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Preface

This textbook, Exploratory Data Analysis in Business and Economics: An Introduction
Using SPSS, Stata, and Excel, aims to familiarize students of economics and business

as well as practitioners in firms with the basic principles, techniques, and applications

of descriptive statistics and data analysis. Drawing on practical examples from business

settings, it demonstrates the basic descriptive methods of univariate and bivariate

analyses. The textbook covers a range of subject matter, from data collection and

scaling to the presentation and univariate analysis of quantitative data, and also includes

analytic procedures for assessing bivariate relationships. In this way, it addresses all of

the topics typically covered in a university course on descriptive statistics.

In writing this book, I have consistently endeavoured to provide readers with an

understanding of the thinking processes underlying descriptive statistics. I believe

this approach will be particularly valuable to those who might otherwise have

difficulty with the formal method of presentation used by many textbooks. In

numerous instances, I have tried to avoid unnecessary formulas, attempting instead

to provide the reader with an intuitive grasp of a concept before deriving or

introducing the associated mathematics. Nevertheless, a book about statistics and

data analysis that omits formulas would be neither possible nor desirable. Indeed,

whenever ordinary language reaches its limits, the mathematical formula has

always been the best tool to express meaning. To provide further depth, I have

included practice problems and solutions at the end of each chapter, which are

intended to make it easier for students to pursue effective self-study.

The broad availability of computers nowmakes it possible to teach statistics in new

ways. Indeed, students now have access to a range of powerful computer applications,

from Excel to various statistics programmes. Accordingly, this textbook does not

confine itself to presenting descriptive statistics, but also addresses the use of

programmes such as Excel, SPSS, and Stata. To aid the learning process, datasets

have been made available at springer.com, along with other supplemental materials,

allowing all of the examples and practice problems to be recalculated and reviewed.

I want to take this opportunity to thank all those who have collaborated in

making this book possible. First and foremost, I would like to thank Lucais Sewell

(lucais.sewell@gmail.com) for translating this work from German into English.

It is no small feat to render an academic text such as this into precise but readable

English. Well-deserved gratitude for their critical review of the manuscript and

valuable suggestions goes to Birgit Aschhoff, Christoph Grimpe, Bernd Kuppinger,

v



Bettina M€uller, Bettina Peters, Wolfgang Sch€afer, Katja Specht, Fritz Wegner, and

Kirsten W€ust, as well as many other unnamed individuals. Any errors or

shortcomings that remain are entirely my own. I would also like to express my

thanks to Alice Blanck at Springer Science + Business Media for her assistance

with this project. Finally, this book could not have been possible without the

ongoing support of my family. They deserve my very special gratitude.

Please do not hesitate to contact me directly with feedback or any suggestions

you may have for improvements (thomas.cleff@hs-pforzheim.de).

Pforzheim Thomas Cleff

March 2013
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Statistics and Empirical Research 1

1.1 Do Statistics Lie?

“I don’t trust any statistics I haven’t falsified myself.”

“Statistics can be made to prove anything.”

One often hears statements such as these when challenging the figures used by an

opponent. Benjamin Disreali, for example, is famously reputed to have declared,

“There are three types of lies: lies, damned lies, and statistics.” This oft-quoted

assertion implies that statistics and statistical methods represent a particularly

underhanded form of deception. Indeed, individuals who mistrust statistics often

find confirmation for their scepticism when two different statistical assessments of

the same phenomenon arrive at diametrically opposed conclusions. Yet if statistics

can invariably be manipulated to support one-sided arguments, what purpose do

they serve?

Although the disparaging quotes cited above may often be greeted with a nod,

grin, or even wholehearted approval, statistics remain an indispensable tool for

substantiating argumentative claims. Open a newspaper any day of the week, and

you will come across tables, diagrams, and figures. Not a month passes without

great fanfare over the latest economic forecasts, survey results, and consumer

confidence data. And, of course, innumerable investors rely on the market forecasts

issued by financial analysts when making investment decisions.

We are thus caught in the middle of a seeming contradiction. Why do statistics in

some contexts attract aspersion, yet in others emanate an aura of authority, a nearly

mystical precision? If statistics are indeed the superlative of all lies – as claimed by

Disreali – then why do individuals and firms rely on them to plan their activities?

Swoboda (1971, p. 16) has identified two reasons for this ambivalence with regard

to statistical procedures:

Chapter 1 Translated from the German original, Cleff, T. (2011). 1 Statistik und empirische

Forschung. In Deskriptive Statistik und moderne Datenanalyse (pp. 1–14) # Gabler Verlag,

Springer Fachmedien Wiesbaden GmbH, 2011.

T. Cleff, Exploratory Data Analysis in Business and Economics,
DOI 10.1007/978-3-319-01517-0_1, # Springer International Publishing Switzerland 2014
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• First, there is a lack of knowledge concerning the role, methods, and limits of

statistics.

• Second, many figures which are regarded as statistics are in fact pseudo-
statistics.
The first point in particular has become increasingly relevant since the 1970s. In

the era of the computer, anyone who has a command of basic arithmetic might feel

capable of conducting statistical analysis, as off-the-shelf software programmes

allow one to easily produce statistical tables, graphics, or regressions. Yet when

laymen are entrusted with statistical tasks, basic methodological principles are

often violated, and information may be intentionally or unintentionally displayed

in an incomplete fashion. Furthermore, it frequently occurs that carefully generated

statistics are interpreted or cited incorrectly by journalists or readers. Yet journalists

are not the only ones who fall victim to statistical fallacies. In scientific articles one

also regularly encounters what Swoboda has termed pseudo-statistics, i.e. statistics
based on incorrect methods or even invented from whole cloth. Thus, we find that

statistics can be an aid to understanding phenomena, but they may also be based on

the false application of statistical methods, whether intentional or unintentional.

Krämer (2005, p. 10) distinguishes between false statistics as follows: “Some

statistics are intentionally manipulated, while others are only selected improperly.

In some cases the numbers themselves are incorrect; in others they are merely

presented in a misleading fashion. In any event, we regularly find apples and

oranges cast together, questions posed in a suggestive manner, trends carelessly

carried forward, rates or averages calculated improperly, probabilities abused, and

samples distorted.” In this book we will examine numerous examples of false

interpretations or attempts to manipulate. In this way, the goal of this book is

clear. In a world in which data, figures, trends, and statistics constantly surround

us, it is imperative to understand and be capable of using quantitative methods.

Indeed, this was clear even to Goethe, who famously said in a conversation with

Eckermann, “That I know, the numbers instruct us” (Das aber weiß ich, dass die
Zahlen uns belehren). Statistical models and methods are one of the most important

tools in microeconomic analysis, decision-making, and business planning. Against

this backdrop, the aim of this book is not just to present the most important

statistical methods and their applications, but also to sharpen the reader’s ability

to recognize sources of error and attempts to manipulate.

You may have thought previously that common sense is sufficient for using

statistics and that mathematics or statistical models play a secondary role. Yet no

one who has taken a formal course in statistics would endorse this opinion.

Naturally, a textbook such as this one cannot avoid some recourse to formulas.

And how could it? Qualitative descriptions quickly exhaust their usefulness, even in

everyday settings. When a professor is asked about the failure rate on a statistics

test, no student would be satisfied with the answer not too bad. A quantitative

answer – such as 10 % – is expected, and such an answer requires a calculation – in

other words, a formula.

Consequently, the formal presentation of mathematical methods and means

cannot be entirely neglected in this book. Nevertheless, any diligent reader with a
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mastery of basis analytical principles will be able to understand the material

presented herein.

1.2 Two Types of Statistics

What are the characteristics of statistical methods that avoid sources of error or

attempts to manipulate? To answer this question, we first need to understand the

purpose of statistics.

Historically, statistical methods were used long before the birth of Christ. In the

6th century BC, the constitution enacted by Servius Tullius provided for a periodic

census of all citizens. Many readers are likely familiar with the following story: “In

those days Caesar Augustus issued a decree that a census should be taken of the

entire Roman world. This was the first census that took place while Quirinius was

governor of Syria. And everyone went to his own town to register.”1 (Luke 2.1-5).

As this Biblical passage demonstrates, politicians have long had an interest in

assessing the wealth of the populace – yet not for altruistic reasons, but rather for

taxation purposes. Data were collected about the populace so that the governing

elite had access to information about the lands under their control. The effort to

gather data about a country represents a form of statistics.

All early statistical record keeping took the form of a full survey in the sense that
an attempt was made to literally count every person, animal, and object. At the

beginning of the 20th century, employment was a key area of interest; the effort to

track unemployment was difficult, however, due to the large numbers involved. It

was during this era that the field of descriptive statistics emerged.

The term descriptive statistics refers to all techniques used to obtain information

based on the description of data from a population. The calculation of figures and

parameters as well as the generation of graphics and tables are just some of the

methods and techniques used in descriptive statistics.

It was not until the beginning of the 20th century that the now common form of

inductive data analysiswas developed in which one attempts to draw conclusions about

a total population based on a sample. Key figures in this development were

Jacob Bernoulli (1654–1705), Abraham de Moivre (1667–1754), Thomas Bayes

(1702–1761), Pierre-Simon Laplace (1749–1827), Carl Friedrich Gauss (1777–1855),

Pafnuti Lwowitsch Chebyshev (1821–1894), Francis Galton (1822–1911), Ronald A.

Fisher (1890–1962), and William Sealy Gosset (1876–1937). A large number of

inductive techniques can be attributed to the aforementioned statisticians. Thanks to

their work, we no longer have to count and measure each individual within a popula-

tion, but can instead conduct a smaller, more manageable survey. It would be

1 In 6/7 A.D., Judea (along with Edom and Samaria) became Roman protectorates. This passage

probably refers to the census that was instituted under Quirinius, when all residents of the country

and their property were registered for the purpose of tax collection. It could be, however, that the

passage is referring to an initial census undertaken in 8/7 B.C.
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prohibitively expensive, for example, for a firm to ask all potential customers how a

new product should be designed. For this reason, firms instead attempt to query a

representative sample of potential customers. Similarly, election researchers can hardly

survey the opinions of all voters. In this andmany other cases the best approach is not to

attempt a complete survey of an entire population, but instead to investigate a repre-

sentative sample.

When it comes to the assessment of the gathered data, this means that the

knowledge that is derived no longer stems from a full survey, but rather from a

sample. The conclusions that are drawn must therefore be assigned a certain level of

uncertainty, which can be statistically defined. This uncertainty is the price paid for

the simplifying approach of inductive statistics.

Descriptive and inductive statistics are a scientific discipline used in business,

economics, the natural sciences, and the social sciences. It is a discipline that

encompasses methods for the description and analysis of mass phenomena with

the aid of numbers and data. The analytical goal is to draw conclusions concerning

the properties of the investigated objects on the basis of a full survey or partial

sample. The discipline of statistics is an assembly of methods that allows us make

reasonable decisions in the face of uncertainty. For this reason, statistics are a key

foundation of decision theory.

The two main purposes of statistics are thus clearly evident: Descriptive statis-

tics aim to portray data in a purposeful, summarized fashion, and, in this way, to

transform data into information. When this information is analyzed using the

assessment techniques of inductive statistics, generalizable knowledge is generated
that can be used to inform political or strategic decisions. Figure 1.1 illustrates the

relationship between data, information, and knowledge.

1.3 The Generation of Knowledge Through Statistics

The fundamental importance of statistics in the human effort to generate new

knowledge should not be underestimated. Indeed, the process of knowledge gener-

ation in science and professional practice typically involves both of the aforemen-

tioned descriptive and inductive steps. This fact can be easily demonstrated with an

example:

Imagine that a market researcher in the field of dentistry is interesting in figuring

out the relationship between the price and volume of sales for a specific brand of

toothpaste (Fig. 1.2). The researcher would first attempt to gain an understanding of

the market by gathering individual pieces of information. He could, for example,

Inductive
Statistics

Descriptive
StatisticsDATA

Information
Generalizable
Knowledge

Fig. 1.1 Data begets information, which in turn begets knowledge
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analyze weekly toothpaste prices and sales over the last 3 years. As is often the case

when gathering data, it is likely that sales figures are not available for some stores,

such that no full survey is possible, but rather only a partial sample. Imagine that

our researcher determines that in the case of high prices, sales figures fall, as

demand moves to other brands of toothpaste, and that, in the case of lower prices,

sales figures rise once again. However, this relationship, which has been determined

on the basis of descriptive statistics, is not a finding solely applicable to the present

case. Rather, it corresponds precisely to the microeconomic price and demand

function. Invariably in such cases, it is the methods of descriptive statistics that

allow us to draw insights concerning specific phenomena, insights which, on the

basis of individual pieces of data, demonstrate the validity (or, in some cases, non-

validity) of existing expectations or theories.

At this stage, our researcher will ask himself whether the insights obtained on the

basis of this partial sample – insights which he, incidentally, expected beforehand –

can be viewed as representative of the entire population. Generalizable information

in descriptive statistics is always initially speculative. With the aid of inductive

statistical techniques, however, one can estimate the error probability associated

with applying insights obtained through descriptive statistics to an overall popula-

tion. The researcher must decide for himself which level of error probability renders

the insights insufficiently qualified and inapplicable to the overall population.
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Fig. 1.2 Price and demand function for sensitive toothpaste
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Yet even if all stores reported their sales figures, thus providing a full survey of

the population, it would be necessary to ask whether, ceteris paribus, the deter-

mined relationship between price and sales will also hold true in the future. Data

from the future are of course not available. Consequently, we are forced to forecast

the future based on the past. This process of forecasting is what allows us to verify

theories, assumptions, and expectations. Only in this way can information be

transformed into generalizable knowledge (in this case, for the firm).

Descriptive and inductive statistics thus fulfil various purposes in the research

process. For this reason, it is worthwhile to address each of these domains sepa-

rately, and to compare and contrast them. In university courses on statistics, these

two domains are typically addressed in separate lectures.

1.4 The Phases of Empirical Research

The example provided above additionally demonstrates that the process of knowl-

edge generation typically goes through specific phases. These phases are illustrated

in Fig. 1.3. In the Problem Definition Phase the goal is to establish a common

understanding of the problem and a picture of potential interrelationships. This may

require discussions with decision makers, interviews with experts, or an initial

screening of data and information sources. In the subsequent Theory Phase, these
potential interrelationships are then arranged within the framework of a cohesive

model.

1.4.1 From Exploration to Theory

Although the practitioner uses the term theory with reluctance, for he fears being

labelled overly academic or impractical, the development of a theory is a necessary

first step in all efforts to advance knowledge. The word theory is derived from the

Greek term theorema which can be translated as to view, to behold, or to investi-
gate. A theory is thus knowledge about a system that takes the form of a speculative

description of a series of relationships (Crow 2005, p. 14). On this basis, we see that

the postulation of a theory hinges on the observation and linkage of individual

events, and that a theory cannot be considered generally applicable without being

verified. An empirical theory draws connections between individual events so that

the origins of specific observed conditions can be deduced. The core of every theory

thus consists in the establishment of a unified terminological system according to

which cause-and-effect relationships can be deduced. In the case of our toothpaste

example, this means that the researcher first has consider which causes (i.e. factors)

have an impact on sales of the product. The most important causes are certainly

apparent to researcher based on a gut feeling: the price of one’s own product, the

price of competing products, advertising undertaken by one’s own firm and

competitors, as well as the target customers addressed by the product, to name

but a few.

6 1 Statistics and Empirical Research



Alongside these factors, other causes which are hidden to those unfamiliar with

the sector also normally play a role. Feedback loops for the self or third-person

verification of the determinations made thus far represent a component of both the

Problem Definition and Theory Phases. In this way, a quantitative study always

requires strong communicative skills. All properly conducted quantitative studies

rely on the exchange of information with outside experts – e.g. in our case, product

managers – who can draw attention to hidden events and influences. Naturally, this

also applies to studies undertaken in other departments of the company. If the study

concerns a procurement process, purchasing agents need to be queried. Alterna-

tively, if we are dealing with an R&D project, engineers are the ones to contact, and

so on. Yet this gathering of perspectives doesn’t just improve a researcher’s

understanding of causes and effects. It also prevents the embarrassment of completing

a study only to have someone point out that key influencing factors have been

overlooked.

1.4.2 From Theories to Models

Work on constructing a model can begin once the theoretical interrelationships that

govern a set of circumstances have been established. The terms theory and model
are often used as synonyms, although, strictly speaking, theory refers to a language-
based description of reality. If one views mathematical expressions as a language
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Fig. 1.3 The phases of empirical research
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with its own grammar and semiotics, then a theory could also be formed on the basis

of mathematics. In professional practice, however, one tends to use the termmodel in
this context – a model is merely a theory applied to a specific set of circumstances.

Models are a technique by which various theoretical considerations are com-

bined in order to render an approximate description of reality (Fig. 1.4). An attempt

is made to take a specific real-world problem and, through abstraction and simplifica-
tion, to represent it formally in the form of a structurally cohesivemodel. Themodel is

structured to reflect the totality of the traits and relationships that characterize a

specific subset of reality. Thanks to models, the problem of mastering the complexity

that surrounds economic activity initially seems to be solved: it would appear that in

order to reach rational decisions that ensure the prosperity of a firm or the economy as

awhole, onemerely has to assemble data related to a specific subject of study, evaluate

these data statistically, and then disseminate one’s findings. In actual practice, how-

ever, one quickly comes to the realization that the task of providing a comprehensive

description of economic reality is hardly possible, and that the decision-making

process is an inherently messy one. The myriad aspects and interrelationships of

economic reality are far too complex to be comprehensively mapped. The mapping

of reality can never be undertaken in a manner that is structurally homogenous – or, as

one also says, isomorphic. No model can fulfil this task. Consequently, models are

almost invariably reductionist, or homomorphic.
The accuracy with which a model can mirror reality – and, by extension, the

process of model enhancement – has limits. These limits are often dictated by the

imperatives of practicality. A model should not be excessively complex such that it

becomes unmanageable. It must reflect the key properties and relations that charac-

terize the problem for which it was created to analyze, and it must not be alienated

from this purpose. Models can thus be described as mental constructions built out of

abstractions that help us portray complex circumstances and processes that cannot be

directly observed (Bonhoeffer 1948, p. 3). A model is solely an approximation of

Classification of 
Models

Methods
� Quantitative
� Qualitative

Degree of Abstraction
� Isomorphic
� Homomorphic

Scope
� total
� partial

Information
� Deterministic
� Stochastic

Time
� Static (cross-sectional)
� Dynamic (longitudinal) 

Purpose of the Research
� Descriptive 
� Exploratory
� Conclusive
� Forecasting
� Decision-making
� Simulation

Fig. 1.4 A systematic overview of model variants
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reality in which complexity is sharply reduced. Various methods and means of

portrayal are available for representing individual relationships. The most vivid one

is the physical or iconic model. Examples include dioramas (e.g. wooden, plastic, or

plaster models of a building or urban district), maps, and blueprints. As economic

relationships are often quite abstract, they are extremely difficult to represent with a

physical model.

Symbolic models are particularly important in the field of economics. With the

aid of language, which provides us with a system of symbolic signs and an

accompanying set of syntactic and semantic rules, we use symbolic models to

investigate and represent the structure of the set of circumstances in an approximate

fashion. If everyday language or a specific form of jargon serve as the descriptive

language, then we are speaking of a verbal model or of a verbal theory. At its root, a
verbal model is an assemblage of symbolic signs and words. These signs don’t

necessary produce a given meaning. Take, for example, the following constellation

of words: “Spotted lives in Chicago my grandma rabbit.” Yet even the arrangement

of the elements in a syntactically valid manner – “My grandma is spotted and her

rabbit lives in Chicago”— does not necessarily produce a reasonable sentence.

The verbal model only makes sense when semantics are taken into account and the

contents are linked together in a meaningful way: “My grandma lives in Chicago

and her rabbit is spotted.”

The same applies to artificial languages such as logical and mathematical

systems, which are also known as symbolic models. These models also require

character strings (variables), and these character strings must be ordered syntacti-

cally and semantically in a system of equations. To refer once again to our

toothpaste example, one possible verbal model or theory could be the following:

• There is an inverse relationship between toothpaste sales and the price of the

product, and a direct relationship between toothpaste sales and marketing

expenditures during each period (i.e. calendar week).

• The equivalent formal symbolic model is thus as follows: yi ¼ f(pi,

wi) ¼ α1�pi + α2�wi + β.
p: Price at point in time i; wi: marketing expenditures at point in time I; α refers

to the effectiveness of each variable; β is a possible constant.

Both of these models are homomorphic partial models, as only one aspect of the
firm’s business activities – in this case, the sale of a single product – is being

examined. For example, we have not taken into account changes in the firm’s

employee headcount or other factors. This is exactly what one would demand

from a total model, however. Consequently, the development of total models is in

most cases prohibitively laborious and expensive. Total models thus tend to be the

purview of economic research institutes.

Stochastic, homomorphic, and partial models are the models that are used in

statistics (much to the chagrin of many students in business and economics). Yet

what does the term stochastic mean? Stochastic analysis is a type of inductive

statistics that deals with the assessment of non-deterministic systems. Chance or

randomness are terms we invariably confront when we are unaware of the causes

that lead to certain events, i.e. when events are non-deterministic. When it comes to
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future events or a population that we have surveyed with a sample, it is simply

impossible to make forecasts without some degree of uncertainty. Only the past is

certain. The poor chap in Fig. 1.5 demonstrates how certainty can be understood

differently in everyday contexts.

Yet economists have a hard time dealing with the notion that everything in life is

uncertain and that one simply has to accept this. To address uncertainty, economists

attempt to estimate the probability that a given event will occur using inductive

statistics and stochastic analysis. Naturally, the young man depicted in the image

above would have found little comfort had his female companion indicated that

there was a 95 % probability (i.e. very high likelihood) that she would return the

following day. Yet this assignment of probability clearly shows that the statements

used in everyday language – i.e. yes or no, and certainly or certainly not – are

always to some extent a matter of conjecture when it comes to future events.

However, statistics cannot be faulted for its conjectural or uncertain declarations,

for statistics represents the very attempt to quantify certainty and uncertainty and to

take into account the random chance and incalculables that pervade everyday life

(Swoboda 1971, p. 30).

Another important aspect of a model is its purpose. In this regard, we can

differentiate between the following model types:

• Descriptive models

• Explanatory models or forecasting models

• Decision models or optimization models

• Simulation models

The question asked and its complexity ultimately determines the purpose a

model must fulfil.

TomorrowToday

Certainly! ?!???!!??!!So, I’ll see
you tomorrow?    

Fig. 1.5 What is certain? (Source: Swoboda 1971, p. 31)
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Descriptive models merely intend to describe reality in the form of a model.

Such models do not contain general hypotheses concerning causal relationships in

real systems. A profit and loss statement, for example, is nothing more than an

attempt to depict the financial situation of a firm within the framework of a model.

Assumptions concerning causal relationships between individual items in the

statement are not depicted or investigated.

Explanatory models, by contrast, attempt to codify theoretical assumptions

about causal connections and then test these assumptions on the basis of empirical

data. Using an explanatory model, for example, one can seek to uncover interrela-

tionships between various firm-related factors and attempt to project these factors

into the future. In the latter case – i.e. the generation of forecasts about the future –

one speaks of forecasting models, which are viewed as a type of explanatory model.

To return to our toothpaste example, the determination that a price reduction of

€0.10 leads to a sales increase of 10,000 tubes of toothpaste would represent an

explanatory model. By contrast, if we forecasted that a price increase of €0.10 this
week (i.e. at time t) would lead to a fall in sales next week (i.e. at time t + 1), then

we would be dealing with a forecasting, or prognosis, model.

Decision models, which are also known as optimization models, are understood

by Grochla (1969, p. 382) to be “systems of equations aimed at deducing

recommendations for action.” The effort to arrive at an optimal decision is charac-

teristic of decision models. As a rule, a mathematical target function that the user

hopes to optimize while adhering to specific conditions serves as the basis for this

type of model. Decision models are used most frequently in Operations Research,

and are less common in statistical data analysis (cf. Runzheimer et al. 2005).

Simulation models are used to “recreate” procedures and processes – for example,

the phases of a production process. The random-number generator function in

statistical software allows us to uncover interdependencies between the examined

processes and stochastic factors (e.g. variance in production rates). Yet roleplaying

exercises in leadership seminars or Family Constellation sessions can also be viewed

as simulations.

1.4.3 From Models to Business Intelligence

Statistical methods can be used to gain a better understanding of even the most

complicated circumstances and situations. While not all of the analytical methods

that are employed in practice can be portrayed within the scope of this textbook, it

takes a talented individual to master all of the techniques that will be described in

the coming pages. Indeed, everyone is probably familiar with a situation similar to

the following: An exuberant but somewhat overintellectualized professor seeks to

explain the advantages of the Heckman Selection Model to a group of business

professionals (see Heckman 1976). Most listeners will be able to follow the

explanation for the first few minutes – or at least for the first few seconds. Then

uncertainty sets in, as each listener asks: Am I the only one who understands

nothing right now? But a quick look around the room confirms that others are
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equally confused. The audience slowly loses interest, and minds wander. After the

talk is over, the professor is thanked for his illuminating presentation. And those in

attendance never end up using the method that was presented.

Thankfully, some presenters are aware of the need to avoid excessive technical

detail, and they do their best to explain the results that have been obtained in a

matter that is intelligible to mere mortals. Indeed, the purpose of data analysis is not

the analysis itself, but rather the communication of findings in an audience-

appropriate manner. Only findings that are understood and accepted by decision-

makers can affect decisions and future reality. Analytical procedures must therefore

be undertaken in a goal-oriented manner, with an awareness for the informational

needs of a firm’s management (even if these needs are not clearly defined in

advance) (Fig. 1.6).

Consequently, the communication of findings, which is the final phase of an

analytical project, should be viewed as an integral component of any rigorously

executed study. In the above figure, the processes that surround the construction and

implementation of a decision model are portrayed schematically as an intelligence
cycle (Kunze 2000, p. 70). The intelligence cycle is understood as “the process by

which raw information is acquired, gathered, transmitted, evaluated, analyzed, and

made available as finished intelligence for policymakers to use in decision-making

and action” (Kunze 2000, p. 70). In this way, the intelligence cycle is “[. . .] an
analytical process that transforms disaggregated [. . .] data into actionable strategic

knowledge [. . .]” (Bernhardt 1994, p. 12).
In the following chapter of this book, we will look specifically at the activities

that accompany the assessment phase (cf. Fig. 1.3). In these phases, raw data are

gathered and transformed into information with strategic relevance by means of

descriptive assessment methods, as portrayed in the intelligence cycle above.

DATA
(Sample)

Information
Generalizable
Knowledge

DecisionFuture Reality

Communication

Inductive
Statistics

Descriptive
Statistics

Fig. 1.6 The intelligence cycle (Source: Own graphic, adapted from Harkleroad 1996, p. 45)
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Disarray to Dataset 2

2.1 Data Collection

Let us begin with the first step of the intelligence cycle: data collection. Many

businesses gather crucial information – on expenditures and sales, say – but few

enter it into a central database for systematic evaluation. The first task of the

statistician is to mine this valuable information. Often, this requires skills of

persuasion: employees may be hesitant to give up data for the purpose of systematic

analysis, for this may reveal past failures.

But even when a firm has decided to systematically collect data, preparation may

be required prior to analysis. Who should be authorized to evaluate the data? Who

possesses the skills to do so? And who has the time? Businesses face questions like

these on a daily basis, and they are no laughing matter. Consider the following

example: when tracking customer purchases with loyalty cards, companies obtain

extraordinarily large datasets. Administrative tasks alone can occupy an entire

department, and this is before systematic evaluation can even begin.

In addition to the data they collect themselves, firms can also find information in

public databases. Sometimes these databases are assembled by private marketing

research firms such as ACNielsen or the GfK Group, which usually charge a data

access fee. The databases of research institutes, federal and local statistics offices,

and many international organizations (Eurostat, the OECD, the World Bank, etc.)

may be used for free. Either way, public databases often contain valuable information

for business decisions. The following Table 2.1 provides a list of links to some

interesting sources of data:

Let’s take a closer look at how public data can aid business decisions. Imagine a

procurement department of a company that manufacturers intermediate goods for

machine construction. In order to lower costs, optimize stock levels, and fine-tune

Chapter 2 Translated from the German original, Cleff, T. (2011). 2 Vom Zahlenwust zum

Datensatz. In Deskriptive Statistik und moderne Datenanalyse (pp. 15–29) # Gabler Verlag,

Springer Fachmedien Wiesbaden GmbH, 2011.

T. Cleff, Exploratory Data Analysis in Business and Economics,
DOI 10.1007/978-3-319-01517-0_2, # Springer International Publishing Switzerland 2014
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order times, the department is tasked with forecasting stochastic demand for

materials and operational supplies. They could of course ask the sales department

about future orders, and plan production and material needs accordingly. But experi-

ence shows that sales departments vastly overestimate projections to ensure delivery

capacity. So the procurement (or inventory) department decides to consult the most

recent Ifo Business Climate Index.1 Using this information, the department staff can

create a valid forecast of the end-user industry for the next 6 months. If the end-user

industry sees business as trending downward, the sales of our manufacturing com-

pany are also likely to decline, and vice versa. In this way, the procurement depart-

ment can make informed order decisions using public data instead of conducting its

own surveys.2

Public data may come in various states of aggregation. Such data may be based

on a category of company or group of people, but only rarely one single firm or

individual. For example, the Centre for European Economic Research (ZEW)

conducts recurring surveys on industry innovation. These surveys never contain

data on a single firm, but rather data on a group of firms – say, the R&D

expenditures of chemical companies with between 20 and 49 employees. This

information can then be used by individual companies to benchmark their own

indices. Another example is the GfK household panel, which contains data on the

purchase activity of households, but not of individuals. Loyalty card data also

provides, in effect, aggregate information, since purchases cannot be traced back

reliably to particular cardholders (as a husband, for example, may have used his

wife’s card to make a purchase). Objectively speaking, loyalty card data reflects

only a household, but not its members.

Table 2.1 External data sources at international institutions

German federal

statistical office

destatis.de Offers links to diverse international data bases

Eurostat epp.eurostat.ec.

europa.eu

Various databases

OECD oecd.org Various databases

Worldbank worldbank.org World & country-specific development indicators

UN un.org Diverse databases

ILO ilo.org Labour statistics and databases

IMF imf.org Global economic indicators, financial statistics,

information on direct investment, etc.

1 The Ifo Business Climate Index is released each month by Germany’s Ifo Institute. It is based on

a monthly survey that queries some 7,000 companies in the manufacturing, construction, whole-

saling, and retailing industries about a variety of subjects: the current business climate, domestic

production, product inventory, demand, domestic prices, order change over the previous month,

foreign orders, exports, employment trends, three-month price outlook, and six-month business

outlook.
2 For more, see the method described in Chap. 5.
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To collect information about individual persons or firms, one must conduct a

survey. Typically, this is most expense form of data collection. But it allows

companies to specify their own questions. Depending on the subject, the survey

can be oral or written. The traditional form of survey is the questionnaire, though

telephone and Internet surveys are also becoming increasingly popular.

2.2 Level of Measurement

It would go beyond the scope of this textbook to present all of the rules for the

proper construction of questionnaires. For more on questionnaire design, the reader

is encouraged to consult other sources (see, for instance, Malhotra 2010). Conse-

quently, we focus below on the criteria for choosing a specific quantitative assess-

ment method.

Let us begin with an example. Imagine you own a little grocery store in a small

town. Several customers have requested that you expand your selection of butter

and margarine. Because you have limited space for display and storage, you want to

know whether this request is representative of the preferences of all your

customers. You thus hire a group of students to conduct a survey using the short

questionnaire in Fig. 2.1.

Within a week the students have collected questionnaires from 850 customers.

Each individual survey is a statistical unit with certain relevant traits. In this

questionnaire the relevant traits are sex, age, body weight, preferred bread spread,
and selection rating. One customer – we’ll call him Mr. Smith – has the trait values
of male, 67 years old, 74 kg, margarine, and fair. Every survey requires that the

designer first define the statistical unit (who to question?), the relevant traits or

variables (what to question?), and the trait values (what answers can be given?).

Variables can be classified as either discrete or continuous variables. Discrete
variables can only take on certain given numbers – normally whole numbers – as

possible values. There are usually gaps between two consecutive outcomes. The

size of a family(1, 2, 3, . . .) is an example of a discrete variable. Continuous
variables can take on any value within an interval of numbers. All numbers within

this interval are possible. Examples are variables such as weight or height.
Generally speaking, the statistical units are the subjects (or objects) of the survey.

They differ in terms of their values for specific traits. The traits gender, selection
rating, and age shown in Fig. 2.2 represent the three levels of measurement in

quantitative analysis: the nominal scale, the ordinal scale, and the cardinal scale,

respectively.

The lowest level of measurement is the nominal scale. With this level of

measurement, a number is assigned to each possible trait (e.g. xi ¼ 1 for male or

xi ¼ 2 for female). A nominal variable is sometimes also referred to as qualitative
variable, or attribute. The values serve to assign each statistical unit to a specific

group (e.g. the group of male respondents) in order to differentiate it from another

group (e.g. the female respondents). Every statistical unit can only be assigned to

one group and all statistical units with the same trait status receive the same

number. Since the numbers merely indicate a group, they do not express qualities
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such as larger/smaller, less/more, or better/worse. They only designate membership

or non-membership in a group (xi¼xj versus xi6¼xj). In the case of the trait sex, a
1 formale is no better or worse than a 2 for female; the data are merely segmented in

Fig. 2.1 Retail questionnaire

Fig. 2.2 Statistical units/Traits/Trait values/Level of measurement
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terms of male and female respondents. Neither does rank play a role in other

nominal traits, including profession(e.g. 1¼butcher; 2¼baker; 3¼chimney sweep),
nationality, class year, etc.

This leads us to the next highest level of measurement, the ordinal scale. With this

level of measurement, numbers are also assigned to individual value traits, but here

they express a rank. The typical examples are answers based on scales from 1 to x, as
with the trait selection rating in the sample survey. This level of measurement allows

researchers to determine the intensity of a trait value for a statistical unit compared to

that of other statistical units. If Ms. Peters and Ms. Miller both check the third box

under selection rating, we can assume that both have the same perception of the

store’s selection. As with the nominal scale, statistical units with the same values

receive the same number. If Mr. Martin checks the fourth box, this means both that

his perception is different from that of Ms. Peters and Ms. Miller, and that he thinks

the selection is better than they do. With an ordinal scale, traits can be ordered,

leading to qualities such as larger/smaller, less/more, and better/worse (xi¼xj; xi>xj;

xi<xj).

What we cannot say is how large the distance is between the third and fourth

boxes. We cannot even assume that the distance between the first and second boxes

is as large as that between other neighbouring boxes. Consider an everyday

example of an ordinal scale: standings at athletic competitions. The difference

between each place does not necessary indicate a proportional difference in perfor-

mance. In a swimming competition the time separating first and second place may

be one one-thousandth of a second, with third place coming in two seconds later, yet

only one place separates each.

The highest level of measurement is the metric or cardinal scale. It contains not
only the information of the ordinal scales – larger/smaller, less/more, better/worse

(xi¼xj; xi>xj; xi<xj) – but also the distance between value traits held by two

statistical units. Age is one example. A 20 year old is not only older than an

18 year old; a 20 year old is exactly 2 years older than an 18 year old. Moreover,

the distance between a 20 year old and a 30 year old is just as large as the distance

between an 80 year old and a 90 year old. The graduations on a cardinal scale are

always equidistant. In addition to age, typical examples for cardinal scales are

currency, weight, length, and speed.

Cardinal scales are frequently differentiated into absolute scales,3 ratio scales,4 and

interval scales.5 These distinctions tend to be academic and seldom play much role in

deciding which statistical method to apply. This cannot be said of the distinction

between cardinal and ordinal scale variables, however. On account of themuch greater

variety of analysis methods for cardinal scales in relation to ordinal methods,

researchers often tend to see ordinal variables as cardinal in nature. For example,

3 A metric scale with a natural zero point and a natural unit (e.g. age).
4 A metric scale with a natural zero point but without a natural unit (e.g. surface).
5 A metric scale without a natural zero point and without a natural unit (e.g. geographical

longitude).
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researchers might assume that the gradations on the five-point scale used for rating

selection in our survey example are identical. We frequently find such assumptions in

empirical studies. More serious researchers note in passing that equidistance has been
assumed or offer justification for such equidistance. Schmidt and Opp (1976, p. 35)

have proposed a rule of thumb according to which ordinal scaled variables can be

treated as cardinal scaled variables: the ordinal scale must have more than four

possible outcomes and the survey must have more than 100 observations. Still,

interpreting a difference of 0.5 between two ordinal scale averages is difficult, and is

a source of many headaches among empirical researchers.

As this section makes clear, a variable’s scale is crucial because it determines

which statistical method to apply. For a nominal variable like profession it is

impossible to determine the mean value of three backers, five butchers, and two

chimney sweeps. Later in the book I will discuss which statistical method goes with

which level of measurement or combination of measurements.

Before data analysis can begin, the collected data must be transferred from paper

to a form that can be read and processed by a computer. We will continue to use the

850 questionnaires collected by the students as an example.

2.3 Scaling and Coding

To emphasize again, the first step in conducting a survey is to define the level of

measurement for each trait. In most cases, it is impossible to raise the level

of measurement after a survey has been implemented (i.e. from nominal to ordinal,

or from ordinal to cardinal). If a survey asks respondents to indicate their age not by

years but by age group, this variable must remain on the ordinal scale. This can be a

great source of frustration: among other things, it makes it impossible to determine

the average age of respondents in retrospect. It is therefore always advisable to set a

variable’s level of measurement as high as possible beforehand (e.g. age in years, or

expenditures for a consumer good).

The group or person who commissions a survey may stipulate that questions

remain on a lower level of measurement in order to ensure anonymity. When a

company’s works council is involved in implementing a survey, for example, one

may encounter such a request. Researchers are normally obligated to accommodate

such wishes.

In our above sample survey the following levels of measurement were used:

• Nominal: gender; preferred spread

• Ordinal: selection rating

• Cardinal: age; body weight

Now, how can we communicate this information to the computer? Every statis-

tics application contains an Excel-like spreadsheet in which data can be entered

directly (see, for instance, Fig. 3.1, p. 24). While columns in Excel spreadsheets are

typically named A, B, C, etc., the columns in more professional spreadsheets are

labelled with the variable name. Typically, variable names may be no longer than

eight characters. So, for instance, the variable selection rating is given as “selectio”.
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For clarity’s sake, a variable name can be linked to a longer variable label or to an

entire survey question. The software commands use the variable names – e.g.

“Compute graphic for the variable selectio” – while the printout of the results

displays the complete label.

The next step is to enter the survey results into the spreadsheet. The answers from

questionnaire #1 go in the first row, those from questionnaire #2 go in the second

row, and so on. A computer can only “understand” numbers. For cardinal scale

variables this is no problem, since all of the values are numbers anyway. Suppose

person #1 is 31 years old and weighs 63 kg. Simply enter the numbers 31 and 63 in

the appropriate row for respondent #1. Nominal and ordinal variables are more

difficult and require that all contents be coded with a number. In the sample dataset,

for instance, the nominal scale traits male and female are assigned the numbers “0”

and “1”, respectively. The number assignments are recorded in a label book, as

shown in Fig. 2.3. Using this system, you can now enter the remaining results.

2.4 Missing Values

A problem that becomes immediately apparent when evaluating survey data is the

omission of answers and frequent lack of opinion (i.e. responses like I don’t know).
The reasons can be various: deliberate refusal, missing information, respondent

inability, indecision, etc.

Fig. 2.3 Label book
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Faulkenberry and Mason (1978, p. 533) distinguish between two main types of

answer omissions:

(a) No opinion: respondents are indecisive about an answer (due to an ambiguous

question, say).

(b) Non-opinion: respondents have no opinion about a topic.

The authors find that respondents who tend to give the first type of omission

(no opinion) are more reflective and better educated than respondents who tend to

give the second type of omission (non-opinion). They also note that the gender, age,

and ethnic background of the respondents (among other variables) can influence the

likelihood of an answer omission.

This observation brings us to the problem of systematic bias caused by answer

omission. Some studies show that lack of opinion can be up to 30% higher when

respondents are given the option of I don’t know (Schumann & Presser 1981,

p. 117). But simply eliminating this option as a strategy for its avoidance can

lead to biased results. This is because the respondents who tend to choose I don’t
know often do not feel obliged to give truthful answers when the I don’t know
option is not available. Such respondents typically react by giving a random answer

or no answer at all. This creates the danger that an identifiable, systematic error

attributable to frequent I don’t know responses will be transformed into an undis-

covered, systematic error at the level of actual findings. From this perspective, it is

hard to understand those who recommend the elimination of the I don’t know
option. More important is the question of how to approach answer omissions during

data analysis.

In principle, the omissions of answers should not lead to values that are

interpreted during analysis, which is why some analysis methods do not permit

the use of missing values. The presence of missing values can even necessitate that

other data be excluded. In regression or factor analysis, for example, when a

respondent has missing values, the remaining values for that respondent must be

omitted as well. Since answer omissions often occur and no one wants large losses

of information, the best alternative is to use some form of substitution. There are

five general approaches:

(a) The best and most time-consuming way to eliminate missing values is to fill

them in yourself, provided it is possible to obtain accurate information through

further research. In many cases, missing information in questionnaires on

revenue, R&D expenditures, etc. can be discovered through a careful study of

financial reports and other published materials.

(b) If the variables in question are qualitative (nominally scaled), missing values

can be avoided by creating a new class. Consider a survey in which some

respondents check the box previous customer, some the box not a previous
customer, and others check neither. In this case, the respondents who provided

no answer can be assigned to a new class; let’s call it customer status unknown.
In the frequency tables this class then appears in a separate line titled missing
values. Even with complex techniques such as regression analysis, it is usually

possible to interpret missing values to some extent. We’ll address this issue

again in later chapters.
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(c) If it is not possible to address missing values conducting additional research or

creating a new category, missing variables can be substituted with the total

arithmetic mean of existing values, provided they are on a cardinal scale.

(d) Missing cardinal values can also be substituted with the arithmetic mean of a

group. For instance, in a survey gathering statistics on students at a given

university, missing information is better replaced by the arithmetic mean of

students in the respective course of study rather than by the arithmetic mean of

the entire student body.

(e) We must remember to verify that the omitted answers are indeed non-systematic;

otherwise, attempts to compensate for missing values will produce grave

distortions. When answers are omitted in non-systematic fashion, missing values

can be estimated with relative accuracy. Nevertheless, care must be taken not

to understate value distribution and, by extension, misrepresent the results.

“In particular”, note Roderick et al. “variances from filled-in data are clearly

understated by imputing means, and associations between variables are distorted.

Thus, the method yields an inconsistent estimate of the covariance matrix“ (1995,

p. 45). The use of complicated estimation techniques becomes necessary when

the number of missing values is large enough that the insertion of mean values

significantly changes the statistical indices. These techniques mostly rely on

regression analysis, which estimates missing values using existing dependent

variables in the dataset. Say a company provides incomplete information about

their R&D expenditures. If you know that R&D expenditures depend on com-

pany sector, company size, and company location (West Germany or East

Germany, for instance), you can use available data to roughly extrapolate the

missing data. Regression analysis is discussed in more detail in Chap. 5.

Generally, you should take care when subsequently filling in missing values.

Whenever possible, the reasons for the missing values should remain clear. In a

telephone interview, for instance, you can distinguish between:

• Respondents who do not provide a response because they do not know the

answer;

• Respondents who have an answer but do not want to communicate it; and

• Respondents who do not provide a response because the question is directed to a

different age group than theirs.

In the last case, an answer is frequently just omitted (missing value due to study

design). In the first two cases, however, values may be assigned but are later defined

as missing values by the analysis software.

2.5 Outliers and Obviously Incorrect Values

A problem similar to missing values is that of obviously incorrect values.

Standardized customer surveys often contain both. Sometimes a respondent checks

the box marked unemployed when asked about job status but enters some outlandish

figure like €1,000,000,000 when asked about income. If this response were included

in a survey of 500 people, the average income would increase by €2,000,000.
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This is why obviously incorrect answers must be eliminated from the dataset. Here,

the intentionally wrong income figure could be marked as a missing value or given an

estimated value using one of the techniques described in Sect. 2.4.

Obviously incorrect values are not always deliberate. They can also be the result

of error. Business surveys, for instance, often ask for revenue figures in thousands

of euros, but some respondents invariably provide absolute values, thus indicating

revenues one-thousand times higher than they actually are. If discovered, mistakes

like these must be corrected before data analysis.

A more difficult case is when the data are unintentionally false but cannot be

easily corrected. For example, when you ask businesses to provide a breakdown of

their expenditures by category and per cent, you frequently receive total values

amounting to more than 100%. Similar errors also occur with private individuals.

Another tricky case is when the value is correct but an outlier. Suppose a

company wants to calculate future employee pensions. To find the average retire-

ment age, they average the ages at which workers retired in recent years. Now

suppose that of one of the recent retirees, the company’s founder, left the business

just shy of 80. Though this information is correct – and though the founder is part of

the target group of retired employees – the inclusion of this value would distort the

average retirement age, since it is very unlikely that other employees will also

retire so late in the game. Under certain circumstances it thus makes sense to

exclude outliers from the analysis – provided, of course, that the context warrants

it. One general solution is to trim the dataset values, eliminating the highest and

lowest five per cent. I will return to this topic once more in Sect. 3.2.2.

2.6 Chapter Exercises

Exercise 1:

For each of the following statistical units, provide traits and trait values:

(a) Patient cause of death

(b) Length of university study

(c) Alcohol content of a drink

Exercise 2:

For each of the following traits, indicate the appropriate level of measurement:

(a) Student part-time jobs

(b) Market share of a product between 0% and 100%

(c) Students’ chosen programme of study

(d) Time of day

(e) Blood alcohol level

(f) Vehicle fuel economy

(g) IQ

(h) Star rating for a restaurant

Exercise 3:

Use Stata, SPSS, or Excel for the questionnaire in Fig. 2.1 (p. 16) and enter

the data from Fig. 3.1 (p. 24). Allow for missing values in the dataset.
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Univariate Data Analysis 3

3.1 First Steps in Data Analysis

Let us return to our students from the previous chapter. After completing their survey

of bread spreads, they have now coded the data from the 850 respondents and entered

them into a computer. In the first step of data assessment, they investigate each

variable – for example, average respondent age – separately. This is called univariate
analysis (Fig. 3.1). By contrast, when researchers analyze the relationship between

two variables – for example, between gender and choice of spread – this is called

bivariate analysis (see Sect. 4). With relationships between more than two variables,

one speaks of multivariate analysis (see Sect. 5.3).
How can the results of 850 responses be “distilled” to create a realistic and

accurate impression of the surveyed attributes and their relationships? Here the

importance of statistics becomes apparent. Recall the professor who was asked

about the results of the last final exam. The students expect distilled information,

e.g. “the average score was 75 %” or “the failure rate was 29.4 %”. Based on

this information, students believe they can accurately assess general performance:

“an average score of 75 % is worse than the 82 % average on the last final exam”.
A single distilled piece of data – in this case, the average score – appears sufficient

to sum up the performance of the entire class.1

This chapter and the next will describe methods of distilling data and their

attendant problems. The above survey will be used throughout as an example.

Chapter 3 Translated from the German original, Cleff, T. (2011). 3 Vom Datensatz zur Information.

In Deskriptive Statistik und moderne Datenanalyse (pp. 31–77) # Gabler Verlag, Springer

Fachmedien Wiesbaden GmbH, 2011.

1 It should be noted here that the student assessment assumes a certain kind of distribution. An

average score of 75 % is obtained whether all students receive a score of 75 %, or whether half

score 50 % and the other half score 100 %. Although the average is the same, the qualitative

difference in these two results is obvious. Average alone, therefore, does not suffice to describe the

results.

T. Cleff, Exploratory Data Analysis in Business and Economics,
DOI 10.1007/978-3-319-01517-0_3, # Springer International Publishing Switzerland 2014
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Graphical representations or frequency tables can be used to create an overview

of the univariate distribution of nominal- and ordinal-scaled variables. In the

frequency table in Fig. 3.2, each variable trait receives its own line, and each

line intersects the columns absolute frequency, relative frequency [in %],2 valid
percentage values, and cumulative percentage. The relative frequency of trait xi is

abbreviated algebraically by f(xi). Any missing values are indicated in a separate

line with a percentage value. Missing values are not included in the calculations

of valid percentage values3 and cumulative percentage. The cumulative percentage

reflects the sum of all rows up to and including the row in question. The figure

of 88.1 % given for the rating average in Fig. 3.2 indicates that 88.1 % of

the respondents described the selection as average or worse. Algebraically, the

cumulative frequencies are expressed as a distribution function, abbreviated F(x),

and calculated as follows:

F xp
� � ¼ f x1ð Þ þ f x2ð Þ þ � � � þ f xp

� � ¼ Xp�n

i¼1

f xið Þ (3.1)

These results can also be represented graphically as a pie chart, a horizontal bar
chart, or a vertical bar chart. All three diagram forms can be used with nominal and

ordinal variables, though pie charts are used mostly for nominal variables.

Analysis of only one variable:
Univariate Analysis

Note: Using SPSS or Stata: The data editor can usually be set to display
the codes or labels for the variables, though the numerical values are stored

Fig. 3.1 Survey data entered in the data editor

2 Relative frequency (f(xi)) equals the absolute frequency (h(xi)) relative to all valid and invalid

observations (N ¼ Nvalid þ Ninvalid): f(xi ) ¼ h(xi)/N.
3 Valid percentage (gf(xi)) equals the absolute frequency (h(xi)) relative to all valid observations

(Nvalid): g(xi ) ¼ h(xi)/Nvalid.
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The traits of the frequency table in the bar chart (poor, fair, average, good,

excellent) are assigned to the x-axis and the relative or absolute frequency to the

y-axis. The height of a bar equals the frequency of each x-value. If the relative

frequencies are assigned to the y-axis, a graph of the frequency function is obtained

(see Fig. 3.3).

In addition to the frequency table, we can also represent the distribution of an

ordinally scaled variable (or higher) using the F(x) distribution function. This

function leaves the traits of the x-variables in question on the x-axis, and assigns

the cumulative percentages to the y-axis, generating a step function. The data

representation is analogous to the column with cumulative percentages in the

frequency table (Fig. 3.4).

In many publications, the scaling on the y-axis of a vertical bar chart begins not

with 0 but with some arbitrary value. As Fig. 3.5 shows, this can lead to a

misunderstanding at first glance. Both graphs represent the same content – the

relative frequency of male and female respondents (49 % and 51 %, respectively).
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poor fair average good excellent

Absolute 
frequency

Relative 
frequency [in %]

Valid percentage 
values

Cumulative 
percentage

Poor 391 46.0 46.0 46.0
Fair 266 31.3 31.3 77.3
Average 92 10.8 10.8 88.1
Good 62 7.3 7.3 95.4
Excellent 39 4.6 4.6 100.0
Total 850 100.0 100.0

46.0% 31.1% 10.8% 7.3% 4.6%

Fig. 3.3 Bar chart/Frequency distribution for the selection variable

Absolute 
frequency

Relative 
frequency [in 

%]

Valid 
percentage

values
Cumulative
percentage

Poor 391 46.0 46.0 46.0
Fair 266 31.3 31.3 77.3
Average 92 10.8 10.8 88.1
Good 62 7.3 7.3 95.4
Excellent 39 4.6 4.6 100.0
Total 850 100.0 100.0

Fig. 3.2 Frequency table for selection ratings

3.1 First Steps in Data Analysis 25



But because the y-axis is cut off in the first graph, the relative frequency of

the genders appears to change. The first graph appears to show a relationship of

five females to one male, suggesting that there are five times as many female

observations as male observations in the sample. The interval in the first graph is

misleading – a problem we’ll return to below – so that the difference of 2 % points

seems larger than it actually is. For this reason, the second graph in Fig. 3.5 is the

preferable form of representation.

Similar distortions can arise when two alternate forms of a pie chart are used.

In the first chart in Fig. 3.6, the size of each wedge represents relative frequency.

The chart is drawn by weighting the circle segment angles such that each angle

αi ¼ f (xi) � 360�.
Since most viewers read pie charts clockwise from the top, the traits to

be emphasized should be placed in the 12 o’clock position whenever possible.

Moreover, the chart shouldn’t contain too many segments – otherwise the graph

will be hard to read. They should also be ordered by some system – for example,

by size or content.
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poor fair average good excellent

Fig. 3.4 Distribution function for the selection variable
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Fig. 3.5 Different representations of the same data (1). . .
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The second graph in Fig. 3.6, which is known as a “perspective” or “3D” pie

chart, looks more modern, but the downside is that the area of each wedge no longer

reflects relative frequency. The representation is thus somewhat misleading. The

pie chart segments in the foreground seem larger. The edge of the pie segments in

the front can be seen, but not those in the back. The “lifting up” of a particular

wedge can amplify this effect even more.

And what of cardinal variables? How should they be represented? The novice

might attempt to represent bodyweight using a vertical bar diagram – as shown in

graph 1 of Fig. 3.7. But the variety of possible traits generates too many bars, and

their heights rarely vary. Frequently, a trait appears only once in a collection of

cardinal variables. In such cases, the goal of presenting all the basic relationships at

a glance is destined to fail. For this reason, the individual values of cardinal

variables should be grouped in classes, or classed. Bodyweight, for instance,

could be assigned to the classes shown in Fig. 3.7.4

By standard convention, the upper limit value in a class belongs to that class;

the lower limit value does not. Accordingly, persons who are 60 kg belong to the

50–60 kg group, while those who are 50 kg belong to the class below. Of course, it

is up to the persons assessing the data to determine class size and class membership

at the boundaries. When working with data, however, one should clearly indicate

the decisions made in this regard.

A histogram is a classed representation of cardinal variables. What distinguishes

the histogram from other graphic representations is that it expresses relative class

frequency not by height but by area (height � width). The height of the bars

represents frequency density. The denser the bars are in the bar chart in part 1 of

Fig. 3.7, the more observations there are for that given class and the greater its

frequency density. As the frequency density for a class increases, so too does its

area (height � width). The histogram obeys the principle that the intervals in a

diagram should be selected so that the data are not distorted. In the histogram,

the share of area for a specific class relative to the entire area of all classes equals

the relative frequency of the specific class. To understand why the selection of

poor
fair
average
good
excellent

poor
fair
average
good
excellent

Fig. 3.6 Different representations of the same data (2). . .

4 For each ith class, the following applies: xi < X � xi þ 1 with i ∈ {1, 2, . . ., k}.
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suitable intervals is so important consider part 1 of Fig. 3.8, which represents the

same information as Fig. 3.7 but uses unequal class widths. In a vertical bar chart,

height represents relative frequency. The white bars in the figure represent relative

frequency. The graph appears to indicate that a bodyweight between 60 and 70 kg

is the most frequent class. Above this range, frequency drops off before rising

again slightly for the 80–90 kg class. This impression is created by the distribution

of the 70–80 kg group into two classes, each with a width of 5 kg, or half that of

the others. If the data are displayed without misleading intervals, the frequency

densities can be derived from the grey bars. With the same number of observations

in a class, the bars would only be the same height if the classes were equally

wide. By contrast, with a class half as large and the same number of observations,

the observations will be twice as dense. Here we see that, in terms of class width,

the density for the 70–75 kg range is the largest.
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Fig. 3.7 Using a histogram to classify data
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It would be useful if the histogram’s differences in class width were indicated

to scale by different widths on the x-axis. Unfortunately, no currently available

statistics or graphical software can perform this function. Instead, they avoid the

problem by permitting equal class widths only.

The distribution function of a cardinal variable can be represented as unclassed.

Here too, the frequencies are cumulative as one moves along the x-axis. The values

of the distribution function rise evenly and remain between 0 and 1. The distribution

function for the bodyweight variable is represented in part 2 of Fig. 3.8. Here,

one can obtain the cumulated percentages for a given bodyweight and vice versa.

Some 80 % of the respondents are 80 kg or under, and 50 % of the respondents

are 70 kg or under.

3.2 Measures of Central Tendency

The previous approach allowed us to reduce the diversity of information from the

questionnaires – in our sample there were 850 responses – by creating graphs and

tables with just a few lines, bars, or pie wedges. But how and under which

conditions can this information be reduced to a single number or measurement

that summarizes the distinguishing features of the dataset and permits comparisons

with others? Consider again the student who, to estimate the average score on the

last final exam, looks for a single number – the average grade or failure rate.

The average score for two final exams is shown in Fig. 3.9.5

Both final exams have an identical distribution; in the second graph (part 2), this

distribution is shifted one grade to the right on the x-axis. This shift represents a

mean value one grade higher than the first exam. Mean values or similar parameters

that express a general trend of a distribution are called measures of central
tendency. Choosing the most appropriate measure usually depends on context and

the level of measurement.

0,0

0,1

0,2

0,3

0,4

0,5

≤ 50 50-60 60-70 70-75 75-80 80-90 > 90

Pe
rc

en
t/D

en
si

ty
 [×

10
]

Bodyweight

Percent
Density

40 60 80 100 120

Bodyweight

100%

80%

60%

40%

20%

0%

C
um

ul
at

iv
e 

P
er

ce
nt

2

Fig. 3.8 Distorting interval selection with a distribution function

5 The grade scale is taken here to be cardinal scaled. This assumes that the difference in scores

between A and B is identical to the difference between B and C, etc. But because this is unlikely in

practice, school grades, strictly speaking, must be seen as ordinal scaled.
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3.2.1 Mode or Modal Value

The most basic measure of central tendency is known as the mode or modal
value. The mode identifies the value that appears most frequently in a distribution.

In part 1 of Fig. 3.9 the mode is the grade C. The mode is the “champion” of the

distribution. Another example is the item selected most frequently from five

competing products. This measure is particularly important with voting, though

its value need not be clear. When votes are tied, there can be more than one

modal value. Most software programmes designate only the smallest trait. When

values are far apart this can lead to misinterpretation. For instance, when a cardinal

variable for age and the traits 18 and 80 appear in equal quantities and more than all

the others, many software packages still indicate the mode as 18.

3.2.2 Mean

The arithmetic mean – colloquially referred to as the average – is calculated

differently depending on the nature of the data. In empirical research, data most

frequently appears in a raw data table that includes all the individual trait values.

For raw data tables, the mean is derived from the formula:

x ¼ 1

n
x1 þ x2 þ : : : þ xnð Þ ¼ 1

n

Xn
i¼1

xi (3.2)

All values of a variable are added and divided by n. For instance, given the values

12, 13, 14, 16, 17, and 18 the mean is x ¼ 1

6
12þ 13þ 14þ 16þ 17þ 18ð Þ ¼ 15.

The mean can be represented as a balance scale (see Fig. 3.10), and the

deviations from the mean can be regarded as weights. If, for example, there is a

deviation of (�3) units from the mean, then a weight of 3 g is placed on the left

side of the balance scale. The further a value is away from the mean, the heavier

the weight. All negative deviations from the mean are placed on the left side of
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Fig. 3.9 Grade averages for two final exams
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the mean, and all positive deviations on the right. The scale is exactly balanced.

With an arithmetic mean, the sum of negative deviations equals the sum of positive

deviations:

Xn
i¼1

xi �xð Þ ¼ 0 (3.3)

In real life, if a heavy weight is on one side of the scale and many smaller

weights are on the other, the scale can still be balanced (cf. Fig. 3.10). But the mean

is not a good estimate for this kind of distribution: it could over- or underestimate

the many smaller weights. We encountered this problem in Sect. 2.5; in such cases,

an outlier value is usually responsible for distorting the results. Assume you want

to calculate the average age of animals in a zoo terrarium containing five snakes,

nine spiders, five crocodiles, and one turtle. The last animal – the turtle – is

120 years old, while all the others are no older than four (Fig. 3.11).

Based on these ages, the mean would be 7.85 years. To “balance” the scale, the

ripe old turtle would have to be alone on the right side, while all the other animals

are on the left side. We find that the mean value is a poor measure to describe

the average age in this case because only one other animal is older than three.

To reduce or eliminate the outlier effect, practitioners frequently resort to a trimmed
mean. This technique “trims” the smallest and largest 5 % of values before

calculating the mean, thus partly eliminating outliers. In our example, the 5 %

trim covers both the youngest and oldest observation (the terrarium has 20 animals),

thereby eliminating the turtle’s age from the calculation. This results in an average

age of 2 years, a more realistic description of the age distribution. We should

remember, however, that this technique eliminates 10 % of the observations, and

this can cause problems, especially with small samples.

Let us return to the “normal” mean, which can be calculated from a frequency

table (such as an overview of grades) using the following formula:

x ¼ 1

n

Xk
v¼1

xv � nv ¼
Xk
v¼1

xv � f v (3.4)

-4

-3

-2

12

13

15

-3

-2

14 16

18

17

-1

Sum of deviations = 6

x

10

11

15

-5

12

13

30

14

15

-1

Sum of deviations = 15Sum of de-
viations = -15

x

3

2

1

Sum of deviations = -6

Fig. 3.10 Mean expressed as a balanced scale
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We will use the frequency table in Fig. 3.2 as an example. Here the index v runs
through the different traits of the observed ordinal variables for selection (poor,
fair, average, good, excellent). The value nv equals the absolute number of

observations for a trait. The trait good yields a value of nv ¼ n4 ¼ 62. The variable

xv assumes the trait value of the index v. The trait poor assumes the value x1 ¼ 1,

the trait fair the value x2 ¼ 2, etc. The mean can be calculated as follows:

x ¼ 1

850
� 391 � 1þ 266 � 2þ 92 � 3þ 62 � 4þ 39 � 5ð Þ ¼ 1:93 (3.5)

The respondents gave an average rating of 1.93, which approximately

corresponds to fair. The mean could also have been calculated using the relative

frequencies of the traits fv:

x ¼ 0:46 � 1þ 0:313 � 2þ 0:108 � 3þ 0:073 � 4þ 0:046 � 5ð Þ ¼ 1:93 (3.6)

Finally, the mean can also be calculated from traditional classed data according

to this formula:

x ¼ 1

n

Xk
v¼1

nvmv ¼
Xk
v¼1

f vmv; (3.7)

where mv is the mean of class number v.
Students often confuse this with the calculation from frequency tables, as

even the latter contain classes of traits. With classed data, the mean is calculated

from cardinal variables that are summarized into classes by making certain

assumptions. In principle the mean can be calculated this way from a histogram.

Consider again Fig. 3.7. The calculation of the mean bodyweight in part 1 agrees

with the calculation from the raw data table. But what about when there is no

raw data table, only the information in the histogram, as in part 2 of Fig. 3.7?

Figure 3.12 shows a somewhat more simplified representation of a histogram with

only six classes.

Age
Total1 2 3 4 120

Animal Snake 2 1 1 1 0 5
Turtle 0 0 0 0 1 1
Crocodile 1 2 2 0 0 5
Spider 4 4 1 0 0 9

Total 7 7 4 1 1 20

Note: Mean = 7.85 years; 5 % trimmed mean = 2 years

Fig. 3.11 Mean or trimmed mean using the zoo example
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We start from the implicit assumption that all observations are distributed

evenly within a class. Accordingly, cumulated frequency increases linearly from

the lower limit to the upper limit of the class. Here class frequency average

necessarily equals the mean. To identify the total mean, add all products from the

class midpoint and the attendant relative frequencies.

Here is another example to illustrate the calculation. Consider the following

information on water use by private households (Table 3.1):

The water-use average can be calculated as follows:

x¼
Xk
v¼1

f vmv ¼
X4
v¼1

f vmv ¼ 0:2 � 100þ 0:5 � 300þ 0:2 � 500þ 0:1 � 800¼ 350 (3.8)

With all formulas calculating the mean, we assume equidistant intervals

between the traits. This is why the mean cannot be determined for nominal

variables. This is also why, strictly speaking, no mean can be calculated for ordinal

variables. But this is only true if one takes a dogmatic position. Practically minded

researchers who possess sufficiently large samples (approx. n > 99) often calculate

the mean by assuming equidistance.

The informational value of the mean was previously demystified in Sect. 3.2

using the example of average test grades. An average grade of C occurs when all

students receive C. The same average results when half of the students receive an A

and the other half an F. The same kind of problem could result by selecting travel

destinations based on temperature averages. Beijing, Quito, and Milan all have an

average temperature of 12 �C, but the experience of temperature in the three cities

varies greatly. The winter in Beijing is colder than in Stockholm and the summer is

hotter than in Rio de Janeiro. In Milan the temperatures are Mediterranean,

fluctuating seasonally, while the altitude in Quito ensures that the temperature

stays pretty much the same the whole year over (Swoboda 1971, p. 36).
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Fig. 3.12 Calculating the mean from classed data

Table 3.1 Example of mean calculation from classed data

Water use [in l] 0–200 200–400 400–600 600–1,000

Rel. frequency 0.2 0.5 0.2 0.1

Source: Schwarze (2008, p. 16), translated from the German

3.2 Measures of Central Tendency 33



The average is not always an information-rich number that uncovers all

that remains hidden in tables and figures. When no information can be provided

on distribution (e.g. average deviation from average) or when weightings and

reference values are withheld, the average can also be misleading. The list of

amusing examples is long, as described by Krämer (2005, p. 61). Here are a few:

• Means rarely result in whole numbers. For instance, what do we mean by the

decimal place when we talk of 1.7 children per family or 3.5 sexual partners

per person?

• When calculating the arithmetic mean, all values are treated equally. Imagine a

proprietor of an eatery in the Wild West who, when asked about the ingredients

of his stew, says: Half and half. One horse and one jackrabbit. It is not always
accurate to consider the values as equal in weight. The cook might advertise

his concoction as a wild game stew, but if the true weights of the inputs were

taken into account, it would be more accurately described as horse goulash.

Consider an example from the economy: if the average female salary is 20 MUs

(monetary units) and the average male salary is 30 MUs, the average employee

salary is not necessary 25 MUs. If males constitute 70 % of the workforce,

the average salary will be: 0.7�30 MU þ 0.3�20 MU ¼ 27 MU. One speaks

here of a weighted arithmetic mean or a scaled arithmetic mean. The Federal

Statistical Office of Germany calculates the rate of price increase for products

in a basket of commodities in a similar fashion. The price of a banana does not

receive the same weight as the price of a vehicle; its weight is calculated based

on its average share in a household’s consumption.

• The choice of reference base – i.e. the dominator for calculating the average –

can also affect the interpretation of data. Take the example of traffic deaths.

Measured by deaths per passenger-kilometres travelled, trains have a rate of

nine traffic deaths per 10 billion kilometres travelled and planes three deaths per

ten billion kilometres travelled. Airlines like to cite these averages in their ads.

But if we consider traffic deaths not in relation to distance but in relation to

time of travel, we find completely different risks. For trains there are seven

fatalities per 100 million passenger-hours and for planes there are 24 traffic

deaths per 100 million passenger-hours. Both reference bases can be asserted

as valid. The job of empirical researchers is to explain their choice. Although

I have a fear of flying, I agree with Krämer (2005, p. 70) when he argues that

passenger-hours is a better reference base. Consider the following: Few of us

are scared of going to bed at night, yet the likelihood of dying in bed is nearly

99 %. Of course, this likelihood seems less threatening when measured against

the time we spend in bed.

3.2.3 Geometric Mean

The above problems frequently result from a failure to apply weightings or by

selecting a wrong or poor reference base. But sometimes the arithmetic mean as a

measure of general tendency can lead to faulty results even when the weighting and

reference base are appropriate. This is especially true in economics when measuring
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rates of change or growth. These rates are based on data observed over time, which

is why such data are referred to as time series. Figure 3.13 shows an example of

sales and their rates of change over 5 years.

Using the arithmetic mean to calculate the average rate of change yields a value

of 1.25 %. This would mean that yearly sales have increased by 1.25 %. Based on

this growth rate, the €20,000 in sales in 2002 should have increased to €21,018.91
by 2006, but actual sales in 2006 were €20,691.00. Here we see how calculating

average rates of change using arithmetic mean can lead to errors. This is why the

geometric mean for rates of change is used. In this case, the parameter links initial

sales in 2002 with the subsequent rates of growth each year until 2006. The result is:

U6 ¼ U5 � 1þ 0:1ð Þ ¼ U4 � 1� 0:1ð Þð Þ � 1þ 0:1ð Þ ¼ : : :
¼ U2 � 1þ 0:1ð Þð Þ � 1� 0:05ð Þ � 1� 0:1ð Þ � 1þ 0:1ð Þ: (3.9)

To calculate the average change in sales from this chain, the four rates of

change (1 þ 0.1)�(1–0.05)�(1–0.1)�(1 þ 0.1) must yield the same value as the

fourfold application of the average rate of change:

1þ pgeom

� �
� 1þ pgeom

� �
� 1þ pgeom

� �
� 1þ pgeom

� �
¼ 1þ pgeom

� �4

(3.10)

For the geometric mean, the yearly rate of change is thus:

pgeom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1ð Þ 1� 0:05ð Þ 1� 0:1ð Þ 1þ 0:1ð Þ4

p
� 1 ¼ 0:853 (3.11)

The last column in Fig. 3.13 shows that this value correctly describes the

sales growth between 2002 and 2006. Generally, the following formula applies

for identifying average rates of change:

pgeom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p1ð Þ � 1þ p2ð Þ � � 1þ pnð Þn

p
� 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

1þ pið Þn

s
� 1 (3.12)

Changes in sales when using

Year Sales [mio.]
Rate of change 

[in %] arithm. mean geom. mean
2002 €20,000.00 €20,000.00 €20,000.00 
2003 €22,000.00 1.000% €20,250.00 €20,170.56 
2004 €20,900.00 -5.000% €20,503.13 €20,342.57 
2005 €18,810.00 -10.000% €20,759.41 €20,516.04 
2006 €20,691.00 10.000% €21,018.91 €20,691.00 

Arithmetic mean 1.250%
Geometric mean 0.853%

Fig. 3.13 An example of geometric mean
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The geometric mean for rates of change is a special instance of the geometric
mean, and is defined as follows:

xgeom ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 � : : : � xnn

p ¼
ffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

xi
n

s
(3.13)

The geometric mean equals the arithmetic mean of the logarithms6 and is only

defined for positive values. For observations of different sizes, the geometric mean

is always smaller than the arithmetic mean.

3.2.4 Harmonic Mean

A measure seldom required in economics is the so-called harmonic mean. Because

of the rarity of this measure, researchers tend to forget it, and instead use the

arithmetic mean. However, sometimes the arithmetic mean produces false results.

The harmonic mean is the appropriate method for averaging ratios consisting of

numerators and denominators (unemployment rates, sales productivity, kilometres

per hour, price per litre, people per square metre, etc.) when the values in

the numerator are not identical. Consider, for instance, the sales productivity

(as measured in revenue per employee) of three companies with differing

headcounts but identical revenues. The data are given in Table 3.2.

To compare the companies, we should first examine the sales productivity of

each firm regardless of its size. Every company can be taken into account with a

simple weighted calculation. We find average sales per employee as follows:

x ¼ 1

3

S1
E1

þ S2
E2

þ S3
E3

� �
¼ €433:33 (3.14)

If this value were equally applicable to all employees, the firms – which have

16 employees together – would have sales totalling 16�€433.33 � €6,933, but
the above table shows that actual total sales are only €3,000. When calculating

company sales, it must be taken into account that the firms employ varying

numbers of employees and that the employees contribute in different ways to

total productivity. This becomes clear from the fact that companies with equal

sales (identical numerators) have different headcounts and hence different values

in the denominator. To identify the contribution made by each employee to sales,

one must weight the individual observations (i ¼ 1,. . ., 3) of sales productivity

(SPi) with the number of employees (ni), add them and then divide by the total

number of employees. The result is an arithmetic mean weighted by the number of

employees:

6 If all values are available in logarithmic form, the following applies to the arithmetic mean:

1

n
ln x1ð Þ þ : : :þ ln xnð Þð Þ ¼ 1

n
ln x1 � : : : � xnð Þ ¼ ln x1 � : : : � xnð Þ1n ¼

ffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

xi
n

s
¼ xgeom:
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n1 �SP1þn2 �SP2þn3 �SP3

n
¼ 10 �€100

16
þ5 �€200

16
þ1 �€1;000

16
�€187:50 (3.15)

Using this formula, the 16 employees generate the real total sales figure

of €3,000. If the weighting for the denominator (i.e. the number of employees)

is unknown, the value for k ¼ 3 sales productivity must be calculated using an
unweighted harmonic mean:

xharm ¼ kXk
i¼1

1

xi

¼ kXk
i¼1

1

SPi

¼ 3

1

€100
þ 1

€200
þ 1

€1; 000

¼ €187:50

Employee
(3.16)

Let’s look at another example that illustrates the harmonic mean. A student

must walk 3 km to his university campus by foot. Due to the nature of the route,

he can walk the first kilometre at 2 km/h, the second kilometre at 3 km/h, and

the last kilometre at 4 km/h. As in the last example, the arithmetic mean yields the

wrong result:

x ¼ 1

3
2
km

h
þ 3

km

h
þ 4

km

h

� �
¼ 3

km

h
; or 1 hour (3.17)

But if we break down the route by kilometre, we get 30 min for the first

kilometre, 20 min for the second kilometre, and 15 min for the last kilometre.

The durations indicated in the denominator vary by route segment, resulting in a

total of 65 min. The weighted average speed is thus 2.77 km/h.7 This result can also

be obtained using the harmonic mean formula and k ¼ 3 for the route segments:

xharm ¼ kXk
i¼1

1

xi

¼ 3

1

2
km

h

þ 1

3
km

h

þ 1

4
km

h

¼ 2:77
km

h
(3.18)

Table 3.2 Harmonic mean

Sales Employees Sales per employee (SP) Formula in Excel

€1,000 10 €100.00

€1,000 5 €200.00

€1,000 1 €1,000.00

Sum €3,000 16 €1,300.00 SUM(D3:D5)

Arithmetic mean €433.33 AVERAGE(D3:D5)

Harmonic mean €187.50 HARMEAN(D3:D5)

7 (30 min � 2 km/h þ 20 min � 3 km/h þ 15 min � 4 km/h) /65 min ¼ 2.77 km/h.
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In our previous examples the values in the numerator were identical for every

observation. In the first example, all three companies had sales of €1,000 and in

the second example all route segments were 1 km. If the values are not identical,

the unweighted harmonic mean must be calculated. For instance, if the k ¼ 3

companies mentioned previously had sales of n1 ¼ €1,000, n2 ¼ €2,000, and

n3 ¼ €5,000, we would use the following calculation:

xharm ¼ nXk
i¼1

ni
xi

¼ nXk
i¼1

ni
SPi

¼ €1; 000þ €2; 000þ €5; 000

€1; 000

€100
þ €2; 000

€200
þ €5; 000

€1; 000

¼ €500

Employee
(3.19)

As we can see here, the unweighted harmonic mean is a special case of the

weighted harmonic mean.

Fractions do not always necessitate the use of the harmonic mean. For example,

if the calculation involving the route to the university campus included different

times instead of different segments, the arithmetic mean should be used to calculate

the average speed. If one student walked an hour long at 2 km/h, a second hour at

3 km/h, and the last hour at 4 km/h, the arithmetic mean yields the correct the

average speed. Here the size of the denominator (time) is identical and yields the

value of the numerator (i.e. the length of the partial route):

x ¼ 1

3
2
km

h
þ 3

km

h
þ 4

km

h

� �
¼ 3

km

h
(3.20)

The harmonic mean must be used when: (1) ratios are involved and (2) relative

weights are indicated by numerator values (e.g. km). If the relative weights are

given in the units of the denominator (e.g. hours), the arithmetic mean should be

used. It should also be noted that the harmonic mean – like the geometric mean – is

only defined for positive values greater than 0. For unequally sized observations,

the following applies:

xharm < xgeom < x (3.21)

3.2.5 The Median

As the mean is sometimes not “representative” of a distribution, an alternative is

required to identify the central tendency. Consider the following example: You

work at an advertising agency and must determine the average age of diaper users

for a diaper ad. You collect the following data (Table 3.3):

Based on what we learned above about calculating the mean using the class

midpoint of classed data, we get: x ¼ 0.3�0.5 þ 0.15�1.5 þ 0.25�3.5 þ 0.04�8
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þ0.03�36 þ 0.23�81 � 21 years.8 This would mean that the average diaper user

is college age! This is doubtful, of course, and not just because of the absence of

baby-care rooms at universities. The high values on the outer margins – classes 0–1

and 61–100 – create a bimodal distribution and paradoxically produce a mean in the

age class in which diaper use is lowest.

So what other methods are available for calculating the average age of diaper

users? Surely one way would be to find the modal value of the most important

age group: 0–1. This value, the so-called median, not only offers better results in

such cases. The median is also the value that divides the size-ordered dataset

into two equally large halves. Exactly 50 % of the values are smaller and 50 % of

the values are larger than the median.9

Figure 3.14 shows five weights ordered by heaviness. The median is ~x ¼ x0;5 ¼
xð3Þ ¼ 9, as 50 % of the weights are to the left and right of weight number 3.

There are several formula for calculating the median. When working with

a raw data table – i.e. with unclassed data – most statistics textbooks suggest

these formula:

~x ¼ x nþ 1

2

� � for an odd number of observations nð Þ (3.22)

and

Table 3.3 Share of sales by age class for diaper users

Age class Under 1 1 2–4 5–10 11–60 61–100

Relative frequency (%) 30 15 25 4 3 23

Cumulated: F(x) (%) 30 45 70 74 77 100

Median=x 0,5

33 66 9 1212 15

Fig. 3.14 The median: The central value of unclassed data

8 To find the value for the last class midpoint, take half the class width – (101–61)/2 ¼ 20 – and

from that we get 61 þ 20 ¼ 81 years for the midpoint.
9 Strictly speaking, this only applies when the median lies between two observations, which is to

say, only when there are an even number of observations. With an odd number of observations, the

median corresponds to a single observation. In this case, 50 % of (n-1) observations are smaller

and 50 % of (n-1) observations are larger than the median.
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~x ¼ 1

2
x n

2

� � þ x n

2
þ 1

� �0@ 1A for an even number of observations: (3.23)

If one plugs in the weights from the example into the first formula, we get:

~x ¼ x nþ 1

2

� � ¼ x 5þ 1

2

� � ¼ xð3Þ ¼ 9 (3.24)

The trait of the weight in the third position of the ordered dataset equals

the median. If the median is determined from a classed dataset, as in our diaper

example, the following formula applies:

~x ¼ x0:5 ¼ xUPi�1 þ
0:5� F xUPi�1

� �
f xið Þ xUPi � xLOWi

� �
(3.25)

First we identify the class in which 50 % of observations are just short

of being exceeded. In our diaper example this corresponds to the 1 year olds.

The median is above the upper limit xi � 1
UP of the class, or 1 year. But how many

years above the limit? There is a difference of 5 % points between the postulated

value of 0.5 and the upper limit value of F(xi � 1
UP ) ¼ 0.45:

0:5� F xUPi�1

� � ¼ 0:5=0:45 ¼ 0:05 (3.26)

This 5 % points must be accounted for from the next largest (ith) class, as it

must contain the median. The 5 % points are then set in relation to the relative

frequency of the entire class:

0:5� F xUPi�1

� �
f xið Þ ¼ 0:5� 0:45

0:25
¼ 0:2 (3.27)

Twenty per cent of the width of the age class that contains the median must be

added on by age. This results in aΔi of 3 years, as the class contains all persons who
are 2, 3, and 4 years old. This produces a median of ~x ¼ 2þ 20% � 3 ¼ 2:6 years.

This value represents the “average user of diapers” better than the value of the

arithmetic mean. Here I should note that the calculation of the median in a bimodal

distribution can, in principle, be just as problematic as calculating the mean.

The more realistic result here has almost everything to do with the particular

characteristics of the example. The median is particularly suited when many

outliers exist (see Sect. 2.5). Figure 3.15 traces the steps for us once more.
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3.2.6 Quartile and Percentile

In addition to the median, there are several other important measures of central

tendency that are based on the quantization of an ordered dataset. These para-

meters are called quantiles. When quantiles are distributed over 100 equally sized

intervals, they are referred to as percentiles. Their calculation requires an ordinal

or cardinal scale and can be defined in a manner analogous to the median. In

an ordered dataset, the p percentile is the value at which no less than p per cent

of the observations are smaller or equal in value and no less than (1-p) per cent of

the observations are larger or equal in value. For instance, the 17th percentile of age

in our grocery store survey is 23 years old. This means that 17 % of the respondents

are 23 years or younger, and 83 % are 23 years old or older. This interpretation is

similar to that of the median. Indeed, the median is ultimately a special case

(p ¼ 50 %) of a whole class of measures that partitions the ordered dataset into

parts, i.e. quantiles.

In practical applications, one particular important group of quantiles is known as

the quartiles. It is based on an ordered dataset divided into four equally sized parts.

These are called the first quartile (the lower quartile or 25th percentile), the second

quartile (the median or 50th percentile), and the third quartile (the upper quartile or

75th percentile).

Although there are several methods for calculating quantiles from raw data

tables, the weighted average method is considered particularly useful and can be

found in many statistics programmes. For instance, if the ordered sample has a size

of n ¼ 850, and we want to calculate the lower quartile (p ¼ 25 %), we first have to

determine the product (n þ 1)�p. In our example, (850 þ 1)�0.25 produces the

value 212.75. The result consists of an integer before the decimal mark (i ¼ 212)

and a decimal fraction after the decimal mark (f ¼ 0.75). The integer (i) helps

indicate the values between which the desired quantile lies – namely, between the

observations (i) and (i þ 1), assuming that (i) represents the ordinal numbers of

the ordered dataset. In our case, this is between rank positions 212 and 213. Where

exactly does the quantile in question lie between these ranks? Above we saw that
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Fig. 3.15 The median: The

middle value of classed data
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the total value was 212.75, which is to say, closer to 213 than to 212. The figures

after the decimal mark can be used to locate the position between the values with

the following formula:

1� fð Þ � xðiÞ þ f � x iþ1ð Þ (3.28)

In our butter example, the variable bodyweight produces these results:

1� 0:75ð Þ � xð212Þ þ 0:75 � xð213Þ ¼ 0:25 � 63:38þ 0:75 � 63:44 ¼ 63:43 kg (3.29)

Another example for the calculation of the quartile is shown in Fig. 3.16.

It should be noted here that the weighted average method cannot be used

with extreme quantiles. For example, to determine the 99 % quantile for the five

weights in Fig. 3.16 a sixth weight is needed, since (n þ 1)�p ¼ (5 þ 1)�
0.99 ¼ 5.94. This weight does not actually exist. It is fictitious, just like a weight

of 0 for determining the 1 % quantile ((n þ 1)�p ¼ (5 þ 1)�0.01 ¼ 0.06). In such

cases, software programmes indicate the largest and smallest variable traits as

quantiles. In the example case, we thus have: x0.99 ¼ 15 and x0.01 ¼ 3.

3.3 The Boxplot: A First Look at Distributions

We have now seen some basic measures of central tendency. All of these measures

attempt to reduce dataset information to a single number expressing a general

tendency. We learned that this reduction does not suffice to describe a distribution

that contains outliers or special forms of dispersion. In practice, so-called boxplots

are used to get a general sense of dataset distributions.

The boxplot combines various measures. Let’s look at an example: Imagine that

over a 3 year period researchers recorded the weekly sales of a certain brand of

Italian salad dressing, collecting a total of 156 observations.10 Part 1 of Fig. 3.17

shows the boxplot of weekly sales. The plot consists of a central box whose lower

edge indicates the lower quartile and whose upper edge indicates the upper quartile.

The values are chartered along the y-axis and come to 51,093 bottles sold for the

(n+1)×p = 6×0.5 = 3.0 ® i=3; f=0 ® x0.5 = 1×x(3)+0×x(4)= 9

(n+1)×p = 6×0.25 = 1.5 ® i=1; f=0.5 ® x0.25 = 0.5×x(1)+ 0.5×x(2)=4.5

(n+1)×p = 6×0.75 = 4.5 ® i=4; f=0.5 
® x0.75 = 0.5×x(4)+ 0.5×x(5)=13.5

3 6 9 12 15

Fig. 3.16 Calculating

quantiles with five weights

10 The data can be found in the file salad_dressing.sav at springer.com.
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lower quartile and 54,612 bottles sold for the upper quartile. The edges frame the

middle 50 % of all observations, which is to say: 50 % of all observed weeks saw no

less than 51,093 and no more than 54,612 bottles sold. The difference between the

first and third quartile is called the interquartile range. The line in the middle of the

box indicates the median position (53,102 bottles sold). The lines extending from

the box describe the smallest and largest 25 % of sales. Known as whiskers, these

lines terminate at the lowest and highest observed values, provided they are no less

than 1.5 times the box length (interquartile range) below the lower quartile or no

more than 1.5 times the box length (interquartile range) above the upper quartile.

Values beyond these ranges are indicated separately as potential outliers. Some

statistical packages like SPSS differentiate between outliers and extreme values –
i.e. values that are less than three times the box length (interquartile range) below

the lower quartile or more than three times the box length (interquartile range)

above the upper quartile. These extreme values are also indicated separately. It is

doubtful whether this distinction is helpful, however, since both outliers and

extreme values require separate analysis (see Sect. 2.5).

From the boxplot in Part 1 of Fig. 3.17 we can conclude the following:

• Observations 37 and 71 are outliers above the maximum (60,508 bottles sold)

and below the minimum (45,682 bottles sold), respectively. These values are

fairly close to the edges of the whiskers, indicating weak outliers.

• Some 15,000 bottles separate the best and worst sales weeks. The smallest

observation (45,682 bottles) represents a deviation from the best sales week of

more than 30 %.

• In this example the median lies very close to the centre of the box. This means

that the central 50 % of the dataset is symmetrical: the interval between the

lower quartile and the median is just as large as the interval between the median

and the upper quartile. Another aspect of the boxplot’s symmetry is the similar

length of the whiskers: the range of the lowest 25 % of sales is close to that of the

highest 25 %.
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Fig. 3.17 Boxplot of weekly sales
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Figure 3.18 summarizes different boxplot types and their interpretations. The

boxplots are presented horizontally, not vertically, though both forms are common

in practice. In the vertical form, the values are read from the y-axis; in the

horizontal form, they are read from the x-axis.

If the boxplot is symmetrical – i.e. with the median in the centre of the box

and whiskers of similar length – the distribution is symmetrical. When the value

spread is large, the distribution is flat and lacks a clear-cut modal value. Such a

distribution results, for instance, when plotting ages at a party with guests from

various generations. If the value spread is small – i.e. with a compact box and

whiskers – the distribution is narrow. This type of distribution results when plotting

ages at a party with guests from a single generation. Boxplots can also express

asymmetrical datasets. If the median is shifted to the left and the left whisker is

short, then the middle 50 % falls within a narrow range of relatively low values. The

remaining 50 % of observations are mostly higher and distributed over a large

range. The resulting histogram is right-skewed and has a peak on the left side. Such

a distribution results when plotting the ages of guests at a student party. Conversely,

if the median is shifted to the right and the right whisker is relatively short, then the

distribution is skewed left and has a peak on the right side. Such a distribution

results when plotting the ages of guests at a retirement-home birthday party.

In addition to providing a quick overview of distribution, boxplots allow

comparison of two or more distributions or groups. Let us return again to the

salad dressing example. Part 2 of Fig. 3.17 displays sales for weeks in which ads

appeared in daily newspapers compared with sales for weeks in which no ads

appeared. The boxplots show which group (i.e. weeks with or without newspaper

Single-generation party distribution
narrow 

distribution

Multi-generation party distribution
broad distribution

Student party distribution right-skewed

Retirement-home party distribution le�-skewed

Fig. 3.18 Interpretation of different boxplot types
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ads) has a larger median, a larger interquartile range, and a greater dispersion

of values. Since the median and the boxplot box is larger in weeks with newspaper

ads, one can assume that these weeks had higher average sales. In terms of

theory, this should come as no surprise, but the boxplot also shows a left-skewed

distribution with a shorter spread and no outliers. This suggests that the weeks

with newspaper ads had relatively stable sales levels and a concentration of

values above the median.

3.4 Dispersion Parameters

The boxplot provides an indication of the value spread around the median. The

field of statistics has developed parameters to describe this spread, or dispersion,

using a single measure. In the last section we encountered our first dispersion

parameter: the interquartile range, i.e. the difference between the upper and

lower quartile, which is formulated as

IQR ¼ x0:75 � x0:25ð Þ (3.30)

The larger the range, the further apart the upper and lower values of the

midspread. Some statistics books derive from the IQR the mid-quartile range, or
the IQR divided by two, which is formulated as

MQR ¼ 0:5 � x0:75 � x0:25ð Þ (3.31)

The easiest dispersion parameter to calculate is one we’ve already encountered

implicitly: range. This parameter results from the difference between the largest

and smallest values:

Range ¼ Max xið Þ �Min xið Þ (3.32)

If the data are classed, the range results from the difference between the upper

limit of the largest class of values and the lower limit of the smallest class of values.

Yet we can immediately see why range is problematic for measuring dispersion. No

other parameter relies so much on external distribution values for calculation,

making range highly susceptible to outliers. If, for instance, 99 values are gathered

close together and a single value appears as an outlier, the resulting range predicts a

high dispersion level. But this belies the fact that 99 % of the values lie very close

together. To calculate dispersion, it makes sense to use as many values as possible,

and not just two.

One alternative parameter is the median absolute deviation. Using the median as

a measure of central tendency, this parameter is calculated by adding the absolute

deviations of each observation and dividing the sum by the number of observations:

MAD ¼ 1

n

Xn
i¼1

xi � ~xj j (3.33)
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In empirical practice, this parameter is less important than that of variance,

which we present in the next section.

3.4.1 Standard Deviation and Variance

An accurate measure of dispersion must indicate average deviation from the mean.

The first step is to calculate the deviation of every observation. Our intuition tells

us to proceed as with the arithmetic mean – that is, by adding the values of the

deviations and dividing them by the total number of deviations:

1

n

Xn
i¼1

xi �xð Þ (3.34)

Here, however, we must recall a basic notion about the mean. In an earlier

section we likened the mean to a balance scale: the sum of deviations on the left side

equals the sum of deviations on the right. Adding together the negative and positive

deviations from the mean always yields a value of 0. To prevent the substitution of

positive with negative values, we can add the absolute deviation amounts and

divide these by the total number of observations:

1

n

Xn
i¼1

xi �xj j (3.35)

Yet statistics always make use of another approach: squaring both positive and

negative deviations, thus making all values positive. The squared values are then

added and divided by the total number of observations. The resulting dispersion

parameter is called empirical variance, or population variance, and represents one

of the most important dispersion parameters in empirical research:

VarðxÞemp ¼ S2emp ¼
1

n

Xn
i¼1

xi �xð Þ2 (3.36)

The root of the variance yields the population standard deviation, or the

empirical standard deviation:

Semp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞemp

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

xi �xð Þ
2

vuut (3.37)

Its value equals the average deviation from the mean. The squaring of the

values gives a few large deviations more weight than they would have otherwise.
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To illustrate, consider the observations 2, 2, 4, and 4. Their mean is three, orx ¼ 3.

Their distribution has four deviations of one unit each. The squared sum of the

deviations is:

Xn
i¼1

xi �xð Þ2 ¼ 12 þ 12 þ 12 þ 12 ¼ 4 units (3.38)

Another distribution contains the observations 2, 4, 4, and 6. Their mean is

four, or x ¼ 4, and the total sum of deviations again is 2 þ 2 ¼ 4 units. Here, two

observations have a deviation of 2 and two observations have a deviation of 0. But

the sum of the squared deviation is larger:

Xn
i¼1

xi �xð Þ2 ¼ 22 þ 02 þ 02 þ 22 ¼ 8 units (3.39)

Although the sum of the deviations is identical in each case, a few large

deviations lead to a larger empirical variance than many small deviations with the

same quantity (Semp
2 ¼ 1 versus Semp

2 ¼ 2). This is yet another reason to think

carefully about the effect of outliers in a dataset.

Let us consider an example of variance. In our grocery store survey, the

customers have an average age of 38.62 years and an empirical standard devia-

tion of 17.50 years. This means that the average deviation from the mean age is

17.50 years.

Almost all statistics textbooks contain a second and slightly modified formula

for variance or standard deviation. Instead of dividing by the total number of

observations (n), one divides by the total number of observations minus 1 (n�1).

Here one speaks of unbiased sample variance, or of Bessel’s corrected variance:

VarðxÞ ¼ 1

n� 1

Xn
i¼1

xi �xð Þ
2

(3.40)

Unbiased sample variance can then be used to find the unbiased sample standard
deviation:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xi �xð Þ
2

vuut (3.41)

This is a common cause of confusion among students, who frequently ask

“What’s the difference?” Unbiased sample variance is used when we want to

infer a population deviation from a sample deviation. This method of measuring

variance is necessary to make an unbiased estimation of a population deviation
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from a sample distribution when the mean of the population is unknown. If we

use the empirical standard deviation (Semp) of a sample instead, we invariably

underestimate the true standard deviation of the population. Since, in practice,

researchers work almost exclusively from samples, many statistics textbooks

even forgo discussions of empirical variance. When large samples are being

analyzed, it makes little difference whether the divisor is n or (n-1). Ultimately,

this is why many statistics packages indicate only the values of unbiased sample

variance (standard deviation), and why publications and statistics textbooks mean

unbiased sample variance whenever they speak of variance, or S2. Readers should

nevertheless be aware of this fine distinction.

3.4.2 The Coefficient of Variation

Our previous example of customer age shows that, like the mean, the standard

deviation has a unit – in our survey sample, years of age. But how do we compare

dispersions measured in different units? Figure 3.19 shows the height of five

children in centimetres and inches. Body height is dispersed Semp ¼ 5.1 cm –

or Semp ¼ 2.0 in – around the mean. Just because the standard deviation for

the inches unit is smaller than the standard deviation for the centimetres unit

does not mean the dispersion is any less. If two rows are measured with different

units, then the values of the standard deviation cannot be used as the measure

of comparison for the dispersion. In such cases, the coefficient of variation is

used. It is equal to the quotient of the (empirical or unbiased) standard deviation

and the absolute value of the mean:

V ¼ S

xj j ; provided the mean does not have the value x ¼ 0 (3.42)

The coefficient of variation has no unit and expresses the dispersion as a

percentage of the mean. Figure 3.19 shows that the coefficient of variation – 0.04

– has the same value regardless of whether body height is measured in inches or

centimetres.

Now, you might ask, why not just convert the samples into a single unit

(for example, centimetres) so that the standard deviation can be used as a parameter

for comparison? The problem is that there are always real-life situations in

which conversion either is impossible or demands considerable effort. Consider

the differences in dispersion when measuring. . .
• . . .the consumption of different screws, if one measure counts the number of

screws used, and the other total weight in grammes;

• . . .the value of sales for a product in countries with different currencies. Even

if the average exchange rate is available, conversion is always approximate.

In such – admittedly rare – cases, the coefficient of variation should be used.
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3.5 Skewness and Kurtosis

The boxplot in Fig. 3.18 not only provides information about central tendency and

dispersion, but also describes the symmetry of the distribution. Recall for a moment

that the student party produced a distribution that was right-skewed (peak on

the left), and the retirement-home birthday party produced a distribution that was

left-skewed (peak on the right). Skewness is a measure of distribution asymmetry.

A simple parameter from Yule & Pearson uses the difference between median and

mean in asymmetric distributions. Look again at the examples in Fig. 3.20: In the

right-skewed distribution there are many observations on the left side and few

observations on the right. The student party has many young students (ages 20, 21,

22, 23, 24) but also some older students and young professors (ages 41 and 45). The

distinguishing feature of the right-skewed distribution is that the mean is always to

the right of the median, which is why x > ~x. The few older guests pull the mean

upward, but leave the median unaffected. In the left-skewed distribution, the case is

reversed. There are many older people at the retirement-home birthday party, but

also a few young caregivers and volunteers. The latter pull the mean downwards,

moving it to the left of the median x < ~xð Þ. Yule & Pearson express the difference

between median and mean as a degree of deviation from symmetry:

Skew ¼ 3 � x� ~xð Þ
S

(3.43)

Values larger than 0 indicate a right-skewed distribution, values less than 0

indicate a left-skewed distribution, and values that are 0 indicate a symmetric

distribution.

The most common parameter to calculate the skewness of a distribution is the

so-called third central moment:

Skew ¼

1

n

Xn
i¼1

xi �xð Þ3

S3
(3.44)

To understand this concept, think again about the left-skewed distribution of

the retirement-home birthday party in Fig. 3.21. The mean is lowered by the

young caregivers, moving it from around 91 years to 72 years. Nevertheless, the

sum of deviations on the left and right must be identical. The residents of the

Child no.
Mean Semp

Coefficient
of variation  1 2 3 4 5

cm x 120 130 125 130 135 128.0 5.1 0.04
in y 48 52 50 52 54 51.2 2.0 0.04

Fig. 3.19 Coefficient of variation
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retirement home create many small upward deviations on the right side of the

mean (16, 17, 19, 22, 23). The sum of these deviations – 97 years – corresponds

exactly to the few large deviations on the left side of the mean caused by the young

caregivers (47 and 50 years).

But what happens if the deviations from the mean for each observation are cubed

xi �xð Þ3
� �

before being summed? Cubing produces a value for caregiver ages of

72
Sum of cubed dev. = -228.823 Sum of cubed

dev. = 38.683
Note: The numbers in the boxes represent ages. The mean
is indicated by the triangle. Like a balance scale, the cubed
deviations to the left and right of the mean are in disequilibrium.

Fig. 3.21 The third central moment
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Fig. 3.20 Skewness
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�228,823 and a value for resident ages of 38,683. While the sums of the basic

deviations are identical, the sums of the cubed deviations are different. The sum

on the side with many small deviations is smaller than the sum on the side with

a few large deviations. This disparity results from the mathematical property

of exponentiation: relatively speaking, larger numbers raised to a higher power

increase more than smaller numbers raised to a higher power. One example of this

is the path of a parabolic curve.

The total sum of the values from the left and right hand sides results in a

negative value of �190,140 (¼ �228,823 þ 38,683) for the left-skewed distribu-

tion. For a right-skewed distribution, the result is positive, and for symmetric

distributions the result is close to 0. A value is considered different than 0 when

the absolute value of the skewness is more than twice as large as the standard error
of the skew. This means that a skewness of 0.01 is not necessary different than 0.

The standard error is always indicated in statistics programmes and does not need to

be discussed further here.

Above we described the symmetry of a distribution with a single parameter. Yet

what is missing is an index describing the bulge (pointy or flat) of a distribution.

Using the examples in Fig. 3.18, the contrast is evident between the wide distribu-

tion of a multi-generation party and the narrow distribution of a single-generation

party. Kurtosis is used to help determine which form is present. Defined as the

fourth central moment, kurtosis is described by the following formula:

Kurt ¼

1

n

Xn
i¼1

xi �xð Þ4

S4
(3.45)

A unimodal normal distribution as shown in Fig. 3.22 has a kurtosis value of

three. This is referred to as a mesokurtic distribution. With values larger than three,

the peak of the distribution becomes steeper, provided the edge values remain the

same. This is called a leptokurtic distribution. When values are smaller than three,

a flat peak results, also known as a platykurtic distribution. Figure 3.22 displays the
curves of leptokurtic, mesokurtic, and platykurtic distributions.

When using software such as Excel or SPSS, similar parameters are sometimes

calculated and displayed as an excess. But they normalize to a value of 0, not 3.

The user must be aware of which formula is being used when calculating kurtosis.

-3 -2 -1 0 1 2 3

leptokurtic

mesokurtic
(normally distributed)

-3 -2 -1 0 1 2 3

mesokurtic
(normally distributed)

platykurtic

Fig. 3.22 Kurtosis distributions
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3.6 Robustness of Parameters

We previously discussed the effects of outliers. Some parameters, such as mean or

variance, react sensitively to outliers; others, like the median in a bigger sample,

don’t react at all. The latter group are referred to as robust parameters. If the data

include only robust parameters, there is no need to search for outliers. Figure 3.23

provides a summary of the permitted scales for each parameter and its robustness.

3.7 Measures of Concentration

The above measures of dispersion dominate empirical research. They answer (more

or less accurately) the following question: To what extent do observations deviate

from a location parameter? Occasionally, however, another question arises: How

concentrated is a trait (e.g. sales) within a group of particular statistical units (e.g. a

series of firms). For instance, the EU’s Directorate General for Competition may

investigate whether a planned takeover will create excessively high concentration

in a given market. To this end, indicators are needed to measure the concentration

of sales, revenues, etc.

The simplest way of measuring concentration is by calculating the concentration
ratio. Abbreviated as CRg, the concentration ratio indicates the percentage of a quantity

(e.g. revenues) achieved by g statistical units with the highest trait values. Let’s assume

that five companies each have a market share of 20 %. The market concentration ratio

CR2 for the two largest companies is 0.2 þ 0.2, or 0.4. The other concentration rates

can be calculated in a similar fashion: CR3 ¼ 0.2 þ 0.2 þ 0.2 ¼ 0.6, etc. The larger

the concentration ratio is for a given g, the greater the market share controlled by the g
largest companies, and the larger the concentration. In Germany, g has a minimum

robust?
nominal ordinal cardinal

Mean not permi�ed not permi�ed permi�ed not robust
Median not permi�ed permi�ed permi�ed robust
Quantile not permi�ed permi�ed permi�ed robust
Mode permi�ed permi�ed permi�ed robust
Sum not permi�ed not permi�ed permi�ed not robust
Variance not permi�ed not permi�ed permi�ed not robust
Interquartile range not permi�ed not permi�ed permi�ed robust
Range not permi�ed not permi�ed permi�ed not robust
Skewness not permi�ed not permi�ed permi�ed not robust
Kurtosis not permi�ed not permi�ed permi�ed not robust

Parameter Level of Measurement

Note:  Many studies use mean, variance, skewness, and kurtosis with ordinal scales as well. Section 2.2 
describes the conditions necessary for this to be possible.

Fig. 3.23 Robustness of parameters
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value of three in official statistics. In the United States, the minimum value is four.

Smaller values are not published because they would allow competitors to determine

each other’s market shares with relative precision, thus violating confidentiality

regulations.

Another very common measure of concentration is the Herfindahl index. First
proposed by O.C. Herfindahl in a 1950 study of concentration in the U.S. steel

industry, the index is calculated by summing the squared shares of each trait:

H ¼
Xn
i¼1

f xið Þ2 (3.46)

Let us take again the example of five equally sized companies (an example of

low concentration in a given industry). Using the above formula, this produces the

following results:

H ¼
Xn
i¼1

f xið Þ2 ¼ 0:22 þ 0:22 þ 0:22 þ 0:22 þ 0:22 ¼ 0:2 (3.47)

Theoretically, a company with 100 % market share would have a Herfindahl

index value of

H ¼
Xn
i¼1

f xið Þ2 ¼ 12 þ 02 þ 02 þ 02 þ 02 ¼ 1 (3.48)

The value of the Herfindahl index thus varies between 1/n (provided all

statistical units display the same shares and there is no concentration) and 1 (only

one statistical unit captures the full value of a trait for itself; i.e. full concentration).

A final and important measure of concentration can be derived from the

graphical representation of the Lorenz curve. Consider the curve in Fig. 3.25 with

the example of a medium level of market concentration in Fig. 3.24. Each company

represents 20 % of the market, or 1/5 of all companies. The companies are then

ordered by the size of the respective trait variable (e.g. sales), from smallest to

largest, on the x-axis. In Fig. 3.25, the x-axis is spaced at 20 % point intervals, with

the corresponding cumulative market shares on the y-axis. The smallest company

(i.e. the lowest 20 % of companies) generates 10 % of sales. The two smallest

companies (i.e. the lowest 40 % of the companies) generate 20 % of sales, while the

three smallest companies generate 30 % of sales, and so on.

The result is a “sagging” curve. The extent to which the curve sags depends on

market concentration. If the market share is distributed equally (i.e. five companies,

each representing 20 % of all companies), then every company possesses 20 % of

the market. In this case, the Lorenz curve precisely bisects the coordinate plane.

This 45-degree line is referred to the line of equality. As concentration increases or

deviates from the uniform distribution, the Lorenz curve sags more, and the area

between it and the bisector increases. If one sets the area in relationship to the entire

area below the bisector, an index results between 0 (uniform distribution, since
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otherwise the area between the bisector and the Lorenz curve would be 0) and

(n�1)/n (full possession of all shares by a statistical unit):

GINI ¼ Area between bisector and the Lorenz curve

Entire area below the bisector
(3.49)

This index is called the Gini coefficient. The following formulas are used to

calculate the Gini coefficient:

Fig. 3.24 Measure of concentration
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Fig. 3.25 Lorenz curve
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(a) For unclassed ordered raw data:

GINI ¼
2
Xn
i¼1

i � xi� nþ 1ð Þ
Xn
i¼1

xi

n
Xn
i¼1

xi

(3.50)

(b) For unclassed ordered relative frequencies:

GINI ¼
2
Xn
i¼1

i � f i� nþ 1ð Þ

n
(3.51)

For the medium level of concentration shown in Fig. 3.24, the Gini coefficient

can be calculated as follows:

GINI ¼
2
Xn
i¼1

i � f i� nþ 1ð Þ

n

¼ 2 � 1 � 0:1þ 2 � 0:1þ 3 � 0:1þ 4 � 0:2þ 5 � 0:5ð Þ � 5þ 1ð Þ
5

¼ 0:36 (3.52)

In the case of full concentration, the Gini coefficient depends on the number

of observations (n). The value GINI ¼ 1 can be approximated only when a very

large number of observations (n) are present. When there are few observation

numbers (n < 100), the Gini coefficient must be normalized by multiplying each

of the above formulas by n/(n�1). This makes it possible to compare concentrations

among different observation quantities. A full concentration always yields the value

GINInorm. ¼ 1.

3.8 Using the Computer to Calculate Univariate Parameters

3.8.1 Calculating Univariate Parameters with SPSS

This section uses the sample dataset spread.sav. There are two ways to calculate

univariate parameters with SPSS. Most descriptive parameters can be calculated

by clicking the menu items Analyze ! Descriptive Statistics ! Frequencies.
In the menu that opens, first select the variables that are to be calculated for

the univariate statistics. If there’s a cardinal variable among them, deactivate

the option Display frequency tables. Otherwise, the application will calculate

contingency tables that don’t typically produce meaningful results for cardinal

variables. Select Statistics. . . from the submenu to display the univariate parameters

for calculation.
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SPSS uses a standard kurtosis of 0, not 3. Figure 3.26 shows the menu and the

output for the age variable from the sample dataset.

Another way to calculate univariate statistics can be obtained by selecting

Analyze ! Descriptive Statistics ! Descriptives. . .. Once again, select the desired
variables and indicate the univariate parameters in the submenu Options.

Choose Graphs ! Chart Builder. . . to generate a boxplot or other graphs.

3.8.2 Calculating Univariate Parameters with Stata

Let’s return again to the file spread.dta. The calculation of univariate parameters

with Stata can be found under Statistics ! Summaries, tables, and tests ! Sum-
mary and descriptive statistics ! Summary statistics. From the menu select the

variables to be calculated for univariate statistics. To calculate the entire range of

Statistics

age
N Valid 854

Missing 0

Mean 38.58

Std. Error of Mean 0.598

Median 30.00

Mode 25

Std. Deviation 17.472

Variance 305.262

Skewness .823

Std. Error of Skewness .084

Kurtosis -.694

Std. Error of Kurtosis .167

Range 74

Minimum 18

Maximum 92

Sum 32946

Percentiles 25 25.00

50 30.00

75 55.00

Note: Applicable syntax commands: Frequencies;  Descriptives

Fig. 3.26 Univariate parameters with SPSS
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descriptive statistics, make sure to select Display additional statistics, as otherwise
only the mean, variance, and smallest and greatest values will be displayed.

Figure 3.27 shows the menu and the output for the variable age in the sample

dataset.

To see the graphs (boxplot, pie charts, etc.) select Graphics from the menu.

3.8.3 Calculating Univariate Parameters with Excel 2010

Excel contains a number of preprogrammed statistical functions. These functions

can be found under Formulas ! Insert Function. Select the category Statistical to
set the constraints. Figure 3.28 shows the Excel functions applied to the dataset

spread.xls. It is also possible to use the Add-in Manager11 to permanently activate

the Analysis ToolPak and the Analysis ToolPak VBA for Excel 2010. Next, go to

Data ! Data Analysis ! Descriptive Statistics. This function can calculate the

most important parameters. Excel’s graphing functions can also generate the most

important graphics. The option to generate a boxplot is the only thing missing from

the standard range of functionality.

Go to http://www.reading.ac.uk/ssc/n/software.htm for a free non-commercial,

Excel statistics add-in (SSC-Stat) download. In addition to many other tools, the

add-in allows you to create boxplots.

Excel uses a special calculation method for determining quantiles. Especially

with small samples, it can lead to implausible results. In addition, Excel scales the

kurtosis to the value 0 and not 3, which equals a subtraction of 3.

. summarize age
Variable |       Obs Mean    Std. Dev.       Min        Max

-------------+--------------------------------------------------------
age |       850    38.61765    17.50163         18         92

. summarize age, detail
alter

-------------------------------------------------------------
Percentiles Smallest

1%           18             18
5%           20             18

10%           22             18       Obs 850
25%           25             18       Sum of Wgt.         850
50%           30                      Mean           38.61765

Largest       Std. Dev.      17.50163
75%           55             83
90%           66             85       Variance       306.3071
95%           71             89       Skewness       .8151708
99%           80             92       Kurtosis       2.290657

Note: Applicable syntax commands for univariate parameters: ameans; centile; inspect; mean;pctile; 
summarize; mean; tabstat; tabulate summarize.

Fig. 3.27 Univariate parameters with Stata

11 The Add-In Manager can be accessed via File ! Options ! Add-ins ! Manage: Excel

Add-ins ! Go. . .
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3.9 Chapter Exercises

Exercise 4:

A spa resort in the German town of Waldbronn conducts a survey of their hot spring

users, asking how often they visit the spa facility. This survey results in the

following absolute frequency data:

first time rarely regularly frequently every day

15 75 45 35 20

1. Identify the trait (level of measurement).

2. Sketch the relative frequency distribution of the data.

3. Identify the two location parameters that can be calculated and determine their

size.

4. Identify one location parameter that can’t be calculated. Why?

Variable Age
Parameter Symbol Result Excel Command/Function

Count N 850 =COUNT(Data!$C$2:$C$851)
Mean x 38.62 =AVERAGE(Data!$C$2:$C$851)
Median 30.00 =MEDIAN(Data!$C$2:$C$851)
Mode xmod 25.00 =MODALWERT(Data!$C$2:$C$851)
Trimmed Mean xtrim 37.62 =TRIMMEAN(Data!$C$2:$C$851;0,1)
Harmonic Mean xharm 32.33 =HARMEAN(Data!$C$2:$C$851)
25th percentile x0.25 25.00 =PERCENTILE(Data!$C$2:$C$851;0,25)
50th percentile x0,5 30.00 =PERCENTILE(Data!$C$2:$C$851;0,5)
75th percentile x0,75 55.00 =PERCENTILE(Data!$C$2:$C$851;0,75)
Minimum MIN 18.00 =MIN(Data!$C$2:$C$851)
Maximum MAX 92.00 =MAX(Data!$C$2:$C$851)
Sum S 32,825.00 =SUM(Data!$C$2:$C$851)
Standard Deviation Semp 17.50 =STDEVP(Data!$C$2:$C$851)
Standard Deviation S 17.49 =STDEV(Data!$C$2:$C$851)
Empirical Variance VARemp 306.31 =VARP(Data!$C$2:$C$851)
Unbiased Variance VAR 305.95 =VAR(Data!$C$2:$C$851)
Skewness 0.82 =SKEW(Data!$C$2:$C$851)
Kurtosis -0.71 =KURT(Data!$C$2:$C$851)

Example: Calculation of univariate parameters of the dataset spread.xls

Fig. 3.28 Univariate parameters with Excel
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Exercise 5:

Supposed the following figure appears in a market research study. What can be said

about it?

0

0.5

1

1.5

2

1972 1980 1982 1986 1987 1988

Produced vehicles in UK [in millions of vehicles]

Exercise 6:

Using the values 4, 2, 5, 6, 1, 6, 8, 3, 4, and 9 calculate. . .
(a) The median

(b) The arithmetic mean

(c) The mean absolute deviation from the median

(d) The empirical variance

(e) The empirical standard deviation

(f) The interquartile range

Exercise 7:

The arithmetic mean x ¼ 10 and the empirical standard deviation Semp ¼ 2 were

calculated for a sample (n ¼ 50). Later the values x51 ¼ 18 und x52 ¼ 28 were

added to the sample. What is the new arithmetic mean and empirical standard

deviation for the entire sample (n ¼ 52)?

Exercise 8:

You’re employed in the marketing department of an international car dealer. Your

boss asks you to determine the most important factors influencing car sales. You

receive the following data:

Country

Sales [in 1,000 s

of units]

Number of

dealerships

Unit price [in 1,000 s

of MUs]

Advertising budget

[in 100,000 s of MUs]

1 6 7 32 45

2 4 5 33 35

3 3 4 34 25

4 5 6 32 40

5 2 6 36 32

6 2 3 36 43

7 5 6 31 56

8 1 9 39 37

9 1 9 40 23

10 1 9 39 34
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(a) What are the average sales (in 1,000 s of units)?

(b) What is the empirical standard deviation and the coefficient of variation?

(c) What would be the coefficient of variation if sales were given in a different unit

of quantity?

(d) Determine the lower, middle, and upper quartile of sales with the help of the

“weighted average method”.

(e) Draw a boxplot for the variable sales.

(f) Are sales symmetrically distributed across the countries? Interpret the boxplot.

(g) How are company sales concentrated in specific countries? Determine and

interpret the Herfindahl index.

(h) Assume that total sales developed as follows over the years: 1998: +2 %; 1999:

+4 %; 2000: +1 %. What is the average growth in sales for this period?

Exercise 9:

(a) A used car market contains 200 vehicles across the following price categories:

Car price (in €) Number

Up to 2,500 2

Between 2,500 and 5,000 8

Between 5,000 and 10,000 80

Between 10,000 and 12,500 70

Between 12,500 and 15,000 40

(a) Draw a histogram for the relative frequencies. How would you have done the

data acquisition differently?

(b) Calculate and interpret the arithmetic mean, the median, and the modal class.

(c) What price is reached by 45 % of the used cars?

(d) 80% of used cars in a different market are sold for more than €11,250. Compare

this value with the market figures in the above table.

Exercise 10:

Unions and employers sign a 4-year tariff agreement. In the first year, employees’

salaries increase by 4 %, in the second year by 3 %, in the third year by 2 %, and in

the fourth year by 1 %. Determine the average salary increase to four decimal

places.

Exercise 11:

A company has sold €30 m worth of goods over the last 3 years. In the first year

they sold €8 m, in the second year €7 m, in the third year €15 m. What is the

concentration of sales over the last 3 years? Use any indicator to solve the problem.
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Bivariate Association 4

4.1 Bivariate Scale Combinations

In the first stage of data analysis we learned how to examine variables and survey

traits individually, or univariately. In this chapter we’ll learn how to assess the

association between two variables using methods known as bivariate analyses. This

is where statistics starts getting interesting – practically as well as theoretically.

This is because univariate analysis is rarely satisfying in real life. People want to

know things like the strength of a relationship

• Between advertising costs and product sales,

• Between interest rate and share prices,

• Between wages and employee satisfaction, or

• Between specific tax return questions and tax fraud.

Questions like these are very important, but answering them requires far more

complicated methods than the ones we’ve used so far. As in univariate analysis, the

methods of bivariate analysis depend on the scale of the observed traits or variables.

Table 4.1 summarizes scale combinations, their permitted bivariate measures of

association, and the sections in which they appear.

4.2 Association Between Two Nominal Variables

4.2.1 Contingency Tables

A common form of representing the association of two nominally scaled variables

is the contingency table or crosstab. The bivariate contingency table takes the

univariate frequency table one step further: it records the frequency of value pairs.

Chapter 4 Translated from the German original, Cleff, T. (2011). 4 Bivariate Zusammenhänge. In

Deskriptive Statistik und moderne Datenanalyse (pp. 79–146)#Gabler Verlag, Springer Fachmedien

Wiesbaden GmbH, 2011.

T. Cleff, Exploratory Data Analysis in Business and Economics,
DOI 10.1007/978-3-319-01517-0_4, # Springer International Publishing Switzerland 2014
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Figure 4.1 shows a contingency table for the variables gender and selection rating
from our sample survey in Chap. 2.

The right and lower edges of the table indicate the marginal frequencies. The
values along the right edge of the table show that 441 (51.9 %) of the 850

respondents are male and 409 (48.1 %) are female. We could have also obtained

Table 4.1 Scale combinations and their measures of association

Nominal Ordinal Metric

Nominal Dichotomous Phi; Cramer’s V Biserial rank

correlation;

Cramer’s V

Point-biserial r; classification

of metric variables and

application of Cramer’s V

[Sect. 4.2] [Sect. 4.5.2] [Sect. 4.5.1]

Non-

dichotomous

Cramer’s V;

contingency

coefficient

Cramer’s V;

contingency

coefficient

Classification of metric

variables and application

of Cramer’s V

[Sect. 4.2] [Sect. 4.2] [Sect. 4.2]

Ordinal Spearman’s

rho (ρ);
Kendall’s tau (τ)

Ranking of metric variables and

application of ρ or τ

[Sect. 4.4] [Sect. 4.4]

Metric Pearson’s correlation (r)

[Sect. 4.3.2]

The appropriate measure of association is indicated in the box at the point where the scales

intersect. For instance, if one variable is nominal and dichotomous and the other ordinally scaled,

then the association can be measured either by the biserial rank correlation or Cramer’s V. If both

variables are ordinal, then one can use either Spearman’s rho or Kendall’s tau.

Gender * rating cross tabulation
offer

Totalpoor fair avg good excellent

G
en

de
r

male

Count 199 143 52 27 20 441
Expected count 202.4 139.4 47.0 32.0 20.1 441.0
% within gender 45.1% 32.4% 11.8% 6.1% 4.5% 100.0%
% within rating 50.8% 53.0% 57.1% 43.5% 51.3% 51.6%
% of total 23.3% 16.7% 6.1% 3.2% 2.3% 51.6%

female

Count 193 127 39 35 19 413
Expected count 189.6 130.6 44.0 30.0 18.9 413.0
% within gender 46.7% 30.8% 9.4% 8.5% 4.6% 100.0%
% within rating 49.2% 47.0% 42.9% 56.5% 48.7% 48.4%
% of total 22.6% 14.9% 4.6% 4.1% 2.2% 48.4%

Total

Count 392 270 91 62 39 854
Expected count 392.0 270.0 91.0 62.0 39.0 854.0
% within gender 45.9% 31.6% 10.7% 7.3% 4.6% 100.0%
% within rating 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of total 45.9% 31.6% 10.7% 7.3% 4.6% 100.0%

Fig. 4.1 Contingency table (crosstab)
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this information had we calculated a univariate frequency table for the variable

gender. The same is true for the frequencies of the variable selection rating on the

lower edge of the contingency table. Of the 850 respondents, 391 (46.0 %) find the

selection poor, 266 (31.3 %) fair, etc. In the interior of the contingency table we find

additional information. For instance, 198 respondents (23.3 %) were male and

found the selection poor.
Alongside absolute frequencies and the frequencies expressed relative to the

total number of respondents we can also identify conditional relative frequencies.
For instance, how large is the relative frequency of females within the group of

respondents who rated the selection to be poor? First look at the subgroup of

respondents who checked poor. Of these 391 respondents, 193 are female, so the

answer must be 49.4 %. The formal representation of these conditional relative

frequencies is as follows:

f gender ¼ female
��� selection ¼ poor

� �
¼ 193=391 ¼ 49:4% (4.1)

The limiting condition appears after the vertical line behind the value in ques-

tion. The question “What per cent of female respondents rated the selection as

good?” would limit the female respondents to 409. This results in the following

conditional frequency:

f selection rating ¼ good
��� gender ¼ female

� �
¼ 35=409 ¼ 8:6% (4.2)

The formula f(x ¼ 1| y ¼ 0) describes the relative frequency of the value 1 for

the variable x when only observations with the value y ¼ 0 are considered.

4.2.2 Chi-Square Calculations

The contingency table gives us some initial indications about the strength of the

association between two nominal or ordinal variables. Consider the contingency

tables in Fig. 4.2. They show the results of two business surveys. Each survey has

n ¼ 22 respondents.

The lower crosstab shows that none of the 10 male respondents and all 12 female

respondents made a purchase. From this we can conclude that all women made a

purchase and all men did not, and that all buyers are women and all non-buyers are

men. From the value of one variable (gender) we can infer the value of the second

(purchase). The upper contingency table, by contrast, does not permit this conclu-

sion. Of the male respondents, 50 % are buyers and 50 % non-buyers. The same is

true of the female respondents.

These tables express the extremes of association: in the upper table, there is no

association between the variables gender and purchase, while in the lower table

there is a perfect association between them. The extremes of association strength
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can be discerned through close examination of the tables alone. But how can

contingency tables be compared whose associations are less extreme? How much

weaker, for instance, is the association in the contingency table in Fig. 4.3 com-

pared with the second contingency table in Fig. 4.2?

As tables become more complicated, so do estimations of association. The more

columns and rows a contingency table has, the more difficult it is to recognize

associations and compare association strengths between tables. The solution is to

calculate a parameter that expresses association on a scale from 0 (no association)

to 1 (perfect association). To calculate this parameter, we must first determine the

expected frequencies - also known as expected counts - for each cell. These are the

absolute values that would obtain were there no association between variables is

assumed. In other words, one calculates the expected absolute frequencies under the
assumption of statistical independence.

Let us return again to the first table in Fig. 4.2. A total of 12 of the 22 respondents

are female. The relative frequency of females is thus

f female ¼
12

22
¼ 54:5% (4.3)

The relative frequency of a purchase is 11 of 22 persons, or

f purchase ¼
11

22
¼ 50:0% (4.4)

Gender
TotalFemale Male

Purchase No Purchase 6 5 11
Purchase 6 5 11

Total 12 10 22

Gender
TotalFemale Male

Purchase No Purchase 0 10 10
Purchase 12 0 12

Total 12 10 22

Fig. 4.2 Contingency tables

(crosstabs) (1st)

Gender Total
Female Male

Purchase No purchase 1 9 10
Purchase 11 1 12

Total 12 10 22

Fig. 4.3 Contingency table

(crosstab) (2nd)
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If there is no association between the variables (gender and purchase), then 50 %

of the women and 50 % of the men must make a purchase. Accordingly, the

expected relative frequency of female purchases under independence would be:

f female
purchase ¼ f purchase � f female ¼

11

22
� 12
22

¼ 50:0% � 54:5% ¼ 27:3% (4.5)

From this we can easily determine the expected counts under independence:

6 persons, or 27.3 % of the 22 respondents, are female and make a purchase:

n female
purchase ¼ f purchase � f female � n ¼ 11

22
� 12
22

� 22 ¼ 11 � 12
22

¼ 6 (4.6)

The simplified formula for calculating the expected counts under independence

is row sum (12) multiplied by the column sum (11) divided by the total sum (22):

neij ¼
row sum � column sum

total sum
¼ ni: � n:j

n
(4.7)

The sum of expected counts in each row or column must equal the absolute

frequencies of the row or column. The idea is that a statistical association is not

signified by different marginal frequencies but by different distributions of the sums

of the marginal frequencies across columns or rows.

By comparing the expected counts nij
ewith the actual absolute frequencies nij and

considering their difference (nij � nij
e), we get a first impression of the deviation of

actual data from statistical independence. The larger the difference, the more the

variables tend to be statistically dependent.

One might be tempted just to add up the deviations of the individual rows. In the

tables in Fig. 4.4 the result is always 0, as the positive and negative differences

cancel each other out. This happens with every contingency table. This is why we

must square the difference in every cell and then divide it by the expected count.

For the female buyers in part 1 of the above table, we then have the following value:

n12�ne
12ð Þ2

ne
12

¼ 6�6ð Þ2
6

¼ 0. These values can then be added up for all cells in the m rows

and k columns. This results in the so-called chi-square value (χ2-square):

χ2 ¼
Xk
i¼1

Xm
j¼1

nij�neij

� �2
neij

¼ 6�6ð Þ2
6

þ 6�6ð Þ2
6

þ 5�5ð Þ2
5

þ 5�5ð Þ2
5

¼ 0 (4.8)

The chi-square is a value that is independent of the chosen variable code and in

which positive and negative deviations do not cancel each other out. If the chi-

square has a value of 0, there is no difference to the expected counts with indepen-

dence. The observed variables are thus independent of each other. In our example

this means that gender has no influence on purchase behaviour.
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As the dependence of the variables increases, the value of the chi-square tends to

rise, which Fig. 4.4 clearly shows.

In part 2 one can infer perfectly from one variable (gender) to another (pur-
chase), and the other way around. All women buy something and all men do not.

All non-buyers are male and all buyers are female. For the chi-square this gives us:

Sex

TotalFemale Male

Purchase No purchase Count 6 5 11
Expected Count 6.0 5.0 11.0

Purchase Count 6 5 11
Expect ed Count 6.0 5.0 11.0

Total Count 12 10 22
Expected Count 12.0 10.0 22.0

Sex

TotalFemale Male

Purchase No purchase Count 0 10 10
Expected count 5.5 4.5 10.0

Purchase Count 12 0 12
Expected count 6.5 5.5 12.0

Total Count 12 10 22
Expected count 12.0 10.0 22.0

Sex

TotalFemale Male

Purchase No purchase Count 1 9 10
Expected count 5.5 4.5 10.0

Purchase Count 11 1 12
Expected count 6.5 5.5 12.0

Total Count 12 10 22
Expected count 12.0 10.0 22.0

Part 1:

Fig. 4.4 Calculation of expected counts in contingency tables
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χ2 ¼
Xk
i¼1

Xm
j¼1

nij � neij

� �2
neij

¼ 0� 5:5ð Þ2
5:5

þ 12� 6:5ð Þ2
6:5

þ 10� 4:5ð Þ2
4:5

þ 0� 5:5ð Þ2
5:5

¼ 22 (4.9)

Its value also equals the number of observations (n ¼ 22).

Let us take a less extreme situation and consider the case in part 3 of Fig. 4.4.

Here one female respondent does not make a purchase and one male respondent

does make a purchase, reducing the value for of the chi-square:

χ2 ¼
Xk
i¼1

Xm
j¼1

nij � neij

� �2
neij

¼ 1� 5:5ð Þ2
5:5

þ 11� 6:5ð Þ2
6:5

þ 9� 4:5ð Þ2
4:5

þ 1� 5:5ð Þ2
5:5

¼ 14:7 (4.10)

Unfortunately, the strength of association is not the only factor that influences

the size of the chi-square value. As the following sections show, the chi-square

value tends to rise with the size of the sample and the number of rows and columns

in the contingency tables, too. Adopted measures of association based on the chi-

square thus attempt to limit these undesirable influences.

4.2.3 The Phi Coefficient

In the last section, we saw that the value of the chi-square rises with the dependence

of the variables and the size of the sample. Figure 4.5 below shows two contingency

tables with perfect association: the chi-square value is n ¼ 22 in the table with

n ¼ 22 observations and n ¼ 44 in the table with n ¼ 44 observations.

As these values indicate, the chi-square does not achieve our goal of measuring

association independent of sample size. For a measure of association to be inde-

pendent, the associations of two tables whose sample sizes are different must be

comparable. For tables with two rows (2 � k) or two columns (m � 2), it is best to

use the phi coefficient. The phi coefficient results from dividing the chi-square

value by the number of observations and taking its square root:

PHI ¼ ϕ ¼
ffiffiffiffiffi
χ2

n

r
(4.11)

4.2 Association Between Two Nominal Variables 67



Using this formula,1 the phi coefficient assumes a value from zero to one. If the

coefficient has the value of zero, there is no association between the variables. If it

has the value of one, the association is perfect.

If the contingency table consists of more than two rows and two columns, the phi

coefficient will produce values greater than one. Consider a table with three rows

and three columns and a table with five rows and four columns. Here too there are

perfect associations, as every row possesses values only within a column and every

row can be assigned to a specific column (Fig. 4.6).

Gender

TotalFemale Male

Purchase No Purchase Count 0 10 10
Expected Count 5.5 4.5 10.0

Purchase Count 12 0 12
Expected Count 6.5 5.5 12.0

Total Count 12 10 22
Expected Count 12.0 10.0 22.0

2

1 1

22
5.5 6.5 4.5 5.5

k m

e
ĳn

c
i j

j

= =

2( )e
ĳ ĳn n- 2(0 5.5)- 2(12 6.5)- 2(10 4.5)- 2(0 5.5)-

= å å = + + + =

Gender

TotalFemale Male

Purchase No Purchase Count 0 20 20
Expected Count 10.9 9.1 20.0

Purchase Count 24 0 24
Expected Count 13.1 10.9 24.0

Total Count 24 20 44
Expected Count 24.0 20.0 44.0

2
2

1 1

( )
44

10.9 13.1 9.1 10.9

ek m
ĳ ĳ

e
i ĳ

n n

n
c

= =

- 2(0 10.9)- 2(24 13.1)- 2(20 9.1)- 2(0 10.9)-
= å = + + + =å

Fig. 4.5 Chi-square values based on different sets of observations

1 Some software programmes calculate the phi coefficient for a 2 � 2 table (four-field scheme) in

such a way that phi can assume negative values. This has to do with the arrangement of the rows

and columns in the table. In these programmes, a value of (�1) equals an association strength of

(+1), and (�0.6) that of (+0.6), etc.
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As these tables show, the number of rows and columns determines the phi

coefficient’s maximum value. The reason is that the highest obtainable value for

the chi-square rises as the number of rows and columns increases. The maximum

value of phi is the square root of the minimum number of rows and columns in a

contingency table minus one:

2 60 2 1.4
30n

cj = = = =

2 150 3 1.73
50n

cj = = = =

Purchase Total

No Purchase
Frequent 
Purchase

Constant 
Purchase

C
us

to
m

er
 

A Customer Count 0 0 10 10

Expected Count 3.3 3.3 3.3 10.0

B Customer Count 0 10 0 10

Expected Count 3.3 3.3 3.3 10.0

C Customer Count 10 0 0 10

Expected Count 3.3 3.3 3.3 10.0
Total Count 10 10 10 30

Expected Count 10.0 10.0 10.0 30.0

Purchase

Total
No

Infrequ
ent

Freque
nt

Constant

C
us

to
m

er
 G

ro
up

Count 0 0 10 0 10
Customer Expected Count 4.0 2.0 2.0 2.0 10.0
B Count 0 10 0 0 10
Customer Expected Count 4.0 2.0 2.0 2.0 10.0
C Count 10 0 0 0 10
Customer Expected Count 4.0 2.0 2.0 2.0 10.0
D Count 10 0 0 0 10
Customer Expected Count 4.0 2.0 2.0 2.0 10.0
E Count 0 0 0 10 10
Customer Expected Count 4.0 2.0 2.0 2.0 10.0
Total Count 20 10 10 10 50
Customer Expected Count 20.0 10.0 10.0 10.0 50.0

Fig. 4.6 The phi coefficient in tables with various numbers of rows and columns
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φmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min Number of rows;Number of columnsð Þ � 1

p
� 1 (4.12)

In practice, therefore, the phi coefficient should only be used when comparing

2 � 2 contingency tables.

4.2.4 The Contingency Coefficient

This is why some statisticians suggest using the contingency coefficient instead. It

is calculated as follows:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2

χ2 þ n

s
2 0; 1½ � (4.13)

Like the phi coefficient, the contingency coefficient assumes the value of zero

when there is no association between the variables. Unlike the phi coefficient,

however, the contingency coefficient never assumes a value larger than one. The

disadvantage of the contingency coefficient is that C never assumes the value of one

under perfect association. Let us look at the contingency tables in Fig. 4.7.

Although both tables show a perfect association, the contingency coefficient

does not have the value of C ¼ 1.

The more rows and columns a table has, the closer the contingency coefficient

comes to one in case of perfect association. But a table would have to have many

rows and columns before the coefficient came anywhere close to one, even under

perfect association. The maximal reachable value can be calculated as follows:

Cmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min k;mð Þ � 1

min k;mð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

min k;mð Þ

s
(4.14)

The value for k equals the number of columns and l the number of rows. The

formula below yields a standardized contingency coefficient between zero and one:

Ckorr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2

χ2 þ n

s
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min k;mð Þ

min k;mð Þ � 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2

χ2 þ n

s
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
min k;mð Þ

q 2 0; 1½ � (4.15)

4.2.5 Cramer’s V

One measure that is independent of the size of the contingency table is Cramer’s V.

It always assumes a value between zero (no association) and one (perfect associa-

tion) and is therefore in practice one of the most helpful measures of association
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between two nominal or ordinal variables. Its calculation is an extension of the phi

coefficient:

Cramer’s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2

n � min k;mð Þ � 1ð Þ

s
¼ ϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

min k;mð Þ � 1

s
2 0; 1½ � (4.16)

Gender

TotalFemale Male
Purchase No Purchase Count 0 10 10

Expected Count 5.5 4.5 10.0
Purchase Count 12 0 12

Expected Count 6.5 5.5 12.0
Total Count 12 10 22

Expected Count 12.0 10.0 22.0
2

2
22 1 0.5 0.71

22 22 2
C

n
c

c
= = = = =

++

2

2
60 2 0.82

60 30 3
C

n
c

c
= = = =

++

Purchase

TotalNo Purchase
Frequent 
Purchase

Constant 
Purchase

C
us

to
m

er

A Customer Count 0 0 10 10
Expected 
Count

3.3 3.3 3.3 10.0

B Customer Count 0 10 0 10
Expected 
Count

3.3 3.3 3.3 10.0

C Customer Count 10 0 0 10
Expected 
Count

3.3 3.3 3.3 10.0

Total Count 10 10 10 30

Expected 
Count

10.0 10.0 10.0 30.0

Fig. 4.7 The contingency coefficient in tables with various numbers of rows and columns
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The value for n equals the number of observation, k the number of columns, and

m the number of rows. The values from the tables in Fig. 4.7 produce the following

calculation:

1: Cramer’s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2

n � min k;mð Þ � 1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22

22 � 2� 1ð Þ

s
¼ 1 (4.17)

2: Cramer’s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2

n � min k;mð Þ � 1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60

30 � 3� 1ð Þ

s
¼ 1 (4.18)

We have yet to identify which values stand for weak, moderate, or strong
associations. Some authors define the following ranges:

Cramer’s V ∈ [0.00; 0.10[ ! no association

Cramer’s V ∈ [0.10; 0.30[ ! weak association

Cramer’s V ∈ [0.30; 0.60[ ! moderate association

Cramer’s V ∈ [0.60; 1.00] ! strong association

4.2.6 Nominal Associations with SPSS

Everyone knows the story of the Titanic. It’s a tale of technological arrogance,

human error, and social hierarchy. On April 10, 1912, the Titanic embarked on its

maiden cruise, from Southampton, England to New York. Engineers at the time

considered the giant steamer unsinkable on account of its state-of-the-art technol-

ogy and sheer size. Yet on April 14 the ship struck an iceberg and sank around 2:15

am the next day. Of the 2,201 passengers, only 710 survived.

Say we want to examine the frequent claim that most of the survivors were from

first class and most of the victims were from third class. To start we need the

information in the Titanic dataset, including the variables gender (child, male, female),

class (first, second, third, and crew), and survival (yes, no) for each passenger.2

To use SPSS to generate a crosstab and calculate the nominal measures of

association, begin by opening the crosstab window. Select Analyze ! Descriptive
Statistics ! Crosstabs. . . . Now select the row and column variables whose asso-

ciation you want to analyze. For our example we must select survival as the row

variable and class as the column variable. Next click on cells. . . to open a cell

window. There you can select the desired contingency table calculations. (See

Fig. 4.8: The cell display). The association measure can be selected under

statistics. . . . Click OK to generate the tables in Figs. 4.9 and 4.10.

2 The data in Titanic.sav (SPSS), Titanic.dta (Stata), and Titanic.xls (Excel) contain figures on the

number of persons on board and the number of victims. The data is taken from the British Board of

Trade Inquiry Report (1990), Report on the Loss of the Titanic’ (S.S.), Gloucester (reprint).
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Not selected variables.

Select one or more row variables.

Select one or more column variables.

Crosstabs' statistics and measures of 
association are computed.

For each cell of the table any combination 
of counts, percentages, and residuals can 
be selected.

The percentages of the total number of cases and 
the percentages across the rows or down the 
columns. 

The number of cases actually observed

The number of cases expected if the row and 
column variables are independent of each other

Unstandardized residuals give the difference 
between the observed and expected values. 

(Adjusted) Standardized residuals are available.

Phi and Cramer's V

Chi-Square Value

Contingency Coefficient

Fig. 4.8 Crosstabs and nominal associations with SPSS (Titanic)
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class Total

Crew First Second Third

su
rv

iv
al

Alive

Count 212 202 118 178 710

Expected Count 285.5 104.8 91.9 227.7 710.0

% within survival 29.9% 28.5% 16.6% 25.1% 100.0%

% within class 24.0% 62.2% 41.4% 25.2% 32.3%

% of Total 9.6% 9.2% 5.4% 8.1% 32.3%

Residual -73.5 97.2 26.1 -49.7

Std. Residual -4.3 9.5 2.7 -3.3

Adjusted Residual -6.8 12.5 3.5 -4.9

Dead

Count 673 123 167 528 1491

Expected Count 599.5 220.2 193.1 478.3 1491.0

% within survival 45.1% 8.2% 11.2% 35.4% 100.0%

% within class 76.0% 37.8% 58.6% 74.8% 67.7%

% of Total 30.6% 5.6% 7.6% 24.0% 67.7%

Residual 73.5 -97.2 -26.1 49.7

Std. Residual 3.0 -6.5 -1.9 2.3

Adjusted Residual 6.8 -12.5 -3.5 4.9

Total

Count 885 325 285 706 2201

Expected Count 885.0 325.0 285.0 706.0 2201.0

% within survival 40.2% 14.8% 12.9% 32.1% 100.0%

% within class 100.0% 100.0% 100.0% 100.0% 100.0%

% of Total 40.2% 14.8% 12.9% 32.1% 100.0%

Fig. 4.9 From raw data to computer-calculated crosstab (Titanic)

Chi-Square Tests
Value df Asymp. Sig. (2-sided)

Pearson Chi-Square 187.793a 3 .000
N of Valid Cases 2201
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 91.94.

Symmetric Measures
Value Approx. Sig.

Nominal by Nominal
Phi .292 .000
Cramer's V .292 .000
Contingency Coefficient .280 .000

N of Valid Cases 2201
a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Fig. 4.10 Computer printout of chi-square and nominal measures of association
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Consider the contingency table in Fig. 4.9 below, which categorizes survivors by

class. Did all the passengers have the same chances of survival?

We see that more passengers in third class (528) lost their lives than passengers

in first class (123). But since more passengers were in third class (706 versus 325),

this is no surprise, even if everyone had the same chances of survival. But when we

consider the relative frequencies, we see that 32.3 % of passengers survived the

catastrophe, with 62.2 % from first class and only 25.3 % from third class. These

figures indicate that the 32.3 % survival rate is distributed asymmetrically: the

larger the asymmetry, the stronger the relationship between class and survival.

If first-class passengers survived at the average rate, only 32.3 %�325 � 105

would have made it. This is the expected count under statistical independence. If

third-class passengers survived at the average rate, only 66.7 %�706 � 478 would

have died, not 528.

As we saw in the previous sections, the differences between the expected counts

and the actual absolute frequency give us a general idea about the relationship

between the variables. For closer analysis, however, the differences must be

standardized by dividing them by the root of the expected counts (std. residual).

The square of the standardized values yields the chi-square for each cell. Positive

values for the standardized residuals express an above-average (empirical) frequency

in relation to the expected frequency; negative values express a below-average

(empirical) frequency in relation to the expected frequency. First-class passengers

have a survival value of 9.5, third-class passengers�3.3 – above-average and below-

average rates, respectively. Because all standardized residuals are a long way from

zero, we can assume there is some form of association.

The association is confirmed by the relatively high chi-square value and the

relatively high measure of association (see Fig. 4.10). The application of the phi

coefficient is permitted here – a 4 � 2 table – as 2 � k or m � 2 tables always

yield identical values for Cramer’s V and phi. Cramer’s V (0.292) indicates an

association just shy of moderate, but, as is always the case with Cramer’s V,

whether the association is the one supposed – in our example, a higher survival

rate among first-class passengers than among third-class passengers – must be

verified by comparing standardized residuals between actual and the expected

frequencies.

4.2.7 Nominal Associations with Stata

To analyze nominal associations with Stata, follow a similar approach. Select

Statistics ! Summaries, tables, and tests ! Tables ! Two-way tables with
measures of association to open the following window (Fig. 4.11):

The rows, columns, and calculations must be selected for each variable. The left

side displays the measures of association; the right side shows the cell statistics of
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the contingency table. Click on OK or Submit to perform the Stata calculation.3

The results can now be interpreted as in the SPSS example.

4.2.8 Nominal Associations with Excel

The calculation of crosstabs and related parameters (chi-square, phi, contingency

coefficient, Cramer’s V) with Excel is tricky compared with professional statistics

packages. One of its main drawbacks is the shortage of preprogrammed functions

for contingency tables.

Here is a brief sketch of how to perform these functions in Excel if needed. First

select the (conditional) actual frequencies for each cell as in Fig. 4.12. The pivot

table function can be helpful. Select the commands Insert and Pivot Table to open

the Create Pivot Table. Then choose Select a table or a range and mark the location

of the raw data. Click OK to store the pivot table in a New Worksheet. Drag the

variables survived and class from the field list and drop them in the Drop Row
Fields Here and Drop Column Fields Here. This generates a crosstab without

conditional absolute frequencies. These can be added by dragging one of the

variables from the field list to the field ∑ values. Then click on the variable in the

field and select Value Field Settings. . . and the option count in the dialogue box.

This generates a crosstab with the actual absolute frequencies. To update the

crosstab when changes are made in the raw data, move the cursor over a cell and

select Options and Refresh on the PivotTable tab. You can then programme the

expected frequencies using the given formula (row sum multiplied by the column

sum divided by the total sum; see the second table in Fig. 4.12). In a new table we

Chi-Square value

Row variable

Cramer's V

Column variable

Chi-Square within the cell

The percentages of the total number 
of cases and the percentages across 
the rows or down the columns.

Expected counts

Fig. 4.11 Crosstabs and nominal measures of association with Stata (Titanic)

3 Syntax command: tabulate class survived, cchi2 cell chi2 clrchi2 column expected row V.
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can calculate the individual chi-squares for each cell (see the third table in

Fig. 4.12). The sum of these chi-squares equals the total chi-square value. From

this, we can calculate Cramer’s V. The formulas in Fig. 4.12 provide an example.

4.2.9 Chapter Exercises

Exercise 12:

One-hundred customers were randomly selected for an experiment measuring the

effect of music on the amount of money people spend in a supermarket. One half of

the customers shopped on days when no background music was played. The other

half shopped on days accompanied by music and advertisements. Each customer

was assigned to one of three groups – high, moderate, or low – based on how much

he or she spent.

(a) Your hard drive crashes and you lose all your data. Fortunately, you manage to

reconstruct the survey results for 100 observations from your notes. The relative

frequency is f(x ¼ 2|y ¼ 3) ¼ 0.5 and the absolute frequency is h(y ¼ 1) ¼ 35.

Based on this information, fill in the missing cells below.

High amount

spent (y ¼ 1)

Moderate amount

spent (y ¼ 2)

Low amount

spent (y ¼ 3) Sum (X)

With music (x ¼ 1) 30

W/o music (x ¼ 2) 20

Sum (Y) 40

=B$7*$D3/$D$7

=B$7*$D5/$D$7

=(B3-B12)^2/B12

=(B5-B14)^2/B14

=SUM(B21:C24)

=(C28/(D7*(MIN(COUNT(B21:B2
4);COUNT(B21:C21))-1)))^0,5

=SUM(B3:C3)

=SUM(D3:D6)

=SUM(B12:C12)

=SUM(D16:D16)

Fig. 4.12 Crosstabs and nominal measures of association with Excel (Titanic)
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(b) After reconstructing the data, you decide to increase your sample size by

surveying 300 additional customers. This leaves you with the following contin-

gency table. Fill in the marginal frequencies and the expected counts under

statistical independence. In the parentheses provide the expected counts given

the actual number of observations.

High

(y ¼ 1)

Moderate

(y ¼ 2)

Low

(y ¼ 3)

Sum

(X)

With Music

(x ¼ 1)

Count

(Expected Count)

130 (____) 30 (____) 50 (____)

Without Music

(x ¼ 2)

Count

(Expected Count)

40 (____) 20 (____) 130 (____)

Sum (Y) Count

(c) Determine the chi-square value.

(d) Calculate Cramer’s V.

Exercise 13:

You are given the task of sampling the household size of customers at a grocery

store and the number of bananas they buy.

(a) You collect 150 observations. The relative frequency is f(x ¼ 4jy ¼ 2) ¼ 1/18

and the absolute frequency is h(x ¼ 2jy ¼ 3) ¼ 30. Based on this information,

fill in the missing cells below.

1 Person (y ¼ 1) 2 Persons (y ¼ 2) �3 Persons (y ¼ 3) Sum (x)

0 Bananas (x ¼ 1) 20 30 60

1 Bananas (x ¼ 2) 20 55

2 Bananas (x ¼ 3) 20 27

�3 Bananas (x ¼ 4)

Sum (y) 33 54

(b) The data you collect yields the following contingency table. Fill in the marginal

frequencies and the expected counts under statistical independence. In the

parentheses provide the expected counts given the actual number of observations.

1 Person (y ¼ 1) 2 Persons (y ¼ 2) �3 Persons (y ¼ 3) Sum (x)

0 Bananas (x ¼ 1) 40 (____) 0 (____) 40 (____)

1 Banana (x ¼ 2) 103 (____) 15 (____) 87 (____)

2 Bananas (x ¼ 3) 5 (____) 0 (____) 3 (____)

�3 Bananas (x ¼ 4) 2 (____) 0 (____) 5 (____)

Sum (y)

(c) Determine the chi-square value.

(d) Calculate Cramer’s V.

(e) Why doesn’t it make sense to calculate phi in this case?
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Exercise 14:

A company measures customer satisfaction in three regions, producing the follow-

ing crosstab:

Region

Totalregion 1 region 2 region 3

customer

satisfaction

excellent Count 13 0 2 15

Expected Count 6.1 5.5 3.5 15.0

% within customer

satisfaction

86.7 % 0.0 % 13.3 % 100.0 %

% within region 61.9 % 0.0 % 16.7 % 28.8 %

% of total 25.0 % 0.0 % 3.8 % 28.8 %

average Count 0 10 10 20

Expected Count 8.1 7.3 4.6 20.0

% within customer

satisfaction

0.0 % 50.0 % 50.0 % 100.0 %

% within region 0.0 % 52.6 % 83.3 % 38.5 %

% of total 0.0 % 19.2 % 19.2 % 38.5 %

poor Count 8 9 0 17

Expected Count 6.9 6.2 3.9 17.0

% within customer

satisfaction

47.1 % 52.9 % 0.0 % 100.0 %

% within region 38.1 % 47.4 % 0.0 % 32.7 %

% of total 15.4 % 17.3 % 0.0 % 32.7 %

Total Count 21 19 12 52

Expected Count 21,0 19.0 12.0 52.0

% within customer

satisfaction

40,4 % 36.5 % 23.1 % 100.0 %

% within region 100.0 % 100.0 % 100.0 % 100.0 %

% of total 40.4 % 36.5 % 23.1 % 100.0 %

Chi-Square Tests

Value df Asymp. Sig.

(2-sided)

Pearson Chi-Square 34.767a 4 .000

Likelihood Ratio 48.519 4 .000

Linear-by-Linear

Association

.569 1 .451

N of Valid Cases 52

a. 3 cells (33.3 %) have an expected count less than 5. The minimum expected count is 3.46.

Symmetric Measures

Value Approx. Sig.

Nominal by Nominal Phi .818 .000

Cramer’s V .578 .000

Contingency

Coefficient

.633 .000

N of Valid Cases 52

aNot assuming the null hypothesis.
bUsing the asymptotic standard error assuming the null hypothesis.

4.2 Association Between Two Nominal Variables 79



(a) What percentage of respondents answering “good” come from region 3?

(b) Interpret the strength of the association and assess the suitability of the phi

coefficient, Cramer’s V, and the contingency coefficient for solving the problem.

Discuss possible problems when using the permitted measures of association

and indicate regions with above-average numbers of satisfied or dissatisfied

respondents.

4.3 Association Between Two Metric Variables

In the previous sections we explored how to measure the association between two

nominal or ordinal variables. This section presents methods for determining the

strength of association between two metric variables. As before, we begin with a

simple example.

4.3.1 The Scatterplot

Officials performing civil marriage ceremonies frequently observe that brides and

grooms tend to be of similar height. Taller men generally marry taller women and

vice versa. One official decides to verify this impression by recording the heights of

100 couples. How can he tell whether there’s an actual association, and, if so,

its strength?

One way to get a sense for the strength of association between two metric

variables is to create a so-called scatterplot. The first step is to plot the variables.

In our example the groom heights follow the x-axis and the bride heights follow the

y-axis. Each pair forms a single data point in the coordinate system. The first couple

(observation 1: “Peter and Petra”) is represented by the coordinate with the values

171 for the groom and 161 for the bride. Plotting all the observed pairs results in a

cloud of points, or scatterplot (see Fig. 4.13).

This scatterplot permits us to say several things about the association between

the heights of marrying couples. It turns out that there is indeed a positive associa-

tion: taller males tend to marry taller females and shorter males to tend marry

shorter females. Moreover, the association appears to be nearly linear, with the

occasional deviation.

All in all, a scatterplot expresses three aspects of the association between two

metric variables. Figure 4.14 provides some examples.

1. The direction of the relationship. Relationships can be positive, negative, or non-
existent. A relationship is positive when the values of the x and y variables

increase simultaneously. A relationship is negative when the y variable decreases

and the x variable increases. A relationship is non-existent when no patterns can

be discerned in the cloud of points, i.e. when x values produce both small and

large y values.
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2. The form of the relationship. The form of a relationship can be linear or non-

linear.

3. The strength of the relationship. The strength of a relationship is measured by

the proximity of the data points along a line. The closer they are, the stronger the

relationship.

There are many software tools that make creating scatterplots easy.4 But their

interpretation requires care. Figure 4.15 provides an illustrative example. It presents

the relationship between female age and height in two ways.

The data used for each scatterplot are identical. In the first diagram in Fig. 4.15

the y-axis is scaled between 140 and 200 cm and the x-axis between 10 and 70. In the

second diagram height is scaled between 0 and 300 cm and age between 20 and 60.

But if you compare the diagrams, your first instinct would be to see a negative

relationship in the first diagram, as the line through the cloud of data points appears

to be steeper than the line in the second diagram. Moreover, the relationship in the

first diagram seems weaker than that in the second diagram, for the observation

points scatter at greater distances to the line. A mere change of scale can reinforce or

weaken the impression left by the scatterplot. This opens the door to manipulation.

Their point

Husband’s height [in cm]

Observation 12:
Joesph (171.3 cm) and Lesley (161.0 cm)

W
ife

’s 
he

ig
ht

 [i
n 

cm
]

goes here.

Fig. 4.13 The scatterplot

4 In Excel, mark the columns (i.e. the variables) and use the diagram assistant (under Insert and
Charts) to select the scatterplot option. After indicating the chart title and other diagram options

(see Chart Tools), you can generate a scatterplot. SPSS is also straightforward. Select Graphs !
Chart Builder ! Scatter/Dot, pick one of the scatter options and then drag the variables in question
and drop them at the axes. In Stata, selectGraphics ! Twoway Graph ! Create ! Scatter. In the
window define the variables of the x- and y-axes. The syntax is: scatter variable_x variable_y.
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Fig. 4.14 Aspects of association expressed by the scatterplot
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We thus need a measure that gives us an unadulterated idea of the relationship

between two metric variables, one that provides us with information about the

direction (positive or negative) and the strength of the relationship independent of

the unit of measure for the variables. A measure like this is referred to as a correlation

coefficient.

4.3.2 The Bravais-Pearson Correlation Coefficient

In many statistics books, the authors make reference to a single type of correlation

coefficient; in reality, however, there is more than just one. The Bravais-Pearson
correlation coefficient measures the strength of a linear relationship. Spearman’s

correlation coefficient or Kendall’s tau coefficient (and its variations) measure the

strength of a monotonic relationship as well as the association between two ordinal

variables. The point-biserial correlation coefficient determines the relationship

between a dichotomous and a metric variable.

Let’s begin with the Bravais-Pearson correlation coefficient, often referred to as

the product–moment correlation coefficient or Pearson’s correlation coefficient.
This coefficient was the result of work by the French physicist Auguste Bravais

(1811–1863) and the British mathematician Karl Pearson (1857–1936). It defines

an absolute measure that can assume values between r ¼ (�1) and r ¼ (+1). The

coefficient takes the value of (+1) when two metric variables have a perfect linear

and positive relationship (i.e. all observed values lie along a rising linear slope).

It takes the value of (�1) when two metric variables have a perfect linear and

negative relationship (i.e. all observed values lie along a falling linear slope). The

closer it is to 0, the more the value pairs diverge from a perfect linear relationship.

To derive Pearson’s correlation coefficient, first we must determine covariance.
We already learned about variance in our discussion of univariate statistics. We

defined it as the measure of the squared average deviation of all observation points.

When two variables are involved, we speak of covariance, which is the measure of

the deviation between each value pair from the bivariate centroid in a scatterplot.

To understand covariance better, let us consider again the scatterplot for the heights

of marrying couples. Consider Fig. 4.16.

In this figure a line is drawn through the mean groom height ( x ¼ 181:6 cm)

and the mean bride height (y ¼ 170:9 cm). The point where they intersect is the

bivariate centroid for an average couple, where groom and bride are each of average

height. The value pair of the bivariate centroid then becomes the centre of a new

coordinate system with four quadrants (see Fig. 4.17).

All points in quadrant 1 involve marriages between men and women of above-

average heights. When the values of quadrant 1 are entered into the equation

xi � xð Þ � yi � yð Þ, the results are always positive. All points in quadrant 3 involve

marriages between men and women of below-average heights. Here too, values fed

into the equation xi � xð Þ � yi � yð Þ produce positive results, as the product of two

negative values is always positive.
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All the data points in quadrant 1 and 3 are located at positive intervals to the

bivariate centroid, with intervals being measured by the product xi � xð Þ � yi � yð Þ.
This makes sense: the cloud of points formed by the data has a positive slope.

Quadrant 2 contains data from taller-than-average women who married shorter-

than-average men, while quadrant 4 contains data from shorter-than-average

women who married taller-than-average men. For these observations, the product
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Fig. 4.16 Relationship of heights in married couples
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Fig. 4.17 Four-quadrant system
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of xi � xð Þ � yi � yð Þ is always negative, which means that their intervals to the

bivariate centroid are negative as well. All observed pairs in these quadrants form a

cloud of points with a negative slope.

When calculating the strength of the relationship between heights, the important

thing is the magnitude of the sum of the positive intervals in quadrants 1 and 3

compared with the sum of the negative intervals in quadrants 2 and 4. The larger the

sum of the intervals in quadrants 1 and 3, the larger the positive intervals to the

bivariate centroid. The sum of positive and negative intervals in this example

produces a positive value, which indicates a positive association between groom

height and bride height. If the intervals in quadrants 1 and 3 are similar to those in

quadrants 2 and 4, the negative and positive intervals to the bivariate centroid cancel

each other out and produce a value close to zero. In this case, there is no relationship

between the variables, which is to say, there are almost as many taller-than-average

(resp. shorter-than-average) grooms marrying taller-than-average (resp. shorter-than-

average) brides as taller-than-average (resp. shorter-than average) brides marrying

shorter-than-average (resp. taller-than-average) grooms. The last case to consider is

when there are relatively large total deviations in quadrants 2 and 4. In this case, there

are many negative intervals and few positive deviations from the bivariate centroid,

which produces in sum a negative value. The relationship between the variables

groom height and bride height is hence negative.
As should be clear, the sum of intervals between the data points and the bivariate

centroid offers an initial measure of the relationship between the variables. Divid-

ing this sum by the number of observations yields the average deviation from the
bivariate centroid, also known as covariance:

cov x; yð Þ ¼ Sxy ¼ 1

n

Xn
i¼1

xi � xð Þ yi � yð Þ ¼ 1

n

Xn
i¼1

xiyi � x y (4.19)

If covariance is positive, then the relationship between two metric variables may

be positive. If the covariance is negative, then the relationship may be negative.

If the covariance is zero or close to it, there tends to be no linear relationship

between the variables. Hence, all that need interest us with covariance at this point

is its algebraic sign.

If we briefly recall the sections on nominal variables, we’ll remember that the

χ2 coefficient assumes the value zero when no association exists, and tends to climb

as the strength of the relationship increases. We’ll also remember an unfortunate

feature of the χ2 coefficient: its value tends to rise with the size of the sample and

with the number of rows and columns in the contingency table. A similar problem

applies to covariance. It can indicate the general direction of a relationship (positive

or negative) but its size depends on the measurement units being used. This problem

can be avoided by dividing by the standard deviation of variables x and y. The result

is called Pearson’s correlation coefficient.
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r¼ Sxy
Sx Sy

¼
1
n

Xn
i¼1

xi� xð Þ � yi� yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

xi� xð Þ2
 !

� 1
n

Xn
i¼1

yi� yð Þ2
 !vuut with�1	 r	þ1 (4.20)

The values of Pearson’s correlation coefficient always lie between r ¼ (�1) and

r ¼ (+1). The closer the correlation coefficient is to 1, the stronger the linear

positive relationship is between the variables. If all data points lie along an upwards

sloping line, the correlation coefficient assumes the exact value r ¼ (+1). If all data

points lie along a downwards sloping line, the correlation coefficient assumes the

exact value r ¼ (�1). If no linear relationship between the variables can be

discerned, then the correlation coefficient has the value of r ¼ 0 (or thereabouts).

At what point does the correlation coefficient indicate a linear relationship?

Researchers commonly draw the following distinctions:

jrj < 0.5 weak linear association

0.5 	 jrj < 0.8 moderate linear association

jrj � 0.8 strong linear association

4.4 Relationships Between Ordinal Variables

Sometimes the conditions for using Pearson’s correlation coefficient are not met.

For instance, what do we do when one or both variables have an ordinal scale

instead of a metric scale? What do we do when the relation is not linear but

monotonic? Let’s look at some practical examples:

• Despite strongly linear-trending datasets, outliers can produce a low Pearson’s

correlation coefficient. Figure 4.18 illustrates this case. It juxtaposes the adver-

tising expenditures of a firm with the market share of the advertised product.

Both clouds of points are, except for one case, completely identical. In part 1

there is a very strong linear relationship between advertising expenditures and

market share: r ¼ 0.96. But, as part 2 shows, if you shift one point to the right,

the correlation coefficient shrinks to r ¼ 0.68. Pearson’s correlation coefficient

is, therefore, very sensitive to outliers, and this restricts its reliability. What we

want is a more robust measure of association.

• Figure 4.19 displays an excerpt of a survey that asked people to rate the design of

a wine bottle and indicate how much they’d pay for it on a five-point scale.

Because the variables are not metrically scaled, we cannot use Pearson’s coeffi-

cient to calculate correlation.

• The survey found a non-linear relationship between the respondents’ ratings and

willingness to pay, as shown in Fig. 4.20. Due to this non-linearity, we can

expect the Pearson’s correlation coefficient to be low. The relationship shown in

the figure is nevertheless monotonic: as the rating increases, and the rate of
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Fig. 4.18 Pearson’s correlation coefficient with outliers

Question 8: How do you rate the design of the wine bo�le on a scale from 1 (poor) to 5
(excellent)?

poor excellent
1 2 3 4 5

Question 9: How much would you pay for this bo�le of wine?

€5 or less €5.01–10 €10.01–15 €15.01–20 €20.01–25

Fig. 4.19 Wine bottle design survey
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Fig. 4.20 Nonlinear relationship between two variables
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increase changes, so too does the price respondents are willing to pay. With a

linear relationship, the rates of change are constant; we need a measure of

association that can assess the strength of monotonic relationships as well.

Fortunately, there are two options: Spearman’s rho (ρ) and Kendall’s tau (τ).
Either of these can be used when the conditions for using Pearson’s correlation

coefficient – i.e. metric scales and linear relationships – are not fulfilled and the

dataset contains ordinal variables or monotonic metric relationships.

4.4.1 Spearman’s Rank Correlation Coefficient (Spearman’s rho)

Spearman’s rank correlation coefficient describes amonotonic relationship between
ranked variables. The coefficient can assume values between ρ ¼ (�1) and

ρ ¼ (+1). It has a value of ρ ¼ +1 when two paired ordinal or metric variables

have a perfect monotonic and positive relationship, i.e. when all observed values lie

on a curve whose slope increases constantly but at various rates, as can be seen in

Fig. 4.20. By contrast, the coefficient assumes a value of ρ ¼ (�1) when there is a

perfect negative monotonic relationship between two variables (i.e. when all

observed values lie along a curve whose slope decreases constantly but at various

degrees). The more the value of the coefficient approaches 0, the less the value pairs

share a perfect monotonic relationship.

The basic idea of Spearman’s rho is to create a ranking order for each dataset and

then to measure the difference between the ranks of each observation. Spearman’s

rho treats the ranking orders as cardinal scales by assuming that the distances

between them are equidistant. From a theoretical perspective, this is an impermis-

sible assumption (we’ll have a closer look at this issue later). To better understand

Spearman’s rho, let’s look at an example.

Imagine you conduct the survey in Fig. 4.19. You ask 25 persons to rate the

design of a wine bottle and say how much they’d be willing to pay for it on a five-

point scale. You code the results and enter them into a computer as follows:

First the dataset is sorted by the value size of one of both variables. In Fig. 4.21

this has already been done for the bottle design rating (variable: bottle). The next

step is to replace the values of the variable with their rankings. Twenty-five ranks

are given, one for each respondent, as in a competition with twenty-five contestants.

Each receives a rank, starting at 1st place and ending at 25th place.

Five survey respondents rated the bottle design as poor, and were assigned the

value 1 in the ranking order. Each of these respondent values share 1st place, as

each indicated the lowest trait value. What do we do when ranks are tied, i.e. when

observations share the same trait values?

The first solution is to use the approach found in athletic competitions. For

instance, when three competitors tie for first in the Olympics, each receives a gold

medal. Silver and bronze medals are not awarded, and the next placed finisher is

ranked 4th. Proceeding analogously, we can assign each observation of poor a rank
of 1. But as we have already seen multiple times, statistics is first and foremost a
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discipline of averages. In the case of a three-way tie for first, therefore, statistics

must determine a mean rank. To do this, we award each top-three finisher 1/3 gold

(1st place), 1/3 silver (2nd place) silver, and 1/3 bronze (3rd place):

1 3= � 1þ 1 3= � 2þ 1 3= � 3 ¼ 1 3= � 1þ 2þ 3ð Þ ¼ 2 (4.21)

Why use the mean rank approach in statistics? The reason is simple. Assume there

are eight contestants in a race, each with a different finishing time. Adding up their

place ranks we get 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 ¼ 36. Now assume that of the

eight contestants, three tie for first. If we use the so-called Olympic solution, the sum

of their ranks is 32 (1 + 1 + 1 + 4 + 5 + 6 + 7 + 8). Using the mean rank approach,

the sum of their ranks remains 36 (2 + 2 + 2 + 3 + 4 + 5 + 6 + 7 + 8) ¼ 36.

Now let’s consider the wine bottle design survey from the vantage point of

mean rank. Five respondents rated the design as poor (¼1). Using the mean rank

approach, each observation receives a 3, as 1 5= � 1þ 2þ 3þ 4þ 5ð Þ ¼ 3. Seven

respondents rated the design as fair (¼2), occupying places six through twelve in

the ranking order. Using the mean rank approach here, each observation receives

a 9, as 1 7= � 6þ 7þ 8þ 9þ 10þ 11þ 12ð Þ ¼ 9.

We can proceed analogously for the other trait values:

• value of trait 3: 1 3= � 13þ 14þ 15ð Þ ¼ 14

• value of trait 4: 1 5= � 16þ 17þ 18þ 19þ 20ð Þ ¼ 18

• value of trait 5: 1 5= � 21þ 22þ 23þ 24þ 25ð Þ ¼ 23
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Fig. 4.21 Data for survey on wine bottle design

4.4 Relationships Between Ordinal Variables 89



The data on willingness to pay must be ranked the same way. After sorting the

variables and assigning ranks using the method above, we obtain the results in

Fig. 4.22, which includes the rating dataset as well.

Now we apply the product–moment correlation coefficient, but instead of

Pearson’s coefficient, in this case we use Spearman’s. Accordingly, we must

replace the original values for x and y with the rankings R(x) and R(y), and the

original mean x and y with the mean rank RðxÞ and RðyÞ:

ρ ¼ Sxy
SxSy

¼
1
n

Xn
i¼1

R xið Þ � RðxÞ �Þ ðR yið Þ � RðyÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

R xið Þ � RðxÞ
� �2 !

� 1
n

Xn
i¼1

R yið Þ � RðyÞ
� �2 !vuut (4.22)

When we plug the above data into this formula we get the following results:

• RðxÞ ¼ RðyÞ ¼ 1
25

1þ 2þ 3þ � � � þ 25ð Þ ¼ 1
n
� n� nþ1ð Þ

2
¼ 1

25
� 25� 25þ1ð Þ

2
¼ 13

• 1
n

Xn
i¼1

R xið Þ � RðxÞ
� �2

¼ 1
25

3� 13ð Þ2 þ � � � þ 23� 13ð Þ2
� �

¼ 1;240
25

¼ 49:6

yi xi R(yi) R(xi) R(yi)-ÆR(y) R(xi)-ÆR(x)
[R(y i)-ÆR(y)]* 
[R(xi)-ÆR(x)] (R(yi)-ÆR(y))2 (R(xi)-ÆR(x)2 d2

1 1  2.5  3.0  -10.5  -10.0  105.0  110.3  100.0  0.3
1 1  2.5  3.0  -10.5  -10.0  105.0  110.3  100.0  0.3
1 1  2.5  3.0  -10.5  -10.0  105.0  110.3  100.0  0.3
1 1  2.5  3.0  -10.5  -10.0  105.0  110.3  100.0  0.3
2 1  6.0  3.0  -7.0  -10.0  70.0  49.0  100.0  9.0
2 2  6.0  9.0  -7.0  -4.0  28.0  49.0  16.0  9.0
2 2  6.0  9.0  -7.0  -4.0  28.0  49.0  16.0  9.0
3 2  11.5  9.0  -1.5  -4.0  6.0  2.3  16.0  6.3
3 3  11.5  14.0  -1.5  1.0  -1.5  2.3  1.0  6.3
3 4  11.5  18.0  -1.5  5.0  -7.5  2.3  25.0  42.3
3 2  11.5  9.0  -1.5  -4.0  6.0  2.3  16.0  6.3
3 3  11.5  14.0  -1.5  1.0  -1.5  2.3  1.0  6.3
3 2  11.5  9.0  -1.5  -4.0  6.0  2.3  16.0  6.3
3 2  11.5  9.0  -1.5  -4.0  6.0  2.3  16.0  6.3
3 3  11.5  14.0  -1.5  1.0  -1.5  2.3  1.0  6.3
4 2  20.0  9.0  7.0  -4.0  -28.0  49.0  16.0  121.0
4 4  20.0  18.0  7.0  5.0  35.0  49.0  25.0  4.0
4 4  20.0  18.0  7.0  5.0  35.0  49.0  25.0  4.0
4 4  20.0  18.0  7.0  5.0  35.0  49.0  25.0  4.0
4 4  20.0  18.0  7.0  5.0  35.0  49.0  25.0  4.0
4 5  20.0  23.0  7.0  10.0  70.0  49.0  100.0  9.0
4 5  20.0  23.0  7.0  10.0  70.0  49.0  100.0  9.0
4 5  20.0  23.0  7.0  10.0  70.0  49.0  100.0  9.0
4 5  20.0  23.0  7.0  10.0  70.0  49.0  100.0  9.0
5 5  25.0  23.0  12.0  10.0  120.0  144.0  100.0  4.0

Sum  325.0  325.0  0.0  0.0  1070.0  1191.0  1240.0  291.0
Mean  13.0  13.0 0.0 0.0  42.8  47.6  49.6  11.6

Fig. 4.22 Rankings from the wine bottle design survey
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• 1
n

Xn
i¼1

R yið Þ � RðyÞ
� �2

¼ 1
25

2:5� 13ð Þ2 þ � � � þ 25� 13ð Þ2
� �

¼ 1;191
25

¼ 47:6

•

Xn
i¼1

R xið Þ�RðxÞÞðR yið Þ�RðyÞ
� �

¼ 3�13ð Þ 2:5�13ð Þð Þþ �� �

þ 23�13ð Þ 20�13ð Þð Þ¼ 42:8

These, in turn, produce:

ρ ¼
1
n

Xn
i¼1

R xið Þ � RðxÞ �Þ ðR yið Þ � RðyÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

R xið Þ � RðxÞ
� �2 !

� 1
n

Xn
i¼1

R yið Þ � RðyÞ
� �2 !vuut

¼ 42:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49:6 � 47:6p ¼ 0:880 (4.23)

Calculating this formula by hand is time consuming. As computers are widely

available today, a short-hand version of the formula is frequently used:

ρ ¼ 1�
6 �
Xn
i¼1

d2i

n � n2 � 1ð Þwith di ¼ R xið Þ � R yið Þð Þ (4.24)

We first calculate the difference between ranks for each value pair. In our wine

bottle survey, the first row contains d1 ¼ (2.5–3.0) ¼ (�0.5). We then square and

sum all the differences (see column d2 in Fig. 4.22). This produces the following:

ρ ¼ 1�
6 �
Xn
i¼1

d2i

n � n2 � 1ð Þ ¼ 1� 6 � 291
25 � 252 � 1

� � ¼ 1; 746

15; 600
¼ 0:888 (4.25)

There is a slight deviation between this result (ρ ¼ 0.888) and that of the full-

length version of the formula (ρ ¼ 0.880). The reason is that, strictly speaking, the

simplified version may only be used when there are no tied ranks, which in our

sample is not the case.

Some books on statistics say that the shortened formula produces only minor

distortions compared with the full-length formula, provided the share of tied ranks

are less than 20 %. Results close to 20 % should thus be interpreted with caution

when using this method. Alternatively, you may use the following corrected

formula (Bortz et al. 2000, p. 418).
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ρkorr ¼
2 � N3�N

12
� N

� �
� T � U �

Xn
i¼1

d2i

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N3�N
12

� T
� � � N3�N

12
� U

� �q with (4.26)

• T as the length of b tied ranks among x variables: T ¼

Xb
i¼1

t3i � ti
� �
12

, where ti
equals the number of tied ranks in the ith of b groups for the tied ranks of the x

variables.

• U as the length of c tied ranks of y variables:U ¼

Xc
i¼1

u3i � ui
� �

12
, where ui equals

the number of tied ranks in the ith of c groups for the tied ranks of the y variables.

Of course, hardly anyone today calculates rank correlations by hand. Due to the

importance of ordinal scales in social and economic research, Spearman’s rank

correlation has been implemented in all major statistics software packages. Never-

theless, Spearman’s rank correlation has a very serious theoretical limitation: since

it is calculated based on the differences between ranks and mean ranks, one must be

able to show that consecutive ranks for the trait under investigation are equidistant

from each other. With ordinal variables, this is hard to prove. For this reason, new

rank correlation coefficients have come into use recently, especially those in the

Kendall’s tau (τ) coefficient family.

4.4.2 Kendall’s Tau (t)

Unlike Spearman’s rank correlation, Kendall’s τ does without the assumption of

equidistant intervals between two consecutive ranks. It is derived from information

permitted for ordinal variables. Kendall’s τ thus places fewer demands on the data

than Spearman’s correlation does.

Two short examples serve to illustrate the basic idea of Kendall’s τ. Let us
assume a perfect positive monotonic relationship between variables x and y, as

shown in Fig. 4.23.

As with Spearman’s rank correlation, we first assign the variables x and y the

ranks R(x) and R(y). The dataset is then sorted by the size of either R(x) or R(y).

The ranking order ordered by size serves as the anchor column. The ranks in the

anchor column are always ordered from smallest to largest. In Fig. 4.23 the anchor

column is R(x). The other ranking order – R(y) in our example – serves as the

reference column. If a perfect positive and monotonic association is present, the

reference column is automatically ordered from smallest to largest, too. With a

perfect negative and monotonic association, the reference column is automatically

ordered from largest to smallest. Deviations from these extremes correspond to

deviations from the monotonic association.
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Kendall’s τ uses this information and identifies the share of rank disarray in the

reference column. The share of rank disarray is the percentage of cases in which the

reference column deviates from the ranking order of the anchor column.

First we compare all rank combinations in the reference column, beginning with

the first value. If the rank of the first entry is smaller than the entry it is compared

with, we have a concordant pair. If it is larger, it is called a discordant pair. Since in
our example all reference ranks (2, 3, 4, 5) are larger than the first (1), we have P ¼ 4

concordant pairs and no (I ¼ 0) discordant pairs. Next we compare the second

rank (2) of the reference column with the subsequent ranks (3, 4, 5) of the same

row by size. A comparison with the first rank was already performed in the first step.

This gives us three concordant pairs and no discordant pairs. We repeat this proce-

dure with the other ranks in the reference column. Once all possible comparisons

have been performed – in our example there are 10;
n� n�1ð Þ

2
¼ 5� 5�1ð Þ

2
¼ 10 – we

determine the surplus of concordant pairs (P) to discordant pairs (I). In our example

the surplus is 10: (P-I) ¼ (10–0) ¼ 10. In ten of ten comparisons, the reference

column follows the increasing ranking order exactly – indication of a perfect positive

and monotonic association. This finds expression in the formula for Kendall’s τa:

τa ¼ No:of concordant pairs� No:of discordant pairs

n � n� 1ð Þ=2 ¼ P� I

n � n� 1ð Þ=2

¼ 10� 0

10
¼ 1 (4.27)

R(x):   3     1     5     2 4
R(y):   3     1     5     2   4

Variable x:     7     1     10     3       8
Variable y:   10     1     30     2     20

Assign the variables x and y the 
ranks R(x) and R(y):

0
5

10
15
20
25
30

0 1 2 3 4 5 6 7 8 9 10
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V
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The dataset is then sorted by size of either R(x) or R(y). R(x) in our case:

Compare all rank combinations in the references column, beginning with the first value:

Anchor column (R(x)): 1     2     3     4     5
Reference column (R(y)): 1     2     3     4     5

R(y1)- R(y2) �(+)
R(y1)- R(y3) �(+)
R(y1)- R(y4) �(+)
R(y1)- R(y5) �(+)

R(y2)- R(y3) �(+)
R(y2)- R(y4) �(+)
R(y2)- R(y5) �(+)

R(y3)- R(y4) �(+)
R(y3)- R(y5) �(+)

R(y4)- R(y5) �(+)

(+): Concordant pair; (-): Discordant pair

Fig. 4.23 Kendall’s τ and a perfect positive monotonic association
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If the association was perfectly negative and monotonic, there would have been

10 discordant pairs and no concordant pairs. For Kendall’s τa we arrive at the

following:

τa ¼ P� I

n � n� 1ð Þ=2 ¼ 0� 10

10
¼ �1 (4.28)

As with Spearman’s rank correlation coefficient, the values of Kendall’s τa lie
between τa ¼ (�1) and τa ¼ (+1). If two paired ordinal or metric traits possess a

perfect monotonic and positive association (i.e. if all values lie on a curve that rises

constantly but at varying rates), the measure assumes the value τa ¼ (+1). By

contrast, if there is a perfect negative monotonic association (i.e. if all values lie

on a slope that falls constantly but at varying rates), it takes the value τa ¼ (�1).

The more the value of the coefficient approaches τa ¼ 0, the more the value pair

deviates from a perfect monotonic association. This is because in such cases the

ordering of the reference column is neither wholly positive nor wholly negative,

resulting in both concordant pairs and discordant pairs. If there are an equal number

of concordant pairs and discordant pairs, Kendall’s τa assumes a value of τa ¼ 0, as

shown in Fig. 4.24:

τa ¼ P� I

n � n� 1ð Þ=2 ¼ 5� 5

10
¼ 0 (4.29)

The simple formula Kendall’s τa assumes that no tied ranks are present. If tied

ranks are present, the corrected formula Kendall’s τb should be used:

τb ¼ P� Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� n�1ð Þ

2
� T

� �
n� n�1ð Þ

2
� U

� �r where (4.30)

• T is the length of the b tied ranks of x variables: T ¼

Xb
i¼1

ti ti � 1ð Þ
2

, and ti is the

number of tied ranks in the ith of b groups of tied ranks for the x variables.

• U is the length of c tied ranks of the y variables:U ¼

Xc
i¼1

ui ui � 1ð Þ
2

, and ui is the

number of tied ranks in the ith of c groups of tied ranks for the y variables.

The more tied ranks that are present in a dataset, the smaller the value of

Kendall’s τa compared with Kendall’s τb. The practical application of this very

complicated formula can be illustrated using our wine bottle survey (see Fig. 4.25).
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R(x):   2     1     3     4 5
R(y):   4     1     5     3    2

Variable x: 2    1.5     3     4     5
Variable y:    4    1.3     5     3     2

Assign the variables x and y the 
ranks R(x) and R(y):

The dataset is then sorted by size of either R(x) or R(y). R(x) in our case:

Compare all rank combinations in the references column, beginning with the first value:

Anchor column (R(x)): 1     2     3     4     5
Reference column (R(y)): 1     4     5     3     2

R(y1)- R(y2) �(+)
R(y1)- R(y3) �(+)
R(y1)- R(y4) �(+)
R(y1)- R(y5) �(+)

R(y2)- R(y3) �(+)
R(y2)- R(y4) �(-)
R(y2)- R(y5) �(-)

R(y3)- R(y4) �(-)
R(y3)- R(y5) �(-)

R(y4)- R(y5) �(-)

(+): Concordant pair; ( -): Discordant pair

Fig. 4.24 Kendall’s τ for a non-existent monotonic association

i y x R(y) R(x)
concordant 

pairs
discordant 

pairs
1 1 1  2.5  3.0 0 0
2 1 1  2.5  3.0 0 0
3 1 1  2.5  3.0 0 0
4 1 1  2.5  3.0 0 0
5 2 1  6.0  3.0 0 0
6 2 2  6.0  9.0 0 0
7 2 2  6.0  9.0 0 0
8 3 2  11.5  9.0 0 0
9 3 3  11.5 14.0 0 0

10 3 4  11.5  18.0 0 0
11 3 2  11.5  9.0 0 0
12 3 3  11.5  14.0 0 0
13 3 2  11.5  9.0 0 0
14 3 2  11.5  9.0 0 0
15 3 3  11.5  14.0 0 0
16 4 2 20.0  9.0 0 0
17 4 4 20.0 18.0 0 0
18 4 4 20.0 18.0 0 0
19 4 4 20.0 18.0 0 0
20 4 4 20.0 18.0 0 0
21 4 5 20.0 23.0 0 0
22 4 5 20.0 23.0 0 0
23 4 5 20.0 23.0 0 0
24 4 5 20.0 23.0 0 0
25 5 5 25.0 23.0 0 0

Sum 325.0 325.0 197 4
Mean 13.0 13.0

Tied ranks in the anchor column R(y)

Tied ranks in the anchor column R(y)

Tied ranks in the anchor column R(y)

Tied ranks in the anchor column R(y)

The existing order of the reference column
R(x) – 3.0, 9.0, and 9.0 – is only one
possible variation. The calculation of
Kendall’s tb assumes that tied ranks in the
anchor column can lead concordant pairs 
and discordant pairs in the reference 
column to be overlooked.       

Fig. 4.25 Kendall’s τ for tied ranks
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After assigning ranks to the datasets willingness-to-pay (y) and bottle design (x),
the rankings are ordered in accordance with the anchor column R(y). Tied ranks are

present for both ranking orders. For each of the first four ranks of the reference

column – all with a value of 3.0 – there are 20 concordant pairs and no discordant

pairs, as 20 of the 25 observed values are larger than 3. The fifth observation of the

reference column R(x) also has the value of 3.0. Here too, each of the 20 subsequent

observations is larger than 3.0. Based on this information, we would expect 20

concordant pairs as well, but in reality there are only 18. Why?

The reason has to do with the tied ranks in the anchor column R(y). Observations

5 to 7 display a rank of 6.0 for all R(y). The existing order of the reference column

R(x) – 3.0, 9.0, and 9.0 – is only one possible variation; the sequence could also be

9.0, 9.0, and 3.0. Here too, the anchor column would be correctly ordered from

smallest to largest. The calculation of Kendall’s τb assumes that tied ranks in the

anchor column can lead concordant pairs and discordant pairs in the reference

column to be overlooked. For observation 5 there are only 18 concordant pairs – all

observation values between 8 and 25. We proceed the same way with observation 8.

For observations 8 to 15 there are eight tied ranks for the anchor column, whose

grouping would be random. Possible concordant pairs and discordant pairs are only

considered for observations 16 to 25. For observation 9 there are 9 concordant pairs

and 1 discordant pair.

This results in 197 concordant pairs and only 4 discordant pairs, so that:

τb ¼ 197� 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 25�1ð Þ

2
� 73

� �
25� n�1ð Þ

2
� 54

� �r ¼ 0:817 (4.31)

and

• T ¼

Xb
i¼1

ti ti � 1ð Þ

2
¼ 4 � 4� 1ð Þ þ 3 � 3� 1ð Þ þ 8 � 8� 1ð Þ þ 9 � 9� 1ð Þ

2
¼ 73

• U ¼

Xb
i¼1

ui ui � 1ð Þ

2
¼ 5 � 5� 1ð Þ þ 7 � 7� 1ð Þ þ 3 � 3� 1ð Þ þ 5 � 5� 1ð Þ þ 5 � 5� 1ð Þ

2
¼ 54

Kendall’s τb can also be calculated from a square contingency table. The datasets

from our wine bottle survey can be inserted into the square contingency table in

Fig. 4.26. The observations in the contingency table’s rows and columns represent

the value pairs subjected to the anchor column/reference column procedure.

We derive the number of concordant pairs by comparing all existing rank

combinations in the reference column R(x). This produces the following calculation:

P¼ 4 � 2þ4þ1þ3þ1þ4þ4þ1ð Þþ1 � 4þ1þ3þ1þ4þ4þ1ð Þ
þ2 � 3þ1þ4þ4þ1ð Þþ4 � 4þ4þ1ð Þþ3 � 4þ4þ1ð Þ
þ1 � 4þ1ð Þþ1 �1þ4 �1¼ 197 (4.32)

96 4 Bivariate Association



For discordant pairs, the reverse applies:

I ¼ 4 � 0þ 1 � 0þ 2 � 0þ 4 � 0þ 3 � 0þ 1 � 0þ 1 � 3þ 1ð Þ þ 4 � 0 ¼ 4 (4.33)

Kendall’s τb can now be derived from the above formula. Kendall’s τ can also be
applied to contingency tables. The scale of both variables must be ordinal; other-

wise, the relationships between larger and smaller values cannot be interpreted. If

Kendall’s τb is derived from a non-square contingency table, the values τb ¼ (+1)

and
Xn
i¼1

yi ¼ �309 can never be reached, even if the association is perfectly

monotonic. Instead we must calculate Kendall’s τc:

τc ¼ 2 �min #rows; #columns½ � � P� Ið Þ
min #rows; #columns½ � � 1ð Þ � n2 (4.34)

The example from Fig. 4.26 yields the following calculation:

τc ¼ 2 �min 5; 5½ � � 197� 4ð Þ
min 5; 5½ � � 1ð Þ � 252 ¼ 2 � 5 � ð193Þ

5� 1ð Þ � 252 ¼ 0:772 (4.35)

4.5 Measuring the Association Between Two Variables
with Different Scales

In previous sections we discussed the measures of association between two nomi-

nal, two ordinal, and two metric variables. But what about the association between

two variables with different scales? For instance, how can we measure the associa-

tion between the nominally scaled variable gender and the metrically scaled

variable age. Below I briefly discuss some examples.

 2.5 6.0  11.5 20.0 25.0 Total

3.0 4 1 5
9.0 2 4 1 7

14.0 3 3
18.0 1 4 5
23.0 4 1 5

Total 4 3 8 9 1 25

R(y)

R(
x)

Fig. 4.26 Deriving Kendall’s τb from a contingency table
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4.5.1 Measuring the Association Between Nominal
and Metric Variables

There is no commonly applied measure of correlation for nominal and metric

variables. The following alternatives are recommended:

• In practice, statisticians usually apply statistical tests (t-test or variance analysis)
to assess differences between nominal groups with regard to metric variables.

These tests belong to inductive statistics and require knowledge of probability

theory, which lies outside the scope of this book.

• It is also possible to convert metric variables into ordinal variables via classifi-

cation and then use an appropriate method such as Cramer’s V. But this method

is fairly uncommon in practice.

• Another seldom used approach is the point-biserial correlation (rpb). It measures

the association between a dichotomous variable (a special case of a nominal

scale with only two values) and a metric variable.

Let’s discuss the last case in more detail using our wine bottle survey. Imagine

that the survey asks respondents to indicate their gender and how much they’d pay

in whole euro amounts. Willingness-to-pay is now a metric variable (price_m) and
gender is a dichotomous variable (gender) – 0 for male and 1 for female. The results
are shown in Fig. 4.27.

Ordering mean values by gender, we discover that on average male respondents

are willing to pay €17.17 and female respondents are willing to play €9.38.
Willingness-to-pay is thus higher on average with men than with women. Can we

infer from these results an association between gender and willingness-to-pay?

The point-biserial correlation can be used to determine the strength of associa-

tion in cases like these. This approach assumes that Pearson’s correlation can be

used to measure the association between a dichotomous variable and a metric

variable. This surprising assumption is possible because variables coded as either

0 or 1 can be regarded metrically. Applied to our case: If the value of the variable

gender is 1, the more female the respondent is. If the value of the variable gender is
0, the more male the respondent is. Using Pearson’s correlation for both variables,

we get a correlation coefficient between rpb ¼ (�1) and rpb ¼ (+1).

The lower limit rpb ¼ (�1) means that all respondents coded as 0 (male) have

higher values with the metric variable (willingness-to-pay) than respondents coded

as 1 (female). By contrast, a point-biserial correlation of rpb ¼ (+1) means that all

respondents coded as 0 (male) have lower values with metric variables (willing-

ness-to-pay) than respondents coded as 1 (female). The more frequently higher and

lower values appear mixed in the metric variable (willingness-to-pay), the less we

can infer the value of the metric variable from gender, and vice versa, and the closer

the point-biserial correlation approaches the value rpb ¼ 0.
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Of course, the formula for Pearson’s correlation can be used to calculate the

point-biserial correlation. This formula can be simplified as follows:

rpb ¼ y1 � y0
Sy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 � n1
n2

r
;where (4.36)

• n0: number of observations with the value x ¼ 0 of the dichotomous trait

• n1: number of observations with the value x ¼ 1 of the dichotomous trait

• n: total sample size n0 + n1
• y0: mean of metric variables (y) for the cases x ¼ 0

• y1: mean of metric variables (y) for the cases x ¼ 1

• Sy: standard deviation of the metric variable (y)

Pearson

17.17
n=12

9.38
n=13

Gender

M
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Fig. 4.27 Point-biserial correlation
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For our example, this results in the following:

rpb ¼ y1 � y0
Sy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 � n1
n2

r
¼ 9:38� 17:17

5:8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � 13
252

r
¼ �0:67ð Þ (4.37)

The negative point-biserial correlation indicates that the respondents whose

dichotomous variable value is 1 (female) show a lower willingness-to-pay than

the respondents whose dichotomous variable value is 0 (male).

The point-biserial correlation is usually applied only when a variable contains a

true dichotomy. A true dichotomy occurs when a variable possesses only two possible

values, such asmale or female. By contrast, if a metric variable is dichotomized – for

example, if two age groups are produced from metric age data – and the variable is

distributed normally, the point-biserial correlation underestimates the actual associa-

tion between the observed variables (see Bowers 1972).

4.5.2 Measuring the Association Between Nominal
and Ordinal Variables

Cramer’s V is a common tool for measuring the strength of association between a

nominal and an ordinal variable, provided the number of values for the ordinal

variable is not too large. Statistical tests (Mann–Whitney or Kruskal-Wallis) are

frequently used in empirical practice, as it’s usually less about the association

between (nominal) groups with regard to ordinal variables than about their

distinctions. But these procedures belong to inductive statistics, which lie outside

the scope of this book.

In the special case of a dichotomous nominal variable, we can also use a biserial
rank correlation. When there are no tied ranks, association can be calculated as

follows (Glass 1966):

rbisR ¼ 2

n
� R y1ð Þ � R y0ð Þ
� �

;where : (4.38)

• n: total sample size n0 + n1
• R y0ð Þ: mean rank for nominal cases x ¼ 0 of ordinal variables (y)

• R y1ð Þ: mean rank for nominal cases x ¼ 1 of ordinal variables (y)

4.5.3 Association Between Ordinal and Metric Variables

Janson and Vegelius (1982) made some proposals for just such a measure of correla-

tion, but these parameters have never been of much importance for researchers or

practitioners. This is mostly because the simplified approaches for using Spearman’s
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correlation coefficient or Kendall’s τ are more than adequate. There are two such

approaches:

1. Classify the metric variable and convert it into an ordinal scale. This produces

two ordinal variables whose monotonic association can be determined by

Spearman’s correlation or Kendall’s τ.
2. Subject the observations from the metric variable unclassed to the usual rank

assignment. This also produces two ordinal ranking orders.

To illustrate, let us turn again to the wine bottle survey but change it somewhat:

instead of a five-point score (ordinal scale), the 25 respondents now indicate their

willingness to pay in euros (metric scale). We obtain the results shown in Fig. 4.28.

Here the metrically scaled willingness-to-pay variable (price_m) is converted

into a ranking order (rprice). This eliminates information about the interval

between one person’s willingness to pay and another’s, but it preserves their

ranking. The conversion of the metric dataset into a ranking order replaces a higher

scale (metric) with a lower scale (ordinal). The price is relatively small – we can

make statements only about the monotonic association – which explains the failure

of other coefficients proposed to measure the association between ordinal and

metric variables.

4.6 Calculating Correlation with a Computer

When using SPSS or Stata to calculate ρ and τ, rank assignment occurs automati-

cally, sparing us the extra step, and the original metric or ordinal variables can be

entered directly. With Excel we need to calculate variable rank before proceeding.

4.6.1 Calculating Correlation with SPSS

In SPSS, calculate Pearson’s correlation by selecting Analyze ! Correlate !
Bivariate. . . to open the Bivariate Correlations dialogue box. Before selecting

the desired correlation (Pearson, Kendall’s τb, or Spearman), we need to think

about the scale of the variables to be correlated. Use the Pearson correlation when

calculating the linear association between two metric variables. Use Kendall’s τb or
Spearman’s correlation when determining the monotonic association between two

metric or ordinal variables. Mark the variables to be correlated and click the middle

arrow to move them to the field variables. Then click OK to carry out the

calculation.

In the example of the heights of couples getting married, we select the variables

husband’s height (hheight) and wife’s height (wheight). The results are shown in

Fig. 4.29. Pearson’s correlation has the value r ¼ 0.789, Kendall’s τb has the value
τb ¼ 0.603, and Spearman’s correlation has the value ρ ¼ 0.783.
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4.6.2 Calculating Correlation with Stata

Unlike SPSS, the command windows for calculating the three correlation

coefficients in Stata are not in the same place. Select Statistics ! Summaries,
tables, and tests ! Summary and descriptive statistics ! Correlations and
covariances to open the dialogue box for calculating Pearson’s correlation. For

Spearman’s rank correlation or Kendall’s rank correlation, select Statistics !
Summaries, tables, and tests ! Nonparametric tests of hypotheses, and then

choose the desired correlation coefficient.

In the first input line (Variables [leave empty for all]) enter the variables to be

correlated. In our example these are the heights of the grooms (hheight) and brides

(wheight). This information is sufficient for calculating Pearson’s correlation coef-

ficient. Click OK or Submit to execute the Stata command (Fig. 4.30).5

Rank Calculation
of r or t

Fig. 4.28 Association between two ordinal and metric variables

5 Syntax command: correlate hheight wheight.
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In the dialogue box for calculating Spearman’s correlation or Kendall’s τ you

can also select a variety of parameters under the submenu List of statistics. It is
recommended, however, that all Kendall and Spearman coefficients be calculated

using the command Calculate all pairwise correlation coefficients by using all

Variables not to be correlated

Variables to be correlated

Pearson's correlation

Spearman‘s rho and Kendall's tau-b

Fig. 4.29 Calculating correlation with SPSS

. ktau gr_mann gr_frau, pw

Number of obs =     199
Kendall's tau-a =       0.2248
Kendall's tau-b =       0.2294
Kendall's score =    4428
SE of score        =    938.136   (corrected forties)

Test of Ho: wheight and height are independent
Prob > |z| =       0.0000  (continuity corrected)

Variables to be correlated

Kendall's ta und Kendall's tb

Selection of a variety of parameters

Fig. 4.30 Calculating correlation with Stata (Kendall’s τ)
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available data. ClickOK or Submit to execute the Stata command.6 For Kendall’s τ,
we get the values τa ¼ 0.581 and τb ¼ 0.603. Spearman’s correlation can be

calculated in the same manner.

4.6.3 Calculating Correlation with Excel

Excel has a preprogramed function for calculating Pearson’s correlation coefficient.

To use it, move the cursor over the cell whose correlation coefficient is to be

calculated and mark it. Then go to Formulas and Insert Function to select the

category Statistical and the function Correl. Enter the array of both variables into

the fields Matrix1 and Matrix2, respectively. For our wedding ceremony, the height

data for grooms goes in cell D2:D202 and the height data for brides goes in cell

C2:C202. The correlation result updates automatically whenever the original data

in the predefined cells are changed.

In Excel, Spearman’s correlation must be calculated manually, which requires

some extra effort. First we assign ranks to the variables, converting the original

metric data into ranked sets. In Sect. 4.1 we learned that Spearman’s correlation is a

Pearson’s correlation with ranked variables. Excel possesses a rank function (RANK)
but the calculation is not based on mean ranks. Whenever ranks are tied, Excel

assigns the lowest rank to each. This is the “Olympic solution” discussed above. To

determine average ranks for tied ranks, use the following correction factor:

Count Fieldð Þ þ 1�RANK Cell; Field; 0ð Þ�RANK Count; Field; 1ð Þ½ �=2 (4.39)

Field describes the arrays containing the values of the two variables (e.g. A2:B12).
This correction factor must be added to every tied rank:

RANK Cell; Field; 1ð Þ þ Correction factor (4.40)

The Excel formula for the correlation coefficient can be applied to the corrected

ranks Correl(Array1; Array2). Figure 4.31 shows once again how to calculate

Spearman’s correlation with Excel.

Calculating Kendall’s τ for larger datasets is laborious with Excel. The com-

mand ¼ COUNTIF(field; condition) can be used to help count concordant pairs and
discordant pairs, but the condition must be entered for each row (observation)

separately, which is why standard Excel commands should not be used for calcu-

lating Kendall’s τ. Fortunately, add-ins can be purchased for Excel that make

Kendall’s τ easier to calculate.

6 Syntax command for Kendall’s tau: ktau hheight wheight, pw. Syntax command for Spearman’s

rho: ktau hheight wheight, pw.
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4.7 Spurious Correlations

Correlation is a statistical method that provides information about the relationship

between two measured variables. If the value of the correlation coefficient is r ¼ 0

or thereabouts, we can usually assume that no linear association exists. If the

correlation coefficient is relatively large, we can assume the variables are related

in some way, but we may not necessarily assume that they are connected by an

inherent, or causal, link. There are many events whose association produces a large

correlation coefficient but where it would be absurd to conclude that the one caused

the other. Here are some examples:

• It is discovered that pastors’ salaries and alcohol prices have correlated for many

years. Does this mean that the more pastors make, the more they spend on

alcohol?

• Researchers in Sweden examined the human birth rate and the stork population

over a long period and determined that the two strongly and positively correlate.

Does this mean that newborns are delivered by storks?

• The odds of surviving one’s first heart attack is many times higher in smokers

than in non-smokers. Is smoking good for your health?

=CORREL(C3:C27;D3:D27)

=RANK(B3;$B$3:$B$27;1) 
+((COUNT($B$3:$B$27) 
+1-RANK(B3;$B$3:$B$27;0)
-RANK(B3;$B$3:$B$27;1))/2)

=RANK(A3;$A$3:$A$27;1)
+((COUNT($A$3:$A$27)
+1-RANK(A3;$A$3:$A$27;0)
-RANK(A3;$A$3:$A$27;1))/2)

Fig. 4.31 Spearman’s correlation with Excel
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• In postwar Germany there was a strong correlation between orange imports and

deaths. Are oranges bad for your health?

• The likelihood of dying in bed is larger than the likelihood of being killed in a car

or plane crash. Are beds dangerous?

• Researchers find a positive correlation between body size and alcohol consump-

tion. Are all tall people drinkers?

Demagogues and propagandists love to exploit fallacies such as these,

supporting their arguments with the statement “statistics show”. Those trained in

statistics know better: correlation does not always imply causation. A correlation

without causation is called a spurious correlation.
Why do spurious correlations occur? Sometimes correlation occurs by accident.

These accidental correlations are often referred to as nonsense correlations.
But spurious correlations do not always result by accident. Frequently, two

variables correlate because of a third variable that influences each (Fig. 4.32).

In this case one speaks of a common cause. The correlation between the stork

population and the number of newborns is one example. Data collection on human

birth rates and stork populations in Sweden began in the early 20th century. Over

the next 100 years rural society became increasingly industrialized and cities grew.

Common cause
(industrialization & growing 

cities)

Variable A
(birth rate)

Variable B
(stork population)

Spurious correlation: newborns
are delivered by storks

Causal variable A
(gender)

Mediator variable
(body size)

Variable B
(alcohol consumption)

Causal variable A
(illness)

Mediator variable
(lying in bed)

Variable B
(dying in bed)

Spurious correlation: body size has an 
influence on alcohol consumption

Spurious correlation: Lying in bed is 
dangerous!

Fig. 4.32 Reasons for spurious correlations
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This development displaced the stork population to more rural areas. At the same

time, families living in the newly urbanized areas had fewer children, while those in

rural areas continued to have many children. The result: cities saw fewer births and

fewer storks, and the countryside saw more births and more storks. Hence, indus-

trialization served as the common cause for the correlation between storks and

newborns. A common cause is also behind the correlation of alcohol prices and

pastor salaries: inflation over the years caused both wages and prices to rise.

Another reason for spurious correlation is the influence of mediator variables.
This happens when a variable A correlates with a variable B and variable A

influences variable B via a mediator variable. Consider the correlation between

height and alcohol consumption. As it turns out, it depends on the gender of the

users. Men show a higher level of alcohol consumption, and men are on average

taller than women. Height, therefore, is the mediator variable through which the

variable gender influences the variable alcohol consumption.
Likewise, the association between time in bed and mortality rate arises only

because people who spend more time in bed are more likely to have a serious

illness, and people with a serious illness are more likely to die. In this way, serious

illness influences mortality rate via the mediator variable time in bed.
Finally, smokers survive their first heart attack more frequently than non-

smokers because smokers usually have their first heart attack at a much younger

age. Here, the actual causal variable for the likelihood of survival is age.

4.7.1 Partial Correlation

If researchers suspect a spurious correlation while analyzing data, they must adjust

the results accordingly. For instance, when a common cause is involved, the

correlation between variables A and B must be cleansed of the influence of the

common cause variables. The true correlation between mediator variables and

variable B is only expressed when one removes the effects of possible causal

variables beforehand. We’ll look at how to do this using an example from

economics.

The owner of petrol station called SPARAL wants to know whether there is an

association between the price of high-octane fuel and market share. So he correlates

the price of high-octane petrol with the market share for 27 days. He determines a

correlation coefficient of ryz ¼ �0.723. This represents a strong negative correla-

tion, and it makes sense economically: the higher the price, the less the market

share, and vice versa. Next the SPARAL owner wants to know how the prices at the

JETY station down the street influence his market share. So he examines the

association between the price of JETY high-octane petrol and the SPARAL market

share. He finds a correlation of rxy ¼ �0.664. Unlike the last correlation, this one

doesn’t make economic sense: the higher the competitor’s price for high-octane

fuel, the lower the market share of his product SPARAL. What can the reason be for

this unexpected direction of association?
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Now, petrol prices are mainly shaped by crude oil prices (in addition to oligopic

skimming by petrol stations on weekends and holidays). If the prices for crude oil

sink, the market expects a price reduction, and petrol prices decline. In the reverse

case, increased crude oil prices lead to higher prices at the pump.

In our example, the crude oil market serves as the common cause for the price

association between JETY and SPARAL. This applies both for the correlations

described above and for the strong correlation coefficient – rxz ¼ 0.902 – between

high-octane fuels at JETY and SPARAL. Both petrol stations increase (or sink)

their prices almost simultaneously based on the crude oil market. The correlations

are represented graphically in Fig. 4.33.

For the SPARAL petrol station owner, however, a crucial remains: what is the

magnitude of the association between the competitor’s high-octane fuel prices and

his own market share? To answer this question, we must first remove – or control

for – the effect caused by SPARAL’s high-octane fuel price, i.e. the SPARAL price

along with related developments on the crude oil market. This allows us to isolate

the effect of the competitor’s price on SPARAL’s market share. How great is the

correlation between the variables x (JETY price) and the variable y (SPARAL

market share) if the variable z (SPARAL price) is eliminated?

One speaks in such cases of a partial correlation between the variables x and y,

with the effect of a variable z removed. It can be calculated as follows:

rxy:z¼ rxy�rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2xz
� �� 1�r2yz

� �r ¼ �0:664� 0:902� �0:723ð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:9022
� �� 1� �0:723ð Þ2

� �� �r ¼�0:04 (4.41)

This equations produces a partial correlation effect of rxy.z ¼ �0.04, which

indicates no association between the price for JETY high-octane fuel and the

market share of SPARAL. Hence, the attendant has no need to worry about the

effect of JETY’s prices on his market share – the effect is close to zero.

Remove effect caused 
by the price of one’s 

own product

Common cause
(crude oil price)

Variable Z
(own product price )

Variable X
(competitor price )

Variable Y
(own market share)

rxy=(-0.664)

ryz=(-0.723)

rxz=(+0.902)

Fig. 4.33 High-octane fuel and market share: An example of spurious correlation
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4.7.2 Partial Correlations with SPSS

To calculate a partial correlation with SPSS, select Analyze ! Correlate ! Partial.
This opens the Partial Correlations dialogue box. Enter the variable to be checked

(SPARAL price for high-octane and SPARAL market share) under Variables. This
produces the following partial correlation coefficient (Fig. 4.34).

4.7.3 Partial Correlations with Stata

The analysis can be performed with Stata in a similar manner. Select Statistics !
Summaries, tables, and tests ! Summary and descriptive statistics ! Partial
correlations to open the Partial correlations coefficient dialogue box.

In the first input line (Display partial correlation coefficient of variable:) enter
the y variable. In the second input line (Against variables:) enter the x and z

variables (and others if needed). Click OK or Submit to execute the Stata com-

mand.7 When checked for the JETY price, the correlation coefficient for the

association between the price of SPARAL and the market share of SPARAL is

Correlations

Control variables

Market 
share, high-

octane petrol

Competitor
price(JETY 
high-octane 

petrol)

Gross price of own 
product (SPARAL high-
octane petrol)

Market share, high-octane petrol 1.000 -.041
Competitor price (JETY high-
octane petrol) -.041 1.000

Variables controlling for

Variables to be correlated

Fig. 4.34 Partial correlation with SPSS (high-octane petrol)

7 Syntax: pcorr market_share gross_price price_compet
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ryz.x ¼ �0.3836. With the effect of SPARAL’s price removed, the correlation

coefficient for the association between JETY and the market share of SPARAL is

rxy.z ¼ �0.041 (Fig. 4.35).

4.7.4 Partial Correlation with Excel

Excel has no preprogramed functions for calculating partial correlations. To per-

form them, you have to programme them yourself. First calculate the correlations

between all variables (rxy, rxz, ryz) with the CORREL command. Then use the

formula rxy:z ¼ rxy�rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2xzð Þ� 1�r2yzð Þp to programme the partial correlation coefficient.

Figure 4.36 provides some examples.

4.8 Chapter Exercises

Exercise 15:

(a) Based on the data in Exercise 8 (p. 70) you conjecture that price is the decisive

variable determining sales. Use a scatterplot to verify this hypothesis.

(b) Determine the standard deviation for price and the covariance between price

and quantity of sales.

Correlation between own market
share and own price controlled for

competitor’s price

Displays the partial and semipartial
correlation coefficient of variableY

with each variable in this variable list
a�er removing the effects of all other

variables in this variable list

VariableY (market share)

Partial correlation of market_share with

Variable | Corr. Sig.
-------------+------------------
gross_price | -0.3836 0.053

price_compet | -0.0412 0.841

Correlation between own market
share and competitor’s price

controlled for own price

Fig. 4.35 Partial correlation with Stata (high-octane petrol)
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(c) Determine the strength of the linear metric association between item price and

quantity of sales per country.

(d) Determine Spearman’s rank correlation coefficient.

(e) Use a scatterplot to interpret your results from (c) and (d).

Exercise 16:

A PISA study assesses the performance of students in 14 German states. The

variables scientific literacy (x) and reading comprehension (y) yield the following

information:

(a) x2 ¼ 3:20

(b)
Xn
i¼1

xi � xð Þ2 ¼ 3; 042:36

(c)
Xn
i¼1

yi ¼ �309

(d)
Xn
i¼1

y2i ¼ 10; 545

(e)
Xn
i¼1

xi � xð Þ yi � yð Þ ¼ 2; 987:81

(f) What is the (unweighted) mean value for reading comprehension?

(g) What is the empirical standard deviation for reading comprehension?

(h) What is the variation coefficient for reading comprehension?

(i) Determine the empirical variance for scientific literacy.

(j) Determine the covariance between the variables x and y.

=(G4-(H4*F4))/((1-H4^2)*(1-F4^2))^0,5

=KORREL(B1:B28;A1:A28)

=KORREL(D1:D28;A1:A28)

=KORREL(D1:D28;B1:B28)

Fig. 4.36 Partial correlation with Excel (high-octane petrol)
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(k) Determine the strength of the linear metric association between reading com-

prehension and scientific literacy.

(l) Determine the rank correlation coefficient under the assumption that the sum of

the squared rank differences for statistical series is 54.

Exercise 17:

You want to find out whether there is an association between the quantity of customer

purchases (y) and customer income € (x). For 715 customers, you calculate a

covariance between income and purchase quantity of SXY ¼ 2.4 for 715.

(a) What does covariance tell us about trait association?

(b) Calculate Pearson’s correlation coefficient assuming that:

(c)
Xn
i¼1

xi � xð Þ2 ¼ 22; 500 and
Xn
i¼1

yi � yð Þ2 ¼ 17; 000

(d) Describe the association between the traits based on the calculated correlation

coefficient. Explain.

Exercise 18:

The newspaper Stupid Times published a study on the connection between the

number of books people have read (x) and the serious colds they have had. The

study – which relied on a mere five observations – produced the following data:

Observation 1 2 3 4 5

xi � xð Þ yi � yð Þ 203.4 847.4 9,329.4 4,703.4 �225.6

The standard deviation of books read is 432.9; the standard deviation of serious

colds is 7.5.

(a) Calculate Pearson’s correlation coefficient. What conclusion is Stupid Times
likely to have drawn?

(b) Explain what a spurious correlation is theoretically.

(c) Based on your understanding of a spurious correlation, how do you interpret the

result in a)?

Exercise 19:

For a particular brand of potato chips, a market research institute determines a high

correlation coefficient – r ¼ �0.7383 – between sales and price. Accidentally, they

also discover a weak association – r ¼ 0.3347 – between potato chips sales and

toilet paper price.

(a) How should we interpret the correlation coefficient of r ¼ 0.3347 for potato

chip sales and toilet paper price?

(b) Calculate the partial correlation coefficient between potato chip sales and toilet

paper price to the nearest thousandth and controlled for the potato chip price.

The correlation between toilet paper price and potato chip price is

r ¼ �0.4624.

(c) How should we interpret the results?
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Exercise 20:

Researchers investigated the market share of a product called Funny in a variety of

retail stores. A few stores ran advertisements during certain weeks. Researchers

assemble the following data:

Store promotion Statistic

Market share for Funny No Mean .3688

Std. Deviation .0943

Yes Mean .4090

Std. Deviation .0963

The standard deviation of all observations for the variableMarket Share FUNNY
is 0.095. Is there an association between advertising (1 ¼ advertising; 0 ¼ no

advertising) and (metric) market share achieved? Identify the appropriate measure

of association.
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Regression Analysis 5

5.1 First Steps in Regression Analysis

Regression analysis – often referred to simply as regression – is an important tool in

statistical analysis. The concept first appeared in an 1877 study on sweet-pea seeds

by Sir Francis Galton (1822–1911). He used the idea of regression again in a later

study on the heights of fathers and sons. He discovered that sons of tall fathers are

tall but somewhat shorter than their fathers, while sons of short fathers are short but

somewhat taller than their fathers. In other words, body height tends toward the

mean. Galton called this process a regression – literally, a step back or decline. We

can perform a correlation to measure the association between the heights of sons

and fathers. We can also infer the causal direction of the association. The height of
sons depends on the height of fathers, and not the other way around. Galton

indicated causal direction by referring to the height of sons as the dependent
variable and the height of fathers as the independent variable. But take heed:

regression does not necessarily prove the causality of the association. The direction

of effect must be derived theoretically before it can be empirically proven with

regression. Sometimes the direction of causality cannot be determined, as for

example between the ages of couples getting married. Does the age of the groom

determine the age of the bride, or vice versa? Or do the groom’s age and the bride’s

age determine each other mutually? Sometimes the causality is obvious. So, for

instance, blood pressure has no influence on age, but age has influence on blood

pressure. Body height has an influence on weight, but the reverse association is

unlikely (Swoboda 1971, p. 308).

Let us approach the topic of regression analysis with an example. A mail order

business adds a new summer dress to its collection. The purchasing manager

needs to know how many dresses to buy so that by the end of the season the total

Chapter 5 Translated from the German original, Cleff, T. (2011). 5 Regressionsanalyse. InDeskriptive
Statistik und moderne Datenanalyse (pp. 147–185)#Gabler Verlag, Springer FachmedienWiesbaden

GmbH, 2011.

T. Cleff, Exploratory Data Analysis in Business and Economics,
DOI 10.1007/978-3-319-01517-0_5, # Springer International Publishing Switzerland 2014
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quantity purchased equals the quantity ordered by customers. To prevent stock

shortages (i.e. customers going without wares) and stock surpluses (i.e. the

business is left stuck with extra dresses), the purchasing managing decides to

carry out a sales forecast.

What’s the best way to forecast sales? The economist immediately thinks of

several possible predictors, or influencing variables. How high are sales of a similar

dress in the previous year? How high is the price? How large is the image of the

dress in the catalogue? How large is the advertising budget for the dress? But we

don’t only want to know which independent variables exert an influence; we want

to know how large the respective influence is. To know that catalogue image size

has an influence on the number of orders does not suffice. We need to find out the

number of orders that can be expected on average when the image size is, say, 50

square centimetres.

Let us first consider the case where future demand is estimated from the sales of a

similar dress from the previous year. Figure 5.1 displays the association as a

scatterplot for 100 dresses of a given price category, with the future demand plotted

on the y-axis and the demand from the previous year plotted on the x-axis.

If all the plots lay on the angle bisector, the future demand of period (t) would

equal the sold quantities of the previous year (t-1). As is easy to see, this is only

rarely the case. The scatterplot that results contains some large deviations, produc-

ing a correlation coefficient of only r ¼ 0.42.

Now if, instead of equivalent dresses from the previous year, we take into

account the catalogue image size for the current season (t), we arrive at the

scatterplot in Fig. 5.2.

We see immediately that the data points lie much closer to the line, which was

drawn to best approximate the course of the data. This line is more suited for a sales

forecast than a line produced using the “equivalence method” in Fig. 5.1. Of course,

the proximity of the points to the line can be manipulated through axis scale. The

relatively large correlation coefficient of r ¼ 0.95, however, ultimately shows that

the linear association between these variables is stronger. The points lie much

closer to the line, which means that the sales forecast will result in fewer costs

for stock shortages and stock surpluses. But, again, this applies only for products of

the same quality and in a specific price category.

5.2 Coefficients of Bivariate Regression

Now we want to determine the association so we can be better predict future sales.

We begin with the reasonable assumption that the relationship between catalogue

image size and actual sales is linear. We then generate a regression line to identify

an association that more or less represents the scatterplot of the data points. The

linear equation consists of two components:

• The intercept is where the line crosses the y-axis. We call this point α. It
determines the distance of the line along the y-axis to the origin.
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• The slope coefficient (β) indicates the slope of the line. From this coefficient we

can determine to what extent catalogue image size impacts demand. If the slope

of the lines is 2, the value on the y-axis changes by 2 units, while the value on the

x-axis changes by 1 unit. In other words, the flatter the slope, the less influence

x values have on the y-axis.

130

150

170

190

210

230

250

270

290

310

0 10 20 30 40 50 60 70 80

r=0.95

82

40
a=138

Data range

Fu
tu

re
 d

em
an

d 
th

is
 y

ea
r (

t)

Catalogue image size this year (t) in sq. cm

Fig. 5.2 Demand forecast using image size

190

210

230

250

270

290

310

190 210 230 250 270 290 310

r = 0.42

Demand from the previous year (t-1)

Fu
tu

re
 d

em
an

d 
th

is
 y

ea
r (

t)

Stock surplus

Stock shortage

Fig. 5.1 Demand forecast using equivalence

5.2 Coefficients of Bivariate Regression 117



The line in the scatterplot in Fig. 5.2 can be represented with the algebraic linear

equation by ¼ αþ βx (5.1)

This equation intersects the y-axis at the value 138, so that α¼ 138 (see Fig. 5.2).

Its slope is calculated from the slope triangle (quotient) β ¼ 82/40�2.1. When the

image size increases by 10 square centimetres, the demand increases by 21 dresses.

The total linear equation is

by ¼ 138þ 2:1 � x: (5.2)

For a dress with an image size of 50 square centimetres, we can expect sales to be

by ¼ 138þ 2:1 � 50 ¼ 243: (5.3)

With an image size of 70 square centimetres, the equation is

by ¼ 138þ 2:1 � 70 ¼ 285 dresses: (5.4)

This linear estimation approximates the average influence of x variables on y

variables using a mathematical function. The estimated values are indicated by by
and the realized y values are indicated by y. Although the linear estimation runs

through the entire quadrant, the association between the x and y variable is only

calculated for the area that contains data points, referred to as the data range. If we

use the regression function for estimations outside this area (as part of a forecast, for

instance), we must assume that the association identified outside the data range does

not differ from the associations within the data range.

To better illustrate this point, consider Fig. 5.3. Themarked data point corresponds

to dress model 23, which was advertised with an image size of 47.4 square centi-

metres and which was later sold 248 times. The linear regression estimates average

sales of 238 dresses for this image size. The difference between actual sales and

estimated sales is referred to as the residual, or the error term. It is calculated by:

ui ¼ yi � byið Þ (5.5)

For dress model 23 the residual is:

u23 ¼ y23 � by23ð Þ ¼ 248� 237:5 ¼ 10:5 (5.6)

In this way, every data point can be expressed as a combination of the result of

the linear regression by and its residual:

yi ¼ byi þ ui (5.7)
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We have yet to explain which rule applies for determining this line and how it

can be derived algebraically. Up to now we only expected that the line run as

closely as possible to as many data points as possible and that deviations above and

below the line be kept to a minimum and be distributed non-systematically. The

deviations in Fig. 5.2 between actual demand and the regression line create stock

shortages when they are located above and stock surpluses when they are located

below. Since we want to prevent both, we can position the line so that the sum of
deviations between realized points yi and the points on line byii is as close to 0 as

possible. The problem with this approach is that a variety of possible lines with

different qualities of fit all fulfil this condition. A selection of possible lines is

shown in Fig. 5.4.
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The reason for this is simple: the deviations above and below cancel each other

out, resulting in a sum of 0. All lines that run through the bivariate centroid – the

value pair of the averages of x and y – fulfil the condition

Xn
i¼1

yi � byið Þ ¼ 0 (5.8)

But in view of the differences in quality among the lines, the condition above

makes little sense as a construction criterion. Instead, we need a line that does not

allow deviations to cancel each other yet still limits deviation error. Frequently,

statisticians create a line that minimizes the sum of the squared deviations of the
actual data points yi from the points on the line byii. The minimization of the entire

deviation error is Xn
i¼1

u2i ¼
Xn
i¼1

yi � byið Þ2 ! min : (5.9)

This method of generating the regression line is called the ordinary least squares
method, or OLS. It can be shown that these lines also run through the bivariate

centroid – i.e. the value pair x; yð Þ – but this time we only have a single regression

line, which fulfils the condition of the minimal squared error. If we insert equation

of the regression line for byii, we get:
f α; βð Þ ¼

Xn
i¼1

yi � α� βxið Þ2 ! min : (5.10)

The minimum can be achieved by using the necessary conditions for a minimum,

deriving the function f(α;β) once according to α and once according to β and setting
both deviations equal to zero.

(i)

@f α; βð Þ
@α

¼
Xn
i¼1

2 � yi � α� β � xið Þ � �1ð Þ ¼ 0 ()
Xn
i¼1

yi ¼ n � αþ β
Xn
i¼1

xi () α

¼ y� β � x
(5.11)

(ii)

@f α; βð Þ
@β

¼
Xn
i¼1

2 � yi � α� β � xið Þ � �xið Þ ¼ 0 ()
Xn
i¼1

xiyið Þ ¼ α
Xn
i¼1

xiþβ
Xn
i¼1

x2i

(5.12)
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The reformulation in (i) yields the formula for the constant α. We then equate

(i) and (ii) to get:

n � aþ β
Xn
i¼1

xi�
Xn
i¼1

yi ¼ α
Xn
i¼1

xiþβ
Xn
i¼1

x2i �
Xn
i¼1

xiyi; (5.13)

so that

β ¼
α
Xn
i¼1

xi � n � a�
Xn
i¼1

xiyi þ
Xn
i¼1

yi

Xn
i¼1

xi�
Xn
i¼1

x2i

 ! (5.14)

By inserting this equation in (i) we get

α ¼

Xn
i¼1

x2i
Xn
i¼1

yi �
Xn
i¼1

xi
Xn
i¼1

xiyi

n
Xn
i¼1

x2i �
Xn
i¼1

xi

 !2
(5.15)

If we place the latter in (ii) we get:

Xn
i¼1

xiyið Þ ¼

Xn
i¼1

x2i
Xn
i¼1

yi �
Xn
i¼1

xi
Xn
i¼1

xiyi

n
Xn
i¼1

x2i �
Xn
i¼1

xi

 !2

Xn
i¼1

xi þ β
Xn
i¼1

x2i (5.16)

After several reformulations, we arrive at the formula for the slope coefficient:

n
Xn
i¼1

xiyið Þ �
Xn
i¼1

yi
Xn
i¼1

xi

n
Xn
i¼1

x2i �
Xn
i¼1

xi

 !2
¼ cov x; yð Þ

S2x
¼ r � Sy

Sx
¼ β (5.17)

Of course, the regression coefficient no longer needs to be calculated by hand.

Today’s statistics software does it for you. Excel, for instance, has functions for

determining a regression’s slope and intercept. Section 5.5 discusses the use of

computer applications for calculating regression.
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5.3 Multivariate Regression Coefficients

In the previous section, we discussed methods of regression analysis for bivariate

associations. These approaches may suffice for simple models, but what do we do

when there is reason to assume that a whole cluster of factors influence the

dependent variable? Let’s return to the mail-order business example. We found

that a sales forecast based on catalogue image size was better than one based on

sales of an equivalent dress from the previous year. But in practice is there ever

only one influencing factor at work? Realistically speaking, rarely. So why not

use both variables – image size and previous sales – to estimate sales? The

derivation of association using multivariate regression is analogous to that using

bivariate regression. We again assume that α ¼ β0 and that β1 and β2 are such that

the sum of the squared residuals is minimal. In the general case of k independent

variables and n observations, regression can be calculated by the following matrix

equation:

y ¼ X � β þ u ¼
y0

� � �
yn

264
375 ¼

1þ
� � � þ
1þ

x11

� � �
x1n

þ � � � þ
þ � � � þ
þ � � � þ

xk1

� � �
xkn

264
375 β0

� � �
βk

264
375þ

u1

� � �
un

264
375

¼
β0þ
� � � þ
β0þ

β1x11

� � �
β1x1n

þ � � �þ
þ � � �þ
þ � � �þ

βkxk1

� � �
βkxkn

þu1

þ � � �
þ un

264
375 (5.18)

It can be shown that the minimum sum of squared residuals obtains exactly when

the vector of the regression coefficients β¼(α¼β0; β1; . . . ; βk) equals

β ¼ X
0
X

� ��1

X
0
y (5.19)

Once again we could use the OLS method, though here the regression equation

consists of more than two components:

• the constant α ¼ β0;
• the first slope coefficient β1, which describes the relationship between catalogue

image size and demand; and

• the second slope coefficient β2, which describes the relationship between previ-

ous sales and demand.

The equation to determine the multivariate regression is thus:

by ¼ αþ β1 � catalogue image sizeþ β2 � previous sales
¼ αþ β1x1 þ β2x2 (5.20)
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5.4 The Goodness of Fit of Regression Lines

A regression seeks to describe the average association of two or more variables. In

Figs. 5.1 and 5.2 we saw how regression lines can overestimate or underestimate the

y values of data points. Because these kinds of errors can lead to costly surpluses

and shortages, it is crucial that regression lines have a good fit. In the previous

section we determined that catalogue image size (Fig. 5.2) is better suited for

predicting sales than the previous sales (“equivalence”) method (Fig. 5.1), as the

former produced data points with greater proximity to the regression line and a

greater correlation coefficient. Generally, the closer the data points are to the

regression line the better the regression line is. When all the data points lie on

the line, the linear regression is perfect, and the correlation coefficient is either

r ¼ (+1) or r ¼ (�1). By contrast, when the data points are scattered far from the

regression line, the correlation coefficient is close to zero, and the resulting forecast

will be imprecise.

Here we see that the correlation coefficient can serve to evaluate the goodness of

fit with bivariate analysis. But the more common parameter is the coefficient of
determination, symbolized by R2. The coefficient of determination equals the

square of the correlation coefficient for bivariate regressions, but it can be applied

when multiple independent x variables exist. Because R2 is squared, it only takes

values between zero and one. R2 ¼ 0 when the goodness to fit is poor, and R2 ¼ 1

when the goodness to fit is perfect.

The coefficient of determination also indicates the share of y variance

explained by x variance. In our example (Fig. 5.2) the coefficient of determina-

tion is R2 ¼ 0.962 ¼ 0.9216 ¼ 92.16%. This means that 92.16% of the variance

in sales (y variable) is explained through variance in catalogue image size

(x variable).

Figure 5.5 illustrates the explanation share of variance using Venn diagrams.

Part 1 represents a bivariate regression, also known as a simple regression. The

upper circle indicates the variance of the dependent y variables (sales); the lower

circle indicates the variance of x1 (image size). The region of intersection represents

the share of y variance (sales) explained by the x1 variance (image size). The larger

the area of intersection is, the better the x1 variable (image size) explains variance

in the dependent y variable.

Part 2 takes into account the other variable: the previous year’s sales (x2). Here
the intersection between y variance (sales) and x1 variance (image size) and the

previous year’s sales (x2) increases. With the regression lines by, the variances of the
independent x variables explain

R2 ¼ Aþ Bþ Cð Þ
Aþ Bþ Cþ Eð Þ

� �
� 100 per cent (5.21)

of y variance. The general formula for R2 in a multivariate regression can thus be

expressed as follows:
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R2 ¼
S2by
S2y

¼
1
n

Xn
i¼1

byi � yð Þ2

1
n

Xn
i¼1

yi � yð Þ2
(5.22)

Often, statisticians subtract 1
n from the quotient of variance to calculate R2,

instead of using the quotient of variance alone. The quotient of variance consists of

the explained regression sum of squares RSS ¼
Xn
i¼1

byi � yð Þ2 divided by the total

sum of squares TSS ¼
Xn
i¼1

yi � yð Þ2:

R2 ¼ RSS

TSS
¼

Xn
i¼1

byi � yð Þ2

Xn
i¼1

yi � yð Þ2
(5.23)

R2can also be calculated using the unexplained variance of y variables:

S2e ¼
1

n

Xn
i¼1

yi � byið Þ2 (5.24)

Bivariate Regression
(“Simple Regression“):

The region of intersection represents
the share of variance in y (sales)

explained by variance in x1 (image size) 

Multiple Regression (“Multiple Regression“):
The regions of intersection A, B, and C represent the
share of variance in y (sales) explained by variance in

x1 (image size) and x2(previous year’s   

Var(x1=image size)

Var(y=sales)

Var(x1=image size) Var(x2=previous sales)

Var(y=sales)

A

B
C

E

F
GD

Fig. 5.5 The concept of multivariate analysis
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In part 2 above, the unexplained variance is represented by region E. The

correlation of determination can then be defined as follows:

R2 ¼ 1� SE
Sy

¼ 1�
1
n

Xn
i¼1

yi � byið Þ2

1
n

Xn
i¼1

yi � yð Þ2
(5.25)

Expressed using the residual or error sum of squares ESS ¼
Xn
i¼1

yi � yð Þ2, R2 is

R2 ¼ 1� ESS

TSS
¼ 1�

Xn
i¼1

yi � byið Þ2

Xn
i¼1

yi � yð Þ2
(5.26)

Another way to evaluate goodness of fit with multivariate regression is the

adjusted coefficient of determination. We will learn about this approach in Sect. 5.6.

5.5 Regression Calculations with the Computer

5.5.1 Regression Calculations with Excel

Excel’s Linest function calculates the most important regression parameters. But

this function is relatively inflexible and complicated to use.1 A more flexible

approach is Excel’s regression function. To use it, first activate the analysis

function via the Add-Ins Manager.2 Now select the regression function under

Data!Data Analysis so that the window presented in part 1 of Fig. 5.6 appears.

Next assign the fields for dependent and independent variables. Keep in mind that

the independent variables must be arranged next to each other in the Excel tables

1 To use the Linest function for the dataset mail_order_business.xls, mark a field in the Excel sheet in

which the regression results are to appear.With k regressors – in our case k ¼ 2 – this field must have 5

lines and k + 1 rows. Next choose the Linest command underFormulas!Insert Function!Statistical.
Insert the dependent y variables (B2:B101) into the fieldKnown_y’s, and the x variables (C2:D101) into
the field Known_x’s. If the regression contains a constant, the value one must be entered into the const
field and the stats field. The command will NOT be activated by the enter button, but by the simulta-

neous activation of the buttons STRING + SHIFT + ENTER. In the first line, the coefficients β1 to βk
are displayed. The last row of the first line contains the value of the constant α. The other lines display
the remaining parameters, some of which we have yet to discuss. The second line shows the standard

errors of the coefficients; the third line, the coefficient of determination (R2) and the standard error of the

residuals; the fourth line, the f value and the degree of freedom. The last line contains the sum of squares

of the regression (RSS) and residuals (ESS).
2 The Add-In Manager can be accessed via File!Options!Add-ins! Manage: Excel

Add-ins !Go. . .
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and may contain no missing values. Our example uses the file mail_order_business.
xls. The interpretation of the output is in Sect. 5.5.2. The output from all statistical

software applications I discuss is the same.

5.5.2 Regression Calculations with SPSS and Stata

The calculation is similar using SPSS and Stata. In SPSS, open the Linear Regression
window shown in part 2 of Fig. 5.6 by selecting Analyze!Regression!Linear.
Then assign the dependent and independent variables and confirm the selection by

clicking OK.
With Stata access the regression menu by choosing Statistics!Linear models

and related!Linear regression. Then enter the dependent variables in the depen-
dent variable field and the independent variables in the independent variable field
and click OK or Submit.

Each programme displays the calculation results in similar tabular form.

The first table contains regression statistics such as the absolute value of the

correlation coefficient and the coefficient of determination; the second table

contains the sum of squares; and the third table displays the regression coefficient

statistics. Figure 5.7 shows the result tables of the regression function with SPSS.

From these results we can determine the sales of period (t) using the following

equation:

by ¼ 62:22þ 1:95 � catalogue image sizeþ 0:33 � previous sales t� 1ð Þ (5.27)

Dependent y variable
Independent x variables 

Regression includes a 
constant?

First line contains value labels or variable names?

Dependent y variable

Fig. 5.6 Regression with Excel and SPSS
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If a dress is advertised with an image of 50 square centimetres and a similar dress

sold 150 times last year, then we can expect average sales of

by ¼ 62:22þ 1:95 � 50þ 0:33 � 150 � 209 dresses (5.28)

The sum of squares explained by the regression is 52,733.837. The total sum of

squares to be explained is 55,999.390, so that the sum of squares unexplained by the

regression is 55,999.390�52,733.837 ¼ 3,265.553. From this we can also calculate

the coefficient of determination, were it not already indicated above:

R2 ¼ 52; 733:873

55; 999:390
¼ 94:2% (5.29)

The variance of the independent x variables (the demand of a similar dress in the

previous season; the catalogue image size) explains the variance of the dependent

variable (the sales of a dress in the current season) for R2 ¼ 94.2%.

Regression coefficient 

Constant

Coefficient of determination
Absolute value of the correlation coefficient

Adjusted coefficient of determination

RSS
ESS
TSS

Fig. 5.7 Output from the regression function for SPSS
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5.6 Goodness of Fit of Multivariate Regressions

The inclusion of an additional predictor variable x improved our model, as the

coefficient of determination could be increased from R2 ¼ 0.90 for a regression

only considering image size to R2 ¼ 0.94.

Which value would the coefficient of determination have assumed had we

substituted for previous year’s sales of a similar dress a completely crazy variable

such as the body weight of the dress’s seamstress? By definition, the coefficient of

determination remains constant at R2 ¼ 0.90, as the catalogue image size retains its

explanatory power under all conditions. Even in the worst case, the sum of squares

of the regression remains constant, and this is generally true whenever another

variable is added.

Inexperienced users of regression analysis may seek to integrate as many

explaining variables as possible into the model to push up the coefficient of

determination. But this contradicts a model’s basic goal, which is to explain a

phenomenon with as few influencing variables as possible. Moreover, the random

inclusion of additional variables increases the danger that some of them have little

to no explanatory power. This is referred to overparametrization.
In practice, statisticians frequently calculate what is called the adjusted R2,

which penalizes overparametrization. With every additional variable, the penaliza-

tion increases. The adjusted coefficient of determination can be calculated by the

following equation, where n is the number of observations and k the number of

variables in the model (including constants):

R2
adj ¼ R2 � 1� R2

� �
k � 1ð Þ

n� kð Þ ¼ 1� 1� R2
� � n� 1

n� k
(5.30)

It’s only worth putting an additional variable in the model if the explanatory

power it contributes is larger than the penalization to the adjusted coefficient of

determination. When building models, the addition of new variables must stop

when the adjusted coefficient of determination can no longer be increased. The

adjusted coefficient of determination is suited for comparing regression models

with a differing number of regressors and observations.

The penalization invalidates the original interpretation of R2 – the share of y

variance that can be explained through the share of x variance. In unfavourable

circumstances the adjusted coefficient of determination can even take negative

values.3

3 For R2 ¼ 0 and k > 1 the following equation applies: R2
adj ¼ 0� 1�0ð Þ k�1ð Þ

n�kð Þ ¼ � k�1ð Þ
n�kð Þ

� �
< 0.
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5.7 Regression with an Independent Dummy Variable

In our previous discussions of regression both the (dependent) y variables and the

(independent) x variables had a metric scale. Even with a least squares regression,

the use of other scales is problematic. Indeed, ordinal and nominal variables are,

with one small exception, impermissible in a least squares regression. We will now

consider this exception.

In the chapter on calculating correlation we found out that so-called

dummy variables – nominal variables that possess the values zero and one

only – can be understood as quasi-metric under certain conditions (see

Sect. 4.5.1). Their effects on the regression calculation can also be interpreted

in the same way. Consider our mail order business example. You guess that

red dresses sell better than other dress colours, so you decide for a regression

with the independent variables catalogue image size (in sq. cm) and red as
dress colour (1: yes; 0: no). The second variable represents the two-value

dummy variable: either red dress or no red dress. Figure 5.8 shows the results

of the regression.

The regression can be expressed with the following algebraic equation:

by ¼ 142:9þ 1:95 � catalogue image sizeþ 6:1 � red (5.31)

On average, sales increase by 1.95 dresses for every additional square centimetre

in catalogue image size (β1 ¼ 1.95). The sales of red dresses are around six units

Fig. 5.8 Regression output with dummy variables
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higher on average than other dress colours (β2 ¼ 6.1). Ultimately, the dummy

variable shifts parallel to the regression line by the regression coefficient

(β2 ¼ 6.1) for the observations coded with one (red dress). The slope of the

regression line remains unchanged for every dress colour (red or not) with regard

to the metric variable (catalogue image size). The only aspect that changes is the

location of the regression line. For dummy variables coded with one, the line shifts

parallel upward for positive regression coefficients and downward for negative

regression coefficients (see Fig. 5.9).

The dummy variables coded with zero serve the benchmark group. It is also

conceivable that there is more than one dummy variable. For instance, we could

have three variables: red (“dress colour red” [1: yes; 0: no]), green (“dress colour

green” [1: yes; 0: no]), and (“dress colour blue” [1: yes; 0: no]). Each of

the coefficients yields the deviation for each of the 3 colours in relation to the

remaining dress colours (neither red nor green nor blue). Say we obtain the

following regression:

by ¼ 140þ 1:9 � catalogue image sizeþ 6 � red þ 5 � greenþ 4 � blue (5.32)

The number of red dresses (6 units) is higher than that of other dress colours that

are neither red nor green nor blue. The number of green dresses (5 units) and the

number of blue dresses (4 units) also lie above the benchmark.
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5.8 Leverage Effects of Data Points

Let’s look at the data points for the mail order business shown in Fig. 5.10. Consider

the graph’s first data point, which represents a dress advertised with 27.1 square

centimetres of catalogue space and sold 200 times. Say we keep the catalogue

image size the same but reduce the amount sold by 150 units, from 200 to 50. In

Fig. 5.10 the new data point is indicated by the left arrow. The change results in a

new regression, represented by the dotted line (regression 2). The new slope is 2.4

(versus 2.1) and the value of the constant is 118 (versus 135). The decrease in sales

on the left side of the scatterplot creates a corresponding downward shift on the left

side of the regression line. We can describe this phenomenon with the beam balance

metaphor used previously. The pointer in the middle of the scale – the scatterplot’s

bivariate centroid – remains fixed, while the “beam” tips to the left, as it would

under the pressure of a weight. Now let’s see what happens when we apply the same

change (150 fewer units) to a data point in the centre of the scatterplot. This

resulting line – represented by regression 3 – has the same slope as that of the

original regression, while the value of the constants has dropped slightly, from 135

to 133. Here the reduction has no influence on the marginal effects of the x variables

(slope coefficient). It expresses itself only in a parallel downward shift in the

regression line.

This graph clearly shows that data points at the outer edges of the scatterplot

have greater influence on the slope of the regression line than data points in the

centre. This phenomenon is called leverage. But since the undesired outliers occupy
the outer edges, special attention must be paid to them when creating the regression.
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Fig. 5.10 Leverage effect
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It is a good idea to calculate the regression with and without outliers and, from the

difference between them, determine the influence of outliers on slope. Should the

influence be important, the outliers should be removed or the use of a non-linear

function considered (see Sect. 5.8).

5.9 Nonlinear Regressions

As we have seen, linear bivariate regressions are just that: straight lines that best fit

a set of data points. But can straight lines really capture real-life associations? This

is a justified question. Let us consider the meaning of linearity more closely. Linear

associations come in two types:

• The first type contains regression coefficients (α, β1, β2,. . ., βk) that are linear or
non-linear. If the regression coefficients for x values remain constant, one speaks

of a regression that is linear in its parameters. In this case, we can get by with a

single least squares regression. If the regression coefficients change depending

on x values, one speaks of a non-linear regression in the parameters. Here

separate least squares regressions can be calculated for different segments of

the x-axis. In the example in Fig. 5.7 we have a linear regression in the

parameters, as both the constants (α ¼ 62.22) and the regression coefficients

(β1 ¼ 1.95 and β2 ¼ 0.33) remain the same over the course of the entire x-axis.

• The second type contains independent x variables that exert a linear or non-

linear influence on the dependent y variable while the value of the regression

coefficients (α, β1, β2,. . ., βk) remain constant. In part 4 of Fig. 5.11, for instance,

we see a logarithmic association. This regression is non-linear in the variables,

also known as a non-linear regression. If the regression coefficients remain

constant in Figure 5.11, a least squares regression can be carried out, although

the regression is non-linear.

Using the least squares regression we can also represent non-linear associations:

a regression need not be limited to the form of a straight line. Let’s look at an

example to understand how to approach regressions with variables that have a non-

linear association. Figure 5.12 displays monthly sales figures [in €10,000s] and the

number of consultants in 27 store locations. A linear regression calculated from

these data produces the following regression line:

by ¼ 0:0324 � xþ 55:945;R2 ¼ 0:66 (5.33)

If the number of consultants in a district increases by 1, sales increases on

average by

Δby ¼ 0:0324 � 1 � €10; 000½ � ¼ €3; 240 (5.34)

Yet a closer examination reveals that this regression line contains systematic

errors. In a district containing between 20 and 100 consultants, the regression line
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1) Linear in variables and parameters: y=1+1.x 2) Linear in parameters: y=1+12.x-0.9.x2

3) Linear in parameters: y=1+19.x+4.x2+1.x3  4) Linear in parameters: y=1+2.ln(x) 

5) Linear in parameters: y=10,000 + (25/x) -2.x3 6) Linear in parameters: y=1+  (0.25/x2) 
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Fig. 5.11 Variables with non-linear distributions
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underestimates sales throughout, while in a district with 140 consultants or more,

the regression lines overestimates sales throughout. The reason: a non-linear asso-

ciation exists between the x and y values, leading to a non-linear regression line.

If we convert the x variable to a logarithmic function – the form of the scatterplot

suggests a logarithmic regression – we get the upper scatterplot in Fig. 5.13. Here

the x-axis does not track the number of consultants but the logarithmic function of

the number of consultants. Now the regression line

by ¼ 1:7436 � lnðxÞ þ 51:61 (5.35)

contains no systematic errors, as the positive and negative deviations alternate over
the course of the regression. What is more, the calculated coefficient of determina-

tion increases to R2 ¼ 0.97.

Of course, we can also choose not to convert the x-axis scale to a logarithmic

function (see the lower scatterplot in Fig. 5.13) and nevertheless enter the logarith-

mic regression into the scatterplot. This makes the non-linear association between

the variables apparent. The algebraic form of the regression function remains the

same, as we’ve changed only the way we represent the functional relationship, not

the functional relationship itself (by ¼ 1:7436 � lnðxÞ þ 51:61).

y = 0.0324x + 55.949
R² = 0.6602
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Fig. 5.12 Regression with non-linear variables (1)

134 5 Regression Analysis



5.10 Approaches to Regression Diagnostics

In the preceding section we learned how to determine the association between

multiple independent variables and a single dependent variable using a regression

function. For instance, we discovered that sales for a certain dress could be

estimated by the equation by ¼ 62:22þ 1:95 � catalogue image sizeþ 0:33�
previous sales t� 1ð Þ. In addition, we used the adjusted coefficient of determina-

tion to find out more about the regression line’s goodness of fit and were thus able to

say something about the quality of the regression. Proceeding in this vein, we could,

for instance, compare the quality of two potential regressions. But how can we

y = 1.7436×ln(x) + 51.61
R2 = 0.9694
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Fig. 5.13 Regression with non-linear variables (2)
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identify systematic errors in a regression? To do this, we must once again consider

the individual data points using a bivariate regression. Every actual y value can be

expressed as a combination of the value estimated by the regression (byi ) and the

accompanying error term (ui). Since byi represents the outcome of the regression

equation from xi, we get:

yi ¼ byi þ ui ¼ αþ β � xi þ ui (5.36)

To avoid systematic errors in a regression and to estimate its quality we must

identify certain conditions for the error term u:
1. Positive and negative values should cancel each other out. The condition is

automatically fulfilled in the regression calculation.

2. The regression’s independent variables (x variables) should not correlate with

the error term (u). The case described in Fig. 5.8 – where x-axis deviations only

appear in a certain direction (e.g. above the line) – should not occur. This would

mean that y values are being systematically over – or underestimated. A solution

to this problem is proposed below.

3. The demand that error terms should not correlate is a similar criterion:

Cov ui; uj
� � ¼ 0 i 6¼ j (5.37)

This is called the condition ofmissing autocorrelation. It says there should be no
systematic association between the error terms. In our mail order business, an

autocorrelation occurs when mostly positive deviations obtain with image sizes

of 40 square centimetres or smaller and with image sizes 60 square centimetres

or larger, and mostly negative deviations obtain with image sizes between 40 and

60 square centimetres. Figure 5.14 displays three possible correlations with

autocorrelated error terms. For obvious reasons, systematic errors are undesir-

able in terms of methods as well as outcomes. Generally, the autocorrelation can

be traced back to an error in the model specification, and thus requires us to

reconsider our choice of models. We can do this by transforming non-linear
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Fig. 5.14 Autocorrelated and non-autocorrelated distributions of error terms

136 5 Regression Analysis



functional regressions (as with non-proportional increases) or by adding a

missing variable (i.e. considering a neglected influence).

4. The variance for every ui should be constant: Var(ui)¼ σ2. This condition is

referred to as variance homogeneity, or homoscedasticity (homo means the
same; scedasticity means variance). If this condition is not fulfilled, one speaks

of variance heterogeneity, or heteroscedasticity. This occurs when the data

points are distributed at different concentrations over the x-axis. Frequently,

these “eruptions” of data points are caused by a missing variable in the model.

Figure 5.15 provides examples of the undesirable effect. Here too, the model

must be checked for error specification (missing variables or an erroneous

selection of the functional distribution).

We can examine the quality conditions for the error term u with a graphical

analysis (see for instance Figs. 5.14 and 5.15). But this approach does not always

suffice. In practice, statisticians use test methods from inductive statistics, but a

discussion of these methods lies beyond the scope of this chapter.

5. With regressions that have more than one independent x variable, the indepen-

dent x variables should not have an association. If the association between one or

more x variables is too large, so-called multicollinearity occurs, which falsifies

the regression outcome.

Ultimately, this condition entails nothing more than choosing two variables for

the predictor x variables whose meaning is different or at least dissimilar. If we

estimate the market share for petrol using gross and net prices from the SPSS file

multicollinearity_petrol_example.sav, we get the output displayed in Fig. 5.16.

SPSS is unable to calculate the influence of the gross and net price at the same

time. The reason is that gross price can be derived directly from the net price plus

value added tax. The variables are thus linearly dependent. With a value added tax

of 19%, we arrive at the following association:

net price ¼ gross price 1:19= (5.38)

The regression

by ¼ βo þ β1 � net priceþ β2 � gross price (5.39)
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can be converted into:

by ¼ βo þ
β1
1:19

þ β2

� �
� gross price () by ¼ αþ β � gross price (5.40)

It would have been necessary to calculate the two regression coefficients β1 and
β2, although there is only one linearly independent variable (gross or net). If perfect
multicollinearity exists, it is impossible to determine certain regression

coefficients.4 For this reason, most computer programmes remove one of the

variables from the model. This makes senses both from the perspective of methods

and that of outcomes. What additional explanatory value could we expect from a

net price if the model already contains the gross price?

But perfect multicollinearity rarely occurs in practice; it is almost always high
but not perfect. So when we speak of multicollinearity we really mean imperfect
multicollinearity. It is not a question of whether multicollinearity exists or not. It is

question of the strength of the association of independent x variables. Why is

imperfect multicollinearity a problem for determining the regression?

Consider the case where we use the company’s price and a competitor’s price for

estimating petrol market share. From Sect. 4.7.1 we know that while the correlation

between the prices is not perfect it is still quite high: r ¼ 0.902. Imperfect multicol-

linearity often causes the following effects:

• If the competitor’s price is omitted in the regression, the coefficient of determi-

nation drops 0.001 to R2 ¼ 0.522. The additional influence of the competitor’s

Coefficientsa

Model Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.

B Std. Error Beta

1

(Constant) 1.442 .201 7.171 .000
Net price of own product 
(SPARAL high-octane petrol) -.871 .167 -.723 -5.229 .000

a. Dependent Variable: Market share for high-octane petrol

Excluded Variablesa

Model Beta In t Sig. Partial 
Correlation

Collinearity 
Statistics
Tolerance

1
Gross price of own product 
(SPARAL high-octane petrol) .b . . . .000

a. Dependent Variable: Market share for high-octane petrol
b. Predictors in the model: (Constant), Net price of own product (SPARAL high-octane petrol)

Fig. 5.16 Solution for perfect multicollinearity

4 In Sect. 5.3 we calculated the regression coefficients β¼(α¼β0; β1; . . . ; βk) as follows: β ¼ (X´
X)� 1X´y. The invertibility of (X´X) assumes that matrix X displays a full rank. In the case of

perfect multicollinearity, at least two rows of the matrix are linearly dependent so (X´X) can no

longer be inverted.
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price appears to have only a slight effect. But if we use only the competitor’s

price as the predictor variable for sales in the regression, the explanatory power

turns out to be R2 ¼ 0.44, which is quite high. This is a sign of multicollinearity,

as the company’s price and the competitor’s price appear to behave similarly

when explaining market share trends.

• The algebraic sign of the regressor is unusual. The competitor’s price appears to

have the same direction of effect on market share as the company’s own price,

i.e. the higher the competitor’s price, the lower the market share.

• Removing or adding an observation from the dataset leads to large changes in the

regression coefficients. In the case of multicollinearity, the regression

coefficients strongly react to the smallest changes in the dataset. For instance,

if we remove observation 27 from the dataset multicollinearity_petrol_example.
sav (see Sect. 4.7.1) and calculate the regression anew, the influence of the

company’s price sinks from β1 ¼ � 0.799 to β1 ¼ � 0.559, or by more than

30%.

• So-called Variance Inflation Factors (VIF) can indicate yet another sign of

multicollinearity. For every independent x variable we must check the associa-

tion with the other independent x variables of the regression. To do this we

perform a so-called auxiliary regression for every independent variable. If there

are five independent x variables in a regression, we must carry out five auxiliary

regressions. With the first auxiliary regression, the initial independent x variable

(x1) is defined as dependent and the rest (x2 to x5) as independent. The creates the
following regression:

x1 ¼ αo þ α1 � x2 þ α2 � x3 þ α3 � x4 þ α4 � x5 (5.41)

The larger the coefficient of determination R2
Aux(1) for this auxiliary regression,

the stronger the undesired association between the independent variable x1 and the

other independent variables of the regression equation. Remember: multicol-

linearity exists when two or more independent x variables correlate. Accordingly,

the degree of multicollinearity can also be expressed by the R2
Aux(i) of the auxiliary

regression of the ith independent variable. VIF builds on the idea of auxiliary

regression. Every independent x variable receives the quotient

VIFi ¼ 1

1-R2
Aux ið Þ

(5.42)

If the R2
Aux(i) value of the auxiliary regression of an independent variable is

(close to) 0, no multicollinearity exists and VIF ¼ 1. If, by contrast, the R2
Aux(i) of

an auxiliary regression is very large, multicollinearity exists and the value of VIF is

high. Hair et al. (2006, p. 230) note that VIF ¼ 10 is a frequently used upper limit

but recommend a more restrictive value for smaller samples. Ultimately, every

researcher must make his or her own decision about the acceptable degree of
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multicollinearity and, when the VIF is conspicuously high, check the robustness of

the results. Keep in mind, though, that a VIP as low as 5.3 already has a very high

multiple correlation, namely, r ¼ 0.9. For this reason, whenever the VIP is 1.7 or

higher – VIP ¼ 1.7 translates into a multiple correlation of r ¼ 0.64 – you should

test your results, checking to see how they respond to minor changes in the sample.

• Some statistic software programmes indicate Tolerance as well as VIF, with

Tolerance(i) ¼ (1‐R2
Aux(i)). When the value of Tolerance is (close to) one, then

multicollinearity does not exist. The more the value of Tolerance approaches

zero, the larger the multicollinearity. In Fig. 5.17 the VIFs and the Tolerances of

the dataset multicollinearity_petrol_example.sav are indicated on the right edge

of the table. Both metrics clearly indicate multicollinearity.

• As we have seen, multicollinearity has undesirable effects. Influences should not

only have the correct algebraic sign. They must remain stable when there are

small changes in the dataset. The following measures can be taken to eliminate

multicollinearity:

• Remove one of the correlating variables from the regression. The best variable to

remove is the one with the highest VIF. From there proceed in steps. Every

variable you remove lowers the VIF values of the regression’s remaining

variables.

• Check the sample size. A small sample might produce multicollinearity even if

the variables are not multicollinear throughout the dataset. If you suspect this

could be the case, include additional observations in the sample.

• Reconsider the theoretical assumptions of the model. In particular, ask whether

your regression model is overparameterized.

• Not infrequently, correlating variables can be combined into a single variable

with the aid of factor analysis.

5.11 Chapter Exercises

Exercise 21:

You’re an employee in the market research department of a coffee roasting

company who is given the job of identifying the euro price of the company’s coffee

Coefficientsa

Model Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.

B Std. Error Beta

1

(Constant) 1.446 .206 7.023 .000
Net price of own product 
(SPARAL high-octane petrol) -.799 .393 -.663 -2.035 .053

Competitor price (JETY high-
octane petrol) -.065 .319 -.066 -.202 .841

a. Dependent Variable: Market share for high-octane petrol

Fig. 5.17 Solution for imperfect multicollinearity
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in various markets and the associated market share. You discover that market share

ranges between 0.20 and 0.55. Based on these findings you try to estimate the

influence of price on market share using the regression indicated below.

Regression function: market share by ¼ 1.26 – 0.298 � price
(a) What average market share can be expected when the coffee price is 3 euros?

(b) You want to increase the market share to 40%. At what average price do you

need to set your coffee to achieve this aim?

(c) The regression yields an R2 of 0.42. What does this parameter tell us?

(d) How large is the total sum of squares when the error sum of squares of the

regression is 0.08?

Exercise 22:

You have a hunch that the product sales mentioned in Exercise 8 (p. 70) are not

determined by price alone. So you perform a multivariate regression using Excel

(or statistics software like SPSS). The results of the regression are listed in the

tables below.

(a) Derive the regression function in algebraic form from the data in the table.

(b) Does the model serve to explain sales? Which metric plays a role in the

explanation and what is its value?

(c) Assume you lower the price in every country by 1,000 monetary units. How

many more products would you sell?

(d) What is the effect of increasing advertising costs by 100,000 monetary units?

Explain the result and propose measures for improving the estimating equation.

Model summary

Model R R square Adjusted R square Std. error of the estimate

1 .975a .951 .927 .510

aPredictors: (Constant), Advertising budget [in 100,000s MUs], Number of dealerships, Unit price

[in 1,000s of MUs]

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 30.439 3 10.146 39.008 .000b

Residual 1.561 6 0.260

Total 32.000 9

aDependent Variable: Sales [in 1,000s of units]
bPredictors: (Constant), Advertising budget [in 100,000s MUs], Number of dealerships, Unit price

[in 1,000s of MUs]

Model

Unstandardized coefficients

t Sig.B Std. error

1 (Constant) 24.346 3.107 7.84 .000

Number of dealerships .253 .101 2.50 .047

Unit price [in 1,000s of MUs] � .647 .080 �8.05 .000

Advertising budget [in 100,000s MUs] � .005 .023 �0.24 .817
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Exercise 23:

You’re given the job of identifying the market share of a product in various

markets. You determine the market share ranges between 51.28 % and 61.08 %.

You try to estimate the factors influencing market share using the regression below:

Model summary

Model R R square Adjusted R square Std. error of the estimate

1 ??? ??? ??? .652

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 124.265 2 ??? 145.971 .000

Residual ??? 24 ???

Total 134.481 26

Model

Unstandardized coefficients

t Sig.B Std. error

1 (Constant) 38.172 1.222 31.24 .000

price . � 7.171 .571 �12.56 .000

ln(price) .141 .670 �0.21 .835

(a) Derive the regression function in algebraic form from the above table.

(b) Determine R2 and the adjusted R2.

(c) How large is the residual sum of squares?

(d) Does the model have an explanatory value for determining market share?

(e) What’s a reasonable way to improve the model?

(f) What happens when the product price is raised by one monetary unit?

Exercise 24:

You’re an employee in the market research department of a company that

manufactures oral hygiene products. You’re given the task of determining weekly

sales of the toothpaste Senso White at a specific drugstore chain over the past 3

years. You attempt to estimate the factors influencing weekly market share using

the regression below. The potential factors include:

• The price of Senso White (in €),
• Senso White advertised with leaflets by the drugstore chain (0 ¼ no; 1 ¼ yes),

• Other toothpaste brands advertised with leaflets by the drugstore chain (0 ¼ no;

1 ¼ yes),

• Other toothpaste brands advertised in daily newspapers by the drugstore chain

(0 ¼ no; 1 ¼ yes),

• Senso White advertised in daily newspapers by the drugstore chain (0 ¼ no;

1 ¼ yes),

• Senso White advertised with leaflets that contain images by the drugstore chain

(0 ¼ no; 1 ¼ yes)

142 5 Regression Analysis



Model summary

Model R R square Adjusted R square Std. error of the estimate

1 .883 .780 .771 187.632

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 18627504.189 6 ??? 84.000 .000

Residual 5245649.061 149 ???

Total 13423873153.250 155

Model

Unstandardized

coefficients

Standardized

coefficients BETA Sig.B

Std.

error

1 (Constant) 9897.875 146.52 .000

Price of Senso White �949.518 59.094 � .64 .000

Senso White advertised with leaflets 338.607 188.776 .19 .075

Other toothpaste brands advertised

with leaflets

�501.432 74.345 � .27 .000

Senso White advertised in daily newspapers �404.053 87.042 � .18 .000

Other toothpaste brands advertised in daily

newspapers

245.758 73.186 .13 .001

Senso White advertised with leaflets

that contain images

286.195 202.491 .15 .160

(a) Derive the regression equation in algebraic form from the above table.

(b) What sales can be expected with a toothpaste price of €2.50 when the drugstore
chain uses no advertising for Senso White and uses leaflets for a competing

toothpaste?

(c) Interpret R, R2, and adjustedR2. Explain the purpose of the adjusted R2.

(d) What is the beta needed for?

(e) Assume you want to improve the model by introducing a price threshold effect

to account for sales starting with €2.50. What is the scale of the price threshold

effect? Which values should be used to code this variable in the regression?

Exercise 25:

The fast food chain Burger Slim wants to introduce a new children’s meal. The

company decides to test different meals at its 2,261 franchises for their effect on

total revenue. Each meal variation contains a slim burger and, depending on the

franchise, some combination of soft drink (between 0.1 and 1.0 l), salad, ice cream,

and a toy. These are the variables:

• Revenue: Revenue through meal sales in the franchise [in MUs]

• Salad: Salad ¼ 1 (salad); Salad ¼ 0 (no salad)

• Ice Cream: Ice Cream ¼ 1 (ice cream); Ice Cream ¼ 0 (no ice cream)
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• Toy: Toy ¼ 1 (toy); Toy ¼ 0 (no toy)

• Sz_Drink: Size of soft drink

• Price: Price of meal

You perform two regressions with the following results:

Regression 1:

Model summary

Model R R square Adjusted R square Std. error of the estimate

1 ??? ??? .747 3911.430

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression ??? 4 ??? 1668.726 .000

Residual 34515190843.303 2,256 ???

Total 136636463021.389 2,260

Model

Unstandardized

coefficients

Standardized coefficients BETA t Sig.B Std. error

1 (Constant) 25949.520 265.745 97.648 .000

Price 4032.796 73.255 .58 55.051 .000

Salad �7611.182 164.631 -.49 �46.232 .000

Ice cream 3708.259 214.788 .18 17.265 .000

Toy 6079.439 168.553 .38 36.068 .000

Regression 2:

Model summary

Model R R square Adjusted R square Std. error of the estimate

1 .866 .750 .750 3891.403

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 102488948863.420 5 ??? 1353.613 .000

Residual 34147514157.969 2,255 ???

Total 136636463021.389 2,260

Model

Unstandardized

coefficients Standardized coefficients

BETA Sig. Tolerance VIFB Std. error

1 (Constant) 25850.762 265.143 .000

Price �30.079 827.745 � .004 .971 .008 129.174

Sz_Drink 24583.927 4989.129 .590 .000 .008 129.174

Salad 7619.569 163.797 � .490 .000 .999 1.001

Ice Cream 3679.932 213.765 .182 .000 .997 1.003

Toy 6073.666 167.694 .382 .000 .999 1.001
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(a) Calculate R2 from regression 1.

(b) What is the adjusted R2 needed for?

(c) Using regression 1 determine the average revenue generated by a meal that

costs 5 euros and contains a slim burger, a 0.5 l soft drink, a salad, and a toy.

(d) Using regression 2 determine which variable has the largest influence. Explain

your answer.

(e) Compare the results of regressions 1 and 2. Which of the solutions would you

consider in a presentation for the client?

(f) Consider the following scatterplot. What’s the problem? Describe the effects of

the results from regressions 1 and 2 on interpretability. How can the problem be

eliminated?
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Time Series and Indices 6

In the preceding chapter we used a variety of independent variables to predict dress

sales. All the trait values for sales (dependent variable) and for catalogue image size

(independent variable) were recorded over the same period of time. Studies like

these are called cross-sectional analyses. When the data is measured at successive

time intervals, it is called a time series analysis or a longitudinal study. This type of

study requires a time series in which data for independent and dependent variables

are observed for specific points of time (t ¼ 1,. . ., n). In its simplest version, time is

the only independent variable and is plotted on the x-axis. This kind of time series

does nothing more than link variable data over different periods. Figure 6.1 shows

an example with a graph of diesel fuel prices by year.

Frequently, time series studies involve a significantly more complicated state of

affairs. Sometimes future demand does not depend on the time but on present or

previous income. Let‘s look at an example. For the period t, the demand for a

certain good yt results from price (pt), advertising expenses in the same period (at)

and demand in the previous period (yt�1). If the independent variable on the x-axis

is not the time variable itself, but another independent variable bound to time,

things become more difficult. For situations like these, see the helpful introductions

offered by Greene (2012) and Wooldridge (2009).

The daily news bombards us with time series data: trends for things like unemploy-

ment, prices and economic growth. The announcement of new economic data is

eagerly anticipated, and, when inauspicious (think: falling profits), can cause much

distress (think: pearls of sweat beading on executives’ foreheads). The reason time

series have such a prominent role in the media is simple: they make discrete

observations dynamic. Swoboda (1971, p. 96) aptly compares this process to film,

which consists of individual pictures that produce a sense of motion when shown

Chapter 6 Translated from the German original, Cleff, T. (2011). 6 Zeitreihen- und Indexrechnung.

In Deskriptive Statistik und moderne Datenanalyse (pp. 187–204) # Gabler Verlag, Springer

Fachmedien Wiesbaden GmbH, 2011

T. Cleff, Exploratory Data Analysis in Business and Economics,
DOI 10.1007/978-3-319-01517-0_6, # Springer International Publishing Switzerland 2014
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in rapid succession. Times series data are similar, as they allow us to recognize

movements and trends and to project them into the future. Below we investigate the

most frequently used technique for measuring dynamic phenomena: index figures.

6.1 Price Indices

The simplest way to express price changes over time is to indicate the (unweighted)
percentage price change in one reporting period compared with an earlier one,

known as the base period. Table 6.1 shows the average yearly prices for diesel and

petrol in Germany. To find out the percentage increase for diesel fuel in the 2007

reporting period compared with the 2001 base period, we calculate what is called a

price relative:

P�base year ¼ 0;reporting year ¼ t ¼
Price in reporting year

�
p
t

�
Price in base year

�
p
0

� (6.1)

P�
2001;2007

¼ p2007

p2001
¼ 117:0

82:2
¼ 1:42 (6.2)

The price of diesel in 2007 was around 42 % higher than in 2001. In principle,

price relatives can be calculated for every possible base year and reporting year

combination. Price relatives for the base year 2005 are also indicated in Table 6.1.

According to these figures, the 2007 price increased by 10 % over that of 2005,

while the price in 2001 still lay 23 % (¼1.00�0.77) below the price from the base

year 2005.

This fuel example illustrates the advantages of indexing. Index series make

dynamic developments comparable and push absolute differences into the back-

ground. If one compares the absolute prices for diesel, high octane and regular over
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time (see Fig. 6.2, part 1) with their index series from the base year 2001 (see

Fig. 6.2, part 2), the varying price dynamic becomes immediately apparent. The

price boost for diesel – hard to discern in part 1 – is pushed to the fore by the

indexing (part 2), while absolute price differences can no longer be inferred from

the figure.

To calculate the change in price between two years when neither is a base year,

the base for the price relatives must be shifted. Let us consider the diesel fuel price

relatives for the base year 2001. What is the change of price between 2004 and

2007? At first glance, you might think the answer is 27 % (1.42�1.15). But the

correct answer is not 27 % but 27percentage points relative to the base year 2001.

Here it would better to shift the base1 for 2004 by dividing the old series of price

relatives (base year: 2001) by the price relative of 2004:

P�new base year;t ¼
P�old base year

P�new base year

(6.3)

Now we can see that the percentage change between 2004 and 2007 is 23 %:

P�2004;2007 ¼
P�2001;2007
P�2001;2004

¼ 1:42

1:15
¼ 1:23 (6.4)

This price relative – an unweighted percentage price change of a homogenous

product – no longer applies when heterogeneous product groups exist. Let us leave

aside this particular result (which is probably only interesting for drivers of diesel

vehicles) and instead calculate how the prices of all fuel types (diesel, regular, and

high octane) developed in total. For this case, we must use the so-called weighted
aggregated price index. This index can determine the price trend of a product

group, a branch or an entire national economy using a predefined market basket.

The German consumer price index determined by the Federal Statistical Office of

Germany consists of some 700 everyday products whose prices are collected
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Fig. 6.2 Fuel prices over time

1 Strictly speaking, a base shift need only be undertaken when the market basket linked to the time

series is changed (see Sect. 6.5).
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monthly. The prices are weighted based on average consumption in a representative

German household. For instance, rent (not including heating) has a share of 20.3 %

in the consumer price index. Of course, individual choices can lead to different rates

of price increase than those experienced by the average consumer.2

The comparability of prices in different periods is ensured only if the contents of

the market basket and the weights of its products remain the same. This is called a

fixed-weighted aggregated price index. For the above example, the question is not

how demand and price change in total but how the price for a specific quantity of

diesel, regular, and super octane changes relative to the base year. In practice, of

course, consumption does not remain constant over time. In the period of observa-

tion, for example, the share of diesel consumption rose continuously, while the

share of consumption for the other fuels sank. There are two index options that use

fixed weights:

1. The first type of index is called the Laspeyres index.3 It is probably the best-

known index and is used by the Federal Statistical Office of Germany and by

many other Statistical Offices in the world. It identifies weights from average

consumption in the base period (t ¼ 0):

PL0;t ¼

Xn
i¼1

pi;t

pi;0
� pi;0 � qi;0Xn

i¼1

pi;0 � qi;0
¼

Xn
i¼1

pi;t � qi;0Xn
i¼1

pi;0 � qi;0
(6.5)

Usually, Laspeyres index figures are multiplied by 100 or, as with the DAX

stock market index, by 1,000. For example, the Federal Statistical Office of

Germany expresses the inflation rate as P0,t
L multiplied by 100:4

100 � PL0;t ¼ 100 �

Xn
i¼1

pi;t � qi;0Xn
i¼1

pi;0 � qi;0
(6.6)

2 For more, see the information on consumer price statistics at http://www.destatis.de. The site

calculates the price increase rate for individuals with a personal inflation calculator.
3 Ernst Louis Etienne Laspeyres (1834–1913) was a court advisor and professor for economics at

the universities of Basel, Riga, Dorpat, Karlsruhe and Giessen. He got his name from his

Portuguese ancestors, who came to Germany by way of France. He first used his price index to

measure price trends in Hamburg.
4 Later in this section, the index values are multiplied by 100 only when indicated.

6.1 Price Indices 151

http://www.destatis.de/


In the example with diesel and petrol, total demand is 28,545,000 t of diesel

(qdiesel,2001), 8,970,000 t of regular (qregular,2001) and 18,979,000 t of high octane

(qhigh octane,2001) in 2001. Now imagine we wanted to know how the total fuel price

in 2007 would have developed relative to 2001 if the weights – i.e. the share of

consumption for each of the fuels – remained the same compared to 2001. First we

weight the 2007 prices for diesel, regular and high octane with the average amounts

consumed in 2001 (qi,2001) and add them together. This total goes in the numerator.

Next we weight the amounts consumed in 2001 with the prices of 2001 (pi,2001) and

add them together. This total goes in the denominator. Now we have the following

weighted percentage change in price:

PLbase year;Berichtsjahr ¼

Xn
i¼1

pi;report year � qi;base yearXn
i¼1

pi;base year � qi;base year

¼ PL0;t ¼

Xn
i¼1

pi;t � qi;0Xn
i¼1

pi;0 � qi;0
(6.7)

PL2001;2007 ¼
134:4 � 18; 979þ 132:7 � 8; 970þ 117:0 � 28; 545
102:4 � 18; 979þ 100:2 � 8; 970þ 82:2 � 28; 545 ¼ 1:3647 (6.8)

Alternatively, instead of the absolute amount consumed, we can use the share of

consumption, since this expands the fraction only by the inverse of total tons

consumed in the base year:

PL0;t ¼

Xn
i¼1

pi;t � qi;0Xn
i¼1

pi;0 � qi;0
¼

Xn
i¼1

pi;t �
qi;0Xn

j¼1

qj;0

Xn
i¼1

pi;0 �
qi;0Xn

j¼1

qj;0

¼

Xn
i¼1

pi;t � fqi;0Xn
i¼1

pi;0 � fqi;0
(6.9)

PL2001;2007 ¼
134:4 � 33:6%þ 132:7 � 15:9%þ 117:0 � 50:5%
102:4 � 33:6%þ 100:2 � 15:9%þ 82:2 � 50:5% ¼ 1:3647 (6.10)

This tells us that price levels rose by 36.5 % from 2001 to 2007 assuming that the

shares of consumption for each of the fuels remained the same compared to the base

year 2001.

When measuring price changes with the Laspeyres index, one should be aware of

the problems the can arise. Some are general problems affecting all weighted

aggregated indices. The first is the representativeness of market basket items. For

instance, if the price of diesel increases and the price of petrol stays the same, the index

we created will indicate that the average price of fuel has increased, but this price

increase won’t affect car drivers who don’t buy diesel. Similarly, a homeowner won’t
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feel a rise in the consumer price index caused by climbing rent prices. A renter might

argue, by contrast, that the rise indicated in the consumer price index is nowhere close

to actual price increases. The greater the difference between forms of consumption, the

more often this problem occurs. Of course, the purpose of an aggregated index is not to

express the personal price changes experienced byMr. Jones orMs. Smith. The point is

to measure the sum of expenditures of all households and from them derive the average

shares of consumption. This figure identifies neither the price changes experienced by

individual household nor the price changes experienced by rich households and poor

households. It might be the case that there is no household in the whole economy

whose consumption corresponds exactly to that of the “representative” household. The

consumer price index is nevertheless consistent for the total sum of households. To get

around this problem, the Federal Statistical Office of Germany has created an internet

site where people can calculate their individual rates of price increase by indicating

shares of total expenditure for their own household.

Another general problem of indices relates to retail location and product quality.

Price differences can occur not only between regions but even between city

districts, where, say, the price of 250g of butter can vary by tens of cents, depending

on its quality, the type of retail location, and the average income of consumers. As a

result, something as minor as changing stores can create significant artificial

fluctuations in price. This is why officials who collect prices for the consumer

price index are required to use the same locations and product qualities whenever

possible (Krämer 2008, p. 87).

Aside from such general problems exhibited by aggregate indices, the Laspeyres

index has its own oddities caused by changing consumer habits. If the locations

people shop at change significantly after the market basket is set for the base period

(e.g. from small retailers to warehouse stores), the price changes indicated by the

index may differ from actual changes. The same thing can happen if consumers

begin substituting consumer goods in the market basket with non-indexed items or

if product shares in the total of the consumer expenditures covered by the index

change. Especially in rapidly changing sectors such as the computer industry,

comparisons with base period hardware prices can be misleading. Changing

consumer preferences create a problem for the fixed weighting of market basket

items from a distant base period. To isolate actual price changes from changes in

quality, National Statistical Offices change the contents of the consumer price index

basket frequently – typically about every five years. In 2008, for instance, the

Federal Statistical Office of Germany changed the base year from 2000 to 2005.

2. The second option for a fixed weighted index is the Paasche index.5 It solves the
problem of out-of-date market baskets by setting a new market basket for every

period. In this way, the market basket product shares in the total of the consumer

expenditures covered by the index precisely reflect the year under observation.

5 The German economist Hermann Paasche (1851–1925) taught at universities in Aachen,

Rostock, Marburg and Berlin. In addition to his achievements in economics, Paasche was an

engaged member of the Reichstag, serving as its Vice President for more than a decade.
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Yet creating a new market basket each year is time consuming, and is one of the

disadvantages of this method. The Paasche index compares current period expendi-

ture with a hypothetical base period expenditure. This hypothetical value estimates

the value one would have had to pay for a current market basket during the base

period. The total expenditure of the current period and hypothetical expenditure of

the base period form the Paasche index’s numerator and denominator, respectively:

PPbase year;report year ¼

Xn
i¼1

pi;report year � qi;report yearXn
i¼1

pi;base year � qi;report year
¼ PP0;t ¼

Xn
i¼1

pi;t � qi;tXn
i¼1

pi;0 � qi;t
(6.11)

In the following example, we again calculate the rise in fuel prices between 2001

and 2007, this time using the Paasche index. In the 2007 period, the fuel market

basket consists of 29,059,000 t of diesel (qDiesel,2007), 5,574,000 t of regular

(qregular,2007) and 15,718,000 t of high octane (qhigh-octane,2007). The total expenditure

results from weighting fuel prices for diesel, regular and high octane by their

consumption levels and then adding them together (numerator). The total expenditure

is then related to the shares of total expenditure in the reporting period as measured by

base period prices (pi,2001) (denominator). This produces the following:

PP2001;2007 ¼

Xn
i¼1

pi;2007 � qi;2007Xn
i¼1

pi;2001 � qi;2007
(6.12)

PP2001;2007 ¼
134:4 � 15; 718þ 132:7 � 5; 574þ 117:0 � 29; 059
102:4 � 15; 718þ 100:2 � 5; 574þ 82:2 � 29; 059 ¼ 1:3721 (6.13)

This is then weighted by the shares of the total expenditure:

PP2001;2007 ¼
134:4 � 31:2%þ 132:7 � 11:1%þ 117:0 � 57:7%
102:4 � 31:2%þ 100:2 � 11:1%þ 82:2 � 57:7% ¼ 1:3721 (6.14)

Based on this calculation, price levels rose by 37.2 % from 2001 to 2007assuming

that the shares of expenditure for each of the fuels remained the same compared to the

reporting period 2007. Compared with the results of the Laspeyres index (36.5 %), the

inflation rate of the Paasche index is higher. This means that consumers shifted their

demand to products whose prices rose at a higher-than-average rate. Though diesel is

still cheaper than other fuels in absolute terms – this ultimately explains the increase of

shares in total expenditure from 50.5 % to 57.7 % between 2001 and 2007 – its price

increased by around 42 %, while the prices of regular and high octane increased by
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32 % and 31 %, respectively. Accordingly, during the reporting period, consumers

tended to purchase more products whose prices increased by a higher-than-average rate

than consumers did during the base period.6 In the opposite case, when the inflation

rate indicated by the Laspeyres index is larger than that indicated by the Paasche index,

demand develops in favour of products whose prices increase at a lower-than-average

rate. In this case, consumers substitute products whose prices increase at a higher-than-

average rate with those whose prices increase at a lower-than-average rate. On account

of this economic rationality, the Laspeyres index is almost always larger than the

Paasche index, even if the needn’t always be the case, as our example shows. With

some consumer goods, especially expensive lifestyle products, demand increases

though prices increase at a higher-than-average rate. To sum up, the Laspeyres price

index is higher than the Paasche index when price changes and consumption changes

negatively correlate; it is lower than the Paasche index when price changes and

consumption changes positively correlate (see Rinne 2008, p. 106).

Because the indices produce different results, Irving Fisher (1867–1947) pro-

posed calculating the geometric mean of the two values, resulting in the so-called

Fisher index:

PF0;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL0;t � PP0;t

q
(6.15)

This index seeks to find a “diplomatic solution” to conflicting approaches, but it

lacks a clear market basket concept, as it relies on different baskets with different

products and weights. The Paasche index, too, faces the general problem having to

define anew the shares of the total expenditure covered by the market basket each

year, which ultimately requires a recalculation of inflation rates, including those of

past years. This means that past inflation rates do not remain fixed but change

depending on the current market basket.

6.2 Quantity Indices

Next to the price index are a number of other important indices, of which the quantity

index is the most important. Just as with the simple price relative, a change in the

quantity of a homogenous product can be expressed by an unweighted quantity

relative. Table 6.1 shows the quantity relative for the change in diesel sales:

Q�
0;t ¼

Quantity in the report year
�
q
t

�
Quantity in the base year

�
q
0

� (6.16)

6 The shift in expenditure is also expressed by the rise of new registrations for diesel vehicles in

Germany (from 34.5 % to 47.8 %) and in Europe (from 36.7 % to 53.6 %) (ACEA, European

Automobile Manufacturers’ Association: http://www.acea.be/index.php/collection/statistics).
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Q�
2001;2003 ¼

qt ¼ 2003

qt ¼ 2001

¼ 27; 944

28; 545
¼ 0:98 (6.17)

Accordingly, the demand for diesel declined by 2 % (¼1.00�0.98) from 2001 to

2003. If we now put aside homogenous products and consider instead quantity

changes for a market basket at constant prices, we must use the weighted
aggregated quantity index. Here too, we can use either the Laspeyres index or the

Paasche index, though both follow the same basic idea.

How do the weighted quantities of a defined market basket change between a

base period and a given observation period, assuming prices remain constant? The

only difference between the Laspeyres quantity index and the Paasche quantity

index is that the former presumes a market basket defined in the base period and its

constant item prices, while the latter serves as the basis for the market basket and

the constant prices of the reporting period. With both concepts, we may only use

absolute quantities from the market basket, not relative values:

Laspeyres quantity index:

QL
0;t ¼

Xn
i¼1

qi;t � pi;0Xn
i¼1

qi;0�pi;0
(6.18)

Paasche quantity index:

QP
0;t ¼

Xn
i¼1

qi;t � pi;tXn
i¼1

qi;0 � pi;t
(6.19)

Fisher quantity index:

QF
0;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QL

0;t � QP
0;t

q
(6.20)

Important applications for quantity indices include trends in industrial produc-

tion and capacity workload. Quantity indices can also be used to answer other

questions. For instance, how did diesel sales between 2001 and 2007 develop with

constant prices from 2001 versus constant prices from 2007 (see Table 6.1)?
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Laspeyres quantity index (constant prices from 2001):

QL
2001;2007 ¼

Xn
i¼1

qi;2007 � pi;2001Xn
i¼1

qi;2001 � pi;2001
(6.21)

QL
2001;2007 ¼

15; 718 � 102:4þ 5; 574 � 100:2þ 29; 059 � 82:2
18; 979 � 102:4þ 8; 970 � 100:2þ 28; 545 � 82:2 ¼ 0:8782 (6.22)

Paasche quantity index (constant prices from 2007):

QP
2001;2007 ¼

Xn
i¼1

qi;2007 � pi;2007Xn
i¼1

qi;2001 � pi;2007
(6.23)

QP
2001;2007 ¼

15; 718 � 134:4þ 5; 574 � 132:7þ 29; 059 � 117
18; 979 � 134:4þ 8; 970 � 132:7þ 28; 545 � 117 ¼ 0:8830 (6.24)

Diesel sales in 2007 weighted by 2001 base period prices (Laspeyres quantity

index) compared with those of 2001 declined by 12.2 % (¼1.00�0.8782), while

2007 diesel sales weighted by prices of the 2007 observation period declined by

(1.00�0.883¼) 11.7 % (Paasche quantity index). Here too, the values of the

quantity indices differ.

6.3 Value Indices (Sales Indices)

After identifying indices for price and quantity, it makes sense to calculate a value

index for the market basket. Ultimately, the value of a consumer good is nothing

more than the mathematical product of price and quantity. Interestingly, the value
index (frequently called the sales index) can be derived neither from the product of

the Laspeyres price and quantity indices alone nor from the product of the Paasche

price and quantity indices alone.7 Only the product of the Fisher price and quantity

indices produces the correct value index. Alternatively, one can multiply the

Paasche quantity index by the Laspeyres price index or the Laspeyres quantity

index by the Paasche price index:

7W0;t ¼

Xn
i¼1

pi;t � qi;tXn
i¼1

pi;0 � qi;0
6¼ PL

0;t � QL
0;t ¼

Xn
i¼1

pi;t � qi;0Xn
i¼1

pi;0 � qi;0
�

Xn
i¼1

qi;t � pi;0Xn
i¼1

qi;0 � pi;0
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W0;t ¼

Xn
i¼1

pi;t � qi;tXn
i¼1

pi;0 � qi;0
¼ QF

0;t � PF0;t ¼ QL
0;t � PP0;t ¼ QP

0;t � PL0;t (6.25)

According to this equation, fuel sales in 2007 rose by 20.5 % relative to those of

2001. The calculations are as follows:

W2001;2007 ¼ QL
2001;2007 � PP2001;2007 ¼ 0:8782 � 1:3721 ¼ 1:2050; (6.26)

or

W2001;2007 ¼ QP
2001;2007 � PL2001;2007 ¼ 0:8830 � 1:3647 ¼ 1:2050 (6.27)

6.4 Deflating Time Series by Price Indices

An important task of price indices is to adjust time series for inflation. Many

economic times series – gross national product, company sales, warehouse stock –

reflect changes in a given monetary unit, often indicating a rising trend. This can

point to a real growth in quantity, but it can also indicate hidden inflation-based

nominal growth, which may also be associated with a decline in quantity. Frequently,

increases in both quantity and price are behind increases in value.

For these reasons, managers are interested in real parameter changes adjusted for

inflation, which express value trends at constant prices. Table 6.2 provides sample

trends for average employee salaries at two companies, each in a different country

with different inflation rates. Compared with the base year, the nominal salary in

company 1 increased by 0.5 % (¼106.5�106.0) from 2003 to 2004. But the

inflation rate for this period was 1.5 % (¼105.5�104.0) compared with the base

year. If factors out inflation with the help of the price index (compared with the base

year), then the average salary declined by 1 %. Adjustments for inflation are made

by dividing nominal values by the price index. For the real (inflation-adjusted)

average salary in 2004 Lt
real [in €], we thus find:

Lreal
t ¼ Lnomin al

t

PL0;t
! Lreal

2004 ¼
Lnomin al
2004

PL0;2004
¼ 1; 917:00

1:055
¼ €1; 817:06 (6.28)

In 2003 the real average salary was €1,834.62 per month (see Table 6.2). This

means that, in 2004, employees lost some purchasing power compared to 2003.

While nominal average monthly salaries between 2000 and 2008 increased

by 12.5 %, from €1,800 to €2,025, the real salary in 2008 was only
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Yreal
2008 ¼

2; 025:00

1:095
¼ €1; 849:32 (6.29)

an increase of 2.7 %. It should be noted that real values always change dependent on

the base year of the price index. Hence, comparisons of real values always need to

be anchored to the base year, and presented in terms of indexed values instead of

absolute values. See, for instance, the last column in Table 6.2.

6.5 Shifting Bases and Chaining Indices

As I describe above, the Federal Statistical Office of Germany prepares a new

market basket about every five years. The point is to take into account large changes

in product markets. Strictly speaking, a measurement of price and quantity indices

is only possible when based on the same market basket. Hence, over longer time

series, it is impossible to calculate inflation or adjust for inflation, as product

markets undergo dynamic changes. This is where base shifts and chained indices

come into play. We already learned about the base shift technique in Sect. 6.1,

where we shifted the price relative of diesel fuel from the base year 2001 to the new

base year 2004 by dividing the price relative of 2001 by the price relative of 2004.

We can proceed analogously with any new base year (τ) for any index series. Index
values for all years change according to the following formula:

Inewτ;t ¼ Iold0;t

Iold0;τ
(6.30)

Let us consider the example from Table 6.2. The index for the change of real

income values in company 2 is based on 2002 (see the second-to-last column). If we

now want to base this index series on the year 2000 so as to compare it with the

corresponding index series of company 1, we must divide every index value of

company 2 by the index value for 2000. This produces the final column in Table 6.2.

Table 6.2 Sample salary trends for two companies

Price Price

[in €]
Index 

[2000=100]
Index 

[2000=100]
[in €]

Index 
[2000=100]

[in €]
Index 

[2002=100]
Index 

[2002=100]
[in €]

Index 
[2002=100]

Index 
[2000=100]

2000 1,800.00  100.0 100.0 1,800.00 100.0 1,850.00  98.3 99.0 1,868.69 99.3 100.0

2001 1,854.00  103.0 102.0 1,817.65 101.0 1,868.50  99.3 99.7 1,874.12 99.6 100.3

2002 1,845.00  102.5 103.0 1,791.26 99.5 1,881.45  100.0 100.0 1,881.45 100.0 100.7

2003 1,908.00  106.0 104.0 1,834.62 101.9 1,868.50  99.3 101.0 1,850.00 98.3 99.0

2004 1,917.00  106.5 105.5 1,817.06 100.9 1,877.75  99.8 102.5 1,831.95 97.4 98.0

2005 1,926.00  107.0 106.5 1,808.45 100.5 1,951.75  103.7 103.0 1,894.90 100.7 101.4

2006 1,962.00  109.0 108.0 1,816.67 100.9 1,979.50  105.2 103.0 1,921.84 102.1 102.8

2007 1,998.00  111.0 109.0 1,833.03 101.8 1,998.00  106.2 103.5 1,930.43 102.6 103.3

2008 2,025.00  112.5 109.5 1,849.32 102.7 2,025.75  107.7 104.0 1,947.84 103.5 104.2

Nominal Salary Real Salary Nominal Salary

Company 1

Real Salary

Company 2

Year

Source: Author’s research.
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Although the nominal income for company 2 has risen less than in company 1, its

real increase is 4.2 %, which is greater than the real increase of company 1 (2.7 %).

The technique of chaining indices allows indices with different and time-

restricted market baskets to be joined, forming one long index series. The only

requirement is that each of the series to be chained overlaps with its neighbour in an

observation period (τ). For the forward extrapolation, the index with older

observations (I1between periods 0 and τ) remains unchanged and the base of the

younger overlapping index series (I2) shifts to the older index. We do this by

multiplying the values of the younger index series with the overlapping value of

the older index series (at time τ):
Forward extrapolation:

~I0;t ¼
I10;t for t � τ

I10;τ � I2τ;t for t > τ

(
(6.31)

With the backward extrapolation, the index with the younger observations

(I2starting out timeτ) remains unchanged and the values of the older overlapping

index series (I1) are divided by the overlapping value of the younger index

(at timeτ):
Backward extrapolation:

~I0;t ¼
I10;τ

I2τ;t
for t < τ

I2τ;t for t � τ

8><>: (6.32)

If more than two index series are joined, we must gradually join the oldest series

to the youngest series in the forward extrapolation and the youngest series to the

oldest series in the backward extrapolation. Table 6.3 gives a sample of chain

indices for backward and forward extrapolations.

Table 6.3 Chain indices for forward and backward extrapolations

2005 2006 2007 2008 2009

Index 1 1.05 1.06

Index 2 1.00 1.4 1.05

Index 3 1.00 1.01

Chain

Index

Backward

extrapolation

1.05/

(1.06∙1.05)¼
1.00/

1.05¼
1.04/

1.05¼
1.00¼ 1.01¼

0.94 0.95 0.99 1.0 1.01

Forward

extrapolation

1.05¼ 1.06¼ 1.06∙1.04¼ 1.06∙1.05¼ 1.06∙1.05∙1.01¼
1.05 1.06 1.10 1.11 1.12
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6.6 Chapter Exercises

Exercise 26:

The following table presents price and sales trends for consumer goods A, B, C

and D in years 1 and 3.

Good Price 1 Price 1 Price 3 Price 3

A 6 22 8 23

B 27 4 28 5

C 14 7 13 10

D 35 3 42 3

(a) Calculate the Laspeyres price and quantity indices for reporting year 3 using

base year 1. Interpret your results.

(b) Calculate the Paasche price and quantity indices for reporting year 3 using base

year 1. Interpret your results.

(c) Why is the inflation indicated by the Paasche index usually lower?

(d) Calculate the Fisher price and quantity indices for reporting year 3 using base

year 1.

(e) Calculate and interpret the value index for reporting year 3 using base year 1.

(f) What is the per cent of annual price increase after calculating the Laspeyres

price index?

Exercise 27:

You are given the following information:

2005 2006 2007 2008 2009

Nominal values $100,000 $102,000 $105,060 $110,313 $114,726

Nominal values index [2005 ¼ 100]

Real values

Real value index [2005 ¼ 100]

Price index 1 [2004 ¼ 100] 101.00 102.00 102.50

Price index 2 [2007 ¼ 100] 100.00 103.00 103.50

Price index 3 [2004 ¼ 100]

Price index 3 [2004 ¼ 100]

(a) Calculate the nominal value index [2005 ¼ 100].

(b) Chain the price trends for base year 2004.

(c) With the resulting index series, shift the base to 2005.

(d) Calculate the real value changes and the real value index for the base year 2005.
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Cluster Analysis 7

Before we turn to the subject of cluster analysis, think for a moment about the

meaning of the word cluster. The term refers to a group of individuals or objects

that converge around certain point, and are thus closely related in their position. In

astronomy there are clusters of stars; in chemistry, clusters of atoms. Economic

research often relies on techniques that consider groups within a total population.

For instance, firms that engage in target group marketing must first divide

consumers into segments, or clusters of potential customers. Indeed, in many

contexts researchers and economists need accurate methods for delineating homog-

enous groups within a set of observations. Groups may contain individuals (such as

people or their behaviours) or objects (such as firms, products, or patents). This

chapter thus takes a cue from Goethe’s Faust: “You soon will [understand]; just

carry on as planned/You’ll learn reductive demonstrations/And all the proper

classifications.”

If we want to compare individuals or objects, we must do more than merely

sample them. We must determine the dimensions of comparison, which is to say,

the independent variables. Should individuals be grouped by age and height? Or by

age, weight, and height?

A cluster is a group of individuals or objects with similar (i.e. homogenous)

traits. The property traits of one cluster differ strongly from those of other clusters.

The aim of cluster analysis is to identify homogeneous clusters within a set of

heterogeneous individuals or objects.

In this way, cluster analysis is an exploratory data analysis technique. “The term

exploratory is important here,” Everitt and Rabe-Hesketh write, “since it explains

the largely absent ’p-values’, ubiquitous in many areas of statistics. [. . .] Clustering
methods are intended largely for generating rather than testing hypothesis“ (2004,

p. 267). This quote speaks to a frequent misunderstanding regarding cluster analy-

sis: Although it is able to group observations in a complex dataset, cluster analysis

cannot determine whether the resulting groups differ significantly from each other.

The mere fact that groups exist does not prove that significant differences exist

between them.

T. Cleff, Exploratory Data Analysis in Business and Economics,
DOI 10.1007/978-3-319-01517-0_7, # Springer International Publishing Switzerland 2014
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Another misunderstanding about cluster analysis is the belief that there is only

one cluster analysis technique. In reality there are many clustering methods. Indeed,

detractors claim there are as many clustering methods as users of cluster analysis.

This claim has merit, as there is an incredible variety of distance measures and

linkage algorithms can be used for a single clustering method (as we’ll see later).

Nevertheless, we can identify two general types of clustering methods:

1. Hierarchical cluster analysis

2. K-means cluster analysis

The following sections offer a brief introduction to both types of cluster analysis.

7.1 Hierarchical Cluster Analysis

Hierarchical clustering can be agglomerative or divisive. Agglomerative methods
begin by treating every observation as a single cluster. For n observations there are

n clusters. Next, the distance between each cluster is determined and those closest

to each other aggregated into a new cluster. The two initial clusters are never

separated from each other during the next analytical steps. Now there are n-1
clusters remaining. This process continues to repeat itself so that with each step

the number of remaining clusters decreases and a cluster hierarchy gradually

forms.1 At the same, however, each new step sees an increase in the difference

between objects within a cluster, as the observations to be aggregated grow further

apart. Researchers must decide at what point the level of heterogeneity outweighs

the benefits of aggregation.

Using a dataset employed by Bühl (2012, p. 627), let’s take a look at the methods

of hierarchical cluster analysis and the problems associated with them.

Our sample dataset on 17 beers (see Fig. 7.1) contains the variables cost per fl.
oz. and calories per fl. oz. Cluster analysis helps us determine how best to group the

beers into clusters.

Using agglomerative clustering, we begin by seeing each beer as an independent

cluster and measuring the distances between them. But what should be our refer-

ence point for measurement?

In the following section, we determine the shortest distance between the beers

Dos Equis and Bud Light. If we take most direct route – as the crow flies – and split

it into a vertical distance (¼a) and a horizontal distance (¼b) we get a right triangle

1 By contrast, divisive clustering methods start by collecting all observations as one cluster. They

proceed by splitting the initial cluster into two groups, and continue by splitting the subgroups,

repeating this process down the line. The main disadvantage of divisive methods is their high

level of computational complexity. With agglomerative methods, the most complicated set of

calculations comes in the first step: for n observations, a total of n(n-1)/2 distance measurements

must be performed. With divisive methods containing two non-empty clusters, there are a total of

2(n-1)-1 possible calculations. The greater time required for calculating divisive hierarchical

clusters explains why this method is used infrequently by researchers and not included in standard

statistics software.
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(see Fig. 7.2). Using the Pythagorean theorem (a2 + b2 ¼ c2), the direct distance

can be expressed as the root of the sum of the squared horizontal and vertical

distances:

Distance Dos Equis;Bud Lightð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x1ð Þ2 þ y2 � y1ð Þ2

q
(7.1)

Distance Dos Equis;Bud Lightð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
70� 44ð Þ2 þ 145� 113ð Þ2

q
¼ 41:23 (7.2)

Dos Equis

Bud Light

Calories (per fl.oz.)    

C
os

t (
U

S$
 p

er
 fl

. o
z.

) 

a2 c2

b2

Fig. 7.2 Distance calculation 1

Fig. 7.1 Beer dataset

(Source: Bühl 2012, p. 627)
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If more than two variables are used for comparing properties, we can no longer

use the Pythagorean theorem as before. Here we need to expand the Pythagorean

theorem for r-dimensional spaces by determining the Euclidian distance between

two observations2:

Distance A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xb1 � xa1
� �2 þ xb2 � xa2

� �2 þ � � � þ xbn � xan
� �2q

(7.3)

Using this information, we can now determine the distances between, say,

Tuborg, Dos Equis, and Budweiser.

In part 1 of Fig. 7.3 the distance between Budweiser and Tuborg is 11 units,

while the distance between Budweiser and Dos Equis is only 1.04 units. These

results contradict the intuitive impression made by the figure. Budweiser and

Tuborg seem much closer to each other than Budweiser and Dos Equis.

In this case, our visual intuition does not deceive us. The variables cost per fl. oz.
and calories per fl. oz. display two completely different units of measure. The

calorie values are in the hundreds, while the costs range between 0.30 and 0.77.

This means that differences in calories – e.g. the 11 units separating Tuborg and

Budweiser – have a stronger impact on the distance than the differences in cost –

e.g. the 0.27 units separating Tuborg and Budweiser. And if we change the unit of

measure from calories to kilocalories, the distance values shift dramatically, even as

the cost difference remains the same.

This teaches us an important lesson: distance measurements in cluster analysis

must rely on the same units of measure. If the properties are in different units of

measures, the variables must be made “unit free” before being measured. Usually,

-

Dos Equis

Budweiser

Calories (per fl.oz.) 

C
os

t (
U

S$
 p

er
 fl

.o
z.

) 

Tuborg

D(Budweiser,Tuborg)=11

D(Budweiser,Dos Equis)=1.04
Dos Equis

Budweiser

Z-score: Calories (per fl.oz.)

Z-
sc

or
e:

 c
os

t (
U

S$
 p

er
 fl

.o
z.

)  

Tuborg

D(Budweiser,Tuborg)=0.34

D(Budweiser,Dos Equis)=1.84

Fig. 7.3 Distance calculation 2

2 In the case of two dimensions, the Euclidean distance and the Pythagorean theorem provide the

same results.
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this is done by applying a z-transform to all variables in order to standardize them.3

These functions are available in most statistics programmes. Sometimes the

z-transform is overlooked, even in professional research studies. A warning sign

is when only the variables with large values for a group (e.g. firm size, company

expenditures) are significant. This need not indicate a lack of standardization,

though researchers must be on the alert.

After the variables in our beer example are subjected to a z-transform, we arrive

at the results in part 2 of Fig. 7.3. The distance between Tuborg and Budweiser is

now 0.34 – less than the distance between Budweiser and Dos Equis (1.84) – which

agrees with the visual impression made by the figure.

The Euclidean distance is just one distance measure. There is a variety of other

ways to measure the distance between two observations. One method is a similarity

measure such as phi. The more similar the observations are to each other, the closer

their distance. Every distance measure can be transformed into a similarity measure

by creating an inverse value and vice versa. Distance and similarity measures are

generally known as proximity measures.

Despite the analogous relationship between distance and similarity measures,

distance measures are mostly used to emphasize differences between observations,

while similarity measures emphasize their symmetries. Which proximity measure is

appropriate depends on the scale. Figure 7.4 presents the most important distance

and similarity measures grouped by scale.

It is important to note that only one proximity measure may be used in a

hierarchical cluster analysis. For instance, the chi-square may not be used for

some variables and the squared Euclidean distance for others. If two different

variable scales exist at the same time, we must find a proximity measure permitted

Interval
Distance Euclidean distance, squared Euclidean distance, Chebychev, block, 

Minkowski, Mahalanobis

Similarity cosine, Pearson correlation

Counts
Distance chi-square measure 

Similarity phi-square measure

Binary

Distance Euclidean distance, squared Euclidean distance, size difference, 
pattern difference, variance, dispersion, shape

Similarity

phi 4-point correlation, lambda, Anderberg’s D, dice, Hamann, 
Jaccard, Kulczynski 1, Kulczynski 2, Lance and Williams, Ochiai, 
Rogers and Tanimoto, Russel and Rao, Sokal and Sneath 1, Sokal 
and Sneath 2, Sokal and Sneath 3, Sokal and Sneath 4, Sokal and 
Sneath 5, Yule’s Y, and Yule’s Q

Fig. 7.4 Distance and similarity measures

3 In standardization – sometimes also called z-transform – the mean of x is subtracted from each

x variable value and the result divided by the standard deviation (S) of the x variable: zi ¼ xi�x
S :
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for both. If, say, we have binary and metric variables, we must use the squared

Euclidean distance. Backhaus et al. (2008, p. 401) propose two additional strategies

for dealing with the occurrence of metric and nonmetric variables. The first strategy

involves calculating proximity measures for differing scales separately and then

determining a weighted or unweighted arithmetic mean. In the second strategy,

metric variables are transformed at a lower scale. For instance, the variable calories
per fl. oz. can be broken down into different binary calorie variables.4

Let us return again to our beer example. Using the squared Euclidean distance,

we obtain the following distance matrix (see Fig. 7.5):
After determining the distance between each observation, we aggregate the

closest pair into a cluster. These are Heineken (no. 5) and Becks (no. 12), which

are separated by 0.009.

The new cluster configuration consists of 15 observations and a cluster

containing Heineken and Beck’s. Now we once again subject the (clusters of)

beers to a distance measurement and link the beers closest to each other. These

turn out to be Schlitz Light (no. 17) and Coors Light (no. 10). The configuration

now consists of 13 different data objects and two clusters of two beers each.

We continue to repeat the distance measurement and linkage steps. We can link

beers with other beers, beers with clusters, or clusters with other clusters. Figure 7.6

shows the sequence of steps in the linkage process.

With every step, the heterogeneity of linked objects tends to rise. In the first step,

the distance between Heineken and Beck’s is only 0.009; by the 10th step, the

linkage of Pabst Extra Light (no. 14) and Olympia Gold Light (no. 16) exhibits a

distance of 0.313. The sequence of linkage steps and their associated distance

values can be taken from the agglomeration schedule. For each step, the combined

observations are given under cluster combined and the linkage distances under

coefficients. If one of the linked objects is a cluster, the number of an observation

from within the cluster will be used as its stand-in (Fig. 7.7).

But we have yet to answer one question: If clusters with multiple beers arise

during the cluster analysis, where should we set the points for measuring distance

within a cluster? There is a wide variety of possibilities, known as linkage methods.
There are five common linkage methods for agglomerative hierarchical clustering

alone:

1. The single linkage method uses the closest two observations of two clusters as

the basis for distance measurement. It is known as a merge-the-closest-point
strategy. This technique tends to form long and snakelike chains of clusters

(see Fig. 7.8).

2. The complete linkage method, by contrast, uses the furthest two observations of

two clusters as the basis for distance measurement. This method generates wide

4 Say we wanted to dichotomize calories per fl. oz. using three calorie variables. Calorie variable 1
assumes the value of 1 when the calories in a beer lie between 60 and 99.99 calories, otherwise it is

equal to zero. Calorie variable 2 assumes the value 1 when the calories in a beer lie between 100

and 139.99 calories, otherwise it is equal to zero. Calorie variable 3 assumes the value 1 when the

calories in a beer lie between 140 and 200 calories, otherwise it is equal to zero.
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yet compact cluster solutions. This technique may not be used when elongated
cluster solutions exist in the dataset.

3. The centroid linkage method calculates the midpoint for each cluster from its

observations. This produces the centroid – the cluster’s centre of gravity – which

serves as the basis for distance measurement.

Budweiser Löwenbräu Michelob Kronenbourg Heineken Schmidt's
1:Budweiser 0.279 0.541 4.832 5.430 0.793
2:Lowenbrau 0.279 0.043 3.065 3.929 1.601
3:Michelob 0.541 0.043 2.518 3.482 2.075
4:Kronenbourg 4.832 3.065 2.518 0.387 9.097
5:Heineken 5.430 3.929 3.482 0.387 10.281
6:Schmidts 0.793 1.601 2.075 9.097 10.281
7:Pabst Blue Ribbon 0.178 0.488 0.765 6.001 7.063 0.321
8:Miller Light 1.956 3.366 4.062 9.049 8.081 3.011
9:Budweiser Light 0.933 1.945 2.487 7.044 6.526 2.027
10:Coors Light 1.746 2.941 3.552 7.852 6.877 3.145
11:Dos Equis 3.386 2.387 2.137 0.646 0.275 7.433
12:Becks 5.091 3.688 3.278 0.428 0.009 9.834
13:Rolling Rock 0.228 0.832 1.223 7.010 7.867 0.176
14:Pabst Extra Light 5.696 8.117 9.205 15.739 13.879 6.326
15:Tuborg 0.117 0.120 0.275 4.396 5.376 0.847
16:Olympia Gold Light 5.050 6.999 7.900 12.663 10.645 6.623
17:Schlitz Light 2.208 3.483 4.123 8.287 7.101 3.757

Pabst 
Blue Ribbon Miller Light Bud Light Coors Light Dos Equis Beck's

1:Budweiser 0.178 1.956 0.933 1.746 3.386 5.091
2:Lowenbrau 0.488 3.366 1.945 2.941 2.387 3.688
3:Michelob 0.765 4.062 2.487 3.552 2.137 3.278
4:Kronenbourg 6.001 9.049 7.044 7.852 0.646 0.428
5:Heineken 7.063 8.081 6.526 6.877 0.275 0.009
6:Schmidts 0.321 3.011 2.027 3.145 7.433 9.834
7:Pabst Blue Ribbon 2.830 1.637 2.712 4.802 6.709
8:Miller Light 2.830 0.194 0.050 5.429 7.569
9:Budweiser Light 1.637 0.194 0.135 4.128 6.077
10:Coors Light 2.712 0.050 0.135 4.461 6.405
11:Dos Equis 4.802 5.429 4.128 4.461 0.191
12:Becks 6.709 7.569 6.077 6.405 0.191
13:Rolling Rock 0.080 2.184 1.226 2.169 5.369 7.464
14:Pabst Extra Light 6.817 1.044 2.123 1.414 10.483 13.201
15:Tuborg 0.125 3.030 1.709 2.756 3.482 5.081
16:Olympia Gold Light 6.480 0.746 1.643 0.869 7.823 10.057
17:Schlitz Light 3.299 0.078 0.289 0.029 4.682 6.619

Rolling Rock
Pabst Extra 

Light Tuborg
Olympia Gold 

Light Schlitz Light
1:Budweiser 0.228 5.696 0.117 5.050 2.208
2:Lowenbrau 0.832 8.117 0.120 6.999 3.483
3:Michelob 1.223 9.205 0.275 7.900 4.123
4:Kronenbourg 7.010 15.739 4.396 12.663 8.287
5:Heineken 7.867 13.879 5.376 10.645 7.101
6:Schmidts 0.176 6.326 0.847 6.623 3.757
7:Pabst Blue Ribbon 0.080 6.817 0.125 6.480 3.299
8:Miller Light 2.184 1.044 3.030 0.746 0.078
9:Budweiser Light 1.226 2.123 1.709 1.643 0.289
10:Coors Light 2.169 1.414 2.756 0.869 0.029
11:Dos Equis 5.369 10.483 3.482 7.823 4.682
12:Becks 7.464 13.201 5.081 10.057 6.619
13:Rolling Rock 5.599 0.344 5.473 2.696
14:Pabst Extra Light 5.599 7.428 0.313 1.189
15:Tuborg 0.344 7.428 6.697 3.324
16:Olympia Gold Light 5.473 0.313 6.697 0.608
17:Schlitz Light 2.696 1.189 3.324 0.608

Fig. 7.5 Distance matrix
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4. Centroid linkage should not be confused with the average linkage method,

which determines the average distance between the observations of two clusters.

Generally, this technique forms neither chains nor wide cluster solutions.

Kaufman and Rousseeuw (1990) describe it as a robust method independent of

available data.

5. Ward’s method (proposed by Joe H. Wardin 1963) links clusters that optimize a

specific criterion: the error sum of squares. This criterion minimizes the total

within-cluster variance. As with other hierarchical methods, it begins by seeing

every observation as its own cluster. In this case, the error sum of squares
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Fig. 7.6 Sequence of steps in the linkage process

Agglomeration Schedule
Stage Cluster Combined Coefficients Stage Cluster First Appears Next 

StageCluster 1 Cluster 2 Cluster 1 Cluster 2
1 5 12 .004 0 0 9
2 10 17 .019 0 0 4
3 2 3 .040 0 0 11
4 8 10 .078 0 2 7
5 7 13 .118 0 0 8
6 1 15 .177 0 0 11
7 8 9 .318 4 0 14
8 6 7 .471 0 5 13
9 5 11 .625 1 0 12
10 14 16 .781 0 0 14
11 1 2 1.045 6 3 13
12 4 5 1.370 0 9 16
13 1 6 2.470 11 8 15
14 8 14 3.907 7 10 15
15 1 8 15.168 13 14 16
16 1 4 32.000 15 12 0

Fig. 7.7 Agglomeration schedule
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assumes the value of zero, as every observation equals the cluster mean. Let’s

illustrate the next linkage step with an example. Assume the initial observation

values are 2, 4, and 5. We begin by identifying the error sum of squares:

QS ¼ (2–2)2 + (4–4)2 + (5–5)2 ¼ 0. Next we calculate the error sum of squares

for all possible combinations of next linkages. From this we choose clusters that

lead to the fewest increases in the error sum of squares. For our example, the

following clusters are possible:

(1) The observation values 2 and 4 with a mean of 3,

(2) The observation values 2 and 5 with a mean of 3.5, or

(3) The observation values 4 and 5 with a mean of 4.5.

These clusters yield the following error sums of squares:

(1) QS ¼ [(2–3)2 + (4–3)2] + (5–5)2 ¼ 1

(2) QS ¼ [(2–3.5)2 + (5–3.5)2] + (4–4)2 ¼ 2.25

(3) QS ¼ (2–2)2 + [(4–4.5)2 + (5–5.5)2] ¼ 0.25

The value for the third linkage is the lowest. Its aggregated cluster raises the

error sum of squares for all clusters by 0.25, the least of them all.

When several variables are used for clustering, the sum of squares is determined

not by the cluster mean but by the cluster centroid. Figure 7.8 presents the basic idea

behind each linkage method.

Though each method follows a logical rationale, they rarely lead to the same

cluster solution. Dilation techniques like the complete linkage method tend to

produce equal sized groups; contraction techniques like the single linkage method

tend to build long, thin chains. “We can make use of the chaining effect to detect

[and remove] outliers, as these will be merged with the remaining objects – usually

at very large distances – in the last step of the analysis” (Mooi and Sarstedt 2011,

p. 252). Ward’s method, centroid linkage, and average linkage exhibit no dilating or

contracting qualities, hence their status as “conservative” methods. In scientific

practice, the usual recommendation is to use single linkage first. After excluding

possible outliers, we can move onto Ward’s method. Ward’s method has

Single linkage (1) Single linkage (2): chaining Complete linkage 

Average linkage Centroid linkage Ward linkage

Fig. 7.8 Linkage methods
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established itself as the preferred technique for metric variables, and multiple

studies have confirmed the quality of the cluster solutions generated by this

technique (Berg 1981, p. 96).

As the heterogeneity of linked observations increases with each step, we must

keep in mind that at a certain number of clusters the differences outweigh the utility

of linkage. Recall again the definition of a cluster: a group of individuals or objects

with similar (homogenous) traits. What are some criteria for when to stop the

linkage process?

Though researchers ultimately have to make this decision themselves, there are

three criteria to help ensure the objectivity of their results.

1. It is better to end with a cluster number for which heterogeneity increases in

jumps. The agglomeration schedule can provide some indications of when such

jumps occur (see the column coefficients in Fig. 7.7; here the jump occurs

between the coefficients 3.907 and 15.168, which suggests a three-cluster solu-

tion). Dendrograms and scree plots are two other forms of visual identification.

The term dendrogram comes from the Greek word for tree. It’s called this

because it presents cluster solutions in branch-like form. The length of each branch

equals the heterogeneity level of the cluster, with values normalized to a scale

between 0 and 25. Reading the following dendrogram of the beer example from left

to right, we see that the beer cluster 4, 5, 11, and 12 has a short branch, or a low

heterogeneity level. The same is true of the beer cluster 1, 2, 3, and 15. When the

latter cluster is linked with the beer cluster 6, 7, and 13, heterogeneity increases

somewhat. The linkage of light beers (8, 9, 10, 14, 16, 17) with affordable regular

beers (1, 2, 3, 6, 7, 13, 15) implies a comparatively high level of heterogeneity (long

branches).

When determining the optimal number of clusters, we proceed as a gardener who

begins pruning his tree at the first big branch on the left. This “pruning” is indicated

by the dotted line in Fig. 7.9. The number of branches to be pruned corresponds to

the number of clusters – in this case, three.

In a scree plot the number of clusters are plotted from lowest to highest on the

x-axis and their respective heterogeneity jumps are plotted on the y-axis. A homog-

enous cluster solution usually occurs when the number of clusters produces a line

that converges asymptotically on the abscissa (Fig. 7.10). Our beer example yields

the following scree plot (confirmed by a three-cluster solution):

Though scree plots and dendrograms are frequently used in social and economic

research, they do not always yield objective and unambiguous results.

2. The second criterion is obtained by calculating the quotient of the variance

within all clusters and the variance of the total sample. This is called the

F-value. If the quotient for all clusters and variables is less than 1, the dispersion

of group properties is low compared with the total number of observations.

Cluster solutions with F-values less than one produce large intragroup homoge-

neity and small intergroup homogeneity. Cluster solutions with F-values over

one have undesirably high heterogeneity levels.

Some statistics programmes do not calculate F-values automatically during

cluster analysis. In such cases, F-values must be determined by calculating
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variances individually. Figure 7.11 provides the corresponding F-values for our

example. In the two-cluster solution, the F-value for the variable calories in cluster
one is noticeably greater than one:

F ¼ 1117:167

1035:110
¼ 1:079 (7.4)

Only with the three-cluster solution are all F-values smaller than one, which is

to say, only the three-cluster solution produces homogenous clusters.
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Fig. 7.10 Scree plot identifying heterogeneity jumps

Fig. 7.9 Dendrogram
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3. The last procedure for checking individual cluster solutions is called discrimi-
nant analysis. Since I do not treat this method explicitly in this book, I will

sketch its relationship to cluster quality only briefly. Discriminant analysis uses

mathematical functions (known as discriminant functions) to present the infor-

mation of independent variables in compressed form. The comparison of the

given cluster classification with the classification predicted by the discriminant

function provides the number of incorrectly classified observations. In my

experience, an error rate over 10% produces qualitatively unusable results. In

our beer example, all cluster solutions between 2 and 5 clusters can be correctly

classified using discriminant analysis. A sample result for the three-cluster

solution is provided in Fig. 7.12.

Discriminant analysis delivers some clues for how to interpret cluster solutions.

Variance analysis, too, can help generate different cluster profiles. Let us consider
the three-cluster solution graphically:

Cluster 3 contains all light beers with a lower-than-average calorie count and

a lower-than-average cost. Cluster 1 contains all low-cost regular beers with a

higher-than-average calorie count. The premium beers in cluster 2 exhibit both

calories cost calories cost
1 Cluster 1035.110 0.022 1.000 1.000
2 Cluster 1117.167 0.003 1.079 0.136
3 Cluster 47.620 0.005 0.046 0.227
4 Cluster 47.619 0.005 0.046 0.227
5 Cluster 57.667 0.001 0.056 0.045

Variance F-value

Fig. 7.11 F-value assessments for cluster solutions 2–5

Fig. 7.12 Cluster solution and discriminant analysis
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higher-than-average costs and higher-than-average calorie counts (Fig. 7.13).

Based on this chart, the three-cluster solution appears to offer logical conclusions.

But can we assume that that the groups are significantly different from one another

statistically? In Janssens et al. (2008, p. 71) you can learn about how variance

analysis (ANOVA) can be used to check group differences for significance.5

A test of these methods should make the advantages and disadvantages of cluster

analysis readily apparent. On the one hand, cluster analysis is not an inference

technique and, as such, has no prerequirements (e.g. the existence of a normal

distribution). On the other hand, it is unable to verify the statistical significance of

the results.

The absence of typical usage requirements (e.g. a normal distribution of

variables) does not mean we can use cluster analysis arbitrarily. A few requirements

still apply:

• The sample must be representative.

• Multicollinearity problems must be avoided. We discussed this problem in the

chapter on regression analysis. Because each variable possesses the same weight

in cluster analysis, the existence of two or more multicollinear variables leads to

a high likelihood that this dimension is represented twice or more in the model.

Observations that exhibit similarity for this dimension have a higher chance of

ending up in a common cluster.

• Agglomerative methods with large datasets cannot be calculated with traditional

desktop software. In these instances, a k-means cluster analysis should be used

instead.
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Cluster #1:
Low-cost regular beers

Cluster #2:
Premium beers

Fig. 7.13 Cluster interpretations

5When we apply this technique to the variables in our sample – cluster membership is an

independent variable and cost and calories are dependent variables – we ascertain significant

differences among the three groups. According to the post-hoc method, premium beers are

significantly more expensive than other beers and light beers have significantly fewer calories

than other beers. Scheffé’s and Tamhane’s tests yield similar significance differences.

7.1 Hierarchical Cluster Analysis 175



7.2 K-Means Cluster Analysis

K-means clustering is another method of analysis that groups observations into

clusters. The main difference between k-means clustering and hierarchical cluster-

ing is that users of k-means clustering determine the number of clusters at the

beginning. In the first step, we determine an initial partition by assigning

observations to clusters. We need not worry about whether our assignments are

arbitrary or logical. The only problem with poor assignments is that they increase

calculating time. The better the clustering is in the initial partition, the faster we

obtain the final result.

After we set the initial partition, we can then start thinking about the quality of

the clustering. Let us turn again to our beer example. Assume we have set the three

clusters shown in Fig. 7.14. This clustering is different from that provided by

hierarchical analysis. Here Bud Light (no. 9) is grouped with low-cost beers, not

with light beers.

We begin by calculating the centroid for each of the clusters.6 Every observation

should be close to the centroid of its cluster – once again, a cluster is by definition a

group of objects with similar traits – and at the very least should be closer to the

centroid of its own cluster than to the centroid of a neighbouring cluster. When we

reach observation 9 (Fig. 7.14), we notice that Bud Light has a distance of 0.790

from its own centroid7 (cluster #1) and a distance of 0.65 from the centroid of

cluster #3.8 We thus assign Bud Light to the light beers in cluster #3. This changes

the location of the centroids of both clusters, so we must again verify that all

observations lie closer to their own centroid than to the centroid of the neighbouring

cluster. If they do, then we have arrived at the optimal clustering. If not, the

observations must be reassigned and the centroids calculated anew.

There are a variety of other strategies for improving the quality of k-means

clustering. Backhaus et al. (2008, p. 444) prefer variance to centroid distance for

assessing assignments. When using this technique, we first determine the sum of

squared errors for the initial partition. Then we check which change in assignment

reduces the sum of squared errors the most. We repeat this process until the total

error variance can no longer be minimized.

K-means clustering has the following requirements:

• Knowledge about the best number of clusters. Different cluster solutions can be

tested and their quality compared using a suitable method, such as hierarchical

cluster analysis, discriminant analysis or variance analysis.

• Metric variables must be z-transformed and checked for multicollinearities

before clustering.

6 The centroid is determined by calculating the mean for every variable for all observations of each

cluster separately.
7 (�0.401-(�0.401))2 + (�1.353-(�0.563))2 ¼ 0.792: Distance: 0.79
8 (�0.571-(�0.401))2 + (0.486-(�0.563))2 ¼ 0.652: Distance: 0.65
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Due to the high computational complexity of hierarchical agglomerative

methods, researchers with large datasets often must turn to k-means clustering.

Researchers using hierarchical clustering can also use k-means clustering to test the

quality of a given cluster solution.

7.3 Cluster Analysis with SPSS and Stata

This section uses the SPSS and Stata sample datasets beer.sav and beer.dta. Follow
the steps outlined in the following Figs. 7.15, 7.16, and 7.17.

7.4 Chapter Exercises

Exercise 28:

The share of the population living in urban areas and infant deaths per 1,000 births

were collected for 28 European countries. Afterward the data underwent a hierar-

chical cluster analysis (Fig. 7.18). The results are presented below:

(a) Sketch the basic steps of the cluster analysis method from the agglomeration

table.

(b) How many clusters make sense from a methodological standpoint? Explain

your answer.

Exercise 29:

A market research institute studied the relationship between income and personal

satisfaction (Fig. 7.19). They used hierarchical clustering to analyse their data:

(a) Assume you decide for a four-cluster solution. Circle the four clusters in the

following graphic.
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Fig. 7.14 Initial partition for

k-means clustering
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(b) Characterize the contents of the four clusters.

(c) Assume you decide for a five-cluster solution. Circle the five clusters in the

above graphic.

� ® ®
Select the variables/items are to be used for cluster analysis. 

In the Statistics… window: use Agglomeration schedule and 
Proximity matrix (indicate first proximity matrix). Cluster 
Membership displays information about which clusters the 
observations belong to. It can be set for different numbers of 
clusters.
In the Plots… window: use Dendrogram.

The Save… window allows you to save cluster 
memberships. 
• None: no cluster membership will be saved as a variable,
• Single solution: generates a new variable indicating cluster 

membership for a single cluster solution, 
• Range of solutions: just like single solution but for multiple 

cluster solutions.

The Methods… window: see below.

Define the cluster method

Determine the proximity measure for the scale.

Determine whether the original values of the distance 
measure should be used or whether the values should be 
transformed and how they should be transformed (e.g. z -
transform).

Fig. 7.15 Hierarchical cluster analysis with SPSS
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(d) Which approach makes the most sense from a methodological standpoint?

(e) Now, the market research institute used K-means clustering to analyse their

data. Please interpret the table Final Cluster Centres. What is the difference

between the three-cluster-solution of the hierarchical and the K-means

approach?

� ® ®

� ® ® - -

Select the variables to be used standardized

Chose the option Save standardized values as variables

Select the variables (z-scores) to be used. 

The Save… window allows you to save 
cluster membership and a new variable 
indicating the Euclidean distance 
between each case and its classification 
center.

Specify the number of clusters.

In the Options… window you can select 
the following statistics: initial cluster 
centers, ANOVA table, and cluster
information for each case.

Fig. 7.16 K-means cluster analysis with SPSS
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� ® ® ® ®

-
�

� ® ® ® ®

� ® ® ®
�
�

Select the variables (z-scores) to be used. 

Select the (dis)similarity measure.

Select the measurement scale of the selected 
variables.

Select the variables (z-scores) to be used. 

Select the (dis)similarity measure.

Select the measurement scale of the 
selected variables.

Select the number of clusters.

Fig. 7.17 Cluster analysis with Stata
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Final cluster centers

Cluster

1 2 3

Zscore: Income [in euros] .81388 �.04781 �1.34062

Zscore: Personal satisfaction �.52984 1.08662 �.97436

Cluster membership

Case number Cluster Distance Case number Cluster Distance

1 1 .717 10 1 .473

2 1 1.047 11 2 .595

3 3 .574 12 1 .447

4 2 .697 13 3 .490

5 1 .620 14 2 .427

6 2 .107 15 1 .847

7 1 .912 16 2 .761

8 3 .730 17 2 .871

9 3 .639 18 2 .531

Agglomeration Schedule
Stage Cluster Combined Coefficients Stage Cluster First Appears Next 

StageCluster 1 Cluster 2 Cluster 1 Cluster 2
1 7 23 .008 0 0 21
2 4 16 .016 0 0 12
3 9 24 .031 0 0 20
4 13 26 .048 0 0 13
5 11 18 .083 0 0 18
6 12 22 .120 0 0 17
7 5 15 .162 0 0 14
8 14 20 .204 0 0 22
9 3 19 .255 0 0 13
10 6 25 .307 0 0 14
11 27 28 .407 0 0 16
12 4 10 .560 2 0 15
13 3 13 .742 9 4 20
14 5 6 .927 7 10 23
15 4 8 1.138 12 0 19
16 21 27 1.379 0 11 22
17 2 12 1.692 0 6 19
18 11 17 2.008 5 0 21
19 2 4 2.531 17 15 26
20 3 9 3.095 13 3 25
21 7 11 3.695 1 18 23
22 14 21 5.270 8 16 24
23 5 7 7.057 14 21 25
24 1 14 9.591 0 22 27
25 3 5 13.865 20 23 26
26 2 3 25.311 19 25 27
27 1 2 54.000 24 26 0

Fig. 7.18 Hierarchical cluster analysis (Source: Bühl 2012, p. 627)
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Fig. 7.19 Dendrogram
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Factor Analysis 8

8.1 Factor Analysis: Foundations, Methods, Interpretations

Frequently, empirical studies rely on a wide variety of variables – so-called item

batteries – to describe a certain state of affairs. An example for such a collection of

variables is the study of preferred toothpaste attributes by Malhotra (2010, p. 639).

Thirty people were asked the following questions (Fig. 8.1):

Assuming these statements are accurate descriptions of the original object –

preferred toothpaste attributes – we can decrease their complexity by reducing them

to some underlying dimensions or factors. Empirical researchers use two basic

approaches for doing so:

1. The first method adds the individual item values to produce a total index for each

person. The statement scores – which in our example range from 1 to 7 – are

simply added together for each person. One problem with this method occurs

when questions are formulated negatively, as with question 5 in our example.

Another problem with this method is that it assumes the one dimensionality of

the object being investigated or the item battery being applied. In practice, this is

almost never the case. In our example, the first, third, and fifth statements

describe health benefits of toothpaste, while the others describe social benefits.

Hence, this method should only be used for item batteries or scales already

checked for one dimensionality.

2. A second method of data reduction – known as factor analysis – is almost always

used to carry out this check. Factor analysis uses correlation among individual

items to reduce them to a small number of independent dimensions or factors,

without presuming the one dimensionality of the scale. The correlation matrix of

items indicates which statements exhibit similar patterns of responses. These

items are then bundled into factors. Figure 8.2 shows that the health attributes

preventing cavities, strengthening gums, and not preventing tooth decay are

highly correlated. The same is true for the social attributes whitening teeth,
freshening breath, and making teeth attractive. Hence, the preferred toothpaste

attributes should be represented by two factors, not by one.

T. Cleff, Exploratory Data Analysis in Business and Economics,
DOI 10.1007/978-3-319-01517-0_8, # Springer International Publishing Switzerland 2014
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If those surveyed do not show similar patterns in their responses, then the high

level of data heterogeneity and low level of data correlation render the results

unusable for factor analysis. Backhaus et al. (2008, p. 333) gives five criteria for

determining whether the correlation matrix is suitable for running a factor analysis:

1. Most of the correlation coefficients of the matrix must exhibit significant values.

2. The inverse of the correlation matrix must display a diagonal matrix with as

many values close to zero for the non-diagonal elements as possible.

3. The Bartlett test (sphericity test) verifies whether the variables correlate. It

assumes a normal distribution of item values and a χ2 distribution of the test

statistics. It checks the randomness of correlation matrix deviations from an

identity matrix. A clear disadvantage with this test is that it requires a normal

distribution. For any other form of distribution the Bartlett test should not be

used.

1. It is important to buy a 
toothpaste that prevents 
cavities. 

Disagree 
completely 1 2 3 4 5 6 7

Agree 
completely

2. I like a toothpaste that gives 
me shiny teeth. 

Disagree 
completely 1 2 3 4 5 6 7

Agree 
completely

3. A toothpaste should 
strengthen your gums. 

Disagree 
completely 1 2 3 4 5 6 7

Agree 
completely

4. I prefer a toothpaste that 
freshens breath. 

Disagree 
completely 1 2 3 4 5 6 7

Agree 
completely

5. Prevention of tooth decay is 
not an important benefit 
offered by toothpaste. 

Disagree
completely 1 2 3 4 5 6 7

Agree 
completely

6. The most important 
consideration in buying 
toothpaste is a�ractive teeth. 

Disagree 
completely 1 2 3 4 5 6 7

Agree 
completely

Fig. 8.1 Toothpaste attributes

|   cavity whiteness gums fresh decay    attract
-------------+------------------------------------------------------

cavity |   1.0000
whiteness |  -0.0532 1.0000

gums |   0.8731 -0.1550 1.0000
fresh |  -0.0862   0.5722 -0.2478 1.0000
decay |  -0.8576 0.0197  -0.7778 -0.0066 1.0000

attract |   0.0042   0.6405 -0.0181   0.6405 -0.1364 1.0000

Fig. 8.2 Correlation matrix of the toothpaste attributes
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4. A factor analysis should not be performed when, in an anti-image covariance

matrix (AIC),1 more than 25 % of elements below the diagonal have values

larger than 0.09.

5. The Kaiser-Meyer-Olkin measure (or KMO measure) is generally considered by

researchers to be the best method for testing the suitability of the correlation

matrix for factor analysis, and it is recommended that it be performed before

every factor analysis. It expresses a measure of sample adequacy (MSA)

between zero and one. Calculated by all standard statistics software packages,

MSA works for the sampling adequacy test for the entire correlation matrix as

well as for each individual item. The above Table 8.1 suggests how KMO might

be interpreted:

If the correlation matrix turns out to be suitable for factor analysis, we can

assume that regular patterns exist between responses and questions (Fig. 8.3). This

turns out to be the case for our toothpaste attribute survey, which possesses an

acceptable MSA (0.660) and a significant result for the Bartlett test (p < 0.05).

After checking the correlation matrix, we must identify its communalities. The

communalities depend on the method of factor extraction, i.e. on the assumptions of

the model. There are many types of factor analysis. Two are used most frequently:

• Principal component analysis assumes that individual variables can be described

by a linear combination of the factors, i.e. that factors represent variable

variances in their entirety. If there is a common share of variance for a variable

determined by all factors, a communality of 100 % (or 1) results. This desirable

outcome occurs seldom in practice, as item batteries can rarely be reduced to a

few factors representing a variance of all items. With principal component

analysis, a communality less than one indicates a loss of information in the

representation.

Table 8.1 Measure of sampling adequacy (MSA) score intervals

MSA [1.0;0.9] [0.9;0.8] [0.8;0.7] [0.7;0.6] [0.6;0.5] [0.5;0.0]

Score marvellous meritorious middling mediocre miserable unacceptable

Source: Kaiser and Rice (1974, p. 111)

Kaiser-Meyer-Olkin Measure of Sampling Adequacy .660
Bartle�'s Test of Sphericity Approx.Chi-Square 111.314

df 15
Sig. .000

Fig. 8.3 Correlation matrix check

1A discussion of the anti-image covariance matrix (AIC) lies beyond the scope of this book,

though most software programmes are able to calculate it.
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• Principal factor analysis, by contrast, assumes that variable variances can be

separated into two parts. One part is determined by the joint variance of all

variables in the analysis. The other part is determined by the specific variance for

the variable in question. The total variance among the observed variable cannot

be accounted for by its common factors. With principal factor analysis, the

factors explain only the first variance component – the share of variance formed

commonly by all variances – which means that the communality indicator must

be less than one.

The difference in assumptions implied by the two different extraction

methods can be summarized as follows: in principal component analysis, the

priority is placed on representing each item exactly; in principal factor analysis,

the hypothetical dimensions behind the items are determined so the correlation of

individual items can be interpreted. This difference serves as the theoretical starting

point for many empirical studies. For instance, the point of our toothpaste example

is to identify the hypothetical factors behind the survey statements. Therefore, one

should use the principal factor analysis technique.

To check the quality of item representations by the factors, we need to use the

factor loading matrix. The factor loading indicates the extent to which items are

determined by the factors. The sum of all squared factor loadings for a factor is

called the eigenvalue. Eigenvalues allow us to weigh factors based on the empirical

data. When we divide the eigenvalue of an individual factor by the sum

of eigenvalues of all extracted factors we get a percentage value reflecting the

perceived importance for all surveyed persons.

Say we extract from the toothpaste example two factors, one with an eigenvalue

of 2.541 and the other with an eigenvalue of 1.897. This results in an importance of

57.26 % for factor 1 and 42.74 % for factor 2. Later I will explain this importance in

more detail (Fig. 8.4).

The sum of a factor’s eigenvalues strongly depends on the selection of items.

The square of the factor loading matrix reproduces the variables’ correlation

matrix. If there are no large deviations (� 0.05) between the reproduced and the

original correlation matrix, then the reproduction– the representability of the

original data – is considered very good. Figure 8.5 shows the reproduced correlation

Fa
ct

or
Initial Eigenvalues Extraction Sums of Squared 

Loadings
Rotated Sums of Squared 

Loadings

Total
% of 

variance
Cumulative 

% Total
% of 

variance
Cumulative 

% Total
% of 

variance
Cumulative 

%

1 2.73 45.52 45.52 2.57 42.84 42.84 2.54 42.34 42.34

2 2.22 36.97 82.49 1.87 31.13 73.96 1.90 31.62 73.96

3 .44 7.36 89.85

4 .34 5.69 95.54

5 .18 3.04 98.58

6 .09 1.42 100.00

Fig. 8.4 Eigenvalues and stated total variance for toothpaste attributes
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matrix and the residuals from the original matrix for the toothpaste attribute survey.

There is only one deviation above the level of difference (0.05), and it is minor

(0.051). This means that both factors are highly representative of the original data.

Though the number of factors can be set by the researcher himself (which is the

reason why factor analysis is often accused of being susceptible to manipulation)

some rules have crystallized over time. The most important of these is the Kaiser
criterion. This rule takes into account all factors with an eigenvalue greater than

one. Since eigenvalues less than one describe factors that do a poorer job of

explaining variance than individual items do, this criterion is justified, hence its

widespread acceptance. For instance, in our toothpaste example (see Fig. 8.4) an

extraction of the third factor results in a smaller explanatory value than by adding

one of the six items. Hence, a two-factor solution is more desirable in this case.

The Kaiser criterion is often accompanied by a scree plot in which the

eigenvalues are plotted against the number of factors into a coordinate system in

order of decreasing eigenvalues and increasing number of factors. When the curve

forms an elbow toward a less steep decline, all further factors after the one starting

the elbow are omitted. The plot in Fig. 8.6 applies to a three-factor solution.

After we set the number of factors, we interpret the results based on the

individual items. Each item whose factor loading is greater than 0.5 is assigned to

a factor. Figure 8.7 shows the factor loadings for attributes from our toothpaste

Toothpaste should…

…
 p

re
ve

nt
 

ca
vi

tie
s

…
 w

hi
te

n 
te

et
h

…
 st

re
ng

th
en

 
gu

m
s

…
 fr

es
he

n 
br

ea
th

…
 n

ot
 p

re
ve

nt
 

to
ot

h 
de

ca
y

…
 m

ak
e 

te
et

h 
a�

ra
ct

iv
e

Re
pr

od
. C

or
re

la
tio

n 

… prevent cavities .928(b) -.075 .873 -.110 -.850 .046

… whiten teeth -.075 .562(b) -.161 .580 -.012 .629

… strengthen gums .873 -.161 .836(b) -.197 -.786 -.060

… freshen breath -.110 .580 -.197 .600(b) .019 .645

… not prevent tooth decay -.850 -.012 -.786 .019 .789(b) -.133

… make teeth a�ractive .046 .629 -.060 .645 -.133 .723(b)

Re
si

du
al

(a
)

… prevent cavities .022 .000 .024 -.008 -.042

… whiten teeth .022 .006 -.008 .031 .012

… strengthen gums .000 .006 -.051 .008 .042

… freshen breath .024 -.008 -.051 -.025 -.004

… not prevent tooth decay -.008 .031 .008 -.025 -.003

… make teeth a�ractive -.042 .012 .042 -.004 -.003

a  Residuals are calculated between observed and reproduced correlations. There is one 
redundant residual with absolute values larger than 0.05 (at 6.0%).
b  Reproduced communalities.

Fig. 8.5 Reproduced correlations and residuals
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example. Each variable is assigned to exactly one factor. The variables prevent
cavities, strengthen gums, and not prevent tooth decay are loaded on factor 1, which
describe the toothpaste’s health-related attributes.

When positive factor loadings obtain, high factor values accompany high item

values. When negative factor loadings obtain, low item values lead to high factor

values and vice versa. This explains the negative sign in front of the factor loading

for the variable not prevent tooth decay. People who assigned high values to prevent
cavities and strengthen gums assigned low values to not prevent tooth decay. That is
to say, those surveyed strongly prefer a toothpaste with health-related attributes.

The second factor describes the social-benefits of toothpaste: whiten teeth,
freshen breath, and make teeth attractive. Here too, the items correlate strongly,

allowing the surveyed responses to be expressed by the second factor.

Component number

Ei
ge

nv
al

ue
s

Fig. 8.6 Screeplot of the desirable toothpaste attributes

Toothpaste should
Unrotated factors Rotated factors

1 2 1 2
… prevent cavities .949 .168 .963 -.030
… whiten teeth -.206 .720 -.054 .747
… strengthen gums .914 .038 .902 -.150
… freshen breath -.246 .734 -.090 .769
… not prevent tooth decay -.849 -.259 -.885 -.079
… make teeth a�ractive -.101 .844 .075 .847

Extraction method: Principal factor analysis
Rotation method: Varimax with Kaiser standardization

Fig. 8.7 Unrotated and rotated factor matrix for toothpaste attributes
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Sometimes, an individual item possesses factor loadings greater than 0.5 for

several factors at the same time, resulting in a multiple loading. In these cases, we

must take it into account for all the factors. If an item possesses factor loadings less

than 0.5 for all its factors, we must either reconsider the number of factors or assign

the item to the factor with the highest loading.

The factor matrix is normally rotated to facilitate the interpretation. In most

cases, it is rotated orthogonally. This is known as a varimax rotation and it

preserves the statistical independence of the factors. Figure 8.8 below shows the

effect of the varimax rotation on the values of a factor matrix. The variable freshen
breath has an unrotated factor loading of �0.246 for factor 1 (health attributes) and

of 0.734 for factor 2 (social attributes). The varimax method rotates the total

coordinate system from its original position but preserves the relationship between

the individual variables. The rotation calibrates the coordinate system anew. Factor

1 now has the value of �0.090 and factor 2 the value of 0.769 for the item freshen
breath. The varimax rotation reduces the loading of factor 1 and increases the

loading of factor 2, making factor assignments of items more obvious. This is the

basic idea of the varimax method: the coordinate system is rotated until the sum of

the variances of the squared loadings is maximized. In most cases, this simplifies

the interpretation.2

Factor 1

Factor 2

I prefer a toothpaste 
that freshens breath

Fig. 8.8 Varimax rotation for toothpaste attributes

2 There are other rotation methods in addition to varimax, e.g. quartimax, equamax, promax, and

oblimin. Even within varimax rotation, different calculation methods can be used, yielding minor

(and usually insignificant) differences in the results.
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After setting the number of factors and interpreting their results, we must explain

how the factor scores differ among the surveyed individuals. Factor scores

generated by regression analysis provide some indications. The factor score of

factor i can be calculated on the basis of linear combinations of the n original

z-scores (zj) of the surveyed person weighted with the respective values (αij)from
the factor score coefficient matrix (see Fig. 8.9):

Fi ¼ αi1 � z1 þ αi2 � z2 þ αi3 � z3 þ αi4 � z4 þ � � � þ αin � zn (8.1)

For each factor, every person receives a standardized value that assesses the

scores given by individuals vis-à-vis the average scores given by all individuals.

When the standardized factor score is positive, the individual scores are greater than

the average of all responses, and vice versa. In the toothpaste dataset, person #33 has

a value of

F1 ¼ 0:628 � 1:04� 0:024 � �1:38ð Þ þ 0:217 � 1:41� 0:023 � �0:07ð Þ
� 0:166 � �1:31ð Þ þ 0:083 � �0:84ð Þ ¼ 1:14 (8.2)

for factor 1 and a value of

F2 ¼ 0:101 � 1:04þ 0:253 � �1:38ð Þ � 0:169 � 1:41� 0:271 � �0:07ð Þ
� 0:059 � �1:31ð Þ þ 0:5 � �0:84ð Þ ¼ �0:84ð Þ (8.3)

for factor 2. This indicates a higher-than-average preference for health benefits and

a lower-than-average preference for social benefits.

Toothpaste should
Factor

1 2
… prevent cavities .628 .101
… whiten teeth -.024 .253
… strengthen gums .217 -.169
… freshen breath -.023 .271
… not prevent tooth decay -.016 -.059
… make teeth a�ractive .083 .500

Extraction method: Principal axis factoring
Rotation method: Varimax with Kaiser normalization

Fig. 8.9 Factor score coefficient matrix

3 prevent cavities: agree ¼ 6 ! z ¼ 1.04; whiten teeth: agree ¼ 2 ! z ¼ -1.38; strengthen gums:
totally agree ¼ 7 ! z ¼ (1.41); freshen breath: neither agree or disagree ¼ 4 ! z ¼ (-0.07); not
prevent tooth decay: totally disagree ¼ 1 ! z ¼ (-1.31); make teeth attractive: somewhat disagree

¼ 3 ! z ¼ (-0.84).
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Factor analysis may only be used for metrically scaled variables. Some

researchers have described certain conditions under which ordinal scales permit

metric variables (Pell 2005; Carifio and Perla 2008). In any case, different item

measurements (5-point scale versus 7-point scale, say) require prior

standardization. Factor values may only be calculated for persons or observations

for which no missing values exist for any of the items being analyzed. However, it

is possible to impute missing data, enabling a broad analysis with the complete data

set. Different imputation techniques like mean imputation, regression imputation,

stochastic imputation, multiple imputation, etc. are recommended in literature

(see Enders 2010).

8.2 Factor Analysis with SPSS and Stata

This section uses the SPSS and Stata sample datasets toothpaste_attributes.sav and
toothpaste_attributes.dta. For SPSS, select Analyze ! Dimension Reduction !
Factor. . . to open the Factor Analysis dialogue box. In the menu that opens, first

select the variables (items) are to be used for factor analysis. Follow then the steps

outlined in Fig. 8.10.

For Stata, select Statistics ! Multivariate analysis ! Factor and principal
component analysis ! factor analysis to open the Factor Analysis dialog box. In

the menu that opens (Model), first select the variables (items) are to be used for

factor analysis. Follow then the steps outlined in Fig. 8.11.
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Displays mean, standard deviation, and number of valid cases for 
each variable.

Displays initial communalities, eigenvalues, and the percentage of 
variance explained.

Displays coefficients, significance levels, determinant, KMO and 
Bartle�’s test of sphericity, inverse, reproduced, and anti-image 
correlation matrix.

Specify the method of factor extraction. Available methods are 
principal components, unweighted least squares, generalized 
least squares, maximum likelihood, principal axis factoring, 
alpha factoring, and image factoring.

Displays the unrotated factor solution and a scree plot of the 
eigenvalues.

Specify either a correlation matrix or a covariance matrix. 
Usually, correlation matrix should be selected.

Base extraction on Eigenvalue (usually equal to one) or indicate 
a specific number of factors to extract.

first two or three 
factors.

Select the method of 
factor rotation. 
Available methods are 
varimax, direct 
oblimin, quartimax, 
equamax, or promax. 
Usually, varimax
should be selected.

Dispays the rotated 
factor solution and 
loading plots for the 

Creates one new 
variable for each 

factor in the data set.

Displays the factor 
score coefficient 

matrix.

Fig. 8.10 Factor analysis with SPSS
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8.3 Chapter Exercises

Exercise 30:

Interpret the results of the following factor analysis about university students.

KMO and Bartlett’s test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .515

Bartlett’s test of sphericity Approx. Chi-Square 37.813

df 15

Sig. .001

�

® ®
�

® ®

Specify the method: Stata can produce principal 
factor, iterated principal factor, principal -components 
factor, and maximum likelihood factor analyses.

Set upper limit for number of factors. 

Set the minimum value of eigenvalues to be obtained 
(should be one). 

Indicate variable names under which to save the 
factors (e.g. score*).

Determine how factor scores are produced.  For our 
example, select regression scoring method.

Fig. 8.11 Factor analysis with Stata
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Anti-Image Matrices

Intelligence

quotient

Independent

preparation Motivation

Self-

confidence

Assessment

preparation

Contact

hours

Anti-

Image

Covariance

Intelligence

quotient

.397 �.100 �.121 �.114 .076 .052

Independent

preparation

(in hours)

�.100 .191 .115 �.095 �.065 �.112

Motivation

[1:very low

to 50:very

high]

�.121 .115 .202 �.139 .059 �.124

Self-

confidence

[1:very low

to 50:very

high]

�.114 �.095 �.139 .416 �.017 .104

Assessment

preparation

(in hours)

.076 �.065 .059 �.017 .391 �.061

Contact

hours

(in hours)

.052 �.112 �.124 .104 �.061 .114

Anti-

Image

Correlation

Intelligence

quotient

.643a �.362 �.427 �.281a .192 .246

Independent

preparation

(in hours)

�.362 .487a .584 �.338 �.237a �.755

Motivation

[1:very low

to 50:very

high]

�.427 .584 .385a �.479 .210 �.815a

Self-

confidence

[1:very low

to 50:very

high]

�.281 �.338 �.479 .536 �.042 .475

Assessment

preparation

(in hours)

.192 �.237 .210 �.042 .816 �.288

Contact

hours

(in hours)

.246 �.755 �.815 .475 �.288 .450

aMeasures of sampling adequacy(MSA)
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Communalities

Initial Extraction

Intelligence quotient .603 .725

Independent preparation (in hours) .809 .713

Motivation [1 ¼ very low to 50 ¼ very high] .798 .622

Self-confidence [1 ¼ very low to 50 ¼ very high] .584 .556

Assessment preparation (in hours) .609 .651

Contact hours (in hours) .886 .935

Extraction method: Principal axis factoring

Total Variance Explained

Factor

Initial eigenvalues

Extraction sums of

squared loadings

Rotation sums of

squared loadings

Total

% of

variance

Cumu-

lative % Total

% of

variance

Cumu-

lative % Total

% of

variance

Cumu-

lative %

1 2.54 42.39 42.39 2.32 38.62 38.62 2.27 37.88 37.88

2 2.24 37.32 79.72 1.88 31.39 70.01 1.93 32.13 70.01

3 .57 9.51 89.23

4 .34 5.74 94.97

5 .24 4.04 99.01

6 .06 .99 100.00

Extraction method: Principal axis factoring

Rotated factor matrixa

Factor

1 2

Intelligence quotient �.004 .851

Independent preparation (in hours) .839 .091

Motivation [1 ¼ very low to 50 ¼ very high] .264 .743

Self-confidence [1 ¼ very low to 50 ¼ very high] �.166 .727

Assessment preparation (in hours) .759 �.273

Contact hours (in hours) .946 .201

Extraction method: Principal axis factoring

Rotation method: Varimax with Kaiser normalizationa

aRotation converged in 3 iterations
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Solutions to Chapter Exercises 9

Solution 1:

(a) Deceased patients; cause of death; heart attack, stroke, etc.

(b) Student; semester; 1st, 2nd etc.

(c) Type of beverage; alcohol content; 3 %, 4 %, etc.

Solution 2:

(a) Nominal; (b) Metric; (c) Nominal; (d) Interval scaled (metric); (e) Ratio scaled

(metric); (f) Ratio scaled (metric); (g) Ordinal; (h) Ordinal

Solution 3:

See the respective file at the book’s website.

Solution 4:

1. Ordinal

2. Figure based on the following percentages:

First time Rarely Frequently Regularly Daily

15 75 45 35 20

15/190 ¼
7.89 %

75/190 ¼
39.47 %

45/190 ¼
23.68 %

18/190 ¼
18.42 %

20/190 ¼
10.53 %

3. Mode ¼ 2 (rare); median ¼ 3 (frequently)

4. Mean, as this assumes metric scale.

Solution 5:

The distance between years is not uniform. This suggests a rise in motor vehicle

production. In reality, production dropped between 1972 and 1979 (not indicated).

A histogram would be the right choice for such a case.

Solution 6:

(a) First sort the dataset, then: ~x¼ 1
2

x n
2ð Þ þx n

2
þ1ð Þ

� �
¼ 1

2
xð5Þ þ xð6Þ
� �¼ 1

2
4þ5ð Þ¼ 4:5

(b) x ¼ 1
10

X10
i¼1

xi ¼ 48
10
¼ 4:8;

T. Cleff, Exploratory Data Analysis in Business and Economics,
DOI 10.1007/978-3-319-01517-0_9, # Springer International Publishing Switzerland 2014
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(c) MAD ¼ 1
n

Xn
i¼1

xi � ~xj j ¼ 20
10
¼ 2

(d) VarðxÞemp ¼ 1
n

Xn
i¼1

xi � xð Þ2 ¼ 1
n

Xn
i¼1

x2i

 !
� x2 ¼ 288

10
� 4:82 ¼ 5:76

(e) Semp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞemp

q
¼ 2:4

(f) Next calculate the lower and upper quartiles.

x0.25: (n + 1)�p ¼ (10 + 1)�0.25 ¼ 2.75 ! x0.25 ¼ (1�f)�xi + f�xi+1 ¼ 0.25�x2 +
0.75�x

3
¼ 0.25�2 + 0.75�3 ¼ 2.75

x0.75: (n + 1)�p ¼ (10 + 1)�0.75 ¼ 8.25 ! x0.75 ¼ 0.75�x8 + 0.25�x9 ¼ 0.75�6 +

0.25�8 ¼ 6.5.

The interquartile range is x0.75�x0.25 ¼ 3.75.

Solution 7:

In the old sample (n ¼ 50) the sum of all observations is
X50
i¼1

xi ¼ n � x ¼ 50 � 10 ¼

500. The new sample has two more observations, for a total sum of
X52
i¼1

xi ¼ 500þ

18 þ 28 ¼ 546. The value for the arithmetic mean is thusxnew ¼

X52
i¼1

xi

50þ2
¼ 546

52
¼ 10:5.

To calculate empirical variance, the following generally applies:

S2emp ¼ 1
n

Xn
i¼1

x2i

 !
� x2: For the original sample n ¼ 50, S2empold ¼ 4 ¼ 1

50

X50
i¼1

x2i

 !

�102 applies, producing the following sum of squares
X50
i¼1

x2i ¼ 50 � 4 þ 102
� �

¼ 5; 200. From this we can determine the empirical variance of the new sample:

S2empnew ¼
1

nþ2

Xn
i¼1

x2i þx251þx252

 !
�x2new¼

1

52
5;200þ182þ282
� ��10:52¼11:06:

To determine the empirical standard deviation, we must extract the root from the

result, for Sempnew ¼ 3:33.

Solution 8:

(a) x ¼ 3; (b) Semp ¼ 1.79; V ¼ 0.6; (c) identical, as this assumes a coefficient of

variation without units;
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1 2 3 4 5 6

(d) x0.25 ¼ 1; x0.5 ¼ 2.5; x0.75 ¼ 5; (e) Min ¼ 1; Max ¼ 6; (f) right-skewing

tendency; (g) H ¼ 0.136; (h) x geom ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:02ð Þ 1þ 0:04ð Þ 1þ 0:01ð Þ3

p � 1 ¼
2.3 %

Solution 9:

(a) The middle price class is twice as large as the other price classes. A bar graph

(see the figure on the left) would be misleading here because the €5,000 to

€10,000 price class sticks out as a frequently chosen class. But if we consider

the width of the class and create a histogram, a different picture emerges: now

the €10,000 to €12,500 price class is the highest (most chosen). The

height of the bars in the histogram are as follows: 2/2,500 ¼ 0.0008;

8/2,500 ¼ 0.0032; 80/5,000 ¼ 0.016; 70/2,500 ¼ 0.028; 40/2,500 ¼ 0.016

(Fig. 9.1).

(b) Themean can be calculated from the classmidpoint:x ¼ €9,850; the classmedian

must lie above €10,000, as up to €10,000 only 45 % ¼ 1 % + 4 % + 40 % of the

values come together: x0.5 ¼ 10,000 + 2,500�5/35 ¼ €10,357.14; modal class:

€10,000 – 12,500.
(c) x0.55 ¼ 10,000 + 2,500�(5 + 5)/35 ¼ 10,714.28;

(d) x0.2 ¼ 5,000 + 5,000�(15)/40 ¼ €6,875. The cars on the other used market are

more expensive on average.

Solution 10:

The question is about growth rates. Here the geometric mean should be applied.

xgeom ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:04ð Þ 1þ 0:03ð Þ 1þ 0:02ð Þ 1þ 0:01ð Þ4

p � 1 ¼ 0:024939 ¼ 2:49%
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Fig. 9.1 Bar graph and histogram
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Solution 11:

CR2 ¼ 76.67 %

Herfindahl: H ¼
Xn
i¼1

f xið Þ2 ¼ 7
30

� �2 þ 8
30

� �2 þ 15
30

� �2 ¼ 0:38

GINI ¼
2
Xn
i¼1

i � f i� nþ 1ð Þ

n
¼ 2 � 1 � 7

30
þ 2 � 8

30
þ 3 � 15

30

� �� 3þ 1ð Þ
3

¼ 0:18

GINInorm. ¼ n
n�1

� GINI ¼ 0.27

Solution 12:

(a)

High amount spent

(y ¼ 1)

Moderate amount spent

(y ¼ 2)

Low amount spent

(y ¼ 3) Sum (X)

With music (x ¼ 1) 30 5 20 55

W/o music (x ¼ 2) 5 20 20 45

Sum (Y) 35 25 40 100

(b)

High

(y ¼ 1)

Moderate

(y ¼ 2)

Low

(y ¼ 3) Sum (X)

With music (x ¼ 1) Count (Expected counts) 130 (89.25) 30 (26.25) 50 (94.50) 210

W/o music (x ¼ 2) Count (Expected counts) 40 (80.75) 20 (23.75) 130 (85.50) 190

Sum (Y) Count 170 50 180 400

(c)

χ2 ¼ 130� 89:25ð Þ2
89:25

þ 30� 26:25ð Þ2
26:25

þ ::::þ 130� 85:5ð Þ2
85:5

¼ 84:41

(d)

V¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2

n � Min number of columns; number of rowsð Þ�1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
84:41

400 �1

r
¼ 0:46

Solution 13:

(a)

1 person (y ¼ 1) 2 persons (y ¼ 2) �3 persons (y ¼ 3) Sum (x)

0 bananas (x ¼ 1) 20 30 10 60

1 banana (x ¼ 2) 5 20 30 55

2 bananas (x ¼ 3) 6 1 20 27

�3 bananas (x ¼ 4) 2 3 3 8

Sum (y) 33 54 63 150
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(b)

1 person (y ¼ 1) 2 persons (y ¼ 2) �3 persons (y ¼ 3) Sum (x)

0 bananas (x ¼ 1) 40 (40) 0 (4) 40 (36) 80

1 bananas (x ¼ 2) 103 (102.5) 15 (10.25) 87 (92.25) 205

2 bananas (x ¼ 3) 5 (4) 0 (0.4) 3 (3.6) 8

�3 bananas (x ¼ 4) 2 (3.5) 0 (0.35) 5 (3.15) 7

Sum (y) 150 15 135 300

(c) χ2 ¼ 9.77. If the last 3 rows are added together due to their sparseness, we get:

χ2 ¼ 0 + 4 + 0.44 + 0 + 1.45 + 0.16 ¼ 6.06.

(d) V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2

n� Min number of columns; number of rowsð Þ�1ð Þ
q

¼
ffiffiffiffiffiffiffiffi
9:77
300�2

q
¼ 0:1276. If the last 3

rows are added together due to their sparseness, we get: V ¼
ffiffiffiffiffiffiffiffi
6:06
300�1

q
¼ 0:142

(e) Phi is only permitted with two rows or two columns.

Solution 14:

(a) f(Region ¼ Region3|assessment ¼ good) ¼ 2/15�100% ¼ 13.3 %

(b) • Phi is unsuited, as the contingency table has more than two rows/columns.

• The contingency coefficient is unsuited, as it only applies when the tables

have many rows/columns.

• Cramer’s V can be interpreted as follows: V ¼ 0.578. This indicates a

moderate association.

• The assessment good has a greater-than-average frequency in region 1

(expected count ¼ 6.1; actual count ¼ 13); a lower-than-average frequency

in region 2 (expected count ¼ 5.5; actual count ¼ 0); a lower-than-average

frequency in region 3 (expected count ¼ 3.5; actual count ¼ 2). The assess-

ment fair has a greater-than-average frequency in region 2 (expected

count¼ 7.3; actual count ¼ 10); a greater-than-average frequency in region

3 (expected count ¼ 4.6; actual count ¼ 10). The assessment poor has a

greater-than-average frequency in region 1 (expected count ¼ 6.9; actual

count ¼ 8).

• Another aspect to note is that many cells are unoccupied. One can thus ask

whether a table smaller than 3 � 3 should be used (i.e. 2 � 2; 2 � 3;

3 � 2).
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Solution 15:

(a) Y: Sales; X: Price [in 1,000 s]

0

1

2

3

4

5

6

7

30 31 32 33 34 35 36 37 38 39 40 41

Sa
le

s [
in

 1
,0

00
s]

Unit Price [in 1,000s]

(b)

Sales

Unit

price Sales2
Unit

price2

Country

[in

1,000s]

[in

1,000s]

[in

1,000s]

[in

1,000s] Sales Price

R

(Sales)

R

(Price) di di
2

1 6 32 36 1,024.00 192.00 10 2.5 7.5 56.25

2 4 33 16 1,089.00 132.00 7 4 3 9

3 3 34 9 1,156.00 102.00 6 5 1 1

4 5 32 25 1,024.00 160.00 8.5 2.2 6 36

5 2 36 4 1,296.00 72.00 4.5 6.5 �2 4

6 2 36 4 1,296.00 72.00 4.5 6.5 �2 4

7 5 31 25 961.00 155.00 8.5 1 7.5 56.25

8 1 39 1 1,521.00 39.00 2 8.5 �6.5 42.25

9 1 40 1 1,600.00 40.00 2 10 �8 64

10 1 39 1 1,521.00 39.00 2 8.5 �6.5 42.25

Sum 30 352 122 12,488.00 1,003.00 55 55 0 315

Mean 3.0 35.2 12.2 1,248.80 100.30 5.5 5.5 0.0 31.5

202 9 Solutions to Chapter Exercises



Unit price [in 1,000 s of MUs]:

x ¼ 1

10
32þ 33þ 34þ � � � þ 39ð Þ ¼ 35:2

Semp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xð Þ2

n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x2i � x2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10
12; 488� 35:22

r
¼

ffiffiffiffiffiffiffiffiffi
9:76

p
¼ 3:12

Sales:

y ¼ 1

10
6þ 4þ 3þ � � � þ 1ð Þ ¼ 3:0

Semp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi � yð Þ2

n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

y2i � y2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10
122� 32

r
¼

ffiffiffiffiffiffiffi
3:2

p
¼ 1:79

Covariance:

Sxy ¼ 1

n

Xn
i¼1

xi � yi � x � y ¼ 1

10
6 � 32þ � � � þ 1 � 39ð Þ � 35:2 � 3 ¼ 100:3� 105:6

¼ �5:3

(c) r ¼ Sxy
SxSy

¼ �5:3
1:79�3:12 ¼ �0:95

(d) ρ ¼ 1�
6�
Xn
i¼1

d2i

n� n2�1ð Þ ¼ 1� 6� 7:52þ32þ���þ �6:52ð Þð Þ
10� 102�1ð Þ ¼ 1� 6�315

10� 102�1ð Þ ¼ �0:909. When

this coefficient is calculated with the full formula, we get: ρ ¼ � 0.962. The

reason is because of the large number of rank ties.

(e) Negative monotonic association.

Solution 16:

(a)

y ¼

Xn
i¼1

yi

n
¼ �309

14
¼ �22:07

(b)

Semp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

y2i

n
� y2

vuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10; 545

14
� 22:072

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
266:129

p
¼ 16:31
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(c) Coefficient of Variation
Semp

yj j ¼ 16:31
�22:07j j ¼ 0:74

(d)

S2
emp

¼

Xn
i¼1

xi � xð Þ2

n
¼ 3; 042:36

14
¼ 217:31

(e)

Sxy ¼

Xn
i¼1

xi � xð Þ yi � yð Þ

n
¼ 213:42

(f)

r ¼ Sxy
Sx � Sy ¼ 0:89

(g)

ρ ¼ 1�
6 �
Xn
i¼1

d2i

n � n2 � 1ð Þ ¼ 1� 6 � 54
14 � 142 � 1

� � ¼ 0:88

Solution 17:

(a) The covariance only gives the direction of a possible association.

(b) r ¼ 2:4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22; 500

715
� 17; 000

715

r ¼ 2:4

5:61 � 4:88 ¼ 0:0877

(c) No linear association.

Solution 18:

(a) Using the table we can calculate the following: 1
5

X5
i¼1

xi�xð Þ yi�yð Þ¼ 2;971:6.

Pearson’s correlation is then: r¼ 2;971:6
432:96�7:49¼ 0:916 . The Stupid Times will

conclude that reading books is unhealthy, because the linear association is

large between colds and books read.

(b) With a spurious correlation, a third (hidden) variable has an effect on the

variables under investigation. It ultimately explains the relationship associated

by the high coefficient of correlation.

(c) A spurious correlation exists. The background (common cause) variable is age.

As age increases, people on average read more books and have more colds. If

we limit ourselves to one age class, there is probably no correlation between

colds had and books read.

Solution 19:

(a) The higher the price for toilet paper, the higher the sales for potato chips.
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(b) The formula for the partial coefficient of correlation is: rxy:z ¼ rxy�rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2xzð Þ� 1�r2yzð Þp .

In the example the variable x equals potato chip sales, variable y potato chip

price, and variable z toilet paper price. Other variable assignments are also

possible without changing the final result. We are looking for rxz. y. The formula

for the partial correlation coefficient should then be modified as follows:

rxz:y¼ rxz� rxyrzyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xy

� �
� 1� r2zy

� �r ¼ 0:3347� �0:7383ð Þ � �0:4624ð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �0:7383ð Þ2
� �

� 1� �0:4624ð Þ2
� �r ¼�0:011

(c) The association in (a) is a spurious correlation. In reality there is no association

between toilet paper price and potato chip sales.

Solution 20:

rpb ¼ y1 � y0
Sy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 � n1
n2

r
¼ 0:41� 0:37

0:095

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2; 427 � 21; 753

24; 1802

s
¼ 0:127

Solution 21:

(a) Market share ¼ 1.26 � 0.298 � Price ¼ 1.26 � 0.298 � 3 ¼ 36.6 %.

(b) 0.40 ¼ 1.26 � 0.298 � price , price ¼ 0:40� 1:26

�0:298
¼ €2:89

(c) 42% of the variance in market share is explained by variance in the independent

variable price.

(d)

R2 ¼ 1� ESS

TSS
() TSS ¼ ESS

1� R2
¼ 0:08

0:58
¼ 0:14

Solution 22:

(a) by ¼ 24:346þ 0:253 � x1 � 0:647 � x2 � 0:005 � x3, where:
x1: number of locations;

x2: item price [in 1,000 s of MUs];

x3: advertising budget [in 100,000 s of MUs]

The low (insignificant) influence of advertising budget would, in practice,

eliminate the variable x3 from the regression (see part d) of the exercise,

yielding the following result: by ¼ 24:346þ 0:253 � x1 � 0:647 � x2
(b) We already know the coefficient of determination: R2 ¼ 0.951.

(c) The regression coefficient for the item price is α2 ¼ � 0.647. Since the item

price is measured by 1,000 s of units, a price decrease of 1,000 MUs affects

sales as follows: Δsales ¼ (�1) � (�0.647) ¼ 0.647. Sales is also measured by

1,000 s of units, which means that total sales increase by 1,000 �0.647 ¼ 647

units.

(d) The regression coefficient for advertising expenses is α3 ¼ � 0.005. Since

the advertising expenses are measured by 100,000 s of MUs, an increase of

advertising expenses by 100,000 MUs affects sales as follows: Δsales ¼ (+1)�
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(�0.005) ¼ (�0.005). Sales are measured in 1,000 s of units, which means

they will sink by 1,000 � (�0,005) ¼ (�5). The result arises because the

variable advertising budget is an insignificant influence (close to 0); advertising
appears to play no role in determining sales.

Solution 23:

(a) by ¼ 38:172� 7:171 � x1 þ 0:141 � x2, where:
x1: price of the company’s product;

x2: price of the competition’s product put through the logarithmic function.

The low (insignificant) influence of the competition’s price put through the

logarithmic function would, in practice, eliminate the variable x2 from the

regression (see part e) of the exercise), yielding the following result:by ¼ 38:172� 7:171 � x1
(b)

R2 ¼ Explained Sum of Squares RSSð Þ
Total Sum of Squares TSSð Þ ¼ 124:265

134:481
¼ 0:924;

R2
adj ¼ 1� 1� R2

� � n� 1

n� k
¼ 1� 1� 0:924ð Þ 27� 1

27� 3
¼ 0:918

(c) RSS + ESS ¼ TSS , ESS ¼ TSS – RSS ¼ 10.216

(d) Yes, because R2 has a very high value.

(e) By eliminating the price subjected to the logarithmic function (see exercise

section (a)).

(f) The regression coefficient for the price is α1 ¼ � 7.171. This means sales

would sink by (+1)�(�7,171) ¼ �7.171 percentage points.

Solution 24:

(a) by ¼ 9898� 949.5�price + 338.6�HZsw�501.4�HZaz�404.1�TZaz + 245.8�TZsw +

286.2�HZhz_abb

(b) by ¼ 9898�949.5�2.5 + 338.6�0�501.4�1�404.1�0 + 245.8�0 + 286.2�0�7023

(c) R equals the correlation coefficient; R2 is the model’s coefficient of determina-

tion and expresses the percentage of variance in sales explained by variance in

the independent variables (right side of the regression function). When creating

the model, a high variance explanation needs to be secured with as few

variables as possible. The value for R2 will stay the same even if more

independent variables are added. The adjusted R2 is used to prevent an exces-

sive number of independent variables. It is a coefficient of determination

corrected by the number of regressors.

(d) Beta indicates the influence of standardized variables. Standardization is used

to make the independent variables independent from the applied unit of mea-

sure, and thus commensurable. The standardized beta coefficients that arise in

the regression thus have commensurable sizes. Accordingly, the variable with

the largest coefficient has the largest influence.

(e) Create a new metric variable with the name Price_low. The following

conditions apply: Price_low ¼ 0 (when the price is smaller than €2.50); other-
wise Price_low ¼ Price. Another possibility: create a new variable with the
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name Price_low. The following conditions apply here: Price_low ¼ 0 (when

the price is less than €2.50); otherwise Price_low ¼ 1.

Solution 25:

(a) R2 ¼ RSS

TSS
¼ 1� ESS

TSS
¼ 1� 34; 515; 190; 843:303

136; 636; 463; 021:389
¼ 0:7474

(b) In order to compare regressions with varying numbers of independent variables.

(c) Average proceeds ¼ 25,949.5 + 5�4,032.79 – 7,611.182 + 6,079.44 ¼
44,581.752 MU

(d) Lettuce, because the standardized beta value has the second largest value.

(e) The price and size of the beverage in regression 2 show a high VIF value, i.e. a

low tolerance. In addition, the R2 of regression 1 to regression 2 has barely

increased. The independent variables in regression 2 are multicollinear,

distorting significances and coefficients. The decision impinges on regression 1.

(f) No linear association exists. As a result, systematic errors occur in certain areas

of the x-axis in the linear regression. The residuals are auto correlated. The

systematic distortion can be eliminated by using a logarithmic function or by

inserting a quadratic term.

Solution 26:

Good Price1 Quantity 1 Price 3 Quantity 3 p3 � q1 p1 � q1 p3 � q3 p1 � q3
A 6 22 8 23 176 132 184 138

B 27 4 28 5 112 108 140 135

C 14 7 13 10 91 98 130 140

D 35 3 42 3 126 105 126 105

505 443 580 518

(a)

PL1;3 ¼

X4
i¼1

pi;3 � qi;1
X4
i¼1

pi;1 � qi;1
¼ 8 � 22ð Þ þ 28 � 4ð Þ þ 13 � 7ð Þ þ 42 � 3ð Þ

6 � 22ð Þ þ 27 � 4ð Þ þ 14 � 7ð Þ þ 35 � 3ð Þ ¼
505

443
¼ 1:14

QL
1;3 ¼

X4
i¼1

qi;3 � pi;1
X4
i¼1

qi;1 � pi;1
¼ 23 � 6ð Þ þ 5 � 27ð Þ þ 10 � 14ð Þ þ 3 � 35ð Þ

22 � 6ð Þ þ 4 � 27ð Þ þ 7 � 14ð Þ þ 3 � 35ð Þ ¼ 518

443
¼ 1:17

The inflation rate between the two years is 14 %. During the same period, sales

of the 4 goods assessed with the prices of the first year increased by 17 %.
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(b)

PP1;3 ¼

Xn
i¼1

pi;3 � qi;3
X4
i¼1

pi;1 � qi;3
¼ 8 � 23ð Þ þ 28 � 5ð Þ þ 13 � 10ð Þ þ 42 � 3ð Þ

6 � 23ð Þ þ 27 � 5ð Þ þ 14 � 10ð Þ þ 35 � 3ð Þ ¼
580

518
¼ 1:12

QP
1;3 ¼

X4
i¼1

qi;3 � pi;3
X4
i¼1

qi;1 � pi;3
¼ 23 � 8ð Þ þ 5 � 28ð Þ þ 10 � 13ð Þ þ 3 � 42ð Þ

22 � 8ð Þ þ 4 � 28ð Þ þ 7 � 13ð Þ þ 3 � 42ð Þ ¼ 580

505
¼ 1:15

The inflation rate between the two years is 12 %. During the same period, sales

of the 4 goods assessed with the prices of the third year increased by 15 %.

(c) The inflation shown by the Paasche index is lower because demand shifts in

favour of products with lower-than-average rising prices. In the given case, the

consumption shifts (substitution) in favour of products B and C. The price of

product B rose by only 3.7 % – a lower-than-average rate – while the price of

product C sank by 7.1 % (substitution of products with greater-than-average

rising prices through products B and C).

(d)

PF1;3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL1;3 � PP1;3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:14 � 1:12

p
¼ 1:13

QF
1;3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QL

1;3 � QP
1;3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:17 � 1:15

p
¼ 1:16

(e) W1,3 ¼ Q1,3
F � P1,3

F ¼ 1.16 � 1.13 ¼ Q1,3
L � P1,3

P ¼ 1.17 � 1.12 ¼ Q1,3
P �

P1,3
L ¼ 1.15 � 1.14 ¼ 1.31 The sales growth in the third year is 31 % more

than the first year.

(f)

pgeom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

1þ pið Þn

s
� 1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 0:14ð Þ2
p � 1 ¼ 0:0677 ! 6.77 % price rate

increase.

Solution 27:

2005 2006 2007 2008 2009

Nominal Values $100,000 $102,00 $105,060 $110,313 $114,726

Nominal Value Index [2005¼100] 100.00 102.00 105.06 110.31 114.73

Real Values $100,00 $101,00 $103,523 $105,533 $109.224

Real Value Index [2500¼100] 100.00 101.00 103.52 105.53 109.22

Price Index 1 [2004¼100] 101.00 102.00 102.50

Price Index 2 [2007¼100] 100.00 103.00 103.50

Price Index 3 [2004¼100] 101.00 102.00 102.50 105.58 106.09

Price Index 4 [2005¼100] 101.00 100.99 101.49 104.53 105.04
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Example calculations:

• Nominal value index [2005 ¼ 100] for 2007: Wnominal
2005;2007¼ $105;060

$100;000 �100¼ 105:06

• Price index [2004 ¼ 100] for 2008:

~P2004;2008 ¼ P2004;2007 � P2007;2008 ¼ 102:50 � 103:00 ¼ 105:58

• Shifting the base of the price index [2004 ¼ 100] to[2005 ¼ 100] for 2008:

~P
2005¼100½ �
2005;2008 ¼ P

2004¼100½ �
2004;2008

P
2004¼100½ �
2004;2005

¼ 105:58

101:00
� 100 ¼ 104:53

• Real value change for 2008: Wreal
2008 ¼ Wnomin al

2008

~P
2005¼100½ �
2005;2008

¼ 110;313
1:0453 ¼ $105; 533

• Real value index [2005 ¼ 100] for 2008: Wnomin al
2005;2008 ¼ $105;533

$100;000 � 100 ¼ 105:53

Solution 28:

(a) First the variables must be z-transformed and then the distance or similarity

measures determined. Next, the distance between the remaining objectives

must be measured and linked with its nearest objects. This step is repeated

until the heterogeneity exceeds an acceptable level.

(b) A four-cluster-solution makes sense, since further linkage raises heterogeneity

levels excessively. The last heterogeneity jump rises from 9.591 to 13.865.

Solution 29:

(a) Figure 9.2

(b) Cluster #1: more dissatisfied customers with high income; Cluster #2: dissatis-

fied customers with middle income; Cluster #3: dissatisfied customers with low

income; Cluster #4: satisfied customers with medium to high income.

Cluster #3

Cluster #2

Income [in euros]

Pe
rs

on
al

 s
at

is
fa

ct
io

n 

Fig. 9.2 Cluster analysis (1)
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(c) Cluster #1 of solution (a) is divided into two clusters (see dotted circles in

Cluster #1).

(d) Four clusters, since heterogeneity barely increases between four and five

clusters.

(e) Figure 9.3

Solution 30:

• The KMO test: KMO measure of sampling adequacy ¼ 0.515 (>0.5) and

Bartlett’s test of sphericity is significant (p ¼ 0.001 < 0.05), so the correlations

between the items are large enough. Hence, it is meaningful to perform a factor

analysis.

• Anti-image correlation matrix: In this matrix, the individual MSA values of each

item on the diagonal should be bigger than 0.5. In the given case, some MSA

values are smaller than 0.5. Those items should be omitted step by step.

• Total variance explained table: Component 1 and 2 have eigenvalues>1. A two-

factor solution thus seems to be appropriate. The two factors are able to explain

70 % of the total variance.

• Communalities: 70.2 % of the total variance in Intelligence Quotient is

explained by the two underlying factors; etc.

• Rotated component matrix: Factor 1: Individual workload; Factor 2: Individual

capacity.

Hierarchical Cluster #2

K-means Cluster #3 K-means 
Cluster #1

K-means 
Cluster #2

Income [in euros]

Pe
rs

on
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 sa
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fa
ct
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n

K-means Cluster #3 K-means
Cluster #1

K-means
Cluster #2

Fig. 9.3 Cluster analysis (2)
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Index

A

Absolute deviation, 45, 46

Absolute frequency, 24, 25, 58, 75, 77, 78

Absolute scales, 17

Adjusted coefficient of determination.

See Coefficient of determination

Agglomeration schedule, 168, 170, 172, 181

Agglomerative methods, 164, 175, 177

Anti-image covariance matrix (AIC), 185

Arithmetic mean, 59, 197–198

Autocorrelation, 136

Auxiliary regression, 139

B

Bar chart, 24, 25, 27, 28

Bartlett test, 184, 185

Base period, 148, 151, 153–157

Bimodal distribution, 39, 40

Biserial rank correlation, 62, 100

Bivariate association, 61–110

Bivariate centroid, 83–85, 120, 131

Boxplot, 42–45

Bravais-Pearson, 83–86

Bravais-Pearson correlation, 83–86

C

Cardinal scale, 15, 17–19, 21, 29, 41, 88

Causality, 115

Central tendency, 29–42

Chi-square, 63–69, 73

Coefficient of correlation.

See Specific correlation
Coefficient of determination, 123, 125–128,

134, 135, 138, 139, 141, 205, 206

Coefficient of determination, corrected, 128

Communalities, 185, 187, 192, 195, 210

Concentration (measures of), 52–55

Concentration rate, 52

Conditional frequency, 63

Contingency coefficient, 70, 71, 73, 74, 76,

79, 80, 201

Contingency tables, 61–63

Correlation, 101–110, 115, 116, 123, 126,

127, 129

Correlation matrix, 183–186, 192

Covariance, 83, 85, 102, 192, 194, 203, 204

Cramer’s V, 70–72, 78, 200

Cross-sectional analyses, 147

Crosstab, 61–64, 72–74, 76, 77, 79

D

Deflating time series, 158–159

Dendrogram, 172, 173, 178, 182

Density, 27, 28

Descriptive statistics, 3

Dispersion parameter, 45–49

Distance matrix, 168. 169

Distribution function, 25

E

Eigenvalue, 186–188, 192, 193, 210

Empirical standard deviation, 46–48

Empirical variance, 46–48, 58

Equidistance, 18, 33

Error probability, 5

Error sum of squares, 125, 170, 171

Error term, 136

Euclidian distance, 166

Excess, 8, 12, 26, 51, 52, 209

Expected counts, 64–66, 75, 76, 78, 200

Expected frequencies, 64, 75, 76

Expected relative frequency, 65

Extreme values, 43
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F

Factor score coefficient matrix, 190, 192

Fisher index, 155

Forecasts, 1, 10, 11

Fourth central moment, 51

Frequency distribution, 25, 58

Frequency table, 20, 24, 25, 31, 32, 55, 61, 62

Full survey, 3, 6

G

Geometric mean, 60, 199

Gini coefficient, 54, 55

Goodness of fit, 123–125, 128–129

H

Harmonic mean, 36–38, 58

Herfindahl index, 53, 60, 198–200

Heteroscedasticity, 137

Histogram, 28

Homoscedasticity, 137

I

Index, 147–160

Fisher quantity, 156

Laspeyres price, 151

Paasche price, 153

price, 148–155

sales, 157–158

value, 157–158

Inductive statistics, 6, 9

Interquartile range, 59, 197–198

Interval scales, 17

K

Kaiser criterion, 187

Kaiser-Meyer-Olkin measure (or KMO

measure), 185, 193, 210

Kurtosis, 49–51, 56, 57

L

Laspeyres price index. See Index
Left skewed, 45, 49, 51

Leptokurtic distribution, 51

Level of measurement, 61

Linear relationship, 86

Linkage method, 168–171

Longitudinal study, 147

Lorenz curve, 53, 54

M

Marginal frequencies, 62, 65, 78

Mean rank, 89, 90, 92, 100, 104

Mean/trimmed mean, 32

Mean value, 18, 21, 29, 31, 98, 111

Measure of sample adequacy (MSA), 185,

194, 210

Median, 38–41

Mesokurtic distribution, 51

Metric variable, 80–86, 98–101

Missing values, 19–21

Modal value, 30, 39, 44

Mode, 30, 52, 56, 58, 197

Model

symbolic, 8

verbal, 8

Monotonic association, 92–95, 101, 203

Multicollinearity, 137–140, 175

Multivariate regression, 128–129

N

Nominally scaled variables, 61

Nonlinear regression, 132, 134

Non-opinion, 20

No opinion, 20

O

Ordinal scaled variables, 86–97

Ordinary least squares, 120, 122

Outliers, 21–22, 31, 40, 42, 43, 45, 47, 52,

86, 131, 132, 171

P

Paasche price index. See Index
Partial correlation, 109

Partial sample, 5

Pearson correlation, 87

Percentile, 41–42

Phi coefficient, 57–71, 75

Pie chart, 24, 26, 27, 57

Platykurtuc distribution, 51

Point-biserial correlation, 83, 98–100

Population, 3–6.10, 46–48, 106

Price index. See Index
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Principal component analysis, 85, 86, 91

Principal factor analysis, 186, 188

Prognosis model, 10

Q

Quantile, 41, 42, 57

Quartile, 45

R

Range, 2, 6, 9, 28, 43–45, 56, 57, 59, 63, 68,

76, 106, 117, 118, 141, 142, 166, 183,

198, 1778

Rank correlation (Spearman). See Spearman’s

rank correlation

Rank ties, 110–111, 203

Ratio scales, 17

Raw data, 12, 30, 32, 39, 41, 55, 74, 76

Regression diagnostics, 135–140

Regression sum of squares, 124, 125

Relative frequencies, conditional, 63

Reporting period, 148, 154–156

Reproduced correlation matrix, 186, 192

Retail questionnaire, 16

Right skewed, 44, 49–51

Robust, 52, 86, 140, 170

Rotated and rotated factor matrix, 188

S

Sales index. See Index
Scatterplot, 80–83, 110, 111, 116, 118, 131,

134, 145

Scree plot, 172, 173, 187, 192

Skewness, 49

Spearman’s rank correlation, 88–92

Spurious correlation, 105–110, 112, 204, 205

Standard deviation, 99

Standardization, 167, 188, 191, 206

Statistical unit, 15–17, 22, 52, 53

Survey, 61

Systematic bias, 20

Systematic error, 20, 132, 134, 136, 207

T

Theory, 6–7

Third central moment, 49, 50

Tolerance, 144, 207, 240

Total sum of squares, 127, 141, 206

U

Unbiased Sample standard deviation, 47

Unbiased sample variance, 47, 48

Unrotated and rotated factor matrix, 188

V

Value Index. See Index
Variable, dichotomous, 62

Variance inflation factors (VIF), 139, 140, 207

Varimax, 188–190, 192, 195

W

Whiskers, 43, 44

Z

z-transformation, 167, 176, 209
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