  Row 2 84.000  
  Totals for Dimension B  
  Col 1 54.000  
  Col 2 93.000  
  Totals for Dimension C  
  Slice 1 42.000  
  Slice 2 54.000  
  Slice 3 51.000  

  Sub-matrix AB  
   ROW/COL 1 2  
   1 27.000 36.000  
   2 27.000 57.000  

  Sub-matrix AC  
   ROW/COL 1 2 3  
   1 21.000 21.000 21.000  
   2 21.000 33.000 30.000  

  Sub-matrix BC  
   ROW/COL 1 2 3  
   1 12.000 24.000 18.000  
   2 30.000 30.000 33.000  
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  Saturated Model  
  Expected Frequencies  
   1 1 1 6.000  
   1 1 2 9.000  
   1 1 3 12.000  
   1 2 1 15.000  
   1 2 2 12.000  
   1 2 3 9.000  
   2 1 1 6.000  
   2 1 2 15.000  
   2 1 3 6.000  
   2 2 1 15.000  
   2 2 2 18.000  
   2 2 3 24.000  
  Totals for Dimension A  
  Row 1 63.000  
  Row 2 84.000  
  Totals for Dimension B  
  Col 1 54.000  
  Col 2 93.000  
  Totals for Dimension C  
  Slice 1 42.000  
  Slice 2 54.000  
  Slice 3 51.000  

  Log Frequencies  
   1 1 1 1.792  
   1 1 2 2.197  
   1 1 3 2.485  
   1 2 1 2.708  
   1 2 2 2.485  
   1 2 3 2.197  
   2 1 1 1.792  
   2 1 2 2.708  
   2 1 3 1.792  
   2 2 1 2.708  
   2 2 2 2.890  
   2 2 3 3.178  
  Totals for Dimension A  
  Row 1 2.311  
  Row 2 2.511  
  Totals for Dimension B  
  Col 1 2.128  
  Col 2 2.694  
  Totals for Dimension C  
  Slice 1 2.250  
  Slice 2 2.570  
  Slice 3 2.413  
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  Cell Parameters  
   ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C  
      LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC  
   1 1 1 2.411 -0.100 -0.283 -0.161  
      0.131 0.100 -0.175 -0.131  
   1 1 2 2.411 -0.100 -0.283 0.159  
      0.131 -0.129 0.166 -0.157  
   1 1 3 2.411 -0.100 -0.283 0.002  
      0.131 0.028 0.009 0.288  
   1 2 1 2.411 -0.100 0.283 -0.161  
      -0.131 0.100 0.175 0.131  
   1 2 2 2.411 -0.100 0.283 0.159  
      -0.131 -0.129 -0.166 0.157  
   1 2 3 2.411 -0.100 0.283 0.002  
      -0.131 0.028 -0.009 -0.288  
   2 1 1 2.411 0.100 -0.283 -0.161  
      -0.131 -0.100 -0.175 0.131  
   2 1 2 2.411 0.100 -0.283 0.159  
      -0.131 0.129 0.166 0.157  
   2 1 3 2.411 0.100 -0.283 0.002  
      -0.131 -0.028 0.009 -0.288  
   2 2 1 2.411 0.100 0.283 -0.161  
      0.131 -0.100 0.175 -0.131  
   2 2 2 2.411 0.100 0.283 0.159  
      0.131 0.129 -0.166 -0.157  
   2 2 3 2.411 0.100 0.283 0.002  
      0.131 -0.028 -0.009 0.288  

  G squared statistic for model  fi t = 0.000 D.F. = 0  

  Model of Independence  

  Expected Frequencies  
   1 1 1 6.612  
   1 1 2 8.501  
   1 1 3 8.029  
   1 2 1 11.388  
   1 2 2 14.641  
   1 2 3 13.828  
   2 1 1 8.816  
   2 1 2 11.335  
   2 1 3 10.706  
   2 2 1 15.184  
   2 2 2 19.522  
   2 2 3 18.437  
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  Totals for Dimension A  
  Row 1 63.000  
  Row 2 84.000  
  Totals for Dimension B  
  Col 1 54.000  
  Col 2 93.000  
  Totals for Dimension C  
  Slice 1 42.000  
  Slice 2 54.000  
  Slice 3 51.000  

  Log Frequencies  
   1 1 1 1.889  
   1 1 2 2.140  
   1 1 3 2.083  
   1 2 1 2.433  
   1 2 2 2.684  
   1 2 3 2.627  
   2 1 1 2.177  
   2 1 2 2.428  
   2 1 3 2.371  
   2 2 1 2.720  
   2 2 2 2.972  
   2 2 3 2.914  
  Totals for Dimension A  
  Row 1 2.309  
  Row 2 2.597  
  Totals for Dimension B  
  Col 1 2.181  
  Col 2 2.725  
  Totals for Dimension C  
  Slice 1 2.305  
  Slice 2 2.556  
  Slice 3 2.499  
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  Cell Parameters  
   ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C  
      LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC  
   1 1 1 2.453 -0.144 -0.272 -0.148  
      0.000 0.000 0.000 -0.000  
   1 1 2 2.453 -0.144 -0.272 0.103  
      0.000 -0.000 0.000 0.000  
   1 1 3 2.453 -0.144 -0.272 0.046  
      0.000 0.000 0.000 0.000  
   1 2 1 2.453 -0.144 0.272 -0.148  
      0.000 0.000 0.000 0.000  
   1 2 2 2.453 -0.144 0.272 0.103  
      0.000 -0.000 -0.000 0.000  
   1 2 3 2.453 -0.144 0.272 0.046  
      0.000 0.000 -0.000 0.000  
   2 1 1 2.453 0.144 -0.272 -0.148  
      0.000 0.000 0.000 -0.000  
   2 1 2 2.453 0.144 -0.272 0.103  
      0.000 -0.000 0.000 0.000  
   2 1 3 2.453 0.144 -0.272 0.046  
      0.000 0.000 0.000 -0.000  
   2 2 1 2.453 0.144 0.272 -0.148  
      -0.000 0.000 0.000 0.000  
   2 2 2 2.453 0.144 0.272 0.103  
      -0.000 -0.000 -0.000 0.000  
   2 2 3 2.453 0.144 0.272 0.046  
      -0.000 0.000 -0.000 0.000  

  G squared statistic for model  fi t = 11.471 D.F. = 7  

  No AB Effect  

  Expected Frequencies  
   1 1 1 6.000  
   1 1 2 9.333  
   1 1 3 7.412  
   1 2 1 15.000  
   1 2 2 11.667  
   1 2 3 13.588  
   2 1 1 6.000  
   2 1 2 14.667  
   2 1 3 10.588  
   2 2 1 15.000  
   2 2 2 18.333  
   2 2 3 19.412  
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  Totals for Dimension A  
  Row 1 63.000  
  Row 2 84.000  
  Totals for Dimension B  
  Col 1 54.000  
  Col 2 93.000  
  Totals for Dimension C  
  Slice 1 42.000  
  Slice 2 54.000  
  Slice 3 51.000  

  Log Frequencies  
   1 1 1 1.792  
   1 1 2 2.234  
   1 1 3 2.003  
   1 2 1 2.708  
   1 2 2 2.457  
   1 2 3 2.609  
   2 1 1 1.792  
   2 1 2 2.686  
   2 1 3 2.360  
   2 2 1 2.708  
   2 2 2 2.909  
   2 2 3 2.966  
  Totals for Dimension A  
  Row 1 2.300  
  Row 2 2.570  
  Totals for Dimension B  
  Col 1 2.144  
  Col 2 2.726  
  Totals for Dimension C  
  Slice 1 2.250  
  Slice 2 2.571  
  Slice 3 2.484  
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  Cell Parameters  
   ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C  
      LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC  
   1 1 1 2.435 -0.135 -0.291 -0.185  
      0.000 0.135 -0.167 0.000  
   1 1 2 2.435 -0.135 -0.291 0.136  
      0.000 -0.091 0.179 0.000  
   1 1 3 2.435 -0.135 -0.291 0.049  
      0.000 -0.044 -0.012 0.000  
   1 2 1 2.435 -0.135 0.291 -0.185  
      0.000 0.135 0.167 0.000  
   1 2 2 2.435 -0.135 0.291 0.136  
      0.000 -0.091 -0.179 0.000  
   1 2 3 2.435 -0.135 0.291 0.049  
      0.000 -0.044 0.012 0.000  
   2 1 1 2.435 0.135 -0.291 -0.185  
      0.000 -0.135 -0.167 -0.000  
   2 1 2 2.435 0.135 -0.291 0.136  
      0.000 0.091 0.179 -0.000  
   2 1 3 2.435 0.135 -0.291 0.049  
      0.000 0.044 -0.012 -0.000  
   2 2 1 2.435 0.135 0.291 -0.185  
      0.000 -0.135 0.167 0.000  
   2 2 2 2.435 0.135 0.291 0.136  
      0.000 0.091 -0.179 0.000  
   2 2 3 2.435 0.135 0.291 0.049  
      0.000 0.044 0.012 0.000  

  G squared statistic for model  fi t = 7.552 D.F. = 3  

  No AC Effect  

  Expected Frequencies  
   1 1 1 6.000  
   1 1 2 12.000  
   1 1 3 9.000  
   1 2 1 11.613  
   1 2 2 11.613  
   1 2 3 12.774  
   2 1 1 6.000  
   2 1 2 12.000  
   2 1 3 9.000  
   2 2 1 18.387  
   2 2 2 18.387  
   2 2 3 20.226  
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  Totals for Dimension A  
  Row 1 63.000  
  Row 2 84.000  
  Totals for Dimension B  
  Col 1 54.000  
  Col 2 93.000  
  Totals for Dimension C  
  Slice 1 42.000  
  Slice 2 54.000  
  Slice 3 51.000  

  Log Frequencies  
   1 1 1 1.792  
   1 1 2 2.485  
   1 1 3 2.197  
   1 2 1 2.452  
   1 2 2 2.452  
   1 2 3 2.547  
   2 1 1 1.792  
   2 1 2 2.485  
   2 1 3 2.197  
   2 2 1 2.912  
   2 2 2 2.912  
   2 2 3 3.007  
  Totals for Dimension A  
  Row 1 2.321  
  Row 2 2.551  
  Totals for Dimension B  
  Col 1 2.158  
  Col 2 2.714  
  Totals for Dimension C  
  Slice 1 2.237  
  Slice 2 2.583  
  Slice 3 2.487  
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  Cell Parameters  
  ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C  
      LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC  
   1 1 1 2.436 -0.115 -0.278 -0.199  
      0.115 0.000 -0.167 0.000  
   1 1 2 2.436 -0.115 -0.278 0.148  
      0.115 0.000 0.179 0.000  
   1 1 3 2.436 -0.115 -0.278 0.051  
      0.115 -0.000 -0.012 0.000  
   1 2 1 2.436 -0.115 0.278 -0.199  
      -0.115 0.000 0.167 0.000  
   1 2 2 2.436 -0.115 0.278 0.148  
      -0.115 0.000 -0.179 0.000  
   1 2 3 2.436 -0.115 0.278 0.051  
      -0.115 -0.000 0.012 0.000  
   2 1 1 2.436 0.115 -0.278 -0.199  
      -0.115 0.000 -0.167 -0.000  
   2 1 2 2.436 0.115 -0.278 0.148  
      -0.115 0.000 0.179 -0.000  
   2 1 3 2.436 0.115 -0.278 0.051  
      -0.115 0.000 -0.012 -0.000  
   2 2 1 2.436 0.115 0.278 -0.199  
      0.115 0.000 0.167 -0.000  
   2 2 2 2.436 0.115 0.278 0.148  
      0.115 0.000 -0.179 -0.000  
   2 2 3 2.436 0.115 0.278 0.051  
      0.115 0.000 0.012 -0.000  

  G squared statistic for model  fi t = 7.055 D.F. = 4  

  No BC Effect  

  Expected Frequencies  
   1 1 1 9.000  
   1 1 2 9.000  
   1 1 3 9.000  
   1 2 1 12.000  
   1 2 2 12.000  
   1 2 3 12.000  
   2 1 1 6.750  
   2 1 2 10.607  
   2 1 3 9.643  
   2 2 1 14.250  
   2 2 2 22.393  
   2 2 3 20.357  
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  Totals for Dimension A  
  Row 1 63.000  
  Row 2 84.000  
  Totals for Dimension B  
  Col 1 54.000  
  Col 2 93.000  
  Totals for Dimension C  
  Slice 1 42.000  
  Slice 2 54.000  
  Slice 3 51.000  

  Log Frequencies  
   1 1 1 2.197  
   1 1 2 2.197  
   1 1 3 2.197  
   1 2 1 2.485  
   1 2 2 2.485  
   1 2 3 2.485  
   2 1 1 1.910  
   2 1 2 2.362  
   2 1 3 2.266  
   2 2 1 2.657  
   2 2 2 3.109  
   2 2 3 3.013  
  Totals for Dimension A  
  Row 1 2.341  
  Row 2 2.553  
  Totals for Dimension B  
  Col 1 2.188  
  Col 2 2.706  
  Totals for Dimension C  
  Slice 1 2.312  
  Slice 2 2.538  
  Slice 3 2.490  
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  Cell Parameters  
  ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C  
      LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC  
   1 1 1 2.447 -0.106 -0.259 -0.135  
      0.115 0.135 0.000 -0.000  
   1 1 2 2.447 -0.106 -0.259 0.091  
      0.115 -0.091 0.000 -0.000  
   1 1 3 2.447 -0.106 -0.259 0.044  
      0.115 -0.044 -0.000 0.000  
   1 2 1 2.447 -0.106 0.259 -0.135  
      -0.115 0.135 -0.000 0.000  
   1 2 2 2.447 -0.106 0.259 0.091  
      -0.115 -0.091 -0.000 0.000  
   1 2 3 2.447 -0.106 0.259 0.044  
      -0.115 -0.044 -0.000 0.000  
   2 1 1 2.447 0.106 -0.259 -0.135  
      -0.115 -0.135 0.000 0.000  
   2 1 2 2.447 0.106 -0.259 0.091  
      -0.115 0.091 0.000 0.000  
   2 1 3 2.447 0.106 -0.259 0.044  
      -0.115 0.044 -0.000 0.000  
   2 2 1 2.447 0.106 0.259 -0.135  
      0.115 -0.135 -0.000 0.000  
   2 2 2 2.447 0.106 0.259 0.091  
      0.115 0.091 -0.000 0.000  
   2 2 3 2.447 0.106 0.259 0.044  
      0.115 0.044 -0.000 0.000  

  G squared statistic for model  fi t = 8.423 D.F. = 4  

  Model of No Slice (C) effect  

  Expected Frequencies  
   1 1 1 7.714  
   1 1 2 7.714  
   1 1 3 7.714  
   1 2 1 13.286  
   1 2 2 13.286  
   1 2 3 13.286  
   2 1 1 10.286  
   2 1 2 10.286  
   2 1 3 10.286  
   2 2 1 17.714  
   2 2 2 17.714  
   2 2 3 17.714  
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  Totals for Dimension A  
  Row 1 63.000  
  Row 2 84.000  
  Totals for Dimension B  
  Col 1 54.000  
  Col 2 93.000  
  Totals for Dimension C  
  Slice 1 49.000  
  Slice 2 49.000  
  Slice 3 49.000  

  Log Frequencies  
   1 1 1 2.043  
   1 1 2 2.043  
   1 1 3 2.043  
   1 2 1 2.587  
   1 2 2 2.587  
   1 2 3 2.587  
   2 1 1 2.331  
   2 1 2 2.331  
   2 1 3 2.331  
   2 2 1 2.874  
   2 2 2 2.874  
   2 2 3 2.874  
  Totals for Dimension A  
  Row 1 2.315  
  Row 2 2.603  
  Totals for Dimension B  
  Col 1 2.187  
  Col 2 2.731  
  Totals for Dimension C  
  Slice 1 2.459  
  Slice 2 2.459  
  Slice 3 2.459  
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  Cell Parameters  
  ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C  
      LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC  
   1 1 1 2.459 -0.144 -0.272 0.000  
      0.000 0.000 0.000 -0.000  
   1 1 2 2.459 -0.144 -0.272 0.000  
      0.000 0.000 0.000 -0.000  
   1 1 3 2.459 -0.144 -0.272 0.000  
      0.000 0.000 0.000 -0.000  
   1 2 1 2.459 -0.144 0.272 0.000  
      0.000 0.000 0.000 0.000  
   1 2 2 2.459 -0.144 0.272 0.000  
      0.000 0.000 0.000 0.000  
   1 2 3 2.459 -0.144 0.272 0.000  
      0.000 0.000 0.000 0.000  
   2 1 1 2.459 0.144 -0.272 0.000  
      0.000 0.000 0.000 -0.000  
   2 1 2 2.459 0.144 -0.272 0.000  
      0.000 0.000 0.000 -0.000  
   2 1 3 2.459 0.144 -0.272 0.000  
      0.000 0.000 0.000 -0.000  
   2 2 1 2.459 0.144 0.272 0.000  
      -0.000 0.000 0.000 0.000  
   2 2 2 2.459 0.144 0.272 0.000  
      -0.000 0.000 0.000 0.000  
   2 2 3 2.459 0.144 0.272 0.000  
      -0.000 0.000 0.000 0.000  

  G squared statistic for model  fi t = 13.097 D.F. = 9  

  Model of no Column (B) effect  

  Expected Frequencies  
   1 1 1 9.000  
   1 1 2 11.571  
   1 1 3 10.929  
   1 2 1 9.000  
   1 2 2 11.571  
   1 2 3 10.929  
   2 1 1 12.000  
   2 1 2 15.429  
   2 1 3 14.571  
   2 2 1 12.000  
   2 2 2 15.429  
   2 2 3 14.571  

Log Linear Screening, A´B and A´B´C Analyses
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  Totals for Dimension A  
  Row 1 63.000  
  Row 2 84.000  
  Totals for Dimension B  
  Col 1 73.500  
  Col 2 73.500  
  Totals for Dimension C  
  Slice 1 42.000  
  Slice 2 54.000  
  Slice 3 51.000  

  Log Frequencies  
   1 1 1 2.197  
   1 1 2 2.449  
   1 1 3 2.391  
   1 2 1 2.197  
   1 2 2 2.449  
   1 2 3 2.391  
   2 1 1 2.485  
   2 1 2 2.736  
   2 1 3 2.679  
   2 2 1 2.485  
   2 2 2 2.736  
   2 2 3 2.679  
  Totals for Dimension A  
  Row 1 2.346  
  Row 2 2.633  
  Totals for Dimension B  
  Col 1 2.490  
  Col 2 2.490  
  Totals for Dimension C  
  Slice 1 2.341  
  Slice 2 2.592  
  Slice 3 2.535  
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  Cell Parameters  
  ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C  
      LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC  
   1 1 1 2.490 -0.144 -0.000 -0.148  
      0.000 0.000 0.000 -0.000  
   1 1 2 2.490 -0.144 -0.000 0.103  
      0.000 0.000 0.000 -0.000  
   1 1 3 2.490 -0.144 -0.000 0.046  
      0.000 0.000 0.000 -0.000  
   1 2 1 2.490 -0.144 -0.000 -0.148  
      0.000 0.000 0.000 -0.000  
   1 2 2 2.490 -0.144 -0.000 0.103  
      0.000 0.000 0.000 -0.000  
   1 2 3 2.490 -0.144 -0.000 0.046  
      0.000 0.000 0.000 -0.000  
   2 1 1 2.490 0.144 -0.000 -0.148  
      0.000 0.000 0.000 -0.000  
   2 1 2 2.490 0.144 -0.000 0.103  
      0.000 0.000 0.000 -0.000  
   2 1 3 2.490 0.144 -0.000 0.046  
      0.000 0.000 0.000 -0.000  
   2 2 1 2.490 0.144 -0.000 -0.148  
      0.000 0.000 0.000 -0.000  
   2 2 2 2.490 0.144 -0.000 0.103  
      0.000 0.000 0.000 -0.000  
   2 2 3 2.490 0.144 -0.000 0.046  
      0.000 0.000 0.000 -0.000  

  G squared statistic for model  fi t = 21.943 D.F. = 8  

  Model of no Row (A) effect  

  Expected Frequencies  
   1 1 1 7.714  
   1 1 2 9.918  
   1 1 3 9.367  
   1 2 1 13.286  
   1 2 2 17.082  
   1 2 3 16.133  
   2 1 1 7.714  
   2 1 2 9.918  
   2 1 3 9.367  
   2 2 1 13.286  
   2 2 2 17.082  
   2 2 3 16.133  

Log Linear Screening, A´B and A´B´C Analyses
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  Totals for Dimension A  
  Row 1 73.500  
  Row 2 73.500  
  Totals for Dimension B  
  Col 1 54.000  
  Col 2 93.000  
  Totals for Dimension C  
  Slice 1 42.000  
  Slice 2 54.000  
  Slice 3 51.000  

  Log Frequencies  
   1 1 1 2.043  
   1 1 2 2.294  
   1 1 3 2.237  
   1 2 1 2.587  
   1 2 2 2.838  
   1 2 3 2.781  
   2 1 1 2.043  
   2 1 2 2.294  
   2 1 3 2.237  
   2 2 1 2.587  
   2 2 2 2.838  
   2 2 3 2.781  
  Totals for Dimension A  
  Row 1 2.463  
  Row 2 2.463  
  Totals for Dimension B  
  Col 1 2.192  
  Col 2 2.735  
  Totals for Dimension C  
  Slice 1 2.315  
  Slice 2 2.566  
  Slice 3 2.509  
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  Cell Parameters  
  ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C  
      LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC  
   1 1 1 2.463 0.000 -0.272 -0.148  
      0.000 -0.000 0.000 0.000  
   1 1 2 2.463 0.000 -0.272 0.103  
      0.000 -0.000 0.000 0.000  
   1 1 3 2.463 0.000 -0.272 0.046  
      0.000 -0.000 0.000 0.000  
   1 2 1 2.463 0.000 0.272 -0.148  
      -0.000 -0.000 0.000 0.000  
   1 2 2 2.463 0.000 0.272 0.103  
      -0.000 -0.000 0.000 0.000  
   1 2 3 2.463 0.000 0.272 0.046  
      -0.000 -0.000 0.000 0.000  
   2 1 1 2.463 0.000 -0.272 -0.148  
      0.000 -0.000 0.000 0.000  
   2 1 2 2.463 0.000 -0.272 0.103  
      0.000 -0.000 0.000 0.000  
   2 1 3 2.463 0.000 -0.272 0.046  
      0.000 -0.000 0.000 0.000  
   2 2 1 2.463 0.000 0.272 -0.148  
      -0.000 -0.000 0.000 0.000  
   2 2 2 2.463 0.000 0.272 0.103  
      -0.000 -0.000 0.000 0.000  
   2 2 3 2.463 0.000 0.272 0.046  
      -0.000 -0.000 0.000 0.000  

  G squared statistic for model  fi t = 14.481 D.F. = 8  

  Equi-probability Model  

  Expected Frequencies  
   1 1 1 12.250  
   1 1 2 12.250  
   1 1 3 12.250  
   1 2 1 12.250  
   1 2 2 12.250  
   1 2 3 12.250  
   2 1 1 12.250  
   2 1 2 12.250  
   2 1 3 12.250  
   2 2 1 12.250  
   2 2 2 12.250  
   2 2 3 12.250  

Log Linear Screening, A´B and A´B´C Analyses
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  Totals for Dimension A  
  Row 1 73.500  
  Row 2 73.500  
  Totals for Dimension B  
  Col 1 73.500  
  Col 2 73.500  
  Totals for Dimension C  
  Slice 1 49.000  
  Slice 2 49.000  
  Slice 3 49.000  

  Log Frequencies  
   1 1 1 2.506  
   1 1 2 2.506  
   1 1 3 2.506  
   1 2 1 2.506  
   1 2 2 2.506  
   1 2 3 2.506  
   2 1 1 2.506  
   2 1 2 2.506  
   2 1 3 2.506  
   2 2 1 2.506  
   2 2 2 2.506  
   2 2 3 2.506  
  Totals for Dimension A  
  Row 1 2.506  
  Row 2 2.506  
  Totals for Dimension B  
  Col 1 2.506  
  Col 2 2.506  
  Totals for Dimension C  
  Slice 1 2.506  
  Slice 2 2.506  
  Slice 3 2.506  
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  Cell Parameters  
  ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C  
      LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC  
   1 1 1 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   1 1 2 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   1 1 3 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   1 2 1 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   1 2 2 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   1 2 3 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   2 1 1 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   2 1 2 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   2 1 3 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   2 2 1 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   2 2 2 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  
   2 2 3 2.506 0.000 0.000 0.000  
      0.000 0.000 0.000 0.000  

  G squared statistic for model  fi t = 26.579 D.F. = 11         

Log Linear Screening, A´B and A´B´C Analyses
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   Contingency Chi-Square    

   Example Contingency Chi Square    

 In this example we will use the data  fi le ChiData.txt which consists of two columns 
of data representing the row and column of a three by three contingency table. The 
rows represent each observation with the row and column of that observation 
recorded in columns one and two. We begin by selecting the Statistics/Non 
Parametric / Contingency Chi Square option of the menu. The following  fi gure 
(Fig.  10.1 ) demonstrates that the row and column labels have been selected for the 
option of reading a data  fi le containing individual cases. We have also elected all 
options except saving the frequency  fi le.  

    Chapter 10   
 Non-parametric         
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 When we click the compute button, we obtain the results shown below:  

  Fig. 10.1    Contingency Chi-Square Dialog form       

    Chi-square Analysis Results  
  OBSERVED FREQUENCIES  
   Rows  
   Variables  
    COL.1 COL.2 COL.3 COL.4 Total  
   Row 1 5 5 5 5 20  
   Row 2 10 4 7 3 24  
   Row 3 5 10 10 2 27  
   Total 20 19 22 10 71  
  EXPECTED FREQUENCIES with 71 valid cases.  

  Variables  
    COL.1 COL.2 COL.3 COL.4  
   Row 1 5.634 5.352 6.197 2.817  
   Row 2 6.761 6.423 7.437 3.380  
   Row 3 7.606 7.225 8.366 3.803  
  ROW PROPORTIONS with 71 valid cases.  
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  Variables  
    COL.1 COL.2 COL.3 COL.4 Total  
   Row 1 0.250 0.250 0.250 0.250 1.000  
   Row 2 0.417 0.167 0.292 0.125 1.000  
   Row 3 0.185 0.370 0.370 0.074 1.000  
   Total 0.282 0.268 0.310 0.141 1.000  
  COLUMN PROPORTIONS with 71 valid cases.  

  Variables  
    COL.1 COL.2 COL.3 COL.4 Total  
   Row 1 0.250 0.263 0.227 0.500 0.282  
   Row 2 0.500 0.211 0.318 0.300 0.338  
   Row 3 0.250 0.526 0.455 0.200 0.380  
   Total 1.000 1.000 1.000 1.000 1.000  
  PROPORTIONS OF TOTAL N with 71 valid cases.  

  Variables  
    COL.1 COL.2 COL.3 COL.4 Total  
   Row 1 0.070 0.070 0.070 0.070 0.282  
   Row 2 0.141 0.056 0.099 0.042 0.338  
   Row 3 0.070 0.141 0.141 0.028 0.380  
   Total 0.282 0.268 0.310 0.141 1.000  
  CHI-SQUARED VALUE FOR CELLS with 71 valid cases.  

  Variables  
    COL.1 COL.2 COL.3 COL.4  
   Row 1 0.071 0.023 0.231 1.692  
   Row 2 1.552 0.914 0.026 0.043  
   Row 3 0.893 1.066 0.319 0.855  
  Chi-square = 7.684 with D.F. = 6. Prob. > value = 0.262  

 It should be noted that the user has the option of reading data in three different 
formats. We have shown the  fi rst format where individual cases are classi fi ed by 
row and column. It is sometimes more convenient to record the actual frequencies 
in each row and cell combination. Examine the  fi le labeled ChiSquareOne.TXT for 
such an example. Sometimes the investigator may only know the cell proportions 
and the total number of observations. In this case the third  fi le format may be used 
where the proportion in each row and column combination are recorded. See the 
example  fi le labeled ChiSquareTwo.TXT.   
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   Spearman Rank Correlation    

   Example Spearman Rank Correlation 

 We will use the  fi le labeled Spearman.txt for our example. The third variable repre-
sents rank data with ties. Select the Statistics/Non Parametric/Spearman Rank 
Correlation option from the menu. Shown below is the speci fi cation form for the 
analysis (Fig.  10.2 ):  

  Fig. 10.2    The Spearman 
rank correlation dialog       
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 When we click the Compute button we obtain:  

 Notice that the original scores have been converted to ranks and where ties exist 
they have been averaged.   

   Mann-Whitney U Test    

 As an example, load the  fi le labeled MannWhitU.txt and then select the option 
Statistics/Non Parametric/Mann-Whitney U Test from the menu. Shown below is 
the speci fi cation form in which we have indicated the analysis to perform 
(Fig.  10.3 ):  

    Spearman Rank Correlation Between VAR2 & VAR3  
  Observed scores, their ranks and differences between ranks  
   VAR2 Ranks VAR3 Ranks Rank Difference  
   42.00 3.00 0.00 1.50 1.50  
   46.00 4.00 0.00 1.50 2.50  
   39.00 2.00 1.00 3.50 -1.50  
   37.00 1.00 1.00 3.50 -2.50  
   65.00 8.00 3.00 5.00 3.00  
   88.00 11.00 4.00 6.00 5.00  
   86.00 10.00 5.00 7.00 3.00  
   56.00 6.00 6.00 8.00 -2.00  
   62.00 7.00 7.00 9.00 -2.00  
   92.00 12.00 8.00 10.50 1.50  
   54.00 5.00 8.00 10.50 -5.50  
   81.00 9.00 12.00 12.00 -3.00  
  Spearman Rank Correlation =  0.615  
  t-test value for hypothesis r = 0 is 2.467  
  Probability > t = 0.0333  



242 10 Non-parametric

 Upon clicking the Compute button you obtain: 

  Mann-Whitney U Test  
  See pages 116-127 in S. Siegel: Nonparametric Statistics for the 
Behavioral Sciences  

   Score Rank Group  

   6.00 1.50 1  
   6.00 1.50 2  
   7.00 5.00 1  
   7.00 5.00 1  
   7.00 5.00 1  
   7.00 5.00 1  
   7.00 5.00 1  
   8.00 9.50 1  
   8.00 9.50 2  
   8.00 9.50 2  
   8.00 9.50 1  
   9.00 12.00 1  
   10.00 16.00 1  
   10.00 16.00 2  
   10.00 16.00 2  
   10.00 16.00 2  
   10.00 16.00 1  

  Fig. 10.3    The Mann-
Whitney U Test dialog form       
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   10.00 16.00 1  
   10.00 16.00 1  
   11.00 20.50 2  
   11.00 20.50 2  
   12.00 24.50 2  
   12.00 24.50 2  
   12.00 24.50 2  
   12.00 24.50 2  
   12.00 24.50 1  
   12.00 24.50 1  
   13.00 29.50 1  
   13.00 29.50 2  
   13.00 29.50 2  
   13.00 29.50 2  
   14.00 33.00 2  
   14.00 33.00 2  
   14.00 33.00 2  
   15.00 36.00 2  
   15.00 36.00 2  
   15.00 36.00 2  
   16.00 38.00 2  
   17.00 39.00 2  

  Sum of Ranks in each Group  
  Group   Sum    No. in Gr  
    1      200.00    16  
    2      580.00    23  
  No. of tied rank groups =  9  
  Statistic U = 304.0000  
  z Statistic (corrected for ties) =  3.4262, Prob. > z = 0.0003   

   Fisher’s Exact Test    

 When you elect the Statistics/NonParametric / Fisher’s Exact Test option from the 
menu, you are shown a speci fi cation form which provides for four different formats 
for entering data. We have elected the last format (entry of frequencies on the form 
itself) (Fig.  10.4 ):  
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 When we click the Compute button we obtain:  

  Fig. 10.4    Fisher’s Exact Test dialog form       

    Fisher Exact Probability Test  
  Contingency Table for Fisher Exact Test  
                   Column  
  Row             1          2  
   1              2          8  
   2              4          5  
  Probability := 0.2090  

  Cumulative Probability := 0.2090  

  Contingency Table for Fisher Exact Test  
                   Column  
  Row             1          2  
   1              1          9  
   2              5          4  
  Probability := 0.0464  

  Cumulative Probability := 0.2554  
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 Notice that the probability of each combination of cell values as extreme or more 
extreme than that observed is computed and the probabilities summed. 

 Alternative formats for data  fi les are the same as for the Contingency Chi Square 
analysis discussed in the previous section.  

   Kendall’s Coef fi cient of Concordance    

 Our example analysis will use the  fi le labeled Concord2.txt . Load the  fi le and select 
the Statistics / NonParametric/Coef fi cient of Concordance option. Shown below is 
the form completed for the analysis (Fig.  10.5 ):  

  Fig. 10.5    Kendal’s coef fi cient of concordance       

  Contingency Table for Fisher Exact Test  
                   Column  
  Row             1          2  
   1              0         10  
   2              6          3  
  Probability := 0.0031  

  Cumulative Probability := 0.2585  

  Tocher ratio computed: 0.002  
  A random value of 0.893 selected was greater than the Tocher value.  
  Conclusion: Accept the null Hypothesis  
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   Kruskal-Wallis One-Way ANOVA    

 As an example, load the  fi le labeled kwanova.txt into the data grid and select the 
menu option for the analysis. Below is the form and the results of the analysis 
(Fig.  10.6 ):  

 Clicking the Compute button results in the following output:     
 If you are observing competition in the Olympics or other athletic competitions, 

it is fun to record the judge’s scores and examine the degree to which there is agree-
ment among them!  

    Kendall Coef fi cient of Concordance Analysis  

  Ranks Assigned to Judge Ratings of Objects  

  Judge 1 Objects  
   VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 
    12.0     1.5000 3.5000 3.5000 5.5000 5.5000 7.0000 8.0000      

  Judge 2 Objects  
  VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 
    12.0     2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000      

  Judge 3 Objects  
  VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 
    12.0     2.5000 2.5000 2.5000 6.5000 6.5000 6.5000 6.5000      

  Sum of Ranks for Each Object Judged  
   Objects  
  VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 
    12.0     6.0000 9.0000 10.0000 17.0000 18.0000 20.5000 22.5000      

  Coef fi cient of concordance :=      0.942  
  Average Spearman Rank Correlation :=      0.913  
  Chi-Square Statistic :=   19.777  
  Probability of a larger Chi-Square := 0.0061  
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  Kruskal - Wallis One-Way Analysis of Variance  
  See pages 184-194 in S. Siegel: Nonparametric Statistics for the 
Behavioral Sciences  
   Score Rank Group  

   61.00 1.00 1  
   82.00 2.00 2  
   83.00 3.00 1  
   96.00 4.00 1  
   101.00 5.00 1  
   109.00 6.00 2  
   115.00 7.00 3  
   124.00 8.00 2  
   128.00 9.00 1  
   132.00 10.00 2  
   135.00 11.00 2  
   147.00 12.00 3  
   149.00 13.00 3  
   166.00 14.00 3  

  Fig. 10.6    Kruskal-Wallis one way ANOVA on ranks dialog       
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  Sum of Ranks in each Group  
  Group   Sum    No. in Group  
    1       22.00     5  
    2       37.00     5  
    3       46.00     4  
  No. of tied rank groups = 0  
  Statisic H uncorrected for ties = 6.4057  
  Correction for Ties = 1.0000  
  Statistic H corrected for ties = 6.4057  
  Corrected      H      is      approx.      chi-square      with      2      D.F.      and      probability = 0.0406   

   Wilcoxon Matched-Pairs Signed Ranks Test    

 Our example uses the  fi le labeled Wilcoxon.txt. Load this  fi le and select the Statistics/
NonParametric/Wilcoxon Matched-Pairs Signed Ranks Test option from the menu. 
The speci fi cation form and results are shown below (Fig.  10.7 ):  

  Fig. 10.7    Wilcoxon matched 
pairs signed ranks test dialog       
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  The Wilcoxon Matched-Pairs Signed-Ranks Test  
  See pages 75-83 in S. Seigel: Nonparametric Statistics for the 
Social Sciences  

  Ordered Cases with cases having 0 differences eliminated:  
  Number of cases with absolute differences greater than 0 = 10  
   CASE VAR1 VAR2 Difference Signed Rank  
   3 73.00 74.00 -1.00 -1.00  
   8 65.00 62.00 3.00 2.00  
   7 76.00 80.00 -4.00 -3.00  
   4 43.00 37.00 6.00 4.00  
   5 58.00 51.00 7.00 5.00  
   6 56.00 43.00 13.00 6.50  
   10 56.00 43.00 13.00 6.50  
   9 82.00 63.00 19.00 8.50  
   1 82.00 63.00 19.00 8.50  
   2 69.00 42.00 27.00 10.00  

  Smaller sum of ranks (T) = 4.00  
  Approximately normal z for test statistic T = 2.395  
  Probability (1-tailed) of greater z = 0.0083  
  NOTE: For N < 25 use tabled values for Wilcoxon Test   

   Cochran Q Test    

 Load the  fi le labeled Qtest.txt and select the Statistics/NonParametric/Cochran Q 
Test option from the menu. Shown below is the speci fi cation form completed for the 
analysis of the  fi le data and the results obtained when you click the Compute button 
(Fig.  10.8 ):  

  Fig. 10.8    Cochran Q Test Dialog form       
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  Cochran Q Test for Related Samples  
  See pages 161-166 in S. Siegel: Nonparametric Statistics for the 
Behavioral Sciences  
  McGraw-Hill Book Company, New York, 1956  

  Cochran Q Statistic = 16.667  
  which is distributed as chi-square with 2 D.F. and probability = 0.0002   

   Sign Test    

 The  fi le labeled SignTest.txt contains male and female cases in which have been 
matched on relevant criteria and observations have been made on a 5-point Likert-
type instrument. The program will compare the two scores for each pair and assign 
a positive or negative difference indicator. Load the  fi le into the data grid and select 
the Statistics/NonParametric/Sign Test option. Shown below is the speci fi cation 
form which appears and the results obtained when clicking the Compute button 
(Fig.  10.9 ):  

  Fig. 10.9    The matched pairs sign test dialog       

 



251Friedman Two Way ANOVA

  Results for the Sign Test  

  Frequency of 11 out of 17 observed + sign differences.  
  Frequency of 3 out of 17 observed - sign differences.  
  Frequency of 3 out of 17 observed no differences.  
  The theoretical proportion expected for +’s or -’s is 0.5  
  The test is for the probability of the +’s or -’s (which ever is fewer)  
  as small or smaller than that observed given the expected proportion.  

  Binary Probability of 0 = 0.0001  
  Binary Probability of 1 = 0.0009  
  Binary Probability of 2 = 0.0056  
  Binary Probability of 3 = 0.0222  
  Binomial Probability of 3 or smaller out of 14 = 0.0287   

   Friedman Two Way ANOVA    

 For an example analysis, load the  fi le labeled Friedman.txt and select Statistics / 
NonParametric / Friedman Two Way ANOVA from the menu. The data represent 
four treatments or repeated measures for three groups, each containing one subject. 
Shown below is the speci fi cation form and the results following a click of the 
Compute button (Fig.  10.10 ):  

  Fig. 10.10    The Friedman Two-Way ANOVA dialog       
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  FRIEDMAN TWO-WAY ANOVA ON RANKS  
  See pages 166-173 in S. Siegel’s Nonparametric Statistics  
  for the Behavioral Sciences, McGraw-Hill Book Co., New York, 1956  

  Treatment means - values to be ranked. with 3 valid cases.  

   Variables  
    Cond.1 Cond.2 Cond.3 Cond.4  
   Group 1 9.000 4.000 1.000 7.000  
   Group 2 6.000 5.000 2.000 8.000  
   Group 3 9.000 1.000 2.000 6.000  

  Number in each group’s treatment.  

   GROUP  
  Variables  
    Cond.1 Cond.2 Cond.3 Cond.4  
   Group 1 1 1 1 1  
   Group 2 1 1 1 1  
   Group 3 1 1 1 1  

  Score Rankings Within Groups with 3 valid cases.  
  Variables  
    Cond.1 Cond.2 Cond.3 Cond.4  
   Group 1 4.000 2.000 1.000 3.000  
   Group 2 3.000 2.000 1.000 4.000  
   Group 3 4.000 1.000 2.000 3.000  

  TOTAL RANKS with 3 valid cases.  
   Variables Cond.1 Cond.2 Cond.3 Cond.4  
    11.000 5.000 4.000 10.000  

  Chi-square with 3 D.F. :=    7.400 with probability := 0.0602  
  Chi-square too approximate-use exact table (TABLE N)  
  page 280-281 in Siegel   

   Probability of a Binomial Event    

 Select the Statistics/NonParametric/Binomial Probability option from the menu. 
Enter the values as shown in the speci fi cation form below and press the Compute 
button to obtain the shown results (Fig.  10.11 ).  
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  Binomial Probability Test  

  Frequency of 2 out of 3 observed  
  The theoretical proportion expected in category A is 0.500  
  The test is for the probability of a value in category A as small 
or smaller  
  than that observed given the expected proportion.  
  Probability of 0 = 0.1250  
  Probability of 1 = 0.3750  
  Probability of 2 = 0.3750  
  Binomial Probability of 2 or less out of 3 = 0.8750   

   Runs Test    

  EXAMPLE: 
 The  fi gure below (Fig.  10.12 ) shows a data set with 14 values in a  fi le labeled 
“RunsTest.tab”. The Runs Test option was selected from the NonParametric sub-
menu under the Analyses menu. The next  fi gure (Fig.  10.13 ) displays the dialogue 
box used for specifying the variable to analyze and the results of clicking the com-
pute button.     

  Fig. 10.11    The binomial 
probability dialog       

 



  Fig. 10.12    A sample  fi le for the runs test       

  Fig. 10.13    The Runs Dialog form       
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   Kendall’s Tau and Partial Tau       

  Ranks with 12 cases.  
   Variables  
    X Y Z  
   1 3.000 2.000 1.500  
   2 4.000 6.000 1.500  
   3 2.000 5.000 3.500  
   4 1.000 1.000 3.500  
   5 8.000 10.000 5.000  
   6 11.000 9.000 6.000  
   7 10.000 8.000 7.000  
   8 6.000 3.000 8.000  
   9 7.000 4.000 9.000  
   10 12.000 12.000 10.500  
   11 5.000 7.000 10.500  
   12 9.000 11.000 12.000  

  Kendall Tau for File: C:\Projects\Delphi\OPENSTAT\TauData.TAB  

  Kendall Tau for variables X and Y  
  Tau = 0.6667 z = 3.017 probability > |z| = 0.001  

  Kendall Tau for variables X and Z  
  Tau = 0.3877 z = 1.755 probability > |z| = 0.040  

  Kendall Tau for variables Y and Z  
  Tau = 0.3567 z = 1.614 probability > |z| = 0.053  

  Partial Tau = 0.6136  

  NOTE: Probabilities are for large N (>10)  

 At the time this program was written, the distribution of the Partial Tau was unknown 
(see Siegel  1956 , page 228) (Fig.  10.14 ).  
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   Kaplan-Meier Survival Test    

  CASES FOR FILE C:\OpenStat\KaplanMeier1.TEX  

   0 Time Event_Censored  
   1 1 2  
   2 3 2  
   3 5 2  
   4 6 1  
   5 6 1  
   6 6 1  
   7 6 1  
   8 6 1  
   9 6 1  
   10 8 1  
   11 8 1  
   12 9 2  
   13 10 1  
   14 10 1  
   15 10 2  
   16 12 1  
   17 12 1  

  Fig. 10.14    Kendal’s Tau and 
Partial Tau dialog       
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   18 12 1  
   19 12 1  
   20 12 1  
   21 12 1  
   22 12 2  
   23 12 2  
   24 13 2  
   25 15 2  
   26 15 2  
   27 16 2  
   28 16 2  
   29 18 2  
   30 18 2  
   31 20 1  
   32 20 2  
   33 22 2  
   34 24 1  
   35 24 1  
   36 24 2  
   37 27 2  
   38 28 2  
   39 28 2  
   40 28 2  
   41 30 1  
   42 30 2  
   43 32 1  
   44 33 2  
   45 34 2  
   46 36 2  
   47 36 2  
   48 42 1  
   49 44 2  

 We are really recording data for the “Time” variable that is sequential through 
the data  fi le. We are concerned with the percent of survivors at any given time 
period as we progress through the observation times of the study. We record the 
“drop-outs” or censored subjects at each time period also. A unit cannot be censored 
and be one of the deaths - these are mutually exclusive. 
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 Next we show a data  fi le that contains both experimental and control subjects: 

  CASES FOR FILE C:\OpenStat\KaplanMeier2.TEX  

   0 Time Group Event_Censored  

   1 1 1 2  
   2 3 2 2  
   3 5 1 2  
   4 6 1 1  
   5 6 1 1  
   6 6 2 1  
   7 6 2 1  
   8 6 2 1  
   9 6 2 1  
   10 8 2 1  
   11 8 2 1  
   12 9 1 2  
   13 10 1 1  
   14 10 1 1  
   15 10 1 2  
   16 12 1 1  
   17 12 1 1  
   18 12 1 1  
   19 12 1 1  
   20 12 2 1  
   21 12 2 1  
   22 12 1 2  
   23 12 2 2  
   24 13 1 2  
   25 15 1 2  
   26 15 2 2  
   27 16 1 2  
   28 16 2 2  
   29 18 2 2  
   30 18 2 2  
   31 20 2 1  
   32 20 1 2  
   33 22 2 2  
   34 24 1 1  
   35 24 2 1  
   36 24 1 2  
   37 27 1 2  
   38 28 2 2  
   39 28 2 2  
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   40 28 2 2  
   41 30 2 1  
   42 30 2 2  
   43 32 1 1  
   44 33 2 2  
   45 34 1 2  
   46 36 1 2  
   47 36 1 2  
   48 42 2 1  
   49 44 1 2  

 In this data we code the groups as 1 or 2. Censored cases are always coded 2 and 
Events are coded 1. This data is, in fact, the same data as shown in the previous data 
 fi le. Note that in time period 6 there were 6 deaths (cases 4–9.) Again, notice that 
the time periods are in ascending order. 

 Shown below is the speci fi cation dialog for this second data  fi le. This is followed 
by the output obtained when you click the compute button (Fig.  10.15 ).  

  Fig. 10.15    The Kaplan-Meier dialog       
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   TIME DEATHS GROUP AT RISK PROPORTION CUMULATIVE  
       SURVIVING PROP.SURVIVING  
   1 0 1 25 0.0000 1.0000  
   3 0 2 24 0.0000 1.0000  
   5 0 1 24 0.0000 1.0000  
   6 6 1 23 0.9130 0.9130  
   6 0 1 21 0.0000 0.9130  
   6 0 2 19 0.0000 0.8261  
   6 0 2 19 0.0000 0.8261  
   6 0 2 19 0.0000 0.8261  
   6 0 2 19 0.0000 0.8261  
   8 2 2 19 0.8947 0.7391  
   8 0 2 17 0.0000 0.7391  
   9 0 1 21 0.0000 0.9130  
   10 2 1 20 0.9000 0.8217  
   10 0 1 18 0.0000 0.8217  
   10 0 1 18 0.0000 0.8217  
   12 6 1 17 0.7647 0.6284  
   12 0 1 13 0.0000 0.6284  
   12 0 1 13 0.0000 0.6284  
   12 0 1 13 0.0000 0.6284  
   12 0 2 15 0.0000 0.6522  
   12 0 2 15 0.0000 0.6522  
   12 0 1 13 0.0000 0.6284  
   12 0 2 15 0.0000 0.6522  
   13 0 1 12 0.0000 0.6284  
   15 0 1 11 0.0000 0.6284  
   15 0 2 14 0.0000 0.6522  
   16 0 1 10 0.0000 0.6284  
   16 0 2 13 0.0000 0.6522  
   18 0 2 12 0.0000 0.6522  
   18 0 2 11 0.0000 0.6522  
   20 1 2 10 0.9000 0.5870  
   20 0 1 9 0.0000 0.6284  
   22 0 2 9 0.0000 0.5870  
   24 2 1 8 0.8750 0.5498  
   24 0 2 7 0.0000 0.5136  
   24 0 1 7 0.0000 0.5498  
   27 0 1 6 0.0000 0.5498  
   28 0 2 7 0.0000 0.5136  
   28 0 2 6 0.0000 0.5136  
   28 0 2 5 0.0000 0.5136  
   30 1 2 4 0.7500 0.3852  
   30 0 2 3 0.0000 0.3852  
   32 1 1 5 0.8000 0.4399  
   33 0 2 2 0.0000 0.3852  
   34 0 1 4 0.0000 0.4399  
   36 0 1 3 0.0000 0.4399  
   36 0 1 2 0.0000 0.4399  
   42 1 2 1 0.0000 0.0000  
   44 0 1 1 0.0000 0.4399  
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  Total Expected Events for Experimental Group =   11.375  
  Observed Events for Experimental Group =   10.000  
  Total Expected Events for Control Group =   10.625  
  Observed Events for Control Group =   12.000  
  Chisquare = 0.344 with probability =   0.442  
  Risk = 0.778, Log Risk = -0.250, Std.Err. Log Risk =   0.427  
  95 Percent Con fi dence interval for Log Risk = (-1.087,0.586)  
  95 Percent Con fi dence interval for Risk = (0.337,1.796)  

  EXPERIMENTAL GROUP CUMULATIVE PROBABILITY  
   CASE TIME DEATHS CENSORED CUM.PROB.  
   1 1 0 1 1.000  
   3 5 0 1 1.000  
   4 6 6 0 0.913  
   5 6 0 0 0.913  
   12 9 0 1 0.913  
   13 10 2 0 0.822  
   14 10 0 0 0.822  
   15 10 0 1 0.822  
   16 12 6 0 0.628  
   17 12 0 0 0.628  
   18 12 0 0 0.628  
   19 12 0 0 0.628  
   22 12 0 1 0.628  
   24 13 0 1 0.628  
   25 15 0 1 0.628  
   27 16 0 1 0.628  
   32 20 0 1 0.628  
   34 24 2 0 0.550  
   36 24 0 1 0.550  
   37 27 0 1 0.550  
   43 32 1 0 0.440  
   45 34 0 1 0.440  
   46 36 0 1 0.440  
   47 36 0 1 0.440  
   49 44 0 1 0.440  

  CONTROL GROUP CUMULATIVE PROBABILITY  
  CASE TIME DEATHS CENSORED CUM.PROB.  
   2  3 0 1 1.000  
   6 6 0 0 0.826  
   7 6 0 0 0.826  
   8 6 0 0 0.826  
   9 6 0 0 0.826  
   10 8 2 0 0.739  
   11 8 0 0 0.739  
   20 12 0 0 0.652  
   21 12 0 0 0.652  
   23 12 0 1 0.652  
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   26 15 0 1 0.652  
   28 16 0 1 0.652  
   29 18 0 1 0.652  
   30 18 0 1 0.652  
   31 20 1 0 0.587  
   33 22 0 1 0.587  
   35 24 0 0 0.514  
   38 28 0 1 0.514  
   39 28 0 1 0.514  
   40 28 0 1 0.514  
   41 30 1 0 0.385  
   42 30 0 1 0.385  
   44 33 0 1 0.385  
   48 42 1 0 0.000  

 The chi-square coef fi cient as well as the graph indicates no difference was found 
between the experimental and control group beyond what is reasonably expected 
through random selection from the same population (Fig.  10.16 ).   

  Fig. 10.16    Experimental and control curves       
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   The Kolmogorov-Smirnov Test    

 The  fi gure below (Fig.  10.17 ) illustrates an analysis of data collected for  fi ve values 
with the frequency observed for each value in a separate variable:  

 When you elect the Kolomogorov-Smirnov option under the Nonparametric 
analyses option, the following dialogue appears (Fig.  10.18 ):  

 You can see that we elected to enter values and frequencies and are comparing to 
a theoretically equal distribution of values. The results obtained are shown below 
(Fig.  10.19 ):  

  Fig. 10.17    A sample  fi le for the Kolmogorov-Smirnov test       
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  Fig. 10.18    Dialog for the Kolmogorov-Smirnov test       

  Fig. 10.19    Frequency distribution plot for the Kolmogorov-Smirnov test       
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  Kolmogorov-Smirnov Test  
  Analysis of variable Category  
   FROM UP TO FREQ. PCNT CUM.FREQ. CUM.PCNT. %ILE RANK  
   1.00 2.00 0 0.00 0.00 0.00 0.00  
   2.00 3.00 1 0.10 1.00 0.10 0.05  
   3.00 4.00 0 0.00 1.00 0.10 0.10  
   4.00 5.00 5 0.50 6.00 0.60 0.35  
   5.00 6.00 4 0.40 10.00 1.00 0.80  

  Kolmogorov-Smirnov    Analysis    of    Category    and    equal    (rectangular)    distribution  
  Observed Mean = 4.200 for 10 cases in 5 categories  
  Standard Deviation = 0.919  

  Kolmogorov-Smirnov Distribution Comparison  
   CATEGORY OBSERVED COMPARISON  
   VALUES PROBABILITIES PROBABILITIES  
   1 0.000 0.200  
   2 0.100 0.200  
   3 0.000 0.200  
   4 0.500 0.200  
   5 0.400 0.200  

  Kolmogorov-Smirnov Distribution Comparison  
   CATEGORY OBSERVED COMPARISON  
   VALUE CUM. PROB. CUM. PROB.  
   1 0.000 0.200  
   2 0.100 0.400  
   3 0.100 0.600  
   4 0.600 0.800  
   5 1.000 1.000  
   6 1.000 1.000  
  Kolmogorov-Smirnov Statistic D = 0.500 with probability > D = 0.013  

 The difference between the observed and theoretical comparison data would not 
be expected to occur by chance very often (about one in a hundred times) and one 
would probably reject the hypothesis that the observed distribution comes from a 
chance distribution (equally likely frequency in each category.) 

 It is constructive to compare the same observed distribution with the comparison 
variable and with the normal distribution variable (both are viable alternatives.)                 
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   The Item Analysis    Program 

 Classical item analysis is used to estimate the reliability of test scores obtained from 
measures of subjects on some attribute such as achievement, aptitude or intelli-
gence. In classical test theory, the obtained score for an individual on items is theo-
rized to consist of a “true score” component and an “error score” component. Errors 
are typically assumed to be normally distributed with a mean of zero over all the 
subjects measured. 

 Several methods are available to estimate the reliability of the measures and vary 
according to the assumptions made about the scores. The Kuder-Richardson esti-
mates are based on the product-moment correlation (or covariance) among items of 
the observed test scores and those of a theoretical “parallel” test form. The Cronbach 
and Hoyt estimates utilize a treatment by subjects analysis of variance design which 
yields identical results to the KR#20 method when item scores are dichotomous 
(0 and 1) values. 

 When you select the Classical Item Analysis procedure you will use the follow-
ing dialogue box to specify how your test is to be analyzed. If the test consists of 
multiple sub-tests, you may de fi ne a scale for each sub-test by specifying those 
items belonging to each sub-test. The procedure will need to know how to deter-
mine the correct and incorrect responses. If your data are already 0 and 1 scores, the 
most simple method is to simply include, as the  fi rst record in your  fi le, a case with 
1’s for each item. If your data consists of values ranging, say, between 1 and 5 cor-
responding to alternative choices, you will either include a  fi rst case with the correct 
choice values or indicate you wish to Prompt for Correct Responses (as numbers 
when values are numbers.) If items are to be assigned different weights, you can 
assign those weights by selecting the “Assign Item Weights scoring option. The 
scored item matrix will be printed if you elect it on the output options. Three differ-
ent reliability methods are available. You can select them all if you like (Fig   .  11.1 ).  

    Chapter 11   
 Measurement        
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 Shown below is a sample output obtained from the Classical Item Analysis 
procedure followed by an item characteristic curve plot for one of the items. The  fi le 
used was “itemdat.LAZ” (Figs.  11.2 ,  11.3 ). 

  Fig. 11.1    Classical item analysis dialog       

  Fig. 11.2    Distribution of test scores (classical analysis)       
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  TEST SCORING REPORT  

   PERSON ID NUMBER FIRST NAME LAST NAME TEST SCORE  
   1 Bill Miller 5.00  
   2 Barb Benton 4.00  
   3 Tom Richards 3.00  
   4 Keith Thomas 2.00  
   5 Bob King 1.00  
   6 Rob Moreland 0.00  
   7 Sandy Landis 1.00  
   8 Vernil Moore 2.00  
   9 Dick Tyler 3.00  
   10 Harry Cook 4.00  
   11 Claude Rains 5.00  
   12 Clark Kent 3.00  
   13 Bill Clinton 3.00  
   14 George Bush 4.00  
   15 Tom Jefferson 4.00  
   16 Abe Lincoln 2.00  
  Alpha Reliability Estimate for Test = 0.6004 S.E. of Measurement = 0.920  
  Analysis of Variance for Hoyt Reliabilities  

  Fig. 11.3    Item means plot       
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  SOURCE D.F. SS MS F PROB  
  Subjects 15 6.35 0.42 2.50 0.01  
  Within 64 13.20 0.21  
  Items 4 3.05 0.76 4.51 0.00  
  Error 60 10.15 0.17  
  Total 79 19.55  

  Hoyt Unadjusted Test Rel. for scale TOTAL = 0.5128 S.E. of 
Measurement = 0.000  
  Hoyt Adjusted Test Rel. for scale TOTAL = 0.6004 S.E. of 
Measurement = 0.000  
  Hoyt Unadjusted Item Rel. for scale TOTAL = 0.1739 S.E. of 
Measurement = 0.000  
  Hoyt Adjusted Item Rel. for scale TOTAL = 0.2311 S.E. of 
Measurement = 0.000  
  Item and Total Score Intercorrelations with 16 cases.  

   Variables  
    VAR1 VAR2 VAR3 VAR4 VAR5  
   VAR1 1.000 0.153 0.048 -0.048 0.255  
   VAR2 0.153 1.000 0.493 0.323 0.164  
   VAR3 0.048 0.493 1.000 0.270 0.323  
   VAR4 -0.048 0.323 0.270 1.000 0.221  
   VAR5 0.255 0.164 0.323 0.221 1.000  
   TOTAL 0.369 0.706 0.727 0.615 0.634  

  Variables  
    TOTAL  
   VAR1 0.369  
   VAR2 0.706  
   VAR3 0.727  
   VAR4 0.615  
   VAR5 0.634  
   TOTAL 1.000  

  Means with 16 valid cases.  

   Variables VAR1 VAR2 VAR3 VAR4 VAR5  
    0.875 0.688 0.563 0.438 0.313  

   Variables TOTAL  
     2.875  

  Variances with 16 valid cases.  

   Variables VAR1 VAR2 VAR3 VAR4 VAR5  
    0.117 0.229 0.263 0.263 0.229  

   Variables TOTAL  
    2.117  

  Standard Deviations with 16 valid cases.  
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   Variables VAR1 VAR2 VAR3 VAR4 VAR5  
    0.342 0.479 0.512 0.512 0.479  

   Variables TOTAL  
    1.455  
  KR#20 = 0.6591 for the test with mean = 1.250 and variance = 0.733  
   Item Mean Variance Pt.Bis.r  
   2 0.688 0.229 0.8538  
   3 0.563 0.263 0.8737  
  KR#20 = 0.6270 for the test with mean = 1.688 and variance = 1.296  
   Item Mean Variance Pt.Bis.r  
   2 0.688 0.229 0.7875  
   3 0.563 0.263 0.7787  
   4 0.438 0.263 0.7073  
  KR#20 = 0.6310 for the test with mean = 2.000 and variance = 1.867  
   Item Mean Variance Pt.Bis.r  
   2 0.688 0.229 0.7135  
   3 0.563 0.263 0.7619  
   4 0.438 0.263 0.6667  
   5 0.313 0.229 0.6116  
  KR#20 = 0.6004 for the test with mean = 2.875 and variance = 2.117  
   Item Mean Variance Pt.Bis.r  
   2 0.688 0.229 0.7059  
   3 0.563 0.263 0.7267  
   4 0.438 0.263 0.6149  
   5 0.313 0.229 0.6342  
   1 0.875 0.117 0.3689  
  Item and Total Score Intercorrelations with 16 cases.  

  Variables  
    VAR1 VAR2 VAR3 VAR4 VAR5  
   VAR1 1.000 0.153 0.048 -0.048 0.255  
   VAR2 0.153 1.000 0.493 0.323 0.164  
   VAR3 0.048 0.493 1.000 0.270 0.323  
   VAR4 -0.048 0.323 0.270 1.000 0.221  
   VAR5 0.255 0.164 0.323 0.221 1.000  
   TOTAL 0.369 0.706 0.727 0.615 0.634  

  Variables  
    TOTAL  
   VAR1 0.369  
   VAR2 0.706  
   VAR3 0.727  
   VAR4 0.615  
   VAR5 0.634  
   TOTAL 1.000  

  Means with 16 valid cases.  



274 11 Measurement

   Variables VAR1 VAR2 VAR3 VAR4 VAR5  
    0.875 0.688 0.563 0.438 0.313  

   Variables TOTAL  
    2.875  

  Variances with 16 valid cases.  

   Variables VAR1 VAR2 VAR3 VAR4 VAR5  
    0.117 0.229 0.263 0.263 0.229  

   Variables TOTAL  
    2.117  

  Standard Deviations with 16 valid cases.  

   Variables VAR1 VAR2 VAR3 VAR4 VAR5  
    0.342 0.479 0.512 0.512 0.479  

   Variables TOTAL  
    1.455  
  Determinant of correlation matrix = 0.5209  

  Multiple Correlation Coef fi cients for Each Variable  

   Variable R R2 F Prob.>F DF1 DF2  
   VAR1 0.327 0.107 0.330 0.852 4 11  
   VAR2 0.553 0.306 1.212 0.360 4 11  
   VAR3 0.561 0.315 1.262 0.342 4 11  
   VAR4 0.398 0.158 0.516 0.726 4 11  
   VAR5 0.436 0.190 0.646 0.641 4 11  

  Betas in Columns with 16 cases.  

  Variables  
    VAR1 VAR2 VAR3 VAR4 VAR5  
   VAR1 -1.000 0.161 -0.082 -0.141 0.262  
   VAR2 0.207 -1.000 0.442 0.274 -0.083  
   VAR3 -0.107 0.447 -1.000 0.082 0.303  
   VAR4 -0.149 0.226 0.067 -1.000 0.178  
   VAR5 0.289 -0.071 0.257 0.185 -1.000  

  Standard Errors of Prediction  
   Variable Std.Error  
   VAR1 0.377  
   VAR2 0.466  
   VAR3 0.495  
   VAR4 0.549  
   VAR5 0.503  

  Raw Regression Coef fi cients with 16 cases.  
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  Variables  
    VAR1 VAR2 VAR3 VAR4 VAR5  
   VAR1 -1.000 0.225 -0.123 -0.211 0.367  
   VAR2 0.147 -1.000 0.473 0.293 -0.083  
   VAR3 -0.071 0.418 -1.000 0.082 0.283  
   VAR4 -0.099 0.211 0.067 -1.000 0.167  
   VAR5 0.206 -0.071 0.275 0.199 -1.000  

   Variable Constant  
   VAR1 0.793  
   VAR2 0.186  
   VAR3 0.230  
   VAR4 0.313  
   VAR5 -0.183     

   Analysis of Variance: Treatment by Subject and Hoyt Reliability    

 The Within Subjects Analysis of Variance involves the repeated measurement of the 
same unit of observation. These repeated observations are arranged as variables (col-
umns) in the Main Form grid for the cases (grid rows.) If only two measures are admin-
istered, you will probably use the matched pairs (dependent)  t -test method. When more 
than two measures are administered, you may use the repeated measures ANOVA 
method to test the equality of treatment level means in the population sampled. Since 
within subjects analysis is a part of the Hoyt Intraclass reliability estimation procedure, 
you may use this procedure to complete the analysis (see the Measurement procedures 
under the Analyses menu on the Main Form.) (Figs.  11.4 ,  11.5 )  

  Fig. 11.4    Hoyt reliability by ANOVA       
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  The output from an example analysis is shown below:  

  Treatments by Subjects (AxS) ANOVA Results.  

  Data File = C:\lazarus\Projects\LazStats\LazStatsData\ABRDATA.LAZ      

  SOURCE DF SS MS F Prob. > F      

  SUBJECTS 11 181.000 16.455  
  WITHIN SUBJECTS 36 1077.000 29.917  

  TREATMENTS 3 991.500 330.500 127.561 0.000  
  RESIDUAL 33 85.500 2.591      

  TOTAL 47 1258.000 26.766      

  TREATMENT (COLUMN) MEANS AND STANDARD DEVIATIONS  
  VARIABLE MEAN STD.DEV.  
  C1 16.500 2.067  
  C2 11.500 2.431  
  C3 7.750 2.417  
  C4 4.250 2.864  

  Mean of all scores = 10.000 with standard deviation = 5.174  

  Fig. 11.5    Within subjects ANOVA plot       
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  RELIABILITY ESTIMATES  
  TYPE OF ESTIMATE VALUE  
  Unadjusted total reliability -0.818  
  Unadjusted item reliability -0.127  
  Adjusted total (Cronbach) 0.843  
  Adjusted item reliability 0.572  

  BOX TEST FOR HOMOGENEITY OF VARIANCE-COVARIANCE MATRIX  

  SAMPLE COVARIANCE MATRIX with 12 cases.  

   Variables  
    C1 C2 C3 C4  
   C1 4.273 2.455 1.227 1.318  
   C2 2.455 5.909 4.773 5.591  
   C3 1.227 4.773 5.841 5.432  
   C4 1.318 5.591 5.432 8.205  

  ASSUMED POP. COVARIANCE MATRIX with 12 cases.  

  Variables  
    C1 C2 C3 C4  
   C1 6.057 0.693 0.693 0.693  
   C2 0.114 5.977 0.614 0.614  
   C3 0.114 0.103 5.914 0.551  
   C4 0.114 0.103 0.093 5.863  

  Determinant of variance-covariance matrix = 81.6  
  Determinant of homogeneity matrix = 1.26E003  
  ChiSquare = 108.149 with 8 degrees of freedom  
  Probability of larger chisquare = 9.66E-007    

   Kuder-Richardson #21 Reliability    

 The Kuder-Richardson formula #20 was developed from Classical Test Theory 
(true-score theory). A shorter form of the estimate can be made using only the mean, 
standard deviation and number of test items if one can assume that the inter-item 
covariances are equal. Below is the form which appears when this procedure is 
selected from the Measurement option of the Analyses menu (Fig.  11.6 ):  

 Note that we have entered the maximum score (total number of items), the test 
mean, and the test standard deviation. When you click the Compute button, the 
estimate is shown in the labeled box.  
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   Weighted Composite Test Reliability    

 The reliability for a combination of tests, each of which has its own estimate of reli-
ability and a weight assigned to it, may be computed. This composite will typically 
be greater than any one test by itself due to the likelihood that the subtests are cor-
related positively among themselves. Since teachers typically assign course grades 
based on a combination of individual tests administered over the time period of a 
course, this reliability estimate in built into the Grading System. See the description 
and examples in that section. A  fi le labeled “CompRel.LAZ” is used in the example 
below (Fig.  11.7 ):  

  Fig. 11.6    Kuder-Richardson 
Formula 20 Reliability form       
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  Composite Test Reliability  
  File Analyzed: C:\lazarus\Projects\LazStats\LazStatsData\CompRel.LAZ  
  Correlations Among Tests with 10 cases.  
   Variables  
    Test1 Test2 Test3  
   Test1 1.000 0.927 0.952  
   Test2 0.927 1.000 0.855  
   Test3 0.952 0.855 1.000  

  Means with 10 valid cases.  

   Variables Test1 Test2 Test3  
     5.500 5.500 7.500  

  Variances with 10 valid cases.  

   Variables Test1 Test2 Test3  
    9.167 9.167 9.167  

  Standard Deviations with 10 valid cases.  

   Variables Test1 Test2 Test3  
    3.028 3.028 3.028  

  Fig. 11.7    Composite test reliability dialog       
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  Test Weights with 10 valid cases.  

   Variables Test1 Test2 Test3  
    1.000 1.000 2.000  

  Test Reliabilities with 10 valid cases.  

   Variables Test1 Test2 Test3  
    0.900 0.700 0.800  
  Composite reliability = 0.929   

   Rasch One Parameter Item Analysis    

 Item Response Theory (IRT) is another theoretical view of subject responses to 
items on a test. IRT suggests that items may possess one or more characteristics 
(parameters) that may be estimated. In the theory developed by George Rasch, one 
parameter, item dif fi culty, is estimated (in addition to the estimate of individual 
subject “ability” parameters.) Utilizing maximum-likelihood methods and log 
dif fi culty and log ability parameter estimates, the Rasch method attempts to esti-
mate subject and item parameters that are “independent” of one another. This is 
unlike Classical theory in which the item dif fi culty (proportion of subjects passing 
an item) is directly a function of the ability of the subjects sampled. IRT is some-
times also considered to be a “Latent Trait Theory” due to the assumption that all of 
the items are measures of the same underlying “trait”. Several tests of the “ fi t” of the 
item responses to this assumption are typically included in programs to estimate 
Rasch parameters. Other IRT procedures posit two or three parameters, the others 
being the “slope” and the “chance” parameters. The slope is the rate at which the 
probability of getting an item correct increases with equal units of increase in sub-
ject ability. The chance parameter is the probability of obtaining the item correct by 
chance alone. In the Rasch model, the chance probability is assumed to be zero and 
the slope parameter assumed to be equal for all items. The  fi le labeled “itemdat.
LAZ” is used for our example (Fig.  11.8 ).  

 Shown below is a sample of output from a test analyzed by the Rasch model. The 
model cannot make ability estimates for subjects that miss all items or get all items 
correct so they are screened out. Parameters estimated are given in log units. Also 
shown is one of the item information function curve plots. Each item provides the 
maximum discrimination (information) at that point where the log ability of the 
subject is approximately the same as the log dif fi culty of the item. In examining the 
output you will note that item 1 does not appear to  fi t the assumptions of the Rasch 
model as measured by the chi-square statistic (Figs.  11.9 ,  11.10 ,  11.11 ,  11.12 ).     
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  Fig. 11.8    The Rasch item analysis dialog       

  Fig. 11.9    Rasch item log dif fi culty estimate plot       
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  Fig. 11.10    Rasch log score estimates       

  Fig. 11.11    A Rasch item characteristic curve       
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  Rasch One-Parameter Logistic Test Scaling (Item Response Theory)  
  Written by William G. Miller  

  case   1 eliminated.  Total score was   5  
  Case   2 Total Score :=   4 Item scores 1 1 1 1 0  
  Case   3 Total Score :=   3 Item scores 1 1 1 0 0  
  Case   4 Total Score :=   2 Item scores 1 1 0 0 0  
  Case   5 Total Score :=   1 Item scores 1 0 0 0 0  
  case   6 eliminated. Total score was 0  
  Case   7 Total Score :=   1 Item scores 1 0 0 0 0  
  Case   8 Total Score :=   2 Item scores 1 1 0 0 0  
  Case   9 Total Score :=   3 Item scores 1 1 1 0 0  
  Case  10 Total Score :=   4 Item scores 1 1 1 1 0  
  case  11 eliminated. Total score was 5  
  Case  12 Total Score :=   3 Item scores 1 0 1 0 1  
  Case  13 Total Score :=   3 Item scores 0 1 1 1 0  
  Case  14 Total Score :=   4 Item scores 1 1 1 0 1  
  Case  15 Total Score :=   4 Item scores 1 1 0 1 1  
  Case  16 Total Score :=   2 Item scores 1 0 0 1 0  

  Total number of score groups :=   4  

  Fig. 11.12    A Rasch test information curve       
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  Matrix of Item Failures in Score Groups  
   Score Group 1 2 3 4 Total  
  ITEM  
   1 0 0 1 0 1  
   2 2 1 1 0 4  
   3 2 3 0 1 6  
   4 2 2 3 1 8  
   5 2 3 3 2 10  
  Total  2 3 4 4 13  

  Item Log Odds Deviation Squared Deviation  
   1 -2.48 -2.13 4.54  
   2 -0.81 -0.46 0.21  
   3 -0.15 0.20 0.04  
   4 0.47 0.83 0.68  
   5 1.20 1.56 2.43  
  Score Frequency Log Odds Freq.x Log Freq.x Log Odds Squared  
   1 2 -1.39 -2.77 3.84  
   2 3 -0.41 -1.22 0.49  
   3 4 0.41 1.62 0.66  
   4 4 1.39 5.55 7.69  

  Prox values and Standard Errors  
  Item Scale Value Standard Error  
   1 -2.730 1.334  
   2 -0.584 0.770  
   3 0.258 0.713  
   4 1.058 0.731  
   5 1.999 0.844  
  Y expansion factor := 1.2821  

  Score Scale Value Standard Error  
   1 -1.910 1.540  
   2 -0.559 1.258  
   3 0.559 1.258  
   4 1.910 1.540  
  X expansion factor =   1.3778  
  Maximum Likelihood Iteration Number  0  
  Maximum Likelihood Iteration Number  1  
  Maximum Likelihood Iteration Number  2  
  Maximum Likelihood Iteration Number  3  

  Maximum Likelihood Estimates  

   Item Log Dif fi culty  
   1 -2.74  
   2 -0.64  
   3  0.21  
   4  1.04  
   5  1.98  
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   Score Log Ability  
   1 -2.04  
   2 -0.54  
   3  0.60  
   4  1.92  

  Goodness of Fit Test for Each Item  
  Item Chi-Squared Degrees of Probability  
  No. Value Freedom of Larger Value  
   1 29.78 9 0.0005  
   2 8.06 9 0.5283  
   3 10.42 9 0.3177  
   4 12.48 9 0.1875  
   5 9.00 9 0.4371  

  Item Data Summary  
   ITEM PT.BIS.R. BIS.R. SLOPE PASSED FAILED RASCH DIFF  
   1 -0.064 -0.117 -0.12 12.00 1 -2.739  
   2 0.648 0.850 1.61 9.00 4 -0.644  
   3 0.679 0.852 1.63 7.00 6 0.207  
   4 0.475 0.605 0.76 5.00 8 1.038  
   5 0.469 0.649 0.85 3.00 10 1.981   

   Guttman Scalogram Analysis    

 Guttman scales are those measurement instruments composed of items which, ide-
ally, form a hierarchy in which the total score of a subject can indicate the actual 
response (correct or incorrect) of each item. Items are arranged in order of the pro-
portion of subjects passing the item and subjects are grouped and sequenced by their 
total scores. If the items measure consistently, a triangular pattern should emerge. 
A coef fi cient of “reproducibility” is obtained which may be interpreted in a manner 
similar to test reliability. 

 Dichotomously scored (0 and 1) items representing the responses of subjects in 
your data grid rows are the variables (grid columns) analyzed. Select the items to 
analyze in the same manner as you would for the Classical Item Analysis or the 
Rasch analysis. When you click the OK button, you will immediately be presented 
with the results on the output form. An example is shown below (Fig.  11.13 ).  
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   GUTTMAN SCALOGRAM ANALYSIS  
   Cornell Method  
  No. of Cases := 101.  No. of items :=  10  
  RESPONSE MATRIX  
  Subject Row Item Number  
   Label Sum Item 10 Item 9 Item 1 Item 3 Item 5 Item 2  
     0 1 0 1 0 1 0 1 0 1 0 1  
    1 10 0 1 0 1 0 1 0 1 0 1 0 1  
    6 10 0 1 0 1 0 1 0 1 0 1 0 1  
   20 10 0 1 0 1 0 1 0 1 0 1 0 1  
   46 10 0 1 0 1 0 1 0 1 0 1 0 1  
   68 10 0 1 0 1 0 1 0 1 0 1 0 1  
   77 10 0 1 0 1 0 1 0 1 0 1 0 1  
   50 9 0 1 0 1 0 1 1 0 0 1 0 1  
   39 9 1 0 0 1 0 1 0 1 0 1 0 1  
  etc.  

  TOTALS  53 48 52 49 51 50 51 50 50 51 48 53  
  ERRORS  3 22 19 9 5 20 13 10 10 10 10 13  

  Subject Row Item Number  
  Label Sum Item 8 Item 6 Item 4 Item 7  
     0 1 0 1 0 1 0 1  
   1 10 0 1 0 1 0 1 0 1  
   6 10 0 1 0 1 0 1 0 1  
  etc.  

   65 0 1 0 1 0 1 0 1 0  
   10 0 1 0 1 0 1 0 1 0  
   89 0 1 0 1 0 1 0 1 0  

  TOTALS  46 55 44 57 44 57 41 60  
  ERRORS  11 11 17 3 12 11 11 15  

  Coef fi cient of Reproducibility := 0.767   

  Fig. 11.13    Guttman 
scalogram analysis dialog       
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   Successive Interval Scaling    

 Successive Interval Scaling was developed as an approximation of Thurstone’s 
Paired Comparisons method for estimation of scale values and dispersion of scale 
values for items designed to measure attitudes. Typically,  fi ve to nine categories are 
used by judges to indicate the degree to which an item expresses an attitude (if a 
subject agrees with the item) between very negative to very positive. Once scale 
values are estimated, the items responded to by subjects are scored by obtaining the 
median scale value of those items to which the subject agrees. 

 To obtain Successive interval scale values, select that option under the 
Measurement group in the Analyses menu on the main form. The speci fi cations 
form below will appear. Select those items (variables) you wish to scale. The data 
analyzed consists of rows representing judges and columns representing the scale 
value chosen for an item by a judge. The  fi le labeled “sucsintv.LAZ” is used as an 
example  fi le (Fig.  11.14 ).  

  Fig. 11.14    Successive 
interval scaling dialog       
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 When you click the OK button on the box above, the results will appear on the 
printout form. An example of results are presented below. 

  SUCCESSIVE INTERVAL SCALING RESULTS  
    0- 1 1- 2 2- 3 3- 4 4- 5 5- 6 6- 7  
   VAR1  
   Frequency 0 0 0 0 4 4 4  
   Proportion 0.000 0.000 0.000 0.000 0.333 0.333 0.333  
   Cum. Prop. 0.000 0.000 0.000 0.000 0.333 0.667 1.000  
  Normal z  - - - - -0.431 0.431 -  
   VAR2  
  Frequency  0 0 1 3 4 4 0  
  Proportion  0.000 0.000 0.083 0.250 0.333 0.333 0.000  
  Cum. Prop.  0.000 0.000 0.083 0.333 0.667 1.000 1.000  
  Normal z  - - -1.383 -0.431 0.431 - -  
   VAR3  
  Frequency  0 0 4 3 4 1 0  
  Proportion  0.000 0.000 0.333 0.250 0.333 0.083 0.000  
  Cum. Prop. 0.000 0.000 0.333 0.583 0.917 1.000 1.000  
  Normal z  - - -0.431 0.210 1.383 - -  
   VAR4  
  Frequency  0 3 4 5 0 0 0  
  Proportion  0.000 0.250 0.333 0.417 0.000 0.000 0.000  
  Cum. Prop. 0.000 0.250 0.583 1.000 1.000 1.000 1.000  
  Normal z  - -0.674 0.210 - - - -  
   VAR5  
  Frequency  5 4 3 0 0 0 0  
  Proportion  0.417 0.333 0.250 0.000 0.000 0.000 0.000  
  Cum. Prop.  0.417 0.750 1.000 1.000 1.000 1.000 1.000  
  Normal z  -0.210 0.674 - - - - -  
   VAR6  
  Frequency  1 2 2 2 2 2 1  
  Proportion  0.083 0.167 0.167 0.167 0.167 0.167 0.083  
  Cum. Prop.  0.083 0.250 0.417 0.583 0.750 0.917 1.000  
  Normal z  -1.383 -0.674 -0.210 0.210 0.674 1.383 -  

  INTERVAL WIDTHS  
    2- 1 3- 2 4- 3 5- 4 6- 5  
   VAR1 - - - - 0.861  
   VAR2 - - 0.952 0.861 -  
   VAR3 - - 0.641 1.173 -  
   VAR4 - 0.885 - - -  
   VAR5 0.885 - - - -  
   VAR6 0.709 0.464 0.421 0.464 0.709  

  Mean Width  0.80 0.67 0.67 0.83 0.78  
  No. Items  2 2 3 3 2  
  Std. Dev.s  0.02 0.09 0.07 0.13 0.01  
  Cum. Means  0.80 1.47 2.14 2.98 3.76  
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  ESTIMATES OF SCALE VALUES AND THEIR DISPERSIONS  
  Item No. Ratings Scale Value Discriminal Dispersion  
        VAR1       12         3.368       1.224  
        VAR2       12         2.559       0.822  
        VAR3       12         1.919       0.811  
        VAR4       12         1.303       1.192  
        VAR5       12         0.199       1.192  
        VAR6       12         1.807       0.759  

  Z scores Estimated from Scale values  
                0- 1   1- 2   2- 3   3- 4   4- 5   5- 6   6- 7  
        VAR1  -3.368 -2.571 -1.897 -1.225 -0.392  0.392  
        VAR2  -2.559 -1.762 -1.088 -0.416  0.416  1.201  
        VAR3  -1.919 -1.122 -0.448  0.224  1.057  1.841  
        VAR4  -1.303 -0.506  0.169  0.840  1.673  2.458  
        VAR5  -0.199  0.598  1.272  1.943  2.776  3.000  
         VAR6 -1.807 -1.010 -0.336  0.336  1.168  1.953  

  Cumulative Theoretical Proportions  
                0- 1   1- 2   2- 3   3- 4   4- 5   5- 6   6- 7  
        VAR1   0.000  0.005  0.029  0.110  0.347  0.653  1.000  
        VAR2   0.005  0.039  0.138  0.339  0.661  0.885  1.000  
        VAR3   0.028  0.131  0.327  0.589  0.855  0.967  1.000  
        VAR4   0.096  0.306  0.567  0.800  0.953  0.993  1.000  
        VAR5   0.421  0.725  0.898  0.974  0.997  0.999  1.000  
         VAR6  0.035  0.156  0.369  0.631  0.879  0.975  1.000  

  Average Discrepency Between Theoretical and Observed Cumulative 
Proportions = 0.050  

  Maximum discrepency = 0.200 found in item VAR4   

   Differential Item Functioning    

 Anyone developing tests today should be sensitive to the fact that some test items 
may present a bias for one or more subgroups in the population to which the test is 
administered. For example, because of societal value systems, boys and girls may be 
exposed to quite different learning experiences during their youth. A word test in 
mathematics may unintentionally give an advantage to one gender group over 
another simply by the examples used in the item. To identify possible bias in an item, 
one can examine the differential item functioning of each item for the sub-groups to 
which the test is administered. The Mantel-Haenszel test statistic may be applied to 
test the difference on the item characteristic curve for the difference between a 
“focus” group and a “reference” group. We will demonstrate using a data set in 
which 40 items have been administered to 1,000 subjects in one group and 1,000 
subjects in another group. The groups are simply coded 1 and 2 for the reference and 
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focus groups. Since there may be very few (or no) subjects that get a speci fi c total 
score, we will group the total scores obtained by subjects into groups of 4 so that we 
are comparing subjects in the groups that have obtained total item scores of 0 to 3, 4 
to 7, …, 40 to 43. As you will see, even this grouping is too small for several score 
groups and we should probably change the score range for the lowest and highest 
scores to a larger range of scores in another run. 

 When you elect to do this analysis, the speci fi cation form above appears 
(Fig.  11.15 ):  

 On the above form you specify the items to be analyzed and also the variable 
de fi ning the reference and focus group codes. You may then specify the options 
desired by clicking the corresponding buttons for the desired options. You also enter 
the number of score groups to be used in grouping the subject’s total scores. When this 
is speci fi ed, you then enter the lowest and highest score for each of those score groups. 
When you have speci fi ed the low and hi score for the  fi rst group, click the right arrow 
on the “slider” bar to move to the next group. You will see that the lowest score has 
automatically been set to one higher than the previous group’s highest score to save 
you time in entering data. You do not, of course, have to use the same size for the 
range of each score group. Using too large a range of scores may cut down the sensi-
tivity of the test to differences between the groups. Fairly large samples of subjects is 
necessary for a reasonable analysis. Once you have completed the speci fi cations, click 
the Compute button and you will see the following results are obtained (we elected to 

  Fig. 11.15    Differential item functioning dialog       
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  Fig. 11.17    Another item differential functioning curve       

  Fig. 11.16    Differential item function curves       
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print the descriptive statistics, correlations and item plots) (Figs.  11.16 ,  11.17 ): 
  Mantel-Haenszel DIF Analysis adapted by Bill Miller from  
  EZDIF written by Niels G. Waller  

  Total Means with 2000 valid cases.  

   Variables VAR 1 VAR 2 VAR 3 VAR 4 VAR 5  
    0.688 0.064 0.585 0.297 0.451  
   Variables VAR 6 VAR 7 VAR 8 VAR 9 VAR 10  
    0.806 0.217 0.827 0.960 0.568  
   Variables VAR 11 VAR 12 VAR 13 VAR 14 VAR 15  
    0.350 0.291 0.725 0.069 0.524  
   Variables VAR 16 VAR 17 VAR 18 VAR 19 VAR 20  
    0.350 0.943 0.545 0.017 0.985  
   Variables VAR 21 VAR 22 VAR 23 VAR 24 VAR 25  
    0.778 0.820 0.315 0.203 0.982  
   Variables VAR 26 VAR 27 VAR 28 VAR 29 VAR 30  
    0.834 0.700 0.397 0.305 0.223  
   Variables VAR 31 VAR 32 VAR 33 VAR 34 VAR 35  
    0.526 0.585 0.431 0.846 0.115  
   Variables VAR 36 VAR 37 VAR 38 VAR 39 VAR 40  
    0.150 0.817 0.909 0.793 0.329  

  Total Variances with 2000 valid cases.  

   Variables VAR 1 VAR 2 VAR 3 VAR 4 VAR 5  
    0.215 0.059 0.243 0.209 0.248  
   Variables VAR 6 VAR 7 VAR 8 VAR 9 VAR 10  
    0.156 0.170 0.143 0.038 0.245  
   Variables VAR 11 VAR 12 VAR 13 VAR 14 VAR 15  
    0.228 0.206 0.199 0.064 0.250  
   Variables VAR 16 VAR 17 VAR 18 VAR 19 VAR 20  
    0.228 0.054 0.248 0.017 0.015  
   Variables VAR 21 VAR 22 VAR 23 VAR 24 VAR 25  
    0.173 0.148 0.216 0.162 0.018  
   Variables VAR 26 VAR 27 VAR 28 VAR 29 VAR 30  
    0.139 0.210 0.239 0.212 0.173  
   Variables VAR 31 VAR 32 VAR 33 VAR 34 VAR 35  
    0.249 0.243 0.245 0.130 0.102  
   Variables VAR 36 VAR 37 VAR 38 VAR 39 VAR 40  
    0.128 0.150 0.083 0.164 0.221  

  Total Standard Deviations with 2000 valid cases.  

   Variables VAR 1 VAR 2 VAR 3 VAR 4 VAR 5  
    0.463 0.244 0.493 0.457 0.498  
   Variables VAR 6 VAR 7 VAR 8 VAR 9 VAR 10  
    0.395 0.412 0.379 0.196 0.495  
   Variables VAR 11 VAR 12 VAR 13 VAR 14 VAR 15  
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    0.477 0.454 0.447 0.253 0.500  
   Variables VAR 16 VAR 17 VAR 18 VAR 19 VAR 20  
    0.477 0.233 0.498 0.129 0.124  
   Variables VAR 21 VAR 22 VAR 23 VAR 24 VAR 25  
    0.416 0.384 0.465 0.403 0.135  
   Variables VAR 26 VAR 27 VAR 28 VAR 29 VAR 30  
    0.372 0.459 0.489 0.461 0.416  
   Variables VAR 31 VAR 32 VAR 33 VAR 34 VAR 35  
    0.499 0.493 0.495 0.361 0.319  
   Variables VAR 36 VAR 37 VAR 38 VAR 39 VAR 40  
    0.357 0.387 0.288 0.405 0.470  

  Total Score: Mean = 21.318, Variance = 66.227, Std.Dev. = 8.138  

  Reference group size = 1000, Focus group size = 1000  
  Correlations Among Items with 2000 cases.  

  Variables  
    VAR 1 VAR 2 VAR 3 VAR 4 VAR 5  
   VAR 1 1.000 0.162 0.389 0.308 0.406  
   VAR 2 0.162 1.000 0.190 0.275 0.259  
   VAR 3 0.389 0.190 1.000 0.368 0.382  
   VAR 4 0.308 0.275 0.368 1.000 0.423  
   VAR 5 0.406 0.259 0.382 0.423 1.000  
   VAR 6 0.260 0.102 0.239 0.199 0.225  
   VAR 7 0.203 0.226 0.237 0.255 0.274  
   VAR 8 0.253 0.103 0.257 0.188 0.234  
   VAR 9 0.160 0.053 0.154 0.077 0.123  
   VAR 10 0.243 0.169 0.279 0.244 0.260  
   VAR 11 0.257 0.191 0.279 0.272 0.308  
   VAR 12 0.210 0.217 0.230 0.248 0.252  
   VAR 13 0.272 0.128 0.262 0.217 0.272  
   VAR 14 0.144 0.181 0.164 0.166 0.172  
   VAR 15 0.255 0.174 0.304 0.265 0.287  
   VAR 16 0.232 0.213 0.251 0.268 0.272  
   VAR 17 0.209 0.064 0.206 0.151 0.168  
   VAR 18 0.276 0.192 0.278 0.259 0.261  
   VAR 19 0.080 0.061 0.087 0.084 0.060  
   VAR 20 0.151 0.033 0.100 0.073 0.097  
   VAR 21 0.271 0.124 0.277 0.208 0.244  
   VAR 22 0.263 0.122 0.270 0.213 0.231  
   VAR 23 0.250 0.190 0.275 0.254 0.282  
   VAR 24 0.206 0.230 0.227 0.261 0.279  
   VAR 25 0.116 0.036 0.118 0.073 0.102  
   VAR 26 0.248 0.105 0.248 0.202 0.247  
   VAR 27 0.300 0.130 0.310 0.230 0.280  
   VAR 28 0.257 0.225 0.275 0.276 0.306  
   VAR 29 0.287 0.202 0.290 0.290 0.308  
   VAR 30 0.239 0.215 0.240 0.241 0.271  
   VAR 31 0.263 0.161 0.288 0.281 0.279  
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   VAR 32 0.251 0.178 0.316 0.228 0.264  
   VAR 33 0.247 0.187 0.272 0.298 0.295  
   VAR 34 0.269 0.094 0.301 0.205 0.244  
   VAR 35 0.151 0.189 0.180 0.181 0.206  
   VAR 36 0.213 0.229 0.209 0.236 0.253  
   VAR 37 0.234 0.107 0.233 0.180 0.241  
   VAR 38 0.203 0.075 0.206 0.156 0.196  
   VAR 39 0.230 0.123 0.274 0.221 0.248  
   VAR 40 0.273 0.211 0.255 0.284 0.289  

  Variables  
   VAR 6 VAR 7 VAR 8 VAR 9 VAR 10  
   VAR 1 0.260 0.203 0.253 0.160 0.243  
   VAR 2 0.102 0.226 0.103 0.053 0.169  
   VAR 3 0.239 0.237 0.257 0.154 0.279  
   VAR 4 0.199 0.255 0.188 0.077 0.244  
   VAR 5 0.225 0.274 0.234 0.123 0.260  
   VAR 6 1.000 0.196 0.267 0.217 0.281  
   VAR 7 0.196 1.000 0.193 0.095 0.253  
   VAR 8 0.267 0.193 1.000 0.189 0.285  
   VAR 9 0.217 0.095 0.189 1.000 0.198  
   VAR 10 0.281 0.253 0.285 0.198 1.000  
   VAR 11 0.235 0.302 0.237 0.129 0.300  
   VAR 12 0.202 0.229 0.198 0.103 0.268  
   VAR 13 0.308 0.202 0.256 0.177 0.299  
   VAR 14 0.108 0.222 0.098 0.055 0.177  
   VAR 15 0.268 0.278 0.264 0.163 0.335  
   VAR 16 0.240 0.290 0.251 0.129 0.302  
   VAR 17 0.238 0.114 0.261 0.224 0.201  
   VAR 18 0.277 0.288 0.250 0.183 0.311  
   VAR 19 0.055 0.118 0.060 0.027 0.076  
   VAR 20 0.133 0.066 0.114 0.140 0.103  
   VAR 21 0.308 0.202 0.299 0.167 0.306  
   VAR 22 0.304 0.177 0.277 0.183 0.290  
   VAR 23 0.253 0.322 0.217 0.111 0.326  
   VAR 24 0.207 0.321 0.189 0.091 0.285  
   VAR 25 0.224 0.063 0.192 0.086 0.135  
   VAR 26 0.312 0.192 0.292 0.190 0.292  
   VAR 27 0.284 0.247 0.299 0.156 0.320  
   VAR 28 0.257 0.295 0.247 0.150 0.348  
   VAR 29 0.248 0.320 0.206 0.108 0.293  
   VAR 30 0.186 0.327 0.179 0.103 0.251  
   VAR 31 0.273 0.281 0.261 0.169 0.323  
   VAR 32 0.245 0.269 0.308 0.164 0.344  
   VAR 33 0.284 0.291 0.234 0.147 0.336  
   VAR 34 0.292 0.191 0.251 0.210 0.305  
   VAR 35 0.157 0.232 0.149 0.074 0.204  
   VAR 36 0.149 0.305 0.163 0.086 0.211  
   VAR 37 0.338 0.183 0.271 0.167 0.240  
   VAR 38 0.254 0.158 0.259 0.228 0.229  
   VAR 39 0.282 0.197 0.278 0.236 0.278  
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   VAR 40 0.227 0.290 0.222 0.121 0.281  

  Variables  
    VAR 11 VAR 12 VAR 13 VAR 14 VAR 15  
   VAR 1 0.257 0.210 0.272 0.144 0.255  
   VAR 2 0.191 0.217 0.128 0.181 0.174  
   VAR 3 0.279 0.230 0.262 0.164 0.304  
   VAR 4 0.272 0.248 0.217 0.166 0.265  
   VAR 5 0.308 0.252 0.272 0.172 0.287  
   VAR 6 0.235 0.202 0.308 0.108 0.268  
   VAR 7 0.302 0.229 0.202 0.222 0.278  
   VAR 8 0.237 0.198 0.256 0.098 0.264  
   VAR 9 0.129 0.103 0.177 0.055 0.163  
   VAR 10 0.300 0.268 0.299 0.177 0.335  
   VAR 11 1.000 0.270 0.295 0.228 0.337  
   VAR 12 0.270 1.000 0.224 0.223 0.249  
   VAR 13 0.295 0.224 1.000 0.145 0.301  
   VAR 14 0.228 0.223 0.145 1.000 0.171  
   VAR 15 0.337 0.249 0.301 0.171 1.000  
   VAR 16 0.317 0.309 0.283 0.220 0.312  
   VAR 17 0.150 0.120 0.252 0.067 0.195  
   VAR 18 0.313 0.291 0.290 0.184 0.332  
   VAR 19 0.074 0.103 0.072 0.026 0.087  
   VAR 20 0.075 0.071 0.113 0.034 0.099  
   VAR 21 0.246 0.239 0.293 0.135 0.300  
   VAR 22 0.227 0.194 0.338 0.122 0.273  
   VAR 23 0.328 0.312 0.285 0.204 0.325  
   VAR 24 0.298 0.267 0.220 0.212 0.300  
   VAR 25 0.078 0.088 0.173 0.037 0.129  
   VAR 26 0.232 0.194 0.336 0.116 0.256  
   VAR 27 0.280 0.221 0.346 0.152 0.327  
   VAR 28 0.336 0.302 0.284 0.225 0.353  
   VAR 29 0.301 0.264 0.279 0.216 0.299  
   VAR 30 0.316 0.252 0.228 0.192 0.263  
   VAR 31 0.313 0.275 0.333 0.182 0.325  
   VAR 32 0.298 0.265 0.306 0.184 0.346  
   VAR 33 0.321 0.262 0.320 0.203 0.321  
   VAR 34 0.229 0.176 0.308 0.116 0.248  
   VAR 35 0.241 0.262 0.162 0.275 0.212  
   VAR 36 0.293 0.264 0.183 0.263 0.249  
   VAR 37 0.218 0.198 0.285 0.123 0.274  
   VAR 38 0.181 0.161 0.261 0.086 0.248  
   VAR 39 0.225 0.229 0.314 0.114 0.271  
   VAR 40 0.325 0.278 0.264 0.206 0.285  

  Variables  
    VAR 16 VAR 17 VAR 18 VAR 19 VAR 20  
   VAR 1 0.232 0.209 0.276 0.080 0.151  
   VAR 2 0.213 0.064 0.192 0.061 0.033  
   VAR 3 0.251 0.206 0.278 0.087 0.100  
   VAR 4 0.268 0.151 0.259 0.084 0.073  
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   VAR 5 0.272 0.168 0.261 0.060 0.097  
   VAR 6 0.240 0.238 0.277 0.055 0.133  
   VAR 7 0.290 0.114 0.288 0.118 0.066  
   VAR 8 0.251 0.261 0.250 0.060 0.114  
   VAR 9 0.129 0.224 0.183 0.027 0.140  
   VAR 10 0.302 0.201 0.311 0.076 0.103  
   VAR 11 0.317 0.150 0.313 0.074 0.075  
   VAR 12 0.309 0.120 0.291 0.103 0.071  
   VAR 13 0.283 0.252 0.290 0.072 0.113  
   VAR 14 0.220 0.067 0.184 0.026 0.034  
   VAR 15 0.312 0.195 0.332 0.087 0.099  
   VAR 16 1.000 0.154 0.315 0.138 0.084  
   VAR 17 0.154 1.000 0.193 0.032 0.230  
   VAR 18  0.315 0.193 1.000 0.089 0.089  
   VAR 19 0.138 0.032 0.089 1.000 0.017  
   VAR 20 0.084 0.230 0.089 0.017 1.000  
   VAR 21 0.244 0.245 0.305 0.061 0.128  
   VAR 22 0.235 0.270 0.268 0.041 0.120  
   VAR 23 0.348 0.158 0.334 0.102 0.085  
   VAR 24 0.331 0.114 0.244 0.116 0.053  
   VAR 25 0.085 0.157 0.136 0.018 0.133  
   VAR 26 0.218 0.288 0.284 0.048 0.129  
   VAR 27 0.278 0.241 0.302 0.069 0.112  
   VAR 28 0.321 0.183 0.340 0.099 0.077  
   VAR 29 0.356 0.145 0.306 0.115 0.083  
   VAR 30 0.296 0.122 0.267 0.106 0.048  
   VAR 31 0.325 0.166 0.319 0.094 0.084  
   VAR 32 0.300 0.197 0.343 0.095 0.091  
   VAR 33 0.293 0.185 0.299 0.120 0.101  
   VAR 34 0.232 0.269 0.292 0.056 0.148  
   VAR 35 0.274 0.089 0.231 0.050 0.045  
   VAR 36 0.267 0.104 0.251 0.075 0.053  
   VAR 37 0.199 0.200 0.259 0.062 0.119  
   VAR 38 0.178 0.221 0.214 0.042 0.171  
   VAR 39 0.235 0.192 0.276 0.067 0.126  
   VAR 40 0.303 0.127 0.296 0.139 0.079  

  Variables  
    VAR 21 VAR 22 VAR 23 VAR 24 VAR 25  
   VAR 1 0.271 0.263 0.250 0.206 0.116  
   VAR 2 0.124 0.122 0.190 0.230 0.036  
   VAR 3 0.277 0.270 0.275 0.227 0.118  
   VAR 4 0.208 0.213 0.254 0.261 0.073  
   VAR 5 0.244 0.231 0.282 0.279 0.102  
   VAR 6 0.308 0.304 0.253 0.207 0.224  
   VAR 7 0.202 0.177 0.322 0.321 0.063  
   VAR 8 0.299 0.277 0.217 0.189 0.192  
   VAR 9 0.167 0.183 0.111 0.091 0.086  
   VAR 10 0.306 0.290 0.326 0.285 0.135  
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   VAR 11 0.246 0.227 0.328 0.298 0.078  
   VAR 12 0.239 0.194 0.312 0.267 0.088  
   VAR 13 0.293 0.338 0.285 0.220 0.173  
   VAR 14 0.135 0.122 0.204 0.212 0.037  
   VAR 15 0.300 0.273 0.325 0.300 0.129  
   VAR 16 0.244 0.235 0.348 0.331 0.085  
   VAR 17 0.245 0.270 0.158 0.114 0.157  
   VAR 18 0.305 0.268 0.334 0.244 0.136  
   VAR 19 0.061 0.041 0.102 0.116 0.018  
   VAR 20 0.128 0.120 0.085 0.053 0.133  
   VAR 21 1.000 0.285 0.243 0.225 0.159  
   VAR 22 0.285 1.000 0.228 0.182 0.167  
   VAR 23 0.243 0.228 1.000 0.336 0.085  
   VAR 24 0.225 0.182 0.336 1.000 0.069  
   VAR 25 0.159 0.167 0.085 0.069 1.000  
   VAR 26 0.276 0.326 0.222 0.189 0.178  
   VAR 27 0.298 0.303 0.304 0.228 0.112  
   VAR 28 0.285 0.260 0.350 0.286 0.104  
   VAR 29 0.265 0.245 0.311 0.261 0.091  
   VAR 30 0.211 0.198 0.306 0.272 0.074  
   VAR 31 0.296 0.286 0.307 0.270 0.130  
   VAR 32 0.292 0.315 0.303 0.285 0.133  
   VAR 33 0.281 0.279 0.337 0.307 0.082  
    VAR 35 0.162 0.140 0.231 0.246 0.049  
   VAR 36 0.184 0.153 0.279 0.289 0.058  
   VAR 37 0.285 0.273 0.243 0.178 0.146  
   VAR 38 0.274 0.236 0.170 0.147 0.176  
   VAR 39 0.283 0.298 0.261 0.221 0.150  
   VAR 40 0.263 0.228 0.319 0.308 0.080  

  Variables  
    VAR 26 VAR 27 VAR 28 VAR 29 VAR 30  
   VAR 1 0.248 0.300 0.257 0.287 0.239  
   VAR 2 0.105 0.130 0.225 0.202 0.215  
   VAR 3 0.248 0.310 0.275 0.290 0.240  
   VAR 4 0.202 0.230 0.276 0.290 0.241  
   VAR 5 0.247 0.280 0.306 0.308 0.271  
   VAR 6 0.312 0.284 0.257 0.248 0.186  
   VAR 7 0.192 0.247 0.295 0.320 0.327  
   VAR 8 0.292 0.299 0.247 0.206 0.179  
   VAR 9 0.190 0.156 0.150 0.108 0.103  
   VAR 10 0.292 0.320 0.348 0.293 0.251  
   VAR 11 0.232 0.280 0.336 0.301 0.316  
   VAR 12 0.194 0.221 0.302 0.264 0.252  
   VAR 13 0.336 0.346 0.284 0.279 0.228  
   VAR 14 0.116 0.152 0.225 0.216 0.192  
   VAR 15 0.256 0.327 0.353 0.299 0.263  
   VAR 16 0.218 0.278 0.321 0.356 0.296  
   VAR 17 0.288 0.241 0.183 0.145 0.122  
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   VAR 18 0.284 0.302 0.340 0.306 0.267  
   VAR 19 0.048 0.069 0.099 0.115 0.106  
   VAR 20 0.129 0.112 0.077 0.083 0.048  
   VAR 21 0.276 0.298 0.285 0.265 0.211  
   VAR 22 0.326 0.303 0.260 0.245 0.198  
   VAR 23 0.222 0.304 0.350 0.311 0.306  
   VAR 24 0.189 0.228 0.286 0.261 0.272  
   VAR 25 0.178 0.112 0.104 0.091 0.074  
   VAR 26 1.000 0.329 0.246 0.246 0.194  
   VAR 27 0.329 1.000 0.311 0.306 0.244  
   VAR 28 0.246 0.311 1.000 0.329 0.315  
   VAR 29 0.246 0.306 0.329 1.000 0.269  
   VAR 30 0.194 0.244 0.315 0.269 1.000  
   VAR 31 0.269 0.305 0.298 0.322 0.289  
   VAR 32 0.284 0.335 0.308 0.294 0.271  
   VAR 33 0.283 0.302 0.328 0.333 0.297  
   VAR 34 0.279 0.294 0.241 0.247 0.189  
   VAR 35 0.123 0.188 0.236 0.272 0.236  
   VAR 36 0.165 0.196 0.243 0.297 0.296  
   VAR 37 0.307 0.271 0.251 0.241 0.163  
   VAR 38 0.293 0.225 0.217 0.172 0.157  
   VAR 39 0.287 0.310 0.285 0.247 0.202  
   VAR 40 0.215 0.296 0.332 0.309 0.293  

  Variables  
    VAR 31 VAR 32 VAR 33 VAR 34 VAR 35  
   VAR 1 0.263 0.251 0.247 0.269 0.151  
   VAR 2 0.161 0.178 0.187 0.094 0.189  
   VAR 3 0.288 0.316 0.272 0.301 0.180  
   VAR 4 0.281 0.228 0.298 0.205 0.181  
   VAR 5 0.279 0.264 0.295 0.244 0.206  
   VAR 6 0.273 0.245 0.284 0.292 0.157  
   VAR 7 0.281 0.269 0.291 0.191 0.232  
   VAR 8 0.261 0.308 0.234 0.251 0.149  
   VAR 9 0.169 0.164 0.147 0.210 0.074  
   VAR 10 0.323 0.344 0.336 0.305 0.204  
   VAR 11 0.313 0.298 0.321 0.229 0.241  
   VAR 12 0.275 0.265 0.262 0.176 0.262  
   VAR 13 0.333 0.306 0.320 0.308 0.162  
   VAR 14 0.182 0.184 0.203 0.116 0.275  
   VAR 15 0.325 0.346 0.321 0.248 0.212  
   VAR 16 0.325 0.300 0.293 0.232 0.274  
   VAR 17 0.166 0.197 0.185 0.269 0.089  
   VAR 18 0.319 0.343 0.299 0.292 0.231  
   VAR 19 0.094 0.095 0.120 0.056 0.050  
   VAR 20 0.084 0.091 0.101 0.148 0.045  
   VAR 21 0.296 0.292 0.281 0.319 0.162  
   VAR 22 0.286 0.315 0.279 0.308 0.140  
   VAR 23 0.307 0.303 0.337 0.224 0.231  
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   VAR 24 0.270 0.285 0.307 0.188 0.246  
   VAR 25 0.130 0.133 0.082 0.168 0.049  
   VAR 26 0.269 0.284 0.283 0.279 0.123  
   VAR 27 0.305 0.335 0.302 0.294 0.188  
   VAR 28 0.298 0.308 0.328 0.241 0.236  
   VAR 29 0.322 0.294 0.333 0.247 0.272  
   VAR 30 0.289 0.271 0.297 0.189 0.236  
   VAR 31 1.000 0.334 0.309 0.264 0.204  
   VAR 32 0.334 1.000 0.347 0.295 0.218  
   VAR 33 0.309 0.347 1.000 0.249 0.259  
   VAR 34 0.264 0.295 0.249 1.000 0.145  
   VAR 35 0.204 0.218 0.259 0.145 1.000  
   VAR 36 0.233 0.246 0.284 0.156 0.274  
   VAR 37 0.261 0.246 0.277 0.278 0.134  
   VAR 38 0.208 0.231 0.205 0.241 0.109  
   VAR 39 0.286 0.259 0.262 0.279 0.134  
   VAR 40 0.294 0.292 0.341 0.216 0.252  

  Variables  
    VAR 36 VAR 37 VAR 38 VAR 39 VAR 40  
   VAR 1 0.213 0.234 0.203 0.230 0.273  
   VAR 2 0.229 0.107 0.075 0.123 0.211  
   VAR 3 0.209 0.233 0.206 0.274 0.255  
   VAR 4 0.236 0.180 0.156 0.221 0.284  
   VAR 5 0.253 0.241 0.196 0.248 0.289  
   VAR 6 0.149 0.338 0.254 0.282 0.227  
   VAR 7 0.305 0.183 0.158 0.197 0.290  
   VAR 8 0.163 0.271 0.259 0.278 0.222  
   VAR 9 0.086 0.167 0.228 0.236 0.121  
   VAR 10 0.211 0.240 0.229 0.278 0.281  
   VAR 11 0.293 0.218 0.181 0.225 0.325  
   VAR 12 0.264 0.198 0.161 0.229 0.278  
   VAR 13 0.183 0.285 0.261 0.314 0.264  
   VAR 14 0.263 0.123 0.086 0.114 0.206  
   VAR 15 0.249 0.274 0.248 0.271 0.285  
   VAR 16 0.267 0.199 0.178 0.235 0.303  
   VAR 17 0.104 0.200 0.221 0.192 0.127  
   VAR 18 0.251 0.259 0.214 0.276 0.296  
   VAR 19 0.075 0.062 0.042 0.067 0.139  
   VAR 20 0.053 0.119 0.171 0.126 0.079  
   VAR 21 0.184 0.285 0.274 0.283 0.263  
   VAR 22 0.153 0.273 0.236 0.298 0.228  
   VAR 23 0.279 0.243 0.170 0.261 0.319  
   VAR 24 0.289 0.178 0.147 0.221 0.308  
   VAR 25 0.058 0.146 0.176 0.150 0.080  
   VAR 26 0.165 0.307 0.293 0.287 0.215  
   VAR 27 0.196 0.271 0.225 0.310 0.296  
   VAR 28 0.243 0.251 0.217 0.285 0.332  
   VAR 29 0.297 0.241 0.172 0.247 0.309  
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   VAR 30 0.296 0.163 0.157 0.202 0.293  
   VAR 31 0.233 0.261 0.208 0.286 0.294  
   VAR 32 0.246 0.246 0.231 0.259 0.292  
   VAR 33 0.284 0.277 0.205 0.262 0.341  
   VAR 34 0.156 0.278 0.241 0.279 0.216  
   VAR 35 0.274 0.134 0.109 0.134 0.252  
   VAR 36 1.000 0.155 0.118 0.180 0.288  
   VAR 37 0.155 1.000 0.250 0.276 0.204  
   VAR 38 0.118 0.250 1.000 0.242 0.181  
   VAR 39 0.180 0.276 0.242 1.000 0.262  
   VAR 40 0.288 0.204 0.181 0.262 1.000  

  Item-Total Correlations with 2000 valid cases.  

   Variables VAR 1 VAR 2 VAR 3 VAR 4 VAR 5  
    0.527 0.352 0.556 0.514 0.563  

   Variables VAR 6 VAR 7 VAR 8 VAR 9 VAR 10  
    0.507 0.509 0.488 0.302 0.579  

   Variables VAR 11 VAR 12 VAR 13 VAR 14 VAR 15  
    0.566 0.502 0.556 0.352 0.586  

   Variables VAR 16 VAR 17 VAR 18 VAR 19 VAR 20  
    0.564 0.371 0.582 0.171 0.200  

   Variables VAR 21 VAR 22 VAR 23 VAR 24 VAR 25  
    0.532 0.511 0.574 0.511 0.235  

   Variables VAR 26 VAR 27 VAR 28 VAR 29 VAR 30  
    0.507 0.570 0.591 0.569 0.507  

   Variables VAR 31 VAR 32 VAR 33 VAR 34 VAR 35  
    0.580 0.584 0.590 0.501 0.411  

   Variables VAR 36 VAR 37 VAR 38 VAR 39 VAR 40  
    0.465 0.482 0.415 0.513 0.556  

  Conditioning Levels  
  Lower Upper  
   1 3  
   4 7  
   8 10  
  11 13  
  14 16  
  17 19  
  20 22  
  23 25  
  26 28  
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  29 31  
  32 40   

     And so on for all items. Note the difference for the two item plots shown above! 
Next, the output re fl ects multiple passes to “ fi t” the data for the M-H test: 

  COMPUTING M-H CHI-SQUARE, PASS # 1  

  Cases in Reference Group  

  Score Level Counts by Item  
  Variables  
    VAR 1 VAR 2 VAR 3 VAR 4 VAR 5  
   1- 3 6 6 6 6 6  
   4- 7 38 38 38 38 38  
   8- 10 47 47 47 47 47  
   11- 13 65 65 65 65 65  
   14- 16 101 101 101 101 101  
   17- 19 113 113 113 113 113  
   20- 22 137 137 137 137 137  
   23- 25 121 121 121 121 121  
   26- 28 114 114 114 114 114  
   29- 31 124 124 124 124 124  
   32- 40 132 132 132 132 132  

  Score Level Counts by Item  
  Variables  
    VAR 6 VAR 7 VAR 8 VAR 9 VAR 10  
   1- 3 6 6 6 6 6  
   4- 7 38 38 38 38 38  
   8- 10 47 47 47 47 47  
   11- 13 65 65 65 65 65  
   14- 16 101 101 101 101 101  
   17- 19 113 113 113 113 113  
   20- 22 137 137 137 137 137  
   23- 25 121 121 121 121 121  
   26- 28 114 114 114 114 114  
   29- 31 124 124 124 124 124  
   32- 40 132 132 132 132 132  

  Score Level Counts by Item  
  Variables  
    VAR 11 VAR 12 VAR 13 VAR 14 VAR 15  
   1- 3 6 6 6 6 6  
   4- 7 38 38 38 38 38  
   8- 10 47 47 47 47 47  
   11- 13 65 65 65 65 65  
   14- 16 101 101 101 101 101  
   17- 19 113 113 113 113 113  
   20- 22 137 137 137 137 137  
   23- 25 121 121 121 121 121  
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   26- 28 114 114 114 114 114  
   29- 31 124 124 124 124 124  
   32- 40 132 132 132 132 132  
   Score Level Counts by Item  
  Variables  
    VAR 16 VAR 17 VAR 18 VAR 19 VAR 20  
   1- 3 6 6 6 6 6  
   4- 7 38 38 38 38 38  
   8- 10 47 47 47 47 47  
   11- 13 65 65 65 65 65  
   14- 16 101 101 101 101 101  
   17- 19 113 113 113 113 113  
   20- 22 137 137 137 137 137  
   23- 25 121 121 121 121 121  
   26- 28 114 114 114 114 114  
   29- 31 124 124 124 124 124  
   32- 40 132 132 132 132 132  

  Score Level Counts by Item  
  Variables  
    VAR 21 VAR 22 VAR 23 VAR 24 VAR 25  
   1- 3 6 6 6 6 6  
   4- 7 38 38 38 38 38  
   8- 10 47 47 47 47 47  
   11- 13 65 65 65 65 65  
   14- 16 101 101 101 101 101  
   17- 19 113 113 113 113 113  
   20- 22 137 137 137 137 137  
   23- 25 121 121 121 121 121  
   26- 28 114 114 114 114 114  
   29- 31 124 124 124 124 124  
   32- 40 132 132 132 132 132  

  Score Level Counts by Item  
  Variables  
    VAR 26 VAR 27 VAR 28 VAR 29 VAR 30  
   1- 3 6 6 6 6 6  
   4- 7 38 38 38 38 38  
   8- 10 47 47 47 47 47  
   11- 13 65 65 65 65 65  
   14- 16 101 101 101 101 101  
   17- 19 113 113 113 113 113  
   20- 22 137 137 137 137 137  
   23- 25 121 121 121 121 121  
   26- 28 114 114 114 114 114  
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   29- 31 124 124 124 124 124  
   32- 40 132 132 132 132 132  

  Score Level Counts by Item  
  Variables  
    VAR 31 VAR 32 VAR 33 VAR 34 VAR 35  
   1- 3 6 6 6 6 6  
   4- 7 38 38 38 38 38  
   8- 10 47 47 47 47 47  
   11- 13 65 65 65 65 65  
   14- 16 101 101 101 101 101  
   17- 19 113 113 113 113 113  
   20- 22 137 137 137 137 137  
   23- 25 121 121 121 121 121  
   26- 28 114 114 114 114 114  
   29- 31 124 124 124 124 124  
   32- 40 132 132 132 132 132  

  Score Level Counts by Item  
  Variables  
    VAR 36 VAR 37 VAR 38 VAR 39 VAR 40  
   1- 3 6 6 6 6 6  
   4- 7 38 38 38 38 38  
   8- 10 47 47 47 47 47  
   11- 13 65 65 65 65 65  
   14- 16 101 101 101 101 101  
   17- 19 113 113 113 113 113  
   20- 22 137 137 137 137 137  
   23- 25 121 121 121 121 121  
   26- 28 114 114 114 114 114  
   29- 31 124 124 124 124 124  
   32- 40 132 132 132 132 132  

  Cases in Focus Group  

  Score Level Counts by Item  
  Variables  
    VAR 1 VAR 2 VAR 3 VAR 4 VAR 5  
   1- 3 7 7 7 7 7  
   4- 7 47 47 47 47 47  
   8- 10 64 64 64 64 64  
   11- 13 85 85 85 85 85  
   14- 16 123 123 123 123 123  
   17- 19 138 138 138 138 138  
   20- 22 127 127 127 127 127  
   23- 25 115 115 115 115 115  
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   26- 28 108 108 108 108 108  
   29- 31 91 91 91 91 91  
   32- 40 95 95 95 95 95  

  Score Level Counts by Item  
  Variables  
    VAR 6 VAR 7 VAR 8 VAR 9 VAR 10  
   1- 3 7 7 7 7 7  
   4- 7 47 47 47 47 47  
   8- 10 64 64 64 64 64  
   11- 13 85 85 85 85 85  
   14- 16 123 123 123 123 123  
   17- 19 138 138 138 138 138  
   20- 22 127 127 127 127 127  
   23- 25 115 115 115 115 115  
   26- 28 108 108 108 108 108  
   29- 31 91 91 91 91 91  
   32- 40 95 95 95 95 95  

  Score Level Counts by Item  
  Variables  
    VAR 11 VAR 12 VAR 13 VAR 14 VAR 15  
   1- 3 7 7 7 7 7  
   4- 7 47 47 47 47 47  
   8- 10 64 64 64 64 64  
   11- 13 85 85 85 85 85  
   14- 16 123 123 123 123 123  
   17- 19 138 138 138 138 138  
   20- 22 127 127 127 127 127  
   23- 25 115 115 115 115 115  
   26- 28 108 108 108 108 108  
   29- 31 91 91 91 91 91  
   32- 40 95 95 95 95 95  

  Score Level Counts by Item  
  Variables  
    VAR 16 VAR 17 VAR 18 VAR 19 VAR 20  
   1- 3 7 7 7 7 7  
   4- 7 47 47 47 47 47  
   8- 10 64 64 64 64 64  
   11- 13 85 85 85 85 85  
   14- 16 123 123 123 123 123  
   17- 19 138 138 138 138 138  
   20- 22 127 127 127 127 127  
   23- 25 115 115 115 115 115  
   26- 28 108 108 108 108 108  
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   29- 31 91 91 91 91 91  
   32- 40 95 95 95 95 95  

  Score Level Counts by Item  
  Variables  
    VAR 21 VAR 22 VAR 23 VAR 24 VAR 25  
   1- 3 7 7 7 7 7  
   4- 7 47 47 47 47 47  
   8- 10 64 64 64 64 64  
   11- 13 85 85 85 85 85  
   14- 16 123 123 123 123 123  
   17- 19 138 138 138 138 138  
   20- 22 127 127 127 127 127  
   23- 25 115 115 115 115 115  
   26- 28 108 108 108 108 108  
   29- 31 91 91 91 91 91  
   32- 40 95 95 95 95 95  

  Score Level Counts by Item  
  Variables  
    VAR 26 VAR 27 VAR 28 VAR 29 VAR 30  
   1- 3 7 7 7 7 7  
   4- 7 47 47 47 47 47  
   8- 10 64 64 64 64 64  
   11- 13 85 85 85 85 85  
   14- 16 123 123 123 123 123  
   17- 19 138 138 138 138 138  
   20- 22 127 127 127 127 127  
   23- 25 115 115 115 115 115  
   26- 28 108 108 108 108 108  
   29- 31 91 91 91 91 91  
   32- 40 95 95 95 95 95  

  Score Level Counts by Item  
  Variables  
    VAR 31 VAR 32 VAR 33 VAR 34 VAR 35  
   1- 3 7 7 7 7 7  
   4- 7 47 47 47 47 47  
   8- 10 64 64 64 64 64  
   11- 13 85 85 85 85 85  
   14- 16 123 123 123 123 123  
   17- 19 138 138 138 138 138  
   20- 22 127 127 127 127 127  
   23- 25 115 115 115 115 115  
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   26- 28 108 108 108 108 108  
   29- 31 91 91 91 91 91  
   32- 40 95 95 95 95 95  

  Score Level Counts by Item  
  Variables  
    VAR 36 VAR 37 VAR 38 VAR 39 VAR 40  
   1- 3 7 7 7 7 7  
   4- 7 47 47 47 47 47  
   8- 10 64 64 64 64 64  
   11- 13 85 85 85 85 85  
   14- 16 123 123 123 123 123  
   17- 19 138 138 138 138 138  
   20- 22 127 127 127 127 127  
   23- 25 115 115 115 115 115  
   26- 28 108 108 108 108 108  
   29- 31 91 91 91 91 91  
   32- 40 95 95 95 95 95  

  Insuf fi cient data found in level: 1 - 3  
  CODES ITEM SIG. ALPHA CHI2 P-VALUE MH D-DIF S.E. MH D-DIF  
  C R 1 *** 9.367 283.535 0.000 -5.257 0.343  
  C R 2 *** 8.741 65.854 0.000 -5.095 0.704  
  C R 3 *** 7.923 287.705 0.000 -4.864 0.310  
  C R 4 *** 10.888 305.319 0.000 -5.611 0.358  
  C R 5 *** 13.001 399.009 0.000 -6.028 0.340  
  B 6 *** 0.587 13.927 0.000 1.251 0.331  
  A 7 * 0.725 5.598 0.018 0.756 0.311  
  A 8 * 0.724 4.851 0.028 0.760 0.335  
  B 9 * 0.506 6.230 0.013 1.599 0.620  
  B 10 *** 0.638 15.345 0.000 1.056 0.267  
  A 11  0.798 3.516 0.061 0.529 0.274  
  A 12 *** 0.700 8.907 0.003 0.838 0.276  
  A 13 *** 0.663 10.414 0.001 0.964 0.294  
  B 14 * 0.595 6.413 0.011 1.219 0.466  
  B 15 *** 0.616 17.707 0.000 1.139 0.268  
  B 16 *** 0.617 16.524 0.000 1.133 0.276  
  A 17  0.850 0.355 0.551 0.382 0.537  
  A 18 ** 0.729 7.642 0.006 0.742 0.263  
  A 19  0.595 1.721 0.190 1.222 0.831  
  A 20  2.004 1.805 0.179 -1.633 1.073  
  A 21 * 0.746 4.790 0.029 0.688 0.307  
  A 22  0.773 2.996 0.083 0.606 0.336  
  B 23 *** 0.573 20.155 0.000 1.307 0.289  
  A 24 * 0.736 4.796 0.029 0.722 0.320  
  A 25  0.570 1.595 0.207 1.320 0.914  
  B 26 *** 0.554 14.953 0.000 1.388 0.354  
  A 27 ** 0.707 7.819 0.005 0.816 0.287  
  A 28 * 0.750 5.862 0.015 0.675 0.272  
  A 29 *** 0.704 7.980 0.005 0.825 0.286  
  A 30 * 0.769 3.845 0.050 0.618 0.305  
  A 31 ** 0.743 6.730 0.009 0.698 0.263  
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  A 32 * 0.762 5.551 0.018 0.640 0.266  
  A 33 * 0.749 6.193 0.013 0.681 0.268  
  A 34  0.976 0.007 1.000 0.058 0.360  
  A 35  0.790 1.975 0.160 0.555 0.375  
  A 36  0.832 1.310 0.252 0.432 0.354  
  A 37 * 0.721 5.148 0.023 0.770 0.329  
  A 38 * 0.678 4.062 0.044 0.914 0.433  
  A 39  0.804 2.490 0.115 0.512 0.312  
  A 40 *** 0.664 11.542 0.001 0.963 0.279  

  No. of items purged in pass 1 = 5  
  Item Numbers:  
  1  
  2  
  3  
  4  
  5  

 One should probably combine the  fi rst two score groups (0–3 and 4–7) into one 
group and the last three groups into one group so that suf fi cient sample size is avail-
able for the comparisons of the two groups. This would, of course, reduce the num-
ber of groups from 11 in our original speci fi cations to 8 score groups. The chi-square 
statistic identi fi es items you will want to give speci fi c attention. Examine the data 
plots for those items. Differences found may suggest bias in those items. Only 
examination of the actual content can help in this decision. Even though two groups 
may differ in their item response patterns does not provide suf fi cient grounds to 
establish bias - perhaps it simply identi fi es a true difference in educational achieve-
ment due to other factors.  

   Adjustment of Reliability For Variance Change    

 Researchers will sometimes use a test that has been standardized on a large, het-
erogenous population of subjects. Such tests typically report rather high internal-
consistency reliability estimates (e.g. Cronbach’s estimate.) But what is the reliability 
if one administers the test to a much more homogeneous population? For example, 
assume a high school counselor administers a “College Aptitude Test” that reports 
a reliability of 0.95 with a standard deviation of 15 (variance of 225) and a mean of 
20.0 for the national norm. What reliability would the counselor expect to obtain for 
her sample of students that obtain a mean of 22.8 and a standard deviation of 10.2 
(variance of 104.04)? This procedure will help provide the estimate. Shown below 
is the speci fi cation form and our sample values entered. When the compute button 
is clicked, the results shown are obtained (Fig.  11.18 ).   
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   Polytomous DIF Analysis    

 The purpose of the differential item functioning program is to identify test or atti-
tude items that “perform” differently for two groups - a target group and a reference 
group. Two procedures are provided and selected on the basis of whether the items 
are dichotomous (0 and 1 scoring) or consist of multiple categories (e.g. Likert 
responses ranging from 1 to 5.) The latter case is where the Polytomous DIF Analysis 
is selected. When you initiate this procedure you will see the dialogue box shown 
below (Fig.  11.19 ):  

 The results from an analysis of three items with  fi ve categories that have been 
collapsed into three category levels is shown below. A sample of 500 subject’s atti-
tude scores were observed (Fig.  11.20 ). 

  Fig. 11.18    Reliability 
adjustment for variability 
dialog       

 



  Fig. 11.20    Level means for polytomous item       

  Fig. 11.19    Polytomous item differential functioning dialog       
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  Polytomous Item DIF Analysis adapted by Bill Miller from  
  Procedures for extending item bias detection techniques  
  by Catherine Welch and H.D. Hoover, 1993  
  Applied Measurement in Education 6(1), pages 1-19.  

  Conditioning Levels  
   Lower Upper  
   0 1  
   2 3  
   4 5  

  For Item 1:  

  Observed Category Frequencies  
  Item Group Level Category Number  
                         1        2        3        4         5  
    1   Ref.    1       46       51       39       64        48  
    1   Focal   1       40       41       38       46        42  
    1   Total   1       86       92       77      110        90  
    1   Ref.    2        2        0        0        0         0  
    1   Focal   2        1        0        0        0         0  
    1   Total   2        3        0        0        0         0  
    1   Ref.    3       12        8        1        0         0  
    1   Focal   3       15        6        0        0         0  
    1   Total   3       27       14        1        0         0  

  t-test values for Reference and Focus Means for each level  
  Mean Reference =      3.069 SD =      24.396 N =   248  
  Mean Focal     =      3.043 SD =      21.740 N =   207  
  Level 1 t =    -0.011 with deg. freedom =    453  
  Mean Reference =      2.000 SD = 2.000 N =    2  
  Mean Focal     =      1.000 SD = 1.000 N =    1  
  Level 2 t = 0.000 with deg. freedom = 0  
  Mean Reference =      1.476 SD = 4.262 N =   21  
  Mean Focal     =      1.286 SD = 4.088 N =   21  
  Level   3 t =   -0.144 with deg. freedom =   40  
  Composite z statistic = -0.076. Prob. > |z| = 0.530  
  Weighted Composite z statistic = -0.248. Prob. > |z| = 0.598  
  Generalized Mantel-Haenszel = 0.102 with D.F. = 1 and Prob. > 
Chi-Sqr. = 0.749   
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  For Item 2:  

  Observed Category Frequencies  
  Item Group Level Category Number  
                         1        2        3        4         5  
    2   Ref.    1       56       46       47       48        51  
    2   Focal   1       37       38       49       35        48  
    2   Total   1       93       84       96       83        99  
    2   Ref.    2        2        0        0        0         0  
    2   Focal   2        1        0        0        0         0  
    2   Total   2        3        0        0        0         0  
    2   Ref.    3       12        8        1        0         0  
    2   Focal   3        9       11        1        0         0  
    2   Total   3       21       19        2        0         0  

  t-test values for Reference and Focus Means for each level  
  Mean Reference =      2.968 SD = 23.046 N =   248  
  Mean Focal     =      3.092 SD = 22.466 N =   207  
  Level   1 t =   0.058 with deg. freedom   = 453  
  Mean Reference =     2.000 SD = 2.000 N   = 2  
  Mean Focal     =     1.000 SD = 1.000 N   = 1  
  Level   2 t =   0.000 with deg. freedom   = 0  
  Mean Reference =     1.476 SD = 4.262 N   = 21  
  Mean Focal    =      1.619 SD = 5.094 N   = 21  
  Level   3 t =   0.096 with deg. freedom   = 40  
  Composite z statistic = 0.075. Prob. > |z| = 0.470  
  Weighted Composite z statistic = 0.673. Prob. > |z| = 0.250  
  Generalized Mantel-Haenszel = 1.017 with D.F. = 1 and Prob. > 
Chi-Sqr. = 0.313  

  Observed Category Frequencies  
  Item Group Level Category Number  
                         1        2        3        4         5  
    3   Ref.    1       35       38       52       68        55  
    3   Focal   1       42       41       37       42        45  
    3   Total   1       77       79       89      110       100  
    3   Ref.    2        2        0        0        0         0  
    3   Focal   2        1        0        0        0         0  
    3   Total   2        3        0        0        0         0  
    3   Ref.    3        8       10        3        0         0  
    3   Focal   3        7       10        4        0         0  
    3   Total   3       15       20        7        0         0  
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  t-test values for Reference and Focus Means for each level  
  Mean Reference =      3.282 SD = 26.866 N =   248  
  Mean Focal     =      3.034 SD = 21.784 N =   207  
  Level   1 t =    -0.107 with deg. freedom =   453  
  Mean Reference =      2.000 SD = 2.000 N =   2  
  Mean Focal     =      1.000 SD = 1.000 N =   1  
  Level   2 t =    0.000 with deg. freedom =   0  
  Mean Reference =      1.762 SD = 4.898 N =   21  
  Mean Focal     =      1.857 SD = 5.102 N =   21  
  Level   3 t =    0.060 with deg. freedom =   40  
  Composite z statistic = -0.023. Prob. > |z| = 0.509  
  Weighted Composite z statistic = -1.026. Prob. > |z| = 0.848  
  Generalized Mantel-Haenszel =      3.248 with D.F. = 1 and Prob. 
> ChiSqr. =  0.071   

   Generate Test Data    

 To help you become familiar with some of the measurement procedures, you can 
experiment by creating “arti fi cial” item responses to a test. When you select the 
option to generate simulated test data, you complete the information in the follow-
ing speci fi cation form. An example is shown. Before you begin, be sure you have 
closed any open  fi le already in the data grid since the data that is generated will be 
placed in that grid (Fig.  11.21 ).  

  Fig. 11.21    The item 
generation dialog       
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 Shown above is a “snap-shot” of the generated test item responses. An additional 
row has been inserted for the  fi rst case which consists of all 1’s. It will serve as the 
“correct” response for scoring each of the item responses of the subsequent cases. 
You can save your generated  fi le for future analyses or other work (Fig.  11.22 ).  

 Notice that in our example we speci fi ed the creation of test data that would have 
a reliability of 0.8 for 30 items administered to 100 students. If we analyze this data 
with our Classical Test Analysis procedure, we obtain the following output:

    AlphaReliability Estimate for Test 0.8997S.E. of  Measurement 2.406= =    

 Clearly, the test generated from our population speci fi cations yielded a some-
what higher reliability than the 0.8 speci fi ed for the reliability. Have we learned 
something about sampling variability? If you request that the total be placed in the 
data grid when you use analyze the test, you can also use the descriptive statistics 
procedure to obtain the sample mean, etc. as shown belo   w: 

  DISTRIBUTION PARAMETER ESTIMATES 

 TOTAL (N = 100) Sum =    1560.000 
 Mean = 15.600 Variance =       55.838 Std.Dev. =    7.473 
 Std.Error of Mean = 0.747 
 Range =   29.000 Minimum =   1.000 Maximum =   30.000 
 Skewness =   −0.134 Std. Error of Skew =   0.241 
 Kurtosis =   −0.935 Std. Error Kurtosis =   0.478  

  Fig. 11.22    Generated item data in the main grid       
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 The frequencies procedure can plot the total score distribution of our sample 
with the normal curve as a reference to obtain (Fig.  11.23 ):  

 A test of normality of the total scores suggests a possibility that the obtained 
scores are not normally distributed as shown in the normality test form above 
(Fig.  11.24 ):   

  Fig. 11.24    Test of normality 
for generated data       

  Fig. 11.23    Plot of generated test data       
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   Spearman-Brown Reliability Prophecy    

 The Spearman-Brown “Prophecy” formula has been a corner-stone of many instruc-
tional text books in measurement theory. Based on “Classical True-Score” theory, it 
provides an estimate of what the reliability of a test of a different length would be 
based on the initial test’s reliability estimate. It assumes the average dif fi culty and 
inter-item covariances of the extended (or trimmed) test are the same as the original 
test. If these assumptions are valid, it is a reasonable estimator. Shown below is the 
speci fi cation form which appears when you elect this Measurement option from the 
Analyses menu (Fig.  11.25 ):  

 You can see that in an example, that when a test with an initial reliability of 0.8 
is doubled (the multiplier k = 2) that the new test is expected to have a reliability of 
0.89 approximately. The program may be useful for reducing a test (perhaps by 
randomly selecting items to delete) that requires too long to administer and has an 
initially high internal consistency reliability estimate. For example, assume a test of 
200 items has a reliability of .95. What is the estimate if the test is reduced by one-
half? If the new reliability of 0.9 is satisfactory, considerable time and money may 
be saved!                

  Fig. 11.25    Spearman-Brown 
Prophecy dialog       
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   XBAR Chart    

   An Example 

 We will use the  fi le labeled boltsize.txt to demonstrate the XBAR Chart procedure. 
Load the  fi le and select the option Statistics/Statistical Process Control/Control 
Charts/XBAR Chart from the menu. The  fi le contains two variables, lot number and 
bolt length. These values have been entered in the speci fi cation form which is shown 
below. Notice that the form also provides the option to enter and use a speci fi c “tar-
get” value for the process as well as speci fi cation levels which may have been pro-
vided as guidelines for determining whether or not the process was in control for a 
given sample    (Fig.  12.1 ).  

    Chapter 12   
 Statistical Process Control         
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 Pressing the Compute button results in the following (Fig.  12.2 ):  

  Fig. 12.1    XBAR chart dialog       
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  X Bar Chart Results  

  Group Size Mean Std.Dev.      

   1 5 19.88 0.37  
   2 5 19.90 0.29  
   3 5 20.16 0.27  
   4 5 20.08 0.29  
   5 5 19.88 0.49  
   6 5 19.90 0.39  
   7 5 20.02 0.47  
   8 5 19.98 0.43  
  Grand Mean = 19.97, Std.Dev. = 0.359, Standard Error of Mean = 0.06  
  Lower Control Limit = 19.805, Upper Control Limit = 20.145  

 If, in addition, we specify a target value of 20 for our bolt and upper and lower 
speci fi cation levels (tolerance) of 20.1 and 19.9, we would obtain the chart shown 
below (Fig.  12.3 ):  

 In this chart we can see that the mean of the samples falls slightly below the 
speci fi ed target value and that samples 3 and 5 appear to have bolts outside the toler-
ance speci fi cations.   

  Fig. 12.2    XBAR chart for boltsize       
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   Range Chart    

 As tools wear the products produced may begin to vary more and more widely 
around the values speci fi ed for them. The mean of a sample may still be close to the 
speci fi ed value but the range of values observed may increase. The result is that 
more and more parts produced may be under or over the speci fi ed value. Therefore 
quality assurance personnel examine not only the mean (XBAR chart) but also the 
range of values in their sample lots. Again, examine the boltsize.txt  fi le with the 
option Statistics/Statistical Process Control/Control Charts/Range Chart. Shown 
below is the speci fi cation form and the results (Figs.  12.4 ,  12.5 ):  

  Fig. 12.3    XBAR chart plot with target speci fi cations       
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  Fig. 12.4    Range chart dialog       

  Fig. 12.5    Range chart plot       
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  X Bar Chart Results  
  Group Size Mean Range Std.Dev.      

   1 5 19.88 0.90 0.37  
   2 5 19.90 0.70 0.29  
   3 5 20.16 0.60 0.27  
   4 5 20.08 0.70 0.29  
   5 5 19.88 1.20 0.49  
   6 5 19.90 0.90 0.39  
   7 5 20.02 1.10 0.47  
   8 5 19.98 1.00 0.43  
  Grand Mean = 19.97, Std.Dev. = 0.359, Standard Error of Mean = 0.06  
  Mean Range = 0.89  
  Lower Control Limit = 0.000, Upper Control Limit = 1.876   

 In the previous analysis using the XBAR chart procedure we found that the 
means of lots 3 and 6 were a meaningful distance from the target speci fi cation. In 
this chart we observed that lot 3 also had a larger range of values. The process 
appears out of control for lot 3 while for lot 6 it appears that the process was simply 
requiring adjustment toward the target value. In practice we would more likely see 
a pattern of increasing ranges as a machine becomes “loose” due to wear even 
though the averages may still be “on target”.  

   S Control Chart    

 The sample standard deviation, like the range, is also an indicator of how much 
values vary in a sample. While the range re fl ects the difference between largest and 
smallest values in a sample, the standard deviation re fl ects the square root of the 
average squared distance around the mean of the values. We desire to reduce this 
variability in our processes so as to produce products as similar to one another as is 
possible. The S control chart plot the standard deviations of our sample lots and 
allows us to see the impact of adjustments and improvements in our manufacturing 
processes. 

 Examine the boltsize.txt data with the S Control Chart. Shown below is the 
speci fi cation form for the analysis and the results obtained (Figs.  12.6 ,  12.7 ):  
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  Fig. 12.6    Sigma chart dialog       

  Fig. 12.7    Sigma chart plot       
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  Group Size Mean Std.Dev.      

   1 5 19.88 0.37  
   2 5 19.90 0.29  
   3 5 20.16 0.27  
   4 5 20.08 0.29  
   5 5 19.88 0.49  
   6 5 19.90 0.39  
   7 5 20.02 0.47  
   8 5 19.98 0.43  
  Grand Mean = 19.97, Std.Dev. = 0.359, Standard Error of Mean = 0.06  
  Mean Sigma = 0.37  
  Lower Control Limit = 0.000, Upper Control Limit = 0.779   

 The pattern of standard deviations is similar to that of the Range Chart.  

   CUSUM Chart    

 The speci fi cation form for the CUSUM chart is shown below for the data  fi le labeled 
boltsize.txt. We have speci fi ed our desire to detect shifts of 0.02 in the process and are 
using the 0.05 and 0.20 probabilities for the two types of errors (Figs.  12.8 ,  12.9 ).  

  Fig. 12.8    CUMSUM chart dialog       
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  CUMSUM Chart Results  

  Group Size Mean Std.Dev. Cum.Dev. of     mean from Target      

   1 5 19.88 0.37 -0.10  
   2 5 19.90 0.29 -0.18  
   3 5 20.16 0.27 0.00  
   4 5 20.08 0.29 0.10  
   5 5 19.88 0.49 0.00  
   6 5 19.90 0.39 -0.08  
   7 5 20.02 0.47 -0.04  
   8 5 19.98 0.43 -0.04  
  Mean of group deviations = -0.005  
  Mean of all observations = 19.975  
  Std. Dev. of Observations = 0.359  
  Standard Error of Mean = 0.057  
  Target Speci fi cation = 19.980  
  Lower Control Limit = 19.805, Upper Control Limit = 20.145   

 The results are NOT typical in that it appears that we have a process that is mov-
ing into control instead of out of control. Movement from lot 1 to 2 and from lot 3 
to 4 indicate movement to out-of-control while the remaining values appear to be 
closer to in-control. If one checks the “Use the target value:” (of 20.0) the mask 
would indicate that lot 3 to 4 had moved to an out-of-control situation.  

  Fig. 12.9    CUMSUM chart plot       
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   p Chart    

 To demonstrate the p Chart we will utilize a  fi le labeled pchart.txt. Load the  fi le and 
select the Analyses/Statistical Process Control/p Chart option. The speci fi cation 
form is shown below along with the results obtained after clicking the Compute 
Button (Figs.  12.10 ,  12.11 ):  

  Fig. 12.10    p control chart dialog       
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  Target proportion = 0.0100  
  Sample size for each observation = 1000  
  Average proportion observed = 0.0116  
  Defects p Control Chart Results  

  Sample No. Proportion      

   1 0.012  
   2 0.015  
   3 0.008  
   4 0.010  
   5 0.004  
   6 0.007  
   7 0.016  
   8 0.009  
   9 0.014  
   10 0.010  
   11 0.005  
   12 0.006  
   13 0.017  
   14 0.012  
   15 0.022  
   16 0.008  
   17 0.010  
   18 0.005  
   19 0.013  

  Fig. 12.11    p control chart plot       
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   20 0.011  
   21 0.020  
   22 0.018  
   23 0.024  
   24 0.015  
   25 0.009  
   26 0.012  
   27 0.007  
   28 0.013  
   29 0.009  
   30 0.006  
  Target proportion = 0.0100  
  Sample size for each observation = 1000  
  Average proportion observed = 0.0116   

 Several of the sample lots (N = 1,000) had disproportionately high defect rates 
and would bear further examination of what may have been occurring in the process 
at those points.  

   Defect (Non-conformity) c Chart    

 The previous section discusses the proportion of defects in samples (p Chart.) This 
section examines another defect process in which there is a count of defects in a 
sample lot. In this chart it is assumed that the occurrence of defects are independent, 
that is, the occurrence of a defect in one lot is unrelated to the occurrence in another 
lot. It is expected that the count of defects is quite small compared to the total num-
ber of parts potentially defective. For example, in the production of light bulbs, it is 
expected that in a sample of 1,000 bulbs, only a few would be defective. The under-
lying assumed distribution model for the count chart is the Poisson distribution 
where the mean and variance of the counts are equal. Illustrated below is an exam-
ple of processing a  fi le labeled cChart.txt (Figs.  12.12 ,  12.13 ).  
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  Fig. 12.13    Defect control chart plot       

  Fig. 12.12    Defect c chart dialog       
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  Defects c Control Chart Results  

  Sample Number of     Noncomformities      

   1 7.00  
   2 6.00  
   3 6.00  
   4 3.00  
   5 22.00  
   6 8.00  
   7 6.00  
   8 1.00  
   9 0.00  
   10 5.00  
   11 14.00  
   12 3.00  
   13 1.00  
   14 3.00  
   15 2.00  
   16 7.00  
   17 5.00  
   18 7.00  
   19 2.00  
   20 8.00  
   21 0.00  
   22 4.00  
   23 14.00  
   24 4.00  
   25 3.00  
  Total Nonconformities = 141.00  
  No. of samples = 25  
  Poisson mean and variance = 5.640  
  Lower Control Limit = -1.485, Upper Control Limit = 12.765   

 The count of defects for three of the 25 objects is greater than the upper control 
limit of three standard deviations.  

   Defects Per Unit U Chart    

 The speci fi cation form and results for the computation following the click of the 
Compute button are shown below (Figs.  12.14 ,  12.15 ):  
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  Fig. 12.15    Defect control chart plot       

  Fig. 12.14    Defects U chart dialog       
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  Sample No Defects Defects Per Unit      

   1 36.00 0.80  
   2 48.00 1.07  
   3 45.00 1.00  
   4 68.00 1.51  
   5 77.00 1.71  
   6 56.00 1.24  
   7 58.00 1.29  
   8 67.00 1.49  
   9 38.00 0.84  
   10 74.00 1.64  
   11 69.00 1.53  
   12 54.00 1.20  
   13 56.00 1.24  
   14 52.00 1.16  
   15 42.00 0.93  
   16 47.00 1.04  
   17 64.00 1.42  
   18 61.00 1.36  
   19 66.00 1.47  
   20 37.00 0.82  
   21 59.00 1.31  
   22 38.00 0.84  
   23 41.00 0.91  
   24 68.00 1.51  
   25 78.00 1.73  
  Total Nonconformities = 1399.00  
  No. of samples = 25  
  Def. / unit mean = 1.244 and variance = 0.166  
  Lower Control Limit = 0.745, Upper Control Limit = 1.742   

 In this example, the number of defects per unit are all within the upper and lower 
control limits.       
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   The Linear Programming Procedure 

 To start the Linear Programming procedure, click on the Sub-Systems menu item 
and select the Linear Programming procedure. The following screen will appear 
(Fig.  13.1 ):  

 We have loaded a  fi le named Metals.LPR by pressing the Load File button and 
selecting a  fi le which we had already constructed to do the  fi rst problem given 
above. When you start a problem, you will typically enter the number of variables 
(X’s)  fi rst. When you press the tab key to go to the next  fi eld or click on another area 
of the form, the grids which appear on the form will automatically re fl ect the correct 
number of columns for data entry. In the Metals problem we have 1 constraint of the 
‘Maximum’ type, 1 constraint of the ‘Minimum’ type and 3 Equal constraints. 
When you have entered the number of each type of constraint the grids will auto-
matically provide the correct number of rows for entry of the coef fi cients for those 
constraints. Next, we enter the ‘Objective’ or cost values. Notice that you do NOT 
enter a dollar sign, just the values for the variables -  fi ve in our example. Now we 
are ready to enter our constraints and the corresponding coef fi cients. Our  fi rst (max-
imum) constraint is set to 1000 to set an upper limit for the amount of metal to 
produce. This constraint applies to each of the variables and a value of 1.00 has been 
entered for the coef fi cients of this constraint. The one minimum constraint is entered 
next. In this case we have entered a value of 100 as the minimum amount to pro-
duce. Notice that the coef fi cients entered are ALL negative values of 1.0! You will 
be entering negative values for the Minimum and Equal constraints coef fi cients. 

    Chapter 13   
 Linear Programming            
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The constraint values themselves must all be zero or greater. We now enter the 
Equal constraint values and their coef fi cients from the second through the fourth 
equations. Again note that negative values are entered. Finally, we click on the 
Minimize button to indicate that we are minimizing the objective. We then press the 
Compute button to obtain the following results: 

  Linear Programming Results  

     X1 X5  

    z 544.8261 -0.1520 -0.7291  
   Y1 1100.0000 0.0000 0.0000  
   X3 47.8261 -0.7246 1.7391  
   Y2 0.0000 0.0000 0.0000  
   X4 41.7391 -0.0870 -2.3913  
   X2 10.4348 -0.1884 -0.3478  

 The  fi rst column provides the answers we sought. The cost of our new alloy will 
be minimal if we combine the alloys 2, 3 and 4 with the respective percentages of 
10.4, 47.8 and 41.7. Alloys 1 and 5 are not used. The z value in the  fi rst column is 
our objective function value (544.8). 

  Fig. 13.1    Linear programming dialog       
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 Next, we will examine the second problem in which the nutritionist desires to 
minimize costs for the optimal food mix. We will click the Reset button on the form 
to clear our previous problem and load a previously saved  fi le labeled ‘Nutrition.
LPR’. The form appears above (Fig.  13.2 ):  

 Again note that the minimum and equal constraint coef fi cients entered are nega-
tive values. When the compute button is pressed we obtain the following results: 

  Linear Programming Results  

     Y4 X2  

    z 0.4924 -0.0037 -0.1833  
   Y1 0.7000 0.0000 1.0000  
   Y2 33.2599 0.1666 3.7777  
   X1 0.8081 0.0122 -0.7222  
   Y3 0.7081 0.0122 -0.7222  
   X3 0.5000 0.0000 0.0000  

 In this solution we will be using .81 parts of Food A and .5 parts of Food C. Food 
B is not used. 

 The Linear Programming procedure of this program is one adapted from the 
Simplex program in the Numerical Recipes book listed in the bibliography (#56). 
The form design is one adapted from the Linear Programming program by Ane 
Visser of the AgriVisser consulting  fi rm.       

  Fig. 13.2    Example speci fi cations for a linear programming problem       
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   Purpose of MatMan 

 MatMan was written to provide a platform for performing common matrix and vec-
tor operations. It is designed to be helpful for the student learning matrix algebra 
and statistics as well as the researcher needing a tool for matrix manipulation. If you 
are already a user of the OpenStat program, you can import  fi les that you have saved 
with OpenStat into a grid of MatMan.  

   Using MatMan    

 When you  fi rst start the MatMan program, you will see the main program form 
below. This form displays four “grids” in which matrices, row or column vectors or 
scalars (single values) may be entered and saved. If a grid of data has already been 
saved, it can be retrieved into any one of the four grids. Once you have entered data 
into a grid, a number of operations can be performed depending on the type of data 
entered (matrix, vector or scalar.) Before performing an operation, you select the 
grid of data to analyze by clicking on the grid with the left mouse button. If the data 
in the selected grid is a matrix ( fi le extension of .MAT) you can select any one of the 
matrix operations by clicking on the Matrix Operations “drop-down” menu at the 
top of the form. If the data is a row or column vector, select an operation option from 
the Vector Operations menu. If the data is a single value, select an operation from 
the Scalar Operations menu (Fig   .  14.1 ).   

    Chapter 14   
 Using MatMan         
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   Using the Combination Boxes 

 In the upper right portion of the MatMan main form, there are four “Combo Boxes”. 
These boxes each contain a drop-down list of  fi le names. The top box labeled 
“Matrix” contains the list of  fi les containing matrices that have been created in the 
current disk directory and end with an extension of .MAT. The next two combo 
boxes contain similar lists of column or row vectors that have been created and are 
in the current disk directory. The last contains name of scalar  fi les that have been 
saved in the current directory. These combo boxes provide documentation as to the 
names of current  fi les already in use. In addition, they provide a “short-cut” method 
of opening a  fi le and loading it into a selected grid.  

   Files Loaded at the Start of MatMan 

 Five types of  fi les are loaded when you  fi rst start the execution of the MatMan pro-
gram. The program will search for  fi les in the current directory that have  fi le exten-
sions of .MAT, .CVE, .RVE, .SCA and .OPT. The  fi rst four types of  fi les are simply 
identi fi ed and their names placed into the corresponding combination boxes of 

  Fig. 14.1    The MatMan dialog       
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matrices, column vectors, row vectors and scalars. The last, options, is a  fi le which 
contains only two integers: a 1 if the script should NOT contain File Open opera-
tions when it is generated or a 0 and a 1 if the script should NOT contain File Save 
operations when a script is generated or a 0. Since File Open and File Save opera-
tions are not actually executed when a script or script line is executed, they are in a 
script only for documentation purposes and may be left out.  

   Clicking the Matrix List Items 

 A list of Matrix  fi les in the current directory will exist in the Matrix “Drop-Down” 
combination box when the MatMan program is  fi rst started. By clicking on one of 
these  fi le names, you can directly load the referenced  fi le into a grid of your 
selection.  

   Clicking the Vector List Items 

 A list of column and row vector  fi les in the current directory will exist in the corre-
sponding column vector or row vector “Drop-Down” combination boxes when the 
MatMan program is  fi rst started. By clicking a  fi le name in one of these boxes, you 
can directly load the referenced  fi le into a grid of your selection.  

   Clicking the Scalar List Items 

 When you click on the down arrow of the Scalar “drop-down” combination box, a 
list of  fi le names appear which have been previously loaded by identifying all scalar 
 fi les in the current directory. Also listed are any new scalar  fi les that you have cre-
ated during a session with MatMan. If you move your mouse cursor down to a  fi le 
name and click on it, the  fi le by that name will be loaded into the currently selected 
grid or a grid of your choice.  

   The Grids 

 The heart of all operations you perform involve values entered into the cells of a 
grid. These values may represent values in a matrix, a column vector, a row vector 
or a scalar. Each grid is like a spreadsheet. Typically, you select the  fi rst row and 
column cell by clicking on that cell with the left mouse key when the mouse cursor 
is positioned over that cell. To select a particular grid, click the left mouse button 
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when the mouse cursor is positioned over any cell of that grid. You will then see that 
the grid number currently selected is displayed in a small text box in the upper left 
side of the form (directly below the menus.)  

   Operations and Operands 

 At the bottom of the form (under the grids) are four “text” boxes labeled Operation, 
Operand1, Operand2 and Operand3. Each time you perform an operation by use of 
one of the menu options, you will see an abbreviation of that operation in the 
Operation box. Typically there will be at least one or two operands related to that 
operation. The  fi rst operand is typically the name of the data  fi le occupying the cur-
rent grid and the second operand the name of the  fi le containing the results of the 
operation. Some operations involve two grids, for example, adding two matrices. In 
these cases, the name of the two grid  fi les involved will be in operands1 and oper-
ands2 boxes while the third operand box will contain the  fi le for the results. 

 You will also notice that each operation or operand is pre fi xed by a number fol-
lowed by a dash. In the case of the operation, this indicates the grid number from 
which the operation was begun. The numbers which pre fi x the operand labels indi-
cate the grid in which the corresponding  fi les were loaded or saved. The operation 
and operands are separated by a colon (:). When you execute a script line by double 
clicking an operation in the script list, the  fi les are typically loaded into correspond-
ing grid numbers and the operation performed.  

   Menus 

 The operations which may be performed on or with matrices, vectors and scalars are 
all listed as options under major menu headings shown across the top of the main 
form. For example, the File menu, when selected, provides a number of options for 
loading a grid with  fi le data, saving a  fi le of data from a grid, etc. Click on a menu 
heading and explore the options available before you begin to use MatMan. In 
nearly all cases, when you select a menu option you will be prompted to enter addi-
tional information. If you select an option by mistake you can normally cancel the 
operation.  

   Combo Boxes 

 Your main MatMan form contains what are known as “Drop-Down” combination 
boxes located on the right side of the form. There are four such boxes: The 
“Matrix” box, the “Column Vectors” box, the “Row Vectors” box and the “Scalars” 
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box. At the right of each box is an arrow which, when clicked, results in a list of 
items “dropped-down” into view. Each item in a box represents the name of a matrix, 
vector or scalar  fi le in the current directory or which has been created by one of the 
possible menu operations. By clicking on one of these items, you initiate the loading 
of the  fi le containing the data for that matrix, vector or scalar. You will  fi nd this is a 
convenient alternative to use of the File menu for opening  fi les which you have been 
working with. Incidentally, should you wish to delete an existing  fi le, you may do so 
by selecting the “edit” option under the Script menu. The script editor lists all  fi les 
in a directory and lets you delete a  fi le by simply double-clicking the  fi le name!  

   The Operations Script 

 Located on the right side of the main form is a rectangle which may contain opera-
tions and operands performed in using MatMan. This list of operations and their 
corresponding operands is known collectively as a “Script”. If you were to perform 
a group of operations, for example, to complete a multiple regression analysis, you 
may want to save the script for reference or repeated analysis of another set of data. 
You can also edit the scripts that are created to remove operations you did not intend, 
change the  fi le names referenced, etc. Scripts may also be printed.  

   Getting Help on a Topic 

 You obtain help on a topic by  fi rst selecting a menu item, grid or other area of the 
main form by placing the mouse over the item for which you want information. 
Once the area of interest is selected, press the F1 key on your keyboard. If a topic 
exists in the help  fi le, it will be displayed. You can press the F1 key at any point to 
bring up the help  fi le. A book is displayed which may be opened by double clicking 
it. You may also search for a topic using the help  fi le index of keywords.  

   Scripts 

 Each time an operation is performed on grid data, an entry is made in a “Script” list 
shown in the right-hand portion of the form. The operation may have one to three 
“operands” listed with it. For example, the operation of  fi nding the eigenvalues and 
eigenvectors of a matrix will have an operation of SVDInverse followed by the 
name of the matrix being inverted, the name of the eigenvalues matrix and the name 
of the eigenvectors matrix. Each part of the script entry is preceded by a grid num-
ber followed by a hyphen (−). A colon separates the parts of the entry (:). Once a 
series of operations have been performed the script that is produced can be saved. 



342 14 Using MatMan

Saved scripts can be loaded at a later time and re-executed as a group or each entry 
executed one at a time. Scripts can also be edited and re-saved. Shown below is an 
example script for obtaining multiple regression coef fi cients. 

  CURRENT SCRIPT LISTING:  

  FileOpen:1-newcansas  
  1-ColAugment:newcansas:1-X  
  1-FileSave:1-X.MAT  
  1-MatTranspose:1-X:2-XT  
  2-FileSave:2-XT.MAT  
  2-PreMatxPostMat:2-XT:1-X:3-XTX  
  3-FileSave:3-XTX.MAT  
  3-SVDInverse:3-XTX.MAT:1-XTXINV  
  1-FileSave:1-XTXINV.MAT  
  FileOpen:1-XT.MAT  
  FileOpen:2-Y.CVE  
  1-PreMatxPostVec:1-XT.MAT:2-Y.CVE:3-XTY  
  3-FileSave:3-XTY.CVE  
  FileOpen:1-XTXINV.MAT  
  1-PreMatxPostVec:1-XTXINV.MAT:3-XTY:4-BETAS  
  4-FileSave:4-Bweights.CVE  

   Print 

 To print a script which appears in the Script List, move your mouse to the Script 
menu and click on the Print option. The list will be printed on the Output Form. At 
the bottom of the form is a print button that you can click with the mouse to get a 
hard-copy output.  

   Clear Script List 

 To clear an existing script from the script list, move the mouse to the Script menu 
and click the Clear option. Note: you may want to save the script before clearing it 
if it is a script you want to reference at a later time.  

   Edit the Script 

 Occasionally you may want to edit a script you have created or loaded. For example, 
you may see a number of Load File or Save File operations in a script. Since these 
are entered only for documentation and cannot actually be executed by clicking on 
them, they can be removed from the script. The result is a more compact and 
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succinct script of operations performed. You may also want to change the name of 
 fi les accessed for some operations or the name of  fi les saved following an operation 
so that the same operations may be performed on a new set of data. To begin editing 
a script, move the mouse cursor to the Script menu and click on the Edit option. 
A new form appears which provides options for the editing. The list of operations 
appears on the left side of the form and an Options box appears in the upper right 
portion of the form. To edit a given script operation, click on the item to be edited and 
then click one of the option buttons. One option is to simply delete the item. Another 
is to edit (modify) the item. When that option is selected, the item is copied into an 
“Edit Box” which behaves like a miniature word processor. You can click on the text 
of an operation at any point in the edit box, delete characters following the cursor 
with the delete key, use the backspace key to remove characters in front of the cursor, 
and enter characters at the cursor. When editing is completed, press the return key to 
place the edited operation back into the script list from which it came. 

 Also on the Edit Form is a “Directory Box” and a “Files Box”. Shown in the direc-
tory box is the current directory you are in. The  fi les list box shows the current  fi les in 
that directory. You can delete a  fi le from any directory by simply double-clicking the 
name of the  fi le in the  fi le list. A box will pop up to verify that you want to delete the 
selected  fi le. Click OK to delete the  fi le or click Cancel if you do not want to delete 
the  fi le. CAUTION! Be careful NOT to delete an important  fi le like MATMAN.EXE, 
MATMAN.HLP or other system  fi les ( fi les with extensions of .exe, .dll, .hlp, .inf, etc.! 
Files which ARE safe to delete are those you have created with MatMan. These all 
end with an extension of .MAT, .CVE, .RVE ,.SCA or .SCR .  

   Load a Script 

 If you have saved a script of matrix operations, you can re-load the script for execu-
tion of the entire script of operations or execution of individual script items. To load 
a previously saved script, move the mouse to the Script menu and click on the Load 
option. Alternatively, you can go to the File menu and click on the Load Script 
option. Operation scripts are saved in a  fi le as text which can also be read and edited 
with any word processing program capable of reading ASCII text  fi les. For exam-
ples of scripts that perform statistical operations in matrix notation, see the help 
book entitled Script Examples.  

   Save a Script 

 Nearly every operation selected from one of the menus creates an entry into the 
script list. This script provides documentation of the steps performed in carrying out 
a sequence of matrix, vector or scalar operations. If you save the script in a  fi le with 
a meaningful name related to the operations performed, that script may be “re-used” 
at a later time.  
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   Executing a Script 

 You may quickly repeat the execution of a single operation previously performed 
and captured in the script. Simply click on the script item with the left mouse button 
when the cursor is positioned over the item to execute. Notice that you will be 
prompted for the name of the  fi le or  fi les to be opened and loaded for that operation. 
You can, of course, choose a different  fi le name than the one or ones previously used 
in the script item. If you wish, you can also re-execute the entire script of operations. 
Move your mouse cursor to the Script menu and click on the Execute option. Each 
operation will be executed in sequence with prompts for  fi le names appearing before 
execution each operation. Note: you will want to manually save the resulting  fi le or 
 fi les with appropriate names.  

   Script Options 

 File Open and File Save operations may or may not appear in a script list depending 
on options you have selected and saved. Since these two operations are  not  executed 
when a script is re-executed, it is not necessary that they be saved in a script (other 
than for documentation of the steps performed.) You can choose whether or not to 
have these operations appear in the script as you perform matrix, vector or scalar 
operations. Move your mouse cursor to the Script menu and click on the Options 
option. A pop-up form will appear on which you can elect to save or not save the File 
Open and File Save operations. The default (unchecked) option is to save these opera-
tions in a script. Clicking on an option tells the program to NOT write the operation to 
the script. Return to the MatMan main form by clicking the Return or Cancel button.   

   Files 

 When MatMan is  fi rst started it searches the current directory of your disk for any 
matrices, column vectors, row vectors or scalars which have previously been saved. 
The  fi le names of each matrix, vector or scalar are entered into a drop-down list box 
corresponding to the type of data. These list boxes are located in the upper right 
portion of the main form. By  fi rst selecting one of the four grids with a click of the 
left mouse button and then clicking on one of the  fi le names in a drop-down list, you 
can automatically load the  fi le in the selected grid. Each time you save a grid of data 
with a new name, that  fi le name is also added to the appropriate  fi le list (Matrix, 
Column Vector, Row Vector or Scalar.) 

 At the top of the main form is a menu item labeled “Files”. By clicking on the 
Files menu you will see a list of  fi le options as shown in the picture below. In addi-
tion to saving or opening a  fi le for a grid, you can also import an OpenStat .txt  fi le, 
import a  fi le with tab-separated values, import a  fi le with comma separated values 
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or import a  fi le with spaces separating the values. All  fi les saved with MatMan are 
ASCII text  fi les and can be read (and edited if necessary) with any word processor 
program capable of reading ASCII  fi les (for example the Windows Notepad pro-
gram) (Fig.  14.2 ).  

   Keyboard Input 

 You can input data into a grid directly from the keyboard to create a  fi le. The  fi le may 
be a matrix, row vector, column vector or a scalar. Simply click on one of the four 
grids to receive your keystrokes. Note that the selected grid number will be displayed 
in a small box above and to the left of the grids. Next, click on the Files menu and 
move your cursor down to the Keyboard entry option. You will see that this option is 
expanded for you to indicate the type of data to be entered. Click on the type of data 
to be entered from the keyboard. If you selected a matrix, you will be prompted for 
the number of rows and columns of the matrix. For a vector, you will be prompted 
for the type (column or row) and the number of elements. Once the type of data to be 
entered and the number of elements are known, the program will “move” to the pre-
selected grid and be waiting for your data entry. Click on the  fi rst cell (Row 1 and 
Column 1) and type your ( fi rst) value. Press the tab key to move to the next element 

  Fig. 14.2    Using the MatMan  fi les menu       
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in a row or, if at the end of a row, the  fi rst element in the next row. When you have 
entered the last value, instead of pressing the tab key, press the return key. You will 
be prompted to save the data. Of course, you can also go to the Files menu and click 
on the Save option. This second method is particularly useful if you are entering a 
very large data matrix and wish to complete it in several sessions.  

   File Open 

 If you have previously saved a matrix, vector or scalar  fi le while executing the 
MatMan program, it will have been saved in the current directory (where the 
MatMan program resides.) MatMan saves data of a matrix type with a  fi le extension 
of .MAT. Column vectors are saved with an extension of .CVE and row vectors 
saved with an extension of .RVE. Scalars have an extension of .SCA. When you 
click the File Open option in the File menu, a dialogue box appears. In the lower 
part of the box is an indication of the type of  fi le. Click on this drop-down box to see 
the various extensions and click on the one appropriate to the type of  fi le to be 
loaded. Once you have done that, the  fi les listed in the  fi les box will be only the  fi les 
with that extension. Since the names of all matrix, vector and scalar  fi les in the cur-
rent directory are also loaded into the drop-down boxes in the upper right portion of 
the MatMan main form, you can also load a  fi le by clicking on the name of the  fi le 
in one of these boxes. Typically, you will be prompted for the grid number of the 
grid in which to load the  fi le. The grid number is usually the one you have previ-
ously selected by clicking on a cell in one of the four grids.  

   File Save 

 Once you have entered data into a grid or have completed an operation producing a 
new output grid, you may save it by clicking on the save option of the File menu. 
Files are automatically saved with an extension which describes the type of  fi le being 
saved, that is, with a .MAT, .CVE, .RVE or .SCA extension. Files are saved in the 
current directory unless you change to a different directory from the save dialogue 
box which appears when you are saving a  fi le. It is recommended that you save  fi les 
in the same directory (current directory) in which the MatMan program resides. The 
reason for doing this is that MatMan automatically loads the names of your  fi les in 
the drop-down boxes for matrices, column vectors, row vectors and scalars.  

   Import a File 

 In addition to opening an existing MatMan  fi le that has an extension of .MAT, .
CVE, .RVE or .SCA, you may also  import  a  fi le created by other programs. 
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Many word processing and spread -sheet programs allow you to save a  fi le with the 
data separated by tabs, commas or spaces. You can import any one of these types of 
 fi les. Since the  fi rst row of data items may be the names of variables, you will be 
asked whether or not the  fi rst line of data contains variable labels. 

 You may also import  fi les that you have saved with the OpenStat program. 
These  fi les have an extension of .TXT or .txt when saved by the OpenStat program. 
While they are ASCII type text  fi les, they contain a lot of information such as vari-
able labels, long labels, format of data, etc. MatMan simply loads the variable 
labels, replacing the column labels currently in a grid and then loads numeric values 
into the grid cells of the grid you have selected to receive the data.  

   Export a File 

 You may wish to save your data in a form which can be imported into another pro-
gram such as OpenStat, Excel, MicroSoft Word, WordPerfect, etc. Many programs 
permit you to import data where the data elements have been separated by a tab, 
comma or space character. The tab character format is particularly attractive because 
it creates an ASCII (American Standard Code for Information Interchange)  fi le with 
clearly delineated spacing among values and which may be viewed by most word 
processing programs.  

   Open a Script File 

 Once you have performed a number of operations on your data you will notice that 
each operation has been “summarized” in a list of script items located in the script 
list on the right side of the MatMan form. This list of operations may be saved for 
later reference or re-execution in a  fi le labeled appropriate to the series of opera-
tions. To re-open a script  fi le, go to the File Menu and select the Open a Script File 
option. A dialogue box will appear. Select the type of  fi le with an extension of .SCR 
and you will see the previously saved script  fi les listed. Click on the one to load and 
press the OK button on the dialogue form. Note that if a script is already in the script 
list box, the new  fi le will be added to the existing one. You may want to clear the 
script list box before loading a previously saved script. Clear the script list box by 
selecting the Clear option under the Script Operations menu.  

   Save the Script 

 Once a series of operations have been performed on your data, the operations 
 performed will be listed in the Script box located to the right of the MatMan form. 
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The series of operations may represent the completion of a data analysis such as 
multiple regression, factor analysis, etc. You may save this list of operations for 
future reference or re-execution. To save a script, select the Save Script option from 
the File Menu. A dialogue box will appear in which you enter the name of the  fi le. 
Be sure that the type of  fi le is selected as a .SCR  fi le (types are selected in the drop-
down box of the dialogue form.) A  fi le extension of .SCR is automatically appended 
to the name you have entered. Click on the OK button to complete the saving of the 
script  fi le.  

   Reset All 

 Occasionally you may want to clear all grids of data and clear all drop-down boxes 
of currently listed matrix, vector and scalar  fi les. To do so, click the Clear All option 
under the Files Menu. Note that the script list box is NOT cleared by this operation. 
To clear a script, select the Clear operation under the Script Operations menu.   

   Entering Grid Data 

 Grids are used to enter matrices, vectors or scalars. Select a grid for data by moving 
the mouse cursor to the one of the grids and click the left mouse button. Move your 
mouse to the Files menu at the top of the form and click it with the left mouse but-
ton. Bring your mouse down to the Keyboard Input option. For entry of a matrix of 
values, click on the Matrix option. You will then be asked to verify the grid for entry. 
Press return if the grid number shown is correct or enter a new grid number and 
press return. You will then be asked to enter the name of your matrix (or vector or 
scalar.) Enter a descriptive name but keep it fairly short. A default extension of 
.MAT will automatically be appended to matrix  fi les, a .CVE will be appended to 
column vectors, a .RVE appended to row vectors and a .SCA appended to a scalar. 
You will then be prompted for the number of rows and the number of columns for 
your data. Next, click on the  fi rst available cell labeled Col.1 and Row 1. Type the 
numeric value for the  fi rst number of your data. Press the tab key to move to the next 
column in a row (if you have more than one column) and enter the next value. Each 
time you press the tab key you will be ready to enter a value in the next cell of the 
grid. You can, of course, click on a particular cell to edit the value already entered 
or enter a new value. When you have entered the last data value, press the Enter key. 
A “Save” dialog box will appear with the name you previously chose. You can keep 
this name or enter a new name and click the OK button. If you later wish to edit 
values, load the saved  fi le, make the changes desired and click on the Save option of 
the Files menu. 

 When a  fi le is saved, an entry is made in the Script list indicating the action 
taken. If the  fi le name is not already listed in one of the drop-down boxes (e.g. the 
matrix drop-down box), it will be added to that list. 
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   Clearing a Grid 

 Individual grids are quickly reset to a blank grid with four rows and four columns 
by simply moving the mouse cursor over a cell of the grid and clicking the RIGHT 
mouse button. CAUTION! Be sure the data already in the grid has been saved if you 
do not want to lose it!  

   Inserting a Column 

 There may be occasions where you need to add another variable or column of data 
to an existing matrix of data. You may insert a new blank column in a grid by select-
ing the Insert Column operation under the Matrix Operations menu. First, click on 
an existing column in the matrix prior to or following the cell where you want the 
new column inserted. Click on the Insert Column option. You will be prompted to 
indicate whether the new column is to precede or follow the currently selected col-
umn. Indicate your choice and click the Return button.  

   Inserting a Row 

 There may be occasions where you need to add another subject or row of data to an 
existing matrix of data. You may insert a new blank row in a grid by selecting the 
Insert Row operation under the Matrix Operations menu. First, click on an existing 
row in the matrix prior to or following the cell where you want the new row inserted. 
Click on the Insert Row option. You will be prompted to indicate whether the new 
row is to precede or follow the number of the selected row. Indicate your choice and 
click the Return button.  

   Deleting a Column 

 To delete a column of data in an existing data matrix, click on the grid column to be 
deleted and click on the Delete Column option under the Matrix Operations menu. 
You will be prompted for the name of the new matrix to save. Enter the new matrix 
name (or use the current one if the previous one does not need to be saved) and click 
the OK button.  

   Deleting a Row 

 To delete a row of data in an existing data matrix, click on the grid row to be deleted 
and click on the Delete Row option under the Matrix Operations menu. You will be 
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prompted for the name of the new matrix to save. Enter the new matrix name (or use 
the current one if the previous one does not need to be saved) and click the OK 
button.  

   Using the Tab Key 

 You can navigate through the cells of a grid by simply pressing the tab key. Of 
course, you may also click the mouse button on any cell to select that cell for data 
entry or editing. If you are at the end of a row of data and you press the tab key, you 
are moved to the  fi rst cell of the next row (if it exists.) To save a  fi le press the Return 
key when located in the last row and column cell.  

   Using the Enter Key 

 If you press the Return key after entering the last data element in a matrix, vector or 
scalar, you will automatically be prompted to save the  fi le. A “save” dialogue box 
will appear in which you enter the name of the  fi le to save your data. Be sure the 
type of  fi le to be saved is selected before you click the OK button.  

   Editing a Cell Value 

 Errors in data entry DO occur (after all, we are human aren’t we?) You can edit a 
data element by simply clicking on the cell to be edited. If you double click the cell, 
it will be highlighted in blue at which time you can press the delete key to remove 
the cell value or enter a new value. If you simply wish to edit an existing value, click 
the cell so that it is NOT highlighted and move the mouse cursor to the position in 
the value at which you want to start editing. You can enter additional characters, 
press the backspace key to remove a character in front of the cursor or press the 
delete key to remove a character following the cursor. Press the tab key to move to 
the next cell or press the Return key to obtain the save dialogue box for saving your 
corrections.  

   Loading a File 

 Previously saved matrices, vectors or scalars are easily loaded into any one of the 
four grids. First select a grid to receive the data by clicking on one of the cells of the 
target grid. Next, click on the Open File option under the Files Menu. An “open” 
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dialogue will appear which lists the  fi les in your directory. The dialogue has a 
 drop-down list of possible  fi le types. Select the type for the  fi le to be loaded. Only 
 fi les of the selected type will then be listed. Click on the name of the  fi le to load and 
click the OK button to load the  fi le data.   

   Matrix Operations    

 Once a matrix of data has been entered into a grid you can elect to perform a number 
of matrix operations. The  fi gure below illustrates the options under the Matrix 
Operations menu. Operations include:

   Row Augment  
  Column Augment  
  Delete a Row  
  Delete a Column  
  Extract Col. Vector from Matrix  
  SVD Inverse  
  Tridiagonalize  
  Upper-Lower Decomposition  
  Diagonal to Vector  
  Determinant  
  Normalize Rows  
  Normalize Columns  
  Premultiply by : Row Vector; Matrix; Scalar  
  Postmultiply by : Column Vector; Matrix  
  Eigenvalues and Vectors  
  Transpose  
  Trace  
  Matrix A + Matrix B  
  Matrix A−Matrix B  
  Print    

   Printing 

 You may elect to print a matrix, vector, scalar or  fi le. When you do, the output is 
placed on an “Output” form. At the bottom of this form is a button labeled ‘Print” 
which, if clicked, will send the contents of the output form to the printer. Before 
printing this form, you may type in additional information, edit lines, cut and paste 
lines and in general edit the output to your liking. Edit operations are provided as 
icons at the top of the form. Note that you can also save the output to a disk  fi le, load 
another output  fi le and, in general, use the output form as a word processor.  
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   Row Augment 

 You may add a row of 1’s to a matrix with this operation. When the transpose of 
such an augmented matrix is multiplied times this matrix, a cell will be created in 
the resulting matrix, which contains the number of columns in the augmented 
matrix.  

   Column Augmentation 

 You may add a column of 1’s to a matrix with this operation. When the transpose of 
such an augmented matrix is multiplied times this matrix, a cell will be created in 
the resulting matrix, which contains the number of rows in the augmented matrix. 
The procedure for completing a multiple regression analysis often involves column 
augmentation of a data matrix containing a row for each object (e.g. person) and 
column cells containing independent variable values. The column of 1’s created 
from the Column Augmentation process ends up providing the intercept (regression 
constant) for the analysis.  

   Extract Col. Vector from Matrix 

 In many statistics programs the data matrix you begin with contains columns of data 
representing independent variables and one or more columns representing depen-
dent variables. For example, in multiple regression analysis, one column of data 
represents the dependent variable (variable to be predicted) while one or more col-
umns represent independent variables (predictor variables.) To analyze this data 
with the MatMan program, one would extract the dependent variable and save it as 
a column vector for subsequent operations (see the sample multiple regression 
script.) To extract a column vector from a matrix you  fi rst load the matrix into one 
of the four grids, click on a cell in the column to be extracted and then click on the 
Extract Col. Vector option under the Matrix Operations menu.  

   SVDInverse    

 A commonly used matrix operation is the process of  fi nding the inverse (reciprocal) 
of a symmetric matrix. A variety of methods exist for obtaining the inverse (if one 
exists.) A common problem with some inverse methods is that they will not provide 
a solution if one of the variables is dependent (or some combination of) on other 
variables (rows or columns) of the matrix. One advantage of the “Singular Value 
Decomposition” method is that it typically provides a solution even when one or more 
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dependent variables exist in the matrix. The offending variable(s) are essentially 
replaced by zeroes in the row and column of the dependent variable. The resulting 
inverse will NOT be the desired inverse. 

 To obtain the SVD inverse of a matrix, load the matrix into a grid and click on the 
SVDInverse option from the Matrix Operations menu. The results will be displayed 
in grid 1 of the main form. In addition, grids 2 through 4 will contain additional 
information which may be helpful in the analysis. Figures 1 and 2 below illustrate 
the results of inverting a 4 by 4 matrix, the last column of which contains values that 
are the sum of the  fi rst three column cells in each row (a dependent variable.) 

 When you obtain the inverse of a matrix, you may want to verify that the result-
ing inverse is, in fact, the reciprocal of the original matrix. You can do this by mul-
tiplying the original matrix times the inverse. The result should be a matrix with 1’s 
in the diagonal and 0’s elsewhere (the identity matrix.) Figure 3 demonstrates that 
the inverse was NOT correct, that is, did not produce an identity matrix when mul-
tiplied times the original matrix. 

  Figure 1. DepMat.MAT From Grid Number 1  

   Columns  
   Col.1 Col.2 Col.3 Col.4  
  Rows  
   1 5.000 11.000 2.000 18.000  
   2 11.000 2.000 4.000 17.000  
   3 2.000 4.000 1.000 7.000  
   4 18.000 17.000 7.000 1.000  

  Figure 2. DepMatInv.MAT From Grid Number 1  

   Columns  
   Col.1 Col.2 Col.3 Col.4  
  Rows  
   1 0.584 0.106 -1.764 0.024  
   2 0.106 -0.068 -0.111 0.024  
   3 -1.764 -0.111 4.802 0.024  
   4 0.024 0.024 0.024 -0.024  

  Figure 3. DepMatxDepMatInv.MAT From Grid Number 3  

   Columns  
   Col.1 Col.2 Col.3 Col.4  
  Rows  
   1 1.000 0.000 0.000 0.000  
   2 0.000 1.000 0.000 0.000  
   3 0.000 0.000 1.000 0.000  
   4 1.000 1.000 1.000 0.000  

 NOTE! This is NOT an Identity matrix.  
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   Tridiagonalize 

 In obtaining the roots and vectors of a matrix, one step in the process is frequently 
to reduce a symmetric matrix to a tri-diagonal form. The resulting matrix is then 
solved more readily for the eigenvalues and eigenvectors of the original matrix. To 
reduce a matrix to its tridiagonal form, load the original matrix in one of the grids 
and click on the Tridiagonalize option under the Matrix Operations menu.  

   Upper-Lower Decomposition 

 A matrix may be decomposed into two matrices: a lower matrix (one with zeroes 
above the diagonal) and an upper matrix (one with zeroes below the diagonal 
matrix.) This process is sometimes used in obtaining the inverse of a matrix. The 
matrix is  fi rst decomposed into lower and upper parts and the columns of the inverse 
solved one at a time using a routine that solves the linear equation A X = B where A 
is the upper/lower decomposition matrix, B are known result values of the equation 
and X is solved by the routine. To obtain the LU decomposition, enter or load a 
matrix into a grid and select the Upper-Lower Decomposition option from the 
Matrix Operations menu.  

   Diagonal to Vector 

 In some matrix algebra problems it is necessary to perform operations on a vector 
extracted from the diagonal of a matrix. The Diagonal to Vector operation extracts 
the diagonal elements of a matrix and creates a new column vector with those val-
ues. Enter or load a matrix into a grid and click on the Diagonal to Vector option 
under the Matrix Operations menu to perform this operation.  

   Determinant 

 The determinant of a matrix is a single value characterizing the matrix values. A sin-
gular matrix (one for which the inverse does not exist) will have a determinant of 
zero. Some ill-conditioned matrices will have a determinant close to zero. To obtain 
the determinant of a matrix, load or enter a matrix into a grid and select the Determinant 
option from among the Matrix Operations options. Shown below is the determinant 
of a singular matrix (row/column 4 dependent on columns 1 through 3.) 
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   Columns  
   Col.1 Col.2 Col.3 Col.4  
  Rows  
   1 5.000 11.000 2.000 18.000  
   2 11.000 2.000 4.000 17.000  
   3 2.000 4.000 1.000 7.000  
   4 18.000 17.000 7.000 42.000  

   Columns  
   Col 1  
  Rows  
   1 0.000   

   Normalize Rows or Columns 

 In matrix algebra the columns or rows of a matrix often represent vectors in a multi-
dimension space. To make the results more interpretable, the vectors are frequently 
scaled so that the vector length is 1.0 in this “hyper-space” of k-dimensions. This 
scaling is common for statistical procedures such as Factor Analysis, Principal 
Component Analysis, Discriminant Analysis, Multivariate Analysis of Variance, 
etc. To normalize the row (or column) vectors of a matrix such as eigenvalues, load 
the matrix into a grid and select the Normalize Rows (or Normalize Columns) 
option from the Matrix Operations menu.  

   Pre-multiply By 

 A matrix may be multiplied by a row vector, another matrix or a single value (sca-
lar.) When a row vector with N columns is multiplied times a matrix with N rows, 
the result is a row vector of N elements. When a matrix of N rows and M columns 
is multiplied times a matrix with M rows and Q columns, the result is a matrix of N 
rows and Q columns. Multiplying a matrix by a scalar results in each element of the 
matrix being multiplied by the value of the scalar. 

 To perform the pre-multiplication operation,  fi rst load two grids with the values 
of a matrix and a vector, matrix or scalar. Click on a cell of the grid containing the 
matrix to insure that the matrix grid is selected. Next, select the Pre-Multiply by: 
option and then the type of value for the pre-multiplier in the sub-options of the 
Matrix Operations menu. A dialog box will open asking you to enter the grid num-
ber of the matrix to be multiplied. The default value is the selected matrix grid. 
When you press the OK button another dialog box will prompt you for the grid 
number containing the row vector, matrix or scalar to be multiplied times the matrix. 
Enter the grid number for the pre-multiplier and press return. Finally, you will be 
prompted to enter the grid number where the results are to be displayed. Enter a 
number different than the  fi rst two grid numbers entered. You will then be prompted 
for the name of the  fi le for saving the results.  
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   Post-multiply By 

 A matrix may be multiplied times a column vector or another matrix. When a matrix 
with N rows and Q columns is multiplied times a column vector with Q rows, the 
result is a column vector of N elements. When a matrix of N rows and M columns 
is multiplied times a matrix with M rows and Q columns, the result is a matrix of N 
rows and Q columns. 

 To perform the post-multiplication operation,  fi rst load two grids with the values 
of a matrix and a vector or matrix. Click on a cell of the grid containing the matrix 
to insure that the matrix grid is selected. Next, select the Post-Multiply by: option 
and then the type of value for the post-multiplier in the sub-options of the Matrix 
Operations menu. A dialog box will open asking you to enter the grid number of the 
matrix multiplier. The default value is the selected matrix grid. When you press the 
OK button another dialog box will prompt you for the grid number containing the 
column vector or matrix. Enter the grid number for the post-multiplier and press 
return. Finally, you will be prompted to enter the grid number where the results are 
to be displayed. Enter a number different than the  fi rst two grid numbers entered. 
You will then be prompted for the name of the  fi le for saving the results.  

   Eigenvalues and Vectors    

 Eigenvalues represent the k roots of a polynomial constructed from k equations. The 
equations are represented by values in the rows of a matrix. A typical equation writ-
ten in matrix notation might be:

     Y B X=    

where X is a matrix of known “independent” values, Y is a column vector of “depen-
dent” values and B is a column vector of coef fi cients which satis fi es speci fi ed prop-
erties for the solution. An example is given when we solve for “least-squares” 
regression coef fi cients in a multiple regression analysis. In this case, the X matrix 
contains cross-products of k independent variable values for N cases, Y contains 
known values obtained as the product of the transpose of the X matrix times the N 
values for subjects and B are the resulting regression coef fi cients. 

 In other cases we might wish to transform our matrix X into another matrix V 
which has the property that each column vector is “orthogonal” to (un-correlated) 
with the other column vectors. For example, in Principal Components analysis, we 
seek coef fi cients of vectors that represent new variables that are uncorrelated but 
which retain the variance represented by variables in the original matrix. In this case 
we are solving the equation

     λ=TVXV     
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 X is a symmetric matrix and  l  are roots of the matrix stored as diagonal values 
of a matrix. If the columns of V are normalized then V V T  = I, the identity matrix.  

   Transpose 

 The transpose of a matrix or vector is simply the creation of a new matrix or vector 
where the number of rows is equal to the number of columns and the number of 
columns equals the number of rows of the original matrix or vector. For example, 
the transpose of the row vector [1 2 3 4] is the column vector:

     

1

2

3

4     

 Similarly, given the matrix of values:

     

1 2 3

4 5 6    

the transpose is:

     

1 4

2 5

3 6     

 You can transpose a matrix by selecting the grid in which your matrix is stored 
and clicking on the Transpose option under the Matrix Operations menu. A similar 
option is available under the Vector Operations menu for vectors.  

   Trace 

 The trace of a matrix is the sum of the diagonal values.  

   Matrix A + Matrix B 

 When two matrices of the same size are added, the elements (cell values) of the  fi rst 
are added to corresponding cells of the second matrix and the result stored in a cor-
responding cell of the results matrix. To add two matrices,  fi rst be sure both are 
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stored in grids on the main form. Select one of the grid containing a matrix and click 
on the Matrix A + Matrix B option in the Matrix Operations menu. You will be 
prompted for the grid numbers of each matrix to be added as well as the grid number 
of the results. Finally, you will be asked the name of the  fi le in which to save the 
results.  

   Matrix A−Matrix B 

 When two matrices of the same size are subtracted, the elements (cell values) of the 
second are subtracted from corresponding cells of the  fi rst matrix and the result 
stored in a corresponding cell of the results matrix. To subtract two matrices,  fi rst be 
sure both are stored in grids on the main form. Select one of the grids containing the 
matrix from which another will be subtracted and click on the Matrix A−Matrix B 
option in the Matrix Operations menu. You will be prompted for the grid numbers 
of each matrix as well as the grid number of the results. Finally, you will be asked 
the name of the  fi le in which to save the results.  

   Print 

 To print a matrix be sure the matrix is loaded in a grid, the grid selected and then 
click on the print option in the Matrix Operations menu. The data of the matrix will 
be shown on the output form. To print the output form on your printer, click the Print 
button located at the bottom of the output form.   

   Vector Operations 

 A number of vector operations may be performed on both row and column vectors. 
Shown below is the main form with the Vector Operations menu selected. The oper-
ations you may perform are:

   Transpose  
  Multiply by Scalar  
  Square Root of Elements  
  Reciprocal of Elements  
  Print  
  Row Vec. × Col. Vec.  
  Col. Vec × Row Vec.    
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   Vector Transpose 

 The transpose of a matrix or vector is simply the interchange of rows with columns. 
Transposing a matrix results in a matrix with the  fi rst row being the previous  fi rst 
column, the second row being the previous second column, etc. A column vector 
becomes a row vector and a row vector becomes a column vector. To transpose a 
vector, click on the grid where the vector resides that is to be transposed. Select the 
Transpose Option from the Vector Operations menu and click it. Save the trans-
posed vector in a  fi le when the save dialogue box appears.  

   Multiply a Vector by a Scalar 

 When you multiply a vector by a scalar, each element of the vector is multiplied by 
the value of that scalar. The scalar should be loaded into one of the grids and the 
vector in another grid. Click on the Multiply by a Scalar option under the Vector 
Operations menu. You will be prompted for the grid numbers containing the scalar 
and vector. Enter those values as prompted and click the return button following 
each. You will then be presented a save dialogue in which you enter the name of the 
new vector.  

   Square Root of Vector Elements 

 You can obtain the square root of each element of a vector. Simply select the grid 
with the vector and click the Square Root option under the Vector Operations menu. 
A save dialogue will appear after the execution of the square root operations in 
which you indicate the name of your new vector. Note - you cannot take the square 
root of a vector that contains a negative value - an error will occur if you try.  

   Reciprocal of Vector Elements 

 Several statistical analysis procedures involve obtaining the reciprocal of the ele-
ments in a vector (often the diagonal of a matrix.) To obtain reciprocals, click on the 
grid containing the vector then click on the Reciprocal option of the Vector 
Operations menu. Of course, if one of the elements is zero, an error will occur! If 
valid values exist for all elements, you will then be presented a save dialogue box in 
which you enter the name of your new vector.  
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   Print a Vector 

 Printing a vector is the same as printing a matrix, scalar or script. Simply select the 
grid to be printed and click on the Print option under the Vector Operations menu. 
The printed output is displayed on an output form. The output form may be printed 
by clicking the print button located at the bottom of the form.  

   Row Vector Times a Column Vector 

 Multiplication of a column vector by a row vector will result in a single value (sca-
lar.) Each element of the row vector is multiplied times the corresponding element 
of the column vector and the products are added. The number of elements in the row 
vector must be equal to the number of elements in the column vector. This operation 
is sometimes called the “dot product” of two vectors. Following execution of this 
vector operation, you will be shown the save dialogue for saving the resulting scalar 
in a  fi le.  

   Column Vector Times Row Vector 

 When you multiply a column vector of k elements times a row vector of k elements, 
the result is a k by k matrix. In the resulting matrix each row by column cell is the 
product of the corresponding column element of the row vector and the correspond-
ing row element of the column vector. The result is equivalent to multiplying a k by 
1 matrix times a 1 by k matrix.   

   Scalar Operations 

 The operations available in the Scalar Operations menu are:

   Square Root  
  Reciprocal  
  Scalar x Scalar  
  Print    

   Square Root of a Scalar 

 Selecting this option under the Scalar Operations menu results in a new scalar that 
is the square root of the original scalar. The new value should probably be saved in 
a different  fi le than the original scalar. Note that you will get an error message if you 
attempt to take the square root of a negative value.  
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   Reciprocal of a Scalar 

 You obtain the reciprocal of a scalar by selecting the Reciprocal option under the 
Scalar Operations menu. You will obtain an error if you attempt to obtain the recip-
rocal of a value zero. Save the new scalar in a  fi le with an appropriate label.  

   Scalar Times a Scalar 

 Sometimes you need to multiply a scalar by another scalar value. If you select this 
option from the Scalar Operations menu, you will be prompted for the value of the 
multiplier. Once the operation has been completed you should save the new scalar 
product in a  fi le appropriately labeled.  

   Print a Scalar 

 Select this option to print a scalar residing in one of the four grids that you have 
selected. Notice that the output form contains all objects that have been printed. 
Should you need to print only one grid’s data (matrix, vector or scalar) use the Clear 
All option under the Files menu.        
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   The GradeBook Main Form 

 The image below will  fi rst appear when you begin the GradeBook program 
(Fig.  15.1 ):  

 At the bottom of the form is the “main menu”. Move your mouse to one of the 
topics such as “OPENFILE”, click on it with the left mouse button. Your typical 
 fi rst step is to click the box in the area marked “For Grade Book” and click the box 
for “Enter a Title for This Grade Book”. You can then enter student information in 
the top “grid” of the form as shown by the example above. Once you have entered 
student information, you can add a new test column. One test has been added in the 
above example. Enter the “raw” scores for each student. Once those have been 
placed in the grid test area, you should enter a grading system for the test. Once that 
has been completed you can do a variety of analyses for the test or the class by 
selecting an option in the respective box of the  fi rst two blocks of options. Note that 
you must click the “DO ABOVE” button to implement your choice.  

   The Student Page Tab 

 The majority of the form consists of a “tabbed” series of grids. The program will 
begin with the “Students” grid. By clicking any one of the tabs located along the top, 
you can change to a different grid. The Student grid is where you will  fi rst enter the 
last name,  fi rst name and middle initial for each student in your class. Don’t worry 
about the order in which you enter them - you can sort them later with a click of the 
mouse button! Be sure an assign an Identi fi cation Number for each student. A sequen-
tial integer will work if you don’t have a school ID or social security number. 

 To enter the  fi rst student’s last name, click on the Student 1 and Last Name row 
and column cell. Enter the last name. Press the tab key on your keyboard to move to 
the next cell for the First Name. Continue to enter information requested using the 
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tab key to move from cell to cell. Be sure and press the Enter key following the entry 
of the student ID number. 

 You can use the four navigation keys (arrow keys) on your keyboard to move 
from cell to cell or click on the cell where you wish to make an entry or change. 
Pressing the “enter” key on the keyboard “toggles” the cell between what is known 
as “edit mode” or selection mode. When in selection mode the cell will be colored 
blue. If you make an entry when in selected mode, the previous entry is replaced by 
the new key strokes. When in edit mode, you can move back and forth in your entry 
and make deletions using the delete key or backspace key and type new characters 
following the cursor in the cell. 

 Once you have entered your students names and identi fi cation numbers, click on 
the File menu and select the “Save As” option by clicking on it with the left mouse 
button. A “dialogue box” will open up in which you enter the name of the  fi le you 
have selected for your grade book. Enter a name and click on the save button.  

   Test Result Page Tabs 

 If you have entered one or more tests and the corresponding raw scores for each 
student, there are a variety of operations that you can perform. Once you have saved 
your  fi le and re-opened it, the names of your students are automatically copied to all 

  Fig. 15.1    The GradeBook dialog       
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of the tab pages. The Test areas are used to record the scores obtained by each stu-
dent on one of the tests you have administered. Once a score has been entered for 
each student, you can elect to calculate one or more (or all) transformations avail-
able from the main menu’s “Compute” options. The previous image illustrates the 
selection of the possible score transformations. As an illustration of one of the 
options, we have elected to print a grade book summary (Fig.  15.2 ):  

 Once raw scores are entered into one of the Test pages, the user should complete 
the speci fi cation of the measurements and the grading procedure for each test. 
Ideally, the teacher knows at the beginning of a course how many tests will be 
administered, the possible number of points for each measure, the type of transfor-
mation to be used for grading, and the “cut-points” for each grade assignment. 
Shown below is the form used to specify the measurements utilized in the course. 
This form is obtained by clicking the Enter Grading Speci fi cations box under the 
For Grade Book list of options (Fig.  15.3 ).  

 Notice that for each test, the user is expected to enter the minimum and maxi-
mum points which can be awarded for the test, quiz, essay or measurement. In addi-
tion, an estimate of reliability should be entered if a composite reliability estimate 
is to be obtained. Note - you can get an estimate of reliability for a test as an option 
under the For Selected Test options. The weight that the measure is to receive in 
obtaining the composite score for the course is also entered. We recommend integer 
values such as 1 for a quiz, 2 for major tests and perhaps 3 or 4 for tests like a mid-
term or  fi nal examination. Finally, there is an area for a brief note describing the 
purpose or nature of the measurement.       

  Fig. 15.2    The GradeBook summary       
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  Fig. 15.3    The GradeBook Measurement Speci fi cations form       
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     Introduction 

 Teachers are confronted with large classes that often make it dif fi cult to evaluate 
students on the basis of evaluations based on essay examinations, problems or cre-
ative work which permits the students to demonstrate their mastery of concepts and 
skills in a particular area of learning. As a consequence, a variety of test questions 
have been devised to sample student knowledge and skills from the larger domain 
of knowledge contained in a given content area. Multiple choice items, true or false 
items, sentence completion items, matching items and short essay items have been 
developed to reduce the time required to evaluate students. The test theory that has 
evolved around these various types of items indicates that they are quite adequate in 
reliably assessing differences that exist among students in the domain sampled. 
Many states, for example, have gone to the use of computerized testing for individu-
als applying for driving licenses. The individual taking these examinations are pre-
sented multiple-choice types of items drawn from a computerized item bank. If the 
applicant performs at a given level of competence they are then permitted to dem-
onstrate their actual driving skills in a second evaluation stage. Many Area 
Educational Agencies have also developed banks of items appropriate to various 
instructional subjects across the school grades such as in English, mathematics, sci-
ence and history. Teachers may draw items from these banks to create tests over the 
subject area they teach. 

 Many teacher-constructed items utilize a picture or photograph (for example, 
maps, machines, paintings, etc.) as part of one or more items in a test. These pic-
tures may be saved in the computer as “bitmap”  fi les and tied to speci fi c items in the 
bank. When the test is printed, if a picture is used it is printed prior to the printing 
of the item.  

    Chapter 16   
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   Item Coding 

 A variety of coding schemes may be developed to categorize test items. For exam-
ple, one might use the Taxonomy of Educational Objectives to classify items. If one 
is teaching from a text book utilized across different schools in a given district, the 
items might be classi fi ed by the chapter, section, page and paragraph of the content 
to which an item refers. One may also construct a classi fi cation structure based on 
a breakdown of subject matter into sub-categories of the content. For example, the 
broad  fi eld of statistics might be initially broken down into parametric and non-
parametric statistics. These domains may be further broken into categories such as 
univariate, multivariate, Neyman-Pearson, Bayesian, etc. which in turn may be fur-
ther broken down into topics such as theory, terminology, symbols, equations, etc. 

 Most classi fi cation schemes result in a classi fi cation “tree” with sub-categories 
representing branches from the previous category level. This item banking program 
lets you determine your own coding system and enter codes that classify each item. 
You may utilize as many levels as is practical (typically three or four.) A style of 
code entry is required that is consistent across all items in the bank. For example, a 
code of 05.13.06.01 would represent a coding structure with four levels, each level 
having a maximum of 99 categories at each level. 

 In addition to classifying items by their content, one will also need to classify 
items by their type, that is, whether the item is a multiple-choice item, a true-false 
item, a matching item within a set of matching items, etc. This program requires the 
user to specify one of  fi ve item types for each item. 

 Items may also have other characteristics. In particular, one may have experience 
with the use of speci fi c items in past tests and have a reasonable approximation of 
the dif fi culty of the item. Typically, the dif fi culty of the item is measured (in the 
Classical Test Theory) by the proportion of students that pass the item. For example 
an item with a dif fi culty index of .3 is more dif fi cult than an item with an index of 
.8. If one is utilizing one, two or three parameter logistic scaling (Item Response 
Theory) he or she may have a dif fi culty parameter, a discrimination parameter and 
a chance correct parameter to describe the item. In the area often called “Tailored 
Testing”, items are selected to administer the student in such a manner that the esti-
mate of student ability is obtained with relatively few items. This is done by select-
ing items based on their dif fi culty parameter and the response the student gives to 
each item in the sequence. This program lets you enter parameter estimates (Classical 
or Item Response Theory estimates) for each item. 

 Items stored in the item bank may be retrieved on the basis of one or more crite-
ria. One may, for example, select items within speci fi c code areas, item dif fi culty 
and item type. By this means one can create a test of items that cover a certain topi-
cal area, have a speci fi c range of dif fi culty and are of a given type or types.  
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   Using the Item Bank Program 

 You reach the Item Banking program by clicking on the Analyses- >  
Measurement- > Item Banking menu on the main form of OpenStat. There you can 
click one of three choices: Enter/Edit items, Specify a Test to Administer or Generate 
a Test. If you click on the  fi rst submenu, you will see the above form (Fig.  16.1 ):  

 In the above form you can open a new item bank or load an existing item bank. 
If you create a new item bank you can enter a variety of item types into the item 
bank along with an estimate of the items dif fi culty level. Some items may have a 
corresponding bit map  fi gure that you have created for the item. You can also enter 
a major and minor code for an item so that different tests you may want to generate 
have different items based on the codes selected.  

   Specifying a Test 

 If you have already created an item bank, you can then select the next option from 
the main menu to specify the nature of a test to generate. When you do, the follow-
ing form is shown (Fig.  16.2 ):  

 Within this form you can specify a test using characteristics of the items in the 
item bank such as the item dif fi culty or item codes. A test may be printed or admin-
istered on a computer screen.  

  Fig. 16.1    The Item Bank form       
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   Generate a Test 

 This is the third option in the Item Banking system. If you have speci fi ed a test the 
following form is displayed (Fig.  16.3 ):  

 Notice that the form  fi rst requests the name of the previously created item bank 
 fi le and it then automatically loads the test speci fi cation form previously created. 
The sample item bank we created only contains two items which we speci fi ed to be 
administered on the computer screen to a student with the ID = Student 1. If we now 
click the “Proceed with the test button we obtain the following prompt form 
(Fig.  16.4 ):  

 When the “OK” button is pressed, the test is administered or printed. Our exam-
ple would display a screen as shown below (Fig.  16.5 ):  

 Following administration of the test, the total correct score is displayed.       

  Fig. 16.2    The item banking Test Speci fi cation form       
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  Fig. 16.3    The form to generate a test       

  Fig. 16.4    Student veri fi cation form for a test administration       

  Fig. 16.5    A test displayed on the computer       
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   Using the Program    

   The Neural Form 

 In the     fi gure below (Fig.  17.1 ) you see a menu consisting of drop-down boxes for 
Files, Generation, etc. You also see a grid and a list of commands used to create 
“control  fi les.” The Neural program completes its work by reading a  fi le of control 
commands. Each command consists of one or two parts, the parts separated by a 
colon (:) in the command list box. In some cases, the user provides the second part, 
often the name of a  fi le. To aid the user to complete some “traditional” types of 
analyses, the program can automatically generate a control  fi le in the data grid. To 
do this, one  fi rst clicks on the “File” in the menu and then move the mouse to the 
“New” option and from there to the “Control File” option. Clicking the “Control 
File” option modi fi es the grid to contain two columns with suf fi cient width to hold 
control commands. The  fi gure below shows the File menu options (Fig.  17.2 ):  

 Once the user has indicated he or she intends to generate a new control  fi le, the 
menu item labeled “Generate” is clicked and the mouse moved to the type of control 
 fi le to generate. Figure  17.3  illustrates the selection of the option to generate a con-
trol  fi le for prediction:  

 When the “Controls for Prediction” option is clicked, the program opens a dialog 
form for entering the parameters of the prediction problem. Figure  17.4  below illus-
trates this form:  

 The user supplies the name of a “Training File” and a data  fi le containing valida-
tion data for analysis. In standard multiple regression methods, the multiple correla-
tion coef fi cient represents the correlation between the predicted scores and the 
actual dependent variable scores. In using the neural network program, one can 
analyze the same data as the training data and correlate the obtained predicted scores 
with the original scores to obtain a similar index of prediction accuracy. In the  fi gure 
below, a control  fi le is shown that was used to predict the variable “jumps” using 
 fi ve independent variables (height, weight, etc.) from a  fi le labeled “canszscaled.

    Chapter 17   
 Neural Networks            
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  Fig. 17.1    The Neural form       

  Fig. 17.2    The neural  fi le menu       
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  Fig. 17.3    The neural control  fi le generation options       

  Fig. 17.4    The control  fi le generation form for prediction problems       
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 Control fi le commands are listed on the Neural Form.    One can also generate 
control  fi les for classi fi cation in a manner similar to discriminant function analysis 
or hierarchical analysis in traditional multivariate statistics. Figure  17.5  below 
shows the dialogue form for specifying a classi fi cation control  fi le. Default names 
have been entered for the name of two  fi les created when the control  fi le is “run”. 
The “Confusion”  fi le will contain the number of records (subjects) classi fi ed in each 
group. The neural net is “trained” to recognize the group classi fi cation on the basis 
of the “predictor” or classi fi cation variables. The confusion data is comparable to a 
contingency chi-square table in traditional statistics. A row will be generated for 
each group and a column will be generated for each predicted group (plus a column 
for unknowns) . In training the net, the data for each group is entered separately. 
Once the neuron weights are “learned”, one can then classify unknown subjects. 
Often one analyzes the same data as used for training the net to see how well the 
network does in classifying the original data.  

dat.” The  fi le consists of raw measures that have been transformed to z-scores and 
then re-scaled to have a range from .1 to .9. The resulting predicted scores are in a 
similar range but may be re-converted to z-scores for comparison with the original 
z-scores of the dependent variable. 

 Note - for users of Openstat , the  fi le cansas.tab was imported to the Neural pro-
gram and the transformation option applied using the options in the Transformations 
menu item.  

   Example Control File for Prediction  

    QUIT ERROR:.1  
  QUIT RETRIES:3  
  CONFUSION THRESHOLD:50  
  NETWORK MODEL:LAYER  
  LAYER INIT:ANNEAL  
  OUTPUT MODEL:GENERAL  
  N INPUTS:5  
  N OUTPUTS:1  
  N HIDDEN1:0  
  N HIDDEN2:0  
  TRAIN:CANSASSCALED.DAT  
  OUTPUT FILE:CANSASOUT.TXT  
  LEARN:  
  SAVE WEIGHTS:CANSAS.WTS  
  EXECUTE:CANSASSCALED.DAT  
  QUIT:  
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 Figure below shows the generated control  fi le for classifying subjects in three 
groups on the basis of two continuous variables. The continuous variables have been 
scaled to have a range from .1 to .9 as in the prediction problem previously discussed.  

  Fig. 17.5    The form for 
generating a classi fi cation 
control  fi le       

    QUIT ERROR:0.1  
  QUIT RETRIES:5  
  CONFUSION THRESHOLD:50  
  NETWORK MODEL:LAYER  
  LAYER INIT:GENETIC  
  OUTPUT MODEL:CLASSIFY  
  N INPUTS:2  
  N OUTPUTS:3  
  N HIDDEN1:2  
  N HIDDEN2:0  
  CLASSIFY OUTPUT:1  
  TRAIN:GROUP1.DAT  
  CLASSIFY OUTPUT:2  
  TRAIN:GROUP2.DAT  
  CLASSIFY OUTPUT:3  
  TRAIN:GROUP3.DAT  
  LEARN:  
  SAVE WEIGHTS:CLASSIFY.WGT  
  RESET CONFUSION:  
  CLASSIFY:GROUP1.DAT  
  SHOW CONFUSION:  
  SAVE CONFUSION:CLASSIFY.OUT  
  RESET CONFUSION:  
  CLASSIFY:GROUP2.DAT  
  SHOW CONFUSION:  
  SAVE CONFUSION:CLASSIFY.OUT  
  RESET CONFUSION:  
  CLASSIFY:GROUP3.DAT
SHOW CONFUSION:
SAVE CONFUSION:CLASSIFY.OUT
RESET CONFUSION:
CLEAR TRAINING:
QUIT:  
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 In traditional multivariate statistics, hierarchical grouping analyses are some-
times performed in an attempt to identify “natural” groups on the basis of one or 
more continuous variables. One type of neural network called the “Kohonen” net-
work may be utilized for a similar purpose. The user speci fi es the number of vari-
ables to analyze and the number of “output groups” that is expected. By repeated 
“runs” of the network with different numbers of output groups, one can examine the 
number of subjects classi fi ed into “self-organized” groups. Figure  17.6  above illus-
trates the dialogue box for specifying a Kohonen control  fi le and program code    
below shows a sample control  fi le for classifying data.     

  Fig. 17.6    Form for 
specifying a Kohonen 
network control  fi le       
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   Examples 

   Regression Analysis with One Predictor 

 A sample of 200 observations with two continuous variables were generated using 
the OpenStat simulation procedure for generating multivariate distributions. The 
data were generated to come from a population with a product–moment correlation 
of .60 and have means and standard deviations of 100 and 15 for each variable. The 
sample data generated had a correlation of 0.579 with means of 99.363, 99.267 and 
standard deviations of 15.675 and 16.988 respectively for the two variables. 

 To analyze this data with the neural network, we saved the generated data from 
OpenStat as a tab-separated variables  fi le for importation into the Neural program. 
We used the import command in the Neural program to read the original tab  fi le and 
then transformed the data into z scores. We did this in order to have scores we could 
later compare to the predicted scores obtained from the Neural program. We next 
transformed (scaled) these z scores to have a range between .1 and .9 a necessary 
step in order for the neurons of the network to have values with which it can work. 

    QUIT ERROR:0.1  
  QUIT RETRIES:5  
  CONFUSION THRESHOLD:50  
  KOHONEN NORMALIZATION MULTIPLICATIVE:  
  NETWORK MODEL:KOHONEN  
  KOHONEN INIT:RANDOM  
  OUTPUT MODEL:CLASSIFY  
  N INPUTS:3  
  N OUTPUTS:10  
  N HIDDEN1:0  
  N HIDDEN2:0  
  TRAIN:kohonen.dat  
  KOHONEN LEARN SUBTRACTIVE:  
  LEARN:  
  SAVE WEIGHTS:koh2.wts  
  RESET CONFUSION:  
  CLASSIFY:kohonen.dat  
  SHOW CONFUSION:  
  SAVE CONFUSION:confuse.txt  
  RESET CONFUSION:  
  CLASSIFY:kohonen.dat  
  SHOW CONFUSION:  
  SAVE CONFUSION:confuse.txt  
  CLEAR TRAINING:  
  QUIT:  
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 The control  fi le for the analysis was created by selecting the option to generate a 
prediction control  fi le into the grid of the program. The names of relevant  fi les were 
then entered in the grid. The completed  fi le is shown below:  

 Notice that there is one input and one output neuron de fi ned. The Neural pro-
gram will expect the output neuron values to follow the input neuron values when 
training the network. In this example, we want to train the network to predict the 
second value (Y) given the  fi rst value (X). In a basic statistics course we learn that 
the product–moment correlation is the linear relationship between an observed 
score (Y) and a predicted score Y’ such that the squared difference between the 
observed “True” score Y and the observed predicted score (Y’) is a minimum. The 
correlation between the predicted scores Y’ and the observed scores Y should be the 
same as the correlation between X and Y. Of course, in traditional statistics this is 
because we are  fi tting the data to a straight line. If the data happen to  fi t a  curved line  
better, then it is possible for the neural network to predict scores that are closer to 
the observed scores than that obtained using linear regression analysis. This is 
because the output of neurons is essentially non-linear, usually logistic in nature. 

 When we saved our control  fi le and then clicked on the menu item to run the  fi le, 
we obtained for following output:  

    QUIT ERROR:.1  
  QUIT RETRIES:3  
  NETWORK MODEL:LAYER  
  LAYER INIT:ANNEAL  
  OUTPUT MODEL:GENERAL  
  N INPUTS:1  
  N OUTPUTS:1  
  N HIDDEN1:0  
  N HIDDEN2:0  
  TRAIN:CORGENEDSCLD.DAT  
  OUTPUT FILE:CORGENED.TXT  
  LEARN:  
  SAVE WEIGHTS:CORGENED.WTS  
  EXECUTE:CORGENEDSCLD.DAT  
  QUIT:  
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 You may notice that the value for the QUIT ERROR has been changed to 0.05 
and the number of QUIT RETRIES changed to 5. 

 The .TXT  fi le speci fi ed as the OUTPUT FILE now contains the 200 predicted 
scores obtained by the EXECUTE command. This command utilizes the weights 
obtained by the network (and now stored in CORGENED.WTS) to predict the out-
put given new input values. We have elected to predict the same values as in the 
original training data sets X values and stored in a  fi le labeled CORGENED.DAT 
which, of course, has also been transformed to z scores and scaled to values between 
.1 and .9 as were the original training values. These predicted values in the 
CORGENEDSCLD.TXT  fi le were then re-transformed to z scores for comparison 
with the actual Y scores. The predicted and the transformed predicted scores were 
entered into the original (.TAB) data  fi le and analyzed using the OpenStat package. 
The following results were obtained:  

 CORRELATIONS  CORRELATIONS 

 Y  YPREDICTED  ZPREDICTED 

 Y  1.0  0.580083  0.580083 

 YPREDICTED  1.0  1.0 

 ZPREDICTED  1.0 

    NEURAL - Program to train and test neural networks  
  Written by William Miller  

  QUIT ERROR : 0.05  
  QUIT RETRIES : 5  
  NETWORK MODEL : LAYER  
  LAYER INIT : ANNEAL  
  OUTPUT MODEL : GENERAL  
  N INPUTS : 1  
  N OUTPUTS : 1  
  N HIDDEN1 : 0  
  N HIDDEN2 : 0  
  TRAIN : CORGENEDSCLD.DAT  
  SAVE WEIGHTS : CORGENED.WTS  
  There are no learned weights to save.  
  OUTPUT FILE : CORGENEDSCLD.TXT  
  LEARN :  
  Final error = 1.3720% of max possible  
  EXECUTE : CORGENED.DAT  
  QUIT :  
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 When X and Y were correlated following the initial generation of the data, the 
obtained value for the correlation of X with Y was 0.579. We conclude that the pre-
diction with the neural network is, within a reasonable error, the same as that 
obtained with our traditional statistical procedure.  

   Regression Analysis with Multiple Predictors 

 Our next example examines the use of a neural network for prediction when there 
are multiple predictors. Our data comes from a  fi le labeled “CANSAS.TAB” with 
which OpenStat users may be familiar. The  fi le contains three body measurements 
and three measures of physical strength observed on 20 subjects. We have arbi-
trarily selected to predict the last performance measure with the  fi ve preceding 
measures. 

 The TAB  fi le was imported into the Neural program grid and transformed to both 
z scores and scaled scores ranging from .1 to .9. Each transformation  fi le was saved 
for later use. 

 We next generated a prediction control  fi le and modi fi ed it to re fl ect the  fi ve input 
neurons and 1 output neuron. The control  fi le is shown below: 

 QUIT ERROR:0.5 
 QUIT RETRIES:3 
 CONFUSION THRESHOLD:50 
 NETWORK MODEL:LAYER 
 LAYER INIT:ANNEAL 
 OUTPUT MODEL:GENERAL 
 N INPUTS:5 
 N OUTPUTS:1 
 N HIDDEN1:2 
 N HIDDEN2:0 
 TRAIN:CANSASSCALED.DAT 
 SAVE WEIGHTS:CANSAS.WTS 
 OUTPUT FILE:CANSASOUT.TXT 
 LEARN: 
 EXECUTE:CANSASSCALED.DAT 

 In order to compare the results with traditional multiple regression analysis, we 
needed to calculate the product–moment correlation between the values predicted 
by the Neural network using the same data as would be used to obtain the multiple 
correlation coef fi cient in traditional statistical analysis. We used the predicted scores 
from the CANSASOUT.TXT  fi le and correlated them with the original dependent 
variable in the CANSAS.TAB  fi le. The results of the classical multiple regression 
are shown  fi rst: 
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    ===========================================================

Block Entry Multiple Regression by Bill Miller  
  ----------------- Trial Block 1 Variables Added --------------  
  Product-Moment Correlations Matrix with 20 cases.  

   Variables  
    weight waist pulse chins situps  
   weight 1.000 0.870 -0.366 -0.390 -0.493  
   waist 0.870 1.000 -0.353 -0.552 -0.646  
   pulse -0.366 -0.353 1.000 0.151 0.225  
   chins -0.390 -0.552 0.151 1.000 0.696  
   situps -0.493 -0.646 0.225 0.696 1.000  
   jumps -0.226 -0.191 0.035 0.496 0.669  

  Variables  
    jumps  
   weight -0.226  
   waist -0.191  
   pulse 0.035  
   chins 0.496  
   situps 0.669  
   jumps 1.000  

  Means with 20 valid cases.  

   Variables weight waist pulse chins situps  
    178.600 35.400 56.100 9.450 145.550  

   Variables jumps  
    70.300  

  Standard Deviations with 20 valid cases.  

   Variables weight waist pulse chins situps  
    24.691 3.202 7.210 5.286 62.567  

   Variables jumps  
    51.277  

  Dependent Variable: jumps  
         R        R2         F     Prob.>F  DF1  DF2  
     0.798     0.636     4.901     0.008    5   14  
  Adjusted R Squared = 0.507  

  Std. Error of Estimate =     36.020  
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   Variable Beta B Std.Error t Prob.>t VIF TOL  
   weight -0.588 -1.221 0.704 -1.734 0.105 4.424 0.226  
   waist 0.982 15.718 6.246 2.517 0.025 5.857 0.171  
   pulse -0.064 -0.453 1.236 -0.366 0.720 1.164 0.859  
   chins 0.201 1.947 2.243 0.868 0.400 2.059 0.486  
   situps 0.888 0.728 0.205 3.546 0.003 2.413 0.414  

  Constant =   -366.967  
  Increase in R Squared =   0.636  
  F = 4.901 with probability =   0.008  
  Block 1 met entry requirements  
 =========================================================== 
 Next, we show the correlations obtained between the values predicted by the Neural 
network and the original Y (jumps) variable: 
  ===========================================================  
  Product-Moment Correlations Matrix with 20 cases.  

  Variables  
    jumps RawScaled  
   jumps 1.000 0.826  
   RawScaled 0.826 1.000  

  Means with 20 valid cases.  
   Variables jumps RawScaled  
    70.300 0.256  

  Standard Deviations with 20 valid cases.  
   Variables jumps RawScaled  
    51.277 0.152  
 =========================================================== 
 The important thing to notice here is that the original multiple correlation coef fi cient 
was .798 using the traditional analysis method while the correlation of original 
scores to those predicted by the Neural network was .826. It appears the network 
captured some additional information that the linear model in multiple regression 
did not capture! 
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 An additional analysis was performed using the following control  fi le: 
 ==========================================================  
 QUIT ERROR:0.5 
  QUIT RETRIES:3  
  NETWORK MODEL:LAYER  
  LAYER INIT:ANNEAL  
  OUTPUT MODEL:GENERAL  
  N INPUTS:5  
  N OUTPUTS:1  
  N HIDDEN1:2  
  N HIDDEN2:0  
  TRAIN:CANSASSCALED.DAT  
  SAVE WEIGHTS:CANSAS.WTS  
  OUTPUT FILE:CANSASOUT.TXT  
  LEARN:  
  EXECUTE:CANSASSCALED.DAT  
 ==========================================================  

 Notice the addition of 2 neurons in a hidden layer. In this analysis, an even higher 
correlation was obtained between the original dependent score and the scores pre-
dicted by the Neural network: 

 The output for the above control  fi le is shown below: 
  ==========================================================   
  Variables  
                    jumps    Raw Scaled  zscaled2hid  
       jumps       1.000        0.826        0.919  
   RawScaled       0.826        1.000        0.885  
  scaled2hid       0.919        0.885        1.000   

  Means with   20 valid cases.  

  Variables        jumps    RawScaled     zscaled2hid  
                  70.300        0.256        0.000  

  Standard Deviations with   20 valid cases.  

  Variables        jumps    RawScaled     zscaled2hid  
                  51.277        0.152        1.000  
  ==========================================================   

 The last variable, zscaled2hid, is the neural network predicted score using the 2 
hidden layer neurons. The results also contain the results from the  fi rst analysis. 
Notice that we have gone from a multiple correlation coef fi cient of .798 to .919 with 
the neural network. It should be noted here that our “degrees of freedom” are quite 
low and we may be “over- fi tting” the data by simply adding hidden level neurons.  
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   Classi fi cation Analysis with Multiple Classi fi cation Predictors 

 In the realm of traditional multivariate statistical analyses, the discriminant function 
analysis method is used to identify raw or standardized weights of continuous 
 variables that optimally separate groups of individuals in the “hyperspace” of 
 discriminant space. Essentially, orthogonal axis of the original k-variable space are 
obtained. The number of axis is the smaller of the number of groups or the number 
of variables minus 1. Weights are then obtained that may be used to predict group 
membership based on the centroids (vector of means) of each group, the dispersion 
of each group and the prior probability of membership in each group. 

 With the Neural Program, we may create a Layer network for classifying objects 
based on the values of one or more input neurons. For our example, we have chosen 
to classify individuals that are members of one of three possible groups. We will 
classify them on the basis of 2 continuous variables. Our network will therefore 
have two input neurons, three output neurons and, we have added 2 neurons in a 
hidden layer. To train our network, we tell the network to classify objects for output 
neuron 1, then for output neuron 2 and  fi nally for output neuron 3 that correspond to 
objects in groups 1, 2 and 3 respectively. This requires three data  fi les with the 
objects from group 1 in one training  fi le, the objects for group 2 in another  fi le, etc. 

 The LEARN command will begin the network’s training process for the three 
groups de fi ned by the prior CLASSIFY OUTPUT and TRAIN  fi lename commands. 
The obtained neural weights will be stored in the  fi le name speci fi ed by the SAVE 
WEIGHTS command. Once the network has determined its weights, one can then 
utilize those weights to classify subjects of unknown membership into one of the 
groups. We have chosen to classify the same subjects in the groups that we used for 
the initial training. This is comparable to using the discriminant functions obtained 
in traditional statistics to classify the subjects on which the functions are based. 

 In traditional statistics, one will often create a “contingency table” with rows 
corresponding to the known group membership and the columns corresponding to 
the predicted group membership. If the functions can correctly classify all subjects 
in the groups, the diagonal of the table will contain the sample size of each group 
and the off-diagonal values will be zero. In other words, the table provides a count 
of objects that were correctly or incorrectly classi fi ed. Of course, it would be better 
to use a separate validation group drawn from the population which was NOT part 
of the training samples. In the case of the neural network, a  fi le is created (or 
appended) with the count of predicted membership in each of the groups. An addi-
tional count column is also added to count objects which could not be correctly 
classi fi ed. This  fi le is called the “CONFUSION”  fi le. We reset the “confusion” table 
before each classi fi cation trial then CLASSIFY objects in a validation  fi le. We show 
the confusion as well as save it in the confusion  fi le. The SHOW CONFUSION will 
present the classi fi cations in the output form while the SAVE CONFUSION  fi lename 
command will cause the same output to be appended to the  fi le. 
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 =========================================================== 
 QUIT ERROR:0.1 
 QUIT RETRIES:5 
 CONFUSION THRESHOLD:50 
 NETWORK MODEL:LAYER 
 LAYER INIT:GENETIC 
 OUTPUT MODEL:CLASSIFY 
 N INPUTS:2 
 N OUTPUTS:3 
 N HIDDEN1:2 
 N HIDDEN2:0 
 CLASSIFY OUTPUT:1 
 TRAIN:DiscGrp1.DAT 
 CLASSIFY OUTPUT:2 
 TRAIN:DiscGrp2.DAT 
 CLASSIFY OUTPUT:3 
 TRAIN:DiscGrp3.DAT 
 LEARN: 
 SAVE WEIGHTS:Discrim.WGT 
 RESET CONFUSION: 
 CLASSIFY:DiscGrp1.DAT 
 SHOW CONFUSION: 
 SAVE CONFUSION:DISCRIM.OUT 
 RESET CONFUSION: 
 CLASSIFY:DiscGrp2.DAT 
 SHOW CONFUSION: 
 SAVE CONFUSION:DISCRIM.OUT 
 RESET CONFUSION: 
 CLASSIFY:DiscGrp3.DAT 
 SHOW CONFUSION: 
 SAVE CONFUSION:DISCRIM.OUT 
 RESET CONFUSION: 
 CLEAR TRAINING: 
 QUIT: 
 =========================================================== 

 The listing presented below shows a print out of the confusion  fi le for the above 
run. Notice that one line was created each time a group of data were classi fi ed. Since 
we had submitted our classi fi cation tasks in the same order as the original grouping, 
the result is a table with counts of subject classi fi cations in each of the known 
groups. In this example, all subjects were correctly classi fi ed. 
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 =========================================================== 
 NEURAL - Program to train and test neural networks 
 Written by William Miller 

 QUIT ERROR : 0.1 
 QUIT RETRIES : 5 
 CONFUSION THRESHOLD : 50 
 NETWORK MODEL : LAYER 
 LAYER INIT : GENETIC 
 OUTPUT MODEL : CLASSIFY 
 N INPUTS : 2 
 N OUTPUTS : 3 
 N HIDDEN1 : 2 
 N HIDDEN2 : 0 
 CLASSIFY OUTPUT : 1 
 TRAIN : DISCGRP1.DAT 
 CLASSIFY OUTPUT : 2 
 TRAIN : DISCGRP2.DAT 
 CLASSIFY OUTPUT : 3 
 TRAIN : DISCGRP3.DAT 
 LEARN : 
 Final error = 0.0997% of max possible 
 SAVE WEIGHTS : DISCRIM.WGT 
 RESET CONFUSION : 
 CLASSIFY : DISCGRP1.DAT 
 SHOW CONFUSION : 
 Confusion: 5 0 0 0 
 SAVE CONFUSION : DISCRIM.OUT 
 RESET CONFUSION : 
 CLASSIFY : DISCGRP2.DAT 
 SHOW CONFUSION : 
 Confusion: 0 5 0 0 
 SAVE CONFUSION : DISCRIM.OUT 
 RESET CONFUSION : 
 CLASSIFY : DISCGRP3.DAT 
 SHOW CONFUSION : 
 Confusion: 0 0 5 0 
 SAVE CONFUSION : DISCRIM.OUT 
 RESET CONFUSION : 
 CLEAR TRAINING : 
 QUIT : 
 =========================================================== 
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 When we classify each of the objects in the original three groups, we see that 
subjects in group 1 were all classi fi ed in the  fi rst group, all in group 2 classi fi ed into 
group 2, etc. In this case, training provided 100 % correct classi fi cation by the net-
work of all our original objects. Of course, one would normally cross-validate a 
network with subjects not in the original training group. If you run a traditional 
discriminant analysis on this same data, you will see that the two methods are in 
complete agreement.  

   Pattern Recognition    

 A number of medical, industrial and military activities rely on recognizing certain 
patterns. For example, digital pictures of a heart may be scanned for abnormalities, 
and a manufacturer of automobile parts may use a digital scanned image to rotate and/
or  fl ip a part on an assembly line for its next processing. The military may use a digi-
tized scan of a sonar sounding to differentiate among whales, dauphins, sea turtles, 
schools of  fi sh, torpedoes and submarines. In each of these applications, a sequence 
of binary “bits” (0 or 1) representing, say, horizontal rows of the digitized image are 
“mapped” to a speci fi c object (itself represented perhaps by an integer value.) 

 As an example of pattern recognition, we will create digital “images” of the 
numbers 0, 1, 2, …, 9. Each image will consist of a sequence of 25 bits (neural 
inputs of 0 or 1) and the image will be mapped to 10 output neurons which contain 
the number of images possible and corresponding to the digits 0 through 9 (0000 to 
1001.) We will train a network by entering the image values randomly into a train-
ing set. We will then “test” the network by entering a data  fi le with 20 images in 
sequence (10) and randomly placed (10). Examine the Confusion output to verify 
that (1) when we classify the original data there is one value for each digit and (2) 
when we enter 20 images we obtain 2 digits in each group. 

 Notice we have used a 5 by 5 grid to “digitize” a digit. For example, the number 
8 is obtained from an image of:

     

0 1 1 1 0

0 1 0 1 0

0 0 1 0 0

0 1 0 1 0

0 1 1 1 0    

and the number 2 is:

     

0 1 1 0 0

1 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 1 1 1 0     
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 The values of 0 and 2 above are mapped to the output of 0000 and 0010 
respectively. 

 The training  fi le of the digitized images is shown below: 
 =========================================================== 
  0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 0  
  0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0  
  0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0  
  0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0  
  0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0  
  0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0  
  0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0  
  0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0  
  0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0  
  0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0  
  ===========================================================  

 The listings below represent the Control File and Output of the training and 
 testing of the neural network. Notice the model for the network and the command 
 fi le entries. 
 =========================================================== 
  QUIT ERROR:0.1  
  QUIT RETRIES:5  
  CONFUSION THRESHOLD:50  
  KOHONEN NORMALIZATION MULTIPLICATIVE:  
  NETWORK MODEL:KOHONEN  
  KOHONEN INIT:RANDOM  
  OUTPUT MODEL:CLASSIFY  
  N INPUTS:25  
  N OUTPUTS:10  
  N HIDDEN1:0  
  N HIDDEN2:0  
  TRAIN:scandigits.doc  
  KOHONEN LEARN ADDITIVE:  
  KOHONEN LEARNING RATE:0.4  
  KOHONEN LEARNING REDUCTION:0.99  
  LEARN:  
  SAVE WEIGHTS:scan.wts  
  RESET CONFUSION:  
  CLASSIFY:scandigits.doc  
  SHOW CONFUSION:  
  SAVE CONFUSION:scan.txt  
  RESET CONFUSION:  
  CLASSIFY:scantest.dat  
  SHOW CONFUSION:  
  SAVE CONFUSION:scan.txt  
  CLEAR TRAINING:  
  QUIT:  
 =========================================================== 
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 =========================================================== 
  NEURAL - Program to train and test neural networks  
  Written by William Miller  

  QUIT ERROR : 0.1  
  QUIT RETRIES : 5  
  CONFUSION THRESHOLD : 50  
  KOHONEN NORMALIZATION MULTIPLICATIVE :  
  NETWORK MODEL : KOHONEN  
  KOHONEN INIT : RANDOM  
  OUTPUT MODEL : CLASSIFY  
  N INPUTS : 25  
  N OUTPUTS : 10  
  N HIDDEN1 : 0  
  N HIDDEN2 : 0  
  TRAIN : SCANDIGITS.DOC  
  KOHONEN LEARN ADDITIVE :  
  KOHONEN LEARNING RATE : 0.4  
  KOHONEN LEARNING REDUCTION : 0.99  
  LEARN :  
  Final error = 0.0000% of max possible  
  SAVE WEIGHTS : SCAN.WTS  
  RESET CONFUSION :  
  CLASSIFY : SCANDIGITS.DOC  
  SHOW CONFUSION :  
  Confusion:    1   1   1   1   1   1   1   1   1   1   0  
  SAVE CONFUSION : SCAN.TXT  
  RESET CONFUSION :  
  CLASSIFY : SCANTEST.DAT  
  SHOW CONFUSION :  
  Confusion:    2   2   2   2   2   2   2   2   2   2   0  
  SAVE CONFUSION : SCAN.TXT  
  CLEAR TRAINING :  
  QUIT :  
 ===========================================================  

   Exploration of Natural Groups    

 Researchers often attempt to “tease” information or relationships out of a set of 
measurements without prior knowledge of those relationships. This “data-mining” 
might be simply to aggregate objects with similar pro fi les in order to examine other 
aspects of those objects that they may share. A variety of statistical methods for 
“grouping” objects on the basis of multiple continuous measures have been devel-
oped. The “Hierarchical Grouping” procedure is one of the more popular ones. The 
criteria for grouping may vary from procedure to procedure however. Many proce-
dures examine the distance between each object and all other objects in the Euclidean 
space of the grouping variables. Of course, the distance is affected by the scale of 
each measurement. For that reason, one often transforms all measures to a common 
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scale like the z score scale which has a mean of 0 and a standard deviation of 1.0. 
Still, this may ignore the different distribution shapes of the variables. Some group-
ing methods take this into account and measure the distance among objects using 
distribution characteristics. Most of the procedures “create” groups by  fi rst combin-
ing the two “closest” objects and replacing the two objects with a single group that 
is the average of the two objects in the group. The process is begun again, each time 
replacing the two objects with a group that combines the two objects. The user can 
typically print out the group membership at each iteration of the grouping process. 

 The Kohonen Neural Network provides an excellent basis for exploring natural 
groups which may exist among objects with multiple measures. One can train this 
network to classify objects into “M” number of groups based on values of “k” vari-
ables. One speci fi es an input neuron for each of the k variables and an output neuron 
for each group. Following the training one then uses the network to classify objects 
into the M groups. By varying the number of output neurons, one can utilize mul-
tiple networks to explore the objects classi fi ed into each group. 

 The Kohonen network model has a number of parameters that may be speci fi ed 
to control the operation of the training. One may use a multiplicative or a z method 
for normalization of the weights. You can initialize weights using random values or 
no random values. The learning method may be additive or subtractive. The learn-
ing rate and reduction parameters may each be speci fi ed. See Appendix A for further 
details on all parameters. 

 To demonstrate the use of the Kohonen net for classi fi cation, we will employ a 
 fi le of data that may be analyzed by traditional hierarchical grouping as well as a 
neural network. The results of each will be explored. 

 The  fi le to be analyzed is labeled “MANODISCRIM.TAB” with the contents 
shown below: 

  Y1  Y2  Group  
  3  7  1  
  4  7  1  
  5  8  1  
  5  9  1  
  6  10  1  
  4  5  2  
  4  6  2  
  5  7  2  
  6  7  2  
  6  8  2  
  5  5  3  
  6  5  3  
  6  6  3  
  7  7  3  
  7  8  3  
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 When we analyzed the above data using the Hierarchical grouping procedure of 
OPENSTAT we obtained the following groupings of data and error plot 
(Fig.  17.7 ): 

  ===========================================================  

  14 groups after combining group 2 (n := 1 ) and group 7 (n := 1) error = 0.233  
  13 groups after combining group 3 (n := 1 ) and group 4 (n := 1) error = 0.233  
  12 groups after combining group 9 (n := 1 ) and group 10 (n := 1) error = 0.233  
  11 groups after combining group 12 (n := 1 ) and group 13 (n := 1) error = 0.233  
  10 groups after combining group 14 (n := 1 ) and group 15 (n := 1) error = 0.233  
  9 groups after combining group 6 (n := 1 ) and group 11 (n := 1) error = 0.370  
  8 groups after combining group 2 (n := 2 ) and group 8 (n := 1) error = 0.571  
  7 groups after combining group 9 (n := 2 ) and group 14 (n := 2) error = 0.739  
  6 groups after combining group 1 (n := 1 ) and group 2 (n := 3) error = 1.025  

  Fig. 17.7    Groups versus between group error       
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  Group 1 (n = 4)  
  Object = 0  
  Object = 1  
  Object = 6  
  Object = 7  

  Group 3 (n = 2)  
  Object = 2  
  Object = 3  

  Group 5 (n = 1)  
  Object = 4  

  Group 6 (n = 2)  
  Object = 5  
  Object = 10  

  Group 9 (n = 4)  
  Object = 8  
  Object = 9  
  Object = 13  
  Object = 14  

  Group 12 (n = 2)  
  Object = 11  
  Object = 12  

  5 groups after combining group 3 (n = 2 ) and group 5 (n = 1) 
error = 1.193  
  Group 1 (n = 4)  

  Object = 0  
  Object = 1  
  Object = 6  
  Object = 7  

  Group 3 (n = 3)  
  Object = 2  
  Object = 3  
  Object = 4  

  Group 6 (n = 2)  
  Object = 5  
  Object = 10  

  Group 9 (n = 4)  
  Object = 8  
  Object = 9  
  Object = 13  
  Object = 14  

  Group 12 (n = 2)  
  Object = 11  
  Object = 12  
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  4 groups after combining group 6 (n = 2 ) and group 12 (n = 2) 
error = 1.780  
  Group 1 (n = 4)  

  Object = 0  
  Object = 1  
  Object = 6  
  Object = 7  

  Group 3 (n = 3)  
  Object = 2  
  Object = 3  
  Object = 4  

  Group 6 (n = 4)  
  Object = 5  
  Object = 10  
  Object = 11  
  Object = 12  

  Group 9 (n = 4)  
  Object = 8  
  Object = 9  
  Object = 13  
  Object = 14  

  3 groups after combining group 3 (n = 3 ) and group 9 (n = 4) 
error = 3.525  
  Group 1 (n = 4)  

  Object = 0  
  Object = 1  
  Object = 6  
  Object = 7  

  Group 3 (n = 7)  
  Object = 2  
  Object = 3  
  Object = 4  
  Object = 8  
  Object = 9  
  Object = 13  
  Object = 14  

  Group 6 (n = 4)  
  Object = 5  
  Object = 10  
  Object = 11  
  Object = 12  
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  2 groups after combining group 1 (n = 4 ) and group 6 (n = 4) 
error = 4.411  
  Group 1 (n = 8)  

  Object = 0  
  Object = 1  
  Object = 5  
  Object = 6  
  Object = 7  
  Object = 10  
  Object = 11  
  Object = 12  

  Group 3 (n = 7)  
  Object = 2  
  Object = 3  
  Object = 4  
  Object = 8  
  Object = 9  
  Object = 13  
  Object = 14  

  ===========================================================   
 To complete a similar analysis with the neural network program we created the 

following control  fi le and then modi fi ed it for two additional runs: 
 =========================================================== 
  QUIT ERROR:0.1  
  QUIT RETRIES:5  
  CONFUSION THRESHOLD:50  
  KOHONEN NORMALIZATION Z:  
  NETWORK MODEL:KOHONEN  
  KOHONEN INIT:RANDOM  
  OUTPUT MODEL:CLASSIFY  
  N INPUTS:2  
  N OUTPUTS:6  
  N HIDDEN1:0  
  N HIDDEN2:0  
  TRAIN:HIER.DAT  
  KOHONEN LEARN ADDITIVE:  
  KOHONEN LEARNING RATE:0.4  
  KOHONEN LEARNING REDUCTION:0.99  
  LEARN:  
  SAVE WEIGHTS:HIER.WTS  
  RESET CONFUSION:  
  CLASSIFY:HIER.DAT  
  SHOW CONFUSION:  
  SAVE CONFUSION:HIER.TXT  
  RESET CONFUSION:  
  CLASSIFY:HIER1.DAT  
  SHOW CONFUSION:  
  SAVE CONFUSION:HIER.TXT  
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  RESET CONFUSION:  
  CLASSIFY:HIER2.DAT  
  SHOW CONFUSION:  
  SAVE CONFUSION:HIER.TXT  
  RESET CONFUSION:  
  CLASSIFY:HIER3.DAT  
  SHOW CONFUSION:  
  SAVE CONFUSION:HIER.TXT  
  CLEAR TRAINING:  
  QUIT:  
 =========================================================== 

 Control File for Exploration of Groups Using a Kohonen Neural Network for Six 
Groups 

 In the above  fi le we speci fi ed six output neurons. This is our initial guess as to 
the number of “natural groups” in the data. The output from this run is shown 
below: 

  NEURAL - Program to train and test neural networks  
  Written by William Miller  
  QUIT ERROR : 0.1  
  QUIT RETRIES : 5  
  CONFUSION THRESHOLD : 50  
  KOHONEN NORMALIZATION Z :  
  NETWORK MODEL : KOHONEN  
  KOHONEN INIT : RANDOM  
  OUTPUT MODEL : CLASSIFY  
  N INPUTS : 2  
  N OUTPUTS : 6  
  N HIDDEN1 : 0  
  N HIDDEN2 : 0  
  TRAIN : HIER.DAT  
  KOHONEN LEARN ADDITIVE :  
  KOHONEN LEARNING RATE : 0.4  
  KOHONEN LEARNING REDUCTION : 0.99  
  LEARN :  
  Final error = 12.6482% of max possible  
  SAVE WEIGHTS : HIER.WTS  
  RESET CONFUSION :  
  CLASSIFY : HIER.DAT  
  SHOW CONFUSION :  
  Confusion: 3 1 3 3 3 2 0  
  SAVE CONFUSION : HIER.TXT  
  RESET CONFUSION :  
  CLASSIFY : HIER1.DAT  
  SHOW CONFUSION :  
  Confusion: 2 1 0 0 0 2 0  
  SAVE CONFUSION : HIER.TXT  
  RESET CONFUSION :  
  CLASSIFY : HIER2.DAT  
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  SHOW CONFUSION :  
  Confusion:   1   0   1   2   1   0   0  
  SAVE CONFUSION : HIER.TXT  
  RESET CONFUSION :  
  CLASSIFY : HIER3.DAT  
  SHOW CONFUSION :  
  Confusion:   0   0   2   1   2   0   0  
  SAVE CONFUSION : HIER.TXT  
  CLEAR TRAINING :  
  QUIT :  
  ===========================================================  
 Kohonen Network Output for Exploratory Grouping with Six Groups Estimated 

 You may compare the number of objects out of the total 15 that were classi fi ed 
in each of the groups (i.e. 3, 1, 3, 3, 3 ,2) and compare this with the number in six 
groups obtained with the Hierarchical Grouping procedure (4,2, 1,2,4,2). There is 
obviously some difference in the grouping. One can also see how the subjects who 
belong to groups 1, 2 or 3 are classi fi ed by each program. 

 For the second neural network analysis we modi fi ed the  fi rst control  fi le to con-
tain three output neurons, our next guess as to the number of “natural groups”. The 
output obtained is as follows: 
 =========================================================== 
  NEURAL - Program to train and test neural networks  
  Written by William Miller  

  QUIT ERROR : 0.1  
  QUIT RETRIES : 5  
  CONFUSION THRESHOLD : 50  
  KOHONEN NORMALIZATION Z :  
  NETWORK MODEL : KOHONEN  
  KOHONEN INIT : RANDOM  
  OUTPUT MODEL : CLASSIFY  
  N INPUTS : 2  
  N OUTPUTS : 3  
  N HIDDEN1 : 0  
  N HIDDEN2 : 0  
  TRAIN : HIER.DAT  
  KOHONEN LEARN ADDITIVE :  
  KOHONEN LEARNING RATE : 0.4  
  KOHONEN LEARNING REDUCTION : 0.99  
  LEARN :  
  Final error = 21.3618% of max possible  
  SAVE WEIGHTS : HIER.WTS  
  RESET CONFUSION :  
  CLASSIFY : HIER.DAT  
  SHOW CONFUSION :  
  Confusion:   4   6   5   0  
  SAVE CONFUSION : HIER.TXT  
  RESET CONFUSION :  
  CLASSIFY : HIER1.DAT  
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  SHOW CONFUSION :  
  Confusion:   0   3   2   0  
  SAVE CONFUSION : HIER.TXT  
  RESET CONFUSION :  
  CLASSIFY : HIER2.DAT  
  SHOW CONFUSION :  
  Confusion:   1   3   1   0  
  SAVE CONFUSION : HIER.TXT  
  RESET CONFUSION :  
  CLASSIFY : HIER3.DAT  
  SHOW CONFUSION :  
  Confusion:   3   0   2   0  
  SAVE CONFUSION : HIER.TXT  
  CLEAR TRAINING :  
  QUIT :  
  ===========================================================  
 Kohonen Network Output for Exploratory Grouping with Three Groups 

 Notice that number of subjects classi fi ed in each group are 4, 6 and 5 respec-
tively. The Hierarchical Grouping procedure placed 4, 7 and 4 respectively. It should 
be pointed out that the output neurons do not necessarily follow the same order as 
the “true” groups, i.e. 1, 2 and 3. In fact, it appears in our last analysis that the 3rd 
neuron may be sensitive to subjects in group 1, and neuron 1 most sensitive to sub-
jects in group 3. Neurons 1 and 2 seem about equally sensitive to members of both 
groups 1 and 2. To determine the prediction for each object (subject) we would clas-
sify each of the objects by themselves rather that read them by group. 

 We can construct contingency tables of actual versus predicted groups if we wish 
for either type of analysis. For example, the Hierarchical Grouping analysis would 
yield the following:  

 PREDICTED GROUP 
 ACTUAL GROUP  1  2  3 
 1  2  3  0 
 2  2  2  1 
 3  0  2  3 

 For the Kohonen Neural Network we would have:  

 PREDICTED GROUP 
 ACTUAL GROUP  1  2  3 
 1  3  0  2 
 2  1  3  1 
 3  0  3  2 

 Comparison of Grouping by Hierarchical Analysis and a Kohonen Neural 
Network 
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 Seven subjects in the original groups were predicted to be in the “natural” groups 
by the  fi rst method while eight subjects in the original groups were in “natural” 
groups by the second method. Of course, one does not typically know, a priori, what 
the “true” group memberships are. Thus, whether one uses traditional statistics or 
neural networks, one must still explore what seems to be common denominators 
among the grouped subjects. It is sometimes useful to actually plot the objects in the 
standardized score space to initially speculate on the number of “natural” groups. 
Above is a plot of the 15 scores of our original data (Fig.  17.8 ):  

 Group 1, 2, and 3 subjects are labeled with the values 1, 2 and 3. Notice that when 
you try to “split” the groups using Y1 or Y2 (horizontal or vertical) axis there is 
overlap and confusion regarding group membership. On the other hand, if you drew 
diagonal lines you can see how each of the three groups COULD be separated by 
considering both Y1 and Y2 concurrently. In Fact, that is just what the discriminant 
function analysis in traditional statistics does. Go back up and examine the results 
for our earlier example of discriminant analysis using a neural network. The data for 
that example is exactly the same as was analyzed with the present network!  

   Time Series Analysis    

 This example is based on the needs of grocery store retailers to predict customer 
purchases for items they stock. Over-stocking costs them shelf space while under-
stocking might cost them sales. Ideally, the shelves are stocked with just enough 

  Fig. 17.8    Plot of subjects in three groups, each subject measured on two variables       
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items to meet the demand for a day’s purchases. It would be possible to use histori-
cal data to give us a reasonable estimate of the purchases to be made for a given 
item. Of course, the historical data would have to be for the same day of the week, 
same sales promotion for the item, same weather factors, same store location, same 
customer base, etc. to yield the “best” prediction of purchases for a given day. Most 
stores however do not have such historical data and often may have only one or two 
preceding week’s data. In our example, we are assuming we have collected weekly 
data over a period of 28 weeks and wish to be able to predict customer purchases of 
Creamed Chicken Soup for a given day, in this example, Sunday. Our data consists 
of 28 records in a data  fi le. Each record contains the number of cans of Creamed 
Chicken Soup sold on Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, 
Saturday and (the next) Sunday. In other words, we have 8 consecutive day’s sales 
in each record. We will attempt to predict the sales on the 8th day using the sales 
data from the previous seven days. 

 A variety of time-series analyses have been developed utilizing traditional statis-
tical methods. Many are based on “auto-correlation” analyses. Users of the OpenStat 
package can perform a variety of analyses on the same data to attempt the best pre-
diction. Shown below are two graphs obtained from the autocorrelation procedure. 
The data were the units of Creamed Chicken sold each day from Sunday through 
Saturday for 28 weeks. A lag of 6 (0 through 7) was utilized for the autocorrelation 
analysis and smoothing average was utilized to project for 2 additional data points 
(Figs.  17.9 ,  17.10 ):   

 Autoregressive methods along with smoothing average methods are sometimes 
used to project (estimate) subsequent data points in a series. If one examines the  fi rst 
 fi gure above, one can observe some cyclic tendencies in the data. Fast Fourier 
smoothing or exponential smoothing might “ fl atten” these cyclic tendencies (which 

  Fig. 17.9    Original daily sales of creamed chicken with smoothed averages (3 values in each 
average)       
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appear to be a week long in duration.) Nearly all methods will result in an estimate 
for Sunday sales which re fl ect some “smoothing” of the data and estimate a new 
values that are, on the average, somewhat less than those actually observed. 

 The neural network involves identifying the series and building a network that 
will predict the next value. To do this, we recorded Sunday through Sunday 
sequences of sales for 28 weeks. In our Neural Program, the last variable is always 
the output neuron. If our desire had been to predict Monday sales, then the sequence 
recorded would have been Monday through the subsequent Monday. We trans-
formed the number of sales for each day into z scores and then to values having a 
range of .1 to .9 as required for our network. The predicted values we obtain from 
executing the network weights are re-translated into z scores for comparison with 
the observed z score data for Sunday sales. 

 There are a variety of variables which one can modify when training the network. 
In the Feed-Forward network, you have several alternatives for estimating the neu-
ral weights. You also have alternatives in the use of hidden layers and the number of 
neurons in those layers. You also have choices regarding the minimum error and the 
number of times the network attempts to obtain the least-squares error (QUIT 
ERROR and QUIT RETRIES.) We “experimented”with  fi ve variations of a control 
 fi le for training the neural network in the prediction of Sunday sales. Three of those 
control  fi les are shown below: 

  Fig. 17.10    Auto and partial correlations for lags from Sunday (lag 1 = Saturday, etc.)       
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 =========================================================== 
  QUIT ERROR:0.01  
  QUIT RETRIES:5  
  NETWORK MODEL:LAYER  
  LAYER INIT:ANNEAL  
  OUTPUT MODEL:GENERAL  
  N INPUTS:7  
  N OUTPUTS:1  
  N HIDDEN1:3  
  N HIDDEN2:1  
  TRAIN:CRMCHKZSCLD.DAT  
  OUTPUT FILE:CRMCHICK1.OUT  
  LEARN:  
  SAVE WEIGHTS:CRMCHICK1.WTS  
  EXECUTE:CRMCHKZSCLD.DAT  
  QUIT:  
 =========================================================== 

 Control Form for a Time Series Analysis - First Run 
 Notice that the above control  fi le uses the Anneal method of minimizing the least 

squares function obtained by the neural weights. In addition, two hidden layers of 
neurons were used with three and one neuron respectively in those layers. The out-
put obtained from this run is shown in the following  fi gure: 
 =========================================================== 
  NEURAL - Program to train and test neural networks  
  Written by William Miller  

  QUIT ERROR : 0.01  
  QUIT RETRIES : 5  
  NETWORK MODEL : LAYER  
  LAYER INIT : ANNEAL  
  OUTPUT MODEL : GENERAL  
  N INPUTS : 7  
  N OUTPUTS : 1  
  N HIDDEN1 : 3  
  N HIDDEN2 : 1  
  TRAIN : CRMCHKZSCLD.DAT  
  There are no learned weights to save.  
  OUTPUT FILE : CRMCHICK1.OUT  
  LEARN :  
  SAVE WEIGHTS : CRMCHICK1.WTS  
  Final error = 0.0825% of max possible  
  EXECUTE : CRMCHKZSCLD.DAT  
  QUIT :  
 =========================================================== 

 Time Series Analysis Output -First Run 
 Notice the  fi nal error reported in the output above and compare it with the next 

two examples. 
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 =========================================================== 
  QUIT ERROR:0.01  
  QUIT RETRIES:5  
  NETWORK MODEL:LAYER  
  LAYER INIT:ANNEAL  
  OUTPUT MODEL:GENERAL  
  N INPUTS:7  
  N OUTPUTS:1  
  N HIDDEN1:0  
  N HIDDEN2:0  
  TRAIN:CRMCHKZSCLD.DAT  
  OUTPUT FILE:CRMCHICK3.TXT  
  LEARN:  
  SAVE WEIGHTS:CRMCHICK3.WTS  
  EXECUTE:CRMCHKZSCLD.DAT  
  QUIT:  
 =========================================================== 

 Control Form for a Time Series Analysis - Third Run 
 In this last example (run three), we have eliminated the neurons in the hidden 

layers that were present in our  fi rst example. The output is shown below. Note that 
the size of the  fi nal error is considerably larger than the previous analysis. 
 =========================================================== 
  NEURAL - Program to train and test neural networks  
  Written by William Miller  

  QUIT ERROR : 0.01  
  QUIT RETRIES : 5  
  CONFUSION THRESHOLD : 50  
  NETWORK MODEL : LAYER  
  LAYER INIT : ANNEAL  
  OUTPUT MODEL : GENERAL  
  N INPUTS : 7  
  N OUTPUTS : 1  
  N HIDDEN1 : 0  
  N HIDDEN2 : 0  
  TRAIN : CRMCHKZSCLD.DAT  
  OUTPUT FILE : CRMCHICK3.TXT  
  LEARN :  
  Final error = 4.5999% of max possible  
  SAVE WEIGHTS : CRMCHICK3.WTS  
  EXECUTE : CRMCHKZSCLD.DAT  
  QUIT :  
 =========================================================== 

 Time Series Analysis Output for Run Three 
 In our last experimental time series analysis we have utilized a different method 

for initializing the neural weights. We used the genetic method for simulating a 
population to evolve with weights that minimized the least squares criterion. 
We  also used just one hidden layer containing two neurons in contrast to our  fi rst 
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example which used two hidden layers. The output  fi nal error is more than the  fi rst 
example but less than our second example. 
 =========================================================== 
  QUIT ERROR:0.01  
  QUIT RETRIES:5  
  CONFUSION THRESHOLD:50  
  NETWORK MODEL:LAYER  
  LAYER INIT:GENETIC  
  OUTPUT MODEL:GENERAL  
  N INPUTS:7  
  N OUTPUTS:1  
  N HIDDEN1:2  
  N HIDDEN2:0  
  TRAIN:CRMCHKZSCLD.DAT  
  OUTPUT FILE:CRMCHICK5.TXT  
  LEARN:  
  SAVE WEIGHTS:CRMCHICK5.WTS  
  EXECUTE:CRMCHKZSCLD.DAT  
  QUIT:  
 =========================================================== 

 Control Form for a Time Series Analysis - Fifth Run 
 =========================================================== 
  NEURAL - Program to train and test neural networks  
  Written by William Miller  

  QUIT ERROR : 0.01  
  QUIT RETRIES : 5  
  CONFUSION THRESHOLD : 50  
  NETWORK MODEL : LAYER  
  LAYER INIT : GENETIC  
  OUTPUT MODEL : GENERAL  
  N INPUTS : 7  
  N OUTPUTS : 1  
  N HIDDEN1 : 2  
  N HIDDEN2 : 0  
  TRAIN : CRMCHKZSCLD.DAT  
  OUTPUT FILE : CRMCHICK5.TXT  
  LEARN :  
  Final error = 0.2805% of max possible  
  SAVE WEIGHTS : CRMCHICK5.WTS  
  EXECUTE : CRMCHKZSCLD.DAT  
  QUIT :  
 ==========================================================  

 Time Series Analysis Output for Run Five 
 For each of the above examples, we “z-score” translated the predicted outputs 

obtained through use of the six days of predictor data. We then copied these three 
sets of predicted scores into a data  fi le containing our original Sunday Sales data 
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and obtained the product–moment correlation among the four sets. The results are 
shown below: 
  ===========================================================  
  Product-Moment Correlations Matrix with 28 cases.  
  Variables  
                  VAR. 8      Pred8_1      Pred8_3       Pred8_5  
     VAR. 8        1.000        0.993        0.480         0.976  
     Pred8_1       0.993        1.000        0.484         0.970  
     Pred8_3       0.480        0.484        1.000         0.501  
     Pred8_5       0.976        0.970        0.501         1.000  

  Means with 28 valid cases.  

  Variables      VAR. 8       Pred8_1      Pred8_3      Pred8_5  
                   0.000        0.020       -0.066        0.012   

  Standard Deviations with 28 valid cases.  

  Variables      VAR. 8       Pred8_1      Pred8_3      Pred8_5  
                   1.000        1.013        0.952        1.016   
  ===========================================================  

 Correlations Among Variable 8 (Sunday Sales) and Predicted Sales Obtained From 
The Neural Network for Runs 1, 3 and 5. Note: Sales Measures in Z Score Units. 

 Notice that the “best” predictions were obtained from our  fi rst control  fi le in 
which we utilized two hidden layers of neurons. The last analysis performed nearly 
as well as the  fi rst with fewer neurons. It also “learned” much faster than the  fi rst 
example. It should be noted that we would normally re-scale our values again to 
translate them from z scores to “raw” scores using the mean and standard deviation 
of the Sunday sales data.        
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