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Chapter 1

Basic Statistics

It is proven that the celebration of birthdays is healthy.
Statistics show that those people who celebrate the most
birthdays become the oldest.

Introduction

This chapter introduces the basic statistics concepts you will need throughout your

use of the OpenStat package. You will be introduced to the symbols and formulas

used to represent a number of concepts utilized in statistical inference, research

design, measurement theory, multivariate analyses, etc. Like many people first

starting to learn statistics, you may be easily overwhelmed by the symbols and

formulas—don’t worry, that is pretty natural and does NOT mean you are retarded!

You may need to re-read sections several times however before a concept is

grasped. You will not be able to read statistics like a novel (don’t we wish we

could) but rather must “study” a few lines at a time and be sure of your understand-

ing before you proceed.

Symbols Used in Statistics

Greek symbols are used rather often in statistical literature. (Is that why statistics is

Greek to so many people?) They are used to represent both arithmetic types of

operations as well as numbers, called parameters, that characterize a population or

larger set of numbers. The letters you usually use, called Arabic letters, are used for

numbers that represent a sample of numbers obtained from the population of

numbers.

W. Miller, Statistics and Measurement Concepts with OpenStat,
DOI 10.1007/978-1-4614-5743-5_1, # Springer Science+Business Media New York 2013
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Two operations that are particularly useful in the field of statistics that are

represented by Greek symbols are the summation operator and the products

operator. These two operations are represented by the capital Greek letters Sigma

S and Pi P. Whenever you see these symbols you must think:

S ¼ ‘‘The sum of the values :00; or

P ¼ ‘‘The product of the values :00

For example, if you see Y¼ S (1,3,5,9) you would read this as “the sum of 1, 3, 5

and 9”. Similarly, if you see Y ¼ P(1,3,5,9) you would think “the product of 1

times 3 times 5 times 9”.

Other conventions are sometimes adopted by statisticians. For example, as in

beginning algebra classes, we often use X to represent any one of many possible

numbers. Sometimes we use Y to represent a number that depends on one or more

other numbers X1, X2, etc. Notice that we used subscripts of 1, 2, etc. to represent

different (unknown) numbers. Lower case letters like y, x, etc. are also sometimes

used to represent a deviation of a score from the mean of a set of scores. Where it

adds to the understanding, X, and x may be italicized or written in a script style.

Now lets see how these symbols might be used to express some values.

For example, we might represent the set of numbers (1,3,7,9,14,20) as X1, X2, X3,

X4, X5, and X6. To represent the sum of the six numbers in the set we could write:

Y ¼
X6
i¼1

Xi ¼ 1þ 3þ 7þ 9þ 14þ 20 ¼ 54 (1.1)

If we want to represent the sum of any arbitrary set of N numbers, we could write

the above equation more generally, thus

Y ¼
XN
i�1

Xi (1.2)

represents the sum of a set of N values. Note that we read the above formula as “Y

equals the sum of X subscript i values for the value of i ranging from 1 through N,

the number of values”.

What would be the result of the formula below if we used the same set of

numbers (1,3,7,9,14,20) but each were multiplied by five ?

Y ¼
XN
i�1

5Xi ¼ 5
XN
i�1

Xi ¼ 270 (1.3)

To answer the question we can expand the formula to
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Y ¼ 5X1 þ 5X2 þ 5X3 þ 5X4 þ 5X5 þ 5X6

¼ 5ðX1 þ X2 þ X3 þ X4 þ X5 þ X6Þ
¼ 5ð1þ 3þ 7þ 9þ 14þ 20Þ
¼ 5ð54Þ ¼ 270 (1.4)

In other words,

Y ¼
XN
i�1

CXi ¼ C
XN
i�1

Xi (1.5)

We may generalize multiplying any sum by a constant (C) to

Y ¼
XN
i�1

CXi ¼ C
XN
i�1

Xi (1.6)

What happens when we sum a term which is a compound expression instead of a

simple value? For example, how would we interpret

Y ¼
XN
i�1

ðXi � CÞ (1.7)

where C is a constant value?

We can expand the above formula as

Y ¼ ðX1 � CÞ þ ðX2 � CÞ þ . . .þ ðXN � CÞ (1.8)

(Note the use of . . . to denote continuation to the Nth term).

The above expansion could also be written as

Y ¼ ðX1 þ X2 þ . . .þ XNÞ � NC (1.9)

Or Y ¼
XN
i¼1

Xi � NC (1.10)

We note that the sum of an expression which is itself a sum or difference of

multiple terms is the sum of the individual terms of that expression. We may say

that the summation operator distributes over the terms of the expression!

Now lets look at the sum of an expression which is squared. For example,

Y ¼
XN
i¼1

ðXi � CÞ2 (1.11)
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When the expression summed is not in its most simple form, we must first

evaluate the expression. Thus

Y ¼
XN
i¼1

ðXi � CÞ2 ¼
XN
i¼1

ðXi � CÞðXi � CÞ ¼
XN
i¼1

X2
i � 2CXi þ C2

� �

¼
XN
i¼1

X2
i �

XN
i¼1

2CXi þ
XN
i¼1

C2

or Y ¼
XN
i¼1

X2
i � 2C

XN
i¼1

Xi þ NC2 ¼
XN
i¼1

X2 � 2CNX � NC2

¼
XN
i¼1

X2 � CNð2X � CÞ (1.12)

Probability Concepts

Maybe, possibly, could be, chances are, probably are all words or phrases we use to

convey uncertainty about something. Yet all of these express some belief that a

thing or event could occur or exist. The field of statistics is concerned about making

such statements based on observations that will lead us to correct “guesses” about

an event occuring or existing. The field of study called “statistics” gets its name

from the use of samples that we can observe to estimate characteristics about the

population that we cannot observe. If we can study the whole population of objects

or events, there is no need for statistics! Accounting methods will suffice to describe

the population. The characteristics (or indexes) we observe about a sample from a

population are called statistics. These indexes are estimates of population

characteristics called parameters. It is the job of the statistician to provide indexes

(statistics) about populations that give us some level of confidence that we have

captured the true characteristics of the population of interest.

When we use the term probability we are talking about the proportion of objects
in some population. It might be the proportion of some discrete number of heads

that we get when tossing a coin. It might be the proportion of values within a

specific range of values we find when we observe test scores of student achievement

examinations.

In order for the statistician to make useful observations about a sample that will

help us make confident statements about the population, it is often necessary to

make assumptions about the distribution of scores in the population. For example,

in tossing a coin 30 times and examining the outcome as the number of heads or

tails, the statistician would assume that the distribution of heads and tails after a

very large number of tosses would follow the binomial distribution, a theoretical

distribution of scores for a binary object. If the population of interest is the
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relationship between beginning salaries and school achievement, the statistician

may have to assume that the measures of salary and achievement have a normal
distribution and that the relationship can be described by the bivariate-normal
distribution.

A variety of indexes (statistics) have been developed to estimate characteristics

(measurements) of a population. There are statistics that describe the central
tendency of the population such as the mean (average), median and mode. Other

statistics are used to describe how variable the scores are. These statistics include

the variance, standard deviation, range, semi-interquartile range, mean deviation,

etc. Still other indices are used to describe the relationship among population

characteristics (measures) such as the product–moment correlation and the multiple

regression coefficient of determination. Some statistics are used to examine

differences among samples from possibly different populations to see if they are

more likely to be samples from the same population. These statistics include the “t”

and “z” statistic, the chi-squared statistic and the F-Ratio statistic.

The sections below will describe many of the statistics obtained on samples to

make inferences about population parameters. The assumed (theoretical) distribu-

tion of these statistics will also be described.

Additive Rules of Probability

Formal aspects of probability theory are discussed in this section. But first, we need

to define some terms we will use. First, we will define a sample space as simply a set

of points. A point can represent anything like persons, numbers, balls, accidents, etc.

Next we define an event. An event is an observation of something happening such as

the appearance of “heads” when a coin is tossed or the observation that a person you

selected at random from a telephone book is voting Democrat in the next election.

There may be several points in the sample space, each of which is an example of an

event. For example, the sample space may consist of 5 black balls and 4 white balls

in an urn. This sample space would have 9 points. An event might be “a ball

is black.” This event has 5 sample space points. Another event might be “a ball is

white.” This event has a sample space of 4 points. We may now say that the

probability of an event E is the ratio of the number of sample points that are examples

of E to the total number of sample points provided all sample points are equally

likely.Wewill use the notation P(E) for the probability of an event. Now let an event

be “A ball is black” where the sample space is the set of 9 balls (5 black and 4 white.)

There are 5 sample points that are examples of this event out of a total of 9 sample

points. Thus the probability of the event P(E)¼ 5/9. Notice that the probability that a

ball is white is 4/9.Wemay also say that the probability that a ball is red is 0/9 or that

the probability that the ball is both white and black is 0/9. What is the probability

that the ball is either white OR black? Clearly this is (5 + 4)/9 ¼ 1.0.
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In our previous example of urn balls, we noticed that a ball is either white or

black. These are mutually exclusive events. We also noted that the sum of exclusive

events is 1.0. Now let us add 3 red balls to our urn. We will label our events as B, W

or R for the colors they represent. Our sample space now has 12 points. What is the

probability that two balls selected are either B or W?When the events are exclusive

we may write this as P(B U A).

Since these are exclusive events, we can write: P(B UW)¼ P(B) + P(W)¼ 5/12

+ 4/12 ¼ 9/12 ¼ 3/4 ¼ 0.75.

It is possible for a sample point to be an example of two or more events. For

example if we toss a “fair” coin three times, we can observe eight possible outcomes:

1. HHH 2. HHT 3. HTH 4. HTT 5. TTT 6. TTH 7. THT and 8. THH

If our coin is fair we can assume that each of these outcomes is equally likely, that

is, has a probability of 1/8. Now let us define two events: event A will be getting a

“heads” on flip 1 and flip 2 of the coin and event B will be getting a “heads” on flips 1

and 3 of the coin. Notice that outcomes 1 and 2 above are sample points of event A

and that outcomes 1 and 3 are events of type B. Now we can define a new event that

combines events A andB.Wewill use the symbol A\B for this event. If we assume

each of the eight sample points are equally likely we may write P(A \ B)¼ number

of sample points that are examples of A \ B/total number of sample points, or

P(A \ B) ¼ 1/8. Notice that only 1 of the points in our sample space has heads

on both flips 1 and 2 and on 2 and 3 (sample point 1.) That is, the probability of

event A and B is the probability that both events A and B occur.

When events may not be exclusive, we are dealing with the probability of an

event A or Event B or both. We can then write

PðA U BÞ ¼ PðAÞ þ PðBÞ � PðA \ BÞ (1.13)

Which, in words says, the probability of events A or B equals the probability of

event A plus the probability of event B minus the probability of event A and B.

Of course, if A and B are mutually exclusive then the probabilty of A and B is zero

and the probability of A or B is simply the sum of P(A) and P(B).

The Law of Large Numbers

Assume again that you have an urn of 5 black balls and 4 white balls. You stir the

balls up and draw one from the urn and record its color. You return the ball to

the urn, again stir the balls vigourously and again draw a single ball and record its

color. Now assume you do this 10,000 times, each time recording the color of the

ball. Finally, you count the number of white balls you drew from the 10,000 draws.

You might reasonably expect the proportion of white balls to be close to 4/9

although it is likely that it is not exactly 4/9. Should you continue to repeat this

experiment over and over, it is also reasonable to expect that eventually, the

proportion would be extremely close to the actual proportion of 4/9. You can see
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that the larger the number of observations, the more closely we would approximate

the actual value. You can also see that with very small replications, say 12 draws

(with replacement) could lead to a very poor estimate of the actual proportion of

white balls.

Multiplication Rule of Probability

Assume you toss a fair coin five times. What is the probability that you get a “heads”

on all five tosses? First, the probability of the event P(E) ¼ 1/2 since the sample

space has only two possible outcomes. The multicative rule of probability states that

the probability of five heads would be 1/2 * 1/2 * 1/2 * 1/2 * 1/2 or simply (1/2) to the

fifth power (1/32) or, in general, P(E)n where n is the number of events E.

As another example of this rule, assume a student is taking a test consisting of six

multiple-choice items. Each item has five equally attractive choices. Assume the

student has absolutely no knowledge and therefore guesses the answer to each item

by randomly selecting one of the five choices for each item. What is the probability

that the student would get all of the items correct? Since each item has a probability

of 1/5, the probability that all items are answered correctly is (1/5)6 or 0.000064.

What would it be if the items were true-false items?

Permutations and Combinations

A permutation is an arrangement of n objects. For example, consider the letters A,

B, C and D. How many permutations (arrangements) can we make with these four

letters? We notice there are four possibilities for the first letter. Once we have

selected the first letter there are 3 possible choices for the second letter. Once the

second letter is chosen there are two possibilities for the third letter. There is only

one choice for the last letter. The number of permutations possible then is 4 � 3

� 2 � 1 ¼ 24 ways to arrange the four letters. In general, if there are N objects, the

number of permutations is N � (N�1) � (N�2) � (N�3) � . . . (1). We abbrevi-

ate this series of products with an exclamation point and write it simply as N! We

say “N factorial” for the product series. Thus 4! ¼ 24. We do, however, have to let

0! ¼ 1, that is, by definition the factorial of zero is equal to one. Factorials can get

very large. For example, 10! ¼ 3,628,800 arrangements. If you spent a minute

examining one arrangement of 12 guests for a party, how long would it take you to

examine each arrangement? I’m afraid that if you worked 8 hours a day, 5 days a

week for 52 weeks a year you (and your descendants) would still be working on it

for more than a 1,000 years!

A combination is a set of objects without regard to order. For example, the

combination of A, B, C and D in any permutation is one combination. A question
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arises however concerning how many combinations of K objects can be obtained

from a set of N objects. For example, how many combinations of 2 objects can be

obtained from a set of 4 objects. In our example, we have the possibilities of A + B,

A + C, A + D, B + C, B + D and C + D or a total of 6 combinations. Notice that

the combination AB is the same as BA because order is not considered. A formula

may be written using permutations that gives us a general formula for

combinations. It is

N! = K! ðN� KÞ!½ � (1.14)

In our example then, the number of combinations of 2 things out of 4 is 4!/

[2! (4�2)!] which might be written as

4 x 3 x 2 x 1

ð2 x 1Þ x ð2 x 1Þ ¼
24

4
¼ 6 (1.15)

A special mathematics notation is often used for the combination of k things out

of N things. It is

N

K

 !
¼ N!

K!ðN � KÞ! (1.16)

You will see the use of combinations in the section on the binomial distribution.

Conditional Probability

In sections above we defined the additive law for mutually exclusive events as the

sum of the invidual probabilities. For example, for a fair die the probability of each

of the faces is 1/6 so the probability of getting a 1 in two tosses (toss A and a toss B)

is P(A) + P(B) ¼ 1/6 + 1/6 ¼ 1/3. Our multiplicative law for independent events

states that the probability of obtaining event A and event B is P(A) � P(B). So the

probability of getting a 1 on toss A of a die 1 and toss B of the die is P(1) �
P(2) ¼ 1/6 � 1/6 ¼ 1/36. But what if we don’t know our die is a “fair” die with

equal probabilties for each face on a toss? Can we use the prior information from

toss A of the die to say what the probability if for toss B?

Conditional probability is the probability of an event given that another event

has already occurred. We would write

PðBjAÞ ¼ PðA \ BÞ
PðAÞ (1.17)
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If A and B are independent then

PðBjAÞ ¼ PðAÞPðBÞ
PðAÞ ¼ PðBÞ (1.18)

or the probability of the second toss is 1/6, the same as before.

Now consider two events A and B: for B an individual has tossed a die four times

with outcomes E1, E2, E3 and E4; For A the event is the tosses with outcomes E1

and E2. The events might be the toss results of 1, 3, 5 and 6. Knowing that event A

has occurred, what is the probabilty of event B, that is, P(A|B)? Intuitively you

might notice that the probabilty of the B event is the sum of the individual

probabilities or 1/6 + 1/6 + 1/6 + 1/6 ¼ 2/3, and that the probability of the A

event is 1/6 + 1/6 ¼ 1/3 or half the probability of B. That is, P(A)/P(B) ¼ 1/2.

A more formal statement of conditional probability is

PðAjBÞ ¼ PðA \ BÞ
PðBÞ (1.19)

Thus the probability of event A is conditional on the prior probability of B. The

result P(A|B) is sometimes called the posterior probability. Notice we can rewrite

the above equation as:

PðAjBÞPðBÞ ¼ PðA \ BÞ (1.20)

and

PðBjAÞPðAÞ ¼ PðA \ BÞ (1.21)

Since both equations equal the same thing we may write

PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ (1.22)

The above is known as Bayes Theorem for events.

Now consider an example. In a recent poll in your city, 40% are registered

Democrats and 60% are registered Republicans. Among the Democrats, the poll

shows that 70% feel that invading Iraq was a mistake and 20% feel it was justified.

You have just met a new neighbor and have begun a conversation over a cup of

coffee. You learn that this neighbor feels that invading Iraq was a mistake. What is

the probability that the neighbor is also a Democrat? Let A be the event that

the neighbor is Democrat and B be the event that she feels the invasion was a

mistake. We already know that the probability of A is P(A) ¼ 0.6. We also know

that the probability of B is P(B│A) ¼ 0.7 . We need to compute P(B), the probabil-

ity the neighbor feels the invasion was a mistake. We notice that the probability of

B can be decomposed into two exclusive parts: P(B) ¼ P(B and A) and P(B and

not A) where the probability of not A is 1—P(A) or 0.4, the probability of not being

a democrat. We can write

Conditional Probability 9



PðB \ notAÞ ¼ PðnotAÞPðBjAÞ (1.23)

or PðBÞ ¼ PðB and AÞ þ PðnotAÞP BjnotAð Þ (1.24)

or PðBÞ ¼ PðBjAÞPðAÞ þ PðnotAÞ P BjnotAð Þ (1.25)

Now we know P(A) ¼ 0.4, P(notA)¼ 1�.4¼ 0.6, P(B|A)¼ 0.7 and P(B| notA)
¼ 0.2. Therefore,

P(B) ¼ (0.7) (0.4) + (0.6)(0.2) ¼ 0.40

Now knowing P(B) we can compute P(A|B) using Bayes’ Theorem:

PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ ¼ ð0:7Þð0:4Þ

0:4
¼ 0:7 (1.26)

is the probability of the neighbor being Democrat.

Bayesian Statistics

In the previous section we explored Bayes Theorem. In that discussion we had prior

information P(A) and sought posterior probabilities of A given that B occurred.

In general, Bayesian statistics follows this core:

Prior Probabilities; e:g: PðAÞ þ New Information;

e:g: appossed to invading Iraq PðBÞ ¼ Posterior

Probability PðAjBÞ:

The above example dealt with specific events. However, Bayesian statistics also

can be generalized to situations where we wish to develop a posterior distribution

by combining a prior distribution with a distribution of new information. The Beta

distribution is often used for prior and posterior distributions. This text will not

attempt to cover Bayesian statistics. The reader is encouraged to find text books

specific to this topic.

Maximum Liklihood (Adapted from S. Purcell, http://statgen.iop.
kcl.ac.uk/bgim/mle/sslike_1.html)

Model-Fitting

If the probability of an event X dependent on model parameters p is written

P X j pð Þ
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then we would talk about the likelihood

L p j Xð Þ

that is, the likelihood of the parameters given the data.
For most sensible models, we will find that certain data are more probable than

other data. The aim of maximum likelihood estimation is to find the parameter

value(s) that makes the observed data most likely. This is because the likelihood of

the parameters given the data is defined to be equal to the probability of the data

given the parameters (nb. technically, they are proportional to each other, but this

does not affect the principle).

If we were in the business of making predictions based on a set of solid

assumptions, then we would be interested in probabilities—the probability of

certain outcomes occurring or not occurring.

However, in the case of data analysis, we have already observed all the data: once
they have been observed they are fixed, there is no ‘probabilistic’ part to them

anymore (the word data comes from the Latin word meaning ‘given’). We are much

more interested in the likelihood of the model parameters that underly the fixed data.

Probability

Knowing parameters -> Prediction of outcome

Likelihood

Observation of data -> Estimation of parameters

A Simple Example of MLE

To re-iterate, the simple principle of maximum likelihood parameter estimation is

this: find the parameter values that make the observed data most likely. How would

we go about this in a simple coin toss experiment? That is, rather than assume that

p is a certain value (0.5) we might wish to find the maximum likelihood estimate
(MLE) of p, given a specific dataset.

Beyond parameter estimation, the likelihood framework allows us to make tests
of parameter values. For example, we might want to ask whether or not the

estimated p differs significantly from 0.5 or not. This test is essentially asking: is

there evidence that the coin is biased? We will see how such tests can be performed

when we introduce the concept of a likelihood ratio test below.
Say we toss a coin 100 times and observe 56 heads and 44 tails. Instead of

assuming that p is 0.5, we want to find the MLE for p. Then we want to ask whether
or not this value differs significantly from 0.50.

How do we do this? We find the value for p that makes the observed data most

likely.

As mentioned, the observed data are now fixed. They will be constants that are

plugged into our binomial probability model :-

Bayesian Statistics 11



• n ¼ 100 (total number of tosses)

• h ¼ 56 (total number of heads)

Imagine that p was 0.5. Plugging this value into our probability model as

follows:

Lðp ¼ 0:5jdataÞ ¼ 100!

56!44!
0:5560:544 ¼ 0:0389 (1.27)

But what if p was 0.52 instead?

Lðp ¼ 0:52jdataÞ ¼ 100!

56!44!
0:5560:4844 ¼ 0:0581 (1.28)

So from this we can conclude that p is more likely to be 0.52 than 0.5. We can

tabulate the likelihood for different parameter values to find the maximum likeli-

hood estimate of p:

p       L
--------------
0.48    0.0222
0.50    0.0389
0.52    0.0581
0.54    0.0739
0.56    0.0801
0.58    0.0738
0.60    0.0576
0.62    0.0378

If we graph these data across the full range of possible values for p we see the

following likelihood surface (Fig. 1.1).
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We see that the maximum likelihood estimate for p seems to be around 0.56.

In fact, it is exactly 0.56, and it is easy to see why this makes sense in this trivial

example. The best estimate for p from any one sample is clearly going to be the

proportion of heads observed in that sample. (In a similar way, the best estimate for

the population mean will always be the sample mean.)

So why did we waste our time with the maximum likelihood method? In such a

simple case as this, nobody would use maximum likelihood estimation to evaluate

p. But not all problems are this simple! As we shall see, the more complex the

model and the greater the number of parameters, it often becomes very difficult to

make even reasonable guesses at the MLEs. The likelihood framework

conceptually takes all of this in its stride, however, and this is what makes it the

work-horse of many modern statistical methods.

Analytic MLE

Sometimes we can write a simple equation that describes the likelihood surface
(e.g. the line we plotted in the coin tossing example) that can be differentiated.

In this case, we can find the maximum of this curve by setting the first derivative to

zero. That is, this represents the peak of a curve, where the gradient of the curve

turns from being positive to negative (going left to right). In theory, this will

represent the maximum likelihood estimate of the parameter.

Numerical MLE

But often we cannot, or choose not, to write an equation that can be differentiated to

find the MLE parameter estimates. This is especially likely if the model is complex

and involves many parameters and/or complex probability functions (e.g. the

normal probability distribution).

In this scenario, it is also typically not feasible to evaluate the likelihood at all

points, or even a reasonable number of points, in the parameter space of the

problem as we did in the coin toss example. In that example, the parameter space

was only one-dimensional (i.e. only one parameter) and ranged between 0 and 1.

Nonetheless, because p can theoretically take any value between 0 and 1, the MLE

will always be an approximation (albeit an incredibly accurate one) if we just

evaluate the likelihood for a finite number of parameter values. For example, we

chose to evaluate the likelihood at steps of 0.02. But we could have chosen steps of

0.01, of 0.001, of 0.000000001, etc. In theory and practice, one has to set a

minimum tolerance by which you are happy for your estimates to be out. This is

why computers are essential for these types of problems: they can tabulate lots and

lots of values very quickly and therefore achieve a much finer resolution.
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If the model has more than one parameter, the parameter space will grow very

quickly indeed. Evaluating the likelihood exhaustively becomes virtually

impossible—even for computers. This is why so-called optimisation (or

minimisation) algorithms have become indispensable to statisticians and quantita-

tive scientists in the last couple of decades. Simply put, the job of an optimisation

algorithm is to quickly find the set of parameter values that make the observed data

most likely. They can be thought of as intelligently playing some kind of hotter-

colder game, looking for a hidden object, rather than just starting at one corner and

exhaustively searching the room. The ‘hotter-colder’ information these algorithms

utilise essentially comes from the way in which the likelihood changes as the they
move across the parameter space. Note that it is precisely this type of ‘rate of

change’ information that the analytic MLE methods use—differentiation is

concerned with the rate of change of a quantity (i.e. the likelihood) with respect

to some other factors (i.e. the parameters).

Other Practical Considerations

Briefly, we shall look at a couple of shortcuts and a couple of problems that crop up

in maximum likelihood estimation using numerical methods:

Removing the Constant

Recall the likelihood function for the binomial distribution:

n!

h!ðn� hÞ! p
hð1� pÞn�h

(1.29)

In the context of MLE, we noted that the values representing the data will be

fixed: these are n and h. In this case, the binomial ‘co-efficient’ depends only upon

these constants. Because it does not depend on the value of the parameter p we can
essentially ignore this first term. This is because any value for p which maximizes

the above quantity will also maximize

n!

h! n� hð Þ! (1.30)

This means that the likelihood will have no meaningful scale in and of itself.

This is not usually important, however, for as we shall see, we are generally

interested not in the absolute value of the likelihood but rather in the ratio between
two likelihoods—in the context of a likelihood ratio test.
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We may often want to ignore the parts of the likelihood that do not depend upon

the parameters in order to reduce the computational intensity of some problems.

Even in the simple case of a binomial distribution, if the number of trials becomes

very large, the calculation of the factorials can become infeasible (most pocket

calculators cannot represent numbers larger than about 60!). (Note: in reality, we

would quite probably use an approximation of the binomial distribution, using the

normal distribution that does not involve the calculation of factorials).

Log-Likelihood

Another technique to make life a little easier is to work with the natural log of

likelihoods rather than the likelihoods themselves. The main reason for this is,

again, computational rather than theoretical. If you multiply lots of very small

numbers together (say all less than 0.0001) then you will very quickly end up with a

number that is too small to be represented by any calculator or computer as different

from zero. This situation will often occur in calculating likelihoods, when we are

often multiplying the probabilities of lots of rare but independent events together to

calculate the joint probability.

With log-likelihoods, we simply add them together rather than multiply them

(log-likelihoods will always be negative, and will just get larger (more negative)

rather than approaching 0). Note that if

a ¼ bc

then

logðaÞ ¼ logðbÞ þ logðcÞ (1.31)

So, log-likelihoods are conceptually no different to normal likelihoods. When

we optimize the log-likelihood (note: technically, we will be minimizing the

negative log-likelihood) with respect to the model parameters, we also optimize

the likelihood with respect to the same parameters, for there is a one-to-one

(monotonic) relationship between numbers and their logs.

For the coin toss example above, we can also plot the log-likelihood. We can see

that it gives a similar MLE for p (note: here we plot the negative of the log-

likelihood, merely because most optimization procedures tend to be formulated in

terms of minimization rather than maximization) (Fig. 1.2).

Model Identification

It is worth noting that it is not always possible to find one set of parameter values

that uniquely optimises the log-likelihood. This may occur if there are too many
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parameters being estimated for the type of data that has been collected. Such a

model is said to be ‘under-identified’.

A model that attempted to estimate additive genetic variation, dominance

genetic variation and the shared environmental component of variance from just

MZ and DZ twin data would be under-identified.

Local Minima

Another common practical problem when implementing model-fitting procedures

is that of local minima. Take the following graph, which represents the negative

log-likelihood plotted by a parameter value, x (Fig. 1.3).
Model fitting is an iterative procedure: the user has to specify a set of starting

values for the parameters (essentially an initial ‘first guess’) which the optimisation

algorithm will take and try to improve on.

It is possible for the ‘likelihood surface’ to be any complex function of a

parameter value, depending on the type of model and the data. In the case below,

if the starting value for parameter x was at point A then optimisation might find the

true, global minimum. However, if the starting value was at point B then it might

not find instead only a local minimum. One can think of the algorithm crawling

down the slope from B and thinking it has reached the lowest point when it starts to

rise again. The implication of this would be that the optimisation algorithm would
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stop too early and return a sub-optimal estimate of the parameter x. Avoiding this

kind of problem often involves specifying models well, choosing appropriate

optimisation algorithms, choosing sensible starting values and more than a modi-

cum of patience.

Probabilty as an Area

Probabilities are often represented as proportions of a circle or a polygon that shows

the distribution of events in a sample space. Venn diagrams are circles with a portion

of the ellipse shaded to represent a probability of an event in the space of the circle.

In this case the circles area is considered to be 1.0. Distributions for binomial events,

normally distributed events, poisson distributed events, etc. will often show a shaded

area to represent a probability. You will see these shapes in sections to come.

Sampling

In order to make reasonable inferences about a population from a sample, we must

insure that we are observing sample data that is not, in some artificial way, going to

lead us to wrong conclusions about the population. For example, if we sample a

group of Freshman college students about their acceptance or rejection of abortion,
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and use this to estimate the beliefs about the population of adults in the United

States, we would not be collecting an unbiased or fair sample. We often use the

term experiment to describe the process of drawing a sample. A random experiment
or random sample is considered a fair or un-biased basis for estimating population

parameters. You can appreciate the fact that the number of experiments (samples)

drawn is highly critical to make relevant inferences about the population. For

example, a series of four tosses of a coin and counting the number of heads that

occur is a rather small number of samples from which to infer whether or not the

coin is likely to yield 50% heads and 50% tails if you were to continue to toss the

coin an infinite number of times! We will have much more confidence about our

sample statistics if we use a large number of experiments.

Two of the most common mistakes of beginning researchers is failing to use a

random sample and to use too few samples (observations) in their research. A third

common mistake is to assume a theoretical model for the distribution of sample

values that is incorrect for the population.
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Chapter 2

Descriptive Statistics

The Mean

"When she told me I was average, she was just being mean".

The mean is probably the most often used parameter or statistic used to describe the

central tendency of a population or sample. When we are discussing a population of

scores, the mean of the population is denoted with the Greek letter m . When we are

discussing the mean of a sample, we utilize the letter X with a bar above it. The

sample mean is obtained as

X ¼
Pn
i¼1

Xi

n
(2.1)

The population mean for a finite population of values may be written in a similar

form as

m ¼
PN
i¼1

Xi

N
(2.2)

When the population contains an infinite number of values which are continuous,

that is, can be any real value, then the population mean is the sum of the X values

times the proportion of those values. The sum of values which can be an arbitrarily

small in differences from one another is written using the integral symbol instead of

the Greek sigma symbol. We would write the mean of a set of scores that range in

size from minus infinity to plus infinity as

W. Miller, Statistics and Measurement Concepts with OpenStat,
DOI 10.1007/978-1-4614-5743-5_2, # Springer Science+Business Media New York 2013
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m ¼
ðþ1

�1
XpðXÞdx (2.3)

where p(X) is the proportion of any given X value in the population. The tall curve

which resembles a script S is a symbol used in calculus to mean the “sum of” just

like the symbol S that we saw previously. We use S to represent “countable”

values, that is values which are discrete. The “integral” symbol on the other hand is

used to represent the sum of values which can range continuously, that is, take on

infinitely small differences from one-another.

A similar formula can be written for the sample mean, that is,

X ¼
Xn
i¼1

XipðXiÞ (2.4)

where p(X) is the proportion of any given Xi value in the sample.

If a sample of n values is randomly selected from a population of values, the

sample mean is said to be an unbiased estimate of the population mean. This

simply means that if you were to repeatedly draw random samples of size n from

the population, the average of all sample means would be equal to the population

mean. Of course we rarely draw more than one or two samples from a population.

The sample mean we obtain therefore will typically not equal the population

mean but will in fact differ from the population mean by some specific amount.

Since we usually don’t know what the population mean is, we therefore don’t

know how far our sample mean is from the population mean. If we have, in fact,

used random sampling though, we do know something about the shape of the

distribution of sample means; they tend to be normally distributed. (See the

discussion of the Normal Distribution in the section on Distributions). In fact,

we can estimate how far the sample mean will be from the population mean some

(P) percent of the time. The estimate of sampling errors of the mean will be

further discussed in the section on testing hypotheses about the difference

between sample means.

Now let us examine the calculation of a sample mean. Assume you have

randomly selected a set of five scores from a very large population of scores and

obtained the following:

X1 ¼ 3

X2 ¼ 7

X3 ¼ 2

X4 ¼ 8

X5 ¼ 5
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The sample mean is simply the sum (2.3) of the X scores divided by the number

of the scores, that is

X ¼
Pn
i¼1

Xi

n
¼

X5
i¼1

ðX1 þ X2 þ X3 þ X4 þ X5Þ=5 ¼ ð3þ 7þ 2þ 8þ 5Þ=5 ¼ 5:0

(2.5)

We might also note that the proportion of each value of X is the same, that is, one

out of five. The mean could also be obtained by

X ¼
Xn
i¼1

XipðXiÞ

¼ 3 ð1=5Þ þ 7 ð1=5Þ þ 2 ð1=5Þ þ 8 ð1=5Þ þ 5 ð1=5Þ ¼ 5:0 (2.6)

The sample mean is used to indicate that value which is “most typical” of a set of

scores, or which describes the center of the scores. In fact, in physics, the mean is

the center-of-gravity ( sometimes called the first moment of inertia) of a solid object

and corresponds to the fulcrum, the point at where the object is balanced.

Unfortunately, when the population of scores from which we are sampling is not

symmetrically distributed about the population mean, the arithmetic average is

often not very descriptive of the “central” score or most representative score. For

example, the population of working adults earn an annual salary of $21,000.00.

These salaries however are not symmetrically distributed. Most people earn a rather

modest income while there are a few who earn millions. The mean of such salaries

would therefore not be very descriptive of the typical wage earner. The mean value

would be much higher than most people earn. A better index of the “typical” wage

earner would probably be the median, the value which corresponds to the salary

earned by 50% or fewer people.

Examine the two sets of scores below. Notice that the first nine values are the

same in both sets but that the tenth scores are quite different. Obtain the mean of

each set and compare them. Also examine the score below which 50% of the

remaining scores fall. Notice that it is the same in both sets and better represents

the “typical” score.

SET A: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 )

Mean ¼ ?

Median ¼ ?

SET B: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 1000 )

Mean ¼ ?

Median ¼ ?

The Mean 21



Did you know that the great majority of people have more than the average number of legs?
It’s obvious really; amongst the 57 million people in Britain there are probably 5,000
people who have got only one leg. Therefore the average number of legs is: ((5000 * 1) +
(56,995,000 * 2)) / 57,000,000 ¼ 1.9999123 Since most people have two legs. . .

Variance and Standard Deviation

A set of scores are seldom all exactly the same if they represent measures of some

attribute that varies from person to person or object to object. Some sets of scores

are much more variable that others. If the attribute measures are very similar for the

group of subjects, then they are less variable than for another group in which

the subjects vary a great deal. For example, suppose we measured the reading ability

of a sample of 20 students in the third grade. Their scoreswould probably bemuch less

variable than if we drew a sample of 20 subjects from across the grades 1 through 12!

There are several ways to describe the variability of a set of scores. A very

simple method is to subtract the smallest score from the largest score. This is called

the exclusive range. If we think the values obtained from our measurement process

are really point estimates of a continuous variable, we may add 1 to the exclusive

range and obtain the inclusive range. This range includes the range of possible

values. Consider the set of scores below:

5; 6; 6; 7; 7; 7; 8; 8; 9

If the values represent discrete scores (not simply the closest value that the

precision of our instrument gives) then we would use the exclusive range and report

that the range is (9–5) ¼ 4. If, on the other hand, we felt that the scores are really

point estimates in the middle of intervals of width 1.0 (for example the score seven

is actually an observation someplace between 6.5 and 7.5) then we would report the

range as (9–5) + 1 ¼ 5 or (9.5�4.5) ¼ 5.

While the range is useful in describing roughly how the scores vary, it does not

tell us much about how MOST of the scores vary around, say, the mean. If we are

interested in how much the scores in our set of data tend to differ from the mean

score, we could simply average the distance that each score is from the mean. The

mean deviation, unfortunately is always 0.0! To see why, consider the above set of

scores again:

Mean ¼ ð5þ 6þ 6þ 7þ 7þ 7þ 8þ 8þ 9Þ = 9 ¼ 63 = 9 ¼ 7:0

Now the deviation of each score from the mean is obtained by subtracting the

mean from each score:
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5� 7 ¼ �2

6� 7 ¼ �1

6� 7 ¼ �1

7� 7 ¼ 0

7� 7 ¼ 0

7� 7 ¼ 0

8� 7 ¼ þ1

8� 7 ¼ þ1

9� 7 ¼ þ2

Total ¼ 0:0

Since the sum of deviations around the mean always totals zero, then the obvious

thing to do is either take the average of the absolute value of the deviations OR take

the average of the squared deviations. We usually average the squared deviations

from the mean because this index has some very important application in other

areas of statistics.

The average of squared deviations about the mean is called the variance of the
scores. For example, the variance, which we will denote as S2, of the above set of

scores would be:

S2 ¼ð�2Þ2 þ ð�1Þ2 þ ð�1Þ2 þ 02 þ 02 þ 02 þ 12 þ 12 þ 22

9
¼ 1:3333

approximately: (2.7)

Thus we can describe the score variability of the above scores by saying that the

average squared deviation from the mean is about 1.3 score points.

We may also convert the average squared value to the scale of our original

measurements by simply taking the square root of the variance, e.g. S ¼ √
(1.3) ¼ 1.1547 (approximately). This index of variability is called the standard
deviation of the scores. It is probably the most commonly used index to describe

score variability!

Estimating Population Parameters:

Mean and Standard Deviation

We have already seen that the mean of a sample of scores randomly drawn from a

population of scores is an estimate of the population’s mean. What we have to do is

to imagine that we repeatedly draw samples of size n from our population (always

placing the previous sample back into the population) and calculate a sample mean

each time. The average of all (infinite number) of these sample means is the

population mean. In algebraic symbols we would write:
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m ¼
Pk
i¼1

Xi

k
as k ! 1 (2.8)

Notice that we have letX represent the sample mean and m represent the population
mean. We say that the sample mean is an unbiased estimate of the population mean

because the average of the sample statistic calculated in the same way that we would

calculate the population mean leads to the population mean. We calculate the sample

mean by dividing the sum of the scores by the number of scores. If we have a finite

population, we could calculate the population mean in exactly the same way.

The sample variance calculated as the average of squared deviations about the

sample mean is, however, a biased estimator of the population variance (and

therefore the standard deviation also a biased estimate of the population standard

deviation). In other words, if we calculate the average of a very large (infinite)

number of sample variances this average will NOT equal the population variance.

If, however, we multiply each sample variance by the constant n/(n�1) then the

average of these “corrected” sample variances will, in fact, equal the population

variance! Notice that if n, our sample size, is large, then the bias n/(n�1) is quite

small. For example a sample size of 100 gives a correction factor of about

1.010101. The bias is therefore approximately one hundredth of the population

variance. The reason that the average of squared deviations about the sample means

is a biased estimate of the population variance is because we have a slightly

different mean (the sample mean) in each sample.

If we had knowledge of the population mean m and always subtracted m from our

sample values X, we would not have a biased statistic. Sometimes statisticians find

it more convenient to use the biased estimate of the population variance than

the unbiased estimate. To make sure we know which one is being used, we will

use different symbols for the biased and unbiased estimates. The biased estimate

will be represented here by a S2 and the unbiased by a s2. The reason for use of the

square symbol is because the square root of the variance is the standard deviation.

In other words we use S for the biased standard deviation and s for the unbiased

standard deviation. The Greek symbol sigma s is used to represent the population

standard deviation and s2 represents the population variance. With these definitions

in mind then, we can write:

s2 ¼

PK
j¼1

s2i

k
as k ! 1 (2.9)

or

s2 ¼

Pk
j

n
n�1

S2j

k
as k ! 1 (2.10)
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where n is the sample size, k the number of samples, S2 is the biased sample

variance and s2 is the unbiased sample variance.

You may have already observed that multiplying the biased sample variance by

n/(n�1) gives a more direct way to calculate the unbiased variance, that is:

s2 ¼ n = ðn� 1Þð Þ � S2

or

s2 ¼ n

n� 1

Pn
i¼1

ðXi � XÞ
2

n
¼

Pn
i¼1

ðXi � XÞ2

n� 1
(2.11)

In other words, we may directly calculate the unbiased estimate of population

variance by dividing the sum of square deviations about the mean by the sample

size minus 1 instead of just the sample size.

The numerator term of the variance is usually just called the “sum of squares” as

sort of an abbreviation for the sum of squared deviations about the mean. When you

study the Analysis of Variance, you will see a much more extensive use of the sum

of squares. In fact, it is even further abbreviated to SS . The unbiased variance may

therefore be written simply as

s2 ¼ SSx
n� 1

The Standard Error of the Mean

In the previous discussion of unbiased estimators of population parameters, we

discussed repeatedly drawing samples of size n from a population with replacement

of the scores after drawing each sample. We noted that the sample mean would

likely vary from sample to sample due simply to the variability of the scores

randomly selected in each sample. The question may therefore be asked “How

variable ARE the sample means?”. Since we have already seen that the variance

(and standard deviation) are useful indexes of score variability, why not use

the same method for describing variability of sample means? In this case, of course,

we are asking how much do the sample means tend to vary, on the average, around

the population mean. To find our answer we could draw, say, several hundred

samples of a given size and calculate the average of the sample means to estimate

Since we have already seen that the variance (and standard deviation) are useful

indexes of score variability, why not use the same method for describing variability

of sample means? In this case, of course, we are asking how much do the sample
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means tend to vary, on the average, around the population mean. To find our answer

we could draw, say, several hundred samples of a given size and calculate the

average of the sample means to estimate: and then get the squared difference of

each sample mean from this estimate. The average of these squared deviations

would give us an approximate answer. Of course, because we did not draw ALL

possible samples, we would still potentially have some error in our estimate.

Statisticians have provided mathematical proofs of a more simple, and unbiased,

estimate of how much the sample mean is expected to vary. To estimate the

variance of sample means we simply draw ONE sample, calculate the unbiased

estimate of X score variability in the population then divide that by the sample size!

In symbols

s2
X
¼ s2X

n
(2.12)

The square root of this estimate of variance of sample means is the estimate of

the standard deviation of sample means. We usually refer to this as the standard
error of the mean. The standard error of the mean represents an estimate of how

much the means obtained from samples of size n will tend to vary from sample to

sample. As an example, let us assume we have drawn a sample of seven scores from

a population of scores and obtained:

1; 3; 4; 6; 6; 2; 5

First, we obtain the sample mean and variance as:

X ¼
P7
i¼1

Xi

7
¼ 3:857 ðapproximatelyÞ (2.13)

s2 ¼
P7
i¼1

ðXi � XÞ
2

7� 1
¼ 127

6
¼ 3:81 (2.14)

Then the variance of sample means is simply

s2
X
¼ s2X

n
¼ 3:81

7
¼ 0:544 (2.15)

and the standard error of the mean is estimated as

sX ¼
ffiffiffiffiffi
s2
X

q
¼ 0:74 (2.16)
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You may have noticed by now, that as long as we are estimating population

parameters with sample statistics like the sample mean and sample standard devia-

tion, that it is theoretically possible to obtain estimates of the variability of ANY

sample statistic. In principle this is true, however, there are relatively few that have

immediate practical use. We will only be using the expected variability of a few

sample statistics. As we introduce them, we will tell you what the estimate is of the

variance or standard deviation of the statistic. The standard error of the mean, which

we just examined, will be used in the z and t-test statistic for testing hypotheses

about single means. More on that later.

Testing Hypotheses for Differences Between or Among Means

The Nature of Scientific Investigation

People have been trying to understand the things they observe for as long as history

has been recorded. Understanding observed phenomenon implies an ability to

describe and predict the phenomenon. For example, ancient man sought to under-

stand the relationship between the sun and the earth. When man is able to predict an

occurrence or change in something he observes, it affords him a sense of safety and

control over events. Religion, astrology, mysticism and other efforts have been used

to understand what we observe. The scientific procedures adopted in the last several

hundred years have made a large impact on human understanding. The scientific

process utilizes inductive and deductive logic and the symbols of logic, mathemat-

ics. The process involves:

(a) Making systematic observations (description)

(b) Stating possible relationships between or differences among objects observed

(hypotheses)

(c) Making observations under controlled or natural occurrences of the variations

of the objects hypothesized to be related or different (experimentation)

(d) Applying an accepted decision rule for stating the truth or falsity of the

speculations (hypothesis testing)

(e) Verifying the relationship, if observed (prediction)

(f) Applying knowledge of the relationship when verified (control)

(g) Conceptualizing the relationship in the context of other possible relationships

(theory).

The rules for deciding the truth or falsity of a statement utilizes the assumptions

developed concerning the chance occurrence of an event (observed relationship or

difference). These decision rules are particularly acceptable because the user of the

rules can ascertain, with some precision, the likelihood of making an error, which-

ever decision is made!
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As an example of this process, consider a teacher who observes characteristics of

children who mark false answers true in a true-false test as different from children

who mark true answers as false. Perhaps the hypothetical teacher happens to

notice that the proportion of left-handed children is greater in the first group

than the second. Our teacher has made a systematic observation at this point.

Next, the teacher might make a scientific statement such as “Being left-handed

increases the likelihood of responding falsely to true-false test items.” Another way

of making this statement however could be “The proportion of left-handed children

selecting false options of true statements in a true-false test does not differ from that

of right handed children beyond that expected by sampling variability alone.” This

latter statement may be termed a null hypothesis because it states an absence (null)

of a difference for the groups observed. The null hypothesis is the statement

generally accepted for testing because the alternatives are innumerable. For example

(1) no difference exists or (2) some difference exists. The scientific statement which

states the principle of interest would be difficult to test because the possible

differences are innumerable. For example, “increases” in the example above is not

specific enough. Included in the set of possible “increases” are 0.0001, 0.003, 0.012,

0.12, 0.4, etc. After stating the null hypothesis, our scientist-teacher would make

controlled observations. For example, the number of “false” options chosen by left

and right handed children would be observed after controlling for the total number of

items missed by each group. This might be done by matching left handed children

with right handed children on the total test scores. The teacher may also need to

insure that the number of boys and girls are also matched in each group to control for

the possibility that sex is the variable related to option choices rather than handed-

ness.We could continue to list other ways to control our observations in order to rule

out variables other than the hypothesized ones possibly affecting our decision.

Once the teacher has made the controlled observations, decision rules are used to

accept or reject the null hypothesis. We will discover these rules involve the

chances of rejecting a true null hypothesis (Type I error) as well as the chances

of accepting a false null hypothesis (Type II error).

Because of the chances of making errors in applying our decision rules, results

should be verified through the observation of additional samples of subjects.

Decision Risks

Many research decisions have different losses which may be attached to outcomes

of an experiment. The figure below summarizes the possible outcomes in testing a

null hypothesis. Each outcome has a certain probability of occurrence. These

probabilities (chances) of occurrence are symbolized by Greek letters in each

outcome cell.
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Possible Outcomes of an Experiment

True State of Nature
Ho True Ho False

Experimenter
conclusion
based on
observed
data

|----------------|---------------|
accept |    1 - α |    ß         |

Ho |                | Type II error |
|----------------|---------------|

reject | Type I Error   |               |
Ho | α |   1 - ß       |

|----------------|---------------|

In the above figure a (alpha) is the chance of obtaining a sample which leads to

rejection of the null hypothesis when in the population from which the sample is

drawn the null hypothesis is actually true. On the other hand, we also have the chance

of drawing a sample that leads us to accept a null hypothesis when, in fact, in the

population we should reject it. This latter error has ß (Beta) chances of occurring.

Greek symbols have been used rather than numbers because the experimenter may

control the types of error! For example, by selecting large samples, by reducing the

standard deviation of the observed variable (for example by improving the precision

of measurement), or by decreasing the size of the discrepancy (difference) we desire

to be sensitive to, we can control both Type I and Type II error.

Typically, the chances of getting a Type I error is arbitrarily set by the

researcher. For example, the value of alpha may be set to .05. Having set the

value of a, the researcher can establish the sample size needed to control Type II

error which is also arbitrarily chosen (e.g. ß ¼ 0.2). In other cases, the experimenter

is limited to the sample size available. In this case the experimenter must also

determine the smallest difference or effect size (alternate hypothesis) to which he or

she wishes to be sensitive.

How does a researcher decide on a, ß and a minimum discrepancy? By assessing

or estimating the loss or consequences in making each type of error! For example,

in testing two possible cancer treatments, consider that treatment 1 costs $1,000

while treatment 2 costs $100. Consider the null hypothesis

Ho: no difference between treatments (i.e. equally effective)

and consider the alternative

H1: treatment 1 is more effective than treatment 2.

If we reject Ho: and thereby accept H1: we will pay more for cancer treatment.

We would probably be glad to do this if treatment 1 were, in fact, more effective.

But if we have made a Type I error, our losses are 10 to 1 in dollars lost. On the

other hand, consider the loss if we should accept H0: when, in fact, H1: is correct.

In this case lives will be lost that might have been saved. What is one life worth?

Most people would probably place more than $1,000 value on a life. If so, you

would probably choose a smaller ß value than for a. The size of both these values
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are dependent on the size of risk you are willing to take. In the above example, a

ß ¼ 0.001 would not be unreasonable.

Part of our decision concerning a and ß also is based on the cost for obtaining

each observation. Sometimes destructive observation is required. For example, in

testing the effectiveness of a manufacturer’s military missiles, the sample drawn

would be destroyed by the testing. In these cases, the cost of additional observations

may be as large as the losses associated with Type I or Type II error!

Finally, the size of the discrepancy selected as “meaningful” will affect costs and

error rates. For example, is an IQ difference of five points between persons of Group

A versus Group B a “practical” difference? How much more quickly can a child of

105 IQ learn over a child of 100 IQ? The larger the difference selected, the smaller is

the sample needed to be sensitive to true population differences of that size. Thus,

cost of data collection may be conserved by selecting realistic differences for the

alternative hypothesis. If sample size is held constant while the discrepancy is

increased, the chance of a Type II error is reduced, thus reducing the chances of a

loss due to this type of error. We will examine the relationships between Type I and

Type II error, the discrepancy chosen for an alternative hypothesis, and the sample

size and variable’s standard deviation in the following sections.

Hypotheses Related to a Single Mean

In order to illustrate the principles of hypothesis testing, we will select an example

that is rather simple. Consider a hypothetical situation of the teacher who has

administered a standardized achievement test in algebra to high school students

completing their first course in algebra. Assume that extensive “norms” exist for the

test showing that the population of previously tested students obtained a mean score

equal to 50 and a standard deviation equal to 10. Further assume the teacher has 25

students in the class and that the class test mean was 55 and the standard deviation

was 9. The teacher feels that his particular method of instruction is superior to those

used by typical instructors and results in superior student performance. He wishes to

provide evidence for his claim through use of the standardized algebra test. How-

ever, other algebra teachers in his school claim his teaching is really no better than

theirs but requires half again as much time and effort. They would like to see

evidence to substantiate their claim of no difference. What must our teachers do?

The following steps are recommended by their school research consultant:

1. Agree among themselves how large a difference between the past population

mean and the mean of the sampled population is a practical increment in algebra

test performance.

2. Agree upon the size of Type I error they are willing to accept considering the

consequences.

3. Because sample size is already fixed (n ¼ 25), they cannot increase it to control

Type II error. They can however estimate what it will be for the alternative
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hypothesis that the sampled population mean does differ by a value as large or

larger than that agreed upon in (2) above.

4. Use the results obtained by the classroom teacher to accept or reject the null

hypothesis assuming that the sample means of the kind obtained by the teacher

are normally distributed and unbiased estimates of the population mean. This is

equivalent to saying we assume the teacher’s class is a randomly selected sample

from a population of possible students taught be the instructor’s method. We also

assume that the effect of the instructor is independent for each student, that is,

that the students do not interact in such a way that the score of one student is

somehow dependent on the score obtained by another student.

By assuming that sample means are normally distributed, we may use the

probability distribution of the normally distributed z to test our hypothesis. Based

on a theorem known as the “Central Limit Theorem”, it can be demonstrated that

sample means obtained from scores that are NOT normally distributed themselves

DO tend to be normally distributed! The larger the sample sizes, the closer the

distribution of sample means approaches the normal distribution. You may remem-

ber that our z score transformation is

z ¼ X� X

Sx
¼ d

Sx
(2.17)

when determining an individual’s z score in a sample. Now consider our possible

sample means in the above experiment to be individual scores that deviates (d) from

a population mean (m) and have a standard deviation equal to

SX ¼ Sxp
n

(2.18)

That is, the sample means vary inversely with the square root of the sample size.

The standard deviation of sample means is also called the standard error of the

mean. We can now transform our sample mean (55) into a z score where m ¼ 50

and the standard error is Se ¼ Sx/√n ¼ 10/5 ¼ 2. Our result would be:

z0 ¼ X� m0
Se

¼ 55� 50

2
¼ 2:5 (2.19)

Note we have used a small zero subscript by the population mean to indicate this

is the null hypothesis mean.

Before we make any inference about our teacher’s student performance, let us

assume that the teachers agreed among themselves to set the risk of a Type I error

rather low, at 0.05, because of the inherent loss of greater effort and time on their

part if the hypothesis is rejected (assuming they adopt the superior teachingmethod).

Let us also assume that the teachers have agreed that a class that achieves an average

mean at least 2 standard deviations of the sample means above the previous
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population mean is a realistic or practical increment in algebra learning. This means

that the teachers want a difference of at least 4 points from the mean of 50 since the

standard error of the means is 2.

Now examine the figure. In this figure the distribution of sample means is shown

(since the statistic of interest is the sample mean.) A small caret (^) may be shown at

the scale point where our specific sample statistic (the mean) falls in the theoretical

distribution that has a mean of 50 and standard error of 2. Also shown, by shading is

the area corresponding to the extreme 0.05 area of the distribution (Fig. 2.1).

Examination of the previous figure indicates that the sample mean obtained

deviates from the hypothesized mean by a considerable amount (5 points). If we

were obtaining samples from a population in which the mean was 50 and the

standard error of the means was 2, we would expect to obtain a sample this deviant

only 0.006 of the time! That is, only 0.006 of normally distributed z scores are as

large or larger than the z ¼ 2.5 that we obtained! Because our sample mean is SO
deviant for the hypothesized population, we reject the hypothesized population

mean and instead accept the alternative that the population from which we did

sample has a mean greater than 50. If our statistic had not exceeded the z score

corresponding to our Type I error rate, we would have accepted the null hypothesis.

Fig. 2.1 Distribution of sample means
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Using a table of the normally distributed z score you can observe that the critical

value for our decision is a za ¼ 1.645.

To summarize our example, we have thus far:

1. Stated our hypothesis. In terms of our critical z score corresponding to m, we may

write the hypothesis as

H0 : z< zm (2.20)

2. Stated our alternate hypothesis which is

H1 : z> zm

3. Obtained sample data and found that z > zmwhich leads us to reject H0: in favor

of H1:

Determining Type II Error and Power of the Test

In the example described above, the teachers had agreed that a deviation as large as

2 times the standard deviation of the means would be a “practical” teaching gain.

The question may be asked, “What is the probability of accepting the null hypothe-

sis when the true population mean is, in fact, 2 standard deviations (standard error)

units above the hypothesized mean?” The figure below illustrates the theoretical

distributions for both the null hypothesis and a specific alternate hypothesis, i.e.

H1 ¼ 54 (Fig. 2.2).

The area to the left of the a value of 1.645 (frequently referred to as the region

of rejection) under the null distribution (left-most curve) is the area of “acceptance”

of the null hypothesis—any sample mean obtained that falls in this region would

lead to acceptance of the null hypothesis. Of course, any sample mean obtained that

is larger than the z ¼ 1.645 would lead to rejection (the shaded portion of the null

distribution). Now we may ask, “If we consider the alternative distribution (i.e.

m ¼ 54), what is the z value in that distribution which corresponds to the z value for

m under the null distribution?” To determine this value, we will first transform the z

score for alpha under the null distribution back to the raw score X to which it

corresponds. Solving the z score formula for X we obtain

X ¼ zmS�X þ m0 (2.21)

or

X ¼ 1:645 ð2Þ þ 50 ¼ 53:29
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Now that we have the raw score mean for the critical value of alpha, we can

calculate the corresponding z score under the alternate distribution, that is

z1 ¼ X� m1
SX

¼ 53:29� 54

2
¼ �:355 (2.22)

We may now ask, “What is the probability of obtaining a unit normal z score less

than or equal to �0.355?” Using a table of the normal distribution or a program to

obtain the cumulative probability of the z distributionwe observe that the probability

is ß ¼ 0.359. In other words, the probability of obtaining a z score of�0.355 or less

is 0.359 under the normal distribution.We conclude then that the Type II error of our

test, that is, the probability of incorrectly accepting the null hypothesis when, in fact,

the true population mean is 54 is 0.359. Note that this nearly 36% chance of an error

is considerably larger than the 5% chance of making the Type I error!

The sensitivity of our statistical test to detect true differences from the null

hypothesized value is called the Power of our test. It is obtained simply as 1�ß.

For the situation of detecting a difference as large as 4 (two standard deviations

of the sample mean) in our previous example, the power of the test was

Fig. 2.2 Sample size estimation
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1�0.359 ¼ 0.641. We may, of course, determine the power of the test for many

other alternative hypotheses. For example, we may wish to know the power of our

test to be sensitive to a discrepancy as large as 6 X score units of the mean. The

figure below illustrates the power curves for different Type I error rates and

differences from the null hypothesis.

Again, our procedure for obtaining the power would be

(a) Obtain the raw X-score mean corresponding to the critical value of a (region of

rejection) under the null hypothesis. That is

X ¼ zaSX þ m0
¼ 1:645 ð2Þ þ 50 ¼ 53:29 (2.23)

(b) Obtain the z1 score equivalent to the critical raw score for the alternate

hypothesized distribution, e.g.

z1 ¼ ðX� m1Þ = SX

¼ ð53:29� 56Þ = 2

¼ �2:71 = 2

¼ �1:355 (2.24)

(c) Determine the probability of obtaining a more extreme value than that obtained

in (b) under the unit-normal distribution, e.g.

P z<z1j ND : m ¼ 0; s ¼ 1ð Þ
¼ P z<� 1:355 j ND : m ¼ 0; s ¼ 1ð Þ ¼ :0869

(2.25)

ðdÞ Obtain the power as 1� b ¼ 1:0� :0869 ¼ :9131 (2.26)

One may repeat the above procedure for any number of alternative hypotheses

and plot the results in a figure such as that shown above. The above plot was made

using the OpenStat option labeled “Generate Power Curves” in the Utilities menu.

As the critical difference increases, the power of the test to detect the difference

increases. Minimum power is obtained when the critical difference is equal to zero.

At that point power is equal to a, the Type I error rate. A different “power curve”

may be constructed for every possible value of a. If larger values of a are selected,

for example 0.20 instead of 0.05, then the test is more powerful for detecting true

alternative distributions given the same meaningful effect size, standard deviation

and sample size.

The Fig. 2.3 below shows the power curves for our example when selecting the

following values of a: 0.01, 0.05, and 0.10.
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Sample Size Requirements for the Test of One Mean

The translation of a raw score mean into a standard score was obtained by

z ¼ X� m
SX

(2.27)

Likewise, the above formula may be rewritten for translating a z score into the

raw score mean by:

X ¼ SXzþ m (2.28)

Now consider the distribution of an infinite number of sample means where each

mean is based on the same number of randomly selected cases. Even if the original

scores are not from a normally distributed population, if the means are obtained

from reasonably large samples (N>30), the means will tend to be normally

distributed. This phenomenon is known as the Central Limit Theorem and permits

us to use the normal distribution model in testing a wide range of hypotheses

concerning sample means.

Fig. 2.3 Power curves
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The extreme “tails” of the distribution of sample means are sometimes referred

to as “critical regions.” Critical regions are defined as those areas of the distribution

which are extreme, that is unlikely to occur often by chance, and which represent

situations where you would reject the distribution as representing the true popula-

tion should you obtain a sample in that region. The size of the region indicates the

proportion of times sample values would result in rejection of the null hypothesis by

chance alone—that is, result in a “Type I” error. For the situation of our last

example, the full region “R” of say 0.05 may be split equally between both tails

of the distribution, that is, 0.025 or R/2 is in each tail. For normally distributed

statistics a 0.025 extreme region corresponds to a z score of either �1.96 for the

lower tail or + 1.96 for the upper tail. The critical sample mean values that

correspond to these regions of rejection are therefore

Xc ¼ �sXza=2 þ m0 (2.29)

In addition to the possibility of a critical score (Xc) being obtained by chance part

of the time (a) there also exists the probability (ß) of accepting the null hypothesis

when in fact the sample value is obtained from a population with a mean different

from that hypothesized. Carefully examine the Fig. 2.4 above.

This figure represents two population distributions of means for a variable. The

distribution on the left represents the null hypothesized distribution. The distribu-

tion on the right represents an alternate hypothesis, that is, the hypothesis that a

Fig. 2.4 Null and alternate hypotheses for sample means
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sample mean obtained is representative of a population in which the mean differs

from the null distribution mean be a given difference D. The area of this latter

distribution to the left of the shaded alpha area of the left curve and designated as ß

represents the chance occurrence of a sample falling within the region of accep-

tance of the null hypothesis, even when drawn from the alternate hypothesized

distribution. The score value corresponding to the critical mean value for this

alternate distribution is:

Xc ¼ sXzb þ m1 (2.30)

Since formulas (2.29) and (2.30) presented above are both equal to the same

critical value for the mean, they are equal to each other! Hence, we may solve for N,

the sample size required in the following manner:

sXza þ m0 ¼ sXzb þ m1 (2.31)

where m1 ¼ m0 � D

and sX ¼ sx=
p
N (2.32)

Therefore,

sX=
p
Nð Þ za þ m0 ¼ sX=

p
Nð Þ zb þ m1 (2.33)

or m1 � m0 ¼ sx=
p
Nð Þza � sx=

p
Nð Þzb

�
(2.34)

or D ¼ sx=
p
N ðza � zbÞ (2.35)

or
p
N ¼ sx= Dð Þðza � zbÞ (2.36)

Note: zb is a negative value in the above drawing because we are showing an

alternative hypothesis above the null hypothesis. For an alternative hypothesis

below the null, the result would yield an equivalent formula.

By squaring both sides of the above equation, we have an expression for the

sample size N required to maintain both the selected a rate and ß rate of errors, that is

N ¼ sx
2

D2
ðza þ zbÞ2 (2.37)

To demonstrate this formula (2.37) let us use the previous example of the

teacher’s experiment concerning a potentially superior teaching method. Assume

that the teachers have agreed that it is important to contain both Type I error (a) and
Type II error (ß) to the same value of 0.05. We may now determine the number of

students that would be required to teach under the new teaching method and test.
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Remember that we wished to be sensitive to a difference between the population

mean of 50 by at least 4 points in the positive direction only, that is, we must obtain

a mean of at least 54 to have a meaningful difference in the teaching method.

Since this is a “one-tailed” test, awill be in only one tail of the null distribution. The

z score which corresponds to this a value is 1.645. Similarly the value of z

corresponding to the ß level of 0.05 is also 1.645. The sample size is therefore

obtained as

N ¼ 102

42
ð1:645þ 1:645Þ2

¼ ð100=16Þ ð3:29Þ2 ¼ ð100=16Þ � 10:81 ¼ 67:65

or approximately 68 students.

Clearly, to provide control over both Type I and Type II error, our research is

going to require a larger sample size than originally anticipated! In this situation,

the teacher could simply repeat the teaching with his new method with additional

sections of students or accept a higher Type II error.

It is indeed a sad reflection on much of the published research in the social

sciences that little concern has been expressed for controlling Type II error. Yet, as

we have seen, Type II error can often lead to more devastating costs or conse-

quences than the Type I error which is usually specified! Perhaps most of the studies

are restricted to small available (non-random) samples, or worse, the researcher has

not seriously considered the costs of the types of error. Clearly, one can control both

types of error and there is little excuse for not doing so!

Confidence Intervals for a Sample Mean

When a mean is determined from a sample of scores, there is no way to know

anything certain about the value of the mean of the population from which the

sample was drawn. We do know however sample means tend to be normally

distributed about the population mean. If an infinite number of samples of size n

were drawn at random, the means of those samples would themselves have a mean

m and a standard deviation of s/√n . This standard deviation of the sample means is

called the standard error of the mean because it reflects how much in error a sample

mean is in estimating the population mean m on the average. Knowing how far

sample means tend to deviate from m in the long run permits us to state with some

confidence what the likelihood (probability) is that some interval around our single

sample mean would actually include the population mean m.
Since sample means do tend to be normally distributed about the population

mean, we can use the unit-normal z distribution to make confidence statements

about our sample mean. For example, using the normal distribution tables or

programs, we can observe that 95% of normally distributed z scores have values
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between �1.96 and + 1.96. Since sample means are assumed to be normally

distributed, we may say that 95% of the sample means will surround the population

mean m in the interval of � 1.96 the standard error of the means. In other words, if

we draw a random sample of size n from a population of scores and calculate the

sample mean, we can say with 95% confidence that the population mean is in

the interval of our sample mean plus or minus 1.96 times the standard error of the

means. Note however, that m either is or is not in that interval. We cannot say for

certain that m is in the interval—only that we are some % confident that it is!

The calculation of the confidence interval for the mean is usually summarized in

the following formula:

CI% ¼ X� z% sX (2.38)

Using our previous example of this chapter, we can calculate the confidence

interval for the sample mean of 55 and the standard error for the sample of 25

subjects ¼ 2 as

CI95 ¼ X� ð1:96Þ 2
¼ 51:08 to 58:92 (2.39)

We state therefore that we are 95% confident that the actual population mean is

between 58.92 and 51.08. Notice that the hypothesized mean (50) is not in this

interval! This is consistent with our rejection of that null hypothesis. Had the mean

of the null hypothesis been “captured” in our interval, we would have accepted the

null hypothesis.

Another way of writing (2.39) above is

probability ðX� z1sX<m<Xþ z2sXÞ ¼ P (2.40)

where z1 and z2 are the z scores corresponding to the lower and upper values of the

% confidence desired, and P is the probability corresponding to the % confidence.

For example we might have written our results of the teacher experiment as

probability 55� 1:96ð2Þ< m< 55þ 1:96ð2Þð½ � ¼ :95

or probability ð51:08< m< 58:92Þ ¼ :95

Frequency Distributions

A variable is some measure or observation of an attribute that varies from subject to

subject. We are frequently interested in the shape of the distribution of the

frequencies of objects who’s scores fall in each category or interval of our variable.

When the shape of the frequency distribution closely resembles that of a theoretical
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model of such distributions, we may utilize statistics developed for those theoretical

distributions to describe our observations. We will examine some of the most

common theoretical distributions. First, let us consider a simple figure representing

the frequency of scores found in intervals of a classroom teacher’s test. We will

assume the teacher has administered a 20 item test to 80 students and has “plotted”

the number of students obtaining the various total scores possible. The plot might

look as above (Fig. 2.5):

We can also express the number of subjects in each score range as a proportion

of the total number of observations. For example, we could divide each of the

frequencies above by 80 (the number of observations) and obtain (Fig. 2.6):

If the above distribution of the proportion of test scores at each possible value had

been obtained on a very, very large number of cases in a population of subjects, we

would refer to the proportions as probabilities. We would then be able to make

statements such as “the probability of a student earning a score of 10 in the population

is 0.01.”

Sometimes we draw a figure that represents the cumulative frequencies divided

by the total number of observations. For example, if we accumulate the frequencies

Frequency
10 *
9 * *
8 * *
7 * *
6
5 * *
4
3 * *
2 * *
1 * *
0 * * * *

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Total Test Score

Fig. 2.5 Sample plot of test scores

Proportion
.1250 *
.1125 * *
.1000 * *
.0875 * *
.0750
.0625 * *
.0500
.0375 * *
.0250 * *
.0125 * *
.00 * * * * *

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Total Test Score

Fig. 2.6 Sample proportions of test scores
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represented in the previous figure the cumulative distribution would appear as

(Fig. 2.7):

If the above 80 observations constituted the population of all possible

observations on the 20 item test, we have no need of statistics to estimate population

parameters. We would simply describe the mean and variance of the population

values. If, on the other hand, the above 80 scores represents a random sample from a

very, very large population of observations, we could anticipate that another sample

of 80 cases might have a slightly different distribution appearance. The question

may now be raised, what is a reasonable “model” for the distribution of the

population of observations? There are clearly a multitude of distribution shapes

for which the above sample of 80 scores might be reasonably thought to be a

sample. Because we do not wish to examine all possible shapes that could be

considered, we usually ask whether the sample distribution could be reasonably

expected to have come from one of several “standard” distribution models. The one

model having the widest application in statistics is called the “Normal Distribu-

tion”. It is that model which we now examine.

The Normal Distribution Model

The Normal Distribution model is based on a mathematical function between the

height of a probability curve for each possible value on the horizontal axis. Since

the horizontal axis reflects measurement values, we must first translate our

observations into “standard” units that may be used with any set of observations.

The “z” score transformation is the one used, that is, we standardize our scores by

dividing a scores deviation from the mean by the standard deviation of the scores.

If we know the population mean and standard deviation, the transformation is

zi ¼ ðXi � XÞ
sx

(2.41)

Cum.Prob.
1.0 * * * *
0.9 * * *
0.8 * *
0.7 *
0.6 *
0.5
0.4 *
0.3 *
0.2 *
0.1 * *
0.0 * * * * *

_____________________________________________________________
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Total Test Score

Fig. 2.7 Sample sumulative probabilities of test scores
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If the population mean and standard deviation are unknown, then the sample

estimates are used instead.

The Normal Distribution function (also sometimes called the Gaussian distribu-

tion function) is given by

h ¼ 1ffiffiffiffiffiffi
2p

p e
�z2

2 (2.42)

where h is the height of the curve at the value z and e is the constant 2.7182818.....

To see the shape of the normal distribution for a large number of z scores, select

the Analysis option and move the cursor to the Miscellaneous option. A second

menu will appear. Click on the Normal Distribution Curve option. Values of h are

drawn for values between approximately �3.0 to + 3.0. It should be noted that the

normal distribution actually includes values from -infinity to + infinity . The area

under the normal curve totals 1.0. The area between any two z scores on the normal

distribution therefore reflect the proportion (or probability) of z scores in that range.

Since the z scores may be ANY value from -infinity to + infinity, the normal

distribution reflects observations made on a scale considered to yield continuous

scores.

THE TRUE BELL CURVE - The distribution of SUCCESS in life in relationship to AGE
follows a true bell curve:

At age 5 success is not peeing in your pants
At age 10 success is having friends
At age 16 success is having your driver’s license
At age 20 success is having sex
At age 35 success is having money
At age 50 success is having money
At age 65 success is having sex
At age 70 success is having your driver’s license
At age 75 success is having friends
At age 80 success is not peeing in your pants

The Median

While the mean is obtained as the average of scores in a distribution, it is not the

only measure of “central tendency” or statistic descriptive of the “typical” score in a

distribution. The median is also useful. It is the “middle score” or that value below

which lies 50% of the remaining score values. The difference between the mean and

median values is an indicator of how “skewed” are the distribution of scores. If the

difference is positive (mean greater than the median) this would indicate that

the mean is highly influenced by “extremely” high scores. If you plot the distribu-

tion of scores, there is typically a “tail” extending to the right (assuming the scores

are arranged with low scores to the left and higher scores to the right.) We would

say the distribution is positively skewed. When the distribution is negatively
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skewed the mean is less than the median. The median is highly useful for describing

the typical score when the distribution is highly skewed. For example, the average

income in the United States is much greater than the median income. A few

millionaires (or billionaires) in the population skews the distribution. In this case,

the median is more “representative” of the “typical” income.

Skew

The skew of a distribution is obtained as the third moment of the distribution. The

first moment, the mean, is the average of the scores (sum of X’s divided by

the number of X’s.) The second moment is the variance and is the average of the

squared deviations from the mean. The third moment is the average of the cubed

deviations from the mean. We can write this as:

Skew ¼
P ðX � mÞ3

N
(2.43)

Professor: "OK students, you have fifteen minutes to plot the bivariate distribution between
A and B, fifteen minutes to compute the correlation between A and B, and 5 SECONDS to
compute the kurtosis of B." One student stands up very worried: "Excuse me Professor, how
can we posssibly compute a kurtosis in 5 SECONDS?" The Professor looks at the class very
reassuring: "No need to be worried, kids, IT TAKES ONLY A MOMENT!!"

Kurtosis

What do statistics professors get when they drink too much? Kurtosis of the Liver!

A distribution may not only be skewed (not bell-shaped) but may also be “flatter” or

more “peaked” than found in the normal curve. When a distribution is more flat we

say that it is platykurtik. When it is more peaked we say it is leptokurtik. When it

follows the typical normal curve it is described as mesokurtik. Kurtosis therefore
describes the general height of the distribution across the score range. The kurtosis

is obtained as the fourth moment about the mean. We can write it as:

Kurtosis ¼
P ðX � mÞ4

N
(2.44)

A middle aged man suddenly contracted the dreaded disease kurtosis. Not only was this
disease severely debilitating but he had the most virulent strain called leptokurtosis.
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A close friend told him his only hope was to see a statistical physician who specialized in
this type of disease. The man was very fortunate to locate a specialist but he had to travel
800 miles for an appointment. After a thorough physical exam, the statistical physician
exclaimed, "Sir, you are indeed a lucky person in that the FDA has just approved a new
drug called mesokurtimide for your illness. This drug will bulk you up the middle, smooth
out your stubby tail, and restore your longer range of functioning. In other words, you will
feel "NORMAL" again!"

The Binomial Distribution

Some observations yield a simple dichotomy that may be coded as 0 or 1. For

example, you may draw a sample of subjects and observe the gender of each subject.

A code of 1 may be used for males and 0 for females (or vice-versa). In a population

of such scores, the proportion of observations coded 1 (P) is the mean (y) of the
scores. The population variance of dichotomous scores is simple y(1�y) or P(1�P).

When a sample is drawn from a population of dichotomous scores, the sample mean,

usually denoted simply as p, is an estimator of y and the population variance is

estimated by p(1�p). The probability of observing a specific number of subjects that

would be coded 1 when sampling from a population in which the proportion of such

subjects is P can be obtained from

X ¼ N!

n!ðN � nÞ! p
nð1� pÞN�n

or simply

X ¼ N
n

� �
pn ð1� pÞN�n

(2.45)

where X is the probability,

N is the size of the sample,

n is the number of subjects coded 1 and

P is the population proportion of objects coded 1.

The ! symbol in the above equation is the “factorial” operation, that is, n! means

(1)(2)(3)....(n), the product of all integers up through n. Zero factorial is defined to

be equal to 1, that is, 0! ¼ 1.

For any sample of size N, we can calculate the probabilities of obtaining 0, 1, 2,

. . . , n values of the objects coded 1 when the population value is P. Once those

values are obtained, we may also obtain the cumulative probability distribution. For

example, assume you are sampling males and females from a population with a

mean of 0.5, that is, the number of males (coded 1) equals the number of females
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(coded 0). Now assume you randomly select a sample of 10 subjects and count the

number of males (n). The probabilities for n ¼ 0, 1, . . . , N are as follows:

No. Males Observed

0                   0.00097             0.00097
1                   0.00977             0.01074
2                   0.04395             0.05469
3                   0.11719             0.17188
4        0.20508             0.37695
5                   0.24609             0.62405
6                   0.20508             0.82813
7                   0.11719             0.94531
8                   0.04395      0.98926
9                   0.00977             0.99902

10                   0.00097             1.00000

Probability Cumulative Probability

Now let us plot the above binomial distribution (Fig. 2.8):

A man who travels a lot was concerned about the possibility of a bomb on board his plane.
He determined the probability of this, found it to be low but not low enough for him. So now
he always travels with a bomb in his suitcase. He reasons that the probability of two bombs
being on board would be infinitesimal.

The Poisson Distribution

The Poisson distribution describes the frequency with which discrete binomial

events occur. For example, each child in a school system is either in attendance

or not in attendance. The probability of each child being absent is, however, quite

small. The probability of X children being absent from a school increases with

the size of the school (n). Another example is in the area of school drop-outs. Each

student may be considered to be either a drop-out or not a drop-out. The probability

of being a drop-out student is usually quite small. The probability that X students

Probability
0.24-0.25 *
0.22-0.23
0.20-0.21 * *
0.18-0.19
0.16-0.17
0.14-0.15
0.12-0.13 * *
0.10-0.11
0.08-0.09
0.06-0.07
0.04-0.05 * *
0.02-0.03
0.00-0.01 * * * *

__________________________________________
0 1 2 3 4 5 6 7 8 9 10

Frequency of Males in Sample
from a population with the number of
males equal to the number of females

Fig. 2.8 Sample probability plot
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out of n drop out over a given period of time may also be described by the Poisson

distribution.

The figure above illustrates a representative Poisson distribution (Fig. 2.9):

The frequency (height) of the Poisson distribution is obtained from the following

function:

f ðxÞ ¼ Lxe�L

x!
(2.46)

where m ¼ L, the mean of the population distribution and s ¼ L ¼ the standard

deviation of the population distribution

We note that when a variable (e.g. dropouts occurring) has a mean and standard

deviation that are equal in the sample, the distribution may fit the Poisson model.

In addition, it is important to remember that the variable (X) is a discrete variable,

that is, only consists of integer values.

The Chi-Squared Distribution

In the field of statistics there is another important distribution that finds frequent

use. The chi-squared statistic is most simply defined as the square of a normally

distributed z score. Referring back to the paragraph on z scores, you will remember

that is obtained as

zi ¼ ðXi � XÞ
sx

(2.47)

that is, the deviation from the mean divided by the variance in the population of

normally distributed scores. The z scores in an infinite population of scores ranges

from -4 to + 4 . If we square randomly selected z scores, all resulting values are

Frequency
10
9
8
7
6 *
5 * *
4 * *
3 *
2 *
1 *
0

0 1 2 3 4 5 6 7 8 9 10 11
Course Dropouts Over 18 Week Period

(n=50)

Fig. 2.9 A poisson distribution
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greater than or equal to zero. If we randomly select n z-scores, squaring each one,

the sum of those squared z scores is defined as a Chi-Squared statistic with n

degrees of freedom. Each time we draw a random sample of n z-scores and

calculate the Chi-squared statistic, the value may vary from sample to sample.

The distribution of these sample Chi-squared statistics follows the distribution

density (height) function:

h ¼ w
n�2
2 e

�w
2

2
n
2G n

2

� �� ��1
(2.48)

where w is the Chi-squared statistic,

n is the degrees of freedom,

e is the constant 2.7181. . . of the natural logarithm,

and G() is the gamma function.

In the calculation of the height of the chi-squared distribution, we encounter the

gamma function (G). The gamma function is similar to another function, the factorial

function (n!). The factorial of a number like 5, for example, is 5 � 4 � 3 � 2 � 1

which equals 80. The factorial however only applies to integer values. The gamma

function however applies to continuous values as well as integer values. You can

approximate the gamma function however by interpolating between integer values

of the factorial. For example, the value of G(4) is equal to 3! or 3 � 2 � 1 ¼ 6. In

general, G(k�1) ¼ k!

A sample distribution of Chi-squared statistics with 4� of freedom is illustrated

above (Fig. 2.10)

The F Ratio Distribution

Another sample statistic which finds great use in the field of statistics is the F

statistic. The F statistic may be defined in terms of the previously defined

Chi-squared statistic. It is the ratio of two independent chi-squares, each of which

has been divided by its degrees of freedom, that is

* *
h * *

* *
* *
* *

* *
* *

.25

.20

.15

.10

.05

.00 * *
0 1 2 3 4 5 6 7 8 9 10 11

Fig. 2.10 Chi-squared distribution with 4� of freedom
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Fðn1;n2Þ ¼
w2

n1
w2

n2

(2.49)

where w2 is the chi-squared statistic, and n1 and n2 are the degrees of freedom for the

numerator and denominator chi-squares.

As before, we can develop the theoretical model for the sampling distribution of

the F statistic. That is, we assume we repeatedly draw independent samples of n1

and n2 normally distributed z-scores, square each one, sum them up in each sample,

and form a ratio of the two resulting chi-squared statistics. The height (density)

function is given as

h ¼
G

n1 þ n2
2

h i
n

n1
2
1 n

n2
2
2

G
n1
2

	 

G

n2
2

	 
 :
F

n1 � 2

2

½n1Fþ n2�
n1 þ n2

2

(2.50)

where F is the sample statistic,

n1 and n2 are the degrees of freedom, and

G() is the gamma function described in the previous paragraph.

An example of the distribution of the F statistic for n1 and n2 degrees of freedom

may be generated using the Distribution Plots and Critical Value procedure from

the Simulation menu in your OpenStat package.

The “Student” t Test

The z statistic used to test hypotheses concerning sample means assumes the use of

the normal distribution. However we have seen that the unbiased estimate of the

standard deviation of the sample means is “adjusted” for the sample size, that is

S/√(N�1). If N is large, the distribution we can normally assume the distribution of

the means is normal. When N is small, the “fit” to the normal distribution is less

likely. William Gosset (who published under the name “Student”) developed the

mathematics for distributions that differ for the size of N but approach the normal

(Gaussian) distribution as N increases in size. We obtain our statistic t in the same

manner that we did for the z tests but instead of using the normal distribution, we

use the t distribution. This distribution is described by the following equation:

y ¼ C

1þ ðt2=df Þ½ �ðdfþ1Þ=2 (2.51)

The “Student” t Test 49



Density f
0.35

0.32

0.28

0.25

0.21

0.18

0.15

0.11

0.08

0.04

0.01
-5.00 -4.01 -3.02 -2.03 -1.04 -0.05 0.94 1.93 2.92 3.91 4.90

t value

Fig. 2.11 t distribution with 2� of freedom

Density f
0.40

0.36

0.32

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.00
-5.00 -4.01 -3.02 -2.03 -1.04 -0.05 0.94 1.93 2.92 3.91 4.90

t value

Fig. 2.12 t distribution with 100� of freedom

50 2 Descriptive Statistics



Where

C ¼ ðdf � 1Þ = 2½ �!ffiffiffiffiffiffiffiffiffiffiffiðndf Þp ðdf � 2Þ = 2½ �!

Note: df is a single value for “degrees of freedom”

Shown above are two t distribution plots, the first with 2� of freedom and the

second with 100� of freedom (Figs. 2.11 and 2.12):

If you examine the density (height) of the curve on each of the above plots, you

will see that the density is much greater for the plot with only 2 degrees of freedom.

The “tails” of the t distribution are greater as the degrees of freedom decrease. If

one is testing a hypothesis at the alpha level of say 0.05, it will take a larger value of

t in a t-test in comparison to a z test to be significant for the smaller samples! The

degrees of freedom for the t-test will vary depending on the nature of the hypothesis

being tested.
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Chapter 3

The Product Moment Correlation

It seems most living creatures observe relationships, perhaps as a survival instinct.

We observe signs that the weather is changing and prepare ourselves for the winter

season. We observe that when seat belts are worn in cars that the number of

fatalities in car accidents decrease. We observe that students that do well in one

subject tend to perform will in other subjects. This chapter explores the linear

relationship between observed phenomena.

If we make systematic observations of several phenomena using some scales of

measurement to record our observations, we can sometimes see the relationship

between them by “plotting” the measurements for each pair of measures of the

observations. As a hypothetical example, assume you are a commercial artist and

produce sketches for advertisement campaigns. The time given to produce each

sketch varies widely depending on deadlines established by your employer. Each

sketch you produce is ranked by five marketing executives and an average ranking

produced (rank 1 ¼ best, rank 5 ¼ poorest.) You suspect there is a relationship

between time given (in minutes) and the average quality ranking obtained. You

decide to collect some data and observe the following (Fig. 3.1):

Average rank (Y) Minutes (X)

3.8 10

2.6 35

4.0 5

1.8 42

3.0 30

2.6 32

2.8 31

3.2 26

3.6 11

2.8 33

W. Miller, Statistics and Measurement Concepts with OpenStat,
DOI 10.1007/978-1-4614-5743-5_3, # Springer Science+Business Media New York 2013
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Testing Hypotheses for Relationships Among Variables:

Correlation

Scattergrams

While the mean and standard deviation of the previous chapter are useful for

describing the central tendency and variability of the measures of a single variable,

there are frequent situations in which it is desirable to obtain an index of how values

measured on TWO variables tend to vary in the same or opposite directions. This

“co-variability” of two variables may be visually represented by means of a

Scattergram, for example, the figure below represents a scattergram of individual’s

scores on two variables, X and Y (Fig. 3.2).

In the above figure, each asterisk (*) represents a subject’s position on two scales

of measurement - on the X scale and on the Y scale. We can observe that subjects

with larger X score values tend to have larger Y score values.

Now consider a set of score pairs representing measurements on two variables,

College Grade Point Average (GPA) and Perceptions of Inadequacy (PI). The figure

below the data represents the scattergram of subject scores (Fig. 3.3).

Fig. 3.1 A negative correlation plot
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Subject GPA PI

1 3.8 10

2 2.6 35

3 4.0 5

4 1.8 42

5 3.0 30

6 2.6 32

7 2.8 31

8 3.2 26

9 3.6 11

10 2.8 33

Scattergram of Two Variables
14 | *
13 | * *

V 12 | * * *  *
A 11 |   * * *  *
R 10 | *  *  * *  *
I 9 | **  ***  * * *
A 8 | *  *   * * *
B 7 | * * *  *  *
L 6 | * * * *   *
E 5 | * * * * *

4 | * * *   *
Y 3 | * * *  *

2 | * * *
1 | *  *

0 1 2 3 4 5  6 7 8 9
VARIABLE X

Fig. 3.2 Scattergram of two variables

SCATTERGRAM OF GPA VERSUS PIGPA
4.0 *
3.8 *
3.6 *
3.4
3.2 *
3.0 *
2.8 * *
2.6 * *
2.4
2.2
2.0
1.8 *
1.6
1.4

5 10 15 20 25 30 35 40 45 50
Perceptions of Inadequacy

Fig. 3.3 Scattergram of a negative relationship

Testing Hypotheses for Relationships Among Variables: Correlation 55



In this example there is a negative relationship between the two variables, that is,

as a subject’s perceptions of inadequacy increase, there is a corresponding decrease

in grade point average! (The data are hypothetical if you hadn’t guessed).

Many variables, of course, may not be related at all. In the below scattergram,

there is no systematic co-variation between the two variables (Fig. 3.4):

A simple way to construct an index of the relationship between two variables

might be to simply average the product of the score pairs for the individuals.

Unfortunately, the size of this index would vary as a function of the size of the

numbers yielded by our measurement scales. We wouldn’t be able to compare

the index we obtained for, say, grade point averages in high school and college with

the index we would obtain for college grade point averages and beginning salaries!

On the other hand, an average of score products might be useful if we first

transformed all of our measurements to a COMMON scale of measurement.

In fact, this is just what Pearson did! By converting scores to a scale of measure-

ment such that the mean score is always zero and the standard deviation of the

scores on a variable is always 1.0, he was able to produce an index which, for any

pair of variables, always varies between �1.0 and +1.0 !

Transformation to z Scores

We define a z score as a simple linear transformation of raw scores which involves

the formula

zi ¼ ðXi � �XÞ
sx

(3.1)

where zi is the z score for an individual, Xi the individual’s raw score and Sx is the

standard deviation of the set of X scores.

When we have a pair of scores for each individual, we must adopt some method

for differentiating between the two variables. Often we simply name the variables X

Scattergram of Happiness and Wealth
Happiness

4

0 1 2 3 4 5 6 7 8 9
Wealth Measured as Thousands of Dollars in

a Checking Account

10 *
9 * *
8 * * * *
7 * * * *
6 * ** * * * *
5 * * * * * * *

* * *
3 * * *
2 * * *
1 *

* * *

0

Fig. 3.4 Scattergram of two variables with low relationship
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and Y or X1 and X2. For the case of simple correlation discussed in this section, we

will adopt the first method, i.e., the use of X and Y. We will use the second method

when we start to deal with three or more variables at the same time.

The Pearson Product–moment correlation is defined as

rx;y ¼
PN
i¼1

zxi zyi

N
(3.2)

that is, the average of z score products for the N objects or subjects in our sample.

Note, we have used the BIASED standard deviation in our z score transformations

(divided by N, not N�1).

Now let us see how we apply the above formula in obtaining a coefficient of

correlation for the above scattergram. First, we must transform our raw scores (Y and

X) to z scores. To do this we must obtain the mean and standard deviation for each

variable. In the figure below we have obtained the mean and standard deviation of

each variable, obtained the deviation of each score from the respective mean, and

finally, divided each deviation score by the corresponding standard deviation.We have

also shown the product of the z scores for both the X and Y variables. It is this product

of z scores which, when averaged, yields the product–moment correlation coefficient!
_           _

case     Y     X    (Yi - Y)    (Xi - X)     yzi xzi yzi xzi
1      3.8   10       .78      - 15.5      1.253  -1.318 -1.651
2      2.6   35    - .42         9.5     - .675    .808 - .545
3      4.0    5       .98      - 20.5      1.574  -1.743 -2.743
4      1.8   42     -1.22        16.5     -1.960   1.403 -2.750
5      3.0   30       .02         4.5       .032    .383   .012
6      2.6   32 - .42         6.5     - .675    .553 - .373
7      2.8   31     - .22         5.5     - .353    .468 - .165
8      3.2   26       .18         0.5       .289    .043   .012
9      3.6   11       .58      - 14.5       .932  -1.233 -1.149

10      2.8 33     - .22         7.5     - .353    .638 - .225

N                     _                    
Σ Yi =  30.2        Y  =  3.02

i=1
N                            N           _
ΣYi2 =  95.08       Sy2 =  Σ Y2 / N - Y2

i=1                          i=1
= 9.508 - 9.1204 = 0.3876

and  Sy =  0.62257529

N                     _
Σ Xi =   255.0       X  =  25.5

i=1
N                             N          _
Σ Xi2 =  7885.0       Sx2 =  Σ X2 / N - X2

i=1                           i=1
= 788.5 - 650.25 = 138.25

and Sx = 11.757976

ryx = Σ yzi xzi /  N  =  -9.577 / 10 = -.958
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The above method for obtaining the product–moment correlation is quite labo-

rious and it is easy to make arithmetic mistakes and rounding errors. Let’s look for

another way which does not require actually computing the z scores for each

variable. First, let us substitute the definition of the z scores in the formula for the

correlation:

rx;y ¼
PN
i¼1

zxi zyi

N
¼

PN
i¼1

Yi�Y
Sy

� �
Xi�X
Sx

� �
N

¼
PN
i¼1

XiYi � YiX � YXi þ YX
� �

NSySx
(3.3)

or

rx;y ¼
PN
i¼1

YiXi �
PN
i¼1

YiX �PN
i¼1

YXi þ
PN
i¼1

YX

NSySx

¼
PN
i¼1

YiXi � X
PN
i¼1

Yi � Y
PN
i¼1

XiþNYX

NSySx
(3.4)

or

rx;y ¼

PN
i¼1

YiXi

N � X

PN
i¼1

Yi

N � Y

PN
i¼1

Xi

N þ YX

SySx
¼

PN
i¼1

YiXi

N � XY � YX þ YX

SxSy

¼

PN
i¼1

YiXi

N � XY

SxSy
(3.5)

The last formula does not require us to use z scores at all. We only need to use

raw X and Y scores! Since we have already learned to compute Sx and Sy in terms of

raw scores, we can do a little more algebra manipulation of the above formula and

obtain

rx;y ¼
N
PN
i¼1

XiYi �
PN
i¼1

Yi

� � PN
i¼1

Xi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN
i¼1

Y2
i �

PN
i¼1

Yi

� �2
" #vuut N

PN
i¼1

X2
i �

PN
i¼1

Xi

� �2
" # (3.6)

This formula is particularly advantages in that it utilizes the sums and sums of

squared scores and the sum of cross-products of the X and Y scores. In addition, it
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contains fewer divisions which reduces round-off error! Using the previous exam-

ple, we would obtain:

case     Y     X     Y2 X2 YX
1      3.8   10    14.44     100  38.0
2      2.6   35     6.76    1225     91.0
3      4.0    5    16.00      25     20.0
4      1.8   42     3.24    1764     75.6
5      3.0   30     9.00     900     90.0
6      2.6   32     6.76    1024     83.2
7      2.8   31     7.84     961 86.8
8      3.2   26    10.24     676     83.2
9      3.6   11    12.96     121     39.6

10      2.8   33     7.84    1089     92.4

30.2  255    95.08    7885    699.8

rx;y ¼ ð10Þð699:8Þ � ð30:2Þð255Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ð95:08Þ � ð30:2Þ2
h i

10ð7885Þ � ð255Þ2
h ir

¼ 6998� 7701ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½950:8� 912:04�½78850� 65025�p
or

rx;y ¼ �703ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið38:76Þð13825Þp ¼ �703ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
535857

p ¼ �703

732:02254

¼ �0:960 ðapproximatelyÞ (3.7)

Notice that the product–moment correlation obtained by this method differs by

approximately .002 obtained in the average of z score products method. The first

method had much more round-off error due to our calculations only being carried

out to the nearest thousandths. Our results by this second method are clearly more

accurate, even for only ten cases!

If you use the unbiased estimates of variances, other formulas may be written to

obtain the product–moment correlation coefficient. Remember we divide the sum

of squared deviations about the mean by N-1 for the unbiased estimate of popula-

tion variance. In this case the average of z-score products is also divided by N-1 and

by substituting the definition of a z score for both X and Y we obtain:

rx;y ¼ Cx;y

sxsy
(3.8)
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where

Cx;y ¼
PN
i¼1

XiYi �
PN
i¼1

Xi

PN
i¼1

Yi

N

N � 1
; (3.9)

the covariance of x and y and the unbiased estimates of variance are:

s2x ¼
PN
i¼1

X2
i �

PN
i¼1

Xi

� �2

=N

N � 1
(3.10)

s2y ¼
PN
i¼1

Y2
i �

PN
i¼1

Yi

� �2

=N

N � 1
(3.11)

with

sx ¼ p
s2x and sy ¼ p

s2y

To further understand and learn to interpret the product–moment correlation,

OpenStat provides a means of simulating pairs of data, plotting those pairs, drawing

the “best-fitting line” to the data points and showing the marginal distributions of

the X and Y variables. Go to the Simulation menu and click on the Bivariate Scatter

Plot. The figure below shows a simulation for a population correlation of �0.95

with population means and variances as shown. A sample of 100 cases are

generated. Actual sample means and standard deviations will vary (as sample

statistics do!) from the population values specified (Fig. 3.5).

POPULATION PARAMETERS FOR THE SIMULATION
Mean X :¼ 100.000, Std. Dev. X :¼ 15.000
Mean Y :¼ 100.000, Std. Dev. Y :¼ 15.000
Product-Moment Correlation :¼ -0.900
Regression line slope :¼ -0.900, constant :¼ 190.000
SAMPLE STATISTICS FOR 100 OBSERVATIONS FROM THE POPULATION
Mean X :¼ 99.988, Std. Dev. X :¼ 14.309
Mean Y :¼ 100.357, Std. Dev. Y :¼ 14.581
Product-Moment Correlation :¼ -0.915
Regression line slope :¼ -0.932, constant :¼ 193.577
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Simple Linear Regression

The product–moment correlation discussed in the previous section is an index of the

linear relationship between two continuous variables. But what is the nature of that

linear relationship? That is, what is the slope of the line and where does the line

intercept the vertical (Y variable) axis? This unit will examine the straight line “fit”

to data points representing observations with two variables. We will also examine

how this straight line may be used for prediction purposes as well as describing the

relationship to the product–moment correlation coefficient.

To introduce the “straight line fit” we will first introduce the concept of “least-

squares fit” of a line to a set of data points. To do this we will keep the number of X

and Y score pairs small. Examine the figure below. It represents a set of five score

pairs similar to those presented in the previous unit (Fig. 3.6).

In the figure, each point represents the intersection of X and Y score values for

an observed case. Also shown is a line that represents the “best fitting line” to the

data points:

Case     1  2  3  4  5
–----------------
X | 1  2  3  4  5
Y | 2  1  3  5  4
-----------------

Fig. 3.5 A simulated negative correlation plot
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The Least-Squares Fit Criterion

In regression analysis, we want to develop a formula for a straight line which

optimally predicts each Y score from a given X score. For example, if Y is a

student’s College Grade Point Average (GPA) and X is the high school grade point

average (HSGPA), we wish to develop an equation which will predict the GPA

given the HSGPA. Straight line formulas generally are of the form

Y ¼ BXþ C (3.12)

where B is the slope of the line, and C is a constant representing the point where the

line crosses the Y axis. This is also called the intercept.

In the Figure below, B is the slope of the line (the number of Y units (rise) over 1

unit of X (run)). C is the intercept where the line crosses the Y axis (Fig. 3.7).

If X and Y scores are transformed to z scores using the transformations

zx ¼ ðXi � �XÞ =sx (3.13)

Fig. 3.6 X versus Y plot of five values
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and

zy ¼ ðYi � �YÞ =sy (3.14)

then we may write for our prediction of the corresponding zy scores

zy
0 ¼ bzx þ 0 (3.15)

since the intercept is zero for z scores.

The Least-Squares criterion implies that the squared difference between each

predicted score and actual observed score Y is a minimum. That is

XN
i¼1

zy � zy
0	 
2 ¼ Minimum (3.16)

where zy
0 is the predicted zy score for an individual.

The problem is to obtain values of b such that the above statement is true. If we

substitute bzx for each zy’ in the above equation and expand, we get

Min ¼
XN
i¼1

½zy � bzx�2 (3.17)

Fig. 3.7 Plot for a correlation of 1.0
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¼
XN
i¼1

zy
2 þ b2zx

2 � 2bzyzx
	 


¼
XN
i¼1

zy
2 þ b2

XN
i¼1

zx
2 � 2b

XN
i¼1

zyzx (3.18)

In the mathematics called Calculus, it is learned that the first derivative of a

function is either a minimum or a maximum. By taking the partial derivative of the

above function Min (we will call it M) with respect to b, we get an equation which

can be solved for b. This equation is set equal to zero and solved for b. The

derivative of M with respect to be is:

dM
db

¼ 2b S zx
2 � 2S zyzx (3.19)

Setting the derivative to zero and solving for b gives

0 ¼ b S zx
2 � S zyzx (3.20)

or b ¼ S zyzx= S zx
2 (3.21)

Since the sum of squared z scores is equal to N (if we use the biased standard

deviation), we see that

b ¼ S zxzy= N:

The product–moment correlation was earlier defined to be the average of z score

products. Therefore, the slope of a regression line in z score form is simply

b ¼ rxy

The prediction equation is therefore

zy
0 ¼ rxyzx (3.21)

To determine the values of B and C in the equation for raw scores, simply

substitute the definition of z scores in the above equation, that is

ðY0 � �YÞ
sy

¼ rxy
ðX� �XÞ

sx
(3.22)

or ðY0 � �YÞ ¼ rxy
sy

sx
ðX� �XÞ (3.23)
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or Y0 ¼ rxy
sy

sx
X� rxy

sy

sx
�Xþ �Y (3.24)

Letting B ¼ rxy(sy/sx), the last equation may be written

Y0 ¼ B X� ðB �X� �YÞ (3.25)

To express the equation is the typical “straight line” equation, let

C ¼ �Y� B �X (3.26)

so that

Y0 ¼ B Xþ C (3.27)

To summarize, the least-squares criterion is met when the predicted scores for zy
or Y are obtained from

zy
0 ¼ r zx (3.28)

or

Y0 ¼ B Xþ C where B ¼ rxy sy=sx
	 


and

C ¼ �Y� B �X

The Variance of Predicted Scores

We can develop an expression for the variance of predicted scores zy’ or Y’. Using

the definition of variance, we have

s2Y0 ¼ ðY0 � �YÞ2
N

(3.29)

By substituting the definition of Y’, that is, BX + C, in the above equation, we

could show that the variance of predicted scores is

s2Y0 ¼ rxy
2sy

2 (3.30)
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That is, the variance of the predicted scores is the square of the product–moment

correlation between X and Y times the variance of the Y scores. It is also useful to

rewrite the above equation as

rxy
2 ¼ s2Y0=sy2: (3.31)

The square of the correlation is that proportion of total score variance that is

predicted by X !

The Variance of Errors of Prediction

Just as we developed an expression for the variance of predicted scores above, we

can also develop an expression for the variance of errors of prediction, that is, the

variance of ei ¼ ðYi � Yi
0Þ for each score.

Again using the definition of variance we can write

s2Y:X ¼ S Yi � Yi
0ð Þ2

N
(3.32)

This formula is biased due to estimating both the mean of X as well as the mean

of Y in the population. For that reason the unbiased estimate is

s2Y:X ¼ S ei
2

N� 2
(3.33)

The square root of this variance is called the standard error of estimate. When

we can assume the errors of prediction are normally distributed, it allows us to

estimate a confidence interval for a given predicted score.

Rather than having to compute an error for each individual, the above formula

may be translated into a more convenient computational form:

s2Y:X ¼ sy
2 1� r2xy
	 
N� 1

N� 2
(3.34)

As an example in using the standard error of estimate, assume we have obtained

a correlation of 0.8 between scores of X and Y for 40 subjects. If the variance of the

Y scores is 100, then the variance of estimate is

s2Y:X ¼ 100 ð1:0� 0:64Þ ð19 = 18Þ
¼ 38
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and

SY:X ¼ p
38 ¼ 6:1644

Using plus or minus one under the normal distribution, we can state that a

predicted Y score would be expected to be in the interval (Y’ � 6.2) approximately

68% of the time.

Testing Hypotheses Concerning the Pearson

Product–Moment Correlation

Hypotheses About Correlations in One Population

The product–moment correlation is an index of the linear relationship between two

variables that varies between �1.0 and + 1.0 with a value of 0.0 indicating no

relationship. When obtaining pairs of X and Y scores on a sample of subjects drawn

from a population, one can hypothesize that the correlation in the population does

not differ from zero (0), i.e. Ho: m ¼ 0. The test statistic is:

t ¼ r � g
Sr

with n� 2 degrees of freedom; and (3.35)

Sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

n� 2

r
(3.36)

As an example, assume a sample correlation r ¼ 0.3 is obtained from a random

selection of 38 subjects from a population of subjects. To test the hypothesis that

the population correlation does not differ significantly from zero in either direction,

we would obtain

Sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :09

38� 2

r
¼ 0:158989866 (3.37)

and

t ¼ r = Sr ¼ :3 = 0:158989866 ¼ 1:886912706 (3.38)

With n�2 ¼ 36 degrees of freedom, the t value obtained would be considered

significant at the 0.05 level for a one-tailed test (r > 0), hence we would fail to

retain the null hypothesis (reject).
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Test That the Correlation Equals a Specific Value

The sampling distribution of the product–moment correlation is approximately

normal or t distributed when sampled from a population in which the true correla-

tion is zero. Occasionally, however, one wishes to test the hypothesis that the

population correlation does not differ from some specified value r not equal to

zero. The distribution of sample correlations from a population in which the

correlation differs from zero is skewed, with the degree of skewness increasing as

the population correlation differs from zero. It is possible to transform the

correlations to a statistic which has a sampling distribution that is approximately

normal in shape. The transformation, credited to Fisher, is:

zr ¼ 0:5 loge
1þ r

1� r

� �
(3.39)

This statistic has a standard error of:

Sr ¼ s 1=ðn� 3Þ½ � (3.40)

Using the above, a t-test for the hypothesis Ho:r ¼ a can be obtained as

z ¼ zr � zr

Sr
(3.41)

For example, assume we have obtained a sample correlation of r ¼ 0.6 on 50

subjects and we wish to test the hypothesis that the population correlation does not

differ from 0.5 in the positive direction. We would first transform both the sample

and population correlations to the Fisher’s z score and obtain:

zr ¼ :5loge ð1þ :6Þ=ð1� :6Þ½ � ¼ 0:6931472 (3.42)

and

zr ¼ :5loge ð1þ :5Þ=ð1� :5Þ½ � ¼ 0:5493061 (3.43)

Next, we obtain the standard error as

Szr ¼ s 1=ðn� 3Þ½ � ¼ s 1=ð50� 3Þ½ � ¼ 0:145865 (3.44)

Our test statistic is then

z ¼ zr � zr

Szr
¼ 0:143841

0:145865
¼ 0:986 (3.45)
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Approximately .16 of the area of the normal curve lies beyond a z of .986. We

would retain our null hypothesis if our decision rule was for a probability of 0.05 or

less in order to reject.

As for all of the sample statistics discussed so far, a confidence interval may be

constructed. In the case of the Fisher’s z transformation of the correlation, we first

construct our interval using the z-transformed scores and then obtain the anti-log to

express the interval in terms of product–moment correlations. For example, the

90% Confidence Interval for the above data is obtained as:

CI90 ¼ zr � 1:645 Szrð Þ
¼ :693� 1:645ð:146Þ ¼ :693� 0:24

¼ ð:453; :933Þ (3.46)

and transforming the zr intervals to r intervals gives

CI90 ¼ ð0:424; 0:732Þ (3.47)

We converted the zr values back to correlations using

r ¼ e2zr � 1

e2zr þ 1
(3.48)

Notice that the sample value of 0.6 is “captured” in the 90% Confidence Interval,

thus verifying our one-tailed 0.05 test.

OpenStat contains a procedure for completing a z test for data like that presented

above.

Under the Statistics menu, move your mouse down to the Comparisons sub-menu,

and then to the option entitled “One Sample Tests”. When the form below displays,

click on the Correlation button and enter the sample value .5, the population value .6,

and the sample size 50. Change the confidence level to 90.0% (Fig. 3.8).

Shown below is the z-test for the above data:

ANALYSIS OF A SAMPLE CORRELATION

Sample Correlation ¼ 0.600
Population Correlation ¼ 0.500
Sample Size ¼ 50
z Transform of sample correlation ¼ 0.693
z Transform of population correlation ¼ 0.549
Standard error of transform ¼ 0.146
z test statistic ¼ 0.986 with probability 0.838
z value required for rejection ¼ 1.645
Confidence Interval for sample correlation ¼ (0.425, 0.732)
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Testing Equality of Correlations in Two Populations

When two populations have been sampled, a correlation between X and Y scores of

each sample are often obtained. We may test the hypothesis that the product–

moment correlation in the two populations are equal. If we assume the samples are

independent, our test statistic may be obtained as

z ¼ zr1 � zr2ð Þ � zg1 � zg2
	 


S zr1�zr2ð Þ
(3.49)

where

S zr1�zr2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n1 � 3
þ 1

n2 � 3

r
(3.50)

As an example, assume we have collected ACT Composite scores (a college

aptitude test) and College Freshman Grade Point Average (GPA) scores for both

men and women at a state university. We might hypothesize that in the population

of men and women at this university, there is no difference between the correlation

of GPA and ACT. Now pretend that a sample of 30 men yielded a correlation of .5

and that a sample of 40 women yielded a correlation of .6. Our test would yield:

zr ¼ 0:5493061 for the men;

zr ¼ 0:6931472 for the women; and

Fig. 3.8 Single sample tests dialog form

70 3 The Product Moment Correlation



S zr1�zr2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

27
þ 1

37

r
¼ 0:253108798 (3.51)

and the test value of

z ¼ ð0:5493061� 0:6931472Þ = 0:253108798

¼ �0:568

which would not be significant.

The above test reflects the use of Fisher’s log transformation of a correlation

coefficient to an approximate z score. The correlations in each sample are converted

to z’s and a test of the difference between the z scores is performed. In this case, the

difference obtained had a relatively large chance of occurrence when the null

hypothesis is true (0.285) and the 95% confidence limit brackets the sample

difference of 0.253. The Fisher z transformation of a correlation coefficient is

zr ¼ 1

2
loge

1þ r

1� r

� �
(3.52)

The test statistic for the difference between the two correlations is:

zr ¼
zr1 � zr2ð Þ � zr1 � zr2

	 

s zr1�zr2ð Þ

(3.53)

where the denominator is the standard error of difference between two independent

transformed correlations:

s zr1�zr2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n1 � 3

� �
1

n2 � 3

� �s
(3.54)

The confidence interval is constructed for the difference between the obtained z

scores and the interval limits are then translated back to correlations. The confi-

dence limit for the z scores is obtained as:

CI% ¼ zr1 � zr2ð Þ þ =� z%s zr1�zr2ð Þ (3.55)

We can then translate the obtained upper and lower z values using:

r ¼ e2zr � 1

e2zr þ 1
(3.56)

For the test that two dependent correlations do not differ from zero we use the

following t-test:
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t ¼ ðrxy � rxzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 3Þð1þ ryzÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� r2xy � r2xz � r2yz þ 2rxyrxzryz

� �r (3.57)

We would therefore conclude that, in the populations sampled, there is not a

significant difference between the correlations for men and women. Using OpenStat

to accomplish the above calculations is rather easy. Under the Statistics menu move

to the Comparisons sub-menu and further in that menu to the Two-Sample Tests

sub-sub-menu. Click on the Independent Correlations option. Shown below are the

results for the above data:

COMPARISON OF TWO CORRELATIONS

Correlation one ¼ 0.500
Sample size one ¼ 30
Correlation two ¼ 0.600
Sample size two ¼ 40
Difference between correlations ¼ -0.100
Confidence level selected ¼ 95.0
z for Correlation One ¼ 0.549
z for Correlation Two ¼ 0.693
z difference ¼ -0.144
Standard error of difference ¼ 0.253
z test statistic ¼ -0.568
Probability > |z| ¼ 0.715
z Required for significance ¼ 1.960
Note: above is a two-tailed test.
Confidence Limits ¼ (-0.565, 0.338)

Differences Between Correlations in Dependent Samples

Assume that three variables are available for a population of subjects. For example,

you may have ACT scores, Freshman GPA (FGPA) scores and High School GPA

(HSGPA) scores. It may be of interest to know whether the correlation of ACT

scores with High School GPA is equal to the correlation of ACT scores with the

Freshman GPA obtained in College. Since the correlations would be obtained

across the same subjects, we have dependency between the correlations. In other

words, to test the hypothesis that the two correlations rxy and rxz are equal, we must

take into consideration the correlation ryz. A t-test with degrees of freedom equal

to N-3 may be obtained to test the hypothesis that mxy ¼ mxz in the population. Our
t-test is constructed as

72 3 The Product Moment Correlation



t ¼ rx;y � rx;zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� r2x;y � r2x;z � r2y;z þ 2rx;yrx;zry;z

� �
ðN � 3Þð1þ ry;zÞ

vuut
(3.58)

Assume we have drawn a sample of 50 college freshman and observed:

rxy ¼ .4 for the correlation of ACT and FGPA, and

rxz ¼ .6 for the correlation of ACT and HSGPA, and

ryz ¼ .7 for the correlation of FGPA and HSGPA.

Then for the hypothesis that mxy ¼ mxz in the population of students sampled, we

have

t ¼ :4� :6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� :42 � :62 � :72 þ 2ð:4Þð:6Þð:7Þ½ �

ð50� 3Þð1þ :7Þ

s ¼ �:2ffiffiffiffiffiffiffiffiffi
:652

79:9

r ¼ �:2

0:0903338

¼ 2:214 (3.59)

This sample t value has a two-tailed probability of less than 0.05. If the 0.05 level

were used for our decision process, we would reject the hypothesis of equal

correlations of ACT with the high school GPA and the freshman college GPA.

It would appear that the correlation of the ACT with high school GPA is greater

than with College GPA in the population studied.

Again, OpenStat provides the computations for the difference between depen-

dent correlations as shown in the figure below (Fig. 3.9):

COMPARISON OF TWO CORRELATIONS
Correlation x with y ¼ 0.400
Correlation x with z ¼ 0.600
Correlation y with z ¼ 0.700
Sample size ¼ 50
Confidence Level Selected ¼ 95.0
Difference r(x,y) - r(x,z) ¼ -0.200
t test statistic ¼ -2.214
Probability > |t| ¼ 0.032
t value for significance ¼ 2.012

Partial and Semi-Partial Correlations

What did one regression coefficient say to the other regression coefficient? I’m partial

to you!
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Partial Correlation

One is often interested in knowing what the product–moment correlation would be

between two variables if one or more related variables could be held constant. For

example, in one of our previous examples, we may be curious to know what the

correlation between achievements in learning French is with past achievement in

learning English with intelligence held constant. In other words, if that proportion

of variance shared by both French and English learning with IQ is removed, what is

the remaining variance shared by English and French?

When one subtracts the contribution of a variable, say, X3, from both variables of

a correlation say, X1 and X2, we call the result the partial correlation of X1 with X2

partialling out X3. Symbolically this is written as r12.3 and may be computed by

Fig. 3.9 Form for comparison of correlations
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r12:3 ¼ r12 � r13r23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r213
	 


1� r223
	 
q (3.60)

More than one variable may be partialled from two variables. For example, we

may wish to know the correlation between English and French achievement

partialling both IQ and previous Grade Point Average. A general formula for

multiple partial correlation is given by

r12:34::k ¼
1:0� R2

y:34 :: k

	 
� 1:0� R2
y:12:: k

	 

1:0� R2

y:34 :: k

(3.61)

Semi-Partial Correlation

It is not necessary to partial out the variance of a third variable from both variables

of a correlation. It may be the interest of the researcher to partial a third variable

from only one of the other variables. For example, the researcher in our previous

example may feel that intelligence should be left in the variance of the past English

achievement which has occurred over a period of years but should be removed from

the French achievement which is a much shorter learning experience. When the

variance of a third variable is partialled from only one of the variables in a

correlation, we call the result a semi-partial or part correlation. The symbol and

calculation of the part correlation is

r1ð2:3Þ ¼ r1;2 � r1;3r2;3p
1:0� r223ð Þ (3.62)

where X3 is partialled only from X2.

The squared multiple correlation coefficient R2 may also be expressed in terms

of semi_partial correlations. For example, we may write the equation

R2
y:1 2::k ¼ r2y:1 þ r2yð2:1Þ þ r2yð3:12Þ þ ::þ r2yðk:12::k�1Þ (3.63)

In this formula, each semi-partial correlation reflects the proportion of variance

contributed by a variable independent of previous variables already entered in the

equation. However, the order of entry is important. Any given variable may explain

a different proportion of variance of the independent variable when entered first,

say, rather than last!
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The semi-partial correlation of two variables in which the effects of K-1 other

variables have been partialed from the second variable may be obtained by multiple

regression. That is

r2yð1:23 :: kÞ ¼ R2y:1 2 :: k � R2
y:23::k (3.64)

Autocorrelation

A large number of measurements are collected over a period of time. Stock prices,

quantities sold, student enrollments, grade point averages, etc. may vary systemati-

cally across time periods. Variations may reflect trends which repeat by week,

month or year. For example, a grocery item may sell at a fairly steady rate on

Tuesday through Thursday but increase or decrease on Friday, Saturday, Sunday

and Monday. If we were examining product sales variations for a product across the

days of a year, we might calculate the correlation between units sold over consecu-

tive days. The data might be recorded simply as a series such as “units sold” each

day. The observations can be recorded across the columns of a grid or as a column

of data in a grid. As an example, the grid might contain:

CASE/VAR Day Sold

Case 1 1 34

Case 2 2 26

Case 3 3 32

Case 4 4 39

Case 5 5 29

Case 6 6 14

. . .

Case 216 6 15

Case 217 7 12

If we were to copy the data in the above “Sold” column into an adjacent column

but starting with the Case 2 data, we would end up with:

CASE/VAR Day Sold Sold2

Case 1 1 34 26

Case 2 2 26 32

Case 3 3 32 39

Case 4 4 39 29

Case 5 5 29 14

Case 6 6 14 11

. . .

Case 216 6 15 12

Case 217 7 12 �
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In other words, we repeat our original scores from Case 2 through case 217 in the

second column but moved up one row. Of course, we now have one fewer case with

complete data in the second column. We say that the second column of data “lags”

the first column by 1. In a similar fashion we might create a third, fourth, fifth, etc.

column representing lags of 2, 3, 4, 5, etc.. Creating lag variables 1 through 6 would

result in variables starting with sales on days 1 through 7, that is, a week of sale

data. If we obtain the product–moment correlations for these seven variables, we

would have the correlations among Monday sales, Tuesday Sales, Wednesday

Sales, etc. We note that the mean and variance are best estimated by the lag

0 (first column) data since it contains all of the observations (each lag loses one

additional observation.) If the sales from day to day represent “noise” or simply

random variations then we would expect the correlations to be close to zero. If, on

the other hand, we see an systematic increase or decrease in sales between say,

Monday and Tuesday, then we would observe a positive or negative correlation.

In addition to the inter-correlations among the lagged variables, we would likely

want to plot the average sales for each. Of course, these averages may reflect simply

random variation from day to day. We may want to “smooth” these averages to

enhance our ability to discern possible trends. For example, we might want the

average of day 3 to be a weighted average of that day plus the previous 2 day sales.

This “moving average” would tend to smooth random peaks and valleys that occur

from day to day.

It is also the case that an investigator may want to predict the sales for a

particular day based on the previous sales history. For example, we may want to

predict day 8 sales given the history of previous 7 day sales.

Now let us look at an example of auto-correlation. We will use a file named

strikes.tab. The file contains a column of values representing the number of strikes

which occurred each month over a 30 month period. Select the auto-correlation

procedure from the Correlations sub-menu of the Statistics main menu. Below is a

representation of the form as completed to obtain auto-correlations, partial auto-

correlations, and data smoothing using both moving average smoothing and poly-

nomial regression smoothing (Fig. 3.10):

When we click the Compute button, we first obtain a dialog form for setting the

parameters of our moving average.

In that form we first enter the number of values to include in the average from

both sides of the current average value. We selected two. Be sure and press the

Enter key after entering the order value. When you do, two theta values will appear

in a list box. When you click on each of those thetas, you will see a default value

appear in a text box. This is the weight to assign the leading and trailing averages

(first or second in our example.) In our example we have accepted the default value

for both thetas (simply press the Return key to accept the default or enter a

value and press the Return key.) Now press the Apply button. When you do this,

the weights for all of the values (the current mean and the 1, 2, . . . order means) are

recalculated. You can then press the OK button to proceed with the process

(Fig. 3.11).
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The procedure then plots the original (30) data points and their moving average

smoothed values. Since we also asked for a projection of five points, they too are

plotted. The plot should look like that shown below (Fig. 3.12):

We notice that there seems to be a “wave” type of trend with a half-cycle of

about 15 months. When we press the Return button on the plot of points we next get

the following (Fig. 3.13):

This plot shows the original points and the difference (residual) of the smoothed

values from the original. At this point, the procedure replaces the original points

Fig. 3.10 The autocorrelation dialog
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with the smoothed values. Press the Return button and you next obtain the follow-

ing (Fig. 3.14):

This is the form for specifying our next smoothing choice, the polynomial

regression smoothing. We have elected to use a polynomial value of 2 which will

result in a model for a data point Yt-1 ¼ B * t2 + C for each data point. Click the

OK button to proceed. You then obtain the following result (Fig. 3.15):

Fig. 3.11 The moving average dialog
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It appears that the use of the second order polynomial has “removed” the cyclic

trend we saw in the previously smoothed data points. Click the return key to obtain

the next output as shown below (Fig. 3.16):

This result shows the previously smoothed data points and the residuals obtained

by subtracting the polynomial smoothed points from those previous points. Click

the Return key again to see the next output shown below:

Fig. 3.12 Plot of smoothed points using moving averages

Fig. 3.13 Plot of residuals obtained using moving averages
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Overall mean = 4532.604, variance = 11487.241
Lag      Rxy      MeanX     MeanY  Std.Dev.X Std.Dev.Y    Cases     LCL       UCL

0    1.0000 4532.6037 4532.6037  109.0108  109.0108        30    1.0000    1.0000
1    0.8979 4525.1922 4537.3814  102.9611  107.6964        29    0.7948    0.9507
2    0.7964 4517.9688 4542.3472  97.0795  106.2379        28    0.6116    0.8988
3    0.6958 4510.9335 4547.5011   91.3660  104.6337        27    0.4478    0.8444
4    0.5967 4504.0864 4552.8432   85.8206  102.8825        26    0.3012    0.7877
5    0.4996 4497.4274 4558.3734   80.4432  100.9829        25    0.1700    0.7287
6    0.4050 4490.9565 4564.0917   75.2340   98.9337        24    0.0524    0.6679
7    0.3134 4484.6738 4569.9982   70.1928   96.7340        23   -0.0528    0.6053
8    0.2252 4478.5792 4576.0928   65.3196   94.3825        22   -0.1470    0.5416
9    0.1410 4472.6727 4582.3755   60.6144   91.8784        21   -0.2310    0.4770
10    0.0611 4466.9544 4588.8464   56.0772   89.2207        20   -0.3059    0.4123
11   -0.0139 4461.4242 4595.5054   51.7079   86.4087        19   -0.3723    0.3481
12   -0.0836 4456.0821 4602.3525   47.5065   83.4415        18   -0.4309    0.2852

Fig. 3.15 Plot of polynomial smoothed points

Fig. 3.14 Polynomial regression smoothing form
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In the output above we are shown the auto-correlations obtained between the

values at lag 0 and those at lags 1 through 12. The procedure limited the number of

lags automatically to insure a sufficient number of cases upon which to base the

correlations. You can see that the upper and lower 95% confidence limits increases

as the number of cases decreases. Click the Return button on the output form to

continue the process.

Matrix of Lagged Variable: VAR00001 with   30 valid cases.

Variables
Lag 0        Lag 1        Lag 2        Lag 3        Lag 4

Lag 0       1.000        0.898        0.796        0.696        0.597 
Lag 1       0.898        1.000        0.898        0.796        0.696 
Lag 2 0.796        0.898        1.000        0.898        0.796 
Lag 3       0.696        0.796        0.898        1.000        0.898 
Lag 4       0.597        0.696        0.796        0.898        1.000 
Lag 5       0.500        0.597    0.696        0.796        0.898 
Lag 6       0.405        0.500        0.597        0.696        0.796 
Lag 7       0.313        0.405        0.500        0.597        0.696 
Lag 8       0.225        0.313        0.405        0.500      0.597 
Lag 9       0.141        0.225        0.313        0.405        0.500 

Lag 10       0.061        0.141        0.225        0.313        0.405 
Lag 11      -0.014        0.061        0.141        0.225        0.313 
Lag 12      -0.084       -0.014        0.061        0.141        0.225 

Fig. 3.16 Plot of residuals from polynomial smoothing
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Partial Correlation Coefficients with   30 valid cases.

Variables        Lag 0        Lag 1        Lag 2        Lag 3        
Lag 4

1.000        0.898       -0.051       -0.051       -
0.052 

Variables        Lag 5        Lag 6        Lag 7        Lag 8        
Lag 9

-0.052       -0.052       -0.052       -0.052       -
0.051 

Variables       Lag 10       Lag 11
-0.051       -0.051 

The above data presents the inter-correlations among the 12 lag variables. Click

the output form’s Return button to obtain the next output:

Variables
Lag 5        Lag 6        Lag 7        Lag 8        Lag 9

Lag 0       0.500        0.405        0.313        0.225        0.141 
Lag 1       0.597        0.500 0.405        0.313        0.225 
Lag 2       0.696        0.597        0.500        0.405        0.313 
Lag 3       0.796        0.696        0.597        0.500        0.405 
Lag 4       0.898        0.796        0.696        0.597  0.500 
Lag 5       1.000        0.898        0.796        0.696        0.597 
Lag 6       0.898        1.000        0.898        0.796        0.696 
Lag 7       0.796        0.898        1.000        0.898        0.796 
Lag 8     0.696        0.796        0.898        1.000        0.898 
Lag 9       0.597        0.696        0.796        0.898        1.000 

Lag 10       0.500        0.597        0.696        0.796        0.898 
Lag 11       0.405        0.500        0.597        0.696        0.796 
Lag 12       0.313        0.405        0.500        0.597        0.696 

Variables
Lag 10       Lag 11       Lag 12

Lag 0       0.061       -0.014       -0.084 
Lag 1       0.141        0.061 -0.014 
Lag 2       0.225        0.141        0.061 
Lag 3       0.313        0.225        0.141 
Lag 4       0.405        0.313        0.225 
Lag 5       0.500        0.405        0.313 
Lag 6       0.597        0.500      0.405 
Lag 7       0.696        0.597        0.500 
Lag 8       0.796        0.696        0.597 
Lag 9       0.898        0.796        0.696 

Lag 10       1.000        0.898        0.796 
Lag 11       0.898        1.000        0.898 
Lag 12       0.796        0.898        1.000 
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0.500
Lag 10 0.061 0.141 0.225 0.313

0.405
Lag 11 -0.014 0.061 0.141 0.225

0.313
Lag 12 -0.084 -0.014 0.061 0.141

0.225

Variables
Lag 5 Lag 6 Lag 7 Lag 8

Lag 9
Lag 0 0.500 0.405 0.313 0.225

0.141
Lag 1 0.597 0.500 0.405 0.313

0.225
Lag 2 0.696 0.597 0.500 0.405

0.313
Lag 3 0.796 0.696 0.597 0.500

0.405
Lag 4 0.898 0.796 0.696 0.597

0.500
Lag 5 1.000 0.898 0.796 0.696

0.597
Lag 6 0.898 1.000 0.898 0.796

0.696
Lag 7 0.796 0.898 1.000 0.898

0.796
Lag 8 0.696 0.796 0.898 1.000

0.898
Lag 9 0.597 0.696 0.796 0.898

1.000

The partial auto-correlation coefficients represent the correlation between lag

0 and each remaining lag with previous lag values partialled out. For example, for

lag 2 the correlation of �0.051 represents the correlation between lag 0 and lag

2 with lag 1 effects removed. Since the original correlation was 0.796, removing the

effect of lag 1 made a considerable impact. Again click the Return button on the

output form. Next you should see the following results (Fig. 3.17):

This plot or “correlogram” shows the auto-correlations and partial auto-

correlations obtained in the analysis. If only “noise” were present, the correlations

would vary around zero. The presence of large values is indicative of trends in the data.

Series

Introduction

In many areas of research observations are taken periodically of the same object.

For example, a medical researcher may take hourly blood pressure readings of a

patient. An economist may record the price of a given stock each day for a long
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period. A retailer may record the number of units sold of a particular item on a daily

basis. An industrialist may record the number of parts rejected each day over a

period of time. In each of these cases, the researcher may be interested in

identifying patterns in the fluctuation of the observations. For example, does a

patient’s systolic blood pressure systematically increase or decrease during visits by

relatives? Do stock prices tend to vary systematically from month to month? Does

the number of cans of tomato soup sold vary systematically across the days of the

week or the months? Does the number of parts rejected in the assembly line vary

systematically with the time of day or day of the week?

One approach often taken to discern patterns in repeated measurements is to

simply plot the observed values across the time intervals on which the recording

took place. This may work well to identify major patterns in the data. Sometimes

however, factors which contribute to large systematic variations may “hide” other

patterns that exist. A variety of methods have been developed to identify such

patterns. For example, if the patterns are thought to potentially follow a sin wave

pattern across time, a Fourier analysis may be used. This method takes a “signal”

such as an electrical signal or a series of observations such as units sold each day

and attempts to decompose the signal into fundamental frequencies. Knowing the

frequencies allows the researcher to identify the “period” of the waves. Another

method often employed involves examining the product–moment correlation

between observations beginning at a specific “lag” period from each other. For

example, the retailer may create an “X” variable beginning on a Monday and and

“Y” variable beginning on the Monday 4 weeks later. The number of units sold are

then recorded for each of these Mondays, Tuesdays, etc. If there is a systematic

variation in the number of units sold over the weeks of this lag, the correlation will

tend to be different from zero. If, on the other hand, there is only random variation,

the correlation would be expected to be zero. In fact, the retailer may vary the lag

Fig. 3.17 Auto and partial autocorrelation plot
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period by 1 day, 2 days, 3 days, etc. for a large number of possible lag periods. He or

she can then examine the correlations obtained for the various lags and where the

correlations are larger, determine the pattern(s) that exist. One can also “co-vary

out” the previous lag periods (i.e. get partial correlations) to identify whether or not

more than one pattern may exist.

Once patterns of variability over time are identified, then observations at future

time periods may be predicted with greater accuracy than one would obtain by

simply using the average of all observations. The Auto-Regressive Imbedded

Moving Average (ARIMA) method developed by Box and Jenkins is one such

prediction tool. In that method, the relationship between a set of predictor

observations and subsequent observations are optimized in a fashion similar to

multiple regression or canonical correlation. When the interest is in predicting only

a small number of future values, other methods may be employed such as multiple

regression, moving average, etc.

The OpenStat program provides the means for obtaining auto-correlations,

partial auto-correlations, Fourier analysis, moving average analysis and other

tools useful for time series analyses.
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Chapter 4

Multiple Regression

This chapter develops the theory and applications of Multiple
Linear Regression Analysis. The multiple regression methods
are frequently used (and misused.) It also forms the heart
of several other analytic methods including Path Analysis,
Structural Equation Modeling and Factor Analysis.

The Linear Regression Equation

One of the major applications in statistics is the prediction of one or more

characteristics of individuals on the basis of knowledge about related charac-

teristics. For example, common-sense observation has taught most of us that the

amount of time we practice learning something is somewhat predictive of how well

we perform on that thing we are trying to master. Our bowling score tends to

improve (up to a point) in relationship to the amount of time we spend practicing

bowling. In the social sciences however, we are often interested in predicting less

obvious outcomes. For example, we may be interested in predicting how much a

person might be expected to use a computer on the basis of a possible relationship

between computer usage and other characteristics such as anxiety in using

machines, mathematics aptitude, spatial visualization skills, etc. Often we have

not even observed the relationships but instead must simply hypothesize that a

relationship exists. In addition, we must hypothesize or assume the type of relation-

ship between our variables of interest. Is the relationship a linear one? Is it a

curvilinear one?

Multiple regression analysis is a method for examining the relationship between

one continuous variable of interest (the dependent or criterion variable) and one or

more independent (predictor) variables. Typically we assume a linear relationship

of the type

W. Miller, Statistics and Measurement Concepts with OpenStat,
DOI 10.1007/978-1-4614-5743-5_4, # Springer Science+Business Media New York 2013
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Yi ¼ B1Xi1 þ B2Xi2 þ . . .þ BkXik þ B0 þ Ei (4.1)

where

Yi is the score obtained for individual i on the dependent variable,

Xi1 . . . Xik are scores obtained on k independent variables,

B1 . . . Bk are weights (regression coefficients) of the k independent variables which

maximize the relationship with the Y scores,

B0 is a constant (intercept) and Ei is the error for individual i.

In the above equation, the error score Ei reflects the difference between

the subject’s actual score Yi and the score which is predicted on the basis of the

weighted combination of the independent variables. That is,

Y0
i � Yi ¼ Ei: (4.2)

where Y0
i is predicted from

Y0i ¼ B1Xi1 þ B2Xi2 þ . . .þ BkXik þ B0 (4.3)

In addition to assuming the above general linear model relating the Y scores to

the X scores, we usually assume that the Ei scores are normally distributed.

When we complete a multiple regression analysis, we typically draw a sample

from a population of subjects and observe the Y and X scores for the subjects of that

sample. We use that sample data to estimate the weights (B’s) that will permit us the

“best” prediction of Y scores for other individuals in the population for which we

only have knowledge of their X scores. For example, assume we are interested in

predicting the scores that individuals make on a paper and pencil final examination

test in a statistics course in graduate college. We might hypothesize that students

who, in the past, have achieved higher grade point averages as undergraduates

would likely do better on a statistics test. We might also suspect that students with

higher mathematics aptitudes as measured by the mathematics score on the Gradu-

ate Record Examination would do better than students with lower scores. If

undergraduate GPA and GRE-Math combined are highly related to achievement

on a graduate statistics grade, we could use those two variables as predictors of

success on the statistics test. Note that in this example, the GRE and undergraduate

GPA are obtained for individuals quite some time before they even enroll in the

statistics course! To find that weighted combination of GRE and GPA scores which

“best” predicts the graduate statistics grades of students, we must observe the actual

grades obtained by a sample of students that take the statistics course.

Notice that in our linear prediction model, we are going to obtain, for each

individual, a single predictor score that is a weighted combination of independent

variable scores. We could, in other words, write our prediction equation as

Y0
i ¼ Ci þ B0 (4.4)
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where

Ci ¼
Xk
j¼1

BiXI (4.5)

You may recognize that (4.3) above is a simple linear equation. The

product–moment correlation between Yi and Ci in (4.3) is an index of the degree

to which the dependent and composite score are linearly related. In a previous

chapter we expressed this relationship with rxy and the proportion of variance

shared as r2xy. When x is replace by a weighted composite score C, we differentiate

from the simple product–moment correlation by use of a capital r, that is Ry.1,2,..,k

with the subscripts after the period indicating the k independent variables. The

proportion of variance of the Y scores that is predicted by weighted composite of X

scores is, similarly, R2
y.1,2,..,k .

We previously learned that, for one independent variable, the “best” weight (B)

could be obtained from

B ¼ rxySy= Sx: (4.6)

We did not, however, demonstrate exactly what was meant by the best fitting line or

best B. We need to learn how to calculate the values of B when there is more than

one independent variable and to interpret those weights.

In the situation of one dependent and one independent variable, the regression

line is said to be the “best” fitting line when the squared distance of each observed Y

score summed across all Y scores is a minimum. The figure on the following page

illustrates the “best fitting” line for the pairs of x and y scores observed for five

subjects. The line represents, of course, the equation

Y0
i ¼ BXi þ B0 (4.7)

That is, the predicted Y value for any value of X. (See Chap. 3 to review how to

obtain B and B0). Since we have defined error (Ei) as the difference between the

observe dependent variable score (Yi) and the predicted score, then our “best

fitting” line is drawn such that

Xn
i¼1

Ei
2 ¼

Xn
i¼1

Yi � Y0
i

� �2
is a minimum: (4.8)

We can substitute our definition of Y0
i from (4.7) above in (4.8) above and obtain

G ¼
Xn
i¼1

Yi� ðBXi þ B0Þ½ �2 ¼ a minimum (4.9)
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Expanding (4.5) yields

G ¼
Xn
i¼1

Yi
2 þ

Xn
i¼1

ðBXi þ B0Þ2 � 2
Xn
i¼1

YiðBXi þ B0Þ

¼
Xn
i¼1

Yi
2 þ

Xn
i¼1

ðB2Xi
2 þ B0

2 þ 2B0BXiÞ � 2B
Xn
i¼1

YiXi � 2B0

Xn
i¼1

Yi

(4.10)

or

G ¼
Xn
i¼1

Yi
2 þ B2

Xn
i¼1

Xi
2 þ nB0

2 þ 2B0B
Xn
i¼1

Xi � 2B
Xn
i¼1

YiXi � 2B0

Xn
i¼1

Yi

¼ a minimum:

(4.11)

Notice that the function G is affected by two unknowns, B0 and B. There is one

pair of these values which makes G a minimum value _ any other pair would cause

G (the sum of squared errors) to be larger. But how do we determine B and B0 that

guarantees, for any observed sample of data, a minimum G? To answer this

question requires we learn a little bit about minimizing a function. We will

introduce some very elementary concepts of Calculus in order to solve for values

of B and B0 that minimize the sum of square errors.

Least Squares Calculus

Definitions:

Definition 1 A function (f) is a correspondence between the objects of one class

and those of another which pairs each member of the first class with one and only

one member of the second class. We have several ways of specifying functions, for

example, we might provide a complete cataloging of all the associated pairs, e.g.

Class 1 ðxÞ j 1 2 3 4 5

class 2 f ðxÞj 3 5 7 9 11

where class 2 values are a function of class 1 values.

Another way of specifying a function is by means of a set of ordered pairs, e.g.

ð1; 3Þ; ð2; 5Þ; ð3; 7Þ; ð4; 9Þ; ð5; 11Þf g
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We may also use a map or graph such as (Fig. 4.1)

Finally, we may use a mathematical formula:

fðxÞ ¼ 2Xþ 1 where X ¼ 1; 2; 3; 4; 5

Definition 2 Given a specific member of the first class, say X, the member of the

second class corresponding to this first class member, designated by f(X), is said to

be the value of the function at X.

Definition 3 The set of all objects of the first class is said to be the domain of the

function. The set of all objects of the second class is the range of the function f(X).

In our previous example under definition 1, the domain is the set of numbers

(1,2,3,4,5) and the range is (3,5,7,9,11). As another example, let X ¼ any real

number from 1 to 5 and let f(X) ¼ 2X + 1. Then the domain is

fX : 1 � X � 5g and the range is

fðXÞ : 3 � fðXÞ � 11f g:

Definition 4 The classes of objects or numbers referred to in the previous

definitions are sometimes called variables. The first class is called the independent

variable and the second class is called the dependent variable.

Definition 5 A quantity which retains a fixed value throughout the course of a

discussion is called a constant. Some constants retain the same values in all

discussions, e.g.

B ¼ c=d ¼ 3:1416 . . . ; and

e ¼ limit as x 6 4 of ð1þ XÞ1=X ¼ 2:7183 . . . :

15  |
14  |
13  |
12  |

10  |

8  |

6  |

4  |

11  | * 

9  |  *

7  | * 

5  | * 

3  | * 
2  |
1  |
0  |

__________________________________________
0     1     2     3     4     5     6 

Fig. 4.1 A simple

function map
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Other constants retain the save values in a given discussion but may vary from

one discussion to another. For example, consider the function

fðXÞ ¼ bXþ a: (4.12)

In the example under definition 1, b ¼ 2 and a ¼ 1. If b ¼ �2 and a ¼ 3 then

the function becomes

fðxÞ ¼ �2Xþ 3:

If X is continuous or an infinite set, complete listing of the numbers is impossible

but a map or formula may be used. Now consider

X j 1 2 2 3

fðXÞj 3 5 7 4

This is not a legitimate function as by definition there is not a one and only one

correspondence of members.

Sometimes the domain is itself a set of ordered pairs or the sub-set of a plane

(Fig. 4.2). For example

The domain of X;Yð Þ : 0 � X � 2 & 0 � Y � 2f g

fðX;YÞ ¼ 2Xþ Yþ 1

Range of 1 � f X;Yð Þ � 7f g

Finding a Change in Y Given a Change in X for Y ¼ f(X)

It is often convenient to use Y or some other letter as an abbreviation for f(X).

Definition 6 DX represents the amount of change in the value of X and DY
represents the corresponding amount of change in the value of Y ¼ f(X). DX and

f(X,Y)
3 |

| :
2 | :

| :
1 | :

| :
| :

/ : 1 2 3
1 / : . .

/ :. .
2 / : .

/
3 /

/

Fig. 4.2 A function map

in three dimensions
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DY are commonly called increments of change or simply increments. For example,

consider Y ¼ f(X) ¼ X2 where:

Domain is fX : �1<X< þ1g
Now let X ¼ 5. Then Y ¼ f(X) ¼ 25. Now let DX ¼ +2. Then

Y ¼ þ24: Or let DX ¼ �2 then Y ¼ �16. Finally,

let DX ¼ 1/2 then Y ¼ 5.25.

Trying a different starting point X ¼ 3 and using the same values of X we

would get:

if X ¼ 3

and DX ¼ þ2 then Y ¼ þ16

DX ¼ �2 then Y ¼ �8

DX ¼ .5 then Y ¼ 3.25

It is impractical to determine the increment in Y for an increment in X in the

above manner for the general functionY ¼ f Xð Þ ¼ X2. A more general solution for

Y is obtained by writing

Yþ DY ¼ fðXþ DXÞ ¼ ðXþ DXÞ2

or, solving for Y by subtracting Y from both sides gives

Y ¼ ðXþ DXÞ2 � Y (4.13)

or Y ¼ X2 þ DX2 þ 2X DX� Y

or Y ¼ X2 þ DX2 þ 2X DX� X2

or Y ¼ 2X DXþ DX2

Now using this formula:

If X ¼ 5 and DX ¼ 2 then Y ¼ +24 or if X ¼ 5 and DX ¼ �2 then Y ¼ �16.

These values are the same as we found by our previous calculations!

Relative Change in Y for a Change in X

We may express the relative change in a function with respect to a change in X as

the ratio

DY
DX

For the function Y ¼ f Xð Þ ¼ X2 we found that Y ¼ 2X DXþ DX2

Dividing both sides by DX we then obtain

DY
DX

¼ 2Xþ DX (4.14)
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For example, when X ¼ 5 and X ¼ þ2, the relative change is

DY
DX

¼ 24

2
¼ 2ð5Þ þ 2 ¼ 12

The Concept of a Derivative

We may ask what is the limiting value of the above ratio (DY/DX) of relative
change is as the increment in X (DX) approaches 0 (DX ! 0). We use the symbol

dY

dX
to represent this limit:

We note that for the function Y ¼ X2, the relative change was

DY
DX

¼ 2Xþ DX: (4.15)

If DX approaches 0 then the limit is

dY

dX
¼ 2X:

Definition 7 The derivative of a function is the limit of a ratio of the increment of

change of the function to the increment of the independent variable when the latter

increment approaches 0 as a limit. Symbolically,

dY

dX
¼ Lim

DX!0

DY
DX

¼ Lim
DX!0

fðXþ DXÞ � fðXÞ
DX

Since Yþ DY ¼ f Xþ DXð Þ and Y ¼ f(X) then

DY ¼ f Xþ DXð Þ � f Xð Þ and the ratio

DY
DX

¼ fðXþ DXÞ � fðXÞ
DX

(4.16)

Example : Y ¼ X2dY=dX ¼ ?
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dY=dX ¼ Lim
DX!0

fðXþ DXÞ � fðXÞ
DX

¼ Lim
DX!0

X2 þ DX2 þ 2X DX� X2

DX
¼ Lim

DX!0
DXþ 2X

or
dY

dX
¼ 2X

Some Rules for Differentiating Polynomials

Rule 1 If Y ¼ CXn, where n is an integer, then

dY

dX
¼ nCXn�1 (4.17)

For example, let C ¼ 7 and n ¼ 4 then Y ¼ 7X4.

dY

dX
¼ ð4Þð7ÞX3

Proof
dY

dX
¼ Lim

DX!0

CðXþ DXÞn � CXn

DX

since ðaþ bÞn ¼ Pn
r¼0

arbn r

then

dY

dX
¼ Lim

DX!0
C
Xn
n

XnDXn�n

 !
þ C

Xn
n�1

Xn�1DX1

 !"

þ C
Xb
n�2

Xn�2DX2

 !
þ . . .þ C

Xb
0

X0DXn

 !

�CXn

# �
DX

¼ Lim
DX!0

CXn þ CnXn�1DXþ C
nðn 1Þ

2

�
Xn�2DX2

þ . . .þ C DXn � CXn

� �
DX

¼ Lim
DX!0

CnXn�1 þ nðn 1Þ
2

Xn�2DXþ . . .þ C DXn�1
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or

dY

dX
¼ CnXn�1 ðEnd of ProofÞ

Rule 1:a If Y ¼ CX then dY=dX ¼ C (4.18)

since by Rule 1 dY/dX ¼ (1)CX0 ¼ C

Rule 1.b If Y ¼ C then dY/dX ¼ 0
Note that dY/dX of CX0 is (0)CX�1 ¼ 0.

Rule 2 If Y ¼ U + V � W where U, V and W are functions of
X, then:

dY

dX
¼ dU

dX
þ dV

dX
� dW

dX
(4.19)

Example : Consider Y ¼ 4X2 � 4Xþ 1

Let U ¼ fðXÞ ¼ 4X2 and

V ¼ fðXÞ ¼ �4X and

W ¼ fðXÞ ¼ 1:
Applying Rules 1 and 2 we have

dY

dX
¼ 8X� 4

Rule 3 If U ¼ Vn where V is a function of X then

dY

dX
¼ nVn�1 dU

dX
(4.20)

Example: Consider Y ¼ (2X � 1)2

Let V ¼ (2X � 1) and n ¼ 2

Then

dY

dX
¼ 2ð2X� 1Þð2Þ ¼ 8X� 4

Another Example. Let Y ¼PN
i¼1

ð3XþWiÞ2

where Wi and N are variable constants,

that is, in one discussion N1 ¼ 3 and

W1 ¼ 2 or W2 ¼ 4 and W3 ¼ 3.
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If, for example, X ¼ 0, Y ¼ 22 + 42 + 32 ¼ 29

or, if X ¼ 1 then Y ¼ 52 + 72 + 62 ¼ 110

Now we ask, dY/dX ¼ ?

Solution:

dY

dX
¼
XN
i¼1

2ð3XþWiÞð3Þ

because Y ¼ ð3XþW1Þ2 þ ð3XþW2Þ2 þ ð3XþW3Þ2
and applying Rules 2 and 3 we get:

dY

dX
¼ 6

XN
i¼1

ð3XþWiÞ

¼ 6
XN
i¼1

3Xþ 6
XN
i¼1

Wi

¼ 6 Nð3XÞ½ � þ 6
XN
i¼1

Wi

or

dY

dX
¼ 18NX þ 6

XN
i¼1

Wi

Geometric Interpretation of a Derivative

The figure below presents a graphical representation of a function Y ¼ f(X) (the

curved line). Two points on the function are denoted as P(X,Y) and P(X + X,

Y + Y). A straight line, a secant line, is drawn through the two points. Notice

that if X becomes smaller (and therefore the corresponding Y becomes smaller) that

the secant line approaches a tangent line at the point P(X,Y). We review:

fðXÞ ¼ Y

fðXþ DXÞ ¼ ðYþ DYÞ or fðXþ DXÞ � fðXÞ ¼ Y

and

fðXþ DXÞ � fðXÞ
DX

¼ DY
DX
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Note that DY/DX give rise over run or the slope of the of the secant line through

two points on the function. Now if X ! 0, then P0 approaches P and the secant line

approaches a tangent at the point P. Therefore the dY/dX is the slope of the tangent

at P or X.

We will now use the derivative in determining maximum points on a function.

Finding the Value of X for Which f(X) Is Least

Given the function f Xð Þ ¼ Y ¼ X2 � 3X where �1<X<þ1 we may present

the function as in Fig. 4.3 below.

For the function, we may obtain some values of Y corresponding to a selected set

of X values:

X j � 2� 1 0þ 1þ 2þ 3þ 4þ 5

Y j 10 4 0� 2� 2 0þ 4þ 10

Then the derivative

dY

dX
¼ 2X� 3 which is the slope of the tangent at any point X:

Setting the slope (dY/dX) equal to zerowe obtain theminimum value of X, that is,

0 ¼ 2X� 3 and therefore X ¼ 1:5 for a minimum Y value:

Another Example of a Minimum

Given a collection of score values X

X j 16; 8; 10; 4; 12f g
we ask for what value of A is f(A) a minimum if

fðAÞ ¼
X5
i¼1

ðXi� AÞ2 ?

First, examine the f(A) for various values of A, for example:

if A ¼ 5 then fðAÞ ¼ 112 þ 32 þ 52 þ ð�1Þ2 þ 72

if A ¼ 7 then fðAÞ ¼ 92 þ 12 þ 32 þ ð�3Þ2 þ 52

if A ¼ 8 then fðAÞ ¼ 82 þ 02 þ 22 þ ð�4Þ2 þ 42

etc:
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A plot of the function f(A) is presented below for the values (Fig. 4.3)

A j 5 7 8 9 11 13 15

fðAÞ j 205 125 100 85 85 125 205

The derivative of the f(A) with respect to A is

d fðAÞ
dA

¼
X5
i¼1

2ðXi � AÞð�1Þ (4.21)

and to obtain the minimum slope point we obtain

0 ¼
X5
i¼1

�2ðXi � AÞ ¼
X5
i¼1

Xi � 5A (4.22)

or

A ¼
X5
i¼1

Xi= 5

Therefore A ¼ (16 + 8 + 10 + 4 + 12)/5 ¼ 10

and f(A) ¼ 80 is a minimum.

A Generalization of the Last Example

We will use derivation to prove that given any collection of X values X1, X2, . . .,
Xi, . . ., XN that

______________________________________________________________________________________
_______
f(A)
------
210|   •  •
200|
190|
180|
170|
160|
150|
140|
130| • • • 
120|
110|
100|  •
90| •
80| - ------ (minimum)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A

Fig. 4.3 The minimum of a function derivative
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Y ¼PN
i¼1

ðXi� AÞ2 is least when A ¼ X

As before, the derivative of Y with respect to A is

dY

dA
¼
XN
i¼1

2ðXi � AÞð�1Þ ¼ �2
XN
i¼1

ðXiÞ � 2NAð�1Þ

Therefore if we set the derivative to zero we obtain

0 ¼ �2
XN
i¼1

Xi þ 2NA

or 0 ¼ �PN
i¼1

Xi þ NA

then A ¼
XN
i¼1

Xi = N (4.23)

which by definition is X.

Partial Derivatives

Given a function in two independent variables:

Y ¼ fðX;ZÞ

we may create a graph as shown in Fig. 4.2 above. Y, the function, is shown as the

vertical axis and X and Z are shown as horizontal axis. Note the line in the figure

which represents the map of f(X,Z) when one considers only one value of Z.

When we study functions of this type with one variable treated as a constant, the

derivative of the function is called a partial derivative.

Suppose the function has a minimum and that it occurs at X ¼ A and Z ¼ B, that

is, f(A,B) is a minimum value of Y. We may obtain the derivative of Y ¼ f(A,Z),

that is, treat Z as a constant. This would be the partial derivative dY/dZ and may

be set equal to 0 to get the minimum at B. Of course, we don’t know A. Likewise,

Y ¼ f(X,B) and dY/dX set equal to 0 will give A. Here we don’t know B.

We can however, by simultaneous equations, where A and B are set to 0, find a

minimum of X and Z to give the Y minimum.

For example, let Y ¼ f X;Zð Þ ¼ X2 þ XZþ Z2 � 6Xþ 2.

Then
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dY
dX

¼ 2Xþ Z� 6 ¼ 0 (4.24)

and

dY
dZ

¼ Xþ 2Z ¼ 0 (4.25)

or X ¼ �2Z for equation (4.25) and substituting in (4.24) gives

� 4Zþ Z ¼ 6 or Z ¼ �2

and therefore X ¼ +4. These values of Z and X are the values of A and B to produce

a minimum for Y ¼ f(A,B).

Least Squares Regression for Two or More

Independent Variables

In this section we want to use the concepts of partial derivation to obtain solutions

to the B values in

Y0
i ¼ B1Xi;1 þ B2Xi;2 þ B0 (4.26)

such that the sum of (Y � Y0)2 is a minimum.

As an example, assume we have a situation in which values of Yi represent Grade

Point Average (GPA) score of subject (i) in his or her freshman year at college.

Assume that the Xi,1 score is the high school GPA and that the Xi,2 is an aptitude test

score. Our population of subjects may be “decomposed” into sub-populations of Y

scores that correspond to given values of X1 and X2. Figure 4.4 depicts the

distributions of Y scores for combinations of X1 and X2. We will assume:

1. The experience pool of the available data is a random sample of (Y, X1 and X2)

triplets from a universe of such triplets,

2. The universe is capable of decomposition into sub-universes of triplets have like

X1 and X2 values but differing in Y values,

3. The Y means for the sub-universes fall on a plane, that is,

mY;12 ¼ b1X1 þ b2X2 þ b0 (4.27)

Now we use the data to estimate b1, b2 and b0 by finding those values of B1 and

B2 and B0 in:

Y0 ¼ B1X1 þ B2X2 þ B0 (4.28)
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which minimize

G ¼
XN
i¼1

Yi � Y0
i

� �2

or G ¼
XN
i¼1

Yi � ðB1Xi;1 þ B2Xi;2 þ B0Þ
� 	2

(4.29)

The steps to our solution are:

1. Find the partial derivatives and equate them to 0.

dG
dB1

¼ 2
XN
i¼1

Yi � ðB1Xi;1 þ B2Xi;2 þ B0Þ
� 	ð�Xi;1Þ

dG
dB2

¼ 2
XN
i¼1

Yi � ðB1Xi;1 þ B2Xi;2 þ B0Þ
� 	ð�Xi;2Þ

dG
dB0

¼ 2
XN
i¼1

Yi � ðB1Xi;1 þ B2Xi;2 þ B0Þ
� 	ð�1Þ

Now equating to 0 and simplifying results in the following three “normal“

equations:

XN
i¼1

YiXi;1 ¼ B1

XN
i¼1

X2
i;1 þ B2

XN
i¼1

Xi;1Xi;2 þ B0

XN
i¼1

Xi;1 (4.30)

Fig. 4.4 Three Dimension

View of GPA (RED), High

School GPA (Green) and

Aptitude (Black)
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XN
i¼1

YiXi;2 ¼ B1

XN
i¼1

Xi;1Xi;2 þ B2

XN
i¼1

X2
i;2 þ B0

XN
i¼1

Xi;2 (4.31)

XN
i¼1

Yi ¼ B1

XN
i¼1

Xi;1 þ B2

XN
i¼1

Xi;2 þ NB0 (4.32)

2. Use the data to obtain the various sums, sums of squared values, and sums of

products needed. Substitute them in the above equations (4.30), (4.31) and (4.32)

and solve the equations simultaneously for B1, B2 and B0.

3. Substitute obtained values of B1, B2 and B0 into equation (4.29) to get the

regression equation.

4. If an index of accuracy of prediction is desired, calculate

XN
i¼1

y
02
i and obtain R2

y:12 ¼
PN
i¼1

y
02
i

PN
i¼1

y2i

(4.33)

where the y0i and yi scores are deviations from the mean Y value.

Matrix Form for Normal Equations Using Raw Scores

Equations (4.4), (4.5) and (4.6) above may be written more conveniently in matrix

form as:

XN
i¼1

YiXi;1

XN
i¼1

YiXi;2

XN
i¼1

Yi

" #
¼

½B1B2B0�

PN
i¼1

X2
i;1

PN
i¼1

Xi;1Xi;2

PN
i¼1

Xi;1

PN
i¼1

Xi;1Xi;2

PN
i¼1

X2
i;2

PN
i¼1

Xi;2

PN
i¼1

Xi;1

PN
i¼1

Xi;2 N
































or ½Y0X�1x ðKþ1Þ ¼ ½B�01 x ðKþ1Þ½X0X�ðKþ1ÞðKþ1Þ
and leaving off the sizes of the matrices gives simply

½Y0X� ¼ ½B�0 ½X0X�:
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If we post-multiply both sides of this equation by [X0X]�1 we obtain

½Y0X� ½X0X� � 1 ¼ ½B�0 (4.34)

We note that B0 may also be obtained from

B0 ¼ Y� ðB1X1 þ . . .þ BkXkÞ (4.35)

or in matrix notation

B0 ¼ Y� ½B�0½X� (4.36)

where ½X� ¼ ð1=NÞ ½X�

Matrix Form for Normal Equations Using Deviation Scores

The prediction (regression) equation above may be written in deviation score form as

y0 ¼ B1xi;1 þ B2xi;2 (4.37)

and solve for G ¼PN
i¼1

yi � y0i
� �2

as a minimum.In deviation score form there is no

B0 since the means of deviation scores are always 0.

The partial derivatives of G with respect to B1 and B2 may be written as follows:

with dG
dB1

¼ 0 and dG
dB2

¼ 0 we obtain

B1

XN
i¼1

x2i;1 þ B2

XN
i¼1

xi;1xi;2 ¼
XN
i¼1

yixi;1

and

B1

XN
i¼1

xi;1xi;2 þ B2

XN
i¼1

x2i;2 ¼
XN
i¼1

yixi;2

or in matrix notation

½B1B2�

PN
i¼1

x2i;1
PN
i¼1

Xi;1Xi;2

PN
i¼1

Xi;1Xi;2

PN
i¼1

X2
i;2
























¼ PN

i¼1

yiXi;1

PN
i¼1

yiXi;2

� �
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or simply

½B�0 ½x0x� ¼ ½y0x�0

and

½B�0 ¼ ½y0x�0 ½x0x� 1
(4.38)

Matrix Form for Normal Equations Using Standardized Scores

The regression equation from above may be written in terms of standardized (z)

scores as

z0y ¼ b1z1 þ b2z2 (4.39)

The function to be minimized is G ¼PN
i¼1

zy � z0y
� �2

:

We obtain the partial derivatives of G with respect to b1 and b2 as before and set
them to zero. The equations obtained are then

b1
XN
i¼1

z21 þ b2
XN
i¼1

z1z2 ¼
XN
i¼1

zvz1

and b1
PN
i¼1

z1z2 þ b2
PN
i¼1

z22 ¼
PN
i¼1

zvz2

If we divide both sides of the above equations by N we obtain

b1 þ b2r1;2 ¼ ry;1

b1r1;2 þ b2 ¼ ry;2

or

½b1 b2� 1 r1;2
r1;2 1










 ¼ ½ry;1 ry;2�

Matrix Form for Normal Equations Using Standardized Scores 105



or more simply as

½b�0 ½rxx� ¼ ½ry;x�0

and therefore

½b�0 ¼ ½ry;x�0 ½rx;x��1
(4.40)

Equations in the previous discussion are general forms for solving the regression

coefficients B1,. . .,Bk+1 in raw score form, the B1,. . .,Bk coefficients in deviation

score form or the b1,. . .,bk coefficients in standardized score form. In each case, the

B’s or Betas are obtained by multiplication of an inverse matrix times the vector of

cross-products or correlations. When there are more than two independent

variables, the inverse of the matrix becomes laborious to obtain by hand. Computers

are generally available however, which makes the chore of obtaining an inverse

much easier.

You should remember that the independent variablesmust, in fact, be independent.

That is, one independent variable cannot be a sum of one or more of the other

independent variables. If the assumption of independence is violated, the inverse of

the matrix may not exist! In some cases, although the variables are independent, they

may nevertheless correlate quite highly among themselves. In such cases (high

colinearity among independent variables), the computation of the inverse matrix

may be difficult and result in considerable error. If the determinant of the matrix is

very close to zero, your results should be held suspect!

We will see in latter sections that the inverse of the matrix of independent

variable cross-products, deviation cross-products or correlations may be used to

estimate the standard errors of regression coefficients and the covariances among

the regression coefficients.

Hypothesis Testing in Multiple Regression

Testing the Significance of the Multiple Regression Coefficient

The multiple regression coefficient RY,12. . .k is an index of the degree to which the

dependent and weighted composite of the independent variables correlate. The

square of the coefficient indicates the proportion of variance of the dependent

variable which is predicted by the independent variables. The R2
Y,12. . .k may be

obtained from

R2
Y;1::k ¼ ½b�0 ½ry;x� that is
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R2 ¼ b1ry;1 þ b2ry;2 þ . . .þ bkry;k (4.41)

Since R2 is a sample statistic which estimates a population parameter, it may be

expected to vary from sample to sample and has a standard error.

The total sum of squares of the dependent variable Y may be partitioned into two

main sources of variability:

1. The sum of squares due to regression with the independent variables (SSreg) and

2. The sum of squares due to error or unexplained variance (SSe).

We may estimate these values by

(a) SSreg ¼ SSY R2
Y.12. . .k and

(b) SSe ¼ SSY (1 � R2
Y.12. . .k)

Associated with each of these sums of squares are degrees of freedom. For the

SSreg the degrees of freedom is the number of independent variables, K. For the SSe
the degrees of freedom are N – K – 1, that is, the degrees of freedom for the variance

of Y minus the degrees of freedom for regression. Since the sum of squares for

regression and error are independent, we may form an F-ratio statistic as

F ¼ MSreg

MSe
¼ Ssreg=K

Sse=ðN� K� 1Þ �
R2

Y;1::k N�K�1

1� R2
Y;1::k

� �
K

(4.42)

The probability of the F statistic for K and (N-K-1) degrees of freedom may be

estimated or values for the tails obtained from tables of the F distribution. If the

probability of obtaining an F statistic as large or larger than that calculated is less

than the alpha level selected, the hypothesis that R2 ¼ 0 in the population may be

rejected.

The Standard Error of Estimate

The following figure illustrates that for every combination of the independent

variables, there is a distribution of Y scores. Since our prediction equation based

on a sample of observations yields only a single Y value for each combination of the

independent variables, there are obviously some predicted Y scores that are in error.

We may estimate the variability of the Y scores at any combination of the X scores.

The standard deviation of these scores for a given combination of X scores is called

the Standard Error of Estimate. It is obtained as

SY:X ¼ SSe= ðN� K� 1Þð Þ1=2 (4.43)
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Testing the Regression Coefficients

Just as we may test the hypothesis that the overall multiple regression coefficient

does not depart significantly from zero, so may we test the hypothesis that a

regression coefficient B does not depart significantly from zero. Note that if we

conclude that the coefficient does not depart from zero, we are concluding that the

associated variable for that coefficient does not contribute significantly to explaining

(predicting) the variance of Y.

The regression coefficients have been expressed both in raw score form (B’s)

and in standardized score form (b’s). We may convert from one form to the other

using

Bj ¼ bjSY= Sj (4.44)

or bj ¼ BjSj= SY

Since these coefficients are sample statistics, they have a standard error. The

standard error of a regression coefficient may be obtained as the square root of:

S2Bj
¼ S2Y:X

SSXjð1� R2
j;1::ðk 1Þ

(4.45)

where S2Y.X is the standard error of estimate and SSX is the sum of squares for the

jth variable,

R2
j;1::ðk�1Þ is the squared multiple correlation of the jth independent variable

regressed on the K � 1 remaining independent variables.

In using the above method to obtain the standard errors of regression

coefficients, it is necessary to obtain the multiple correlation of each independent

variable with the remaining independent variables.

Another method of obtaining the standard errors of B’s is through use of the

inverse of the matrix of deviation score cross-products among the independent

variables. We indicated this matrix as

½x0x��1

in our previous discussion. If we multiply this matrix by the variance of our error of

estimate S2Y.X the resulting matrix is the variance-covariance matrix of regression

coefficients. That is

½C� ¼ S2Y:X½x0x��1
(4.46)

The diagonal elements of [C], that is, C1,1, C2,2,. . .,Ck,k are the variances of the B

regression coefficients and the off-diagonal values are the covariances of the

regression coefficients for independent variables.
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To test whether or not the Bj regression coefficient departs significantly from

zero, we may use either the t-test statistic or the F-test statistic. The t-test is

t ¼ Bjp
Cj;j

¼ Bj

SBj
with N� K� 1degrees freedom:

Since the t2 is equivalent to the F test with one degree of freedom in the

numerator, we can similarly use the F statistic with 1 and N-K-1 degrees of freedom

where

F ¼ B2
j

Cj;j
(4.47)

A third method for examining the effect of a single independent variable is to ask

whether or not the inclusion of the variable in the regression model contributes

significantly to the increase in the SSreg over the regression model in which the

variable is absent. Since the proportion of variance of Y that is accounted for by

regression is R2, we can obtain the proportion of variance accounted for by a

variable by

R2
Y;1::j::K � R2

Y;1::ðK 1Þ (4.48)

The first R2 equation (we will call it the FULL Model) contains all independent

variables. The second (which we will call the restricted model) is the proportion of

Y score variance predicted by all independent variables except the jth variable. The

difference then is the proportion of variance attributable to the jth variable. The sum

of squares of Y for the jth variable is therefore

SSj ¼ SSY R2
Y;1::j::K � R2

Y;1::ðK 1Þ
� �

(4.49)

The mean square for this source of variability is the same as the SS since there is

only one degree of freedom. The ratio of the MSj to MSe forms an F statistic with 1

and N-K-1 degrees of freedom. That is

F ¼ MSj

MSe
¼ SSY R2

full � R2
restricted

� �
=1

SSY 1� R2
full

� �
=ðN�K�1Þ

¼ R2
full � R2

restricted

1� R2
full

� N�K�1
1

(4.50)

If the independent variable j does not contribute significantly (incrementally) to

the variance of Y, the F statistic above will not be significant at the alpha decision

level value.
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Testing the Difference Between Regression Coefficients

Two variables may differ in the cost of collection. For example, an aptitude test

may cost the student or institution more than obtaining a high school grade point

average. In selecting one or the other independent variable to use in a regression

model, there arises the question as to whether or not two regression coefficients

differ significantly between themselves. Since the regression coefficients are sam-

ple statistics, the difference between two coefficients Bj and Bk is itself a sample

statistic. The regression coefficients B are not independent of one another unless

the independent variables themselves are uncorrelated. The standard error of the

difference between two coefficients must therefore take into account not only

the variance of each coefficient but also their covariance. The variance of

differences between two regression coefficients may be obtained as

S2Bj�Bk
¼ Cj;j þ Ck;k � Cj;k (4.51)

where Cj,j, Ck,k and Cj,k are elements of the [C] matrix.

The test for significance of difference between two regression coefficients is

therefore

t N�K�1ð Þ ¼
Bj � Bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cj;j þ Ck;k � Cj;k

� 	q (4.52)
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Chapter 5

Analysis of Variance

Theory of Analysis of Variance

While the “Student” t-test provides a powerful method for comparing sample

means for testing differences between population means, when more than two

groups are to be compared, the probability of finding at least one comparison

significant by chance sampling error becomes greater than the alpha level (rate of

Type I error) set by the investigator. Another method, the method of Analysis of

Variance, provides a means of testing differences among more than two groups yet

retain the overall probability level of alpha selected by the researcher. Your

OpenStat4 package contains a variety of analysis of variance procedures to handle

various research designs encountered in evaluation research. These various

research designs require different assumptions by the researcher in order for

the statistical tests to be justified. Fundamental to nearly all research designs is

the assumption that random sampling errors produce normally distributed score

distributions and that experimental effects result in changes to the mean, not the

variance or shape of score distributions. A second common assumption to most

designs using ANOVA is that the sub-populations sampled have equal score

variances – this is the assumption of homogeneity of variance. A third common

assumption is that the populations sampled have been randomly sampled and are

very large (infinite) in size. A fourth assumption of some research designs where

individual subjects or units of observation are repeatedly measured is that the

correlation among these repeated measures is the same for populations sampled –

this is called the assumption of homogeneity of covariance.

When we say we are “analyzing” variance we are essentially talking about

explaining the variability of our values around the grand mean of all values. This

“Total Sum of Squares” is just the numerator of our formula for variance. When the

values have been grouped, for example into experimental and control groups, then

each group also has a group mean. We can also calculate the variance of the scores

W. Miller, Statistics and Measurement Concepts with OpenStat,
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within each of these groups. The variability of these group means around the grand

mean of all values is one source of variability. The variability of the scores within

the groups is another source of variability. The ratio of the variability of group

means to the variability of within-group values is an indicator of howmuch our total

variance is due to differences among our groups. Symbolically, we have

“partitioned” our total variability into two parts: variability among the groups and

variability within the groups. We sometimes write this as

SST ¼ SSB þ SSW (5.1)

That is, the total sum of squares equals the sum of squares between groups plus

the sum of squares within groups. The ratio of the SSB to the SSW gives the F

statistic. Later we will examine how we might also analyze the variability of scores

using a linear equation.

Once upon a time, a psychologist conducted a survey and gathered considerable amounts of

data. However, as is the case many times, the data sat on the shelf gathering dust. But, one

year, the psychologist decided to resurrect the data. Not being exactly sure of what to do

though, the data was given to a few students to play with and summarize.

Well, as you might expect, one student did it one way, another student did it another

way, and a third student even did it entirely different from the other two. Because of this,

the psychologist suddenly became interested in a different question and .. proclaimed to the

world: “How goes this VARIANCE OF ANALYSIS?”

The Completely Randomized Design

Why did the statistician do such a horrid job of laying tile on his bathroom floor?

He incorrectly PARTITIONED SOME OF THE SQUARES!!

Introduction

Educational research often involves the hypothesis that means of scores obtained in

two or more groups of subjects do not differ beyond that which might be expected

due to random sampling variation. The scores obtained on the subjects are usually

some measure representing relative amounts of some attribute on a dependent

variable. The groups may represent different “treatment” levels to which subjects

have been randomly assigned or they may represent random samples from some

sub-populations of subjects that differ on some other attribute of interest. This

treatment or attribute is usually denoted as the independent variable.
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A Graphic Representation

To assist in understanding the research design that examines the effects of one

independent variable (Factor A) on a dependent variable, the following representa-

tion is utilized:

TREATMENT GROUP
1 2 3 4 5

Y11 Y12 Y13 Y14 Y15
Y21 Y22 Y23 Y24 Y25
. . . . .
. . . . .
Yn1 Yn2 Yn3 Yn4 Yn5

In the above figure, each Y score represents the value of the dependent variable

obtained for subjects 1, 2,. . .,n in groups 1, 2, 3, 4, and 5.

Null Hypothesis of the Design

When the researcher utilizes the above design in his or her study, the typical null

hypothesis may be stated verbally as “the population means of all groups are equal”.

Symbolically, this is also written as

H0 : m1 ¼ m2 ¼ . . . ¼ mk (5.2)

where k is the number of treatment levels or groups.

Summary of Data Analysis

The completely randomized design (or one-way analysis of variance design)

depicted above requires the researcher to collect the dependent variable scores for

each of the subjects in the k groups. These data are then typically analyzed by use of

a computer program and summarized in a summary table similar to that below:
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SOURCE     DF           SS              MS          F
k  _    _ 2

Groups    k-1      Σ nj(Yj - Y)        SS / k      MSg
j=1                            ---

MSe
k   nj _  2

Error     N-k   Σ Σ (Yij - Yj)      SS / (N-k)  
j=1 i=1

k   nj _ 2
Total     N-1   Σ Σ (Yij - Y)

j=1 i=1

where Yij is the score for subject i in group j,

Yj is the mean of scores in group j,

Y is the overall mean of scores for all subjects,

nj is the number of subjects in group j, and

N is the total number of subjects across all groups.

Model and Assumptions

Use of the above research design assumes the following:

1. Variance of scores in the populations represented by groups 1,2,. . .,k are equal.

2. Error scores (which are the source of variability within the groups) are normally

distributed.

3. Subjects are randomly assigned to treatment groups or randomly selected from

sub-populations represented by the groups.

The model employed in the above design is

Yij ¼ mþ mj þ eij (5.3)

where m is the population mean of all scores, m j is the effect of being in group j, and

eij is the residual (error) for subject i in group j. In this model, it is assumed that the

sum of the treatment effects ( aj) equals zero.
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Fixed and Random Effects

In the previous section we introduced the analysis of variance for a single indepen-

dent variable. In our discussion we indicated that treatment levels were usually

established by the researcher. Those levels of treatment often are selected to

represent specific intervals of a measurement on the independent variable, for

example, amount of study time, level of drug dosage, time spent on a task, etc.

The independent variable in many one-way analyses of variance may also represent

classifications of objects or subjects such as political party, gender, grade level, or

country of origin. We suggest more caution in interpretation of outcomes using

classification variables since, in these cases, random assignment of subjects from a

single population is usually impossible.

There is another situation for analysis of variance. That situation is where the

researcher randomly selects levels of the independent variable (or works with

objects that have random levels of an independent variable). For example, a

researcher may wish to examine the effect of “amount of TV viewing” on student

achievement. A random sample of students from a population might be drawn

and those subjects tested. The subjects would also be asked to report the number

of hours on the average that they watch TV during a week’s time. If the analysis

of variance is used, the variable “TV time” would be a random variable – the

investigator has not assigned hour levels. If the experiment is repeated, the next

sample of subjects would most likely represent different levels of TV time, thus

the levels randomly fluctuate from sample to sample. For the one-way analysis of

variance with the random effects model, the parameters estimated are the same as

in the fixed effects model. For the one-way analysis of variance then, the analysis

for the random-effects model is exactly the same as for the fixed-effects model

(this will NOT be true for two-way and other higher level designs). An additional

assumption of the random effects model is that the treatment effects (a) are

normally distributed with mean 0 and variance se2. You may recognize that, if

both dependent and independent variables are normally distributed and continu-

ous, that the product-moment correlation may be an alternative method of

analyzing data of the random-effects model.

Analysis of Variance: The Two-Way, Fixed-Effects Design

A researcher may be interested in examining the effects of two (or more)

independent variables on a given dependent variable at the same time. For

example, a teacher may be interested in comparing the effects of three types
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of instruction, e.g. teacher lecture, small group discussion, and self instruction,

on student achievement under two other conditions, e.g. students given a pretest

and students not given a pretest. There is a possibility that both of these

variables contribute to differences in student achievement. In addition, there is

the possibility that method of instruction “interacts with” pre-testing conditions.

For example, it might be suspected that use of a pretest with teacher lecture

method is better than no pretest with teacher lecture but that such a difference

would not be observed for the other two methods of instruction. The multi-

factor ANOVA designs have the advantage of being able to examine not only

the “main” effects of variables hypothesized to affect the dependent variable but

also to be able to examine the interaction effects of those variables on the

dependent variable.

The data may be conveniently depicted as a rectangle with the levels of one

variable on the horizontal axis and the levels of the second variable on the vertical

axis. The intersection of each row and column level is a treatment “cell” consisting

of njk subjects receiving that combination of treatments. The table below gives the

symbolic representation of scores in the two-way design:

METHOD OF INSTRUCTION
Lecture Group Self

X111 = 5 X112 = 9 X113 = 5
Pretest

X211 = 6 X212 = 7 X213 =12

X311 = 4 X312 = 6 X313 = 8
Pretest Condition      

X121 = 10 X122 = 6 X123 = 4
No
Pretest X221 = 12 X222 = 8 X223 = 8

X321 = 8 X322 = 9 X323 = 5

Using the above data it is possible to consider three seperate one-way ANOVA

analyses:

1. An ANOVA of the three methods of instruction,

2. An ANOVA of the two pretesting conditions, and

3. An ANOVA of the 6 cells (treatment combinations).

The two-way ANOVA procedure yields all three in one analysis and provides

greater sensitivity for each since the denominator of the F statistic will have the

effects of the other two sources of variance already removed. The Summary table

for the two-way ANOVA contains:
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SourceD.F. Sum of Squares F Parameters
Estimated

Rows R-1 R    _    _  2

C    _    _  2

2  2

2   2

2   2

Σnj.(X.j.-X...) MSR/MSe σe+σα

j=1

Columns C-1
Σ n.k(X..k-X...) MSC/MSß σe+ σ

βk=1

Row x Col (R-1)(C-1) R C _   _   _   _  2   
Σ Σ(X.jk-X.j.-X..k+X...) σe + σαβ

j=1k=1
MSRC/MSe

Error R  C
Σ  Σ(njk-1) R C njk _  2 2
j=1k=1 Σ  Σ  Σ (Xijk-X.jk) σ

j=1 k=1i=1

Total N-1 R C njk _  2
Σ  Σ  Σ (Xijk-X...)

j=1 k=1i=1

where Xijk is the score for individual i in Row j and column k,

X.j. is the mean of row j,

X..k is the mean of column k,

X.jk is the mean of the cell for row j and column k,

X . . . is the overall (grand) mean.

As before, computational formulas may be developed from the defining

formulas obtained from partitioning the total sum of squared deviations about the

grand mean:

SST ¼
XR
j¼1

XC
k¼1

Xnjk
i¼1

Xijk � T...
2=N (5.4)

SSR ¼
XR
j¼1

T:j:
2=nj: � T...

2=N (5.5)
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SSC ¼
XC
k¼1

T2
::k=n:k � T2

...=N (5.6)

SSRC ¼
XR
j¼1

XC
k¼1

T2
:jk=njk � SSR � SSC � T2

...=N (5.7)

XR
j¼1

XC
k¼1

Xnjk
i¼1

X2
ijk �

XR
j¼1

XC
k¼1

T2
:jk=njk (5.8)

where T . . . is the total of all scores,
T.jk is the total of the scores in a cell defined by the j row and k column,

T.j. is the total of the scores in the jth row,

T..k is the total of the scores in the kth column,

N is the total number of scores,

nj. is the number of scores in the jth row,

n.k is the number of scores in the kth column,

njk is the number of scores in the cell of the jth row and kth column.

In completing a two-way ANOVA, the researcher should attempt to have the

same number of subjects in each group. If the ratio of any two columns is the same

across rows then the cell sizes are proportional and the analysis is still legitimate.

If cell sizes are neither equal nor proportional, then the total sum of squares does not

equal the sum of squares for rows, columns, interaction and error and the F tests do

not represent independent tests of significance.

Stating the Hypotheses

The individual score of a subject (Xijk) may be considered to be the linear

composite of the effect of the row level (aj), the effect of the column (bk), the
interaction effect of row and column combined (abjk), the overall mean and

random error, that is

Xijk ¼ mþ aj þ bk þ abjk þ eijk (5.9)

The null hypotheses for the main effects therefore may be stated either as

Ho : m1: ¼ m2: ¼ . . . ¼ mj: ¼ . . . mR: for all rows; (5.10)

or Ho : a1 . . . ¼ aj ¼ . . . aR for all rows; and (5.11)
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Ho : m:1 ¼ . . . ¼ m:k ¼ . . . ¼ m:C for all columns; (5.12)

or Ho : b1 ¼ . . . ¼ bk ¼ . . . ¼ bC for all columns; and (5.13)

Ho : ðmjk � mj: � m:k þ m::Þ for all row and column combinations; (5.14)

or Ho : ab11 ¼ . . . ¼ abjk ¼ . . . ¼ abRC for interactions: (5.15)

Again; we note that
XR
j¼1

aj: ¼ 0;
XC
k¼1

b:k ¼ 0 and
XR
j¼1

XC
k¼1

abjk ¼ 0: (5.16)

Interpreting Interactions

One may examine the means of cells in a two-way ANOVA using a plot such as

illustrated in the figure below for our example of the teacher’s research:

If lines are used to connect the o group means and lines are used to connect the x

group means, one can see that the lines “cross”.

If the lines for the pretest and no pretest levels are parallel across levels of the

other factor, no interaction exists. When lines actually cross in the plot, this is called

ordinal interaction. If the lines would cross if projected beyond current treatment

levels, this is called disordinal interaction. In either case, the implication of

interaction is that a particular combination of both treatments effects the dependent

variable beyond the main effects alone. For example, if the interaction above is

judged significant, then we cannot say that method 1 is better than method 3 of

teaching without also specifying whether or not a pretest were used!
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Note in the above interaction plot that the average of the three teaching

method means are about the same for both pretest and no pretest conditions.

This would indicate no main effect for the column variable pretest-no pretest.

Similarly, the two means for each teaching method average about the same for

each teaching method. This would indicate little effect of the variable teaching

method (row). Your plot can graphically present effects due to the main variables

as well as there interaction!

Random Effects Models

The two-way ANOVA design discussed to this point has assumed both factors

contain fixed levels of treatment such that if the experiment was repeated numerous

times, the levels would always be the same. If one or both of the factors represent

random variables, that is, variables which would contain random levels upon

replications of the experiment, then the expected values of the MSrows,

MScolumns, and MSinteraction differ from that of the fixed-effects model.

Presented below is a summary of the expected values for the two-way design

when both variables are fixed, one variable random, and both variables random.

Both Row and Column Variables Fixed

Source Expected MS Calculated F-ratio

Row s2
e + nj.s2

a MSR/MSe

Column s2
e + n.k s2b MSC/MSe

Interaction s2
e + njks

2
ab MSRC/MSe

Error s2e

Rows Fixed, Columns Random

Source Expected MS Calculated F-ratio

Row s2
e + n..s2

ab + nj s2a MSR/MSRC

Column s2
e + n.k s2

b MSC/MSe

Interaction s2
e + n..sab MSRC/MSe

Error s2
e

Row Random, Column Random

Source Expected MS Calculated F-ratio

Row s2
e + n..s2

ab + n.js
2
a MSR/MSRC

Column s2
e + n..s2

ab + nk.s
2
b MSC/MSRC

Interaction s2
e + n..s2

ab MSRC/MSe

Error s2
e
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One Between, One Repeated Design

Introduction

A common research design in education involves repeated measurements of several

groups of subjects. For example, a pre- and post test administered to students in

experimental and control courses may be considered a mixed design with one

between subjects factor and one within subjects (repeated measures) factor.

We might hypothesize that the means of the pretest equals the posttest, hypothesize

that the experimental and control group means are equal and hypothesize that the

change from pretest to post-test is the same for the two groups. Tests for these

hypotheses use the F statistic.

As another example, suppose we are interested in the teacher evaluations given

by three groups of administrators before and after three different teacher-evaluation

training programs. All administrators are provided identical information on a

sample of teachers including level and content of courses taught, school charac-

teristics, community and student characteristics, and teacher characteristics such as

degree, years experience, professional memberships, etc. plus a videotape of

teaching excerpts. Each subject reviews all information and makes teacher ratings.

The subjects are then randomly assigned to the three treatments: (a) a program on

teacher evaluation which stresses the motivational aspects, (b) a program which

stresses the teacher improvement aspect and (c) a program which stresses the

reward aspect. Following these programs, each subject again evaluates the same

or parallel teachers. The hypotheses tested would be that the mean teacher

evaluations of each experimental group are equal, the mean evaluations prior to

programs equal mean evaluations following the programs, and the change in mean

teacher evaluations from pre to post program time are equal.

The Research Design

The figure below presents the schema for the mixed between and within factors

design. Note that the different subjects in each “A” treatment group are repeatedly

measured under each of the “B” treatment conditions. Our sample size is n subjects

in each of M groups and the number of treatments is L.

The main hypotheses to be tested are

H0 : m1: ¼ m2: ¼ . . . ¼ mM: ðall A levels are equalÞ:
H0 : m:1 ¼ m:2 ¼ . . . ¼ m:L ðall B levels are equalÞ:
H0 : m11 ¼ mjk ¼ . . . ¼ mML ðall AB cells are equalÞ:
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Theoretical Model

The theoretical model for a subject i’s score X from group j in Factor A on

treatment k from factor B may be written

Xijk ¼ mþ aj þ bk þ piðjÞ þ bjk þ bpkiðjÞ þ eiðjkÞ (5.17)

where m is the population mean of the scores,

aj is the effect of treatment j in Factor A,

ßk is the effect of treatment k in Factor B,

pi is the effect of person i,

aßjk is the interaction of Factor A treatment j and treatment level k in Factor B,

ßp ki(j) is the interaction of subject i and B treatment k in the jth treatment group

of A,

and ei(jk) is the error for person i in treatment j of Factor A and treatment k of

Factor B.

In an experiment, we are usually interested in estimating the effect size of each

treatment in each factor. We may also be interested in knowing whether or not there

are significant differences among the subjects, and whether or not different subjects

react differently to various treatments.

Assumptions

As in most ANOVA designs, we make a number of assumptions. For the mixed

factors design these are:

1. The sum of treatment effects (aj) is equal to zero,

2. The sum of treatment effects (ßk) is equal to zero,

3. The sum of person effects (pi(j)) is equal to zero,

4. The sum of aßjk interaction effects is equal to zero,

5. The sum of ßaki(j) interaction effects is equal to zero,

6. The sum of treatment x person interaction effects within levels of A ( ßpki(j) )
is zero,

7. The errors (ei(jk)) are normally distributed with mean zero,

8. The variance of errors in each A treatment (aj) are equal,
9. The variance of errors in each B treatment (bk) are equal,

10. The covariances among the treatments (COVpq(j) p<>q p,q ¼ 1..L) within j

levels of A are all equal.

The last assumption, equal covariances, means that if we were to transform

scores within treatments to z scores, the correlations among the scores between any

two treatments would all be equal in the population. You will also note that the
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denominator of the F ratios for testing differences among A treatment means is the

pooled variance among subject means within groups as in a one-way ANOVA and

the denominator of the F statistic for the Factors of B (the repeated measures) and

the A � B interaction F statistic is the variance due to the pooled treatment by

subjects interaction found in the Treatments by Subjects design.

Summary Table

The AxS ANOVA Summary table is often presented as follows:

Source D.F. SS MS F

Between

subjects

Mn � 1 PM
j¼1

Pn
i¼1

LðXij: � X...Þ2

A M � 1
nL

PM
j¼1

ð�X:j: � �X...Þ2
SSA/(M � 1) MSA/MSSwG

Subjects

within

groups

M(n � 1) PM
j¼1

Pn
i¼1

Lð�Xij: � �X:j:Þ2
SSSwG/[M

(n � 1)]

Within

subjects

Mn(L � 1) PM
j¼1

PL
k¼1

Pn
i¼1

ð�Xijk � �X:jkÞ2

B L � 1
nM

PL
k¼1

ð�X::k � �X...Þ2
SSB/(L � 1) MSB/

MSBxSwG

A � B (M � 1)

(L � 1) n
PM
j¼1

PL
k¼1

ð�X:jk � �X::k � �X:j: þ �X...Þ2
SSAxS/

[(M � 1)

(L � 1)]

B � S

within

groups

M(n � 1

(L � 1)
PM
j¼1

SSBSðjÞ
SSBxSwG/[M

(n � 1)

(L � 1)]

Total nML � 1 PM
j¼1

PL
k¼1

Pn
i¼1

ð�Xijk � �X::Þ2

Population Parameters Estimated

The population mean of all scores (m) is estimated by the overall mean. The mean

squares provide estimates as follows:

MSA estimates se
2 þMsp

2 þMnsa
2

MSSwG estimates se
2 þMsp

2

MSB estimates se
2 þ sbp

2 þMns2
b

MSAB estimates se
2 þ sbp

2 þ ns2
ab

MSBxSwG estimates se
2 þ sbp

2
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Two Factor Repeated Measures Analysis

Repeated measures designs have the advantage that the error terms are typically

smaller that designs using independent groups of observations. This was true for the

Student t-test using matched or correlated scores. On the down-side, repeated

measures on the same objects pose a special problem, particularly when the objects

are human subjects. The main problem is “practice” or “learning” effects that may

be greater for one treatment level than another. These effects are completely

confounded with the actual treatment effects. While random or counter-balanced

assignment of the treatments may reduce the cumulative effects to some degree, it

does not remove the effects specific to a given treatment. It is also assumed that the

covariance matrices are equal among the treatment levels. Users of these designs

with human subjects should be careful to minimize the practice effects. This can

sometimes be done by having subjects do tasks that are similar to those in the actual

experiment before beginning trials of the experiment.

Nested Factors Analysis of Variance Design

The Research Design

In the Nested ANOVA design, one factor (B) is completely nested within levels of

another factor (A). Thus unlike the A � B Fixed Effects ANOVA in which all

levels of B are crossed with all levels of A, each level of B is found in only one level

of A in the nested design. The design may be graphically depicted as below:
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The Variance Model

The observed X scores may be considered to be composed of several effects:

Xijk ¼ mþ aj þ bkðjÞ þ ekðjÞ (5.18)

The ANOVA Summary Table

We partition the total squared deviations of X scores from the grand mean of scores

into sources of variation. The independent sources may be used to form F ratios for

the hypothesis that the treatment means of A levels are equal and the hypothesis that

the treatment levels of B are equal. The summary table (with sums of squares

derivations) is as follows:

Source D.F. SS Estimates:

Aa M � 1 PM
j¼1

nj:ð�X:j: � �X...Þ2
s2

e + nDs2B + nMs2
a

B (pooled) PM
j¼1

ðqj � 1Þ PM
j¼1

PLj

k¼1

njkð�X:jk � �X:j:Þ2
s2

e + ns2B

Within PM
j¼1

PL
k¼1

ðnjk � 1Þ PM
j¼1

PLj

k¼1

Pnjk
i¼1

ð�Xijk � �X:jkÞ2
s2

e

Total N � 1 PM
j¼1

PLj

k¼1

Pnjk
i¼1

ð�Xijk � �X...Þ2

aNote: When factor B is a random effect, D ¼ 1 and the F ratio for testing the A effect is the MSA/

MSB. When factor B is a fixed effect, D ¼ 0 and the F ratio for testing A effects is MSA/MSw.

where:

Xijk ¼ An observed score in B treatment level k under A treatment level j,

X.jk ¼ the mean of observations in B treatment level k in A treatment level j,

X.j. ¼ the mean of observations in A treatment level j,

X. . . ¼ the grand mean of all observations,

njk ¼ the number of observations in B treatment level k under A treatment level j

nj. ¼ the number of observations in A treatment level j,

N ¼ the total number of observations.

A, B and C Factors with B Nested in A

MODEL : �Xijk ¼ mþ ai þ bjðiÞ þ gk þ agik þ bgjk þ eijk (5.19)

Assume that an experiment involves the use of two different teaching methods, one

which involves instruction for 1 consecutive hour and another that involves two

half-hours of instruction 4 h apart during a given day. Three schools are randomly
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selected to provide method 1 and three schools are selected to provide method 2.

Note that school is nested within method of instruction. Now assume that n subjects

are randomly selected for each of two categories of students in each school.

Category 1 students are males and category 2 students are female. This design

may be illustrated in the table below:

Instruction method 1 Instruction method 2

School 1 School 2 School 3 School 4 School 5 School 6

Category 1 n n n n n n

Category 2 n n n n n n

Notice that without School, the Categories are crossed with method and there-

fore are NOT nested. The expected values of the mean squares is:

Source of variation df Expected value

A (Method) p � 1 s2
e + nDqDrs

2
bg + nqDrs

2
ag + nrDqs

2
b + nqrs2

a

B within A p(q � 1) s2
e + nDrs

2
bg + nrs2

b

C (Category) r � 1 s2
e + nDqs

2
bg + nqDps

2
ag + npqs2

g

AC (p � 1)(r � 1) s2
e + nDqs

2
bg + nqs2

ag

(B within A)C p(q � 1)(r � 1) s2
e + ns2

bg

Within cell pqr(n � 1) s2
e

where there are p methods of A, q nested treatments B (Schools) and r C treatments

(Categories). The D’s with subscripts q, r or p have the value of 0 if the source is

fixed and a value of 1 if the source is random. In this version of the analysis, all

effects are considered fixed (D’s are all zero) and therefore the F tests all use the

Within Cell mean square as the denominator. If you use random treatment levels,

you may need to calculate a more appropriate F test.

Latin and Greco-Latin Square Designs

Did you hear about the ancient roman statistician who was always called a nerd? Turns out

he was just a Latin Square.

Some Theory

In a typical two or three-way analysis of variance design, there are independent

groups assigned to each combination of the A, B (and C) treatment levels. For

example, if one is designing an experiment with three levels of Factor A, four levels

of Factor B and two levels of Factor C, then a total of 24 groups of randomly

selected subjects would be used in the experiment (with random assignment of the

groups to the treatment combinations.) With only four observations (subjects) per
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group, this would require 96 subjects in total. In such a design, one can obtain the

main effects of A, B and C independent of the A � B, A � C, B � C and A � B

� C interaction effects of the treatments. Often however, one may know before

hand by previous research or by logical reasoning that the interactions should be

minimal or would not exist. When such a situation exists, one can use a design

which confounds or partially confounds such interactions with the main effects and

drastically reduces the number of treatment groups required for the analysis. If the

subjects can be repeatedly observed under various treatment conditions as in some

of the previously discussed repeated-measures designs, then one can even further

reduce the number of subjects required in the experiment. The designs to be

discussed in this section utilize what are known as “Latin Squares”.

The Latin Square

A Latin square is a balanced two-way classification scheme. In the following

arrangement of letters, each letter occurs just once in each row and once in each

column:

A B C

B C A

C A B

If we interchange the first and second row we obtain a similar arrangement with

the same characteristics:

B C A

A B C

C A B

Two Latin squares are orthogonal if, when they are combined, the same pair of

symbols occurs no more than once in the composite squares. For example, if the two

Latin squares labeled Factor A and Factor B are combined to produce the composite

shown below those squares the combination is NOT orthogonal because treatment

combinations A1B2, A2B3, and A3B1 occur in more than one cell. However, if we

combine Factor A and Factor C we obtain a combination that IS orthogonal.

FACTOR A FACTOR B FACTOR C 
A1 A2 A3 B2 B3 B1 C1 C2 C3
A2 A3 A1 B3 B1 B2 C3 C1 C2
A3 A1 A2 B1 B2 B3 C2 C3 C1
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COMBINED A and B
A1B2   A2B3   A3B1
A2B3   A3B1   A1B2
A3B1   A1B2   A2B3

COMBINED A and C
A1C1   A2C2   A3C3
A2C3   A3C1   A1C2
A3C2   A1C3   A2C1

Notice that the three levels of treatment A and the three levels of treatment C are

combined in such a way that no one combination is found in more than one cell.

When two Latin squares are combined to form an orthogonal combination of the

two treatment factors, the combination is referred to as a Greco-Latin square.

Notice that the number of levels of both the treatment factors must be the same to

form a square. Extensive tables of orthogonal Latin squares have been compiled by

Cochran and Cox in “Experimental Designs”, New York, Wiley, 1957.

Typically, the Greco-Latin square is represented using only the number

(subscripts) combinations such as:

11 22 33

23 31 12

32 13 21

One can obtain additional squares by interchanging any two rows or columns of

a Greco-Latin square. Not all Latin squares can be combined to form a Greco-Latin

square. For example, there are no orthogonal squares for 6 by 6 or for 10 by 10

Latin squares. If the dimensions of a Latin square can be expressed as a prime

number raised to the power of any integer n, then orthogonal squares exist.

For example, orthogonal Latin squares exist of dimension 3, 4, 5, 8 and 9 from

the relationships 3 from 31, 4 from 22, 5 from 51, 8 from 23, 9 from 32, etc.

Latin squares are often tabled in only “standard form”. A square in standard form

is one in which the letters of the first row and column are in sequence. For example,

the following is a standard form for a four dimension square:

A B C D

B A D C

C D B A

D C A B

There are potentially a large number of standard forms for a Latin square of

dimension n. There are 4 standard forms for a 4 by 4 square, and 9,408 stan-

dard forms for a 6 by 6 square. By interchanging rows and columns of the standard

forms, one can create additional non-standard forms. For a 4 by 4 there are a total of
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576 Latin squares and for a 6 by 6 there are a total of 812,851,200 squares! One can

select at random a standard form for his or her design and then randomly select rows

and columns to interchange to create a randomized combination of treatments.

Plan 1 by B. J. Winer

In his book “Statistical Principles in Experimental Design”, New York, McGraw-

Hill, 1962, Winer outlines a number of experimental designs that utilize Latin

squares. He refers to these designs as “Plans” 1 through 13 (with some variations

in several plans.) Not all plans have been included in OpenStat. Eight have been

selected for inclusion at this time. The most simple design is that which provides the

following model and estimates:

MODEL : Xijkm ¼ mþ aiðsÞ þ bjðsÞ þ gkðsÞ þ resðsÞ þ emðijkÞ (5.20)

Where i, j, k refer to levels of Factors A, B and C and m the individual subject in the

unit. The (s) indicates this is a model from a Latin (s)quare design.

Source of variation Degrees of freedom Expected mean square

A p � 1 s2
e + nps2

a

B p � 1 s2
e + nps2

b

C p � 1 s2
e + nps2

g

Residual (p � 1)(p � 2) s2
e + nps2

res

Within cell p2(n � 1) s2
e

In the above, p is the dimension of the square and n is the number of observations

per unit.

Plan 2

Winer’s Plan 2 expands the design of Plan 1 discussed above by adding levels of a

Factor D. Separate Latin Squares are used at each level of Factor D. The plan of the

design might appear as below:

Factor B Factor B

B1 B2 B3 B1 B2 B3

Factor Factor

Factor D1 A1 C3 C2 C1 Factor D2 A1 C1 C3 C2

A2 C1 C3 C2 A2 C2 C1 C3

A3 C2 C1 C3 A3 C3 C2 C1
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The analysis of Plan 2 is as follows:

Source of variation Degrees of freedom Expected mean square

A p � 1 s2
e + npqs2

a

B p � 1 s2
e + npqs2

b

C p � 1 s2
e + npqs2

g

D q � 1 s2
e + npqs2

d

AD (p � 1)(q � 1) s2
e + npqs2

ad

BD (p � 1)(q � 1) s2
e + npqs2

bd

CD (p � 1)(q � 1) s2
e + npqs2

gd

Residual q(p � 1)(p � 2) s2
e + npqs2

res

Within cell p2q(n � 1) s2
e

Notice that we can obtain the interactions with the D factor since all A, B and C

treatments in the Latin square are observed under each level of D. The model for

Plan 2 expected value of the observed (X) score is:

Xijkmo ¼ mþ aiðsÞ þ bjðsÞ þ gkðsÞ þ dm þ adiðsÞm þ bdjðsÞm þ gdkðsÞm þ resðsÞ
(5.21)

As in Plan 1 described above, the (s) indicates sources from the Latin square.

Plan 3 Latin Squares Design

Plan 3 utilizes a balanced set of p � p Latin squares in a p � p � p factorial

experiment. An example for a 3 � 3 � 3 design is shown below:

Factor B Factor B Factor B

B1 B2 B3 B1 B2 B3 B1 B2 B3

Factor Factor Factor

Factor D1 A1 C1 C2 C3 Factor D2 A1 C2 C3 C1 Factor D3 A1 C3 C1 C2

A2 C2 C3 C1 A2 C3 C1 C2 A2 C1 C2 C3

A3 C3 C1 C2 A3 C1 C2 C3 A3 C2 C3 C1

The levels of factors A, B and C are assigned at random to the symbols defining

the Latin square. The levels of factor D are assigned at random to the whole squares.

Notice the levels of each factor must be p, unlike the previous plan 2. In a complete

four factor design with three levels of each factor there would be 81 cells however

with this design there are only 27. The main effect of factor D will be partially

confounded with the ABC interaction however the main effects of A, B and C as

well as the their interactions will be complete. The model of this design is:

EðXijkmoÞ ¼ mþ ai þ bj þ gk þ abij þ agik þ bgjk þ dm þ abg0ijk (5.22)
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The sources of variation, their degrees of freedom and parameter estimates are as

shown below:

Source D.F. E(MS)

A p � 1 s2
e + np2s2

a

B p � 1 s2
e + np2s2

b

C p � 1 s2
e + np2s2

g

AB (p � 1)(p � 1) s2
e + nps2

ab

AC (p � 1)(p � 1) s2
e + nps2

ag

BC (p � 1)(p � 1) s2
e + nps2

bg

D p � 1 s2
e + np2s2

d

(ABC)0 (p � 1)3 � (p � 1) s2
e + ns2

abg

Within cell p3(n � 1) s2
e

Analysis of Greco-Latin Squares

A Greco-Latin square design permits a three-way control of experimental units

(row, column, and layer effects) through use of two Latin squares that are com-

bined. One square is denoted with Latin letters and the other with Greek letters as

illustrated below:

Square I Square II Combined squares

A B C a b g Aa Bb Cg
B C A g a b Bg Ca Ab
C A B b g a Cb Ag Ba

Using numbers for the levels of the first and second effects, the composite square

might also be represented by:

11 22 33

23 31 12

32 13 21

There are actually four variables: row, column, Latin-letter and Greek letter

variables with p-squared cells in the composite square rather than p * p * p * p as

there would be in a four-factor factorial design. The main effects of each of the

factors will be confounded with the two-factor and higher interaction effects.

Therefore this design is limited to the situations where the four factors are assumed

to have negligible interactions. It is assumed that there are n independent

observations in each cell.
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The analysis that results provides the following sources of variation:

Source D.F. E(MS)

A (Rows) p � 1 s2
e + nps2

a

B (Columns) p � 1 s2
e + nps2

b

C (Latin letters) p � 1 s2
e + nps2

g

D (Greek letters) p � 1 s2
e + nps2

d

Residual (p � 1)(p � 3) s2
e + ns2

res

Within cell p2(n � 1) s2
e

Total np2 � 1

Plan 5 Latin Square Design

When the same unit (e.g. subject) may be observed under different treatment

conditions, a considerable saving is realized in the sample size necessary for the

experiment. As in all repeated measures designs however one must make certain

assumptions about the homogeneity of variance and covariance. In plan 5 the levels

of treatment under factor B are arranged in a Latin square with the columns

representing levels of factor A. The rows are groups of subjects for which repeated

measures are made across the columns of the square. The design is represented

below:

Factor A levels

A1 A2 A3

Group G1 B3 B1 B2

G2 B1 B2 B3

G3 B2 B3 B1

The model of the analysis is:

EðXijkmÞ ¼ mþ dk þ pmðkÞ þ ai þ bj þ ab0ij (5.23)

The sources of variation are estimated by:

Source D.F. E(MS)

Between subjects np � 1

B p � 1 s2
e + ps2

p + nps2
d

Subjects in groups p(n � 1) s2
e + ps2

p

Within subjects np(p � 1)

A p � 1 s2
e + nps2

a

B p � 1 s2
e + nps2

b

(AB0) (p � 1)(p � 2) s2
e + ns2

ab

Error (within) p(n � 1)(p � 1) s2
e
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Plan 6 Latin Squares Design

Winer indicates that Plan 6 may be considered “as a fractional replication of a three-

factor factorial experiment arranged in incomplete blocks.” Each subject withinGroup

1 is assigned to to treatement combinations abc111, abc231 and abc321 such that each

subject in the group is observed under all levels of factors A and B but under only one

level of factor C. There is no balance with respect to any of the interactions but there is

balance with respect to factors A and B. If all interactions are negligible relative to the

main effects the following model and the sources of variation are appropriate:

EðXijkmÞ ¼ mþ gkðsÞ þ pmðkÞ þ aiðsÞ þ bjðsÞ þ resðsÞ: (5.24)

Source of variation D.F. E(MS)

Between subjects np � 1

C p � 1 s2
e + ps2

p + nps2
g

Subjects within groups p(n � 1) s2
e + ps2

p

Within subjects np(p � 1)

A p � 1 s2
e + nps2

a

B p � 1 s2
e + nps2

b

Residual (p � 1)(p � 2) s2
e + ns2

res

Error (within) p(n � 1)(p � 1) s2
e

The experiment may be viewed (for three levels of each variable) in the design

below:

Levels of factor A

Group Levels of C A1 A2 A3

G1 C1 B1 B3 B2

G2 C2 B2 B1 B3

G3 C3 B3 B2 B1

Plan 7 for Latin Squares

If, in the previous plan 6 we superimpose the Factors B and C as orthogonal Latin

Squares, then Factor C is converted into a within-subjects effect. The Greco-Latin

square design may be viewed as the following (for three levels of treatment):

Group

Levels of factor A

A1 A2 A3

G1 BC11 BC23 BC32

G2 BC22 BC31 BC13

G3 BC33 BC12 BC21
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The expected value of X is given as:

EðXijkmoÞ ¼ mþ dmðsÞ þ poðmÞ þ aiðsÞ þ bjðsÞ þ gkðsÞ (5.25)

The sources of variation, their degrees of freedom and the expected mean

squares are:

Source of variation D.F. E(MS)

Between subjects np � 1

Groups p � 1 s2
e + ps2

p + nps2
d

Subjects within groups p(n � 1) s2
e + ps2

p

Within subjects np(p � 1)

A p � 1 s2
e + nps2

a

B p � 1 s2
e + nps2

b

C p � 1 s2
e + nps2

g

Residual (p � 1)(p � 3) s2
e + ns2

res

Error (within) p(n � 1)(p � 1) s2
e

Plan 9 Latin Squares

If we utilize the same Latin square for all levels of a Factor C we would have a

design which looks like the outline shown below for three levels:

Levels of factor C

C1 C2 C3

Levels of factor A Levels of factor A Levels of factor A

Group A1 A2 A3 Group A1 A2 A3 Group A1 A2 A3

G1 B2 B3 B1 G4 B2 B3 B1 G7 B2 B3 B1

G2 B1 B2 B3 G5 B1 B2 B3 G8 B1 B2 B3

G3 B3 B1 B2 G6 B3 B1 B2 G9 B3 B1 B2

The model for expected values of X is:

EðXijkmoÞ ¼ mþ gk þ ðrowÞm þ ðgx rowÞkm þ poðmÞ þ ai þ bj þ ab0ij

þ agik þ bgjk þ abg0ijk (5.26)

The sources of variation for Plan 9 are shown below:

Source of variation D.F. E(MS)

Between subjects npq � 1

C q � 1 s2
e + ps2 + np2s2

g

(continued)
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Source of variation D.F. E(MS)

Rows [AB(between)] p � 1 s2
e + ps2 + nqs2

ab

C x row [ABC(between)] (p � 1)(q � 1) s2
e + ps2 + ns2

ab

Subjects within groups pq(n � 1) s2
e + ps2

Within subjects npq(p � 1)

A p � 1 s2
e + npqs2

a

B p � 1 s2
e + npqs2

b

AC (p � 1)(q � 1) s2
e + nps2

ag

BC (p � 1)(q � 1) s2
e + nps2

bg

(AB)0 (p � 1)(p � 2) s2
e + nqs2

ab

(ABC)0 (p � 1)(p � 3)(q � 1) s2
e + ns2

abg

Error (within) pq(p � 1)(n � 1) s2
e

In this design the groups and subjects within groups are considered random

while, like previous designs, the A,B and C factors are fixed. Interactions with the

group and subject effects are considered negligible.

Analysis of Variance Using Multiple Regression Methods

A Comparison of ANOVA and Regression

In one-way analysis of variance with Fixed Effects, the model that describes the

expected Y score is usually given as

Yi;j ¼ mþ aj þ ei;j (5.27)

where Yi,j is the observed dependent variable score for subject i in treatment group j,

m is the population mean of the Y scores,

aj is the effect of treatment j, and

ei,j is the deviation of subject i in the jth treatment group from the population mean

for that group.

The above equation may be rewritten with sample estimates as

Y0
i;j ¼ �Y::þ ð�Y:j � �Y::Þ (5.28)

For any given subject then, irrespective of group, we have

Y0
i ¼ �Y::þ ð�Y:1 � �Y::ÞX1 þ . . .þ ð�Y:k � �Y::ÞXk (5.29)
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where Xj is 1 if the subject is in the group, otherwise 0.

If we let B0 ¼ Y.. and the effects (Y.j � Y..) be Bj for any group, we may rewrite

the above equation as

Y0
i ¼ B0 þ B1X1 þ . . .þ BkXk (5.30)

This is, of course, the general model for multiple regression! In other words, the

model used in ANOVAmay be directly translated to the multiple regression model.

They are essentially the same model!

You will notice that in this model, each subject has K predictors X. Each

predictor is coded a 1 if the subject is in the group, otherwise 0. If we create a

variable for each group however, we do not have independence of the predictors.

We lack independence because one group code is redundant information with the

K � 1 other group codes. For example, if there is only two groups and a subject is

in group 1, then X1 ¼ 1 and X2 MUST BE 0 since an individual cannot belong in

both groups. There are only K � 1 degrees of freedom for group membership – if

an individual is not in groups 1 up to K we automatically know they belong to the

Kth group. In order to use multiple regression, the predictor variables must be

independent. For this reason, the number of predictors is restricted to one less than

the number of groups. Since all aj effects must sum to zero, we need only know the

first K � 1 effects – the last can be obtained by subtraction from 1 � S aj where
j ¼ 1,..,K � 1.

We also remember that

B0 ¼ �Y::� B1
�X1 þ . . .þ Bk

�Xkð Þ: (5.31)

Effect Coding

In order for B0 to equal the grand mean of the Y scores, we must restrict our model

in such a way that the sum of the products of the X means and regression

coefficients equals zero. This may be done by use of “effect” coding. In this method

there are K � 1 independent variables for each subject. If a subject is in the group

corresponding to the jth variable, he or she has a score Xj ¼ 1 otherwise the score is

Xj ¼ 0. Subjects in the Kth group do not have a corresponding X variable so they

receive a score of _1 in all of the group codes.

As an example, assume that you have five subjects in each of three groups. The

“effect” coding of predictor variables would be
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You may notice that the mean of X1 and of X2 are both zero. The cross-products

of X1X2 is n3, the size of the last group.

If we now perform a multiple regression analysis as well as a regular ANOVA

for the data above, we will obtain the following results:

You will note that the SSgroups may be obtained from either the ANOVA printout

or the SSreg in the Multiple Regression analysis. The SSerror is the same in both

analyses as is the total sum of squares.

Orthogonal Coding

While effect coding provides the means of directly estimating the effect of mem-

bership in levels or treatment groups, the correlations among the independent

variables are not zero, thus the inverse of that matrix may be difficult if done by

hand. Of greater interest however, is the ability of other methods of data coding that

permits the research to pre-specify contrasts or comparisons among particular

treatment groups of interest. The method of orthogonal coding has several benefits:
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1. The user can pre-plan comparisons among selected groups or treatments, and

2. The inter-correlation matrix is a diagonal matrix, that is, all off-diagonal values

are zero. This results in a solution for the regression coefficients which can easily

be calculated by hand.

When orthogonal coding is utilized, there are K � 1 possible orthogonal

comparisons in each factor. For example, if there are four treatment levels of Factor

A, there are 3 possible orthogonal comparisons that may be made among the

treatment means. To illustrate orthogonal coding, we will utilize the same example

as before. The previous effect coding will be replaced by orthogonal coding as

illustrated in the data below:

Now notice that, as before, the sum of the values in each coding vector is zero.

Also note that, in this case, the product of the coding vectors is also zero. (Multiply

the code values of two vectors for each subject and add up the products – they

should sum to zero.) Vector 1 above (Code 1) represents a comparison of treatment

group 1 with treatment group 2. Vector 2 represents a comparison of groups 1 AND

2 with group 3.

Now let us look at coding for, say, five treatment groups. The coding vectors

below might be used to obtain orthogonal contrasts:

Analysis of Variance Using Multiple Regression Methods 139



As before, the sum of coefficients in each vector is zero and the product of any

two vectors is also zero. This assumes that there are the same number of subjects in

each group. If groups are different in size, one may use additional multipliers based

on the proportion of the total sample found in each group. The treatment group

number in the left column may, of course, represent any one of the treatment groups

thus it is possible to select a specific comparison of interest by assigning the

treatment groups in the order necessary to obtain the comparison of interest.

Return now to the previous example. The results from the regression analysis

program as well as the ANOVA program are presented in the figures below. The

first figure presents the inter-correlation matrix among the variables. Notice that the

inter-correlations among the coding vectors are zero. The next figure presents

the R2 and the summary of regression coefficients. Multiplication of the R2 times

the sum of squares for the dependent variable will yield the sum of squares for

regression. This will equal the sum of squares for groups in the subsequent ANOVA

results table. By use of orthogonal vectors, we may also note that the regression

coefficients are simply the correlation of each vector with the dependent variable.

Multiplication of the squared regression coefficients times the sum of squares total

will therefore give the sum of squares due to each contrast. The total sum of squares

for groups is simply the sum of the sum of squares for each contrast! The test of

departure of the regression coefficients from zero is a test of significance for the

contrast in the corresponding coding vector. The a priori specified contrasts, unlike

post-hoc comparisons maintain the selected alpha rate and more power. Hence,

sensitivity to true population treatment effects are more likely to be detected by the

planned comparison than by a post-hoc comparison.

Dummy Coding

Effect and orthogonal coding methods both resulted in code vectors which summed

to zero across the subjects. In each of those cases, the constant B0 estimates the

population mean since it is the grand mean of the sample (see equation 5.3). Both

methods of coding also resulted in the same squared multiple correlation coefficient

R2 indicating that the proportion of variance explained by both methods is the same.

Another method of coding which is popular is called “dummy” coding. In this

method, K � 1 vectors are also created for the coding of membership in the K

treatment groups. However, the sum of the coded vectors do not add to zero as in the

previous two methods. In this coding scheme, if a subject is a member of treatment

group 1, the subject receives a code of 1. All other treatment group subjects receive

a code of 0. For a second vector (where there are more than two treatment groups),

subjects that are in the second treatment group are coded with a 1 and all other

treatment group subjects are coded 0. This method continues for the K � 1 groups.

Clearly, members of the last treatment group will have a code of zero in all vectors.

The coding of members in each of five treatment groups is illustrated below:
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With this method of coding, like that of effect coding, there will be correlations

among the coding vectors which differ from zero thus necessitating the computa-

tion of the inverse of a symmetric matrix rather than a diagonal matrix. Never the

less, the squared multiple correlation coefficient R2 will be the same as with

the other coding methods and therefore the SSreg will again reflect the treatment

effects. Unfortunately, the resulting regression coefficients reflect neither the direct

effect of each treatment or a comparison among treatment groups. In addition, the

constant B0 reflects the mean only of the treatment group (last group) which

receives all zeroes in the coding vectors. If however, the overall effects of treatment

is the finding of interest, dummy coding will give the same results.

Two Factor ANOVA by Multiple Regression

In the above examples of effect, orthogonal and dummy coding of treatments, we

dealt only with levels of a single treatment factor. We may, however, also analyze

multiple factor designs by multiple regression using each of these same coding

methods. For example, a two-way analysis of variance using two treatment factors

will typically provide the test of effects for the A factor, the B factor and the

interaction of the A and B treatments. We will demonstrate the use of effect,

orthogonal and dummy coding for a typical research design involving three levels

of an A treatment and four levels of a B treatment.
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For effect coding in the above design, we apply effect codes to the A treatment

levels first and then, beginning again, to the B treatment levels independently of the

A codes. Finally, we multiple each of the code vectors of the A treatments times

each of the code vectors of the B treatment to create the interaction vectors. The

vectors below illustrate this for the above design:

If you add the values in any one of the vectors above you will see they sum to

zero. In addition, the product of any two vectors selected from a combination of

treatment A, B or A � B sets will also be zero! With effect coding, the treatment

effect vectors from one factor are orthogonal (uncorrelated) with the treatment

effect vectors of the other factor as well as the interaction effect vectors. The effect

vectors within each treatment or interaction are not, however, orthogonal.

With effect coding, we may “decompose” the R2 for the full model into the three

separate parts, that is

R2
y:1 2 3 4 5 6 7 8 9 10 11 ¼ R2

y:1 2 þ R2
y:3 4 5 þ R2

y:6 7 8 9 10 11 (5.32)

since the A, B and A � B effects are orthogonal.

Again, the regression coefficients directly report the effect of treatment group

membership, that is, B1 is the effect of treatment group 1 in the A factor and B2 is
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the effect of treatment group 2 in the A factor. The effect of treatment group 3 in the

A factor can be obtained as

a3 ¼ 1� Sða1 þ a2Þ ¼ 1� ðB1 þ B2Þ (5.33)

since the sum of effects is constrained to equal zero. Similarly, B3 estimates b1, B4

estimates b2 and B5 estimates the B factor effect b3 for column 3. The effect of

column four is also obtained as before, that is,

b4 ¼ 1� ðB3 þ B4 þ B5Þ: (5.34)

The interaction effects for the cells, ab ij, may be obtained from the regression

coefficients corresponding to the interaction vectors. In this example, B6 estimates

ab11, B7 estimates ab12, B8 estimates ab13, B9 estimates ab21, B10 estimates ab22
and B11 estimates ab23. Since the sum of the interaction effects in any row or

column must be zero, we can determine estimates for the cells in rows 1 and 2 of

column 4 as follows:

ab14 ¼ 1� ðB6 þ B7 þ B8Þ and (5.35)

ab24 ¼ 1� ðB9 þ B10 þ B11Þ: (5.36)

We may also utilize orthogonal coding vectors within each treatment factor as

we did for effect coding above. The same two-factor design above could utilize the

vectors below:
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As before, the sum of each vector is zero. This time however, the product of

vectors within each factor as well as between factors and interaction are zero. All

vectors are orthogonal to one another. The inter-correlation matrix is therefore a

diagonal matrix and easily inverted by hand. The R2 for the full model may be

easily decomposed into the sum of squared simple correlations between the depen-

dent and independent score vectors, that is

R2
y:1 2 3 4 5 6 7 8 9 10 11

¼ r2y:1 þ r2y:2 þ ðrow effectsÞ
r2y:3 þ r2y:4 þ r2y:5 þ ðcolumn effectsÞ
r2y:6 þ r2y:7 þ r2y:8 þ r2y:9 þ r2y:10 þ r2y:11 ðinteraction effectsÞ

(5.37)

The regression coefficients obtained with orthogonal coding vectors represent

planned comparisons among treatment means. Using the coding vectors for this

example, the B1 coefficient would represent the comparison of row 1 mean with

row 2 mean. B2 would represent the contrast of row 3 mean with the combination of

rows 1 and 2. The coefficients B3, B4 and B5 similarly contrast column means. The

contrasts represented by the interaction vectors will reflect comparisons among

specific cell combinations. For example, B7 above will reflect a contrast of the

combined cells in row 1 column 1 and row 2 column 2 with the combined cells of

row 1 column 2 and row 2 column 1.

Analysis of Covariance by Multiple Regression Analysis

In the previous sections we have examined methods for coding nominal variables of

analysis of variance designs to explain the variance of the continuous dependent

variable. We may, however, also include one or more independent variables that are

continuous and expected to have the same correlation with the dependent variable

in each treatment group population. As an example, assume that the two-way

ANOVA design discussed in the previous section represents an experiment in

which Factor A represent three type of learning reinforcement (positive only,

negative only and combined positive and negative) while Factor B represents four

types of learning situations (CAI, teacher led, self instruction, and peer tutor).

Assume the dependent variable is a standardized measure of Achievement in

learning the French language. Finally, assume the treatment groups are exposed
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to the treatments for a sufficiently long period of time to produce measurable

achievement by most students and that the students have been randomly assigned

to the treatment groups. It may occur to the reader that achievement in learning a

new language might be related to general intelligence as measured, say, by the

Stanford-Binet Intelligence Test as well as related to prior English achievement

measured by a standardized achievement test in English. Variation in IQ and

English achievement of subjects in the treatment groups may explain a portion of

the within treatment cell variance. We prefer to have the within cell variance as

small as possible since it is the basis of the mean squared residual used in the F tests

of our treatment effects. To accomplish this, we can first extract that portion of total

dependent score variance explained by IQ and English achievement before exam-

ining that portion of the remaining variance explainable by our main treatment

effects. Assume therefore, that in addition to the 11 vectors representing Factor A

level effects, Factor B level effects and Factor interaction effects, we include X12

and X13 predictors of IQ and English. Then the proportion of variance for Factor A

effects controlling for IQ and English is

R2
y:1 2 3 4 5 6 7 8 9 10 11 12 13 � R2

y:3 4 5 6 7 8 9 10 11 12 13

The proportion of French achievement variance due to Factor B treatments

controlling for IQ and English would be

R2
y:1 2 3 4 5 6 7 8 9 10 11 12 13 � R2

y:1 2 6 7 8 9 10 11 12 13

and the proportion of variance due to interaction of Factor A and Factor B

controlling for IQ and English would be

R2
y:1 2 3 4 5 6 7 8 9 10 11 12 13 � R2

y:1 2 3 4 5 12 13

In each of the above, the full model contains all predictors while the restricted

model contains all variables except those of the effects being evaluated. The F

statistic for testing the hypothesis of equal treatment effects is

F ¼ R2
full � R2

restricted

1:0� R2
full

� N� Kf � 1

Kf � Kr

(5.38)

where Kf is the number of predictors in the full model, and

Kr is the number of predictors in the restricted model.

The numerator and denominator degrees of freedom for these F statistics is

(Kf � Kr) and (N � Kf � 1) respectively.

Analysis of Covariance assumes homogeneity of covariance among the treat-

ment groups (cells) in the populations from which the samples are drawn. If this

assumption holds, the interaction of the covariates with the main treatment factors

(A and B in our example) should not account for significant variance of the
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dependent variable. You can explicitly test this assumption therefore by

constructing a full model which has all of the previously included independent

variables plus prediction vectors obtained by multiplying each of the treatment

level vectors times each of the covariates. In our above example, for instance, we

would multiply each of the first five vectors times both IQ and English vectors (X12

and X13) resulting in a full model with ten more variables (23 predictors in all).

The R2 from our previous full model would be subtracted from the R2 for this

new full model to determine the proportion of variance attributable to heterosce-

dasticity of the covariance among the treatment groups. If the F statistic for this

proportion is significant, we cannot employ the analysis of covariance model. The

implication would be that somehow, IQ and prior English achievement interacts

differently among the levels of the treatments. Note that in testing this assumption

of homogeneity of covariance, we have a fairly large number of variables in the

regression analysis. To obtain much power in our F test, we need a considerable

number of subjects. Several hundred subjects would not be unreasonable for this

study, i.e. 25 subjects per each of the eight treatment groups!

Sums of Squares by Regression

The General Linear Model

We have seen in the above discussion that the multiple regression method may be

used to complete an analysis of variance for a single dependent variable. The model

for multiple regression is:

yi ¼
Xk
j¼1

BjXjþei (5.39)

where the jth B value is a coefficient multiplied times the jth independent predictor

score, Y is the observed dependent score and e is the error (difference between the

observed and the value predicted for Y using the sum of weighted independent

scores).

In some research it is desirable to determine the relationship between multiple

dependent variables and multiple independent variables. Of course, one could

complete a multiple regression analysis for each dependent variable but this

would ignore the possible relationships among the dependent variables themselves.

For example, a teacher might be interested in the relationship between the sub-

scores on a standardized achievement test (independent variables) and the final

examination results for several different courses (dependent variables.) Each of the

final examination scores could be predicted by the sub-scores in separate analyses

but most likely the interest is in knowing how well the sub-scores account for the
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combined variance of the achievement scores. By assigning weights to each of

the dependent variables as well as the independent variables in such a way that the

composite dependent score is maximally related to the composite independent score

we can quantify the relationship between the two composite scores. We note that

the squared product-moment correlation coefficient reflects the proportion of vari-

ance of a dependent variable predicted by the independent variable.

We can express the model for the general linear model as:

YM ¼ BX þ E (5.40)

where Y is an n (the number of subjects) by m (the number of dependent variables)

matrix of dependent variable values, M is a m by s (number of coefficient sets), X is

a n by k (the number of independent variables) matrix, B is a k by s matrix of

coefficients and E is a vector of errors for the n subjects.

The General Linear Model (GLM) procedure is an analysis procedure that

encompasses a variety of analyses. It may incorporate multiple linear regression

as well as canonical correlation analysis as methods for analyzing the user’s data.

In some commercial statistics packages the GLM method also incorporates non-

linear analyses, maximum-likelihood procedures and a variety of tests not found in

the current version of this model. The version in OpenStat is currently limited to a

single dependent variable (continuous measure.) You should complete analyses

with multiple dependent variables with the Canonical Correlation procedure.

One can complete a variety of analyses of variance with the GLM procedure

including multiple factor ANOVA and repeated and mixed model ANOVAs.

The output of the GLM can be somewhat voluminous in that the effects of

treatment variables and covariates are analyzed individually by comparing regres-

sion models with and without those variables.

Canonical Correlation

Introduction

Canonical correlation analysis involves obtaining an index that describes the degree

of relationship between two variables, each of which is a weighted composite of

other variables. We have already examined the situation of an index between one

variable and a weighted composite variable when we studied the multiple correla-

tion coefficient of chapter 4. Using a form similar to that used in multiple regression

analysis, we might consider:

by1Y1 þ by2Y2 þ ::þ bymYm þ by ¼ bx1X1 þ ::þ bxnXn þ bx
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as a model for the regression of the composite function Yc on the composite

function Xc where

Yc ¼
Xm
i¼1

byiYi and Xc ¼
Xn
j¼1

byjXj (5.41)

and the Y and X scores are in standardized form (z scores).

Using “least-squares” criteria, we can maximize the simple product-moment

correlation between Yc and Xc by selecting coefficients (Betas) which minimize

the residuals (e). As in multiple regression, this involves solving partial derivatives

for the b’s on each side of the equation. The least-squares solution is more

complicated than for multiple regression and will not be covered in this text. (See

T. W. Anderson, An Introduction to Multivariate Analysis, 1958, chapter 12).

Unfortunately for the beginning student, the canonical correlation analysis does

not yield just one correlation index (Rc), but in fact may yield up to m or n

(whichever is smaller) independent coefficients. This is because there are additional

linear functions of the X’s and Y’s which may “explain” the residual variances y
and x not explained by the first set of bx and by weights. Each set of these canonical
functions explains an additional portion of the common variance of the X and Y

variables!

Before introducing the mathematics of obtaining these canonical correlations,

the sets of corresponding weights and statistical tests of significance, we need to

have a basic understanding of the concept of roots and vectors of a matrix.

Eigenvalues and Eigenvectors

A concept which occurs frequently in multivariate statistical analyses is the concept

of eigenvalues (roots) and associated eigenvectors. Canonical correlation, factor

analysis, multivariate analysis of variance, discriminant analysis, etc. utilize the

roots and vectors of matrices in their solutions. To understand this concept, consider

a k by k matrix (e.g. a correlation matrix)[R]kxk. A basic problem in mathematical

statistics is to find a k � 1 vector (matrix) [E]j and a scalar (single value) yj such that

½R�kxk½E�kx1 ¼ yj ½E�kx1 where at least one element

of ½E�kx1 is not zero:
(5.42)

This equation may be rewritten as

½R�kxk ½E�kx1 � yj ½E�kx1 ¼ ½0�kx1

or as ½R�kxk � yj ½I�kxk
� �

½E�kx1 ¼ ½0�kx1 (5.43)
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If we were to solve this equation for [E] by multiplying both sides of the last

equation by the inverse of the matrix in the parenthesis (assuming the inverse

exists), then [E] would be zero, a solution which violates our desire that at least

one element of [E] NOT be zero! Consequently, [E] will have a non-zero element

only if the determinant of

½R�kxk � yj ½I�kxk
� �

is zero. The equation

½R�kxk � yj ½I�kxk
�� �� ¼ 0 (5.44)

is called the characteristic equation. The properties of this equation have many

applications in science and engineering.

The vector [E]kx1 and the scalar yj in the (5.43) are the eigenvector and

eigenvalue of the matrix [R]kxk.

Eigenvalues and eigenvectors are also known as characteristic roots and vectors

of a matrix. To demonstrate that the eigenvalue is a root of a characteristic equation,

consider the simple case of a 2 � 2 matrix such as

b11 b12j j
b21 b22j j

The problem is to find the root yj in solving

b11 b12j j e1j j e1j j
j j: j j ¼ yj j j
b21 b22j j e2j j e2j j

Using the determinant:

b11 b12j j y 0j j
�j jj j ¼ 0

b21 b22j j 0 yj j

or

j jb11 y b12j j
j j j j ¼ 0

j jb21 b22 yj j
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This determinant has the solution

ðb11 � yÞðb22 � yÞ � b12b21 ¼ 0

or b11b22 � yb22 � yb11 þ y2 � b12b21 ¼ 0

or y2 � yðb22 þ b11Þ þ ðb11b22 � b12b21Þ ¼ 0

This is a quadratic equation with two roots y1 and y2 given by

:5 ðb22 þ b11Þ þ =�f ðb22 þ b11Þ2 � 4ðb11b22 � b12b21Þ:5
oh i

With the roots y1 and y2 evaluated, the elements e1 and e2 of the eigenvector can

be solved from

b11 b12j j e1j j e1j j
j j j j ¼ yjj j
b21 b22j j e2j j e2j j

which reduces to the equations (for each root):

b11e1 þ b12e2 ¼ y e1

b21e1 þ b22e2 ¼ y e2

and further reduces to

ðb11 � yÞe1 þ b12e2 ¼ 0

b21e1 þ ðb22 � yÞe2 ¼ 0

Solving these last equations simultaneously for e1 and e2 will yield the elements

of the eigenvector [E].

There will be an eigenvector for each eigenvalue. In the case of the 2 � 2

matrix, the complete solution will be

b11 b12j j e11 e12j j y1 0j j e11 e12j j
j j j j ¼ j jj j
b21 b22j j e21 e22j j 0 y2j j e21 e22j j (5.45)

Every k � k matrix will have as many eigenvalues and eigenvectors as its order.

Not all of the eigenvalues may be nonzero. When a square matrix [R] is symmetric,

its eigenvalues are all real and the associated eigenvectors are orthogonal (products

equal zero). If some of the eigenvalues are zero, we say that the RANK of the matrix

is (k � p) where p is the number of roots equal to zero. The TRACE of a symmetric

matrix is the sum of the eigenvalues. The determinant of the matrix is the product of

all roots.
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Other relationships obtainable from symmetric matrices are:

½R�kxk ½E�kxk ¼ ½y�kxk ½E�kxk (5.46)

c½R�kxk ½E�kxk ¼ c½y�kxk ½E�kxk where c is a constant:

It may be pointed out that for any symmetric matrix and its eigenvalues there

may be an infinite number of associated eigenvector matrices. There is, however, at

least one matrix of eigenvectors that is orthonormal. An orthonormal matrix is one

which when premultiplied by its transpose yields an identity matrix. If [E] is

orthonormal then:

½E�0kxk ½E�kxk ¼ ½I�kxk (5.47)

and ½E�0kxk ¼ ½E��1
kxk (5.48)

Did you hear about the statistician who was looking all over for the sum of eigenvalues

from a variance–covariance matrix but couldn’t find a trace?

The Canonical Analysis

In completing a canonical analysis, the inter-correlation matrix among all of the

variables may be partitioned into four sub-matrices as shown symbolically below.

The [R11] matrix is the matrix of correlations among the “left_hand” variables of

the equation presented earlier. The [R22] matrix is the correlations among the

“right_hand” variables of our model. [R12] are the inter-correlations among

the left and right hand variables. [R21] is the transpose of [R12].

R11j j R12j
½R� ¼ j j j
R21j j R22j (5.49)

To start the canonical analysis, a product matrix is first formed by:

½Rp� ¼ ½R22��1½R21� ½R11��1½R12� (5.50)

The equation

½Rp� � yj½I�
� �

vj ¼ 0 (5.51)
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where yj is the jth root and vj is the corresponding eigenvector is solved using the

characteristic equation:

½Rp� � yj½I�
�� �� ¼ 0 (5.52)

with the restriction that

½V�0½R22�½V� ¼ ½I� (5.53)

The canonical correlation 1Rc corresponding to the first linear relationship

between the left hand variables and the right hand variables is equal to the square

root of the first root y1. In general, the jth canonical correlation is obtained as:

jRc ¼ p
yj (5.54)

The canonical correlation may be interpreted as the product-moment correlation

between a weighted composite of the left-hand variables and a weighted composite

of the right-hand variables.

Discriminant Function/MANOVA

Theory

Multiple discriminant function analysis is utilized to obtain a set of linear functions

which maximally discriminate (differentiate) among subjects belonging to several

different groups or classifications. For example, an investigator may want to

develop equations which differentiate among successful occupational groups

based on responses to items of a questionnaire. The functions obtained may be

written as:

Fj ¼ Bj;1X1 þ . . .þ Bj;mXm (5.55)

where

Xi represents an observed variable (i ¼ 1..m),

Bj,i is a coefficient for the Xi variable from the

jth discriminant function

The coefficients of these discriminant functions are the normalized vectors

corresponding to the roots obtained for the matrix

½P� ¼ ½W��1½A� (5.56)
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where

[W] � 1 is the inverse of the pooled within groups deviation score cross-products

and

[A] is the among groups cross-products of deviations of group means from the

grand mean (weighted by the group size).

Once the discriminant functions are obtained, they may be used to classify

subjects on the basis of their continuous variables. The number of functions to be

applied to each individual’s set of X scores will be one less than the number of

groups or the number of X variables (whichever is less). Subjects are then classified

into the group for which their discriminant score has the highest probability of

belonging.

Discriminant function analysis and Multivariate Analysis of Variance results are

essentially identical. The Wilk’s Lambda statistic, the Rao F statistic and the

Bartlett Chi-Squared statistic will yield the same inference regarding significant

differences among the groups. The discriminant functions may be used to obtain a

plot of the subjects in the discriminant space, that is, the Cartesian (orthogonal)

space of the discriminant functions. By examining these plots and the standardized

coefficients which contribute the most to each discriminant function, you can

determine those variables which appear to best differentiate among the groups.

Cluster Analyses

Theory

Objects or people may form groups on the basis of similarity of scores on one or

more variables. For example, students in a school may form groups relatively

homogeneous with regard to interests in music, athletics, science, languages, etc.

An investigator may not have “a priori” groups but rather, be interested in

identifying “natural” groupings based on similar score profiles. The Cluster

programs of this chapter provide the capability of combining subjects which have

the most similar profile of scores.

Hierarchical Cluster Analysis

This procedure was adapted from the Fortran program provided by Donald J.

Veldman in his 1967 book. To begin, the sum of squared differences for each pair

of subjects onK variables is calculated. If there are n subjects, there are n * (n � 1)/2

pairings. That pair of subjects yielding the smallest sum of squared differences is then

combined using the average of the pair on each variable, forming a new “subject” or

group. The process is repeatedwith a new combination formed each time. Eventually,
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of course, all subjects are combined into a single group. The decision as to when to

stop further clustering is typically based on an “error” estimate which reflects the

variability of scores for subjects in groups. As in analysis of variance, the between

group variability should be significantly greater than the within group variability, if

there are to be significant differences among the groups formed.

When you begin execution of the program, you are asked to identify the

variables in your data file that are to be used in the grouping. You are also asked

to enter the number of groups at which to begin printing the members within

each cluster. This may be any value from the total number of subjects down to 2.

In practice, you normally select the value of the “ideal” number of groups you

expect or some slightly larger value so you can see the increase in error which

occurs as more and more of the groups and subjects are combined into new groups.

You may also specify the significance level necessary to end the grouping, for

example, the value .05 is frequently used in one-way ANOVA analyses when

testing for significance. The value used is in fact referred to the F distribution for

an F approximation to a multivariate Wilk’s Lambda statistic.

Path Analysis

Theory

Path analysis is a procedure for examining the inter-correlations among a set of

variables to see if they are consistent with a model of causation. A causal model is

one in which the observed scores (events) of an object are assumed to be directly or

indirectly caused by one or more preceding events. For example, entrance to

college may be hypothesized to be a result of high achievement in high school.

High achievement in high school may be the result of parent expectations and the

student’s intelligence. Intelligence may be a result of parent intelligence, early

nutrition, and early environmental stimulation, etc., etc. Causing and resultant

variables may be described in a set of equations. Using standardized z scores, the

above example might be described by the following equations:

1. z1 ¼ e1 Parent intelligence

2. z2 ¼ P21z1 þ e2 Child0s nutrition
3. z3 ¼ P31z1 þ P32z2 þ e3 Child0s intelligence
4. z4 ¼ P41z1 þ e4 Parent expectations

5. z5 ¼ P53z3 þ p54z4 þ e5 School achievement

6. z6 ¼ P63z3 þ P64z4 þ P65z5 þ e6 College GPA

In the above equations, the P’s represent path coefficients measuring the strength

of causal effect on the resultant due to the causing variable z. In the above example,

z1 has no causing variable and path coefficient. It is called an exogenous variable

and is assumed to have only external causes unknown in this model. The “e” values
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represent contributions that are external and unknown for each variable. These

external causes are assumed to be uncorrelated and dropped from further

computations in this model. By substituting the definitions of each z score in a

model like the above, the correlation between the observed variables can be

expressed as in the following examples:

r12 ¼ 3z1z2=n ¼ P213z1z1=n ¼ P21 (5.57)

r23 ¼ 3z2z3= n ¼ P31P21 þ P32 (5.58)

etc.

In other words, the correlations are estimated to be the sum of direct path

coefficients and products of indirect path coefficients. The path coefficients are

estimated by the standardized partial regression coefficients (betas) of each resul-

tant variable on its causing variables. For example, coefficients P31 and P32 above

would be estimated by ß31.2 and ß32.1 in the multiple regression equation

z3 ¼ b31:2z1 þ b32:1z2 þ e3 (5.59)

If the hypothesized causal flow model sufficiently describes the interrela-

tionships among the observed variables, the reproduced correlation matrix using

the path coefficients should deviate only by sampling error from the original

correlations among the variables.

When you execute the Path Analysis procedure in OpenStat, you will be asked to

specify the exogenous and endogenous variables in your analysis. The program

then asks you to specify, for each resultant (endogenous) variable, the causing

variables. In this manner you specify your total path model. The program then

completes the number of multiple regression analyses required to estimate the path

coefficients, estimate the correlations that would be obtained using the model

path coefficients and compare the reproduced correlation matrix with the actual

correlations among the variables.

You may discover in your reading that this is but one causal model method. More

complex methods include models involving latent variables (such as those identified

through factor analysis), correlated errors, adjustments for reliability of the

variables, etc. Structural model equations of these types are often analyzed using

the LISREL™ package found in commercial packages such as SPSS™ or SAS™.

Factor Analysis

The Linear Model

Factor analysis is based on the procedure for obtaining a new set of uncorrelated

(orthogonal) variables, usually fewer in number than the original set, that

reproduces the co-variability observed among a set or original variables. Two

models are commonly utilized:
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1. The principal components model wherein the observed score of an individual i

on the jth variable Xi,j is given as:

Xi;j ¼ Aj;1Si;1 þ Aj;2Si;2 þ ::::þ Aj;kSi;k þ C (5.60)

where Aj,k is a loading of the kth factor on variable j,

Si,k is the factor score of the ith individual on the kth factor and

C is a constant.

The Aj,k loadings are typically least-squares regression coefficients.

2. The common factor model assumes each variable X may contain some unique

component of variability among subjects as well as components in common with

other variables. The model is:

Xi;j ¼ Aj;1Si;1 þ ::::þ Aj;kSi;k þ Aj;uSi;u (5.61)

The above equation may also be expressed in terms of standard z scores as:

zi;j ¼ aj;1Si;1 þ ::::þ aj;kSi;k þ aj;uSi;u (5.62)

Since the average of standard score products for the n cases is the product-

moment correlation coefficient, the correlation matrix among the j observed

variables may be expressed in matrix form as:

½R�jxj ¼ ½F�jxk ½F�0kxj � ½U�2jxj ðarray sizes k< ¼ jÞ (5.63)

The matrix [F] is the matrix of factor loadings or correlations of the k theoretical

orthogonal variables with the j observed variables. The [U] matrix is a diagonal

matrix with unique loadings on the diagonal.

The factor loadings above are the result of calculating the eigenvalues and

associated vectors of the characteristic equation:

½R� � ½U�2 � ½I��� �� (5.64)

where the lambda values are eigenvalues (roots) of the equation.

When you execute the Factor Analysis Program in OpenStat, you are asked to

provide information necessary to complete an analysis of your data file. You enter

the name of your file and identify the variables to analyze. If you elect to send

output to the printer, be sure the printer is on when you start. You will also be asked
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to specify the type of analysis to perform. The principle components method, a

partial image analysis, a Guttman Image Analysis, a Harris Scaled Image Analysis,

a Canonical Factor Analysis or an Alpha Factor Analysis may be elected. Selection

of the method depends on the assumptions you make concerning sampling of

variables and sampling of subjects as well as the theory on which you view your

variables. You may request a rotation of the resulting factors which follows

completion of the analysis of the data,. The most common rotation performed is

the Varimax rotation. This method rotates the orthogonal factor loadings so that the

loadings within each factor are most variable on the average. This tends to produce

“simple structure”, that is, factors which have very high or very low loadings for

the original variables and thus simplifies the interpretation of the resulting factors.

One may also elect to perform a Procrustean rotation whereby the obtained factor

loadings are rotated to be maximally congruent with another factor loading matrix.

This second set of loadings which is entered by the user is typically a set which

represents some theoretical structure of the original variables. One might, however,

obtain factor loadings for males and females separately and then rotate one solution

against the other to see if the structures are highly similar for both sexes.
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Chapter 6

Non-Parametric Statistics

Beginning statistics students are usually introduced to what are called “parametric”

statistics methods. Those methods utilize “models” of score distributions such as

the normal (Gaussian) distribution, Poisson distribution, binomial distribution, etc.

The emphasis in parametric statistical methods is estimating population parameters

from sample statistics when the distribution of the population scores can be

assumed to be one of these theoretical models. The observations made are also

assumed to be based on continous variables that utilize an interval or ratio scale of

measurement. Frequently the measurement scales available yield only nominal or

ordinal values and nothing can be assumed about the distribution of such values in

the population sampled. If however, random sampling has been utilized in selecting

subjects, one can still make inferences about relationships and differences similar to

those made with parametric statistics. For example, if students enrolled in two

courses are assigned a rank on their achievement in each of the two courses, it is

reasonable to expect that students that rank high in one course would tend to rank

high in the other course. Since a rank only indicates order however and not “how

much” was achieved, we cannot use the usual product–moment correlation to

indicate the relationship between the ranks. We can estimate, however, what the

product of rank values in a group of n subjects where the ranks are randomly

assigned would tend to be and estimate the variability of these sums or rank

products for repeated samples. This would lead to a test of significance of the

departure of our rank product sum (or average) from a value expected when there is

no relationship.

A variety of non-parametric methods have been developed for nominal and

ordinal measures to indicate congruence or similarity among independent groups

or repeated measures on subjects in a group.

W. Miller, Statistics and Measurement Concepts with OpenStat,
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Contingency Chi-Square

The frequency chi-square statistic is used to accept or reject hypotheses concerning

the degree to which observed frequencies depart from theoretical frequencies in a

row by column contingency table with fixed marginal frequencies. It therefore tests

the independence of the categorical variables defining the rows and columns. As an

example, assume 50 males and 50 females are randomly assigned to each of three

types of instructional methods to learn beginning French, (a) using a language

laboratory, (b) using a computer with voice synthesizer and (c) using an advanced

student tutor. Following a treatment period, a test is administered to each student

with scoring results being pass or fail. The frequency of passing is then recorded for

each cell in the 2 by 3 array (gender by treatment). If gender is independent of the

treatment variable, the expected frequency of males that pass in each treatment

would be the same as the expected frequency for females. The chi-squared statistic

is obtained as

w2 ¼

Prow
i¼1

Pcol
j¼1

ðfij � FijÞ2

Fij
(6.1)

where fij is the observed frequency, Fij the expected frequency, and w2 is the

chi-squared statistic with degrees of freedom (rows�1) times (columns�1).

Spearman Rank Correlation

When the researcher’s data represent ordinal measures such as ranks with some

observations being tied for the same rank, the Rank Correlation may be the

appropriate statistic to calculate. While the computation for the case of untied

cases is the same as that for the Pearson Product–moment correlation, the correction

for tied ranks is found only in the Spearman correlation. In addition, the interpreta-

tion of the significance of the Rank Correlation may differ from that of the Pearson

Correlation where bivariate normalcy is assumed.

Mann–Whitney U Test

An alternative to the Student t-test when the scale of measurement cannot be

assumed to be interval or ratio and the distribution of errors is unknown is a non-

parametric test known as the Mann–Whitney test. In this test, the dependent

variable scores for both groups are ranked and the number of times that one groups

scores exceed the rank of scores in the other group are recorded. This total number
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of times scores in one group exceed those of the other is named U. The sampling

distribution of U is known and forms the basis for the hypothesis that the scores

come from the same population.

Fisher’s Exact Test

The probability of any given pattern of responses in a 2 by 2 table may be calculated

from the hypergeometric probability distribution as

P ¼ Aþ Bð Þ! Cþ Dð Þ! Aþ Cð Þ! Bþ Dð Þ!
N!A!B!C!D!

(6.2)

where A, B, C, and D correspond to the frequencies in the four quadrants of the

table and N corresponds to the total number of individuals sampled.

Kendall’s Coefficient of Concordance

It is not uncommon that a group of people are asked to judge a group of persons or

objects by rank ordering them from highest to lowest. It is then desirable to have some

index of the degree to which the various judges agreed, that is, ranked the objects in

the same order. TheCoefficient of Concordance is ameasure varying between 0 and 1

that indicates the degree of agreement among judges. It is defined as:

W ¼ Variance of rank sums = maximum variance of rank sums:
The coefficient Wmay also be used to obtain the average rank correlation among

the judges by the formula:

Mr ¼ mW� 1ð Þ = m� 1ð Þ (6.3)

where Mr is the average (Spearman) rank correlation, m is the number of judges and

W is the Coefficient of Concordance.

Kruskal-Wallis One-Way ANOVA

One-Way, Fixed-Effects Analysis of Variance assumes that error (residual) scores

are normally distributed, that subjects are randomly selected from the population

and assigned to treatments, and that the error scores are equally distributed in the

populations representing the treatments. The scale of measurement for the depen-

dent variable is assumed to be interval or ratio. But what can you do if, in fact, your
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measure is only ordinal (for example like most classroom tests), and you cannot

assume normally distributed, homoscedastic error distributions?

Why, of course, you convert the scores to ranks and ask if the sum of rank scores

in each treatment group are the same within sampling error! The Kruskal-Wallis

One-Way Analysis of variance converts the dependent score for each subject in the

study to a rank from 1 to N. It then examines the ranks attained by subjects in each

of the treatment groups. Then a test statistic which is distributed as Chi-Squared

with degrees of freedom equal to the number of treatment groups minus one is

obtained from:

H ¼ 12

NðNþ 1Þ
XK
j¼1

Rj
2= nj � 3ðNþ 1Þ (6.4)

where N is the total number of subjects in the experiment, nj is the number of

subjects in the jth treatment, K is the number of treatments and Rj is the sum of

ranks in the jth treatment.

Wilcoxon Matched-Pairs Signed Ranks Test

This test provides an alternative to the student t-test for matched score data where

the assumptions for the parametric t-test cannot be met. In using this test, the

difference is obtained between each of N pairs of scores observed on matched

objects, for example, the difference between pretest and post-test scores for a group

of students. The difference scores obtained are then ranked. The ranks of negative

score differences are summed and the ranks of positive score differences are

summed. The test statistic T is the smaller of these two sums. Difference scores

of 0 are eliminated since a rank cannot be assigned. If the null hypothesis of no

difference between the groups of scores is true, the sum of positive ranks should not

differ from the sum of negative ranks beyond that expected by chance. Given N

ranks, there is a finite number of ways of obtaining a given sum T. There are a total

of 2 raised to the N ways of assigning positive and negative differences to N ranks.

In a sample of 5 pairs, for example, there are two to the fifth power ¼ 32 ways.

Each rank sign would occur with probability of 1/32. The probability of getting a

particular total T is

PT ¼ Ways of getting T

2N
(6.5)

The cumulative probabilities for T, T-1,....,0 are obtained for the observed T

value and reported. For large samples, a normally distributed z score is

approximated and used.
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Cochran Q Test

The Cochran Q test is used to test whether or not two or more matched sets of

frequencies or proportions, measured on a nominal or ordinal scale, differ signifi-

cantly among themselves. Typically, observations are dichotomous, that is, scored

as 0 or 1 depending on whether or not the subject falls into one or the other criterion

group. An example of research for which the Q test may be applied might be

the agreement or disagreement to the question “Should abortions be legal?”. The

research design might call for a sample of n subjects answering the question prior to

a debate and following a debate on the topic and subsequently 6 months later. The Q

test applied to these data would test whether or not the proportion agreeing was the

same under these three time periods. The Q statistic is obtained as

Q ¼
ðK� 1ÞPK

j¼1

Gj
2 � PK

j¼1

Gj

 !2

K
Pn
i¼1

Li �
Pn
i¼1

Li
2

(6.6)

where K is the number of treatments (groups of scores), Gj is the sum with the jth

treatment group, and Li is the sum within case i (across groups). The Q statistic is

distributed approximately as Chi-squared with degrees of freedom K-1. If Q

exceeds the Chi-Squared value corresponding to the cumulative probability value,

the hypothesis of equal proportions for the K groups is rejected.

Sign Test

Did you hear about the nonparametrician who couln’t get his driving license? He couldn’t

pass the sign test.

Imagine a counseling psychologist who sees, over a period of months, a number of

clients with personal problems. Suppose the psychologist routinely contacts each

client for a 6 month followup to see how they are doing. The counselor could make

an estimate of client “adjustment” before treatment and at the followup time (or

better still, have another person independently estimate adjustment at these two

time periods). We may assume some underlying continuous “adjustment” variable

even though we have no idea about the population distribution of the variable. We

are intrested in knowing, of course, whether or not people are better adjusted

6 months after therapy than before. Note that we are only comparing the “before”

and “after” state of the individuals with each other, not with other subjects. If we

assign a + to the situation of improved adjustment and a—to the situation of same

or poorer adjustment, we have the data required for a Sign Test. If treatment has had

no effect, we would expect approximately one half the subjects would receive plus
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signs and the others negative signs. The sampling distribution of the proportion of

plus signs is given by the binomial probability distribution with parameter of .5 and

the number of events equal to n, the number of pairs of observations.

Friedman Two Way ANOVA

Imagine an experiment using, say, ten groups of subjects with four subjects in each

group that have been matched on some relevant variables (or even using the same

subjects). The matched subjects in each group are exposed to four different

treatments such as teaching methods, dosages of medicine, proportion of positive

responses to statements or questions, etc. Assume that some criterion measure on at

least a nominal scale is available to measure the effect of each treatment. Now rank

the subjects in each group on the basis of their scores on the criterion. We may now

ask whether the ranks in each treatment come from the same population. Had we

been able to assume an interval or ratio measure and normally distributed errors,

we might have used a repeated measures analysis of variance. Failing to meet the

parametric test assumptions, we instead examine the sum of ranks obtained under

each of the treatment conditions and ask whether they differ significantly. The test

statistic is distributed as Chi-squared with degrees of freedom equal to the number

of treatments minus one. It is obtained as where N is the number of groups, K the

number of treatments (or number of subjects in each group), and Rj is the sum of

ranks in each treatment.

Probability of a Binomial Event

Did you hear about the two binomial random variables who talked very quietly because

they were discrete?

The BINOMIAL program is a short program to calculate the probability of

obtaining k or fewer occurrences of a dichotomous variable out of a total of n

observations when the probability of an occurrence is known. For example, assume

a test consists of five multiple choice items with each item scored correct or

incorrect. Also assume that there are five equally plausible choices for a student

with no knowledge concerning any item. In this case, the probability of a student

guessing the correct answer to a single item is 1/5 or .20. We may use the binomial

program to obtain the probabilities that a student guessing on each item of the test

gets a score of 0, 1, 2, 3, 4, or 5 items correct by chance alone.

The formula for the probability of a dichotomous event k where the probability

of a single event is p (and the probability of a non-event is q ¼ 1�p) is given as:
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PðkÞ ¼ N!

ðN� kÞ! k! pðN�kÞ qk (6.7)

For example, if a “fair” coin is tossed three times with the probabilities of heads

is p ¼ .5 (and q ¼ .5) then the probabilty of observing 2 heads is

Pð2Þ ¼ 3!

ð3� 2Þ!2! 0:5
1x 0:52

¼ 3 x 2 x 1

1 x ð2 x 1Þ x 0:5 x 0:25

¼ 6

2
x 0:125 ¼ :375

Similarly, the probability of getting one toss turn up heads is

Pð1Þ ¼ 3!

ð3� 1Þ!1! 0:52x 0:5 ¼ 6

2
x 0:25 x 0:5 ¼ :375

and the probability of getting zero heads turn up in three tosses is

Pð0Þ ¼ 3!

ð3� 0Þ!0! 0:5
0x 0:53 ¼ 6

6
x 1:0 x 0:125 ¼ 0:125

The probability of getting 2 or fewer heads in three tosses is the sum of the three

probabilities, that is, 0.375 + 0.375 + 0.125 ¼ 0.875.

Runs Test

Random sampling is a major assumption of nearly all statistical tests of hypotheses.

The Runs test is one method available for testing whether or not an obtained sample

is likely to have been drawn at random. It is based on the order of the values in the

sample and the number of values increasing or decreasing in a sequence. For

example, if a variable is composed of dichotomous values such as zeros (0) and

ones (1) then a run of values such as 0,0,0,0,1,1,1,1 would not likely to have been

selected at random. As another example, the values 0,1,0,1,0,1,0,1 show a definite

cyclic pattern and also would not likely be found by random sampling. The test

involves finding the mean of the values and examining values above and below the

mean (excluding values at the mean.) The values falling above or below the mean

should occur in a random fashion. A run consists of a series of values above themean

or below the mean. The expected value for the total number of runs is known and is a

function of the sample size (N) and the numbers of values above (N1) and below

(N2) the mean. This test may be applied to nominal through ratio variable types.
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Kendall’s Tau and Partial Tau

When two variables are at least ordinal, the tau correlation may be obtained as a

measure of the relationship between the two variables. The values of the two

variables are ranked. The method involves ordering the values using one of the

variables. If the values of the other variable are in the same order, the correlation

would be 1.0. If the order is exactly the opposite for this second variable, the

correlation would be �1.0 just as if we had used the Pearson Product–moment

correlation method. Each pair of ranks for the second variable are compared. If the

order (from low to high) is correct for a pair it is assigned a value of +1. If the pair is

in reverse order, it is assigned a value of �1. These values are summed. If there are

N values then we can obtain the number of pairs of scores for one variable as the

number of combinations of N things taken 2 at a time which is N(N�1). The tau

statistic is the ratio of the sum of 1’s and �1’s to the total number of pairs.

Adjustments are made in the case of tied scores. For samples larger than 10, tau

is approximately normally distributed.

Whenever two variables are correlated, the relationship observed may, in part,

be due to their common relationship to a third variable. We may be interested in

knowing what the relationship is if we partial out this third variable. The Partial Tau

provides this. Since the distribution of the partial tau is not known, no test of

significance is included.

The Kaplan-Meier Survival Test

Survival analysis is concerned with studying the occurrence of an event such as

death or change in a subject or object at various times following the beginning of

the study. Survival curves show the percentage of subjects surviving at various

times as the study progresses. In many cases, it is desired to compare survival of an

experimental treatment with a control treatment. This method is heavily used in

medical research but is not restricted to that field. For example, one might compare

the rate of college failure among students in an experimental versus a control group.

Kolmogorov-Smirnov Test

One often is interested in comparing a distribution of observed values with a

theoretical distribution of values. Because many statistical tests assume a “normal”

distribution, a variety of tests have been developed to determine whether or not two

distributions are different beyond that expected due to random sampling variations.

This test lets you compare your distribution with several theoretical distributions.
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Chapter 7

Statistical Process Control

Introduction

Statistical Process Control (SPC) has become a major factor in the reduction of

manufacturing process errors over the past years. Sometimes known as the

Demming methods for the person that introduced them to Japan and then the United

States, they have become necessary tools in quality control processes. Since many

of the employees in the manufacturing area have limited background in statistics, a

large dependency has been built on the creation of charts and their interpretation.

The statistics which underlay these charts are often those we have introduced in

previous sections. The unique aspect of SPC is in the presentation of data in the

charts themselves.

XBAR Chart

In quality control, observations are typically made in “lots”, that is, a number of

observations are made on some product’s manufacturing process or the product

itself at periodic intervals. For example, in the manufacture of metal bolts, the

length of bolts being turned out may be sampled each hour of the day. The means

and standard deviation of these sample lots may then be calculated and plotted with

lines drawn to show the overall mean and upper and lower “control limits”

indicating whether or not a process may be “out of control”. One area of confusion

which exists is the language used by industrial people in indicating their level of

process control. You may hear the expression that “we employ control to 6 sigmas.”

They do not mean they use 6 standard deviations as their upper and lower control

limits but rather that the probability of being out of control is that associated with

the normal curve probability of a value being 6 standard deviations or greater

(a very small value.) This confusion of standard deviations (sigmas) and the

probability associated with departures from the mean under the normal distribution

W. Miller, Statistics and Measurement Concepts with OpenStat,
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assumption is unfortunate. When you select the sigma values for control limits, the

limits for 1 sigma are much closer to the mean that for 3 sigma. You may, of course,

select your own limits that you feel are practical for your process control. Since

variation in raw materials, tool wear, shut-down costs for replacement of worn tool

parts, etc. may be beyond your control, limits must be set that maximize quality and

minimize costs.

Range Chart

As tools wear the products produced may begin to vary more and more widely

around the values specified for them. The mean of a sample may still be close to the

specified value but the range of values observed may increase. The result is that

more and more parts produced may be under or over the specified value. Therefore

quality assurance personnel examine not only the mean (XBAR chart) but also the

range of values in their sample lots.

S Control Chart

The sample standard deviation, like the range, is also an indicator of how much

values vary in a sample. While the range reflects the difference between largest and

smallest values in a sample, the standard deviation reflects the square root of the

average squared distance around the mean of the values. We desire to reduce this

variability in our processes so as to produce products as similar to one another as is

possible. The S control chart plot the standard deviations of our sample lots and

allows us to see the impact of adjustments and improvements in our manufacturing

processes.

CUSUM Chart

The cumulative sum chart, unlike the previously discussed SPC charts (Shewart

charts) reflects the results of all of the samples rather than single sample values.

It plots the cumulative sum of deviations from the mean or nominal specified value.

If a process is going out of control, the sum will progressively go more positive or

negative across the samples. If there areM samples, the cumulative sum S is given as

S ¼ PM
i¼1

ðXi � moÞ where Xi is the observed sample mean and mo is the nominal

value or (overall mean.)
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It is often desirable to draw some boundaries to indicate when a process is out of

control. By convention we use a standardized difference to specify this value. For

example with the boltsize.txt data, we might specify that we wish to be sensitive to a

difference of 0.02 from the mean. To standardize this value we obtain

d ¼ 0:02

sX

or using our sample values as estimates obtain

d ¼ 0:02

SX
¼ 0:02

0:359
¼ 0:0557

A “VMask” is then drawn starting at a distance “d” from the last cumulative sum

value with an angle y back toward the first sample deviation. In order to calculate

the distance d we need to know the probabilities of a Type I and Type II error, that

is, the probability of incorrectly concluding that a shift to out-of-control has taken

place and the probability of failing to detect an out-of-control condition. If these

values are specified then we can obtain the distance d as

d ¼ 2

d2

� �
1n

1� b
a

� �

When you run the CUSUM procedure you will note that the alpha and beta error

rates have been set to default values of 0.05 and 0.20. This would imply that an error

of the first type (concluding out-of-control when in fact it is not) is a more

“expense” error than concluding that the process is in control when in fact it is

not. Depending on the cost of shut-down and correction of the process versus

scraping of parts out of tolerance, you may wish to adjust these default values.

The angle of the V mask is obtained by

y ¼ tan�1 a
2K

� �

where k is a scaling factor typically obtained as k ¼ 2 sx

The specification form for the CUSUM chart is shown below for the data file

labeled boltsize.txt. We have specified our desire to detect shifts of 0.02 in the

process and are using the 0.05 and 0.20 probabilities for the two types of errors.

p Chart

In some quality control processes the measure is a binomial variable indicating the

presence or absence of a defect in the product. In an automated production environ-

ment, there may be continuous measurement of the product and a “tagging” of the
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product which is non-conforming to specifications. Due to variation in materials,

tool wear, personnel operations, etc. one may expect that a certain proportion of the

products will have defects. The p Chart plots the proportion of defects in samples of

the same size and indicates by means of upper and lower control limits, those

samples which may indicate a problem in the process.

Defect (Non-Conformity) c Chart

The previous section discusses the proportion of defects in samples (p Chart.) This

section examines another defect process in which there is a count of defects in a

sample lot. In this chart it is assumed that the occurrence of defects are independent,

that is, the occurrence of a defect in one lot is unrelated to the occurrence in another

lot. It is expected that the count of defects is quite small compared to the total

number of parts potentially defective. For example, in the production of light bulbs,

it is expected that in a sample of 1000 bulbs, only a few would be defective. The

underlying assumed distribution model for the count chart is the Poisson distribu-

tion where the mean and variance of the counts are equal.

Defects Per Unit u Chart

Like the count of defects c Chart described in the previous section, the u Chart

describes the number of defects per unit. It is assumed that the number of units

observed is the same for all samples. We will use the file labeled uChart.txt as our

example. In this set of data, 25 observations of defects for 45 units each are

recorded. The assumption is that defects are distributed as a Poisson distribution

with the mean given as

�u ¼
P

cP
n
where c is the count of defects and n is the number of units observed.

and

UCL ¼ �uþ sigma

ffiffiffi
�u

n

r
and LCL ¼ �u� sigma

ffiffiffi
�u

n

r
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Chapter 8

Linear Programming

Introduction

Linear programming is a subset of a larger area of application called mathematical

programming. The purpose of this area is to provide a means by which a person may

find an optimal solution for a problem involving objects or processes with fixed

‘costs’ (e.g. money, time, resources) and one or more ‘constraints’ imposed on the

objects. As an example, consider the situation where a manufacturer wishes to

produce 100 lb of an alloy which is 83% lead, 14% iron and 3% antimony. Assume

he has at his disposal, five existing alloys with the following characteristics:

Alloy1 Alloy2 Alloy3 Alloy4 Alloy5 Characteristic

90 80 95 70 30 Lead

5 5 2 30 70 Iron

5 15 3 0 0 Antimony

$6.13 $7.12 $5.85 $4.57 $3.96 Cost

This problem results in the following system of equations:

X1 þ X2 þ X3 þ X4 þ X5 ¼ 100

0:90X1 þ 0:80X2 þ 0:95X3 þ 0:70X4 þ 0:30X5 ¼ 83

0:05X1 þ 0:05X2 þ 0:02X3 þ 0:30X4 þ 0:70X5 ¼ 14

0:05X1 þ 0:15X2 þ 0:03X3 ¼ 3

6:13X1 þ 7:12X2 þ 5:85X3 þ 4:57X4 þ 3:96X5 ¼ ZðminÞ

The last equation is known as the ‘objective’ equation. The first four are

constraints. We wish to obtain the coefficients of the X objects that will provide

the minimal costs and result in the desired composition of metals. We could try

various combinations of the alloys to obtain the desired mixture and then calculate

the price of the resulting alloy but this could take a very long time!

W. Miller, Statistics and Measurement Concepts with OpenStat,
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As another example: a dietitian is preparing a mixed diet consisting of three

ingredients, food A, B and C. Food A contains 81.85 g of protein and 13.61 g of fat

and costs 30 cents per unit. Each unit of food B contains 58.97 g of protein and

13.61 g of fat and costs 40 cents per unit. Food C contains 68.04 g of protein

and 4.54 g of fat and costs 50 cents per unit. The diet being prepared must contain

the at least 100 g of protein and at the most 20 g of fat. Also, because food C

contains a compound that is important for the taste of the diet, there must be exactly

0.5 units of food C in the mix. Because food A contains a vitamin that needs to be

included, there should also be a minimum of 0.1 units of food A in the diet. Food B

contains a compound that may be poisonous when taken in large quantities, and the

diet may contain a maximum of 0.7 units of food B. How many units of each food

should be used in the diet so that all of the minimal requirements are satisfied, the

maximum allowances are not violated, and we have a diet which cost is minimal?

To make the problem a little bit easier, we put all the information of the problem in

a tableau, which makes the formulation easier.

Protein Fat Cost Minimum Maximum Equal

Food A 81.65 13.60 $0.30 0.10

Food B 58.97 13.60 $0.40 0.70

Food C 68.04 4.54 $0.50 0.5

Min. 100

Max. 20

The numbers in the tableau represent the number of grams of either protein and

fat contained in each unit of food. For example, the 13.61 at the intersection of the

row labelled “Food A” and the column labelled “Fat” means that each unit of food

A contains 13.61 g of fat.

Calculation

We must include 0.5 units of food C, which means that we include 0.5 *

4.54 ¼ 2.27 g of fat and 0.5 * 68.04 ¼ 34.02 g of protein in the diet, coming

from food C. This means, that we have to get 100�34.02 ¼ 65.98 g of protein or

more from Food A and B, and that we may include a maximum of 20�2.27 ¼
17.73 g of fat from food A and B. We have to include a minimum of 0.1 units of

food A in the diet, accounting for 8.17 g of protein and 0.45 g of fat. This means that

we still have to include 65.98�8.17 ¼ 57.81 g of protein from food A and/or B, and

that the maximum allowance for fat from A and/or B is now 17.73�0.45 ¼ 17.28 g.

We should first look at the cheapest possibility, e.g. inclusion of food A for the extra

required 57.81 g of protein. If we include 57.81/81.65 ¼ 0.708 units of food A, we

have met the requirement for protein, and we have added 0.708 * 13.61 ¼ 9.64 g of

fat, which is below the allowance of 17.28 g which had remained. So we don’t need

any of the food B, which is more expensive, and which is contains less protein. The
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price of the diet is now $0.48. But what would we do, if food B was available at a

lower price? We may or may not want to use B as an ingredient. The more

interesting question is, at what price would it be interesting to use B as an ingredient

instead of A? This could be approached by an iterative procedure, by choosing a

low price for B, and see if the price for the diet would become less than the

calculated price of $0.48.

Implementation in Simplex

A more sophisticated approach to these problems would be to use the Simplex

method to solve the linear program. The sub-program ‘Linear Programming’,

provided with OpenStat can be used to enter the parameters for these problems in

order to solve them.
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Chapter 9

Measurement

Three roommates slept through theirmidterm statistics exam onMondaymorning. Since they

had returned together by car from the same hometown late Sunday evening, they decided on a

great little falsehood. The threemetwith the instructorMonday afternoon and told him that an

ill-timed flat tire had delayed their arrival until noon. The instructor, while somewhat

skeptical, agreed to give them a makeup exam on Tuesday. When they arrived the instructor

issued them the same makeup exam and ushered each to a different classroom. The first

student sat down and noticed immediately the instructions indicated that the exam would be

divided into Parts I and II weighted 10% and 90% respectively. Thinking nothing of this

disparity, he proceeded to answer the questions in Part I. These he found rather easy and

moved confidently to Part II on the next page. Suddenly his eyes grew large and his face

paled. Part II consisted of one short and pointed question....... “Which tire was it?”

Evaluators base their evaluations on information. This information comes from a

number of sources such as financial records, production cost estimates, sales records,

state legal code books, etc. Frequently the evaluator must collect additional data

using instruments that he or she alone has developed or acquired from external

sources. This is often the case for the evaluation of training and educational programs,

evaluation of personnel policies and their impacts, evaluation of social and psycho-

logical environments of the workplace, and the evaluation of proposed changes in the

way people do business or work.

This chapter will give guidance in the development of instruments for making

observations in the cognitive and affective domains of human behavior.

Test Theory

The sections presented below provide a detailed discussion of testing theory. You

do not need to understand all of this theory to make appropriate use of tests in your

evaluations, although it may help in avoiding some errors in decisions or selecting

W. Miller, Statistics and Measurement Concepts with OpenStat,
DOI 10.1007/978-1-4614-5743-5_9, # Springer Science+Business Media New York 2013
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appropriate analytic tools. It is included for the “advanced” student of evaluation

who is responsible as an “expert” in assisting other evaluators in correctly using and

analyzing tests. If you are “afraid” of statistics, you may skip the formal “proofs” of

the equations and focus primarily on the resulting equations.

Theory and practice are the same in theory. In practice they are different.

Scales of Measurement

Measurement is the assignment of a label or number to an object or person to

characterize that individual on the basis of an observed attribute. The manner in

which we make our observations will determine our “scale of measurement.”

Nominal Scales

Sometimes we observe an attribute in such a way that we can only classify an

individual or object as possessing or not possessing the attribute. For example, the

variable “gender” may be observed in such a way as to permit only labeling an

individual as “male” or not male (female). The attribute of “country of origin” may

lead us to classify individuals by their place of birth such as “USA”, “Canada”,

“European”, etc. The assignment of labels or names to objects based on a specific

attribute is called a NOMINAL scale of measurement. We can, of course, arbitrarily

select the labels to assign the observed individuals. Letters such as “A”, “B”, “C”,

etc. might be used or even numbers such as “1”, “2”, “3”, etc. Notice, however that

the use of numbers as labels may cause some confusion with the use of numbers to

indicate a quantity of some attribute. When using a nominal scale of measurement,

there is no attempt to indicate quantity. Coding males as 1 and females as 0, for

example, would not indicate males are “greater” on some quantitative variable—we

might just as well have assigned 1 to females and 0 to males!

Ordinal Scales of Measurement

Some attributes of individuals or objects may be observed in such a way that the

individuals may be ordered, that is, arranged in a manner that indicates person “B”

possesses more of the attribute than person “A”, but less than person “C”. For

example, the number of correctly answered items on a test may permit us to say that

John has a higher score than Mary but a lower score than Jim. (NOTE! We carefully

avoided saying that John knows more than Mary but knows less than Jim. Such

statements imply a direct relationship between the amount of knowledge of a
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subject and the number of items passed. This is virtually never the case!) When we

assign numbers that only indicate the ordering of individuals on some attribute, our

scale of measurement is called an ordinal scale. We will add that comparing the

means of groups measured with an ordinal scale leads to serious problems of

interpretation. The median, on the other hand, is more interpretable.

Interval Scales of Measurement

There is a class of measurements known as interval scales of measurement. These

refer to observing an attribute of individuals in such a way that the numbers

assigned to individuals denote the relative amount of the attribute possessed by

that individual in comparison to some “standard” or referent. The assignment of

numbers in this way would permit a transformation (such as multiplying all

numbers by a constant) that would preserve the proportional distance among

the individuals. The numbers assigned do not indicate the absolute amount of the

attribute—only the amount relative to the standard. For example, we might say that

the average number of questions answered correctly on a test of 100 items measur-

ing recall of nonsense words by a very large population of 18 year old males

constitutes our “standard”. IF all items are equally difficult to recall, we might

use the proportion of the standard number of items recalled as an interval measure

of recall ability. That is, the difference between Mary who obtains a score of 20 and

John who receives a score of 40 is proportional to the difference between John and

Jim who receives a score of 60. Even if we multiply their scores by 100, the distance

between Mary, John and Jim is proportionally the same! Again note that the

proportion of the standard number of items correctly recalled is NOT a measure

of individual’s ability to recall items in general. It is only their ability to recall

the carefully selected items of this test in comparison to the standard that is

measured. A different set of items could lead to assignment of a completely

different set of numbers to each individual with different relative distances

among the individuals. As another example, consider a measure of individual

“wealth”. Assume wealth is defined as the total of a person’s debts and credits

using the standard “dollar”. We may clearly have individuals with negative

“wealth” (debts exceed credits) and individuals with “positive” wealth (credits

exceed debts). Our wealth scale has equal intervals (dollars). We can make

statements such as John has 20 dollars more wealth than Mary but five dollars

less wealth than Jim. In other words, we can represent the distance among our

individuals as well as their order. Note, however, that an individual with a wealth

score of zero (debts ¼ assets) is NOT broke, that is, have an absence of wealth.

With an interval scale of measurement 0.0 does NOT mean an absence of the

attribute—only a relative amount compared to the “standard”. Zero is an arbitrary

point on our scale of measurement:
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Personal Wealth
"Mary" "John" "JIM"
__________________________________
-10 0 +10 +15

dollars

If a test of, say, 20 history items consists of items that are equally increasing in

difficulty, we may use such a test to indicate the distance among subjects

administered the test. We do, however, require that if an individual misses an

item with known difficulty dj, that the same individual will miss all items of greater

difficulty! Please note that missing all items does not mean an absence of knowl-

edge! (We might have included easier items.) We may also have assigned “scores”

to our subjects as X ¼ the number of items “passed”—the number of items

“missed”. Again, the zero point on our scale is arbitrary and does not reflect an

actual amount of knowledge or absence of knowledge! Tests of intelligence,

achievement or aptitude may be constructed that utilize an interval scale of mea-

surement. Like the value of a “dollar”, the “difficulty” of each item must be clearly

defined. We can say, for example, that $100.00 buys an ounce of silver. We might

similarly define an item of difficulty 1.0 as that item which is correctly answered by

50 % of 18 year old male freshmen college students residing in the USA in 1988.

Ratio Scales of Measurement

Wemay sometimes observe an attribute of an individual or object in such a way that

the numeric values assigned the individuals indicate the actual amount of the

attribute.

For example, we might measure the time delay between the occurrence of a

stimulus (e.g. the flash of a strobe light) and the observation on the surface of the

brain of a change in electrical potential representing response to the stimulus. Such

an observed latency may theoretically vary from 0 to infinity in whatever units of

time (e.g. microseconds) that we wish to utilize. We could then make statements

such as John’s latency is twice as long as Mary’s latency but half as long as Jim’s

latency. Note that a zero latency is meaningful and not an arbitrary point on the

scale! Another example of a ratio scale of measurement is the distance, perhaps in

inches, that a person can jump. In each case, the ratio scale of measurement has a

“true” zero point on the scale which can be interpreted as an absence of the

attribute. In addition, the ratio scale permits forming meaningful ratios of subject’s

scores. For example we might say that John can jump twice as far as Mary but Jim

(who is in a wheelchair) cannot jump at all! Could we ever construct a test of

intelligence that yielded ratio scale numbers? What would a statement that Mary is

twice as intelligent as John but half as intelligent as Jim mean? What would a score

of zero intelligence mean? What would a score of 1.0 mean? Clearly, it is difficult,

if not nearly impossible to construct ratio scale measures for attributes that we
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cannot directly observe and for which we have no meaningful “standard” with

which to relate. We may, in fact, be hard-pressed to provide evidence that our

psychological and educational measurement scales are even interval scales. Many

are clearly only ordinal measures at best.

Reliability, Validity and Precision of Measurement

Reliability

If we stepped on and off our weight scale and each time received a different reading

for our weight, we would probably go out and buy a new scale! We would say

we want a reliable scale—one that consistently yields the same weight for the same

object measured. When we refer to tests, the ability of a test to produce the

same values when used to measure the same subjects is also called the reliability

of the test. If we carefully examine the “markings” on our weight scale however, we

might be surprised that there are, in fact, some variations in the values we could

record. Sometimes I might weight 150.3 and the next time I get on the scale I

observe 150.2. Did the scale actually give different values or was I only able to

interpret the distance between the marks for 150 and 151 approximately and

therefore introduce some “error” or variation in the values recorded? This lack of

sufficient “in-between” markings on our scale is referred to as the precision of our

measurement. If the scale is only marked in whole pounds, my precision of

observation is limited to whole pounds. In fact, when the scale appears right in

between 150 and 151, is the closest value 150 or 151? My error of precision is

potentially 1 lb. Note that precision is NOT the same as reliability. When we speak

of reliability, we are speaking of variations in repeated observations that are larger

than those due to the precision of measurement alone.

In describing the reliability of an instrument, it is advantageous to have an index

which describes the degree of reliability of the instrument. One popular index of

reliability is the product–moment correlation between two applications of the

measurement instrument to a group of individuals. For example, I might administer

a history test to a group of students at 10:00 a.m. and again at 2:00 p.m. Assuming

the students did not talk with each other about the test, study history during the

intervening time, forget relevant history material during those 4 h, etc., then the

correlation between their 10:00 a.m. and 2:00 p.m. scores would estimate the

reliability of the test. Our index of reliability can vary between zero (no reliability)

to 1.0 (perfect reliability). Note that a reliability of less than zero is nonsense—a

test cannot theoretically be less than completely unreliable!

We may also express this index of reliability as the ratio of “True Score”

variance to “Observed Score Variance”, that is St
2/Sx

2. We will denote this ratio

as rxx. This choice of rxx is not capricious—we use the symbol for correlation to

indicate that reliability is estimated by a product–moment correlation coefficient.
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The xx subscript denotes a correlation of a measure with itself. Each observed score

(X) for an individual may be assumed to consist of two parts, a TRUE score (T) and

an ERROR (E) score, i.e., Xi ¼ Ti + Ei. For N individuals, the variance of the

observed scores is

Sx
2 ¼

PN
i¼1

ðTi þ EiÞ � ðTi þ EiÞ
� �2

ðN� 1Þ

or

Sx
2 ¼

PN
i¼1

½Ti þ Ei � �T� �E�2

ðN� 1Þ

or

Sx
2 ¼

PN
i¼1

ðTi � �TiÞ þ ðEi � �EÞ½ �2

ðN� 1Þ (9.1)

If we assume that error scores (E) are normally and randomly distributed with a

mean of zero and, since they are random, uncorrelated with other scores, then

Sx
2 ¼

PN
i¼1

ðTi � �TÞ þ Ei½ �2

ðN� 1Þ

¼
PN
i¼1

ðTi � �TÞ þ Ei
2 þ ðEiTi � Ei

�TÞ� �2
ðN� 1Þ

¼
PN
i¼1

ðTi � �TÞ2

ðN� 1Þ þ
PN
i¼1

Ei
2

ðN� 1Þ þ
PN
i¼1

EiðTi � �TÞ
ðN� 1Þ

¼ St
2 þ Se

2 þ Covte= ðN� 1Þ
¼ St

2 þ Se
2 þ Covte= ðN� 1Þ � ðStSeÞ=ðStSeÞ

¼ St
2 þ Se

2 þ rteStSe

¼ St
2 þ Se

2 since the correlation of errors with true scores is zero: (9.2)

Reliability is defined as

rxx ¼ St
2

Sx
2
¼ Sx

2 � Se
2

Sx
2

¼ 1� Se
2

Sx
2

(9.3)

180 9 Measurement



Because we cannot directly observe true scores, we must estimate them (or the

variance of error scores) by some method. A variety of methods have been devel-

oped to estimate the reliability of a test. We will describe, in this unit, the one known

as the Kuder-Richardson Formula 20 estimate. Other methods include the test-retest

method, the corrected split-half method, the Cronbach Alpha method, etc.

The Kuder: Richardson Formula 20 Reliability

The K-R formula is based on the correlation between a test composed of K observed

items and a theoretical (unobserved) parallel test of k items parallel to those of the

observed test. A parallel test or item is one which yields the same means, standard

deviations and intercorrelations as the original ones.

To develop the K-R 20 formula, we will begin with the correlation between two

tests composed of K and k items respectively where K ¼ k. The correlation

between the total scores correct on each test is represented by

rI,II where

Test I scores ¼ the sum of item scores X1 + X2 + .. + XK

and Test II scores ¼ the sum of item scores x1 ¼ x2 + .. + xk

We may therefore write the correlation as

rI;II ¼ rðX1þX2þ::þXKÞ;ðx1þx2þ::þxkÞ

¼
PN
i¼1

ðX1 þ ::þ XKÞ � ðX1 þ ::þ XKÞ
� � ðx1 þ ::þ xkÞ � ðx1 þ ::xkÞ½ �

N
PK
G¼1

Sg
2 þ N

PK
G¼1

PK
g¼1

rG;gSGSg

g 6¼ G

(9.4)

The numerator of the above equation is the deviation cross-products of the total

scores I and II. The denominator represents the variance of the composite score I.

Since parallel tests have the same variance, we are assuming that the variance of test

I equals that of test II. For that reason, the variance of the composite test I or II can

be expressed as the sum of individual item variances plus the covariance among the

items. The numerator of our correlation can be similarly expressed, that is

r
I;II

¼
N
PK
G¼1

rG;GSGSg þ N
PK
G¼1

PK
g¼1

rg;GSGSg

N
PK
g¼1

Sg
2þN

PK
g¼1

PK
G¼1

rg;GSgSG

g 6¼ G

which can be further reduce as follows:
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r
I;II

¼

PK
g¼1

rg;gSg
2þPK

g¼1

PK
G¼1

rg;GSgSG

PK
g¼1

Sg
2þPK

g¼1

PK
G¼1

rg;GSgSG

g 6¼ G

r
I;II

¼

PK
g¼1

rg;gSg
2�PK

g¼1

Sg
2 þ PK

g¼1

Sg
2 þ PK

g¼1

PK
G¼1

rg;GSgSG

Sx
2

r
I;II

¼

PK
g¼1

rg;gSg
2�PK

g¼1

Sg
2 þ Sx

2

Sx
2

(9.5)

Note! rg,g represents the correlation between parallel test items.

In an observed test of K items we would not expect to have parallel items. We

must therefore estimate the correlation (or covariance) among parallel items by the

correlation among non-parallel items. That is

XK
g¼1

rg;gSg
2 ¼

PK
g¼1

PK
G¼1

rg;GSgSG

ðK� 1Þ g 6¼ G

Note: There are K(K�1) pairings when g is not equal to G.

Since

Sx
2 ¼

XK
g¼1

Sg
2þ
XK
g¼1

XK
G¼1

rg;GSgSG

then

XK
g¼1

rg;gSg ¼ Sx
2 �

XK
g¼1

Sg
2

 !
=ðK� 1Þ

and
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rI;II ¼

Sx
2�
PK
g¼1

Sg
2

K�1
� PK

g¼1

Sg
2 þ Sx

2

Sx
2

¼
Sx

2 � PK
g¼1

Sg
2

ðK� 1ÞSx2
�

PK
g¼1

Sg2

Sx
2

þ 1

¼ 1

K� 1

PK
g¼1

Sg
2

Sx
2

K� 1
�
ðK� 1ÞPK

g¼1

Sg
2

ðK� 1ÞSx2
þ K� 1

K� 1

¼ ½1�
K� 1

1�

PK
g¼1

Sg
2

Sx
2

�
K
PK
g¼1

Sg
2

Sx
2

þ

PK
g¼1

Sg
2

Sx
2

þ K� 1

2
6664

3
7775

¼ 1

K� 1
K�

K
PK
g¼1

Sg
2

Sx
2

2
6664

3
7775

or rI;II ¼ K

K� 1

� �
1�

XK
g¼1

Sg
2= Sx

2

" #
KR#20 Formula (9.6)

We have thus derived the Kuder-Richardson Formula 20 estimate of the corre-

lation between an observed test of K items and a theoretically parallel test of k

items. Besides knowing the number of items K, one must calculate the sum of the

item variances for item g ¼ 1 to K and the total variance of the test (Sx
2). We really

only had to make one assumption other than the parallel test assumptions: that the

covariance among UNLIKE items is a reasonable estimate of covariance among

PARALLEL items.

If we might also assume that all items are equally difficult (they would have the

samemeans and variances) then the above formula may be even further simplified to

rxx ¼ K

K� 1
1�

�X� �X
2
= K

Sx
2

" #
(9.7)

We note that in the KR#20 formula, that as the number of items K grows large,

the ratio of K/(K�1) approaches 1.0 and the reliability approaches
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rxx ¼
Sx

2 � PK
g¼1

Sg
2

Sx
2

¼ St
2= Sx

2

We now have an expression for the variance of true scores, that is St
2 ¼ Sx

2 rxx.

Similarly, we may obtain an expression for the variance of errors by

rxx ¼ Sx
2 � Se

2
� �

= Sx
2

¼ 1:0� Se
2= Sx

2

or Se
2 ¼ Sx

2ð1� rxxÞ (9.8)

The Standard Error of Measurement, the positive root of the variance of errors is

obtained as

Se ¼ Sx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:0� rxxÞ

p
(9.9)

If the errors of measurement may be assumed to be normally distributed, the

standard error indicates the amount of score variability to be expected with repeated

measures of the same object. For example, a test that has a standard deviation of 15

and a reliability of 0.91 (as estimated by the KR#20 formula) would have a standard

error of measurement of 15 * 0.3 ¼ 4.5. Since one standard deviation of the normal

curve encompasses approximately 68.2 % of the scores, we may say that approxi-

mately 68 % of an individual’s repeated measurements would be expected to fall

within + or �4.5 raw score points. We take note of the fact that this is the error of

measurement expected of all individuals measured by a hypothetical instrument no

matter what the original score level observed is. If you read about the Rasch method

of test analysis, you will find that there are different estimates of measurement error

for subjects with varying score levels by that method!

Validity

When we develop an instrument to observe some attribute of objects or persons, we

assume the resulting scores will, in fact, relate to that attribute. Unfortunately, this

is not always the case. For example, a teacher might construct a paper and pencil

test of mathematics knowledge. If a student is unable to read (perhaps blind) then

the test would not be valid for that individual. In addition, if the teacher included

many “word” problems, the test scores obtained for students may actually measure

reading ability to a greater extent than mathematics ability! The “ideal” measure-

ment instrument yields scores indicative of only the amount ( or relative amount
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compared with others) of the single attribute of a subject. It is NOT a score

reflecting multiple attributes.

Consider, for a moment, that whenever you wanted a measure of someone’s

weight, your scale gave you a combination of both their height and weight! How

would you differentiate among the short fat persons and the tall thin persons since

they could have identical scores? If a test score reflects both mathematics and

reading ability, you cannot differentiate persons good in math but poor in reading

from those poor in math but good in reading!

The degree to which a test measures what it is intended to measure is called the

VALIDITY of the test. Like reliability, we may use an index that varies between

0 and 1.0 to indicate the validity of a test. Again, the Pearson product–moment

correlation coefficient is the basis of the validity index.

Concurrent Validity

If there exists another test in which we have confidence of it being reasonable

measure of the same attribute measured by our test, we may use the p-m correlation

between our test and this “criterion” test as a measure of validity. For example,

assume you are constructing a new test to measure the aptitude that students have

for learning a foreign language. You might administer your test and the Modern

Foreign Language Aptitude Test to the same group of subjects. The correlation

between the two tests would be the validity coefficient.

Predictive Validity

Some tests are intended to be used as predictors of some future attribute. For

example, the Scholastic Aptitude Test (SAT) may be useful as a predictor of future

Grade Point Average earned by students in their freshman year at college. When we

correlate the results of a test administered at one point in time with a criterion

measured at some future time, the correlation is a measure of the predictive validity

of the test.

Discriminate Validity

Some tests which purportedly measure a single attribute are, as we have said, often

composite measures of multiple attributes. Ideally, an English test would correlate

highly with other English tests and NOT particularly high with intelligence tests,

mathematics tests, mechanical aptitude tests, etc. The degree to which the correla-

tion with similar attribute measures differs from the correlation of our test with
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measures of other attributes is called the discriminate validity of a test. Often the

partial correlation between two tests in which the effects of a third, supposedly less

related test, has been removed, is utilized as a discriminate validity coefficient.

As an example, assume that your new test of English correlates 0.8 with student

final examination scores in an English course and correlates 0.5 with the Stanford-

Binet test of intelligence. Also assume that the final examination scores correlate

0.4 with the S-B IQ scores. The partial correlation of your English Test with English

final examination scores can be obtained as

ry;E:I ¼ ry;E � ry;IrE;yp
1� ry;I2
� �

1� re;y2
� � (9.10)

where

ry,E.I is the partial correlation between your test y and the English examination

scores,

ry,E is the correlation of your test and the English examination scores,

ry,I is the correlation of your test with IQ scores, and

rE,y is the correlation between English examination scores and IQ scores.

The obtained value would be

ry;E:I ¼ :8� ð:5Þð:4Þð½ �=p ð1� :25Þð1� :16Þ½ �
¼ :6 =

p ð:75Þð:84Þ½ �
¼ :6 =

pð:63Þ ¼ :75

In other words, partialling out the effects of intelligence reduced our validity

from 0.8 to 0.75.

It is sometimes distressing to discover that a carefully constructed test of a single

attribute often may be found to correlate substantially with a number of other tests

which supposedly measure other, unrelated attributes. In our example, we partial

out only the effects of one other variable, intelligence. One can use multiple

regression procedures to partial out more than one variable from a correlation.

Construct Validity

The attribute we are proposing to measure with a test is often simply a hypothetical

construct, that is, some attribute we think exists but which we have had to define

by simple description in our language. There is often no way to directly observe

the attribute. The concept of “intelligence” is such a hypothetical construct.

We describe more “intelligent” people as those who learn faster and retain their

learning longer. Less “intelligent” persons seem to learn at a much slower pace and

havemore difficult time retainingwhat they have learned.With such descriptions, we
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may construct an “intelligence” test. As you probably well know, a number of people

have, in fact, done just that! Now assume that your “intelligence” test along with that

of, say, three other tests of intelligence, are all administered to the same group of

subjects. We could then construct the inter-correlation matrix among these four tests

and ask “is there one common underlying variable that accounts for the major portion

of variance and covariance within and among these tests?” This question is often

answered by determining the eigenvalues and corresponding eigenvectors of the

correlation matrix. If there is one particularly larger root out of the four possible

roots and if the normalized corresponding eigenvalues of that root all are large,

wemay argue that there is validity for the construct of intelligence (at least as defined

by the four tests). This technique and others similar to it are usually called “Factor

Analysis.” If our test “loads” (correlates) highly with the same common factor that

the other tests measuring the same attribute do, then we argue the test has construct

validity. This correlation (factor loading) of our test with the other measures of the

same attribute is the construct validity coefficient of our test.

Content Validity

If you were to construct a test of knowledge in a specific area, say “proficiency in

statistics”, then the items you elect to include in your test should stand the scrutiny

of experts in the field of statistics. That is, the content of your test in terms of the

items you have written should be relevant to the attribute to be measured. When

constructing a test, an initial decision is made as to the purpose of the test: is the

purpose to demonstrate proficiency to some specified level, or is it to measure

the degree of knowledge attained as compared to others. The first type of test is

often referred to as a “criterion” referenced test. The second type in a normative

test. With a criterion referenced test, the test writer is usually not as concerned with

measuring a “single” attribute or latent variable but rather of selecting items that

demonstrate specific knowledge and skills required for doing a certain job or

success in some future learning activity. The norm-referenced tests, on the other

hand, usually measure the degree of some predominant attribute or “latent” (under-

lying) variable. In either case, the test author will typically start with a “blueprint”

of the domain, i.e., a list of the relevant aspects of the attribute to be measured. This

blueprint may be a two-dimensional description of both the topics included in the

domain as well as the levels of complexity or difficulty to be measured by items

within one aspect. Once the blueprint is constructed, it is used to guide the

construction of items so that the domain is adequately sampled and represented

by the test. When completed, the test may be submitted to a panel of experts who

are asked to classify the items into the original blueprint, evaluate the relevance of

the blueprint areas and items constructed and evaluate the adequacy of the item

construction. The percent of agreement among judges on a particular item as being

appropriate or not being appropriate as a measure of the attribute can be used as an

indicator of content validity. The reliability of judgments across a set of items may
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be used to measure the consistency of the judges themselves. A large proportion of

the test items should be judged satisfactory by a high percentage of the judges in

order to say that the instrument has content validity.

Effects of Test Length

Tests of achievement, aptitude, and ability may vary considerably in their number

of items, i.e. test length. Tests composed on positively correlated items that are

longer will display higher reliability then shorter tests. The correlation of reliable

measures with other variables will tend to be higher than the correlation of less

reliable measurements, thus the predictive validity, concurrent validity, etc. will be

higher for the longer test.

Reliability for tests that have been changed in length by a factor of K can be

estimated by the Spearman-Brown “prophecy” formula:

Rkk ¼ K r11

1þ ðK� 1Þ r11 (9.11)

where r11 is the reliability of the original test,

and K is the multiplication factor for lengthening (or shortening) the test.

As an example, assume you have constructed a test of 20 items and have

obtained a reliability estimate of 0.60. You are interested in estimating the reliabil-

ity of the test if you were to double the number of items with items that are similar

in inter-correlations, means and variances with the original 20 items. The factor K is

2 since you are doubling the length of the test. Your estimate would be:

Rkk ¼ ð2Þð0:60Þ
1þ ð2� 1Þð:60Þ ¼ 0:75

Therefore, doubling the length of your test would result in an estimated reliabil-

ity of 0.75, a sizable increase above the original 0.60. The formula can also be used

to estimate the reliability of a shortened test constructed by sampling items from a

longer test. For example a test of 100 items with a reliability of 0.90 could be used

to produce a 25 item short-form test. The reliability would be

Rkk ¼ ð0:25Þð0:90Þ
1þ ð0:25� 1Þð0:90Þ ¼ 0:6923

Note that in this case K ¼ 0.25 since the test length has been changed by a factor

of one fourth of the original length.
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The Spearman-Brown formula can also be used to estimate the effects on a

validity coefficient when either the test or the criterion measure have been extended

in length. First we note that if a test is extended in length indefinitely (infinite

length) then the reliability approaches 1.0. This permits us to estimate the validity

between two measures, either or which (or both) have been extended in length.

For example, the correlation between a test that has been extended by a factor of K

and another test that has been extended by a factor of L is given by:

RKL ¼ r1Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Kþ ð1� 1=KÞrp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=Lþ ð1� 1=LÞrII
p (9.12)

where r1I is the correlation between the two tests, r11 and rII are the reliabilities of

the two tests and K and L are the factors for extending the two tests.

If only one of the tests, say for example test I above, is made infinitely long so

that its reliability approaches 1.0, then the above formula reduces to

R11 ¼ r1Ip
rII

The above formula is useful in estimating the validity of a test correlated with a

criterion measured without error. In addition, we may be interested in estimating

the correlation of a test and criterion both of which have been adjusted for

unreliability. This would estimate the correlation between the True scores of each

instrument and is given by

R11 ¼ r1Ip
r11rII

(9.13)

Composite Test Reliability

Teachers often base course grades on the basis of a combination of tests

administered over the period of the semester. The teacher usually, however, desires

to give different weights to the tests. For example, the teacher may wish to weight

tests 1, 2 as 1/4 of the total grade and the final exam (test 3) as 1/2 of the grade. Since

the tests may vary considerably in length, mean, variance and reliability, one cannot

simply add the weighted raw scores achieved by each student to get a total score.

Doing so would give greater weight than intended to the more variable test and less

weight than intended to the less variable test. A preferable method of obtaining the

total weighted score would be first to standardize each test to a common mean and

standard deviation. This is usually done with the z score transformation, i.e.

zi ¼ ðXi� �XÞ
Sx

(9.14)

Each subject’s z score for a test may then be weighted with the desired test

weight and the sum of the weighted z scores be used as the total score on which
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grades are based. The reliability of this composite weighted z score can be

estimated by the following formula:

Rww ¼ WCW0

WRW0 (9.15)

where Rww is the reliability of the composite,

W is a row vector of weights and W0 is the column transpose of W,

R is the correlation matrix among the tests and

C is the R matrix with the diagonal elements replaced with estimates of the

individual test reliabilities.

As an example, assume a teacher has administered three tests during a semester

course and obtains the following information:

Test

Correlations

1 2 3

1 1.0 0.6 0.4

2 0.6 1.0 0.5

3 0.4 0.5 1.0

Reliability 0.7 0.6 0.8

Weights 0.25 0.25 0.50

The reliability of the composite score would then be obtained as:

Rww ¼

ð:25 :25 :50Þ
:7 :6 :4

:6 :6 :5

:4 :5 :8

							
							
:25

ð:25Þ
:50

ð:25 :25 :50Þ
1:0 :6 :4

:6 1:0 :5

:4 :5 1:0

							
							
:25

ð:25Þ
:50

¼ 0:861

The above equation utilizes matrix multiplication to obtain the solution. If you

have not used matrix algebra before, you may need to consult an elementary text

book in matrix algebra to familiarize yourself with the basic operations.

Reliability by ANOVA

Sources of Error: An Example

In the previous sections, an observed score for an individual on a test was considered

to consist of two parts, true score and error score, i.e. X ¼ T + E. Error scores

were assumed to be randomwith amean of zero and uncorrelated with the true score.
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We now wish to expand our understanding of sources of errors and introduce a

method for estimating components of error, that is, analyzing total observed score

variance into true score variance and one or more sources of error variance. To do

this, we will consider a measurement example common in education—the rating of

teacher performance.

A Hypothetical Situation

Assume that teachers in a certain school district are to be rated by one or more

supervisor one or more times per year. Also assume that a rater employs one or

more “items” in making a rating, for example, lesson plan rating, handling of

discipline, peer relationships, parent conferences, grading practices, skill in

presenting material, sensitivity to students, etc.. We will assume that the teachers

are rated on each item using a scale of 1–10 points with 1 representing very inade-

quate to 10 representing very superior performance. We note that in this situation:

1. Teachers to be rated are a sample from a population of teachers,

2. Supervisors doing the rating are a sample of supervisors,

3. Items selected are a sample of possible teacher performance items,

4. Ratings performed are a sample of possible replications, and

5. Teacher performance on a specific item may vary from situation to situation due

to variation in teacher mood, alertness, learning, etc. as well as due to situational

variables such as class size, instructional materials, time of day, etc..

We are interested of course in obtaining ratings which accurately reflect the true

competence of a teacher and the true score variability among teachers (perhaps to

reward the most meritorious teacher, identify teachers needing assistance, and

selection of teachers for promotion). We must recognize however, a number of

possible sources of variance in our ratings—sources other than the “true” compe-

tence of the teachers and therefore error of measurement:

(a) Variability in ratings due to items sampled from the population of possible

items,

(b) Variability in ratings due to the sample of supervisors used to do the ratings,

(c) Variability in ratings due to the sample of teachers rated,

(d) Interactions among items, teachers and supervisors.

Let us assume in our example that six teachers are rated by two supervisors

(principal and coordinator) on each of four items. Assume the following data have

been collected:
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Coordinator Combined
Item

Principal

Teacher
1 42
2 44
3 65
4 52
5 32
6

BothPrinc.

23
18
30
22
15
32

Coord.

19
26
35
30
17
33 65

SUM

1 2 3 4

9 6 6 2
9 5 4 0
8 9 5 8
7 6 5 4
7 3 2 3

10 8 7 7

50 37 29 24

1 2 3 4

8 2 8 1
7 5 9 5

10 6 9 10
9 8 9 4
7 4 5 1
7 7 10 9

48 32 50 30 140 160 300

Item Sums for Principal + Coordinator

98 69 79 54

We now define the following terms to use in a three way analysis of variance:

Xijk ¼ the rating for teacher i on item j from supervisor k.

X6
i¼1

X4
j¼1

X2
k¼1

ðXijkÞ2 ¼ 2; 214 Sum of Squares of single

X4
j¼1

X2
k¼1

ðX:jkÞ2 ¼ 12; 014 Sum of Squares over teachers:

X6
i¼1

X2
k¼1

ðXi:kÞ2 ¼ 8; 026 Sum of Squares over items:

X6
i¼1

X4
j¼1

ðX
ij:Þ2 ¼ 4; 258 Sum of Squares over supervisors:

X2
k¼1

ðX::kÞ2 ¼ 45; 200 Sum of Squares over teachers and items:

X4
j¼1

ðX:j:Þ2 ¼ 23; 522 Sum of Squares over teachers and supervisors

X6
i¼1

ðX:i:Þ2 ¼ 15; 878 Sum of Squares over items and supervisors:

ðX::Þ2 ¼ 90; 000 Square of grand sum of all observations:
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Our analysis of variance table may contain the following sums of squares:

Total Sums of Squares ¼
X6
i¼1

X4
j¼1

X2
k¼1

ðXijkÞ2 �

P6
i¼1

P4
j¼1

P2
k¼1

XijkÞ2

ð6Þð4Þð2Þ

or SStotal ¼ 2; 214� 90; 000=48 ¼ 339:00

Teacher Sums of Squares ¼
P6
i¼1

ðXi::Þ2

ð4Þð2Þ �

P6
i¼1

P4
j¼1

P2
k¼1

Xijk

 !2

ð6Þð4Þð2Þ

or SSteachers ¼ 15; 878 = 8� 90; 000 = 48 ¼ 109:80

Item Sums of Squares ¼

P4
j¼1

ðX:j:Þ2

ð6Þð2Þ �

P6
i¼1

P4
j¼1

P2
k¼1

Xijk

 !2

ð6Þð4Þð2Þ

or SSitems ¼ 23; 522 =12� 90; 000=48 ¼ 85:2

Supervisor Sum of Squares ¼
P2
k¼2

ðX::kÞ2

ð6Þð4Þ �

P6
i¼1

P4
j¼1

P2
k¼1

Xijk

 !2

ð6Þð4Þð2Þ

or SSsuperv ¼ 45; 200 = 24� 90; 000 = 48 ¼ 8:3

Teacher� Item Interaction ¼

P6
i¼1

P4
j¼1

ðXij:Þ2

2
�

P6
i¼1

P4
j¼1

P2
k¼1

Xijk

 !2

ð6Þð4Þð2Þ
� SSteachers � SSitems

or SSTxI ¼ 4; 258=2� 90; 000=48� 109:8� 85:2 ¼ 59:00

Teacher� Superv: Inter ¼
P6
i¼1

P2
k¼1

ðXi:kÞ2

4
�

P6
i¼1

P4
j¼1

P2
k¼1

Xijk

 !2

ð6Þð4Þð2Þ
� SSteachers � SSsuperv
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or SSTxS ¼ 8; 026=4� 90; 000=48� 109:8� 8:3 ¼ 13:4

Item� Superv: Interact: ¼

P4
j¼1

P2
k¼1

ðX:jkÞ2

ð6Þ �

P6
i¼1

P4
j¼1

P2
k¼1

Xijk

 !2

ð6Þð4Þð2Þ
� SSitems � SSsuperv

or SSIxS ¼ 12; 014=6� 90; 000=48� 85:2� 8:3 ¼ 33:8

Teacher� Item� Super: ¼
X6
i¼1

X4
j¼1

X2
k¼1

ðXijkÞ2 �

P6
i¼1

P4
j¼1

P2
k¼1

Xijk

 !2

ð6Þð4Þð2Þ
� SSteachers � SSitems � SSsuperv:

or SSTxIxS ¼ SStotal � ðSSteachers þ SSitems þ SSsuperv þ SSTxI þ SSTxS þ SSIxSÞ
¼ 339:0� ð109:8þ 85:2þ 59:0þ 13:4þ 33:8Þ ¼ 29:5

The Analysis of Variance table may be summarized as:

SOURCE             D.F. SS MS
---------------------------------------------------------
Teachers (T)         5             109.8 21.96
Items (I)            3         85.2 28.40
Supervisors (S)    1           8.3 8.30
T x I Interaction   15          59.0 3.93
T x S Interaction    5          13.4 2.68
I x S Interaction    3          33.8 11.27
T x I x S Inter.    15          29.5 1.97

We may now use each of the above mean squares to estimate population

variance components in examining the reliability of the ratings. We have:

S2TxIxS ¼ MSTxIxS ¼ 1:97

The second order interaction is our error (residual) term since we only have a

single observation under each of the three facets (teachers, items and supervisors).

S2TxI ¼ :5ðMSTxI �MSTxIxSÞ ¼ :5ð3:93Þ � 1:97Þ ¼ 0:98

This is our error variance attached to teacher interaction with items. Each mean

square at a given level includes variance at a higher level of interaction. We subtract
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out that previously obtained portion. We also divide by the number of observations

on which the term is based—in this case the teacher by item interaction is based on

two supervisors.

S2TxS ¼ ð1=4ÞðMSTxS �MSTxIxSÞ ¼ :25ð2:68� 1:97Þ ¼ :18

This is our estimate of error due to interaction of teachers and supervisors

(repeated over the four items).

S2IxS ¼ ð1=6Þ MSIxS �MSTxIxSð Þ ¼ ð11:27� 1:97Þ=6 ¼ 1:55

This is the estimated error variance for interaction of items and supervisors over

the six teachers.

S2T ¼ 1=ð4Þð2Þ½ � ½MST �MSTxI �MSTxS þMSTxIxS�
¼ ð21:96� 3:93� 2:68þ 1:97Þ = 8 ¼ 2:16

This is our estimate of variance due to differences among teachers—that vari-

ance we hope is large in comparison to error variance. It is our estimate of the

teachers variance component of each rating by each supervisor.

S2I ¼ 1=ð6Þð2Þ½ � ½MSI �MSTxI �MSIxS þMSTxIxS�
¼ ð28:4� 3:93� 11:27þ 1:97Þ = 12 ¼ 1:26

This is variance due to variability of ratings among the items or item “difficulty.”

S2S ¼ 1=ð6Þð4Þ½ � MSS �MSTxS �MSIxS þMSTxIxS½ �
¼ ð8:3� 2:68� 11:27þ 1:97Þ = 24<0

This estimate of variability due to supervisors is less than zero hence considered

negligible. While variance cannot be less than zero, our small sample of supervisors

that apparently rated quite consistently led to this estimate. Estimates may, of

course, fall above or below the population values.

We now turn to the question of estimating the reliability of our ratings.

In previous sections the classical definition of reliability was given as

rxx ¼ s2rue
s2true þ s2error

¼ s2true
s2observed

The “true” score variance for J items rated by K supervisors is given by

S2
true

¼ ðJKÞ2S2
T
¼ ½ð4Þð2Þ�2 2:16 ¼ ð64Þð2:16Þ ¼ 138:24
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Our “observed score” variance is estimated by

S2
obs

¼ ðJKÞðJKS2
t
þ JS2

s
þ KS2

i
þ JS2

TxS
þ KS2

TxI
þ S2

IxS
þ S2

TxIxS
Þ

¼ ð4� 2Þ ½ð4� 2Þ2:16þ ð4Þ0þ ð2Þ1:26þ ð4Þ0:18þ ð2Þ0:98þ 1:55þ 1:97Þ
¼ 208

and the ratio S2true/S
2
observed ¼ rxx ¼ 0.665 is the estimate of the correlation that

would be obtained between two sets of scores for a group of teachers rated on the

basis of a random set of four items chosen for each teacher and rated by a random

set of two supervisors for that teacher. Note our emphasis that this is a random

effects model—each teacher could be rated on a sample of different items and by

different supervisors!

In examining the sources of error, increasing the number of items would most

likely reduce the largest error components (items and interaction of items with

teachers and supervisors).

If the items used by each person doing the ratings is the same (fixed effects of

items), the variance component for items disappears from the estimate of observed

score variance giving

S2observed ¼ ð0þ :24þ 0:09þ 0:19þ 0:25Þ ¼ 2:93

and

rxx ¼ 2:16=2:93 ¼ 0:74

Obviously, using the same test on all teachers yields a more precise estimate of

the teacher competencies. If we also fix the supervisors so that all teachers are rated

by the same two supervisors, then S2S and S2IxS disappears as sources of error

variance and the observe score is given by

S2 ¼ S2T þ S2TxI= Jþ S2TxS= Kþ S2TxIxS=JK

¼ 2:16þ 0:24þ 0:09þ 0:25 ¼ 2:74

and

rxx ¼ 2:16 = 2:74 ¼ 0:79

By using the same items and supervisors, the reliability of the ratings has been

increased from 0.66 to 0.79.

We may further assume that our items are not a sample from a population of

items but, in fact, constitute the universe of teacher behaviors to which we intend to

generalize. In this case, S2TxI and S2I will both disappear from our error term. Our

estimates of true and observe score therefore become:

S2true ¼ S2T þ S2TxS= J ¼ 2:16þ 0:24 ¼ 2:40
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and

S2observed ¼ S2true ¼ ðS2S=Kþ S2TxS=Kþ S2IxS= JKþ S2TxIxS= JKÞ ¼ 2:93

Therefore rxx ¼ 2:4 = 2:93 ¼ 0:82
Finally, if we choose to consider only two specific supervisors as our universe of

supervisors, then

S2true ¼ S2T þ S2TxS= Jþ S2TxS= K ¼ 2:16þ :24þ :09 ¼ 2:49

and

S2observ ¼ S2true þ S2TxIxS= JK ¼ 2:49þ 0:25 ¼ 2:74

Therefore, rxx ¼ 2:49 = 2:74 ¼ 0:91
Clearly, the degree to which one intends to generalize a test or rating procedure

affects the reliability of the measurements for that purpose.

In the previous discussion we have examined multiple facets of reliability. We

saw that the assumptions of sampling both test items and raters as well as subjects

affected our estimate of reliability. We now will relate the above analysis with a

simple ANOVA approach using the “Treatments by Subjects” analysis of variance

program found in the Measurement Menu of the OpenStat system. To illustrate its

use, we will combine the two supervisor ratings from the above example and treat

our data as consisting of six teachers who have been rated on four items. We assume

we are using the population of “items” and the same raters on each teacher rated.

Our data consists of the following:

Item

Teacher 1 2 3 4 Sum

1 17 8 14 3 42

2 16 10 13 5 44

3 18 15 14 18 65

4 16 14 14 8 52

5 14 7 7 4 32

6 17 15 17 16 65

Sum 98 69 79 54 300

In calculating the sums of squares for the ANOVA, we first obtain the squares of

individual ratings, squares of the sums for each teacher, squares of the sums for

each item and the square of the sum of the item (or teacher) sums. These are:

X6
i¼1

X4
j¼1

ðXijÞ2 ¼ 4; 258 Squares of single observations
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X6
i¼1

ðX:jÞ2 ¼ 15; 878 Squares of teacher sums

X4
j¼1

ðX:jÞ2 ¼ 23; 522 Squares of item sums

ðX::Þ2 ¼ 90; 000 Square of grand total

The sum of squared deviations about the mean for the terms of our ANOVA are

obtained using the above terms and computed as follows:

SStotal ¼ 4; 258� 90; 000=24 ¼ 508

SSteachers ¼ 15; 878=4� 90; 000=24 ¼ 219:50

SSitems ¼ 23; 522=6� 90; 000=24 ¼ 170:33

SSIxT ¼ SStotal � SSteachers � SSitems þ 90; 000=24 ¼ 118:17

The SSitems and SSIxT are often combined into a SSwithin to represent the total

sum of squares due to variation within subjects, i.e. the squared deviations of

subject’s scores about the subject means. The ANOVA summary table may look

as follows:

-----------------------------------------------------------------
SOURCE             D.F.            SS          MS         F
-----------------------------------------------------------------
Among Teachers      5        219.50      43.90      5.57

Within Teachers     18        288.50      16.03
Items                      3        170.44       56.78     7.21
Teachers x Items  15        118.17        7.88

Total                       23        508.00
----------------------------------------------------------------

The terms for our reliability are

S2true ¼ ðMSobserved �MSTxIÞ=N
¼ ð43:90� 7:88Þ=6 ¼ 6:00

S2observed ¼ Strue þMSTxI=N ¼ 6:02þ 7:88=6

¼ 6:00þ 7:88=6 ¼ 7:31

and the reliability is

rxx ¼ S2true=S
2
observed ¼ 6:00=7:31 ¼ 0:82
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This reliability is called the adjusted average rating reliability on the printout

from the program in your system. It reflects the reliability of ratings in which the

error due to differences in average ratings by the judges or items has been removed.

Essentially, the individual ratings are “adjusted” so that the column sums or means

are equal. If a test of J dichotomously scored items are analyzed by both the Kuder-

Richardson Formula 20 and the Treatment by Subjects ANOVA procedures, the

KR#20 reliability will equal the reliability reported above.

One can also estimate a single item reliability by obtaining an average item

reliability using

rsingle ¼ MST �MSTxI

MST þ ðJ� 1ÞMSTxI
¼ 43:9� 7:88

43:9� ð3Þ7:88 ¼ 0:53

Again, this reliability reflects an adjustment for the “difficulty” of the items, that

is, all ratings or items are made to reflect the same sum or average across the

subjects rated. A similar result would be obtained by using the Spearman-Brown

Prophecy formula where we estimate the reliability of a test reduced in length to a

single item.

Should the user want to know what the reliability of the ratings or test is without

adjustment for variability in mean ratings, then the following may be used:

For the unadjusted test reliability

rxx ¼ 1:0� ðMSwithin=MSTÞ
¼ 1:0� ð16:03 = 43:90Þ ¼ 0:63

For the estimate of a single item reliability unadjusted for difference among item

(or rating) means, the formula is

rxx ¼ MST �MSwithin

MST þ ðJ� 1ÞMSwithin

¼ ð43:9� 16:03Þ=ð43:9þ ð4� 1Þ16:03Þ
¼ 0:30

Item and Test Analysis Procedures

Teachers typically construct their own tests to measure the achievement of students

in their courses. In constructing the test, it is a good idea to begin with a test

“blueprint” or table of specifications for the test. This test blueprint usually consists

of a table in which the rows represent content or concept areas to be tested and the

columns represent levels of thinking required such as classified by Bloom’s
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taxonomy of cognitive skills. The cells may simply indicate the number of items to

be written in each concept area at each level of thinking skill. For example, an

elementary teacher might construct a blueprint for a test over arithmetic concepts

for eighth grade students using something like the following:

Level

Concept Knowledge Application Synthesis Evaluation

Addition 3 3 1 1

Subtraction 2 2 1 2

Multiplication 3 3 0 0

Division 2 2 2 1

Percentage 3 3 3 3

Exponents 3 3 1 1

In this example, the teacher would construct 47 items from the table of

specifications. The items constructed may be of a variety of types such as multiple

choice, matching, completion, problem solving, etc.. Once the test is constructed and

administered to the students, the teacher may then evaluate various properties of the

items and test. For example, the teacher may want to know how reliable the test is,

how difficult each itemwas, howwell each item differentiates between high and low

scoring students, and how the test might be improved for subsequent use. This

section describes several methods for analyzing tests and the items within tests.

Classical Item Analysis Methods

Item Discrimination

If a test is constructed to test one predominant domain or area of achievement or

knowledge then each item of the test should correlate positively with a total score

on the test. The total score on the test is usually obtained by awarding a value of 1 to

a student if they get an item correct and a 0 if they miss it and summing across all

items. On a 47 item test, a student that gets all items correct would therefore have a

total score of 47 while the student that missed all items would have a score of 0.

We can correlate each item with the total score obtained by the students. We may

use the Pearson Product–moment correlation formula (see the section on simple

correlation and regression) to do our calculations. We note however that we are

correlating a dichotomous variable (our item is scored 0 or 1) with a continuous

variable (total scores vary from 0 to the number of items in the test). This type of

correlation is also called a “Point-Biserial Correlation.” Unfortunately, when one

of the variables in the product–moment correlation is dichotomous, the correlation

is affected by the proportion of scores in the dichotomous variable. If the proportion

of 0 and 1 scores is about the same (50 % for each), the correlation may approach

1.0. When the split of the dichotomous variable is quite disproportionate, say 0.2
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and 0.8, then the correlation is restricted to much lower values. This certainly

makes interpretation of the point-biserial correlation difficult. Nevertheless, a

“good” test item will have positive correlations with the total score of the test.

If the correlation is negative, it implies that more knowledgable students are more

likely to have missed the item and less knowledgeable students likely to have gotten

the item correct! Clearly, such an item is inconsistent with the measurement of the

remaining items. Remember that the total score contains, as part of the total,

the score of each item. For that reason, the point-biserial correlation will tend to

be positive. A “corrected” point-biseral correlation can be obtained by first

subtracting the individual item score from the total score before calculating the

correlation between the item and total. If a test has many items, say more than 30,

the correction will make little difference in the correlation. When only a few items

are administered however, the correction should be applied.

The point-biserial correlation between test item and test total score is a measure

of how well the item discriminates between low and high achievement students. It is

a measure of item discrimination potential. Other item discrimination indices may

also be used. For example, one may simply use the difference between the propor-

tion passing the item in students ranking in the top half on the total score and the

proportion passing the item among students in the bottom half of the class. Another

index, the biserial correlation, may be calculated if one assumes that the dichoto-

mously scored item is actually an imprecise measure of a continuous variable. The

biserial correlaiton may be obtained using the formula:

rbis ¼ rpbis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piqi=yI

p
(9.16)

where rpbis is the point-biserial correlation, pi and qi are the proportions passing and

failing the item, and yi is the ordinate of the normal curve corresponding to the

cumulative proportion pi.

Item Difficulty

In classical test analysis, the difficulty of an item is indicated by the proportion of

subjects passing the item. An easy item therefore has values closer to 1.0 while more

difficult items have values closer to 0.0. Since the mean of an item scored either 0 or

1 is the same as the proportion of subjects receiving scores of 1, the mean is the

difficulty of the item. An ideal yardstick has markings equally spaced across

the ruler. This permits its use to measure objects varying widely in length. Similarly,

a test composed of items equally spaced in difficulty permits reasonable precision in

measuring subjects that vary widely in their knowledge. With item difficulties

known, one can select items along the continuum from 0 to 1.0 so that the revised

instrument has approximately equal interval measurement. Unfortunately, the

sample of subjects on which the item difficulty estimates are based must adequately
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represent all of the subjects for which the instrument is to be used. If another group of

subjects that differs considerably in their knowledge is used to estimate the item

difficulties, quite different estimates can be obtained. In other words, the item

difficulty estimates obtained in classical test analysis methods are dependent on

the sample from which they are obtained. It would clearly be desirable to have item

parameter estimates that are invariant from group to group, that is, independent of

the subjects being measured by those items.

In our discussion we have not mentioned errors of measurement for individual

items. In classical test analysis procedures we must assume that each item measures

with the same precision and reliability as all other items. We usually assume that

errors of measurement for single items are normally distributed with a mean of zero

and that these errors contribute proportionally to the error of measurement of the

total test score. Hence the standard error of measurement is assumed equal for

subjects scoring from 1 to 50 on a 50 item test!

The Item Analysis Program

The OpenStat package includes a program for item analysis using the Classical test

theory. The program provides for scoring test items that have been entered as 0s and

1s or as item choices coded as numbers or letters. If item choices are in your data

file, you will be asked to enter the correct choice for each item so that the program

may convert to 0 or 1 score values for each item. A set of items may consist of

several independent sub-tests. If more than one sub-test exists, you will be asked to

enter the sequence number of each item in the sub-tests. You may also elect

to correct for guessing in obtaining total scores for each subject. Either rights-

wrongs or rights—1/4 wrongs may be elected. Finally, you may weigh the items of

a test to give more or less credit in the total score to various items. An option is

provided for printing the item scores and sub-score totals. You may elect one of

several methods to estimate the reliability of the scored items. The sub-test means

and standard deviations are computed for the total scores and for each item.

In addition, the point-biserial correlation of each item with each sub-score total

is obtained. Item characteristic curves are optionally printed for each item. The

curves are based on the sub-score in which the item is included. The proportion of

subjects at each decile on the sub-score that pass the item is plotted. If a reasonably

large number of subjects are analyzed, this will typically result in an approximate

“ogive” curve for each item with positive point-biserial correlations. Examination

of the plots will reveal the item difficulty and discrimination characteristics for

various ability score groups.

202 9 Measurement



Item Response Theory

The past few decades has seen a rapid advance in the theories of psychological

measurement. Among the more important contributions is the conceptualization of

subject’s responses to a single item. Simply stated, we assume that the probability

of a subject correctly answering an item is a function of both subject and item

parameters (stable characteristics). Usually the subject is considered to have one

parameter—ability (or knowledge). The item, on the other hand, may have one or

more parameters. Item difficulty is one parameter but item discrimination and

chance-correctness are two other possible parameters to estimate. For example, a

multiple choice item with five alternatives has a smaller probability of being

correctly answered by guessing than a true-false type of question. Additionally,

some items may differentiate among a broad range of student abilities while others

discriminate only among subjects within a narrow range of abilities.

The functional relationship between the probability for correctly answering a

question and the ability of subjects is usually represented by an item characteristic

curve such as that depicted below. We might use total scores on the test as

approximations of subject’s ability parameter and plot the proportion of subjects

in each score group that correctly answered the item.

An individual’s ability score may be obtained by averaging the probabilities for

those items correctly answered and multiplying by the number of items in the test. In

the figure above, a vertical line is drawn at themedian (50 percentile). This represents

the ability of subjects that have a 50–50 chance (odds) of passing the item. It alsomay

be considered the difficulty of the item. Note that the probabilities of passing the item

increase continuously as the total score (or ability) of the subjects increase. We say

that the probability of passing the item is a monotonic increasing function of ability.

Clearly, an item for which the probability of correctly answering the item decreased

as subject abilities increased would not be a desirable item! The slope of the curve at

the median denotes the “discriminating power” of the item. If the slope is steep, a

small change in subject ability produces a relatively large change in the probability of

correctly answering the item. A very shallow slope would imply a low ability of the

item to differentiate among subjects widely varying in ability. Typically, an itemwith
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a steep slope will only have that steepness over a relatively small range of abilities.

For that reason, one item is insufficient tomeasure abilities with precision over a wide

range of abilities. One would ideally have an instrument composed of multiple items

with steep (and equal) sloped characteristic curves that overlapped on the linear

portions of the curves. The figure below might represent a four item test with items

equally spaced in difficulty and equal in discrimination:

It is apparent that items 1, 2, 3 and 4 above provide a different amount of

information concerning the ability of subjects that differ in their ability. For

example, item one provides little information about subjects that have total score

ability greater than 8. Similarly, item 4 provides little information for subjects

scoring below 5. The amount of discrimination information of an item for varying

levels of ability is a function of the slope of the item line at each ability level. If we

can describe the rate of change of ability at any point on an item characteristic

curve, we can plot that rate of change against ability level. Such “plots” are called

item information curves. A test information curve can similarly be plotted by

summing the item information (rate of ability change) at each ability level. For

an item of moderate difficulty and relatively steep slope, such an item information

function might look like the figure below:
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The One Parameter Logistic Model

In the classical approach to test theory, the item difficulty parameter is estimated by

the proportion of subjects in some “norming” group that passes the item. Other

methods may be used however, to estimate item difficulty parameters. George

Rasch developed one such method. In his model, all items are assumed to have

equal item characteristic slopes and little relevant chance probabilities. The proba-

bility of a subject answering an item correctly is given by the formula

PðX ¼ 1jbiÞ ¼ eDðdj�biÞ

1:0� eDðdj�biÞ (9.17)

where bi is the ability of an individual,

dj is the difficulty of item j, D is an arbitrary scaling or expansion factor, and

e is the constant 2.7182818.....( the base of the natural logarithm system).

An individual’s ability bi is estimated by the product of the expansion factor D

and the natural log odds of obtaining a score X out of K items, i.e.,

bi ¼ D log
X

K� X
(9.18)

The above equation may also be solved for X, the subject’s raw score X expected

given his or her ability, that is

Xi ¼ Keðbi= DÞ

1þ eðbi= DÞ (9.19)

The expansion factor D is a value which reflects the variability of both item

difficulties dj and abilities bi. When scores are approximately normally distributed,

this value is frequently about 1.7.

The Rasch one-parameter logistic model assumes that all items in the test that

are analyzed measure a common latent variable. Researchers sometimes will

complete a factor analysis of their test to ascertain this unidimensional property

prior to estimating item difficulties using the Rasch model. Items may be selected

from a larger group of items that “load” predominantly on the first factor of the set

of items.

The OpenStat package includes a program to analyze subject responses to a set

of items. The results include estimates of item difficulties in log units and their

standard errors. Ability estimates in log units and errors of estimate are also

obtained for subjects in each raw total score group. One cannot estimate abilities

for subjects that miss all items or correctly answer all items. In addition, items that

all subjects miss or get correct cannot be scaled. Such subjects or items are
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automatically eliminated by the program. The program will also produce item

characteristic curves for each item and report the point-biserial correlation and

the biserial correlation of each item with the total test score.

The Rasch method of calibrating item difficulty and subject ability has several

desirable properties. One can demonstrate that the item difficulties estimated are

independent of the abilities of subjects on which the estimates are based. For

example, should you arbitrarily divide a large group of subjects into two groups,

those who have total scores in the top half of the class and those who have scores in

the bottom half of the class, then complete the Rasch analysis for each group, you

will typically obtain item difficulties from each analysis that vary little from each

other. This “sample-free” property of the item difficulties does not, of course, hold

for item difficulties estimated by classical methods, i.e. proportion of a sample

passing an item. Ability estimates of individuals are similarly “item-free.” A subset

of items selected from a pool of Rasch calibrated items may be used to obtain the

same ability estimates of an individual that would be obtained utilizing the entire

set of items (within errors of estimation). This aspect of ability estimation makes

the Rasch scaled items ideal for “tailored” testing wherein a subject is sequentially

given a small set of items which are optimized to give maximum precision about the

estimated ability of the subject.

Estimating Parameters in the Rasch Model: Prox. Method

Item difficulties and subject abilities in the Rasch model are typically expressed in

base e logarithm values. Typical values for either difficulties or abilities range

between �3.0 and 3.0 somewhat analogous to the normally distributed z scores.

We will work through a sample to demonstrate the calculations typically employed

to estimate the item difficulties of a short test of 11 items administered to 127

individuals (See Applied Psychometrics by R.L. Thorndike, 1982, pages 98–100).

In estimating the parameters, we will assume the test items involved the student in

generating a response (not multiple choice or true false) so that the probability of

getting the item correct by chance is zero. We will also assume that the items all

have equal slopes, that is, that the change in probability of getting an item correct

for a given change in student ability is equal for all items. By making these

assumptions we need only solve for the difficulty of the item.

The first task in estimating our parameters is to construct a matrix of item

failures for subjects in each total score group. A total score group is the group of

subjects that have the same score on the test (where the total score is simply the total

number of items correctly answered). Our matrix will have the total test score as

columns and individual items as rows. Each element of the matrix will represent the

number of students with the same total test score that failed a particular item. Our

sample matrix is
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Item

Total test score Total

1 2 3 4 5 6 7 8 9 10 Failed

1 10 10 10 7 7 4 2 1 0 0 51

2 10 14 14 12 17 12 5 1 0 0 85

3 10 14 11 11 7 6 3 0 0 0 62

4 1 1 0 1 0 0 0 0 0 0 3

5 10 8 9 6 6 3 1 1 0 0 44

6 10 14 14 15 21 21 12 6 2 1 116

7 10 14 11 13 19 22 8 5 0 1 103

8 10 14 8 8 12 7 1 0 1 0 61

9 10 14 14 14 20 18 11 4 0 1 106

10 10 14 14 14 19 20 9 9 1 2 112

11 9 10 4 4 5 2 0 0 0 0 34

No.in Grp. 10 14 14 15 22 23 13 9 2 5 127

We begin our estimation of the difficulty of each item by calculating the odds of

any subject failing an item. Since the far right column above is the total number

of subjects out of 127 that failed the items in each row, the odds of failing an item are

odds ¼ no: failing

no: subjects� no: failing
(9.20)

If we divided the numerator and denominator of the above ratio by the number of

subjects we would obtain for any item i, the odds

odds ¼ Pi

1:0� Pi
(9.21)

Next, we obtain the natural logarithm of the odds of failure for each item. The

mean and variance of these log odds are then obtained. Now we calculate the

deviation of each item’s log odds from the mean log odds of all items. To obtain

the PROX. estimate of the item difficulty we multiply the deviation log odds by a

constant Y. The constant Y is obtained by

Y2 ¼ 1þ V = 2:89

1� UV = 8:35
(9.22)

where V is the variance of the log odds of items and

W is the variance of the log odds of abilities.

Clearly, we must first obtain the variance of log odds for abilities before we can

complete our PROX. estimates for items. To do this we must obtain the odds of

subjects in each total score group obtaining their total score out of the total number

of possible items. For subjects in each total score group the odds are

odds ¼ No: items passed

No: items� No: items passed
(9.23)
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For example, for subjects that have a total score of 1, the odds of getting such a

score are 1/(11–1) ¼ 1/10 ¼ 0.1.

Note that if we divide the above numerator and denominator by the number of

test items, the formula for the odds may be expressed as

odds ¼ Pj

1� Pj

Weobtain the logarithmof the score odds for each subject, and likewedid for items,

obtain the mean and variance of the log odds for all subjects. The variance of subject’s

log odds is denoted asU in the “expansion” factor Y above. A similar expansion factor

will be used to obtain Prox. estimates of ability and is calculated using

X2 ¼ 1þ U = 2:89

1� UV = 8:35
(9.24)

The Prox. values for items is now obtained by multiplying the expansion factor Y

(square root of the Y2 value above) times the deviation log odds for each item. The

Prox. values for abilities is obtainedbymultiplying the corresponding expansionvalue

X times the log odds for each score group. The calculations are summarized below:

MEAN LOG ODDS DIFFICULTY = 0.21
VARIANCE LOG ODDS DIFFICULTY = 2.709

MEAN LOG ODDS ABILITY = -0.28 
VARIANCE LOG ODDS ABILITY = 1.038

Y EXPANSION FACTOR = 1.4315
X EXPANSION FACTOR = 1.709
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Theoretically, the number of subjects in total score group j that pass item i are

estimates of the item difficulty di and the ability bj of subjects as given by

bj � di ¼ log ½pij=ðnj � pijÞ�

where pij is the proportion of subjects in score group j that pass item i and nj is the

number of subjects in score group j. The Prox. estimates of difficulty and ability

may be improved to yield closer estimates to the pij values through use of the

Newton-Rhapson iterations of the maximum-likelihood fit to those observed

values. This solution is based on the theory that

pij ¼
eðbj�diÞ

1þ eðbj�diÞ (9.25)

It is possible, using this procedure, that values do not converge to a solution. The

Rasch program included in the statistics package will complete a maximum of

25 iterations before stopping if the solution does not converge by that time.

If the Rasch model fits the data observed for a given item, the success and failure

of each score group on an item should be adequately reproduced using the estimated

parameters of the model. A chi-squared statistic may be obtained for each item by

summing, across the score groups, the sum of two products: the odds of success

times the number of failures and the odds of failure times the number of successes.

This chi-squared value has degrees of freedom N—n where N is the total number of

subjects and k is the total number of score groups. It should be noted that subjects

with scores of 0 or all items correct are eliminated from the analysis since log odds

cannot be obtained for these score groups. In addition, items which are failed or

passed by all subjects cannot be scaled and are eliminated from the analysis.

Item Banking and Individualized Testing

Item banks are repositories of test questions in machine readable form. Typically,

objective types of items and their choices are stored. For example, multiple

choice, true-false, matching, incomplete sentences, and other types of items are

stored. Each item consists of a “stem” and “foils”. The stem is the major part of

the question and the foils are the alternatives from which the examinee is to choose.

The item bank must contain the “key”, that is, the correct choice or weights for each

foil which reflects the degree of correctness. An item bank typically contains

hundreds of items in a general area, for example, statistics but these items may be

subdivided into smaller domains such as parametric, nonparametric, univariate,

multivariate, etc. Each item in the bank therefore has a classification code field. The

classification code is useful in retrieving items of a given sub-domain when

generating a test. An item bank also typically contains for each item, one or more
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estimates of parameters for the item obtained from prior administration of the item.

For example, the item mean, variance, classical difficulty (proportion passing the

item), logistic difficulty (perhaps as obtained from the Rash program), discrimina-

tion index and guessing factor (proportion expected right by guessing.)

Once an item bank is created, it may be used for several purposes. One common

application is known as “tailored testing.” This refers to the administration of items

of known difficulty to a single subject. An item of medium difficulty is usually

administered first. If the examinee misses that item, another item, half as difficult, is

administered. On the other hand, if the subject passes the first item another item

more difficult is administered. By selecting the next item to administer on the basis

of the response to each previous item, the program quickly “converges” to that set

of items for which the examinee has approximately a 50–50 chance of being right or

wrong. This permits a much faster estimate of the subjects ability since only a small

portion of test items must be administered.

Item banks may also be used to generate “parallel” tests, that is, tests that are

similar in difficulty level and content sampling. These tests may be individually

administered directly to the examinee on the computer or the test may be printed

and reproduced for group administration. Experiments which involve pre and post

testing of knowledge often utilize parallel tests so that changes measured may be

attributed to treatment effects, not differences in test difficulty or content coverage.

A teacher or test administrator must have the capability of recording a variety of

test specifications for generating different tests from the same item bank. An item

bank system therefore contains procedures by which a teacher specifies the number

of items to be in a test, the type of items to include, the range of acceptable item

difficulties, the mode of test presentation, and the media for presenting the test.

A program that administers items “live” to subjects on the computer must possess

a number of characteristics. Individual item responses must be collected as well as

the total score for the individual. Thesemust be filed in such amanner that both items

and subject scores may be analyzed and summarized. The program should provide

the option of giving “feedback” during administration, for example, telling the

examinee whether they got the item right and if not, what the correct choice was.

Some tests must be strictly timed. The program which administers the test on the

computer should therefore provide the option of displaying the item for a specified

period of time and if not answered within that time, go on to the next question.

Measuring Attitudes, Values, Beliefs

The evaluator of training workshops is often as interested in how participants “feel”

about their training as well as how much they have learned and retained. The testing

theory presented above dealt primarily with the measure of knowledge and gave

the methods for defining and testing the reliability and validity of those measures.

In a similar manner, we may be interested in developing and administering

instruments to measure such things as:
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(a) Attitudes toward management

(b) Attitudes toward training experiences

(c) Attitudes toward protected classes (women, minorities)

(d) Aattitudes toward alternative work arrangements

(e) Attitudes toward safety codes and/or practices

(f) Attitudes toward personnel in other departments

It is generally recognized that the way people feel about each other, their work

environment and their work characteristics are important to their productivity and

longevity on the job. This section is devoted to helping the evaluator construct

instruments to measure such attitudes.

Methods for Measuring Attitudes

Most of you have completed at least one questionnaire of the following type:

-----------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------

THESIS RESEARCH
SURVEY

DIRECTIONS:

Listed below are ten statements about thesis research.  Please indicate whether you agree or 
disagree with each statement.  Circle the A if you tend to agree with the statement or circle the D if you 
tend to disagree with the statement.  Do not spend too much time thinking about each statement.
Use your first impression. GO AHEAD!

A D 1. The research one does for his or her thesis may determine the line of
research they pursue the rest of their life.

A D 2. The only reason theses are required is because the current faculty
had to do one in order to graduate.

A D 3. Most theses make little contribution to the body of knowledge in a
discipline.

A D 4. A thesis can demonstrate your ability to be creative and thorough in
conducting a research project.

A D 5. Unless you almost have a major in statistics, its very difficult to complete a
useful thesis.

A D 6. Reading a thesis is right up there with reading a telephone book for
pleasure.

A D 7. Certain fields like clinical psychology, business and technology where the
graduate is not going to be a college professor should not require a
thesis.

A D 8. Ten years after completing their degree, most students are ashamed of
their thesis.

A D 9. The whole master’s program is aimed at preparing the student to use
research; the thesis is simply evidence of having achieved that goal.

A D 10. Many theses have had profound effect on subsequent research and
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The question asked of you is this: “How do you score the responses given by an

individual to this type of instrument?” Do you simply add the “agrees” to get a total

score? What if some of the statements the subject agrees with are negative

statements? Do you “reverse” the scoring for those items? How do you know

which items are negative? Would a group of judges have the same opinion as

yours as to which are positive or negative items?

Clearly, when measuring an attitude, there is no actual “correct” or “incorrect”

response! In order to “score” an attitude instrument as that shown above, we must

first establish the degree to which each item expresses an attitude that is favorable

or unfavorable toward the “object” or topic for which the items are written.

Some items when agreed with may give evidence of a very strong attitude toward

the positive or the negative end of a continuum. If we can establish a scale value for
each item that indicates the degree of “positiveness” toward the object, we can then

use those scale values to score the responses of a subject. One of the ways of doing

this is to use a group of “judges” to establish those scale values. The following

illustrates an instrument used to garner the opinion of judges about the “positive-

ness” of the items in the previous instrument:

THESIS RESEARCH ATTITUDE INSTRUMENT
JUDGE EVALUATION FORM

DIRECTIONS:

You are being asked to determine the positiveness or negativeness each of the following items.  To 
do this, you will rate each item on a scale ranging from 1 to 7 where 1 indicates highly negative to 7 which
indicates highly positive.  In order to have a common “frame of reference” for each item, assume that a
graduate student  has agreed with the statement, then rate how positive or negative that student is toward
dissertation research.  As an example, use the following item:

A D Most theses in Education are irrelevant surveys of little importance.

Assuming the student has marked AGREE (the underlined A) with the statement, how positive or negative
do you think he (or she) is?  Make a mark on the scale below to indicate your answer.

Highly
Negative

Neither Positive
Or Negative

Highly
Positive

____1____|____2____|____3____|____4____|____5____|____6____|____7____

PLEASE BEGIN!

1. The research one does for his or her thesis may determine the line of
research they pursue the rest of their life.

____1____|____2____|____3____|____4____|____5____|____6____|____7____

2. The only reason theses are required is because the current faculty had
to do one in order to graduate.

____1____|____2____|____3____|____4____|____5____|____6____|____7____

3. Most theses make little contribution to the body of knowledge in a 
discipline.

____1____|____2____|____3____|____4____|____5____|____6____|____7____

4. A thesis can demonstrate your ability to be creative and thorough in
conducting a research project.

____1____|____2____|____3____|____4____|____5____|____6____|____7____
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5. Unless you almost have a major in statistics, its very difficult to complete a
useful thesis.

____1____|____2____|____3____|____4____|____5____|____6____|____7____

6. Reading a thesis is right up there with reading a telephone book for
pleasure.

____1____|____2____|____3____|____4____|____5____|____6____|____7____

7. Certain fields like clinical psychology, business and technology where the
graduate is not going to be a college professor should not require a thesis.

____1____|____2____|____3____|____4____|____5____|____6____|____7____

8. Ten years after completing their doctorate, most students are ashamed of
their thesis.

____1____|____2____|____3____|____4____|____5____|____6____|____7____

9. The whole doctorate program is aimed at preparing the student for research;
the thesis is simply evidence of having achieved that goal.

____1____|____2____|____3____|____4____|____5____|____6____|____7____

10. Many theses have had profound effect on subsequent research and
products.

____1____|____2____|____3____|____4____|____5____|____6____|____7____

By analyzing the responses of a group of judges, the median or mean rating of

those judges can be used to determine a scoring weight for each item that can be

used in scoring the subjects for whom we wish to obtain an estimate of their

attitude. One of the methods often used to analyze these judge’s ratings is called

the method of successive intervals (see Edwards, 1951). A computer program on

you statistics disk permits you to analyze such responses. Consult the program

manual for directions on its use.

Affective Measurement Theory

Most classroom teachers first learn to develop tests of achievement over the content

which they are engaged to teach. These tests fall in what is known as the Cognitive

Domain of testing. Two additional areas of testing are, however, often just as impor-

tant. These areas are the Psychomotor Domain and the Affective Domain. The

Psychomotor Domain includes testing of fine and gross motor coordination, strength

and accuracy. The affective domain includes the measurement of attitudes, values and

opinions of subjects. Typically,we are interested inmeasuring an attitude ononemajor

“latent” variable such as an attitude toward school, an attitude toward minorities, an

attitude toward somepolitical issue, etc. In such cases, all of the items of the instrument

used to measure this attitude are related, in some manner, to the major latent variable.

In the followingdiscussion,wewillmake this assumptionof unidimensionality, that is,

that all items are directly related to the same, underlying construct.
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Thurstone Paired Comparison Scaling

A variety of item types have been developed to measure attitudes and values. Two

major forms are used most commonly: (a) the agree/disagree format and (b) the

“Likert” scale type involving a degree of agreement or disagreement, usually on a

five or more point scale. In the case of agree/disagree statements, the subject is

simply asked to indicate whether they agree or disagree to each statement listed.

The statements are written to represent both positive or negative attitudes toward

the object of the measurement. For example, if we were measuring an attitude

toward “going to college” we might have the following statements:

1. College degrees are extremely important if your goal is to be a professional.

2. College graduates are snobish and have lost touch with humanity.

3. If you really want to make money, you can easily do so without going to college.

4. So many people are going to college, a college degree doesn’t mean much any

more.

If, on the other hand, we were using the Likert form of the statements, we will

tell each subject to mark how strongly they agree (or disagree) with each statement

using a scale such as

Strongly
Disagree

Strongly
Agree

You can see by the nature of the items, that there is no “correct” or “incorrect”

response to each statement. Since we have no clear right or wrong answer, this

poses a problem for “scoring” the responses of the instrument and obtaining a

measure of the subject’s attitude. We could arbitrarily mark those items which we

feel reflect a positive attitude as a + 1 if the subject “agreed” with the statement (or

marked closer to the agree on a Likert scale), and score 0 if they failed to agree to a

positive item. For negatively stated items we could similarly score a subject as 0 if

they agreed with the negative item and score them a + 1 if they disagreed with the

negative item. The sum of these individual item scores, like our cognitive tests,

would be the measure of the subject’s attitude. Unfortunately, what you perceived

as a “negative” or “positive” item may not be what I see for the same item! In fact, a

group of judges might vary considerably in how “negative” or “positive” they felt

each statement was toward the attitude object. Because of the ambiguity of attitude

statements and because we desire to produce measurements for subjects which fit at

least an interval scale of measurement, a variety of methods have been developed to

“scale” the items used in affective instruments.

One of the first methods developed to determine the score values of items that

subjects are asked to agree or disagree with is known as the Thurstone Paired-

Comparisons Scaling method. This method utilizes a group of judges who are asked

to compare each statement with every other statement and simply indicate which

statement in each pair is more favorable toward the object if a subject were to agree
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with each one. For example, item 1 and item 2 of the above examples would be

compared. If a judge felt that agreeing with item 1 indicated more favorableness

toward going to college than agreeing with item 2, he would indicate item 1 is more

favorable. By employing a reasonably large (say N > 20) number of judges, an

average of the number of times judges selected each item over another can be

obtained. If we assume these judgments by the judges are normally distributed

around the “stimulus value” of each item, that is, the degree of favorableness of the

items, we can obtain an estimate of the stimulus value for each item.

Let’s consider an example of directions for the above 4 items that might be given

to 30 judges:

DIRECTIONS:  Listed above are four statements which reflect
varying degrees of positiveness toward attending college.
Please indicate to the left of each pair of statements,
which item you feel reflects a more positive attitude toward
attending college.
_____ A.  Item 1     B.  Item 2
_____ A.  Item 1     B.  Item 3
_____ A.  Item 1     B.  Item 4
_____ A.  Item 2     B.  Item 3
_____ A.  Item 2     B.  Item 4
_____ A.  Item 3     B.  Item 4

Following administration of the above to 30 judges, we might obtain the

following matrix. The number in the cells of this matrix reflect the number of

judges which felt the item listed at the top was MORE favorable than the item listed

to the left.

Judgement Matrix
ITEM 1 2 3 4

1 10 1 3 7

2 19 10 18 16

3 17 2 10 13

4 13 4 7 10

Notice in the above matrix that the diagonal values represent a comparison of a

single item with itself. Since such comparisons are not actually made, we assume

that one half of the time the item would be judged more positive and one half

the time less positive. Also note that the values below the diagonal are the number

of judges in the sample minus the value for the corresponding items above the

diagonal.

To obtain the “scale value” of each item, we next convert the numbers of the

above matrix first to the proportion of total judges and then we convert the

proportions to z scores under the unit normal distribution. The matrices

corresponding to the above example would be:
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Proportion of Judgements

ITEM 1 2 3 4

1 .05 .15 .35

2 .50 .90 .80

3 .10 .50 .15

4

.50

.95

.85

.65 .20 .85 .50

z Scores for Proportions of Normal Curve

ITEM 1 2 3 4

1

2

3

4

Sum

Average

Scale
Value

0.00

1.65

1.04

.39

3.08

.77

1.71

-1.65

0.00

-1.28

-.84

-3.77

-.94

0.00

-1.04

1.28

0.00

1.04

1.28

.32

1.26

-0.39

0.84

-1.04

0.00

-.59

-.15

.79

The last three rows above are simply the column sums, the column average, and the

average plus the absolute value of the smallest column average. Since we are

constructing a psychological scale, the mean and standard deviation of the scale values

is arbitrary. We simply desire to build estimates of the intervals among the stimuli

(items). The last row is labeled Scale Value. It reflects the average difference of the

distance of each item fromtheother itemsonourpsychological scale. The item (number

2) with the lowest scale value is the one which is “most negative” toward attending

college. The item (number 1) with the largest value is the one most positive toward

attending college. The scale values reflect the discriminations of the judges, NOT their

attitudes. We simply used the judges to acquire “weights” for each item that reflect

the degree of positivism or negativism of each item! Now that we have these scale

values however, we can use them to actually measure the attitude of subjects toward

attending college. To do this, our subjects would receive instructions something like

Directions:  Each statement below reflects an attitude
about college.  You are to circle the A if
you agree with the statement or circle the D
if you disagree with the statement.Go ahead.

A    D    1.   College degrees are extremely important
if your goal is to be a professional.

A    D    2.   College graduates are snobish and have
lost touch with humanity.

A    D    3.   etc.

216 9 Measurement



Once a subject has indicated agreement or disagreement with the items, the

subject’s total score is calculated by simply averaging the scale value of those items

with which they agreed. The Paired-Comparisons procedure described above

makes several assumptions. First, it assumes that the judges discriminations

among the items are normally distributed. Secondly, it assumes that the variance

of those discriminations are equal. Third, it assumes that the items all measure, to

varying degrees, the same underlying attitude. Fourth, it assumes that the correla-

tion among the judges discriminations for item pairs are all equal. Fifth, it assumes

the mean and standard deviation of the scale values are arbitrary and the scale

reflects only distances among items, not absolute amounts of an attitude.

You have probably already noticed that if you have very many items, the number

of item pairs that judges are required to judge becomes large. The number of unique

pairs is obtained by k(k�1)/2 where k is the number of items. For example, if you

constructed 20 statements, the judges would have to make 20(19)/2 ¼ 190

discriminations! Obviously you will try the patience of judges if your instrument

is very long. A more convenient method of estimating item scale values is described

in the next section.

Incidentally, if an item is judged to be higher than all other items by all judges or

lower than all items by all judges, you would end up with a proportion of 1.0 or 0.0.

The z scores corresponding to those proportions is plus or minus infinity and

therefore could not be used to obtain an average. Such items may simply be

eliminated or the obtained proportions changed to something like 0.99 or 0.01 as

estimates of “what they might have been” if you had a much larger sample of judges.

Successive Interval Scaling Procedures

The Paired-Comparisons procedure described in the last section places great

demands on judges if the number of items in an affective instrument is large. Yet

we know that instruments with more items tend to give a more reliable estimate of

an individual’s attitude. The Successive Intervals scaling procedure provides a

means of obtaining judges discriminations for k items in k judgments. The resulting

scale values of items judged by both the Paired-Comparisons and Successive

intervals methods correlate quite highly.

In the successive intervals scaling method, judges are asked to categorize

statements on a continuum of an attribute like favorable-unfavorable. Typically

five to nine categories are used, always using an odd number of categories. Utilizing

the example from the previous section in which we are scaling items for measuring

subjects attitudes toward attending college, a sample instruction to judges might

look like the following:
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Directions:  Each item below reflects some degree of
favorableness or unfavorableness toward attending
college.  Indicate the degree of favorableness in
each item by making a check in one of the seven
categories ranging from highly unfavorable to
highly favorable.

1.   College degrees are extremely important if your

Highly                               Highly
Unfavorable                          Favorable

2.   College graduates are snobbish and have lost
touch with humanity.

Highly                               Highly
Unfavorable                          Favorable

3.   etc.

goal is to be a professional.

If we assume again that we have a reasonably large sample of judges evaluating

each item of our instrument, and we assume that the classifications of items on the

continuous scale tend to be normally distributed, we employ computations similar

to the Paired-Comparison method for estimating scale values. For our example

above, we might obtain, for the group of judges, the following classifications:

Frequency of Item Classifications
Category:
Item

1 2 3 4 5 6 7
1 0 1 1 3 8 6 1
2 2 7 6 4 1 0 0
3 1 3 6 6 3 1 0
4 1 5 9 4 1 0 0

To obtain scale values by the method of successive intervals, we next obtain the

cumulative frequencies within each item, convert those to cumulative proportions,

and then convert the cumulative proportions to z scores. For example:

Cumulative Frequencies and Proportions

Category       1    2    3    4  5    6    7
Item:
1    cf        0    1    2    5    13   19   20

cp        0    .05  .10  .25  .65  .95  1.0

2    cf        2    9    15   19   20   20   20
cp        .10  .45  .75  .95  1.0  1.0  1.0

3    cf        1    4    10   16   19   20   20
cp        .05  .20  .50  .80  .95  1.0  1.0

4    cf        1    6    15   19   20   20   20
cp        .05  .30  .75  .95  1.0  1.0  1.0
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z Score Equivalents to Cumulative Proportions

Category       1 2      3      4      5      6      7
Item
1              - -1.65  -1.28  -0.67   0.38   1.65     -
2           -1.28  - .13    .68   1.65     - - -
3           -1.65  - .85    .00    .85   1.65     - -
4           -1.65  - .52    .68 1.65     - - -

Differences Between Adjacent Categories

Difference    2-1     3-2     4-3     5-4     6-5     7-6
Item:
1                     .37     .61    1.05    1.27
2             1.15    .81     .97
3              .80    .85  .85     .80
4             1.13   1.20     .97

Sum           3.08   3.23     3.40   1.85    1.27
N              3      4        4      2       1
Mean          1.03    .81      .85    .93    1.27
Cum. Avg.     1.03   1.84     2.69   3.62    4.89

Scale values for the items which have been judged and analyzed by the method

of successive intervals is obtained using the formula for the median of an interval,

that is:

Scale Value ¼ LLþ ð:5� SPbÞ
Pw

�W (9.26)

where LL is the lower limit of the interval,

Pb is the Probability below the interval,

Pw is the Probability in the interval,

_

and W is the average interval width.

The scale value of items is the median value of the item on the scale defined by

the cumulative average of the mean z score differences between categories. The

scale values for the example above are therefore obtained as follows:

Scale value for item 1:

1. First, find the category in which the cumulative proportion is just less than 0.50,

that is, that category just below the category inwhich the cumulative proportion is

0.5 or greater. For item 1 this is the category 4 (cumulative proportion ¼ 0.25).

2. Next, obtain the cumulative average scale value for the category difference of

the category just identified and the one below it. In this case, the cumulative

average for the difference 4–3 which is 2.69. This represents the lower limit of

the category in which the scale value for item 1 exists.
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3. The value of EPb is the cumulative proportion up through the category identified

in step (1) above, that is, 0.25 in our example.

4. The Pw is the proportion within the interval in which the median is found. In our

example, it is the proportion obtained by subtracting the proportion up to

category 5 from the proportion in category 5, that is, 0.65�0.25 ¼ 0.40.

5. Obtain the width of the interval next. This is the average z score differences in

the interval in which the median is found. In this case the interval difference 5–4

has an average width of 0.93.

6. Substitute the values obtained in steps (1)–(5) in the equation to obtain the item

scale value. For item 1 we have

S1 ¼ 2:69þ ð:50� :25Þ
ð:65� :25Þ 0:93 ¼ 3:2700

In a similar manner, the scale values for items 2 through 4 are:

S2 ¼ 1:03þ ð:50� :45Þ
ð:75� :45Þ 0:81 ¼ 1:1650

S3 ¼ 1:03þ ð:50� :20Þ
ð:50� :20Þ 0:81 ¼ 1:8343

S4 ¼ 1:03þ ð:50� :30Þ
ð:75� :30Þ 0:81 ¼ 1:3900

Several points should be made concerning the above computations. First note

that the initial seven categories that were used represent midpoints of intervals. The

number of judges placing an item within each category are assumed to be

distributed uniformly accross the interval represented by the midpoint (category

number). The calculation which involves subtracting the z scores in one category

from those in the next higher category, and then averaging those values, establishes

the distance between the midpoints of our original categories. In other words, there

is no assumption of equal widths—we in fact estimate the interval widths. Once the

interval widths are estimated, the accumulation of those widths describes the total

scale of our measurements. You will have noticed that if the total number of

categories is originally k (7 in our example), there will be k-2 differences obtained

for adjacent categories. We have no way of estimating the width of the first and last

category since there are no values below or above them. We can see this if we draw

a schematic of the scale:

Midpoints
1       2       3       4       5       6      7

a       b       c       d       e
Intervals
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We can illustrate where each item lies on the obtained scale by “plotting” the

scale value of each item:

Item:          3   2 4              1

0.0     1.0     2.0     3.0     4.0     5.0

We can see that item 1 was judged more positive than the other three items and

lies considerably further from the other items. Items 2, 3 and 4 are more similar in

scale value with item 3 being judged the most negative of the four items.

Once the scale values of items are known, the same practice as employed in Paired-

Comparisons methodology is used to obtain measures of individuals. The statements

are presented to the subjects and the scale values of those items to which the subject

agrees is averaged. The obtained average reflects the attitude of the subject.

Guttman Scalogram Analysis

If the items used to measure an attitude are all reflective of the same underlying

attitude but to varying amounts, then subjects that vary on that attitude should agree

or disagree to the items in a specific patterm. As an example, assume we have five

items which measure the degree of positivism toward maintaining U.S. troops in a

base in Japan. Now assume that these items are ranked in the order to which they

evoke an “agree” response by six people that vary in their attitude toward

maintaining the troops in Japan. If there is consistency of measurement, and we

assign a “1” if a subject “agrees” and “0” if the subject “disagrees” with an item, we

would expect that the following matrix of observations might be recorded:

Rank of Item on the Attitude

1     2     3     4     5      Score Rank
Subject

1              1     1     1     1     1        5     1
2              0     1     1     1     1        4     2
3              0     0     1     1     1        3     3
4              0     0     0     1     1        2     4
5              0     0     0     0     1        1     5
6              0     0     0     0     0        0     6

In our example, subject 1 has agreed with all five statements and subject 6 has

disagreed with all items. Note the items have been arranged in order from most

negative toward maintaining troops to most positive toward retaining troops in

Japan. In addition, the subjects have been arranged from the subject with the most

positive attitude down to the subject with the least positive (most negative) attitude.

The matrix of the responses reflects perfect agreement or order of the responses.

In “real” life, we seldom get such a perfect pattern of responses. A more typical

response pattern might look more like:
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Items Ordered by Total "Agree" Responses
1       2       3       4       5

Response     1 0     1 0     1 0     1 0     1 0     Score

Subject
1         x       x       x       x       x         5
2           x     x       x       x       x         4
3         x         x     x       x       x         4
4           x     x         x     x       x         3
5           x       x       x     x       x         2
6           x       x     x         x     x         2
7           x       x       x       x     x         1
8           x       x       x     x                 1
9           x       x       x       x       x       0

10           x       x       x       x       x    0

sums         2 8     3 7     4 6     6 4     7 3
Proportion .2  .8  .3  .7  .4  .6  .6  .4  .7  .3

In this sample of ten subjects, we have several subjects with the same total score as

another subject but a different pattern of “agree” or “disagree” to the statements. There

is not perfect agreement among the items in differentiating the attitudes of the subjects!

Note that we have recorded the response of each subject in one of two columns beneath

each item. The sum or proportion of the “agree” or 1 responses is totaled accross

subjects to identify the order of the “positivism” of the item. Item 5 is the item which

received the greatest number of “agree” responses while item 1 received the fewest.

If we have “perfect” reproducibility in an instrument of k items, we would be able

to perfectly reproduce the individual item responses of an individual given their total

score (number of items to which they agree). If their is inconsistency of measure-

ment, we can only estimate the likely response to each item. In order to make such

estimates, it is necessary to identify a “cutting” point for each item which identifies

that point where the pattern of agree/disagree responses most likely changes. This

point is one where the number of errors is a minimum. An error is counted whenever

a subject below the cutting score agrees with a statement or whenever a subject

above the cutting point disagrees with the statement. For the above table, we have

inserted the cutting scores which give the minimum error counts:

Items Ordered by Total "Agree" Responses
1       2       3       4       5

Response     1 0     1 0     1 0     1 0     1 0     Score

Subject
1         x       x       x       x       x         5
2           x     x  x       x       x         4
3         x__       x     x__     x       x         4
4           x     x__       x     x       x         3
5           x       x       x     x__     x         2
6           x       x     x         x     x      2
7           x       x       x       x     x__       1
8           x       x       x     x         x       1
9           x       x       x       x       x       0

10           x       x       x       x       x       0

sums         2 8     3 7     4 6     6 4     7 3
Proportion .2  .8  .3  .7  .4  .6  .6  .4  .7  .3
Errors       0 1     0 1     1  0    1 0     0 0    Σe=4
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There are actually several choices for cutting scores on each item which

minimize the sum of the errors. L. Guttman (see Edwards, p. 182) has developed

a coefficient which expresses the degree of reproducibility of a set of items. It is

obtained as one minus the proportion of errors in the total number of responses. For

the above data, we would obtain the coefficient of reproducibility as

Rep ¼ 1:0� 4=50 ¼ 0:92

Because the cutting scores in the above matrix may be made at several points,

the response pattern expected of a subject with a given total score might vary from

solution to solution. In order to obtain a method of setting cutting scores that is

always the same and thus yields a means of accurately predicting a response pattern,

Edwards (Edwards, pgs. 184–188) developed another method for obtaining cutting

scores. This method is illustrated for the same data in the figure below:

Items Ordered by Total "Agree" Responses
1       2       3       4       5

Response     1 0     1 0     1 0     1 0     1 0     Score

Subject
1         x       x       x       x       x 5
2           x     x       x       x       x         4

-------------------------------------
3         x         x     x       x       x         4

-------------------------------------
4           x     x         x  x       x         3

-------------------------------------
5           x       x       x     x       x         2
6           x       x     x         x     x         2

-------------------------------------
7           x     x       x       x     x         1

-------------------------------------
8           x       x       x     x         x       1
9           x       x       x       x       x       0

10           x       x       x       x       x       0

sums         2 8     3 7     4 6     6 4     7 3
Proportion .2  .8  .3  .7  .4  .6  .6  .4  .7  .3

In the above display of our sample data, we have used the proportion of 1

responses (agree) to draw our cutting points. For example, in item 1, 20% of the

subjects agreed with the item. The cutting score was then drawn below 20% of all

the responses (both agree and disagree). This procedure was used for each item.

Errors are then counted whenever a response disagrees with the pattern expected.

For example, both subjects 1 and 2 are expected to have a pattern of responses 1 1 1

1 1 but subject 2 has 0 1 1 1 1 as a pattern. One response disagreed with the expected

so the error count is 1 for subject 2. Subject three is expected to have a response

pattern of 0 1 1 1 1 but in fact has a response pattern of 1 0 1 1 1 . Since there are

two items that disagree with the expect pattern, the error count for subject 3 is 2.

A similar procedure is followed for each subject. The expected pattern for each total
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score is shown below along with the number of errors counted for subjects with

those total scores:

4          0  1  1  1  1   

Total Score    Expected Pattern    Subject   No. of Errors

5          1  1  1  1  1         1            0
4          0  1  1  1  1   2            0

3            2
3          0  0  1  1  1         4            2
2          0  0  0  1  1         5            0

6            2
1          0  0  0  0  1         7            0

8            2
0          0  0  0  0  0         9            0

10            0

Σe = 8

Rep = 1.0 - ( 8 / 50) = 0.84

Rep ¼ 1:0� ð8=50Þ ¼ 0:84

This computation of the coefficient of reproducibility is a measure of the degree

of accuracy with which statement responses can be reproduced on the basis of the

total score alone! It is this latter method with is used in the program GUTTMAN

found in the OpenStat program. The proportion of subjects agreeing or disagreeing

with each item affects the degree of reproducibility. If very large or very small

numbers of subjects agree to an item, the reproducibility is increased. The minimal

coefficient of reproducibility may be obtained by the larger of the two values (a)

proportion agreeing or (b) proportion disagreeing with a statement and dividing by

the number of items. In our example these values are 0.8, 0.7, 0.6, 0.6 and 0.7. The

minimal marginal reproducibility is therefore

:8þ :7þ :6þ :6þ :7

6
¼ 0:68

The response pattern corresponding to this model response pattern is 0 0 0 1 1.

If we were to predict each subjects responses with this pattern and count errors, the

coefficient of reproducibility would be 0.68! The Guttman Coefficient of reproduc-

ibility may be thought of as an index somewhat comparable to the reliability

coefficient. A value of one would indicate a set of items that are fully consistent

in measuring differences among subjects.

In the methods of paired comparison and successive intervals, we utilized a

group of judges to estimate scale values for items. These scale values were then

used to obtain the scores for subjects administered the statements. With the

Guttman scaling method, we do not use judges but simply the responses of

the subjects themselves as a basis for determining their attitude scores. We simply
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assign 1 to the item with which they agree and 0 to those with which they disagree.

If the instrument has a high coefficient of reproducibility, then the total of the

subject response codes, i.e. their total score, should be directly interpretable as a

measure of their attitude. The subject’s total score may be divided by the number of

items to obtain the proportion of items to which the subject agreed. It is assumed

that all items reflect a varying degree of positivism to the attitude object (e.g. troops

in Japan) and therefore the subject’s total score based on those items also reflects

the subject’s attitude. The scale value of each item is the cutting score for that item.

In the above example, we may place the items on the scale as follows:

Item         1   2   3       4   7

0      .2      .4      .6      .8      1.0
Proportion of "Agree" Items

The items to which few subjects “agree” is a more negative item than the item to

which a larger number of subjects agree. The proportion of items an individual

subject agrees with is an indication of the subjects positivism toward the attitude

object.

Likert Scaling

Also called the method of Summated Ratings, the Likert scaling method, like the

Guttman method above, does not use judges to determine the scale value of items.

Subjects are directly measured on each statement by indicating their degree of

agreement, usually using a five-point scale. The statements administered are

statements judged only by the person constructing the items as either a “favorable”

or “unfavorable” item. If a five point scale is used such as

Strongly
Disagree

Strongly
Agree

the lowest category is assigned a value of 0, the next category a 1, etc. up to the last

category which would be assigned the value 4. If the item is an “unfavorable” item

toward the attitude object, the category scores are reversed, that is, the first category

assigned 4, the next 3, etc. To obtain a subject’s score, one simply adds the values of

the categories checked by the subject. Normal item analysis procedures may be

used to eliminate items which do not measure the attitude consistent with other

items. The point-biserial correlation of the item with the total score is the typical

criterion used. If the item correlates quite low with the total score, the item should

be eliminated.

It is important to note that the scores obtained by the Likert method cannot be

interpreted without reference to a comparison group. Since the item scale values are
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not obtained, and the distances among the items is therefore unknown, the total

scores are only meaningful in reference to a comparison group. For example, say

that a scale of 20 items is administered to a subject and the subject’s score is 5. This

score cannot be directly interpreted. It may be that in one group of subjects this is a

highly positive score while in another group, a very low score. We cannot say the

score of 5, by itself, reflects a positive or negative attitude toward the object. It has

been found in previous research that scores obtained on a Likert scale correlate

quite high with the same items scaled and scored by the Thurstone method. If the

interest of the researcher is to use the attitude measures to describe its relationship

with some other variables through correlation methods, then the Likert method is

cost-effective. If, on the other hand, the researcher desires to interpret individual

attitudes as being positive or negative toward some object, then a method such as

the paired-comparison or successive interval scaling method should be employed.

Semantic Differential Scales

Osgood, et al. (1971) developed a measure of the “meaning” attached, through a

theorized learning model, to a variety of stimuli including both physical objects as

well as “ideas” or concepts. Their measure is based, briefly, on the notion that

certain words have become associated with subject’s responses to objects through

conditioning and generalization of conditioning. They observed that in many

situatations, people, for example, might use words such as heavy, dark, gloomy

to describe some classical music while words such as bright, up, shiny, happy might

describe other music. These words which are also used to describe many objects

appear to have general utility for subjects in describing their “feelings” about an

object. Osgood and his colleagues utilized factor analysis procedures to identify

subsets of items which appear to measure different dimensions of meaning. Their

goal was to identify a set of bipolar adjectives which describes the “semantic space”

of given objects. This space is described by orthogonal axis of the bipolar

adjectives. The objects lie within this space at varying distance from the origin

(intensity) and in specific directions (description). Three major dimensions of the

semantic space are typically used. These are (I) Evaluation, (II) Activity, and (III)

Potency.

The semantic differential scale is constructed of those bipolar adjectives (e.g.

hot—cold) which are demonstrated to differentiate the meaning attached by

individuals to a given object (e.g. school attendance). Thus the first problem in

constructing a semantic differential scale is the selection of bipolar adjective pairs

that measure predominantly one dimension of the semantic space and differentiate

among individuals that vary in intensity of feeling on that dimension. Once the

adjectives have been identified and their discriminating potential demonstrated,

the selected items are utilized to measure the feelings (attitudes or values) that

individual subjects attach to the object.
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Typical instructions to subjects are as follows:

Directions:   This instrument is designed to measure the
meaning of certain things by having people judge them with a
series of scales using word opposites.  Make your judgments
on the basis of what these things mean to YOU.  Below you
will see the thing to be judged in the center of the page.
You are to rate this object on each of the scales below the
object.  Here is how you use the scales:
If you feel the object in the center is very closely related
to one end of the scale, you should place your check-mark as
follows:

fair__X__|_____|_____|_____|_____|_____|_____unfair

or

fair_____|_____|_____|_____|_____|_____|__X__unfair

If you feel the concept is quite closely related to one or
the other end of the scale (but not extremely), you should
place your check-mark as follows:

strong_____|__X__|_____|_____|_____|_____|_____weak

or

strong_____|_____|_____|_____|_____|__X__|_____weak

If the object seems only slightly related to one side as
opposed to the other side (but is really not neutral), then
you should check as follows:

active_____|_____|__X__|_____|_____|_____|_____passive

or

active_____|_____|_____|_____|__X__|_____|_____passive

If you consider the concept to be neutral on the scale, both
sides equally associated with the object, or if the scale is
completely irrelevant, unrelated to the concept, then you
should place your check-mark in the middle space:

safe_____|_____|_____|__X__|_____|_____|_____dangerous

GO AHEAD!

SCHOOL
1.   good _____|_____|_____|_____|_____|_____|_____ bad
2.   kind _____|_____|_____|_____|_____|_____|_____ cruel
3.   high _____|_____|_____|_____|_____|_____|_____ low
4.   hard _____|_____|_____|_____|_____|_____|_____ soft
5.   heavy_____|_____|_____|_____|_____|_____|_____ light
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Typically, 3 or more items are selected from those items which “load” heaviest

on each of the factors or dimensions of the semantic space which the researcher

wishes to measure. More items from a given dimension yields a more reliable

estimate of that dimension. Note that if items from more than one factor are used, a

profile of scores may be obtained for each individual. The user of the semantic

differential scales may choose, of course, to measure on only one dimension. Items

may also be included that are not previously known to load on a particular

dimension but are felt by the test constructor to be relevant for measureing the

meaning or attitude toward a given object. Later analyses may then be performed to

determine the extent to which these other items load on the dimensions of the

semantic space.

While it is assumed that the scales (items) of the semantic differential scales are

equal interval scales, this assumption may be checked by using the successive

interval scaling program to estimate the interval widths of the individual items.

Dimension scores for individuals are usually computed by simply summing or

averaging the scale values of each item where the scale values are �3, �2, �1, 0,

+1, +2 and +3 corresponding to the seven categories used. Notice that the values

may need to be reversed if the “negative” synonym is listed first and the “positive”

listed last.

Behavior Checklists

The industrial technology evaluator will sometimes utilize a behavior checklist

form to record observations regarding work habits, verbal interactions, or events

considered important to a given study. In industrial training situations, the evaluator

may record such details as the number of steps taken during a given operation, the

frequency of lifting objects from below waist level, the number of manual

adjustments to equipment, etc. related to the training. Time and motion studies

may provide valuable information for reducing fatigue and injury, reducing

operating times for processes, and suggest alternative methods of operation.

In evaluating trainer performance, a behavior checklist may “zero in” on specific

behaviors potentially detracting from the effectiveness of the instructor as well as

identifying those important to retain and reinforce.

As an example of a behavioral checklist, consider the following set of “items” by

which trainees record their observations about behaviors of a trainer:
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---------------------------------------------------------------------------------------------------------------------------------
Behavior of the Trainer

Directions: Each item below describes a behavior that you might have observed during the training
session.  For each item indicate whether or not the behavior occurred and indicate how you felt about the 
behavior.  Express your feeling about the behavior by checking one of the numbers between 1 and 5 where
1 indicates “Highly undesirable”, 2 indicates slightly undesirable, 3 indicates neither desirable or
undesirable, 4 indicates somewhat desirable and 5 indicates “Definitely desirable”.

To “score” the above type of data, the evaluator may multiply the value of the

“feeling” scale checked by one (1) if the observer marked “y” to observing it or zero

(0) if not observed. The higher the score, the “better” the trainer behaved in the view

of the trainees.

Codifying Personal Interactions

In some situations, it is necessary to evaluate the content of interpersonal

communications. For example, to create a work environment free of discrimination,

the conversations among employees may be coded for words, phrases, sentences,

gestures, or behaviors which may be construed as sexist, discriminatory or deroga-

tory to other individuals. Unfortunately, one cannot always sit and take notes while

others are conversing. Use of tape recording without the permission of those

recorded is also inappropriate. Often the best one can do is to take note of a part

of a conversation overheard, record one’s observations as soon as possible after-

wards, and then, if possible, verify what was heard with one or more persons that

may also have heard the conversation. Clearly, this is an emotionally laden and

sensitive area! One must use extremely good judgment. Rather than recording

specific “offenders” names, for example, one may use code letters or numbers to

represent individuals. One may also encode words, gestures, etc. within categories.

Let’s consider an example where a female employee has complained of sexual

harassment in a business which employs primarily men and very few women in

packaging meat for retail store distribution. A consultant is hired to evaluate the

work place for evidence of a problem with sexual harassment. The evaluator first

does a “walk-through” to garner any graphical evidence of harassment such as :
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g1 ¼ sexually explicit graffiti or pictures in view in restrooms

g2 ¼ written material making explicit sexual innuendoes regarding an employee

Next, the evaluator may draw a random sample of employees and formally

interview them, giving full assurance of confidentiality. The evaluator may code

each employees responses as E1, E2, etc. and, using a pre-defined schedule of

questions, code the responses to each question as + or � to indicate statements

made that verify or negate the presence of harassment. Again, the coding for the

questions and their responses might be:

E1ð1Þþ; E1ð2Þ�; E1ð3Þ�;E1ð4Þþ
E2ð1Þ�;E2ð2Þþ; E2ð3Þþ; E2ð4Þ�

etc:

The evaluator may specifically interview the females in the work-setting

(recognizing that sexual harassment can be evidenced by either gender, but more

likely reported by females). This type of interview is again, very sensitive. An

individual often must show great courage to even raise the complaint of harassment

and may fear reprisal from coworkers or employer. The evaluator must be particu-

larly well versed in the separation of perceptions of harassment from evidence of

harassment. Again, coding of responses to questions or volunteered information

may be useful for assuring confidentiality and brevity in data collection. Something

like the previous coding might be used:

C1(1)V+; C1(2)P-; etc. where C1 is the first complainant, V is evidence, P is a

perception and + or � is content within the definition of harassment or not in the

definition of harassment.

Once such data is collected and summarized, the evaluator must still attach

weight to each type of evidence or perception. Typically, “hard” evidence such as

graffiti, derogatory written comments, verified derogatory conversations, etc. are

given a higher value than perceptions or hearsay evidence. Notice that the evaluator

is not in the role of changing the work environment, filing complaints with the Equal

Opportunity Commission or other corrective decisions and actions. The evaluator in

this example was likely asked to determine if harassment exists or perhaps the

“degree” of harassment that may exist. The report completedmay, of course, suggest

alternative actions appropriate to the evidence found and conclusions reached by the

evaluator. It is the responsibility of the evaluators employer to act on the evaluation

results, not the evaluator.
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