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Chapter 1
Introduction

OpenStat, among others, are ongoing projects that I have created for use by students,
teachers, researchers, practitioners and others. The software is a result of an “over-
active” hobby of a retired professor (Iowa State University.) I make no claim or
warranty as to the accuracy, completeness, reliability or other characteristics desir-
able in commercial packages (as if they can meet these requirement also.) They are
designed to provide a means for analysis by individuals with very limited financial
resources. The typical user is a student in a required social science or education
course in beginning or intermediate statistics, measurement, psychology, etc. Some
users may be individuals in developing nations that have very limited resources for
purchase of commercial products.

Because I do not warrant them in any manner, you should insure yourself that the
routines you use are adequate for your purposes. I strongly suggest analyses of text
book examples and comparisons to other statistical packages where available. You
should also be aware that I revise the program from time to time, correcting and
updating OpenStat. For that reason, some of the images and descriptions in this
book may not be exactly as you see when you execute the program. I update this
book from time to time to try and keep the program and text coordinated.

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_1, 1
© Springer Science+Business Media New York 2013



Chapter 2
Installing OpenStat

OpenStat has been successfully installed on Windows 95, 98, ME, XT, NT, VISTA
and Windows 7 systems. A free setup package (INNO) has been used to distribute
and install OpenStat. Included in the setup file (OpenStatSetup.exe) is the execut-
able file and Windows Help files. Sample data files that can be used to test the analy-
sis programs are also available. Several Linux system users have also found that the
free WINE software will allow OpenStat to run on a Linux platform.

To install OpenStat for Windows, follow these steps:

1. Connect to the internet address: http://statprograms4U.com

2. Click the download link for the OpenStatSetup.exe file

3. After the file has been downloaded, double click that program to initiate the
installation of OpenStat. At the same website in 1 above, you will also find a link
to a zip file containing sample data files that are useful for acquainting yourself
with OpenStat. In addition, there are multiple tutorial files in Windows Media
Video ((WMYV) format as well as Power Point slide presentations.

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_2, 3
© Springer Science+Business Media New York 2013
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Chapter 3
Starting OpenStat

To begin using a Windows version of OpenStat simply click the Windows “Start”
button in the lower left portion of your screen, move the cursor to the “Programs”
menu and click on the OpenStat entry. The following form should appear (Fig. 3.1):

The form contains several important areas. The “grid” is where data values are
entered. Each column represents a “variable” and each row represents an “observa-
tion” or case. A default label is given for the first variable and each case of data you
enter will have a case number. At the top of this “main” form there is a series of
“drop-down” menu items. When you click on one of these, a series of options (and
sometimes sub-options) that you can click to select. Before you begin to enter case
values, you probably should “define” each variable to be entered in the data grid.
Select the “VARIABLES” menu item and click the “Define” option. More will be
said about this in the following pages.

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_3, 5
© Springer Science+Business Media New York 2013
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Chapter 4
Files

The “heart” of OpenStat or any other statistics package is the data file to be created,
saved, retrieved and analyzed. Unfortunately, there is no one “best” way to store
data and each data analysis package has its own method for storing data. Many
packages do, however, provide options for importing and exporting files in a variety
of formats. For example, with Microsoft’s Excel package, you can save a file as a
file of “tab” separated fields. Other program packages such as SPSS can import
“tab” files. Here are the types of file formats supported by OpenStat:

. OPENSTAT binary files (with the file extension of .BIN .)

. Tab separated field files (with the file extension of .TAB.)

. Comma separated field files (with the file extension of .CSV.)

. Space separated field files (with the file extension of .SSV.)

. Text files (with the extension .TEX) NOTE: the file format in this text file is
unique to OpenStat!

. Epidata files (this is a format used by Epidemiologists)

. Matrix files previously saved by OpenStat

8. Fixed Format files in which the user specifies the record format

| S R S

~N

My preference is to save files as .TEX files. Alternatively, tab separated field files
are often used. This gives you the opportunity to analyze the same data using a
variety of packages. For relatively small files (say, for example, a file with 20 vari-
ables and 1,000 cases), the speed of loading the different formats is similar and quite
adequate. The default for OPENSTAT is to save as a binary file with the extension
.TEX to differentiate it from other types of files.

Creating a File

When OPENSTAT begins, you will see a “grid” of two rows and two columns. The
left-most column will automatically contain the word “Case” followed by a number
(1 for the first case.) The top row will contain the names of the variables that you

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_4, 7
© Springer Science+Business Media New York 2013
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x|
WARNING! NO BLANKS ALLOWED I\,ra,. Types » |
Nao. Short Name Long Mame |Type Ilntegers |Decimds IMissing I
1 VaR1 ariablel 0 8 2 33333
Press to create a variable automatically Delete Row Cancel Retum

Fig. 4.1 The Variables Definition form

assign when you start entering data for the first variable. If you click your mouse on
the “Variables” menu item, a drop-down list will appear that contains the word
“define”. If you click on this label, the above form appears:

In the above figure (Fig. 4.1) you will notice that a variable name has automati-
cally been generated for the first variable. To change the default name, click the box
with the default name and enter the variable name that you desire. It is suggested
that you keep the length of the name to eight characters or less. Do NOT have any
blanks in the variable name. An underscore (_) character may be used. You may also
enter a long label for the variable. If you save your file as an OPENSTAT file, this
long name (as well as other descriptive information) will be saved in the file (the use
of the long label has not yet been implemented for printing output but may be in
future versions.) To proceed, simply click the Return button in the lower right of
this form. The default type of variable is a “floating point” value, that is, a number
which may contain a decimal fraction. If a data field (grid cell) is left blank, the
program will usually assume a missing value for the data. The default format of
a data value is eight positions with two positions allocated to fractional decimal
values (format 8.2.) By clicking on any of the specification fields you can modify
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oy o Select the directory for your data in the area below:
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Fig. 4.2 The Options form

these defaults to your own preferences. You can change the width of your field, the
number of decimal places (0 for integers.) Another way to specify the default format
and missing values is by modifying the “Options” file. When you click on the
Options menu item and select the change options, the above form appears (Fig. 4.2):

In the options form you can specify the Data Entry Defaults as well as whether
you will be using American or European formatting of your data (American’s use a
period (.) and Europeans use a comma (,) to separate the integer portion of a number
from its fractional part.) The Printer Spacing section is currently ignored but may be
implemented in a future version of OpenStat. You can also specify the directory in
which to find the data files you want to process. I recommend that you save data in
the same directory that contains the OpenStat program (the default directory.)
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Entering Data

When you enter data in the grid of the main form there are several ways to navigate
from cell to cell. You can, of course, simply click on the cell where you wish to enter
data and type the data values. If you press the “enter” key following the typing of a
value, the program will automatically move you to the next cell to the right of the
current one or down to the next cell if you are at the last variable. You may also press
the keyboard “down” arrow to move to the cell below the current one. If it is a new
row for the grid, a new row will automatically be added and the “Case” label added
to the first column. You may use the arrow keys to navigate left, right, up and down.
You may also press the “Page Up” button to move up a screen at a time, the “Home”
button to move to the beginning of a row, etc. Try the various keys to learn how they
behave. You may click on the main form’s Edit menu and use the delete column or
delete row options. Be sure the cursor is sitting in a cell of the row or column you
wish to delete when you use this method. A common problem for the beginner is
pressing the “enter”” key when in the last column of their variables. If you do acciden-
tally add a case or variable you do not wish to have in your file, use the edit menu and
delete the unused row or variable. If you have made a mistake in the entry of a cell
value, you can change it in the “Cell Edit” box just below the menu. In this box you
can use the delete key, backspace key, enter characters, etc. to make the corrections
for a cell value. When you press your “Enter” key, the new value will be placed in
the corresponding cell. Notice that as you make grid entries and move to another cell,
the previous value is automatically formatted according to the definition for that vari-
able. If you try to enter an alphabetic character in an integer or floating point variable,
you will get an error message when you move from that cell. To correct the error,
click on the cell that is incorrect and make the changes needed in the Cell Edit box.

Saving a File

Once you have entered a number of values in the grid, it is a good idea to save your
work (power outages do occur!) Go to the main form’s File menu and click it. You
will see there are several ways to save your data. The first time you save your data
you should click the “Save a Text Type of File” option. A “dialog box” will then
appear as shown below (Fig. 4.3):

Simply type the name of the file you wish to create in the File name box and click
the Save button. After this initial save as operation, you may continue to enter data
and save with the Save button on the file menu. Before you exit the program, be sure
to save your file if you have made additions to it.

If you do not need to save specifications other than the short name of each vari-
able, you may prefer to “export” the file in a format compatible to other programs.
The “Export Tab File option under the File menu will save your data in a text file in
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Fig. 4.3 The form for saving a file

which the cell values in each row are separated by a tab key character. A file with the
extension .TAB will be created. The list of variables from the first row of the grid are
saved first, then the first row of the data, etc. until all grid rows have been saved.
Alternatively, you may export your data with a comma or a space separating the
cell values. Basic language programs frequently read files in which values are sepa-
rated by commas or spaces. If you are using the European format of fractional num-
bers, DO NOT USE the comma separated files format since commas will appear
both for the fractions and the separation of values - clearly a design for disaster!

Help

Users of Microsoft Windows are used to having a “help” system available to them
for instant assistance when using a program. Most of these systems provide the user
the ability to press the “F1” key for assistance on a particular topic or by placing
their cursor on a particular program item and pressing the right mouse button to get
help. OpenStat for the Microsoft Windows does have a help file. Place the cursor on
a menu topic and press the F1 key to see what happens! You can use the help system
to learn more about OpenStat procedures. Again, as the program is revised, there
may not yet be help topics for all procedures and some help topics may vary slightly
from the actual procedure’s operation. Vista and Windows 7 users may have to
download a file from MicroSoft to provide the option for reading “.hlp” files.
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The Variables Menu

Across the top of the “Main Form” is a series of “menu” items. Like the “File”
menu, each of these menu items “drops-down” a series of options and these options
may have sub-options. The “Variables” menu contains a variety of options to assist
you in working with the variables (columns of data). These options include:

. Define

. Transform

. Print Dictionary

Sort

. Create An Expanded File from a Frequencies File

. Enter an Equation to Combine Variables to Create a New Variable

The first option lets you enter or change a variable definition (see Fig. 4.1 above.)

Another option lets you “transform” an existing variable to create a new vari-
able. A variety of transformations are possible. If you elect this option, you will see
the following dialogue form (Fig. 4.4):

You will note that you can transform a variable by adding, subtracting, multiply-
ing, dividing or raising a value to a power. To do this you select a variable to trans-
form by clicking on the variable in the list of available variables and then clicking
the right arrow. You then enter a constant by clicking on the box for the constant and
entering a value. You select the transformation with a constant from among the first
10 possible transformations by clicking on the desired transformation (you will see

Transformations @

Available Variables: Transformations:
iy st Var, Arguerment New=V1 +C 3
waist - FestVar. V1) New=¥1-C
puke | New=¥1*C
S : New =V1/C
situps < New =V1 = C
umps New =V1 +V2
New =V1 -2
B New =V1 *V2
| New =V1 /2
New =¥1 V2
New = In{\1)
New = log(¥1)
New = exp[V1) base e
Second Var. Arguement (v2) nz: . gmf;f base 10
I Mew = Cos(\1)
== New = Tan{\/1)
E— New = ArcSin(V1)
New = ArcCos(V1) -
Y

AaaT oY

Save new variable as: Selected Transformation:
oK | | |

Fig. 4.4 The Variable Transformation form
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Create New Yariable from Others X|

Y'ou can create a new variable as a combination of other existing variables with this procedure.
First, enter the name of the new variable in the area labeled "New Varnable",

Nest, enter up to three values for each entry in your equation:

[a] an operation code [+, -, *, or /) except for the first one,

[b) an optional function, for example sin(x), tan(x), power(x.y), etc.

[c] a varable from the list of available variables - just click the name of a variable in the list
‘When you are done, click the Compute button. & new variable will then be created in the grid.
Y'ou can repeat the process for other new vaniables. Click return when done.

0 ti v Functi v " ariabl -
Newvaﬂdie Nm I perations _] I unclions J I anables J
= | |
Reset Next Entry Finished
Cancel Compute Retum

Fig. 4.5 The Variables Equation option

it entered automatically in the lower right box.) Next you enter a name for the new
variable in the box labeled “Save new variable as:” and click the OK button.

Sometimes you will want to transform a variable using one of the common expo-
nentiation or trigonometric functions. In this case you do not need to enter a con-
stant - just select the variable, the desired transformation and enter the variable
name before clicking the OK button.

You can also select a transformation that involves two variables. For example,
you may want a new variable that represents the sum, product, difference, etc. of
two variables. In this case you select the two variables for the first and second argu-
ments using the appropriate right-arrow key after clicking one and then the other in
the available variables list.

The “Print Dictionary” option simply creates a list of variable definitions on an
“output” form which may be printed on your printer for future reference.

The option to create a new variable by means of an equation can be useful in a
variety of situations. For example, you may want to create a new variable that is
simply the sum of several other variables (or products of, etc.) We have selected a
file labeled “cansas.tab” from our sample files and will create a new variable labeled
“physical” that adds the first three variables. When we click the equation option, the
above form appears (Fig. 4.5):

To use the above, enter the name of your new variable in the box provided.
Following this box are three additional “edit” boxes with “drop-down” boxes above
each one. For the first variable to be added, click the drop-down box labeled
“Variables” and select the name of your first variable. It will be automatically placed
in the third box. Next, click the “Next Entry” button. Now click the “Operations”
drop-down arrow and select the desired operation (plus in our example) and again
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-ioix
EWLES YARIABLES EDIT ANALYSES SIMULATION UTILITIES OPTIONS HELP
ROW coL Cell Edit (Retum to finish) N CASES No. VARS ASCI STATUS:

i I [191.00 |20 17 |18 |Press F1 for help when on any menu item.
(N I N S R o o L 5
CASE_1 36.00 50.00 5.00 16200 £0.00 277.00

CASE 2 |183.00 37.00 5200 200 110.00 £0.00 27800

CASE 3 [15300 3300 5200 1200 10000 10100 28900

CASE 4 |16200 3500 6200 1200 105.00 37.00 253.00

CASE5 |[18300 3500 4600 13.00 15500 5800 27000

CASE 6 [18200 3500 56.00 400 1000 4200 27400

CASE 7  |211.00 3800 56.00 200 101.00 3800 305.00

CASE 8  |167.00 34.00 60.00 6.00 125.00 40,00 261.00

CASE 9 |176.00 31.00 74.00 15.00 200,00 40,00 281.00

CASE_10 |154.00 3300 56.00 17.00 251.00 250.00 24300

CASE_11  |169.00 3400 50.00 17.00 120,00 3800 25300

CASE_12 |166.00 3300 5200 1300 21000 115.00 251.00

CASE_13  |154.00 34.00 £4.00 14.00 215.00 105.00 25200

CASE_14 |247.00 46.00 5000 1.00 50.00 50.00 34300

CASE_15 [19300 3500 46.00 600 70.00 31.00 275.00 |

AddVariable | ) e [C:\DpenStaticansas. TEX

Fig. 4.6 Result of using the Equation option

x
Ascending(a) or Descending(D):

A

[ ok | conce |

Fig. 4.7 The Sort form

select a variable from the Variables drop-down box. Again click the “Next Entry”
button. Repeat the Operations and Variables for the last variable to be added. Click
the “Finished” button to end the creation of the equation. Click the Compute button
and then the Return button. An output of your equation will be shown first as below:

Equation Used for the New Variable
physical = weight + waist + pulse

You will see the new variable in the grid (Fig. 4.6):

The “Sort” option involves clicking on a cell in the column on which the cases
are to be sorted and then selecting the Variables/Sort option. You then indicate
whether you want to sort the cases in an ascending order or a descending order. The
form above demonstrates the sort dialogue form (Fig. 4.7):
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The Edit Menu

The Edit menu is provided primarily for deleting, cutting and pasting of cells, rows
or columns of data. It also provides the ability to insert a new column or row at a
desired position in the data grid. There is one special “paste” operation provided for
users that also have the Microsoft Excel program and wish to copy cells from an
Excel spreadsheet into the OpenStat grid. These operations involve clicking on a
cell in a given row and column and the selecting the edit operation desired. The user
is encourage to experiment with these operations in order to become familiar with
them. The following options are available:

Copy

. Delete

. Paste

. Insert a New Column

. Delete a Column

. Copy a Column

. Paste a Column

. Insert a New Row

. Delete a Row

10. Copy a Row

11. Paste a row

12. Format Grid Values

13. Select Cases

14. Recode

15. Switch USA to Euro or Vice Versa
16. Swap Rows and Columns

17. Open Output Form / Word Processor

© NN AW~

Ne)

The first 11 of these options involve copying, deleting, pasting a row, column or
block of grid cells or inserting a new row or column. You can also “force” grid values
to be reformatted by selecting option 12. This can be useful if you have changed the
definition of a variable (floating point to integer, number of decimal places, etc.)

In some cases you may need to swap the cell values in the rows and columns so
that what was previously a row is now a column. If you receive files from an indi-
vidual using a different standard than yourself, you can switch between European
and USA standards for formatting decimal fraction values in the grid. Another use-
ful option lets you “re-code” values in a selected variable. For example, you may
need to recode values that are currently O to a 1 for all cases in your file.

The “Select Cases” option lets you analyze only those cases (rows) which you
select. When you press this option you will see the following dialogue form
(Fig. 4.8):

Notice that you may select a random number of cases, cases the exhibit a specific
range of values or cases if a specific condition exists. Once selection has been made,
anew variable is added to the grid called the “Filter” variable. You can subsequently
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Select Cases

weight i [Select

5559 t¢ All Cases

chins £ " If condition is satisfied
situps ”

jumps

physical

{ ° Random sample of cases
Sample,..
{ ° Based on time or case ranae

Heange...

€ " Use filter variable:
kN

~Unselected Cases&re
{* Filtered {° Deleted

Current Status: Do not filter cases

oK Cancel Reset Help

Fig. 4.8 The Select Cases form

use this filter variable to delete unneeded cases from your file if desired. Each of the
selection procedures invokes a dialogue form that is specific to the type of selection
chosen. For example, if you select the “if condition is satisfied” button, you will see
the following dialogue form (Fig. 4.9):

An example has been entered on this form to demonstrate a typical selection
criteria. Notice that compound statements involve the use of opening and closing
parentheses around each expression You can directly enter values in the “if” box or
use the buttons provided on the pad.

Should you select the “random” option in Fig. 4.8 you would see the following
form (Fig. 4.10):

The user may select a percentage of cases or select a specific number from a
specified number of cases.

Finally, the user may select a specified range of cases. This option produces the
following dialogue form (Fig. 4.11):

The Variables/Recode option is used to change the value of cases in a given vari-
able. For example, you may have imported a file which originally coded gender as
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Select Cases: If ]

Directions: You can enter a statement for selecting cases directly in the top "edit box' or use
the variable list and keys found in the keypad area. Compound statements may be created such
as:

(weight GT.130LAND. (waist GE.35)

Motice that each logical expression is enclosed within a set of parentheses. A single expression

> | [eihcE 2000
waist

pulse
ching
situps
umps
physical

OK |

Fig. 4.9 The Select If form

Select Cases: Random Sample

Sample Size
(& Approximately ,ﬁ % of all cases

" Exactly I cases from the fistl cases

ok | Cancel | Help |

Fig. 4.10 Random selection of cases form
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Fig. 4.11 Selection of a -
range of cases SelRange
First Case Last Case
Observation I1 0 |2'1

0k | cancel | Heb |

X
Vatiable Nameyeight Directions: a
You can recode existing values in one of your columns
~Recode Into: NewValuem— 1 |[varizbles) from one value to a new value. This recoding
can take place either in the existing column or a new
(% Into the same column P“ Walue: | column. If you select to place the new values in a new
ool I3 - o colurn, the label assigned to the new variable will be &
£ Jliosnen Blank (SystemMissinal | | vbinaton of the old vasiable name folowed by RECODE
and vill be automatically assigned.
i~ 0ld Value <
Apply Do the following:
& Value:  [165.00( —J 1. Click the variable column in the main grid that you wish
to recode.
€ Blanks 2. Click the Recode oplion in the Edit menu to stait this
ange: procedure,
LB Wt Do Ancther 3. When this form appears, click the button to indicate i
I I (you wish to recode in the selected column or o create a
niew vatiable
" Lowest to: | 4. Select the button to indicate the value or vahues to be
recpdedaﬁ:rteﬂl’\evaheowahmd!l’\eem!m
o Cancel | wvatiable to be changed.
€ Highestdownta: | 5. Enter the value in the New Value blank that s to | |
replace the value of range of values specified in 4 above,
Al values except I . Click the Apply button.
Retun | 7. |f there are additional values to be replaced, click the
=

Fig. 4.12 The Recode form

“M” or “F” but the analysis you want requires a coding of 0 and 1. You can select
the recode option and get the above form to complete (Fig. 4.12):

Notice that you first click on the column of the variable to recode, enter the old
value (or value range) and also enter the new value before clicking the Apply button.
You can repeat the process for multiple old values before returning to the Main
Form.

Some files may require the user to change all column values to row values and
row values to column values. For example, a user may have created a file with rows
that represent subjects measured on 10 variables. One of the desired analysis how-
ever requires the calculation of correlations among subjects, not variables. To obtain
a matrix of this form the user can swap rows and columns. Clicking on this option
will switch the rows and columns. In doing this, the original variable labels are lost.
The previous cases are now labeled Varl, Var2, etc. and the original variables are
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labeled CASE 1, CASE 2, etc. Clearly, one should save the original file before
completing this operation! Once the swap has occurred, you can save the new file
under a different name.

The last option under the variables menu lets you switch between the American
and European format for decimal fractions. This may be useful when you have
imported a file from another country that uses the other format. OpenStat will
attempt to convert commas to periods or vice-versa as required.

The Analyses Menu

The heart of any statistics package is the ability to perform a variety of statistical
analyses. Many of the typical analyses are included in the options and sub-options
of the Analyses menu. The figure below (Fig. 4.13) shows the options and the sub-
options under the descriptive option. No attempt will be made at this point in the
text to describe each analysis - these are described further in the text.

1815
| Ele Edt Wew fusert Formet Took Toble Window Heb Acohet SIEIES |
(DR 8RY | {vBRT - A€ FOEN S ET e - &)
[| Hormat = Tmeshembomen =10 <|B Z U [EZEWMW|ISEFED-2-A-
=B
B o Il - —
Pk FILES VARIABLES EDIT | ANALYSES SIMULATION UTILITIES OPTIONS HELP
: DTN o e, Yoy
Univariste b Frequences
5 Anlyses of Variance b Cross Tabudstin bl
e Correlation b Breakdown 3
5 Multiple Regression ¥ Mormalty Tests
:_ Interrupted Time Seres Anstysis X Versus ¥ Plot
2 Mitrvariste » BoxPlots
: Pstgear gt b Tam and Leaf Plot Lt
> Measurement: »  Group Frequency Histograms
f atris u*'hu“‘ o L 3
: Statistical Procsss Control P GQorPRRRt
B Financial ¥ Compars Observed to Theorstical Distribution e
. Neural Network: Theee Dinension Rokation
5 »Bom 56.00 800 101.00 3800
nd 300 B0.00 600 125.00 4000
; ;00 7400 1500 20000 4000
I CASEI0 |15400 ;00 B600 700 25100 25000
E CASETI |16900 3400  S000 1700 12000 3800
CASE 12 16500 B 200 1200 2000 1500
CASEL13 |15400 3400  B400 1400 2S00 10500
CASEA |24700 4800 S0 100 S000 5000
CASE 15 |19300 300 4500 (1] 7000 n00 =
AddVadable | ¢ ¢ [C\perstancansas TEX
o]
=]
3
[Page 26 Sec 1 mpR (RS Ini3 Cal [REC fimn B 1
Bystor] | B tcrosct Word- ATst.. [k openstan 2 Norton” [ =THO. 11205

Fig. 4.13 Selection of an analysis from the main menu
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The Simulation Menu

As you read about and learn statistics, it is helpful to be able to simulate data for an
analysis and see what the distribution of the values looks like. In addition, the con-
cepts of “type I error”, “type Il error”, “Power”, correlation, etc. may be more read-
ily grasped if the student can “play” with distributions and the effects of choices
they might make in a real study. Under the simulation menu the user may generate
a sequence of numbers, may generate multivariate data, may generate data that are
a sample from a theoretical population or generate bivariate-normal data for a cor-

relation. One can even generate data for a two-way analysis of variance!

Some Common Errors!

Empty Cells

1732

The beginning user will often see a message something like “” is not a valid
floating point value. The most common cause of this error occurs when a proce-
dure attempts to read a blank cell, that is, a cell that has been left empty by the
user. The new user will typically use the down-arrow to move to the next row in
the data grid in preparation to enter the next row of values. If you do this after
entering the values for the last case, you will create a row of empty cells. You
should put the cursor on one of these empty cells and use the Edit->Delete Row
menu to remove this blank row.

The user should define the “Missing Value” for each variable when they define
the variable. One should also click on the Options menu and place a missing value
in that form. OpenStat attempts to place that missing value in empty cells when a
file is saved as .TEX file. Not all OpenStat procedures allow missing values so you
may have to delete cases with missing values for those procedures.

Incorrect Format for Floating Point Values

A second reason you might receive a “not valid” error is because you are using the
European standard for the format of values with decimal fractions. Most of the sta-
tistical procedures contain a small “edit” window that contains a confidence level or
a rejection area such as 95.0 or 0.05. These will NOT be valid floating point values
in the European standard and the user will need to click on the value and replace it
with the correct form such as 95,0 or 0,05. This has been done for the user in some
procedures but not all!
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String Labels for Groups

Users of other statistics packages such as SPSS or Excel may have used strings of
characters to identify different groups of cases (subjects or observations.) OpenStat
uses sequential integer values only in statistical analyses such as analyses of vari-
ance or discriminant function analysis. An edit procedure has been included that
permits the conversion of string labels to integer values and saves those integers in
a new column of the data grid. An attempt to use a string (alphanumeric) value will
cause an “not valid” type of error. Several procedures in OpenStat have been
modified to let you specify a string label for a group variable and automatically cre-
ate an integer value for the analysis in a few procedures but not all. It is best to do
the conversion of string labels to integers and use the integer values as your group
variable.

Floating Point Errors

Sometimes a procedure will report an error of the type “Floating Point Division
Error”. This is often the outcome of a procedure attempting to divide a quantity by
zero (0.) As an example, assume you have entered data for several variables obtained
on a group of subjects. Also assume that the value observed for one of those vari-
ables is the same (a constant value) for all cases. In this situation there is no vari-
ability among the cases and the variance and standard deviation will be zero! Now
an attempt to use that zero variance or standard deviation in the calculation of z
scores, a correlation with another variable or other usage will cause an error (divi-
sion by zero is not defined.)

Values Too Large (or Small)

In some fields of study such as astronomy the values observed may be very, very
large. Computers use binary numbers to represent quantities. Nearly all OpenStat
procedures use “double precision” storage for floating point values. The double
precision value is stored in 64 binary “bits” in the computer memory. In most com-
puters this is a combination of 8 binary “bytes” or words. The values are stored with
a characteristic and mantissa similar to a scientific notation. Of course bits are also
used to represent the sign of these parts. The maximum value for the characteristic
is typically something like 2 raised to the power of 55 and the mantissa is 2 to the
7th power. Now consider a situation where you are summing the product of several
of very large values such as is done in obtaining a variance or correlation. You may
very well exceed the 64 bit storage of this large sum of products! This causes an
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“overflow” condition and a subsequent error message. The same thing can be said
of values too small. This can cause an “underflow” error and associated error
message.

The solution for these situations of values too large or too small is to “scale” your
initial values. This is typically done by dividing or multiplying the original values
by a constant to move the decimal point to decrease (or increase) the value. This
does, of course, affect the “precision” of your original values but it may be a sacrifice
necessary to do the analysis. In addition, the results will have to be “re-scaled” to
reflect the original measurement scale.
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Distributions

Using the Distribution Parameter Estimates Procedure

One of the procedures which may be executed in your OpenStat package is the
Analyses/Statistics/Central Tendency and Variability procedure. The procedure will
compute the mean, variance, standard deviation, range, skew, minimum, maximum
and number of cases for each variable you have specified. To use it, you enter your
data as a column of numbers in the data grid or retrieve the data of a file into the data
grid. Click on the Statistics option in the main menu and click on the Mean, Variance,
Std.Dev, Skew, Kurtosis option under the Descriptive sub-menu. You will see the
following form (Fig. 5.1):

Select the variables to analyze by clicking the variable name in the left column
followed by clicking the right arrow. You may select ALL by clicking the All but-
ton. Click on the Continue button when you have selected all of your variables.
Notice that you can also convert each of the variables to standardized z scores as an
option. The new variables will be placed into the data grid with variable names cre-
ated by combining z with the original variable names. The results will be placed in
the output form which may be printed by clicking the Print button of that form.

Using the Breakdown Procedure

The Breakdown procedure is an OpenStat program designed to produce the means
and standard deviations of cases that have been classified by one or more other (cat-
egorical) variables. For example, a sample may contain subjects for which have
values for interest in school, grade in school, gender, and rural/urban home environ-
ment. A researcher might be interested in reporting the mean and standard deviation
of “interest in school” for persons classified by combinations of the other three
(nominal scale) variables grade, gender and rural/urban.

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_5, 23
© Springer Science+Business Media New York 2013
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J|.; Descriptive Statistics -10] x|
This procedure provides means, variances, standard deviations, -
skewness, kurtosis and range values for each variable selected.

Select the variables in the left list and enter them for analysis by
clicking the right arrow button.
If you select the z score option, a new variable will be added to
your grid for each variable you select. The new variable will
contain the transformation of the original variable into a z score.
If you elect the case-wise deletion option, the calculations will
be done for all valid values of each variable otherwise a list-wise
deletion of records will occur in any one of the variables contains LI
Awvailable Variables Variables to Analyze
waist : weight
pulse
chins
situps
jumps <=
ALL
~Options:
[~ CaseWise Deletion
[~ zScores to Grid Reset l Eacel | 0K |

Fig. 5.1 Central tendency and variability estimates

The Breakdown program summarizes the means and standard deviations for
each level of the variable entered last within levels of the next-to-last variable, etc.
In our example, the statistics would be given for rural and urban codes within male
and female levels first, then statistics for males and females within grade level and
finally, the overall group means and standard deviations. The order of specification
is therefore important. The variable receiving the finest breakdown is listed last, the
next-most relevant breakdown next-to-last, etc. If the order of categorical variables
for the above example were listed as 2, 4, 3 then the summary would give statistics
for males and females within rural and urban codes, and rural and urban students
(genders combined) within grade levels. Optionally, the user may request one-way
analysis of variance results. An ANOVA table will be produced for the continuous
variable for the categories of each of the nominal variables.
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Using the Distribution Plots and Critical Values Procedure

This simulation procedure generates three possible distributions, i.e. (a) z scores,
(b) Chi-squared statistics or (c) F ratio statistics. If you select either the Chi-squared
or the F distribution, you will be asked to enter the appropriate degrees of freedom.
You are also asked to enter the probability of a Type I error. The default value of
0.05 is commonly used. You may also elect to print the distribution that is created.



Chapter 6
Descriptive Analyses

Frequencies

Selecting the Descriptive/Distribution Frequencies option from the Analyses menu
results in the following form being displayed. The cansas.TEX file has been loaded
and the weight variable has been selected for analysis. The option to display a his-
togram has also been selected, the three dimensional vertical bars has been selected
and the plotting of the normal distribution has been checked (Fig. 6.1).

When the OK button is clicked, each variable is analyzed in sequence. The first
thing that is displayed is a form shown below (Fig. 6.2):

You will notice that the number of intervals shown for the first variable (weight)
is 16. You can change the interval size (and press return) to increase or decrease the
number of intervals. If we change the interval size to 10 instead of the current 1, we
would end up with 11 categories.

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_6, 27
© Springer Science+Business Media New York 2013
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J|.. Frequency Distribution o [=]$3]
Avaiable Variables Variables to Analyzs [ialicts
v 2D Honzontal Bars
pulse G | 3D Horizontal Bars
g 2D Vettical Bars
jumps “"l & 3D Vertical Bars
_ﬂ € 2D Pie Chatt
€ 3D Pie Chatt
2D Line Chart
3D Line Chart
€ 2D Points Chart
€ 3D Points Chart
5 : ~TypeofBars——
i e el @ Bar Chart (bars separated)
I™ Create a variable containing the group code for each case " Histogram [contiguous bars)
~ND Option-————————————
Reset | Cancel | 0K [ {Piot Nomal Distributiori

Fig. 6.1 Frequency analysis form

Fig. 6.2 Frequency interval
form

Freq. Dist. Specifications ]

Iweighl

Minimurn [138
M [247
B |110

The interval size and number of intervals are
shown below. You may change the number
of intervals by entering a new interval size.
Click on the current interval size and enter a
new value. Press return when finished.

Interval Size: Number of Intervals:

i
Cancel | 0K |
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Now when the OK button on the specifications form is clicked the following

results are displayed:

FREQUENCY
Frequency
FROM TO
31.00 32.
32.00 33.
33.00 34.
34.00 35.
35.00 36.
36.00 37.
37.00 38.
38.00 39.
39.00 40.
40.00 41.
41.00 42.
42.00 43.
43.00 44.
44.00 45.
45.00 4e6.
46.00 47

ANALYSIS BY BILL MILLER
Analysis for waist

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

.00

FREQ.

1

H O O O OO OOoONWWNDWD -

PCNT

O OO OO OO0 OO oo o oo

.05
.05
.20
.15
.10
.15
.15
.10
.00
.00
.00
.00
.00
.00
.00
.05

CUM.

1.
.00
6.
9.
.00
14.
17.
19.
19.
19.
19.
19.
19.
19.
19.
20.

2

11

FREQ.
00

00
00

00
00
00
00
00
00
00
00
00
00
00

CUM.PCNT.
.05
.10
.30
.45
.55
.70
.85
.95
.95
.95
.95
.95
.95
.95
.95
.00

P O O O OO0 0O0O0oOoOoOOoOOoOoOo

oo

O O O O OO OO0 OO oooo

ILE RANK
.03
.07
.20
.38
.50
.63
.78
.90
.95
.95
.95
.95
.95
.95
.95
.97

The above results of the output form show the intervals, the frequency of scores
in the intervals, the percent of scores in the intervals, the cumulative frequencies
and percents and the percentile ranks. Clicking the Return button then results in the
display of the frequencies expected under the normal curve for the data:

Interval ND

O OO OO oorkEPErNNDNNNNDE P O

Freq.

.97
.42
.88
.26
.46
.44
.19
.79
.33
.89
.54
.30
.15
.07
.03
.01
.00
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Frequency Distribution Zﬂ

Frequency Distribution

5.00
475
450
4.25
4.00
375
350
325
3.00
275
250
225
200
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

Fig. 6.3 Frequency Distribution plot

When the Return button is again pressed the histogram is produced as illustrated
above (Fig. 6.3):

Cross-Tabulation

A researcher may observe objects classified into categories on one or more nominal
variables. It is desirable to obtain the frequencies of the cases within each “cell” of
the classifications. An example is shown in the following description of using the
cross-tabulation procedure. Select the cross-tabulation option from the Descriptive
option of the Statistics menu. You see a form like that below (Fig. 6.4):
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Cross Tabulation Procedure x|

Available Yariables: Wariables to Analyze: Directions: Select each categorical
—— [row variable from the variables available
[ ] [col in the leftmost box in the order that
L) vou wish to have the breakdown
proceed. Click the OK button to
< start the analysis.

Reset
_Cored |
oK |

Fig. 6.4 Cross-Tabulation dialog form

In this example we have opened the chisquare.tab file to analyze. Cases are
classified by “row” and “col” variables. When we click the OK button we obtain:

CROSSTABULATION ANALYSIS PROGRAM

VARIABLE SEQUENCE FOR THE CROSSTABS:
row (Variable 1) Lowest level = 1 Highest level = 3
col (Variable 2) Lowest level 1 Highest level = 4

FREQUENCIES BY LEVEL:

For Cell Levels: row 1 col: 1 Frequency = 5
For Cell Levels: row 1 col: 2 Frequency = 5
For Cell Levels: row 1 col: 3 Frequency = 5
For Cell Levels: row : 1 col: 4 Frequency = 5
Number of observations for Block 1 = 20

For Cell Levels: row : 2 col: 1 Frequency = 1
For Cell Levels: row : 2 col: 2 Frequency = 4
For Cell Levels: row : 2 col: 3 Frequency = 7
For Cell Levels: row : 2 col: 4 Frequency = 3
Number of observations for Block 2 = 24

For Cell Levels: row : 3 col: 1 Frequency = 5
For Cell Levels: row : 3 col: 2 Frequency = 10
For Cell Levels: row : 3 col: 3 Frequency = 10
For Cell Levels: row : 3 col: 4 Frequency = 2
Number of observations for Block 3 = 27

Cell Frequencies by Levels

col

1 2 3 4
Block 1 5.000 5.000 5.000 5.000
Block 2 10.000 4.000 7.000 3.000
Block 3 5.000 10.000 10.000 2.000

Grand sum for all categories = 71
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Note that the count of cases is reported for each column within rows 1, 2 and 3.
If we had specified the col variable prior to the row variable, the procedure would
summarize the count for each row within columns 1 through 4.

Breakdown

If a researcher has observed a continuous variable along with classifications on one
or more nominal variables, it may be desirable to obtain the means and standard
deviations of cases within each classification combination. In addition, the researcher
may be interested in testing the hypothesis that the means are equal in the popula-
tion sampled for cases in the categories of each nominal variable. We will use sam-
ple data that was originally obtained for a three-way analysis of variance (threeway.
tab.) We then select the Breakdown option from within the Descriptive option on
the Statistics menu and see (Fig. 6.5):

x|
Select From: Categorical Variables Selected: [ Directions:
Row
= | |Col Select variables for your
Slice analysis from the far left
list. From the list of
selected variables, click
4= on the one that is a
—_ continuous variable
[others should be
Al categorical] Next,
select any desired
= options then click the
0K button.
_g'm%@"“};ﬁiibv“&'é Continuous Variable to Break Dowr: o |
{Une-Way ANUVA |
ks
_Cancel |
OK |

Fig. 6.5 The Breakdown form
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We have elected to obtain a one-way analysis of variance for the means of cases
classified into categories of the “Slice” variable for each level of the variable “Col.”
and variable “Row”. When we click the Continue button we obtain the first part of
the output which is:

BREAKDOWN ANALYSIS PROGRAM

VARIABLE SEQUENCE FOR THE BREAKDOWN:

Row (Variable 1) Lowest level = 1 Highest level = 2
Col. (Variable 2) Lowest level = 1 Highest level =
Slice (Variable 3) Lowest level = 1 Highest level = 3

|
N

Variable levels:
Row level =1

Col. level =1

Slice level =1

Freq. Mean Std. Dev.
3 2.000 1.000

Variable levels:
Row level =1
Col. level 1
Slice level = 2

Freq. Mean Std. Dev.
3 3.000 1.000

Variable levels:
Row level =1
Col. level =1
Slice level 3

Freq. Mean Std. Dev.
3 4.000 1.000

Number of observations across levels = 9
Mean across levels = 3.000
Std. Dev. across levels = 1.225

We obtain similar output for each level of the “Col.” variable within each level
of the “Row” variable as well as the summary across all rows and columns. The
procedure then produces the one-way ANOVA’s for the breakdowns shown. For
example, the first ANOVA table for the above sample is shown below:

Variable levels:

Row level =1
Col. level = 2
Slice level =1
Freq. Mean Std. Dev.

3 5.000 1.000
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Variable levels:
Row level = 1
Col. level 2
Slice level = 2

Freq. Mean Std. Dev.
3 4.000 1.000
Variable levels:
Row level =1
Col. level = 2
Slice level = 3
Freq. Mean Std. Dev.
3 3.000 1.000
Number of observations across levels = 9

Mean across levels = 4.000
Std. Dev. across levels = 1.225

ANALYSES OF VARIANCE SUMMARY TABLES

Variable levels:

Row level =1

Col. level =1

Slice level = 1

Variable levels:

Row level =1

Col. level =1

Slice level = 2

Variable levels:

Row level =1

Col. level =1

Slice level = 3

SOURCE D.F. SS MS F Prob.>F
GROUPS 2 6.00 3.00 3.000 0.3041
WITHIN 6 6.00 1.00

TOTAL 8 12.00

The last ANOVA table is:

ANOVA FOR ALL CELLS

SOURCE D.F. SS MS F Prob.>F
GROUPS 11 110.75 10.07 10.068 0.0002
WITHIN 24 24.00 1.00

TOTAL 35 134.75

FINISHED
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You should note that the analyses of variance completed do NOT consider the
interactions among the categorical variables. You may want to compare the results
above with that obtained for a three-way analysis of variance completed by either
the 1,2, or 3 way randomized design procedure or the Sum of Squares by Regression
procedure listed under the Analyses of Variance option of the Statistics menu.

Distribution Parameters

The distribution parameters procedure was previously described.

Box Plots

Box plots are useful graphical devices for viewing both the central tendency and the
variability of a continuous variable. There is no one “correct” way to draw a box
plot hence various statistical packages draw them in somewhat different ways. Most
box plots are drawn with a box that depicts the range of values between the 25th
percentile and the 75 percentile with the median at the center of the box. In addition,
“whiskers” are drawn that extend up from the top and down from the bottom to the
90th percentile and 10th percentile respectively. In addition, some packages will
also place dots or circles at the end of the whiskers to represent possible “outlier”
values (values at the 99th percentile or 1 percentile. Outliers are NOT shown in the
box plots of OpenStat. In OpenStat, the mean is plotted in the box so one can also
get a graphical representation of possible “skewness” (differences between the
median and mean) for a set of values.

Now lets plot some data. In the Breakdown procedure described above, we ana-
lyzed data found in the threeway.tab file. We will obtain box plots for the continuous
variable classified by the three categories of the “Slice” variable. Select Box Plots
from the Descriptives option of the Statistics menu. You should see (after selecting
the variables) (Fig. 6.6):
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x

Directions: Click on the variable that represents the group numbers. Nest,
click on the variable to analyze by a box and whisker plot. NOTE: to create
a plot containing ALL subjects, create a "dummy" group variable where all
values equal 1.
Awvailable Variables Group Yariable
Row ISke
Col
Slice
M Variable
easurement Var Resel
%
Cancel
Option:
’_IV Show Frequencies b
Retum

Fig. 6.6 The Box Plot form

Having selected the variables and option, click the Return button. In our example
you should see (Fig. 6.7):

Box Plot of Groups

Results for group 1, mean = 3.500

Centile Value

Ten 1.100

Twenty five 2.000

Median 3.500

Seventy five 5.000

Ninety 5.900

Score Range Frequency Cum.Freq. Percentile Rank
0.50 - 1.50 2.00 2.00 8.33
1.50 - 2.50 2.00 4.00 25.00
2.50 - 3.50 2.00 6.00 41.67
3.50 - 4.50 2.00 8.00 58.33
4.50 - 5.50 2.00 10.00 75.00
5.50 - 6.50 2.00 12.00 91.67
6.50 - 7.50 0.00 12.00 100.00
7.50 - 8.50 0.00 12.00 100.00
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8.50 - 9.50
9.50 -10.50
10.50 -11.50

0.00
0.00
0.00

Results for group 2,

Centile Value

Ten

Twenty five

Median

Seventy five
Ninety 6.400
Score Range

2.600
3.500
4.500
5.500

Frequency Cum.Freq.

12.
12.
12.

00
00
00

4.500

100.
100.
100.

00
00
00
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Percentile Rank

0.50 - 1.50 0.00 0.00 0.00
1.50 - 2.50 1.00 1.00 4.17
2.50 - 3.50 2.00 3.00 16.67
3.50 - 4.50 3.00 6.00 37.50
4.50 - 5.50 3.00 9.00 62.50
5.50 - 6.50 2.00 11.00 83.33
6.50 - 7.50 1.00 12.00 95.83
7.50 - 8.50 0.00 12.00 100.00
8.50 - 9.50 0.00 12.00 100.00
9.50 -10.50 0.00 12.00 100.00
10.50 -11.50 0.00 12.00 100.00

Results for group 3, = 4.250

Centile Value

Ten 1.600

Twenty five 2.500

Median 3.500

Seventy five 6.500

Ninety 8.300

Score Range Frequency Cum.Freqg. Percentile Rank
0.50 - 1.50 1.00 1.00 4.17
1.50 - 2.50 2.00 3.00 16.67
2.50 - 3.50 3.00 6.00 37.50
3.50 - 4.50 2.00 8.00 58.33
4.50 - 5.50 1.00 9.00 70.83
5.50 - 6.50 0.00 9.00 75.00
6.50 - 7.50 1.00 10.00 79.17
7.50 - 8.50 1.00 11.00 87.50
8.50 - 9.50 1.00 12.00 95.83
9.50 -10.50 0.00 12.00 100.00
10.50 -11.50 0.00 12.00 100.00
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I']_TB[}:I'-‘I OT FOR : C:\OpenStat’\threeway.tab Inl x‘

RED: mean, BLACK: median, BOX: 25th to 75th percentile, WISKERS: 10th and S0th percentie

— 1150
1095
1040
985
930
87

8.20
765
710
655
€00
545
490
45
380
326
27
215
160
1 1

1.05
050

GROUPS: 1 2 3

Fig. 6.7 Box and whiskers plot

Three Variable Rotation

The option for 3D rotation of 3 variables under the Descriptive option of the
Statistics menu will rotate the case values around the X, Y and Z axis! In the exam-
ple below we have again used the cansas.tab data file which consists of six variables
measuring weight, pulse rate, etc. of individuals and measures of their physical
abilities such as pull ups, sit ups, etc. By “dragging” the X, Y or Z bars up or down
with your mouse, you may rotate up to 180° around each axis (see Figs. 6.8-6.9
below (Fig. 6.8)):
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Three Dimension Scatter Plot
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Fig. 6.8 Three Dimension plot with rotation

X Versus Y Plots

As mentioned above, plotting one variable’s values against those of another variable
in an X versus Y scatter plot often reveals insights into the relationships between two
variables. Again we will use the same cansas.tab data file to plot the relationship
between weight and waist measurements. When you select the X Versus Y Plots
option from the Statistics/Descriptive menu, you see the form below (Fig. 6.9):
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X versus Y Plot X|

Available Variables % \ariable

ight
r — > | v

pulse =
c‘hins
situps Y Variable
jumps -

I waist

—Options:

[¥ Show Descriptive Statistics Posst

[v PlotX andY Means
v Plot Regression Line Cancel
[v Plot Confidence Band of:

3 Confidence interval. 0K

Fig. 6.9 X Versus Y Plot form

In the above form we have elected to print descriptive statistics for the two vari-
ables selected and to plot the linear regression line and confidence band for pre-
dicted scores about the regression line drawn through the scatter of data points.
When you click the Compute button, the following results are obtained for the
descriptive statistics in the output form:

X versus Y Plot

X = weight , Y = waist from file:
C:\Projects\Delphi\OpenStat\cansas.txt

Variable Mean Variance Std.Dev.

weight 178.60 609.62 24.69

waist 35.40 10.25 3.20

Correlation = 0.8702, Slope = 0.11, Intercept = 15.24
Standard Error of Estimate = 1.62

When you press the Return button on the output form, you then obtain the desired
plot (Fig. 6.10):
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1. % versus ¥ PLOT Using File: C:\OpenStat' cansas. TEX S [=] S
4642 waist MEAM weight

4456 -1

4270 =

4024 =

) -1

3z -1

w7

k]

355

2989 -1

2783

T T T T T T T T T |
13200 14830 153.80 170.70 181.60 147 50 20340 21430 2520 23610 247.00
Ri<Y) = 0.870, Slope = 011, Intercept = 15.24

swore| _pn | [

Fig. 6.10 Plot of regression line in X versus Y

Notice that the measured linear relationship between the two variables is fairly
high (.870) however, you may also notice that one data point appears rather extreme
on both the X and Y variables. Should you eliminate the case with those extreme
scores (an outlier?), you would probably observe a reduction in the linear relation-
ship! I would personally not eliminate this case however since it “seems reason-
able” that the sample might contain a subject with both a high weight and high waist
measurement.

Histogram/Pie Chart of Group Frequencies

You may obtain a histogram or pie chart plot of frequencies for a variable using the
Analyses/Descriptive options of either the Histogram of Group Frequencies of Pie
Chart of Group Frequencies option. Selecting either of these procedures results in
the following dialogue form (Fig. 6.11):

In this example we have loaded the chisqr. TEX OpenStat file and have chosen to
obtain a pie chart of the col variable. The result is shown below (Fig. 6.12):



I Group Frequencies Specification Form Q@

Available Variables

Group Yariable (Integer)

row

Reset |

Icol

<=

~ Plot Options:

2D Horizontal Bars
3D Horizontal Bars
2D Vertical Bars
3D Vertical Bars
2D Pie Chart

3D Pie Chart

2D Line Chart

3D Line Chart

2 D Points Chart
3D Points Chart

Cancel | 1] [

R Y Y R NN )

Fig. 6.11 Form for a pie chart

T X

3 Values of col

Save

P | e ]

Fig. 6.12 Pie chart
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Stem and Leaf Plot

One of the earliest plots in the annals of statistics was the “Stem and Leaf” plot. This
plot gives the user a view of the major values found in a frequency distribution. To
illustrate this plot, we will use the file labeled “StemleafTest2. TAB”. If you select
this option from the Descriptive option of the Analyses menu, you will see the
dialogue form below (Fig. 6.13):

ﬂ..: Stem and Leaf Plot l =10 x|

Directions: Click on the variable(s) to be analyzed in the left list of available
variables. Click the right arrow button to enter the selected variable(s). To
remove a selected variable, click the name of the variable in the right list and
click the left arrow button. Click OK to complete the analysis.

Note: When the leaf depth is greater than 1, some leaves may represent
fragments smaller than the leaf depth.

Available Variables Selected Variables
MNormz zx100

Reset

=3
<=

Cancel

ALL

[~ Show all scaled values and stings

Fig. 6.13 Stem and Leaf form
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We will choose to plot the zx100 variable to obtain the following results:

STEM AND LEAF PLOTS
Stem and Leaf Plot for variable: zx100
Frequency Stem & Leaf

1 -3 0

6 -2 0034
12 -1 0122234

5 -1 6789
71 0 0001111111222222222333333344444444444
78 0 555555556666666677777777788888889999999
16 1 00011223

7 1 56789

2 2 03

2 2 57
Stem width = 100.00, max. leaf depth = 2
Min. value = -299.000, Max. value = 273.600

No. of good cases = 200

The results indicate that the Stem has values ranging from —300 to +200 with the
second digits shown as leaves. For example, the value 111.6 has a stem of 100 and
a leaf of 1. The leaf “depth” indicates the number of values that each leaf value
represents. The shape of the plot is useful in examining whether the distribution is
somewhat “bell” shaped, flat, skewed, etc.

Compare Observed and Theoretical Distributions

In addition to the Stem and Leaf Plot described above, one can also plot a sample
distribution along with a theoretical distribution using the cumulative proportion of
values in the observed distribution. To demonstrate, we will again use the same vari-
able and file in the stem and leaf plot described above. We will examine the normal
distribution values expected for the same cumulative proportions of the observed
data. When you select this option from the Descriptive option, you see the form
shown below (Fig. 6.14):

When you click the Compute Button, you obtain the plot. Notice that our distri-
butions are quite similar!

QQ and PP Plots

In a manner similar to that shown above, one can also obtain a plot of the theoretical
versus the observed data. You may select to plot actual values observed and expected
or the proportions (probabilities) observed and expected. Show below is the dialogue
form and a QQ plot for the save data of the previous section (Figs. 6.15, 6.16):
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Distribution Comparison Plot [ZI
ot Type:
DIRECTIONS: & & 1. Seperate observed and theoretic cumulative distibutions
1. Select the ype of theorelical distrbution desired 2. Combined observed and theorelic cumualive dstibutions
2 Chick the checkbox for prnter output if desired. @ 3. Combined cbserved and theoretic i
Cumulalive Distibut P, Normal CDF [ 0,00, 7,89.{__Show piinter oulput
" Binomial 2 value: !U
& Nomal Mean: [7.8925 100770
" Chisquare Std Dev.: ;%m 00
" Student t Prob.: [o.4683
o o [os3% 080
" Poisson 0.70
!U
 Beta Status: 060
Click the name of your vanisble: 5
Hoimz
penile 0.40
030
020
010
0.00 -
-2?2]3-218.-]51.2!-1(5.?‘]-50.5 509 6054 115.98171.42 226,87 28231

Vaiiable = |24100 P

Fig. 6.14 Dialog form for examining theoretical and observed distributions

x|
Directions: N ~Theoretical Distribution:— |
1. Select the theoretical distribution ¢ Binomial
2. Select the type of Plot (3Q or PP)
3. Click the vaniable to analyze — (¢ Nomal
4. Click the Compute button ~ ChiSquare
"fou may change a parameter where needed LI ot
Variables Available: —Parameters: £k
Normz i |0 ¢ Poisson
7.8925
Mean: | e
StdDev:  |933% & Q0
PP
Prob.: I
1-Prob. | [~ Print Computation Results
i Compute | Retun
Variable Selected =
|zx1 00

Fig. 6.15 The QQ / PP Plot Specification form
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1.2 % versus ¥ PLOT Using File: C:\OpenStat' cansas. TEX S [=] S

Expected
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Fig. 6.16 A QQ plot

Normality Tests

A large number of statistical analyses have an underlying assumption that the data
analyzed or the errors in predicting the data are, in fact, normally distributed in the
population from which the sample was obtained. Several tests have been devel-
oped to test this assumption. We will again use the above sample data to demon-
strate these tests. The specification form and the results are shown below
(Fig. 6.17):

The Shapiro-Wilkes statistic indicates a relatively high probability of obtain-
ing the sample data from a normal population. The Liliefors test statistic also
suggests there is no evidence against normality. Both tests lead us to accept the
hypothesis that the sample was obtained from a normally distributed population
of scores.
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Tests of Normality ) x|

Yariables
Normz Test Normality of:

Iz:ﬂ 00
|

—Shapiro-Wilks Results:

Wa [03s14
Probabiity = | 02832

~Lilliefors Test Results:

Kurtosis = I 0.491
Test Statistic = | 0.043

Eonchils: INo evidence against normality.

Cancel Reset | Pirt |

Fig. 6.17 Normality tests

Resistant Line

Tukey (1970, Chap. 10) proposed the three point resistant line as an data analysis tool
for quickly fitting a straight line to bivariate data (x and y paired data.) The data are
divided into three groups of approximately equal size and sorted on the x variable.
The median points of the upper and lower groups are fitted to the middle group to
form two slope lines. The resulting slope line is resistant to the effects of extreme
scores of either x or y values and provides a quick exploratory tool for investigating
the linearity of the data. The ratio of the two slope lines from the upper and lower
group medians to the middle group median provides a quick estimate of the linearity
which should be approximately 1.0 for linearity. Our example uses the “Cansas.
TEX” file. The dialogue for the analysis appears as (Fig. 6.18):
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-
ik Resistant Line M
Awalable Variables:
ﬁ Variable % ;‘*;eﬂesiammeisbasedmﬂwhiedmd
situps |V¢d9hl upper, middle and lower thirds of the X and Y
jumps variables distibutions. Since the median is not
< affected by “outliers”, it may provide an
improved
: picture of the relationship between the two
i Variable Y variables. You can compare this to the
it standard Product-Moment conelation plot.

[~ Complete a standard P.M. Correlation Analysis

[V Plot the Medians in the Resistant Line Analysis

¥ Save Predicted and Residual Y Values to the grid

Reset Cancel Compute Return

Fig. 6.18 Resistant Line dialog

The results obtained are (Fig. 6.19):

Group X Median Y Median Size
1 155.000 155.000 6
2 176.000 34.000 8
3 197.500 36.500 6
Half Slopes = -5.762 and 0.116
Slope = -2.788
Ratio of half slopes = -0.020

Equation: y = -2.788 * X + ( -566.361)
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Fig. 6.19 Resistant Line plot

Repeated Measures Bubble Plot

Bubble plots are useful for comparing repeated measures for multiple objects. In
our example, we have multiple schools which are being compared across years for
student achievement. The size of the bubbles that are plotted represent the ratio of
students to teachers. We are using the BubblePlot2.TEX file in the sample data
files.

Shown below is the dialog for the bubble plot procedure followed by the plot and
the descriptive data of the analysis (Figs. 6.20, 6.21):



Fig. 6.20

Directions:
1. Select the vanable containing the bubble Identification number - an integer in the range of 1 to N objects.
2 Select the variable representing the X asis integer value for the object. This is the repeated measures varisble.
3. Select the vanable representing the Y axis. This should be a floating point value,
4. Select the vanable representing the size of the bubble for each object to be ploited at the ¥ and Y locations.
Note: Each data ine represents one replication (X value] of the object to be plotted. See the example
data file labeled BubbleFlot.tex
Available Variables
> Bubble |dentification Mumber Variable
- Iwhwl Reset I
<=
== | XValue Variable
IYw
- Compute
== | Y Value Variable
= Cancel |
o> Bubble Size Variable
[Ratio
<=
—_ Retum |
MainTile:  |Achievement by Year in School
YourX Label [V Your Label [Achieverent
Ophione: -
[~ Transform Data Grid for ANOVA (Treatments by Subjects ANOVA) ‘

Dialog for the repeated measures bubble plot

P Achisvement by Veat in Sehool
2700 @
550 C

@ L
200 @
250

21.00

1950

e © oo

@
18.00 .
16,50/ .
15.00
1350
12.00!
1960 1370 1380 1330
‘ear
Smlnﬁll Print |

Fig. 6.21

Bubble plot
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MEANS FOR Y AND SIZE VARIABLES

Grand Mean for Y = 18.925
Grand Mean for Size = 23.125

REPLICATION MEAN Y VALUES (ACROSS OBJECTS)

Replication 1 Mean = 17.125
Replication 2 Mean = 18.875
Replication 3 Mean = 18.875
Replication 4 Mean = 19.250
Replication 5 Mean = 20.500

REPLICATION MEAN SIZE VALUES (ACROSS OBJECTS}

Replication 1 Mean = 25.500
Replication 2 Mean = 23.500
Replication 3 Mean = 22.750
Replication 4 Mean = 22.500
Replication 5 Mean = 21.375
MEAN Y VALUES FOR EACH BUBBLE (OBJECT)
Object 1 Mean = 22.400
Object 2 Mean = 17.200
Object 3 Mean = 19.800
Object 4 Mean = 17.200
Object 5 Mean = 22.400
Object 6 Mean = 15.800
Object 7 Mean = 20.000
Object 8 Mean = 16.600

MEAN SIZE VALUES FOR EACH BUBBLE (OBJECT)
Object 1 Mean = 19.400
Object 2 Mean = 25.200
Object 3 Mean = 23.000
Object 4 Mean = 24.600
Object 5 Mean = 19.400
Object 6 Mean = 25.800
Object 7 Mean = 23.200
Object 8 Mean = 24.400

Smooth Data by Averaging

Measurements made on multiple objects often contain “noise” or error variations
that mask the trend of data. One method for reducing this “noise” is to smooth the
data by averaging the data points. In this method, three contiguous data points are
averaged to obtain a new value for the first of the three points. The next point is
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This procedure creates a new variable with the lable "Smoothed" with data
points created from the selected variable. Each new data point is the average
of the immediately preceding value and the immediately following value. New
values are therefore created for the 2nd, 3rd,..N-1th values. The process can

be repeated k times for further smoothing.

Available Variables
LotNo

|BoltLngth

= |
Repeat Smoothing H_ Times
Reset

) Cancel
Compute

Retum

Fig. 6.22 Dialog for smoothing data by averaging

the average of three points, etc. across all points. Only the first and last data points
are left unchanged. To illustrate this procedure, we will use the file labeled “bolt-
size. TEX”. The dialog is shown followed by a comparison of the original data
with the smoothed data using the procedure to compare two distributions
(Figs. 6.22, 6.23, 6.24):

X Versus Multiple Y Plot

You may have collected multiple measurements for a group of objects and wish to
compare these measurements in a plot. This procedure lets you select a variable for
the X axis and multiple Y variables to plot as points or lines. To illustrate we have
selected a file labeled “multiplemeas. TEX” and have plotted a group of repeated
measures against the first one. The dialog is shown below followed by the plot
(Figs. 6.25, 6.26):



B e

Fig. 6.23 Smoothed data frequency distribution plot

[Come remiey ot

Fig. 6.24 Cumulative frequency of smoothed data
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|Directions:
1. Select the X variable common to all of the Y variables to be
selected.
2. Selectthe Y variables.
3. Enter label for the plot.
4. Press the OK button to obtain the plot.
I t’;‘:”'e Reeties > | XVariabe
i
VAR7 VAR
| |VARS -
VARZ2
=% | |VAR3
VaR4
l VARS
<= | |VARE
|| Title for the P [PlotTitleEdit Aese
Options: Cancal
[v Show Descriptive Statistics
[v iConnect Points with Lines 1]4

Fig. 6.25 Dialog for an X versus multiple Y plot
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X VERSUS MULTIPLE Y VALUES PLOT
CORRELATION MATRIX

Correlations

VAR2 VAR3 VAR4 VARS VARG VAR1
VAR2 1.000 0.255 0.542 0.302 0.577 0.325
VAR3 0.255 1.000 -0.048 0.454 0.650 0.763
VAR4 0.542 -0.048 1.000 0.125 -0.087 0.005
VARS 0.302 0.454 0.125 1.000 0.527 0.304
VARG 0.577 0.650 -0.087 0.527 1.000 0.690
VAR1 0.325 0.763 0.005 0.304 0.690 1.000
Means

Variables VAR2 VAR3 VAR4 VAR5 VAR6 VARIL
8.894 9.682 5.021 9.721 9.451 6.639

Standard Deviations

Variables VARZ2 VAR3 VAR4 VARS VAR6 VARIL
12.592 16.385 17.310 13.333 16.157 11.834

No. of valid cases = 30

¥ VALUES
274

223 1

072
0z

0.29

Fig. 6.26 X versus multiple Y plot
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Compare Observed to a Theoretical Distribution

Observed data may be distributed in a manner similar to a variety of theoretical
distributions. This procedure lets you plot the observed scores against various theo-
retical distributions to see if the data tends to be more similar to one than another.
We will demonstrate using a set of simulated data that we created to follow an
approximately normal distribution. We smoothed the data using the smoothing pro-
cedure and then compared the smoothed data to the normal distribution by means of
this procedure. Shown below is the dialog utilized and the resulting plot of the data
(Figs. 6.27, 6.28):

Plot Type:
DIRECTIONS: g ( 1w;mmmmmmmwmmm .
1. Select the type of thearetical distrbution desied Sl e e s e s
H 2. Click the checkbox for printer output if desired. i GRET oy 1
| N [~ Show prinitet output
X e Click the name of your varisble:
" o e i e —
o 0.467365866886889 € Binomial
& Mormal : 0.183465260793514
Std. Dev.: e
Poby: 0.0683611010449063
P
Chiese 1Fiob. 0.931638598955094 € Chisquars
-~
Shudent t St ’07 ™ Shudertt
CF OF
" Poisson " Poiston
" Beta  Beta
Compute Ext Vaisble= | 3mocthed

Fig. 6.27 Dialog for comparing observed and theoretical distributions
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Fig. 6.28 Comparison of an observed and theoretical distribution

Multiple Groups X versus Y Plot

You may have observed objects within groups such as male and female (coded 0
and 1 for example) and wish to plot the relationship between two other measures
for those groups. To demonstrate this procedure we will use the sample data file
labeled “anova2. TEX” and plot the lines for the relationship of the dependent vari-
able x and the covariate? in the file. The dialog is shown below followed by the plot
(Figs. 6.29, 6.30):



Fig. 6.29 Dialog for |"" ole G Xvsypir ® B B ‘,FL@_“
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multiple groups X versus |

Y plot | [Deectons
1 Select the X vanable
| 11 Selecthe Y vanable |
13 Select e Groupss vanable |
3 E e labed fox the plot
4 Press the DK bution b0 cblan the plot
| |
Avadable Vanables X Vasisble
| |Co
Shee P':
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¥ Varable
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|Row
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Fig. 6.30 X versus Y plot for multiple groups



Multiple Groups X versus Y Plot

X VERSUS Y FOR GROUPS PLOT

VARIABLE MEAN STANDARED DEVIATION
X 4.083 1.962
Y

3.917 1.628

59



Chapter 7
Correlation

The Product Moment Correlation

It seems most living creatures observe relationships, perhaps as a survival instinct.
We observe signs that the weather is changing and prepare ourselves for the winter
season. We observe that when seat belts are worn in cars that the number of fatalities
in car accidents decrease. We observe that students that do well in one subject tend
to perform will in other subjects. This chapter explores the linear relationship
between observed phenomena.

If we make systematic observations of several phenomena using some scales of
measurement to record our observations, we can sometimes see the relationship
between them by “plotting” the measurements for each pair of measures of the
observations. As a hypothetical example, assume you are a commercial artist and
produce sketches for advertisement campaigns. The time given to produce each
sketch varies widely depending on deadlines established by your employer. Each
sketch you produce is ranked by five marketing executives and an average ranking
produced (rank 1 =best, rank 5 =poorest.) You suspect there is a relationship between
time given (in minutes) and the average quality ranking obtained. You decide to
collect some data and observe the following:

Average rank (Y) Minutes (X)
3.8 10
2.6 35
4.0 5
1.8 42
3.0 30
2.6 32
2.8 31
3.2 26
3.6 11
2.8 33
W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_7, 61

© Springer Science+Business Media New York 2013
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A X versus Y PLOT Us_ing File: C:\Projects\Delphi\DpenSta

1o/ x|

a200  Mintes

3830 -1
34.60 -1
30.90 =
27.20 -
2350 -1
13.80 -1
16.10 -
12.40 -

8.70 -

5.00

| | I | | I | | | P
180 202 224 246 2868 H?-QE 312 334 356 378 400
an
R(<.Y) = -0.960, Slope = -18.14, Intercept = 80.27

Fig. 7.1 Correlation regression line

Using OpenStat Descriptive menu’s Plot X vs. Y procedure to plot these values
yields the scatter-plot shown above following page. Is there a relationship between
the time and ranks? (Fig. 7.1).

Testing Hypotheses for Relationships Among Variables:
Correlation

To further understand and learn to interpret the product-moment correlation,
OpenStat provides a means of simulating pairs of data, plotting those pairs, drawing
the “best-fitting line” to the data points and showing the marginal distributions of
the X and Y variables. Go to the Simulation menu and click on the Bivariate Scatter
Plot. The figure below shows a simulation for a population correlation of —.95 with
population means and variances as shown. A sample of 100 cases are generated.
Actual sample means and standard deviations will vary (as sample statistics do!)
from the population values specified (Fig. 7.2).

POPULATION PARAMETERS FOR THE SIMULATION

Mean X := 100.000, Std. Dev. X := 15.000

Mean Y := 100.000, Std. Dev. Y := 15.000
Product-Moment Correlation := -0.900

Regression line slope := -0.900, constant := 190.000
SAMPLE STATISTICS FOR 100 OBSERVATIONS FROM THE POPULATION
Mean X := 99.988, Std. Dev. X := 14.309

Mean Y := 100.357, Std. Dev. Y := 14.581
Product-Moment Correlation := -0.915

Regression line slope := -0.932, constant := 193.577
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Conelation Simulation . x|

‘¥ DISTRIBUTION 138.624 |
131.4367]
124.0477]
116.6587]
109.2697
101.8807
94,4917
87.1027
797137
723247

H ”h H I|[ I

T™

935 T T T T T T T T T T
E9.414 78002 82589 89177 95765 102352 108.940 115528 122 115 128.703 135,230 141.878

XDISTRIBUTION

conelation := -0.915

Meani:= 93988 Mean' := 100,357
SDKX:= 14309.5DY:= 14581

MeanX[ig0  Mean¥[igg  SdDevX:[j5  StdDev¥:[i5  Com[y  Se= [100 C""“‘“l

Fig. 7.2 Simulated bivariate scatterplot

Simple Linear Regression

The product-moment correlation discussed in the previous section is an index of the
linear relationship between two continuous variables. But what is the nature of that
linear relationship? That is, what is the slope of the line and where does the line
intercept the vertical (Y variable) axis? This unit will examine the straight line “fit”
to data points representing observations with two variables. We will also examine
how this straight line may be used for prediction purposes as well as describing the
relationship to the product-moment correlation coefficient.

OpenStat contains a procedure for completing a z test for data like that presented
above.

Under the Statistics menu, move your mouse down to the Comparisons sub-
menu, and then to the option entitled “One Sample Tests”. When the form below
displays, click on the Correlation button and enter the sample value .5, the popula-
tion value .6, and the sample size 50. Change the confidence level to 90.0 %.

Shown below is the z-test for the above data (Figs. 7.3, 7.4):

ANALYSIS OF A SAMPLE CORRELATION

Sample Correlation = 0.600

Population Correlation = 0.500

Sample Size = 50

z Transform of sample correlation = 0.693

z Transform of population correlation = 0.549

Standard error of transform = 0.146

z test statistic = 0.986 with probability 0.838

z value required for rejection = 1.645

Confidence Interval for sample correlation = ( 0.425, 0.732)



one sample ests
—Enter Values From:
(+" This Form. " The Data Grid.
—Single Sample Test Of———
£ S Moo Sample Statistic [6
5ol Pt Population Parameter: |'5
ample Proportion
Sample Size: [50
(+ Sample Correlation
" Sample Variance Confidence Level (%): ng
Reset | Cancel Continue
Fig. 7.3 Single sample tests form for correlations
Data Entry By: Assume:
{+ Values Entered On This Form ¢« independent Correlations
" Values in the Data Grid (" Dependent Correlations
First Correlation: I 5
Sample Size 1: 130
Second Correlation: I'B
Sample Size 2: I4EI
Percent Confidence Interval: |95 Reset Cancel Continue

Fig. 7.4 Comparison of two independent correlations
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Testing Equality of Correlations in Two Populations

COMPARISON OF TWO CORRELATIONS
Correlation one = 0.500

Sample size one = 30

Correlation two = 0.600

Sample size two = 40

Difference between correlations = -0.100
Confidence level selected = 95

z for Correlation One = 0.549

z for Correlation Two = 0.693

z difference = -0.144

Standard error of difference = 0.253
z test statistic = -0.568
Probability > |z| = 0.715

z Required for significance = 1.960
Note: above is a two-tailed test.
Confidence Limits = (-0.565, 0.338)

Differences Between Correlations in Dependent
Samples

Again, OpenStat provides the computations for the difference between dependent
correlations as shown in the figure below (Fig. 7.5):

COMPARISON OF TWO CORRELATIONS

Correlation x with y = 0.400
Correlation x with z = 0.600
Correlation y with z = 0.700
Sample size = 50

Confidence Level Selected = 95.0

Difference r(x,y) - r(x,z) = -0.200
t test statistic = -2.214
Probability > |[t] = 0.032

t value for significance = 2.012
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Comparison of Cornrelations x|

"Data Entry By: ’*TestAwmatm$

¢ Values Entered on This Form
" Walues Computed from the Data Grid

(" Independent Correlations
% Dependent Correlations

Correlation rfx.y): |47
Correlation rx.2): Isi
Correlation( rfy.z]: W
Sample Size: I

Percent Confidence Interval 2 |g5_|3 Reset | Cancel | Continue

Fig. 7.5 Comparison of correlations for dependent samples

Binary Receiver Operating Characteristics

Two or more groups, for example a control group and treatment groups, may be
compared by a variety of means such as with analysis of variance, a t-test or a non-
parametric test. It is often of interest to know that point in comparing the groups
which minimizes false positive results and maximizes true effects. This procedure
produces a graph which plots false positives against true positives for the two
groups. In our example, five groups are examined for possible presence of an abnor-
mal medical condition. A count of negative or positive observation of this condition
is recorded and analyzed. The file we have selected to demonstrate this procedure is
labeled “binaryroc. TEX” and contains five groups (cases) with counts of the normal
and positive results. The dialog for the analysis is shown below followed by the
results and plot (Figs. 7.6, 7.7):



Binary Receiver Operating Characteristics

Scale Category Variable

Negative [Normal) Count Variable

|Normd

This is the Receiver Operating Characteristic (ROC)
program for categorical data. |t was adapted from
the Fortran code authored by Charles E. Metz of the
University of Chicago who adapted it from the
RSCORE Il program written by Donald Dorfrman of
the University of lowa. Only initial estimates are
provided [no maximum liklihood iterations in this
version, )
Input consists of values in three variables:
1. A& variable containing an integer category code,
2. A vaniable containing the number of negative
cases observed in the category of variable 1.
3. A variable containing the number of positive
cases observed in the category of variable 1.

[
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Fig. 7.7 ROC plot
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CASES FOR FILE C:\Users\wgmiller\Projects\Data\BinaryROC.TEX

UNITS Category Normal Positive
CASE 1 1 30 5
CASE 2 2 19 6
CASE 3 3 8 5
CASE 4 4 2 12
CASE 5 5 1 22

Categorical ROC Analysis Results
No. of Cases = 5

No. of Categories = 5

Low category = 5, Highest category =1
Total negative count = 60

Total positive count = 50

TOTAL

CATEGORY COUNT

1 35
2 25
3 13
4 14
5 23

Observed Operating Points
NORMAL POSITIVE

0.0000 0.0000

0.0167 0.4400

0.0500 0.6800

0.1833 0.7800

0.5000 0.9000

1.0000 1.0000

INITIAL VALUES OF PARAMETERS: A = 1.3281, B = 0.6292
i= 1 z(i) = -0.0000
i= 2 Z(i) = 0.9027
i= 3 Z(i) = 1.6449
i= 4 Z(i) = 2.1280
LOGL = -143.8050

GOODNES OF FIT CHI-SQUARE = 110.0000 WITH 2 D.F. p = 0.0000
Final values of parameters: A = 1.3155 B = 0.6071

z(1l) = -0.2013
Z(2) = 1.0547
Z(3) = 1.7149
Z(4) = 2.1485

LOGL = -146.8468
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GOODNES OF FIT CHI-SQUARE = 110.0000 WITH 2 D.F. p = 0.0000
Correlation Matrix:
A 1.0000 0.6397 0.3730 0.2853 0.0742 -0.0706
B 0.6397 1.0000 0.2097 -0.0848 -0.4566 -0.6404
Z (1) 0.3730 0.2097 1.0000 0.5289 0.2423 0.1130
Z(2) 0.2853 -0.0848 0.5289 1.0000 0.6195 0.4638
Z(3) 0.0742 -0.4566 0.2423 0.6195 1.0000 0.8299
Z(4) -0.0706 -0.6404 0.1130 0.4638 0.8299 1.0000
AREA = 0.8696 Std.Dev. (AREA) = 0.0381
Estimated Binormal ROC Curve with Lower and Upper
Bounds on Asymetric 95 onfidence Interval for
True-Positive Fraction at each specified
False-Positive fraction:

FPF TPF (Lower bound, Upper bound)

0.005 0.4020 0.1878, 0.6516

0.010 0.4615 0.2504, 0.6842

0.020 0.5274 0.3277, 0.7203

0.030 0.5689 0.3795, 0.7435

0.040 0.5997 0.4190, 0.7611

0.050 0.6243 0.45009, 0.7755

0.060 0.6449 0.4777, 0.7879

0.070 0.6626 0.5008, 0.7988

0.080 0.6781 0.5210, 0.8085

0.090 0.6920 0.5389, 0.8174

0.100 0.7045 0.5550, 0.8256

0.110 0.7160 0.5695, 0.8331

0.120 0.7265 0.5828, 0.8402

0.130 0.7362 0.5950, 0.8468

0.140 0.7453 0.6063, 0.8531

0.150 0.7537 0.6167, 0.8590

0.200 0.7895 0.6597, 0.8844

0.250 0.8175 0.6923, 0.9048

0.300 0.8406 0.7184, 0.9216

0.400 0.8773 0.7590, 0.9474

0.500 0.9058 0.7907, 0.9658

0.600 0.9291 0.8178, 0.9789

0.700 0.9488 0.8427, 0.9881

0.800 0.9661 0.8676, 0.9944

0.900 0.9818 0.8962, 0.9983

0.950 0.9897 0.9156, 0.9994
ESTIMATES OF EXPECTED OPERATING POINTS ON FITTED ROC
CURVE, WITH LOWER AND UPPER BOUNDS OF ASYMMETRIC 95%
CONFIDENCE INTERVALS ALONG THE CURVE FOR THOSE POINTS:
EXPECTED OPERATING POINT LOWER BOUND UPPER BOUND
(FPF , TPF) ( FPF , TPF) ( FPF , TPF )
{0.0158, 0.5045) (0.0024, 0.3468) (0.0693, 0.6614
{0.0432, 0.6081) (0.0136, 0.4900) (0.1109, 0.7170
{0.1458, 0.7502) (0.0801, 0.6783) (0.2403, 0.8125
{0.5798, 0.9247) (0.4543, 0.8936) (0.6976, 0.9484
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Partial and Semi_Partial Correlations
Partial Correlation

OpenStat provides a procedure for obtaining partial and semi-partial correlations.
You can select the Analyses/Correlation/Partial procedure. We have used the can-
sas.tab file to demonstrate how to obtain partial and semi-partial correlations as
shown below (Fig. 7.8):

Frmpartial x|

Directions: For partial and semi-partial correlations, select the dependent
vartiable, then select the predictor variable(s), and finally the variable(s) to
be partialled. Note that simple, higher order, and multiple simple and
higher order partialling may be completed as a function of the number of
predictors and partialled variables included in the analysis.
Available Variables: Selected Dependent Variable:
situps e Ichins
jumps L=
_Seleded Predictior Variables:
weight
- waist
<=
* | * | Reset
Variables Partialed Out: Cancel
pulse

Fig. 7.8 Form for calculating partial and semi-partial correlations
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Partial and Semi-Partial Correlation Analysis
Dependent variable = chins

Predictor VarList:
Variable 1 = weight
Variable 2 = waist

Control Variables:
Variable 1 = pulse

Higher order partialling at level = 2

CORRELATION MATRIX

Correlations

chins weight waist pulse
chins 1.000 -0.390 -0.552 0.151
weight -0.390 1.000 0.870 -0.366
waist -0.552 0.870 1.000 -0.353
pulse 0.151 -0.366 -0.353 1.000

Means
Variables chins weight waist pulse
9.450 178.600 35.400 56.100

Standard Deviations

Variables chins weight waist pulse
5.286 24.691 3.202 7.210
No. of valid cases = 20

Squared Multiple Correlation with all Variables = 0.340

Standardized Regression Coefficients:
weight = 0.368
waist = -0.882
pulse -0.026

Squared Multiple Correlation with control Variables = 0.023

Standardized Regression Coefficients:
pulse = 0.151

Partial Correlation = 0.569
Semi-Partial Correlation = 0.563

F = 3.838 with probability = 0.0435, D.F.1 = 2 and D.F.2 =

71

16
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Autocorrelation

Now let us look at an example of auto-correlation. We will use a file named strikes.
tab. The file contains a column of values representing the number of strikes which
occurred each month over a 30 month period. Select the auto-correlation procedure
from the Correlations sub-menu of the Analyses main menu. Below is a representa-
tion of the form as completed to obtain auto-correlations, partial auto-correlations,
and data smoothing using both moving average smoothing and polynomial regres-
sion smoothing (Fig. 7.9):

When we click the Compute button, we first obtain a dialog form for setting the
parameters of our moving average. In that form we first enter the number of values
to include in the average from both sides of the current average value. We selected
2. Be sure and press the Enter key after entering the order value. When you do, two
theta values will appear in a list box. When you click on each of those thetas, you
will see a default value appear in a text box. This is the weight to assign the leading

Autocorrelation x|

Directions: Select a variable to analyze. You may analyze series from either a column
[default) variable or a "Case" row. You may elect to analyze all values in a column (o
row) as desired, Click the buttons for any desired smoothing options. The program will
automatically "split" the list of row values [or column values) for that variable into two
sub-sets of ¥ and Y scores with each Y score being the value which "lags" behind the
* score in the list by k lag values. All possible lags which vield a sample as large as 3
or more are computed and plotted in a "Conelogram™. You may optionally print the lag,
cornelation, means, standard deviations and confidence interval for each conrelation,
The differences between onginal and smoothed values [residuals] may be plotted. The
smoothed points replace the original values in the analysis if smoothing is elected.

The Series is coded in: Include Cases:
+ A Grid Column " A Row of the Grid: (+ Al Cases
(" Only Cases From:
Available Variables: Selected Variable:
2 WARDDDOT :
VAR3 +| | Ta |
Alpha Level IO' 05 _P‘qew.n 1ot .
[v Project |5—~ Paints.
Maximum Lag: I1 -
—Analysis / Output Options:— 7 [~ Data Smoothing.———
[v Conelogram I~ Center on Mean
[v Statistics I~ Difference Smooth
[V Print comelation mat. [V Moving &vg. Smooth
[V Print Partial autocorr. [~ E=ponentially Smooth
[~ Yule\Walker Coef.s I™ Fourier Filter Smooth
[v Residual Plot v
[~ Mult. Reg. Smooth
Reset Cancel Compute Return

Fig. 7.9 The Autocorrelation form
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Average form M
Directions: Enter the order of the moving average.
The order is the number of values on each side of
a point to be included in the average. When you
enter a value, a list of corresponding thetas will
appear in the list. Click on each theta of the list
for entry of the desired weight [default 1.0)

Enter a weight in the theta value box and press
the return key. Repeat for each theta in the list.
Click the Apply button when ready. The theta
values will be re-proportioned to sum to 1.0
accross all values. Click the OK button to
continue.

Order: I'z__
Cancel |
Theta Value: l1_

Theta(1) = 0.2 Reset
Theta(2) = 0.2 =
Theta(3) = 0.2

and trailing averages (first or second in our example.) In our example we have
accepted the default value for both thetas (simply press the Return key to accept the
default or enter a value and press the Return key.) Now press the Apply button.
When you do this, the weights for all of the values (the current mean and the 1, 2,
... order means) are recalculated. You can then press the OK button to proceed with
the process (Fig. 7.10).

The procedure then plots the original (30) data points and their moving average
smoothed values. Since we also asked for a projection of 5 points, they too are plot-
ted. The plot should look like that shown below (Fig. 7.11):

We notice that there seems to be a “wave” type of trend with a half-cycle of about
15 months. When we press the Return button on the plot of points we next get the
following (Fig. 7.12):

This plot shows the original points and the difference (residual) of the smoothed
values from the original. At this point, the procedure replaces the original points
with the smoothed values. Press the Return button and you next obtain the following
(Fig. 7.13):

This is the form for specifying our next smoothing choice, the polynomial
regression smoothing. We have elected to use a polynomial value of 2 which will
result in a model for a data point Y,_ =B * t*+C for each data point. Click the OK
button to proceed. You then obtain the following result (Fig. 7.14):
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Plot of Original and Moving Average Smoothed
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Fig. 7.11 Smoothed plot using moving average

~loix]

Plot of Original and Residuals from Moving Average

RN74 NN
R726 49
R37R 97
RN2R 47 o
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247 a4 Residuals
3634 43
3786 97
2937 41
2888 9N

518 19 20 22 24 25 26 28 30 3
|Std. En. Residuals = 372.953369739435 Print “

Fig. 7.12 Plot of residuals obtained using moving averages

Fig. 7.13 Polynomial Polynomial Reg. Smoothing x|
regression smoothing form

Directions: In polynomial regression
smoathing, the value of a point y at

a given time t is estimated by the sum
of regression weights times t raised to
apower of 1, 2, etc. up to the order
specified. Enter the order and click
the OK button.
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It appears that the use of the second order polynomial has “removed” the cyclic
trend we saw in the previously smoothed data points. Click the return key to obtain
the next output as shown below (Fig. 7.15):

* PointsFrm

Std. Enr. Residuals = 372.953369739435

Fig. 7.14 Plot of polynomial smoothed points

* PointsFrm

_833333533313333:3835?;&5_

Std. Enr. Residuals = 699.33921386254

Fig. 7.15 Plot of residuals from polynomial smoothing
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This result shows the previously smoothed data points and the residuals obtained
by subtracting the polynomial smoothed points from those previous points. Click
the Return key again to see the next output shown below:

Overall mean = 4532.604, variance = 11487.241

Lag Rxy MeanX MeanY Std.Dev.X Std.Dev.Y Cases LCL UCL
0 1.0000 4532.6037 4532.6037 109.0108 109.0108 30 1.0000 1.0000
1 0.8979 4525.1922 4537.3814 102.9611 107.6964 29 0.7948 0.9507
2 0.7964 4517.9688 4542.3472 97.0795 106.2379 28 0.6116 0.8988
3 0.6958 4510.9335 4547.5011 91.3660 104.6337 27 0.4478 0.8444
4 0.5967 4504.0864 4552.8432 85.8206 102.8825 26 0.3012 0.7877
5 0.4996 4497.4274 4558.3734 80.4432 100.9829 25 0.1700 0.7287
6 0.4050 4490.9565 4564.0917 75.2340 98.9337 24 0.0524 0.6679
7 0.3134 4484.6738 4569.9982 70.1928 96.7340 23 -0.0528 0.6053
8 0.2252 4478.5792 4576.0928 65.3196 94.3825 22 -0.1470 0.5416
9 0.1410 4472.6727 4582.3755 60.6144 91.8784 21 -0.2310 0.4770
10 0.0611 4466.9544 4588.8464 56.0772 89.2207 20 -0.3059 0.4123
11 -0.0139 4461.4242 4595.5054 51.7079 86.4087 19 -0.3723 0.3481
12 -0.0836 4456.0821 4602.3525 47.5065 83.4415 18 -0.4309 0.2852

In the output above we are shown the auto-correlations obtained between the
values at lag 0 and those at lags 1 through 12. The procedure limited the number of
lags automatically to insure a sufficient number of cases upon which to base the
correlations. You can see that the upper and lower 95 % confidence limits increases
as the number of cases decreases. Click the Return button on the output form to
continue the process.

Matrix of Lagged Variable: VAR00001 with 30 valid cases.
Variables

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4

Lag 0 1.000 0.898 0.796 0.696 0.597
Lag 1 0.898 1.000 0.898 0.796 0.696
Lag 2 0.7%96 0.898 1.000 0.898 0.796
Lag 3 0.696 0.796 0.898 1.000 0.898
Lag 4 0.597 0.696 0.796 0.898 1.000
Lag 5 0.500 0.597 0.696 0.796 0.898
Lag 6 0.405 0.500 0.597 0.696 0.796
Lag 7 0.313 0.405 0.500 0.597 0.696
Lag 8 0.225 0.313 0.405 0.500 0.597
Lag 9 0.141 0.225 0.313 0.405 0.500
Lag 10 0.061 0.141 0.225 0.313 0.405
Lag 11 -0.014 0.061 0.141 0.225 0.313
Lag 12 -0.084 -0.014 0.061 0.141 0.225
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Variables

Lag 5 Lag 6 Lag 7 Lag 8 Lag 9

Lag 0 0.500 0.405 0.313 0.225 0.141
Lag 1 0.597 0.500 0.405 0.313 0.225
Lag 2 0.696 0.597 0.500 0.405 0.313
Lag 3 0.796 0.696 0.597 0.500 0.405
Lag 4 0.898 0.796 0.696 0.597 0.500
Lag 5 1.000 0.898 0.796 0.696 0.597
Lag 6 0.898 1.000 0.898 0.796 0.696
Lag 7 0.796 0.898 1.000 0.898 0.796
Lag 8 0.696 0.796 0.898 1.000 0.898
Lag 9 0.597 0.696 0.796 0.898 1.000
Lag 10 0.500 0.597 0.696 0.796 0.898
Lag 11 0.405 0.500 0.597 0.696 0.796
Lag 12 0.313 0.405 0.500 0.597 0.696
Variables

Lag 10 Lag 11 Lag 12
Lag 0 0.061 -0.014 -0.084
Lag 1 0.141 0.061 -0.014
Lag 2 0.225 0.141 0.061
Lag 3 0.313 0.225 0.141
Lag 4 0.405 0.313 0.225
Lag 5 0.500 0.405 0.313
Lag 6 0.597 0.500 0.405
Lag 7 0.696 0.597 0.500
Lag 8 0.796 0.696 0.597
Lag 9 0.898 0.796 0.696
Lag 10 1.000 0.898 0.796
Lag 11 0.898 1.000 0.898
Lag 12 0.796 0.898 1.000

The above data presents the inter-correlations among the 12 lag variables. Click
the output form’s Return button to obtain the next output:

Partial Correlation Coefficients with 30 valid cases.
Variables Lag 0 Lag 1 Lag 2 Lag 3 Lag 4
1.000 0.898 -0.051 -0.051 -0.052

Variables Lag 5 Lag 6 Lag 7 Lag 8 Lag 9
-0.052 -0.052 -0.052 -0.052 -0.051

Variables Lag 10 Lag 11
-0.051 -0.051
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Fig. 7.16 Auto and partial autocorrelation plot

The partial auto-correlation coefficients represent the correlation between lag 0
and each remaining lag with previous lag values partialled out. For example, for lag
2 the correlation of —0.051 represents the correlation between lag 0 and lag 2 with
lag 1 effects removed. Since the original correlation was 0.796, removing the effect
of lag 1 made a considerable impact. Again click the Return button on the output
form. Next you should see the following results (Fig. 7.16):

This plot or “correlogram’ shows the auto-correlations and partial auto-correlations
obtained in the analysis. If only “noise” were present, the correlations would vary
around zero. The presence of large values is indicative of trends in the data.



Chapter 8
Comparisons

One Sample Tests

OpenStat provides the ability to perform tests of hypotheses based on a single
sample. Typically the user is interested in testing the hypothesis that

. A sample mean does not differ from a specified hypothesized mean,

. A sample proportion does not differ from a specified population proportion,

. A sample correlation does not differ from a specified population correlation, or
. A sample variance does not differ from a specified population variance.

RIS S

The One Sample Test for means, proportions, correlations and variances is started
by selecting the Comparisons option under the Statistics menu and moving the
mouse to the One Sample Tests option which you then click with the left mouse but-
ton. If you do this you will then see the specification form for your comparison as
seen below. In this form there is a button corresponding to each of the above type of
comparison. You click the one of your choice. There are also text boxes in which you
enter the sample statistics for your test and select the confidence level desired for the
test. We will illustrate each test. In the first one we will test the hypothesis that a
sample mean of 105 does not differ from a hypothesized population mean of 100.
The standard deviation is estimated to be 15 and our sample size is 20 (Fig. 8.1).

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_8, 79
© Springer Science+Business Media New York 2013
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Fig. 8.1 Single Sample Tests Dialog form

When we click the Continue button on the form we then obtain our results in an
output form as shown below:

ANALYSIS OF A SAMPLE MEAN

Sample Mean = 105.000

Population Mean = 100.000

Sample Size = 20

Standard error of Mean = 3.354

t test statistic = 1.491 with probability 0.152
t value required for rejection = 2.093
Confidence Interval = (97.979,112.021)

We notice that our sample mean is “captured” in the 95% confidence interval and
this would lead us to accept the null hypothesis that the sample is not different from
that expected by chance alone from a population with mean 100.

Now let us perform a test of a sample proportion. Assume we have an elective
high school course in Spanish I. We notice that the proportion of 30 students in the
class that are female is only 0.4 (12 students) yet the population of high school stu-
dents in composed of 50% male and 50% female. Is the proportion of females
enrolled in the class representative of a random sample from the population? To test
the hypothesis that the proportion of .4 does not differ from the population propor-
tion of .5 we click the proportion button of the form and enter our sample data as
shown below (Fig. 8.2):
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One Sample Tests @

Enter Values From:
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Reset | Cancel [ Continue |

Fig. 8.2 Single Sample Proportion test

When we click the Continue button we see the results as shown below:

ANALYSIS OF A SAMPLE PROPORTION

Two tailed test at the 0.950 confidence level

Sample Proportion = 0.9705882

Population Proportion = 0.9500000

Sample Size = 340

Standard error of sample proportion = 0.0091630

z test statistic = 2.2469 with probability > z = 0.0123
z test statistic = 2.2469 with probability < z = 0.9877
z value required for rejection = 2.4673

Confidence Interval = (0.9526290,0.9885474)

We note that the z statistic obtained for our sample has a fairly low probability of
occurring by chance when drawn from a population with a proportion of .5 so we
are led to reject the null hypothesis.

We examined the test for a hypothesis about a sample correlation being obtained
from a population with a given correlation. See the Correlation chapter (Chap. 7) to
review that test.

It occurs to a teacher that perhaps her Spanish students are from a more homoge-
neous population than that of the validation study reported in a standardized Spanish
aptitude test. If that were the case, the correlation she observed might well be atten-
uated due to the differences in variances. In her class of 30 students she observed a
sample variance of 25 while the validation study for the instrument reported a vari-
ance of 36. Let’s examine the test for the hypothesis that her sample variance does
not differ significantly from the “population” value. Again we invoke the One
Sample Test from the Univariate option of the Analyses menu and complete the
form as shown below (Fig. 8.3):


http://dx.doi.org/10.1007/978-1-4614-5740-4_7
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Fig. 8.3 Single Sample Variance test

Upon clicking the Continue button our teacher obtains the following results in
the output form:

ANALYSIS OF A SAMPLE VARIANCE

Sample Variance = 25.000

Population Variance = 36.000

Sample Size = 30

Chi-square statistic = 20.139 with probability > chisquare =
0.889 and D.F. = 29

Chi-square value required for rejection = 16.035

Chi-square Confidence Interval = (45.725,16.035)

Variance Confidence Interval = (15.856,45.215)

The chi-square statistic obtained leads our teacher to accept the hypothesis of no
difference between her sample variance and the population variance. Note that the
population variance is clearly within the 95% confidence interval for the sample
variance.

Proportion Differences

A most common research question arises when an investigator has obtained two
sample proportions. One asks whether or not the two sample proportions are really
different considering that they are based on observations drawn randomly from a
population. For example, a school nurse observes during the flu season that 13
eighth grade students are absent due to flu symptoms while only 8 of the ninth grade
students are absent. The class sizes of the two grades are 110 and 121 respectively.
The nurse decides to test the hypothesis that the two proportions (.118 and .066) do
not differ significantly using the OpenStat program. The first step is to start the
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Fig. 8.4 Test of equality of two proportions

Proportion Differences procedure by clicking on the Analyses menu, moving the
mouse to the Univariate option and the clicking on the Proportion Differences
option. The specification form for the test then appears. We will enter the required
values directly on the form and assume the samples are independent random sam-
ples from a population of eighth and ninth grade students (Fig. 8.4).

When the nurse clicks the Continue button the following results are shown in the
Output form:

COMPARISON OF TWO PROPORTIONS
Test for Difference Between Two Independent Proportions
Entered Values

Sample 1: Frequency = 13 for 110 cases.

Sample 2: Frequency = 8 for 121 cases.

Proportion 1 = 0.118, Proportion 2 = 0.066, Difference = 0.052
Standard Error of Difference = 0.038

Confidence Level selected = 95.0

z test statistic = 1.375 with probability = 0.0846

z value for confidence interval = 1.960

Confidence Interval: ( -0.022, 0.126)
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Fig. 8.5 Test of Equality of Two Proportions form

The nurse notices that the value of zero is within the 95% confidence interval as
therefore accepts the null hypothesis that the two proportions are not different than
that expected due to random sampling variability. What would the nurse conclude
had the 80.0% confidence level been chosen?

If the nurse had created a data file with the above data entered into the grid
such as:

CASE/VAR FLU GROUP
CASE 1 0 1
CASE 2 1 1
L --
CASE 110 0 1
CASE 111 0 2
CASE 231 1 2

then the option would have been to analyze data in a file.

In this case, the absence or presence of flu symptoms for the student are entered
as zero (0) or one (1) and the grade is coded as 1 or 2. If the same students, say the
eighth grade students, are observed at weeks 10 and 15 during the semester, than the
test assumptions would be changed to Dependent Proportions. In that case the form
changes again to accommodate two variables coded zero and one to reflect the
observations for each student at weeks 10 and 15 (Fig. 8.5).
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t-Tests

Among the comparison techniques the “Student” t-test is one of the most commonly
employed. One may test hypotheses regarding the difference between population
means for independent or dependent samples which meet or do not meet the assump-
tions of homogeneity of variance. To complete a t-test, select the t-test option from
the Comparisons sub-menu of the Statistics menu. You will see the form below
(Fig. 8.6):

Notice that you can enter values directly on the form or from a file read into the
data grid. If you elect to read data from the data grid by clicking the button corre-
sponding to “Values Computed from the Data Grid” you will see that the form is
modified as shown below (Fig. 8.7).

Comparison of Two Sample Means ] x|

’>Data Entry By: |~Test Assumptions:

¥ \/alues Entered on This Form ‘ ¥ Independent Scores
" Values Computed from the Data Grid " Conelated Scores

Mean 1: I— Std. Dev. 1: l— Sample Size 1: I—
Mean 2: I— Std. Dev. 2: 17 Sample Size 2: I—

Percent Confidence Interval ? I95.[|

Cancel Continue

Fig. 8.6 Comparison of Two Sample Means form
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Fig. 8.7 Comparison of two sample means

We will analyze data stored in the Hinkle247.tab file.
Once you have entered the variable name and the group code name you click the
Continue button. The following results are obtained for the above analysis:

COMPARISON OF TWO MEANS

Variable Mean Variance Std.Dev. S.E.Mean N

Group 1 49.44 107.78 10.38 3.46 9

Group 2 68.88 151.27 12.30 4.35 8

Assuming = variances, t = -3.533 with probability = 0.0030 and
15 degrees of freedom

Difference = -19.43 and Standard Error of difference = 5.50
Confidence interval = ( -31.15, -=-7.71)

Assuming unequal variances, t = -3.496 with probability = 0.0034
and 13.82 degrees of freedom

Difference = -19.43 and Standard Error of difference = 5.56
Confidence interval = ( -31.37, -=-7.49)

F test for equal variances = 1.404, Probability = 0.3209

The F test for equal variances indicates it is reasonable to assume the sampled
populations have equal variances hence we would report the results of the first test.
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Since the probability of the obtained statistic is rather small (0.003), we would
likely infer that the samples were drawn from two different populations. Note that
the confidence interval for the observed difference is reported.

One, Two or Three Way Analysis of Variance

An experiment often involves the observation of some continuous variable under
one or more controlled conditions or factors. For example, one might observe two
randomly assigned groups of subjects performance under two or more levels of
some treatment. The question posed is whether or not the means of the populations
under the various levels of treatment are equal. Of course, if there is only two levels
of treatment for one factor then we could analyze the data with the t-test described
above. In fact, we will analyze the same “Hinkle.txt” file data with the anova pro-
gram. Select the “One, Two or Three Way ANOVA” option from the Comparisons
sub-menu of the Statistics menu. You will see the form below (Fig. 8.8):

Since our first example involves one factor only we will click the VAR variable
name and click the right arrow button to place it in the Dependent Variable box. We
then click the “group” variable label and the right arrow to place it in the Factor 1
Variable box. We will assume the levels represent fixed treatment levels. We will
also elect to plot the sample means for each level using three dimension bars. When
we click the Continue button we will obtain the results shown below:

One, Two or Three Way Anova - x|
Wariables to Select: Directions: You may elect to complete a 1, 2 or 3 way ANOVA,
Dependent Variable: by selecting a dependent variable then 1 to 3 variables
representing factors of your study. If you elect post-hoc
VART comparisons, comparisons are made between factors levels for
-1-| the one factor design only at this time. Note - some post-hoc
comparisons are available only if the sample sizes are equal.
Factor 1Variable: e e ~Post-Hoc Comparisons————
Factor 1
& Fived Levels J_ e
<| foor ¢ RondomLevels | | I~ TukepHSD (=ri)
- - [~ TukeyB (=n's)
I~ Tukey-Kramer
-p| Factor2Varisble: o o | " NewmanKeus(=nis)
[ | G Firedlevet I Bonfomrori
@ L [~ Drthogonal Contrasts
~ Options:
. [V Plot Means Using 30 Bars
Factor 3 Variable: T PR T TR
"‘l ~Factor3 ] | [ PlotMeans Using 2D Lines
| (¢ Fized Levels [~ Plot Means Using 3D Lines
" Random Levels
Alpha Level for Overall Tests: |ug§ AhhacheIforPnstanTmlxlglw Reset | Cancel | Tty |

Fig. 8.8 One, two or three way ANOVA dialog
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ONE WAY ANALYSIS OF VARIANCE RESULTS

Dependent variable is: VAR1l, Independent variable is: group

SOURCE D.F SS MS F PROB.>F OMEGA SOQR.
BETWEEN 1 1599.02 1599.02 12.49 0.00 0.40
WITHIN 15 1921.10 128.07

TOTAL 16 3520.12

MEANS AND VARIABILITY OF THE DEPENDENT VARIABLE FOR LEVELS OF
THE INDEPENDENT VARIABLE

GROUP MEAN VARIANCE STD.DEV. N
1 49.44 107.78 10.38 9
2 68.88 151.27 12.30 8
TOTAL 58.59 220.01 14.83 17

Hartley Fmax test statistic = 1.40 with deg.s freedom: 2 and 8.
Cochran C statistic = 0.58 with deg.s freedom: 2 and 8.
Bartlett Chi-square = 0.20 with 1 D.F. Prob. = 0.347

In this example, we note that the F statistic (12.49) is simply the square of the
previously observed t statistic (within rounding error.) The Bartlett Chi-square test
for homogeneity of variance and the Hartley Fmax test also agree approximately
with the F statistic for equal variance in the t-test procedure.

The plot of the sample means obtained in our analysis are shown below
(Fig. 8.9):

Now let us run an example of an analysis with one fixed and one random factor.
We will use the data file named “Threeway.txt” which could also serve to demon-
strate a three way analysis of variance (with fixed or random effects.) We will
assume the row variable is fixed and the column variable is a random level. We
select the One, Two and Three Way ANOVA option from the Comparisons sub-
menu of the Statistics menu. The figure below (Fig. 8.10) shows how we specified
the variables and their types:
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Fig. 8.9 Plot of sample means from a one-way ANOVA
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Fig. 8.10 Specifications for a two-way ANOVA
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Now when we click the Continue button we obtain:

Two Way Analysis of Variance

Variable analyzed: X

Factor A (rows)

Factor B (columns) variable:

SOURCE

Among Rows
Among Columns
Interaction
Within Groups
Total

Omega squared for combined effects

variable:

D.F. SS

1 12
1 42
1 12
32 68.
35 134

Row
Col
MS
.250 12
.250 42
.250 12
000
.750

(Fixed Levels)

(Fixed Levels)

.250
.250
.250
2.
3.

125
850

F

5.765

19.882

Note: Denominator of F ratio is MSErr

Descriptive Statistics

GROUP Row
Cell
Cell
Cell
Cell
Row
Row
Col
Col
TOTAL

N EFEFNEFE NN -

Col. N

N =N

O O O

9
18
18
18
18
36

MEAN

3.000
.000
.000
.333
.500
.667
.000
.167
.083

B0 W s W o W

0.

5.765

441

VARIANCE
1.500

w W N oE N W

.500
.000
.500
.676
.529
.118
.324
.850

TESTS FOR HOMOGENEITY OF VARIANCE

Hartley Fmax test statistic
Cochran C statistic =

Bartlett Chi-square statistic

0.35 with deg.s freedom:

PROB.> F

0.022
0.000
0.022

STD.DEV.

R N T e e

.225
.225
.732
.581
.295
.351
.455
.823
.962

8 Comparisons

Omega Squared

0.074
0.293
0.074

2.00 with deg.s freedom: 4 and 8.

= 3.34 with 3 D.F.

4 and 8.
Prob. = 0.658

You will note that the denominator of the F statistic for the two main effects are
different. For the fixed effects factor (A or rows) the mean square for interaction is
used as the denominator while for the random effects factor and interaction of fixed
with random factors the mean square within cells is used.

Analysis of Variance: Treatments by Subjects Design

An Example

To perform a Treatments by Subjects analysis of variance, we will use a sample data
file labeled “ABRData.txt” which you can find as a “.tab” type of file in your sample
of data files. We open the file and select the option “Within Subjects Anova” in the
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Within Subjects ANDVA and Hoyt Reliability E stimates ] x|

Directions: The repeated measures ANDVA, requires you to select two or more
variables (columns) which represent repeated observations on the same
subjects [rows). Homogeneity of vanance and covariance are assumed and
may be tested by the program. |n addition, the ANOVA, provides the basis for
estimation of reliabilities as developed by Hoyt [intraclass reliability) with the
adjusted estimate equivalent to the Cronbach Alpha estimate. Finally, you may
elect to plot the means obtained on the repeated measures.

Available Variables: Selected Variables: :
R | Dptors
Col 'P| & I~ Reliabilty E stimates

C3
-||c

Reset | Cancel |

Compute | Retun |

Fig. 8.11 Within subjects ANOVA dialog

Comparisons sub-menu under the Statistics menu. The figure above (Fig. 8.11) is
then completed as shown:

Notice that the repeated measures are the columns labeled C1 through C4. You
will also note that this same procedure will report intraclass reliability estimates if
elected. If you now click the Compute button, you obtain the results shown below:

Treatments by Subjects (AxS) ANOVA Results.

Data File = C:\Projects\Delphi\OpenStat\ABRData.txt

SOURCE DF SS MS F Prob. > F
SUBJECTS 11 181.000 330.500
WITHIN SUBJECTS 36 1077.000 29.917
TREATMENTS 3 991.500 330.500 127.561 0.000
RESIDUAL 33 85.500 2.591
TOTAL 47 1258.000 26.766

TREATMENT (COLUMN) MEANS AND STANDARD DEVIATIONS

VARIABLE MEAN STD.DEV.
Cl 16.500 2.067
C2 11.500 2.431
C3 7.750 2.417
Cc4 4.250 2.864

Mean of all scores = 10.000 with standard deviation = 5.174



92 8 Comparisons

BOX TEST FOR HOMOGENEITY OF VARIANCE-COVARIANCE MATRIX

SAMPLE COVARIANCE MATRIX with 12 wvalid cases.

Variables
Cl C2 Cc3 c4
C1l 4.273 2.455 1.227 1.318
C2 2.455 5.909 4.773 5.591
C3 1.227 4.773 5.841 5.432
Cc4 1.318 5.591 5.432 8.205

ASSUMED POP. COVARIANCE MATRIX with 12 valid cases.

Variables
Cl C2 C3 c4
C1l 6.057 0.693 0.693 0.693
C2 0.114 5.977 0.614 0.614
C3 0.114 0.103 5.914 0.551
c4 0.114 0.103 0.093 5.863
Determinant of variance-covariance matrix = 81.7
Determinant of homogeneity matrix = 1.26E3

ChiSquare = 108.149 with 8 degrees of freedom
Probability of larger chisquare = 9.66E-7

One Between, One Repeated Design

An Example Mixed Design

We select the AxS ANOVA option in the Comparisons sub-menu of the Statistics
menu and complete the specifications on the form as show below (Fig. 8.12):
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Treatments x Subjects ANDVA [AxS) X|

Directions: Itis assumed you have one arid column variable representing the
aroup codes for the (&) between aroups effect and 2 to k column variables
representing the repeated measures. You may elect to plot means for the
repeated measures within the groups.

Awailable Variables: Groups Yariable:
Row I Row
Col -
Repated Measures: Reset I

C1

:‘ C2 Cancel I
C3

:l C4 Cornpulel

[V Plot Cell Means: Retum |

Fig. 8.12 Treatment by subjects ANOVA dialog

When the Compute button is clicked you should see these results:

ANOVA With One Between Subjects and One Within Subjects Treatments

Source df SS MS F Prob
Between 11 181.000
Groups (A) 1 10.083 10.083 0.590 0.4602
Subjects w.g. 10 170.917 17.092
Within Subjects 36 1077.000
B Treatments 3 991.500 330.500 128.627 0.0000
A X B inter. 3 8.417 2.806 1.092 0.3677
B X S w.g. 30 77.083 2.569
TOTAL 47 1258.000
Means
TRT. B 1 B 2 B 3 B 4 TOTAL
A
1 16.167 11.000 7.833 3.167 9.542

2 16.833 12.000 7.667 5.333 10.458
TOTAL 16.500 11.500 7.750 4.250 10.000
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TREATMENTS X SUBJECT REPLICATIONS ANDVA x|

TREATMENTS X SUBJECT REPLICATIONS ANOVA

2 3
‘WITHIN [B] TREATMENT GROLIP

Fig. 8.13 Plot of treatment by subjects ANOVA means

Standard Deviations

TRT. B 1 B 2 B 3 B 4 TOTAL
A
1 2.714 2.098 2.714 1.835 5.316

2 1.329 2.828 2.338 3.445 5.099
TOTAL 2.067 2.431 2.417 2.864 5.174

Notice there appears to be no significant difference between the two groups of
subjects but that within the groups, the first two treatment means appear to be
significantly larger than the last two.

Since we elected to plot the means, we would also obtain the figure shown above
(Fig. 8.13):

The graphics again demonstrate the greatest differences appear to be among the
repeated measures and not the groups (A1 and A2).

You may also have a design with two between-groups factors and repeated
measures within each cell composed of subjects randomly assigned to the factor
A and factor B level combinations. If you have such a design, you can employ the
AxBxR Anova procedure in the OpenStat package.
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Two Factor Repeated Measures Analysis

Repeated measures designs have the advantage that the error terms are typically
smaller that designs using independent groups of observations. This was true for
the Student t-test using matched or correlated scores. On the down-side, repeated
measures on the same objects pose a special problem, particularly when the
objects are human subjects. The main problem is “practice” or “learning” effects
that may be greater for one treatment level than another. These effects are com-
pletely confounded with the actual treatment effects. While random or counter-
balanced assignment of the treatments may reduce the cumulative effects to
some degree, it does not remove the effects specific to a given treatment. It is
also assumed that the covariance matrices are equal among the treatment levels.
Users of these designs with human subjects should be careful to minimize the
practice effects. This can sometimes be done by having subjects do tasks that
are similar to those in the actual experiment before beginning trials of the
experiment.

In this analysis, subjects (or objects) are observed (measured) under two differ-
ent treatment levels (Factors A and B levels) . For example, there might be two
levels of a Factor A and three levels of a Factor B for a total of 2 x 3=6 treatment
level combinations. Each subject would be observed 6 times in all. There must be
the same subjects in each of the combinations.

The data file analyzed must consist of 4 columns of information for each obser-
vation: a variable containing an integer identification code for the subject (1..N), an
integer from 1 to A for the treatment level of A, an integer from 1 to B for the treat-
ment level of the Factor B, and a floating point variable for the observation
(measurement).

A sample file (tworepeated.tex or tworepeated. TAB) was created from the
example given by Quinn McNemar in his text book “Psychological Statistics”,
fourth edition, John Wiley and Sons, Inc., 1969, page 367. The data represent an
experiment in which four subjects are observed under two levels of illumination
and three levels of Albedo (Factors A and B.) The data file therefore contains 24
observations (4 x 2 x 3.) The analysis is initiated by loading the file and clicking
on the “Two Within Subjects” option in the Analyses of Variance menu. The form
which appears is shown below. Notice that the options have been selected to plot
means of the two main effects and the interaction effects. An option has also been
clicked to obtain post-hoc comparisons among the 6 means for the treatment com-
binations. When the “Compute” button is clicked the following output is obtained
(Figs. 8.14, 8.15, 8.16, 8.17):
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Two Way Repeated Measures | .25]

Directions: This analysis assumes R subjects are repeatedly measured under two conditions (factors).
'Your data file should contain an integer variable containing a value from 1 to R for the subject, another integer
variable representing the factor & code with values from 1 to A and another integer value for the B factor with
values ranging from 1 to B. The last variable in a row should be the measurement on the individual in the AB
factors combination.
Select the variables representing subject, factor A, factor B and the measurement from the available variables
list and then select the options desired. Click the Compute button to obtain the results.
Options:
Subject Variable: v Plot Factor & Means
[Subiect ¥ Plot Factor B Means
o [ PlotAB Cell Means
Factor A Variable: v M‘”‘mﬁ °°.I___§3
Factord :
< Significance Levet. [005
Factor B Variable: (s
(" Plot Means Using 2D Horizontal Bars
[Facto " Plot Means Using 3D Horizontal Bars
<= " Plot Means Using 2D Vertical Bars
L + Plot Means Using 3D Vertical Bars
Measurement Variable: | Plot Means Using 2D Pie Chart
IW " Plot Means Using Exploded Fie Chart
" Plot Means Using 2D Lines
<= " Plot Means Using 3D Lines
Reset | Cancel | Compute | Retumn

Fig. 8.14 Dialog for the two-way repeated measures ANOVA



Factor & Means

1 2
COLUMN

Save Print | Retum

Fig. 8.15 Plot of factor A means in the two-way repeated measures analysis

Factor B Means

Factor B Means

1 2 3
COLUMN

6233
5926
56.14
5302
49.30
46.78
4366
4054
ar4z
un
319
2807
24.95
2183

1559
1247

624
312

Save Print | Retum

Fig. 8.16 Plot of factor B in the two-way repeated measures analysis
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x

Factor & x Factor B

64.50
61.27
58,05
54.83
51.60
48.38
4515
4193
3870
3548
3225
23.03
2580
2257
1935
1612
1280

968

6.45

323

0.00

SOURCE DF SS MS F Prob.>F
Factor A 1 204.167 204.167 9.853 0.052
Factor B 2 8039.083 4019.542 24.994 0.001
Subjects 3 1302.833 434.278

A x B Interaction 2 46.583 23.292 0.803 0.491
A x S Interaction 3 62.167 20.722

B x S Interaction 6 964.917 160.819

A x B x S Inter. 6 174.083 29.01

Total 23 10793.833

Group 1 Mean for cell A 1 and B 1 = 17.250

Group 2 Mean for cell A 1 and B 2 = 26.000

Group 3 Mean for cell A 1 and B 3 = 60.250

Group 4 Mean for cell A 2 and B 1 = 20.750

Group 5 Mean for cell A 2 and B 2 = 35.750

Group 6 Mean for cell A 2 and B 3 64.500
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Means for Factor A
Group 1 Mean = 34.500
Group 2 Mean = 40.333

Means for Factor B

Group 1 Mean = 19.000
Group 2 Mean 30.875
Group 3 Mean 62.375

The above results reflect possible significance for the main effects of Factors A
and B but not for the interaction. The F ratio of the Factor A is obtained by dividing
the mean square for Factor A by the mean square for interaction of subjects with
Factor A. In a similar manner, the F ratio for Factor B is the ratio of the mean square
for Factor B to the mean square of the interaction of Factor B with subjects. Finally,
the F ratio for the interaction of Factor A with Factor B uses the triple interaction of
A with B with Subjects as the denominator.

Between 5 and 6 of the post-hoc comparisons were not significant among the 15
possible comparisons among means using the 0.05 level for rejection of the hypoth-
esis of no difference.

Nested Factors Analysis of Variance Design

Shown below is an example of a nested analysis using the file ABNested.tab.. When
you select this analysis, you see the dialog below (Fig. 8.18):

Factor B Nested in Factor A

Vasables: Diections  This analysis sssumes hat levelsof A
Fack B are rested wihin bevels of Facior A

Faci & Uridess ofhervese speched. # s sssumed tha

Fact A and B aee fooed levels. I FactorB iz a

ﬁ random vanatle. ¢bck the check box to indicate
ez

-~

J The varisbles for e goup coding of Facton: A
and B thould be defired as rteger: The
Facior B (Nested in A dependent vanable should be & floing port
vanisble. The number of cases for sach B

F group should be equal and the number of B

% beatwents in sach A level thould be equal

Chck the vanable for each Iactor vanable and

. he cone:ponding anow Lo entes it m the edt
I~ BisRondom NotFoed o 1\ anatie Select the lype of plot

Degendent Vanablle Oplions:
~ Usng 2D H. tal Bare
[Oep " Plot Mears Uang 30 Horontal Bare
ﬂ " Plot Means Uing 20 Yestical Bae
 Plot Means Using 30 Yertcal Bars

" PlotMeans Using 20 Pie Chat
" PlotMeans Lsing Exploded Pie Chent
f | " PlolMeans Using 20 Lines
ezt ‘ Cancel | Cempute Retum | | " PlotMesns Using 30 Lines

Fig. 8.18 The nested ANOVA dialog
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The results are shown below:
NESTED ANOVA by Bill Miller

File Analyzed: C:\Documents and Settings\Owner\My Documents\
Projects\Clanguage\OpenStat\ABNested. tab

CELL MEANS

A LEVEL B LEVEL MEAN STD.DEV.
1 1 2.667 1.528
1 2 3.333 1.528
1 3 4.000 1.732
2 4 3.667 1.528
2 5 4.000 1.000
2 6 5.000 1.000
3 7 3.667 1.155
3 8 5.000 1.000
3 9 6.333 0.577

A MARGIN MEANS

A LEVEL MEAN STD.DEV.
1 3.333 1.500
2 4.222 1.202
3 5.000 1.414

GRAND MEAN = 4.185

ANOVA TABLE

SOURCE D.F. SS MS F PROB.

A 2 12.519 6.259 3.841 0.041

B(A) 6 16.222 2.704 1.659 0.189

w.cells 18 29.333 1.630
Total 26 58.074

Of course, if you elect to plot the means, additional graphical output is
included.

A, B and C Factors with B Nested in A

Shown below is the dialog for this ANOVA design and the results of analyzing the
file ABCNested. TAB (Fig. 8.19):
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Factor B Nested in Factor A

Vansbles: Directions: This analysis assumes that levelsof A
Factce B are nested wihin levels of Facior A

Faclo A Unless otherwise spechied. it is assumed that
Factor A and B are fived levels. If FactorB iz a

I; 1andom vanable, cick the check box to indicate
this.

<

J The varisbles for he group coding of Facton A
and B should be defined as integers  The
Faclor B [Nestedin A) dependent variable should be 2 floging point
vanable. The numbes of casesfor each B

|8 |group should be equal and the number of B

‘.| beatments in each A level shoud be equal

Click the varisble for each Iactor vanable and
. the corresponding anow to enter it n the edit
I™ BisRondom NotFord oo, jo it vanatie. Select the lypeofplot

Dependent Varzblle Options:

ID— Plot Maans Using 20 Horizontal Bars
ep

Plot Means Using 3D Horontal Bars
4.|

Plot Means Uting 2D Yertcal Bars
Reset | Cancel | Cmpw‘ Rebum |

Plot Means Using 3D Yertcal Bars
Plot Means Using 2D Pie Chat
Plot Means Using Exploded Pie Chant
Plot Means Using 20 Lines

Plot Means Using 3D Lines

TXLEL T L)

Fig. 8.19 Three factor nested ANOVA dialog

The results are:

NESTED ANOVA by Bill Miller
File Analyzed: C:\Documents and Settings\Owner\My Documents\
Projects\Clanguage\OpenStat\ABCNested.TAB

CELL MEANS

A LEVEL B LEVEL C LEVEL MEAN STD.DEV.
1 1 1 2.667 1.528
1 1 2 3.333 1.155
1 2 1 3.333 1.528
1 2 2 3.667 2.082
1 3 1 4.000 1.732
1 3 2 5.000 1.732
2 4 1 3.667 1.528
2 4 2 4.667 1.528
2 5 1 4.000 1.000
2 5 2 4.667 0.577
2 6 1 5.000 1.000
2 6 2 3.000 1.000
3 7 1 3.667 1.155
3 7 2 2.667 1.155
3 8 1 5.000 1.000
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3 8 2 6.000 1.000
3 9 1 6.667 1.155
3 9 2 6.333 0.577

A MARGIN MEANS
A LEVEL MEAN STD.DEV.

1 3.667 1.572
2 4.167 1.200
3 5.056 1.731

B MARGIN MEANS
B LEVEL MEAN STD.DEV.

1 3.000 1.265
2 3.500 1.643
3 4.500 1.643
4 4.167 1.472
5 4.333 0.816
6 4.000 1.414
7 3.167 1.169
8 5.500 1.049
9 6.500 0.837

C MARGIN MEANS
C LEVEL MEAN STD.DEV.

1 4.222 1.577
2 4.370 1.644

AB MEANS

A LEVEL B LEVEL MEAN STD.DEV.
1 1 3.000 1.265
1 2 3.500 1.643
1 3 4.500 1.643
2 4 4.167 1.472
2 5 4.333 0.816
2 6 4.000 1.414
3 7 3.167 1.169
3 8 5.500 1.049
3 9 6.500 0.837

AC MEANS

A LEVEL C LEVEL MEAN STD.DEV.
1 1 3.333 1.500
1 2 4.000 1.658
2 1 4.222 1.202
2 2 4.111 1.269
3 1 5.111 1.616
3 2 5.000 1.936

GRAND MEAN = 4.296
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ANOVA TABLE

SOURCE D.F. SS MS F PROB.
A 2 17.815 8.907 5.203 0.010
B(A) 6 42.444 7.074 4.132 0.003
C 1 0.296 0.296 0.173 0.680
AxC 2 1.815 0.907 0.530 0.593
B(A) x C ) 11.556 1.926 1.125 0.368
w.cells 36 61.630 1.712

Total 53 135.259

Latin and Greco-Latin Square Designs

We have prepared an example file for you to analyze with OpenStat. Open the file
labeled LatinSqr.TAB in your set of sample data files. We have entered four cases
for each unit in our design for instructional mode, college and home residence.
Once you have loaded the file, select the Latin squares designs option under the sub-
menu for comparisons under the Analyses menu. You should see the form below for
selecting the Plan 1 analysis (Fig. 8.20).

When you have selected Plan 1 for the analysis, click the OK button to continue.
You will then see the form below for entering the specifications for your analysis.
We have entered the variables for factors A, B and C and entered the number of
cases for each unit (Fig. 8.21):

Latin and Greco-Latin Square Analyses _5'

See B.J. Winer's "Statistical Principles in Experimental Design”, McGraw-Hil Book Company, New Yok,
1962, pages 514-577 for the analyses plans provided in this procedure.

Note: Factor codes should be formatted as integers, data values as floating point values. All cell sizes
should be equal and no missing values are allowed.

Winer "Plans'

@ Plan 1. Theee Factor (4, B, C) with no interactions.

¢ Plan2 For Factor (4, B, C, D) with partial interactions.

" Plan 3. Simiar to Plan 2 but vith different assumptions (partial confounding of interaction ABC.)
" Greco-Latin with no interactions assumed.

" Plan5 Repeated Measures Latin Square (random assignment of groups to rows.)

" Planb. Fracbonal repcation of a three-factor factonal experiment in incomplete blocks.

¢ Plan7. Plan 5 vath superimposing an oithogonal Latin square.

 Plan 9 AxByC [same square used for all levels of Factor C.)

Fig. 8.20 Latin and Greco-Latin squares dialog
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Latin Squares Analysis Specification Form : ﬂ
File Varnables:

Factor A Code Variable: |Co10¢

Factor B Code Variable: |/nstruction

No. Cases Pe Cet [¢ Reset | Concel | 0K |

Fig. 8.21 Latin squares analysis dialog

We have completed the entry of our variables and the number of cases and are
ready to continue.
When you press the OK button, the following results are presented on the output

page:

Latin Square Analysis Plan 1 Results

Source SS DF MS F Prob.>F
Factor A 92.389 2 46.194 12.535 0.000
Factor B 40.222 2 20.111 5.457 0.010
Factor C 198.722 2 99.361 26.962 0.000
Residua 133.389 2 16.694 4.530 0.020
Within 99.500 27 3.685

Total 464.222 35
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Experimental Design

Instruction 1 2 3
College
1 C2 C3 Cl
2 C3 Cl C2
3 Cl C2 C3

Instruction 1 2 3 Total
College

1 2.750 10.750 3.500 5.667

2 8.250 2.250 1.250 3.917

3 1.500 1.500 2.250 1.750

Total 4.167 4.833 2.333 3.778

Residence 1 2 3 Total

2.417 1.833 7.083 3.778

A partial test of the interaction effects can be made by the ratio of the MS for
residual to the MS within cells. In our example, it appears that our assumptions of
no interaction effects may be in error. In this case, the main effects may be con-
founded by interactions among the factors. The results may never the less suggest
differences do exist and we should complete another balanced experiment to deter-
mine the interaction effects.

Plan 2

We have included the file “LatinSqr2. TAB” as an example for analysis. Load the
file in the grid and select the Latin Square Analyses, Plan 2 design. The form
below shows the entry of the variables and the sample size for the analysis
(Fig. 8.22):
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Latin Squares Analysis Specification Form i : ﬂ

File Variables:

Factor A Code Variable: |Hosptal

14

Factor B Code Variable: |07

14

Factor C Code Variable: |C3€901

¢

Factor D Code Variable: |Block

|4

Dependent Vasiable:  [0bserved

=

No. Cases Per Cett [4 Reset [ Concel | 0K |

Fig. 8.22 Four factor Latin square design dialog

When you click the OK button, you will see the following results:

Latin Square Analysis Plan 2 Results

Source SS DF MS F Prob.>F
Factor A 148.028 2 74.014 20.084 0.000
Factor B 5.444 2 2.722 0.739 0.483
Factor C 66.694 2 33.347 9.049 0.000
Factor D 18.000 1 18.000 4.884 0.031
A x D 36.750 2 18.375 4.986 0.010
B x D 75.000 2 37.500 10.176 0.000
C x D 330.750 2 165.375 44.876 0.000
Residual 66.778 4 16.694 4.530 0.003
Within 199.000 54 3.685

Total 946.444 71
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Experimental Design for block 1

Drug 1 2 3
Hospital

1 c2 C3 Cl

2 C3 C1l C2

3 C1l cz2 C3

Drug 1 2 3
Hospital

1 C2 C3 Cl

2 C3 Cc1l C2

3 Cl Cc2 C3
BLOCK 1

Cell means and totals

Drug 1 2 3 Total
Hospital
1 2.750 10.750 3.500 5.667
2 8.250 2.250 1.250 3.917
3 1.500 1.500 2.250 1.750
Total 4.167 4.833 2.333 4.278
BLOCK 2
Cell means and totals
Drug 1 2 3 Total
Hospital
1 9.250 2.250 3.250 4.917
2 3.750 4.500 11.750 6.667
3 2.500 3.250 2.500 2.750
Total 5.167 3.333 5.833 4.278
Category 1 2 3 Total
2.917 4.958 4.958 4.278

107
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Notice that the interactions with Factor D are obtained. The residual however
indicates that some of the other interactions confounded with the main factors may
be significant and, again, we do not know the portion of the differences among the

8 Comparisons

main effects that are potentially due to interactions among A, B, and C.

Plan 3 Latin Squares Design

The file “LatinSqr3.tab” contains an example of data for the Plan 3 analysis.
Following the previous plans, we show below the specifications for the analysis and

results from analyzing this data (Fig. 8.23):

Latin Squares Analysis Specification Form

File Vanables:

No. Cases Per Cet |4

_| Dependent Vasiable:  [0bserved
<+

Reset | Cancel | 0K |

Fig. 8.23 Another Latin Square Specification form
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Latin Square Analysis Plan 3 Results

Source SS DF MS F Prob.>F
Factor A 26.963 2 13.481 3.785 0.027
Factor B 220.130 2 110.065 30.902 0.000
Factor C 213.574 2 106.787 29.982 0.000
Factor D 19.185 2 9.593 2.693 0.074
A x B 49.148 4 12.287 3.450 0.012
A x C 375.037 4 93.759 26.324 0.000
B x C 78.370 4 19.593 5.501 0.001
A x B xC 118.500 6 19.750 5.545 0.000
Within 288.500 81 3.562

Total 1389.407 107

Drug 1 2 3
Hospital

1 Cl C2 C3

2 C2 Cc3 Ccl

3 C3 C1l C2

Drug 1 2 3
Hospital

1 c2 C3 Cl

2 C3 C1 C2

3 C1 cz2 C3

Drug 1 2 3
Hospital

1 C3 C1l c2

2 Cc1 Cc2 Cc3

109
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BLOCK 1

Cell means and totals

Drug 1 2 3 Total
Hospital

1 2.750 1.250 1.500 1.833

2 3.250 4.500 2.500 3.417

3 10.250 8.250 2.250 6.917
Total 5.417 4.667 2.083 4.074
BLOCK 2

Cell means and totals

Drug 1 2 3 Total
Hospital

1 10.750 8.250 2.250 7.083

2 9.250 11.750 3.250 8.083

3 3.500 1.750 1.500 2.250
Total 7.833 7.250 2.333 4.074
BLOCK 3

Cell means and totals

Drug 1 2 3 Total
Hospital

1 3.500 2.250 1.500 2.417

2 2.250 3.750 2.500 2.833

3 2.750 1.250 1.500 1.833
Total 2.833 2.417 1.833 4.074

Hospital 1 2 3 Total
3.778 4.778 3.667 4.074
Drug 1 2 3 Total
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Category 1 2 3 Total
4.056 5.806 2.361 4.074
Block 1 2 3 Total
4.500 4.222 3.500 4.074

Here, the main effect of factor D is partially confounded with the ABC
interaction.

Analysis of Greco-Latin Squares

The specifications for the analysis are entered as (Fig. 8.24):

Latin Squares Analysis Specification Form ﬂl

Fie Variables:
Factor A Code Vasiable: |
-
Facto B Code Vasiable: |°
-
Factor C Code Variable: |47
-
Factor D Code Variable: |22k
-
DependentVariable: [0V
=
No. Cases Per Cet [4 Reset | Concel | ok |

Fig. 8.24 Latin Square Design form
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The results are obtained as:

Greco-Latin Square Analysis (No Interactions)

Source SS DF MS F Prob.>F
Factor A 64.889 2 32.444 9.733 0.001
Factor B 64.889 2 32.444 9.733 0.001
Latin Sqgr. 24.889 2 12.444 3.733 0.037
Greek Sqgr. 22.222 2 11.111 3.333 0.051
Residual - - - - -
Within 90.000 27 3.333

Total 266.889 35

B 1 2 3
A
1 Cl C2 C3
2 C2 C3 Cl
3 C3 Cl Cc2

B 1 2 3
A
1 Cl cz2 C3
2 C3 Cl C2
3 C2 C3 Cl

B 1 2 3 Total
A
1 4.000 6.000 7.000 5.667
2 6.000 12.000 8.000 8.667
3 7.000 8.000 10.000 8.333
Total 5.667 8.667 8.333 7.556
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B 1 2 3 Total
5.667 8.667 8.333 7.556
Latin 1 2 3 Total
6.667 7.333 8.667 7.556
Greek 1 2 3 Total
8.667 7.000 7.000 7.556

Notice that in the case of 3 levels that the residual degrees of freedom are O hence
no term is shown for the residual in this example. For more than 3 levels the test of
the residuals provides a partial check on the assumptions of negligible interactions.
The residual is sometimes combined with the within cell variance to provide an
over-all estimate of variation due to experimental error.

Plan 5 Latin Square Design

The specifications for the analysis of the sample file “LatinPlan5. TAB” is shown
below (Fig. 8.25):

If you examine the sample file, you will notice that the subject Identification
numbers (1,2,3,4) for the subjects in each group are the same even though the sub-
jects in each group are different from group to group. The same ID is used in each
group because they become “subscripts” for several arrays in the program. The
results for our sample data are shown below:
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Fig. 8.25 Latin Square Plan 5 Specifications form

Sums for ANOVA Analysis

Group (rows)

Variables
1 14
2 15
3 14
Total 43

Group (rows) times B

Variables
1 19
2 15
3 18
Total 52.

1

.000
.000
.000
.000

.000

.000
.000

000

times A Factor (columns)

2
19.000
18.000
21.000
58.000

(cells Factor)

18.000
18.000
14.000
50.000

3 Total
18.000 51.000
16.000 49.000
18.000 53.000

52.000 153

.000

3 Total
14.000 51.000
16.000 49.000
21.000 53.000

51.000 153

.000

sums with 36 cases.

sums with 36 cases.
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Groups (rows) times Subjects (columns) matrix with 36 cases.

Variables
1 2 3 4 Total
1 13.000 11.000 13.000 14.000 51.000
2 10.000 14.000 10.000 15.000 49.000
3 13.000 9.000 17.000 14.000 53.000
Total 36.000 34.000 40.000 43.000 153.000

Latin Squares Repeated Analysis Plan 5 (Partial Interactions)

Source SS DF MS F Prob.>F

Betw.Subj. 20.083 11
Groups 0.667 2 0.333 0.155 0.859
Subj.w.g. 19.417 9 2.157

Within Sub 36.667 24
Factor A 9.500 2 4.750 3.310 0.060
Factor B 0.167 2 0.083 0.058 0.944
Factor AB 1.167 2 0.583 0.4006 0.672
Error w. 25.833 18 1.435

Total 56.750 35

1 B3 Bl B2
2 Bl B2 B3
3 B2 B3 Bl

Group (row)

1 3.500 4.750 4.500 4.250
2 3.750 4.500 4.000 4.083
3 3.500 5.250 4.500 4.417
Total 3.583 4.833 4.333 4.250
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B (Cell) 1 2 3 Total
4.250 4.083 4.417 4.250
Group (row) 1 2 3 Total
4.250 4.083 4.417 4.250

Plan 6 Latin Squares Design

LatinPlan6.TAB is the name of a sample file which you can analyze with the Plan 6
option of the Latin squares analysis procedure. Shown below is the specification
form for the analysis of the data in that file (Fig. 8.26):

Latin Squares Analysiz Specification Form

Fig. 8.26 Latin square plan 6 specification
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The results obtained when you click the OK button are shown below:

Latin Squares Repeated Analysis Plan 6

Sums for ANOVA Analysis

Group - C (rows)

Variables
1
1 23.000 16.
2 22.000 14.
3 24.000 21.
Total 69.000 51.
Group - C (rows) times B
Variables
1
1 16.000 22.
2 22.000 14.
3 21.000 24.
Total 59.000 60.
Group - C (rows) times
cases.
Variables
1
1 16.000 14
2 12.000 13.
3 18.000 19.
Total 46.000 46.

2

000
000
000
000

22
18
21
61

times A Factor (columns)

3

.000
.000
.000
.000

(cells Factor)

Latin Squares Repeated Analysis Plan 6

sums with 36 cases.

Total
61.000
54.000
66.000

181.000

sums with 36 cases.

Betw.Subj.
Factor C
Subj.w.g.

Within Sub
Factor A
Factor B
Residual
Error w.

Total

70.

2 3 Total
000 23.000 61.000
000 18.000 54.000
000 21.000 66.000
000 62.000 181.000
Subjects (columns) matrix with 36
2 3 4 Total
.000 13.000 18.000 61.000
000 14.000 15.000 54.000
000 11.000 18.000 66.000
000 38.000 51.000 181.000
DF MS F Prob.>F
11
2 3.028 1.346 0.308
9 2.250
24
2 6.778 2.259 0.133
2 0.194 0.065 0.937
2 1.361 0.454 0.642
18 3.000
35
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Experimental Design for Latin Square

A (Col) 1 2 3
G C

1 1 B3 Bl B2
2 2 Bl B2 B3
3 3 B2 B3 Bl

A (Col) 1 2 3 Total
Group+C
1 5.750 4.000 5.500 5.083
2 5.500 3.500 4.500 4.500
3 6.000 5.250 5.250 5.500
Total 5.750 4.250 5.083 5.028

A (Col) 1 2 3 Total
4.917 5.000 5.167 5.028

B (Cell) 1 2 3 Total
5.083 4.500 5.500 5.028

Group+C 1 2 3 Total
5.083 4.500 5.500 5.028

Plan 7 for Latin Squares

Shown below is the specification for analysis of the sample data file labeled
LatinPlan7.TAB and the results of the analysis (Fig. 8.27):
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Fig. 8.27 Latin Squares Repeated Analysis Plan 7 form

Sums for ANOVA Analysis

Group (rows) times A Factor (columns)

Variables
1
1 23.000
2 22.000
3 24.000
Total 69.000

Group (rows) times B

Variables
1
1 23.000
2 18.000
3 21.000
Total 62.000

Group (rows) times C

2
16.000
14.000
21.000
51.000

2
16.000
22.000
21.000
59.000

22

18.
21.
.000 181.000

61

(cells Factor)

22.

14
24

60.

(cells Factor)

3 Total
.000 61.000
000 54.000
000 66.000

sums with 36 cases.

3 Total
000 61.000
.000 54.000
.000 66.000
000 181.000

sums with 36 cases.

sums with 36 cases.
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Variables
1 2 3 Total
1 23.000 22.000 16.000 61.000
2 14.000 22.000 18.000 54.000
3 21.000 21.000 24.000 66.000
Total 58.000 65.000 58.000 181.000

Group (rows) times Subjects (columns) sums with 36

Variables
1 2 3 4
1 16.000 14.000 13.000 18.000
2 12.000 13.000 14.000 15.000
3 18.000 19.000 11.000 18.000
Total 46.000 46.000 38.000 51.000

8 Comparisons

cases.

Total
61.000
54.000
66.000

181.000

Latin Squares Repeated Analysis Plan 7 (superimposed squares)

Source SS DF MS F
Betw.Subj. 26.306 11
Groups 6.056 2 3.028 1.3406
Subj.w.g. 20.250 9 2.250
Within Sub 70.667 24
Factor A 13.556 2 6.778 2.259
Factor B 0.389 2 0.194 0.065
Factor C 2.722 2 1.361 0.454
residual - 0 -
Error w. 54.000 18 3.000
Total 96.972 35

A (Col) 1 2 3
Group
5. BC1l1 BC23 BC32
5. BC22 BC31 BC13
5. BC33 BC12 BC21

A (Col) 1 2 3 Total
Group

1 5.750 4.000 5.500 5.083

2 5.500 3.500 4.500 4.500

3 6.000 5.250 5.250 5.500

Total 5.750 4.250 5.083 5.028

0.133
0.937
0.642
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Means for each variable

A (Col) 1 2 3 Total
5.750 4.250 5.083 5.028
B (Cell) 1 2 3 Total
5.167 4.917 5.000 5.028
C (Cell) 1 2 3 Total
4.833 5.417 4.833 5.028
Group 1 2 3 Total
5.083 4.500 5.500 5.028
Plan 9 Latin Squares

The sample data set labeled “LatinPlan9.TAB” is used for the following analysis.
The specification form shown below has the variables entered for the analysis.
When you click the OK button, the results obtained are as shown following the form
(Fig. 8.28).
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Ud

Analysiz Specification Form

Fig. 8.28 Latin Squares Repeated Analysis Plan 9 form

Sums for ANOVA Analysis

ABC matrix

C level 1

1
2
3

C level 2

\S)

.000
.000
.000

.000
.000
.000

SO w N

14.
24.
11.

.000
.000
.000

000
000
000

o W O w

18.
20.
10.

.000
.000
.000

000
000
000

8 Comparisons
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C level 3
1
1 17.000
2 14.000
3 15.000
AB sums with 18 cases.
Variables
1
1 48.000
2 39.000
3 33.000
Total 120.000

AC sums with 18 cases.

Variables
1
2
3
Total
BC sums with 18
Variables
1
2
3
Total
RC sums with 18
Variables
1
2
3
Total

25.
18.
39.
82.

1
000
000
000
000

cases.

29.
26.
27.
82.

1
000
000
000
000

cases.

16.
37.
29.
82.

1
000
000
000
000

12.000
13.000
12.000

29.
46.
37.
112.

50.
63.
29.
142

45.
49.
48.
142.

42.
52.
48.
142.

20.000
9.000
17.000

000
000
000
000

000
000
000

.000

000
000
000
000

2
000
000
000
000

Group totals with 18 valid cases.

Variables 1
16.000
Variables 6
48.000

2

37.000

7

36.000

3
29.000

8
47.000

Subjects sums with 18 valid cases.

47
32
42
121

49
36
44
129

46
37
46
129

36
47
46
129

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

42.000

46.000

123

Total

124
117
112
353

.000
.000
.000
.000

Total

124
117
112
353

.000
.000
.000
.000

Total

120
112
121
353

.000
.000
.000
.000

Total

94.
136.
123.
353.

52

000
000
000
000

5
.000

Total

353

.000
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Variables

Variables

Variables

Variables

21.

28.

25.

.000

000

11
000

16
000

16.

19.

28.

.000

000

12
000

17
000

14.

21.

10.

18.

000

000

13
000

18
000

Latin Squares Repeated Analysis Plan 9

4

28.000

22.000

14
19.000

Total
0.000

8 Comparisons

15.

30.

23.

5
000

10
000

15
000

Betw.Subj.
Factor C
Rows
C x row
Subj.w.qg.

Within Sub
Factor A
Factor B
Factor AC
Factor BC
AB prime
ABC prime
Error w.

w

[

w N WDy N

.352
.685
.713
.944

.019
.352
.630
.130
.574
.269
.222

5.058
2.347
0.157

.626
.420
.368
.661
.109
.704

O O O O O O

.034
.151
.955

.546
.664
.000
.627
.351
.599
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Latin Squares Repeated Analysis Plan 9
Means for ANOVA Analysis

ABC matrix

C level 1
1 2 3
1 6.500 1.500 4.500
2 3.000 4.500 1.500
3 5.000 7.000 7.500
C level 2
1 2 3
1 9.000 7.000 9.000
2 9.500 12.000 10.000
3 4.000 5.500 5.000
C level 3
1 2 3
1 8.500 6.000 10.000
2 7.000 6.500 4.500
3 7.500 6.000 8.500
AB Means with 54 cases.
Variables
1 2 3 4
1 8.000 4.833 7.833 6.889
2 6.500 7.667 5.333 6.500
3 5.500 6.167 7.000 6.222
Total 6.667 6.222 6.722 6.537
AC Means with 54 cases.
Variables
1 2 3 4
1 4.167 8.333 8.167 6.889
2 3.000 10.500 6.000 6.500
3 6.500 4.833 7.333 6.222
Total 4.556 7.889 7.167 6.537
BC Means with 54 cases.
Variables
1 2 3 4
1 4.833 7.500 7.667 6.667
2 4.333 8.167 6.167 6.222
3 4.500 8.000 7.667 6.722
Total 4.556 7.889 7.167 6.537

RC Means with 54 cases.
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Variables

1
2
3
Total

Sy N

1

.667
.167
.833

4.556

~ 0 O J

.000
.667
.000
.889

Group Means with 54 wvalid cases.

Variables

Variables

2.

8.

667

6
000

Subjects Means with

Variables

Variables

Variables

Variables

10.

14.

12.

.500

500

11
000

16
500

6.167

5
6.000

54 valid cases.

4.500

8.000

12
9.500

17
4.000

10.

.833

.833

.000

500

13

.000

18

.000

< 3 J o

14.

11.

9.

8 Comparisons

.000
.833
.667
.167

.000

.667

000

000

14
500

Total

6.

2 or 3 Way Fixed ANOVA with 1 Case Per Cell

537

.222
.556
.833
.537

o Oy 1 U

8.667

Total
6.537

7.500

10
15.000

15
11.500

There may be an occasion where you have collected data with a single observation
within two or three factor combinations. In this case one cannot obtain an estimate
of the variance within a single cell of the two or three factor design and thus an
estimate of the mean squared error term typically used in a 2 or 3 way ANOVA. The
estimate of error must be made using all cell values. To demonstrate, the following

data are analyzed:

CASES FOR FILE C:\Users\wgmiller\Projects\Data\OneCase2Way.TEX

CASE
CASE
CASE
CASE
CASE
CASE

g w N e o

6

Row

NN R

2

Col

N PR W N

3

g w w N

Dep

.000
.000
.000
.000
.000
9.

000

The dialog for this procedure and the resulting output are shown below (Figs. 8.29,

8.30, 8.31, 8.32):
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Fig. 8.29 Dialog for 2 or 3 way ANOVA with one case per cell

Fuma

Fig. 8.30 One case ANOVA plot for factor 1
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1
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Fig. 8.31 Factor 2 plot for one case ANOVA
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Col Contien
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Fig. 8.32 Interaction plot of two factors for one case ANOVA



Two Within Subjects ANOVA

Two Way Analysis of Variance
Variable analyzed: Dep

Factor A (rows) variable: Row
Factor B (columns) variable: Col

SOURCE D.F. SS MS
Among Rows 1 20.167 20.167
Among Columns 2 16.333 8.167
Residual 2 4.333 2.167

NonAdditivity 1 4.252 4.252

Balance 1 0.082 0.082
Total 5 40.833 8.167

Omega squared for combined effects =

Descriptive Statistics

GROUP Row Col.
Cell
Cell
Cell
Cell
Cell
Cell
Row
Row
Col
Col
Col
TOTAL

WNENMNENMNNDNDRER PR

W N wN
AN NDNWWRRERRRFERFPZ
W o WD wOwU WwwNRE

Two Within Subjects ANOVA

F PROB.> F

9.308 0.093
3.769 0.210

52.083 0.088

0.698

MEAN
.000
.000
.000
.000
.000
.000
.000
.667
.000
.500
.000
.833

VARIANCE

o

[
O DN OB OO O oo

.000
.000
.000
.000
.000
.000
.000
.333
.000
.500
.000
.167

129

Omega Squared

0.419
0.279

STD.DEV.

N NN WHE OO OO oo

.000
.000
.000
.000
.000
.000
.000
.055
.414
.121
.243
.858

You may have observed the same subjects under two “treatment” factors. As an
example, you might have observed subject responses on a visual acuity test before
and after consuming an alcoholic beverage. In this case we do not have a “between
subjects” analysis but rather a “repeated measures” analysis under two conditions.
As an example, we will analyze data from a file labeled “”. The data, the dialog and
the results are shown below (Figs. 8.33, 8.34, 8.35, 8.36):
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Fig. 8.33 Dialog for two within subjects ANOVA
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Fig. 8.34 Factor one plot for two within subjects ANOVA
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Fig. 8.36 Two way interaction for two within subjects ANOVA
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SOURCE DF SS MS F Prob.>F
Factor A 1 204.167 204.167 9.853 0.052
Factor B 2 8039.083 4019.542 24.994 0.001
Subjects 3 1302.833 434.278

A x B Interaction 2 46.583 23.292 0.803 0.491
A x S Interaction 3 62.167 20.722

B x S Interaction 6 964.917 160.819

A x B x S Inter. 6 174.083 29.01

Total 23 10793.833

Group 1 Mean for cell A 1 and B 1 = 17.250

Group 2 Mean for cell A 1 and B 2 = 26.000

Group 3 Mean for cell A 1 and B 3 = 60.250

Group 4 Mean for cell A 2 and B 1 = 20.750

Group 5 Mean for cell A 2 and B 2 = 35.750

Group 6 Mean for cell A 2 and B 3 = 64.500

Means for Factor A
Group 1 Mean = 34.500
Group 2 Mean = 40.333

Means for Factor B

Group 1 Mean 19.000
Group 2 Mean = 30.875
Group 3 Mean 62.375

Analysis of Variance Using Multiple Regression Methods

An Example of an Analysis of Covariance

We will demonstrate the analysis of covariance procedure using multiple regression
by loading the file labeled “Ancova2.tab”. In this file we have a treatment group
code for four groups, a dependent variable (X) and two covariates (Y and Z.) The
procedure is started by selection the “Analysis of Covariance by Regression” option
in the Comparisons sub-menu under the Statistics menu. Shown below is the com-
pleted specification form for our analysis (Fig. 8.37):



Analysis of Variance Using Multiple Regression Methods 133

Analysis of Covariance Using Regression Methods

Available Variables: Dependent Yariable: This procedure analyzes fied effect factors with up &
- to three-way interactions and one or more
IY covariates. Mulliple regression methods are used

(See "Multiple Regression in Behavioral Reseaich”
by Elazar J. Pedhazur, Harcourt Brace College

; Publishers, 1997, Chapter 16, pages 675-713
Fixed Factors: 4 test is performed for the assumption of

¢

ﬂ Group homogeneous regression slopes in addition to the
AMCOVA, Adjusted means are reported in addition
to the unadjusted means. Comparisons are made
:I among the adjusted means. Mote, the F tests for ;]
r—Highest Mumber of Interactions:
& Twows Reset
" Thiee-way
Covariates:
:l . ~Output Options: —I
v Descriptive Statistics
:I [~ Correlation Matrices Compute |
™ Inverse of Matrices
[~ Plot Factor Means Retumn |

Fig. 8.37 Analysis of covariance dialog

When we click the Compute button, the following results are obtained:
ANALYSIS OF COVARIANCE USING MULTIPLE REGRESSION
File Analyzed: C:\Projects\Delphi\OpenStat\Ancova2.txt
Model for Testing Assumption of Zero Interactions with Covariates

MEANS with 40 valid cases.

Variables X Z Al A2 A3
7.125 14.675 0.000 0.000 0.000
Variables XxAl XxA2 XxA3 ZxA1 7ZxA2
0.125 0.025 0.075 -0.400 -0.125
Variables ZxA3 Y

-0.200 17.550
VARIANCES with 40 valid cases.

Variables X Z Al A2 A3
4.163 13.866 0.513 0.513 0.513
Variables XxAl XxA2 XxA3 ZxAl ZxA2

28.010 27.102 27.712 116.759 125.035

Variables 7ZxA3 Y
124.113 8.254

STD. DEV.S with 40 valid cases.
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Variables X Z
2.040 3.724
Variables XxAl XxXA2
5.292 5.206
Variables ZxA3 Y
11.141 2.873
R R2 F
0.842 0.709 6.188

Adjusted R Squared = 0.594

Std. Error of Estimate = 1.830

Variable Beta B

X 0.599 0.

7 0.123 0.

Al -0.518 -2.

A2 0.151 0.

A3 0.301 1.

XxAl -1.159 -0.
XxA2 0.714 0.
XxA3 0.374 0.
ZxAl 1.278 0.
ZxA2 -0.803 -0.
7ZxA3 -0.353 -0.

Constant = 10.300

Analysis of Variance for the Model to

843
095
077
606
209
629
394
204
340
206
091

SOURCE Deg.F. SS
Explained 11 228.08
Error 28 93.82
Total 39 321.90

Model for Analysis of Covariance

MEANS with 40 valid cases.

Variables X Z
7.125 14.675

Variables Y
17.550

Al
0.716

XxA3
5.2064

8 Comparisons

A2
0.716

ZxA1
10.806

Prob.>F DF1
0.000 11

Std.Error t

.239
.138
.381
.513
.190
.523
.423
.334
.283
.284
.187

O O O O oo NN OO

MS
20.73
3.35

Al
0.000

3.531
.686
-0.872
0.241
0.552
-1.203
0.932
0.611
1.200
-0.727
-0.486

o

F
6.188

A2
0.000

A3
0.716

ZxA2
11.182

DF2
28

Prob.>t

0.
.498
.391
.811
.585
.239
.359
.546
.240
.473
.631

O O O O OO oo oo

001

Test Regression Homogeneity

Prob>F
0.0000

A3
0.000
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VARIANCES with 40 valid cases.
Variables X Z Al A2 A3
4.163 13.866 0.513 0.513 0.513
Variables Y
8.254
STD. DEV.S with 40 wvalid cases.
Variables X Z Al A2 A3
2.040 3.724 0.716 0.716 0.716
Variables Y
2.873
R R2 F Prob.>F DF1 DF2
0.830 0.689 15.087 0.000 5 34
Adjusted R Squared = 0.644
Std. Error of Estimate = 1.715
Variable Beta B Std.Error t Prob.>t
X 0.677 0.954 0.184 5.172 0.000
Z 0.063 0.048 0.102 0.475 0.638
Al -0.491 -1.970 0.487 -4.044 0.000
A2 0.114 0.458 0.472 0.972 0.338
A3 0.369 1.482 0.470 3.153 0.003
Constant = 10.046
Test for Homogeneity of Group Regression Coefficients
Change in R2 = 0.0192. F = 0.308 Prob.> F = 0.9275 with d.f.
6 and 28
Analysis of Variance for the ANCOVA Model
SOURCE Deg.F. SS MS F Prob>F
Explained 5 221.89 44.38 15.087 0.0000
Error 34 100.01 2.94
Total 39 321.90

Intercepts for Each Group Regression Equation for Variable: Group

Intercepts with 40 valid cases.

Variables Group 1 Group 2 Group 3 Group 4
8.076 10.505 11.528 10.076

Adjusted Group Means for Group Variables Group

Means with 40 valid cases.
Variables Group 1 Group 2 Group 3 Group 4
15.580 18.008 19.032 17.579
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Multiple Comparisons Among Group Means

Comparison of Group 1 with Group 2

F = 9.549, probability = 0.004 with degrees of freedom 1 and 34
Comparison of Group 1 with Group 3

F = 19.849, probability = 0.000 with degrees of freedom 1 and 34
Comparison of Group 1 with Group 4

F = 1.546, probability = 0.222 with degrees of freedom 1 and 34
Comparison of Group 2 with Group 3

F = 1.770, probability = 0.192 with degrees of freedom 1 and 34
Comparison of Group 2 with Group 4

F = 3.455, probability = 0.072 with degrees of freedom 1 and 34
Comparison of Group 3 with Group 4

F = 9.973, probability = 0.003 with degrees of freedom 1 and 34

Test for Each Source of Variance

SOURCE Deg.F. SS MS F Prob>F
A 3 60.98 20.33 6.911 0.0009
Covariates 2 160.91 80.45 27.352 0.0000
Error 34 100.01 2.94
Total 39 321.90

The results reported above begin with a regression model that includes group
coding for the four groups (A1, A2 and A3) and again note that the fourth group is
automatically identified by members NOT being in one of the first three groups.
This model also contains the covariates X and Z as well as the cross-products of
group membership and covariates. By comparing this model with the second model
created (one which leaves out the cross-products of groups and covariates) we can
assess the degree to which the assumptions of homogeneity of covariance among
the groups is met. In this particular example, the change in the R2 from the full
model to the restricted model was quite small (0.0192) and we conclude that the
assumption of homogeneity of covariance is reasonable. The analysis of variance
model for the restricted model indicates that the X covariate is probably contribut-
ing significantly to the explained variance of the dependent variable Y. The tests for
each source of variance at the end of the report confirms that not only are the covari-
ates related to Y but that the group effects are also significant. The comparisons of
the group means following adjustment for the covariate effects indicate that group 1
differs from groups 2 and 3 and that group 3 appears to differ from group 4.

Sums of Squares by Regression

The General Linear Model (GLM) procedure is an analysis procedure that encom-
passes a variety of analyses. It may incorporate multiple linear regression as
well as canonical correlation analysis as methods for analyzing the user’s data.
In some commerecial statistics packages the GLM method also incorporates non-linear
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(Partial) General Linear Model (vector coding and multiple regression)
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Fig. 8.38 Sum of squares by regression

analyses, maximum-likelihood procedures and a variety of tests not found in the
OPENSTAT version of this model. The version in OpenStat is currently limited to a
single dependent variable (continuous measure.) You should complete analyses
with multiple dependent variables with the Canonical Correlation procedure.

One can complete a variety of analyses of variance with the GLM procedure
including multiple factor ANOVA and repeated and mixed model ANOVAs.

The output of the GLM can be somewhat voluminous in that the effects of treat-
ment variables and covariates are analyzed individually by comparing regression
models with and without those variables. Several examples are explored below.

When you elect the Sum of Squares by Regression procedure from either the
Regression options or the Multivariate options of the Analyses menu, you will see
the form shown below. In our first example we will select a data file for completion
of a repeated measures analysis of variance that involves two between-groups fac-
tors and one within groups factor (the SSRegs2.TAB file.) The data file contains
codes for Factor A treatment levels, Factor B treatment levels, the replications fac-
tor (Factor C levels), and a code for each subject. In our analysis we will define the
two-way and the one three-way interactions that we wish to include in our model.
We should then be able to compare our results with the Repeated Measures ANOVA
procedure applied to the same data in the file labeled ABRData. TAB (and hopefully
see the same results!) (Fig. 8.38).
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SUMS OF SQUARES AND MEAN SQUARES BY REGRESSION

TYPE III SS - R2 = Full Model - Restricted Model

VARIABLE SUM OF SQUARES D.F.
Rowl 10.083 1
Coll 8.333 1
Repl 150.000 1
Rep2 312.500 1
Rep3 529.000 1
C1R1 80.083 1
RIR1 0.167 1
R2R1 2.000 1
R3R1 6.250 1
R1C1 4.167 1
R2C1 0.889 1
R3C1 7.111 1
ERROR 147.417 35
TOTAL 1258.000 47
TOTAL EFFECTS SUMMARY
SOURCE Ss D.F MS
Row 10.083 1 10.083
Col 8.333 1 8.333
Rep 991.500 3 330.500
Row*Col 80.083 1 80.083
Row*Rep 8.417 3 2.806
Col*Rep 12.167 3 4.056
SOURCE Ss D.F MS
BETWEEN SUBJECTS 181.000 11
Row 10.083 1 10.083
Col 8.333 1 8.333
Row*Col 80.083 1 80.083
ERROR BETWEEN 82.500 8 10.312
WITHIN SUBJECTS 1077.000 36
Rep 991.500 3 330.500
Row*Rep 8.417 3 2.806
Col*Rep 12.167 3 4.056
ERROR WITHIN 64.917 27 2.404
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(Partial) General Linear Medel (vector coding and multiple regression)

This zocedurs genesates cading vesicrs for keatment groups. rtesections smongbectrent A | DUPUNOptons:

ooLs and repestod mssswersents codes. [ U Lecliert pouts ae popotiong o sgus i [~ Generate Vators (N 1
rize. Fe othogonal codrg wil c1ovde sppiceriae adh 91 ol valance of Covaiance et | I Dewcriotive Sldtisios
wqual of pnmrd:lwhm:domwﬂ pou o analeze the gineraled codng veckont - w H kerEach §
with the " Eleck Eriy"” nutpie regrornon pracodee. |nthes laker cate, veekys vy bo goncraled | | uhipls Regrececn Dulput P
Varistles Deperdert Yarisohe Star Sefrion o 3 veracion E"’;‘“ﬂ‘:\’wv‘b“
e “M " Effect

'ke

Beo Vi
eween roanent Vanablcs Reset |
How
Lol
[ Endinlwacton Dafntcr
Lol - Cancel

e+ ¢

Irtacactere
RawCal
Wirhin Trasrent Vaiabie
»| CalSico oo I
RowCuShos
=

[
Swect Coces

Coraisles
:I Co1

Cov2
-

Fig. 8.39 Example 2 of sum of squares by regression

You can compare the results above with an analysis completed with the Repeated
Measures procedure.

As a second example, we will complete and analysis of covariance on data that
contains three treatment factors and two covariates. The file analyzed is labeled
ANCOVA3.TAB. Shown above is the dialog for the analysis (Fig. 8.39) followed
by the output. You can compare this output with the output obtained by analyzing
the same data file with the Analysis of Covariance procedure.

SUMS OF SQUARES AND MEAN SQUARES BY REGRESSION

TYPE III SS - R2 = Full Model - Restricted Model

VARIABLE SUM OF SQUARES D.F.
Covl 1.275 1
Cov2 0.783 1
Rowl 25.982 1
Coll 71.953 1
Slicel 13.323 1
Slice2 0.334 1
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Row*Col
Row*Slice
Col*Slice

Row*Col*Slice

BETWEEN SUBJECTS

Covariates

Row

Col

Slice

Row*Col

Row*Slice

Col*Slice

Row*Col*Slice
ERROR BETWEEN
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The General Linear Model

We have seen in the above discussion that the multiple regression method may be
used to complete an analysis of variance for a single dependent variable. The model
for multiple regression is:

v, =zk:Bij+el,

Jj=1

where the jth B value is a coefficient multiplied times the jth independent predictor
score, Y is the observed dependent score and e is the error (difference between the
observed and the value predicted for Y using the sum of weighted independent scores.

In some research it is desirable to determine the relationship between multiple
dependent variables and multiple independent variables. Of course, one could com-
plete a multiple regression analysis for each dependent variable but this would
ignore the possible relationships among the dependent variables themselves. For
example, a teacher might be interested in the relationship between the sub-scores on
a standardized achievement test (independent variables) and the final examination
results for several different courses (dependent variables.) Each of the final exami-
nation scores could be predicted by the sub-scores in separate analyses but most
likely the interest is in knowing how well the sub-scores account for the combined
variance of the achievement scores. By assigning weights to each of the dependent
variables as well as the independent variables in such a way that the composite
dependent score is maximally related to the composite independent score we can
quantify the relationship between the two composite scores. We note that the squared
product-moment correlation coefficient reflects the proportion of variance of a
dependent variable predicted by the independent variable.

We can express the model for the general linear model as:

YM =BX+E

where Y is an n (the number of subjects) by m (the number of dependent variables)
matrix of dependent variable values, M is a m by s (number of coefficient sets), X
is a n by k (the number of independent variables) matrix, B is a k by s matrix of
coefficients and E is a vector of errors for the n subjects.

Using OpenStat to Obtain Canonical Correlations

You can use the OpenStat package to obtain canonical correlations for a wide vari-
ety of applications. In production of bread, for example, a number of “dependent”
quality variables may exist such as the average size of air bubbles in a slice, the
density of a slice, the thickness of the crust, etc. Similarly, there are a number of
“independent” variables which may be related to the dependent variables with
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Fig. 8.40 Canonical Correlation Analysis form

examples being minutes of baking, temperature of baking, humidity in the oven,
barometric pressure, time and temperature during rising of the dough, etc. The rela-
tionship between these two sets of variables might identify the “key” variables to
control for maximizing the quality of the product.

To demonstrate use of OpenStat to obtain canonical correlations we will use the
file labeled “cansas.txt” as an example. We will click on the Canonical Correlation
option under the Correlation sub-menu of the Statistics menu. In the Figure above
we show the form which appears and the data entered to initiate the analysis
(Fig. 8.40):

We obtain the results as shown below:

CANONICAL CORRELATION ANALYSIS

Right Inverse x Right-Left Matrix with 20 valid cases.

Variables
weight waist pulse
chins -0.102 -0.226 0.001
situps -0.552 -0.788 0.365
Jjumps 0.193 0.448 -0.210

Left Inverse x Left-Right Matrix with 20 valid cases.

Variables
chins situps Jjumps
weight 0.368 0.287 -0.259
waist -0.882 -0.890 0.015

pulse -0.026 0.016 -0.055
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Canonical Function with 20 valid cases.

Variables
Var. 1 Var. 2 Var. 3
Var. 1 0.162 0.172 0.023
Var. 2 0.482 0.549 0.111
Var. 3 -0.318 -0.346 -0.032

Trace of the matrix:= 0.6785
Percent of trace extracted: 100.0000

Canonical R Root % Trace Chi-Sqgr D.F. Prob.
2 0.795608 0.633 93.295 16.255 9 0.062
3 0.200556 0.040 5.928 0.718 4 0.949
4 0.072570 0.005 0.776 0.082 1 0.775

Overall Tests of Significance:

Statistic Approx. Stat. Value D.F. Prob.>Value
Wilk’s Lambda Chi-Squared 17.3037 9 0.0442
Hotelling-Lawley Trace F-Test 2.4938 9 38 0.0238
Pillai Trace F-Test 1.5587 9 48 0.1551
Roys Largest Root F-Test 10.9233 3 19 0.0002

Eigenvectors with 20 valid cases.

Variables
Var. 1 Var. 2 Var. 3
Var. 1 0.210 -0.066 0.051
Var. 2 0.635 0.022 -0.049
Var. 3 -0.431 0.188 0.017

Standardized Right Side Weights with 20 valid cases.

Variables
Var. 1 Var. 2 Var. 3
weight 0.775 -1.884 0.191
waist -1.579 1.181 -0.506
pulse 0.059 -0.231 -1.051

Standardized Left Side Weights with 20 valid cases.

Variables
Var. 1 Var. 2 Var. 3
chins 0.349 -0.376 1.297
situps 1.054 0.123 -1.237
Jjumps -0.716 1.0062 0.419

Standardized Right Side Weights with 20 valid cases.
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Variables
weight
waist
pulse
Raw Right
Variables
weight

waist
pulse

Var.

0.775
-1.579

0.059

Side Weights with 20 valid cases.

Var.

0.031
-0.493

0.008

1 Var.
-1.884
1.181
-0.231

1 Var.
-0.076
0.369
-0.032

2

2

Var. 3
0.191
-0.506
-1.051

Var. 3
0.008
-0.158
-0.146

Raw Left Side Weights with 20 valid cases.

Variables
chins
situps
jumps
Right Side
Variables
weight
waist
pulse
Left Side
Variables
chins

situps
jumps

Redundancy Analysis for Right Side Variables

[\

Var. 1
0.066
0.017

-0.014

Var. 2
-0.071
0.002
0.021

Var. 3
0.245
-0.020
0.008

8 Comparisons

Correlations with Function with 20 valid cases.

Var. 1
-0.621
-0.925

0.333

Var. 2
-0.772
-0.378

0.041

Var. 3
0.135
0.031

-0.942

Correlations with Function with 20 valid cases.

Var. 1
0.728
0.818
0.162

Var. 2
0.237
0.573
0.959

Variance Prop.

0.45080
0.24698
0.30222

Var. 3
0.644
-0.054
0.234

Redundancy

0.28535
0.00993
0.00159
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Redundancy Analysis for Left Side Variables

Variance Prop. Redundancy
1 0.40814 0.25835
2 0.43449 0.01748
3 0.15737 0.00083

Binary Logistic Regression

145

When this analysis is selected from the menu, the form below is used to select the

dependent and independent variables (Fig. 8.41):

Logistic Regression

Fig. 8.41 Logistic Regression form
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Output for the example analysis specified above is shown below:
Logistic Regression Adapted from John C. Pezzullo

Java program at http://members.aol.com/johnp71/logistic.html

Descriptive Statistics
6 cases have Y=0; 4 cases have Y=1.

Variable Label Average Std.Dev.
1 Varl 5.5000 2.8723
2 Var2 5.5000 2.8723

Iteration History

-2 Log Likelihood = 13.4602 (Null Model)
-2 Log Likelihood = 8.7491
-2 Log Likelihood = 8.3557
-2 Log Likelihood = 8.3302
-2 Log Likelihood = 8.3300
-2 Log Likelihood = 8.3300

Converged

Overall Model Fit.. Chi Square = 5.1302 with df = 2 and prob. = 0.0769

Coefficients and Standard Errors..

Variable Label Coeff. StdErr P
1 Varl 0.3498 0.6737 0.6036
2 Var2 0.3628 0.6801 0.5937
Intercept -4.6669

Odds Ratios and 95% Confidence Intervals..

Variable O.R. Low -- High

Varl 1.4187 0.3788 5.3135

var2 1.4373 0.3790 5.4506
X X Y Prob
1.0000 2.0000 0 0.0268
2.0000 1.0000 0 0.0265
3.0000 5.0000 0 0.1414
4.0000 3.0000 0 0.1016
5.0000 4.0000 1 0.1874
6.0000 7.0000 0 0.4929
7.0000 8.0000 1 0.6646
8.0000 6.0000 0 0.5764
9.0000 10.0000 1 0.8918
10.0000 9.0000 1 0.8905
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Cox Proportional Hazards Survival Regression

The specification form for this analysis is shown below with variables entered for a
sample file (Fig. 8.42):

Cox Proportional Hazards Survival Regre

’_ VART
I_

Fig. 8.42 Cox Proportional Hazards Survival Regression form
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Results for the above sample are as follows:
Cox Proportional Hazards Survival Regression Adapted from John
C. Pezzullo’s Java program at http://members.aol.com/johnp71/
prophaz.html

Descriptive Statistics

Variable Label Average Std.Dev.
1 VAR1 51.1818 10.9778

Iteration History..

-2 Log Likelihood = 11.4076 (Null Model)

-2 Log Likelihood = 6.2582

-2 Log Likelihood = 4.5390

-2 Log Likelihood = 4.1093

-2 Log Likelihood = 4.0524

-2 Log Likelihood = 4.0505

-2 Log Likelihood = 4.0505

Converged

Overall Model Fit..

Chi Square = 7.3570 with d.f. 1 and probability = 0.0067

Coefficients, Std Errs, Signif, and Confidence Intervals

Var Coeff. StdErr o) Lo95% Hi95%
VAR1 0.3770 0.2542 0.1379 -0.1211 0.8752

Risk Ratios and Confidence Intervals

Variable Risk Ratio Lo95% Hi95%
VAR1 1.4580 0.8859 2.3993

Baseline Survivor Function (at predictor means)..

2.0000 0.9979
7.0000 0.9820
9.0000 0.9525
10.0000 0.8310

Weighted Least-Squares Regression

Shown below is the dialog box for the Weighted Least Squares Analysis and an
analysis of the cansas.tab data file (Figs. 8.43, 8.44, 8.45).
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Weighted Least Squares Regression
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Fig. 8.45 Plot of weighted least squares regression

OLS REGRESSION RESULTS

Means

Variables weight waist pulse chins situps Jjumps
178.600 35.400 56.100 9.450 145.550 70.300

Standard Deviations
Variables weight waist pulse chins situps Jjumps
24.691 3.202 7.210 5.286 62.567 51.277

No. of valid cases = 20

CORRELATION MATRIX

VARIABLE

weight waist pulse chins situps Jjumps
weight 1.000 0.870 -0.366 -0.390 -0.493 -0.226
waist 0.870 1.000 -0.353 -0.552 -0.646 -0.191
pulse -0.366 -0.353 1.000 0.151 0.225 0.035
chins -0.390 -0.552 0.151 1.000 0.696 0.496
situps -0.493 -0.646 0.225 0.696 1.000 0.669
jumps -0.226 -0.191 0.035 0.496 0.669 1.000

Dependent variable: jumps
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Variable Beta B Std.Err. t Prob.>t VIF TOL
weight -0.588 -1.221 0.704 -1.734 0.105 4.424 0.226
waist 0.982 15.718 6.246  2.517 0.025 5.857 0.171
pulse -0.064 -0.453 1.236 -0.366 0.720 1.164 0.859
chins 0.201 1.947 2.243 0.868 0.400 2.059 0.486
situps 0.888 0.728 0.205 3.546 0.003 2.413 0.414
Intercept 0.000 -366.967 183.214 -2.003 0.065

SOURCE DF SS MS F Prob.>F
Regression 5 31793.741 6358.748 4.901 0.0084
Residual 14 18164.459 1297.461

Total 19 49958.200

R2 = 0.6364, F = 4.90, D.F. =5 14, Prob>F = 0.0084
Adjusted R2 = 0.5066

Standard Error of Estimate = 36.02

REGRESSTION OF SQUARED RESIDUALS ON INDEPENDENT VARIABLES
Means

Variables weight waist pulse chins situps ResidSqgr

178.600 35.400 56.100 9.450 145.550 908.19¢6

Standard Deviations

Variables weight waist pulse chins situps ResidSqgr
24.691 3.202 7.210 5.286 62.567 2086.828

No. of valid cases = 20

CORRELATION MATRIX

VARIABLE

weight waist pulse chins situps ResidSqr
weight 1.000 0.870 -0.366 -0.390 -0.493 -0.297
waist 0.870 1.000 -0.353 -0.552 -0.646 -0.211
pulse -0.366 -0.353 1.000 0.151 0.225 -0.049
chins -0.390 -0.552 0.151 1.000 0.696 0.441
situps -0.493 -0.646 0.225 0.696 1.000 0.478
ResidSqgr -0.297 -0.211 -0.049 0.441 0.478 1.000
Dependent variable: ResidSqr
Variable Beta B Std.Err. t Prob.>t VIF TOL
weight -0.768 -64.916 36.077 -1.799 0.094 4.424 0.226
waist 0.887 578.259 320.075 1.807 0.092 5.857 0.171
pulse -0.175 -50.564 63.367 -0.798 0.438 1.164 0.859
chins 0.316 124.826 114.955 1.086 0.296 2.059 0.486
situps 0.491 16.375 10.515 1.557 0.142 2.413 0.414
Intercept 0.000 -8694.402 9389.303 -0.926 0.370
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SOURCE DF SS MS F Prob.>F
Regression 5 35036253.363 7007250.673 2.056 0.1323
Residual 14 47705927.542 3407566.253

Total 19 82742180.905

R2 = 0.4234, F = 2.06, D.F. =5 14, Prob>F = 0.1323

Adjusted R2 = 0.2175

Standard Error of Estimate = 1845.96

X versus Y Plot

X = ResidSqr, Y = weight from file: C:\Documents and Settings\
Owner\My Documents\Projects\Clanguage\OpenStat\cansaswls.TAB

Variable Mean Variance Std.Dev.

ResidSqr 908.20 4354851.63 2086.83

weight 178.60 609.62 24.69

Correlation = -0.2973, Slope = -0.00, Intercept = 181.79
Standard Error of Estimate = 23.57

Number of good cases = 20

WLS REGRESSION RESULTS

Means

Variables weight waist pulse chins situps Jjumps
-0.000 0.000 -0.000 0.000 =-0.000 0.000

Standard Deviations

Variables weight waist pulse chins situps Jjumps
7.774 1.685 2.816 0.157 3.729 1.525
No. of valid cases = 20

CORRELATION MATRIX

VARIABLE

weight waist pulse chins situps Jjumps
weight 1.000 0.994 0.936 0.442 0.742 0.697
waist 0.994 1.000 0.965 0.446 0.783 0.729
pulse 0.936 0.965 1.000 0.468 0.889 0.769
chins 0.442 0.446 0.468 1.000 0.395 0.119
situps 0.742 0.783 0.889 0.395 1.000 0.797
jumps 0.697 0.729 0.769 0.119 0.797 1.000
Dependent variable: jumps
Variable Beta B Std.Err. t Prob.>t VIF TOL
weight -2.281 -0.448 0.414 -1.082 0.298 253.984 0.004
waist 3.772 3.415 2.736 1.248 0.232 521.557 0.002
pulse -1.409 -0.763 0.737 -1.035 0.318 105.841 0.009
chins -0.246 -2.389 1.498 -1.594 0.133 1.363 0.734
situps 0.887 0.363 0.165 2.202 0.045 9.258 0.108
Intercept 0.000 -0.000 0.197 -0.000 1.000
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SOURCE DF SS MS F Prob.>F
Regression 5 33.376 6.675 8.624 0.0007
Residual 14 10.837 0.774

Total 19 44,212

R2 = 0.7549, F = 8.62, D.F. = 5 14, Prob>F = 0.0007
Adjusted R2 = 0.6674

Standard Error of Estimate = 0.88

2-Stage Least-Squares Regression

In the following example, the cansas. TAB file is analyzed. The dependent variable
is the height of individual jumps. The explanatory (predictor) variables are pulse
rate, no. of chinups and no. of situps the individual completes. These explanatory
variables are thought to be related to the instrumental variables of weight and waist
size. In the dialog box for the analysis, the option has been selected to show the
regression for each of the explanatory variables that produces the predicted vari-
ables to be used in the final analysis. Results are shown below (Fig. 8.46):

Two Stage Least Squares Regression

Select the dependent varieble and click the amow o place
tinthe Dependent Vanable bex

Select the prediciors (nchuding the ones dependant on the
nstrumental varizbles) and enter them in the Expiangtory
st

Copy the predictors dependent on e instrumental variabies
10 the Insirumentsl Vanables Bt Add the instrumental
vanizbles to this same kst

Select the opiion, i desired, and click the Compute Button

Note: The number of vanables in the Instrumental kst
shoud be equal to or grealer than the E iplanatosy kst.

Instrumental V aiables:
> pise ~Opkons
ching W Show Regression Results for Each Procy Vanable
stups V5 edicled and residuals of 2nd Stage lo Gad
o]z = -

Re:d|£aml|[lom.te| Reun|

Fig. 8.46 Two Stage Least Squares Regression form
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FILE: C:\Documents and Settings\Owner\My Documents\Projects\
Clanguage\OpenStat\cansas.TAB
Dependent = jumps

Explanatory Variables:

pulse

chins

situps

Instrumental Variables:

pulse

chins

situps

weight

waist

Proxy Variables:

P pulse

P chins

P situps

Analysis for P pulse

Dependent: pulse
Independent:
chins

situps

weight

waist

Means
Variables chins situps weight waist pulse

9.450 145.550 178.600 35.400 56.100

Standard Deviations

Variables chins situps weight waist pulse
5.286 62.567 24.691 3.202 7.210
No. of valid cases = 20

CORRELATION MATRIX

VARIABLE

chins situps weight waist pulse
chins 1.000 0.696 -0.390 -0.552 0.151
situps 0.696 1.000 -0.493 -0.646 0.225
weight -0.390 -0.493 1.000 0.870 -0.366
waist -0.552 -0.646 0.870 1.000 -0.353
pulse 0.151 0.225 -0.366 -0.353 1.000

Dependent variable: pulse
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Variable Beta B Std.Err. t Prob.>t
chins -0.062 -0.084 0.468 -0.179 0.860
situps 0.059 0.007 0.043 0.158 0.876
weight -0.235 -0.069 0.146 -0.471 0.644
waist -0.144 -0.325 1.301 -0.249 0.806
Intercept 0.000 79.673 32.257 2.470 0.026
SOURCE DF SS MS F
Regression 4 139.176 34.794 0.615
Residual 15 848.624 56.575
Total 19 987.800
R2 = 0.1409, F = 0.62, D.F. = 4 15, Prob>F =
Adjusted R2 = -0.0882
Standard Error of Estimate = 7.52
Analysis for P_chins
Dependent: chins
Independent:
pulse
situps
weight
waist
Means
Variables pulse situps weight waist
56.100 145.550 178.600 35.400
Standard Deviations
Variables pulse situps weight waist
7.210 62.567 24.691 3.202
No. of valid cases = 20
CORRELATION MATRIX
VARIABLE
pulse situps weight waist
pulse 1.000 0.225 -0.366 -0.353
situps 0.225 1.000 -0.493 -0.646
weight -0.366 -0.493 1.000 0.870
waist -0.353 -0.646 0.870 1.000
chins 0.151 0.696 -0.390 -0.552

Dependent variable: chins

VIF
.055
.409
.360
.832

g NN
o O O O

Prob.>F
0.6584

0.6584

chins
9.450

chins
5.286

chins
0.151
0.696
-0.390
-0.552
1.000

155

TOL

.487
.415
.229
.171
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Variable Beta B Std.Err. t Prob.>t
pulse -0.035 -0.026 0.142 -0.179 0.860
situps 0.557 0.047 0.020 2.323 0.035
weight 0.208 0.045 0.080 0.556 0.586
waist -0.386 -0.638 0.700 =-0.911 0.377
Intercept 0.000 18.641 20.533 0.908 0.378
SOURCE DF SS MS F
Regression 4 273.089 68.272 3.971
Residual 15 257.861 17.191
Total 19 530.950
R2 = 0.5143, F = 3.97, D.F. = 4 15, Prob>F =
Adjusted R2 = 0.38438
Standard Error of Estimate = 4.15
Analysis for P_situps
Dependent: situps
Independent:
pulse
chins
weight
waist
Means
Variables pulse chins weight waist
56.100 9.450 178.600 35.400
Standard Deviations
Variables pulse chins weight waist
7.210 5.286 24.691 3.202
No. of valid cases = 20
CORRELATION MATRIX
VARIABLE
pulse chins weight waist
pulse 1.000 0.151 -0.366 -0.353
chins 0.151 1.000 -0.390 -0.552
weight -0.366 -0.390 1.000 0.870
waist -0.353 -0.552 0.870 1.000
situps 0.225 0.696 -0.493 -0.646
Dependent variable: situps
Variable Beta B Std.Err. t Prob.>t
pulse 0.028 0.246 1.555 0.158 0.876
chins 0.475 5.624 2.421 2.323 0.035
weight 0.112 0.284 0.883 0.322 0.752
waist -0.471 -9.200 7.492 -1.228 0.238
Intercept 0.000 353.506 211.726 1.670 0.116

8 Comparisons

(S I NS

Prob.>F

VIF

.162
.775
.335
.549

0.0216

0.0216

[ I N

situps

o O O O

TOL

.861
.564
.231
.180

145.550

situps
62.567

situps

0.225
696
-0.493
646
1.000

0.

-0.

VIF
.162
.514
.394
.322

o O O O

TOL

.861
.660
.228
.188



2-Stage Least-Squares Regression

SOURCE DF SS MS F Prob.>F
Regression 4 43556.048 10889.012 5.299 0.0073
Residual 15 30820.902 2054.727

Total 19 74376.950

R2 = 0.5856, F = 5.30, D.F. = 4 15, Prob>F = 0.0073
Adjusted R2 = 0.4751

Standard Error of Estimate = 45.33

Second Stage (Final) Results

Means
Variables P pulse P _chins P situps Jjumps
56.100 9.450 145.550 70.300

Standard Deviations
Variables P pulse P chins P situps Jjumps
2.706 3.791 47.879 51.277

No. of valid cases = 20

CORRELATION MATRIX

VARIABLE

P pulse P chins P situps Jjumps
P pulse 1.000 0.671 0.699 0.239
P chins 0.671 1.000 0.847 0.555
P situps 0.699 0.847 1.000 0.394
jumps 0.239 0.555 0.394 1.000
Dependent variable: jumps
Variable Beta B Std.Err. t Prob.>t VIF
P pulse -0.200 -3.794 5.460 -0.695 0.497 2.041
P chins 0.841 11.381 5.249 2.168 0.046 3.701
P situps -0.179 -0.192 0.431 -0.445 0.662 3.979
Intercept 0.000 203.516 277.262 0.734 0.474
SOURCE DF SS MS F Prob.>F
Regression 3 17431.811 5810.604 2.858 0.0698
Residual 16 32526.389 2032.899
Total 19 49958.200
R2 = 0.3489, F = 2.86, D.F. = 3 16, Prob>F = 0.0698

Adjusted R2 = 0.2269
Standard Error of Estimate = 45.09

157

TOL

.490
.270
.251
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Non-linear Regression

As an example, I have created a “parabola” function data set labeled parabola. TAB.
To generate this file I used the equation y=a+b * x+c * x * x. I leta=0, b=5 and
c¢=2 for the parameters and used a sequence of x values for the independent vari-
ables in the data file that was generated. To test the non-linear fit program, I initiated
the procedure and entered the values shown below (Fig. 8.47):

You can see that y is the dependent variable and x is the independent variable.
Values of 1 have been entered for the initial estimates of a, b and c. The equation
model was selected by clicking the parabola model from the drop-down models
box. I could have entered the same equation by clicking on the equation box and
typing the equation into that box or clicking parameters, math functions and vari-
ables from the drop-down boxes on the right side of the form. Notice that I selected
to plot the x versus y values and also the predicted versus observed y values. I also
chose to save the predicted scores and residuals (y - predicted y.) The results are as
follows (Fig. 8.48):

The printed output shown below gives the model selected followed by the indi-
vidual data points observed, their predicted scores, the residual, the standard error
of estimate of the predicted score and the 95% confidence interval of the predicted
score. These are followed by the obtained correlation coefficient and its square, root
mean square of the y scores, the parameter estimates with their confidence limits
and t probability for testing the significance of difference from zero (Fig. 8.49).

| Equation Processor
FILE MANE C\Documas and S etings'0 aner\My Docume-t:\Praect:\Clanguage \DperStad\Pasaocla 0S¢

[p=3 ¢b <l 4 o3l “x1 ;parsboa »|  |avalatle Furctions =
FILE VAFLASLES: [Opeaters ~
ittt (DegerdertVarable)  Std Znt of Y feptiondl)
I’ I0 Paryvetess =
<+| [wRay |='ﬁF.MS |£snvns |src.r_|=a | PACE. Varatle: ~
1 «l 3= 1 Oplione:
&1 - | ™ Show Each lleraon
224 [~ PirtE achterabon Resuts

v Pty vers.s Pradicted Y

P " o

e g

b 5

xis 2= Corfderce tenat % |

m. A

Ender Equatcr heve s your cvn: Mods o be dnabeed L. | ot ‘
}.l;-!»b‘dac'ﬂ‘xl i;-a sbhielac™sl'xl
Canputz Reun

RkS= I No. of kesstios= ! 4|

Fig. 8.47 Non-linear Regression Specifications form
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K VERSUS OBSERVED Y

167
107
047
013
073
1.3
193
253
313

1908 0944 0486 028 QMg a0ie 0473 063 0% 1116
x1

Fig. 8.48 Scores predicted by non-linear regression versus observed scores

o Y_ MEAN Y
7.69 —
6.48 .
528 -
4.08 -
288 -
167 = MEAN Y
0.47 -
073 .
194 —
314 B | T T T | T 1 | | ]
313 193 073 047 167 288 408 528 648 763 888
R(Y.Y) = 1.000, Slope = 1.00, Intercept = 0.00

Fig. 8.49 Correlation plot between scores predicted by non-linear regression and observed
scores



160

y=a+b*xl +c* xl * x1

X y yc y-yc
0.39800 2.31000 2.30863 0.00137
-1.19700 -3.13000 =-3.12160 -0.00840
-0.48600 -1.95000 -1.95878 0.00878
-1.90800 -2.26000 -2.26113 0.00113
-0.84100 -2.79000 -2.79228 0.00228
-0.30100 -1.32000 -1.32450 0.00450
0.69600 4.44000 4.45208 -0.01208
1.11600 8.08000 8.07654 0.00346
0.47900 2.86000 2.85607 0.00393
1.09900 7.92000 7.91612 0.00388
-0.94400 -2.94000 -2.93971 -0.00029
-0.21800 -0.99000 -0.99541 0.00541
0.81000 5.37000 5.36605 0.00395
-0.06200 -0.31000 =-0.30228 -0.00772
0.67200 4.26000 4.26629 -0.00629
-0.01900 -0.10000 -0.09410 -0.00590
0.00100 0.01000 0.00525 0.00475
0.01600 0.08000 0.08081 -0.00081
1.19900 8.88000 8.87635 0.00365
0.98000 6.82000 6.82561 -0.00561
Corr. Coeff. = 1.00000 R2 =
RMS Error = 5.99831, d.f. = 17
Parameter Estimates ..
pl= 0.00024 +/- 0.00182 p=
p2= 5.00349 +/- 0.00171 p=
p3= 2.00120 +/- 0.00170 p=

8 Comparisons

SEest YcLo
0.00161 2.30582
0.00251 -3.12597
0.00195 -1.96218
0.00522 -2.27020
0.00206 -2.79586
0.00192 -1.32784
0.00168 4.44917
0.00264 8.07195
0.00159 2.85330
0.00258 7.91164
0.00214 -2.94343
0.00190 -0.99872
0.00183 5.36288
0.00185 -0.30549
0.00165 4.26342
0.00183 -0.09728
0.00182 0.00209
0.00181 0.07766
0.00295 8.87122
0.00221 6.82177

1.00000

SSg = 611.65460

0.89626
0.00000
0.00000

Covariance Matrix Terms and Error-Correlations..

1=

2,2)=

W W wwww

3,3)=

(1
(1,2)=B(2,1)=
(1 3)=B(3,1)=
(

(

(

2,3)=B(3,2)=

X versus Y Plot

|
O O O O O O

.00000;
.00000;
.00000;
.00000;
.00000;
.00000;

r= 1
r= -0
r= -0
r= 1
r= 0
r= 1

.00000
.28318
.67166
.00000
.32845
.00000

YcHi

.31143
.11723
.95538
.25205
.78871
.32115

4.45500

.08112
.85884
.92061
.93600
.99211
.36923
.29907
.26917
.09093
.00841
.08396
.88148
.82945
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X =Y, Y = Y’ from file: C:\Documents and Settings\Owner\My
Documents\Projects\Clanguage\OpenStat\Parabola.TAB

Variable Mean Variance Std.Dev.

Y 1.76 16.29 4.04

Y’ 1.76 16.29 4.04

Correlation = 1.0000, Slope = 1.00, Intercept = 0.00
Standard Error of Estimate = 0.01

Number of good cases = 20

You can see that the fit is quite good between the observed and predicted scores.
Once you have obtained the results you will notice that the parameters, their stan-
dard errors and the t probabilities are also entered in the dialog form. Had you
elected to proceed in a step-fashion, these results would be updated at each step so
you can observe the convergence to the best fit (the root mean square shown in the
lower left corner.) (Fig. 8.50).

I+ Equation Processor
FILE N&ME | = *Docamerts 3nd Settings\Dwner\My Docuerts'Prcjects\Canguage\C penStatd ' Parzbela 05«

jy=a +b sl 221741 passhels x| [Avaloble Furetens =
. Doaraticns -
FLEVARGLES. = DeperdentVaisble] St Ext cfY foptoral) ! E
|v |J Paszrnetars -
4-’ VAR (c7) |r-‘.~.am Issims [srnznn_ |n=ms I [Vasable: ~|
1 ¥l an 000024 000132 0.8%2% Dprion::
xl=
bs 5039 | 0071 | 000000 | I ShowEschlerdion
24 ™ Pant Each llerstion Fesulls
A ce 00170 | 00000 | 7 PheXsdgandY
- = [V PEtY yeeas PrecicedY
o d 00000 | IO | 100 || o ey Somms
51 es 00000 100030 100000 | [ SaveResidusiScyes
= fu 0000 | 10000 | 1oy | || UseAbeckde Devstors
7 g= 00000 100D | 1000 corfcence btemal: |
B h= 00000 10030 10000
Erncer Equaton here 'or your cvn Model o be Anabzed Cercel I Reset |
ge [prasbiloctal®n =3 ebixlectxl *xl

Auss [PSIEZIRG iy o patcree 12

Fig. 8.50 Completed non-linear regression parameter estimates of regression coefficients



Chapter 9
Multivariate

Discriminant Function / MANOVA
An Example

We will use the file labeled ManoDiscrim.txt for our example. A file of the same
name (or a .tab file) should be in your directory. Load the file and then click on the
Statistics / Multivariate / Discriminant Function option. You should see the form
below completed for a discriminant function analysis (Fig. 9.1):

You will notice we have asked for all options and have specified that classification
use the a priori (sample) sizes for classification. When you click the Compute button,
the following results are obtained (Fig. 9.2):

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_9, 163
© Springer Science+Business Media New York 2013
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Discnminant Function and Multivanate Analysis of Yanance

:J
v C
ﬂ.
v Pl
v Cle
v
Vv (
v [
;z
P Cer
;'J:..

Fig. 9.1 Specifications for a discriminant function analysis

ES IN THE DISCRIMINANT SPACE

Fig. 9.2 Plot of cases in the discriminant space
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MULTIVARIATE ANOVA / DISCRIMINANT FUNCTION

Reference: Multiple Regression in Behavioral Research
Elazar J. Pedhazur, 1997, Chapters 20-21

Harcourt Brace College Publishers

Total Cases := 15, Number of Groups := 3

SUM OF CROSS-PRODUCTS forGroup 1, N = 5 with 5 valid cases.

Variables
Y1l Y2
Y1 111.000 194.000
Y2 194.000 343.000

WITHIN GROUP SUM OF DEVIATION CROSS-PROD with 5 valid cases.

Variables
Y1l Y2
Y1 5.200 5.400
Y2 5.400 6.800
MEANS FOR GROUP 1, N := 5 with 5 valid cases.
Variables Y1 Y2
4.600 8.200

VARIANCES FOR GROUP 1 with 5 valid cases.

Variables Y1 Y2
1.300 1.700

STANDARD DEVIATIONS FOR GROUP 1 with 5 valid cases.

Variables Y1 Y2
1.140 1.304

SUM OF CROSS-PRODUCTS forGroup 2, N = 5 with 5 valid cases.

Variables
Y1l Y2
Y1 129.000 169.000
Y2 169.000 223.000

WITHIN GROUP SUM OF DEVIATION CROSS-PROD with 5 valid cases.
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Variables
Y1l Y2
Y1 4.000 4.000
Y2 4.000 5.200
MEANS FOR GROUP 2, N := 5 with 5 valid cases.
Variables Y1 Y2
5.000 6.600

VARIANCES FOR GROUP 2 with 5 valid cases.

Variables Y1 Y2
1.000 1.300

STANDARD DEVIATIONS FOR GROUP 2 with 5 valid cases.

Variables Y1 Y2
1.000 1.140

SUM OF CROSS-PRODUCTS forGroup 3, N = 5 with 5 valid cases.

Variables
Y1 Y2
Y1 195.000 196.000
Y2 196.000 199.000

WITHIN GROUP SUM OF DEVIATION CROSS-PROD with 5 valid cases.

Variables

Y1 Y2

Y1 2.800 3.800

Y2 3.800 6.800
MEANS FOR GROUP 3, N := 5 with 5 valid cases.
Variables Y1 Y2

6.200 6.200

VARIANCES FOR GROUP 3 with 5 valid cases.

Variables Y1 Y2
0.700 1.700

STANDARD DEVIATIONS FOR GROUP 3 with 5 valid cases.
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Variables Y1 Y2
0.837 1.304

TOTAL SUM OF CROSS-PRODUCTS with 15 valid cases.

Variables
Y1l Y2
Y1 435.000 559.000
Y2 559.000 765.000

TOTAL SUM OF DEVIATION CROSS-PRODUCTS with 15 valid cases.

Variables
Y1 Y2
Y1 18.933 6.000
Y2 6.000 30.000

MEANS with 15 valid cases.

Variables Y1 Y2
5.267 7.000

VARIANCES with 15 valid cases.

Variables Y1 Y2
1.352 2.143

STANDARD DEVIATIONS with 15 valid cases.

Variables Y1 Y2
1.163 1.464

BETWEEN GROUPS SUM OF DEV. CPs with 15 valid cases.

Variables
Y1 Y2
Y1 6.933 -7.200
Y2 -7.200 11.200

UNIVARIATE ANOVA FOR VARIABLE Y1

SOURCE DF SS MS F PROB > F
BETWEEN 2 6.933 3.467 3.467 0.065
ERROR 12 12.000 1.000

TOTAL 14 18.933
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UNIVARIATE ANOVA FOR VARIABLE Y2

SOURCE DF SS MS F PROB > F
BETWEEN 2 11.200 5.600 3.574 0.061
ERROR 12 18.800 1.567

TOTAL 14 30.000

Inv. of Pooled Within Dev. CPs Matrix with 15 valid cases.

Variables
Y1 Y2
Y1 0.366 -0.257
Y2 -0.257 0.234
Number of roots extracted := 2
Percent of trace extracted := 100.0000

Roots of the W inverse time B Matrix

No. Root Proportion Canonical R Chi-Squared D.F. Prob.
1 8.7985 0.9935 0.9476 25.7156 4 0.000
2 0.0571 0.0065 0.2325 0.6111 1 0.434

Eigenvectors of the W inverse x B Matrix with 15 valid cases.

Variables
1 2
Y1 -2.316 0.188
Y2 1.853 0.148

Pooled Within-Groups Covariance Matrix with 15 valid cases.

Variables
Y1 Y2
Y1 1.000 1.100
Y2 1.100 1.567

Total Covariance Matrix with 15 valid cases.

Variables
Y1 Y2
Y1 1.352 0.429
Y2 0.429 2.143

Raw Function Coeff.s from Pooled Cov. with 15 valid cases.

Variables
1 2
Y1 -2.030 0.520
Y2 1.624 0.409

Raw Discriminant Function Constants with 15 valid cases.
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Variables 1 2
-0.674 -5.601

Fisher Discriminant Functions

Group 1 Constant := -24.402
Variable Coefficient

1 -5.084

2 8.804
Group 2 Constant := -14.196
Variable Coefficient

1 1.607

2 3.084
Group 3 Constant := -19.759
Variable Coefficient

1 8.112

2 -1.738

CLASSIFICATION OF CASES

SUBJECT
ID NO.
1

10

11

12

13

14

15

ACTUAL
GROUP

1

HIGH
IN

1

PROBABILITY
GROUP P (G/D)
0.

9999

.9554

.8903

.9996

.9989

.9746

.9341

.9730

.5724

.9842

.9452

.9999

.9893

.9980

.8007

SEC.D
GROUP
2

HIGH
P (G/D)

0

.0001

.0446

L1097

.0004

L0011

.0252

.0657

.0259

L4276

.0099

.0548

.0001

.0107

.0020

.1993

169

DISCRIM
SCORE

4.
-1.

2.
-0.
.1652
.2699
.7890
.6786
.3826
.6075
.6760
.4763
.9478
.0676
.5414
.1387
.4888
.3815
0.
.7902
-2.
-0.
.7365
-0.
-3.
-0.
-3.
.9018
-1.
.3104

2

-4

6019
1792
5716
6590

1350

7062
9560

4358
1126
0271
5191

8953
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CLASSIFICATION TABLE

PREDICTED GROUP

Variables
1 2 3 TOTAL
1 5 0 0 5
2 0 5 0 5
3 0 0 5 5
TOTAL 5 5 5 15

Standardized Coeff. from Pooled Cov. with 15 valid cases.

Variables
1 2
Y1 -2.030 0.520
Y2 2.032 0.511

Centroids with 15 valid cases.

Variables
1 2
1 3.302 0.144
2 -0.108 -0.302
3 -3.194 0.159

Raw Coefficients from Total Cov. with 15 valid cases.

Variables
1 2
Y1 -0.701 0.547
Y2 0.560 0.429

Raw Discriminant Function Constants with 15 valid cases.

Variables 1 2
-0.674 -5.601

Standardized Coeff.s from Total Cov. with 15 valid cases.

Variables
1 2
Y1 -0.815 0.636
Y2 0.820 0.628

Total Correlation Matrix with 15 valid cases.
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Variables
Y1l Y2
Y1 1.000 0.252
Y2 0.252 1.000

Corr.s Between Variables and Functions with 15 valid cases.

Variables
1 2
Y1 -0.608 0.794
Y2 0.615 0.788

Wilk’s Lambda = 0.0965.

F = 12.2013 with D.F. 4 and 22 . Prob > F = 0.0000

Bartlett Chi-Squared = 26.8845 with 4 D.F. and prob. = 0.0000
Pillai Trace = 0.9520

You will notice that we have obtained cross-products and deviation cross-
products for each group as well as the combined between and within groups as well
as descriptive statistics (means, variances, standard deviations.) Two roots were
obtained, the first significant at the 0.05 level using a chi-square test. The one-way
analyses of variances completed for each continuous variable were not significant at
the 0.05 level which demonstrates that a multivariate analysis may identify group
differences not caught by individual variable analysis. The discriminant functions
can be used to plot the group subjects in the (orthogonal) space of the functions.
If you examine the plot you can see that the individuals in the three groups analyzed
are easily separated using just the first discriminant function (the horizontal axis.)
Raw and standardized coefficients for the discriminant functions are presented as
well as Fisher’s discriminant functions for each group. The latter are used to classify
the subjects and the classifications are shown along with a table which summarizes
the classifications. Note that in this example, all cases are correctly classified.
Certainly, a cross-validation of the functions for classification would likely encoun-
ter some errors of classification. Since we asked that the discriminant scores be
placed in the data grid, the data grid will now contain two new variables the Fisher
discriminant scores.
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Hierarchical Cluster Analysis 8]

Variables Available for Selection: Variables Selected for Analysis:
weight
= | |waist
pulse
chins
situps
4= jumps
ALL
e e Maximum No. of Groups: Iw
|v Standardize Variables
I~ Replace Grid Values Reset | Cancel
v Descriptive statistics
[v Groups vs Errors Plot oK

Fig. 9.3 Hierarchical Cluster Analysis form

Cluster Analyses

Hierarchical Cluster Analysis

To demonstrate the Hierarchical Clustering program, the data to be analyzed is the
one labeled cansas.TAB. You will see the form above with specifications for the
grouping (Fig. 9.3):

Results for the hierarchical analysis that you would obtain after clicking the
Compute button are presented below (Fig. 9.4):
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SCATTERPLOT - Plot of Errorvs No.of Groups

Size of Error

| |- 18.06

| |- 17.20

| |- 16.34

| |- 15.48

| |- 14.62

| |- 13.76

| |- 12.90

| |- 12.04

| |- 11.18

| |- 10.32
——————————————————————————————————————————————————————————— +- 9.46
.60
.74
.88
.02
.16
.30
.44
.58
.72

|
PN WS 0oy J o

\ I | \ I \ I | \ I
No.of Groups
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Fig. 9.4 Plot of grouping errors in the discriminant analysis

Hierarchical Cluster Analysis
Number of object to cluster = 20 on 6 variables.
Variable Means

Variables weight waist pulse chins situps Jjumps
178.600 35.400 56.100 9.450 145.550 70.300

Variable Variances

Variables weight waist pulse chins situps Jjumps
609.621 10.253 51.989 27.945 3914.576 2629.379

Variable Standard Deviations

Variables weight waist pulse chins situps Jjumps
24.691 3.202 7.210 5.286 62.567 51.277
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19 groups after combining group 1 (n =1 ) and group 5 (n = 1)
error = 0.386

18 groups after combining group 17 (n = 1 ) and group 18 (n = 1)
error = 0.387

17 groups after combining group 11 (n =1 ) and group 17 (n = 2)
error = 0.556

16 groups after combining group 1 (n = 2 ) and group 16 (n = 1)
error = 0.663

15 groups after combining group 3 (n =1 ) and group 7 (n = 1)
error = 0.805

14 groups after combining group 4 (n =1 ) and group 10 (n = 1)
error = 1.050

13 groups after combining group 2 (n =1 ) and group 6 (n = 1)
error = 1.345

12 groups after combining group 1 (n = 3 ) and group 14 (n = 1)
error = 1.402

11 groups after combining group 0 (n =1 ) and group 1 (n = 4)
error = 1.489

10 groups after combining group 11 (n = 3 ) and group 12 (n = 1)
error = 2.128

Group 1 (n= 5)

Object = CASE 1
Object = CASE 2
Object = CASE 6
Object = CASE 15
Object = CASE 17
Group 3 (n= 2)
Object = CASE 3
Object = CASE 7

Group 4 (n= 2)
Object = CASE 4
Object = CASE 8
Group 5 (n= 2)
Object = CASE 5
Object = CASE 11
Group 9 (n= 1)
Object = CASE 9
Group 10 (n= 1)
Object = CASE 10
Group 12 (n= 4)
Object = CASE 12
Object = CASE 13
Object = CASE 18
Object = CASE 19
Group 14 (n= 1)
Object = CASE 14
Group 16 (n= 1)
Object = CASE 16
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Group 20 (n= 1)
Object = CASE 20

(... for 9 groups, 8 groups, etc. down to 2 groups)

4 groups after combining group 4 (n = 6 ) and group 9 (n = 1)
error = 11.027
Group 1 (n= 8)
Object = 1
Object = CASE 2
Object = CASE 3
Object = CASE 6
Object = CASE 7
Object = CASE 15
Object = CASE 16
Object = CASE 17
Group 4 (n= 4)
Object = CASE 4
Object = CASE 8
Object = CASE 9
Object = CASE 2
Group 5 (n= 7)
Object = CASE 5
Object = CASE 10
Object = CASE 11
Object = CASE 12
Object = CASE 13
Object = CASE 18
Object = CASE 19
Group 14 (n= 1)
Object = CASE 14

CASE

3 groups after combining group 0 (n = 8 ) and group 13 (n = 1)
error = 13.897
Group 1 (n= 9)
Object = CASE
Object = CASE
Object = CASE
Object = CASE
Object = CASE 7
Object = CASE 14
Object = CASE 15
Object = CASE 16
Object = CASE 17
Group 4 (n= 4)
Object = CASE 4
Object CASE 8
Object CASE 9
Object = CASE 20

o W N
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Group 5 (n= 7)
Object = CASE 5
Object = CASE 10
Object = CASE 11
Object = CASE 12
Object = CASE 13
Object = CASE 18
Object = CASE 19

2 groups after combining group 3 (n = 4 ) and group 4 (n = 7)

error = 17.198

Group 1 (n= 9)
Object = CASE
Object = CASE
Object = CASE
Object = CASE
Object = CASE 7
Object = CASE 14
Object = CASE 15
Object = CASE 16

o W N

Object = CASE 17
Group 4 (n= 11)

Object = CASE 4

Object = CASE 5

Object = CASE 8

Object = CASE 9
Object = CASE 10
Object = CASE 11
Object = CASE 12
Object = CASE 13
Object = CASE 18
Object = CASE 19
Object = CASE 20

If you compare the results above with a discriminant analysis analysis on the
same data, you will see that the clustering procedure does not necessarily replicate
the original groups. Clearly, “nearest neighbor” grouping in Euclidean space does
not necessarily result in the same a priori groups from the discriminant analysis.

By examining the increase in error (variance of subjects within the groups) as a
function of the number of groups, one can often make some decision about the
number of groups they wish to interpret. There is a large increase in error when
going from 8 groups down to 7 in this analysis which suggests there are possibly 7
or 8 groups which might be examined. If we had more information on the objects of
those groups, we might see a pattern or commonality shared by objects of those
groups.
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K-Means Clustering @

The main grid should contain data values representing variables measured on the
objects to be clustered. Enter the desired number of clusters.

No. of Starting Clusters |4 v Transform to standard score (2] form [default)

No. of Iterations: |‘I 00 Cancel

Retumn

Fig. 9.5 The K Means Clustering form

K-Means Clustering Analysis

With this procedure, one first specifies the number of groups to be formed among
the objects. The procedure uses a procedure to load each of the k groups with one
object in a somewhat random manner. The procedure then iteratively adds or sub-
tracts objects from each group based on an error measure of the distance between
the objects in the group. The procedure ends when subsequent iterations do not
produce a lower value or the number of iterations has been exceeded.

In this example, we loaded the cansas.TAB file to group the 20 subjects into four
groups. The results may be compared with the other cluster methods of this chapter
(Fig. 9.5).

Results are:

K-Means Clustering. Adapted from AS 136 APPL. STATIST. (1979)
VOL.28, NO.1

File = C:\Documents and Settings\Owner\My Documents\Projects\
Clanguage\OpenStat\cansas.TAB
No. Cases = 20, No. Variables = 6, No. Clusters = 4

NUMBER OF SUBJECTS IN EACH CLUSTER
Cluster = 1 with 1 cases.

Cluster = 2 with 7 cases.
Cluster = 3 with 9 cases.
Cluster = 4 with 3 cases.

PLACEMENT OF SUBJECTS IN CLUSTERS
CLUSTER SUBJECT
14
2
6
8
1
15

DN DNDN
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17
20
11
12
13

18
19
10

16

BB WWWwwWwWwWwwwww NN
€]

AVERAGE VARIABLE VALUES BY CLUSTER

VARIABLES
CLUSTER 1 2 3 4 5 6
1 0.11 1.03 -0.12 -0.30 -0.02 -0.01
2 -0.00 0.02 -0.02 -0.19 -0.01 -0.01
3 -0.02 -0.20 0.01 0.17 0.01 0.01
4 0.04 0.22 0.05 0.04 -0.00 0.01

WITHIN CLUSTER SUMS OF SQUARES
Cluster 1 = 0.000

Cluster 2 = 0.274
Cluster 3 = 0.406
Cluster 4 = 0.028

Average Linkage Hierarchical Cluster Analysis

This cluster procedure clusters objects based on their similarity (or dissimilarity) as
recorded in a data matrix. The correlation among objects is often used as a measure
of similarity. In this example, we first loaded the file labeled “cansas. TAB”. We then
“rotated” the data using the rotate function in the Edit menu so that columns repre-
sent subjects and rows represent variables. We then used the Correlation procedure
(with the option to save the correlation matrix) to obtain the correlation among the
20 subjects as a measure of similarity. We then closed the file. Next, we opened the
matrix file we had just saved using the File / Open a Matrix File option. We then
clicked on the Analyses / Multivariate / Cluster / Average Linkage option. Shown
below is the dialogue box for the analysis (Fig. 9.6):
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Average Linkage Hierarchical Clustering

The main arid should contain a symetric matrix of similarity or dissimilarity values
representing distances among the objects to be clustered. Check the type box
to indicate if the measures are similarities (e.g. corelations] or dissimilarities.

Matrix type is:
(& Similarities

" Dissimilarities Compute

Retumn l

Fig. 9.6 Average Linkage dialog form

Output of the analysis includes a listing of which objects (groups) are combined
at each step followed by a dendogram of the combinations. You can compare this
method of clustering subjects with that obtained in the previous analysis.

Average Linkage Cluster Analysis. Adopted from ClusBas by John
S. Uebersax

Group 18 is joined by group 19. N is 2 ITER = 1 SIM = 0.999
Group 1 is joined by group 5. N is 2 ITER = 2 SIM = 0.998
Group 6 is joined by group 7. N is 2 ITER = 3 SIM = 0.995
Group 15 is joined by group 17. N is 2 ITER = 4 SIM = 0.995
Group 12 is joined by group 13. N is 2 ITER = 5 SIM = 0.994
Group 8 is joined by group 11. N is 2 ITER = 6 SIM = 0.993
Group 4 is joined by group 8. N is 3 ITER = 7 SIM = 0.992
Group 2 is joined by group 6. N is 3 ITER = 8 SIM = 0.988
Group 12 is joined by group 16. N is 3 ITER = 9 SIM = 0.981
Group 14 is joined by group 15. N is 3 ITER = 10 SIM = 0.980
Group 2 is joined by group 4. N is 6 ITER = 11 SIM = 0.978
Group 12 is joined by group 18. N is 5 ITER = 12 SIM = 0.972
Group 2 is joined by group 20. N is 7 ITER = 13 SIM = 0.964
Group 1 is joined by group 2. N is 9 ITER = 14 SIM = 0.962
Group 9 is joined by group 12. N is 6 ITER = 15 SIM = 0.933
Group 1 is joined by group 3. N is 10 ITER = 16 SIM = 0.911
Group 1 is joined by group 14. N is 13 ITER = 17 SIM = 0.900
Group 1 is joined by group 9. N is 19 ITER = 18 SIM = 0.783
Group 1 is joined by group 10. N is 20 ITER = 19 SIM = 0.558

No. of objects = 20
Matrix defined similarities among objects.
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Path Analysis

To illustrate path analysis, you could utilize an example from page 788 of the book
by Elazar J. Pedhazur (Multiple Regression in Behavioral Science, 1997.) Four
variables in the study are labeled SES (Socio-Economic Status), IQ (Intelligence
Quotient), AM (Achievement Motivation) and GPA (Grade Point Average.) Our
theoretical speculations lead us to believe that AM is “caused” by SES and IQ and
that GPA is “caused” by AM as well as SES and IQ. You would enter the correla-
tions among these variables into the data grid of OpenStat then analyze the matrix
with the path analysis procedure.

Example of a Path Analysis

In this example we will use the file CANSAS.TXT. The user begins by selecting the
Path Analysis option of the Statistics / Multivariate menu. In the figure below
(Fig. 9.7) we have selected all variables to analyze and have entered our first path
indicating that waist size is “caused” by weight:

We will also hypothesize that pulse rate is “caused” by weight, chin-ups are
“caused” by weight, waist and pulse, that the number of sit-ups is “caused” by
weight, waist and pulse and that jumps are “caused” by weight, waist and pulse.
Each time we enter a new causal relationship we click the scroll bar to move to a
new model number prior to entering the “caused” and “causing” variables. Once we
have entered each model, we then click on the Compute button. Note we have
elected to print descriptive statistics, each models correlation matrix, and the repro-
duced correlation matrix which will be our measure of how well the models “fit” the
data. The results are shown below:

Path Analyzis ﬁ

Avalable Vanables: Selected Variables:

Model Number: F_

2 [ am 3]

pulse
ﬂ bl "Caused" Varisbie:
umps Iua:l
-
“Causing” Variables
weight
|
-
| Dptions:
¥ Descripbve Statisbes Reset Cument Model
W Each Modek: Cor. Matrix
p A ..,....---._Cg.'-m
| I Save Conelaton Mabex | Reset Concel | Compute | Rewm |

Fig. 9.7 Path Analysis dialog form
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PATH ANALYSIS RESULTS

CAUSED

CAUSED

CAUSED

CAUSED

CAUSED

VARIABLE: waist

Causing Variables:

weight
VARIABLE: pulse

Causing Variables:

weight

VARIABLE: chins

Causing Variables:

weight
waist
pulse

VARIABLE: situps

Causing Variables:

weight
waist
pulse

VARIABLE: jumps

Causing Variables:

weight
waist
pulse

Correlation Matrix with 20 valid cases.

Variables
weight waist
weight 1.000 0.870
waist 0.870 1.000
pulse -0.366 -0.353
chins -0.390 -0.552
situps -0.493 -0.646
Jjumps -0.226 -0.191
Variables
Jjumps
weight -0.226
waist -0.191
pulse 0.035
chins 0.496
situps 0.669
Jjumps 1.000
MEANS with 20 valid cases.
Variables weight waist
178.600 35.400

pulse
-0.366
-0.353

1.000
0.151
0.225
0.035

pulse
56.100

chins

-0.
-0.
0.
1.000
0.
0.496

390
552
151

696

chins
9.450

situps
-0.493
-0.646

0.225
0.696
1.000
0.669

situps
145.550
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Variables jumps
70.300
VARIANCES with 20 valid cases.
Variables weight waist pulse chins situps
609.621 10.253 51.989 27.945 3914.576
Variables jumps
2629.379
STANDARD DEVIATIONS with 20 valid cases.
Variables weight waist pulse chins situps
24.691 3.202 7.210 5.286 62.567
Variables Jjumps
51.277
Dependent Variable = waist

Correlation Matrix with 20 valid cases.

Variables

weight waist
weight 1.000 0.870
waist 0.870 1.000

MEANS with 20 valid cases.
Variables weight waist
178.600 35.400

VARIANCES with 20 valid cases.

Variables

weight waist

6 09.621

10.253

STANDARD DEVIATIONS with 20 valid cases.
Variables weight waist
24.691 3.202




184

9 Multivariate

Dependent Variable = waist
R R2 F Prob.>F DF1 DF2
0.870 0.757 56.173 0.000 1 18
Adjusted R Squared = 0.744
Std. Error of Estimate = 1.621
Variable Beta B Std.Error t Prob.>t
weight 0.870 0.113 0.015 7.495 0.000
Constant = 15.244
Dependent Variable = pulse
Correlation Matrix with 20 valid cases.
Variables
weight pulse
weight 1.000 -0.366
pulse -0.366 1.000
MEANS with 20 valid cases.
Variables weight pulse
178.600 56.100
VARIANCES with 20 valid cases.
Variables weight pulse
609.621 51.989
STANDARD DEVIATIONS with 20 valid cases.
Variables weight pulse
24.691 7.210
Dependent Variable = pulse
R R2 F Prob.>F DF1 DF2
0.366 0.134 2.780 0.113 1 18
Adjusted R Squared = 0.086
Std. Error of Estimate = 6.895
Variable Beta B Std.Error t Prob.>t
weight -0.366 -0.107 0.064 -1.667 0.113
Constant = 75.177
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Dependent Variable = chins

Correlation Matrix with 20 valid cases.

Variables
weight waist pulse chins
weight 1.000 0.870 -0.366 -0.390
waist 0.870 1.000 -0.353 -0.552
pulse -0.366 -0.353 1.000 0.151
chins -0.390 -0.552 0.151 1.000

MEANS with 20 valid cases.

Variables weight waist pulse chins
178.600 35.400 56.100 9.450

VARIANCES with 20 valid cases.

Variables weight waist pulse chins
609.621 10.253 51.989 27.945

STANDARD DEVIATIONS with 20 valid cases.

Variables weight waist pulse chins
24.691 3.202 7.210 5.286

Dependent Variable = chins
R R2 F Prob.>F DF1 DF2
0.583 0.340 2.742 0.077 3 16
Adjusted R Squared = 0.216

Std. Error of Estimate = 4.681

Variable Beta B Std.Error t Prob.>t
weight 0.368 0.079 0.089 0.886 0.389
waist -0.882 -1.456 0.683 -2.132 0.049
pulse -0.026 -0.019 0.160 -0.118 0.907

Constant = 47.968
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Dependent Variable = situps

Correlation Matrix with 20 valid cases.

Variables
weight waist pulse situps
weight 1.000 0.870 -0.366 -0.493
waist 0.870 1.000 -0.353 -0.646
pulse -0.366 -0.353 1.000 0.225
situps -0.493 -0.646 0.225 1.000

MEANS with 20 valid cases.

Variables weight waist pulse situps
178.600 35.400 56.100 145.550

VARIANCES with 20 valid cases.

Variables weight waist pulse situps
609.621 10.253 51.989 3914.576

STANDARD DEVIATIONS with 20 valid cases.

Variables weight waist pulse situps
24.691 3.202 7.210 62.567
Dependent Variable = situps
R R2 F Prob.>F DF1 DF2
0.661 0.436 4.131 0.024 3 16

Adjusted R Squared = 0.331

Std. Error of Estimate = 51.181

Variable Beta B Std.Error t Prob.>t
weight 0.287 0.728 0.973 0.748 0.466
waist -0.890 -17.387 7.465 -2.329 0.033
pulse 0.016 0.139 1.755 0.079 0.938

Constant = 623.282
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Dependent Variable = jumps

Correlation Matrix with 20 valid cases.

Variables
weight waist pulse Jjumps
weight 1.000 0.870 -0.366 -0.226
waist 0.870 1.000 -0.353 -0.191
pulse -0.366 -0.353 1.000 0.035
Jjumps -0.226 -0.191 0.035 1.000

MEANS with 20 valid cases.

Variables weight waist pulse Jjumps
178.600 35.400 56.100 70.300

VARIANCES with 20 valid cases.

Variables weight waist pulse jumps
609.621 10.253 51.989 2629.379

STANDARD DEVIATIONS with 20 valid cases.

Variables weight waist pulse Jjumps
24.691 3.202 7.210 51.277
Dependent Variable = jumps
R R2 F Prob.>F DF1 DF2
0.232 0.054 0.304 0.822 3 16
Adjusted R Squared = -0.123

Std. Error of Estimate = 54.351

Variable Beta B Std.Error t Prob.>t
weight -0.259 -0.538 1.034 -0.520 0.610
waist 0.015 0.234 7.928 0.029 0.977
pulse -0.055 -0.389 1.863 -0.209 0.837

Constant = 179.887
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Matrix of Path Coefficients with 20 wvalid cases.

Variables
weight waist pulse chins situps
weight 0.000 0.870 -0.366 0.368 0.287
waist 0.870 0.000 0.000 -0.882 -0.890
pulse -0.366 0.000 0.000 -0.026 0.016
chins 0.368 -0.882 -0.026 0.000 0.000
situps 0.287 -0.890 0.016 0.000 0.000
Jjumps -0.259 0.015 -0.055 0.000 0.000

Variables

Jjumps

weight -0.259
waist 0.015
pulse -0.055
chins 0.000

situps 0.000
jumps 0.000

SUMMARY OF CAUSAL MODELS

Var. Caused Causing Var. Path Coefficient
waist weight 0.870
pulse weight -0.366
chins weight 0.368
chins waist -0.882
chins pulse -0.026

situps weight 0.287
situps waist -0.890
situps pulse 0.016
Jjumps weight -0.259
Jjumps waist 0.015

Jjumps pulse -0.055
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Reproduced Correlation Matrix with 20 valid cases.

Variables
weight waist pulse chins situps
weight 1.000 0.870 -0.366 -0.390 -0.493
waist 0.870 1.000 -0.318 -0.553 -0.645
pulse -0.366 -0.318 1.000 0.120 0.194
chins -0.390 -0.553 0.120 1.000 0.382
situps -0.493 -0.645 0.194 0.382 1.000
jumps -0.226 -0.193 0.035 0.086 0.108
Variables
Jjumps

weight -0.226
wailst -0.193
pulse 0.035

chins 0.086
situps 0.108
jumps 1.000

Average absolute difference between observed and reproduced
coefficients := 0.077
Maximum difference found := 0.562

We note that pulse is not a particularly important predictor of chin-ups or sit-ups.
The largest discrepancy of 0.562 between an original correlation and a correlation
reproduced using the path coefficients indicates our model of causation may have
been inadequate.

Factor Analysis

The sample factor analysis completed below utilizes a data set labeled CANSAS.
TXT as used in the previous path analysis example . The canonical factor analysis
method was used and the varimax rotation method was used.

Shown below is the factor analysis form selected by choosing the factor analysis
option under the Statistics / Multivariate menu (Fig. 9.8):

Note the options elected in the above form. The results obtained are shown below
(Fig. 9.9):
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Fig. 9.9 Screen plot of eigenvalues
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Factor Analysis
See Rummel, R.J., Applied Factor Analysis
Northwestern University Press, 1970

Canonical Factor Analysis

Original matrix trace = 18.56
Roots (Eigenvalues) Extracted:

1 15.512

2 3.455

3 0.405

4 0.010

5 -0.185

6 -0.641

Unrotated Factor Loadings

FACTORS with 20 valid cases.

Variables
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
weight 0.858 -0.286 0.157 -0.006 0.000
waist 0.928 -0.201 -0.066 -0.003 0.000
pulse -0.360 0.149 -0.044 -0.089 0.000
chins -0.644 -0.382 0.195 0.009 0.000
situps -0.770 -0.472 0.057 -0.009 0.000
jumps -0.409 -0.689 -0.222 0.005 0.000
Variables
Factor 6
weight 0.000
waist 0.000
pulse 0.000
chins 0.000
situps 0.000
Jjumps 0.000
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Percent of Trace In

1

o U W N

Root
Root
Root
Root
Root
Root

15.512
3.455
0.405
0.010

-0.185

-0.641

Each

Trace
Trace
Trace
Trace
Trace
Trace

COMMUNALITY ESTIMATES
weight
waist
pulse
chins
situps
Jjumps

o U W N

O O O O O o

.844
.906
.162
.598
.819
.692

Root:

= 18.
= 18.
= 18.
= 18.
= 18.
= 18.

557
557
557
557
557
557

Percent
Percent
Percent
Percent
Percent
Percent

.593
.621
.180
.055
.995
.455

Proportion of variance in unrotated factors

1
2

48.
16.

364
475

Communality Estimates as percentages:

o U W N

81.
90.
15.
56.
81.
64.

893
153
165
003
607
217

Varimax Rotated Loadings

Variables

weight
waist
pulse
chins

situps
Jjumps

Factor 1
-0.882
-0.898

0.385
0.352
0.413
-0.009

with 20 valid cases.

Factor 2

-0.

o O O

201

.310
.059
.660
.803
.801
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Percent of Variation in Rotated Factors
Factor 1 33.776

Factor 2 31.064

Total Percent of Variance in Factors : 64.840

Communalities as Percentages

1 for weight 81.893

2 for waist 90.153

3 for pulse 15.165

4 for chins 56.003

5 for situps 81.607

6 for Jjumps 64.217

SCATTERPLOT - FACTOR PLOT

Factor 2
| | |- 0.95- 1.00
| | |- 0.90- 0.95
| | |- 0.85- 0.%90
| 2 1 |- 0.80- 0.85
| | |- 0.75- 0.80
[ | |- 0.70- 0.75
I | 3 |- 0.65- 0.70
| | |- 0.60- 0.65
I | |- 0.55- 0.60
[ | |- 0.50- 0.55
I | |- 0.45- 0.50
| | |- 0.40- 0.45
I | |- 0.35- 0.40
| | |- 0.30- 0.35
| | |- 0.25- 0.30
| | |- 0.20- 0.25
I | |- 0.15- 0.20
I | |- 0.10- 0.15
| | 4 |- 0.05- 0.10
| === |- 0.00- 0.05
I | |- -0.05- 0.00
I | |- =0.10- -0.05
I | |- -0.15- -0.10
| | |- =0.20- -0.15
| 3 [ |- -0.25- -0.20
I | |- -0.30- -0.25
| 6 | |- =-0.35- -0.30
| | |- -0.40- -0.35
I | |- -0.45- -0.40
| | |- -0.50- -0.45
| | |- -0.55- -0.50
| | |- -0.60- -0.55
I | |- -0.65- -0.60
| | |- -0.70- -0.65
| | |- -0.75- -0.70
I | |- -0.80- -0.75
| | |- -0.85- -0.80
| | |- -0.90- -0.85
| | |- -0.95- -0.90
| | |- -1.00- -0.95

| | | | | | | | | | | | | | | | Factor 1
-1.0-0.9-0.7-0.6-0.5-0.3-0.2-0.1 0.1 0.2 0.3 0.5 0.6 0.7 0.9 1.0
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Labels:

1 = situps
= jumps
= chins
pulse
= weilght
= waist

o U W N
Il

SUBJECT FACTOR SCORE RESULTS:

Regression Coefficients with 20 valid cases.

Factor 2

.150
.080
.020
.203
.526
.399

Factor Scores:

Variables

Factor 1
weight -0.418
waist -0.608
pulse 0.042
chins -0.024
situps -0.069
Jjumps -0.163

Standard Error of

Factor 1 0.946

Factor 2 0.905

We note that two factors were extracted with eigenvalues greater than 1.0 and
when rotated indicate that the three body measurements appear to load on one factor
and that the performance measures load on the second factor. The data grid also now
contains the “least-squares” factor scores for each subject. Hummm! I wonder what
a hierarchical grouping of these subjects on the two factor scores would produce!

General Linear Model (Sums of Squares by Regression)

Two examples will be provided in this section. The first example demonstrates the
use of the GLM procedure for completing a three-way analysis of variance. The
second will demonstrate the use of the GLM procedure a repeated measures analy-
sis of variance. Alternative procedures will also be presented to aid in the interpreta-

tion of the results.
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(Partial) General Linear Model (vector coding and multiple regression)

This procedure generates coding vectors for [ OutPUt Options:
groups and repeated measurements codes. If the I!eaunerl gu.ps are pcopotbmal of equal in [ Generate Vectors ONLY!
size, the orthogonal coding will provide appropeiate analysis of vanance of covasiance results. I [~ Descriptive Statistics
equal of mlw:amkmsdnmlmtywcmwzelhg:mdedcmﬁgwdm 7 2
with the “Block Entry"" mulliple regression procedure. In this lalter case, vectors may be genetaled I™ Muliple Regression Output for Each Step
Vaiables: Dependent Variable: Start Defindion of an Interaction w of Categorical Variables:
— g
< Tow © Effect
Col & Dithogonal

Shee

Between Treatment Vanables: ot
Row [
Col

1]

Within Treatment Variables:

4+ [¢

14 v

Subject Codes

4 v

Covaniates:
Covl
Cov2

4 v

Fig. 9.10 The GLM dialog form

Example 1

The file labeled Ancova3.tab is loaded. Next, select the Analyses / Multivariate /
Sums of Squares by Regression option from the menu. Shown below is the form for
specifying a three-way, analysis of covariance. The dependent variable X has been
entered in the continuous dependent variable list. The independent variables Row,
Column, Slice have been entered in the fixed effects dependent list box. The two
covariates have been entered in the covariates box. The coding method elected for
creating vectors representing the categories of the independent variables is the
orthogonal coding method. To specify the interactions for the analysis model, the
button “begin definition of an interaction” is clicked followed by clicking of each
term to be included in the interaction. The specification of the interaction is ended
by clicking the “end definition of an interaction” button. This procedure was repeated
for each of the interactions desired: row by column, row by slice, column by slice
and row by column by slice. You will note that these interaction definitions are sum-
marized using abbreviations in the list of defined interactions. You may also select
the output options desired before clicking the “Compute” button. It is suggested that
you select the option for all multiple regression results only if you wish to fully
understand how the analysis is completed since the output is voluminous. The out-
put shown below is the result of NOT selecting any of the options (Fig. 9.10).
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The results obtained are shown below. Each predictor (coded vector) is entered
one-by-one with the increment in variance (squared multiple correlation). This is then
followed by computing the full model (the model with all variables entered) minus
each independent variable to obtain the decrement in variance associated with each
specific independent variable. Again, for brevity, this part of the output is not shown.
A summary table then provides the results of the incremental and decrement effect of
each variable. The final table summarizes the results for the analysis of variance. You
will notice that, through the use of orthogonal coding, we can verify the indepen-
dence of the row, column and slice effect variables. The inter-correlation among the
coding vectors for a balanced design will be zero (0.0). Attempting to do a three-way
analysis of variance using the traditional “partitioning of variance” method may
result in a program error when a design is unbalanced, that is, the cell sizes are not
equal or proportional across the factors. The unique contributions of each factor can,
however, be assessed using multiple regression as in the general linear model.

SUMS OF SQUARES AND MEAN SQUARES BY REGRESSION
TYPE III SS - R2 = Full Model - Restricted Model

VARIABLE SUM OF SQUARES D.F.
Covl 1.275 1

Cov2 0.783 1

Rowl 25.982 1

Coll 71.953 1

Slicel 13.323 1

Slice?2 0.334 1

C1R1 21.240 1

S1R1 11.807 1

S2R1 0.138 1

S1C1 13.133 1

S2C1 0.822 1

S1CIR1 0.081 1

S2C1R1 47.203 1

ERROR 46.198 58
TOTAL 269.500 71

TOTAL EFFECTS SUMMARY

SOURCE SS D.F MS
Covl 1.275 1 1.275

Cov2 0.783 1 0.783

Row 25.982 1 25.982

Col 71.953 1 71.953

Slice 13.874 2 6.937

Row*Col 21.240 1 21.240
Row*Slice 11.893 2 5.947
Col*Slice 14.204 2 7.102
Row*Col*Slice 47.247 2 23.624
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SOURCE SS D.F MS
BETWEEN SUBJECTS 208.452 13

Covariates 2.058 2 1.029

Row 25.982 1 25.982

Col 71.953 1 71.953

Slice 13.874 2 6.937

Row*Col 21.240 1 21.240

Row*Slice 11.893 2 5.947

Col*Slice 14.204 2 7.102

Row*Col*Slice 47.247 2 23.624

ERROR BETWEEN 46.198 58 0.797
TOTAL 269.500 71

The output above may be compared with the results obtained using the analysis
of covariance procedure under the Analysis of Variance menu. The results from that
analysis are shown next. You can see that the results are essentially identical although
the ANCOVA procedure also includes some tests of the assumptions of
homogeneity.

Test for Homogeneity of Group Regression Coefficients
Change in R2 = 0.1629. F = 31.437 Prob.> F = 0.0000 with d.f. 22 and 36

Unadjusted Group Means for Group Variables Row
Means
Variables Group 1 Group 2

3.500 4.667

Intercepts for Each Group Regression Equation for Variable: Row
Intercepts
Variables Group 1 Group 2

4.156 5.404

Adjusted Group Means for Group Variables Row
Means
Variables Group 1 Group 2

3.459 4.707

Unadjusted Group Means for Group Variables Col
Means
Variables Group 1 Group 2

3.000 5.167
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Intercepts for Each Group Regression Equation for Variable: Col
Intercepts
Variables Group 1 Group 2

4.156 5.404

Adjusted Group Means for Group Variables Col
Means
Variables Group 1 Group 2

2.979 5.187

Unadjusted Group Means for Group Variables Slice

Means

Variables Group 1 Group 2 Group 3
3.500 4.500 4.250

Intercepts for Each Group Regression Equation for Variable: Slice

Intercepts

Variables Group 1 Group 2 Group 3
4.156 3.676 6.508

Adjusted Group Means for Group Variables Slice

Means

Variables Group 1 Group 2 Group 3
3.493 4.572 4.185

Test for Each Source of Variance Obtained by Eliminating from
the Regression Model for ANCOVA the Vectors Associated with
Each Fixed Effect.

SOURCE Deg.F Ss MS F Prob>F
Covl 1 1.27 1.27 1.600 0.2109
Cov2 1 0.78 0.78 0.983 0.3255

A 1 25.98 25.98 32.620 0.0000
B 1 71.95 71.95 90.335 0.0000
c 2 13.87 6.94 8.709 0.0005
AxB 1 21.24 21.24 26.666 0.0000
AxC 2 11.89 5.95 7.466 0.0013
BxC 2 14.20 7.10 8.916 0.0004
AxBxC 2 47.25 23.62 29.659 0.0000
ERROR 58 46.20 0.80
TOTAL 71 269.50
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(Partial) General Linear Model (vector coding and multiple regression)
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Fig. 9.11 GLM Specifications for a repeated measures ANOVA

Example Two

The second example of the GLM procedure involves a repeated measures analysis
of variance similar to that you might complete with the “two between and one within
anova” procedure. In this example, we have used the file labeled REGSS2.TAB.
The data include a dependent variable, row and column variables, a repeated mea-
sures variable and a subject code for each of the row and column combinations.
There are three subjects within each of the row and column combinations and four
repeated measures within each row-column combination. The specification for the
analysis is shown above (Fig. 9.11):
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The results of the analysis are as follows:

SUMS OF SQUARES AND MEAN SQUARES BY REGRESSION
TYPE III SS - R2 = Full Model - Restricted Model

VARIABLE SUM OF SQUARES D.F.
Rowl 10.083 1

Coll 8.333 1

Repl 150.000 1

Rep2 312.500 1

Rep3 529.000 1

C1R1 80.083 1

RIR1 0.167 1

R2R1 2.000 1

R3R1 6.250 1

R1C1 4.167 1

R2C1 0.889 1

R3C1 7.111 1

RI1CIR1 6.000 1

R2CI1R1 0.500 1

R3CI1R1 6.250 1

ERROR 134.667 32
TOTAL 1258.000 47

TOTAL EFFECTS SUMMARY

SOURCE SS D.F MS
Row 10.083 1 10.083
Col 8.333 1 8.333
Rep 991.500 3 330.500
Row*Col 80.083 1 80.083
Row*Rep 8.417 3 2.806
Col*Rep 12.167 3 4.056
Row*Col*Rep 12.750 3 4.250
SOURCE SS D.F MS
BETWEEN SUBJECTS 181.000 11
Row 10.083 1 10.083
Col 8.333 1 8.333
Row*Col 80.083 1 80.083
ERROR BETWEEN 82.500 8 10.312
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WITHIN SUBJECTS 1077.000 36
Rep 991.500 3 330.500
Row*Rep 8.417 3 2.806
Col*Rep 12.167 3 4.056
Row*Col*Rep 12.750 3 4.250
ERROR WITHIN 52.167 24 2.174
TOTAL 1258.000 47

A comparable analysis may be performed using the file labeled ABRData.tab. In
this file, the repeated measures for each subject are entered along with the row and
column codes on the same line. In the previously analyzed file, we had to code the
repeated dependent values on separate lines and include a code for the subject and
a code for the repeated measure. Here are the results for this analysis (Fig. 9.12):

AxBxR Analysis of Variance E]
Select From:
A Effect Variable: No. of Subjects in each Group: |3
> | :
Row Options:
<= | [~ Test Homogeneity of Covariance
BEffectVaiable: | | 1ot Means
> |
Col
<=

Reference: Winer, B. J., Statistical &
Principles in Experimental Design.
C [Repeated) Measures:
> | 13 el crowil Book Compary,
C1 1962

<2 Pages 337-348
I C3
c4 Note: The & and B variables

each are one column of the
grid and contain group codes v

Rmz| Camell oK |

Fig. 9.12 A x B x R ANOVA dialog form
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SOURCE DF SS MS F PROB
Between Subjects 11 181.000
A Effects 1 10.083 10.083 0.978 0.352
B Effects 1 8.333 8.333 0.808 0.395
AB Effects 1 80.083 80.083 7.766 0.024
Error Between 8 82.500 10.312
Within Subjects 36 1077.000
C Replications 3 991.500 330.500 152.051 0.000
AC Effects 3 8.417 2.806 1.291 0.300
BC Effects 3 12.167 4.056 1.866 0.162
ABC Effects 3 12.750 4.250 1.955 0.148
Error Within 24 52.167 2.174
Total 47 1258.000
ABR Means Table
Repeated Measures
Cl c2 C3 c4
Al B1 17.000 12.000 8.667 4.000
Al B2 15.333 10.000 7.000 2.333
A2 Bl 16.667 10.000 6.000 2.333
A2 B2 17.000 14.000 9.333 8.333
AB Means Table
B Levels
B1 B2
Al 10.417 8.667
A2 8.750 12.167
AC Means Table
C Levels
C1l C2 C3 Cc4
Al 16.167 11.000 7.833 3.167
A2 16.833 12.000 7.667 5.333
BC Means Table
C Levels
C1 C2 C3 Cc4
B1 16.833 11.000 7.333 3.167

B2 16.167 12.000 8.167 5.333
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It may be observed that the sums of squares and mean squares for the two analyses
above are identical. The analysis of variance procedure (second analysis) does give
the F tests as well as means (and plots if elected) for the various variance compo-
nents. What is demonstrated however is that the analysis of variance model may be
completely defined using multiple regression methods. It might also be noted that
one can choose NOT to include all interaction terms in the GLM procedure if there
is an adequate basis for expecting such interactions to be zero. Notice that we might
also have included covariates in the GLM procedure. That is, one can complete a
repeated measures analysis of covariance which is not an option in the regular anova
procedures!

Median Polish Analysis

Our example uses the file labeled “GeneChips. TEX” which is an array of cells with
one observation per cell. The dialogue for the analysis appears as (Fig. 9.13):

i Median Polish Analysis

Wariables: "
Wariabl
Dependent Variable Earcal
3
i
Reset
Factor 1 Variable
[Chip
<+ | Compute
Factor 2 Variable
[Pfohe
Retum
= | ]
Masimum [terations |5

Fig. 9.13 Dialog for the Median Polish analysis



204 9 Multivariate

The results obtained are:

Observed Data

ROW COLUMNS
1 2 3 4 5
1 18.000 11.000 8.000 21.000 4.000
2 13.000 7.000 5.000 16.000 7.000
3 15.000 6.000 7.000 16.000 6.000
4 19.000 15.000 12.000 18.000 5.000
Adjusted Data
MEDIAN 1 2 3 4 5 Residuals
0.000 0.500 0.000 -1.250 1.750 -2.250 0.000
0.000 -0.500 0.000 -0.250 0.750 4.750 0.000
0.000 0.000 -2.500 0.250 -0.750 2.250 0.000
0.000 0.000 2.500 1.250 -2.750 -2.750 0.000
Col.Resid. 0.000 0.000 0.000 0.000 0.000
Col.Median 0.000 0.000 0.000 0.000 0.000

Cumulative absolute value of Row Residuals
Row = 1 Cum.Residuals 10.250
Row = 2 Cum.Residuals 21.750
Row = 3 Cum.Residuals = 17.250
Row = 4 Cum.Residuals 10.250

Cumulative absolute value of Column Residuals

Column = 1 Cum.Residuals = 1.000
Column = 2 Cum.Residuals = 1.000
Column = 3 Cum.Residuals = 2.000
Column = 4 Cum.Residuals = 7.000
Column = 5 Cum.Residuals = 6.000

Bartlett Test of Sphericity

This test is often used to determine the degree of sphericity in a matrix. A chi-
squared test is used to determine the probability of the degree of sphericity found.
As an example, the “cansas. TEX” file provides a significant degree of sphericity as
shown in the analysis below (Fig. 9.14):
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Available Variables: Selected Variablles:

weight
waist
pulse
| chins

<= situps

jumps i

Cancel | Reset | Compute

Return |

Chi-square = | Probabily:l DF: I

Fig. 9.14 Dialog for the Bartlett Test of Sphericity

CORRELATION MATRIX
Variables weight waist pulse chins situps jumps
weight 1.000 0.870 -0.366 -0.390 -0.493 -0.226
waist 0.870 1.000 -0.353 -0.552 -0.646 -0.191
pulse -0.366 -0.353 1.000 0.151 0.225 0.035
chins -0.390 -0.552 0.151 1.000 0.696 0.496
situps -0.493 -0.646 0.225 0.696 1.000 0.669
Jjumps -0.226 -0.191 0.035 0.496 0.669 1.000

Determinant = -3.873, log of determinant = 0.000

Chi-square = 69.067, D.F. = 15, Probability greater value = 0.0000
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Correspondence Analysis

This procedure analyzes data such as that found in the “smokers. TEX” file and

shown below:

CASES FOR FILE C:\Users\wgmiller\Projects\Data\Smokers.TEX

UNITS Group None Light Medium
CASE 1 Senior Mgr. 4 2 3
CASE 2 Junior Mgr. 4 3 7
CASE 3 Senior Emp. 25 10 12
CASE 4 Junior Emp. 18 24 33
CASE 5 Secretaries 10 6 7

The dialog for the analysis appears as (Fig. 9.15):
The results obtained are (Figs. 9.16, 9.17, 9.18):

r - —— T e
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Fig. 9.15 Dialog for Correspondence Analysis



Fig. 9.17 Correspondence Analysis plot 2
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Fig. 9.18 Correspondence Analysis plot 3

CORRESPONDENCE ANALYSIS

Based on formulations of Bee-Leng Lee

Chapter 11 Correspondence Analysis for ViSta

Results are based on the Generalized Singular Value Decomposition
of P=A x D x B’ where P is the relative frequencies observed,
A are the left generalized singular vectors,

D is a diagonal matrix of generalized singular values, and

B’ 1is the transpose of the right generalized singular vectors.
NOTE: The first value and corresponding vectors are 1 and are
to be ignored.

An intermediate step is the regular SVD of the matrix Q = UDV’
where Q = Dr"-1/2 x P x Dc"-1/2 where Dr is a diagonal matrix
of total row relative frequencies and Dc is a diagonal matrix
of total column relative frequencies.

Chi-square Analysis Results

No. of Cases = 193
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OBSERVED FREQUENCIES

Frequencies
None Light Medium
Senior Mgr. 4 2 3
Junior Mgr. 4 3 7
Senior Emp. 25 10 12
Junior Emp. 18 24 33
Secretaries 10 6 7
Total 61 45 62
EXPECTED FREQUENCIES
Expected Values
None Light Medium
Senior Mgr. 3.477 2.565 3.534
Junior Mgr. 5.689 4.197 5.782
Senior Emp. 16.119 11.891 16.383
Junior Emp. 27.813 20.518 28.269
Secretaries 7.902 5.829 8.031
PROPORTIONS OF TOTAL N
Proportions
None Light Medium
Senior Mgr. 0.021 0.010 0.016
Junior Mgr. 0.021 0.016 0.036
Senior Emp. 0.130 0.052 0.062
Junior Emp. 0.093 0.124 0.171
Secretaries 0.052 0.031 0.036
Total 0.316 0.233 0.321
Chi-square = 16.442 with D.F. = 12. Prob.
Liklihood Ratio = 16.348 with prob.
phi correlation = 0.2919
Pearson Correlation r = 0.0005

> value

Mantel-Haenszel Test of Linear Association =
> value = 0.9999

The coefficient of contingency = 0.280

Cramer’s V

Inertia = 0.

0.169

0852

Heavy

13

25

Heavy
1.425
2.332
6.606
11.399
3.238

Heavy
.010
.021
.021
.067
.010
.130

O O O O O o

> value

= 0.1758

209

Total
11

18

51

88

25
193

Total
.057
.093
.264
.456
.130
.000

= O O O O O

0.172

0.000 with probability
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Row Dimensions

(Ignore Column 1)

None Light Medium Heavy
Senior Mgr. 1.000 -0.066 0.194 0.071
Junior Mgr. 1.000 0.259 0.243 -0.034
Senior Emp. 1.000 -0.381 0.011 -0.005
Junior Emp. 1.000 0.233 -0.058 0.003
Secretaries 1.000 -0.201 -0.079 -0.008

Column Dimensions
(Ignore Column 1)

None Light Medium Heavy
None 1.000 -0.393 0.030 -0.001
Light 1.000 0.099 -0.141 0.022
Medium 1.000 0.196 -0.007 -0.026
Heavy 1.000 0.294 0.198 0.026

Log Linear Screening, AXB and AXBxC Analyses

The chi-squared test is often used for testing the independence of observed frequen-
cies in a two-way table. However, there may be three classifications in which objects
counted. Moreover, one may be interested in the model that best describes the
observed values. OpenStat contains three procedures to analyzed cross-classified
data. The first is an “over-all” screening, the second is for analyzing a two-way
classification table and the third is to analyze a three-way classification table. To
demonstrate these procedures, we will use a file labeled “ABCLogLinData. TEX”
from the sample data files (Figs. 9.19, 9.20, 9.21).
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Fig. 9.20 Dialog for the A x B Log Linear Analysis
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Fig. 9.21 Dialog for the A x B x C Log Linear Analysis

The Screening Procedure

FILE: C:\Users\wgmiller\Projects\Data\ABCLogLinData.tex

Marginal Totals for Row
Level Frequency

1 63

2 84

Marginal Totals for Col
Level Frequency

1 54

2 93

Marginal Totals for Slice
Level Frequency

1 42
2 54
3 51

Total Frequencies = 147
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FILE: C:\Users\wgmiller\Projects\Data\ABCLogLinData.tex

EXPECTED CELL VALUES FOR MODEL OF COMPLETE INDEPENDENCE

Cell Observed Expected Log Expected

1 1 1 6 6.61 1.889

2 1 1 6 8.82 2.177

1 2 1 15 11.39 2.433

2 2 1 15 15.18 2.720

1 1 2 9 8.50 2.140

2 1 2 15 11.34 2.428

1 2 2 12 14.64 2.684

2 2 2 18 19.52 2.972

1 1 3 12 8.03 2.083

2 1 3 6 10.71 2.371

1 2 3 9 13.83 2.627

2 2 3 24 18.44 2.914
Chisquare = 11.310 with probability = 0.004 (DF = 2)
G squared = 11.471 with probability = 0.003 (DF = 2)
U (mu) for general loglinear model = 2.45

First Order LogLinear Model Factors and N of Cells in Each

CELL Ul N Cells Uz N Cells U3 N Cells
1 1 1 -0.144 6 -0.272 6 -0.148 4
2 1 1 0.144 6 -0.272 6 -0.148 4
1 2 1 -0.144 6 0.272 6 -0.148 4
2 2 1 0.144 6 0.272 6 -0.148 4
1 1 2 -0.144 6 -0.272 6 0.103 4
2 1 2 0.144 6 -0.272 6 0.103 4
1 2 2 -0.144 6 0.272 6 0.103 4
2 2 2 0.144 6 0.272 6 0.103 4
1 1 3 -0.144 6 -0.272 6 0.046 4
2 1 3 0.144 6 -0.272 6 0.0406 4
1 2 3 -0.144 6 0.272 6 0.0406 4
2 2 3 0.144 6 0.272 6 0.046 4

Second Order Loglinear Model Terms and N of Cells in Each

CELL Ul2 N Cells Ul3 N Cells U23 N Cells
1 1 1 -0.416 3 -0.292 2 -0.420 2
2 1 1 -0.128 3 -0.005 2 -0.420 2
1 2 1 0.128 3 -0.292 2 0.123 2
2 2 1 0.416 3 -0.005 2 0.123 2
1 1 2 -0.41¢0 3 -0.041 2 -0.169 2
2 1 2 -0.128 3 0.247 2 -0.169 2
1 2 2 0.128 3 -0.041 2 0.375 2
2 2 2 0.416 3 0.247 2 0.375 2
1 1 3 =-0.416 3 -0.098 2 -0.226 2
2 1 3 -0.128 3 0.190 2 -0.226 2
1 2 3 0.128 3 -0.098 2 0.317 2
2 2 3 0.416 3 0.190 2 0.317 2
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SCREEN FOR INTERACTIONS AMONG THE VARIABLES

Adapted from the Fortran program by Lustbader and Stodola printed in
Applied Statistics, Volume 30, Issue 1, 1981, pages 97-105 as Algorithm
AS 160 Partial and Marginal Association in Multidimensional Contingency
Tables

Statistics for tests that the interactions of a given order are zero

ORDER STATISTIC D.F. PROB.
1 15.108 4 0.004
2 6.143 5 0.293
3 5.328 2 0.070

Statistics for Marginal Association Tests

VARIABLE ASSOC. PART ASSOC. MARGINAL ASSOC. D.F. PROB
1 1 3.010 3.010 1 0.083
1 2 10.472 10.472 1 0.001
1 3 1.626 1.626 2 0.444
2 1 2.224 1.773 1 0.183
2 2 1.726 1.275 2 0.529
2 3 3.095 2.644 2 0.267

The A x B Log Linear Analysis

ANALYSES FOR AN I BY J CLASSIFICATION TABLE
Reference: G.J.G. Upton, The Analysis of Cross-tabulated Data, 1980

Cross-Products Odds Ratio = 1.583
Log odds of the cross-products ratio = 0.460

Saturated Model Results

Observed Frequencies

ROW/COL 1 2 TOTAL
1 27.00 36.00 63.00
2 27.00 57.00 84.00
TOTAL 54.00 93.00 147.00

Log frequencies, row average and column average of log frequencies

ROW/COL 1 2 TOTAL
1 3.30 3.58 3.44
2 3.30 4.04 3.67
TOTAL 3.30 3.81 3.55

Expected Frequencies

ROW/COL 1 2 TOTAL
1 27.00 36.00 63.00
2 27.00 57.00 84.00

TOTAL 54.00 93.00 147.00



Log Linear Screening, AxB and AxBxC Analyses

Cell Parameters

215

LAMBDA ROW x COL

ROW COL MU LAMBDA ROW LAMBDA COL
1 1 3.555 -0.115 -0.259 0.115
1 2 3.555 -0.115 0.259 -0.115
2 1 3.555 0.115 -0.259 -0.115
2 2 3.555 0.115 0.259 0.115
Y squared statistic for model fit = -0.000 D.F. = 0
Independent Effects Model Results
Expected Frequencies
ROW/COL 1 2 TOTAL
1 23.14 39.86 63.00
2 30.86 53.14 84.00
TOTAL 54.00 93.00 147.00
Cell Parameters
ROW COL MU LAMBDA ROW LAMBDA COL LAMBDA
1 1 3.557 -0.144 -0.272 0.000
1 2 3.557 -0.144 0.272 0.000
2 1 3.557 0.144 -0.272 0.000
2 2 3.557 0.144 0.272 0.000
Y squared statistic for model fit = 1.773 D.F. = 1

Chi-squared = 1.778 with 1 D.F.
No Column Effects Model Results

Expected Frequencies

ROW/COL 1 2 TOTAL
1 31.50 31.50 63.00
2 42.00 42.00 84.00

TOTAL 73.50 73.50 147.00

ROW x COL
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Cell Parameters

ROW COL MU LAMBDA ROW LAMBDA COL
1 1 3.594 -0.144 0.000
1 2 3.594 -0.144 0.000
2 1 3.594 0.144 0.000
2 2 3.594 0.144 0.000
Y squared statistic for model fit = 12.245 D.F
No Row Effects Model Results
Expected Frequencies
ROW/COL 1 2 TOTAL
1 27.00 46.50 73.50
2 27.00 46.50 73.50
TOTAL 54.00 93.00 147.00
Cell Parameters
ROW COL MU LAMBDA ROW LAMBDA COL
1 1 3.568 0.000 -0.272
1 2 3.568 0.000 0.272
2 1 3.568 0.000 -0.272
2 2 3.568 0.000 0.272
Y squared statistic for model fit = 4.783 D.F.

Equiprobability Effects Model Results

Expected Frequencies

ROW/COL 1 2 TOTAL
1 36.75 36.75 36.75
2 36.75 36.75 36.75
TOTAL 36.75 36.75 147.00
Cell Parameters
ROW  COL MU LAMBDA ROW LAMBDA COL
1 1 3.604 0.000 0.000
1 2 3.604 0.000 0.000
2 1 3.604 0.000 0.000
2 2 3.604 0.000 0.000

Y squared statistic for model fit

15.255 D.F.

9 Multivariate

LAMBDA ROW x COL
-0.000
-0.000
-0.000
-0.000

.= 2

LAMBDA
0.000
0.000
0.000
0.000

ROW x COL

LAMBDA ROW x COL
0.000
0.000
0.000
0.000

3
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The A x B x C Log Linear Analysis

Log-Linear Analysis of a Three Dimension Table

Observed Frequencies
1 1 1 6.000
1 2 9.000

1 1 3 12.000
1 2 1 15.000
1 2 2 12.000
1 2 3 9.000
2 1 1 6.000
2 1 2 15.000
2 1 3 6.000
2 2 1 15.000
2 2 2 18.000
2 2 3 24.000

Totals for Dimension A
Row 1 63.000
Row 2 84.000
Totals for Dimension B
Col 1 54.000

Col 2 93.000

Totals for Dimension C
Slice 1 42.000
Slice 2 54.000
Slice 3 51.000

Sub-matrix AB

ROW/COL 1 2
1 27.000 36.000
2 27.000 57.000

Sub-matrix AC

ROW/COL 1 2 3
1 21.000 21.000 21.000
2 21.000 33.000 30.000

Sub-matrix BC

ROW/COL 1 2 3
1 12.000 24.000 18.000
2 30.000 30.000 33.000



218

Saturated Model

Expected Frequencies

1 1 1 6.000

1 2 9.000

1 1 3 12.000

1 2 1 15.000

1 2 2 12.000

1 2 3 9.000

2 1 1 6.000

2 1 2 15.000

2 1 3 6.000

2 2 1 15.000

2 2 2 18.000

2 2 3 24.000

Totals for Dimension A
Row 1 63.000
Row 2 84.000

Totals for Dimension B
Col 1 54.000

Col 2 93.000

Totals for Dimension C
Slice 1 42.000
Slice 2 54.000
Slice 3 51.000

Log Frequencies

1 1 1 1.792

1 2 2.197

1 1 3 2.485

1 2 1 2.708

1 2 2 2.485

1 2 3 2.197

2 1 1 1.792

2 1 2 2.708

2 1 3 1.792

2 2 1 2.708

2 2 2 2.890

2 2 3 3.178

Totals for Dimension A
Row 1 2.311
Row 2 2.511

Totals for Dimension B
Col 1 2.128

Col 2 2.694

Totals for Dimension C
Slice 1 2.250

Slice 2 2.570

Slice 3 2.413

9 Multivariate
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Cell Parameters

ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C
LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC

1 1 1 2.411 -0.100 -0.283 -0.161

0.131 0.100 -0.175 -0.131

1 1 2 2.411 -0.100 -0.283 0.159

0.131 -0.129 0.166 -0.157

1 1 3 2.411 -0.100 -0.283 0.002

0.131 0.028 0.009 0.288

1 2 1 2.411 -0.100 0.283 -0.161

-0.131 0.100 0.175 0.131

1 2 2 2.411 -0.100 0.283 0.159

-0.131 -0.129 -0.166 0.157

1 2 3 2.411 -0.100 0.283 0.002

-0.131 0.028 -0.009 -0.288

2 1 1 2.411 0.100 -0.283 -0.161

-0.131 -0.100 -0.175 0.131

2 1 2 2.411 0.100 -0.283 0.159

-0.131 0.129 0.166 0.157

2 1 3 2.411 0.100 -0.283 0.002

-0.131 -0.028 0.009 -0.288

2 2 1 2.411 0.100 0.283 -0.161

0.131 -0.100 0.175 -0.131

2 2 2 2.411 0.100 0.283 0.159

0.131 0.129 -0.166 -0.157

2 2 3 2.411 0.100 0.283 0.002

0.131 -0.028 -0.009 0.288

G squared statistic for model fit = 0.000 D.F. = 0

Model of Independence

Expected Frequencies

1 1 1 6.612
8.501
8.029
11.388
14.641
13.828
8.816
11.335
10.706
15.184
19.522
18.437

NN NDDNDNDNE PP P
NMNNMNNMNRERERPRPERPRNDNNDNDRE R
WNE WNDNE WNDE WN
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Totals for Dimension A
Row 1 63.000
Row 2 84.000
Totals for Dimension B
Col 1 54.000
Col 2 93.000
Totals for Dimension C

Slice 1 42.000
Slice 2 54.000
Slice 3 51.000

Log Frequencies

1 1 1 1.889
1 1 2 2.140
1 1 3 2.083
1 2 1 2.433
1 2 2 2.684
1 2 3 2.627
2 1 1 2.177
2 1 2 2.428
2 1 3 2.371
2 2 1 2.720
2 2 2 2.972
2 2 3 2.914

Totals for Dimension A

Row 1 2.309

Row 2 2.597

Totals for Dimension B
Col 1 2.181

Col 2 2.725

Totals for Dimension C
Slice 1 2.305

Slice 2 2.556

Slice 3 2.499

9 Multivariate
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Cell Parameters

ROW

COL

SLICE

LAMBDA AB
.453
.000
.453
.000
.453
.000
.453
.000
.453
.000
.453
.000
.453
.000
.453
.000
.453
.000
.453
.000
.453
.000
.453
.000

MU

O N ODNONONONODNONONONONONDN

|
o N

LAMBDA A LAMBDA B
LAMBDA AC LAMBDA BC
-0.144 -0.272
0.000 0.000
-0.144 -0.272
-0.000 0.000
-0.144 -0.272
0.000 0.000
-0.144 0.272
0.000 0.000
-0.144 0.272
-0.000 -0.000
-0.144 0.272
0.000 -0.000
0.144 -0.272
0.000 0.000
0.144 -0.272
-0.000 0.000
0.144 -0.272
0.000 0.000
0.144 0.272
0.000 0.000
0.144 0.272
-0.000 -0.000
0.144 0.272
0.000 -0.000

= 11.471 D.F. =

G squared statistic for model fit

No AB Effect

Expected Frequencies

1

NN NDDNDNDNE PP P

1

NMNNMNNMNRERERPRPERPRNDNNDNDRE R

1

WNE WNDNE WNDE WN

6.
9.
7.
15.
11.
13.
6.
14.
10.
15.
18.
19.

000
333
412
000
667
588
000
667
588
000
333
412

7
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LAMBDA C
LAMBDA ABC

O O O O OO OO0 OO0 oo o oo oo

0.
0.
0.
0.

148
000
103
000

0.046

.000
.148
.000
.103
.000
.046
.000
.148
.000
.103
.000
.046
.000
.148
.000
.103
.000
.046
.000
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Totals for Dimension A
Row 1 63.000
Row 2 84.000
Totals for Dimension B
Col 1 54.000
Col 2 93.000
Totals for Dimension C

Slice 1 42.000
Slice 2 54.000
Slice 3 51.000

Log Frequencies

1 1 1 1.792
1 1 2 2.234
1 1 3 2.003
1 2 1 2.708
1 2 2 2.457
1 2 3 2.609
2 1 1 1.792
2 1 2 2.686
2 1 3 2.360
2 2 1 2.708
2 2 2 2.909
2 2 3 2.966

Totals for Dimension A

Row 1 2.300

Row 2 2.570

Totals for Dimension B

Col 1 2.144

Col 2 2.726

Totals for Dimension C
Slice 1 2.250

Slice 2 2.571

Slice 3 2.484

9 Multivariate
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Cell Parameters

ROW

COL

SLICE

LAMBDA AB
.435
.000
.435
.000
.435
.000
.435
.000
.435
.000
.435
.000
.435
.000
.435
.000
.435
.000
.435
.000
.435
.000
.435
.000

MU

O DNODNONONONONONMNONMNONONMONONDN

LAMBDA A LAMBDA B
LAMBDA AC LAMBDA BC
-0.135 -0.291
0.135 -0.167
-0.135 -0.291
-0.091 0.179
-0.135 -0.291
-0.044 -0.012
-0.135 0.291
0.135 0.167
-0.135 0.291
-0.091 -0.179
-0.135 0.291
-0.044 0.012
0.135 -0.291
-0.135 -0.167
0.135 -0.291
0.091 0.179
0.135 -0.291
0.044 -0.012
0.135 0.291
-0.135 0.167
0.135 0.291
0.091 -0.179
0.135 0.291
0.044 0.012

= 7.552 D.F. = 3

G squared statistic for model fit

No AC Effect

Expected Frequencies

1

NN NDNDNDNDNRE PP P

1

NMNNMNNMNRERERPRPRERPNDNNDNDRE R

1

WNE WNDNE WNDE WwN

6.
.000

9.
11.
11.
12.

6.
12.

9.
18.
18.
20.

12

000

000
613
613
774
000
000
000
387
387
226

223

LAMBDA C
LAMBDA ABC

-0.
.000
.136
.000
.049
.000
.185
.000
.136
.000
.049
.000
.185
.000
.136
.000
.049
.000
.185
.000
.136
.000
.049
.000

o

[ | [
O O O O OO OO OO0 0ooooooo

o O O o

185
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Totals for Dimension A
Row 1 63.000
Row 2 84.000
Totals for Dimension B
Col 1 54.000
Col 2 93.000
Totals for Dimension C

Slice 1 42.000
Slice 2 54.000
Slice 3 51.000

Log Frequencies

1 1 1 1.792
1 1 2 2.485
1 1 3 2.197
1 2 1 2.452
1 2 2 2.452
1 2 3 2.547
2 1 1 1.792
2 1 2 2.485
2 1 3 2.197
2 2 1 2.912
2 2 2 2.912
2 2 3 3.007

Totals for Dimension A

Row 1 2.321

Row 2 2.551

Totals for Dimension B
Col 1 2.158

Col 2 2.714

Totals for Dimension C
Slice 1 2.237

Slice 2 2.583

Slice 3 2.487

9 Multivariate
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Cell Parameters

ROW

COL

SLICE

LAMBDA AB

MU

2.

O DN ODNONONODNODNONONODNODNODNO

436

.115
.436
.115
.436
.115
.436
.115
.436
.115
.436
.115
.436
.115
.436
.115
.436
.115
.436
.115
.436
.115
.436
.115

LAMBDA A LAMBDA B
LAMBDA AC LAMBDA BC
-0.115 -0.278
0.000 -0.167
-0.115 -0.278
0.000 0.179
-0.115 -0.278
-0.000 -0.012
-0.115 0.278
0.000 0.167
-0.115 0.278
0.000 -0.179
-0.115 0.278
-0.000 0.012
0.115 -0.278
0.000 -0.167
0.115 -0.278
0.000 0.179
0.115 -0.278
0.000 -0.012
0.115 0.278
0.000 0.167
0.115 0.278
0.000 -0.179
0.115 0.278
0.000 0.012

= 7.055 D.F. = 4

G squared statistic for model fit

No BC Effect

Expected Frequencies

1

NN NDDNDNDNE PP P

1

NMNNMNNMNRERERPRPEPRPNDNNDNDRE R

1

WNE WNE WNDE WwN

9.
9.
9.
12.
12.
12.
6.
10.
9.
14.
22.
20.

000
000
000
000
000
000
750
607
643
250
393
357
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LAMBDA C
LAMBDA ABC

-0.
.000
.148
.000
.051
.000
.199
.000
.148
.000
.051
.000
.199
.000
.148
.000
.051
.000
.199
.000
.148
.000
.051
.000

o

| | [ | [
O O O O OO OO0 OO0 OO0 Ooo0oo oo oo

199
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Totals for Dimension A
Row 1 63.000
Row 2 84.000
Totals for Dimension B
Col 1 54.000
Col 2 93.000
Totals for Dimension C

Slice 1 42.000
Slice 2 54.000
Slice 3 51.000

Log Frequencies

1 1 1 2.197
1 1 2 2.197
1 1 3 2.197
1 2 1 2.485
1 2 2 2.485
1 2 3 2.485
2 1 1 1.910
2 1 2 2.362
2 1 3 2.266
2 2 1 2.657
2 2 2 3.109
2 2 3 3.013
Totals for Dimension A
Row 1 2.341

Row 2 2.553

Totals for Dimension B
Col 1 2.188

Col 2 2.706

Totals for Dimension C
Slice 1 2.312

Slice 2 2.538

Slice 3 2.490

9 Multivariate
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Cell Parameters

ROW

COL

SLICE

MU
LAMBDA AB

2.

O DN ODNONONODNODNONONODNODNODNO

447

.115
.447
.115
.447
.115
.447
.115
.447
.115
.447
.115
.447
.115
.447
.115
.447
.115
.447
.115
.447
.115
.447
.115

LAMBDA A LAMBDA B
LAMBDA AC LAMBDA BC
-0.106 -0.259
0.135 0.000
-0.106 -0.259
-0.091 0.000
-0.106 -0.259
-0.044 -0.000
-0.106 0.259
0.135 -0.000
-0.106 0.259
-0.091 -0.000
-0.106 0.259
-0.044 -0.000
0.106 -0.259
-0.135 0.000
0.106 -0.259
0.091 0.000
0.106 -0.259
0.044 -0.000
0.106 0.259
-0.135 -0.000
0.106 0.259
0.091 -0.000
0.106 0.259
0.044 -0.000

= 8.423 D.F. = 4

G squared statistic for model fit

Model of No Slice

(C)

Expected Frequencies

1

NN NDDNDNDNE PP P

1

NMNNMNNMNRERERPRPERPRNDNNDNDRE R

1

WNE WNDNE WNDE WN

7.

7.

7.
13.
13.
13.
10.
10.
10.
17.
17.
17.

714
714
714
286
286
286
286
286
286
714
714
714

effect
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LAMBDA C
LAMBDA ABC

O O O O OO OO0 OO0 oooooo

0.
0.
0.
0.
0.
.000
.135
.000
.091
.000
.044
.000
.135
.000
.091
.000
.044
.000
.135
.000
.091
.000
.044
.000

o

135
000
091
000
044
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Totals for Dimension A
Row 1 63.000
Row 2 84.000
Totals for Dimension B
Col 1 54.000
Col 2 93.000
Totals for Dimension C

Slice 1 49.000
Slice 2 49.000
Slice 3 49.000

Log Frequencies

1 1 1 2.043
1 1 2 2.043
1 1 3 2.043
1 2 1 2.587
1 2 2 2.587
1 2 3 2.587
2 1 1 2.331
2 1 2 2.331
2 1 3 2.331
2 2 1 2.874
2 2 2 2.874
2 2 3 2.874

Totals for Dimension A

Row 1 2.315

Row 2 2.603

Totals for Dimension B
Col 1 2.187

Col 2 2.731

Totals for Dimension C
Slice 1 2.459

Slice 2 2.459

Slice 3 2.459

9 Multivariate
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Cell Parameters

ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C
LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC

1 1 1 2.459 -0.144 -0.272 0.000

0.000 0.000 0.000 -0.000

1 1 2 2.459 -0.144 -0.272 0.000

0.000 0.000 0.000 -0.000

1 1 3 2.459 -0.144 -0.272 0.000

0.000 0.000 0.000 -0.000

1 2 1 2.459 -0.144 0.272 0.000

0.000 0.000 0.000 0.000

1 2 2 2.459 -0.144 0.272 0.000

0.000 0.000 0.000 0.000

1 2 3 2.459 -0.144 0.272 0.000

0.000 0.000 0.000 0.000

2 1 1 2.459 0.144 -0.272 0.000

0.000 0.000 0.000 -0.000

2 1 2 2.459 0.144 -0.272 0.000

0.000 0.000 0.000 -0.000

2 1 3 2.459 0.144 -0.272 0.000

0.000 0.000 0.000 -0.000

2 2 1 2.459 0.144 0.272 0.000

-0.000 0.000 0.000 0.000

2 2 2 2.459 0.144 0.272 0.000

-0.000 0.000 0.000 0.000

2 2 3 2.459 0.144 0.272 0.000

-0.000 0.000 0.000 0.000

G squared statistic for model fit = 13.097 D.F. = 9

Model of no Column (B) effect

Expected Frequencies
1 1 1 9.000
11.571
10.929
9.000
11.571
10.929
12.000
15.429
14.571
12.000
15.429
14.571

NN DNDDDNDNDNE PP
NMNNMNNMNRERERPRPERPNDNNDNDRE R
WNE WNDNE WNDE WwWN
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Totals for Dimension A
Row 1 63.000
Row 2 84.000
Totals for Dimension B
Col 1 73.500
Col 2 73.500
Totals for Dimension C

Slice 1 42.000
Slice 2 54.000
Slice 3 51.000

Log Frequencies

1 1 1 2.197
1 1 2 2.449
1 1 3 2.391
1 2 1 2.197
1 2 2 2.449
1 2 3 2.391
2 1 1 2.485
2 1 2 2.736
2 1 3 2.679
2 2 1 2.485
2 2 2 2.736
2 2 3 2.679

Totals for Dimension A
Row 1 2.346

Row 2 2.633

Totals for Dimension B
Col 1 2.490

Col 2 2.490

Totals for Dimension C
Slice 1 2.341

Slice 2 2.592

Slice 3 2.535

9 Multivariate
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Cell Parameters

ROW

COL

SLICE

LAMBDA AB
.490
.000
.490
.000
.490
.000
.490
.000
.490
.000
.490
.000
.490
.000
.490
.000
.490
.000
.490
.000
.490
.000
.490
.000

MU

ODNODNONONONONONMNMNONMNONONMONONDN

LAMBDA A LAMBDA
LAMBDA AC LAMBDA BC
-0.144 -0.000
0.000 0.000
-0.144 -0.000
0.000 0.000
-0.144 -0.000
0.000 0.000
-0.144 -0.000
0.000 0.000
-0.144 -0.000
0.000 0.000
-0.144 -0.000
0.000 0.000
0.144 -0.000
0.000 0.000
0.144 -0.000
0.000 0.000
0.144 -0.000
0.000 0.000
0.144 -0.000
0.000 0.000
0.144 -0.000
0.000 0.000
0.144 -0.000
0.000 0.000

= 21.943 D.F. =

G squared statistic for model fit

Model of no Row (A)

effect

Expected Frequencies

1

NN NDDNDNDNE PP P

1

NMNNMNNMNRERERPRPERPRNDNNDNDRE R

1

WNE WNDNE WNDE WN

7.
9.
9.
13.
17.
16.
7.
9.
9.
13.
17.
16.

714
918
367
286
082
133
714
918
367
286
082
133

8
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B LAMBDA C
LAMBDA ABC

-0.
-0.

0.
-0.
.046
.000
.148
.000
.103
.000
.046
.000
.148
.000
.103
.000
.046
.000
.148
.000
.103
.000
.046
.000

148
000
103
000
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Totals for Dimension A
Row 1 73.500
Row 2 73.500
Totals for Dimension B
Col 1 54.000
Col 2 93.000
Totals for Dimension C

Slice 1 42.000
Slice 2 54.000
Slice 3 51.000

Log Frequencies

1 1 1 2.043
1 1 2 2.294
1 1 3 2.237
1 2 1 2.587
1 2 2 2.838
1 2 3 2.781
2 1 1 2.043
2 1 2 2.294
2 1 3 2.237
2 2 1 2.587
2 2 2 2.838
2 2 3 2.781

Totals for Dimension A

Row 1 2.463

Row 2 2.463

Totals for Dimension B
Col 1 2.192

Col 2 2.735

Totals for Dimension C
Slice 1 2.315

Slice 2 2.566

Slice 3 2.509

9 Multivariate
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Cell Parameters

ROW

COL

SLICE

LAMBDA AB

MU

2.

|
O N ODNONONMNONODNONONMODNODNO

|
o N

463

.000
.463
.000
.463
.000
.463
.000
.463
.000
.463
.000
.463
.000
.463
.000
.463
.000
.463
.000
.463
.000
.463
.000

LAMBDA A LAMBDA B
LAMBDA AC LAMBDA BC
0.000 -0.272
-0.000 0.000
0.000 -0.272
-0.000 0.000
0.000 -0.272
-0.000 0.000
0.000 0.272
-0.000 0.000
0.000 0.272
-0.000 0.000
0.000 0.272
-0.000 0.000
0.000 -0.272
-0.000 0.000
0.000 -0.272
-0.000 0.000
0.000 -0.272
-0.000 0.000
0.000 0.272
-0.000 0.000
0.000 0.272
-0.000 0.000
0.000 0.272
-0.000 0.000

= 14.481 D.F. =

G squared statistic for model fit

Equi-probability Model

Expected Frequencies

1

NN NDDNDNDNE PP P

1

NMNNMNNMNRERERPRPERPRNDNNDNDRE R

1

WNE WNDNE WNDE WN

12.

12

12

250

.250
12.
12.
12.
12.
12.
12.

250
250
250
250
250
250

.250
12.
12.
12.

250
250
250

8
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LAMBDA C
LAMBDA ABC

O O O O OO OO0 OO0 OO0 oOooooo oo

0.
.000
.103
.000
.046
.000
.148
.000
.103
.000
.046
.000
.148
.000
.103
.000
.046
.000
.148
.000
.103
.000
.046
.000

o

148
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Totals for Dimension A
Row 1 73.500
Row 2 73.500
Totals for Dimension B
Col 1 73.500
Col 2 73.500
Totals for Dimension C

Slice 1 49.000
Slice 2 49.000
Slice 3 49.000

Log Frequencies

1 1 1 2.506
1 1 2 2.506
1 1 3 2.506
1 2 1 2.506
1 2 2 2.506
1 2 3 2.506
2 1 1 2.5006
2 1 2 2.506
2 1 3 2.506
2 2 1 2.506
2 2 2 2.506
2 2 3 2.506

Totals for Dimension A

Row 1 2.506

Row 2 2.506

Totals for Dimension B
Col 1 2.506

Col 2 2.506

Totals for Dimension C
Slice 1 2.506

Slice 2 2.506

Slice 3 2.506

9 Multivariate
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Cell Parameters

ROW COL SLICE MU LAMBDA A LAMBDA B LAMBDA C
LAMBDA AB LAMBDA AC LAMBDA BC LAMBDA ABC

1 1 1 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

1 1 2 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

1 1 3 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

1 2 1 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

1 2 2 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

1 2 3 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

2 1 1 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

2 1 2 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

2 1 3 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

2 2 1 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

2 2 2 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

2 2 3 2.506 0.000 0.000 0.000
0.000 0.000 0.000 0.000

G squared statistic for model fit = 26.579 D.F. = 11
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Non-parametric

Contingency Chi-Square
Example Contingency Chi Square

In this example we will use the data file ChiData.txt which consists of two columns
of data representing the row and column of a three by three contingency table. The
rows represent each observation with the row and column of that observation
recorded in columns one and two. We begin by selecting the Statistics/Non
Parametric / Contingency Chi Square option of the menu. The following figure
(Fig. 10.1) demonstrates that the row and column labels have been selected for the
option of reading a data file containing individual cases. We have also elected all
options except saving the frequency file.

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_10, 237
© Springer Science+Business Media New York 2013
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Contingency Chi-Squared

Input Dptions:

(* Count cases classified by row and column vectors in the data grid

" Use frequencies recorded in the data grid for row and column variables
" Use proportions recorded in the data grid for row and column variables

:I IT::VM = I
Column Variable: i’
‘:!d |col Compute I
Variable to Analyze: Retum |

OutPut Options:
[V Show Observed Frequencies
[V Show Expected Frequencies
[V Show Row and Column Proportions
[¥ Show Cell Chi-Square Value

[ {Uise Yates Comection [~ Save afile of Frequency Data

Fig. 10.1 Contingency Chi-Square Dialog form

When we click the compute button, we obtain the results shown below:

Chi-square Analysis Results
OBSERVED FREQUENCIES

Rows
Variables
COL.1 COL.2 COL.3 COL.4 Total
Row 1 5 5 5 5 20
Row 2 10 4 7 3 24
Row 3 5 10 10 2 27
Total 20 19 22 10 71

EXPECTED FREQUENCIES with 71 valid cases.

Variables
COL.1 COL.2 COL.3 COL.4
Row 1 5.634 5.352 6.197 2.817
Row 2 6.761 6.423 7.437 3.380
Row 3 7.606 7.225 8.366 3.803

ROW PROPORTIONS with 71 valid cases.




Contingency Chi-Square

Variables

Row 1
Row 2
Row 3
Total

Variables

Row 1
Row 2
Row 3
Total

Variables

Row 1
Row 2
Row 3
Total

Variables

Row 1

Row 2

Row 3
Chi-square =

CoL.1
0.250
0.417
0.185
0.282

COLUMN PROPORTIONS with

COL.1 COL.
0.250
0.500
0.250
1.000

COoL.1
0.070
0.141
0.070
0.282

COL.1
0.071
1.552
0.893
7.684 with

COL.2
0.250
0.167
0.370
0.268

71 valid cases.

COL.3
0.250
0.292
0.370
0.310

2 COL.3 COL.4
0.263 0.227
0.211 0.318
0.526 0.455
1.000 1.000

PROPORTIONS OF TOTAL N with 71

COL.2
0.070
0.056
0.141
0.268

COL.2
0.023
0.914
1.066
D.F. =

COL.4
0.250
0.125
0.074
0.141

Total
0.500
0.300
0.200
1.000

valid cases.

COL.3
0.070
0.099
0.141
0.310

COL.3
0.231
0.026
0.319
6. Prob.

COL.4
0.070
0.042
0.028
0.141

CHI-SQUARED VALUE FOR CELLS with 71 valid cases.

COL.4
1.692
0.043
0.855
> value =

239

Total
1.000
.000
.000
.000

e

.282
.338
.380
.000

— O O O

Total
0.282
.338
.380
.000

= O O

0.262

It should be noted that the user has the option of reading data in three different
formats. We have shown the first format where individual cases are classified by
row and column. It is sometimes more convenient to record the actual frequencies
in each row and cell combination. Examine the file labeled ChiSquareOne. TXT for
such an example. Sometimes the investigator may only know the cell proportions
and the total number of observations. In this case the third file format may be used
where the proportion in each row and column combination are recorded. See the
example file labeled ChiSquareTwo. TXT.



240 10 Non-parametric

Spearman Rank Correlation

Example Spearman Rank Correlation

We will use the file labeled Spearman.txt for our example. The third variable repre-
sents rank data with ties. Select the Statistics/Non Parametric/Spearman Rank
Correlation option from the menu. Shown below is the specification form for the
analysis (Fig. 10.2):

Spearman Rank Correlation I x|

Variables Available: Note: A maximum of 200
VAR1 cases may be analyzed.

X Variable:

:I I'VAF{2

Y Variable:

:I [VAR3

Resst | Cancel |

Fig. 10.2 The Spearman Compute I Retun I
rank correlation dialog
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When we click the Compute button we obtain:

Spearman Rank Correlation Between VAR2 & VAR3
Observed scores, their ranks and differences between ranks

VAR2 Ranks VAR3 Ranks Rank Difference
42.00 3.00 0.00 1.50 1.50
46.00 4.00 0.00 1.50 2.50
39.00 2.00 1.00 3.50 -1.50
37.00 1.00 1.00 3.50 -2.50
65.00 8.00 3.00 5.00 3.00
88.00 11.00 4.00 6.00 5.00
86.00 10.00 5.00 7.00 3.00
56.00 6.00 6.00 8.00 -2.00
62.00 7.00 7.00 9.00 -2.00
92.00 12.00 8.00 10.50 1.50
54.00 5.00 8.00 10.50 -5.50
81.00 9.00 12.00 12.00 -3.00

Spearman Rank Correlation = 0.615

t-test value for hypothesis r = 0 is 2.467
Probability > t = 0.0333

Notice that the original scores have been converted to ranks and where ties exist
they have been averaged.

Mann-Whitney U Test

As an example, load the file labeled MannWhitU.txt and then select the option
Statistics/Non Parametric/Mann-Whitney U Test from the menu. Shown below is
the specification form in which we have indicated the analysis to perform
(Fig. 10.3):
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Fig. 10.3 The Mann-

Whitney U Test dialog form

Upon clicking the Compute button you obtain:

Mann-Whitney U Test
See pages 116-127 in
Behavioral Sciences

Score

G 00 00 0 J JJJJo o

e
O OO o o WV

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

Rank

o O o U U o0

[ = N = Sy =Y
oo o N O

.50
.50
.00
.00
.00
.00
.00
.50
.50
.50
.50
.00
.00
.00
.00
.00
.00

Mann-Whitney U Test X l]

Variables Available:

10 Non-parametric

Group Variable
G
< P

Dependent Variable:
IScote
-

Reset | Concel |

Compute | Retm |

S. Siegel: Nonparametric Statistics for the

Group

EFNONNERERRPRNNRE R B R RP RN
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10.00 16.00 1
10.00 16.00 1
11.00 20.50 2
11.00 20.50 2
12.00 24.50 2
12.00 24.50 2
12.00 24.50 2
12.00 24.50 2
12.00 24.50 1
12.00 24.50 1
13.00 29.50 1
13.00 29.50 2
13.00 29.50 2
13.00 29.50 2
14.00 33.00 2
14.00 33.00 2
14.00 33.00 2
15.00 36.00 2
15.00 36.00 2
15.00 36.00 2
16.00 38.00 2
17.00 39.00 2

Sum of Ranks in each Group

Group Sum No. in Gr
1 200.00 16
2 580.00 23
No. of tied rank groups = 9
Statistic U = 304.0000
z Statistic (corrected for ties) = 3.4262, Prob. > z = 0.0003
Fisher’s Exact Test

When you elect the Statistics/NonParametric / Fisher’s Exact Test option from the
menu, you are shown a specification form which provides for four different formats
for entering data. We have elected the last format (entry of frequencies on the form
itself) (Fig. 10.4):
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st for a 2 by 2 Table

Fig. 10.4 Fisher’s Exact Test dialog form

When we click the Compute button we obtain:

10 Non-parametric

Fisher Exact Probability Test
Contingency Table for Fisher Exact Test

Column
Row 1 2
1 2 8
2 4 5
Probability := 0.2090
Cumulative Probability := 0.2090

Contingency Table for Fisher Exact Test

Column
Row 1 2
1 1 9
2 5 4

Probability := 0.0464

Cumulative Probability := 0.2554
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Contingency Table for Fisher Exact Test

Column
Row 1 2
1 0 10
2 6 3

Probability := 0.0031
Cumulative Probability := 0.2585

Tocher ratio computed: 0.002
A random value of 0.893 selected was greater than the Tocher value.
Conclusion: Accept the null Hypothesis

Notice that the probability of each combination of cell values as extreme or more
extreme than that observed is computed and the probabilities summed.

Alternative formats for data files are the same as for the Contingency Chi Square
analysis discussed in the previous section.

Kendall’s Coefficient of Concordance

Our example analysis will use the file labeled Concord2.txt . Load the file and select
the Statistics / NonParametric/Coefficient of Concordance option. Shown below is
the form completed for the analysis (Fig. 10.5):

Kendal's Coefficient of Concordance _ﬁl

Available Vanables: Selected Variables: Directions: Judge ratings of
VAR1 observations are recorded
VAR2 as Variables (columns) 1 through k.
VAR3 Each line conesponds to a different
VAR4 |iudge (person rating.) Select the
. | |[VARS vanables from the left kst to analyze
~ | |vaRe and click on the right aow.
VAR7 Click on the left armow to remove any
VARS variables NOT to be analyzed. Chck
. on the Compute button to obtain the
! results. Up to 200 judges ratings
| may be analyzed.
Reset | Cencel |
Compute | Retumn I

Fig. 10.5 Kendal’s coefficient of concordance
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Clicking the Compute button results in the following output:

If you are observing competition in the Olympics or other athletic competitions,
it is fun to record the judge’s scores and examine the degree to which there is agree-
ment among them!

Kendall Coefficient of Concordance Analysis
Ranks Assigned to Judge Ratings of Objects

Judge 1 Objects
VAR1 VAR2 VAR3 VAR4 VARS VARG VAR7 VARS8
12.0 1.5000 3.5000 3.5000 5.5000 5.5000 7.0000 8.0000

Judge 2 Objects
VAR1 VAR2 VAR3 VAR4 VARS VARG VAR7 VARS8
12.0 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

Judge 3 Objects
VAR1 VAR2 VAR3 VAR4 VARS VARG VAR7 VARS8
12.0 2.5000 2.5000 2.5000 6.5000 6.5000 6.5000 6.5000

Sum of Ranks for Each Object Judged

Objects
VARl VAR2 VAR3 VAR4 VAR5 VARG VAR7 VARS8
12.0 6.0000 9.0000 10.0000 17.0000 18.0000 20.5000 22.5000

Coefficient of concordance := 0.942

Average Spearman Rank Correlation := 0.913
Chi-Square Statistic := 19.777

Probability of a larger Chi-Square := 0.0061

Kruskal-Wallis One-Way ANOVA

As an example, load the file labeled kwanova.txt into the data grid and select the

menu option for the analysis. Below is the form and the results of the analysis
(Fig. 10.6):



Kruskal-Wallis One-Way ANOVA

/* Kiuskal-Wallis One Way Anova on Rasai™ (=] 1|

Variables Available:

| :_l [Group

Group Varable

Dependent Variable:

:I [S core

Reset Cancel

Compute Retun

Fig. 10.6 Kruskal-Wallis one way ANOVA on ranks dialog

Kruskal - Wallis One-Way Analysis of Variance
See pages 184-194 in S. Siegel: Nonparametric Statistics for the
Behavioral Sciences

Score

61.
82.
83.

96

101.
109.

115
124

128.
132.

135
147

149.

166

00
00
00
.00
00
00
.00
.00
00
00
.00
.00
00
.00

Rank

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

O J oy U W N

N e e
S W NP O W

Group

W W WNDNNDNEDNDWNDRERRFEDNDRE
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Sum of Ranks in each Group
Group Sum No. in Group
1 22.00 5
2 37.00 5
3 46.00 4
No. of tied rank groups = 0
Statisic H uncorrected for ties = 6.4057
Correction for Ties = 1.0000
Statistic H corrected for ties = 6.4057
Corrected H is approx. chi-square with 2 D.F. and probability = 0.0406

Wilcoxon Matched-Pairs Signed Ranks Test

Our example uses the file labeled Wilcoxon.txt. Load this file and select the Statistics/
NonParametric/Wilcoxon Matched-Pairs Signed Ranks Test option from the menu.
The specification form and results are shown below (Fig. 10.7):

Variables Available:

Compute | Retun |

Directions: First, click on one of the variables representing
matched pairs of observations from the list of available
variables. Click the right-pointingbutton to enter your choice
for variable 1. Repeat for the second variable. Click the
Compute button to obtain the results.

. . Note: A maximum of 200 cases may be analyzed.
Fig. 10.7 Wilcoxon matched

pairs signed ranks test dialog
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The Wilcoxon Matched-Pairs Signed-Ranks Test
See pages 75-83 in S. Seigel: Nonparametric Statistics for the

Social Sciences

Ordered Cases with cases having 0 differences eliminated:

Number of cases with absolute differences greater than 0 = 10
CASE VAR1 VAR2 Difference Signed Rank
3 73.00 74.00 -1.00 -1.00
8 65.00 62.00 3.00 2.00
7 76.00 80.00 -4.00 -3.00
4 43.00 37.00 6.00 4.00
5 58.00 51.00 7.00 5.00
6 56.00 43.00 13.00 6.50
10 56.00 43.00 13.00 6.50
9 82.00 63.00 19.00 8.50
1 82.00 63.00 19.00 8.50
2 69.00 42.00 27.00 10.00
Smaller sum of ranks (T) = 4.00

Approximately normal z for test statistic T = 2.395
Probability (l-tailed) of greater z = 0.0083
NOTE: For N < 25 use tabled values for Wilcoxon Test

Cochran Q Test

Load the file labeled Qtest.txt and select the Statistics/NonParametric/Cochran Q
Test option from the menu. Shown below is the specification form completed for the
analysis of the file data and the results obtained when you click the Compute button
(Fig. 10.8):

Cochran Q Test z’

Available Variables: Selected Variables: [Directions: Two to k variables
View] repesenting dichotomous (0,1)

E View?2 values are analyzed for N

View3 cases. The values of the

variables reflect repeated

< observations on the same

subjects or on matched
. subjects. Click the variables
on the left to analyzed and
enter them by clicking the

ALL right arrow button.
Reset |  Cancel |
Compute | Retun |

Fig. 10.8 Cochran Q Test Dialog form
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Cochran Q Test for Related Samples

See pages 161-166 in S. Siegel: Nonparametric Statistics for the
Behavioral Sciences

McGraw-Hill Book Company, New York, 1956

Cochran Q Statistic = 16.667
which is distributed as chi-square with 2 D.F. and probability = 0.0002

Sign Test

The file labeled SignTest.txt contains male and female cases in which have been
matched on relevant criteria and observations have been made on a 5-point Likert-
type instrument. The program will compare the two scores for each pair and assign
a positive or negative difference indicator. Load the file into the data grid and select
the Statistics/NonParametric/Sign Test option. Shown below is the specification
form which appears and the results obtained when clicking the Compute button
(Fig. 10.9):

The Matched Pairs Sign Test x|

Variables Available:

anable 1:

»
o

Variable 2
M
-
Reset Cancel
Compute Retumn

Directions: First, click on one of the varnables representing
matched pairs of observations from the list of available
varnables. Click the right-pointing button to enter your
choice for variable 1. Repeat for the second vanable.
|Click the Compute button to obtain the results.

Fig. 10.9 The matched pairs sign test dialog
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Results for the Sign Test

Frequency of 11 out of 17 observed + sign differences.

Frequency of 3 out of 17 observed - sign differences.

Frequency of 3 out of 17 observed no differences.

The theoretical proportion expected for +’s or -'s is 0.5

The test is for the probability of the +’s or -’s (which ever is fewer)
as small or smaller than that observed given the expected proportion.

Binary Probability of 0 = 0.0001
Binary Probability of 1 = 0.0009
Binary Probability of 2 = 0.0056
Binary Probability of 3 = 0.0222

Binomial Probability of 3 or smaller out of 14 = 0.0287

Friedman Two Way ANOVA

For an example analysis, load the file labeled Friedman.txt and select Statistics /
NonParametric / Friedman Two Way ANOVA from the menu. The data represent
four treatments or repeated measures for three groups, each containing one subject.
Shown below is the specification form and the results following a click of the
Compute button (Fig. 10.10):

The Friedman Two-Way ANOVA on Ranks -_ 5'

Available Variables: Directions: The two-way ANOVA on
. ranks is similar to a mixed design
Group Variable: ANOVA with repeated measures
Group (1 to k conditions) on subjects in 1 to
—I |M groups. The program expects one
- varniable to represent the group code,
and 1 to k score vanables for each
case. The scores for the cases in

Treatment Variables: each group are used to obtain

Cond.1 rankings among the k scores
Cond.2 within each group. The test is
:, Cond.3 whether or not the rank totals for
Cond.4 |the conditions are equal within the
expected sampling variability.

First, select and enter the one
vatiable representing the group
codes. Nest, select the two or more
treatment variables. Click on the
Compute button to obtain results.

Reset | Cancel | Compute | Retm |

Fig. 10.10 The Friedman Two-Way ANOVA dialog
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FRIEDMAN TWO-WAY ANOVA ON RANKS
See pages 166-173 in S. Siegel’s Nonparametric Statistics
for the Behavioral Sciences, McGraw-Hill Book Co., New York, 1956

Treatment means - values to be ranked. with 3 valid cases.
Variables

Cond.1 Cond.2 Cond.3 Cond. 4

Group 1 9.000 4.000 1.000 7.000

Group 2 6.000 5.000 2.000 8.000

Group 3 9.000 1.000 2.000 6.000

Number in each group’s treatment.

GROUP
Variables
Cond.1 Cond.2 Cond.3 Cond. 4
Group 1 1 1 1 1
Group 2 1 1 1 1
Group 3 1 1 1 1
Score Rankings Within Groups with 3 valid cases.
Variables
Cond.1 Cond.2 Cond.3 Cond. 4
Group 1 4.000 2.000 1.000 3.000
Group 2 3.000 2.000 1.000 4.000
Group 3 4.000 1.000 2.000 3.000
TOTAL RANKS with 3 wvalid cases.
Variables Cond.1 Cond.?2 Cond.3 Cond. 4
11.000 5.000 4.000 10.000
Chi-square with 3 D.F. := 7.400 with probability := 0.0602

Chi-square too approximate-use exact table (TABLE N)
page 280-281 in Siegel

Probability of a Binomial Event

Select the Statistics/NonParametric/Binomial Probability option from the menu.
Enter the values as shown in the specification form below and press the Compute
button to obtain the shown results (Fig. 10.11).
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e bty divoe

probability dialog Binomial Probability Calculator ! 5’
Frequency of events observed in category 'A':Iz_
Frequency of events observed in category 'El:|1

Plopodionofeverismtpecledhcaleguyh‘:l_s

Reset | Concel [ Compute [ Retum |

Binomial Probability Test

Frequency of 2 out of 3 observed

The theoretical proportion expected in category A is 0.500
The test is for the probability of a value in category A as small
or smaller

than that observed given the expected proportion.

Probability of 0 = 0.1250

Probability of 1 = 0.3750

Probability of 2 = 0.3750

Binomial Probability of 2 or less out of 3 = 0.8750

Runs Test

EXAMPLE:
The figure below (Fig. 10.12) shows a data set with 14 values in a file labeled
“RunsTest.tab”. The Runs Test option was selected from the NonParametric sub-
menu under the Analyses menu. The next figure (Fig. 10.13) displays the dialogue
box used for specifying the variable to analyze and the results of clicking the com-
pute button.



Jl.. OpenStat 4. Version 1. Revision 6

Files Varisbles Edit Analyses Simulation Options Hedp

Row. | et [ File Name: [C:\Projects\Clanguage\DpenStald\RunsTest 054

CASEAAR. |VART VAR2 |VAFI3 |vm4 |
CASE 1 1.00 1 1.00
CASE 2 0.00 1.00 1 1.00
CASE 3 0.00 200 1 1.00
CASE 4 1.00 300 2 0.00
CASES 0.00 400 2 0.00
CASE 6 0.00 5.00 2 0.00
CASE 7 000 4.00 3 0.00
CASES 1.00 300 3 0.00
CASE 3 1.00 300 3 1.00
CASE 10 0.00 200 5 1.00
CASE 11 1.00 1.00 4 1.00
CASE 12 0.00 0.00 3 1.00
CASE 13 0.00 1.00 2 0.00
CASE 14 0.00 1.00 1 0.00
STATUS: W o, Varisbles: |.1_

NoCases: [7§

Fig. 10.12 A sample file for the runs test

O

This is a test for the randomness of a series of values in a variable. Seleoi
the variable to analyze and click the compute button.

Available Variables:

VAR2
VAR3
VAR4

Cancel

Reset |

Test Randomness of

IVAHI
<

x|

—Results:
MBan I 0.357
Standard Dev. [ 1638
N Values > Mean I5
N Values < Mean [s
Number of Runs I8
Test Statistic IEEE
Probability IG.3535
Conclude:
|Little or no real evidences against randomne

Fig. 10.13 The Runs Dialog form
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Kendall’s Tau and Partial Tau

Ranks with 12 cases.

Variables

X Y VA
1 3.000 2.000 1.500
2 4.000 6.000 1.500
3 2.000 5.000 3.500
4 1.000 1.000 3.500
5 8.000 10.000 5.000
6 11.000 9.000 6.000
7 10.000 8.000 7.000
8 6.000 3.000 8.000
9 7.000 4.000 9.000
10 12.000 12.000 10.500
11 5.000 7.000 10.500
12 9.000 11.000 12.000

Kendall Tau for File: C:\Projects\Delphi\OPENSTAT\TauData.TAB

Kendall Tau for variables X and Y

Tau = 0.6667 z = 3.017 probability > |z| = 0.001
Kendall Tau for variables X and Z
Tau = 0.3877 z = 1.755 probability > |z| = 0.040
Kendall Tau for variables Y and 7Z
Tau = 0.3567 z = 1.614 probability > |z| = 0.053

Partial Tau = 0.6136

NOTE: Probabilities are for large N (>10)

At the time this program was written, the distribution of the Partial Tau was unknown
(see Siegel 1956, page 228) (Fig. 10.14).
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Fig. 10.14 Kendal’s Tau and
Partial Tau dialog

Kaplan-Meier Survival Test

CASES FOR FILE C:\OpenStat\KaplanMeierl.TEX

0 Time Event Censored
1 1 2
2 3 2
3 5 2
4 6 1
5 6 1
6 6 1
7 6 1
8 6 1
9 6 1
10 8 1
11 8 1
12 9 2
13 10 1
14 10 1
15 10 2
16 12 1
17 12 1
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18 12 1
19 12 1
20 12 1
21 12 1
22 12 2
23 12 2
24 13 2
25 15 2
26 15 2
27 16 2
28 16 2
29 18 2
30 18 2
31 20 1
32 20 2
33 22 2
34 24 1
35 24 1
36 24 2
37 217 2
38 28 2
39 28 2
40 28 2
41 30 1
42 30 2
43 32 1
44 33 2
45 34 2
46 36 2
47 36 2
48 42 1
49 44 2

We are really recording data for the “Time” variable that is sequential through
the data file. We are concerned with the percent of survivors at any given time
period as we progress through the observation times of the study. We record the
“drop-outs” or censored subjects at each time period also. A unit cannot be censored
and be one of the deaths - these are mutually exclusive.
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Next we show a data file that contains both experimental and control subjects:

CASES FOR FILE C:\OpenStat\KaplanMeier2.TEX

0 Time Group Event Censored
1 1 1 2
2 3 2 2
3 5 1 2
4 6 1 1
5 6 1 1
6 6 2 1
7 6 2 1
8 6 2 1
9 6 2 1
10 8 2 1
11 8 2 1
12 9 1 2
13 10 1 1
14 10 1 1
15 10 1 2
16 12 1 1
17 12 1 1
18 12 1 1
19 12 1 1
20 12 2 1
21 12 2 1
22 12 1 2
23 12 2 2
24 13 1 2
25 15 1 2
26 15 2 2
27 16 1 2
28 16 2 2
29 18 2 2
30 18 2 2
31 20 2 1
32 20 1 2
33 22 2 2
34 24 1 1
35 24 2 1
36 24 1 2
37 27 1 2
38 28 2 2
39 28 2 2
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40 28
41 30
42 30
43 32
44 33
45 34
46 36
47 36
48 42
49 44

P NP RPN EDNDDNDND

259

N ENDNDDNDNDEDNDREN

In this data we code the groups as 1 or 2. Censored cases are always coded 2 and
Events are coded 1. This data is, in fact, the same data as shown in the previous data
file. Note that in time period 6 there were 6 deaths (cases 4-9.) Again, notice that
the time periods are in ascending order.

Shown below is the specification dialog for this second data file. This is followed
by the output obtained when you click the compute button (Fig. 10.15).

Kaplan-Meier Survival Analysis

Available Variables:

=

Time Variable

[fe —

Event vs. Censored Variable
[Event = 1, Censored = 2]

P

Group Variable (if two groups)
(Labeled 1 or 2

[ E—

o] o)

x|

'"'ou may obtain plots for a single group or for an &
experimental and contral group, I there is only
lone group, leave the group code variable blank.
Data entered on each line of the gnid represent
single cases within a group. You will typically
have 2 or 3 columng of integer data with labels
such as TIME, GROUP, EVENT_CENSORED.
The last variable contains a code of 1 for an
event (e.g. death)] o a code of 2 for a censored
[lost] case,

Several example files are available.

This program was constructed by Bill Miller

using the procedural outline provided by the :]
Options:
[V Graph Survival Probabilty (%)
¥ Print Computation Results
Compute Retun

Fig. 10.15 The Kaplan-Meier dialog
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Total Expected Events for Experimental Group = 11.375
Observed Events for Experimental Group = 10.000

Total Expected Events for Control Group = 10.625

Observed Events for Control Group = 12.000

Chisquare = 0.344 with probability = 0.442

Risk = 0.778, Log Risk = -0.250, Std.Err. Log Risk = 0.427
95 Percent Confidence interval for Log Risk = (-1.087,0.586)
95 Percent Confidence interval for Risk = (0.337,1.796)

EXPERIMENTAL GROUP CUMULATIVE PROBABILITY
CASE TIME DEATHS CENSORED CUM. PROB.

1 1 0 1 1.000
3 5 0 1 1.000
4 6 6 0 0.913
5 6 0 0 0.913
12 9 0 1 0.913
13 10 2 0 0.822
14 10 0 0 0.822
15 10 0 1 0.822
16 12 6 0 0.628
17 12 0 0 0.628
18 12 0 0 0.628
19 12 0 0 0.628
22 12 0 1 0.628
24 13 0 1 0.628
25 15 0 1 0.628
27 16 0 1 0.628
32 20 0 1 0.628
34 24 2 0 0.550
36 24 0 1 0.550
37 27 0 1 0.550
43 32 1 0 0.440
45 34 0 1 0.440
46 36 0 1 0.440
47 36 0 1 0.440
49 44 0 1 0.440

CONTROL GROUP CUMULATIVE PROBABILITY
CASE TIME DEATHS CENSORED CUM. PROB.

2 3 0 1 1.000
6 6 0 0 0.826
7 6 0 0 0.826
8 6 0 0 0.826
9 6 0 0 0.826
10 8 2 0 0.739
11 8 0 0 0.739
20 12 0 0 0.652
21 12 0 0 0.652
23 12 0 1 0.652
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26 15 0 1 0.652
28 16 0 1 0.652
29 18 0 1 0.652
30 18 0 1 0.652
31 20 1 0 0.587
33 22 0 1 0.587
35 24 0 0 0.514
38 28 0 1 0.514
39 28 0 1 0.514
40 28 0 1 0.514
41 30 1 0 0.385
42 30 0 1 0.385
44 33 0 1 0.385
48 42 1 0 0.000

The chi-square coefficient as well as the graph indicates no difference was found
between the experimental and control group beyond what is reasonably expected
through random selection from the same population (Fig. 10.16).

= SURVIVAL CURVE

joo  FPROBABILITY :
0% -
080 -
070 -

080 -1

050 -1

0.40 -1

030 -1

020 -1

010 =

0,00

T | [T PR TR P Y DY PR PR FRCT RN [ o e | A
2 4 6 8 W 12 4 16 18 20 TI‘;“zE 4 % B N R M XK B WO L2 M
EXPERIMENTAL 1 1 11 11 11 1 1 1 1 2 1
CONTROL 1 1 11

2 1
NUMEER CENSORED
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Fig. 10.16 Experimental and control curves
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The Kolmogorov-Smirnov Test

The figure below (Fig. 10.17) illustrates an analysis of data collected for five values
with the frequency observed for each value in a separate variable:

When you elect the Kolomogorov-Smirnov option under the Nonparametric
analyses option, the following dialogue appears (Fig. 10.18):

You can see that we elected to enter values and frequencies and are comparing to
a theoretically equal distribution of values. The results obtained are shown below
(Fig. 10.19):

IlL. STAT4U, Release 5, Revision 7
FILES VARIABLES EDIT ANALYSES SIMULATION OPTIONS HELP

ROW coL CelEdit (Retumlo firish) N CASES No.VARS ASCI  STATUS:

n 5] i |5 IE] j18 |Press F1 for help when on any menu item.
UNITS  [Category  [Frequency |Cmupumn!

1 1 0

2 2 1 2

3 3 0 3

4 4 5 3

5 5 4 1

Add Variable FILE: |C:\Documrl.s and Settings\Owner\My Documents\Projects\Clanguage\StatdU\KS Test TXT

Fig. 10.17 A sample file for the Kolmogorov-Smirnov test
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Kolmogorov-Smirnov Test ]

Available Variables: Comparison to: Input Type:
Compatison " Obszerved vaiable distribution " Vales to be counted

® lequal [ ] distributioni ~ g .
rnﬁ%&:ﬁ“ & Values and thei frequencies

£ S!Mtiﬁ,w Tleoceduelsmdhotes!hﬂhmbelweenmobwwadm
(" Chisg either anather distrb The
" Poisson distribution usumweis:ttomv&mlobecmﬂeduvduesmhtm
cotresponding
Walues variable: irequency. Variables should be defined as integers. Steps to the analysis:
1. Select the input option of Count Values or Read Values and their
b g
2. Select the vanable [or variables] to be analyzed.
3 Sewmfamgud!mddh\gddrwmwmhcs
4. Chck the Compute buttor.

Options:
Frequency vanable: ¥ Plot the ob d distribution and the ison distrit
:I Fiequency ¥ Print Observed and Compaiison Probabiities
Fleset | Cancel Compute Retun

Fig. 10.18 Dialog for the Kolmogorov-Smirnov test

Frequency Distributions

0.00 L X : T Y
2 3 4
Category Values (Red = Observed, Blue = Comparison)

Save Piint ‘l.' Retun 'I

Fig. 10.19 Frequency distribution plot for the Kolmogorov-Smirnov test
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Kolmogorov-Smirnov Test
Analysis of variable Category

FROM UP TO FREQ. PCNT CUM.FREQ. CUM. PCNT. $ILE RANK
1.00 2.00 0 0.00 0.00 0.00 0.00
2.00 3.00 1 0.10 1.00 0.10 0.05
3.00 4.00 0 0.00 1.00 0.10 0.10
4.00 5.00 5 0.50 6.00 0.60 0.35
5.00 6.00 4 0.40 10.00 1.00 0.80

Kolmogorov-Smirnov Analysis of Category and equal (rectangular) distribution
Observed Mean = 4.200 for 10 cases in 5 categories
Standard Deviation = 0.919

Kolmogorov-Smirnov Distribution Comparison

CATEGORY OBSERVED COMPARISON
VALUES PROBABILITIES PROBABILITIES

1 0.000 0.200

2 0.100 0.200

3 0.000 0.200

4 0.500 0.200

5 0.400 0.200

Kolmogorov-Smirnov Distribution Comparison

CATEGORY OBSERVED COMPARISON

VALUE CUM. PROB. CUM. PROB.

1 0.000 0.200

2 0.100 0.400

3 0.100 0.600

4 0.600 0.800

5 1.000 1.000

6 1.000 1.000
Kolmogorov-Smirnov Statistic D = 0.500 with probability > D = 0.013

The difference between the observed and theoretical comparison data would not
be expected to occur by chance very often (about one in a hundred times) and one
would probably reject the hypothesis that the observed distribution comes from a
chance distribution (equally likely frequency in each category.)

It is constructive to compare the same observed distribution with the comparison
variable and with the normal distribution variable (both are viable alternatives.)



Chapter 11
Measurement

The Item Analysis Program

Classical item analysis is used to estimate the reliability of test scores obtained from
measures of subjects on some attribute such as achievement, aptitude or intelli-
gence. In classical test theory, the obtained score for an individual on items is theo-
rized to consist of a “true score” component and an “error score” component. Errors
are typically assumed to be normally distributed with a mean of zero over all the
subjects measured.

Several methods are available to estimate the reliability of the measures and vary
according to the assumptions made about the scores. The Kuder-Richardson esti-
mates are based on the product-moment correlation (or covariance) among items of
the observed test scores and those of a theoretical “parallel” test form. The Cronbach
and Hoyt estimates utilize a treatment by subjects analysis of variance design which
yields identical results to the KR#20 method when item scores are dichotomous
(0 and 1) values.

When you select the Classical Item Analysis procedure you will use the follow-
ing dialogue box to specify how your test is to be analyzed. If the test consists of
multiple sub-tests, you may define a scale for each sub-test by specifying those
items belonging to each sub-test. The procedure will need to know how to deter-
mine the correct and incorrect responses. If your data are already 0 and 1 scores, the
most simple method is to simply include, as the first record in your file, a case with
1’s for each item. If your data consists of values ranging, say, between 1 and 5 cor-
responding to alternative choices, you will either include a first case with the correct
choice values or indicate you wish to Prompt for Correct Responses (as numbers
when values are numbers.) If items are to be assigned different weights, you can
assign those weights by selecting the “Assign Item Weights scoring option. The
scored item matrix will be printed if you elect it on the output options. Three differ-
ent reliability methods are available. You can select them all if you like (Fig. 11.1).

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_11, 269
© Springer Science+Business Media New York 2013
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Shown below is a sample output obtained from the Classical Item Analysis
procedure followed by an item characteristic curve plot for one of the items. The file
used was “itemdat.LAZ” (Figs. 11.2, 11.3).

r - I =} N
@ Test Scoring and Anadysis O L) -
Avadabie Vonabiey Colected Rerrr Rem Sconng
- | (VAR Rern Numbe |
VAR2
o | | YARS Down * LB
WARL
VARS NOTE 1 t0 5 responses aee permatted
Remn Revponse Number 1
Reponse 1
Scoee (Woight) 1
Last Name: . »
Down Up
LastName
Frit N
T
Pt Ottan Total Score By
@ Number Correct
l)m No. Comect -1/ 4 WwIong
Sumn of Weghted Pespontes
Optrons Reset
First dats record m the scoreg ey Sernitanecut Multiple Regresuon 5
Feplace gnd demi with dem sives Irterc orrelatacns Natra Cancel
¥ Add Test scoees to the gnd ¢ Plot Total Score Dutnbuton
¥ Lint test scoves ¢ Meant, Varances, Standard Devatsons Cempute
¢ Cronbach Aipha Relubidy ¥ Hoyt's Intracless Relabdey Estimates
¢ Sepavie KRB Rebatsley 4 Phot Rern Means. Return
Fig. 11.1 Classical item analysis dialog
r. o PRI CF TOTAL W0eET .. = - - _“
] ORLTERTION OF 1O T4 W S
:5'—-
| A
Il an
3]
7.1
1| am
| i
| =
| n
Il w»
1] »
|| im
| i
T ]
|
Il 1@
| L.
| 1em
i 3, ]
(3]
| os
1| som
|
|
|
!

Fig. 11.2 Distribution of test scores (classical analysis)
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Fig. 11.3 Item means plot
TEST SCORING REPORT
PERSON ID NUMBER FIRST NAME LAST NAME TEST SCORE
1 Bill Miller 5.00
2 Barb Benton 4.00
3 Tom Richards 3.00
4 Keith Thomas 2.00
5 Bob King 1.00
6 Rob Moreland 0.00
7 Sandy Landis 1.00
8 Vernil Moore 2.00
9 Dick Tyler 3.00
10 Harry Cook 4.00
11 Claude Rains 5.00
12 Clark Kent 3.00
13 Bill Clinton 3.00
14 George Bush 4.00
15 Tom Jefferson 4.00
16 Abe Lincoln 2.00

Alpha Reliability Estimate for Test = 0.6004 S.E. of Measurement = 0.920
Analysis of Variance for Hoyt Reliabilities
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SOURCE D.F. SS MS F PROB
Subjects 15 6.35 0.42 2.50 0.01
Within 64 13.20 0.21

Items 4 3.05 0.76 4.51 0.00
Error 60 10.15 0.17

Total 79 19.55

Hoyt Unadjusted Test Rel. for scale TOTAL = 0.5128 S.E. of
Measurement = 0.000

Hoyt Adjusted Test Rel. for scale TOTAL = 0.6004 S.E. of
Measurement = 0.000

Hoyt Unadjusted Item Rel. for scale TOTAL = 0.1739 S.E. of
Measurement = 0.000

Hoyt Adjusted Item Rel. for scale TOTAL = 0.2311 S.E. of
Measurement = 0.000

Item and Total Score Intercorrelations with 16 cases.

Variables
VAR1 VAR2 VAR3 VAR4 VARS
VARL 1.000 0.153 0.048 -0.048 0.255
VAR2 0.153 1.000 0.493 0.323 0.164
VAR3 0.048 0.493 1.000 0.270 0.323
VAR4 -0.048 0.323 0.270 1.000 0.221
VAR5 0.255 0.164 0.323 0.221 1.000
TOTAL 0.369 0.706 0.727 0.615 0.634
Variables
TOTAL
VAR1 0.369
VAR2 0.706
VAR3 0.727
VAR4 0.615
VARS 0.634
TOTAL 1.000

Means with 16 valid cases.

Variables VAR1 VAR2 VAR3 VAR4 VARS
0.875 0.688 0.563 0.438 0.313
Variables TOTAL
2.875

Variances with 16 valid cases.

Variables VARL VAR2 VAR3 VAR4 VARS
0.117 0.229 0.263 0.263 0.229
Variables TOTAL
2.117

Standard Deviations with 16 valid cases.
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Variables VAR1 VAR2
0.342 0.479
Variables TOTAL
1.455
KR#20 = 0.6591 for the test with
Item Mean Variance
2 0.688 0.229
3 0.563 0.263
KR#20 = 0.6270 for the test with
Item Mean Variance
2 0.688 0.229
3 0.563 0.263
4 0.438 0.263
KR#20 = 0.6310 for the test with
Item Mean Variance
2 0.688 0.229
3 0.563 0.263
4 0.438 0.263
5 0.313 0.229
KR#20 = 0.6004 for the test with
Item Mean Variance
2 0.688 0.229
3 0.563 0.263
4 0.438 0.263
5 0.313 0.229
1 0.875 0.117

Variables

VAR1
VAR2
VAR3
VAR4
VARS
TOTAL

Variables

VAR1
VAR2
VAR3
VAR4
VARS
TOTAL

O O O O O

VAR1
.000
.153
.048
.048
.255
.369

TOTAL

H O O O o o

.369
.706
727
.615
.634
.000

VAR2
.153
.000
.493
.323
.164
.706

O O O O O

Means with 16 valid cases.

VAR3

0.

mean =

512

1.250

Pt.Bis.r

0
0
mean =

.8538
.8737

1.688

Pt.Bis.r

0
0
0
mean =

.7875
L7787
L7073

2.000

Pt.Bis.r

o O O O

mean =

L7135
.7619
.6667
.6116

2.875

Pt.Bis.r

o O O O

.7059
L7267
.6149
.6342
0.
Item and Total Score Intercorrelations with 16 cases.

3689

VAR3

O O O OO

.048
.493
.000
.270
.323
L1727

0

and variance

and variance

and variance

and variance

O O OO O

VAR4
.512

VAR4
.048
.323
.270
.000
.221
.615

273

VAR5
0.479

0.733

1.296

1.867

2.117

VARS
.255
.164
.323
.221
.000
.634

O B O O O O
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Variables

Variables

Variances

Variables

Variables

VAR1
0.875

TOTAL
2.875

VAR2

0.

688

with 16 valid cases.

VAR1
0.117

TOTAL
2.117

VAR2

0.

229

VAR3
0.563

VAR3
0.263

Standard Deviations with 16 valid cases.

Variables VAR1 VAR2 VAR3
0.342 0.479 0.512
Variables TOTAL
1.455
Determinant of correlation matrix = 0.52

09

0

0

0

11

VAR4
.438

VAR4
.263

VAR4
.512

Multiple Correlation Coefficients for Each Variable

Variable
VAR1
VAR2
VAR3
VAR4
VARS

Betas in Columns with 16 cases.

Variables

VAR1
VAR2
VAR3
VAR4
VARS

O O O O o

R
.327
.553
.561
.398
.436

O O O O o

VAR1
-1.000
0.207
-0.107
-0.149
0.289

R2

.107
.306
.315
.158
.190

VAR2

.16l
.000
.447
.226
.071

Standard Errors of Prediction
Std.Error

Variable
VAR1
VAR2
VAR3
VAR4
VARS

0.
.466

0
0.
0
0

377

495

.549
.503

O O = O

F

.330
.212
.262
.516
. 646

VAR3
-0.082
0.442
-1.000
0.067
0.257

Prob.>F

0.
.360
.342
.726
.641

o O O o

Raw Regression Coefficients with 16 cases.

852

VAR4
.141
.274
.082
.000
.185

Measurement

DF1

N S T S

0

0

0

VAR5
.313

VARS
.229

VARS
.479

DF2
11
11
11
11
11

VAR5
.262
.083
.303
.178
.000
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Variables
VARL VAR2 VAR3 VAR4 VARS
VAR1 -1.000 0.225 -0.123 -0.211 0.367
VAR2 0.147 -1.000 0.473 0.293 -0.083
VAR3 -0.071 0.418 -1.000 0.082 0.283
VAR4 -0.099 0.211 0.067 -1.000 0.167
VARDS 0.206 -0.071 0.275 0.199 -1.000
Variable Constant
VAR1 0.793
VAR2 0.186
VAR3 0.230
VAR4 0.313
VAR5 -0.183

Analysis of Variance: Treatment by Subject and Hoyt Reliability

The Within Subjects Analysis of Variance involves the repeated measurement of the
same unit of observation. These repeated observations are arranged as variables (col-
umns) in the Main Form grid for the cases (grid rows.) If only two measures are admin-
istered, you will probably use the matched pairs (dependent) 7-test method. When more
than two measures are administered, you may use the repeated measures ANOVA
method to test the equality of treatment level means in the population sampled. Since
within subjects analysis is a part of the Hoyt Intraclass reliability estimation procedure,
you may use this procedure to complete the analysis (see the Measurement procedures
under the Analyses menu on the Main Form.) (Figs. 11.4, 11.5)

- — S R

| @ Warn Subgects ANOWA and Moyt Rebabeity Eitwmates T p——
|
Ay adabie Varnaties Selected Varables Ogtecrs
| -y
1! | Row *

¢ Petabdey Erthimates

Col (2
= c3 ¢ Tewt Assumptcons
o
¢ Plot Mears

- I

Renet
Con el

Compute

Return

L

Fig. 11.4 Hoyt reliability by ANOVA
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Fig. 11.5 Within subjects ANOVA plot

The output from an example analysis is shown below:
Treatments by Subjects (AxS) ANOVA Results.

Data File = C:\lazarus\Projects\LazStats\LazStatsData\ABRDATA.LAZ

SOURCE DF SS MS F Prob. > F
SUBJECTS 11 181.000 16.455
WITHIN SUBJECTS 36 1077.000 29.917
TREATMENTS 3 991.500 330.500 127.561 0.000
RESIDUAL 33 85.500 2.591
TOTAL 47 1258.000 26.766

TREATMENT (COLUMN) MEANS AND STANDARD DEVIATIONS

VARIABLE MEAN STD.DEV.
Cl 16.500 2.067
Cc2 11.500 2.431
C3 7.750 2.417
c4 4.250 2.864

Mean of all scores = 10.000 with standard deviation = 5.174



Kuder-Richardson #21 Reliability

RELIABILITY ESTIMATES

TYPE OF ESTIMATE

Unadjusted total reliability

Unadjusted item reliability

Adjusted total
Adjusted item reliability

(Cronbach)

VALUE
-0.818
-0.127

0.843

0.572

BOX TEST FOR HOMOGENEITY OF VARIANCE-COVARIANCE MATRIX

SAMPLE COVARIANCE MATRIX with 12 cases.

Variables

C1l
C2
C3
c4

ASSUMED POP.

Variables

C1l
C2
C3
Cc4

Determinant
Determinant
ChiSquare =
Probability

C1l C2 C3
4.273 2.455 1.227
2.455 5.909 4.773
1.227 4.773 5.841
1.318 5.591 5.432

COVARIANCE MATRIX with 12 cases.

C1l C2 C3
6.057 0.693 0.693
0.114 5.977 0.614
0.114 0.103 5.914
0.114 0.103 0.093

of variance-covariance matrix = 81.6

of homogeneity matrix = 1.26E003

108.149 with 8 degrees of freedom

of larger chisquare

= 9.66E-007

Kuder-Richardson #21 Reliability

«© U U1

o O O O

c4

.318
.591
.432
.205

c4

.693
.614
.551
.863

2717

The Kuder-Richardson formula #20 was developed from Classical Test Theory
(true-score theory). A shorter form of the estimate can be made using only the mean,
standard deviation and number of test items if one can assume that the inter-item
covariances are equal. Below is the form which appears when this procedure is
selected from the Measurement option of the Analyses menu (Fig. 11.6):

Note that we have entered the maximum score (total number of items), the test
mean, and the test standard deviation. When you click the Compute button, the
estimate is shown in the labeled box.
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Fig. 11.6 Kuder-Richardson = _ l & B
Formula 20 Reliability form Q Kuder-Richar... LS ﬁ

—

20

| Maximum Score Possible:

Mean of he Test Scores: 10 i
| Std. Dev. of Test Scores: >

| KR#21 Reliability Estimate: 084210

Reset | Cancel
Compute Return

Weighted Composite Test Reliability

The reliability for a combination of tests, each of which has its own estimate of reli-
ability and a weight assigned to it, may be computed. This composite will typically
be greater than any one test by itself due to the likelihood that the subtests are cor-
related positively among themselves. Since teachers typically assign course grades
based on a combination of individual tests administered over the time period of a
course, this reliability estimate in built into the Grading System. See the description
and examples in that section. A file labeled “CompRel.LAZ” is used in the example
below (Fig. 11.7):



Weighted Composite Test Reliability
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Fig. 11.7 Composite test reliability dialog

Composite Test Reliability

279

File Analyzed: C:\lazarus\Projects\LazStats\LazStatsData\CompRel.LAZ
Correlations Among Tests with 10 cases.

Variables
Testl Test2
Testl 1.000 0.927
Test?2 0.927 1.000
Test3 0.952 0.855

Means with 10 valid cases.

Variables Testl Test2
5.500 5.500

Variances with 10 valid cases.

Variables Testl Test2
9.167 9.167

Test3
0.952
0.855
1.000

Test3
7.500

Test3
9.167

Standard Deviations with 10 valid cases.

Variables Testl Test2
3.028 3.028

Test3
3.028
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Test Weights with 10 valid cases.

Variables Testl Test2 Test3
1.000 1.000 2.000

Test Reliabilities with 10 valid cases.

Variables Testl Test2 Test3
0.900 0.700 0.800
Composite reliability = 0.929

Rasch One Parameter Item Analysis

Item Response Theory (IRT) is another theoretical view of subject responses to
items on a test. IRT suggests that items may possess one or more characteristics
(parameters) that may be estimated. In the theory developed by George Rasch, one
parameter, item difficulty, is estimated (in addition to the estimate of individual
subject “ability” parameters.) Utilizing maximum-likelihood methods and log
difficulty and log ability parameter estimates, the Rasch method attempts to esti-
mate subject and item parameters that are “independent” of one another. This is
unlike Classical theory in which the item difficulty (proportion of subjects passing
an item) is directly a function of the ability of the subjects sampled. IRT is some-
times also considered to be a “Latent Trait Theory” due to the assumption that all of
the items are measures of the same underlying “trait”. Several tests of the “fit” of the
item responses to this assumption are typically included in programs to estimate
Rasch parameters. Other IRT procedures posit two or three parameters, the others
being the “slope” and the “chance” parameters. The slope is the rate at which the
probability of getting an item correct increases with equal units of increase in sub-
ject ability. The chance parameter is the probability of obtaining the item correct by
chance alone. In the Rasch model, the chance probability is assumed to be zero and
the slope parameter assumed to be equal for all items. The file labeled “itemdat.
LAZ” is used for our example (Fig. 11.8).

Shown below is a sample of output from a test analyzed by the Rasch model. The
model cannot make ability estimates for subjects that miss all items or get all items
correct so they are screened out. Parameters estimated are given in log units. Also
shown is one of the item information function curve plots. Each item provides the
maximum discrimination (information) at that point where the log ability of the
subject is approximately the same as the log difficulty of the item. In examining the
output you will note that item 1 does not appear to fit the assumptions of the Rasch
model as measured by the chi-square statistic (Figs. 11.9, 11.10, 11.11, 11.12).
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Fig. 11.11 A Rasch item characteristic curve



Rasch One Parameter Item Analysis 283

Fig. 11.12 A Rasch test information curve

Rasch One-Parameter Logistic Test Scaling (Item Response Theory)
Written by William G. Miller

case 1 eliminated. Total score was 5

Case 2 Total Score := 4 Ttem scores 1 1 1 1 0
Case 3 Total Score := 3 Item scores 1 1 1 00
Case 4 Total Score := 2 Item scores 1 1 0 0 O
Case 5 Total Score := 1 Item scores 1 0 0 0 O
case 6 eliminated. Total score was 0

Case 7 Total Score := 1 Item scores 1 0 0 0 O
Case 8 Total Score := 2 Item scores 1 1 0 0 O
Case 9 Total Score := 3 Item scores 1 1 1 00
Case 10 Total Score := 4 Ttem scores 1 1 1 1 0
case 11 eliminated. Total score was 5

Case 12 Total Score := 3 Item scores 1 0 1 0 1
Case 13 Total Score := 3 Item scores 0 1 110
Case 14 Total Score := 4 ITtem scores 1 1 1 01
Case 15 Total Score := 4 Item scores 1 1 0 1 1
Case 16 Total Score := 2 Item scores 1 0 0 1 0

Total number of score groups := 4
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Matrix of Item Failures in Score Groups

Score Group 1
ITEM
1 0
2 2
3 2
4 2
5 2
Total 2

Item Log Odds Deviation Squared Deviation
.54
.21
.04
.68
.43

2 3

w w N W o
S w w o e

4

SN RO O

Total

=
W O W o

11

Measurement

Score Frequency Log Odds Freq.x Log Freqg.x Log Odds Squared

1 -2.48 -2.13 4
2 -0.81 -0.46 0
3 -0.15 0.20 0
4 0.47 0.83 0
5 1.20 1.56 2
1 2 -1.39 -2.77
2 3 -0.41 -1.22
3 4 0.41 1.62
4 4 1.39 5.55

Prox values and Standard Errors
Standard Error

Item Scale Value

1 -2.730 1
2 -0.584 0
3 0.258 0
4 1.058 0
5 1.999 0

Y expansion factor

Score Scale Value Standard Error

1 -1.910 1
2 -0.559 1
3 0.559 1
4 1.910 1

X expansion factor
Maximum Likelihood
Maximum Likelihood
Maximum Likelihood
Maximum Likelihood

Maximum Likelihood

.334
.770
.713
731
.844
= 1.2821

.540
.258
.258
.540
= 1.3778
Iteration
Iteration
Iteration
Iteration

Estimates

Item Log Difficulty

1 -2.74
2 -0.64
3 0.21
4 1.04
5 1.98

Number
Number
Number
Number

3.
0.49
0.

7.69

84

66

w N = O
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Score Log Ability

1 -2.04
2 -0.54
3 0.60
4 1.92

Goodness of Fit Test for Each Item

ITtem Chi-Squared Degrees of Probability
No. Value Freedom of Larger Value
1 29.78 9 0.0005
2 8.06 9 0.5283
3 10.42 9 0.3177
4 12.48 9 0.1875
5 9.00 9 0.4371

Item Data Summary
ITEM PT.BIS.R. BIS.R. SLOPE PASSED FAILED RASCH DIFF

1 -0.064 -0.117 -0.12 12.00 1 -2.739
2 0.648 0.850 1.61 9.00 4 -0.644
3 0.679 0.852 1.63 7.00 6 0.207
4 0.475 0.605 0.76 5.00 8 1.038
5 0.469 0.649 0.85 3.00 10 1.981

Guttman Scalogram Analysis

Guttman scales are those measurement instruments composed of items which, ide-
ally, form a hierarchy in which the total score of a subject can indicate the actual
response (correct or incorrect) of each item. Items are arranged in order of the pro-
portion of subjects passing the item and subjects are grouped and sequenced by their
total scores. If the items measure consistently, a triangular pattern should emerge.
A coefficient of “reproducibility” is obtained which may be interpreted in a manner
similar to test reliability.

Dichotomously scored (0 and 1) items representing the responses of subjects in
your data grid rows are the variables (grid columns) analyzed. Select the items to
analyze in the same manner as you would for the Classical Item Analysis or the
Rasch analysis. When you click the OK button, you will immediately be presented
with the results on the output form. An example is shown below (Fig. 11.13).
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Fig. 11.13 Guttman LGuttman Scalogram Analysis
scalogram analysis dialog
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GUTTMAN SCALOGRAM ANALYSIS
Cornell Method
No. of Cases := 101. ©No. of items := 10
RESPONSE MATRIX
Subject Row Item Number

Label Sum Item 10 Item 9 Item 1 Item 3 Item 5 Item 2
0 1 0 1 0 1 0 1 0 1 0 1
1 10 0 1 0 1 0 1 0 1 0 1 0 1
6 10 0 1 0 1 0 1 0 1 0 1 0 1
20 10 0 1 0 1 0 1 0 1 0 1 0 1
46 10 0 1 0 1 0 1 0 1 0 1 0 1
68 10 0 1 0 1 0 1 0 1 0 1 0 1
77 10 0 1 0 1 0 1 0 1 0 1 0 1
50 9 0 1 0 1 0 1 1 0 0 1 0 1
39 9 1 0 0 1 0 1 0 1 0 1 0 1
etc.
TOTALS 53 48 52 49 51 50 51 50 50 51 48 53
ERRORS 3 22 19 9 5 20 13 10 10 10 10 13
Subject Row Item Number
Label Sum Item 8 Item 6 Item 4 Item 7
0 1 0 1 0 1 0 1
1 10 0 1 0 1 0 1 0 1
6 10 0 1 0 1 0 1 0 1
etc.
65 0 1 0 1 0 1 0 1 0
10 0 1 0 1 0 1 0 1 0
89 0 1 0 1 0 1 0 1 0
TOTALS 46 55 44 57 44 57 41 60
ERRORS 11 11 17 3 12 11 11 15

Coefficient of Reproducibility := 0.767
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Successive Interval Scaling

Successive Interval Scaling was developed as an approximation of Thurstone’s
Paired Comparisons method for estimation of scale values and dispersion of scale
values for items designed to measure attitudes. Typically, five to nine categories are
used by judges to indicate the degree to which an item expresses an attitude (if a
subject agrees with the item) between very negative to very positive. Once scale
values are estimated, the items responded to by subjects are scored by obtaining the
median scale value of those items to which the subject agrees.

To obtain Successive interval scale values, select that option under the
Measurement group in the Analyses menu on the main form. The specifications
form below will appear. Select those items (variables) you wish to scale. The data
analyzed consists of rows representing judges and columns representing the scale
value chosen for an item by a judge. The file labeled “sucsintv.LAZ” is used as an
example file (Fig. 11.14).

r T —" ™
@ Successive Interval Scaling © | (&) -
Available Vanables Selected Variables
VAR VARL
VAR2 VA
VAR3 VARS
VAR4 o= | |vAR
VARS VARS
VARS VARS

. . Reset Cancel Compute Return
Fig. 11.14 Successive

interval scaling dialog L
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When you click the OK button on the box above, the results will appear on the
printout form. An example of results are presented below.

SUCCESSIVE INTERVAL SCALING RESULTS
0- 1 1- 2 2- 3 3- 4 4- 5 5- 6 6- 7
VAR1
Frequency 0 0 0 0 4 4 4
Proportion 0.000 0.000 0.000 0.000 0.333 0.333 .333
Cum. Prop. 0.000 0.000 0.000 0.000 0.333 0.667 1.000

o

Normal z - - - - -0.431 0.431 -
VAR2
Frequency 0 0 1 3 4 4 0

Proportion 0.000 0.000 0.083 0.250 0.333 0.333 0.000
Cum. Prop. 0.000 0.000 0.083 0.333 0.667 1.000 1.000

Normal z - - -1.383 -0.431 0.431 - -
VAR3
Frequency 0 0 4 3 4 1 0

Proportion 0.000 0.000 0.333 0.250 0.333 0.083 0.000
Cum. Prop. 0.000 0.000 0.333 0.583 0.917 1.000 1.000

Normal z - - -0.431 0.210 1.383 - -
VAR4
Frequency 0 3 4 5 0 0 0

Proportion 0.000 0.250 0.333 0.417 0.000 0.000 0.000

Cum. Prop. 0.000 0.250 0.583 1.000 1.000 1.000 1.000

Normal z - -0.674 0.210 - - - -
VARS

Frequency 5 4 3 0 O 0 0

Proportion 0.417 0.333 0.250 0.000 0.000 0.000 0.000

Cum. Prop. 0.417 0.750 1.000 1.000 1.000 1.000 1.000

Normal =z -0.210 0.674 - - - - -
VARG

Frequency 1 2 2 2 2 2 1

Proportion 0.083 0.167 0.167 0.167 0.167 0.167 0.083
Cum. Prop. 0.083 0.250 0.417 0.583 .750  0.917 1.000
Normal z -1.383 -0.674 -0.210 0.210 0.674 1.383 -

o

INTERVAL WIDTHS

2- 1 3- 2 4- 3 5- 4 6- 5
VAR1 - - - - 0.861
VAR2 - - 0.952 0.861 -
VAR3 - - 0.641 1.173 -
VAR4 - 0.885 - - -

VAR5 0.885 - - - -
VARG 0.709 0.464 0.421 0.464 0.709

Mean Width 0.80 0.67 0.67 0.83 0.78
No. Items 2 2 3 3 2
Std. Dev.s 0.02 0.09 0.07 0.13 0.01

Cum. Means 0.80 1.47 2.14 2.98 3.76
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ESTIMATES OF SCALE VALUES AND THEIR DISPERSIONS
Item No. Ratings Scale Value Discriminal Dispersion

VAR1 12 3.368 1.224
VAR2 12 2.559 0.822
VAR3 12 1.919 0.811
VAR4 12 1.303 1.192
VARS 12 0.199 1.192
VARG 12 1.807 0.759

7 scores Estimated from Scale values
0-1 1- 2 2- 3 3- 4 4- 5 5- 6 6- 7

VARl -3.368 -2.571 -1.897 -1.225 -0.392 0.392
VAR2 -2.559 -1.762 -1.088 -0.416 0.416 1.201
VAR3 -1.919 -1.122 -0.448 0.224 1.057 1.841
VAR4 -1.303 -0.506 0.169 0.840 1.673 2.458
VAR5 -0.199 0.598 1.272 1.943 2.776 3.000
VAR6 -1.807 -1.010 -0.336 0.336 1.168 1.953

Cumulative Theoretical Proportions
0-1 1- 2 2- 3 3- 4 4- 5 5- 6 6- 7

VAR1 0.000 0.005 0.029 0.110 0.347 0.653 1.000
VAR2 0.005 0.039 0.138 0.339 0.661 0.885 1.000
VAR3 0.028 0.131 0.327 0.589 0.855 0.967 1.000
VAR4 0.096 0.306 0.567 0.800 0.953 0.993 1.000
VARS 0.421 0.725 0.898 0.974 0.997 0.999 1.000
VAR6 0.035 0.156 0.369 0.631 0.879 0.975 1.000

Average Discrepency Between Theoretical and Observed Cumulative
Proportions = 0.050

Maximum discrepency = 0.200 found in item VAR4

Differential Item Functioning

Anyone developing tests today should be sensitive to the fact that some test items
may present a bias for one or more subgroups in the population to which the test is
administered. For example, because of societal value systems, boys and girls may be
exposed to quite different learning experiences during their youth. A word test in
mathematics may unintentionally give an advantage to one gender group over
another simply by the examples used in the item. To identify possible bias in an item,
one can examine the differential item functioning of each item for the sub-groups to
which the test is administered. The Mantel-Haenszel test statistic may be applied to
test the difference on the item characteristic curve for the difference between a
“focus” group and a “reference” group. We will demonstrate using a data set in
which 40 items have been administered to 1,000 subjects in one group and 1,000
subjects in another group. The groups are simply coded 1 and 2 for the reference and
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Fig. 11.15 Differential item functioning dialog

focus groups. Since there may be very few (or no) subjects that get a specific total
score, we will group the total scores obtained by subjects into groups of 4 so that we
are comparing subjects in the groups that have obtained total item scores of O to 3, 4
to 7, ..., 40 to 43. As you will see, even this grouping is too small for several score
groups and we should probably change the score range for the lowest and highest
scores to a larger range of scores in another run.

When you elect to do this analysis, the specification form above appears
(Fig. 11.15):

On the above form you specify the items to be analyzed and also the variable
defining the reference and focus group codes. You may then specify the options
desired by clicking the corresponding buttons for the desired options. You also enter
the number of score groups to be used in grouping the subject’s total scores. When this
is specified, you then enter the lowest and highest score for each of those score groups.
When you have specified the low and hi score for the first group, click the right arrow
on the “slider” bar to move to the next group. You will see that the lowest score has
automatically been set to one higher than the previous group’s highest score to save
you time in entering data. You do not, of course, have to use the same size for the
range of each score group. Using too large a range of scores may cut down the sensi-
tivity of the test to differences between the groups. Fairly large samples of subjects is
necessary for a reasonable analysis. Once you have completed the specifications, click
the Compute button and you will see the following results are obtained (we elected to
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print the descriptive statistics, correlations and item plots) (Figs. 11.16, 11.17):
Mantel-Haenszel DIF Analysis adapted by Bill Miller from
EZDIF written by Niels G. Waller

Total Means with 2000 valid cases.

Variables VAR 1
0.688
Variables VAR 6
0.806
Variables VAR 11
0.350
Variables VAR 16
0.350
Variables VAR 21
0.778
Variables VAR 26
0.834
Variables VAR 31
0.526
Variables VAR 36
0.150

Total Variances with

Variables VAR 1
0.215
Variables VAR 6
0.156
Variables VAR 11
0.228
Variables VAR 16
0.228
Variables VAR 21
0.173
Variables VAR 26
0.139
Variables VAR 31
0.249
Variables VAR 36
0.128

Total Standard Deviations with

Variables VAR 1
0.463
Variables VAR 6
0.395
Variables VAR 11

VAR 2 VAR 3
0.064 0.585
VAR 7 VAR 8
0.217 0.827
VAR 12 VAR 13
0.291 0.725
VAR 17 VAR 18
0.943 0.545
VAR 22 VAR 23
0.820 0.315
VAR 27 VAR 28
0.700 0.397
VAR 32 VAR 33
0.585 0.431
VAR 37 VAR 38
0.817 0.909

2000 valid cases.

VAR 2 VAR 3
0.059 0.243
VAR 7 VAR 8
0.170 0.143
VAR 12 VAR 13
0.206 0.199
VAR 17 VAR 18
0.054 0.248
VAR 22 VAR 23
0.148 0.216
VAR 27 VAR 28
0.210 0.239
VAR 32 VAR 33
0.243 0.245
VAR 37 VAR 38
0.150 0.083

VAR 2 VAR 3
0.244 0.493
VAR 7 VAR 8
0.412 0.379
VAR 12 VAR 13

VAR 4
0.297
VAR 9
0.960
VAR 14
0.069
VAR 19
0.017
VAR 24
0.203
VAR 29
0.305
VAR 34
0.846
VAR 39
0.793

VAR 4
0.209
VAR 9
0.038
VAR 14
0.064
VAR 19
0.017
VAR 24
0.162
VAR 29
0.212
VAR 34
0.130
VAR 39
0.164

2000 valid cases.

VAR 4
0.457
VAR 9
0.196
VAR 14

VAR 5
0.451
VAR 10
0.568
VAR 15
0.524
VAR 20
0.985
VAR 25
0.982
VAR 30
0.223
VAR 35
0.115
VAR 40
0.329

VAR 5
0.248
VAR 10
0.245
VAR 15
0.250
VAR 20
0.015
VAR 25
0.018
VAR 30
0.173
VAR 35
0.102
VAR 40
0.221

VAR 5
0.498
VAR 10
0.495
VAR 15
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0.477 0.454 0.447
Variables VAR 16 VAR 17 VAR 18
0.477 0.233 0.498
Variables VAR 21 VAR 22 VAR 23
0.416 0.384 0.465
Variables VAR 26 VAR 27 VAR 28
0.372 0.459 0.489
Variables VAR 31 VAR 32 VAR 33
0.499 0.493 0.495
Variables VAR 36 VAR 37 VAR 38
0.357 0.387 0.288

Total Score: Mean = 21.318, Variance = 66.

Reference group size = 1000, Focus group

Correlations Among Items with 2000 cases.

Variables

VAR 1 VAR 2 VAR 3

VAR 1 1.000 0.162 0.389
VAR 2 0.162 1.000 0.190
VAR 3 0.389 0.190 1.000
VAR 4 0.308 0.275 0.368
VAR 5 0.406 0.259 0.382
VAR 6 0.260 0.102 0.239
VAR 7 0.203 0.226 0.237
VAR 8 0.253 0.103 0.257
VAR 9 0.160 0.053 0.154
VAR 10 0.243 0.169 0.279
VAR 11 0.257 0.191 0.279
VAR 12 0.210 0.217 0.230
VAR 13 0.272 0.128 0.262
VAR 14 0.144 0.181 0.164
VAR 15 0.255 0.174 0.304
VAR 16 0.232 0.213 0.251
VAR 17 0.209 0.064 0.206
VAR 18 0.276 0.192 0.278
VAR 19 0.080 0.061 0.087
VAR 20 0.151 0.033 0.100
VAR 21 0.271 0.124 0.277
VAR 22 0.263 0.122 0.270
VAR 23 0.250 0.190 0.275
VAR 24 0.206 0.230 0.227
VAR 25 0.116 0.036 0.118
VAR 26 0.248 0.105 0.248
VAR 27 0.300 0.130 0.310
VAR 28 0.257 0.225 0.275
VAR 29 0.287 0.202 0.290
VAR 30 0.239 0.215 0.240
VAR 31 0.263 0.161 0.288

227,

size

0.253
VAR 19
0.129
VAR 24
0.403
VAR 29
0.461
VAR 34
0.361
VAR 39
0.405

Std.Dev.

= 1000

VAR 4
.308
.275
.368
.000
.423
.199
.255
.188
.077
.244
.272
.248
.217
.166
.265
.268
.151
.259
.084
.073
.208
.213
.254
.261
.073
.202
.230
.276
.290
.241
.281

e eolNeolNeoNoNoNeoNoNoloNoNeoBNoNoNoBoNoNoBoNoNoNoNoNoNoNoNoN SN el
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0.500
VAR 20
0.124
VAR 25
0.135
VAR 30
0.416
VAR 35
0.319
VAR 40
0.470

= 8.138

VAR 5
.406
.259
.382
.423
.000
.225
.274
.234
.123
.260
.308
.252
.272
172
.287
L2172
.168
.261
.060
.097
.244
.231
.282
.279
.102
.247
.280
.306
.308
.271
.279
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VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

32
33
34
35
36
37
38
39
40

Variables

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

O J o) U W N o
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.251
.247
.269
.151
.213
.234
.203
.230
.273

O O O O O O o o o

VAR 7
0.260
.102
.239
.199
.225
.000
.196
.267
.217
.281
.235
.202
.308
.108
.268
.240
.238
L2717
.055
.133
.308
.304
.253
.207
.224
.312
.284
.257
.248
.186
.273
.245
.284
.292
.157
.149
.338
.254
.282

[ecNeNeoNeolNeoNeoNeoNoNoNoBoNoNeoNoNoNeoBoNoNoNoNoBNoNoNoBoNoNeoBoNoNeo o NoNeo N SN e ool

.178
.187
.094
.189
.229
.107
.075
.123
.211

O O O O O O o oo

VAR 8
0.203
.226
.237
.255
.274
.196
.000
.193
.095
.253
.302
.229
.202
.222
.278
.290
.114
.288
.118
.066
.202
177
.322
.321
.063
.192
.247
.295
.320
.327
.281
.269
.291
.191
.232
.305
.183
.158
.197

[ecNeoNeoNeoNeoNeoNeoNoNoNoBoNoNeoNoNoNeoBNoNoNoNoNoBNoNoNeoBoNoNeoBoNoNeo ool o e lo ool

.316
.272
.301
.180
.209
.233
.206
.274
.255

O O O O O O o o o

VAR 9
.253
.103
.257
.188
.234
.267
.193
.000
.189
.285
.237
.198
.256
.098
.264
.251
.261
.250
.060
.114
.299
L2777
.217
.189
.192
.292
.299
.247
.206
.179
.261
.308
.234
.251
.149
.163
.271
.259
.278

ecNeNeoNeoNeoNeoNoNoNoNeoBoNoNeoBNoNoNoBoNoNoNoNoBNoNoNoBoNoNeoBoNoNeo ol ol elNeololNo oo

O O O O O O o o o

11

.228
.298
.205
.181
.236
.180
.156
.221
.284

VAR 10

(@]

[ecNeNeoNeoNeoNeoNeolNolNoNoBoNoNeoNoNoNeoBoNoNoNoNoBNoNoNeoBoNoNoBoNo Nl e RolNo oo o]

.160
.053
.154
.077
.123
.217
.095
.189
.000
.198
.129
.103
177
.055
.163
.129
.224
.183
.027
.140
.167
.183
L1111
.091
.086
.190
.156
.150
.108
.103
.169
.164
.147
.210
.074
.086
.167
.228
.236

Measurement

O O O O O O o o o

lecNeoNeoNeoNoNeoNoBoNoNeoBoNoNeoBNoNoNoBoNoNoNoNoBNoNoNoBoNoNeoBoNoN S oo ool oo lNo o)

.264
.295
.244
.206
.253
.241
.196
.248
.289

.243
.169
.279
.244
.260
.281
.253
.285
.198
.000
.300
.268
.299
177
.335
.302
.201
.311
.076
.103
.3006
.290
.326
.285
.135
.292
.320
.348
.293
.251
.323
. 344
.336
.305
.204
.211
.240
.229
.278



Differential Item Functioning

VAR

40

Variables

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

Variables

VAR
VAR
VAR
VAR

O J o U w N

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1
2
3
4

0.227

VAR 11
0.257
0.191

.279

.272

.308

.235

.302

.237

.129

.300

.000

.270

.295

.228

.337

.317

.150

.313

.074

.075

.246

.227

.328

.298

.078

.232

.280

.336

.301

.316

.313

.298

.321

.229

.241

.293

.218

.181

.225

.325

[ecNeolNeNeolNoNoNeoNoNoNoBoNoNeoNoNoNoBNoNoNoNoNoBoNoNeoBoNoNeoBoNoN S el lNo oo No]

VAR 16
0.232
0.213
0.251
0.268

0.

290

VAR 12

.210

0.217

[ecNeolNeNeoloNoNeoNoNoNoBoNoNeoNoNoNoNoNoNoNoNoBoNoNeoBoNoNeo ol S leNeololNolNollo ool

.230
.248
.252
.202
.229
.198
.103
.268
.270
.000
.224
.223
.249
.309
.120
.291
.103
.071
.239
.194
.312
.267
.088
.194
.221
.302
.264
.252
.275
.265
.262
.176
.262
.264
.198
.161
.229
.278

VAR 17

o O O

.209
.064
.206
.151

0.222

VAR 13
0.272
0.128

.262

.217

.272

.308

.202

.256

177

.299

.295

.224

.000

.145

.301

.283

.252

.290

.072

.113

.293

.338

.285

.220

.173

.336

.346

.284

.279

.228

.333

.306

.320

.308

.162

.183

.285

.261

.314

.264

[ecNeoNelNeolNoNeoNeoNolNoNoBoNoNoNoNoNoBNoNoNoNoNoBoNoNeoBoNoNeol e RolNololNolNololNo o]

VAR 18
0.276
0.192
0.278
0.259

0.

121

VAR 14

o

ecNeoNeoNeolNoNoNoNoNoNoBoNoNoNoNoNoNoNoBNoNoNoBoNoNoBoNoN S oo ool ool ol olNolNo o)

.144
.181
.164
.166
172
.108
.222
.098
.055
177
.228
.223
.145
.000
171
.220
.067
.184
.026
.034
.135
.122
.204
.212
.037
.116
.152
.225
.216
.192
.182
.184
.203
.116
.275
.263
.123
.086
.114
.206

VAR 19

o O O

.080
.061
.087
.084

0

295

.281

VAR 15

(@]

ecNeoNeoNeoNoNoNoBoNoNeoBoNoNoNoNoNoNoNoBNoNoNoBoNoNoBoN e NeololNolNolN ool ol olNolNo o)

.255
.174
.304
.265
.287
.268
.278
.264
.163
.335
.337
.249
.301
171
.000
.312
.195
.332
.087
.099
.300
.273
.325
.300
.129
.256
.327
.353
.299
.263
.325
.346
.321
.248
.212
.249
.274
.248
.271
.285

VAR 20

o O O

.151
.033
.100
.073



296

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

0 J o U

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Variables

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

el eoNeolNeoloNeoNeoNoNolNoBNoNoBNoNoNeoBoNoNoNoNoNoNoNoNoN e NeolololNolNololNolNolNol

.272
.240
.290
.251
.129
.302
.317
.309
.283
.220
.312
.000
.154
.315
.138
.084
.244
.235
.348
.331
.085
.218
.278
.321
.356
.296
.325
.300
.293
.232
.274
.267
.199
.178
.235
.303

VAR 21

O O O O O o o o

.271
.124
L2717
.208
.244
.308
.202
.299
.167
.306

O O O O OO OO O OO OO0 OO0 IODOOOOOOOHOOOOOOOOo o oo

.168
.238
.114
.261
.224
.201
.150
.120
.252
.067
.195
.154
.000
.193
.032
.230
.245
.270
.158
.114
.157
.288
.241
.183
.145
.122
.166
.197
.185
.269
.089
.104
.200
.221
.192
.127

VAR 22

O O O O O o o o

.263
.122
.270
.213
.231
.304
177
L2777
.183
.290

e eoNeolNeoloNoNeoNoNolNoBNoNoBNoNoNeoBoNoNoNoNoNeo ol s eNeolho ol eololNolNololNolNolNol

.261
L2777
.288
.250
.183
.311
.313
.291
.290
.184
.332
.315
.193
.000
.089
.089
.305
.268
.334
.244
.136
.284
.302
.340
.306
.267
.319
.343
.299
.292
.231
.251
.259
.214
.276
.296

VAR 23

O O O O O o o o

.250
.190
.275
.254
.282
.253
.322
.217
L1111
.326

O O O OO O OO O OO OO0 OO OOOIOH OOOOOOOOOOoOo o oo

11

.060
.055
.118
.060
.027
.076
.074
.103
.072
.026
.087
.138
.032
.089
.000
.017
.061
.041
.102
.116
.018
.048
.069
.099
.115
.106
.094
.095
.120
.056
.050
.075
.062
.042
.067
.139

VAR 24

(@}

O O O O O O O o O

.206
.230
.227
.261
.279
.207
.321
.189
.091
.285

Measurement

e eoNeolNeoloNoNeoNoNolNoBoNoBNoNoNoBoNoNoNoNoN o Neo ool ool ololNolNolNolNolNoRNol

.097
.133
.066
.114
.140
.103
.075
.071
.113
.034
.099
.084
.230
.089
.017
.000
.128
.120
.085
.053
.133
.129
.112
.077
.083
.048
.084
.091
.101
.148
.045
.053
.119
171
.126
.079

VAR 25

o

O O O O O O O o O

.116
.036
.118
.073
.102
.224
.063
.192
.086
.135



Differential Item Functioning

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
35
36
37
38
39
40

Variables

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

W J o U bW N

e e
Jdo s W R oo

O O O OO O OO0 OO OO0 OOOIOHOOOOOOLOOOOOo

.246
.239
.293
.135
.300
.244
.245
.305
.061
.128
.000
.285
.243
.225
.159
.276
.298
.285
.265
.211
.296
.292
.281
.162
.184
.285
.274
.283
.263

VAR 26

.248

0.105

O O O O OO OO0 OO oo oo

.248
.202
.247
.312
.192
.292
.190
.292
.232
.194
.336
.116
.256
.218
.288

O O O OO OO OO OO OO0 OOH OO0OO0OO0OOOoLooOoOo

.227
.194
.338
.122
.273
.235
.270
.268
.041
.120
.285
.000
.228
.182
.167
.326
.303
.260
.245
.198
.286
.315
.279
.140
.153
.273
.236
.298
.228

VAR 27

.300

0.130

O O O O OO OO0 OO oo oo

.310
.230
.280
.284
.247
.299
.156
.320
.280
.221
.346
.152
.327
.278
.241

O O O OO OO OO OO OO0 OOHFH OO0 OO0OOOoLOoOoOOoOo

.328
.312
.285
.204
.325
.348
.158
.334
.102
.085
.243
.228
.000
.336
.085
.222
.304
.350
.311
.3006
.307
.303
.337
.231
.279
.243
.170
.261
.319

VAR 28

.257

0.225

O O O O OO O OO OO oo oo

.275
.276
.306
.257
.295
.247
.150
.348
.336
.302
.284
.225
.353
.321
.183

O O O OO O OO0 OO ODOOOHOOOOOOOOLOOLOOOOOoO

.298
.267
.220
.212
.300
.331
.114
.244
.116
.053
.225
.182
.336
.000
.069
.189
.228
.286
.261
L2172
.270
.285
.307
.246
.289
.178
.147
.221
.308

VAR 29

(@]

el eolNelNeoloNoNeNoNoNolNoNoNeoNoNoNe]

.287
.202
.290
.290
.308
.248
.320
.206
.108
.293
.301
.264
.279
.216
.299
.356
.145

O O O OO OO OO OO OOOH OOO0OO0OO0OOOOOoL O oo o

297

.078
.088
.173
.037
.129
.085
.157
.136
.018
.133
.159
.167
.085
.069
.000
.178
.112
.104
.091
.074
.130
.133
.082
.049
.058
.146
.176
.150
.080

VAR 30

(@]

el eolNelNeoloNoNeoNoNoNolBoNoNoNoNoNe]

.239
.215
.240
.241
271
.186
.327
.179
.103
.251
.316
.252
.228
.192
.263
.296
.122



298

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Variables

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

W J oy U bW DN

NN R R BE R R
WNRFR OW®Jo O WN P O W

O O O OO O OO0 IODOOOH OOOOLOooOOoOo

.284
.048
.129
.276
.326
.222
.189
.178
.000
.329
.246
.246
.194
.269
.284
.283
.279
.123
.165
.307
.293
.287
.215

VAR 31

.263

0.161

e eoNeolNeoloNoNeoNoNolNoBoNoBoNoNoBoNoNoBoNoNe]

.288
.281
.279
.273
.281
.261
.169
.323
.313
.275
.333
.182
.325
.325
.166
.319
.094
.084
.296
.286
.307

O O O OO O OO0 OO OO0 OOLOoOoOoOOoOo

.302
.069
L1112
.298
.303
.304
.228
L1112
.329
.000
.311
.306
.244
.305
.335
.302
.294
.188
.196
.271
.225
.310
.296

VAR 32

.251

0.178

e eoNeolNeolNoNoNeoNoNolNoBoNoBoNoNoBoNoNeoBoNoNe]

.316
.228
.264
.245
.269
.308
.164
.344
.298
.265
.306
.184
.346
.300
.197
.343
.095
.091
.292
.315
.303

O O O OO O OO0 OOIOHOOOOOOL O OoOOoOo

.340
.099
.077
.285
.260
.350
.286
.104
.246
.311
.000
.329
.315
.298
.308
.328
.241
.236
.243
.251
.217
.285
.332

VAR 33

.247

0.187

e eoNeolNeolNoNoNeoNoNolNoBoNoBNoNoNoBoNoNeoBoNoNe]

L2172
.298
.295
.284
.291
.234
.147
.336
.321
.262
.320
.203
.321
.293
.185
.299
.120
.101
.281
.279
.337

O O O OO O OO0 OO OO0OO0OO0OO0OOOLOooOOoOo

11

.306
.115
.083
.265
.245
.311
.261
.091
.246
.306
.329
.000
.269
.322
.294
.333
.247
.272
.297
.241
172
.247
.309

VAR 34

o

e eolNeolNeolNoNoNeoNoNoNoBoNoBNoNoNeoBoNoNeoNoNoNe Ne)

.269
.094
.301
.205
.244
.292
.191
.251
.210
.305
.229
.176
.308
.116
.248
.232
.269
.292
.056
.148
.319
.308
.224

Measurement

O O O OO O OO0 OHFH OO0 OOOOLOooOOoOo

.267
.106
.048
.211
.198
.306
L2772
.074
.194
.244
.315
.269
.000
.289
.271
.297
.189
.236
.296
.163
.157
.202
.293

VAR 35

(@]

e eolNeolNeolNoNoNeoNoNoNeoNoNoBNoNoNeoBoNoNeoNoNoNe Ne)

.151
.189
.180
.181
.206
.157
.232
.149
.074
.204
.241
.262
.162
.275
.212
.274
.089
.231
.050
.045
.162
.140
.231



Differential Item Functioning

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Variables

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

@ ~J o U bW N

[ACRR G \CRN \CRE RN\ RN \C RN RN OB N e e e e e e e e
O 0 J o Ul WNE O WOW-Jo U b WwWwhEFE O

O OO OO OO OOH OOOOOOoO oo

.270
.130
.269
.305
.298
.322
.289
.000
.334
.309
.264
.204
.233
.261
.208
.286
.294

VAR 36

[eNeoNeNeolNoNolNeNoNoNoBoNoNoNoNoBoNoNoNoNoNoBoNoNeoBoNoNe]

.213
.229
.209
.236
.253
.149
.305
.163
.086
.211
.293
.264
.183
.263
.249
.267
.104
.251
.075
.053
.184
.153
.279
.289
.058
.165
.196
.243
.297

O OO O OO OOKFr OO OO0 o OoOOo

.285
.133
.284
.335
.308
.294
.271
.334
.000
.347
.295
.218
.246
.246
.231
.259
.292

VAR 37

[eNeoNeNeoloNolNeNoNoNoBoNoNoNoNoBoNoNoNoNoNoBoNoNeoBoNoNe]

.234
.107
.233
.180
.241
.338
.183
.271
.167
.240
.218
.198
.285
.123
.274
.199
.200
.259
.062
.119
.285
.273
.243
.178
.146
.307
.271
.251
.241

O OO OO OO H OOOOOoo oo

.307
.082
.283
.302
.328
.333
.297
.309
.347
.000
.249
.259
.284
L2777
.205
.262
.341

VAR 38

[eNeoNeNeolNoNolNeNoNoNoBoNoNoNoNoBoNoNoNoNoNoBoNoNeoBoNoNe]

.203
.075
.206
.156
.196
.254
.158
.259
.228
.229
.181
.16l
.261
.086
.248
.178
.221
.214
.042
171
.274
.236
.170
.147
.176
.293
.225
.217
172

O OO O OO OO OO0 OO oO o oo

.188
.168
.279
.294
.241
.247
.189
.264
.295
.249
.000
.145
.156
.278
.241
.279
.216

VAR 39

o

el eolNeolNeolNoNolNeNoNoNoNoNoNoNoNoBoNoNoBoNoNeoBoNoNeoBoNoNeoNe)

.230
.123
.274
.221
.248
.282
.197
.278
.236
.278
.225
.229
.314
.114
.271
.235
.192
.276
.067
.126
.283
.298
.261
.221
.150
.287
.310
.285
.247

O OO OO OO0 O0OOOoOo o oo

299

.246
.049
.123
.188
.236
.272
.236
.204
.218
.259
.145
.000
.274
.134
.109
.134
.252

VAR 40

o

e eolNeolNeolNoNolNeNoNoNoNoNoNoNoNoBoNoNoBNoNoNeoBoNoNeoBoNoNeoNe)

.273
.211
.255
.284
.289
.227
.290
.222
.121
.281
.325
.278
.264
.206
.285
.303
.127
.296
.139
.079
.263
.228
.319
.308
.080
.215
.296
.332
.309



300 11  Measurement

VAR 30 0.296 0.163 0.157 0.202 0.293
VAR 31 0.233 0.261 0.208 0.286 0.294
VAR 32 0.2406 0.246 0.231 0.259 0.292
VAR 33 0.284 0.277 0.205 0.262 0.341
VAR 34 0.156 0.278 0.241 0.279 0.216
VAR 35 0.274 0.134 0.109 0.134 0.252
VAR 36 1.000 0.155 0.118 0.180 0.288
VAR 37 0.155 1.000 0.250 0.276 0.204
VAR 38 0.118 0.250 1.000 0.242 0.181
VAR 39 0.180 0.276 0.242 1.000 0.262
VAR 40 0.288 0.204 0.181 0.262 1.000
Item-Total Correlations with 2000 valid cases.
Variables VAR 1 VAR 2 VAR 3 VAR 4 VAR 5
0.527 0.352 0.556 0.514 0.563
Variables VAR 6 VAR 7 VAR 8 VAR 9 VAR 10
0.507 0.509 0.488 0.302 0.579
Variables VAR 11 VAR 12 VAR 13 VAR 14 VAR 15
0.566 0.502 0.556 0.352 0.586
Variables VAR 16 VAR 17 VAR 18 VAR 19 VAR 20
0.564 0.371 0.582 0.171 0.200
Variables VAR 21 VAR 22 VAR 23 VAR 24 VAR 25
0.532 0.511 0.574 0.511 0.235
Variables VAR 26 VAR 27 VAR 28 VAR 29 VAR 30
0.507 0.570 0.591 0.569 0.507
Variables VAR 31 VAR 32 VAR 33 VAR 34 VAR 35
0.580 0.584 0.590 0.501 0.411
Variables VAR 36 VAR 37 VAR 38 VAR 39 VAR 40
0.465 0.482 0.415 0.513 0.556

Conditioning Levels

Lower Upper
1 3

4 7

8 10

11 13

14 16

17 19

20 22

23 25

26 28
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29 31
32 40

And so on for all items. Note the difference for the two item plots shown above!
Next, the output reflects multiple passes to “fit” the data for the M-H test:

COMPUTING M-H CHI-SQUARE, PASS # 1

Cases in Reference Group

Score Level Counts by Item

Variables
VAR 1 VAR 2 VAR 3 VAR 4 VAR 5
1- 3 6 6 6 6 6
4- 7 38 38 38 38 38
8- 10 47 47 47 47 47
11- 13 65 65 65 65 65
14- 16 101 101 101 101 101
17- 19 113 113 113 113 113
20- 22 137 137 137 137 137
23- 25 121 121 121 121 121
26- 28 114 114 114 114 114
29- 31 124 124 124 124 124
32- 40 132 132 132 132 132

Score Level Counts by Item

Variables
VAR 6 VAR 7 VAR 8 VAR 9 VAR 10
1- 3 6 6 6 6 6
4- 7 38 38 38 38 38
8- 10 47 47 47 47 47
11- 13 65 65 65 65 65
14- 16 101 101 101 101 101
17- 19 113 113 113 113 113
20- 22 137 137 137 137 137
23- 25 121 121 121 121 121
26- 28 114 114 114 114 114
29- 31 124 124 124 124 124
32- 40 132 132 132 132 132

Score Level Counts by Item

Variables
VAR 11 VAR 12 VAR 13 VAR 14 VAR 15
1- 3 6 6 6 6 6
4- 7 38 38 38 38 38
8- 10 47 47 47 47 47
11- 13 65 65 65 65 65
14- 16 101 101 101 101 101
17- 19 113 113 113 113 113
20- 22 137 137 137 137 137

23- 25 121 121 121 121 121



302 11  Measurement

26- 28 114 114 114 114 114
29- 31 124 124 124 124 124
32- 40 132 132 132 132 132
Score Level Counts by Item
Variables

VAR 16 VAR 17 VAR 18 VAR 19 VAR 20
1- 3 6 6 6 6 6
4- 7 38 38 38 38 38
8- 10 47 47 47 47 47
11- 13 65 65 65 65 65
14- 16 101 101 101 101 101
17- 19 113 113 113 113 113
20- 22 137 137 137 137 137
23- 25 121 121 121 121 121
26- 28 114 114 114 114 114
29- 31 124 124 124 124 124
32- 40 132 132 132 132 132

Score Level Counts by Item

Variables

VAR 21 VAR 22 VAR 23 VAR 24 VAR 25

1- 3 6 6 6 6 6
4- 7 38 38 38 38 38
8- 10 47 47 47 47 47
11- 13 65 65 65 65 65
14- 16 101 101 101 101 101
17- 19 113 113 113 113 113
20- 22 137 137 137 137 137
23- 25 121 121 121 121 121
26- 28 114 114 114 114 114
29- 31 124 124 124 124 124
32- 40 132 132 132 132 132

Score Level Counts by Item
Variables

VAR 26 VAR 27 VAR 28 VAR 29 VAR 30

1- 3 6 6 6 6 6
4- 7 38 38 38 38 38
8- 10 47 47 47 47 47
11- 13 65 65 65 65 65
14- 16 101 101 101 101 101
17- 19 113 113 113 113 113
20- 22 137 137 137 137 137
23- 25 121 121 121 121 121

26- 28 114 114 114 114 114
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29- 31
32- 40
Variables
1- 3
4- 7
8- 10
11- 13
14- 16
17- 19
20- 22
23- 25
26— 28
29- 31
32- 40
Variables
1- 3
4- 7
8- 10
11- 13
14- 16
17- 19
20- 22
23- 25
26- 28
29- 31
32- 40

124 124 124 124
132 132 132 132

Score Level Counts by Item

VAR 31 VAR 32 VAR 33 VAR 34
6 6 6 6
38 38 38 38
47 47 47 47
65 65 65 65
101 101 101 101
113 113 113 113
137 137 137 137
121 121 121 121
114 114 114 114
124 124 124 124
132 132 132 132

Score Level Counts by Item

VAR 36 VAR 37 VAR 38 VAR 39
6 6 6 6
38 38 38 38
47 47 47 47
65 65 65 65
101 101 101 101
113 113 113 113
137 137 137 137
121 121 121 121
114 114 114 114
124 124 124 124
132 132 132 132

Cases in Focus Group

Variables
1- 3
4- 17
8- 10
11- 13
14- 16
17- 19
20- 22
23- 25

Score Level Counts by Item

VAR 1 VAR 2 VAR 3 VAR 4
7 7 7 7

47 47 47 47

64 64 64 64

85 85 85 85
123 123 123 123
138 138 138 138
127 127 127 127

115 115 115 115
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124
132

VAR 35

38

47

65
101
113
137
121
114
124
132

VAR 40

38

47

65
101
113
137
121
114
124
132

VAR 5

47
64
85
123
138
127
115
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26— 28
29- 31
32- 40
Variables
1- 3
4- 7
8- 10
11- 13
14- 16
17- 19
20- 22
23- 25
26— 28
29- 31
32- 40
Variables
1- 3
4- 7
8- 10
11- 13
14- 10
17- 19
20- 22
23- 25
26- 28
29- 31
32- 40
Variables
1- 3
4- 7
8- 10
11- 13
14- 16
17- 19
20- 22
23- 25
26— 28

11

108 108 108 108
91 91 91 91
95 95 95 95

Score Level Counts by Item

VAR 6 VAR 7 VAR 8 VAR 9
7 7 7 7
47 47 47 47
64 64 64 64
85 85 85 85
123 123 123 123
138 138 138 138
127 127 127 127
115 115 115 115
108 108 108 108
91 91 91 91
95 95 95 95

Score Level Counts by Item

VAR 11 VAR 12 VAR 13 VAR 14
7 7 7 7
47 47 47 47
64 64 64 64
85 85 85 85
123 123 123 123
138 138 138 138
127 127 127 127
115 115 115 115
108 108 108 108
91 91 91 91
95 95 95 95

Score Level Counts by Item

VAR 16 VAR 17 VAR 18 VAR 19
7 7 7 7

47 47 47 47

64 64 64 64

85 85 85 85

123 123 123 123
138 138 138 138
127 127 127 127
115 115 115 115
108 108 108 108

Measurement

108
91
95

VAR 10

47
64
85
123
138
127
115
108
91
95

VAR 15

47
64
85
123
138
127
115
108
91
95

VAR 20

47
64
85
123
138
127
115
108



Differential Item Functioning

29- 31
32- 40
Variables
1- 3
4- 7
8- 10
11- 13
14- 16
17- 19
20- 22
23- 25
26— 28
29- 31
32- 40
Variables
1- 3
4- 7
8- 10
11- 13
14- 16
17- 19
20- 22
23- 25
26- 28
29- 31
32- 40
Variables
1- 3
4- 17
8- 10
11- 13
14- 10
17- 19
20- 22
23- 25

91 91 91 91
95 95 95 95

Score Level Counts by Item

VAR 21 VAR 22 VAR 23 VAR 24
7 7 7 7
47 47 47 47
64 64 64 64
85 85 85 85
123 123 123 123
138 138 138 138
127 127 127 127
115 115 115 115
108 108 108 108
91 91 91 91
95 95 95 95

Score Level Counts by Item

VAR 26 VAR 27 VAR 28 VAR 29
7 7 7 7
47 47 47 47
64 64 64 64
85 85 85 85
123 123 123 123
138 138 138 138
127 127 127 127
115 115 115 115
108 108 108 108
91 91 91 91
95 95 95 95

Score Level Counts by Item

VAR 31 VAR 32 VAR 33 VAR 34
7 7 7 7

47 47 47 47

64 64 64 64

85 85 85 85

123 123 123 123
138 138 138 138
127 127 127 127

115 115 115 115
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91
95

VAR 25

47
64
85
123
138
127
115
108
91
95

VAR 30

47
64
85
123
138
127
115
108
91
95

VAR 35

47
64
85
123
138
127
115
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26— 28
29- 31
32- 40
Variables
1- 3
4- 7
8- 10
11- 13
14- 16
17- 19
20- 22
23- 25
26— 28
29- 31
32- 40

Insufficient data found in level:

CODES

o ve B oA =i~ e B vv i vv i ve i B A vl = v B O B O IO IO I Q)

R

eI~ R V)

ITEM

W J oy U b W

WWRNNNNONONNDNNNDERR 2 e e
P O W®WJ0 U WNREROWO®--IJO U WK P O O

108
91
95

108
91
95

108
91
95

Score Level Counts by Item

VAR 36

SIG.

* % %
* K Kk
* Kk Kk
* % %
* K Kk
* Kk Kk
*
*
*

* % %

* Kk Kk

* % %

* Kk Kk

* % %

* x

* K Kk

* K Kk

* x

* K Kk

* %

7

47
64
85
123
138
127
115
108
91
95

ALPHA

9.
8.
7.
10.
13.
0.

367
741
923
888
001
587

0.725

O O O O O O O O OO ONOOOOOOO OO O o o

.724
.506
.638
.798
.700
.663
.595
.616
.617
.850
.729
.595
.004
.746
773
.573
.736
.570
.554
.707
.750
.704
.769
.743

VAR 37 VAR 38

7 7

47 47

64 64

85 85

123 123

138 138

127 127

115 115

108 108

91 91

95 95

1 -3

CHI2 P-VALUE
283.535 0.000
65.854 0.000
287.705 0.000
305.319 0.000
399.009 0.000
13.927 0.000
5.598 0.018
4.851 0.028
6.230 0.013
15.345 0.000
3.516 0.061
8.907 0.003
10.414 0.001
6.413 0.011
17.707 0.000
16.524 0.000
0.355 0.551
7.642 0.006
1.721 0.190
1.805 0.179
4.790 0.029
2.996 0.083
20.155 0.000
4.796 0.029
1.595 0.207
14.953 0.000
7.819 0.005
5.862 0.015
7.980 0.005
3.845 0.050
6.730 0.009

Measurement

108
91
95

VAR 40

47
64
85
123
138
127
115
108
91
95

S.E. MH D-DIF

11

108

91

95

VAR 39

7

47

64

85

123

138

127

115

108

91

95
MH D-DIF
-5.257
-5.095
-4.864
-5.611
-6.028
1.251
0.756
0.760
1.599
1.056
0.529
0.838
0.964
1.219
1.139
1.133
0.382
0.742
1.222
-1.633
0.688
0.606
1.307
0.722
1.320
1.388
0.816
0.675
0.825
0.618
0.698

0

O O O O O O O O OO OKFH OOO0OOOOOOOOoOOoOOooOoO oo oo

.343
.704
.310
.358
.340
.331
.311
.335
.620
.267
.274
.276
.294
.466
.268
.276
.537
.263
.831
.073
.307
.336
.289
.320
.914
.354
.287
.272
.286
.305
.263
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A 32 * 0.762 5.551 0.018 0.640 0.266
A 33 * 0.749 6.193 0.013 0.681 0.268
A 34 0.976 0.007 1.000 0.058 0.360
A 35 0.790 1.975 0.160 0.555 0.375
A 36 0.832 1.310 0.252 0.432 0.354
A 37 * 0.721 5.148 0.023 0.770 0.329
A 38 * 0.678 4.062 0.044 0.914 0.433
A 39 0.804 2.490 0.115 0.512 0.312
A 40 KX 0.664 11.542 0.001 0.963 0.279

No. of items purged in pass 1 = 5
Item Numbers:
1

g w N

One should probably combine the first two score groups (0-3 and 4-7) into one
group and the last three groups into one group so that sufficient sample size is avail-
able for the comparisons of the two groups. This would, of course, reduce the num-
ber of groups from 11 in our original specifications to 8 score groups. The chi-square
statistic identifies items you will want to give specific attention. Examine the data
plots for those items. Differences found may suggest bias in those items. Only
examination of the actual content can help in this decision. Even though two groups
may differ in their item response patterns does not provide sufficient grounds to
establish bias - perhaps it simply identifies a true difference in educational achieve-
ment due to other factors.

Adjustment of Reliability For Variance Change

Researchers will sometimes use a test that has been standardized on a large, het-
erogenous population of subjects. Such tests typically report rather high internal-
consistency reliability estimates (e.g. Cronbach’s estimate.) But what is the reliability
if one administers the test to a much more homogeneous population? For example,
assume a high school counselor administers a “College Aptitude Test” that reports
a reliability of 0.95 with a standard deviation of 15 (variance of 225) and a mean of
20.0 for the national norm. What reliability would the counselor expect to obtain for
her sample of students that obtain a mean of 22.8 and a standard deviation of 10.2
(variance of 104.04)? This procedure will help provide the estimate. Shown below
is the specification form and our sample values entered. When the compute button
is clicked, the results shown are obtained (Fig. 11.18).
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Fig. 11.18 Reliability r ; ' I — I ®) ‘I! g !l‘
adjustment for variability @ Variance Change Affect on Re..
dialog I

Reliability (r) of the reference group: 0955
Variance (s2) of the reference group: 225
| Variance (S2) of the new group: 104.04

Estimated reliability (R) of the new grou 0.90268

Help | Reset Cancel

8 J L J L

| Compute Return

Polytomous DIF Analysis

The purpose of the differential item functioning program is to identify test or atti-
tude items that “perform” differently for two groups - a target group and a reference
group. Two procedures are provided and selected on the basis of whether the items
are dichotomous (0 and 1 scoring) or consist of multiple categories (e.g. Likert
responses ranging from 1 to 5.) The latter case is where the Polytomous DIF Analysis
is selected. When you initiate this procedure you will see the dialogue box shown
below (Fig. 11.19):

The results from an analysis of three items with five categories that have been
collapsed into three category levels is shown below. A sample of 500 subject’s atti-
tude scores were observed (Fig. 11.20).



_— S S - . - -

r - e -
@ Pohytomous em DIF Lo

Avadable Varables Rerma Selected Neo. of Grouping Levels 2
Reml
Rerr Enter bounds for bevels
Rermd Down Up Leve
. » 2
Al LowerBound <
Upper Bound |
Option:
Gr Vaciable ¢ Gragh of Level Means
Geoup
-
Lowsst hom Seoem | © Reference Group Code: |
Haghest Rem Scere 3 Focal Group Code 2
Help Reset Cancel Compute Return

L

Fig. 11.19 Polytomous item differential functioning dialog

=10/x|

2
Level

Save Print

Fig. 11.20 Level means for polytomous item
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Polytomous Item DIF Analysis adapted by Bill Miller from
Procedures for extending item bias detection techniques
by Catherine Welch and H.D. Hoover, 1993

Applied Measurement in Education 6(1), pages 1-19.

Conditioning Levels

Lower Upper
0 1
2 3
4 5

For Item 1:

Observed Category Frequencies
Item Group Level Category Number

1 2 3 4 5

1 Ref. 1 46 51 39 64 48
1 Focal 1 40 41 38 46 42
1 Total 1 86 92 77 110 90
1 Ref. 2 2 0 0 0 0
1 Focal 2 1 0 0 0 0
1 Total 2 3 0 0 0 0
1 Ref. 3 12 8 1 0 0
1 Focal 3 15 6 0 0 0
1 Total 3 27 14 1 0 0

t-test values for Reference and Focus Means for each level

Mean Reference = 3.069 SD = 24.396 N = 248

Mean Focal = 3.043 SD = 21.740 N = 207

Level 1 t = -0.011 with deg. freedom = 453

Mean Reference = 2.000 SD = 2.000 N = 2

Mean Focal = 1.000 SD = 1.000 N = 1

Level 2 t = 0.000 with deg. freedom = 0

Mean Reference = 1.476 SD = 4.262 N = 21

Mean Focal = 1.286 SD = 4.088 N = 21

Level 3t = -0.144 with deg. freedom = 40

Composite z statistic = -0.076. Prob. > [z| = 0.530

Weighted Composite z statistic = -0.248. Prob. > |z| = 0.598

Generalized Mantel-Haenszel = 0.102 with D.F. = 1 and Prob. >

Chi-Sqr. = 0.749
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For Item 2:

Observed Category Frequencies
Item Group Level Category Number

1 2 3 4 5
2 Ref. 1 56 46 47 48 51
2 Focal 1 37 38 49 35 48
2 Total 1 93 84 96 83 99
2 Ref. 2 2 0 0 0 0
2 Focal 2 1 0 0 0 0
2 Total 2 3 0 0 0 0
2 Ref. 3 12 8 1 0 0
2 Focal 3 9 11 1 0 0
2 Total 3 21 19 2 0 0

t-test values for Reference and Focus Means for each level

Mean Reference = 2.968 SD = 23.046 N = 248

Mean Focal = 3.092 SD = 22.466 N = 207

Level 1t = 0.058 with deg. freedom = 453

Mean Reference = 2.000 SD = 2.000 N = 2

Mean Focal = 1.000 SD = 1.000 N =1

Level 2t = 0.000 with deg. freedom =0

Mean Reference = 1.476 SD = 4.262 N =21

Mean Focal = 1.619 SD = 5.094 N = 21

Level 3t = 0.096 with deg. freedom = 40

Composite z statistic = 0.075. Prob. > |z]| = 0.470

Weighted Composite z statistic = 0.673. Prob. > |z| = 0.250

Generalized Mantel-Haenszel = 1.017 with D.F. = 1 and Prob. >

Chi-Sgr. = 0.313

Observed Category Frequencies

Item Group Level Category Number

1 2 3 4 5

3 Ref. 1 35 38 52 68 55
3 Focal 1 42 41 37 42 45
3 Total 1 77 79 89 110 100
3 Ref. 2 2 0 0 0 0
3 Focal 2 1 0 0 0 0
3 Total 2 3 0 0 0 0
3 Ref. 3 8 10 3 0 0
3 Focal 3 7 10 4 0 0
3 Total 3 15 20 7 0 0
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t-test values for Reference and Focus Means for each level

Mean Reference = 3.282 SD = 26.866 N = 248

Mean Focal = 3.034 SD = 21.784 N = 207

Level 1t = -0.107 with deg. freedom = 453

Mean Reference = 2.000 SD = 2.000 N = 2

Mean Focal = 1.000 SD = 1.000 N = 1

Level 2 t = 0.000 with deg. freedom = 0

Mean Reference = 1.762 SD = 4.898 N = 21

Mean Focal = 1.857 SD = 5.102 N = 21

Level 3t = 0.060 with deg. freedom = 40

Composite z statistic = -0.023. Prob. > |z| = 0.509
Weighted Composite z statistic = -1.026. Prob. > |z| = 0.848
Generalized Mantel-Haenszel = 3.248 with D.F. = 1 and Prob.

> ChiSqgr. = 0.071

Generate Test Data

To help you become familiar with some of the measurement procedures, you can
experiment by creating “artificial” item responses to a test. When you select the
option to generate simulated test data, you complete the information in the follow-
ing specification form. An example is shown. Before you begin, be sure you have
closed any open file already in the data grid since the data that is generated will be
placed in that grid (Fig. 11.21).

== = — I L=
& Test Data Generation E=NEC)

'r

| Number of item (Varisbles) to Generate 30

Number of Subjects (Cases) to Generate: 100 '
What is the desired Total Score Mean? 15

What is the desired test standard deviation” 3

What is the desired test reliability? 04

Generate responses that are:

© True / False (dichotomous 0 or 1)
Contnuous

Reset || Conce Compute Return
Fig. 11.21 The item . B T B . S o
generation dialog L
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Fig. 11.22 Generated item data in the main grid

Shown above is a “snap-shot” of the generated test item responses. An additional
row has been inserted for the first case which consists of all 1’s. It will serve as the
“correct” response for scoring each of the item responses of the subsequent cases.
You can save your generated file for future analyses or other work (Fig. 11.22).

Notice that in our example we specified the creation of test data that would have
a reliability of 0.8 for 30 items administered to 100 students. If we analyze this data
with our Classical Test Analysis procedure, we obtain the following output:

AlphaReliability Estimate for Test = 0.8997S.E.of Measurement = 2.406

Clearly, the test generated from our population specifications yielded a some-
what higher reliability than the 0.8 specified for the reliability. Have we learned
something about sampling variability? If you request that the total be placed in the
data grid when you use analyze the test, you can also use the descriptive statistics
procedure to obtain the sample mean, etc. as shown below:

DISTRIBUTION PARAMETER ESTIMATES

TOTAL (N=100) Sum = 1560.000

Mean=15.600 Variance = 55.838 Std.Dev. = 7.473
Std.Error of Mean=0.747

Range= 29.000 Minimum= 1.000 Maximum=30.000
Skewness= —0.134 Std. Error of Skew= 0.241
Kurtosis= -0.935 Std. Error Kurtosis= 0.478
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Fig. 11.23 Plot of generated test data

Fig. 11.24 Test of normality
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The frequencies procedure can plot the total score distribution of our sample
with the normal curve as a reference to obtain (Fig. 11.23):

A test of normality of the total scores suggests a possibility that the obtained
scores are not normally distributed as shown in the normality test form above
(Fig. 11.24):
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Spearman-Brown Reliability Prophecy

The Spearman-Brown “Prophecy” formula has been a corner-stone of many instruc-
tional text books in measurement theory. Based on “Classical True-Score” theory, it
provides an estimate of what the reliability of a test of a different length would be
based on the initial test’s reliability estimate. It assumes the average difficulty and
inter-item covariances of the extended (or trimmed) test are the same as the original
test. If these assumptions are valid, it is a reasonable estimator. Shown below is the
specification form which appears when you elect this Measurement option from the
Analyses menu (Fig. 11.25):

You can see that in an example, that when a test with an initial reliability of 0.8
is doubled (the multiplier k=2) that the new test is expected to have a reliability of
0.89 approximately. The program may be useful for reducing a test (perhaps by
randomly selecting items to delete) that requires too long to administer and has an
initially high internal consistency reliability estimate. For example, assume a test of
200 items has a reliability of .95. What is the estimate if the test is reduced by one-
half? If the new reliability of 0.9 is satisfactory, considerable time and money may
be saved!

p— — T
& Spearman-Brown Pr... I‘_C’ Qé |
|| Original Test Reliability: 08 1

Multiplier K for the new Test 2 ' I
New Reliability Estimate: 0823388

Reset Cancel Compute

Help Return

Fig. 11.25 Spearman-Brown |
Prophecy dialog L 4




Chapter 12
Statistical Process Control

XBAR Chart

An Example

We will use the file labeled boltsize.txt to demonstrate the XBAR Chart procedure.
Load the file and select the option Statistics/Statistical Process Control/Control
Charts/XBAR Chart from the menu. The file contains two variables, lot number and
bolt length. These values have been entered in the specification form which is shown
below. Notice that the form also provides the option to enter and use a specific “tar-
get” value for the process as well as specification levels which may have been pro-
vided as guidelines for determining whether or not the process was in control for a
given sample (Fig. 12.1).

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_12, 317
© Springer Science+Business Media New York 2013
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X BAR Charting Specifications

Directions: First, click on the variable name that represents the sample lot
number, Next, click on the vaniable that represents the measurement,
Click on the sigma button to change the default and click on any of the

button to obtain the results.

| Selection Variables:

|Lomo

* Group Variable:

optional check boxes and enter speciications desired. Click the Compute

~No. of Sigman Units for UCL and LCL:
(& 3 Sigmas (defaul)

" 2Sigmas

" 1Sigma

" X Sigmas where X = |

—
[~ Show Upper Spec. Level! I
I~ [Show Lowes Spec Levet Il

| I Use Target Speciication: |

i Veisple | [ PintX BAR Plot on Printer

' [pokLog

. Resat | Cancel Compute | Retun |

Fig. 12.1 XBAR chart dialog

Pressing the Compute button results in the following (Fig. 12.2):
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/" XBAR CHART FOR : C:\Projects\Delphi\DpenStat2\boltsize. txt =10] x|
2016
A cL
2012
2009
20.05
L2002 //P\\\\\
135 MEAN
19.95
1991
1988
19.84
19.80
| |
GROUPS: 1 2 3 7 8
Fig. 12.2 XBAR chart for boltsize
X Bar Chart Results
Group Size Mean Std.Dev.
1 5 19.88 0.37
2 5 19.90 0.29
3 5 20.16 0.27
4 5 20.08 0.29
5 5 19.88 0.49
6 5 19.90 0.39
7 5 20.02 0.47
8 5 19.98 0.43
Grand Mean 19.97, Std.Dev. = 0.359, Standard Error of Mean = 0.06

Lower Control Limit

19.805,

Upper Control Limit = 20.145

If, in addition, we specify a target value of 20 for our bolt and upper and lower
specification levels (tolerance) of 20.1 and 19.9, we would obtain the chart shown
below (Fig. 12.3):

In this chart we can see that the mean of the samples falls slightly below the
specified target value and that samples 3 and 5 appear to have bolts outside the toler-
ance specifications.
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/" XBAR CHART FOR : C:\Projects\Delphi\OpenStat2\boltsize.txt =10] x|

2018

A oL
2012 / \
PPER SPEC

20.09
2005
20.02

195 ] \ //\\L‘;i“
19.95
189
1988
1984
1980

— — R SPEC

GROUPS: 1 2 3 4 5 ] 7 8

Fig. 12.3 XBAR chart plot with target specifications

Range Chart

As tools wear the products produced may begin to vary more and more widely
around the values specified for them. The mean of a sample may still be close to the
specified value but the range of values observed may increase. The result is that
more and more parts produced may be under or over the specified value. Therefore
quality assurance personnel examine not only the mean (XBAR chart) but also the
range of values in their sample lots. Again, examine the boltsize.txt file with the
option Statistics/Statistical Process Control/Control Charts/Range Chart. Shown
below is the specification form and the results (Figs. 12.4, 12.5):



Range Chart

Range Charting

limits are plus and minus 3 sigma.
Selection Vanables:

Directions: First, click on the variable name that represents the sample lot
number. Next, click on the variable that represents the measurement.
Click on the sigma button to change the default and click on any of the
optional check boxes and enter specfications desired. Click the Compute
button to obtain the results. Up to 200 groups may be analyzed.

NOTE! Equal group sizes of 2 to 25 required for ranges analysis. Control

Group Variable:

Lml'd L ILol No

Measurement Varable:

—Option:

[BokLngth

[~ Print Chart

Compute

Retumn

Reset

Fig. 12.4 Range chart dialog

/" RANGE CHART FOR : C:\Projects\Delphi\0penStat2\boltsize txt

- 189
150
13

113
094

]

L

- 038

019

- 0oo

GROUPS: 1 2 3

321

Fig. 12.5 Range chart plot
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X Bar Chart Results
Group Size Mean Range Std.Dev.

1 5 19.88 0.90 0.37
2 5 19.90 0.70 0.29
3 5 20.16 0.60 0.27
4 5 20.08 0.70 0.29
5 5 19.88 1.20 0.49
6 5 19.90 0.90 0.39
7 5 20.02 1.10 0.47
8 5 19.98 1.00 0.43
Grand Mean = 19.97, Std.Dev. = 0.359, Standard Error of Mean = 0.06

Mean Range = 0.89
Lower Control Limit = 0.000, Upper Control Limit = 1.876

In the previous analysis using the XBAR chart procedure we found that the
means of lots 3 and 6 were a meaningful distance from the target specification. In
this chart we observed that lot 3 also had a larger range of values. The process
appears out of control for lot 3 while for lot 6 it appears that the process was simply
requiring adjustment toward the target value. In practice we would more likely see
a pattern of increasing ranges as a machine becomes “loose” due to wear even
though the averages may still be “on target”.

S Control Chart

The sample standard deviation, like the range, is also an indicator of how much
values vary in a sample. While the range reflects the difference between largest and
smallest values in a sample, the standard deviation reflects the square root of the
average squared distance around the mean of the values. We desire to reduce this
variability in our processes so as to produce products as similar to one another as is
possible. The S control chart plot the standard deviations of our sample lots and
allows us to see the impact of adjustments and improvements in our manufacturing
processes.

Examine the boltsize.txt data with the S Control Chart. Shown below is the
specification form for the analysis and the results obtained (Figs. 12.6, 12.7):



S Control Chart

Selection Variables:

|Lol No

Direcbons: First, click on the vanable name that represents the sample lot
number. Next, click on the variable that represents the measurement.
Chck on the optional check box to obtain a printout of the chart. Ciick the
Compute button to obtain the results.

NOTE! Equal group sizes of 2 to 25 required for Sigma analysis. Control
limits are phus and minus 3 sigma. Up to 200 lots may be analyzed

x|

Group Variable:

ILot No

Moasmament Vimiable {iResaiy)

[Bot Lo =
phion: e

Fig. 12.6 Sigma chart dialog

/" SIGMA CHART FOR : C:\Projects\Delphi\OpenStat2\bolisize. txt
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Fig. 12.7 Sigma chart plot
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Group Size  Mean Std.Dev.

1 5 19.88 0.37
2 5 19.90 0.29
3 5 20.16 0.27
4 5 20.08 0.29
5 5 19.88 0.49
6 5 19.90 0.39
7 5 20.02 0.47
8 5 19.98 0.43

Grand Mean = 19.97, Std.Dev. = 0.359, Standard Error of Mean = 0.06
Mean Sigma = 0.37
Lower Control Limit = 0.000, Upper Control Limit = 0.779

The pattern of standard deviations is similar to that of the Range Chart.

CUSUM Chart

The specification form for the CUSUM chart is shown below for the data file labeled
boltsize.txt. We have specified our desire to detect shifts of 0.02 in the process and are
using the 0.05 and 0.20 probabilities for the two types of errors (Figs. 12.8, 12.9).

Directions: First, click on the variable name that represents the sample lot
number. Next, click on the variable that represents the measurement.
Chick on the sigma button to change the default and click on any of the
optional check boxes and enter specifications desired. Click the Compute
button to obtain the results.

NOTE! Equal group sizes of 2 to 25 required for CUMSUM analysis.
Control imits are plus and minus 3 sigma.

Selection Variables: Group Variable:
Lot No |
Bolt Lngth
Measurement Variable:

|
Reset | Cancel | [[Conpute] Retun

~CUMSUM V-MASK SPECIFICATIONS; ~Option:

. 005 I Use Target Specification:
Alpha Probabiity: | T

Beta Probability : 020

Fig. 12.8 CUMSUM chart dialog



CUSUM Chart 325
/* CUMSUM CHART FOR : C:\Projects\Delphi\DpenStat2\boltsize - txt -lglj_(]
010 -~
0.07
0.04
0.02
am \hW»DEV.
004 C-
007
010
012
015
018 ~
[ [ [
GROUPS: 2 4 5 B 7 8
Fig. 12.9 CUMSUM chart plot
CUMSUM Chart Results
Group Size Mean Std.Dev. Cum.Dev. of mean from Target
1 5 19.88 0.37 -0.10
2 5 19.90 0.29 -0.18
3 5 20.16 0.27 0.00
4 5 20.08 0.29 0.10
5 5 19.88 0.49 0.00
6 5 19.90 0.39 -0.08
7 5 20.02 0.47 -0.04
8 5 19.98 0.43 -0.04
Mean of group deviations = -0.005
Mean of all observations = 19.975
Std. Dev. of Observations 0.359

Standard Error of Mean

Target Specification =

Lower Control Limit

0.057
19.980
19.805,

Upper Control Limit = 20.145

The results are NOT typical in that it appears that we have a process that is mov-
ing into control instead of out of control. Movement from lot 1 to 2 and from lot 3
to 4 indicate movement to out-of-control while the remaining values appear to be
closer to in-control. If one checks the “Use the target value:” (of 20.0) the mask
would indicate that lot 3 to 4 had moved to an out-of-control situation.
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p Chart

To demonstrate the p Chart we will utilize a file labeled pchart.txt. Load the file and
select the Analyses/Statistical Process Control/p Chart option. The specification
form is shown below along with the results obtained after clicking the Compute
Button (Figs. 12.10, 12.11):

p Control Chart

Directions: The p Chart for nonconforming parts assumes you have a variable
[column of data) which represents the number of nonconforming parts in a
sample lot of size N. You are expected to enter the sample size N in which
each of the observations was made. You will also need to enter P, the
expected or target proportion of defects in a sample of N parts. To select the
measurement variable, click on the name of the vanable is the list of varables
available. Enter the N and P values in the boxes provided. If you desire a
sigma value for the upper and lower control limits, chck the button of your
choice. Chick the Compute button when you ate ready for the results

Selection Vanables: No. of parts sampled: qun

Expected proportion of defects : IT

~No. of Sigman Units for UCL and LCL:-
(+ 3 Sigmas [default)
(" 2Sigmas

" 1 Sigma I—
" X Sigmas where X =

Measurement Variable: ~ Options:
Defects [~ Print the ¢ Control Chart

L

Fig. 12.10 p control chart dialog



p Chart

* p CONTROL CHART FOR : C:\Projects\Delphi\OpenStat2\pchart izt

002
Lo ﬂ
A
002 Y]
002

:: /\ AA - VWA
W

N N N N N I N A A |
GROUPS: 12345678910 12 14 16 1819 21 23 25 27 29

Fig. 12.11 p control chart plot

Target proportion = 0.0100

Sample size for each observation = 1000
Average proportion observed = 0.0116
Defects p Control Chart Results

Sample No. Proportion
1 0.012
2 0.015
3 0.008
4 0.010
5 0.004
6 0.007
7 0.016
8 0.009
9 0.014

10 0.010
11 0.005
12 0.006
13 0.017
14 0.012
15 0.022
16 0.008
17 0.010
18 0.005
19 0.013
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20 0.011

21 0.020

22 0.018

23 0.024

24 0.015

25 0.009

26 0.012

27 0.007

28 0.013

29 0.009

30 0.006
Target proportion = 0.0100
Sample size for each observation = 1000
Average proportion observed = 0.0116

Several of the sample lots (N=1,000) had disproportionately high defect rates
and would bear further examination of what may have been occurring in the process
at those points.

Defect (Non-conformity) ¢ Chart

The previous section discusses the proportion of defects in samples (p Chart.) This
section examines another defect process in which there is a count of defects in a
sample lot. In this chart it is assumed that the occurrence of defects are independent,
that is, the occurrence of a defect in one lot is unrelated to the occurrence in another
lot. It is expected that the count of defects is quite small compared to the total num-
ber of parts potentially defective. For example, in the production of light bulbs, it is
expected that in a sample of 1,000 bulbs, only a few would be defective. The under-
lying assumed distribution model for the count chart is the Poisson distribution
where the mean and variance of the counts are equal. Illustrated below is an exam-
ple of processing a file labeled cChart.txt (Figs. 12.12, 12.13).



Defect (Non-conformity) ¢ Chart

Measurement Varable:

Direchions: Clhick on the variable that iepresents the measurement.
Chick on the sigma button to change the default and click the optional
check box if a printout is deswed Chck the Compute button to obtain the

 No. of Sigman Units for UCL and LCL:
(+ 3 Sigmas (default)

" 2Signas

" 1Signa

" X Sigmas where X = |—

~Options:
[~ Print the ¢ Control Chart

|Defects

Resel | Cancel | Compute| Retun

Fig. 12.12 Defect ¢ chart dialog
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Fig. 12.13 Defect control chart plot
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Defects ¢ Control Chart Results

Sample Number of Noncomformities
1 7.00
2 6.00
3 6.00
4 3.00
5 22.00
6 8.00
7 6.00
8 1.00
9 0.00
10 5.00
11 14.00
12 3.00
13 1.00
14 3.00
15 2.00
16 7.00
17 5.00
18 7.00
19 2.00
20 8.00
21 0.00
22 4.00
23 14.00
24 4.00
25 3.00
Total Nonconformities = 141.00
No. of samples = 25
Poisson mean and variance = 5.640
Lower Control Limit = -1.485, Upper Control Limit = 12.765

The count of defects for three of the 25 objects is greater than the upper control
limit of three standard deviations.

Defects Per Unit U Chart

The specification form and results for the computation following the click of the
Compute button are shown below (Figs. 12.14, 12.15):



Defects Per Unit U Chart

/¥ Defects per Unit U Chart

Directions: Click on the variable that represents the count of defects. Enter
the number inspected in each subgroup (lot). Note - all groups are of equal
size. Chck on the sigma button to change the default and click on any of the
optional check boxes and enter specifications desired. Click the Compute
button to obtain the results,

Selection Variables: Number inspected per group: |45
~No. of Sigman Units for UCL and LCL:———
(¢ 3 Sigmas (default)
" 2Sigmas
1 Sigma
” XSignacwhsex-l

Measurement Variable: ~Options:
IDe{ects [~ Print X BAR Plot on Printer

Resst | Cencel | Compute [ Retun

Fig. 12.14 Defects U chart dialog
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Fig. 12.15 Defect control chart plot
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Sample No Defects Defects Per Unit

1 36.00 0.80
2 48.00 1.07
3 45.00 1.00
4 68.00 1.51
5 77.00 1.71
6 56.00 1.24
7 58.00 1.29
8 67.00 1.49
9 38.00 0.84
10 74.00 1.64
11 69.00 1.53
12 54.00 1.20
13 56.00 1.24
14 52.00 1.16
15 42.00 0.93
16 47.00 1.04
17 64.00 1.42
18 61.00 1.36
19 66.00 1.47
20 37.00 0.82
21 59.00 1.31
22 38.00 0.84
23 41.00 0.91
24 68.00 1.51
25 78.00 1.73

Total Nonconformities = 1399.00

No. of samples = 25

Def. / unit mean = 1.244 and variance = 0.166

Lower Control Limit = 0.745, Upper Control Limit = 1.742

In this example, the number of defects per unit are all within the upper and lower
control limits.
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Linear Programming

The Linear Programming Procedure

To start the Linear Programming procedure, click on the Sub-Systems menu item
and select the Linear Programming procedure. The following screen will appear
(Fig. 13.1):

We have loaded a file named Metals.LPR by pressing the Load File button and
selecting a file which we had already constructed to do the first problem given
above. When you start a problem, you will typically enter the number of variables
(X’s) first. When you press the tab key to go to the next field or click on another area
of the form, the grids which appear on the form will automatically reflect the correct
number of columns for data entry. In the Metals problem we have 1 constraint of the
‘Maximum’ type, 1 constraint of the ‘Minimum’ type and 3 Equal constraints.
When you have entered the number of each type of constraint the grids will auto-
matically provide the correct number of rows for entry of the coefficients for those
constraints. Next, we enter the ‘Objective’ or cost values. Notice that you do NOT
enter a dollar sign, just the values for the variables - five in our example. Now we
are ready to enter our constraints and the corresponding coefficients. Our first (max-
imum) constraint is set to 1000 to set an upper limit for the amount of metal to
produce. This constraint applies to each of the variables and a value of 1.00 has been
entered for the coefficients of this constraint. The one minimum constraint is entered
next. In this case we have entered a value of 100 as the minimum amount to pro-
duce. Notice that the coefficients entered are ALL negative values of 1.0! You will
be entering negative values for the Minimum and Equal constraints coefficients.

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_13, 333
© Springer Science+Business Media New York 2013
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13 Linear Programming

Linear Programming - Adapted from Numerical Recipes by Bill Miller

No. Variables:

e

Constraints

Objective

File: |C:\Projects\Delphi\OpenStat2\Metals LPR

mmz 585 457

SO ] —
1

No. Min. [3)
Constraints:

—

Mo. Equal (=]
Constraints:

-

Min/Max
" Maamize
& Minimize

soere

005
0,05

396

1
08 095 07 03
005 002 0.3 a7
015 -0.03 0 0

General Results: |

e e

Fig. 13.1 Linear programming dialog

The constraint values themselves must all be zero or greater. We now enter the
Equal constraint values and their coefficients from the second through the fourth
equations. Again note that negative values are entered. Finally, we click on the
Minimize button to indicate that we are minimizing the objective. We then press the

Compute button to obtain the following results:

Linear Programming Results

z 544,
Y1l 1100.
X3 47.
Y2 0.
X4 41.
X2 10.

8261
0000
8261
0000
7391
4348

-0.

0

-0
-0

X1 X5

1520 -0.7291

.0000 0.0000
-0.
0.

7246 1.7391
0000 0.0000

.0870 -2.3913
.1884 -0.3478

The first column provides the answers we sought. The cost of our new alloy will
be minimal if we combine the alloys 2, 3 and 4 with the respective percentages of
10.4, 47.8 and 41.7. Alloys 1 and 5 are not used. The z value in the first column is
our objective function value (544.8).
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Linear Programming - Adapted from Numerical Recipes by Bill Miller
File: |C:\Projects\Delphi\OpenStat2\Nutition LFR

No. Varisbles: Objective
Constraints
Mo. Max. [<] 07
2 20 136 136 454
No. Min. [») 01

o
o

Constraints:

IZ_ 100 -81.65 -58.97 -68.04

Mo. Equal (=]
Constraints:

—

o

Min/Max——
" Madmize ]
& Minimize EWURM&I

Fig. 13.2 Example specifications for a linear programming problem

Next, we will examine the second problem in which the nutritionist desires to
minimize costs for the optimal food mix. We will click the Reset button on the form
to clear our previous problem and load a previously saved file labeled ‘Nutrition.
LPR’. The form appears above (Fig. 13.2):

Again note that the minimum and equal constraint coefficients entered are nega-
tive values. When the compute button is pressed we obtain the following results:

Linear Programming Results

Y4 X2
4 0.4924 -0.0037 -0.1833
Y1 0.7000 0.0000 1.0000
Y2 33.2599 0.1666 3.7777
X1 0.8081 0.0122 -0.7222
Y3 0.7081 0.0122 -0.7222
X3 0.5000 0.0000 0.0000

In this solution we will be using .81 parts of Food A and .5 parts of Food C. Food
B is not used.

The Linear Programming procedure of this program is one adapted from the
Simplex program in the Numerical Recipes book listed in the bibliography (#56).
The form design is one adapted from the Linear Programming program by Ane
Visser of the AgriVisser consulting firm.



Chapter 14
Using MatMan

Purpose of MatMan

MatMan was written to provide a platform for performing common matrix and vec-
tor operations. It is designed to be helpful for the student learning matrix algebra
and statistics as well as the researcher needing a tool for matrix manipulation. If you
are already a user of the OpenStat program, you can import files that you have saved
with OpenStat into a grid of MatMan.

Using MatMan

When you first start the MatMan program, you will see the main program form
below. This form displays four “grids” in which matrices, row or column vectors or
scalars (single values) may be entered and saved. If a grid of data has already been
saved, it can be retrieved into any one of the four grids. Once you have entered data
into a grid, a number of operations can be performed depending on the type of data
entered (matrix, vector or scalar.) Before performing an operation, you select the
grid of data to analyze by clicking on the grid with the left mouse button. If the data
in the selected grid is a matrix (file extension of .MAT) you can select any one of the
matrix operations by clicking on the Matrix Operations “drop-down” menu at the
top of the form. If the data is a row or column vector, select an operation option from
the Vector Operations menu. If the data is a single value, select an operation from
the Scalar Operations menu (Fig. 14.1).

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_14, 337
© Springer Science+Business Media New York 2013
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Fig. 14.1 The MatMan dialog

Using the Combination Boxes

In the upper right portion of the MatMan main form, there are four “Combo Boxes”.
These boxes each contain a drop-down list of file names. The top box labeled
“Matrix” contains the list of files containing matrices that have been created in the
current disk directory and end with an extension of .MAT. The next two combo
boxes contain similar lists of column or row vectors that have been created and are
in the current disk directory. The last contains name of scalar files that have been
saved in the current directory. These combo boxes provide documentation as to the
names of current files already in use. In addition, they provide a “short-cut” method
of opening a file and loading it into a selected grid.

Files Loaded at the Start of MatMan

Five types of files are loaded when you first start the execution of the MatMan pro-
gram. The program will search for files in the current directory that have file exten-
sions of .MAT, .CVE, .RVE, .SCA and .OPT. The first four types of files are simply
identified and their names placed into the corresponding combination boxes of
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matrices, column vectors, row vectors and scalars. The last, options, is a file which
contains only two integers: a 1 if the script should NOT contain File Open opera-
tions when it is generated or a O and a 1 if the script should NOT contain File Save
operations when a script is generated or a 0. Since File Open and File Save opera-
tions are not actually executed when a script or script line is executed, they are in a
script only for documentation purposes and may be left out.

Clicking the Matrix List Items

A list of Matrix files in the current directory will exist in the Matrix “Drop-Down”
combination box when the MatMan program is first started. By clicking on one of
these file names, you can directly load the referenced file into a grid of your
selection.

Clicking the Vector List Items

A list of column and row vector files in the current directory will exist in the corre-
sponding column vector or row vector “Drop-Down” combination boxes when the
MatMan program is first started. By clicking a file name in one of these boxes, you
can directly load the referenced file into a grid of your selection.

Clicking the Scalar List Items

When you click on the down arrow of the Scalar “drop-down” combination box, a
list of file names appear which have been previously loaded by identifying all scalar
files in the current directory. Also listed are any new scalar files that you have cre-
ated during a session with MatMan. If you move your mouse cursor down to a file
name and click on it, the file by that name will be loaded into the currently selected
grid or a grid of your choice.

The Grids

The heart of all operations you perform involve values entered into the cells of a
grid. These values may represent values in a matrix, a column vector, a row vector
or a scalar. Each grid is like a spreadsheet. Typically, you select the first row and
column cell by clicking on that cell with the left mouse key when the mouse cursor
is positioned over that cell. To select a particular grid, click the left mouse button
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when the mouse cursor is positioned over any cell of that grid. You will then see that
the grid number currently selected is displayed in a small text box in the upper left
side of the form (directly below the menus.)

Operations and Operands

At the bottom of the form (under the grids) are four “text” boxes labeled Operation,
Operand1, Operand2 and Operand3. Each time you perform an operation by use of
one of the menu options, you will see an abbreviation of that operation in the
Operation box. Typically there will be at least one or two operands related to that
operation. The first operand is typically the name of the data file occupying the cur-
rent grid and the second operand the name of the file containing the results of the
operation. Some operations involve two grids, for example, adding two matrices. In
these cases, the name of the two grid files involved will be in operands1 and oper-
ands2 boxes while the third operand box will contain the file for the results.

You will also notice that each operation or operand is prefixed by a number fol-
lowed by a dash. In the case of the operation, this indicates the grid number from
which the operation was begun. The numbers which prefix the operand labels indi-
cate the grid in which the corresponding files were loaded or saved. The operation
and operands are separated by a colon (:). When you execute a script line by double
clicking an operation in the script list, the files are typically loaded into correspond-
ing grid numbers and the operation performed.

Menus

The operations which may be performed on or with matrices, vectors and scalars are
all listed as options under major menu headings shown across the top of the main
form. For example, the File menu, when selected, provides a number of options for
loading a grid with file data, saving a file of data from a grid, etc. Click on a menu
heading and explore the options available before you begin to use MatMan. In
nearly all cases, when you select a menu option you will be prompted to enter addi-
tional information. If you select an option by mistake you can normally cancel the
operation.

Combo Boxes

Your main MatMan form contains what are known as “Drop-Down” combination
boxes located on the right side of the form. There are four such boxes: The
“Matrix”’ box, the “Column Vectors” box, the “Row Vectors” box and the “Scalars”
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box. At the right of each box is an arrow which, when clicked, results in a list of
items “dropped-down” into view. Each item in a box represents the name of a matrix,
vector or scalar file in the current directory or which has been created by one of the
possible menu operations. By clicking on one of these items, you initiate the loading
of the file containing the data for that matrix, vector or scalar. You will find this is a
convenient alternative to use of the File menu for opening files which you have been
working with. Incidentally, should you wish to delete an existing file, you may do so
by selecting the “edit” option under the Script menu. The script editor lists all files
in a directory and lets you delete a file by simply double-clicking the file name!

The Operations Script

Located on the right side of the main form is a rectangle which may contain opera-
tions and operands performed in using MatMan. This list of operations and their
corresponding operands is known collectively as a “Script”. If you were to perform
a group of operations, for example, to complete a multiple regression analysis, you
may want to save the script for reference or repeated analysis of another set of data.
You can also edit the scripts that are created to remove operations you did not intend,
change the file names referenced, etc. Scripts may also be printed.

Getting Help on a Topic

You obtain help on a topic by first selecting a menu item, grid or other area of the
main form by placing the mouse over the item for which you want information.
Once the area of interest is selected, press the F1 key on your keyboard. If a topic
exists in the help file, it will be displayed. You can press the F1 key at any point to
bring up the help file. A book is displayed which may be opened by double clicking
it. You may also search for a topic using the help file index of keywords.

Scripts

Each time an operation is performed on grid data, an entry is made in a “Script” list
shown in the right-hand portion of the form. The operation may have one to three
“operands” listed with it. For example, the operation of finding the eigenvalues and
eigenvectors of a matrix will have an operation of SVDInverse followed by the
name of the matrix being inverted, the name of the eigenvalues matrix and the name
of the eigenvectors matrix. Each part of the script entry is preceded by a grid num-
ber followed by a hyphen (-). A colon separates the parts of the entry (:). Once a
series of operations have been performed the script that is produced can be saved.
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Saved scripts can be loaded at a later time and re-executed as a group or each entry
executed one at a time. Scripts can also be edited and re-saved. Shown below is an
example script for obtaining multiple regression coefficients.

CURRENT SCRIPT LISTING:

FileOpen:l-newcansas
1-ColAugment:newcansas:1-X
1-FileSave:1-X.MAT
1-MatTranspose:1-X:2-XT
2-FileSave:2-XT.MAT
2-PreMatxPostMat:2-XT:1-X:3-XTX
3-FileSave:3-XTX.MAT
3-SVDInverse:3-XTX.MAT:1-XTXINV
1-FileSave:1-XTXINV.MAT
FileOpen:1-XT.MAT

FileOpen:2-Y.CVE
1-PreMatxPostVec:1-XT.MAT:2-Y.CVE:3-XTY
3-FileSave:3-XTY.CVE
FileOpen:1-XTXINV.MAT
1-PreMatxPostVec:1-XTXINV.MAT:3-XTY:4-BETAS
4-FileSave:4-Bweights.CVE

Print

To print a script which appears in the Script List, move your mouse to the Script
menu and click on the Print option. The list will be printed on the Output Form. At
the bottom of the form is a print button that you can click with the mouse to get a
hard-copy output.

Clear Script List

To clear an existing script from the script list, move the mouse to the Script menu
and click the Clear option. Note: you may want to save the script before clearing it
if it is a script you want to reference at a later time.

Edit the Script

Occasionally you may want to edit a script you have created or loaded. For example,
you may see a number of Load File or Save File operations in a script. Since these
are entered only for documentation and cannot actually be executed by clicking on
them, they can be removed from the script. The result is a more compact and
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succinct script of operations performed. You may also want to change the name of
files accessed for some operations or the name of files saved following an operation
so that the same operations may be performed on a new set of data. To begin editing
a script, move the mouse cursor to the Script menu and click on the Edit option.
A new form appears which provides options for the editing. The list of operations
appears on the left side of the form and an Options box appears in the upper right
portion of the form. To edit a given script operation, click on the item to be edited and
then click one of the option buttons. One option is to simply delete the item. Another
is to edit (modify) the item. When that option is selected, the item is copied into an
“Edit Box” which behaves like a miniature word processor. You can click on the text
of an operation at any point in the edit box, delete characters following the cursor
with the delete key, use the backspace key to remove characters in front of the cursor,
and enter characters at the cursor. When editing is completed, press the return key to
place the edited operation back into the script list from which it came.

Also on the Edit Form is a “Directory Box” and a “Files Box”. Shown in the direc-
tory box is the current directory you are in. The files list box shows the current files in
that directory. You can delete a file from any directory by simply double-clicking the
name of the file in the file list. A box will pop up to verify that you want to delete the
selected file. Click OK to delete the file or click Cancel if you do not want to delete
the file. CAUTION! Be careful NOT to delete an important file like MATMAN.EXE,
MATMAN.HLP or other system files (files with extensions of .exe, .dll, .hlp, .inf, etc.!
Files which ARE safe to delete are those you have created with MatMan. These all
end with an extension of .MAT, .CVE, .RVE ,.SCA or .SCR .

Load a Script

If you have saved a script of matrix operations, you can re-load the script for execu-
tion of the entire script of operations or execution of individual script items. To load
a previously saved script, move the mouse to the Script menu and click on the Load
option. Alternatively, you can go to the File menu and click on the Load Script
option. Operation scripts are saved in a file as text which can also be read and edited
with any word processing program capable of reading ASCII text files. For exam-
ples of scripts that perform statistical operations in matrix notation, see the help
book entitled Script Examples.

Save a Script

Nearly every operation selected from one of the menus creates an entry into the
script list. This script provides documentation of the steps performed in carrying out
a sequence of matrix, vector or scalar operations. If you save the script in a file with
a meaningful name related to the operations performed, that script may be “re-used”
at a later time.



344 14  Using MatMan
Executing a Script

You may quickly repeat the execution of a single operation previously performed
and captured in the script. Simply click on the script item with the left mouse button
when the cursor is positioned over the item to execute. Notice that you will be
prompted for the name of the file or files to be opened and loaded for that operation.
You can, of course, choose a different file name than the one or ones previously used
in the script item. If you wish, you can also re-execute the entire script of operations.
Move your mouse cursor to the Script menu and click on the Execute option. Each
operation will be executed in sequence with prompts for file names appearing before
execution each operation. Note: you will want to manually save the resulting file or
files with appropriate names.

Script Options

File Open and File Save operations may or may not appear in a script list depending
on options you have selected and saved. Since these two operations are not executed
when a script is re-executed, it is not necessary that they be saved in a script (other
than for documentation of the steps performed.) You can choose whether or not to
have these operations appear in the script as you perform matrix, vector or scalar
operations. Move your mouse cursor to the Script menu and click on the Options
option. A pop-up form will appear on which you can elect to save or not save the File
Open and File Save operations. The default (unchecked) option is to save these opera-
tions in a script. Clicking on an option tells the program to NOT write the operation to
the script. Return to the MatMan main form by clicking the Return or Cancel button.

Files

When MatMan is first started it searches the current directory of your disk for any
matrices, column vectors, row vectors or scalars which have previously been saved.
The file names of each matrix, vector or scalar are entered into a drop-down list box
corresponding to the type of data. These list boxes are located in the upper right
portion of the main form. By first selecting one of the four grids with a click of the
left mouse button and then clicking on one of the file names in a drop-down list, you
can automatically load the file in the selected grid. Each time you save a grid of data
with a new name, that file name is also added to the appropriate file list (Matrix,
Column Vector, Row Vector or Scalar.)

At the top of the main form is a menu item labeled “Files”. By clicking on the
Files menu you will see a list of file options as shown in the picture below. In addi-
tion to saving or opening a file for a grid, you can also import an OpenStat .txt file,
import a file with tab-separated values, import a file with comma separated values
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Fig. 14.2 Using the MatMan files menu

or import a file with spaces separating the values. All files saved with MatMan are
ASCII text files and can be read (and edited if necessary) with any word processor
program capable of reading ASCII files (for example the Windows Notepad pro-
gram) (Fig. 14.2).

Keyboard Input

You can input data into a grid directly from the keyboard to create a file. The file may
be a matrix, row vector, column vector or a scalar. Simply click on one of the four
grids to receive your keystrokes. Note that the selected grid number will be displayed
in a small box above and to the left of the grids. Next, click on the Files menu and
move your cursor down to the Keyboard entry option. You will see that this option is
expanded for you to indicate the type of data to be entered. Click on the type of data
to be entered from the keyboard. If you selected a matrix, you will be prompted for
the number of rows and columns of the matrix. For a vector, you will be prompted
for the type (column or row) and the number of elements. Once the type of data to be
entered and the number of elements are known, the program will “move” to the pre-
selected grid and be waiting for your data entry. Click on the first cell (Row 1 and
Column 1) and type your (first) value. Press the tab key to move to the next element
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in a row or, if at the end of a row, the first element in the next row. When you have
entered the last value, instead of pressing the tab key, press the return key. You will
be prompted to save the data. Of course, you can also go to the Files menu and click
on the Save option. This second method is particularly useful if you are entering a
very large data matrix and wish to complete it in several sessions.

File Open

If you have previously saved a matrix, vector or scalar file while executing the
MatMan program, it will have been saved in the current directory (where the
MatMan program resides.) MatMan saves data of a matrix type with a file extension
of MAT. Column vectors are saved with an extension of .CVE and row vectors
saved with an extension of .RVE. Scalars have an extension of .SCA. When you
click the File Open option in the File menu, a dialogue box appears. In the lower
part of the box is an indication of the type of file. Click on this drop-down box to see
the various extensions and click on the one appropriate to the type of file to be
loaded. Once you have done that, the files listed in the files box will be only the files
with that extension. Since the names of all matrix, vector and scalar files in the cur-
rent directory are also loaded into the drop-down boxes in the upper right portion of
the MatMan main form, you can also load a file by clicking on the name of the file
in one of these boxes. Typically, you will be prompted for the grid number of the
grid in which to load the file. The grid number is usually the one you have previ-
ously selected by clicking on a cell in one of the four grids.

File Save

Once you have entered data into a grid or have completed an operation producing a
new output grid, you may save it by clicking on the save option of the File menu.
Files are automatically saved with an extension which describes the type of file being
saved, that is, with a .MAT, .CVE, RVE or .SCA extension. Files are saved in the
current directory unless you change to a different directory from the save dialogue
box which appears when you are saving a file. It is recommended that you save files
in the same directory (current directory) in which the MatMan program resides. The
reason for doing this is that MatMan automatically loads the names of your files in
the drop-down boxes for matrices, column vectors, row vectors and scalars.

Import a File

In addition to opening an existing MatMan file that has an extension of .MAT, .
CVE, RVE or .SCA, you may also import a file created by other programs.
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Many word processing and spread -sheet programs allow you to save a file with the
data separated by tabs, commas or spaces. You can import any one of these types of
files. Since the first row of data items may be the names of variables, you will be
asked whether or not the first line of data contains variable labels.

You may also import files that you have saved with the OpenStat program.
These files have an extension of .TXT or .txt when saved by the OpenStat program.
While they are ASCII type text files, they contain a lot of information such as vari-
able labels, long labels, format of data, etc. MatMan simply loads the variable
labels, replacing the column labels currently in a grid and then loads numeric values
into the grid cells of the grid you have selected to receive the data.

Export a File

You may wish to save your data in a form which can be imported into another pro-
gram such as OpenStat, Excel, MicroSoft Word, WordPerfect, etc. Many programs
permit you to import data where the data elements have been separated by a tab,
comma or space character. The tab character format is particularly attractive because
it creates an ASCII (American Standard Code for Information Interchange) file with
clearly delineated spacing among values and which may be viewed by most word
processing programs.

Open a Script File

Once you have performed a number of operations on your data you will notice that
each operation has been “summarized” in a list of script items located in the script
list on the right side of the MatMan form. This list of operations may be saved for
later reference or re-execution in a file labeled appropriate to the series of opera-
tions. To re-open a script file, go to the File Menu and select the Open a Script File
option. A dialogue box will appear. Select the type of file with an extension of .SCR
and you will see the previously saved script files listed. Click on the one to load and
press the OK button on the dialogue form. Note that if a script is already in the script
list box, the new file will be added to the existing one. You may want to clear the
script list box before loading a previously saved script. Clear the script list box by
selecting the Clear option under the Script Operations menu.

Save the Script

Once a series of operations have been performed on your data, the operations
performed will be listed in the Script box located to the right of the MatMan form.
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The series of operations may represent the completion of a data analysis such as
multiple regression, factor analysis, etc. You may save this list of operations for
future reference or re-execution. To save a script, select the Save Script option from
the File Menu. A dialogue box will appear in which you enter the name of the file.
Be sure that the type of file is selected as a .SCR file (types are selected in the drop-
down box of the dialogue form.) A file extension of .SCR is automatically appended
to the name you have entered. Click on the OK button to complete the saving of the
script file.

Reset All

Occasionally you may want to clear all grids of data and clear all drop-down boxes
of currently listed matrix, vector and scalar files. To do so, click the Clear All option
under the Files Menu. Note that the script list box is NOT cleared by this operation.
To clear a script, select the Clear operation under the Script Operations menu.

Entering Grid Data

Grids are used to enter matrices, vectors or scalars. Select a grid for data by moving
the mouse cursor to the one of the grids and click the left mouse button. Move your
mouse to the Files menu at the top of the form and click it with the left mouse but-
ton. Bring your mouse down to the Keyboard Input option. For entry of a matrix of
values, click on the Matrix option. You will then be asked to verify the grid for entry.
Press return if the grid number shown is correct or enter a new grid number and
press return. You will then be asked to enter the name of your matrix (or vector or
scalar.) Enter a descriptive name but keep it fairly short. A default extension of
.MAT will automatically be appended to matrix files, a .CVE will be appended to
column vectors, a .RVE appended to row vectors and a .SCA appended to a scalar.
You will then be prompted for the number of rows and the number of columns for
your data. Next, click on the first available cell labeled Col.1 and Row 1. Type the
numeric value for the first number of your data. Press the tab key to move to the next
column in a row (if you have more than one column) and enter the next value. Each
time you press the tab key you will be ready to enter a value in the next cell of the
grid. You can, of course, click on a particular cell to edit the value already entered
or enter a new value. When you have entered the last data value, press the Enter key.
A “Save” dialog box will appear with the name you previously chose. You can keep
this name or enter a new name and click the OK button. If you later wish to edit
values, load the saved file, make the changes desired and click on the Save option of
the Files menu.

When a file is saved, an entry is made in the Script list indicating the action
taken. If the file name is not already listed in one of the drop-down boxes (e.g. the
matrix drop-down box), it will be added to that list.
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Clearing a Grid

Individual grids are quickly reset to a blank grid with four rows and four columns
by simply moving the mouse cursor over a cell of the grid and clicking the RIGHT
mouse button. CAUTION! Be sure the data already in the grid has been saved if you
do not want to lose it!

Inserting a Column

There may be occasions where you need to add another variable or column of data
to an existing matrix of data. You may insert a new blank column in a grid by select-
ing the Insert Column operation under the Matrix Operations menu. First, click on
an existing column in the matrix prior to or following the cell where you want the
new column inserted. Click on the Insert Column option. You will be prompted to
indicate whether the new column is to precede or follow the currently selected col-
umn. Indicate your choice and click the Return button.

Inserting a Row

There may be occasions where you need to add another subject or row of data to an
existing matrix of data. You may insert a new blank row in a grid by selecting the
Insert Row operation under the Matrix Operations menu. First, click on an existing
row in the matrix prior to or following the cell where you want the new row inserted.
Click on the Insert Row option. You will be prompted to indicate whether the new
row is to precede or follow the number of the selected row. Indicate your choice and
click the Return button.

Deleting a Column

To delete a column of data in an existing data matrix, click on the grid column to be
deleted and click on the Delete Column option under the Matrix Operations menu.
You will be prompted for the name of the new matrix to save. Enter the new matrix
name (or use the current one if the previous one does not need to be saved) and click
the OK button.

Deleting a Row

To delete a row of data in an existing data matrix, click on the grid row to be deleted
and click on the Delete Row option under the Matrix Operations menu. You will be
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prompted for the name of the new matrix to save. Enter the new matrix name (or use
the current one if the previous one does not need to be saved) and click the OK
button.

Using the Tab Key

You can navigate through the cells of a grid by simply pressing the tab key. Of
course, you may also click the mouse button on any cell to select that cell for data
entry or editing. If you are at the end of a row of data and you press the tab key, you
are moved to the first cell of the next row (if it exists.) To save a file press the Return
key when located in the last row and column cell.

Using the Enter Key

If you press the Return key after entering the last data element in a matrix, vector or
scalar, you will automatically be prompted to save the file. A “save” dialogue box
will appear in which you enter the name of the file to save your data. Be sure the
type of file to be saved is selected before you click the OK button.

Editing a Cell Value

Errors in data entry DO occur (after all, we are human aren’t we?) You can edit a
data element by simply clicking on the cell to be edited. If you double click the cell,
it will be highlighted in blue at which time you can press the delete key to remove
the cell value or enter a new value. If you simply wish to edit an existing value, click
the cell so that it is NOT highlighted and move the mouse cursor to the position in
the value at which you want to start editing. You can enter additional characters,
press the backspace key to remove a character in front of the cursor or press the
delete key to remove a character following the cursor. Press the tab key to move to
the next cell or press the Return key to obtain the save dialogue box for saving your
corrections.

Loading a File

Previously saved matrices, vectors or scalars are easily loaded into any one of the
four grids. First select a grid to receive the data by clicking on one of the cells of the
target grid. Next, click on the Open File option under the Files Menu. An “open”
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dialogue will appear which lists the files in your directory. The dialogue has a
drop-down list of possible file types. Select the type for the file to be loaded. Only
files of the selected type will then be listed. Click on the name of the file to load and
click the OK button to load the file data.

Matrix Operations

Once a matrix of data has been entered into a grid you can elect to perform a number
of matrix operations. The figure below illustrates the options under the Matrix
Operations menu. Operations include:

Row Augment

Column Augment

Delete a Row

Delete a Column

Extract Col. Vector from Matrix

SVD Inverse

Tridiagonalize

Upper-Lower Decomposition

Diagonal to Vector

Determinant

Normalize Rows

Normalize Columns

Premultiply by : Row Vector; Matrix; Scalar
Postmultiply by : Column Vector; Matrix
Eigenvalues and Vectors

Transpose

Trace

Matrix A+ Matrix B

Matrix A—Matrix B

Print

Printing

You may elect to print a matrix, vector, scalar or file. When you do, the output is
placed on an “Output” form. At the bottom of this form is a button labeled ‘Print”
which, if clicked, will send the contents of the output form to the printer. Before
printing this form, you may type in additional information, edit lines, cut and paste
lines and in general edit the output to your liking. Edit operations are provided as
icons at the top of the form. Note that you can also save the output to a disk file, load
another output file and, in general, use the output form as a word processor.
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Row Augment

You may add a row of 1’s to a matrix with this operation. When the transpose of
such an augmented matrix is multiplied times this matrix, a cell will be created in
the resulting matrix, which contains the number of columns in the augmented
matrix.

Column Augmentation

You may add a column of 1°s to a matrix with this operation. When the transpose of
such an augmented matrix is multiplied times this matrix, a cell will be created in
the resulting matrix, which contains the number of rows in the augmented matrix.
The procedure for completing a multiple regression analysis often involves column
augmentation of a data matrix containing a row for each object (e.g. person) and
column cells containing independent variable values. The column of 1’s created
from the Column Augmentation process ends up providing the intercept (regression
constant) for the analysis.

Extract Col. Vector from Matrix

In many statistics programs the data matrix you begin with contains columns of data
representing independent variables and one or more columns representing depen-
dent variables. For example, in multiple regression analysis, one column of data
represents the dependent variable (variable to be predicted) while one or more col-
umns represent independent variables (predictor variables.) To analyze this data
with the MatMan program, one would extract the dependent variable and save it as
a column vector for subsequent operations (see the sample multiple regression
script.) To extract a column vector from a matrix you first load the matrix into one
of the four grids, click on a cell in the column to be extracted and then click on the
Extract Col. Vector option under the Matrix Operations menu.

SVDInverse

A commonly used matrix operation is the process of finding the inverse (reciprocal)
of a symmetric matrix. A variety of methods exist for obtaining the inverse (if one
exists.) A common problem with some inverse methods is that they will not provide
a solution if one of the variables is dependent (or some combination of) on other
variables (rows or columns) of the matrix. One advantage of the “Singular Value
Decomposition” method is that it typically provides a solution even when one or more
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dependent variables exist in the matrix. The offending variable(s) are essentially
replaced by zeroes in the row and column of the dependent variable. The resulting
inverse will NOT be the desired inverse.

To obtain the SVD inverse of a matrix, load the matrix into a grid and click on the
SVDInverse option from the Matrix Operations menu. The results will be displayed
in grid 1 of the main form. In addition, grids 2 through 4 will contain additional
information which may be helpful in the analysis. Figures 1 and 2 below illustrate
the results of inverting a 4 by 4 matrix, the last column of which contains values that
are the sum of the first three column cells in each row (a dependent variable.)

When you obtain the inverse of a matrix, you may want to verify that the result-
ing inverse is, in fact, the reciprocal of the original matrix. You can do this by mul-
tiplying the original matrix times the inverse. The result should be a matrix with 1°s
in the diagonal and 0’s elsewhere (the identity matrix.) Figure 3 demonstrates that
the inverse was NOT correct, that is, did not produce an identity matrix when mul-
tiplied times the original matrix.

Figure 1. DepMat.MAT From Grid Number 1

Columns
Col.1l Col.2 Col.3 Col.4
Rows
1 5.000 11.000 2.000 18.000
2 11.000 2.000 4.000 17.000
3 2.000 4.000 1.000 7.000
4 18.000 17.000 7.000 1.000

Figure 2. DepMatInv.MAT From Grid Number 1

Columns
Col.1l Col.2 Col.3 Col.4
Rows
1 0.584 0.106 -1.764 0.024
2 0.106 -0.068 -0.111 0.024
3 -1.764 -0.111 4.802 0.024
4 0.024 0.024 0.024 -0.024
Figure 3. DepMatxDepMatInv.MAT From Grid Number 3
Columns
Col.1l Col.2 Col.3 Col.4
Rows
1 1.000 0.000 0.000 0.000
2 0.000 1.000 0.000 0.000
3 0.000 0.000 1.000 0.000
4 1.000 1.000 1.000 0.000

NOTE! This is NOT an Identity matrix.
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Tridiagonalize

In obtaining the roots and vectors of a matrix, one step in the process is frequently
to reduce a symmetric matrix to a tri-diagonal form. The resulting matrix is then
solved more readily for the eigenvalues and eigenvectors of the original matrix. To
reduce a matrix to its tridiagonal form, load the original matrix in one of the grids
and click on the Tridiagonalize option under the Matrix Operations menu.

Upper-Lower Decomposition

A matrix may be decomposed into two matrices: a lower matrix (one with zeroes
above the diagonal) and an upper matrix (one with zeroes below the diagonal
matrix.) This process is sometimes used in obtaining the inverse of a matrix. The
matrix is first decomposed into lower and upper parts and the columns of the inverse
solved one at a time using a routine that solves the linear equation A X=B where A
is the upper/lower decomposition matrix, B are known result values of the equation
and X is solved by the routine. To obtain the LU decomposition, enter or load a
matrix into a grid and select the Upper-Lower Decomposition option from the
Matrix Operations menu.

Diagonal to Vector

In some matrix algebra problems it is necessary to perform operations on a vector
extracted from the diagonal of a matrix. The Diagonal to Vector operation extracts
the diagonal elements of a matrix and creates a new column vector with those val-
ues. Enter or load a matrix into a grid and click on the Diagonal to Vector option
under the Matrix Operations menu to perform this operation.

Determinant

The determinant of a matrix is a single value characterizing the matrix values. A sin-
gular matrix (one for which the inverse does not exist) will have a determinant of
zero. Some ill-conditioned matrices will have a determinant close to zero. To obtain
the determinant of a matrix, load or enter a matrix into a grid and select the Determinant
option from among the Matrix Operations options. Shown below is the determinant
of a singular matrix (row/column 4 dependent on columns 1 through 3.)
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Columns
Col.1l Col.2 Col.3 Col.4
Rows
1 5.000 11.000 2.000 18.000
2 11.000 2.000 4.000 17.000
3 2.000 4.000 1.000 7.000
4 18.000 17.000 7.000 42.000
Columns
Col 1
Rows
1 0.000

Normalize Rows or Columns

In matrix algebra the columns or rows of a matrix often represent vectors in a multi-
dimension space. To make the results more interpretable, the vectors are frequently
scaled so that the vector length is 1.0 in this “hyper-space” of k-dimensions. This
scaling is common for statistical procedures such as Factor Analysis, Principal
Component Analysis, Discriminant Analysis, Multivariate Analysis of Variance,
etc. To normalize the row (or column) vectors of a matrix such as eigenvalues, load
the matrix into a grid and select the Normalize Rows (or Normalize Columns)
option from the Matrix Operations menu.

Pre-multiply By

A matrix may be multiplied by a row vector, another matrix or a single value (sca-
lar.) When a row vector with N columns is multiplied times a matrix with N rows,
the result is a row vector of N elements. When a matrix of N rows and M columns
is multiplied times a matrix with M rows and Q columns, the result is a matrix of N
rows and Q columns. Multiplying a matrix by a scalar results in each element of the
matrix being multiplied by the value of the scalar.

To perform the pre-multiplication operation, first load two grids with the values
of a matrix and a vector, matrix or scalar. Click on a cell of the grid containing the
matrix to insure that the matrix grid is selected. Next, select the Pre-Multiply by:
option and then the type of value for the pre-multiplier in the sub-options of the
Matrix Operations menu. A dialog box will open asking you to enter the grid num-
ber of the matrix to be multiplied. The default value is the selected matrix grid.
When you press the OK button another dialog box will prompt you for the grid
number containing the row vector, matrix or scalar to be multiplied times the matrix.
Enter the grid number for the pre-multiplier and press return. Finally, you will be
prompted to enter the grid number where the results are to be displayed. Enter a
number different than the first two grid numbers entered. You will then be prompted
for the name of the file for saving the results.
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Post-multiply By

A matrix may be multiplied times a column vector or another matrix. When a matrix
with N rows and Q columns is multiplied times a column vector with Q rows, the
result is a column vector of N elements. When a matrix of N rows and M columns
is multiplied times a matrix with M rows and Q columns, the result is a matrix of N
rows and Q columns.

To perform the post-multiplication operation, first load two grids with the values
of a matrix and a vector or matrix. Click on a cell of the grid containing the matrix
to insure that the matrix grid is selected. Next, select the Post-Multiply by: option
and then the type of value for the post-multiplier in the sub-options of the Matrix
Operations menu. A dialog box will open asking you to enter the grid number of the
matrix multiplier. The default value is the selected matrix grid. When you press the
OK button another dialog box will prompt you for the grid number containing the
column vector or matrix. Enter the grid number for the post-multiplier and press
return. Finally, you will be prompted to enter the grid number where the results are
to be displayed. Enter a number different than the first two grid numbers entered.
You will then be prompted for the name of the file for saving the results.

Eigenvalues and Vectors

Eigenvalues represent the k roots of a polynomial constructed from k equations. The
equations are represented by values in the rows of a matrix. A typical equation writ-
ten in matrix notation might be:

Y=BX

where X is a matrix of known “independent” values, Y is a column vector of “depen-
dent” values and B is a column vector of coefficients which satisfies specified prop-
erties for the solution. An example is given when we solve for “least-squares”
regression coefficients in a multiple regression analysis. In this case, the X matrix
contains cross-products of k independent variable values for N cases, Y contains
known values obtained as the product of the transpose of the X matrix times the N
values for subjects and B are the resulting regression coefficients.

In other cases we might wish to transform our matrix X into another matrix V
which has the property that each column vector is “orthogonal” to (un-correlated)
with the other column vectors. For example, in Principal Components analysis, we
seek coefficients of vectors that represent new variables that are uncorrelated but
which retain the variance represented by variables in the original matrix. In this case
we are solving the equation

VXVT =2
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X is a symmetric matrix and A are roots of the matrix stored as diagonal values
of a matrix. If the columns of V are normalized then V VT=1, the identity matrix.

Transpose

The transpose of a matrix or vector is simply the creation of a new matrix or vector
where the number of rows is equal to the number of columns and the number of
columns equals the number of rows of the original matrix or vector. For example,
the transpose of the row vector [1 2 3 4] is the column vector:

1
2
3
4
Similarly, given the matrix of values:

the transpose is:

1
2
3

(o) O TN

You can transpose a matrix by selecting the grid in which your matrix is stored
and clicking on the Transpose option under the Matrix Operations menu. A similar
option is available under the Vector Operations menu for vectors.

Trace

The trace of a matrix is the sum of the diagonal values.

Matrix A + Matrix B

When two matrices of the same size are added, the elements (cell values) of the first
are added to corresponding cells of the second matrix and the result stored in a cor-
responding cell of the results matrix. To add two matrices, first be sure both are
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stored in grids on the main form. Select one of the grid containing a matrix and click
on the Matrix A+Matrix B option in the Matrix Operations menu. You will be
prompted for the grid numbers of each matrix to be added as well as the grid number
of the results. Finally, you will be asked the name of the file in which to save the
results.

Matrix A—Matrix B

When two matrices of the same size are subtracted, the elements (cell values) of the
second are subtracted from corresponding cells of the first matrix and the result
stored in a corresponding cell of the results matrix. To subtract two matrices, first be
sure both are stored in grids on the main form. Select one of the grids containing the
matrix from which another will be subtracted and click on the Matrix A—Matrix B
option in the Matrix Operations menu. You will be prompted for the grid numbers
of each matrix as well as the grid number of the results. Finally, you will be asked
the name of the file in which to save the results.

Print

To print a matrix be sure the matrix is loaded in a grid, the grid selected and then
click on the print option in the Matrix Operations menu. The data of the matrix will
be shown on the output form. To print the output form on your printer, click the Print
button located at the bottom of the output form.

Vector Operations

A number of vector operations may be performed on both row and column vectors.
Shown below is the main form with the Vector Operations menu selected. The oper-
ations you may perform are:

Transpose

Multiply by Scalar
Square Root of Elements
Reciprocal of Elements
Print

Row Vec. x Col. Vec.
Col. Vec x Row Vec.
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Vector Transpose

The transpose of a matrix or vector is simply the interchange of rows with columns.
Transposing a matrix results in a matrix with the first row being the previous first
column, the second row being the previous second column, etc. A column vector
becomes a row vector and a row vector becomes a column vector. To transpose a
vector, click on the grid where the vector resides that is to be transposed. Select the
Transpose Option from the Vector Operations menu and click it. Save the trans-
posed vector in a file when the save dialogue box appears.

Multiply a Vector by a Scalar

When you multiply a vector by a scalar, each element of the vector is multiplied by
the value of that scalar. The scalar should be loaded into one of the grids and the
vector in another grid. Click on the Multiply by a Scalar option under the Vector
Operations menu. You will be prompted for the grid numbers containing the scalar
and vector. Enter those values as prompted and click the return button following
each. You will then be presented a save dialogue in which you enter the name of the
new vector.

Square Root of Vector Elements

You can obtain the square root of each element of a vector. Simply select the grid
with the vector and click the Square Root option under the Vector Operations menu.
A save dialogue will appear after the execution of the square root operations in
which you indicate the name of your new vector. Note - you cannot take the square
root of a vector that contains a negative value - an error will occur if you try.

Reciprocal of Vector Elements

Several statistical analysis procedures involve obtaining the reciprocal of the ele-
ments in a vector (often the diagonal of a matrix.) To obtain reciprocals, click on the
grid containing the vector then click on the Reciprocal option of the Vector
Operations menu. Of course, if one of the elements is zero, an error will occur! If
valid values exist for all elements, you will then be presented a save dialogue box in
which you enter the name of your new vector.
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Print a Vector

Printing a vector is the same as printing a matrix, scalar or script. Simply select the
grid to be printed and click on the Print option under the Vector Operations menu.
The printed output is displayed on an output form. The output form may be printed
by clicking the print button located at the bottom of the form.

Row Vector Times a Column Vector

Multiplication of a column vector by a row vector will result in a single value (sca-
lar.) Each element of the row vector is multiplied times the corresponding element
of the column vector and the products are added. The number of elements in the row
vector must be equal to the number of elements in the column vector. This operation
is sometimes called the “dot product” of two vectors. Following execution of this
vector operation, you will be shown the save dialogue for saving the resulting scalar
in a file.

Column Vector Times Row Vector

When you multiply a column vector of k elements times a row vector of k elements,
the result is a k by k matrix. In the resulting matrix each row by column cell is the
product of the corresponding column element of the row vector and the correspond-
ing row element of the column vector. The result is equivalent to multiplying a k by
1 matrix times a 1 by k matrix.

Scalar Operations

The operations available in the Scalar Operations menu are:

Square Root
Reciprocal
Scalar x Scalar
Print

Square Root of a Scalar

Selecting this option under the Scalar Operations menu results in a new scalar that
is the square root of the original scalar. The new value should probably be saved in
a different file than the original scalar. Note that you will get an error message if you
attempt to take the square root of a negative value.
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Reciprocal of a Scalar

You obtain the reciprocal of a scalar by selecting the Reciprocal option under the
Scalar Operations menu. You will obtain an error if you attempt to obtain the recip-
rocal of a value zero. Save the new scalar in a file with an appropriate label.

Scalar Times a Scalar

Sometimes you need to multiply a scalar by another scalar value. If you select this
option from the Scalar Operations menu, you will be prompted for the value of the
multiplier. Once the operation has been completed you should save the new scalar
product in a file appropriately labeled.

Print a Scalar

Select this option to print a scalar residing in one of the four grids that you have
selected. Notice that the output form contains all objects that have been printed.
Should you need to print only one grid’s data (matrix, vector or scalar) use the Clear
All option under the Files menu.
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The GradeBook Program

The GradeBook Main Form

The image below will first appear when you begin the GradeBook program
(Fig. 15.1):

At the bottom of the form is the “main menu”. Move your mouse to one of the
topics such as “OPENFILE”, click on it with the left mouse button. Your typical
first step is to click the box in the area marked “For Grade Book™ and click the box
for “Enter a Title for This Grade Book”. You can then enter student information in
the top “grid” of the form as shown by the example above. Once you have entered
student information, you can add a new test column. One test has been added in the
above example. Enter the “raw” scores for each student. Once those have been
placed in the grid test area, you should enter a grading system for the test. Once that
has been completed you can do a variety of analyses for the test or the class by
selecting an option in the respective box of the first two blocks of options. Note that
you must click the “DO ABOVE” button to implement your choice.

The Student Page Tab

The majority of the form consists of a “tabbed” series of grids. The program will
begin with the “Students” grid. By clicking any one of the tabs located along the top,
you can change to a different grid. The Student grid is where you will first enter the
last name, first name and middle initial for each student in your class. Don’t worry
about the order in which you enter them - you can sort them later with a click of the
mouse button! Be sure an assign an Identification Number for each student. A sequen-
tial integer will work if you don’t have a school ID or social security number.

To enter the first student’s last name, click on the Student 1 and Last Name row
and column cell. Enter the last name. Press the tab key on your keyboard to move to
the next cell for the First Name. Continue to enter information requested using the
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Fig. 15.1 The GradeBook dialog

tab key to move from cell to cell. Be sure and press the Enter key following the entry
of the student ID number.

You can use the four navigation keys (arrow keys) on your keyboard to move
from cell to cell or click on the cell where you wish to make an entry or change.
Pressing the “enter” key on the keyboard “toggles” the cell between what is known
as “edit mode” or selection mode. When in selection mode the cell will be colored
blue. If you make an entry when in selected mode, the previous entry is replaced by
the new key strokes. When in edit mode, you can move back and forth in your entry
and make deletions using the delete key or backspace key and type new characters
following the cursor in the cell.

Once you have entered your students names and identification numbers, click on
the File menu and select the “Save As” option by clicking on it with the left mouse
button. A “dialogue box” will open up in which you enter the name of the file you
have selected for your grade book. Enter a name and click on the save button.

Test Result Page Tabs

If you have entered one or more tests and the corresponding raw scores for each
student, there are a variety of operations that you can perform. Once you have saved
your file and re-opened it, the names of your students are automatically copied to all
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Results Window %1
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Fig. 15.2 The GradeBook summary

of the tab pages. The Test areas are used to record the scores obtained by each stu-
dent on one of the tests you have administered. Once a score has been entered for
each student, you can elect to calculate one or more (or all) transformations avail-
able from the main menu’s “Compute” options. The previous image illustrates the
selection of the possible score transformations. As an illustration of one of the
options, we have elected to print a grade book summary (Fig. 15.2):

Once raw scores are entered into one of the Test pages, the user should complete
the specification of the measurements and the grading procedure for each test.
Ideally, the teacher knows at the beginning of a course how many tests will be
administered, the possible number of points for each measure, the type of transfor-
mation to be used for grading, and the “cut-points” for each grade assignment.
Shown below is the form used to specify the measurements utilized in the course.
This form is obtained by clicking the Enter Grading Specifications box under the
For Grade Book list of options (Fig. 15.3).

Notice that for each test, the user is expected to enter the minimum and maxi-
mum points which can be awarded for the test, quiz, essay or measurement. In addi-
tion, an estimate of reliability should be entered if a composite reliability estimate
is to be obtained. Note - you can get an estimate of reliability for a test as an option
under the For Selected Test options. The weight that the measure is to receive in
obtaining the composite score for the course is also entered. We recommend integer
values such as 1 for a quiz, 2 for major tests and perhaps 3 or 4 for tests like a mid-
term or final examination. Finally, there is an area for a brief note describing the
purpose or nature of the measurement.
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Fig. 15.3 The GradeBook Measurement Specifications form
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Chapter 16
The Item Banking Program

Introduction

Teachers are confronted with large classes that often make it difficult to evaluate
students on the basis of evaluations based on essay examinations, problems or cre-
ative work which permits the students to demonstrate their mastery of concepts and
skills in a particular area of learning. As a consequence, a variety of test questions
have been devised to sample student knowledge and skills from the larger domain
of knowledge contained in a given content area. Multiple choice items, true or false
items, sentence completion items, matching items and short essay items have been
developed to reduce the time required to evaluate students. The test theory that has
evolved around these various types of items indicates that they are quite adequate in
reliably assessing differences that exist among students in the domain sampled.
Many states, for example, have gone to the use of computerized testing for individu-
als applying for driving licenses. The individual taking these examinations are pre-
sented multiple-choice types of items drawn from a computerized item bank. If the
applicant performs at a given level of competence they are then permitted to dem-
onstrate their actual driving skills in a second evaluation stage. Many Area
Educational Agencies have also developed banks of items appropriate to various
instructional subjects across the school grades such as in English, mathematics, sci-
ence and history. Teachers may draw items from these banks to create tests over the
subject area they teach.

Many teacher-constructed items utilize a picture or photograph (for example,
maps, machines, paintings, etc.) as part of one or more items in a test. These pic-
tures may be saved in the computer as “bitmap” files and tied to specific items in the
bank. When the test is printed, if a picture is used it is printed prior to the printing
of the item.
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Item Coding

A variety of coding schemes may be developed to categorize test items. For exam-
ple, one might use the Taxonomy of Educational Objectives to classify items. If one
is teaching from a text book utilized across different schools in a given district, the
items might be classified by the chapter, section, page and paragraph of the content
to which an item refers. One may also construct a classification structure based on
a breakdown of subject matter into sub-categories of the content. For example, the
broad field of statistics might be initially broken down into parametric and non-
parametric statistics. These domains may be further broken into categories such as
univariate, multivariate, Neyman-Pearson, Bayesian, etc. which in turn may be fur-
ther broken down into topics such as theory, terminology, symbols, equations, etc.

Most classification schemes result in a classification “tree” with sub-categories
representing branches from the previous category level. This item banking program
lets you determine your own coding system and enter codes that classify each item.
You may utilize as many levels as is practical (typically three or four.) A style of
code entry is required that is consistent across all items in the bank. For example, a
code of 05.13.06.01 would represent a coding structure with four levels, each level
having a maximum of 99 categories at each level.

In addition to classifying items by their content, one will also need to classify
items by their type, that is, whether the item is a multiple-choice item, a true-false
item, a matching item within a set of matching items, etc. This program requires the
user to specify one of five item types for each item.

Items may also have other characteristics. In particular, one may have experience
with the use of specific items in past tests and have a reasonable approximation of
the difficulty of the item. Typically, the difficulty of the item is measured (in the
Classical Test Theory) by the proportion of students that pass the item. For example
an item with a difficulty index of .3 is more difficult than an item with an index of
.8. If one is utilizing one, two or three parameter logistic scaling (Item Response
Theory) he or she may have a difficulty parameter, a discrimination parameter and
a chance correct parameter to describe the item. In the area often called “Tailored
Testing”, items are selected to administer the student in such a manner that the esti-
mate of student ability is obtained with relatively few items. This is done by select-
ing items based on their difficulty parameter and the response the student gives to
each item in the sequence. This program lets you enter parameter estimates (Classical
or Item Response Theory estimates) for each item.

Items stored in the item bank may be retrieved on the basis of one or more crite-
ria. One may, for example, select items within specific code areas, item difficulty
and item type. By this means one can create a test of items that cover a certain topi-
cal area, have a specific range of difficulty and are of a given type or types.
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Fig. 16.1 The Item Bank form

Using the Item Bank Program

You reach the Item Banking program by clicking on the Analyses->
Measurement->Item Banking menu on the main form of OpenStat. There you can
click one of three choices: Enter/Edit items, Specify a Test to Administer or Generate
a Test. If you click on the first submenu, you will see the above form (Fig. 16.1):

In the above form you can open a new item bank or load an existing item bank.
If you create a new item bank you can enter a variety of item types into the item
bank along with an estimate of the items difficulty level. Some items may have a
corresponding bit map figure that you have created for the item. You can also enter
a major and minor code for an item so that different tests you may want to generate
have different items based on the codes selected.

Specifying a Test

If you have already created an item bank, you can then select the next option from
the main menu to specify the nature of a test to generate. When you do, the follow-
ing form is shown (Fig. 16.2):

Within this form you can specify a test using characteristics of the items in the
item bank such as the item difficulty or item codes. A test may be printed or admin-
istered on a computer screen.
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Fig. 16.2 The item banking Test Specification form

Generate a Test

This is the third option in the Item Banking system. If you have specified a test the
following form is displayed (Fig. 16.3):

Notice that the form first requests the name of the previously created item bank
file and it then automatically loads the test specification form previously created.
The sample item bank we created only contains two items which we specified to be
administered on the computer screen to a student with the ID =Student 1. If we now
click the “Proceed with the test button we obtain the following prompt form
(Fig. 16.4):

When the “OK” button is pressed, the test is administered or printed. Our exam-
ple would display a screen as shown below (Fig. 16.5):

Following administration of the test, the total correct score is displayed.
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Neural Networks

Using the Program

The Neural Form

In the figure below (Fig. 17.1) you see a menu consisting of drop-down boxes for
Files, Generation, etc. You also see a grid and a list of commands used to create
“control files.” The Neural program completes its work by reading a file of control
commands. Each command consists of one or two parts, the parts separated by a
colon (:) in the command list box. In some cases, the user provides the second part,
often the name of a file. To aid the user to complete some “traditional” types of
analyses, the program can automatically generate a control file in the data grid. To
do this, one first clicks on the “File” in the menu and then move the mouse to the
“New” option and from there to the “Control File” option. Clicking the “Control
File” option modifies the grid to contain two columns with sufficient width to hold
control commands. The figure below shows the File menu options (Fig. 17.2):

Once the user has indicated he or she intends to generate a new control file, the
menu item labeled “Generate” is clicked and the mouse moved to the type of control
file to generate. Figure 17.3 illustrates the selection of the option to generate a con-
trol file for prediction:

When the “Controls for Prediction” option is clicked, the program opens a dialog
form for entering the parameters of the prediction problem. Figure 17.4 below illus-
trates this form:

The user supplies the name of a “Training File” and a data file containing valida-
tion data for analysis. In standard multiple regression methods, the multiple correla-
tion coefficient represents the correlation between the predicted scores and the
actual dependent variable scores. In using the neural network program, one can
analyze the same data as the training data and correlate the obtained predicted scores
with the original scores to obtain a similar index of prediction accuracy. In the figure
below, a control file is shown that was used to predict the variable “jumps” using
five independent variables (height, weight, etc.) from a file labeled “canszscaled.

W. Miller, OpenStat Reference Manual, DOI 10.1007/978-1-4614-5740-4_17, 373
© Springer Science+Business Media New York 2013



374 17 Neural Networks

| Newal Networks

Fle Germeate Edt Jranskem Bun CortvolFle Hel
No cfVerstlex [ NoRows [ o[

| CONTROL FILE COMMANDS

:
:

CONFUSION THRESHOLD
CONTROL

|EECUTE

GENE ToC INIT CLIME
GENE ToC INIT CROSS
GENE TiC INIT GENS
GENETIC INIT MUTATE
GENETIC NIT NOCUMB

KNMNNEN | FARN ANMITAT

Fie | Message: |

Fig. 17.1 The Neural form

loix|
[ Goose [ Davon BunCowdfie Heo
» l-dlh[

MY » DeaFie ’

e s e 1

K

Cloce

Dot Cortol e Gnd

Pyt Owtn Ml Gt

Prrg oty oo

[ S
‘ﬂ"\l T sl (L
GENE TIC ma T CROSS
GENE TOC maT GENS
GENE TOC BT MUTATE
GENE T ST NOCLIMG
GINL T Ml vt
SGENE T mat OO
ECOAEN N T O T
EOOMNEN N T RANDOM
o e ) LA LT :'

Corart Prxcodan l!*" .

W 8 procadae e b be g peen P Buon (u-[

Fig. 17.2 The neural file menu



Using the Program 375

01X
I Goese [ Lavos B Cosdfie Hep
e -
MY » DeaFie |
e ety e -
S
f+
Dot Cormol e G
Pyed Dt Fim Gt
Prrg \wloghis Goud
i~
QUEsA ’
yt“Lm-r-ﬂm..
CONTROL,
DO
GENE TC ma® OLne
GENE T'C MaT CROSS
GENE TIC Mt GENS
GENE TIC T MUTATE
GENE TiC T NOOLRG
SUNLTIC Mt OVERNT
SN TIC T POCR
SOMONEN N T NONT
HOMOMEN N T RANDOM
afeaml w1 pi W TeTAN :l

Comart Procadan l!!"’

W 8 procedioe seemd b be Tung” prent P Buon lu-nl

Fig. 17.3 The neural control file generation options

Heneeate Preds 'ﬂﬂ((ﬂd'h i ml

A e
Munber of depandent vasdties olesnt ||
Nusber of lyer | idden rosora aryp °
Musber of by 2hdonroscra arp |

1 1arwg Uata ée Name |

Aealys Data Fie Nome |

Outgast File Name: |

Weghts FleName: |

_Corcel | x|

Fig. 17.4 The control file generation form for prediction problems




376 17 Neural Networks

dat.” The file consists of raw measures that have been transformed to z-scores and
then re-scaled to have a range from .1 to .9. The resulting predicted scores are in a
similar range but may be re-converted to z-scores for comparison with the original
z-scores of the dependent variable.

Note - for users of Openstat , the file cansas.tab was imported to the Neural pro-
gram and the transformation option applied using the options in the Transformations
menu item.

Example Control File for Prediction

QUIT ERROR:.1

QUIT RETRIES:3

CONFUSION THRESHOLD:50
NETWORK MODEL:LAYER
LAYER INIT:ANNEAL

OUTPUT MODEL:GENERAL

N INPUTS:5

N OUTPUTS:1

N HIDDEN1:0

N HIDDEN2:0
TRAIN:CANSASSCALED.DAT
OUTPUT FILE:CANSASOUT.TXT
LEARN:

SAVE WEIGHTS:CANSAS.WTS
EXECUTE : CANSASSCALED.DAT
QUIT:

Control file commands are listed on the Neural Form. One can also generate
control files for classification in a manner similar to discriminant function analysis
or hierarchical analysis in traditional multivariate statistics. Figure 17.5 below
shows the dialogue form for specifying a classification control file. Default names
have been entered for the name of two files created when the control file is “run”.
The “Confusion” file will contain the number of records (subjects) classified in each
group. The neural net is “trained” to recognize the group classification on the basis
of the “predictor” or classification variables. The confusion data is comparable to a
contingency chi-square table in traditional statistics. A row will be generated for
each group and a column will be generated for each predicted group (plus a column
for unknowns) . In training the net, the data for each group is entered separately.
Once the neuron weights are “learned”, one can then classify unknown subjects.
Often one analyzes the same data as used for training the net to see how well the
network does in classifying the original data.
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Fig. 17.5 The form for Generate Classification Control File % x|

generating a classification

control file No. of Groups to be Classified: I

No. dVaiabhstodoHnU&M‘:I

Name of Confusion Output File: |CLASSIFY.OUT
No. of Layer 1 Neurons: I
No. of Layer 2 Neurons: I
Name of Weights File: |CLASSIFY. WGT

Canoell OKl

Figure below shows the generated control file for classifying subjects in three
groups on the basis of two continuous variables. The continuous variables have been
scaled to have a range from .1 to .9 as in the prediction problem previously discussed.

QUIT ERROR:0.1

QUIT RETRIES:5

CONFUSION THRESHOLD:50
NETWORK MODEL:LAYER

LAYER INIT:GENETIC

OUTPUT MODEL:CLASSIFY

N INPUTS:2

N OUTPUTS:3

N HIDDEN1:2

N HIDDENZ2:0

CLASSIFY OUTPUT:1
TRAIN:GROUP1.DAT

CLASSIFY OUTPUT:2
TRAIN:GROUP2.DAT

CLASSIFY OUTPUT:3
TRAIN:GROUP3.DAT

LEARN:

SAVE WEIGHTS:CLASSIFY.WGT
RESET CONFUSION:
CLASSIFY:GROUP1.DAT

SHOW CONFUSION:

SAVE CONFUSION:CLASSIFY.OUT
RESET CONFUSION:
CLASSIFY:GROUP2.DAT

SHOW CONFUSION:

SAVE CONFUSION:CLASSIFY.OUT
RESET CONFUSION:
CLASSIFY:GROUP3.DAT

SHOW CONFUSION:

SAVE CONFUSION:CLASSIFY.OUT
RESET CONFUSION:

CLEAR TRAINING:

QUIT:
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Fig. 17.6 Form for - -
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In traditional multivariate statistics, hierarchical grouping analyses are some-
times performed in an attempt to identify “natural” groups on the basis of one or
more continuous variables. One type of neural network called the “Kohonen™ net-
work may be utilized for a similar purpose. The user specifies the number of vari-
ables to analyze and the number of “output groups” that is expected. By repeated
“runs” of the network with different numbers of output groups, one can examine the
number of subjects classified into “self-organized” groups. Figure 17.6 above illus-
trates the dialogue box for specifying a Kohonen control file and program code
below shows a sample control file for classifying data.
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QUIT ERROR:0.1

QUIT RETRIES:5

CONFUSION THRESHOLD:50
KOHONEN NORMALIZATION MULTIPLICATIVE:
NETWORK MODEL:KOHONEN
KOHONEN INIT:RANDOM
OUTPUT MODEL:CLASSIFY

N INPUTS:3

N OUTPUTS:10

N HIDDEN1:0

N HIDDENZ2:0
TRAIN:kohonen.dat

KOHONEN LEARN SUBTRACTIVE:
LEARN:

SAVE WEIGHTS:koh2.wts
RESET CONFUSION:
CLASSIFY:kohonen.dat

SHOW CONFUSION:

SAVE CONFUSION:confuse.txt
RESET CONFUSION:
CLASSIFY:kohonen.dat

SHOW CONFUSION:

SAVE CONFUSION:confuse.txt
CLEAR TRAINING:

QUIT:

Examples

Regression Analysis with One Predictor

A sample of 200 observations with two continuous variables were generated using
the OpenStat simulation procedure for generating multivariate distributions. The
data were generated to come from a population with a product-moment correlation
of .60 and have means and standard deviations of 100 and 15 for each variable. The
sample data generated had a correlation of 0.579 with means of 99.363, 99.267 and
standard deviations of 15.675 and 16.988 respectively for the two variables.

To analyze this data with the neural network, we saved the generated data from
OpenStat as a tab-separated variables file for importation into the Neural program.
We used the import command in the Neural program to read the original tab file and
then transformed the data into z scores. We did this in order to have scores we could
later compare to the predicted scores obtained from the Neural program. We next
transformed (scaled) these z scores to have a range between .1 and .9 a necessary
step in order for the neurons of the network to have values with which it can work.
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The control file for the analysis was created by selecting the option to generate a
prediction control file into the grid of the program. The names of relevant files were
then entered in the grid. The completed file is shown below:

QUIT ERROR:.1

QUIT RETRIES:3

NETWORK MODEL:LAYER
LAYER INIT:ANNEAL

OUTPUT MODEL:GENERAL

N INPUTS:1

N OUTPUTS:1

N HIDDEN1:0

N HIDDENZ2:0
TRAIN:CORGENEDSCLD.DAT
OUTPUT FILE:CORGENED.TXT
LEARN:

SAVE WEIGHTS:CORGENED.WTS
EXECUTE : CORGENEDSCLD.DAT
QUIT:

Notice that there is one input and one output neuron defined. The Neural pro-
gram will expect the output neuron values to follow the input neuron values when
training the network. In this example, we want to train the network to predict the
second value (Y) given the first value (X). In a basic statistics course we learn that
the product-moment correlation is the linear relationship between an observed
score (Y) and a predicted score Y’ such that the squared difference between the
observed “True” score Y and the observed predicted score (Y’) is a minimum. The
correlation between the predicted scores Y’ and the observed scores Y should be the
same as the correlation between X and Y. Of course, in traditional statistics this is
because we are fitting the data to a straight line. If the data happen to fit a curved line
better, then it is possible for the neural network to predict scores that are closer to
the observed scores than that obtained using linear regression analysis. This is
because the output of neurons is essentially non-linear, usually logistic in nature.

When we saved our control file and then clicked on the menu item to run the file,
we obtained for following output:
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NEURAL - Program to train and test neural networks
Written by William Miller

QUIT ERROR : 0.05

QUIT RETRIES : 5

NETWORK MODEL : LAYER

LAYER INIT : ANNEAL

OUTPUT MODEL : GENERAL

N INPUTS : 1

N OUTPUTS : 1

N HIDDEN1I : O

N HIDDEN2 : O

TRAIN : CORGENEDSCLD.DAT

SAVE WEIGHTS : CORGENED.WTS

There are no learned weights to save.
OUTPUT FILE : CORGENEDSCLD.TXT

LEARN

Final error = 1.3720% of max possible
EXECUTE : CORGENED.DAT

QUIT

You may notice that the value for the QUIT ERROR has been changed to 0.05
and the number of QUIT RETRIES changed to 5.

The .TXT file specified as the OUTPUT FILE now contains the 200 predicted
scores obtained by the EXECUTE command. This command utilizes the weights
obtained by the network (and now stored in CORGENED.WTS) to predict the out-
put given new input values. We have elected to predict the same values as in the
original training data sets X values and stored in a file labeled CORGENED.DAT
which, of course, has also been transformed to z scores and scaled to values between
.1 and .9 as were the original training values. These predicted values in the
CORGENEDSCLD.TXT file were then re-transformed to z scores for comparison
with the actual Y scores. The predicted and the transformed predicted scores were
entered into the original (. TAB) data file and analyzed using the OpenStat package.
The following results were obtained:

CORRELATIONS
Y YPREDICTED ZPREDICTED
Y 1.0 0.580083 0.580083
YPREDICTED 1.0 1.0

ZPREDICTED 1.0
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When X and Y were correlated following the initial generation of the data, the
obtained value for the correlation of X with Y was 0.579. We conclude that the pre-
diction with the neural network is, within a reasonable error, the same as that
obtained with our traditional statistical procedure.

Regression Analysis with Multiple Predictors

Our next example examines the use of a neural network for prediction when there
are multiple predictors. Our data comes from a file labeled “CANSAS.TAB” with
which OpenStat users may be familiar. The file contains three body measurements
and three measures of physical strength observed on 20 subjects. We have arbi-
trarily selected to predict the last performance measure with the five preceding
measures.

The TAB file was imported into the Neural program grid and transformed to both
z scores and scaled scores ranging from .1 to .9. Each transformation file was saved
for later use.

We next generated a prediction control file and modified it to reflect the five input
neurons and 1 output neuron. The control file is shown below:

QUIT ERROR:0.5

QUIT RETRIES:3

CONFUSION THRESHOLD:50
NETWORK MODEL:LAYER
LAYER INIT:ANNEAL

OUTPUT MODEL:GENERAL

N INPUTS:5

N OUTPUTS:1

N HIDDENI1:2

N HIDDEN?2:0
TRAIN:CANSASSCALED.DAT
SAVE WEIGHTS:CANSAS.WTS
OUTPUT FILE:CANSASOUT.TXT
LEARN:
EXECUTE:CANSASSCALED.DAT

In order to compare the results with traditional multiple regression analysis, we
needed to calculate the product—-moment correlation between the values predicted
by the Neural network using the same data as would be used to obtain the multiple
correlation coefficient in traditional statistical analysis. We used the predicted scores
from the CANSASOUT.TXT file and correlated them with the original dependent
variable in the CANSAS.TAB file. The results of the classical multiple regression
are shown first:
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Block Entry Multiple Regression by Bill Miller
————————————————— Trial Block 1 Variables Added --———-—--—-—----—---
Product-Moment Correlations Matrix with 20 cases.
Variables
weight waist pulse chins situps
weight 1.000 0.870 -0.366 -0.390 -0.493
waist 0.870 1.000 -0.353 -0.552 -0.646
pulse -0.366 -0.353 1.000 0.151 0.225
chins -0.390 -0.552 0.151 1.000 0.696
situps -0.493 -0.646 0.225 0.696 1.000
Jjumps -0.226 -0.191 0.035 0.496 0.669
Variables
Jjumps
weight -0.226
waist -0.191
pulse 0.035
chins 0.496
situps 0.669
Jjumps 1.000
Means with 20 valid cases.
Variables weight waist pulse chins situps
178.600 35.400 56.100 9.450 145.550
Variables Jjumps
70.300
Standard Deviations with 20 valid cases.
Variables weight waist pulse chins situps
24.691 3.202 7.210 5.286 62.567
Variables Jjumps
51.277
Dependent Variable: jumps
R R2 F Prob.>F DF1 DF2
0.798 0.636 4.901 0.008 5 14
Adjusted R Squared = 0.507
Std. Error of Estimate = 36.020
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Variable Beta B Std.Error t Prob.>t VIF TOL
weight -0.588 -1.221 0.704 -1.734 0.105 4.424 0.226
waist 0.982 15.718 6.246 2.517 0.025 5.857 0.171
pulse -0.064 -0.453 1.236 -0.366 0.720 1.164 0.859
chins 0.201 1.947 2.243 0.868 0.400 2.059 0.486
situps 0.888 0.728 0.205 3.546 0.003 2.413 0.414
Constant = -366.967

Increase in R Squared = 0.636

F = 4.901 with probability = 0.008

Block 1 met entry requirements

Next, we show the correlations obtained between the values predicted by the Neural
network and the original Y (jumps) variable:

Product-Moment Correlations Matrix with 20 cases.

Variables
jumps RawScaled
jumps 1.000 0.826
RawScaled 0.826 1.000

Means with 20 valid cases.
Variables Jjumps RawScaled
70.300 0.256

Standard Deviations with 20 valid cases.
Variables Jjumps RawScaled
51.277 0.152

The important thing to notice here is that the original multiple correlation coefficient
was .798 using the traditional analysis method while the correlation of original
scores to those predicted by the Neural network was .826. It appears the network
captured some additional information that the linear model in multiple regression
did not capture!
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An additional analysis was performed using the following control file:

QUIT ERROR:0.5

QUIT RETRIES:3

NETWORK MODEL:LAYER
LAYER INIT:ANNEAL

OUTPUT MODEL:GENERAL

N INPUTS:5

N OUTPUTS:1

N HIDDEN1:2

N HIDDENZ2:0
TRAIN:CANSASSCALED.DAT
SAVE WEIGHTS:CANSAS.WTS
OUTPUT FILE:CANSASOUT.TXT
LEARN:
EXECUTE:CANSASSCALED.DAT

Notice the addition of 2 neurons in a hidden layer. In this analysis, an even higher
correlation was obtained between the original dependent score and the scores pre-
dicted by the Neural network:

The output for the above control file is shown below:

Variables
Jjumps Raw Scaled zscaled2hid
Jjumps 1.000 0.826 0.919
RawScaled 0.826 1.000 0.885
scaled2hid 0.919 0.885 1.000
Means with 20 valid cases.
Variables Jjumps RawScaled zscaled2hid
70.300 0.256 0.000

Standard Deviations with 20 valid cases.

Variables jumps RawScaled zscaled2hid
51.277 0.152 1.000

The last variable, zscaled2hid, is the neural network predicted score using the 2
hidden layer neurons. The results also contain the results from the first analysis.
Notice that we have gone from a multiple correlation coefficient of .798 to .919 with
the neural network. It should be noted here that our “degrees of freedom” are quite
low and we may be “over-fitting” the data by simply adding hidden level neurons.
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Classification Analysis with Multiple Classification Predictors

In the realm of traditional multivariate statistical analyses, the discriminant function
analysis method is used to identify raw or standardized weights of continuous
variables that optimally separate groups of individuals in the “hyperspace” of
discriminant space. Essentially, orthogonal axis of the original k-variable space are
obtained. The number of axis is the smaller of the number of groups or the number
of variables minus 1. Weights are then obtained that may be used to predict group
membership based on the centroids (vector of means) of each group, the dispersion
of each group and the prior probability of membership in each group.

With the Neural Program, we may create a Layer network for classifying objects
based on the values of one or more input neurons. For our example, we have chosen
to classify individuals that are members of one of three possible groups. We will
classify them on the basis of 2 continuous variables. Our network will therefore
have two input neurons, three output neurons and, we have added 2 neurons in a
hidden layer. To train our network, we tell the network to classify objects for output
neuron 1, then for output neuron 2 and finally for output neuron 3 that correspond to
objects in groups 1, 2 and 3 respectively. This requires three data files with the
objects from group 1 in one training file, the objects for group 2 in another file, etc.

The LEARN command will begin the network’s training process for the three
groups defined by the prior CLASSIFY OUTPUT and TRAIN filename commands.
The obtained neural weights will be stored in the file name specified by the SAVE
WEIGHTS command. Once the network has determined its weights, one can then
utilize those weights to classify subjects of unknown membership into one of the
groups. We have chosen to classify the same subjects in the groups that we used for
the initial training. This is comparable to using the discriminant functions obtained
in traditional statistics to classify the subjects on which the functions are based.

In traditional statistics, one will often create a “contingency table” with rows
corresponding to the known group membership and the columns corresponding to
the predicted group membership. If the functions can correctly classify all subjects
in the groups, the diagonal of the table will contain the sample size of each group
and the off-diagonal values will be zero. In other words, the table provides a count
of objects that were correctly or incorrectly classified. Of course, it would be better
to use a separate validation group drawn from the population which was NOT part
of the training samples. In the case of the neural network, a file is created (or
appended) with the count of predicted membership in each of the groups. An addi-
tional count column is also added to count objects which could not be correctly
classified. This file is called the “CONFUSION” file. We reset the “confusion” table
before each classification trial then CLASSIFY objects in a validation file. We show
the confusion as well as save it in the confusion file. The SHOW CONFUSION will
present the classifications in the output form while the SAVE CONFUSION filename
command will cause the same output to be appended to the file.
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QUIT ERROR:0.1

QUIT RETRIES:5
CONFUSION THRESHOLD:50
NETWORK MODEL:LAYER
LAYER INIT:GENETIC
OUTPUT MODEL:CLASSIFY
N INPUTS:2

N OUTPUTS:3

N HIDDENI1:2

N HIDDEN2:0

CLASSIFY OUTPUT:1
TRAIN:DiscGrpl.DAT
CLASSIFY OUTPUT:2
TRAIN:DiscGrp2.DAT
CLASSIFY OUTPUT:3
TRAIN:DiscGrp3.DAT

LEARN:

SAVE WEIGHTS:Discrim. WGT
RESET CONFUSION:
CLASSIFY:DiscGrpl.DAT
SHOW CONFUSION:

SAVE CONFUSION:DISCRIM.OUT
RESET CONFUSION:
CLASSIFY:DiscGrp2.DAT
SHOW CONFUSION:

SAVE CONFUSION:DISCRIM.OUT
RESET CONFUSION:
CLASSIFY:DiscGrp3.DAT
SHOW CONFUSION:

SAVE CONFUSION:DISCRIM.OUT
RESET CONFUSION:

CLEAR TRAINING:

QUIT:

The listing presented below shows a print out of the confusion file for the above
run. Notice that one line was created each time a group of data were classified. Since
we had submitted our classification tasks in the same order as the original grouping,
the result is a table with counts of subject classifications in each of the known
groups. In this example, all subjects were correctly classified.
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NEURAL - Program to train and test neural networks
Written by William Miller

QUIT ERROR : 0.1

QUIT RETRIES : 5

CONFUSION THRESHOLD : 50
NETWORK MODEL : LAYER
LAYER INIT : GENETIC

OUTPUT MODEL : CLASSIFY

N INPUTS : 2

N OUTPUTS : 3

N HIDDENT : 2

N HIDDEN?2 : 0

CLASSIFY OUTPUT : 1

TRAIN : DISCGRP1.DAT
CLASSIFY OUTPUT : 2

TRAIN : DISCGRP2.DAT
CLASSIFY OUTPUT : 3

TRAIN : DISCGRP3.DAT

LEARN :

Final error = 0.0997% of max possible
SAVE WEIGHTS : DISCRIM.WGT
RESET CONFUSION :

CLASSIFY : DISCGRP1.DAT
SHOW CONFUSION :

Confusion: 5000

SAVE CONFUSION : DISCRIM.OUT
RESET CONFUSION :

CLASSIFY : DISCGRP2.DAT
SHOW CONFUSION :

Confusion: 0500

SAVE CONFUSION : DISCRIM.OUT
RESET CONFUSION :

CLASSIFY : DISCGRP3.DAT
SHOW CONFUSION :

Confusion: 0050

SAVE CONFUSION : DISCRIM.OUT
RESET CONFUSION :

CLEAR TRAINING :

QUIT :
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When we classify each of the objects in the original three groups, we see that
subjects in group 1 were all classified in the first group, all in group 2 classified into
group 2, etc. In this case, training provided 100 % correct classification by the net-
work of all our original objects. Of course, one would normally cross-validate a
network with subjects not in the original training group. If you run a traditional
discriminant analysis on this same data, you will see that the two methods are in
complete agreement.

Pattern Recognition

A number of medical, industrial and military activities rely on recognizing certain
patterns. For example, digital pictures of a heart may be scanned for abnormalities,
and a manufacturer of automobile parts may use a digital scanned image to rotate and/
or flip a part on an assembly line for its next processing. The military may use a digi-
tized scan of a sonar sounding to differentiate among whales, dauphins, sea turtles,
schools of fish, torpedoes and submarines. In each of these applications, a sequence
of binary “bits” (0 or 1) representing, say, horizontal rows of the digitized image are
“mapped” to a specific object (itself represented perhaps by an integer value.)

As an example of pattern recognition, we will create digital “images” of the
numbers 0, 1, 2, ..., 9. Each image will consist of a sequence of 25 bits (neural
inputs of 0 or 1) and the image will be mapped to 10 output neurons which contain
the number of images possible and corresponding to the digits O through 9 (0000 to
1001.) We will train a network by entering the image values randomly into a train-
ing set. We will then “test” the network by entering a data file with 20 images in
sequence (10) and randomly placed (10). Examine the Confusion output to verify
that (1) when we classify the original data there is one value for each digit and (2)
when we enter 20 images we obtain 2 digits in each group.

Notice we have used a 5 by 5 grid to “digitize” a digit. For example, the number
8 is obtained from an image of:

01 1 10
01 010
00100
01 010
01 1 10
and the number 2 is:
01100
1 0010
00100
01 00O
1 11 10
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The values of 0 and 2 above are mapped to the output of 0000 and 0010
respectively.
The training file of the digitized images is shown below:

O O O O O O oo o o
PP O, ORKFRFE O
e e e e N e R e
PR RPRPRERRPRPRPROO O
O O Ok O OO oo
O O O OO O RF O
R OoOFr P OOOORr O
O O O O O r oo o
PP OORFrRRFEREFE OO
O O O O O O oo o
O O O O O o oo o
H O OoOkFr P REPOOOO
PP ORFRRFR PO
H O OoOkFr R, RPEPOOOO
O O O O O O oo o
O O OOk, RFPEFE OO
O PP ORF ORF OO
O O O O O r oo o
P OoOFr ORFrRRFEOOO
O O O Ok P oo o
O O OO O ok oo
PO P OF PP
PO, R OF PP
(@l Gl R e R el
O O O O O O oo o o

The listings below represent the Control File and Output of the training and
testing of the neural network. Notice the model for the network and the command
file entries.

QUIT ERROR:0.1

QUIT RETRIES:5

CONFUSION THRESHOLD:50
KOHONEN NORMALIZATION MULTIPLICATIVE:
NETWORK MODEL:KOHONEN
KOHONEN INIT:RANDOM
OUTPUT MODEL:CLASSIFY

N INPUTS:25

N OUTPUTS:10

N HIDDEN1:0

N HIDDENZ2:0
TRAIN:scandigits.doc
KOHONEN LEARN ADDITIVE:
KOHONEN LEARNING RATE:0.4
KOHONEN LEARNING REDUCTION:0.99
LEARN:

SAVE WEIGHTS:scan.wts
RESET CONFUSION:
CLASSIFY:scandigits.doc
SHOW CONFUSION:

SAVE CONFUSION:scan.txt
RESET CONFUSION:
CLASSIFY:scantest.dat
SHOW CONFUSION:

SAVE CONFUSION:scan.txt
CLEAR TRAINING:

QUIT:
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NEURAL - Program to train and test neural networks
Written by William Miller

QUIT ERROR : 0.1

QUIT RETRIES : 5

CONFUSION THRESHOLD : 50

KOHONEN NORMALIZATION MULTIPLICATIVE
NETWORK MODEL : KOHONEN

KOHONEN INIT : RANDOM

OUTPUT MODEL : CLASSIFY

N INPUTS : 25

N OUTPUTS : 10

N HIDDEN1 : O

N HIDDENZ2 : O

TRAIN : SCANDIGITS.DOC

KOHONEN LEARN ADDITIVE

KOHONEN LEARNING RATE : 0.4

KOHONEN LEARNING REDUCTION : 0.99
LEARN

Final error = 0.0000% of max possible
SAVE WEIGHTS : SCAN.WTS

RESET CONFUSION

CLASSIFY : SCANDIGITS.DOC

SHOW CONFUSION

Confusion: 1 1 1 1 1 1 1 1 1 1 0
SAVE CONFUSION : SCAN.TXT

RESET CONFUSION

CLASSIFY : SCANTEST.DAT

SHOW CONFUSION

Confusion: 2 2 2 2 2 2 2 2 2 2 0
SAVE CONFUSION : SCAN.TXT

CLEAR TRAINING

QUIT

Exploration of Natural Groups

Researchers often attempt to “tease” information or relationships out of a set of
measurements without prior knowledge of those relationships. This “data-mining”
might be simply to aggregate objects with similar profiles in order to examine other
aspects of those objects that they may share. A variety of statistical methods for
“grouping” objects on the basis of multiple continuous measures have been devel-
oped. The “Hierarchical Grouping” procedure is one of the more popular ones. The
criteria for grouping may vary from procedure to procedure however. Many proce-
dures examine the distance between each object and all other objects in the Euclidean
space of the grouping variables. Of course, the distance is affected by the scale of
each measurement. For that reason, one often transforms all measures to a common
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scale like the z score scale which has a mean of 0 and a standard deviation of 1.0.
Still, this may ignore the different distribution shapes of the variables. Some group-
ing methods take this into account and measure the distance among objects using
distribution characteristics. Most of the procedures “create” groups by first combin-
ing the two “closest” objects and replacing the two objects with a single group that
is the average of the two objects in the group. The process is begun again, each time
replacing the two objects with a group that combines the two objects. The user can
typically print out the group membership at each iteration of the grouping process.

The Kohonen Neural Network provides an excellent basis for exploring natural
groups which may exist among objects with multiple measures. One can train this
network to classify objects into “M” number of groups based on values of “k” vari-
ables. One specifies an input neuron for each of the k variables and an output neuron
for each group. Following the training one then uses the network to classify objects
into the M groups. By varying the number of output neurons, one can utilize mul-
tiple networks to explore the objects classified into each group.

The Kohonen network model has a number of parameters that may be specified
to control the operation of the training. One may use a multiplicative or a z method
for normalization of the weights. You can initialize weights using random values or
no random values. The learning method may be additive or subtractive. The learn-
ing rate and reduction parameters may each be specified. See Appendix A for further
details on all parameters.

To demonstrate the use of the Kohonen net for classification, we will employ a
file of data that may be analyzed by traditional hierarchical grouping as well as a
neural network. The results of each will be explored.

The file to be analyzed is labeled “MANODISCRIM.TAB” with the contents
shown below:

Y1 Y2 Group
3 7 1
4 7 1
5 8 1
5 9 1
6 10 1
4 5 2
4 6 2
5 7 2
6 7 2
6 8 2
5 5 3
6 5 3
6 6 3
7 7 3
7 8 3
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Fig. 17.7 Groups versus between group error

When we analyzed the above data using the Hierarchical grouping procedure of
OPENSTAT we obtained the following groupings of data and error plot
(Fig. 17.7):

14 groups after combining group 2 (n := 1 ) and group 7 (n := 1) error = 0.233
13 groups after combining group 3 (n := 1 ) and group 4 (n := 1) error = 0.233
12 groups after combining group 9 (n := 1 ) and group 10 (n := 1) error = 0.233
11 groups after combining group 12 (n := 1 ) and group 13 (n := 1) error = 0.233
10 groups after combining group 14 (n := 1 ) and group 15 (n := 1) error = 0.233
9 groups after combining group 6 (n := 1 ) and group 11 (n := 1) error = 0.370
8 groups after combining group 2 (n := 2 ) and group 8 (n := 1) error = 0.571
7 groups after combining group 9 (n := 2 ) and group 14 (n := 2) error = 0.739
1.

6 groups after combining group 1 (n := 1) and group 2 (n := 3) error =
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and group 5 (n = 1)
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4 groups after combining group 6 (n = 2 ) and group 12 (n = 2)
error = 1.780
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2 groups after combining group 1 (n = 4 ) and group 6 (n = 4)
error = 4.411
Group 1 (n =
Object = 0
Object = 1
Object = 5
Object = 6
Object = 7
Object = 10
Object = 11
Object = 12
Group 3 (n = 7)
Object = 2
Object = 3
Object = 4
Object = 8
Object = 9
Object =1
Object = 1

DSw

To complete a similar analysis with the neural network program we created the
following control file and then modified it for two additional runs:

QUIT ERROR:0.1

QUIT RETRIES:5
CONFUSION THRESHOLD:50
KOHONEN NORMALIZATION 7Z:
NETWORK MODEL : KOHONEN
KOHONEN INIT:RANDOM
OUTPUT MODEL:CLASSIFY

N INPUTS:2

N OUTPUTS:6

N HIDDEN1:0

N HIDDENZ2:0
TRAIN:HIER.DAT

KOHONEN LEARN ADDITIVE:
KOHONEN LEARNING RATE:0.4
KOHONEN LEARNING REDUCTION:0.99
LEARN:

SAVE WEIGHTS:HIER.WTS
RESET CONFUSION:
CLASSIFY:HIER.DAT

SHOW CONFUSION:

SAVE CONFUSION:HIER.TXT
RESET CONFUSION:
CLASSIFY:HIER1.DAT

SHOW CONFUSION:

SAVE CONFUSION:HIER.TXT
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RESET CONFUSION:
CLASSIFY:HIER2.DAT

SHOW CONFUSION:

SAVE CONFUSION:HIER.TXT
RESET CONFUSION:
CLASSIFY:HIER3.DAT

SHOW CONFUSION:

SAVE CONFUSION:HIER.TXT
CLEAR TRAINING:

QUIT:

Control File for Exploration of Groups Using a Kohonen Neural Network for Six
Groups

In the above file we specified six output neurons. This is our initial guess as to
the number of “natural groups” in the data. The output from this run is shown
below:

NEURAL - Program to train and test neural networks
Written by William Miller
QUIT ERROR : 0.1

QUIT RETRIES : 5

CONFUSION THRESHOLD : 50
KOHONEN NORMALIZATION Z
NETWORK MODEL : KOHONEN
KOHONEN INIT : RANDOM
OUTPUT MODEL : CLASSIFY

N INPUTS : 2

N OUTPUTS : 6

N HIDDEN1l : O

N HIDDENZ2 : O

TRAIN : HIER.DAT

KOHONEN LEARN ADDITIVE
KOHONEN LEARNING RATE : 0.4
KOHONEN LEARNING REDUCTION : 0.99
LEARN

Final error = 12.6482% of max possible
SAVE WEIGHTS : HIER.WTS
RESET CONFUSION

CLASSIFY : HIER.DAT

SHOW CONFUSION

Confusion: 3 1 3 3 3 2 0
SAVE CONFUSION : HIER.TXT
RESET CONFUSION

CLASSIFY : HIER1.DAT

SHOW CONFUSION

Confusion: 2 1 0 0 0 2 O
SAVE CONFUSION : HIER.TXT
RESET CONFUSION

CLASSIFY : HIER2.DAT
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SHOW CONFUSION

Confusion: 1 0 1 2 1 0 0
SAVE CONFUSION : HIER.TXT

RESET CONFUSION

CLASSIFY : HIER3.DAT

SHOW CONFUSION :

Confusion: 0 0 2 1 2 0 0
SAVE CONFUSION : HIER.TXT

CLEAR TRAINING :

QUIT

Kohonen Network Output for Exploratory Grouping with Six Groups Estimated

You may compare the number of objects out of the total 15 that were classified
in each of the groups (i.e. 3, 1, 3, 3, 3 ,2) and compare this with the number in six
groups obtained with the Hierarchical Grouping procedure (4,2, 1,2,4,2). There is
obviously some difference in the grouping. One can also see how the subjects who
belong to groups 1, 2 or 3 are classified by each program.

For the second neural network analysis we modified the first control file to con-
tain three output neurons, our next guess as to the number of “natural groups”. The
output obtained is as follows:

NEURAL - Program to train and test neural networks
Written by William Miller

QUIT ERROR : 0.1

QUIT RETRIES : 5

CONFUSION THRESHOLD : 50
KOHONEN NORMALIZATION Z
NETWORK MODEL : KOHONEN
KOHONEN INIT : RANDOM
OUTPUT MODEL : CLASSIFY

N INPUTS : 2

N OUTPUTS : 3

N HIDDEN1 : O

N HIDDENZ2 : O

TRAIN : HIER.DAT

KOHONEN LEARN ADDITIVE
KOHONEN LEARNING RATE : 0.4
KOHONEN LEARNING REDUCTION : 0.99
LEARN

Final error = 21.3618% of max possible
SAVE WEIGHTS : HIER.WTS
RESET CONFUSION

CLASSIFY : HIER.DAT

SHOW CONFUSION

Confusion: 4 6 5 0
SAVE CONFUSION : HIER.TXT
RESET CONFUSION

CLASSIFY : HIER1.DAT
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SHOW CONFUSION

Confusion: 0 3 2 0
SAVE CONFUSION : HIER.TXT
RESET CONFUSION

CLASSIFY : HIER2.DAT

SHOW CONFUSION

Confusion: 1 3 1 0
SAVE CONFUSION : HIER.TXT
RESET CONFUSION

CLASSIFY : HIER3.DAT

SHOW CONFUSION :
Confusion: 3 0 2 0
SAVE CONFUSION : HIER.TXT
CLEAR TRAINING :

QUIT

Kohonen Network Output for Exploratory Grouping with Three Groups

Notice that number of subjects classified in each group are 4, 6 and 5 respec-
tively. The Hierarchical Grouping procedure placed 4, 7 and 4 respectively. It should
be pointed out that the output neurons do not necessarily follow the same order as
the “true” groups, i.e. 1, 2 and 3. In fact, it appears in our last analysis that the 3rd
neuron may be sensitive to subjects in group 1, and neuron 1 most sensitive to sub-
jects in group 3. Neurons 1 and 2 seem about equally sensitive to members of both
groups 1 and 2. To determine the prediction for each object (subject) we would clas-
sify each of the objects by themselves rather that read them by group.

We can construct contingency tables of actual versus predicted groups if we wish
for either type of analysis. For example, the Hierarchical Grouping analysis would
yield the following:

PREDICTED GROUP
ACTUAL GROUP 1 2 3
1 2 3 0
2 2 2 1
3 0 2 3
For the Kohonen Neural Network we would have:
PREDICTED GROUP
ACTUAL GROUP 1 2 3
1 3 0 2
2 1 3 1
3 0 3 2

Comparison of Grouping by Hierarchical Analysis and a Kohonen Neural
Network
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Fig. 17.8 Plot of subjects in three groups, each subject measured on two variables

Seven subjects in the original groups were predicted to be in the “natural” groups
by the first method while eight subjects in the original groups were in “natural”
groups by the second method. Of course, one does not typically know, a priori, what
the “true” group memberships are. Thus, whether one uses traditional statistics or
neural networks, one must still explore what seems to be common denominators
among the grouped subjects. It is sometimes useful to actually plot the objects in the
standardized score space to initially speculate on the number of “natural” groups.
Above is a plot of the 15 scores of our original data (Fig. 17.8):

Group 1, 2, and 3 subjects are labeled with the values 1, 2 and 3. Notice that when
you try to “split” the groups using Y1 or Y2 (horizontal or vertical) axis there is
overlap and confusion regarding group membership. On the other hand, if you drew
diagonal lines you can see how each of the three groups COULD be separated by
considering both Y1 and Y2 concurrently. In Fact, that is just what the discriminant
function analysis in traditional statistics does. Go back up and examine the results
for our earlier example of discriminant analysis using a neural network. The data for
that example is exactly the same as was analyzed with the present network!

Time Series Analysis

This example is based on the needs of grocery store retailers to predict customer
purchases for items they stock. Over-stocking costs them shelf space while under-
stocking might cost them sales. Ideally, the shelves are stocked with just enough
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Fig. 17.9 Original daily sales of creamed chicken with smoothed averages (3 values in each
average)

items to meet the demand for a day’s purchases. It would be possible to use histori-
cal data to give us a reasonable estimate of the purchases to be made for a given
item. Of course, the historical data would have to be for the same day of the week,
same sales promotion for the item, same weather factors, same store location, same
customer base, etc. to yield the “best” prediction of purchases for a given day. Most
stores however do not have such historical data and often may have only one or two
preceding week’s data. In our example, we are assuming we have collected weekly
data over a period of 28 weeks and wish to be able to predict customer purchases of
Creamed Chicken Soup for a given day, in this example, Sunday. Our data consists
of 28 records in a data file. Each record contains the number of cans of Creamed
Chicken Soup sold on Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday and (the next) Sunday. In other words, we have 8 consecutive day’s sales
in each record. We will attempt to predict the sales on the 8th day using the sales
data from the previous seven days.

A variety of time-series analyses have been developed utilizing traditional statis-
tical methods. Many are based on “auto-correlation’ analyses. Users of the OpenStat
package can perform a variety of analyses on the same data to attempt the best pre-
diction. Shown below are two graphs obtained from the autocorrelation procedure.
The data were the units of Creamed Chicken sold each day from Sunday through
Saturday for 28 weeks. A lag of 6 (0 through 7) was utilized for the autocorrelation
analysis and smoothing average was utilized to project for 2 additional data points
(Figs. 17.9, 17.10):

Autoregressive methods along with smoothing average methods are sometimes
used to project (estimate) subsequent data points in a series. If one examines the first
figure above, one can observe some cyclic tendencies in the data. Fast Fourier
smoothing or exponential smoothing might “flatten” these cyclic tendencies (which
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Fig. 17.10 Auto and partial correlations for lags from Sunday (lag 1 = Saturday, etc.)

appear to be a week long in duration.) Nearly all methods will result in an estimate
for Sunday sales which reflect some “smoothing” of the data and estimate a new
values that are, on the average, somewhat less than those actually observed.

The neural network involves identifying the series and building a network that
will predict the next value. To do this, we recorded Sunday through Sunday
sequences of sales for 28 weeks. In our Neural Program, the last variable is always
the output neuron. If our desire had been to predict Monday sales, then the sequence
recorded would have been Monday through the subsequent Monday. We trans-
formed the number of sales for each day into z scores and then to values having a
range of .1 to .9 as required for our network. The predicted values we obtain from
executing the network weights are re-translated into z scores for comparison with
the observed z score data for Sunday sales.

There are a variety of variables which one can modify when training the network.
In the Feed-Forward network, you have several alternatives for estimating the neu-
ral weights. You also have alternatives in the use of hidden layers and the number of
neurons in those layers. You also have choices regarding the minimum error and the
number of times the network attempts to obtain the least-squares error (QUIT
ERROR and QUIT RETRIES.) We “experimented”with five variations of a control
file for training the neural network in the prediction of Sunday sales. Three of those
control files are shown below:
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QUIT ERROR:0.01

QUIT RETRIES:5

NETWORK MODEL:LAYER

LAYER INIT:ANNEAL

OUTPUT MODEL:GENERAL

N INPUTS:7

N OUTPUTS:1

N HIDDENI:3

N HIDDEN2:1
TRAIN:CRMCHKZSCLD.DAT
OUTPUT FILE:CRMCHICK1.OUT
LEARN:

SAVE WEIGHTS:CRMCHICK1.WTS
EXECUTE : CRMCHKZSCLD.DAT
QUIT:

Control Form for a Time Series Analysis - First Run

Notice that the above control file uses the Anneal method of minimizing the least
squares function obtained by the neural weights. In addition, two hidden layers of
neurons were used with three and one neuron respectively in those layers. The out-
put obtained from this run is shown in the following figure:

NEURAL - Program to train and test neural networks
Written by William Miller

QUIT ERROR : 0.01

QUIT RETRIES : 5

NETWORK MODEL : LAYER
LAYER INIT : ANNEAL

OUTPUT MODEL : GENERAL

N INPUTS : 7

N OUTPUTS : 1

N HIDDEN1 : 3

N HIDDEN2 : 1

TRAIN : CRMCHKZSCLD.DAT
There are no learned weights to save.
OUTPUT FILE : CRMCHICK1.OUT

LEARN

SAVE WEIGHTS : CRMCHICKI1.WTS

Final error = 0.0825% of max possible
EXECUTE : CRMCHKZSCLD.DAT

QUIT

Time Series Analysis Output -First Run
Notice the final error reported in the output above and compare it with the next
two examples.
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QUIT ERROR:0.01

QUIT RETRIES:5

NETWORK MODEL:LAYER

LAYER INIT:ANNEAL

OUTPUT MODEL:GENERAL

N INPUTS:7

N OUTPUTS:1

N HIDDEN1:0

N HIDDENZ2:0
TRAIN:CRMCHKZSCLD.DAT
OUTPUT FILE:CRMCHICK3.TXT
LEARN:

SAVE WEIGHTS:CRMCHICK3.WTS
EXECUTE : CRMCHKZSCLD.DAT
QUIT:

Control Form for a Time Series Analysis - Third Run

In this last example (run three), we have eliminated the neurons in the hidden
layers that were present in our first example. The output is shown below. Note that
the size of the final error is considerably larger than the previous analysis.

NEURAL - Program to train and test neural networks
Written by William Miller

QUIT ERROR : 0.01

QUIT RETRIES : 5

CONFUSION THRESHOLD : 50
NETWORK MODEL : LAYER

LAYER INIT : ANNEAL

OUTPUT MODEL : GENERAL

N INPUTS : 7

N OUTPUTS : 1

N HIDDEN1 : O

N HIDDEN2 : O

TRAIN : CRMCHKZSCLD.DAT
OUTPUT FILE : CRMCHICK3.TXT
LEARN

Final error = 4.5999% of max possible
SAVE WEIGHTS : CRMCHICK3.WTS
EXECUTE : CRMCHKZSCLD.DAT
QUIT

Time Series Analysis Output for Run Three

In our last experimental time series analysis we have utilized a different method
for initializing the neural weights. We used the genetic method for simulating a
population to evolve with weights that minimized the least squares criterion.
We also used just one hidden layer containing two neurons in contrast to our first
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example which used two hidden layers. The output final error is more than the first
example but less than our second example.

QUIT ERROR:0.01

QUIT RETRIES:5

CONFUSION THRESHOLD:50
NETWORK MODEL:LAYER
LAYER INIT:GENETIC

OUTPUT MODEL:GENERAL

N INPUTS:7

N OUTPUTS:1

N HIDDEN1:2

N HIDDEN2:0
TRAIN:CRMCHKZSCLD.DAT
OUTPUT FILE:CRMCHICKS5.TXT
LEARN:

SAVE WEIGHTS:CRMCHICKS5.WTS
EXECUTE : CRMCHKZSCLD.DAT
QUIT:

Control Form for a Time Series Analysis - Fifth Run

NEURAL - Program to train and test neural networks
Written by William Miller

QUIT ERROR : 0.01

QUIT RETRIES : 5

CONFUSION THRESHOLD : 50
NETWORK MODEL : LAYER

LAYER INIT : GENETIC

OUTPUT MODEL : GENERAL

N INPUTS : 7

N OUTPUTS : 1

N HIDDEN1 : 2

N HIDDEN2 : O

TRAIN : CRMCHKZSCLD.DAT
OUTPUT FILE : CRMCHICKS5.TXT
LEARN

Final error = 0.2805% of max possible
SAVE WEIGHTS : CRMCHICKS5.WTS
EXECUTE : CRMCHKZSCLD.DAT
QUIT

Time Series Analysis Output for Run Five

For each of the above examples, we “z-score” translated the predicted outputs
obtained through use of the six days of predictor data. We then copied these three
sets of predicted scores into a data file containing our original Sunday Sales data
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and obtained the product-moment correlation among the four sets. The results are
shown below:

Product-Moment Correlations Matrix with 28 cases.

Variables
VAR. 8 Pred8 1 Pred8 3 Pred8 5
VAR. 8 1.000 0.993 0.480 0.976
Pred8 1 0.993 1.000 0.484 0.970
Pred8 3 0.480 0.484 1.000 0.501
Pred8 5 0.976 0.970 0.501 1.000

Means with 28 valid cases.

Variables VAR. 8 Pred8 1 Pred8 3 Pred8 5
0.000 0.020 -0.066 0.012

Standard Deviations with 28 valid cases.

Variables VAR. 8 Pred8 1 Pred8 3 Pred8 5
1.000 1.013 0.952 1.016

Correlations Among Variable 8 (Sunday Sales) and Predicted Sales Obtained From
The Neural Network for Runs 1, 3 and 5. Note: Sales Measures in Z Score Units.

Notice that the “best” predictions were obtained from our first control file in
which we utilized two hidden layers of neurons. The last analysis performed nearly
as well as the first with fewer neurons. It also “learned” much faster than the first
example. It should be noted that we would normally re-scale our values again to
translate them from z scores to “raw” scores using the mean and standard deviation
of the Sunday sales data.
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Select a specified range of cases, 16
Select cases, 15, 16

Select if, 17

Sign test, 250-251

Simple linear regression, 63-64
Simulation menu, 20

Single sample proportion test, 81

Single sample variance test, 82

Smooth data, 51-52

Sort, 14

Space separated field files, 7
Spearman-Brown reliability prophecy, 315
Spearman rank correlation, 240-241
2-Stage least-squares regression, 153—157
Stem and leaf plot, 43-44

String labels, 21
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Successive interval scaling, 287-289
Sums of squares by regression, 136140
SVDInverse, 352-353

T

Tab separated field f, 7

Testing equality of correlations, 65

Text files, 7

Three factor nested ANOVA, 101

Three variable rotation, 38—-39

Time series analysis, 400-406

T-test, 85-87

Two factor repeated measures
analysis, 95-99

Two within subjects ANOVA, 129-132

U
Using MatMan, 337-338

413

A%

Variables definition, 8

The variables equation option, 13
The variables menu, 12—-14
Variable transformation, 12

W
2 or 3 way fixed ANOVA with 1 case

per cell, 126-129
Weighted composite test reliability, 278-279
Weighted least-squares regression, 148—-153
Wilcoxon matched-pairs signed

ranks test, 248-249

X

XBAR chart, 317-332

X versus multiple Y plot, 52-55
X versus Y plots, 3941
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