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Chapter 1
Professor Hira Lal Koul’s Contribution
to Statistics

Soumendra Lahiri, Anton Schick, Ashis SenGupta and T.N. Sriram

Professor Hira Koul received his Ph.D. in Statistics from the University of California,
Berkeley in 1967 under the supervision of Professor Peter Bickel. He has the unique
distinction of being the first doctoral student of Professor Bickel. True to his training
at Berkeley, in the initial years of his research career, he focused on developing
asymptotic theory of statistical inference. He pioneered the approach of Asymptotic
Uniform Linearity (AUL) as a theoretical tool for studying properties of the empirical
process based on residuals from a semiparametric model. This approach has been
widely employed by several authors in studying the asymptotic properties of tests
of composite hyptheses, and has been a particularly powerful tool for deriving limit
laws of goodness-of-fit tests. At around the same time, he also developed the theory
of weighted empirical processes which played a fundamental role in the study of
asymptotic distribution of robust estimators (e.g., Rank-based estimators and M-
estimators) in linear regression models. An elegant account of the theory of weighted
empirical processes for independent as well as dependent random variables is given
in his monographs on the topic (Koul (1992, 2002)).

He has made significant contributions to several different areas of Statistics,
including Asymptotic theory of efficient estimation, Bootstrap, Long-range depen-
dence, Measurement Error, Robustness, Sequential Analysis, Survival Analysis,
Nonlinear Time series, among others. In all his work, a common thread has been the

S. Lahiri (�)
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use of rigorous mathematical arguments to derive useful statistical theory for estima-
tion and testing. Here we highlight some of his major contributions to selected issues
and problems to give a glimpse of the breadth and impact of his research. Building
on his work on empirical processes, he developed asymptotic theory of minimum
distance estimation in semi-parametric models. He also initiated the use of weighted
empirical processes and repeatedly demonstrated its usefulness in studying limit dis-
tributions of classes of robust estimators, particularly the M- and R-estimators in
regression models and in complex time series models. Starting in the 1980s, jointly
with Professors V. Susarla and J. van Ryzin, he initiated the study of regression mod-
els in the presence of censoring and introduced the celebrated Koul–Susarla–van
Ryzin estimator of the regression parameters in their 1980 Annals of Statistics paper.
In contrast to its competitors, the Koul–Susarla–van Ryzin estimator is explicitly
defined and easy to compute, which made it a popular choice among practitioners.
Professor Koul further continued his work on censored data by establishing the Local
Asymptotic Normality (LAN) property and results on asymptotic efficient estimation
in semiparametric models.

Starting in the late 1980s, Professor Koul developed an interest in time series and
Econometrics. He has made fundamental contributions to nonparametric and robust
inference under complex temporal dependence structures, notably under long range
dependence (LRD). In addition to developing asymptotic distributional theory for
classes of robust estimators under LRD, jointly with Professor D. Surgailis, he de-
rived higher order asymptotic expansions for M-estimators, which provided critical
information into the structure of the successive smaller order terms. More recently,
together with his long time collaborators Professors L Giraitis and D. Surgailis, he
proved a Central Limit Theorem for periodogram based statistics under LRD requir-
ing a weak Lindeberg-type condition. This is a highly effective tool for investigating
asymptotic properties of such statistics, one that is bound to be used by researchers
working with time series under LRD for years to come. The recent monograph, Koul,
Giraitis and Surgailis (2013) gives an authoritative and detailed account of the sta-
tistical inference for time series under LRD, and contains many of Professor Koul’s
important results on the topic.

Many of Professor Koul’s publications appeared in top-tier statistics journals.
Given below is a chronological list of his publications to date.

Books:

1. Weighted Empirical and Linear Models. (1992). Lecture Notes-Monograph Series, 21, Institute
of Mathematical Statistics, Hayward, California.

2. Weighted Empirical Processes in Dynamic Nonlinear Models. 2nd Edition. (2002). Lecture
Notes Series in Statistics, 166, Springer, New York, N.Y., USA.

3. Large Sample Inference For Long Memory Processes (2013). Imperial College Press. London,

UK. (with L. Giraitis and D. Surgailis).
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Papers:

1. Asymptotic behavior of the Wilcoxon type condence regions for the multiple linear regression.
(1969). Ann. Math. Statist. 40 1950–1979.

2. A class of ADF tests for the subhypotheses in the multiple linear regression. (1970). Ann.
Math. Statist. 41 1273–1281.

3. Some convergence theorems for ranks and weighted empirical cumulatives. (1970). Ann.
Math. Statist. 41 1768–1773.

4. Asymptotic normality of random rank statistics. (1970). Ann. Math. Statist. 41 2144–2149.
5. Asymptotic behavior of a class of condence regions based on ranks in regression. (1971).

Ann. Math. Statist. 42 466–476.
6. Some asymptotic results on random rank statistics. (1972). Ann. Math. Statist. 43 842-859.
7. Asymptotic normality of signed rank statistics. (1972). Z. Wahrscheinlichkeitstheorie, Verw.

Geb. 22 293–300. (with R. G. Staudte, Jr.)
8. Weak convergence of weighted empirical cumulatives based on ranks. (1972). Ann. Math.

Statist. 43 832–841. (with R.G. Staudte, Jr.)
9. The Bahadur eciency of the Reimann-Vincze statistics. (1974). Studia Scientiacarum

Mathmaticarum Hungarica 9 399–403. (with M.P. Quine)
10. Asymptotic normality of H-L estimators based on dependent data. (1975). J. Inst. Statist.

Math. 27 429–441.
11. Power bounds for Smirnov test statistics in testing the hypothesis of symmetry. (1976). Ann.

Statist. 4 924–935. (Joint with R. G. Staudte, Jr.)
12. L1 - rate of convergence for linear rank statistics. (1976). Ann. Statist. 4 771–774. (with R.V.

Erickson)
13. Behavior of robust estimators in the regression model with dependent errors. (1977). Ann.

Statist. 5 681–699.
14. A test for new better than used. (1977). Communications: Statist. Theor. Meth. A6 563–573.
15. A class of tests for new better than used. (1978). Can. J. Statist. 6 249–471.
16. Testing for new is better than used in expectation. (1978). Communications; Statist. Theory

Meth. A7 685–701.
17. Weighted empirical processes and the regression model. (1979). An invited paper for J. of the

Indian Statist. Assoc. 17 83–91.
18. Asymptotic tests of composite hypothesis for nonergodic type stochastic processes. (1979).

J. of Stoch. Proc. and Application 9(3) (with I.V. Basawa).
19. Some weighted empirical inferential procedures for a simple regression model. (1980).

Colloq. Math. Soc. Janos Bolyai 32 537–565.
20. Testing for new better than used in expectation with incomplete data. (1980). J. Amer. Statist.

Assoc. 75 952–956. (with V. Susarla).
21. A simulation study of some estimators of regression coefficients using censored data (1980).

In Proceedings of the annual meeting, American Statistical Association. (with V. Susarla and
J. Van Ryzin).

22. Regression analysis with randomly right censored data. (1981). Ann. Statist. 9 1276–1288.
(with V. Susarla and J. Van Ryzin).

23. A limit theorem for testing with randomly censored data. (1981). In Survival Analysis, IMS
Lecture Notes 2 189–205. (with V. Susarla).

24. Multi-step estimation of regression coecients in a linear model with censored survival data.
(1981). In Survival Analysis, IMS Lecture-Notes Monograph Series 2 85–100. (withV. Susarla
and J. Van Ryzin).

25. Least square regression analysis with censored survival data. (1982). In Topics in Applied
Statistics 151–165. (Eds: Chaubey, Y.P. & Dwivedi). T.D. Marcel Dekker, N.Y. (with V.
Susarla and J. Van Ryzin).

26. Asymptotically minimax tests of composite hypotheses for nonergodic type processes. (1983).
J. of Stoch. Proc. & Applications 14. (with I.V. Basawa).
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27. Minimum distance estimation in a linear regression. (1983). Ann. Statist. 11 921–932. (with
T. Dewet).

28. Adaptive estimation in regression. (1983). Statistics and Decisions 1 379–400. (with V.
Susarla).

29. Estimators of scale parameters in linear regression. (1983). Statist. and Probab. Letters 1
273–277. (with V. Susarla).

30. LAN for randomly censored linear regression. (1984). Statistics and Decision, Supplement
Issue 1 17–30. (with W. H. Wang).

31. Test of goodness-of fit in linear regression. (1984). Colloq. Math. Soc. Jonos. Bolyai 45
279–315.

32. Minimum distance estimation in multiple linear regression model. (1985). Sankhya, Ser. A
47 57–74.

33. Minimum distance estimation in linear regression with unknown error distribution. (1985).
Statist. and Probab. Letters 3 1–8.

34. On a Kolmogorov-Smirnov type aligned test in linear regression. (1985). Statist. & Probab.
Letters 3 111–115. (with P.K. Sen).

35. Minimum distance estimation and goodness-of fit tests in first order autoregression. (1986).
Ann. Statist. 14 1194–1213.

36. An estimator of the scale parameter for the rank analysis of linear models under general score
functions. (1987). Scand. J. Statist. 14 131–143. (with G. Sievers and J. McKean).

37. Ecient estimation of location with censored data. (1988). Statistics and Decisions 4 349–360.
(with A. Schick and V. Susarla).

38. Large sample statistics based on quadratic dispersion. (1988). Int. Statist. Rev. 56 199–219.
(with I. V. Basawa).

39. Minimum distance estimation of scale parameter in the two sample problem: Censored and
Uncensored Data. (1989). In Recent Developments in Statistics and Their Applications 117–
134. (Eds—J. Klein and J. Lee). Freedom Press. (with S. Yang).

40. A quadraticity limit theorem useful in linear models. (1989). Probab. Theory and Relat.
Fields. 82 371–386.

41. Weak convergence of residual empirical process in explosive autoregression. (1989). Ann.
Statist. 17 1784–1794. (with S. Levental).

42. Weakly adaptive estimators in explosive autoregression. (1990). Ann. Statist. 18 939–960.
(with G. Pug.)

43. Weak convergence of a weighted residual empirical process in autoregression. (1991). Statist.
and Decis. 9 235–262. (with P. K. Sen).

44. Robustness of minimum distance estimation in linear regression against errors-in-variables
model. (1991). In the Proceedings of International Symposium on Nonparametric Statistics
and Related Fields 163–177. (Ed: A. K. Md. E. Saleh). Elsevier Science Publishers.

45. A weak convergence result useful in robust autoregression. (1991). J. Statist. Planning and
Infer. 29 291–308.

46. M-estimators in linear regression models with long range dependent errors. (1992). Statist.
and Probab. Letters 14 153–164.

47. Locally asymptotically minimax minimum distance estimators in linear regression. (1992).
In the Proceedings of the symposium on Order Statist. and Nonparmetrics in honor of A.E.
Sarhan, Alexendria, Egypt. (Eds - P.K. Sen and I.A. Salama). 405–417.

48. R-estimation of the parameters of autoregression models. (1993). Ann. Statist. 21 534–551.
(with A.K.Md.E. Saleh).

49. Bahadur representations for some minimum distance estimators in linear models. (1993). In
Statist. and Probab: A Raghu Raj Bahadur Festschrift. 349–364. (Eds. J.K. Ghosh, S.K.
Mitra, K.R. Parthasarathy, and B.L.S. Prakas Rao). Wiley Eastern Lmtd, Publishers. (with Z.
Zhu.)

50. Asymptotics of R-, MD- and LAD-estimators in linear regression models with long range
dependent errors. (1993). Probab. Theory and Relat. Fields 95 535–553. (with K. Mukherjee).
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2.1 Introduction

Various methods of estimation such as least squares, method of moments, maximum
likelihood, pseudolikelihood, and quasilikelihood have been studied extensively in
the literature. Historically, each of the estimating methods was developed individu-
ally to suit particular situations and at varying points of time. Large sample theory
(covering consistency and limit distributions of the estimates) was also developed
for each of the methods using diverse tools and limit theorems suited to the indi-
vidual method. Most of the early work on estimation was devoted to independent
observations. More recently, methods and theory of estimation (inference in general)
have been extended to cover dependent observations in stochastic processes. See, for
instance, Basawa and Prakasa Rao (1980a, b), Basawa and Koul (1988), and Basawa
(1983, 2001). Martingale estimating functions provide a unified framework which
covers various estimation methods under a single setting. See, among others, Go-
dambe (1985); Bibby and Sorensen (1995); Wefelmeyer (1996); Basawa et al. (1997);
and Heyde (1997). More recent research on large sample theory for estimating
functions is focused on developing a unified approach to establish asymptotic opti-
mality and large sample comparison of estimates obtained from estimating functions.
Martingale limit theorems have proved useful when establishing large sample
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properties of estimates for dependent observations. This paper is an overview of
current research by the authors (Hwang and Basawa 2011b) on martingale estimating
functions and asymptotic optimality of parameter estimates for stochastic processes.

Section 2.2 presents a general formulation of martingale estimating functions
which includes conditional least squares, quasilikelihood, maximum likelihood, and
pseudolikelihood, as special cases. As an illustration, various estimates for a general
class of generalized autoregressive conditional heteroskedasticity (GARCH)-type
processes are presented in a unified way. Asymptotic optimality for a certain class of
martingale estimating functions (MEFs) for ergodic processes is established via the
convolution theorems in Sect. 2.3. Applications to conditional linear autoregressive
processes, GARCH-type processes, and bifurcating autoregressive processes are
then presented as examples of ergodic processes. Section 2.4 covers the extension
of results of Sect. 2.3 to the nonergodic case. Branching Markov processes and
explosive autoregressive processes are discussed to illustrate the nonergodic case.
Finally, Sect. 2.5 gives a brief summary of the results and some concluding remarks.

2.2 Martingale Estimating Functions: A Formulation

Let {Xt , t = 0, 1, . . ..} denote a discrete time stochastic process defined on a proba-
bility space. Suppose that the probability measure Pθ associated with {Xt } is indexed
by a (k × 1) vector parameter θ . Assume that θ takes values in � which is an open
subset of the k-dimensional Euclidean space. It is noted thatPθ needs not be paramet-
ric (in the sense that θ determines the underlying distribution). Rather, most of the
theory in the paper is applicable to semiparametric or even nonparametric cases with
a restriction depending on the parameter θ , allowing additional (infinite dimensional)
nuisance parameter. Based on a sample of size n observations X1, X2, . . . , Xn, we
are concerned with estimating the parameter vector θ . Consider the following (k×1)
estimating function (EF) Un(θ ) given by

Un(θ ) =
n∑

t=1

ut (θ ) (2.1)

where {ut (θ )} is a sequence of martingale differences, i.e., E (ut (θ )|Ft−1) = 0. Here,
Ft denote the σ -field generated by Xt , Xt−1, . . . , X1. We shall refer to Un(θ ) as the
MEF.Assume for the moment that {Xt } is strictly stationary and ergodic. Nonergodic
cases will be discussed separately in Sect. 2.4. Fix θ ∈ � and the local neighborhood
Nδ(θ ) of the radius δ > 0 about θ is defined by

Nδ(θ ) = { θ∗ ;
√
n |(θ∗ − θ )| < δ}. (2.2)

where and throughout, the vector (or matrix) norm will be simply denoted by |·|, viz.,
for any vector or matrix A, |A|2 = tr(ATA) = tr(AAT ). Here, AT is the transpose
A. The neighborhood Nδ(θ ) is to be further specified in Sect. 2.4 for discussing
“non-ergodic” cases. It is assumed that the (k×1) vector ut (θ ) is differentiable (with
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respect to θ ). As to partial derivatives of column vector Un(θ ), ∂Un(θ )/ ∂θT will be
used as usual to denote (k × k) matrix of partial derivatives. In this paper, we shall
confine ourselves to the case that Un(θ ) is regular in the following sense.

(C1: Regular MEF) For any radius δ > 0, Un(θ ) satisfies, as n → ∞
n−1sup | ∂Un(θ∗)/∂θT − ∂Un(θ )/∂θT | = op(1)

where the sup is taken over θ∗ ∈ Nδ(θ ) and op(1) stands for a term converging to
zero in probability.

We now define a collection U of all regular MEFs Un(θ ). Some useful elements
contained in U are illustrated below. As special cases of regular MEFs, Godambe
(1985) considered the following “linear” MEF Gn(θ ).

Gn(θ ) =
n∑

t=1

wt−1(θ )at (θ ) (2.3)

where at (θ ) is a prespecified martingale difference vector of dimension d and wt−1(θ )
is a (k×d) weight matrix whose components are Ft−1 measurable. Godambe (1985)
generated the Godambe-class of “linear” MEFs Gn(θ ) by varying the “coefficients”
wt−1(θ ) while at (θ ), the innovation, being fixed. We shall refer to the Godambe-class
as L which is clearly a subset of U. The Godambe-class L is known to be useful for
the case when the likelihood is not known. Refer to, for instance, Hwang and Basawa
(2011b).

Conditional Least Squares (LS) Let mt (θ ) denote the conditional mean of Xt given
Ft−1, that is, mt (θ ) = E(Xt |Ft−1). Consider Un(θ ) =∑n

t=1 ut (θ ) with

ut (θ ) =
(
∂mt (θ )

∂θ

)
· (Xt −mt (θ )) (2.4)

which is referred to as a LS-score (cf. Klimko and Nelson (1979)).

Quasilikelihood (QL) Let the conditional variance of Xt given Ft−1 be denoted
by ht (θ ) = Var(Xt |Ft−1). Note that mt (θ ) and ht (θ ) are Ft−1-measurable and the
parameter vector θ will be suppressed in mt (θ ) and ht (θ ) for notational simplicity.
Consider a QL score (see, e.g., Godambe (1985))

ut (θ ) =
(
∂mt

∂θ

)
· h−1

t · (Xt −mt) . (2.5)

If we choose the innovation at (θ ) = (Xt −mt), LS and QL scores (2.4) and (2.5)
belong also to the Godambe-class L.

Maximum-likelihood (ML) As an important member of U, one may consider the
maximum likelihood (ML) score function by choosing ut (θ ) as the derivative of the
log-conditional density of Xt given Ft−1, viz.,

ut (θ ) = ∂lnpt (θ )

∂θ
: (k × 1)vector (2.6)
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where pt (θ ) denotes the conditional density of Xt given Ft−1 and the property of
E (ut (θ )|Ft−1) = 0 follows from the differentiability under the integral sign. We
refer to, among others, Basawa et al. (1976) and Hwang and Basawa (1993) for a
broad treatment of ML asymptotics in stochastic processes.

Pseudo-likelihood (PL) It is usually the case that the true likelihood is unknown to
researchers, and thus we need to presume a tractable likelihood for the data which is
called a PL. A PL may be a falsely specified likelihood. A pseudomaximum likeli-
hood estimator is obtained by maximizing the objective function of PL score. Often,
the PL is taken via Gaussian errors, standardized t-distributions with unknown de-
grees of freedom, and generalized error distributions (refer to, for instance, Tsay
(2010, Chap. 10)). It is obvious that the PL-estimator reduces to the maximum like-
lihood (ML) estimator provided the PL coincides with the (unknown) true likelihood.
It is interesting to note that even when the true likelihood is different from the PL,
the PL estimator continues to be consistent and asymptotically normal under some
regularity conditions (cf., Gourieroux (1997, Chap. 4), Hwang et al. (2013b)).

To better understand the members in the class U of regular MEFs, it will be
illustrative to consider a general class of conditionally heteroscedastic processes. A
general GARCH-type process is defined by

Xt =
√
ht et (2.7)

where ht (θ ) = Var(Xt |Ft−1) and {et } is independent and identically distributed (iid)
with mean zero and variance unity. If we take ht = α0 + α1X

2
t−1 + β1ht−1 with

θ = (α0,α1,β1)T , the process {Xt } is called the GARCH of order one. Various
GARCH-type models making some variations to the standard GARCH have been
suggested and investigated in the literature. We refer to, for instance, a recent paper
of Choi et al. (2012) and references therein for a broad class of nonlinear (asymmet-
ric) GARCH processes. As an illustration of the asymmetric GARCH, consider the
following threshold- GARCH process (T-GARCH) defined by

ht = α0 + α11X
+2
t−1 + α12X

−2
t−1 + β1ht−1

where X+ and X− denote the positive and negative functions respectively, that is,
X+ = max(X, 0) and X− = max( − X, 0). If α11 = α12, then the T-GARCH
model reduces to the standard GARCH(1,1). Here, the functional form of ht is
not specified and therefore we are concerned with a broad class of GARCH-type
processes. Suppose that no distributional assumptions on et are made, other than
E(et ) = 0 and Var(et ) = 1. Then, the ML-score is not applicable in estimating
the parameters. One may employ, e.g., a QL and a PL. For the QL, consider the
martingale differences {X2

t − ht }, and then generate the following Godambe-class
of estimating functions defined by

n∑

t=1

wt−1(θ )
(
X2

t − ht (θ )
)

(2.8)
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Assume the finite fourth order moment of et , i.e., E(e4
t ) < ∞. The QL score which

enjoys certain optimal property within the Godambe class (2.8) is given by (refer to
Godambe (1985); Heyde (1997); Hwang and Basawa (2011b))

QL(θ ) =
n∑

t=1

∂ht (θ )

∂θ

[
(ζ − 1)h2

t (θ )
]−1 [

X2
t − ht (θ )

]
(2.9)

where ζ = E(e4
t ). Note that ζ turns out to be 3 when et is N (0, 1). The QL estimator

is obtained by solving QL(θ ) = 0. Now, we turn to the PL-score. Let us denote
the pseudo density of the innovation et by f ( · ). The PL of the data is given by∏n

t=1 p (Xt |Ft−1) = ∏n
t=1 f

[
Xt/

√
ht

]
h
−1/2
t where p (Xt |Ft−1) denotes a pseudo-

conditional density of Xt given the past Ft−1, and ht = ht (θ ). The PL estimator is
obtained by solving PL(θ ) = 0 where

PL(θ ) =
n∑

t=1

lt (θ ) with lt (θ ) = ∂lnf (et )/∂θ − 1

2
h−1
t ∂ht/∂θ (2.10)

where et = Xt/
√
ht (θ ). In particular, if the PL is chosen based on the Gaussian

likelihood, that is, if we take f ( · ) as N(0, 1), it can be shown that the PL score PL(θ )
reduces to

PL(θ ) =
n∑

t=1

x2
t − ht

2 h2
t

∂ht

∂θ
(2.11)

which is proportional to the QL score in (2.9). Consequently, it is interesting to note
that the PL based on the Gaussian innovation is essentially the same as the QL based
on the martingale differences {X2

t − ht }. See Proposition 1 of Hwang et al. (2013b).
We also note that the conditional least squares (CL) score is given by

CL(θ ) =
n∑

t=1

∂ht (θ )

∂θ

[
X2

t − ht (θ )
]
. (2.12)

The question that arises naturally is which (if any) MEF produces the “best” estimator
within the class U. In the next section, via establishing the convolution theorem, the
ML score is shown to be optimal within the class U in the sense of the minimum
limit variance.

2.3 Convolution Theorems and Asymptotic Optimality

Consider any MEF Un(θ ) = ∑n
t=1 ut (θ ) ∈ U . Suppose that both the process {Xt }

and {ut (θ )} are strictly stationary and ergodic. Nonergodic cases will be discussed
in Sect. 2.4. One can obtain an estimator, say θ̂n of θ as a solution of Un(θ ) = 0.
The question regarding existence of strongly consistent solution θ̂n and its limit
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distribution is addressed in the following theorem. In general, ut (θ ) may involve
unobservable random variables.As an illustration, consider the GARCH-type process
in (2.7) for which ut (θ ) may contain unobservable values X−1, X−2, h0, h−1, . . ..
If we treat these unobservable random variables as constants, {ut (θ )} can not be
strictly stationary (but it is asymptotically stationary). Now, we are willing to extend
{Xt , t = 0, 1, 2, . . .} to two sided strictly stationary process {Xt , t = 0,±1,±2, . . .}.
Then, one may regard unobservable values (such as X−1, X−2, h0, h−1) involved in
ut (θ ) as stationary random variables so that one can view the two-sided {ut (θ ), t =
0,±1,±2, . . .} as a strictly stationary process. From now on, we shall treat {ut (θ )}
as being strictly stationary and ergodic. Define (k × k) matrices A and B such that

A = E

(
−∂ut (θ )

∂θT

)
(2.13)

and

B = Var [ut (θ )] = E
(
ut (θ )uT

t (θ )
)

(2.14)

where the expectation is taken under the stationary distribution. It is noted that B
is a symmetric matrix while A is permitted to be asymmetric, depending on the
specification of ut (θ ).

Theorem 3.1 For any fixed Un(θ ) ∈ U , we have as n → ∞;

(1) With probability tending to one, there exists a strongly consistent estimator θ̂n
such that Un

(
θ̂n
) = 0.

(2)

√
n
(
θ̂n − θ

) d−→N
(

0,M−1
)

with M = ATB−1A. (2.15)

Proof The proof is omitted since it follows essentially from standard arguments
such as in, for instance, Basawa et al. (1976) and Klimko and Nelson (1979). Refer
also to recent reference of Hwang et al. (2013a, Theorem 1) and Hwang et al. (2013b,
Theorem 1).

Suppose that the true likelihood is known to us. The ML score, in particular, is
denoted by Sn(θ );

Sn(θ ) =
∑

lt (θ ) (2.16)

where lt (θ ) denotes ∂lnpt (θ )
∂θ

with pt (θ ) being the conditional density of Xt given Ft−1.
See Eq. (2.6). Define (k × k) symmetric matrix

C = E
(
lt (θ ) · lTt (θ )

) = E
(− ∂lt (θ )/∂θT

)
. (2.17)

Note that the covariance matrix between ut (θ ) and lt (θ ) is given by the matrix A,
that is,

A = E
(− ∂ut (θ )/∂θT

) = E
(
ut (θ ) · lTt (θ )

)
. (2.18)
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The ML estimator, say θ̂ML, is obtained from solving Sn(θ ) = 0. For θ̂ML, it is obvious
that A = B = C and thus it follows readily from Theorem 3.1-(2) that

√
n
(
θ̂ML − θ

) d−→N
(

0 , C−1
)
. (2.19)

It will be shown that the ML estimator θ̂ML is asymptotically optimal in the sense of
having the “smallest” covariance matrix among all the estimators θ̂n within U. To do
this, we state the following convolution theorem due to Hwang and Basawa (2011a).

Theorem 3.2 (Convolution theorem within the class U) Consider any Un(θ ) ∈ U

and the consistent solution θ̂n of Un(θ ) addressed in Theorem 3.1. Then,
√
n
(
θ̂n− θ

)

can be expressed as a sum of two independent random variables, say, N1(θ ) and
N2(θ ) where N1(θ ) and N2(θ ) follow N

(
0, (ATB−1A)−1 − C−1

)
and N

(
0,C−1

)
in

limit, respectively.

Remark The convolution theorem implies that
(
ATB−1A

)−1 −C−1 is nonnegative

definite. Comparing (2.15) and (2.19), the ML estimator θ̂ML attains the “smallest”
variance–covariance matric C−1 within the MEF class U .

Proof Since the proof follows essentially the same lines as in Theorem 3.3 of Hwang
and Basawa (2011a), we provide outlines only, omitting details. A martingale central
limit theorem gives

n−1/2

(
Un(θ )
Sn(θ )

)
d−→ N

((
0
0

)
,

(
B A

AT C

))
(2.20)

and
(√

n(θ̂n − θ )
n−1/2Sn(θ )

)
d−→N

((
0
0

)
,

(
(ATB−1A)−1 Ip

Ip C

))
. (2.21)

Consider the following expression
√
n(θ̂ − θ ) = N1n(θ ) +N2n(θ )

where

N1n(θ ) = √
n(θ̂ − θ ) − C−1n−1/2Sn(θ ) and N2n(θ ) = C−1n−1/2Sn(θ ).

Equivalently, we have
(
N1n(θ )
N2n(θ )

)
=
(
I −C−1

0 C−1

)(√
n(θ̂n − θ )

n−1/2Sn(θ )

)
. (2.22)

Then, it follows from (2.21) that

(
N1n(θ )
N2n(θ )

)
is asymptotically normal with mean zero

and variance–covariance matrix given by
(

(ATB−1A)−1 − C−1 0
0 C−1

)
.
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This completes the proof.
Although the ML estimator θ̂ML is asymptotically optimal in the sense of having

“the smallest variance”, it is usually the case in stochastic processes that the exact
likelihood is unknown to researchers and therefore θ̂ML is not available. Without the
knowledge of the likelihood, one may consider the QL score QL(θ ) instead of the
ML score. Godambe (1985) established certain “optimality” of the QL(θ ) within the
Godambe class L of linear MEFs Gn(θ ) defined in (2.3), viz.,

Gn(θ ) =
n∑

t=1

wt−1(θ )at (θ ) (2.23)

in which we consider the scalar innovation at (θ ) for the simplicity of presentation.
Define (k × k) matrices H and J ;

H = E
(− ∂(wt−1at )/∂θ

T
) = E

(− wt−1(Et−1Dat )
T
)

(2.24)

and

J = Var
(
wt−1at

) = E
(
wt−1wT

t−1Et−1a
2
t

)
(2.25)

where Dat represents ∂at/∂θ and θ is suppressed in wt−1(θ ) and at (θ ). Here and in
what follows Et−1 denotes the conditional expectation given Ft−1. Let θ̂n denote the
consistent solution of Gn(θ ) = 0 for Gn(θ ) ∈ G. It then follows from (2.15) that

√
n
(
θ̂n − θ

) d−→N
(
0, (HT J−1H )−1

)
. (2.26)

The QL score due to Godambe (1985) is obtained by

QL(θ ) =
n∑

t=1

wO
t−1(θ )at (θ ) (2.27)

for which wO
t−1(θ ) = Et−1

[
∂at (θ )/∂θ

]
/Et−1

[
a2
t (θ )

]
. Let us denote the consistent

solution from QL(θ ) = 0 by θ̂QL. It is not difficult to see that

√
n
(
θ̂QL − θ

) d−→N
(

0 , K−1
)

(2.28)

where

K = E
[(
Et−1Dat

)(
Et−1Dat

)T
/Et−1a

2
t

]
. (2.29)

By establishing the following convolution theorem within the restricted Godambe
class L, Hwang and Basawa (2011b) argued that the matrix (HT J−1H )−1 − K−1

is nonnegative definite, which implies that θ̂QL is better than θ̂n in the sense of the
“smaller” asymptotic variance.
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Theorem 3.3 (Convolution theorem within the Godambe class L) Split θ̂n into
two components, viz.,

√
n(θ̂n − θ ) = Y1n(θ ) + Y2n(θ ) (2.30)

where

Y1n(θ ) = √
n(θ̂n − θ ) − K−1QL(θ )/

√
n ; Y2n(θ ) = K−1QL(θ )/

√
n. (2.31)

Then, Y1n(θ ) and Y2n(θ ) are asymptotically independent normal random vectors.
Specifically, we have

(
Y1n(θ )
Y2n(θ )

)
d−→ N (

(
0
0

)
,

(
(HT J−1H )−1 −K−1 0

0 K−1

)
). (2.32)

Proof Refer to Theorem 3 of Hwang and Basawa (2011b).
We have discussed asymptotic optimality for θ̂ML and θ̂QL within the class U and

L, respectively. When the likelihood is known, we may go ahead and use θ̂ML. If
the likelihood is not available, θ̂QL will be a good choice as an alternative to θ̂ML.
Illustrative examples follow.

2.3.1 Conditionally Linear (AR(1)) Processes (CLAR(1))

Grunwald et al. (2000) introduced a class of conditionally linear AR(1) models
(CLAR(1)) defined by

mt (θ ) = θ1 + θ2Xt−1, −∞ < θ1 < ∞, |θ2| < 1. (2.33)

where we do not require the knowledge of the likelihood. Note that the conditional
mean mt (θ ) is linear in terms of the parameter θ = (θ1, θ2)T . Grunwald et al. (2000)
argued that the CLAR(1) class contains a large number of models in the literature,
including standard AR(1) process, random coefficient AR(1) model and various
integer-valued thinning models as special cases. Hwang and Basawa (2009, 2011b)
reviewed the class in the context of estimating function approach. Assume that the
conditional variance ht = Var(Xt |Ft−1) is known. To construct Godambe class, set
at (θ ) = Xt − mt (θ ). It is easily seen that

θ̂QL =
( ∑

h−1
t

∑
Xt−1h

−1
t∑

Xt−1h
−1
t

∑
X2

t−1h
−1

)−1 ( ∑
Xth

−1
t∑

XtXt−1h
−1
t

)
(2.34)

and the limit distribution is given by

√
n(θ̂QL − θ )

d−→N
(
0,K−1

)
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which gives the “minimum” variance–covariance matrix K−1 within the Godambe
class. Refer to Hwang and Basawa (2011b) for further details. The least squares
estimator θ̂n belonging to the Godambe class is seen to be

θ̂n =
(

n
∑

Xt−1∑
Xt−1

∑
X2

t−1

)−1 ( ∑
Xt∑

XtXt−1

)
.

It is obvious from Theorem 3.3 that θ̂QL is better than θ̂n.

2.3.2 A General GARCH-Type Processes

Revisit a general GARCH-type process

Xt =
√
ht et (2.35)

where {et } is a sequence of iid random errors with mean zero and unit variance,
having density fe( · ). Here, ht denotes the conditional variance of Xt given Ft−1.
We here do not specify the functional form of ht and accordingly a broad class
of conditionally heteroscedastic time series {Xt } with a general form of ht will be
discussed. Hwang et al. (2013a) investigated general GARCH-type processes in
order to compare various MEFs. Discussions below are adapted from Hwang et al.
(2013a). First consider the conditional least squares score CL(θ ) given in (2.12). It
is noted that Var

(
Xt |Ft−1

) = ht (θ ) and

Var
(
X2

t |Ft−1
) = (ζ − 1

)
h2
t (θ ) (2.36)

where ζ = E
(
e4
t

)
. In order to determine the limiting distribution of θ̂LS , one can

obtain

H = E
(
ut (θ )uT

t (θ )
) = (ζ − 1)E

[

h2
t

(
∂ht (θ )

∂θ

)(
∂ht (θ )

∂θ

)T
]

and

J = E

(
−∂ut (θ )

∂θ

)
= E

[(
∂ht (θ )

∂θ

)(
∂ht (θ )

∂θ

)T
]

.

We thus have
√
n
(
θ̂LS − θ

) d−→N
(
0,H−1JH−T

)
. (2.37)

Next, we consider the QL score QL(θ ) given in (2.9). The QL estimator θ̂QL is
obtained from QL(θ ) = 0. It can be verified that

K = (ζ − 1)−1E

[

h−2
t

(
∂ht (θ )

∂θ

)(
∂ht (θ )

∂θ

)T
]

(2.38)
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which in turn yields

√
n(θ̂QL − θ )

d−→N
(
0,K−1

)
. (2.39)

Note that θ̂QL is better than θ̂LS in the sense of Theorem 3.3. Let fe denote the true
density of et . The ML estimator θ̂ML is obtained from Sn(θ ) = 0 where Sn(θ ) is
defined in (2.9). It then follows that

√
n(θ̂ML − θ )

d−→N
(
0,C−1

)

where C = E
(
lt (θ )lTt (θ )

) = E
( − ∂lt (θ )/∂θT

)
. Although θ̂ML is optimum in the

sense of “minimum variance” within U , it is noted that θ̂ML requires a specification
of the density fe (of et ) while θ̂QL can be easily implemented regardless of fe. Refer
to Hwang et al. (2013a) for further details.

2.3.3 Bifurcating Autoregressive Processes (BAR)

Cowan and Stuadte (1986) introduced (BAR) processes indexed by a binary-splitting
tree for cell lineage study. A first-order BAR(1) process {Xt , t = 1, 2, . . . } is defined
recursively by

X2t = θXt + ε2t

X2t+1 = θXt + ε2t+1 (2.40)

where |θ | < 1 and {εt } is a sequence of iid random errors with mean zero and
variance σ 2

ε . In a BAR model, observations are indexed by a bifurcating tree where
each individual (mother) in one generation produces two individuals (sisters) in the
next generation. For each individual, an observation X is recorded. The BAR and
various BAR type models have been studied by several authors including, among
others, Hwang and Basawa (2009, 2011a) and Hwang and Kang (2012). Let t(1)
denote the first ancestor (i.e., mother) of the individual t . It can be shown that
t(1) = [t/2] where [ · ] denotes the greatest integer function. The BAR(1) in (2.40)
can be rewritten in terms of a single equation as (cf. Hwang and Kang 2012)

Xt = θXt(1) + εt , t ≥ 2. (2.41)

Consider the following nonlinear BAR process defined by

Xt = mt +
√
ht · et (2.42)

where the variance of et is set to be unity and mt = m(Xt(1)) and ht = h(Xt(1)) stand
respectively for the conditional mean and variance function defined by

mt = E
(
Xt |Xt(1)

)
and ht = Var

(
Xt |Xt(1)

)
(2.43)
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It is noted that mt and ht are Xt(1)−measurable. Suppose that the distribution of et
is not known and then we rely on a QL score. Let

at (θ ) =
(

Xt −mt (θ )
(Xt −mt (θ ))2 − ht (θ )

)
(2.44)

and consider the Godambe class L given in (2.3) with k = 2. Denote the (2 × 2)
conditional variance–covariance matrix ofat (θ ) given the first ancestorXt(1) byVt (θ ),
viz.,

Vt (θ ) = E
[
at (θ )aT

t (θ )|Xt(1)
] =

(
ht (θ ) μ3t (θ )
μ3t (θ ) μ4t (θ ) − h2

t (θ )

)
. (2.45)

where μ3t (θ ) = E
[
(Xt − mt (θ ))3|Xt(1)

]
and μ4t (θ ) = E

[(
Xt − mt (θ )

)4|Xt(1)
]

(cf.
Hwang et al. (2013b)). The conditional expectation of the derivative matrix of at (θ )
is given by

E
[
∂at (θ )/∂θT |Xt(1)

] =
(−(∂mt (θ )/∂θ )T

−(∂ht (θ )/∂θ )T

)
: (2 × k). (2.46)

We now have a QL score which is optimum within L

QL(θ ) =
n∑

t=1

wO
t−1(θ )at (θ ) =

n∑

t=1

(
Et−1

[
∂at (θ )/∂θT

])T (
Et−1

[
at (θ )aT

t (θ )
])−1

at (θ ).

= −
n∑

t=1

(
∂mt (θ )

∂θ
,
∂ht (θ )

∂θ

)
V −1
t (θ )at (θ ) (2.47)

where Vt (θ ) is given in (2.45). It then follows from (2.28) and Theorem 3.3 that

√
n
(
θ̂QL − θ

) d−→N
(
0,K−1

)
(2.48)

where

K = E

[(
∂mt (θ )

∂θ
,
∂ht (θ )

∂θ

)
V −1
t (θ )

(
∂mt (θ )

∂θ
,
∂ht (θ )

∂θ

)T
]

. (2.49)

Refer to, for instance, Hwang and Basawa (2011b) for further details. A weighted
least squares seems to be simple to use. A weighted least squares estimator θ̂WL

of θ is obtained by minimizing
∑n

t=1

(
Xt−mt (θ )√

ht (θ )

)2
. As an illustration, we consider

mt (θ ) = θ1X
+
t(1) + θ2X

−
t(1) and ht (θ ) = α0 + α1Xt(1), that is, we examine a simple

heteroscedastic threshold BAR process. See Hwang and Kang (2012) for details on
this model. Suppose that θ = (θ1, θ2) is the parameter of interest and the secondary
parameter α = (α0,α1) is known so that ht (θ ) is free from the parameter θ of interest.
The WL- score is given by

Un(θ ) =
(∑

(Xt −mt (θ ))X+
t(1)/ht∑

(Xt −mt (θ ))X−
t(1)/ht

)
, with mt (θ ) = θ1X

+
t(1) + θ2X

−
t(1) (2.50)
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which in turn gives

θ̂WL =
[
diag

(∑
h−1
t

(
X+

t(1)

)2
,
∑

h−1
t

(
X−

t(1)

)2)]−1
(∑

XtX
+
t(1)/ht∑

XtX
−
t(1)/ht

)
(2.51)

where diag(·, ·) represent a diagonal matrix. The limit distribution of θ̂WL can be
obtained via Theorem 3.2 (cf. Hwang and Kang (2012)). It is noted that the WL-score
(2.50) is a member of Godambe MEFs L generated by the innovation vector at (θ ) in
(2.44) and thus θ̂QL provides the “smaller” variance than θ̂WL, due to Theorem 3.3.

2.4 Non-Ergodic Martingale Estimating Functions

As discussed in Sect. 2.3, for ergodic stationary processes, a constant norm
(e.g.,

√
n) is used to get asymptotic normal distributions of the various estimators

obtained from MEFs. On the other hand, for nonergodic type processes, limit distri-
butions of standard estimators are mixed-normal when a nonrandom norm is used.
Instead, a random norm is required to get normal limit distributions for nonergodic
processes. Asymptotics of various statistics normalized by random norms in a broad
context have recently been discussed by Pena et al. (2009) and Hwang et al. (2013a).
Refer to Basawa and Scott (1983) for various nonergodic processes including normal
mixture models, explosive autoregressive processes and branching processes. In this
section we consider large sample estimation based on MEFs for a class of nonergodic
processes. Via establishing a convolution theorem using a random norm, it will be
shown that the ML estimator continues to be asymptotically optimum in a sense of
“minimum variance” within a class of estimators obtained from nonergodic MEFs.
Most of the contents in this section are adapted from those in Hwang et al. (2013a)
and Hwang and Basawa (2011a) and therefore we provide streamlined outlines only,
omitting some details.

Consider the following MEF Un(θ ) arising from possibly nonstationary process

Un(θ ) =
n∑

t=1

ut (θ ) : (k × 1) vector (2.52)

Let ξn denote the sum of conditional variance–covariance matrix, i.e.,

ξn =
n∑

t=1

Var
(
ut (θ )|Ft−1

) =
n∑

t=1

E
(
ut (θ )uT

t (θ )|Ft−1
)

: (k × k) matrix. (2.53)

It is assumed that |ξn| −→ ∞ almost surely, as n tends to infinity. The local
neighborhood Nδ(θ ) about θ defined earlier in (2.2) needs to be modified as

Nδ(θ ) = {θ∗; |ξ 1/2
n (θ∗ − θ )| < δ} (2.54)
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and in turn the supremum appearing in (C1) of the regular MEF is to be taken over the
local neighborhood of (2.54). Now, we collect all the regular MEFs into �. Consider
(arbitrary) member Un(θ ) ∈ � and assume that
(C2) There exists a nonsingular (non-random) matrix G such that

G = plim
[−ξ−1/2

n (∂Un(θ )/∂θT )ξ−1/2
n

]
. (2.55)

where plim denotes “limit in probability”.
In particular, for the ML score Sn(θ ) =∑ lt (θ ), G reduces to Ik , the identity matrix
of order k. Specifically, define

ηn =
∑

Var
(
lt (θ )|Ft−1

) =
∑

E
(
lt (θ )lTt (θ )|Ft−1

) =
∑

E
(− ∂lt (θ )/∂θT |Ft−1

)

(2.56)

and note that

Ik = plim
[−η−1/2

n

(
∂Sn(θ )/∂θT

)
η−1/2
n

]
. (2.57)

Let θ̂n be a solution of the martingale estimating equation Un(θ ) = 0. The limit
distribution of θ̂n is identified in the following theorem.

Theorem 4.1 Under (C1) and (C2), we have

ξ 1/2
n

(
θ̂n − θ

) d−→ N
(
0,G−1G−T

)
(2.58)

where G is defined in (2.55). In addition, we conclude

η1/2
n

(
θ̂ML − θ

) d−→ N
(
0, Ik

)
. (2.59)

Note that the norming (random) matrices in (2.58) and (2.59) are different as given
by ξ

1/2
n and η

1/2
n , respectively.

(C3) There exists a nonrandom and nonsingular matrixC which is the limiting (k×k)
covariance matrix between ξ

−1/2
n Un(θ ) and η

−1/2
n Sn(θ ), viz.,

C = plim
[
ξ−1/2
n Un(θ )η−1/2

n Sn(θ )T
]
. (2.60)

We now define the “ratio” matrix � between G and C.

� = C−1G (2.61)

It can then be verified that the ML estimate using the norming matrix ξ
1/2
n has the

limiting variance–covariance matrix given by �−1�−T , viz.,

ξ 1/2
n

(
θ̂ML − θ

) d−→ N
(
0,�−1�−T

)
. (2.62)

Refer to Hwang et al. (2013a) for details. It will be shown that G−1G−T −�−1�−T is
non-negative definite and therefore we deduce that θ̂ML is optimal within the regular
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class � of MEFs in the sense of having the “minimum” variance–covariance matrix.
A convolution theorem for non-ergodic MEFs (due to Hwang et al. (2013a)) is now
presented. Decompose

ξ 1/2
n

(
θ̂n − θ

) = Y1n(θ ) + Y2n(θ )

where

Y1n(θ ) = ξ 1/2
n

(
θ̂n − θ

)− �−1η−1/2
n Sn(θ ) (2.63)

and

Y2n(θ ) = �−1η−1/2
n Sn(θ ). (2.64)

Theorem 4.2 (A convolution theorem for non-ergodic MEFs) Under some regu-
larity conditions, for any θ̂n obtained from Un(θ ) ∈ �, ξ 1/2

n

(
θ̂n−θ

)
can be expressed

as a sum of two asymptotically independent components which are distributed as
N
(
0,G−1G−T − �−1�−T

)
and N

(
0,�−1�−T

)
, respectively. Specifically,

ξ 1/2
n

(
θ̂n − θ

) = Y1n(θ ) + Y2n(θ )

(
Y1n(θ )
Y2n(θ )

)
d−→ N

((
0
0

)
,

(
G−1G−T − �−1�−T 0

0 �−1�−T

))

where Y1n(θ ) and Y2n(θ ) are defined in (2.63) and (2.64).
To illustrate Theorems 4.1 and 4.2, two nonergodic processes are discussed.

2.4.1 Branching Markov processes (BMP)

A BMP is a tree-indexed process where the tree index is a branching process
{Zt , t = 0, 1, 2, . . .} with Zt denoting the t−th generation size. BMPs were in-
vestigated by Hwang and Basawa (2009, 2011a). Let Xt (j ), j = 1, 2, . . . ,Zt and
t = 0, 1, 2, . . . , denote observation on the j−th individual in the t−th generation.
Figure 2.1 illustrates a sample path of BMP (see Hwang and Basawa (2009)). We
assume that {Zt } follows a standard supercritical Galton-Watson (G-W) branching
process for which E(Z1) = m > 1 and Var(Z1) = σ 2 > 0 where m and σ 2 are the
offspring mean and variance respectively. It is well known that there exists a random
variableW to whichZn/m

n converges almost surely as n −→∞, andP (W > 0) = 1.
To clarify the ancestral path of Xt (j ), use the notation Xt−1(t(j )) to denote the ob-
servation on the immediate mother of the Xt (j ). Here, the subscript t − 1 is used
for denoting (t − 1)th generation. We refer to Hwang and Basawa (2009, 2011a) for
various examples of BMP. A simple BMP is a branching AR model defined by

Xt (j ) = θ0 + θ1Xt−1(t(j )) + εt (j ) (2.65)
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Fig. 2.1 A path of BMP model

where {εt (j ), t = 1, 2, . . . and j = 1, 2, . . .} are iid random variables with mean zero
and variance σ 2

ε . The data is given as follows.

{(zt , xt (j )); t = 1, 2, . . . , n; j = 1, 2, . . . , zn}
with initial observation x0(1) on Z0 = 1.

Set θ = (θ0, θ1
)T

. If εt (j ) is normal, the ML estimate θ̂ML is given by

θ̂ML =
( ∑

Zt

∑∑
Xt−1(t(j ))∑∑

Xt−1(t(j ))
∑∑

X2
t−1(t(j ))

)−1 ( ∑∑
Xt (t(j ))∑∑

Xt (t(j ))Xt−1(t(j ))

)

(2.66)

where
∑ = ∑n

t=1 and
∑∑ = ∑n

t=1

∑Zt

j=1. We now define (2 × 2) non-random
matrix

η = plim

( ∑
Zt

∑∑
Xt−1(t(j ))∑∑

Xt−1(t(j ))
∑∑

X2
t−1(t(j ))

)
/
∑

Zt . (2.67)

It can be verified that (2.59) is valid, viz.,

η1/2
n

(
θ̂ML − θ

) d−→N
(
0, I2

)
(2.68)
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if we choose the random norm ηn as ηn = σ−2
ε η

∑
Zt . It is interesting to note that

θ̂ML is mixed-normal with the mixing random variable W when a non-random norm
is used. Specifically, set

δn = mn+1

m− 1
, m > 1

where m is the offspring mean. Then, we have

δ1/2
n

(
θ̂ML − θ

) d−→ 1√
W

·N(0, σ 2
ε η

−1
)
. (2.69)

Note that θ̂ML is asymptotically optimal within � in the sense of Theorem 4.2. We
refer to Hwang and Basawa (2011a) and Hwang et al. (2013a) for asymptotic mixed
normality arising from nonergodic MEFs.

2.4.2 Explosive AR(1) Processes

Consider the following zero mean explosive AR process defined by

Xt = θXt−1 + εt , |θ | > 1 (2.70)

where {εt } is iid N (0, σ 2
ε ) errors and the initial value X0 = 0. The ML score function

Sn(θ ) is seen to be

Sn(θ ) =
n∑

t=1

lt (θ ) with lt (θ ) = σ−2
ε εt (θ )Xt−1

where εt (θ ) = Xt − θXt−1 and it is obvious that θ̂ML =∑XtXt−1/
∑

X2
t−1 and the

corresponding random norm is given by ηn = σ−2
ε

∑
X2

t−1. We conclude via (2.59)

σ−1
ε

√∑
X2

t−1

(
θ̂ML − θ

) d−→N (0, 1). (2.71)

We consider a case of mis-specification of the conditional variance ht . Suppose that
εt in (2.70) is misspecified as a ARCH(1) process. That is, we have

εt =
√
htet

where {et } is iid with mean zero and variance unity and

ht = α0 + α1ε
2
t−1 (2.72)

for which α0 > 0 and 0 ≤ α1 < 1. Assume that α0 and α1 are known constants.
Consider the following misspecified MEF Un(θ ) defined by

Un(θ ) =
n∑

t=1

h−1
t εt (θ )Xt−1 (2.73)
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which in turn gives

θ̂n =
∑

XtXt−1h
−1
t /
∑

X2
t−1h

−1
t . (2.74)

To discuss asymptotics for θ̂n, note that ξn = ∑
h−2
t σ 2

ε X
2
t−1. It can be shown that

(2.58) holds, i.e.,

ξ 1/2
n (θ̂n − θ )

d−→N (0,G−2) (2.75)

where

G = plim
[
σ−2
ε

∑
h−1
t X2

t−1/
∑

h−2
t X2

t−1

]
= σ−2

ε

E
(
α0 + α1ε

2
t−1

)−1

E
(
α0 + α1ε

2
t−1

)−2 . (2.76)

2.5 Concluding Remarks

This review paper presents asymptotic results on MEFs in stochastic processes. Stan-
dard estimation methods such as LS, QL, ML and PL can be unified via a single
framework of MEFs. When the likelihood is known, ML score is shown to provide
the “smallest” variance among the class U of regular MEFs. It is often the case in
stochastic processes that the likelihood is unknown but only first few moment struc-
tures are given instead. The QL score is then verified to be asymptotically optimal
within the restricted class L ⊂ U of Godambe MEFs. Two convolution theorems
are established to address optimality of ML score and QL score separately within
appropriate classes of MEFs.

Both ergodic and non-ergodic cases are discussed. Applications to conditionally
linear AR (CLAR) models, GARCH-type processes and bifurcating AR (BAR) mod-
els are presented to illustrate the ergodic case. A non-ergodic convolution theorem
is established and in turn (BMP) and explosive AR models are discussed for non-
ergodic applications. The results presented in the paper are mostly adapted from
recent literature on MEF asymptotics as a unifying tool for estimation in stochastic
processes.

We have not discussed testing problems in MEF asymptotics. When the likeli-
hood is available, one may use the classical three tests (Rao’s score, Wald, and LR
statistics). If the likelihood is unknown, we look to appropriate MEFs, for instance, a
QL score in constructing test statistics. Basawa (1991), Hwang and Basawa (2011b),
and Hwang et al. (2013a) obtained some preliminary results on certain tests based
on MEFs. However, a rigorous treatment on asymptotic power and efficiency of tests
based on MEFs in a broad context has not yet been adequately addressed in the
literature and this will be pursued elsewhere.
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Chapter 3
Asymptotics of Lλ-Norms of ARCH(p)
Innovation Density Estimators

Fuxia Cheng

3.1 Introduction

Let X1−p, . . . ,X0,X1, . . . be random variables for some positive integer p. We
assume they form an ARCH(p)-model:

Xi = εi

√
α0 + α1X

2
i−1 + · · · + αpX

2
i−p, i = 1, 2, . . . , (3.1)

where the parameters α0, . . . ,αp are positive and the innovations εi are independent
and identically distributed random variables with mean 0, variance 1, unknown den-
sity function f and distribution function F and are independent of X1−p, . . . ,Xi−1.
It follows that the conditional variance of Xi satisfies

V ar{Xi |X1−p, . . . ,Xi−1} = α0 + α1X
2
i−1 + · · · + αpX

2
i−p, i = 1, 2, . . . (3.2)

Property (3.2) is called conditional heteroscedasticity and explains, together with its
autoregressive nature, the name of this model.

Model (3.1) has found much interest in financial econometrics. It was introduced
by Engle (1982) in order to provide a framework in which so-called volatility clus-
ters may occur, i.e., periods of high and low (conditional) variances depending on
past values of the series. The model was later extended into various directions. See
Gouriérous (1997) for details. In most of the work, the main focus has been on es-
timating the unknown parameters α0, . . . ,αp, see Weiss (1986), Horváth and Liese
(2004) among others.

It is of interest and of practical importance to know the nature of the innova-
tion distribution. Actually, if the distribution of the innovation is unspecified, the
parametric component only partly determines the distribution behavior of (3.1). It
is as important to investigate the distribution of the innovation as estimating αj ’s.
Stute (2001) uses the residual-based empirical distribution function (d.f.). Fn to es-
timate the distribution function of εi , and provides consistency and distributional
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convergence results for a class of statistics based on Fn. Cheng (2008a) considers the
uniform strong consistency of the innovation distribution function estimation in au-
toregressive conditional heteroskedasticity (ARCH)(p)-time series, and obtains the
extended Glivenko-Cantelli Theorem for the residual-based empirical d.f.. Cheng
(2008b) develops the asymptotic distribution of the innovation density estimator at a
fixed point and globally. Cheng and Wen (2011) obtain the strong consistency of the
innovation density estimator under L1-norm. Cheng, Sun, and Wen (2011) develop
the asymptotic normality of the Bickel-Rosenblatt test statistic and show the strong
consistency of the estimator for the true density in L2-norm.

For generalizedARCH (GARCH) models, Koul and Mimoto (2012) prove asymp-
totic normality of a suitably standardized integrated square difference between a
kernel type error density estimator based on residuals and the expected value of the
error density estimator based on innovations of GARCH models.

Here, we will continue to develop the global property of the innovation density
estimator in ARCH(p). Notice that central limit theorems for Lp-norms of density
estimators (under independent and identically distributed (i.i.d.) set up) have been
obtained in Csörgő and Horváth (1988); and the corresponding results have been
derived for the Lp-norms of error density estimators in the first-order autoregressive
models by Horváth and Zitikis (2004). For an autoregressive of order p ≥ 1 (AR(p))
model, Yang, Fu, and Zhang (2011) have compared the kernel density estimator
(based on residuals) with the theoretical kernel density estimator based on unobserved
innovations, and they show that the Lr -norm of the difference is asymptotically
negligible.

In this paper, we will consider asymptotic properties of residual-based kernel
density estimators of the innovation density f in Lλ(λ ≥ 1)-norms. The asymptotic
result for Lλ-norms of density estimators (under i.i.d. set up) will be extended to
Lλ-norms for the residual-based kernel density estimators in ARCH(p) time series.
Our main result gives a rate for the Lλ-norm of the difference between the residual-
based and the innovation-based kernel density estimators. This rate is faster than that
for the Lλ-norm of the difference between innovation-based kernel density estimator
and innovation density for the case λ > 1, and of the same order for the case λ = 1.
Thus the known asymptotic behavior for the Lλ-norm of the latter difference carries
over to that of the difference between residual-based kernel density estimator and
innovation density for the case λ > 1, but not for the case λ = 1.

The paper is organized as follows. In Sect. 2 we introduce the residual-based
kernel density estimator and state some basic assumptions. Section 3 presents the
main result. Detailed proofs are provided in Sects. 4 and 5.

3.2 Estimators and Some Basic Assumptions

Assume that we observe X1−p,X2−p, · · · ,Xn which obey the model (3.1). Let α̂n =
(α̂0n, . . . , α̂pn)
 denote an estimator of the parameter vector α = (α0, . . . ,αp)
,
based on these observations. Set

ε̂i = Xi

/√
α̂0n + α̂1nX

2
i−1 + · · · + α̂pnX

2
i−p, 1 ≤ i ≤ n,
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to be residuals. Using these residuals, we construct an estimator of the innovation
density f as follows:

f̂n(t) := 1

n

n∑

i=1

Khn (t − ε̂i), t ∈ R,

with Khn (t) = K(t/hn)/hn and hn being positive numbers (usually called
bandwidth) tending to zero as n → ∞, and K is the kernel density function.

Define the kernel innovation density based on the true innovations (which we
cannot observe) ε1, ε2, · · · , εn:

fn(t) := 1

n

n∑

i=1

Khn (t − εi), t ∈ R.

The strong consistency of fn for f under L1-norm is given in Devroye (1983), i.e.,
∫

|fn(t) − f (t)| dt → 0 almost surely (a.s.), as n → ∞.

In Cheng and Wen (2011), the above result is extended to f̂n, i.e.,
∫

|f̂n(t) − f (t)|dt → 0 a.s., as n → ∞.

For the integrated squared deviation of f̂n from

E(fn(t)) =
∫

K(x)f (t − hnx)dx = Khn ∗ f (t), t ∈ R,

(where Khn ∗ f denotes the convolution of the two functions Khn and f ) defined as
∫

[f̂n(t) −Khn ∗ f (t)]2 dt ,

Cheng, Sun, and Wen (2011) develop its asymptotic normality which is the same as
the one of the Bickel–Rosenblatt test statistic based on fn in Bickel and Rosenblatt
(1973). They also show that

∫
[f̂n(t) − f (t)]2dt tends to zero almost surely.

For any (finite number) λ ≥ 1, the Lλ-norm of a measurable function g is defined
as follows:

‖g‖λ :=
(∫

|g(x)|λ dx
)1/λ

.

We mention that the convolution q ∗ r of an integrable function r with a function q

of finite Lλ-norm has finite Lλ-norm and obeys the inequality

‖q ∗ r‖λ ≤ ‖q‖λ‖r‖1.

We should also point out that, for such a q, the map

s �→ ‖q (· − s)− q‖λ
is bounded by 2‖g‖λ and is uniformly continuous; see, e.g. Theorem 9.5 in Rudin
(1974) for the later. The above inequality is a special case of the more general
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inequality
‖V |q ∗ r|λ‖1 ≤ ‖V |q|λ‖1‖V r‖λ1

with V (x) = (1 + |x|)β for some β ≥ 0. This follows from the inequalities

|q ∗ r|λ ≤ ‖r‖λ−1
1 |q|λ ∗ |r| ≤ ‖V r‖λ−1

1 |q|λ ∗ |r|
and

‖V u ∗ r‖1 ≤ ‖V u‖1‖V r‖1.

The former is a consequence of the Hölder inequality, while the latter is from Schick
and Wefelmeyer (2007).

In this paper, we consider the asymptotic distribution of the Lλ-norm of the dif-
ference between the kernel innovation density estimators based on residuals and the
true density function, i.e., ‖f̂n − f ‖λ.

In order to show the main result, we need the following assumptions.

Assumption 1. The entries of α and α̂n are positive, and the estimator α̂n is root-n
consistent: n1/2(α̂n − α) = Op(1) as n → ∞.

Assumption 2. The density f has mean zero and variance one and is absolutely
continuous, and the function x �→ (1 + x2)f ′(x) has finite L1, L2 and Lλ-norms.

Assumption 3. The kernel K is a three-times continuously differentiable symmetric
density with compact support.

Remark 2.1 Let α̃n = (α̃0n, . . . , α̃pn)
 be a root-n consistent estimator ofα. Then the
estimator α̂n with entries α̂jn = max(1/n,αjn) meets the requirement of Assumption
1. A possible root-n consistent estimator is the least squares estimator.

For later use, we introduce functions ψ1 and ψ2 by

ψ1(x) = xf (x) and ψ2(x) = x2 f (x), x ∈ R.

Remark 2.2 Assumption 2 implies the following. The density f is bounded. The
function ψ1 is absolutely continuous with almost everywhere derivative

ψ ′
1(x) = f (x) + xf ′(x), x ∈ R,

which has finite L1, L2 and Lλ-norms. Thus ψ1 is bounded. Similarly, the function
ψ2 is absolutely continuous with almost everywhere derivative

ψ ′
2(x) = 2xf (x) + x2 f ′(x), x ∈ R,

which has finite L1, L2 and Lλ-norms. Thus ψ2 is bounded.

Remark 2.3 Assumption 3 guarantees that K and its first three derivatives are
bounded and integrable. Hence these functions have finite Lλ-norms. So do Khn

and its first three derivatives, and we have

‖K (v)
hn
‖λ = ‖K (v)‖λ

h
ν+1−1/λ
n

, ν = 0, 1, 2, 3.

In the following sections, all limits are taken as the sample size n tends to ∞, unless
specified otherwise.
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3.3 Asymptotics of f̂n Under Lλ-Norm

Throughout this section λ ≥ 1 is a fixed finite number. We set

λ∗ = λ− 1

λ
= 1 − 1

λ

and introduce the p + 1-dimensional random vectors

Wi = (1,X2
i−1, . . . ,X2

i−p)
/[2(α0 + α1X
2
i−1 + · · · + αpX

2
i−p)], i = 1, . . . , n,

and their average

W̄n = 1

n

n∑

i=1

Wi.

We are ready to state our main result.

Theorem 3.1 Assume that Asumptions 1–3 hold, and the bandwidth hn satisfies
hn → 0 and nh

3+λ∗/2
n → ∞. We also assume that

1. for 1 ≤ λ < 2, E(|ε1|3) < ∞ and
∫

(1+|x|)4λ+βf (x)λ dx < ∞ for some β > 1.
2. for λ ≥ 2, E(|ε1|2λ) < ∞.

Then we have
√
nh

λ∗
n ‖f̂n − fn − (α̂n − α)
W̄nψ ′

1(x)‖λ = op(1).

For λ > 1, this implies
√
nh

λ∗
n ‖f̂n − fn‖λ = op(1).

Remark 3.1 Let rn denote the square root of nhλ∗
n . The asymptotic distribution of

rn‖fn − f ‖λ has been developed in Csörgő and Horváth (1988). In fact, under some
natural assumptions, for some positive constants σ and m,

(rn‖fn − f ‖λ)λ −m/
√
hn −→ N (0, σ 2).

Here we have shown that rn‖f̂n − fn‖λ = op(1) if λ > 1. Thus we can claim that
(under appropriate conditions) rn‖f̂n − fn‖λ has the same asymptotic distribution
as rn‖fn − fn‖λ for such λ. For λ = 1, however, the asymptotic distributions of
rn‖f̂n − fn‖λ and rn‖fn − fn‖λ will differ.

Let us set
ε∗i = εi − εi(α̂n − α)
Wi

and

f̂ ∗
n (t) = 1

n

n∑

i=1

Khn (t − ε∗i ), t ∈ R.

Then the theorem is a simple consequence of the Minkowski inequality and the
following two lemmas.
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Lemma 3.1 Assume that ε1 has finite mean, K ′ has finite Lλ-norm, Assumption 1
holds and nh2+λ∗

n → ∞. Then we have
√
nh

λ∗
n ‖f̂n − f̂ ∗

n ‖λ = op(1).

Lemma 3.2 Under the assumptions of Theorem 3.1, we have
√
nh

λ∗
n ‖f̂ ∗

n − fn −
(
α̂n − α

)

W̄nψ1‖λ = op(1).

These lemmas are proved in the next sections.

3.4 Proof of Lemma 3.1

For a = (a0, . . . , ap)
 ∈ R
p+1 and i = 1, . . . , n, set

vi(a) = a0 + a1X
2
i−1 + · · · + apX

2
i−p

and introduce

gi(s) = Xi√
vi(α + s�)

, 0 ≤ s ≤ 1,

with � = α̂ − α = (α̂0n − α0, · · · , α̂pn − αp)
. Then we have

εi = gi(0) and ε̂i = gi(1).

Since gi is twice continuously differentiable, the identity

ε̂i = εi + g′
i(0) +

∫ 1

0
(1 − s)g′′

i (s)ds

holds. We calculate

g′
i(0) = −Xi

vi(�)

v3/2
i (α)

= −εi
vi(�)

2vi(α)
= −εi�


Wi ,

and

g′′
i (s) = Xi

3v2
i (�)

4v5/2
i (α + s�)

= εi
3v1/2

i (α)v2
i (�)

4v5/2
i (α + s�)

.

It is easy to check that
sup

1≤s≤1
|g′′

i (s)| ≤ |εi |Tn

with

Tn = 3

4

⎛

⎝
p∑

j=0

αj

min(αj , α̂jn)

⎞

⎠

1/2⎛

⎝
p∑

j=0

|�j |
min(αj , α̂jn)

⎞

⎠

2

.

It follows from Assumption 1 that

Tn = Op(n−1).
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In view of the identity

f̂n(t) − f̂ ∗
n (t) = −1

n

n∑

i=1

∫ 1

0
(ε̂i − ε∗i )K

′
hn

(t − ε∗i − u((ε̂i − ε∗i ))du,

the Minkowski inequality, and the Jensen inequality, we obtain the bound

‖f̂n − f̂ ∗
n ‖λ ≤ 1

n

n∑

i=1

|ε̂i − ε∗i |
( ∫ ∫ 1

0
|K ′

hn
(t − ε∗i − u((ε̂i − ε∗i ))|λ du dt

)1/λ
.

Fubini’s theorem and the substitution x = t−ε∗i −u(ε̂i−ε∗i ) now yield the inequality

‖f̂n − f̂ ∗
n ‖λ ≤ 1

n

n∑

i=1

|ε̂i − ε∗i | ‖K
′
hn
‖λ.

In view of the identity ‖K ′
hn
‖λ = ‖K ′

hn
‖λ/h1+λ∗

n (see Remark 2.3) and the inequality

|ε̂i − ε∗i | =
∣∣
∫ 1

0
(1 − s)g

′′
i (s) ds

∣∣ ≤ |εi |Tn,

one derives the bound

‖f̂n − f̂ ∗
n ‖λ ≤ ‖K ′

hn
‖λ Tn

∑n
i=1 |εi |

nh
1+λ∗
n

.

Since ε1 has finite mean, one has
∑n

i=1 |εi | = Op(n). Using this, Tn = Op(1/n),
and nh2+λ∗

n → ∞, one obtains the rate

√
nh

λ∗
n ‖f̂n − f̂ ∗

n ‖λ = Op

(√
nh

λ∗
n

nh
1+λ∗
n

)

= Op

(
1

√
nh

2+λ∗
n

)

= op(1).

This is the desired result.

3.5 Proof of Lemma 3.2

We use the notation of the previous proof. It is easy to see that the j -th coordinate
Wij of the random vector Wi is bounded by 1/(2αj ). From this we conclude that
|�
Wi | ≤ Sn where

Sn =
p∑

j=0

|�j |
2αj

= Op(n−1/2)

Note that

f̂ ∗
n (t) = 1

n

n∑

i=1

Khn (t − εi + εi�

Wi).



36 F. Cheng

A Taylor expansion yields

f̂ ∗
n (t) − fn(t) = 1

n

n∑

i=1

[
�
WiεiK

′
hn

(t − εi) + 1

2
(�
Wi)

2ε2
i K

′′
hn

(t − εi)
]
+ Rn(t)

with

Rn(t) = 1

6n

n∑

i=1

(�
Wi)
3ε3

i

∫ 1

0
K

′′′
hn

(t − εi + s�
Wiεi)3(1 − s)2 ds.

For t ∈ R and j , k = 0, . . . ,p, we set

Aj (t) = 1

n

n∑

i=1

Wij [εiK
′
hn

(t − εi) − μ1n(t)],

Bjk(t) = 1

n

n∑

i=1

WijWik[ε2
i K

′′
hn

(t − εi) − μ2n(t)],

with
μ1n(t) = E[ε1K

′
hn

(t − ε1)]

and
μ2n(t) = E[ε2

1K
′′
hn

(t − ε1)].

Then we can rewrite the difference f̂ ∗
n (t) − fn(t) −�
W̄nψ ′

1(t) as

p∑

j=0

�jAj (t) + T1n(μ1n(t) − ψ ′
1(t)) + 1

2

p∑

j=0

p∑

k=0

�j�kBjk(t) + 1

2
T2nμ2n(t) +Rn(t)

where

Tln = 1

n

n∑

i=1

(�
Wi)
l = Op(n−l/2), l = 1, 2.

Applications of the Minkowski inequality, the Jensen inequality, and the inequality
|�
Wi | ≤ Sn yield

‖f̂ ∗
n − fn −�
Wnψ ′

1‖λ ≤
p∑

j=0

|�j |‖Aj‖λ +
p∑

j=0

p∑

k=0

|�j ||�k|‖Bjk‖λ +Qn

where

Qn = Sn‖μ1n − ψ ′
1‖λ + S2

n‖μ2n‖λ + S3
n‖K

′′′
hn
‖λ 1

n

n∑

i=1

|εi |3.

Next we show that ‖μ1n − ψ ′
1‖λ = o(1) and ‖μ2n‖λ = O(1/hn). In view of the

identity

μ1n(t) =
∫

K ′
hn

(t − x)xf (x) dx =
∫

K ′
hn

(t − x)ψ1(x) dx
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we have μ1n = ψ1 ∗K ′
hn

= ψ ′
1 ∗Khn and

μ1n(t) − ψ ′
1(t) =

∫
(ψ ′

1(t − hnu) − ψ ′
1(t))K(u) du

and find with the help of the Hölder inequality

‖μ1n − ψ ′
1‖λλ ≤

∫ ∫
|ψ ′

1(t − hnu) − ψ ′
1(t)|λ dtK(u) du → 0.

The convergence follows from the Lebesgue-dominated convergence theorem and
the fact that the map s �→ ‖ψ ′

1( · −s) − ψ ′
1‖λ is bounded and continuous. Similarly,

μ2n = ψ2 ∗ K ′′
hn

= ψ ′
2 ∗ K ′

hn
and ‖μ2n‖λ ≤ ‖ψ ′

2‖λ‖K ′
hn
‖1 = ‖ψ ′

2‖λ‖K ′‖1/hn.

Since ε1 has a finite third moment and nh
3+λ∗/2
n → ∞, we derive

√
nh

λ∗
n Qn = op(hλ∗/2

n ) +Op(hλ∗/2
n /(n1/2hn)) +Op(1/(nh3+λ∗/2

n )) = op(1).

Since εi is independent of εi−1,Xi−1, εi−2,Xi−2, . . . , we see that the summands of
Aj (t) are centered and uncorrelated and obtain

nE[A2
j (t)] = 1

n

n∑

i=1

E[W 2
ij (εiK

′
hn

(t − εi) − μ1n(t))2] ≤ 1

4α2
j

γn(t)

with

γn(t) = E[ε2
1(K ′

hn
)2(t − ε1)] =

∫
ψ2(y)(K ′

hn
)2(t − y) dy = ψ2 ∗ (K ′

hn
)2(t).

Thus, for 1 ≤ λ < 2, we have

∫
E[|Aj (t)|λ] dt ≤

∫
(E[A2

j (t)])λ/2 dt ≤ n−λ/2(2αj )−λ

∫
(γn(t))λ/2 dt

≤ n−λ/2(2αj )−λ
(‖V γ λ

n ‖1‖1/V ‖1
)1/2

≤ n−λ/2(2αj )−λ
(‖V ψλ

2‖1‖V (K ′
kn

)2‖λ1‖1/V ‖1
)1/2

with V (t) = (1 + |t |)β and β > 1 and thus obtain ‖Aj‖λ = OP (n−1/2h
−3/2
n )

provided
∫

(1 + |x|)2λ+βf (x)λ dx is finite for some β > 1. Similarly one derives
‖Bjk‖λ = Op(n−1/2h

−5/2
n ) provided

∫
(1+|x|)4λ+βf (x)λ dx is finite for someβ > 1.

Thus, for 1 ≤ λ < 2, we find
√
nh

λ∗
n

p∑

j=0

|�j |‖Aj‖λ = Op(n−1/2hλ∗/2−3/2
n ) = op(1)

and √
nh

λ∗
n

p∑

j=0

p∑

k=0

|�j ||�k|‖Bjk‖λ = Op(n−1hλ∗/2−5/2
n ) = op(1).

For the case λ ≥ 2, we use the following lemma which gives bounds on the moments
of martingales.
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Lemma 5.1 Let {Sn, n ≥ 1} be a martingale, S0 = 0,Xn = Sn − Sn−1. Then for all
λ ≥ 2 and n = 1, 2, · · ·

E(|Sn)|λ) ≤ Cλn
λ/2−1

n∑

i=1

E(|Xi |λ),

where Cλ = [8(λ− 1)max(1, 2λ−3)]λ.
See Dharmadhikari, Fabian, and Jogdeo (1968) for its proof.
For the remainder of this section we assume that λ ≥ 2. Note that

nAj (t) =
n∑

i=1

WijYni(t), Yni(t) = εiK
′
hn

(t − εi) − μn1(t).

Then {∑k
i=1 WijYni(t), k = 1, . . . , n} is a martingale with respect to the filtration

{σ (X1−p, . . . ,X0, ε1, . . . , εk), k = 0, . . . , n}. Using Lemma 5.1, we calculate

E[‖nAj‖λλ] =
∫

E
[∣∣

n∑

i=1

WijYni(t)
∣∣λ] dt

≤ Cλn
λ/2−1

∫ n∑

i=1

E[|WijYni(t)|λ] dt

≤ Cλn
λ/2−1

2λαλ
j

∫ n∑

i=1

E[|Yni(t)|λ] dt

≤ Cλn
λ/2−1

αλ
j

∫ n∑

i=1

E[|εiK ′
hn

(t − εi)|λ] dt.

In the last step we used the fact that E[|Y − E[Y ]|λ] ≤ 2λE[Y |λ] holds for every
random variable Y with finite λ-moment. With ψ(x) = |x|λf (x), we can write

E[|εiK ′
hn

(t − εi)|λ] = ψ ∗ |K ′
hn
|λ(t)

and find

E[‖nAj‖λλ] ≤ Cλn
λ/2

αλ
j

‖ψ‖1‖K ′
hn
‖λλ.

Thus, if ε1 has a finite λ-moment, then ‖Aj‖λ = Op(n−1/2h−1−λ∗ ) and we obtain

√
nh

λ∗
n

p∑

j=0

|�j |‖Aj‖λ = Op(n−1/2h−1−λ∗/2) = op(1).

In a similar fashion one derives

E[‖nBjk‖λλ] ≤ Cλn
λ/2

αλ
j α

λ
k

E[|ε1|2λ]‖K ′′
hn
‖λλ.
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Thus, if ε1 has a finite 2λ-moment, then we have the rate ‖Bjk‖λ = Op(n−1/2h−2−λ∗ )
and obtain

√
nh

λ∗
n

p∑

j=0

p∑

k=0

|�j ||�k|‖Bjk‖λ = Op(n−1h−2−λ∗/2) = op(1).

This completes the proof.
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Chapter 4
Asymptotic Risk and Bayes Risk of Thresholding
and Superefficient Estimates and Optimal
Thresholding

Anirban DasGupta and Iain M. Johnstone

4.1 Introduction

The classic Hodges’ estimator (Hodges, 1951, unpublished) of a one dimensional
normal mean demolished the statistical folklore that maximum likelihood estimates
are asymptotically uniformly optimal, provided the family of underlying densities
satisfies enough regularity conditions. Hodges’ original estimate is

Tn(X1, · · · ,Xn) =
{
X̄n if |X̄n| > n−1/4

0 if |X̄n| ≤ n−1/4 (4.1)

A more general version is

Sn(X1, . . . ,Xn) =
{
X̄n if |X̄n| > cn
anX̄n if |X̄n| ≤ cn

(4.2)

Here, cn, for the moment, is a general positive sequence and 0 ≤ an ≤ 1.
With squared error as the loss function, the risk of X̄n, the unique MLE, satisfies
nR(θ , X̄n) ≡ 1, and Hodges’ original estimate Tn satisfies

lim
n→∞ nβR(0, Tn) = 0 ∀β > 0,

while

lim
n→∞ sup

θ

nR(θ , Tn) = ∞.

Thus, at θ = 0, Hodges’ estimate is asymptotically infinitely superior to the MLE,
while globally its peak risk is infinitely more relative to that of the MLE. Supereffi-
ciency at θ = 0 is purchased at a price of infinite asymptotic inflation in risk away
from zero. Hodges’ example showed that the claim of the uniform asymptotic opti-
mality of the MLE is false even in the normal case, and it seeded the development
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Purdue University and Stanford University, USA
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Fig. 4.1 Risk of Hodges’ Estimate for n=50

of such fundamental concepts as regular estimates. It culminated in the celebrated
Hájek-Le Cam convolution theorem. It probably, also had some indirect impact on
the development and study of the now common thresholding estimates in large p

small n problems, the most well known among them being the Donoho-Johnstone
estimates (Donoho and Johnstone (1994)), although while the classic Hodges’ es-
timate uses a small threshold (n−1/4), the new thresholding estimates use a large
threshold (Fig 4.1).

It is of course already well understood that the risk inflation of Hodges’ estimate
occurs close to zero, and that the worst inflation occurs in a neighborhood of small
size. This was explicitly pointed out in Le Cam (1953):

lim
n→∞ sup

Un

sup
θ∈Un

nR(θ , Tn) = ∞,

where Un denotes a general sequence of open neighborhoods of zero such that λ(Un),
the Lebesgue measure ofUn, goes to zero; we cannot have asymptotic superefficiency
in nonvanishing neighborhoods. Provided only that a competitor estimate sequence
Tn has a limit distribution under every θ , i.e.,

√
n(Tn − θ ) has some limiting distri-

bution Lθ , it must have an asymptotic pointwise risk at least as large as that of X̄ at
almost all θ :

For almost all θ , lim sup
n→∞

nR(θ , Tn) ≥ 1.

Indeed, a plot of the risk function of Hodges’estimate nicely illustrates these three
distinct phenomena, superefficiency at zero, inflation close to zero, worst inflation
in a shrinking neighborhood: Similar in spirit are the contemporary thresholding
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Fig. 4.2 Risk of Hodges’ Estimate for n = 250

estimates of Gaussian means. Formally, given X ∼ N (θ , 1), and λ > 0, the hard
thresholding estimate is defined as

θ̂λ = X if |X| > λ

= 0 if |X| ≤ λ

Implicit in this construction is an underlying Gaussian sequence model

Xi

indep.∼ N (θi , 1), i = 1, 2, · · · , n,

and

θ̂i = XiI|Xi |>λ(n), (4.3)

andλ(n) often being asymptotic to
√

2 log n, which is a first order asymptotic approx-
imation (although not very accurate practically) to the expectation of the maximum
of n iid N (0, 1) observations. The idea behind this construction is that we expect
nearly all the means to be zero (i.e., the observed responses are instigated by pure
noise), and we estimate a specific θi to be equal to the observed signal only if the
observation stands out among a crowd of roughly n pure Gaussian white noises. See
Johnstone (2012) for extensive discussion and motivation (Fig 4.2).

The similarity between Hodges’estimate and the above hard thresholding estimate
is clear. We would expect the hard thresholding estimate to manifest risk phenomena
similar to that of Hodges’ estimate: better risk than the naive estimate Xi itself if
the true θi is zero, risk inflation if the true θi is adequately away from zero, and we
expect that the finer details will depend on the choice of the threshold level λ. One
may ask what is the optimal λ that suitably balances the risk gain at zero with the
risk inflation away from zero.
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Another commonality in the behavior of Hodges’ estimate and the hard thresh-
olding estimate is that if we take a prior distribution on the true mean that is very
tightly concentrated near zero, then they ought to have smaller Bayes risks than the
MLE, and the contrary is expected if we take an adequately diffuse prior.

It is meaningful and also interesting to ask if these various anticipated phenomena
can be pinned down with some mathematical precision. The main contributions of
this article are the following:

a) For the one dimensional Gaussian mean and superefficient estimates of the gen-
eral form as in (4.2), we precisely quantify the behavior of the risk at zero
(Eq. (4.10), Corollary 1.2.5).

b) We precisely quantify the risk at k√
n

for fixed positive k (Eq. (4.22)), and we

show that the risk at 1√
n

(which is exactly one standard deviation away from zero)

is for all practical purposes equal to 1
n

, which is the risk of the MLE (Theorem
1.2.4, Corollary 1.2.5).

c) We show that in the very close vicinity of zero, the risk of superefficient estimates
increases at an increasing rate, i.e., the risk is locally convex (Theorem 1.2.2).

d) We show that the global peak of the risk is not attained within n−1/2 neighbor-
hoods. In fact, we show that at θ = cn, the risk is much higher (Theorem 1.2.5,
Eq. (4.26)), and that immediately below θ = cn, the risk is even higher. Precisely,
we exhibit explicit and parsimonious shrinking neighborhoods Un of θ = cn,
such that

lim inf c−2
n sup

θ∈Un

R(θ , Sn) ≥ 1. (4.4)

(Theorem 1.2.6, Eq. (4.28)). Note that we can obtain the lower bound in (4.4)
with an lim inf, rather than lim sup.

Specifically, our calculations indicate that argmaxθR(θ , Sn) ≈ cn −
√

log (nc2
n)

n
,

and supθ R(θ , Sn) ≈ c2
n − 2cn

√
log n

n
(Eq. (4.35)).

e) For normal priors πn = N (0, σ 2
n ), we obtain exact closed form expressions for

the Bayes risk Bn(πn, Sn) of Sn (Theorem 1.2.7, Eq. (4.45)), and characterize
those priors for which Bn(πn, Sn) ≤ 1

n
for all large n. Specifically, we show that

σ 2 = 1
n

acts in a very meaningful way as the boundary between Bn(πn, Sn) < 1
n

and Bn(πn, Sn) > 1
n

(Theorem 1.2.8).
More generally, we use the theory of regular variation to show the quite remark-
able fact that for general smooth prior densities πn(θ ) = √

nh(θ
√
n), all Hodges

type estimates are approximately equivalent in Bayes risk to the MLE X̄ and that
the exact rate of convergence of the difference in Bayes risks is determined by
whether or not Varh(θ ) = 1 (Theorem 1.2.10, Eq. (4.64)). This theorem, in turn,
follows from a general convolution representation for the difference in Bayes
risks under general πn (Theorem 1.2.9, Eq. (4.48)).

f) For the Gaussian sequence model, we obtain appropriate corresponding versions
of a)-e) for hard thresholding estimates of the form ( 4.3).
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g) We identify the specific estimate in the class (4.2) that minimizes an approx-
imation to the global maximum of the risk subject to a guaranteed specified
improvement at zero; this is usually called a restricted minimax problem. More
precisely, we show that subject to the constraint that the percentage risk improve-
ment at zero is at least 100(1− εn)%, the global maximum risk is approximately

minimized when cn =
√

2 log 1
εn

(Eq. (4.38)).

h) We illustrate the various results with plots, examples, and summary tables.

Several excellent sources where variants of a few of our problems have been ad-
dressed include Hájek (1970), Johnstone (2012), Le Cam (1953, 1973), Lehmann
and Romano (2005), van der Vaart (1997, 1998), and Wasserman (2005). Also, see
DasGupta (2008) and lecture notes written by Jon Wellner and Moulinath Banerjee.
Superefficiency has also been studied in some problems that do not have the LAN
(locally asymptotically normal) structure; one reference is Jeganathan (1983).

If the variance σ 2 of the observations was unknown, estimates similar to Hodges’
are easily constructed by hard thresholding the MLE whenever |X̄|

s
≤ cn, where s

is the sample standard deviation. Some of its risk properties can be derived along
the lines of this article. However, the optimal thresholding and global maximum risk
problems are likely to be even more difficult.

4.2 Risk Function of Generalized Hodges Estimates

Consider generalized Hodges estimates of the form (4.2). We first derive an ex-
pression for the risk function of the estimate Sn(X1, · · · ,Xn). This formula will be
repeatedly used for many of the subsequent results. This formula for the risk function
then leads to formulas for its successive derivatives, which are useful to pin down
finer properties of Sn.

4.2.1 Global Formulas

Theorem 1.2.1 Let n ≥ 1 and X1, · · · ,Xn iid N (θ , 1). Let 0 ≤ an ≤ 1 and cn > 0.
For the estimate Sn(X1, · · · ,Xn) as in (4.2), the risk function under squared error
loss is given by

R(θ , Sn) = 1

n
+ en(θ ),

where

en(θ ) =
[a2

n − 1

n
+ (1 − an)2θ2

] (
�(

√
n(cn − θ )) +�(

√
n(cn + θ )) − 1

)

+2an(an − 1)θ√
n

(
φ(
√
n(cn + θ )) − φ(

√
n(cn − θ ))

)
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+1 − a2
n√

n

(
(cn + θ )φ(

√
n(cn + θ )) + (cn − θ )φ(

√
n(cn − θ ))

)
, (4.5)

where φ and � denote the density and the CDF of the standard normal distribution.

Proof Write R(θ , Sn) as

R(θ , Sn) = E[(X̄ − θ )2I|X̄|>cn
] + E[(anX̄ − θ )2I|X̄|≤cn

]

= E[(X̄ − θ )2] + E[(anX̄ − θ )2I|X̄|≤cn
] − E[(X̄ − θ )2I|X̄|≤cn

]

= 1

n
+
∫ √

n(cn−θ )

−√
n(cn+θ )

[an(θ + z√
n

) − θ ]2φ(z)dz − 1

n

∫ √
n(cn−θ )

−√
n(cn+θ )

z2φ(z)dz

= 1

n
+ T1 + T2 (say) (4.6)

On calculation, we get

T1 =
[a2

n

n
+ (1 − an)2θ2

] (
�(

√
n(cn − θ )) +�(

√
n(cn + θ )) − 1

)

− a2
n√
n

(
(cn + θ )φ(

√
n(cn + θ )) + (cn − θ )φ(

√
n(cn − θ ))

)

+2an(an − 1)θ√
n

(
φ(
√
n(cn + θ )) − φ(

√
n(cn − θ ))

)
, (4.7)

and

T2 = 1

n

(
�(

√
n(cn − θ )) +�(

√
n(cn + θ )) − 1

)

− 1√
n

(
(cn + θ )φ(

√
n(cn + θ )) + (cn − θ )φ(

√
n(cn − θ ))

)
(4.8)

On combining (4.6), (4.7), and (4.8), and further algebraic simplification, the stated
expression in (4.5) follows.

4.2.1.1 Behavior at Zero

Specializing the global formula (4.5) to θ = 0, we can accurately pin down the
improvement at zero.
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Corollary 1.2.1 The risk improvement of Sn over X̄ at θ = 0 satisfies

en(0) = 1

n
− R(0, Sn) = 2(1 − a2

n)

n
φ(
√
ncn)

[�(
√
ncn) − 1

2

φ(
√
ncn)

−√
ncn

]
(4.9)

Furthermore, provided that lim supn |an| ≤ 1, and γn = √
ncn → ∞,

R(0, Sn) = a2
n

n
+
√

2

π

1 − a2
n

n
γn e

−γ 2
n /2 + o(

γne
−γ 2

n /2

n
) (4.10)

Corollary 1.2.1 can be proved by using (4.5) and standard facts about the N (0, 1)
CDF; we will omit these details.

An important special case of Corollary 1.2.1 is the original Hodges’ estimate, for
which cn = n−1/4 and an ≡ 0. In this case, an application of Corollary 1.2.1 gives
the following asymptotic expansion; it is possible to make this into a higher order
asymptotic expansion, although it is not done here.

Corollary 1.2.2 For Hodges’ estimate Tn as in (4.1),

R(0, Tn) =
√

2

π
n−3/4e−

√
n

2 + o(n−3/4e−
√
n

2 ) (4.11)

In particular,

lim
n→∞

log (nR(0, Tn))√
n

= −1

2
(4.12)

We record the following corollary for completeness. Note that
√
ncn need not go to

∞ for superefficiency to occur, as shrinkage will automatically take care of it.

Corollary 1.2.3 Suppose γn = √
ncn → γ , 0 < γ ≤ ∞. Then, Sn is superefficient

at zero, i.e., lim supn nR(0, Sn) < 1 iff lim supn |an| < 1.

4.2.1.2 Local Convexity and Behavior in Ultrasmall Neighborhoods

For understanding the local shape properties of the risk function of Sn, it is necessary
to understand the behavior of its derivatives. This is the content of the next result,
which says in particular that the risk function of all generalized Hodges estimates is
locally convex near zero. For these results, we need the following notation:

fn(θ ) = (1 − an)2θ
[
2�(

√
n(cn + θ )) − 1

]
(4.13)

gn(θ ) = (an − 1)
[
(1 + an)

√
nc2

n +
2an√
n
+ 2

√
ncnθ

]
φ(
√
n(cn + θ )) (4.14)
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Theorem 1.2.2 For all n and θ ,

d

dθ
R(θ , Sn) = fn(θ ) − fn(−θ ) + gn(θ ) − gn(−θ ) (4.15)

In particular, d
dθ
R(θ , Sn)|θ=0 = 0, and provided that |an| < 1, d2

dθ2 R(θ , Sn) > 0 in
a neighborhood of θ = 0. Hence, under the hypothesis that |an| < 1, R(θ , Sn) is
locally convex near zero, and θ = 0 is a local minima of R(θ , Sn).

Proof Proof of (4.15) is a direct calculation followed by rearranging the various
terms. The calculation is not presented.

That the derivative ofR(θ , Sn) at θ = 0 is zero follows from symmetry ofR(θ , Sn),
or, also immediately from (4.15). We now sketch a proof of the local convexity
property. Differentiating (4.15),

d2

dθ2
R(θ , Sn) = f ′

n(θ ) + f ′
n(−θ ) + g′

n(θ ) + g′
n(−θ ). (4.16)

Now, on algebra,

f ′
n(θ ) = (1 − an)2

[
2�(

√
n(cn + θ )) − 1

]
+ 2θ (1 − an)2√nφ(

√
n(cn + θ ))

and g′
n(θ ) = 2(an − 1)

√
ncnφ(

√
n(cn + θ )) − n(cn + θ )φ(

√
n(cn + θ ))

×
[
2(an − 1)

√
ncnθ + 2an(an − 1)√

n
+ (a2

n − 1)
√
nc2

n

]
(4.17)

On substituting (4.17) into (4.16), and then setting θ = 0, we get after further
algebraic simplification,

d2

dθ2
R(θ , Sn)|θ=0 = 4(1 − an)2

[
�(

√
ncn) − 1

2
−√

ncnφ(
√
ncn)

]

+ 2(1 − a2
n)c3

nn
3/2φ(

√
ncn) (4.18)

By simple calculus, �(x) − 1
2 − xφ(x) > 0 for all positive x. Therefore, on using

our hypothesis that |an| < 1, from (4.18), d2

dθ2 R(θ , Sn)|θ=0 > 0. It follows from the

continuity of d2

dθ2 R(θ , Sn) that it remains strictly positive in a neighborhood of θ = 0,
which gives the local convexity property.

Remark Consider now the case of original Hodges’ estimate, for which an = 0 and
cn = n−1/4. In this case, (4.18) gives us limn→∞ d2

dθ2 R(θ , Tn)|θ=0 = 2. Together with
(4.11), we then have the approximation

R(θ , Tn) ≈
√

2

π
n−3/4e−

√
n

2 + θ2 (4.19)

for θ very close to zero. Of course, we know that this approximation cannot depict
the subtleties of the shape of R(θ , Tn), because R(θ , Tn) is known to have turning
points, which the approximation in (4.19) fails to recognize. We will momentarily
see that R(θ , Tn) rises and turns so steeply that (4.19) is starkly inaccurate in even
n−1/2 neighborhoods of zero.
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4.2.2 Behavior in n−1/2 Neighborhoods

We know that the superefficient estimates Tn, or Sn have a much smaller risk than
the MLE at zero, and that subsequently their risks reach a peak that is much higher
than that of the MLE. Therefore, these risk functions must again equal the risk of
the MLE, namely 1

n
at some point in the vicinity of zero. We will now first see that

reversal to the 1
n

level happens within n−1/2 neighborhoods of zero. A general risk
lower bound for generalized Hodges estimates Sn would play a useful role for this
purpose, and also for a number of the later results. This is presented first.

Theorem 1.2.3 Consider the generalized Hodges estimate Sn.

(i) Suppose 0 ≤ an ≤ 1. Then, for every n and 0 ≤ θ ≤ cn,

R(θ , Sn) ≥ a2
n

n
+ (1 − an)2θ2

[
�(

√
n(cn + θ )) +�(

√
n(cn − θ )) − 1

]

(4.20)

(ii) Suppose
√
ncn → ∞, and that a, 0 ≤ a < 1 is a limit point of the sequence an.

Let θn = 1
(1−a)2√n

. Then, lim supn nR(θn, Sn) ≥ a2 + 1.

Proof In expression (4.5) for en(θ ), observe the following:

0 ≤ �(
√
n(cn + θ )) +�(

√
n(cn − θ )) − 1 ≤ 1;

For 0 ≤ θ ≤ cn, φ(
√
n(cn + θ )) − φ(

√
n(cn − θ )) ≤ 0;

For 0 ≤ θ ≤ cn, (cn + θ )φ(
√
n(cn + θ )) + (cn − θ )φ(

√
n(cn − θ )) ≥ 0.

Therefore, by virtue of the hypothesis 0 ≤ an ≤ 1, from (4.5),

R(θ , Sn) ≥ 1

n
+ a2

n − 1

n
+ (1 − an)2θ2

[
�(

√
n(cn + θ )) +�(

√
n(cn − θ )) − 1

]

= a2
n

n
+ (1 − an)2θ2

[
�(

√
n(cn + θ )) +�(

√
n(cn − θ )) − 1

]
,

as claimed in (4.20).
For the second part of the theorem, choose a subsequence {ank } of {an} converging

to a. For notational brevity, we denote the subsequence as an itself. Then, (along this
subsequence), and with θn = 1

(1−a)2√n
,

a2
n + (1 − an)2θ2

n

[
�(

√
n(cn + θn)) +�(

√
n(cn − θn)) − 1

]
→ a2 + 1 (4.21)

Since we assume for the second part of the theorem that
√
ncn → ∞, we have that

θn ≤ cn for all large n, and hence the lower bound in (4.20) applies. Putting together
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(4.20) and (4.21), and the Bolzano-Weierstrass theorem, we have one subsequence
for which the limit ofnR(θn, Sn) is≥ a2+1, and hence, lim supn nR(θn, Sn) ≥ a2+1.

We will now see that if we strengthen our control on the sequence {an} to require it
to have a limit, and likewise require

√
ncn also to have a limit, then the (normalized)

risk of Sn at k√
n

will also have a limit for any given k. Furthermore, if the limit of

an is zero and the limit of
√
ncn is ∞, which, for instance, is the case for Hodges’

original estimate, then the risk of Sn at 1√
n

is exactly asymptotic to the risk of the

MLE, namely 1
n

. So, reversal to the risk of the MLE occurs, more or less, at θ = 1√
n

.
The next result says that, but in a more general form.

Theorem 1.2.4 Consider the generalized Hodges estimate Sn.

(a) If an → a,−∞ < a < ∞, and
√
ncn → γ , 0 ≤ γ ≤ ∞, then for any fixed

k ≥ 0,

lim
n→∞ nR(

k√
n

, Sn) = 1 +
[
a2 − 1 + k2(1 − a)2

] [
�(k + γ ) −�(k − γ )

]

+ 2a(a − 1)k
[
φ(k + γ ) − φ(k − γ )

]

+ (1 − a2)
[
(k + γ )φ(k + γ ) − (k − γ )φ(k − γ )

]
, (4.22)

with (4.22) being interpreted as a limit as γ → ∞ if
√
ncn → ∞.

(b) In particular, if an → 0 and
√
ncn → ∞, then, limn→∞ nR( k√

n
, Sn) = k2.

(c) If an = 0 for all n and
√
ncn → ∞, then for any positive k, we have the

asymptotic expansion

nR(
k√
n

, Sn) = k2 + 1√
2π

e−γ 2
n /2−k2/2

×
[
(γn − k)ekγn + (γn + k)e−kγn − (k2 − 1)

ekγn

γn
− (k2 − 1)

e−kγn

γn

]

+O(
e−γ 2

n /2+kγn

γ 2
n

) (4.23)

(d) If an = 0 for all n and
√
ncn → ∞, then for k = 0, we have the asymptotic

expansion

nR(0, Sn) =
√

2

π
e−γ 2

n /2
[
γn + 2

γn

]
+O(

e−γ 2
n /2

γ 3
n

) (4.24)

The plot below nicely exemplifies the limit result in part (b) of Theorem 1.2.4 Fig. 4.3.
The proofs of the various parts of Theorem 1.2.4 involve use of standard facts about

the standard normal tail and rearrangement of terms. We omit these calculations. It
follows from part (b) of this theorem, by letting k → ∞ that for the original Hodges’
estimate Tn, supθ R(θ , Tn) >> 1

n
for large n, in the following sense.
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Fig. 4.3 Plot of n* Risk of Hodges’ Estimate at k/sqrt(n) and k2 for n = 500

Corollary 1.2.4 If an → 0 and
√
ncn → ∞, then limn

[
supθ nR(θ , Sn)

]
= ∞.

On the other hand, part (c) and part (d) of the above theorem together lead to the
following asymptotic expansions for the risk of Hodges’original estimate Tn at θ = 0
and θ = 1√

n
. We can see how close to 1

n
the risk at 1√

n
is, and the rapid relative

growth of the risk near θ = 0 by comparing the two expansions in the corollary
below, which is also a strengthening of Corollary 1.2.2.

Corollary 1.2.5 For Hodges’ estimate Tn as in (4.1),

R(0, Tn) =
√

2

π
e−

√
n

2 n−3/4
[
1 + 2√

n

]
+O(

e−
√
n

2

n7/4
);R(

1√
n

, Tn)

= 1

n
+ 1√

2π
n−3/4e−

1
2 (n1/4−1)2

[
1 − n−1/4

]
+O(

e− 1
2 (n1/4−1)2

n3/2
) (4.25)

4.2.3 Behavior in cn Neighborhoods

We saw in the previous section that reversal to the risk of the MLE occurs in n−1/2

neighborhoods of zero. However, n−1/2 neighborhoods are still too short for the risk
to begin to approach its peak value. If cn >> 1√

n
and we expand the neighborhood

of θ = 0 to cn neighborhoods, then the risk of Sn increases by factors of magnitude,
and captures the peak value. We start with the risk of Sn at θ = cn and analyze its
asymptotic behavior.
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Theorem 1.2.5 Consider the generalized Hodges estimate Sn.

(a) Suppose 0 ≤ an ≤ 1 and that
√
ncn → ∞. Then, lim supn c−2

n R(cn, Sn) ≥
(1−lim infn an)2

2 , and lim infn c−2
n R(cn, Sn) ≥ (1−lim supn an)2

2 .
(b) If an → a,−∞ < a < ∞, and

√
ncn → γ , 0 ≤ γ ≤ ∞, then

lim
n→∞ c−2

n R(cn, Sn) = 1

γ 2
+
[a2 − 1

γ 2
+ (1 − a)2

][
�(2γ ) − 1

2

]

+2a(a − 1

γ

[
φ(2γ ) − φ(0)

]
+ 2(1 − a2)

φ(2γ )

γ
, (4.26)

with (4.26) being interpreted as a limit as γ → ∞ if
√
ncn → ∞.

Proof By (4.20),

R(cn, Sn) ≥ a2
n

n
+ c2

n(1 − an)2
[
�(2

√
ncn) − 1

2

]

⇒ c−2
n R(cn, Sn) ≥ (1 − an)2

[
�(2

√
ncn) − 1

2

]
(4.27)

Since
√
ncn → ∞, (4.24) implies that given ε > 0, for all large enough n,

c−2
n R(cn, Sn) ≥ (

1

2
− ε)(1 − an)2

⇒ lim sup
n

c−2
n R(cn, Sn) ≥ lim sup

n

(
1

2
− ε)(1 − an)2 = (

1

2
− ε)(1 − lim inf

n
an)2.

Since ε > 0 is arbitrary, this means lim supn c−2
n R(cn, Sn) ≥ (1−lim infn an)2

2 ; the
lim inf inequality follows similarly.

4.2.3.1 Behavior Near cn and Approach to the Peak

Theorem 1.2.6 Consider the generalized Hodges estimate Sn. Suppose an = 0 for
all n and γn = √

ncn → ∞. Then, for any fixed α, 0 < α ≤ 1, we have the
asymptotic expansion

c−2
n R((1 − α)cn, Sn) = (1 − α)2 + φ(αγn)

αγn
(2α − 1) + φ((2 − α)γn)

(2 − α)γn
(3 − 2α)

+O(
φ(αγn)

γ 3
n

) (4.28)
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Proof: Fix 0 < α < 1, and denote θn = (1 − α)cn. Using (4.5),

R(θn, Sn) = 1

n
+
[
(1 − α)2c2

n −
1

n

][
�((2 − α)γn) −�( − αγn)

]

+ 1√
n

[
(2 − α)cnφ((2 − α)γn) + αcnφ(αγn)

]

⇒ c−2
n R(θn, Sn) = 1

γ 2
n

+
[
(1 − α)2 − 1

γ 2
n

][
�((2 − α)γn) −�( − αγn)

]

+ 1

γn

[
(2 − α)φ((2 − α)γn) + αφ(αγn)

]
= 1

γ 2
n

+
[
(1 − α)2 − 1

γ 2
n

]

[
1 − φ((2 − α)γn)

(2 − α)γn
(1 +O(γ−2

n )) − φ(αγn)

αγn
(1 +O(γ−2

n ))
]

+ (2 − α)φ((2 − α)γn)

γn
+ αφ(αγn)

γn

= (1 − α)2 + φ((2 − α)γn)

γn

[
(2 − α) − (1 − α)2

2 − α

]

+ φ(αγn)

γn

[
α − (1 − α)2

α

]
+O(

φ(αγn)

γ 3
n

). (4.29)

The theorem now follows from (4.29).
By scrutinizing the proof of Theorem 1.2.6, we notice that the constant α can be

generalized to suitable sequences αn, and this gives us a useful and more general
corollary. Note that, indeed, the remainder term in the corollary below is O(φ(αnγn)

γn
),

rather than O(φ(αnγn)
γ 3
n

).

Corollary 1.2.6 Consider the generalized Hodges estimate Sn. Suppose an = 0
for all n and γn = √

ncn → ∞. Let αn be a positive sequence such that αn →
0,αnγn → ∞. Let θn = (1 − αn)cn. Then we have the asymptotic expansion

c−2
n R(θn, Sn) = (1 − αn)2 − φ(αnγn)

αnγn
+O(

φ(αnγn)

γn
) (4.30)

Remark Together, Theorem 1.2.5 and Corollary 1.2.6 enable us to make the fol-

lowing conclusion: at θ = cn,R(θ , Sn) ≈ c2
n

2 >> 1
n

, which is the risk of the MLE,
provided γn = √

ncn → ∞. If we move slightly to the left of θ = cn, then the risk
increases even more. Precisely, if we take θ = (1 − αn)cn with a very small αn, then
R(θ , Sn) ≈ c2

n. We believe that this is the exact rate of convergence of the global
maximum of the risk, i.e.,

lim
n→∞ c−2

n sup
−∞<θ<∞

R(θ , Sn) = 1. (4.31)
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4.2.3.2 Global Maximum of the Risk and Point of Maxima

Corollary 1.2.6 suggests a pathway to addressing the two related questions: what is
an approximation to the point at which the global maximum of the risk is attained,
and what is a higher order approximation to the value of the global maximum. In
Eq. (4.31), if we use the two leading terms (1−αn)2− φ(αnγn)

αnγn
, we notice that (1−α)2

and φ(αγn)
αγn

are both decreasing inα. Therefore, if we maximize (1−α)2− φ(αγn)
αγn

overα
(in (0, 1)), it will give us an approximation to the global maximum of R(θ , Sn) and at
the same time, an approximation to the point θn = (1−αn)cn where the maximum is
attained. It must be understood that these two approximations are heuristic, because
we do not have a proof that supθ R(θ , Sn) is attained at a point of the form (1−αn)cn
with αn as in Corollary 1.2.6.

To maximize (1 − α)2 − φ(αγn)
αγn

, we want to find the root of

0 = d

dα

[
(1 − α)2 − φ(αγn)

αγn

]

= 2(α − 1) + φ(αγn)
[
γn + 1

αγn

]
= 2(α − 1) + γnφ(αγn) + 0(γnφ(αγn))

⇒ (1 − α) = γn

2
φ(αγn)(1 + 0(1))

⇒ −α = log γn − α2γ 2
n

2
+O(1)

⇒ α2γ 2
n − 2α − 2 log γn +O(1) = 0 (4.32)

An approximation to the root of the quadratic Eq. (4.32) is

α =
√

2 log γn

γn
, (4.33)

which results in the following two heuristic approximations:

Conjecture In the class of estimates

Sn(X1, . . . ,Xn) = X̄n if |X̄n| > cn
0 if |X̄n| ≤ cn

, (4.34)

one has,

argmax−∞<θ<∞R(θ , Sn) ≈ cn −
√

log (nc2
n)

n
; sup

−∞<θ<∞
R(θ , Sn) ≈ c2

n −
2cn

√
log n√
n

.

(4.35)
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Example 1.2.1 We look at the credibility of (4.35) for Hodges’ original estimate Tn,
for which cn = n−1/4. In that case, (4.35) says that the global maximum of R(θ , Tn)

should be approximately 1√
n
− 2

√
log n

n3/4 and it should be attained at θn ≈ n−1/4−
√

log n

2n .
We show in the following table the exact global maximum (computed numerically),
the risk at cn and at θn and the approximation to the maximum risk as claimed in
(4.35). For very largen, our conjecture appears to work out almost exactly. Otherwise,
it does not.

n Exact Maximum R(cn, Tn) R(θn, Tn) Approx. (1.35)
100 0.0558 0.0550 0.0112 0.0357
2500 0.0126 0.0102 0.0073 0.0042
100000 0.0025 0.0016 0.0021 0.0020
250000 0.0016 0.0010 0.0014 0.0014
106 0.0008 0.0005 0.0008 0.0008

4.2.3.3 Optimal Thresholding

The approximation laid out in (4.35) enables us to pose and give a solution to an-
other relevant question: what is an optimal choice of the thresholding parameter
(sequence) cn? Obviously, this calls for a definition of optimal thresholding. We
adopt the definition of controlled minimaxity. Here is an explanation, and then a
formal mathematical definition.

It is clear that the choice of the thresholding parameter affects two key quantities
in the problem, the risk at zero, and the maximum risk. For instance, as an extreme, if
we choose cn = 0, then the risk at zero is zero, but the maximum risk is infinity. Thus,
there is a trade-off between R(0, Sn) and supθ R(θ , Sn), and the thresholding param-
eter cn influences both of them, but in opposite directions. It seems reasonable to ask
for the sequence cn that minimizes supθ R(θ , Sn) subject to a guaranteed percentage
improvement in risk over the MLE at θ = 0. More precisely, the question is: which
sequence cn minimizes supθ R(θ , Sn) subject to the constraint n|en(0)| ≥ 1 − εn,
where, en(θ ) = R(θ , Sn) − 1

n
. Thus, in this formulation we seek the thresholding

estimate that is minimax subject to a risk gain of at least 100(1 − εn)% at zero; εn
is supposed to be user provided. Such restricted minimax formulations have been
proposed and studied in other problems before; one reference is Bickel (1983).

From (4.9) and (4.35), we wish to

minimize γ 2
n − 2γn

√
log n subject to H (γn) = �(γn) − 1

2
− γnφ(γn) ≥ 1 − εn

2

The unconstrained minimum of γ 2
n − 2γn

√
log n is γn = √

log n. If H (
√

log n) ≥
1−εn

2 (which approximately corresponds to εn ≥ 1√
n

, then the solution to our prob-

lem is γn = √
log n. Otherwise, since H (x) is increasing in x for positive x, i.e.,
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increasing in x for x > 0, it follows that the sequence γn that solves the constrained
minimum problem is the root of the equation

�(γn) − 1

2
− γnφ(γn) = 1 − εn

2
(4.36)

⇔ 1 −�(γn) + γnφ(γn) = εn

2

⇔ φ(γn)
[
γn +O(

1

γn
)
]
= εn

2

⇔
√

π

2
e

γ 2
n
2

γn

γ 2
n +O(1)

= 1

εn
(4.37)

A first approximation to the root of (4.36) is γn =
√

2 log 1
εn

. Plugging the first

approximation back into (4.36), a higher order approximation is

γ 2
n = 2 log

1

εn
+ 2 log

(√

2 log
1

εn

)

= 2 log
1

εn
+ log log

1

εn
+O(1),

which gives

γn =
√

2 log
1

εn
+ log log

1

εn
+O(1) =

√

2 log
1

εn

[
1 + log log 1

εn

4 log 1
εn

+ o

(
log log 1

εn

log 1
εn

)]

=
√

2 log
1

εn
+ log log 1

εn

2
√

2 log 1
εn

+ o

⎛

⎜
⎝

log log 1
εn√

log 1
εn

⎞

⎟
⎠

We propose finally the following thresholding sequence:

γn = √
ncn = √log n, if εn ≥ 1√

n
,

γn = √
ncn =

√

2 log
1

εn
+ log log 1

εn

2
√

2 log 1
εn

, if εn <
1√
n

(4.38)

Example 1.2.2 The recommended thresholding sequence in (4.38) depends on the
specification of εn. We work out the form of cn for four choices of εn. Suppose,
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independent of n, we want a fixed percentage risk improvement 100(1−ε)% at zero.
Then, εn ≡ ε, which, by (4.38), leads to

cn =
√

log n

n

Thus, a fixed percentage risk improvement at zero leads to cn ∼
√

log n

n
.

Suppose we want the percentage risk improvement at zero to increase with n at a
polynomial rate, εn = n−β ,β > 1

2 . Then, (4.38) leads to

cn =
√

2β log n√
n

+ log log n

2
√

2βn log n
+O(

1√
n log n

).

Thus, for polynomial growth in the percentage risk improvement at zero, still, the

recommended thresholding sequence cn ∼
√

log n

n
, but with a constant in front that

is > 1.
Next, suppose we want the percentage risk improvement at zero to increase at a

subexponential rate, namely, εn = e−β
√
n,β > 0. Then, (4.38) leads to

cn = √2βn−1/4 + log n

4
√

2βn3/4
.

Thus, for subexponential growth in the percentage risk improvement at zero,we
get cn ∼ n−1/4. Compare this with Eq. (4.11) which describes the percentage risk
improvement at zero of Hodges’ original estimate Tn. Interestingly, his choice of
cn = n−1/4 matches to the first order the recommended sequence we just derived
above.

Finally, suppose we want the percentage risk improvement at zero to increase at
the fully exponential rate, namely, εn = e−βn,β > 0. Then, (4.38) leads to

cn = √2β + log n

2
√

2βn
.

Thus, for exponential growth in the percentage risk improvement, we get cn ∼ c,
a constant.

4.2.4 Comparison of Bayes Risks and Regular Variation

Since the risk functions of the MLE and thresholding estimates Sn cross, it is mean-
ingful to seek a comparison between them by using Bayes risks. Because of the
intrinsic specialty of the point θ = 0 in this entire problem, it is sensible to consider
priors that are symmetric about zero. Purely for technical convenience, we only con-
sider normal priors here, N (0, σ 2

n ), and we ask the following question: how should
σn behave for the thresholding estimate to have (asymptotically) a smaller Bayes risk
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than the MLE? It turns out that certain interesting stories emerge in answering the
question, and we have a fairly complete answer to the question we have posed.

We start with some notation. Let π = πn denote a prior density and Bn(Sn,π )
the Bayes risk of Sn under π . Let also Bn(π ) denote the Bayes risk of the Bayes rule
under π . Then,

Bn(Sn,π ) =
∫

R(θ , Sn)π (θ )dθ = 1

n
+
∫

en(θ )π (θ )dθ (4.39)

and

Bn(π ) = 1

n
− 1

n2

∫
(m′(x))2

m(x)
dx, (4.40)

where m(x) = mn(x) denotes the marginal density of X̄ under π . In the case where

π = πn is the N (0, σ 2
n ) density, Bn(π ) = σ 2

n

nσ 2
n+1 .

4.2.4.1 Normal Priors

We use (4.5) to write a closed form formula for Bn(Sn,π ); it is assumed until we
specifically mention otherwise that henceforth π = N (0, σ 2

n ), and for brevity, we
drop the subscript and write σ 2 for σ 2

n .
Toward this agenda, the following formulas are used; for reasons of space, we

will not provide their derivations.

∫
�(

√
n(cn ± θ ))

1

σ
φ(

θ

σ
)dθ = �(

√
ncn√

1 + nσ 2
) (4.41)

∫
φ(
√
n(cn ± θ ))

1

σ
φ(

θ

σ
)dθ = σe−nc2

n/(2(1+nσ 2))

√
2π

√
1 + nσ 2

(4.42)

∫
θφ(

√
n(cn ± θ ))

1

σ
φ(

θ

σ
)dθ = ∓σ 2ncne

−nc2
n/(2(1+nσ 2))

√
2π (1 + nσ 2)3/2

(4.43)

∫
θ2�(

√
n(cn ± θ ))

1

σ
φ(

θ

σ
)dθ = σ 2

[
�(

√
ncn√

1 + nσ 2
) − σ 2n3/2cne

−nc2
n/(2(1+nσ 2))

√
2π (1 + nσ 2)3/2

]

(4.44)

By plugging (4.41), (4.42), (4.43), (4.44) into
∫
en(θ ) 1

σ
φ( θ

σ
)dθ , where the expression

for en(θ ) is taken from (4.5), additional algebraic simplification gives us the following
closed form expression.
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Theorem 1.2.7

Bn(Sn,π ) = 1

n
+
∫

en(θ )π (θ )dθ ,

with

∫
en(θ )π (θ )dθ = 1 − a2

n

n
− (1 − an)2σ 2

+
[
2(1 − an)2σ 2 − 2(1 − a2

n)

n

]
�

( √
ncn√

1 + nσ 2

)

−
√
ncn√

1 + nσ 2
φ

( √
ncn√

1 + nσ 2

)[2n(1 − an)2σ 4

1 + nσ 2

+ 2(1 − an)2σ 2

1 + nσ 2
− 2(1 − a2

n)

n

]
(4.45)

Theorem 1.2.7 leads to the following more transparent corollary.

Corollary 1.2.7 Consider the generalized Hodges estimate Sn with an ≡ 0. Then

∫
en(θ )π (θ )dθ = nσ 2 − 1

n

[
2�(

γn√
1 + nσ 2

) − 1 + nσ 2

1 + σ 2

γn√
1 + nσ 2

φ(
γn√

1 + nσ 2
)
]

(4.46)

In particular, if σ 2 = 1
n

, then whatever be the thresholding sequence cn,Bn(Sn,π ) =
1
n

, i.e., Sn and the MLE X̄ have the same Bayes risk if θ ∼ N (0, 1
n

). By inspecting
(4.46), we can make more general comparisons betweenBn(Sn,π ) and 1

n
= Bn(X̄,π )

when σ 2 �= 1
n

. It turns out that σ 2 = 1
n

acts in a very meaningful sense as a boundary
between Bn(Sn,π ) < Bn(X̄,π ) and Bn(Sn,π ) > Bn(X̄,π ). We will now make it
precise. In this analysis, it will be useful to note that once we know whether σ 2 > or
< 1

n
, by virtue of formula (4.46), the algebraic sign of�n(π ) = Bn(Sn,π )−Bn(X̄,π )

is determined by the algebraic sign of ηn = 2�( γn√
1+nσ 2 ) − 1+nσ 2

1+σ 2
γn√

1+nσ 2 φ( γn√
1+nσ 2 ).

Theorem 1.2.8 Provided the thresholding sequence cn satisfies cn → 0, γn =√
ncn → ∞,

(a) �n(π ) < 0 for all large n if σ 2 = c
n
+ o( 1

n
) for some c, 0 ≤ c < 1.

(b) �n(π ) > 0 for all large n if σ 2 = c
n
+ o( 1

n
) for some c, c > 1.

(c) �n(π ) = 0 for all n if σ 2 = 1
n

.
(d) If nσ 2 → 1, then in general �n(π ) oscillates around zero.
(e) If nσ 2 → ∞, then �n(π ) < 0 for all large n.
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Proof We indicate the proof of part (a). In this case, nσ 2 − 1 < 0 for all large n.
On the other hand,

�(
γn√

1 + nσ 2
) → 1;

1 + nσ 2

1 + σ 2
→ 1 + c;

γn√
1 + nσ 2

φ(
γn√

1 + nσ 2
) → 0.

Therefore, ηn → 1 > 0, and hence, for all all large n, �n(π ) < 0. The other parts
use the same line of argument and so we do not mention them.

4.2.4.2 General Smooth Priors

We now give an asymptotic expansion for �n = Bn(Sn,π ) − Bn(X̄,π ) for general
smooth prior densities of the form π (θ ) = πn(θ ) = √

nh(θ
√
n), where h is a fixed

sufficiently smooth density function on (−∞,∞). It will be seen below that scaling
by

√
n is the right scaling to do in πn, similar to our finding that in the normal case,√

n θ ∼ N (0, 1) acts as a boundary between �n < 0 and �n > 0. We introduce the
following notation

q(z) =
∫ z

0
(t2 − 1)h(t)dt − h′(z),−∞ < z < ∞; w(z) = − d

dz
log q(z). (4.47)

The functions q(z) and log q(z) will play a pivotal role in the three main results
below, Theorem 1.2.9, Proposition 1.2.1, and Theorem 1.2.10. Note that q(z) ≡ 0
if h = φ, the standard normal density. For general h, q can take both positive and
negative values, and this will complicate matters in the analysis that follows.

We will need the following assumptions on h and q. Not all of the assumptions are
needed for every result below. But we find it convenient to list all the assumptions
together, at the expense of some generality.

Assumptions on h

(1) h(z) < ∞∀z.
(2) h( − z) = h(z)∀z.
(3)

∫∞
−∞ z2 h(z)dz < ∞.

(4) h is twice continuously differentiable, and h′(z) → 0 as z → ∞.
(5) q is ultimately decreasing and positive.
(6) log q is absolutely continuous, ultimately negative, and ultimately concave or

convex.
(7) lim infz→∞ d

dz log q(z) > −∞.

The first result below, Theorem 1.2.9, is on a unified convolution represen-
tation and some simple asymptotic order results for the Bayes risk difference
�n = Bn(Sn,π ) − Bn(X̄,π ). A finer result on the asymptotic order of �n is the
content of Theorem 1.2.10. In the result below, (4.49) and (4.50) together say that
the first order behavior of �n is determined by whether or not Varh(θ ) = 1. If
Varh(θ ) �= 1, then �n converges at the rate 1

n
; but if Varh(θ ) = 1, then �n converges

at a rate faster than 1
n

. This provides greater insight into the result of part (c) of
Theorem 1.2.8.
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Theorem 1.2.9 Consider generalized Hodges estimates Sn of the form (1.2) with
an ≡ 0. Let h be a fixed density function satisfying the assumptions (1)-(4) above
and let π (θ ) = πn(θ ) = √

nh(θ
√
n),−∞ < θ < ∞. Then we have the identity

�n = 2

n
(q ∗ φ)(γn) = 2

n

∫ ∞

−∞
q(z)φ(γn − z)dz

= 2

n

∫ ∞

0
q(z)

[
φ(γn − z) − φ(γn + z)

]
dz (4.48)

In particular, if q ∈ L1, then

n�n → 0, i.e., �n = o(
1

n
), (4.49)

and if q(z) → c �= 0 as, z → ∞, then

n�n → 2c, i.e., �n = 2c

n
+ o(

1

n
). (4.50)

In any case, if Varh(θ ) < ∞, and h′ ∈ L∞, then, for every fixed n,

|n�n| ≤ 1 +Varh(θ ) + ||h′||∞. (4.51)

Proof Using (4.5) and the definition of π (θ ),

�n =
∫ ∞

−∞
en(θ )πn(θ )dθ

=
∫ ∞

−∞
(θ2 − 1

n
)
[
�(γn + θ

√
n) +�(γn − θ

√
n) − 1

]√
nh(θ

√
n)dθ

+ 1√
n

∫ ∞

−∞

[
(cn + θ )φ(γn + θ

√
n) + (cn − θ )φ(γn − θ

√
n)
]√

nh(θ
√
n)dθ

= 1

n

( ∫ ∞

−∞
(z2 − 1)

[
�(γn + z) +�(γn − z) − 1

]
h(z)dz

+
∫ ∞

−∞

[
(γn + z)φ(γn + z) + (γn − z)φ(γn − z)

]
h(z)dz

)

= 1

n

( ∫ ∞

−∞
(z2 − 1)

[
2�(γn + z) − 1

]
h(z)dz + 2

∫ ∞

−∞
(γn + z)φ(γn + z)h(z)dz

)

= 2

n

( ∫ ∞

−∞
(z2 − 1)h(z)�(γn + z)dz +

∫ ∞

−∞
(γn + z)φ(γn + z)h(z)dz

)

− 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

= 2

n

( ∫ ∞

−∞
(z2 − 1)h(z)�(γn + z)dz −

∫ ∞

−∞
�(γn + z)h′′(z)dz

)

− 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz
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(by twice integrating by parts the integral
∫∞
−∞ (γn + z)φ(γn + z)h(z)dz)

= 2

n

∫ ∞

−∞

[
(z2 − 1)h(z) − h′′(z)

]
�(γn + z)dz − 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

= 2

n

∫ ∞

−∞
q ′(z)�(γn + z)dz − 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

= 2

n

(
q(z)�(γn + z)|∞−∞ −

∫ ∞

−∞
q(z)φ(γn + z)dz

)
− 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

= 2

n

∫ ∞

0
(z2 − 1)h(z)dz − 2

n

∫ ∞

−∞
q(z)φ(γn + z)dz − 1

n

∫ ∞

−∞
(z2 − 1)h(z)dz

(refer to (4.47))

= −2

n

∫ ∞

−∞
q(z)φ(γn + z)dz

(since 2
∫ ∞

0
(z2 − 1)h(z)dz =

∫ ∞

−∞
(z2 − 1)h(z)dz)

= 2

n

∫ ∞

−∞
q(z)φ(γn − z)dz

= 2

n

∫ ∞

0
q(z)

[
φ(γn − z) − φ(γn + z)

]
dz (4.52)

(since q(−z) = −q(z) for all z), and this gives (4.48). (4.49), (4.50), and (4.51) follow
on application of the dominated convergence theorem and the triangular inequality,
and this establishes the theorem.

Remark Eq. (4.48) is a pleasant general expression for the Bayes risk difference �n

and what is more, has the formal look of a convolution density. One might hope that
techniques from the theory of convolutions can be used to assert useful things about
the asymptotic behavior of �n, via (4.48). We will see that indeed this is the case.

Before embarking on further analysis of �n, we need to keep two things in mind.
First, the function q(z) is usually a signed function and, therefore, we are not dealing
with convolutions of probability measures in (4.48). This adds a bit of additional
complexity into the analysis. Second, it does not take too much to fundamentally
change the asymptotic behavior of �n. In the two pictures below, we have plotted
∫∞

0 q[z]
[
φ(γ−z)−φ(γ+z)

]
dz, for two different choices of the (probability density)

function h. In the first picture, h is a standard Laplace (double exponential) density,
while in the second picture, h is a Laplace density scaled to have variance exactly
equal to 1. We can see that just a scale change changes both the asymptotic (in γ )
sign and shape of �n (refer to (4.49) and (4.50) as well). Thus, in our further analysis
of �n by exploiting the formula in (4.48), we must remain mindful of small changes
in h that can make big changes in (4.48).

For future reference, we record the following formula.
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Fig. 4.4 Plot of (48) for a Standard Double Exponential h

If h(t) = 1
2σ e

−|t |/σ , then (for z > 0),

q(z) = σ 2 − 1

2
+ (α0 + α1z + α2z2)e−z/σ , (4.53)

where

α0 = 1

2
+ 1

2σ 2
− σ 2, α1 = −σ , α2 = −1

2

Thus, if 2σ 2 �= 1, then q acts asymptotically like a nonzero constant; but if 2σ 2 =
1, then asymptotically q dies. This affects the asymptotic sign and shape of the
convolution expression (4.48), and explains why the two pictures below look so
different. Fig. 4.4 and 4.5

The next technical proposition will be useful for our subsequent analysis of (4.48)
and �n. For this proposition, we need two special functions.

For −∞ < p < ∞, by Dp(z) we denote the parabolic cylinder function which

solves the differential equation u′′ + (p + 1
2 − z2

4 )u = 0. For −∞ < a < ∞
and c �= 0,−1,−2, · · · , M(a, c, z) (also often written as 1F1(a, c, z)) denotes the
confluent hypergeometric function

∑∞
k=0

(a)k
(c)k

zk

k! . We have the following proposition.

Proposition 1.2.1 Let k ≥ 0 be an integer and a a nonnegative real number. Then,
for any real number μ,

∫ ∞

0
zke−azφ(μ− z)dz = k!e−μ2/2

2k/2+1

[M( k+1
2 , 1

2 , (μ−a)2

2 )

�( k+2
2 )

+√
2(μ− a)

M( k+2
2 , 3

2 , (μ−a)2

2 )

�( k+1
2 )

]
(4.54)
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Fig. 4.5 Plot of (48) for a Scaled Double Exponential h

and, as γ → ∞,
∫ ∞

0
zke−az

[
φ(γ − z) − φ(γ + z)

]
dz ∼ ea

2/2e−aγ γ k , (4.55)

(in the sense that the ratio of the two sides converges to 1 as γ → ∞)

Proof To obtain (4.54), write for any real number μ,

∫ ∞

0
zke−azφ(μ− z)dz = e−μ2/2

√
2π

∫ ∞

0
zke(μ−a)z−z2/2dz, (4.56)

and first, use the integration formula
∫ ∞

0
zke−bz−z2/2dz = k!eb2/4D−k−1(b) (4.57)

(pp 360, Gradshteyn and Ryzhik (1980)) Next, use the functional identity

Dp(z) = 2p/2e−z2/4
[ √

π

�( 1−p

2 )
M( − p

2
,

1

2
,

z2

2
) −

√
2πz

�( − p

2 )
M(

1 − p

2
,

3

2
,

z2

2
)
]

(4.58)

(pp 1018, Gradshteyn and Ryzhik (1980))
Substituting (4.57) and (4.58) into (4.56), we get (4.54), on careful algebra.
For (4.55), we use the asymptotic order result

M(α,β, z) ∼ ezzα−β �(β)

�(α)
, z → ∞ (4.59)

(see, for example, pp 255-259 in Olver (1997))



4 Asymptotic Risk and Bayes Risk of Thresholding and Superefficient . . . 65

Use of (4.59) in (4.54) withμ = ∓γ , and then subtraction, leads to the asymptotic
order result that as γ → ∞,

∫ ∞

0
zke−az

[
φ(γ − z) − φ(γ + z)

]
dz = k!ea2/2

2k/2+1

×
{
e−aγ (

(γ − a)2

2
)k/2

√
π

�( k+1
2 )�( k+2

2 )

+√
2(γ − a)e−aγ (

(γ − a)2

2
)k/2−1/2

1
2

√
π

�( k+1
2 )�( k+2

2 )

}
×(1 + o(1))

+
{√

2(γ + a)eaγ (
(γ + a)2

2
)k/2−1/2

1
2

√
π

�( k+1
2 )�( k+2

2 )

− eaγ (
(γ + a)2

2
)k/2

√
π

�( k+1
2 )�( k+2

2 )

}
× (1 + o(1)) = k!ea2/2√π

2k+1/2�( k+1
2 )�( k+2

2 )
[
e−aγ (γ − a)k√

2
+ e−aγ (γ − a)k√

2
− eaγ

(γ + a)k√
2

+ eaγ
(γ + a)k√

2

]
× (1 + o(1))

= k!ea2/2√π

2k�( k+1
2 )�( k+2

2 )
e−aγ (γ − a)k × (1 + o(1)) (4.60)

In (4.60), by using the Gamma duplication formula

�(z + 1/2) = √
π21−2z �(2z)

�(z)
,

we get
∫ ∞

0
zke−az

[
φ(γ − z) − φ(γ + z)

]
dz

= ea
2/2e−aγ (γ − a)k × (1 + o(1)) = ea

2/2e−aγ γ k × (1 + o(1)), (4.61)

as claimed in (4.55).

Remark The real use of Proposition 1.2.1 is that by using (4.54), we get an exact
analytical formula for �n in terms of the confluent hypergeometric function. If
all we care for is the asymptotic order result (4.55), then we may obtain it in a
less complex way. Indeed, by using techniques in Feller (1971, pp 442-446) and
Theorem 3.1 in Berman (1992), we can conclude that

∫∞
0 zke−azφ(γ − z)dz =

γ ke−aγ
∫∞
−∞ e

(a− k
γ

)t
φ(t)dt × (1 + o(1)), and (4.55) follows from this.
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Corollary 1.2.8 Consider generalized Hodges estimates of the form (4.2) with an ≡
0. Let h(θ ) = 1

2σ e−|θ |/σ and π (θ ) = πn(θ ) = √
nh(θ

√
n). Then,

�n = 2σ 2 − 1

n
(1 + o(1)), if Varh(θ ) �= 1 ⇔ 2σ 2 − 1 �= 0, (4.62)

and,

�n = −e
γ 2
n e

−γn
√

2

n
(1 + o(1)), if Varh(θ ) = 1 ⇔ 2σ 2 − 1 = 0 (4.63)

This corollary follows by using the formula in (4.53) and the result in (4.55). Notice
that the critical issue in determining the rate of convergence of �n to zero is whether
or not Varh(θ ) = 1.

As indicated previously, we can generalize the result on the asymptotic order of the
Bayes risk difference �n to more general priors. The important thing to understand
is that Theorem 1.2.9 (more precisely, (4.48)) gives a representation of �n in a
convolution form. Hence, we need to appeal to results on orders of the tails of
convolutions. The right structure needed for such results is that of regular variation.
We state two known results to be used in the proof of Theorem 1.2.10 as lemmas.

Lemma 1.2.1 (Landau’s Theorem) Let U be a nonnegative absolutely continuous
function with derivative u. Suppose U is of regular variation of exponent ρ �= 0 at
∞, and that u is ultimately monotone and has a finite number of sign-changes. Then
u is of regular variation of exponent ρ − 1 at ∞.

Lemma 1.2.2 (Berman (1992)) Suppose p(z) is a probability density function on
the real line, and q(z) is ultimately nonnegative, and that w(z) = − d

dz log q(z), v(z) =
− d

dz logp(z) exist and are functions of regular oscillation, i.e., if z, z′ → ∞, z
z′ →

1, then f (z)
f (z′) → 1 if f = w or v. If, moreover, lim infz→∞ d

dz log q(z) >

lim infz→∞ d
dz logp(z), then,

∫∞
−∞ q(z)p(γ − z)dz = q(γ )

∫∞
−∞ e−zw(γ )p(z)dz (1 +

o(1)), as γ → ∞.
We now present the following general result.

Theorem 1.2.10 Suppose assumptions (1)-(7) hold true and if − log q(z) is a
function of regular variation of some exponent ρ �= 0 at z = ∞. Then,

�n = 2q(γn)e
1
2

[
w(γn)

]2

n
(1 + o(1)), as n → ∞. (4.64)

Proof By assumption (6), w(z) is ultimately monotone, and by assumption (5), w(z)
is ultimately positive. By hypothesis, − log q(z) is a function of regular variation.
Therefore, all the conditions of Landau’s theorem (Lemma 1.2.1) are satisfied, and
hence it follows that w(z) is also a function of regular variation at ∞. This will imply,
by well known local uniformity of convergence for functions of regular variation
that if z, z′ → ∞, and z

z′ → 1, then w(z)
w(z′) → 1. By assumption (7), we have
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lim supz→∞ w(z) < ∞ = lim supz→∞
d
dz − logφ(z). Hence, we can now appeal to

Lemma 1.2.2 to coclude that
∫ ∞

−∞
q(z)φ(γn − z)dz = q(γn)

∫ ∞

−∞
e−zw(γn)φ(z)dz (1 + o(1))

= q(γn)e
1
2

[
w(γn)

]2

(1 + o(1))

(by completing the squares), and hence, by (4.48),

�n = 2

n

∫ ∞

−∞
q(z)

[
φ(γn − z) − φ(γn + z)

]
dz

= 2

n

∫ ∞

−∞
q(z)φ(γn − z)dz (1 + o(1))

= 2q(γn)e
1
2

[
w(γn)

]2

n
(1 + o(1)), (4.65)

as claimed.
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Chapter 5
A Note on Nonparametric Estimation of a
Bivariate Survival Function Under Right
Censoring

Haitao Zheng, Guiping Yang and Somnath Datta

5.1 Introduction

Bivariate survival or event time data are frequently encountered in biomedical re-
search. Examples include data obtained from twin studies, data collected on eyes,
ears, legs, breasts or kidneys from the same person, event times of two related dis-
eases happening in one patient, etc. Like the univariate survival data, the bivaraite
survival times are not always observed due to right censoring. Generally, each of
the two component survival times Tj is subject to right censoring by a correspond-
ing censoring time Cj , j = 1, 2. In some applications, it may be assumed that
C1 = C2 and this type of censoring is sometimes referred to as univariate censor-
ing. However, in general, the two censoring times are distinct and the data consists
of independent and identically distributed (i.i.d.) copies of following four tuples:
D = (X1,X2, δ1, δ2), where Xj = Tj ∧ Cj , and δj = I (Tj ≤ Cj ), j = 1, 2, and
the problem at hand is that of estimation of the bivariate survival function of
T = (T1, T2), S(t1, t2) := Pr{T1 > t1, T2 > t2} on the basis of D1, · · · , Dn.

This problem has received considerable attention over the years. However, unlike
the case of univariate survival data where the celebrated Kaplan–Meier estimator is
“the” solution, this problem has led to many solutions each with its pros and cons.
In the remainder of this section, we briefly review a number of these estimators and
discuss the main issues associated with them. In the next section, we introduce a class
of novel bivariate function estimators. Chapter 3 reports the results of a simulation
study which shows superior performance of our estimators over existing estimators.
In Sect. 4, we apply our estimators to a real life bivariate data set for illustration where
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we also discuss an appropriate resampling scheme for construction of a confidence
interval. The paper ends with a discussion section (Sect. 5).

As mentioned before, unlike the univariate case, there are several nonparametric
estimators of the bivariate survival function that were proposed over the years. Hanley
and Parnes (1983) and van der Laan (1996, 1997) studied the nonparametric max-
imum likelihood estimation (NPMLE) of bivariate survival function. A maximum
likelihood approach with imputed observations was undertaken by Pruitt (1991). Lin
and Ying (1993), Wang and Wells (1997) and Tsai and Crowley (1998) proposed
some methods for estimation problem under some special censoring mechanisms,
for instance, univariate censoring. Dabrowska (1988) proposed a bivariate product
limit estimator using product integration. Prentice and Cai (1992) used marginal sur-
vival functions and their covariance function to estimate a bivariate survival function.
Akritas and Van Keilegom (2003) utilized a marginal distribution function estima-
tion combined with a conditional distribution function to estimate a bivariate survival
function. Dabrowska (1988), Pruitt (1991), van der Laan (1996) and Akritas and Van
Keilegom (2003) seem to have received the most attention in the literature.

As pointed out by Akritas and Van Keilegom (2003), many of these estimators are
not proper probability distributions (even after normalization) or have non-explicit
formulae, and some do not behave well in practice or depend heavily on the choice of
smoothing parameters. Among other things, many such estimators (e.g., Dabrowska,
1988) may assign negative masses to certain rectangles. Recently, Shen (2010) de-
veloped three new nonparametric estimators and studied the performance of the
proposed methods using simulation. Dai and Fu (2012) proposed a novel estimator
based on a polar coordinate transformation.

Extensive comparative studies for some of these estimators have been performed
by various researchers. For instance, van der Laan (1997) compared the Dabrowska
estimator, the Prentice-Cai estimator and the NPMLE of van der Laan (1996). Akritas
and Keilegom (2003) compared their estimators with those of Pruitt (1991) and van
der Laan (1996). They demonstrated through simulation studies that their estimator
is more efficient and easy to calculate. However, their estimator does not reduce to
the empirical survival function when the data has no right censored observations.
Very recently, Wang and Zafra (2009) computed a Volterra estimator with dynamic
programming and compared it with Dabrowska estimator. They have shown that the
new method improved the computational efficiency and produced an estimator with
reasonable performance.

5.2 The Estimators

We propose a class of nonparametric estimators of a bivariate survival function under
full bivariate censoring starting with a basic estimator constructed using the principle
of inverse probability of censoring weighting (IPCW). This technique has its root
in sample survey (Horvitz and Thompson 1952). In the survival analysis context,
this was first used by Koul et al. (1981) and later on popularized by Robins and his
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co-authors (Rotnitzky and Robins 2005; Satten et al. 2001; Satten and Datta 2001).
Although it is not immediately obvious, it turns out that this basic rewighted estimator
is equivalent to the estimator proposed by Akritas and van Keilegom (2003).

5.2.1 A Basic IPCW Estimator

First we consider estimating g1 (t1; s) := P (T1 > t1|T2 = s) for s, t1 ≥ 0. Let
0 < h < 1 be a bandwidth tending to zero with the sample size. Note that

g1 (t1; s) ≈
∏

t≤t1

(
1 − P {T1 ∈ [t , t + dt), T2 ∈ [s − h, s + h]}

P {T1 ≥ t , T2 ∈ [s − h, s + h]}
)

≈
∏

t≤t1

(
1 − P {T1 ∈ [t , t + dt), δ1 = 1, T2 ∈ [s − h, s + h], δ2 = 1}

P {T1 ≥ t ,C1 ≥ t , T2 ∈ [s − h, s + h], δ2 = 1}
)
.

Therefore an estimator of P (T1 > t1|T2 = s) is given by the product limit

ĝ1 (t1; s) := P̂ (T1 > t1|T2 = s) =
∏

t≤t1

(
1 − dN (t ; s,h)

Y (t ; s,h)

)
, (5.1)

where

N (t ; s,h) =
n∑

i=1

I (T1i ≤ t , δ1i = 1, T2i ∈ [s − h, s + h], δ2i = 1)

and

Y (t ; s,h) =
n∑

i=1

I (T1i ∧ C1i ≥ t , T2i ∈ [s − h, s + h], δ2i = 1).

Basically, the above estimator is a conditional Kaplan estimator with the uniform
kernel; it is a slight generalization of the Beran’s estimator (Beran, 1981) since the
conditioning variable T2 is also subject to censoring. It is possible to use general
kernel based weights (Meira-Machado et al. 2013) in defining the above conditional
counting and number at risk processes.

Next, note that the bivariate survival function can be expressed as a mean
S (t1, t2) = E {g1 (t1; T2) I (T2 > t2)}. Therefore, using the IPCW principles to
estimate means (Datta 2005), we can estimate the joint survival function estimator
by

Ŝ1 (t1, t2) := 1

n

n∑

i=1

ĝ1 (t1; T2i ) δ2i

K̂2 (T2i−)
I (T2i > t2) = 1

n

n∑

i=1

ĝ1 (t1;X2i ) δ2i

K̂2 (X2i−)
I (X2i > t2),
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where K̂2 is a Kaplan–Meier estimator of the survival function of C2 (right censored
by T2); note that K2 can be computed by the standard Kaplan-Meier product limit
formula with the data {X2i , 1−δ2i ; 1 ≤ i ≤ n}. We can exchange the roles of T1 and
T2 in the above estimator to obtain yet another bivariate survival function estimator

Ŝ2 (t1, t2) := 1

n

n∑

i=1

ĝ2 (t2; T1i ) δ1i

K̂1 (T1i−)
I (T1i > t1) = 1

n

n∑

i=1

ĝ2 (t2;X1i ) δ1i

K̂1 (X1i−)
I (X1i > t1),

and more generally, we can take a convex combination of these two estimators to
obtain a class of IPCW estimators

ŜW (t1, t2) = α(t1, t2)Ŝ1 (t1, t2)+ {1 − α(t1, t2)}Ŝ2 (t1, t2) , (5.2)

where 0 ≤ α(t1, t2) ≤ 1 is a known (user selectable) function.
It turns out that this IPCW estimator is well connected to the Akritas and Van Kei-

legom (2003) (AK, hereafter) estimator. They obtained their estimator by averaging
(integrating) a Beran’s estimator ĝj with respect to the Kaplan–Meier estimator of
Tj ′ , j ′ = 3 − j. Since Satten and Datta (2001) showed that the Kaplan–Meier
estimator has a IPCW representation, we immediately obtain the following result.

Proposition 1. The IPCW estimator (1.2) is the same as Akritas and Van Keilegom
estimator.

This IPCW estimator was proposed byYang (2005), where the connection withAK
was not established. Note that ŜW (t1, t2)may not be a proper bivariate distribution
function unless α(t1, t2) is free from t1, t2. Furthermore, it does not reduce to the
empirical survival function for uncensored data.

5.2.2 A Class of Modified Estimators

We now introduce a new bivariate survival estimator that uses the above estimator
in its construction and is expected to be more efficient. One nice feature of the new
estimator is that it reduces to the empirical survival function in the case of complete
(e.g., uncensored) data.

The idea behind the new estimator is as follows. Consider the following repre-
sentation of the empirical survival function

Sn (t1, t2) = n−1
n∑

i=1

δ1iδ2iI (T1i > t1, T2i > t2)

+ n−1
n∑

i=1

δ1iδ2iI (T1i > t1, T2i > t2)

+ n−1
n∑

i=1

δ1iδ2iI (T1i > t1, T2i > t2)
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+ n−1
n∑

i=1

δ1iδ2iI (T1i > t1, T2i > t2) (5.3)

where δji , j = 1, 2, indicates that the j th component is censored. Note, however,
that only the terms in the first sum can be evaluated in the presence of censoring.
Therefore, we replace the terms of the other sums by their conditional expectations
given the available data in a suitable way. These conditional expectations can be
estimated using our previously defined estimators of the conditional and bivariate
survival functions.

The second summand in (5.3) is replaced by

E
(
δ1iδ2iI (T1i > t1, T2i > t2)

∣
∣X1i ,X2i , δ1i , δ2i

)

= δ1iδ2iI (X1i > t1)
P (T2i > t2 ∨ C2i |T1i )

P (T2i > C2i |T1i )
.

We can use our earlier estimator ĝ2 to estimate the above conditional probabilities.
The third term of (5.3) can be handled in a similar way. The summand corresponding
to the last term of (5.3) is replaced by

E
(
δ1iδ2iI (T1i > t1, T2i > t2)

∣∣X1i ,X2i , δ1i , δ2i
) = δ1iδ2i

S (t1 ∨ C1i , t2 ∨ C2i )

S (C1i ,C2i )
.

Note that we could use our preliminary IPCW estimator ŜW in estimating this term.
Finally combining the terms together we get second estimator of the bivariate survival
function that appears to be novel in the literature of bivariate survival estimator. A
penultimate form of this work appears in an unpublished thesis by Yang (2005); we
call this estimator described below a 1-step modified estimator

Ŝ1,M (t1, t2) = n−1
n∑

i=1

δ1iδ2iI (X1i > t1,X2i > t2)

+ n−1
n∑

i=1

δ1iδ2iI (X1i > t1)
ĝ2 (t2 ∨X2i ;X1i )

ĝ2 (X2i ;X1i )

+ n−1
n∑

i=1

δ1iδ2iI (X2i > t2)
ĝ1 (t1 ∨X1i ;X2i )

ĝ1 (X1i ;X2i )

+ δ1iδ2i
ŜW (t1 ∨X1i , t2 ∨X2i )

ŜW (X1i ,X2i )
. (5.4)

Note that we can use (5.4) iteratively to obtain a sequence of bivariate survival
function estimators
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Ŝk,M (t1, t2) = n−1
n∑

i=1

δ1iδ2iI (X1i > t1,X2i > t2)

+ n−1
n∑

i=1

δ1iδ2iI (X1i > t1)
ĝ2 (t2 ∨X2i ;X1i )

ĝ2 (X2i ;X1i )

+ n−1
n∑

i=1

δ1iδ2iI (X2i > t2)
ĝ1 (t1 ∨X1i ;X2i )

ĝ1 (X1i ;X2i )

+ δ1iδ2i
Ŝk−1,M (t1 ∨X1i , t2 ∨X2i )

Ŝk−1,M (X1i ,X2i )
,

for k ≥ 1, where Ŝ1,M = ŜW . We call this a k-step modified estimator (MB-k).

5.2.3 Bandwidth Selection

Akritas and Van Keilegom (2003) suggested a resampling based bandwidth selector.
Here we propose a cross-validation based bandwidth selector which could be com-
putationally less intensive. Let Ŝ(t1, t2) = Ŝ(t1, t2;h) be a bivariate survival function
estimate where h is a smoothing parameter. Let us attempt to minimize the following
(weighted) integrated mean squared error:

IMSE = E

∫ ∣∣Ŝ(t1, t2) − S(t1, t2)
∣∣2 {H (dt1, dt2)},

where H is the bivariate cumulative hazard function,

= E

∫
Ŝ2(t1, t2)

S(t1, t2)
{−S(dt1, dt2)} − 2EŜ(T ∗

1 , T ∗
2 ) +

∫
S(t1, t2){−S(dt1, dt2)}

where (T ∗
1 , T ∗

2 ) is an independent (of the original sample) realization of the true
bivariate failure time.

Since, the third term is a constant it can be dropped from the minimization process.
Furthermore, replacing the first two terms by their estimates we get the following
CV criterion function to be minimized:

CV (h) =
∫

Ŝ2(t1, t2){Ĥ (dt1, dt2)} − 2

n

n∑

i=1

Ŝ−i(X1i ,X2i)δ1iδ2i

ŜC
n (X1i−,X2i−)

;

here ŜC
n is a bivariate survival function estimator of the censoring times (that may

be based on an auxiliary bandwidth that is expected to have little effect on the entire
process) and Ŝ−i is the bivariate survival function estimator based on the sample with
the ith pair deleted. Finally, h can be selected to minimize CV over a grid of values.

We have not studied the performance of this bandwidth selector in this paper. It
may be pursued elsewhere.
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Table 5.1 Design choices for
the simulation

Parameters Values

Correlation Coefficients ρ 0, 0.6
Failure Time Quartiles tj 0.2, 0.5, 0.8
Sample Size n (bandwidth h(n)) 50 (0.5), 100 (0.3), 200

(0.2)
Censoring proportion 0.2, 0.5

5.3 Simulations

We conducted a simulation study to compare the performances of the bivariate sur-
vival estimators described in the previous section. In particular, since the IPCW
estimator is the same as the one proposed by Akritas and Van Keilegom (2003), this
provides a comparison between that and the novel modified estimators. It is perhaps
worth noting that in their paper, Akritas and Van Keilegom already established su-
periority of their estimator over earlier estimators developed by Dabrowska (1988),
Pruitt (1991), Prentice and Cai (1992), Van der Laan (1996), and Wang and Wells
(1997). Therefore, this also provides a basis for an indirect comparison with those
estimators.

For the IPCW or AK estimator, we considered both uniform and normal kernels.
However, in order to minimize the computational burden, we only use the IPCW
estimator with a uniform kernel to compute our modified estimators. Also, throughout
the weight function α was taken to be 0.5.

The true survival pairs were generated from a bivariate log-normal distribution;
i.e., log (T1, T2) ∼ N2 (0, 0, 1, 1, ρ). The censoring distribution function is bivariate

Gamma with independent components; that is C1,C2
iid∼ G(α, 1). We adjust the

values of α to control the censoring rate.
The scope of this simulation study was fairly extensive. This included comparing

performances under two choices of the correlation between the log-survival times:
zero and moderate. Three sample sizes 50, 100, and 200 were considered in this
study. The estimators were computed over a grid of quantile pairs. We also consid-
ered different censoring proportions (rates). For computational ease, a non-random
bandwidth sequence decreasing with the sample size was used. These are listed in
Table 5.1 below.

For each simulation setting, we compute the bias and mean squared error of
the estimators based on the Monte Carlo technique with 500 trials each. These
values are reported within parenthesis in Tables 5.2–5.5. In these tables, the format
(103×BIAS, 103×MSE) is used; for example, (−3.56, 4.48) means that bias is
−3.45 × 10−3 and MSE is 4.48 × 10−3.We have considered the following five
estimators: IPCW/AK with uniform kernel, IPCW/AK with normal kernel, MB-1,
MB-2 and MB-3.

In Tables 5.3 and 5.5, we report the simulation results forρ = 0.6. We compare the
results under different censoring proportion. With censoring proportion 0.5, we find
that the modified estimators give much better result than the IPCW/AK estimators
in terms of smaller bias and smaller MSE for all sample sizes under consideration.
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Table 5.6 Range of kidney
infection times (in days).

Event times X1 Percent X2 Percent
censored censored

Range [2,562] 28.9 [5,511] 18.4

IPCW/AK with the uniform kernel has better performance than that with normal
kernel. We observe the same pattern of performance amongst the five estimators
at 20 % censoring as well. All four estimation methods have better performance at
larger sample size and/or small censoring proportion. The modified estimators MB-2
and MB-3 have only slightly better performance than the one step modified estimator
MB-1 in most cases.

When the two components of bivariate survival data are independent, the relative
performances of IPCW/AK and the MB estimators are mixed (Tables 5.2 and 5.4).
However, for moderate (50 %) censoring, the MB estimators have better performance
than the IPCW/AK estimator in terms of MSE. If censoring proportion decreases all
methods perform better in terms of MSE.

5.4 An Application to Real Data

We use our MB-1 bivariate survival estimator on a data set from McGilchrist and
Aisbett (1991). This data set contains recurrence times to infection at the point of
insertion of a catheter for 38 kidney patients using portable dialysis equipment. Two
times to recurrence of an infection (days since catheter placement for each episode)
were recorded as T1 and T2 for each patient; δ1 and δ2 were also recorded as the event
(infection or censoring) indicators.

We present the range of the event times Xj and the corresponding censoring rates
in Table 5.6. The overall censoring rate, where at least one of T1 or T2 in a pair was
right censored, was 39.5 %.

We construct our estimator MB-1 on a bivariate grid of 30×30 pairs of time
points that are evenly spaced between the observed marginal ranges in the data set.
For reference to the IPCW/AK estimator that was constructed in Akritas and van
Keilegom (2003), we choose the same bandwidth of h = 80. The result is displayed
in Fig. 5.1.

We also report (Fig. 5.2) the corresponding marginal estimators of the survival
functions of Tj , j = 1, 2. The corresponding pointwise confidence intervals were
obtained by a smoothed bootstrap. Let Ŝ be our MB-1 estimator of the joint survival
function of T = (T1, T2) and by switching the roles of T and C, let ŜC be the MB-1
survival function estimator of the pairs of censoring times C = (C1,C2). A smoothed

bootstrap sample of size n, (T ∗
11, T ∗

21) · · · , (T ∗
1n, T ∗

2n), is generated from Ŝ(·, ·; ∼
h ),

and independently, the corresponding censoring pairs (C∗
11, C∗

21) · · · , (C∗
1n, C∗

2n) are

generated from ŜC(·, ·; ∼
h ) to produce X∗

ji = T ∗
ji ∧ C∗

ji , δ
∗
ji = I (T ∗

ji ≤ C∗
ji), j =

1, 2; 1 ≤ i ≤ n.Note that a larger bandwidth
∼
h = h1.2 is needed to generate the



5 A Note on Nonparametric Estimation of a Bivariate Survival . . . 81

0100200300400500
0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Time 1 Time2
S

(t
1,

t2
)

Fig. 5.1 Estimated bivariate survival function for two kidney infection times (in days)

bootstrap version of the data in order to capture the bias term in the bootstrap world
(Li and Datta 2001).

Let Ŝ1 (t1;h) = Ŝ (t1, 0;h) denote the marginal survival function estimator of T1.

For 0 < α < 1, let �̂1−α/2 (t1) be the (1 − α/2) × 100th percentile of the bootstrap
distribution of

�∗ =
∣∣∣ sin−1

{√
Ŝ∗

1 (t1;h)

}
− sin−1

{√

Ŝ1(t1;
∼
h)

} ∣∣∣

where Ŝ∗
1 (t1;h) uses the same bandwidth as in the original but is based on the

bootstrap sample; however, Ŝ1(t1;
∼
h) for centering is recomputed from the original

sample but using the new bandwidth
∼
h = h1.2. Then the pointwise confidence interval

for the marginal survival function of T1 at a time t1 is given by [L,U ], with

L = sin2

{
max

(
0, sin−1

{√
Ŝ1 (t1; h)

}
− �̂1−α/2

)}
,
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Fig. 5.2 Estimated marginal survival functions with 95% confidence intervals for kidney infection
times (in days)

and

U = sin2

{
min

(
π

2
, sin−1

{√
Ŝ1 (t1; h)

}
+ Δ̂1−α/2

)}
;

the confidence interval for the T2 can be calculated in the same way.
The two marginal distributions look largely similar (Fig. 5.2); however the second

infection time appears to be stochastically larger.
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5.5 Discussion

In this paper, we propose a class of novel non-parametric estimators MB-k of a
bivariate survival function under general independent right censoring. The proposed
estimators were investigated via an extensive simulation study and compared with the
IPCW estimators which were shown to be equivalent to earlier estimators proposed by
Akritas andVan Keilegom (2003). From our simulation study, we find that correlation
between paired failure times may play an important role on the behavior of our
bivariate survival function estimators. The novel estimators may indeed perform
better if the association between the paired survival times is moderate/strong.

It is fairly easy to extend these estimators to a general dependent censoring setup
due to their IPCW forms. Basically, we can handle any censoring mechanism that can
express the hazard of censoring Cj in terms of an observed, possibly time dependent,
predictable covariate Zj (tj ). Once we fit the appropriate model we would replace
the K̂j by the following formula

K̂j (tj ) = exp

{
−
∫ tj

0
λ̂Cj (s|Zj (u), 0 ≤ u ≤ s)ds

}
.

A flexible model suitable for this is the additive hazard model by Aalen (1989). See
Satten et al. (2001) for further details of the construction of this general K̂j .
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Chapter 6
On Equality in Distribution of Ratios
X/(X+Y ) and Y/(X+Y )

Manish C. Bhattacharjee and Sunil K. Dhar

6.1 Introduction and Summary

One often comes across problems where the probability of male and that of female
each being equal to 50 % is questioned. This question can be thought of in terms
of the human sex ratio of X :Y (which is currently 101 male to 100 female, CIA
Fact Book, 2013) and the corresponding proportions being same to that of their
corresponding distributions being identical. In this context, X and Y are thought to be
nonnegative random variables. However, if the X and Y are independent identically
distributed i.i.d.; it is well-known that the ratios X/(X + Y ) and Y/(X + Y ) are
equal in distribution. This prompts the question: if we remove the assumption of
mutual independence of X and Y , can the equidistribution of these ratios still hold,
and under what reasonable conditions? In what follows, we explore some general
answers to this question. We show that, if X and Y have the same distribution then
X

X+Y
need not have the same distribution as Y

X+Y
and identify sufficient conditions

for an affirmative answer. Extension of our main result to the case of n-dimensional
random vectors (X1, · · · ,Xn) for n ≥ 2 is indicated.

Generically, the cumulative distribution function (c.d.f.) of a random vector (X,Y )
is denoted by FX,Y and its probability density function (p.d.f.), when it exists, by
fX,Y . For higher dimensional random vectors (X1, · · · ,Xn), n ≥ 2; FX1,··· ,Xn

and

fX1,··· ,Xn
correspondingly denote its c.d.f. and p.d.f., respectively. We use

d= to denote
equality in distribution of (r.v.s).
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6.2 Counterexample

We show a counterexample to demonstrate that X
d= Y does not guarantee equality

of distribution of the ratios X
X+Y

and Y
X+Y

. For this purpose, we use a suitable joint
density of (X,Y ), that we construct via the standard normal density

φ(x) = 1√
2π

exp

(
−x2

2

)
, −∞ < x < ∞.

Consider the joint density function on R2 = ( −∞,∞) × ( −∞,∞), given by

fX,Y (x, y) = [1 + xyφ(x)φ2(y)]φ(x)φ(y).

To see that fX,Y is a valid joint density we need to observe that φ(x) < 1 and that
|xφ(x)| < 1 (because x2

2π < exp(x2)). This in turn gives 1 + xyφ(x)φ2(y) > 0 and
the fact that the mean of a scaled standard normal random variable is zero, which
make fX,Y a valid density and both the marginals to be standard normal. Hence, X
and Y have the same distribution. We will now derive the density of V = Y

X+Y
and

then show that densities of V and 1 − V = X
X+Y

are not the same. Let W = X and

Y = VW
1−V

. The absolute value of the Jacobian is given by |w|
(1−v)2 . Hence, the joint

density fW ,V of (W ,V ) on the R2 plane is given by,

fW ,V (w, v) = fX,Y

(
w,

wv

(1 − v)

) |w|
(1 − v)2 ,

which simplifies to,

|w|
2π (1 − v)2

⎡

⎣1 +
( w2v

1 − v

)exp
(
−w2

2 − w2v2

(1−v)2

)

(2π )3/2

⎤

⎦

× exp

(−w2

2

)
exp

(
− w2v2

2(1 − v)2

)
.

In the above joint density, we integrate out the w variable, to get the marginal density
of V . Note that a closed form of the density of V can be obtained by using the
facts that if N is a normal random variable with mean zero and variance σ 2

N then

E|N | =
√

2
π
σN and E|N |3 = 2

√
2
π
σ 3
N . Hence, the density of V is given by

fV (v) =
∫ ∞

−∞
fU ,V (u, v)du = 1

π(v2 + (1 − v)2)
+ v(1 − v)√

2π5/2(2(1 − v)2 + 3v2)2
.

Clearly, fV (v) �= fV (1−v), and the latter is the density of U := X
X+Y

. The two ratios
U and V are not equal in distribution.

Dependence between X and Y in the counterexample does not establish the ne-
cessity of their statistical independence for the equality in distribution of the ratios
U ,V to hold. In fact, our results are typically based on the assumption of a joint
distribution, and cover independence as a special case.
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6.3 Main Results

For a random vector (X,Y ), denote the ratios of the two component r.v.s to their sum,
by

U := X

X + Y
, V := Y

X + Y
. (6.1)

It may be noted that while U + V = 1, the r.v.s UandV cannot be thought of as
the proportional contribution of the components of (X,Y ) to their sum, as is obvious
from the preceding counterexample.

If X,Y are absolutely continuous with a (joint) density, then so are U and V , with
their respective densities related via

fV (v) = fU (1 − v). (6.2)

Standard calculations yield an expression for the density ofU . In particular, choosing
the transformation

U = X

X + Y
, T = X + Y ;

the joint density of (U , T ) is easily seen to be fU ,T (u, t) = fX,Y (ut , (1 − u)t) |t |, so
that the marginal density of U is

fU (u) =
∫ ∞

−∞
fX,Y

(
ut , (1 − u)t

)
|t | dt , (6.3)

which together with (6.2) implies

fV (v) =
∫ ∞

−∞
fX,Y

(
(1 − v)t , vt

)
|t | dt

�=
∫ ∞

−∞
fX,Y

(
vt , (1 − v)t

)
|t | dt = fU (v), −∞ < v < ∞,

in general.
Define H to be symmetric in its arguments (x, y), if

H (x, y) = H (y, x), all (x, y).

If, however, fX,Y has this symmetry, then the earlier equality obviously holds. We
thus have the following proposition.
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Proposition 6.1 If (X,Y ) admits a joint density that is symmetric in its arguments,

then the ratios in (6.1) are equal in distribution (U
d= V ).

Remark 1. There is no explicit assumption that X
d= Y in the premise of the earlier

proposition, as it is an easy consequence of the symmetry; viz,

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ ∞

−∞
fX,Y (y, x) dy = fY (x).

Remark 2. In view of the Remark 1 earlier, in the absolutely continuous case, the

classic result that X,Y i.i.d. implies U
d= V follows as a special case of proposition

6.1, since if X,Y are i.i.d. with a common p.d.f. fX( · ) ≡ fY ( · ), then the joint p.d.f.
satisfies

fX,Y (x, y) = fX(x)fY (y) = fY (x)fX(y) = fX,Y (y, x).

While proposition 6.1 provides an answer to our question when X,Y are absolutely
continuous, an affirmative answer in the general case, where the joint c.d.f. of X,Y
may also have discrete or/and singular components, is given by our next proposition.
Note that F (x, y) being symmetric in (x, y) implies that P {(X,Y ) ∈ (−∞, x] ×
(−∞, y]} = P {(Y ,X) ∈ (−∞, x] × (− ∞, y]} for all (x, y) ∈ R2. This, in turn

implies that (X,Y )
d= (Y ,X).

Proposition 6.2 If the joint c.d.f. FX,Y (x, y) is symmetric in (x, y), then U
d= V .

Proof. With FX,Y (x, y) also denoting the Lebesgue–Stieltjes measure on the plane
induced by the joint c.d.f., we have,

E(eitU ) =
∫ ∞

−∞

∫ ∞

−∞
exp
(
it(

x

x + y
)
)
dFX,Y (x, y)

=
∫ ∞

−∞

∫ ∞

−∞
exp
(
it(1 − y

x + y
)
)
dFX,Y (y, x)

= E(eit(1−U )) = E(eitV ), −∞ < t < ∞, (6.4)

where the second equality uses the symmetry condition of the joint c.d.f. and the
two corresponding measures are the same because they are seen to be same of the
relatively determining class of sets (−∞, x] × (−∞, y]. Thus, the ratios U and V

having the same characteristic function and therefore must be equal in distribution.

Alternately, FX,Y (x, y) = FX,Y (y, x) implies that (X,Y )
d= (Y ,X) and h(x, y) = x

x+y

being a continuous function gives h(X,Y )
d= h(Y ,X). Interestingly, converse of

Proposition 6.2 is not true namely, X/(X+Y )
d= Y/(X+Y ) does not imply thatX and

Y have symmetric distribution functions. To see this, let (X,Y ) take on the bivariate
pairs (1,2) and (4,2) with probability 1/2 each. Then X/(X + Y ) and Y/(X + Y )
both have identical distributions, taking on the values 1/3 and 2/3 with probability
1/2 each. Yet, 1/2 = P [X = 1,Y = 2] �= P [X = 2,Y = 1] = 0.
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The joint c.d.f.’s symmetry condition was motivated by the corresponding
assumption in Proposition 6.1 and the following observation.

Lemma 6.3

(i) SupposeX,Y are absolutely continuous. ThenFX,Y is symmetric in its arguments
(x, y) if and only if so is fX,Y .

(ii) The symmetry condition in Proposition 6.2 implies X and Y are identically
distributed.

Proof.

(i) Suppose fX,Y is symmetric in (x, y). Then the nonnegativity of the integrand
and Fubini’s theorem implies,

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

−∞
fX,Y (u, v) dv du

=
∫ x

−∞

∫ y

−∞
fX,Y (v, u) dv du

=
∫ y

−∞

∫ x

−∞
fX,Y (v, u) du dv

= P (X ≤ y, Y ≤ x) ≡ FX,Y (y, x).

Conversely, supposing FX,Y is symmetric in its argument (x, y), and has a joint
density; we have,

fX,Y (x, y) = ∂2

∂x, ∂y
FX,Y (x, y) = ∂2

∂x, ∂y
FX,Y (y, x) = fX,Y (y, x).

(ii) Using the pointwise symmetry of FX,Y (·, ·) on R2,

P (X ≤ x) = lim
y→∞FX,Y (x, y) = lim

y→∞FX,Y (y, x) = P (Y ≤ x).

Remark 3. The symmetry condition in Proposition 6.2 is of course equivalent to

X,Y being “exchangeable”, i.e., (X,Y )
d= (Y ,X). For a pair of r.v.s however, it is

much more simply stated as the property that the joint c.d.f. FX,Y (·, ·) : R2 −→ [0, 1]
is symmetric in its arguments. For random vectors of higher dimensions, the corre-
sponding condition that the c.d.f. FX1,··· ,Xn

is permutation invariant in its arguments
is more succinctly and elegantly descried as X1, · · · ,Xn being exchangeable; thus
generalizing our earlier proposition as follows.

Proposition 6.4 If X1, · · · ,Xn (n ≥ 2) is a finite, exchangeable sequence, then

Xj

Sn

d= Xk

Sn

, j , k ∈ {1, 2, · · · , n}, j �= k

where Sn :=∑n
i=1 Xi .
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Proof. Suppose X1, · · · ,Xn (n ≥ 2) are exchangeable, i.e., (Xi1 , · · · ,Xin )
d=

(X1, · · · ,Xn) for all permutations (i1, · · · , in) of (1, · · · , n). For brevity, denote by

X := (X1, · · · ,Xn), and

0jX := (X1, · · · ,Xj−1,Xj+1, · · · ,Xn),

be the corresponding vector that skips the j -th coordinate Xj , and the corresponding
values assumed as, x and 0jX, respectively. When

E
{

exp
(
it
Xj

Sn

)}
=

∫ ∞

−∞
exp
(
it

u

sn

)
dFX(x1, · · · , xj−1, u, xj+1, · · · , xn)

=
∫ ∞

−∞
exp
(
it

u

sn

)
dF(Xj ,0jX)(u, 0jx)

=
∫ ∞

−∞
exp
(
it

u

sn

)
dF(Xk ,0kX)(u, 0kx)

= E
{

exp
(
it
Xk

Sn

)}
,

where the value sn of Sn is given by sn = u+∑n
i=1i �=j

xi or sn = u+∑n
i=1i �=k

xi in the
second or third integrands earlier, respectively. Note, the two equalities preceding

the last step hold, since (Xj , 0jX)
d= X

d= (Xk , 0kX) for all pairs j , k, by exchange-

ability. Alternately, since (Xj , 0jX)
d= (Xk , 0kX) and h(x) = x1

sn
is a continuous

function, h(Xj , 0jX)
d= h(Xk , 0kX). Hence the result.

In conclusion, any Archimedian copula can be used as a generator of such ex-
changeable r.v.s, Nelson (1999) and Genest et al. (1986). These results are also
applicable to Bayesian contexts, where the observations are conditionally i.i.d. given
an environmental variable with a prior distribution.
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Chapter 7
Nonparametric Distribution-Free Model Checks
for Multivariate Dynamic Regressions

J. Carlos Escanciano and Miguel A. Delgado

7.1 Introduction

Parametric time series regression models continue being attractive among practi-
tioners because they describe, in a concise way, the relation between the response or
dependent variable and the explanatory variables. Much of the existing statistical lit-
erature is concerned with the parametric modelling in terms of the conditional mean
function of a response variableYt ∈ R, given some conditioning variable at time t−1,
It−1 ∈ R

d , d ∈ N, say. More precisely, let Zt ∈ R
m, m ∈ N, be a m-dimensional ob-

servable random variable (r.v) and Wt−1 = (Yt−1, . . .,Yt−s) ∈ R
s . The conditioning

set we consider at time t−1 is given by It−1 = (W ′
t−1,Z′

t )
′, so d = s+m.We assume

throughout the article that the time series process {(Yt ,Z′
t )
′ : t = 0,±1,±2, . . .} is

strictly stationary and ergodic. Henceforth, A′ denotes the matrix transpose of A.

It is well-known that under integrability of Yt , we can write the tautological
expression

Yt = f (It−1) + εt ,

where f (z) = E[Yt | It−1 = z], z ∈ R
d , is the conditional mean function almost

surely (a.s.) ofYt , given It−1 = z, and εt = Yt−E[Yt | It−1] satisfies, by construction,
that E[εt | It−1] = 0 a.s.

Then, in parametric modelling one assumes the existence of a parametric family
of functions M = {f (·, θ ) : θ ∈ � ⊂ R

p} and considers the following regression
model

Yt = f (It−1, θ ) + et (θ ), (7.1)
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with f (It−1, θ ) a parametric specification for the conditional mean f (It−1), and
{et (θ ) : t = 0,±1,±2, . . .} a sequence of r.v.’s, deviations of the model. Model
(7.1) includes classes of linear and nonlinear regression models and linear and non-
linear autoregression models, such as Markov-switching, exponential or threshold
autoregressive models, among many others (see Fan and Yao 2003).

The condition f (·) ∈ M is tantamount to

H0 : E[et (θ0) | It−1] = 0 a.s. for some θ0 ∈ � ⊂ R
p.

We aim to test H0 against the alternative hypothesis

HA : P (E[et (θ ) | It−1] �= 0) > 0, for all θ ∈ � ⊂ R
p,

where (�, F ,P ) is the probability space in which all the r.v.’s of this article are
defined.

There is a vast literature on testing the correct specification of regression models.
In an independent and identically distributed (i.i.d) framework, some examples of
those tests have been proposed by Bierens (1982, 1990), Eubank and Spiegelman
(1990), Eubank and Hart (1992), Härdle and Mammen (1993), Horowitz and Härdle
(1994), Hong and White (1995), Fan and Li (1996), Zheng (1996), Stute (1997),
Stute et al. (1998), Li and Wang (1998), Fan and Huang (2001), Horowitz and
Spokoiny (2001), Li (2003), Khamaladze and Koul (2004), Guerre and Lavergne
(2005) and Escanciano (2006a), to mention a few. Whereas, in a time series context
some examples are Bierens (1984), Li (1999), de Jong (1996), Bierens and Ploberger
(1997), Koul and Stute (1999), Chen et al. (2003), Stute et al. (2006) and Escanciano
(2006b, 2007). This extensive literature can be divided into two approaches. In
the first approach test statistics are based on nonparametric estimators of the local
measure of dependence E[et (θ0) | It−1]. This local approach requires smoothing of
the data in addition to the estimation of the finite-dimensional parameter vector θ0, and
leads to less precise fits, see Hart (1997) for some review of the local approach when
d = 1. Tests within the local approach are in general asymptotic distribution-free
(ADF).

The second class of tests avoids smoothing estimation by means of an infinite
number of unconditional moment restrictions over a parametric family of functions,
i.e., it is based on the equivalence

E[et (θ0) | It−1] =0 a.s. ⇐⇒ E[et (θ0)w(It−1, x)] = 0,

almost everywhere (a.e.) in � ⊂ R
q , (7.2)

where � ⊂ R
q , q ∈ N, is a properly chosen space, and the parametric family of

functions {w(·, x) : x ∈ �} is such that the equivalence (7.2) holds, see Stinchcombe
and White (1998) and Escanciano (2006b) for primitive conditions on the family
{w(·, x) : x ∈ �} to satisfy this equivalence. We call the approach based on (7.2)
the “integrated approach”. In the integrated approach, test statistics are based on a
distance from the sample analogue of E[et (θ0)w(It−1, x)] to zero. This integrated
approach is well known in the literature and was first proposed by Bierens (1982),
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who used the exponential function w(It−1, x) = exp (ix ′It−1), where i = √−1 de-
notes the imaginary unit, see also Bierens (1990) and Bierens and Ploberger (1999).
Stute (1997) using empirical process theory, proposed to use the indicator function
w(It−1, x) = 1(It−1 ≤ x) in an i.i.d context. Stinchcombe and White (1998) empha-
sized that there are many other possibilities in the choice of w. Recently, Escanciano
(2006a) has considered in an i.i.d setup the family w(It−1, x) = 1(β ′It−1 ≤ u),
x = (β ′, u)′ ∈ �pro, where �pro = S

d × [−∞,∞] is the auxiliary space with S
d the

unit ball in R
d , i.e., S

d = {β ∈ R
d : |β| = 1}. This new family combines the good

properties of exponential and indicator families and delivers a Cramér-von Mises
(CvM) test simple to compute and with excellent power properties in finite samples,
see Escanciano (2006a) for further details. Escanciano (2007) provides a unified the-
ory for specification tests based on the integrated approach for a general weighting
function w, including but not restricting to indicators and exponential families.

A tenet in the integrated approach is that the asymptotic null distribution of re-
sulting tests depends on the data generating process (DGP), the specified model and
generally on the true parameter θ0. Consequently, critical values for integrated tests
have to be approximated with the assistance of resampling methods. In particular,
Escanciano (2007) justified theoretically a wild bootstrap method to approximate the
asymptotic critical values for general integrated-based tests. In contrast, Koul and
Stute (1999) avoided resampling procedures by means of a martingale transforma-
tion in the spirit of that initially proposed by Khamaladze (1981). However, Koul
and Stute’s setup was restricted to homocedastic autoregressive models of order 1.
Recently, Khamaladze and Koul (2004) have applied the martingale transform to
residual marked processes in multivariate regressions with i.i.d data, but the result-
ing test is not ADF since it depends on the joint distribution of regressors. The main
contribution of this article is to complement these approaches and extend them to het-
eroskedastic multivariate time series processes. We apply the martingale transform
coupled with the Rossenblatt’s transform on the multivariate regressors to get ADF
test free of the joint design distribution. We formally justify the effect of these trans-
formations on our test statistics using new asymptotic theory of function-parametric
empirical processes under martingale conditions. Finally, we compare via a Monte
Carlo experiment, our new model checks with existing bootstrap approximations.

The layout of the article is as follows. In Sect. 2 we present the ADF tests based on
continuous functionals of a martingale transform of the function-parametric residual
marked empirical process. We begin by establishing some heuristics for the martin-
gale transform. In Sect. 3 we establish the asymptotic distribution of our test under
the null. In Sect. 4 we compare the bootstrap approach with the martingale approach
via a Monte Carlo experiment. Proofs are deferred to an appendix.

A word on notation. In the sequelC is a generic constant that may change from one

expression to another. Throughout, |A| denotes the Euclidean norm of A. R
d

denotes

the extended d-dimensional Euclidean space, i.e., R
d = [ −∞,∞]d . Let ‖X‖p be

the Lp-norm of a r.v X, i.e., ‖X‖p = (E |X|p)1/p , p ≥ 1. Let N[](ε, H, ‖·‖p ) be the
ε-bracketing number of a class of functions H with respect to the norm ‖·‖p , i.e.,
the minimal number N for which there exist ε-brackets {[lj , uj ] :

∥∥lj − uj

∥
∥
p
≤ ε,
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∥∥lj
∥∥
p
< ∞,

∥∥uj

∥∥
p
< ∞, j =, 1. . .,N} covering H, see Definition 2.1.6 in van

der Vaart and Wellner (1996). Let �∞(H) be the metric space of all real-valued
functions that are uniformly bounded on H. As usual, �∞(H) is endowed with the
sup norm, i.e., ‖z‖H = suph∈H |z(h)| . Let�⇒ denote weak convergence on �∞(H),
see Definition 1.3.3 in van der Vaart and Wellner (1996). Throughout the article,
weak convergence on compacta in �∞(H) means weak convergence on �∞(C) for all

compact subsets C ⊂ H.Also
P ∗−→ and

as∗−→ denote convergence in outer probability
and outer almost surely, respectively, see Definition 1.9.1 inVaart andWellner (1996).
The symbol →d denotes convergence in distribution of Euclidean random variables.
All limits are taken as the sample size n → ∞.

7.2 The Function-Parametric Residual Process
and the Martingale Transform

In view of a sample {(Yt , I ′t−1)′ : 1 ≤ t ≤ n}, and motivated from (7.2), we define
the function-parametric empirical process,

Rn(b, θ ) = n−1/2
n∑

t=1

et (θ )b(It−1),

indexed by (b, θ ) ∈ B×�, for a class of “check” functions B and a parameter space
�. Examples of B will be specified later. Two important processes associated to
Rn(b, θ ) are the error-marked process Rn(b) = Rn(b, θ0) and the residual-marked
process

R1
n(b) ≡ Rn(b, θn) = n−1/2

n∑

t=1

et (θn)b(It−1),

where θn is a
√
n-consistent estimator for θ0 (see Assumption A4 below). For con-

venience, we shall assume that B ⊂ L2(R
d
,G), the Hilbert space of all G -square

integrable measurable functions, where G(dx) = σ 2(x)F (dx), F (·) is the joint
cumulative distribution function (cdf) of It−1, and σ 2(·) is the conditional error vari-

ance, i.e., σ 2(y) = E[ε2
t | It−1 = y]. As usual, L2(R

d
,G) is furnished with the

inner-product

〈f , g〉 =
∫

Rd

f (x)g(x)G(dx).

and the induced norm ‖h‖ = 〈h,h〉1/2 .

The aim of this section is to construct a suitable check space B such that the
process R1

n(b), with b ∈ B, delivers tests based on test statistics, �(R1
n) say, which

are consistent and ADF. In this article we shall focus in a particular check space that
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makes use of the martingale transformation proposed by Khmaladze (1981, 1993)
for the problem of goodness-of-fit tests of distributions.

Let g(I0,θ0) = (∂/∂θ ′)f (I0, θ0) and s(I0, θ0) = σ−2(I0)g(I0, θ0) be the non-
standardized and standardized scores, respectively. From Theorem 1 in Sect. 3,
under the null hypothesis and some mild regularity conditions, we have the following
relation between Rn(b) and R1

n(b), uniformly in b ∈ B,

R1
n(b) = Rn(b) − 〈b, s ′〉√n(θn − θ0) + oP (1). (7.3)

This relation gives us a clue about how to choose b for the test based on R1
n(b)

being ADF. Namely, if b is orthogonal to the score, i.e., 〈b, s ′〉 = 0, we have the
uniform representation

R1
n(b) = Rn(b) + oP (1),

and the estimation of θ0 does not have any effect in the asymptotic null distribution
of R1

n(b). Furthermore, it can be shown that the limit process of Rn(b) is a stan-

dard function-parametric Brownian motion in L2(R
d
,G), that is, a Gaussian process

with zero mean and covariance function 〈b1, b2〉. Following ideas from Khmaladze
(1993), a simple way to make b orthogonal to the score is to use a transformation

T from L2(R
d
,G) to L2(R

d
,G) with values in the orthogonal complement of the

space generated by the score s, and consider the transformed process R1
n(T b). The

covariance function of the limit process of R1
n(T b) is then 〈T b1, T b2〉, so unless T

is an isometry (i.e., 〈T b1, T b2〉 = 〈b1, b2〉), the Brownian motion structure is lost.
Therefore, we observe that a way to make the asymptotic null distribution “immune”
to the estimation effect and, at the same time, preserve the original covariance struc-
ture is to consider R1

n(T b), where T is an isometry with image orthogonal to the
score. In other words, a suitable check space to obtain consistent and ADF tests is
B = {T h : h ∈ H}, for an isometry T with image orthogonal to the score (to obtain
the ADF property) and with suitable large class of functions H (to obtain consistency
in the test procedure).

A large class of isometries with the previous properties is the class of shift isome-

tries. Let bas = {s, f1, f2, . . .} be an orthogonal basis of L2(R
d
,G). Let us define

the isometry Tbas in the following way

Tbass = f1 Tbasfj = fj+1, j > 1.

Then, it is easy to show that T is an isometry from L2(R
d
,G) to L2(R

d
,G) with

values in the orthogonal complement of the score s. A remarkable example of a
shift isometry is the Khmaladze’s martingale transform (cf. Khmaladze 1981, 1993),
that posseses the added property of having an explicit formula. We use the same
notation as in Khmaladze and Koul (2004). Introduce the so called scanning family

of measurable subsets A = {Aλ : λ ∈ R} of R
d
, such that

1: Az ⊆ Au, ∀z ≤ u.
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2: G(A−∞) = 0, G(A∞) = 1
3: G(Az) is a strictly increasing and absolutely continuous function of z ∈ R.

An example of scanning family is the following. Assuming that G(β ′y) is ab-

solutely continuous for some β ∈ R
d
, then the family A = {Az : z ∈ R} with

Az = {y ∈ R
d

: β ′y ≤ z} is a scanning family. Now define z(y) = inf{z : y ∈ Az}
and

Cz =
∫

Ac
z

s(x, θ0)s ′(x, θ0)G(dx),

where Ac
z is the complement of Az. The linear operator T is given by

Tf (u) = f (u) −Kf (u), (7.4)

where

Kf (u) =
∫

Az(u)

f (x)s ′(x, θ0)C−1
z(x)G(dx)s(u, θ0) (7.5)

and f (·) ∈ L2(R
d
,G). Such transformation was first proposed in the goodness-of-fit

literature by Khmaladze (1981, 1993). In the statistical literature this transformation
has been considered and extended to other problems in e.g. Stute et al. (1998),
Koul and Stute (1999), Stute and Zhu (2002) or Koul and Khmaladze (2004). This
transformation is becoming well-known in other areas and has been already applied
to a variety of problems in Bai and Ng (2001), Koenker and Xiao (2002), Bai (2003),
Delgado et al. (2008), Delgado and Stute (2008), Bai and Chen (2008), Song (2009,
2010) and Angrist and Kuersteiner (2011). It is not difficult to show that T defined

by (7.4) is an isometry from L2(R
d
,G) to L2(R

d
,G) with values in the orthogonal

complement of the score s, see Khmaladze and Koul (2004) for the proof.
The martingale transform1 T depends on unknown quantities which can be

estimated from a sample. The natural estimator of the transformation is

Tnf (u) = f (u) −
∫

Az(u)

f (x)s ′n(x, θn)C−1
n,z(x)Gn(dx)sn(u, θn),

where

Cn,z =
∫

Ac
z

sn(x, θn)s ′n(x, θn)Gn(dx),

with Gn(dy) = σ 2
n (y)Fn(dy), Fn is the empirical cdf of {It−1}nt=1, sn(I0, θ ) =

σ−2
n (I0)g(I0, θ ), θn is a

√
n-consistent estimator of θ0, and σ 2

n (y) is a consistent
nonparametric estimator of σ 2(y) (for instance, a Nadaraya-Watson estimator).

1 The martingale trasform has also been variously referred to as: an innovation approach
(Khmaladze, 1988), and an innovation process approach (Stute, Thies, and Zhu, 1998).
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From the integrated approach we know that in the construction of consistent

tests, it is not necessary to consider the whole space of functions L2(R
d
,G). A

parametric family that delivers well-known limit processes is the indicator class

Bind = {1(· ≤ x) ≡ 1x(·) : x ∈ R
d} ⊂ L2(R

d
,G). For the univariate case, i.e.,

d = 1, continuous functionals of standardizations of R1
n(Tn1x) deliver ADF tests

for H0, see Koul and Stute (1999). However, in the multivariate case, d ≥ 2, the
asymptotic null distribution of R1

n(Tn1x) still depends on the conditional variance
and the design distribution. To overcome this problem we consider the so-called
Rossenblatt’s (1952) transformation. This transformation produces a multivariate
distribution that is i.i.d on the d-dimensional unit cube, thereby, leading to tests that
can be based on standardized tables. Let It = (It1, It2, . . ., Itd)′ and define the transfor-
mation u = (u1, . . ., ud )′ = TR(x) component-wise by u1 = F1(x1) = P (It1 ≤ x1),
u2 = F2(x2 | x1) = P (It2 ≤ x2 | It1 = x1), . . ., ud = Fd (xd | x1, . . ., xd−1) =
P (Itd ≤ xd | It1 = x1, . . ., Itd−1 = xd−1). The inverse x = T −1

R (u) can be obtained
recursively. Rossenblatt (1952) showed that Ut−1 = TR(It−1) has a joint distribution
which marginals are uniform and independently distributed on [0, 1]d .

In the next section, we shall show that under the null hypothesis and some mild
regularity conditions the transformed process Jn(u) = R1

n(Tn(σ−1
n (·)1u ◦TR(·))) con-

verges weakly to a zero mean Gaussian process in �∞(Bx0 ), for a suitable chosen
set Bx0 ⊂ [0, 1]d , with covariance function u1 ∧ u2, where for a = (a1, . . ., ad )′
and b = (b1, . . ., bd )′, a ∧ b = min

{
a1, b1

} × · · · × min
{
ad, bd

}
, that is, a standard

Brownian sheet.
In practice the conditional distributions F1, . . .,Fd , are unknown and have to be

estimated. Following Angrist and Kuersteiner (2004), we consider kernel estimators

F̂1(x1) = n−1
n∑

t=1

1(It−11 ≤ x1)

...

F̂d (xd | x1, . . ., xd−1) =
n−1

n∑

t=1
1(It−1d ≤ xd )Kd−1((x−

d − I−t−1d )/hn)

n−1
n∑

t=1
Kd−1((x−

d − I−t−1d )/hn)
,

where x−
d = (x1, . . ., xd−1)′, I−t−1d = (It−11, . . ., It−1d−1)′, Kj (x) = (2π )−j/2

∑w
h=1 γh |σh|−j exp ( − 0.5x ′x/σ 2

h ),
∑w

h=1 γh = 1,
∑w

h=1 γh |σh|2 l = 0, for l =
1, 2, . . ., w − 1, and hn = O(n−1/(2+d)) is a bandwidth sequence. Other higher order
kernels or other nonparametric estimators are possible, as long as A6(ii) in the next
section is satisfied.

Our final process is Ĵn(u) = R1
n(Tn(σ−1

n (·)1u ◦ T̂R(·))), where T̂R uses the previ-
ously described kernel estimation. Ĵn(u) is called here the Khmaladze-Rossenblatt’s
transformed residual marked process. As a test statistic we consider in this article a
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CvM functional

CvMn =
∫

Bx0

∣∣Ĵn(u)
∣∣2 Fn,U (du),

where Fn,U (·) is the empirical distribution function of the transformed sample
{Ut−1}nt=1, Bx0 = {u ∈ [0, 1]d : β ′

1T
−1
R (u) ≤ x0}, β1 ∈ R

d , and x0 < ∞ is a
user-chosen parameter necessary to avoid non-invertibility problems of the matrix
Cn,z(x), see Koul and Stute (1999) for a related situation. In the simulations we choose
x0 as the (100−d)% empirical quantile of the sample {β ′

1It−1}nt=1. Other spaces Bx0 ,
threshold values x0 and functionals different from the CvM are, of course, possible.
Our test will reject the null hypothesis H0 for “large” values of CvMn. Next section
establishes the asymptotic theory for CvMn and Sect. 4 shows, via a Monte Carlo
experiment, that it leads to a valuable diagnostic test.

7.3 Asymptotic Null Distribution

In this section we establish the limit distribution of Ĵn under the null hypothesis
H0. First, we state a uniform representation for the function-parametric process
R1

n(b), b ∈ B, for a generic B. This result is of independent interest. To derive
these asymptotic results we consider the following notation and definitions. Let
Ft = σ (I ′t , I ′t−1, . . ., I ′0) be the σ -field generated by the information set obtained up
to time t. Let us endow B with the pseudo-metric ‖·‖B . Let us define A = B ×�.

For a given class of function D we define for (r1, r2) ∈ D × D

d2
n,D(r1, r2) = n−1

n∑

t=1

E
[
ε2
t | Ft−1

] |r1(It−1) − r2(It−1)|2

and

dD(r1, r2) = ‖εt r1(It−1) − εt r2(It−1)‖2 .

Define the set �q = {(r1, r2) ∈ D×D : r1 ≤ r2, d2
D(r1, r2) = 2−2q}. If the family

D satisfies that

sup
(r1,r2)∈�q ,q∈N

d2
n,D(r1, r2)

d2
D(r1, r2)

= OP (1),

we say that D has bounded conditional quadratic variation with respect to dD. Also,
we say that the class D satisfies a bracketing condition of order p ≥ 2 and s > 0, in
short D is BEC(p, s), if

∞∫

0

(
log (N[](ε

1/s , D, ‖·‖p ))
)1/2

dε < ∞.

The following assumptions are sufficient conditions for the weak convergence of
R1

n(b) in �∞(B) for a general B.
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Assumption A1: (on the DGP)
A1(a): {(Yt ,Z′

t )
′ : t = 0,±1,±2, . . .} is a strictly stationary and ergodic process.

A1(b): E[εt | Ft−1] = 0 a.s. for all t ≥ 1, and E |ε1|2 < C.

Assumption A2: (on the set of functions B)
A2(a): (Locally Uniform Lp-Smoothness) Suppose that for some s > 0,C1 > 0,

and for p ≥ 2, the following holds: for each b1 ∈ B,
∥∥
∥
∥
∥

sup
b2∈B:‖b1−b2‖B<δ

|εtb1(It−1) − εtb2(It−1)|
∥∥
∥
∥
∥
p

≤ C1δ
s.

A2(b): (control the size of B) The class of functions B is BEC(p, s) for p and s

as in A2(a).
A2(c): The class B has bounded conditional quadratic variation with respect to

dB and the parametric space � is compact in R
p.

Assumption A3: (on the model) f (·, θ ) is twice continuously differentiable in a
neighborhood of θ0 ∈ �. There exists a function M(It−1) with supθ∈�

∣
∣g(It−1,θ )

∣
∣ ≤

M(It−1), such that M(It−1) is F (·)-square integrable.

Assumption A4: (on the parameter)
A4(a): The true parameter θ0 belongs to the interior of �. There exists a unique

θ1 such that |θn − θ1| = oP (1).
A4(b): The estimator θn satisfies

√
n(θn − θ0) = OP (1).

AssumptionA1(a) is standard in the model checks literature under time series, see,
e.g., Koul and Stute (1999). A1(b) is weaker than other related moment conditions
in the literature and allows for most empirically relevant conditional heteroskedas-
tic models. A2 is needed for the asymptotic tightness of the process R1

n(b). The
bracketing entropy condition has been frequently used in the literature. Combined
with locally uniform Lp-continuity, the bracketing entropy condition can be used to
establish the stochastic equicontinuity of a process that involves non-smooth func-
tions containing infinite dimensional parameters. Assumption A3 is classical in the
model checks literature, see, e.g., Stute and Zhu (2002). Assumption A4 is satisfied
for most estimators in the literature, such as the conditional nonlinear least squares
estimator (NLSE), or its robust modifications (under further regularity assumptions),
see Koul’s (1992, 2002) monographs. Under H0, a more efficient estimator than the
NLSE (see Wefelmeyer 1996) is given by the M-estimator satisfying the equation

n∑

t=1

σ−2(It−1)g(It−1,θn)(Yt − f (It−1, θn) = 0. (7.6)

A4(a) and A4(b) imply that under the null θ0 = θ1, but they might be different
under the alternative. A2(c) is a standard assumption to obtain weak convergence
theorems under martingale assumptions, see Bae and Levental (1995) and Nishiyama
(2000). Because this assumption is crucial in most of our asymptotic results, we now
give primitive and simple-to-check conditions for a class of functions D being of
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bounded conditional quadratic variation with respect to dD. See Escanciano and
Mayoral (2010) for a related result. Let us define the quantity

GD
t (r) = E

[
E
[
ε2
t | It−1

]
r(It−1) | Ft−2

]
r ∈ D,

Lemma 1: Assume A1, A2(a-b) and that
∣∣GD

t (r1) −GD
t (r2)

∣∣ ≤ Mtd
2
D(r1, r2),

whereMt is a stationary process with E[ |M1| ] < ∞. Then, D has bounded condi-
tional quadratic variation with respect todD.

Let V be a normal random vector with zero mean and variance–covariance matrix
given by L(θ0) (cf. A4(c)). Now, we are in position to state the asymptotic uniform
representation of the process R1

n(b) and its weak convergence.

Theorem 1: (i) Under Assumptions A1, A2 and A4(a) uniformly in b ∈ B,

R1
n(b) = 1√

n

n∑

t=1

{et (θ1) − E[et (θ1) | Ft−1]} b(It−1)

+ 1√
n

n∑

t=1

{
E[et (θ ) | Ft−1]|θ=θn

− E[et (θ1) | Ft−1]
}
b(It−1)

+ 1√
n

n∑

t=1

E[et (θ1) | Ft−1]b(It−1) − E
[
E[et (θ1) | Ft−1]b(It−1)

]

+√
nE
[
E[et (θ1) | Ft−1]b(It−1)

]+ oP (1)

(ii) If in addition,H0, A3 and A4(a) hold, then uniformly inb ∈ B,

R1
n(b) = Rn(b) − 〈b, s ′〉√n(θn − θ0) + oP (1).

The decomposition in Theorem 1(ii) paves the way for the discovery of appropriate
martingale transforms of the residual marked process, see previous section. The
analysis of function-parametric processes such as those considered in Theorem 1
provides simple methods of proof for the study of the asymptotic null distribution of
Ĵn. To proceed further we need some regularity conditions.

Assumption A5: (on the conditional variance and related quantities)
A5(i): The estimator σ 2

n (·) is a uniform consistent nonparametric estimator of

σ 2(·) and 0 < a ≤ σ 2(y) for all y ∈ R
d

and some positive a.

A5(ii): σ−j (·) ∈ W , P (σ−j
n (·) ∈ W) → 1 as n → ∞ for j = 1, 2. The

class W satisfies A2(c), A2(a) for p > 2 and s = sw > 0 and is BEC(p, r) with
r ≤ min(1, sw). Moreover, W has an envelope b, such that b(·) < C < ∞, and the
norm in W , ‖·‖W say, dominates the L2-norm, i.e., there exists a C > 0 such that

‖b‖2 ≤ C ‖b‖W , for all b ∈ L2(R
d
,F ).

A5(iii): Bind = {1x(·) : x ∈ R
d} satisfies A2(c) and F is absolutely continuous

with respect to Lebesgue measure with density f (x) < ∞ for all x ∈ R
d
.
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Assumption A6: A6(i): The trimming constant x0 is such that

inf
x∈Ax0

∣∣Cz(x)

∣∣ > ε > 0,

for some ε > 0 and where Ax0 = {x ∈ R
d

: β ′
1x ≤ x0}.

A6(ii): The nonparametric estimators for the conditional distributions satisfy

sup
x∈Rd

∣∣F̂l(xl | x1, . . ., xl−1) − Fl(xl | x1, . . ., xl−1)
∣∣ = oP (1), l = 2, .., d,

A5(i) is standard in model checks under conditional heteroskedasticity, see Stute,
Thies and Zhu (1998). Condition A5(ii) is necessary to obtain a uniform represen-

tation and tightness of the process R1
n(b) in b ∈ B = {h1x : h ∈ W and x ∈ R

d}.
A5(ii) can be relaxed using results for degenerate U -processes, but it simplifies the
theory and it gives us a clue about what are the properties necessary in W to obtain
the asymptotic tightness of R1

n(b) in b ∈ B. If we assume that σ−2(·) is smooth,
usual examples of W are spaces of smooth functions such as Sobolev, Hölder, or
Besov classes. Therefore, the covering number condition of Assumptions A2 or
A5(ii) can be found in many books and articles on approximation theory. To give
an example, define for any vector (a1, . . ., ad ) of d integers the differential operator
Da = ∂ |a|/∂xa1

1 . . . ∂xad
q , where |a| =∑d

i=1 ai. Let R be a bounded, convex subset
of R

d , with nonempty interior. For any smooth function h : R ⊂ R
d → R and some

η > 0, let η be the largest integer smaller than η, and

‖h‖∞,η = max|a|≤η
sup
x

∣∣Dah(x)
∣∣+ max|a|=η

sup
x1 �=x2

|Dah(x1) −Dah(x2)|
‖x1 − x2‖η−η

.

Further, let Cη
c (R) be the set of all continuous functions h : R ⊂ R

d → R with
‖h‖∞,η ≤ c. If W = C

η
c (R), then W satisfies Assumption A5(ii) provided that

η > d , see van der Vaart and Wellner (1996, Theorem 2.7.1). A5(i) implies the
invertibility of the matrixCz(x), and it is assumed only for simplicity in the exposition,
see Nikabadze (1997). Conditions forA6(ii) to hold are in abundance in the literature,
see, for instance, Andrews (1995). A6(ii) implies that

sup
x∈Rd

∣∣T̂R(x) − TR(x)
∣∣ = oP (1)

holds.

Theorem 2: Under the null hypothesis H0, and Assumptions A1 to A6

Ĵn �⇒ J∞, in�∞(Bx0 ),

whereJ∞ is a standard Brownian Sheet, i.e, a continuous Gaussian process with zero
mean and covariance function given by (u11 ∧ u21) × · · · × (u1d ∧ u2d ), for u1 =
(u11, . . . u1d )′ and u2 = (u21, . . . u2d )′ in [0, 1]d .

Next, using the last theorem and the Continuous Mapping Theorem (CMT), see,
e.g., Theorem 1.3.6 in van der Vaart and Wellner (1996), we obtain the asymptotic
null distribution of continuous functionals such as CvMn.
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Corollary 1: Under the assumptions of Theorem 2, for any continuous (with respect
to the sup norm) functional �(·)

�(Ĵn)
d−→ �(J∞).

The integrating measure in CvMn is a random measure, therefore, Corollary 1 is
not readily applicable to the present case. However, an application of Lemma 3.1 in
Chang (1990) shows that the estimation Fn,U of the cdf of U0, FU say, does not affect
the asymptotic theory for CvMn as long as

sup
u∈Bx0

∣
∣Fn,U (u) − FU (u)

∣
∣ −→ 0 a.s.

By the Glivenko-Cantelli’s Theorem for ergodic and stationary time series, see
e.g. Dehling and Philipp (2002, p. 4), jointly with A6(ii), the previous uniform
convergence holds.

The power properties of CvMn can be studied similarly to those established in
Escanciano (2009). We do not discuss this issue here for the sake of space. A more
important and difficult problem is the asymptotic power comparison between trans-
formed and non-transformed tests from a theoretical point of view. This problem will
be investigated elsewhere. Here, we focus on the finite-sample comparison between
our ADF test and the bootstrap based tests via a Monte Carlo experiment in the next
section.

7.4 Simulation Results

In this section we compare some bootstrap integrated CvM tests with our new
ADF test via a Monte Carlo experiment. For the bootstrap CvM tests we consider
the weighting functions w(It−1, x) = exp (ix′It−1), w(It−1, x) = 1(It−1 ≤ x) and
w(It−1, x) = 1(β ′It−1 ≤ u), x = (β ′, u)′ ∈ �pro = S

d × [ − ∞,∞]. Our Monte
Carlo experiment complements that of Koul and Sakhanenko (2005) in the context
of goodness of fit for error distributions.

We briefly describe our simulation setup. Let It−1 = (Yt−1,Yt−2) be the informa-

tion set at time t − 1. For our ADF test we consider Az = {y ∈ R
2

: β ′
1y ≤ z},

with β1 = (1, 1)′. Let Fn,β(u) be the empirical distribution function of the projected
information set {β ′It−1 : 1 ≤ t ≤ n}. Escanciano (2006a) proposed the CvM test

CVMn,pro =
∫

�pro

(R1
n,pro(β, u))2Fn,β(du)dβ,

where

R1
n,pro(β, u) = 1

σ̂e

√
n

n∑

t=1

et (θn)1(β ′It−1 ≤ u)

and

σ̂ 2
e = 1

n

n∑

t=1

e2
t (θn).
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For a simple algorithm to compute CVMn,pro see Appendix B in Escanciano
(2006a).

Bierens (1982) proposed to use w(It−1, x) = exp (iI ′t−1x) as the weighting
function in (7.2) and considered the CvM test statistic

CvMn,exp =
∫

�

∣∣∣R1
n,exp(x)

∣∣∣
2
�(dx),

where

R1
n,exp(x) = 1

σ̂e

√
n

n∑

t=1

et (θn) exp (ix′It−1),

and with �(dx) a suitable chosen integrating function. In order that CvMn,exp has a
closed expression, we consider the weighting function �(dx) = φ(x), where φ(x)
is the probability density function of the standard normal bivariate r.v. In that case,
CvMn,exp simplifies to

CvMn,exp = 1

σ̂ 2
e n

n∑

t=1

n∑

s=1

et (θn)es(θn) exp

(
−1

2
|It−1 − Is−1|2

)
.

Escanciano (2007) considered the CvM test based on the indicator function, which
is given by

CvMn,ind = 1

σ̂ 2
e n

2

n∑

j=1

[
n∑

t=1

et (θn)1(It−1 ≤ Ij−1)

]2

.

We consider the wild bootstrap approximation for all these test statistics as
described in Sect. 3 of Escanciano (2007).

Our null model is an AR(2) model:

Yt = a + bYt−1 + cYt−2 + εt .

We examine the adequacy of this model under the following DGP:

1. AR(2) model: Yt = 0.6Yt−1 − 0.5Yt−2 + εt .

2. AR(2) model with heteroskedasticity (ARHET): Yt = 0.6Yt−1 − 0.5Yt−2 + htεt ,
where h2

t = 0.1 + 0.1Y 2
t−1 + 0.3Y 2

t−1.

3. Bilinear model (BIL): Yt = 0.6Yt−1 + 0.7εt−1Yt−2 + εt .

4. Nonlinear Moving Average model (NLMA): Yt = 0.6Yt−1 + 0.7εt−1εt−2 + εt .

5. TAR(2) model: Yt =
{

0.6Yt−1 + εt , if Yt−2 < 1,
−0.5Yt−1 + εt , if Yt−2 ≥ 1.

We consider for the experiments the sample sizes n = 50, 100, and 300. The number
of Monte Carlo experiments is 1000 and the number of bootstrap replications is
B = 500. In all the replications 200 pre-sample data values of the processes were
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Table 7.1 Empirical critical
values forCvMn

n\α 10 % 5 % 1 %

50 0.55557 0.74353 1.18788
100 0.56371 0.75706 1.21756
300 0.61113 0.81060 1.35720

generated and discarded. For a fair comparison, the critical values for the new tests
are approximated using 10000 replications of model 1. These critical values are given
in Table 7.1.

In Table 7.2 we show the empirical rejection probabilities (RP) associated with
the nominal levels 10, 5 and 1 %. The empirical levels of the test statistics are closed
to the nominal level. Only in the heteroskedastic case the tests presents some small
size distortion (underrejection).

In Table 7.3 we report the empirical power against the BIL, NLMA and TAR(2)
alternatives. The RP increase with the sample size n for all test statistics, as expected.

Table 7.2 Empirical size of tests

AR(2) ARHET

10 % 5 % 1 % 10 % 5 % 1 %

CvMn 9.4 4.8 0.8 14.1 7.4 1.7
n = 50 CvMn,exp 10.5 5.5 1.1 13.6 7.8 0.8

CvMn,ind 10.3 4.3 1.3 12.4 6.5 1.0
CvMn,pro 11.6 5.7 0.8 13.1 5.9 1.0

CvMn 9.0 4.3 1.2 12.4 7.1 2.1
n = 100 CvMn,exp 13.4 7.0 1.0 11.7 6.9 2.7

CvMn,ind 11.3 6.5 1.4 12.7 5.8 1.4
CvMn,pro 11.2 6.4 1.6 13.4 7.1 2.0

CvMn 10.5 4.8 0.6 11.9 6.4 1.2
n = 300 CvMn,exp 10.3 6.0 1.9 12.3 6.1 1.5

CvMn,ind 9.6 4.7 0.5 11.8 6.2 2.0
CvMn,pro 12.5 5.7 1.8 13.2 7.1 1.6

Table 7.3 Empirical power of tests.

BIL NLMA TAR(2)

10 % 5 % 1 % 10 % 5 % 1 % 10 % 5 % 1 %

CvMn 29.8 21.7 7.2 19.8 13.4 4.7 53.3 40.8 19.6
n = 50 CvMn,exp 29.4 18.0 4.4 16.0 8.6 1.5 23.0 13.4 2.0

CvMn,ind 32.2 22.8 8.1 24.6 15.3 4.6 39.8 30.0 10.5
CvMn,pro 39.6 25.2 9.0 22.9 11.6 2.3 38.5 27.2 9.7

CvMn 56.1 43.0 24.6 36.7 27.0 12.9 76.3 69.1 49.7
n = 100 CvMn,exp 43.8 30.0 10.7 28.6 16.2 3.8 43.2 27.5 8.2

CvMn,ind 50.0 39.4 19.1 45.1 33.5 13.3 65.4 54.8 34.9
CvMn,pro 55.7 42.3 20.1 41.0 26.8 9.0 62.0 51.3 28.2

CvMn 96.6 93.1 81.5 76.3 64.3 41.6 99.5 99.0 95.9
n = 300 CvMn,exp 77.2 66.0 36.9 75.6 61.0 28.4 92.5 86.4 61.1

CvMn,ind 76.2 68.4 50.8 88.8 82.7 59.2 98.5 96.9 88.1
CvMn,pro 75.2 65.8 44.8 89.4 80.8 51.9 98.7 96.6 86.5
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The highest RP are presented in italics. It is shown that no test is better than the others
uniformly for all alternatives, levels and sample sizes. The new ADF Cramér-von
Mises test CvMn performs quite well, being the best in many cases. In particular, it
has the highest empirical power for BIL and TAR(2) alternatives uniformly in the
level for n = 300.The empirical power for CvMn,exp is low for these alternatives and,
in general, less than CvMn,ind . The test statistic CvMn,ind has good power against the
BIL alternative for n = 50 and for the NLMA alternative for n = 100, and moderate
power against the TAR(2). CvMn,pro performs similarly to CvMn,ind , but with a little
less empirical power in general.

Summarizing, we conclude from this limited Monte Carlo experiment that our
new CvM test compares very well to bootstrap-based integrated tests, with power
against all alternatives considered, and in many cases presenting the highest power
performance. To conclude, we summarize the properties of our CvM test as follows:
(i) it is asymptotically distribution-free; (ii) it is valid under fairly general regularity
conditions on the underlying DGP, in particular, under conditional heteroskedasticity
of unknown form and multivariate regressors; and (iii) it is simple to compute and
has an excellent finite sample performance as has been shown in the Monte Carlo
experiment. All these properties make of our test a valuable tool for time series
modelling.
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Appendix: Proofs

First, we shall state a weak convergence theorem which is a trivial extension of
Theorem A1 in Delgado and Escanciano (2007). Let for each n ≥ 1, I ′n,0, . . ., I ′n,n−1,
be an array of random vectors in R

p, p ∈ N, and εn,1, . . ., εn,n, be an array of real
random variables (r.v.’s). Denote by (�n, An,Pn), n ≥ 1, the probability space in
which all the r.v.’s {εn,t , I ′n,t }nt=1 are defined. Let Fn,t , 0 ≤ t ≤ n, be a double array
of sub σ -fields of An such that Fn,t ⊂ Fn,t+1, t = 0, . . ., n−1 and such that for each
n ≥ 1 and each γ ∈ H,

E[w(εn,t , In,t−1, γ ) | Fn,t−1] = 0 a.s., 1 ≤ t ≤ n, ∀n ≥ 1. (7.7)

Moreover, we shall assume that {w(εn,t , In,t−1, γ ), Fn,t , 0 ≤ t ≤ n} is a square-
integrable martingale difference sequence for each γ ∈ H, that is, (7.7) holds,
Ew2(εn,t , In,t−1, γ ) < ∞ and w(εn,t , In,t−1, γ ) is Fn,t -measurable for each γ ∈ H
and ∀t , 1 ≤ t ≤ n, ∀n ∈ N. The following result gives sufficient conditions for the
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weak convergence of the empirical process

αn,w(γ ) = n−1/2
n∑

t=1

w(εn,t , In,t−1, γ ) γ ∈ H.

Under mild conditions the empirical process αn,w can be viewed as a mapping
from �n to �∞(H), the space of all real-valued functions that are uniformly bounded
on H. The weak convergence theorem that we present here is funded on results by
Levental (1989), Bae and Levental (1995) and Nishiyama (2000). In Theorem A1
in Delgado and Escanciano (2007) H was finite-dimensional, but here we allow for
an infinite-dimensional H. The proof of theorem does not change by this possibility,
however.

An important role in the weak convergence theorem is played by the conditional
quadratic variation of the empirical process αn,w on a finite partition B = {Hk; 1 ≤
k ≤ N} of H, which is defined as

αn,w(B) = max
1≤k≤N

n−1
n∑

t=1

E

[

sup
γ1,γ2∈Hk

∣
∣w(εn,t , In,t−1, γ1) − w(εn,t , In,t−1, γ2)

∣
∣2 | Fn,t−1

]

.

Then, for the weak convergence theorem we need the following assumptions.

W1: For each n ≥ 1, {(εn,t , In,t−1)′ : 1 ≤ t ≤ n} is a strictly stationary and ergodic
process. The sequence {w(εn,t , In,t−1, γ ), Fn,t , 0 ≤ t ≤ n} is a square-integrable mar-
tingale difference sequence for each γ ∈ H. Also, there exists a function Cw(γ1, γ2)
on H × H to R such that uniformly in (γ1, γ2) ∈ H × H

n−1
n∑

t=1

w(εn,t , In,t−1, γ1)w(εn,t , In,t−1, γ2) = Cw(γ1, γ2) + oPn
(1).

W2: The family w(εn,t , In,t−1, γ ) is such that αn,w is a mapping from �n to �∞(H)
and for every ε > 0 there exists a finite partition Bε = {Hk; 1 ≤ k ≤ Nε} of H, with
Nε being the elements of such partition, such that

∞∫

0

√
log (Nε)dε < ∞ (7.8)

and

sup
ε∈(0,1)∩Q

αn,w(Bε)

ε2
= OPn

(1). (7.9)

Let α∞,w(·) be a Gaussian process with zero mean and covariance function given
by Cw(γ1, γ2). We are now in position to state the following

Theorem A1: If Assumptions W1 and W2 hold, then it follows that

αn,w �⇒ α∞,w in �∞(H).
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Proof of Theorem A1: Theorem A1 in Delgado and Escanciano (2007).

Proof of Lemma 1: By A2(a-b) we can form for any ε > 0 a finite partition Bε =
{Bk; 1 ≤ k ≤ N[](ε, B, ‖·‖p )} of B in ε-bracketsBk = [bk , bk].Denote v = 1/s, with
s as in A2(a), and define for every q ∈ N, q ≥ 1, ε = 2−qv. We denote the previous
partition associated to ε = 2−qv by Bq = {Bqk; 1 ≤ k ≤ Nq ≡ N[](2−qv, B, ‖·‖p )}.
Without loss of generality we can assume that the finite partitions in the sequence
{Bq} are nested. By A2(b), we have

∞∑

q=1

2−q
√

logNq < ∞.

Furthermore, by definition of the brackets

Rn(Bq) = max
1≤k≤Nq

∣
∣
∣
∣
∣
n−1

n∑

t=1

E
[
ε2
t | Ft−1

]
sup

r1,r2∈Bqk

|r1(It−1) − r2(It−1)|2
∣
∣
∣
∣
∣

= max
1≤k≤Nq

∣∣∣∣∣
n−1

n∑

t=1

E
[
ε2
t | Ft−1

] ∣∣bk(It−1) − bk(It−1)
∣∣2
∣∣∣∣∣

= max
1≤k≤Nq

d2
n(bk , bk). (7.10)

Define the event

Vn =
{

sup
q∈N

max
1≤k≤Nq

d2
n(bk , bk)

2−2q
≥ γ

}

.

We shall show that for all η > 0, there exists some γ > 0 such that
lim sup

n→∞
Pn(Vn) ≤ η. Note that

Pn(Vn) ≤
∞∑

q=1

Pn

(

max
1≤k≤Nq

d2
n(bk , bk)

2−2q
≥ γ

)

≡
∞∑

q=1

Vnq (7.11)

Now, define the process

α̃n,w(r) = n−1
n∑

t=1

E
[
ε2
t | Ft−1

]
r(It−1),

and the quantities for 1 ≤ t ≤ n, β̃t (r) = E
[
ε2
t | Ft−1

]
r(It−1) −GB

t (r). Hence,

α̃n,w(r) = n−1
n∑

t=1

β̃t (r) + n−1
n∑

t=1

GB
t (r).
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By triangle’s inequality

Vnq ≤ Pn

(

max
1≤k≤Nq

∣∣∣∣∣
n−1

n∑

t=1

∣∣β̃t (bk) − β̃t (bk)
∣∣
∣∣∣∣∣
≥ 2−2qγ

)

+Pn

(

max
1≤k≤Nq

∣∣∣∣∣
n−1

n∑

t=1

∣∣GB
t (bk) −GB

t (bk)
∣∣
∣∣∣∣∣
≥ 2−2qγ

)

≡ A1nq + A2nq .

Notice that {β̃n,w(r), Fn,t−2} is a martingale difference sequence for each r ∈
B, by construction. By a truncation argument, it can be assumed without loss of

generality that max
1≤k≤Nq

|εt |
∣
∣bk(It−1) − bk(It−1)

∣
∣2 ≤ √

naq−1, where henceforth aq =
2−qρ/

√
log (Nq+1) with 1 < ρ < 2. See Theorem A1 in Delgado and Escanciano

(2006). Define the set

Bn =
{(

n−1
n∑

t=1

Mt

)

≤ K

}

.

Now, by Freedman’s (1975) inequality in Lemma A2 and Lemma 2.2.10 in van
der Vaart and Wellner (1996),

E max
1≤k≤Nq

∣∣∣∣∣
n−1

n∑

t=1

∣∣β̃t (bk) − β̃t (bk)
∣∣
∣∣∣∣∣
1(Bn)

≤ C
(
a2
q−1 log (1 +Nq) + aq−12−qv/2

√
log (1 +Nq)

)
.

Hence, by Markov’s inequality and the definition of aq , on the set Bn,

A1nq ≤ C
a2
q−1 log (1 +Nq) + aq−12−qv/2

√
log (1 +Nq)

2−2qγ

= Cγ−12−2q(ρ−1) + Cγ−12−q(ρ+ v
2 −1).

On the other hand, by (D) and by Markov’s inequality

A2nq ≤ γ−1s−2
n

n∑

t=1

E max
1≤k≤Nq

22q

∣∣∣∣∣
n−1

n∑

t=1

∣∣GB
t (bk) −GB

t (bk)
∣∣
∣∣∣∣∣

≤ γ−12−q(v−2)

(

n−1
n∑

t=1

Mt

)

≤ Kγ−12−q(v−2),

on the set Bn. Therefore, by our previous arguments and the last three bounds,

Pn(Vn) ≤ Cγ−1
∞∑

q=1

(
2−2q(ρ−1) + 2−q(ρ+ v

2 −1) + 2−q(v−2)
)
+ Pn(Bc

n),

which can be made arbitrarily small by choosing a sufficiently large γ and K. Hence,
B has bounded quadratic variation. �
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Lemma A0: (Uniform Law of Large Numbers) If the class B is such that
log (N[](ε, B, ‖·‖1 ) < ∞ for each ε > 0, with envelope b, g(It−1, θ ) satisfies A3
and E

∣∣M(It−1)b(It−1)
∣∣ < ∞, then uniformly in (θ , b) ∈ �× B,

∣∣∣∣∣
1

n

n∑

t=1

g(It−1, θ )b(It−1) − E
[
g(It−1, θ )b(It−1)

]
∣∣∣∣∣
= oP (1).

Proof of Lemma A0: Under the assumptions of the lemma, the class {g(It−1, θ )b
(It−1) : θ ∈ �, b ∈ B} is Glivenko-Cantelli. �
Proof of Theorem 1: First we shall show that the process

Sn(b, θ ) = 1√
n

n∑

t=1

{
et (θ ) − E

[
et (θ ) | Ft−1

]}
b(It−1) (7.12)

is asymptotically tight with respect to (b, θ ) ∈ A.

Let us define the class K = {{et (θ ) − E
[
et (θ ) | Ft−1

]}
b(It−1) : (b, θ ) ∈ A}.

Denote Xt−1 = (It−1, It−2, . . .)′. Let Bε = {Bk; 1 ≤ k ≤ Nε ≡ N[](ε, K, ‖·‖p}, with
Bk = [wk(Yt ,Xt−1), wk(Yt ,Xt−1)], be a partition of K in ε-brackets with respect to
‖·‖p . Notice that A2 implies

∥∥∥∥∥∥∥
sup

((b2,θ2)∈A:|θ1−θ2|<δ
‖b1−b2‖B<δ

∣∣{et (θ1) − E
[
et (θ1) | Ft−1

]}
b1(It−1)

− {et (θ2) − E
[
et (θ2) | Ft−1

]}
b2(It−1)

∣∣

∥∥∥∥∥∥∥
p

≤ C1δ
s.

Theorem 3 in Chen et al. (2003) and A2 imply that (7.8) holds for such partition.
On the other hand

max
1≤k≤Nε

n−1
n∑

t=1

E

⎡

⎣

∣∣∣∣∣
sup

w1,w2∈Bk

|w1(Yt ,Xt−1) − w2(Yt ,Xt−1)|
∣∣∣∣∣

2

| Ft−1

⎤

⎦

≤ max
1≤k≤Nε

n−1
n∑

t=1

E
[∣∣wk(Yt ,Xt−1) − wk(Yt ,Xt−1)

∣∣2 | Ft−1

]
. (7.13)

Therefore, A2(c) yields that (7.9) follows, and condition W2 of Theorem A1 holds.
The asymptotically tightness of Sn(b, θ ) is then proved.

Then, the last statement and A4(a)

R1
n(·) = 1√

n

n∑

t=1

{et (θ1) − E[et (θ1) | Ft−1]} b(It−1)
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+ 1√
n

n∑

t=1

{
E[et (θ ) | Ft−1]|θ=θn

− E[et (θ1) | Ft−1]
}
b(It−1)

+ 1√
n

n∑

t=1

E[et (θ1) | Ft−1]b(It−1) − E
[
E[et (θ1) | Ft−1]b(It−1)

]

+√
nE
[
E[et (θ1) | Ft−1]b(It−1)

]+ oP (1),

uniformly in b ∈ B. Part (i) is proved.
As for (ii), A3 and A4(a) imply by the Mean Value Theorem

1√
n

n∑

t=1

{
E[et (θ ) | Ft−1]|θ=θn

− E[et (θ0) | Ft−1]
}
b(It−1)

= −n1/2(θn − θ0)′
1

n

n∑

t=1

g(It−1, θni)b(It−1),

and where θni satisfies |θni − θ0| ≤ |θn − θ0|. Now, A3, A2(b) and Lemma A0 imply
that, uniformly in b ∈ B,

∣∣∣∣∣
1

n

n∑

t=1

g(It−1, θni)b(It−1) − E
[
g(It−1, θ0)b(It−1)

]
∣∣∣∣∣
= oP (1).

From (i) and the last display, (ii) is proved. �
Before proving Theorem 2 we need several useful Lemmas. Let us define Ax0 =

{x ∈ R
d

: β ′
1x ≤ x0}.

Lemma A1: Under the assumptions of Theorem 2, uniformly in x ∈ Ax0 ,

R1
n(T σ−1

n (·)1x) = Rn(T σ−1(·)1x) + oP (1).

Lemma A2: Under the assumptions of Theorem 2, uniformly in x ∈ Ax0 ,

R1
n(Tnσ

−1
n (·)1x) = R1

n(T σ−1
n (·)1x) + oP (1).

Lemma A3: Under the assumptions of Theorem 2, uniformly in u ∈ Bx0

R1
n(Tn(σ−1

n (·)1u ◦ T̂R(·))) = R1
n(Tn(σ−1

n (·)1u ◦ TR(·))) + oP (1).

Before proving Lemmas A1 to A3 we shall prove two more Lemmas. We need
to define first the classes of functions S = {T h1x(·) : h ∈ W and x ∈ Ax0} and
B = {h1x : h ∈ W and x ∈ Ax0}. Define the semimetric

dind (x1, x2) = ∥∥εt1x1 (It−1) − εt1x2 (It−1)
∥∥

2 ,

and recall that Bind = {1(· ≤ x) ≡ 1x(·) : x ∈ R
d}.
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Lemma B1: Assume that Bind satisfies A2(c). Then, if W satisfies A5(ii) then B
satisfies A2 with p = 2.

Lemma B2: Assume A3, A5 and A6(i). Then, if B satisfies A2 with p = 2 then S
satisfies A2 with p = 2.

Proof of Lemma B1: We shall start with A2(a). Assume 0 < δ < 1. By the triangle

inequality, for each h1 ∈ W and each x1 ∈ R
d

∥
∥
∥
∥
∥
∥

sup
x2∈R

d
,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ

∣
∣εth11x1 (It−1) − εth21x2 (It−1)

∣
∣

∥
∥
∥
∥
∥
∥

2

≤ C

∥
∥
∥
∥
∥
∥

sup
x2∈R

d
,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ

|εth1(It−1)| ∣∣1x1 (It−1) − 1x2 (It−1)
∣
∣

∥
∥
∥
∥
∥
∥

2

+C

∥
∥
∥
∥
∥∥

sup
x2∈R

d
,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ

1x2 (It−1) |εth1(It−1) − εth2(It−1)|
∥
∥
∥
∥
∥∥

2

≤ Cδ1 + Cδsw

≤ Cδs ,

with s = min(1, sw), where the second inequality is by A5(ii). A2(b) follows from
Theorem 6 inAndrews (1994) andA5(ii), because Bind isBEC(p, 1/2) for allp ≥ 2.
A2(c) follows from the previous arguments, using A5(ii) and that Bind and W satisfy
A2(c). �
Proof of Lemma B2: We shall start with A2(a). Assume 0 < δ < 1. By the triangle

inequality, for each h1 ∈ W and each x1 ∈ R
d

∥∥∥∥∥∥
sup

x2∈R
d

,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

∣∣εtT h11x1 (It−1) − εtT h21x2 (It−1)
∣∣

∥∥∥∥∥∥
2

≤ C

∥∥∥∥∥∥
sup

x2∈R
d

,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

∣∣εth11x1 (It−1) − εth21x2 (It−1)
∣∣

∥∥∥∥∥∥
2

C

∥∥∥∥∥∥
sup

x2∈R
d

,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

∣∣εtKh11x1 (It−1) − εtKh21x2 (It−1)
∣∣

∥∥∥∥∥
∥

2

,

where K is defined in (7.5). Then, it is only necessary to consider the second term
in the last inequality. Now, by the linearity of K and the triangle inequality this term
is bounded by

≤ C

∥∥
∥∥∥
∥

sup
x2∈R

d
,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

εtK{h1(·)(1x1 (·) − 1x2 (·))}(It−1)

∥∥
∥∥∥
∥

2
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+C

∥∥∥∥∥∥
sup

x2∈R
d

,h2∈W :‖h1−h2‖W<δ,dind (x1,x2)<δ,

εtK1x2 (·)(h1(·) − h2(·))(It−1)

∥∥∥∥∥∥
2

≡ A1 + A2.

A2
1 is equal to

E

[

sup εt
2

(∫
1(y ∈ Az(It−1))h1(·)(1x1 (·) − 1x2 (·))s ′(x, θ0)C−1

z(x)G(dx)s(It−1, θ0)

)2
]

,

where the sup is computed over dind (x1, x2) < δ. By Cauchy-Schwartz’s inequality
(C-S), A3, A5 and A6(i) the integral is bounded by

C

∣
∣
∣
∣

∫
h2

1(·)(1x1 (·) − 1x2 (·))2G(dx)

∣
∣
∣
∣ ≤ Cd2

ind (x1, x2),

and hence |A1| ≤ Cδ. The proof for A2 follows from the same steps that for A1, and
hence, it is omitted.

The proof of A2(b) is straightforward. A2(c) can be proved following the ar-
guments in the proof of A2(a). These proofs are omitted for the sake of space.
�
Proof of Lemma A1: By Lemmas B1 and B2, B and S satisfies A2 with p = 2.
Hence, by Theorem 1,

R1
n(T b(·)1x) = Rn(T b(·)1x) + oP (1),

uniformly in x ∈ Ax0 and b ∈ W. Now, by the convergence of σ−1
n ,

R1
n(T σ−1

n (·)1x) = R1
n(T σ−1(·)1x) + oP (1),

uniformly in x ∈ Ax0 . �
Proof of Lemma A2: Write R1

n((T − Tn)σ−1
n (·)1x) as

∫
σ−1
n (y)1x(y)R1

n

(
s ′(·, θ0)1(· ∈ Ac

z(y))
)
C−1

z(y)g(y, θ0)F (dy)

−
∫

σ−1
n (y)1x(y)R1

n

(
s ′n(·, θn)1(· ∈ Ac

z(y))
)
C−1

n,z(y)g(y, θn)Fn(dy)

=
∫

σ−1
n (y)1x(y)βn(·, σ−2(·), θ0) [F (dy) − Fn(dy)]

−
∫

σ−1
n (y)1x(y)

[
βn(·, σ−2

n (·), θn) − βn(·, σ−2(·), θ0)
]
Fn(dy)

≡ A1n(x) − A2n(x),

where

βn(y, b, θ ) = R1
n

(
g′(·, θ )b(·)1(· ∈ Ac

z(y))
)
C−1

z(y)g(y, θ ). (7.14)
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Putting

αn(y) = σ−1
n (y)1x(y)βn(·, σ−2(·), θ0),

and using our Theorem 1 it is not difficult to show that the sequence {αn(·)} is
asymptotically tight. Hence, by Lemma 3.4 in Stute, Thies and Zhu (1998)

sup
x∈Ax0

|A1n(x)| = oP (1).

Similarly, it can be proved that βn(y, b, θ ) is uniformly tight in (y, b, θ ) ∈ Bx0 ×
W×� (see Lemmas B1 and B2) and continuous in θ , but θn converges in probability
to θ0, and hence, again by Lemma 3.4 in Stute, Thies and Zhu (1998)

sup
x∈Ax0

|A2n(x)| = oP (1).

�
Proof of Lemma A3: Define

γ̂u(It−1) = 1u ◦ T̂R(It−1),

γ̃u(It−1) = 1u ◦ TR(It−1)

and

du(·) = γ̂u(·) − γ̃u(·).
Then, write R1

n(Tnσ
−1
n (du(·))) as

R1
n(σ−1

n (du(·))) −
∫

du(·)σ−1
n (y)R1

n

(
s ′n(·, θn)1(· ∈ Ac

z(y))
)
C−1

n,z(y)gn(y, θn)Fn(dy)

≡ An1 − An2.

|An1| is bounded by
∣∣∣∣∣
n−1/2

n∑

t=1

et (θ0)σ−1
n (It−1)du(It−1)

∣∣∣∣∣
+
∣∣∣∣∣
n−1/2

n∑

t=1

{et (θn) − et (θ0)}σ−1
n (It−1)du(It−1)

∣∣∣∣∣

= ∣∣Rn

(
σ−1
n du(·))∣∣+

∣∣∣∣∣
√
n(θn − θ0)′n−1

n∑

t=1

g(It−1, θni)σ
−1
n (It−1)du(It−1)

∣∣∣∣∣

≡ |Bn1(u)| + |Bn2(u)| .
Now, the stochastic equicontinuity of Rnb1x in b ∈ W and 1x ∈ Bind , and A6(ii)

yield

sup
u∈[0,1]d

|B1n(u)| = oP (1).
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On the other hand, by Lemma A0, uniformly in b ∈ B,
∣∣∣∣∣
1

n

n∑

t=1

g(It−1, θni)b(It−1) − E
[
g(It−1, θ0)b(It−1)

]
∣∣∣∣∣
= oP (1).

Therefore, A4(b) and the last display yield

sup
u∈[0,1]d

|B2n(u)| = oP (1).

As for An2, by C-S,

[∫ [
γ̂u(y) − γ̃u(y)

]2
Fn(dy)

]1/2 [∫
σ−2
n (y)β2

n(y, σ−1
n , θn)Fn(dy)

]1/2

,

where βn is defined in (7.14). Both integrants are asymptotically tight (see the
arguments of Lemma A2). Hence, Lemma 3.1 in Chang (1990) yields

∫ [
γ̂u(y) − γ̃u(y)

]2
Fn(dy) =

∫ [
γ̂u(y) − γ̃u(y)

]2
F (dy) + oP (1)

and
∫

σ−2
n (y)β2

n(y, σ−1
n , θn)Fn(dy) = OP (1).

Now, we shall show that A6(ii) and A6(iii) imply

sup
u∈Bx0

∣∣∣∣

∫ [
γ̂u(y) − γ̃u(y)

]2
F (dy)

∣∣∣∣ = oP (1). (7.15)

To that end, from A6(ii) we have that

sup
x∈Rd

∣∣T̂R(x) − TR(x)
∣∣ = oP (1),

Hence, for a given ε > 0, there exists and n0 such that for all n ≥ n0

sup
x∈Rd

∣∣T̂R(x) − TR(x)
∣∣ < ε

with probability tending to one. Therefore, on that set

sup
u∈Bx0

∣∣∣
∣

∫ [
γ̂u(y) − γ̃u(y)

]2
F (dy)

∣∣
∣∣ ≤ sup

u∈Bx0

∣∣E
[
1(u − ε ≤ Ut−1 ≤ u + ε

]∣∣ ≤ 2ε.

Hence, as ε was arbitrary (7.15) holds, and Lemma A3 is proved. �
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Chapter 8
Ridge Autoregression R-Estimation: Subspace
Restriction

A. K. Md. Ehsanes Saleh

8.1 Introduction

Consider the usual AR(p)-model

Xt = ρ1Xt−1 + · · · + ρpXt−p + et , t = 0,±1,±2, · · · (8.1)

where e±1, · · · , e±t are i.i.d.r.v. with a cdf F defined on R1, Let Y0 = (X0,X−1,
· · · ,X1−p)

′
be an observable random vector independent of e1, e2, · · · . We assume

that all the roots of p-degree polynomial (See Brockwell and Davis, 1987)

xp − ρ1x
p−1 − · · · − ρp = 0 are in( − 1, 1). (8.2)

Here, ρ = (ρ1, · · · , ρp)
′ ∈ Rp is vector of unknown autoregressive parameters.

Assume further that ρ is suspected to belong to the linear subspace Hρ = h, where
H is a q × p matrix of known constants and h, is a q-vector of known constants.

If H =
(

Ip1 0
0 Ip2

)
and h =

(
ρ(1)
0

)
, then Hρ =

(
ρ(1)
ρ(2)

)
=
(

ρ(1)
0

)
leading to

the subhypothesis, that ρ(2) = 0. To this end, we first consider the theory of R-
estimation of ρ based on a class of rank statistics and define a class of rank test for
the null-hypothesis, H0 : Hρ = h Vs Hρ �= h. To obtain the asymptotic properties
of the R-estimators, we use Koul and Saleh (1995) AUL results for the class of
rank statistics. These results are then used to investigate the asymptotic properties of
R-estimators of ρ and their properties.

For the AR(p)-model (1.1), let ρ̃n be R-estimator of ρ and ρ̂n be the R-estimator
of ρ under Hρ = h. We designate ρ̃n as “unrestricted R-estimator” (URE) of ρ

and ρ̂n as the “restricted R-estimator” (RRE) of ρ respectively. The RRE performs
better than the URE when Hρ = h holds. But, if ρ departs from this subspace,
RRE may be considerably biased, inefficient and even inconsistent, while URE
retains all the performance characteristics for the variations of ρ around the sub-
space. Further, since Hρ = h is suspected to hold, we consider the rank statistics,
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Ln to test this restriction by a suitable form. Let cα be the upper level criti-
cal value for the distribution of Ln under H0 : Hρ = h, then we may define
the “preliminary test R-estimator” (PTRE), ρ̂

PT
n and the Stein-type R-estimator

(SRE), ρ̂
s
n and the “positive-rule Stein-type R-estimator” (PRSRE), ρ̂

s+
n respec-

tively as in Koul and Saleh (1995) specific to the suspected restriction, Hρ = h.
The relative merits of these R-estimators are studied in terms of asymptotic distri-
butional risks (ADR) as in Koul and Saleh (1995) and Saleh and Kibria (2011)
and Sen and Saleh (1987). Finally, we modify these five estimators using the
“ridge factors” to define “ridge autoregression estimators” (RARE) and study their
asymptotic dominance properties. The main results on the asymptotic properties
of different ridge autoregression R-estimators (RARRE) are presented in Sect. 8.5
and 8.6 with a concluding remarks in Sect. 8.7.

8.2 R-estimation of ρ for AR(p)-model

Let Yi = (Xi , · · · ,Xi−p+1)
′
, 1 ≤ i ≤ n and define Ri(b) as the rank of (Xi −bYi−1)

among {Xj − bYj−1, 1 ≤ j ≤ n} for i = 1, · · · , n. Set Ri(b) = 0 if i ≤ 0. Let ϕ be
a nondecreasing function from [0, 1] to R1 and define the vector of rank statistics,
Ln(b) = (L1n(b), · · · ,Lpn(b))

′
where

Ljn(b) = n−
1
2

n∑

i=j+1

Xi−j ϕ

(
Ri(b)

n+ 1

)
, i ≤ j ≤ p, b ∈ Rp (8.3)

It is natural to define an R-estimator of ρ by the relation

inf
b∈Rp

∥∥Ln(b)
∥∥ = Ln(ρ̃n). (8.4)

An alternative way to define R-estimator of ρ is to follow Jaeckel (1972) to
AR(ρ)-model. Accordingly, set an(i) = ϕ

(
i

n+1

)
and Z(i)(b) = ith largest residuals

{Xk − b
′
Yk−1, 1 ≤ k ≤ n}, 1 ≤ i ≤ n, and

Tn(b) =
n∑

i=1

an(i) Z(i)(b), b ∈ Rp. (8.5)

According to Jaeckel (1972), if
∑n

i=1 an(i) = 0, then Tn(b) can be shown to be
convex on Rp with a.e. differential equal to−Ln(b). Thus, the minimizer ρJ of Tn(b)
exists and has the property that makes

∥
∥Ln(b)

∥∥ small. It follows from the linearity
results given below that ρJ and ρ̃n are asymptotically equivalent.

Theorem 2.1 (Koul and Saleh (1995)) Assume that (8.1) and (8.2) hold. In addition,
assume the following:

(a) (i) E(et ) = 0 and E(e4
t ) < ∞ ∀ t . (ii) F has uniformly continuous density

f , f > 0 a.e.
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(b) ϕ is non-decreasing function and differentiable with its derivative ϕ
′

being
uniformly continuous on [0,1].

Then, for every 0 < c < ∞,

sup∥∥∥�
∥∥∥<c

∥∥∥Ln(ρ + n− 1
2 �) − L∗

n + �
′
� γ

∥∥∥ = op(1) (8.6)

where L∗
n = (L∗

1n, · · · ,L∗
pn)

′
with

L∗
jn = n−

1
2

n∑

i=j+1

(Xj+1 − X̄j )[ϕ (F (ei))− ϕ̄], ϕ̄ =
∫

ϕ(t)dF (t) (8.7)

X̄j = n−1
n∑

i=j+1

Xi−j , γ =
∫

f dϕ(F ), and � is the Toeplitz matrix defined as

� = (( β(i − j ) )), i, j = 1, · · · ,p, cov(X0,Xk) = β(k), 1 ≤ k ≤ p. (8.8)

Note that the above Theorem covers Wilcoxon’s type score but not normal score.
Further, under (a) and (b) of Theorem 2.1 for every 0 < c < ∞

sup∥∥∥�
∥∥∥<c

∥∥∥Ln(ρ + n− 1
2 �) − Ln(ρ) + �� γ

∥∥∥ = op(1) (8.9)

Arguing as in Koul (1985, Lemma 3.1) or in Jeackel (1972) one may conclude
∥∥∥n

1
2 (ρ̃n − ρ)

∥∥∥ = Op(1).

Consequently, by Theorem 2.1

n
1
2 (ρ̃n − ρ) = γ−1�−1L∗

n + op(1). (8.10)

Observe that L∗
n is a vector of square intergrable mean zero martingales with

E[L∗
nL∗′

n ] = σ 2
ϕ�, σ 2

ϕ = var[ϕ(u)]. Thus, by routine Cramer-Wold device and
Corollary 3.1 of Hall and Hyde (1980) one obtains

L∗
n

D→ Np(0, σ 2
ϕ�). Hence n

1
2 (ρ̃n − ρ)

D→ Np(0, γ−2σ 2
ϕ�−1). (8.11)

Now, consider the restricted R-estimator, ρ̂n of ρ under Hρ = h as

ρ̂n = ρ̃n − �−1
n H

′
(H�−1

n H
′
)−1(H ρ̃n − h), (8.12)

where, �n = (∑i YiY
′
i−1

)
, where n−1

∥∥�n

∥∥ P→ �. We draw two relations from
(8.6) of Theorem 2.1 given by

(i) Ln(ρ̂n) − Ln(ρ) + γ n
1
2 (ρ̂n − ρ)� = op(1) (8.13)

(ii) Ln(ρ) − γ n
1
2 (ρ̃n − ρ)� = op(1). (8.14)
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As a result of (8.13) and (8.14) we have

Ln(ρ̂n) = γ n
1
2 (ρ̃n − ρ̂)� + op(1) (8.15)

Thus, for the rank statistics for the test of Hρ = h, one may use the quadratic form

Ln = [Ln(ρ̂n)]
′
�n[Ln(ρ̂n)] (8.16)

= n
γ 2

σ 2
ϕ

(ρ̃n − ρ̂n)
′
�(ρ̃n − ρ̂n) + op(1) (8.17)

= n
γ 2

σ 2
ϕ

(Hρ̃n − h)
′
(H�−1H

′
)−1(Hρ̃n − h) + op(1) (8.18)

Hence, one may show that

lim
n→∞P (Ln < x|Hρ = h) = Hq(x; 0) (8.19)

where Hq(x; 0) is the cdf of the central chi-square distribution with q degrees of
freedom. For the application of Ln one may have to estimate γ consistently using
the methods suggested by Koul (2002, p. 128).

8.3 Various R-estimators of ρ and Their Asymptotic
Distributional Properties

First, we consider the following quasi-empirical Bayes R-estimators of ρ when one
suspects that ρ may belong to the linear subspace Hρ = h, as follows using Saleh
(2006). (i) the unrestricted R-estimator (URE), ρ̃n (ii) the restricted R-estimator
(RRE), ρ̂n (iii) the preliminary test R-estimator (PTRE), ρ̂

PT
n

ρ̂
PT
n = ρ̃n − (ρ̃n − ρ̂n)I (Ln < χ2

q (α)) (8.20)

where χ2
q (α) is the α-level critical value from the asymptotic null distribution of Ln

and I (A) is the indicator function of the set A. (iv) the Stein-type R-estimator (SRE),
ρ̂
s
n

ρ̂
s
n = ρ̃n − (q − 2)(ρ̃n − ρ̂n)L−1

n (8.21)

and (v) the positive-rule Stein-type R-estimator (PRSRE), ρ̂
s+
n

ρ̂
s+
n = ρ̂n − I (Ln < q − 2) + ρ̂

s
nI (Ln ≥ q − 2). (8.22)

Note that PTRE and PRSRE are convex combinations of ρ̂n and ρ̃n and ρ̂n and
ρ̂
s
n respectively, while ρ̂

s
n is not.

Now, we consider the asymptotic distributional bias (ADB), MSE (ADMSE) and
risks (ADQR) of the five R-estimators of ρ. It may be verified that Ln is a consistent
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test for the test of the null hypothesis, H0 : Hρ = h. As a result ρ̂
PT
n , ρ̂

s
n and ρ̂

s+
n

are asymptotically equivalent to ρ̃n and Ln
P→ ∞ as n → ∞ and the asymptotic

distribution of ρ̂n degenerates. To avoid this asymptotic degeneracy, we consider a
sequence of local alternatives

K(n) : Hρ = h + n−
1
2 ξ , ξ ∈ Rq. (8.23)

Note that when ξ = 0,K(n) reduces to H0. Now, we use the technique by Saleh
(2006) to obtain the following Theorem. But, first we let Gp(.; μ, �) and Hq(.;�2)
respectively stand for the p-dimensional normal distribution with mean, μ and co-
variance matrix, � and a non central chi-square cdf with q degrees of freedom and
noncentrality parameter, �2, then

Theorem 3.1 Under {K(n)} and assumed conditions of Theorem 2.1 and a (ii). The
error distribution cdf F has an absolutely continuous densityf with its a.e. derivative,
f

′
with finite Fisher information

I (f ) =
∫ ∞

−∞
{−f

′
(u)

f (u)
}2f (u)du < ∞ (8.24)

hold. Then, as n → ∞

(a)

⎛

⎝

√
n (ρ̃n − ρ)

′
√
n (ρ̂n − ρ)

′
√
n (ρ̃n − ρ̂n)

′

⎞

⎠ D→ N3p

⎧
⎨

⎩

⎛

⎝
0
−δ

δ

⎞

⎠; γ−2σ 2
ϕ

⎛

⎝
�−1 �−1 − A A

�−1 − A �−1 − A 0
A 0 A

⎞

⎠

⎫
⎬

⎭

(8.25)

where

A = �−1H
′
(H�−1H

′
)−1H�−1 and δ = �−1H

′
(H�−1H

′
)−1ξ

(b) lim
n→∞P {Ln < x|K(n)} = Hq(x;�2), �2 = σ−2

ϕ γ 2(δ
′
�δ)

(c) lim
n→∞P {√n (ρ̂PT

n − ρ)
′ ≤ x|K(n)}

= Hq(χ2
q (α);�2)Gp[x + δ, 0, σ 2

ϕ γ
−2(�−1 − A)]

+
∫

E(�)
Gp[x − �−1H

′
(H�−1H

′
)−1Z; 0, σ 2

ϕ γ
−2(�−1 − A)]dGp

[Z, 0, σ 2
ϕ γ

−2(H�−1H
′
)]

where E(�) = {Z :
γ 2

σ 2
ϕ

(Z +�)
′
(H�−1H

′
)−1(Z +�) ≥ χ2

q (α)}, Z ∼ Np(0,
γ 2

σ 2
ϕ

�)

(d)
√
n (ρ̂s

n − ρ)
D→ Z − p(q − 2)�−1H

′
(H�−1H

′
)−1(HZ +�)

(Z +�)′ (H�−1H′ )−1(Z +�)
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(e)
√
n (ρ̂s+

n − ρ)
D→ [Z − p(q − 2)�−1H

′
(H�−1H

′
)−1(HZ +�)

(Z +�)′ (H�−1H′ )−1(Z +�)
]

×I
(

(Z +�)
′
(H�−1H

′
)−1(Z +�) ≥ q − 2

)
+ �−1H

′
(H�−1H

′
)−1(HZ +�)

×I
(

(HZ +�)
′
(H�−1H

′
)−1(HZ +�) ≤ q − 2

)

Assume that for a given estimator ρ∗ of ρ

lim
n→∞P {√n (ρ∗

n − ρ)
′ ≤ x|K(n)} = Gp(x; B∗, �∗)

where B∗ is the bias and �∗ is the cov-matrix of
√
n (ρ∗

n − ρ). Then, the asymptotic
distributional bias and MSE matrix is given by

B∗ = lim E[
√
n (ρ∗

n − ρ)]

M∗(ρ∗
n) = �∗ + B∗B∗′

The asymptotic distributional quadratic risk (ADQR) is then given by

R(ρ∗
n; Q) = tr[�∗Q] + B∗′QB∗

where Q is the matrix associated with the loss function

L(ρ∗
n; ρ) = n(ρ∗

n − ρ)
′
Q(ρ∗

n − ρ).

Then, the following Theorem gives the asymptotic bias, MSE matrices and risk
expressions.

Theorem 3.2 Under K(n) and the assumed conditions of Theorem 3.1, as n → ∞,
the following holds.

(a) b1(ρ̃n) = 0, M1(ρ̃n) = σ 2
ϕ γ

−2�−1 and R1(ρ̃n; Q) = tr[Q�−1].

(b) b2(ρ̂n) = −δ, M2(ρ̂n) = σ 2
ϕ γ

−2(�−1 − A) + δδ
′

R2(ρ̂n; Q) = σ 2
ϕ γ

−1 tr[Q(�−1 − A)] + δ
′
Qδ.

(c) b3(ρ̂PT
n ) = −δHq(χ2

q (α);�2), �2 = σ−2
ϕ γ 2(δ

′
�−1δ)

M3(ρ̂PT
n ) = σ 2

ϕ γ
−2�−1 − σ 2

ϕ γ
−2AHq(χ2

q (α);�2)

+ δδ
′ {2Hq+2(χ2

q (α);�2) − Hq+4(χ2
q (α);�2)}

R3(ρ̂PT
n ; Q) = σ 2

ϕ γ
−2 tr(Q�−1) − σ 2

ϕ γ
−2 tr(QA)Hq+2(χ2

q (α);�2)

+ (δ
′
Qδ){2Hq+2(χ2

q (α);�2) − Hq+4(χ2
q (α);�2)}.

(d) b4(ρ̂s
n) = −(q − 2)δE[χ−2

q+2(�2)]

M4(ρ̂s
n) = σ 2

ϕ γ
−2�−1 − (q − 2)σ 2

ϕ γ
−2A{2E[χ−2

q+2(�2)]
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− (q − 2)E(χ−4
q+2(�2)} + (q − 2)δδ

′ {2E[χ−2
q+2(�2)]

− 2E[χ−4
q+2(�2)] + (q − 2)E[χ−4

q+4(�2)]}
R4(ρ̂s

n; Q) = σ 2
ϕ γ

−2 tr(Q�−1) − (q − 2)σ 2
ϕ γ

−2 tr(QA){2E[χ−2
q+2(�2)]

− (q − 2)E[χ−4
q+2(�2)]} + (q2 − 4)(δ

′
Qδ)E[χ−4

q+4�
2)].

(e) b5(ρ̂s+
n ) = −(q − 2)δ{E[χ−2

q+2(�2)] + Hq+2(χ2
q−2(α);�2)

− E[
(

1 − (q − 2)χ−2
q+2(�2)

)
I
(
χ2
q+2(�2) < q − 2

)
]}

M5(ρ̂s+
n ) = M4(ρ̂s

n) − (q − 2)σ 2
ϕ γ

−2AE[
(

1 − (q − 2)χ−2
q+2(�2)

)2

I
(
χ2
q+2(�2) < q − 2

)
]

+ δδ
′ {2E[

(
1 − (q − 2)χ−2

q+2(�2)
)
I
(
χ2
q+2(�2) < q − 2

)
]

− E[
(

1 − (q − 2)χ−2
q+4(�2)

)2
I
(
χ2
q+4(�2) < q − 2

)
]}

R5(ρ̂n
s+; Q) = tr[QM4(ρ̂s

n)] − (q − 2)σ 2
ϕ γ

−2 tr(QA)

× E[
(

1 − (q − 2)χ−2
q+4(�2)

)2
I
(
χ2
q+4(�2) < q − 2

)
]

+ (δ
′
Qδ){2E[

(
1 − (q − 2)χ−2

q+2(�2)
)
I
(
χ2
q+2(�2) < q − 2

)
]

− E[
(

1 − (q − 2)χ−2
q+4(�2)

)2
I
(
χ2
q+4(�2) < q − 2

)
]}

It is well-known that (see Saleh (2006, ch7)) the risk ordering is given by

R5(ρ̂s+
n ; Q) ≤ R4(ρ̂s

n; Q) ≤ R1(ρ̃n; Q) ∀ �2 ∈ R+.

and under H0, it is given by

R2(ρ̂n; Q) ≤ R3(ρ̂PT
n ; Q) ≤ R5(ρ̂s+

n ; Q) ≤ R4(ρ̂s
n; Q) ≤ R1(ρ̃n; Q).

The position of ρ̂
PT
n changes between R2(ρ̂n; Q) and R5(ρ̂s+

n ; Q) to in between
R4(ρ̂s

n; Q) and R1(ρ̃n; Q). The picture changes when �2 moves from the origin. For
details see page 362 of Saleh (2006).

8.4 Ridge Autoregression R-estimators of ρ

In this section, we define the following ridge autoregression R-estimators of ρ using
Hoerl and Kennard (1970) ridge regression estimators

ρ∗
n(k) = Rn(k)ρ∗

n, Rn(k) =
(

Ip + k(
1

n
�n)−1

)−1

. (8.26)
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where Rn(k) is the “ridge factor” and ρ∗
n stands for ρ̃n, ρ̂n, ρ̂PT

n , ρ̂s
n and ρ̂

s+
n

respectively. Note that

Plim Rn(k) = R(k) = (Ip + k(�)−1
)−1

(8.27)

We may now find the asymptotic distributional biases, MSE matrices and risk
expressions of these estimators based on the following Theorem.

First we consider H-K ridge autoregression R-estimators.

Theorem 4.1 Under {K(n)} and the assumed regularity conditions of Theorem 2.1
as n → ∞, the following holds.

(a)

⎛

⎝

√
n (ρ̃n(k) − ρ)√
n (ρ̂n(k) − ρ)√

n (ρ̃n(k) − ρ̂(k))

⎞

⎠ D→ N3 p

⎧
⎨

⎩

⎛

⎝
−kR−1(k)ρ

−[kR−1(k)ρ + R(k)ρ]
R(k)ρ

⎞

⎠ ; σ 2
ϕ γ

−2�∗

⎫
⎬

⎭

(8.28)

where R−1(k) = (� + kIp)−1, δ = �−1H
′
(H�−1H

′
)−1ξ

and A = �−1H
′
(H�−1H

′
)−1H�−1 with

�∗ =
⎛

⎝
R(k)�−1R

′
(k) R(k)(�−1 − A)R

′
(k) R(k)AR

′
(k)

R(k)(�−1 − A)R
′
(k) R(k)(�−1 − A)R

′
(k) 0

R(k)AR
′
(k) 0 R(k)AR

′
(k)

⎞

⎠ (8.29)

(b) The asymptotic distributional bias (ADB), MSE (ADMSE) matrices and quadratic
risks (ADQR) are given by

(i) b1(ρ̃n(k)) = [R(k) − Ip]ρ = R(k)[Ip − (Ip + k�−1)]ρ = −kR(k)�−1ρ

= −k[� + kIp]−1ρ = −kR−1(k)ρ.

M1(ρ̃n(k)) = σ 2
ϕ γ

−2[R(k)�−1
xx R

′
(k)] + [R(k) − Ip]ρρ

′
[R(k) − Ip]

′
.

R1(ρ̃n(k); W) = σ 2
ϕ γ

−2tr
(

W[R(k)�−1
xx R

′
(k)]
)
+ ρ

′
[R(k) − Ip]

′
W[R(k) − Ip]ρ.

(ii) b2(ρ̂n(k)) = [R(k) − Ip]ρ + R(k)δ = B say.

M2(ρ̂n(k)) = σ 2
ϕ γ

−2
{

[R(k)�−1R
′
(k)] − [R(k)AR

′
(k)]
}
+ BB

′
.

R2(ρ̂n(k); W) = σ 2
ϕ γ

−2tr
(

W[R(k)(�−1 − A)R
′
(k)]
)
+ B

′
WB.

(iii) b3(ρ̂PT
n (k)) = ([R(k) − Ip]ρ + R(k) δHq+2(χ2

q (α);�2)
)
.

M3(ρ̂PT
n (k)) = σ 2

ϕ γ
−2[R(k)�−1

xx R
′
(k)] − σ 2

ϕ γ
−2[R(k)AR

′
(k)]Hq+2(χ2

q (α);�2)
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+ [R(k)δδ
′
R

′
(k)]{2Hq+2(χ2

q (α);�2) − Hq+4(χ2
q (α);�2)}

+ k2[R(k) − Ip]ρρ
′
[R(k) − Ip]

′ + k[R(k)δρ
′
(R(k) − Ip)

+ {
(R(k) − Ip)ρ − R(k)δHq+2(χ2

q (α);�2)
}

× {
[R(k) − Ip]ρ − R(k)δHq+2(χ2

q (α);�2)
}′
.

R3(ρ̂PT
n (k); W) = σ 2

ϕ γ
−2 tr[W

(
R(k){�−1 − AHq+2(χ2

q (α);�2)}R′
(k)
)

]

+ tr[W
(

R(k)δδ
′
R

′
(k)
)

]{2Hq+2(χ2
q (α);�2)

− Hq+4(χ2
q (α);�2)} + k2ρ

′
[R(k) − Ip]

′
W[R(k) − Ip]ρ

+ k tr[W{R(k)δρ
′
(R(k) − Ip]

+ {
(R(k) − Ip)ρ − R(k)δHq+2(χ2

q (α);�2)
}′

× W
{
[R(k) − Ip]ρ − R(k)δHq+2(χ2

q (α);�2)
}
.

(iv) b4(ρ̂s
n(k)) = −

(
[R(k) − Ip] + (q − 2)R(k)δE[χ−2

q+2(�2)]
)

M4(ρ̂s
n(k)) = [R(k)�−1R

′
(k)] − (q − 2)[R(k)AR

′
(k)]{2E[χ−2

q+2(�2)]

− (q − 2)E[χ−4
q+2(�2)]} + (q2 − 4)[R(k)δδ

′
R

′
(k)]E[χ−4

q+4(�2)]

+
{

[R(k) − Ip]ρ − R(k)δE[χ−2
q+2(�2)]

}

{
[R(k) − Ip]ρ − R(k)δE[χ−2

q+2(�2)]
}′

R4(ρ̂s
n(k); W) = σ 2

ϕ γ
−2 tr(W[R(k)�−1R

′
(k)]) − (q − 2)σ 2

ϕ γ
−2 tr

(
WR(k)AR

′
(k)
)

× {2E[χ−2
q+2(�2)] − (q − 2)E[χ−4

q+2(�2)]} + (q2 − 4) tr
(

W[R(k)δδ
′
R

′
(k)]
)
× E[χ−4

q+4�
2)]

+
{

[R(k) − Ip]ρ − R(k)δE[χ−2
q+2(�2)]

}′
W

×
{

[R(k) − Ip]ρ − R(k)δE[χ−2
q+2(�2)]

}
.

(v) b5(ρ̂s+
n (k)) = [R(k) − Ip]ρ − R(k)δ{Hq+2(χ2

q−2(α);�2)

− (q − 2){E[χ2
q+2(α);�2)]} − E[χ−2

q+2(�2)]I
(
χ2
q+2(�2)

)
]}

M5(ρ̂s+
n (k)) = M4(ρ̂s

n(k)) − σ 2
ϕ γ

−2[R(k)AR
′
(k)]E[

(
1 − (q − 2)χ−2

q+2(�2)
)2

× I
(
χ2
q+2(�2) < q − 2

)
]
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+ [R(k)δδ
′
R

′
(k)]{2E[

(
1 − (q − 2)χ−2

q+2(�2)
)

× I
(
χ2
q+2(�2) < q − 2

)
]

− E[
(

1 − (q − 2)χ−2
q+4(�2)

)2
I
(
χ2
q+4(�2) < q − 2

)
]}

+ [b5(ρ̂s+
n (k))][b5(ρ̂s+

n (k))]
′
.

R5(ρ̂n
s+(k); W) = R4(ρ̂s

n(k); W)] − {σ 2
ϕ γ

−2 tr(R(k)AR
′
(k))

E[
(

1 − (q − 2)χ−2
q+4(�2)

)2×I
(
χ2
q+4(�2) < q − 2

)
]}

+ (δ
′
R

′
(k)WR(k)δ){2E[

(
1 − (q − 2)χ−2

q+2(�2)
)2

I
(
χ2
q+2(�2) < q − 2

)
] − E[

(
1 − (q − 2)χ−2

q+2(�2)
)

I
(
χ2
q+2(�2) < q − 2

)
]} + [b5(ρ̂s+

n (k))]
′
W[b5(ρ̂s+

n (k))].

8.5 Comparison of the Five Ridge Autoregression R-estimators

In this section, we consider the comparison of the RidgeAutoregression R-estimators
under a quadratic loss functions. Notice that the risk expression of the five ridge
autoregression rank estimators are functions of the departure parameter �2 as well as
the “ridge constant”, k. First, we consider the comparisons when the risk expressions
are function of k in Sect. 8.5.1 and in Sect. 8.5.2 we consider the comparison as a
function of �2. In this respect, we present the comparison in a sequence theorems
that follow in each section.

8.5.1 Comparison of RARE’s as a function of ridge constant

It is clear that, � is a positive definite matrix so that there exist an orthogonal matrix
� such that � = ���

′
and � = �

′
�� = Diag(λ1, · · · , λp) where λ1 ≥ λ2 ≥ · · · ≥

λp > 0 are the eigenvalues of �. It is easy to see that the eigenvalues of R(k) and
R−1(k) = �+kIp are λ1

λ1+k
, · · · , λp

λp+k
and λ1 +k, · · · , λp+k respectively. with this

background, we get the following identities:

(i) ρ
′
R−1(k)ρ = α

′
(� + kIp)α =∑p

j=1
α2
j

(λj+k)2 , α = �
′
ρ (8.30)

(ii) tr(R(k)�−1R(k)) =∑p

j=1
λj

(λj+k)2

(iii) tr[R(k)�−1H
′
(H�−1H

′
)−1H�−1R(k)] =∑p

j=1
h∗jj

(λj+k)2
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where h∗
jj ≥ 0 is the j th diagonal element of

(iv) �
′
H

′
(H�−1H

′
)−1H� = H∗, δ

′
�δ =

p∑

j=1

δ∗2
j

where δ = �−1H
′
(H�−1H

′
)−1(Hρ − h). Assume that W = Ip in Theorem 4.1 (b).

8.5.1.1 Comparison of ρ̃n(k) and ρ̃n

The comparison results are presented in the following Theorem.

Theorem 5.1.1 Under K(n) and basics assumptions, there exists a k ∈ (0, k0) where

k0 = σ 2
ϕ γ

−2

αmax
such that the unrestricted ridge autoregression estimator ρ̃n(k) has

smaller mean square error (mse) than the unrestricted estimator, ρ̃n as n → ∞.

Proof Consider the asymptotic distributional mse of ρ̃n(k) given by

R1(ρ̃n(k); Ip) = σ 2
ϕ γ

−2
p∑

j=1

λj

(λj + k)2
+ k2

p∑

j=1

α2
j

(λj + k)2
. (8.31)

It is obvious that for k = 0, the first term equals σϕγ
−2∑p

j=1
1
λj

= R1(ρ̃n; Ip) and
second term equals zero respectively. The first term is a continuous, monotonically
decreasing function of k and its derivative w.r.t k approaches −∞ as k → 0+ and
λp → 0. The second term is also continuous, monotonically increasing function of
k and its derivative tends to zero as k → 0+. We note that the second term tends to
ρ

′
ρ as k → ∞. Differentiating (8.31) w.r.t k we get

∂R1

∂k
(ρ̃n(k); Ip) = 2

p∑

j=1

λj

(λj + k)3
(kαj − σ 2

ϕ γ
−2). (8.32)

Thus, a sufficient condition for (8.32) to be negative is that there exists a k ∈ (0, k0)

such that ρ̃n(k) has smaller mse than that of ρ̃n, where k0 = σ 2
ϕ γ

−2

max1≤j≤p{αj } .

8.5.1.2 Comparison between ρ̂n(k)PT and ρ̂
PT
n

First, note that for α = 0, Hq+2(χ2
q (α);�2) = 1. In this case, one compares between

ρ̂n(k) and ρ̂n. On the other hand, if α = 1, then Hq+2(χ2
q (α);�2) = 0. Hence,

compares ρ̃n(k) and ρ̃n which have done in Sect. 8.5.1.1.
The comparison of ρ̂n(k)PT and ρ̂

PT
n is given in the following Theorem.
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Theorem 5.1.2 Under K(n) and the regularity conditions as n → ∞, a sufficient
condition for the mse of ρ̂n(k)PT is less than the mse ρ̂

PT
n is that there exists a

k ∈ (0, kPT (�2,α)) where

kPT (�2,α) = f1(�2,α)

g1(�2,α)
(8.33)

with

f1(�2,α) = min
1≤j≤p

[σ 2
ϕ γ

−2
{
λj − h∗

jjHq+2(χ2
q (α);�2)

}

+ λ2
j δ

∗2
j

{
2Hq+2(χ2

q (α);�2) − Hq+4(χ2
q (α);�2)

}

− αjλ
2
j δ

∗
jHq+2(χ2

q (α);�2)]

and g1(�2,α) = max
1≤j≤p

[
αjλj

{
αj − δ∗jHq+2(χ2

q (α);�2)
}]

.

Proof

R3(ρ̂PT
n (k); Ip) =

p∑

j=1

1

(λj + k)2
{σ 2

ϕ γ
−2[λj − h∗

jjHq+2(χ2
q (α);�2)]

+ λ2
j δ

∗2
j [2Hq+2(χ2

q (α);�2) − Hq+4(χ2
q (α);�2)]

+ k2α2
j + 2kαjλj δ

∗2
j Hq+2(χ2

q (α);�2)}
Differentiating with respect to k, we obtain

∂R3

∂k
(ρ̂PT

n (k); Ip) = 2
p∑

j=1

1

(λj + k)3
{kαjλj [αj − h∗

jjHq+2(χ2
q (α);�2)]

− [σ 2
ϕ γ

−2
(
λj − h∗

jjHq+2(χ2
q (α);�2)

)

+ λjδ
∗2
j [2Hq+2(χ2

q (α);�2) − Hq+4(χ2
q (α);�2)]

− αjλ
2
j δ

∗
jHq+2(χ2

q (α);�2)]} (8.34)

Hence, a sufficient condition that ρ̂PT
n (k) has mse less than Hannan (1970) the mse of

ρ̂
PT
n is that there exists a k ∈ (0, kPT (�2,α)) where kPT (�2,α) is defined by (8.33).

Consequently, the mse of ρ̂n(k) is less than the mse of ρ̂n.

8.5.1.3 Comparison between ρ̂
s
n(k) and ρ̂

s
n

The following theorem gives the sufficient conditions for the dominance of ρ̂
s
n(k)

over ρ̂
s
n.
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Theorem 5.1.3 Under K(n) and the assumed regularity conditions, R4(ρ̂s
n; Ip) ≥

R4(ρ̂s
n(k); Ip) holds whenever k ∈ (0, ks), where ks = f2(�2)

g2(�2) with

f2(�2) = min
1≤j≤p

[σ 2
ϕ γ

−2(λj − (q − 2)h∗
jj {(q − 2)E[χ−4

q+2(�2)]

+ 2(1 − (q + 2)λ2
j δ

∗2
j

2σ 2
ϕ γ

−2�2h∗
jj

)�2E[χ−4
q+2(�2)]}

+ (q − 2)λ2
j δ

∗2
j E[χ−2

q+2(�2)]] (8.35)

and g2(�2) = max
1≤j≤p

{
αjλj [αj − (q − 2)δ∗j E[χ−2

q+2(�2)]]
}

(8.36)

Proof Consider the mse expression for ρ̂
s
n(k) given by

R4(ρ̂s
n(k); Ip) =

p∑

j=1

1

(λj + k)2
{σ 2

ϕ γ
−2[λj − (q − 2)h∗

jj {(q − 2)E[χ−4
q+4�

2)]

+ (1 − (q + 2)λ2
j δ

∗2
j

2σ 2
ϕ γ

−2�2h∗
jj

)�2E[χ−4
q+4(�2)]}

+ 2k(q − 2)αjλj δ
∗
j E[χ−2

q+2(�2)]}. (8.37)

The derivative of R4(ρ̂s
n(k); Ip) w.r.t. k is given by

∂R4

∂k
(ρ̂s

n(k); Ip) = 2
p∑

j=1

1

(λj + k)3
{kαjλj [αj − (q − 2)δ∗j E[χ−2

q+2(�2)]

− σ 2
ϕ γ

−2{λj − (q − 2)h∗
jj [(q − 2)E[χ−2

q+2(�2)]

+ (1 − (q + 2)λ2
j δ

∗2
j

2σ 2
ϕ γ

−2�2h∗
jj

)

× 2�2E[χ−4
q+4(�2)]} − (q − 2)αjλ

2
j δ

∗
j E[χ−2

q+2(�2)]}. (8.38)

Thus, a sufficient condition for (8.37) to be negative is that k ∈ (0, ks) where ks
is given by (8.35) and (8.36). QED.

8.5.1.4 Comparison between ρ̂
s+
n (k) and ρ̂

s+
n

The comparison between ρ̂
s+
n (k) and ρ̂

s+
n is given by the following theorem.

Theorem 5.1.4 Under K(n) and the assumed regularity conditions as n → ∞, a
sufficient condition for the mse of ρ̂s+

n (k) is less than Hannan (1970) ρ̂
s+
n is that there

exists a k ∈ (0, ks+) where ks+ = f3(�2)
g3(�2) and f3(�2) and g3(�2) are given by

f3(�2) = min
1≤j≤p

{σ 2
ϕ γ

−2{λj − (q − 2)a∗ii[(q − 2)E[χ−2
q+2(�2)]
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+ (1 − (q + 2)λ2
j δ

∗2
j

2σ 2
ϕ γ

−2�2a∗ii
)(2�2)E[χ−4

q+4(�2)]

− a∗iiE[(1 − (q − 2)χ−2
q+2(�2))2I (χ2

q+2(�2) ≤ (q − 2))]

− λ2
i δ

∗2
i E[(1 − (q − 2)χ−2

q+4(�2))2I (χ2
q+4(�2) ≤ (q − 2))]

+ (θi − 2δ∗i )λ2
i δ

∗
i E[((q − 2)χ−2

q+4(�2) − 1)I (χ2
q+2(�2) ≤ (q − 2))]

+ dqθiδ
∗
i )λ2

i E[χ−2
q+2(�2)]}} (8.39)

and g3(�2) = max
1≤i≤p

[λiθi{θi + δ∗i E((q − 2)χ−2
q+2(�2) − 1)

I (χ2
q+2(�2) ≤ (q − 2))

− (q − 2)δ∗i E[χ−2
q+2(�2)]}].

Proof The risk function of ρ̂
s+
n (k) can be expressed as

R5(ρ̂s+
n (k); Ip) = R4(ρ̂s

n(k); Ip) −
p∑

i=1

1

(λi + k)2
{{σ 2

ϕ γ
−2

E
[
(1 − (q − 2)χ−2

q+2(�2))2I (χ2
q+2(�2) ≤ (q − 2))

]

+ λ2
i δ

∗2
i E

[
(1 − (q − 2)χ−2

q+4(�2))2I (χ2
q+4(�2) ≤ (q − 2))

]
}

+ 2λ2
i δ

∗2
i E

[
((q − 2)χ−2

q+2(�2) − 1)I (χ2
q+2(�2) ≤ (q − 2))

]
}

+ 2kθiλiδ
∗
i E[((q − 2)χ−2

q+2(�2) − 1)I (χ2
q+2(�2) ≤ (q − 2))]}.

(8.40)

where R4(ρ̂s
n(k); Ip) is given by (8.37). Differentiating R5(ρ̂s+

n (k); Ip) with respect
to k, we obtain

∂R5(ρ̂s+
n (k); Ip)

∂k
= ∂R4(ρ̂s

n(k); Ip)

∂k
+ 2

p∑

i=1

1

(λi + k)3
{kαiλiδ

∗
i

E
[
(q − 2)χ−2

q+2(�2) − 1)I (χ2
q+2(�2) ≤ (q − 2))

]

+ σ 2
e {h∗

iiE
[
(1 − (q − 2)χ−2

q+2(�2))2I (χ2
q+2(�2) ≤ (q − 2))

]

+ λ2
i δ

∗2
i

σ 2
ϕ γ

−2
E
[
(1 − (q − 2)χ−2

q+4(�2))2I (χ2
q+4(�2) ≤ (q − 2))

]
}

− (αi − 2δ∗i )λ2
i δ

∗
i E
[
((q − 2)χ−2

q+2(�2) − 1)I (χ2
q+2(�2) ≤ (q − 2))

]
},

(8.41)
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where ∂R4(ρ̂s
n(k);Ip)
∂k

is given by (8.38). Hence, a sufficient condition for (8.41) to be
negative is that 0 < k < ks+ where

ks+ = f3(�2)

g3(�2)

whenever g3(�2) > 0. QED.

8.5.1.5 Comparison between ρ̂
s
n(k) and ρ̃n

In this case, we may obtain the Theorem given below.

Theorem 5.1.5 Under K(n) and the assumed regularity conditions, as n → ∞, a
sufficient condition for ρ̂

s
n(k) to have mse value is less than or equal to the mse of ρ̃n

is that there exists a value of k ∈ (0, k∗s ) where

k∗s =
σ 2
ϕ γ

−2min1≤j≤p

{
h∗
jj (q − 2)E[χ−4

q+2(�2)] + (1 − (q+2)λ2
j
δ∗2
j

2σ 2
ϕ γ

−2�2h∗
jj

)(2�2)E[χ−4
q+4(�2)]

}

max1≤j≤p

{
2αjλj δ

∗
j E[χ−2

q+2(�2)]
}

(8.42)

For proof consider the mse difference R1(ρ̃n(k); Ip) − R4(ρ̂s
n(k); Ip) ≥ 0, then k∗s

follows.

8.5.1.6 Comparison of ρ̂
s+
n (k) and ρ̂

s
n(k)

The result is presented in the following Theorem.

Theorem 5.1.6 Under K(n) and the assumed regularity conditions, as n → ∞,
ρ̂
s+
n (k) has smaller mse than ρ̂

s
n(k) for all k ≥ 0.

Proof Consider the mse difference of ρ̂
s+
n (k) and ρ̂

s
n(k) given by

R4 (ρ̂s
n(k); Ip) − R5(ρ̂s+

n (k); Ip)

=
p∑

j=1

1

(λj + k)2
{σ 2

ϕ γ
−2

(
h∗
jjE

[
(1 − (q − 2)χ−2

q+2(�2))2I (χ2
q+2(�2) ≤ (q − 2))

])

− λ2
j δ

∗2
j {2E

[
(1 − (q − 2)χ−2

q+2(�2))I (χ2
q+2(�2) ≤ (q − 2))

]

− E
[
(1 − (q − 2)χ−2

q+4(�2))2I (χ2
q+4(�2) ≤ (q − 2))

]
}

− 2kαjλj δ
∗
j E[(1 − (q − 2)χ−2

q+2(�2))I (χ2
q+2(�2) ≤ (q − 2))]. (8.43)
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Since 1 − (q − 2)χ−2
q+2(�2) ≤ 0 ⇒ χ2

q+2(�2) < q − 2 and the expectation of a
negative r.v. is negative, hence, the R.H.S is non-negative for all k ≥ 0 and the mse
of ρ̂

s+
n (k) is smaller than that of ρ̂

s
n(k) uniformly in k ≥ 0.

Further, we have the following corollary.

Corollary A sufficient condition that the dominance relation is given by

R5(ρ̂s+
n (k); Ip) ≤ R4(ρ̂s

n(k); Ip) ≤ R1(ρ̃n(k); Ip) (8.44)

is that there exists a k such that k ∈ (0, k∗s ) where k∗s is given by (8.42).

8.6 Comparison of the Five RRE’s as a Function of �2

Consider a mse differences of ρ̃n(k) and ρ̂
s
n(k) and ρ̂n(k) and ρ̂

s+
n (k) are given by

(a) R1(ρ̃n(k); Ip) − R4(ρ̂s
n(k); Ip)

= σ 2
ϕ γ

−2(q − 2)tr[R2(k)A]{(q − 2)E[χ−2
q+2(�2)]

+ [1 − (q + 2)δ
′
R2(k)δ

σ 2
ϕ γ

−2(2�2)tr[R2(k)A]
](2�2)E[χ−4

q+4(�2)]}

+ 2k(q − 2)[δ
′
R−1(k)R(k)ρ]E[χ−2

q+2(�2)] ≥ 0

uniformly in �2 since tr[R2(k)C−1]
chmax (R2(k)C−1) ≥ q+2

2 .

Hence, R4(ρ̂s
n(k); Ip) ≤ R1(ρ̃n(k); Ip) uniformly in �2 for fixed k ∈ (0,∞).

(b) R4 (ρ̂s
n(k); Ip) − R5(ρ̂s+

n (k); Ip) = σ 2
ϕ γ

−2(q − 2)tr[R2(k)A]

×{E[(1 − (q − 2)χ−2
q+2(�2))2I (χ2

q+2(�2) ≤ (q − 2))]

+ δ
′
R2(k)δ{2E[(1 − (q − 2)χ−2

q+2(�2))I (χ2
q+2(�2) ≤ (q − 2))]

− E[(1 − (q − 2)χ−2
q+4(�2))2I (χ2

q+4(�2) ≤ (q − 2))]}
+ 2k(q − 2)δ

′
R−1(k)R(k)ρE[χ−2

q+2(�2)] ≥ 0

uniformly in �2.
Hence, R5(ρ̂s+

n (k); Ip) ≤ R4(ρ̂s
n(k); Ip) uniformly in �2 for fixed k ∈ (0,∞).

Thus,

R5(ρ̂s+
n (k); Ip) ≤ R4(ρ̂s

n(k); Ip) ≤ R1(ρ̃n(k); Ip) for k ∈ (0, k∗s ).

Next, we compare the amse of ρ̃n(k) and ρ̂
PT
n (k). Note that if α = 0, then ρ̂

PT
n (k) ≡

ρ̂n(k). Thus, consider the amse-difference between ρ̃n(k) and ρ̂
PT
n (k) as follows:

R1(ρ̃n(k); Ip) − R3(ρ̂PT
n (k); Ip) = σ 2

ϕ γ
−2tr[R2(k)A]Hq+2(χ2

q (α);�2)
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− δ
′
R2(k)δ{2Hq+2(χ2

q (α);�2)

− Hq+4(χ2
q (α);�2)}

− 2kδR−1(k)R(k)ρHq+2(χ2
q (α);�2)

if α = 0, the amse-difference becomes

σ 2
ϕ γ

−2tr[R2(k)A] − δ
′
R2(k)δ − 2kδR−1(k)R(k)ρ

Hence,ρ̂PT
n (k) is better than ρ̃n(k) if and only if

δ
′
R2(k)δ ≤ σ 2

ϕ γ
−2tr[R2(k)A]Hq+2(χ2

q (α);�2) − 2kδ
′
R−1(k)R(k)ρHq+2(χ2

q (α);�2)

[2Hq+2(χ2
q (α);�2) − Hq+4(χ2

q (α);�2)]

This imply ρ̂
PT
n (k) is superior to ρ̃n(k) if and only if

�2 ≤ σ 2
ϕ γ

−2tr[R2(k)A]Hq+2(χ2
q (α);�2) − 2kδ

′
R−1(k)R(k)ρHq+2(χ2

q (α);�2)

chmax[R2(k)�−1
xx ][2Hq+2(χ2

q (α);�2) − Hq+4(χ2
q (α);�2)]

Similarly,ρ̂n(k) is superior to ρ̃n(k) if and only if

�2 ≤ σ 2
ϕ γ

−2tr[R2(k)A] − 2kδR−1(k)R(k)ρ

chmax[R2(k)�−1
xx ]

.

Under H0 : Hρ = h, the order the mse expressions is given by

R2(ρ̂n(k); Ip) ≤ R3(ρ̂PT
n (k); Ip) ≤ R1(ρ̃n(k); Ip).

When does ρ̃n superior to ρ̂
PT
n (k)? Whenever

�2 ≥ σ 2
ϕ γ

−2tr[R2(k)A]Hq+2(χ2
q (α);�2) − 2kδ

′
R−1(k)R(k)ρHq+2(χ2

q (α);�2)

chmin[R2(k)�−1
xx ][2Hq+2(χ2

q (α);�2) − Hq+4(χ2
q (α);�2)]

If k = 0, the results coincide the five estimators in Sect. 8.3.
Similar, comments hold, tha is, ρ̃n(k) is superior to ρ̂n(k) if and only if

�2 ≥ σ 2
ϕ γ

−2tr[R2(k)A] − 2kδ
′
R−1(k)R(k)ρ

chmin[R2(k)�−1
xx ]

.

Thus, we obtain the same asymptotic properties of the R-estimators ρ̃n, ρ̂
s
n, ρ̂

s+
n

and ρ̂
PT
n for the ridge estimators.



136 A. K. Md. Ehsanes Saleh

8.7 Summary and Conclusions

In this chapter, we defined a new class of R-estimators for the parameters ρ of the
autoregressive model (8.1) by weighting the usual five R-estimators as in Saleh (2006)
with a “ridge factor”. We established that the asymptotic distributional properties of
ρ̃n(k), ρ̂n(k), ρ̂

PT
n (k), ρ̂

s
n(k) and ρ̂

s+
n (k) are similar to the estimators ρ̃n, ρ̂n, ρ̂

PT
n ,

ρ̂
s
n and ρ̂

s+
n based on the mse’s as function of �2 and k respectively. It is shown

in particular that ρ̂
s+
n (k) uniformly dominates ρ̂

s
n(k) (when p ≥ 3) and ρ̂

PT
n (k) is a

useful alternative to ρ̃n(k) (when p < 2).
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Chapter 9
On Hodges and Lehmann’s “6/π Result”

Marc Hallin, Yvik Swan and Thomas Verdebout

9.1 Introduction

The Pitman asymptotic relative efficiency AREf (φ1/φ2) under density f of a test φ1

with respect to a test φ2 is defined as the limit (when it exists), as n1 tends to infinity,
of the ratio n2;f (n1)/n1 of the number n2;f (n1) of observations it takes for the test
φ2, under density f , to match the local performance of the test φ1 based on n1

observations. That concept was first proposed by Pitman in the unpublished lecture
notes (Pitman 1949) he prepared for a 1948–1949 course at Columbia University. The
first published rigorous treatment of the subject was by Noether (1955). A similar
definition applies to point estimation; see, for instance, Hallin (2012) for a more
precise definition. An in-depth treatment of the concept can be found in Chap. 10 of
Serfling (1980), Chap. 14 of van der Vaart (1998), or in the monograph by Nikitin
(1995).

The study of the AREs of rank tests and R-estimators with respect to each other
or with respect to their classical Gaussian counterparts has produced a number of
interesting and sometimes surprising results. Considering the van der Waerden or
normal-score two-sample location rank test φvdW and its classical normal-theory
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competitor, the two-sample Student test φN , Chernoff and Savage in (1958) estab-
lished the rather striking fact that, under any density f satisfying very mild regularity
assumptions,

AREf (φvdW/φN ) ≥ 1, (9.1)

with equality holding at the Gaussian density f = φ only. That result implies that
rank tests based on Gaussian scores (that is, the two-sample rank-based tests for
location, but also the one-sample signed-rank ones, traditionally associated with the
names of van der Waerden, Fraser, Fisher, Yates, Terry and/or Hoeffding—for sim-
plicity, in the sequel, we uniformly call them van der Waerden tests)—asymptotically
outperform the corresponding everyday practice Student t test; see Chernoff and
Savage (1958). That result readily extends to one-sample symmetric and m-sample
location, regression, and analysis of variance models with independent noise.

Another celebrated bound is the one obtained in 1956 by Hodges and Lehmann,
who proved that, denoting by φW the Wilcoxon test (same location and regression
problems as above),

AREf (φW/φN ) ≥ 0.864, (9.2)

which implies that the price to be paid for using rank-rank or signed-rank tests of
the Wilcoxon type (that is, logistic-score-based rank tests) instead of the traditional
Student ones never exceeds 13.6 % of the total number of observations. That bound
moreover is sharp, being reached under the Epanechnikov density f . On the other
hand, the benefits of considering Wilcoxon rather than Student can be arbitrarily
large, as it is easily shown that the supremum over f of AREf (φW/φN ) is infinite;
see Hodges and Lehmann (1956).

Both (9.1) and (9.2) created quite a surprise in the statistical community of the late
1950s, and helped dispelling the wrong idea, by then quite widespread, that rank-
based methods, although convenient and robust, could not be expected to compete
with the efficiency of traditional parametric procedures.

Chernoff–Savage and Hodges–Lehmann inequalities since then have been ex-
tended to a variety of more general settings. In the elliptical context, optimal
rank-based procedures for location (one and m-sample case), regression, and scatter
(one and m-sample cases) have been constructed in a series of papers by Hallin and
Paindaveine (2002a, 2006, and 2008b), based on a multivariate concept of signed
ranks. The Gaussian competitors there are of the Hotelling, Fisher, or Lagrange mul-
tiplier forms. For all those tests, Chernoff–Savage result, similar to (9.1) have been
established (see also Paindaveine 2004, 2006). Hodges–Lehmann results also have
been obtained, with bounds that, quite interestingly, depend on the dimension of the
observation space: see Hallin and Paindaveine (2002a).

Another type of extension is into the direction of time series and linear rank
statistics of the serial type. Hallin (1994) extended Chernoff and Savage’s result
(9.1) to the serial context by showing that the serial van der Waerden rank tests also
uniformly dominate their Gaussian competitors (of the correlogram-based portman-
teau, Durbin–Watson or Lagrange multiplier forms). Similarly, Hallin and Tribel
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(2000) proved that the 0.864 upper bound in (9.2) no longer holds for the AREs of
the Wilcoxon serial rank test with respect to their Gaussian competitors, and is to be
replaced by a slightly lower 0.854 one. Elliptical versions of those results are derived
in Hallin and Paindaveine (2002a, 2004, 2005).

Now, AREs with respect to Gaussian procedures such as t-tests are not always
the best evaluations of the asymptotic performances of rank-based tests. Their exis-
tence indeed requires the Gaussian procedures to be valid under the density f under
consideration, a condition which places restrictions on f that may not be satisfied.
When the Gaussian tests are no longer valid, one rather may like to consider AREs of
the form

AREf (φJ /φK ) = 1/AREf (φK/φJ ) (9.3)

comparing the asymptotic performances (underf ) of two rank-based testsφJ andφK ,
based on score-generating functions J and K , respectively. Being distribution-free,
rank-based procedures indeed do not impose any validity conditions on f , so that
AREf (φJ /φK ) in general exists under much milder requirements on f ; see, for
instance, Hallin et al. (2011) and Hallin (2013), where AREs of the form (9.3) are
provided for rank-based methods in linear models with stable errors under which
Student tests are not valid.

Obtaining bounds for AREf (φJ /φK ), in general, is not as easy as for AREs of the
form AREf (φJ /φN ). The first result of that type was established in 1961 by Hodges
and Lehmann, who in (Hodges and Lehmann 1961) show that

0 ≤ AREf (φW/φvdW) ≤ 6/π ≈ 1.910 (9.4)

or, equivalently,

0.524 ≈ π/6 ≤ AREf (φvdW/φW) ≤ ∞ (9.5)

for all f in some class F of density functions satisfying weak differentiability
conditions. Hodges and Lehmann moreover exhibit a parametric family of densi-
ties FHL = {fα|α ∈ [0,∞)} for which the functionα �→ AREfα (φW/φvdW) achieves
any value in the open interval (0, 6/π) (α �→ AREfα (φvdW/φW) achieves any value
in the open interval (π/6,∞)). The lower and upper bounds in (9.4) and (9.5) thus are
sharp in the sense that they are the best possible ones. The same result was extended
and generalized by Gastwirth (1970).

Note that, in case f has finite second-order moments (so that AREf (φW/φN )
is well defined), since AREf (φvdW/φN ) = AREf (φvdW/φW) × AREf (φW/φN ),
Hodges and Lehmann’s “6/π result” implies that the ARE of the van der Waerden
tests with respect to the Student ones, which by the Chernoff–Savage inequality is
larger than or equal to one, actually can be arbitrarily large, and that this happens for
the same types of densities as for the Wilcoxon tests. This is an indication that, when
Wilcoxon is quite significantly outperforming Student, that performance is shared
by a broad class of rank-based tests and R-estimators, which includes the van der
Waerden ones.
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In Sect. 9.2, we successively consider the traditional case of nonserial rank
statistics used in the context of location and regression models with independent
observations, and the case of serial rank statistics; the latter involve ranks at time t

and t−k, say, and aim at detecting serial dependence among the observations. Serial
rank statistics typically involve two score functions and, instead of (9.3), yield AREs
of the form

ARE∗
f (φJ1,J2/φJ3,J4 ). (9.6)

To start with, in Sect. 9.2.1, we revisit Gastwirth’s classical nonserial results.
More precisely, we provide (Proposition 2) a slightly different proof of the main
proposition in Gastwirth (1970), with some further illustrations in the case of Stu-
dent scores. In Sect. 9.2.2, we turn to the serial case, with special attention for
the so-called Wilcoxon–Wald–Wolfowitz, Kendall, and van der Waerden rank au-
tocorrelation coefficients. Serial AREs of the form (9.6) typically are the product
of two factors to which the nonserial techniques of Sect. 9.2.1 separately apply;
this provides bounds which, however, are not sharp. Therefore, in Sect. 9.3, we re-
strict to a few parametric families—the Student family (indexed by the degrees of
freedom), the power-exponential family, or the Hodges–Lehmann family FHL—for
which numerical values are displayed.

9.2 Asymptotic Relative Efficiencies of Rank-Based Procedures

The asymptotic behavior of rank-based test statistics under local alternatives, since
Hájek and Šidák (1967), is obtained via an application of Le Cam’s Third Lemma
(see, for instance, Chap. 13 of van der Vaart 1998). Whether the statistic is of the
serial or the nonserial type, the result, under a density f with distribution function F

involves integrals of the form

K(J ) :=
∫ 1

0
J 2(u)du K(J , f ) :=

∫ 1

0
J (u)ϕf (F−1(u))du,

and, in the serial case,

J (J , f ) :=
∫ 1

0
J (u)F−1(u)du

where, assuming that f admits a weak derivative f′, ϕf := −f′/f is such that the
Fisher information for location I(f ) := ∫ 1

0 ϕ2
f (F−1(u))du is finite. Denote by F the

class of such densities. If local alternatives, in the serial case, are of the ARMA type,
f is further restricted to the subset F2 of densities f ∈ F having finite second-order
moments. Differentiability in quadratic mean of f 1/2 is the standard assumption here,
see Chap. 7 of van der Vaart (1998); but absolute continuity of f in the traditional
sense, with a.e. derivative f′, is sufficient for most purposes. We refer to Hájek and
Šidák (1967) and Hallin and Puri (1994) for details in the nonserial and the serial
case, respectively.
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9.2.1 The Nonserial Case

In location or regression problems, or, more generally, when testing linear constraints
on the parameters of a linear model (this includes ANOVA etc.), the ARE, under
density f ∈ F , of a rank-based test φJ1 based on the square-summable score-
generating function J1 with respect to another rank-based test φJ2 based on the
square-summable score-generating function J2 takes the form

AREf

(
φJ1/φJ2

) = K(J2)

K(J1)
C2

f (J1, J2), with Cf (J1, J2) := K(J1, f )

K(J2, f )
, (9.7)

provided that J1 and J2 are monotone, or the difference between two monotone
functions. Those ARE values readily extend to the m-sample setting, and to R-
estimation problems. In a time-series context with innovation density f ∈ F2, and
under slightly more restrictive assumptions on the scores, they also extend to the
partly rank-based tests and R-estimators considered by Koul and Saleh in (1993) and
(1995).

Gastwirth (1970) has based his analysis of (9.7) on an integration by parts of
the integral in the definition of K(J , f ). If both J1 and J2 are differentiable, with
derivatives J′1 and J′2, respectively, and provided that f is such that

lim
x→∞ J1(F (x))f (x) = 0 = lim

x→∞ J2(F (x))f (x),

integration by parts in those integrals yields, for (9.7),

AREf

(
φJ1/φJ2

) = K(J2)

K(J1)

(∫∞
−∞ J′1(F (x))f 2(x)dx
∫∞
−∞ J′2(F (x))f 2(x)dx

)2

. (9.8)

In view of the Chernoff–Savage result (9.1), the van der Waerden score-genera-
ting function

J2(u) = JvdW(u) = �−1(u) (9.9)

(with u �→ �−1(u) the standard normal quantile function) may appear as a natu-
ral benchmark for ARE computations. From a technical point of view, under this
integration by parts approach, the Wilcoxon score-generating function

J2(u) = JW(u) = u − 1/2 (9.10)

(the Spearman–Wald–Wolfowitz score-generating function in the serial case) is more
appropriate, though. Convexity arguments indeed will play an important role, and,
being linear, JW is both convex and concave. Since J′W(u) = 1 and K(JW) = 1/12,
Eq. (9.8) yields

12AREf

(
φJ1/φW

) = 1

K(J1)

(∫∞
−∞ J′1(F (x))f 2(x)dx
∫∞
−∞ f 2(x)dx

)2

. (9.11)
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Bounds on J ′
1(F (x)) then readily yield bounds on AREs, irrespective of f .

That property of Wilcoxon scores is exploited in Propositions 2 and 3 for nonserial
AREs, in Proposition 4 for the serial ones; those bounds are mainly about AREs
of, or with respect to, Wilcoxon (Spearman–Wald–Wolfowitz) procedures, but not
exclusively so.

Assume that f ∈ F0 := {f ∈ F | limx→±∞ f (x) = 0}. Then, integration by
parts is possible in the definition of K(JW, f ), yielding

K(JW, f ) =
∫ ∞

−∞
f 2(x)dx.

Assume, furthermore, that the square-integrable score-generating function J1 (the
difference of two monotone increasing functions) is differentiable, with derivative J′1,
and that

f ∈ FJ1 := {f ∈ F0| lim
x→±∞ J1(F (x))f (x) = 0},

so that (9.8) holds. Finally, assume that J1 is skew-symmetric about 1/2. Defining
the (possibly infinite) constants

κ+
J := sup

u≥1/2

∣∣J′(u)
∣∣ and κ−

J := inf
u≥1/2

∣∣J ′(u)
∣∣ ,

we can always write

12AREf

(
φJ1/φW

) ≤ (κ+
J1

)2/K(J1) (9.12)

while, if J1 is non-decreasing (hence J′1 is non-negative), we further have

(κ−
J1

)2/K(J1) ≤ 12AREf

(
φJ1/φW

) ≤ (κ+
J1

)2/K(J1). (9.13)

The quantities appearing in (9.12) and (9.13) often can be computed explicitly,
yielding ARE bounds which are, moreover, sharp under certain conditions.

For example, if J1 is convex on [1/2, 1), its derivative J′1 is non-decreasing
over [1/2, 1), so that

κ−
J1

= J′1(1/2) ≥ 0 and κ+
J1
= lim

u→1
J ′

1(u) ≤ +∞. (9.14)

It follows that, under the assumptions made,

(J′1(1/2))2/K(J1) ≤ 12AREf

(
φJ1/φW

) ≤ ( lim
u→1

J ′
1(u))2/K(J1). (9.15)

The lower bound in (9.15) is established in Theorem 2.1 of Gastwirth (1970).
The double inequality (9.15) holds, for instance (still, under f ∈ FJ1 ), when the

scores J1 = ϕg ◦ G−1 are the optimal scores associated with some symmetric and
strongly unimodal density g with distribution function G; such densities indeed are
log-concave and have monotone increasing, convex over [1/2, 1) score functions.
Symmetric log-concave densities take the form

g(x) = Ke−μ(x), K−1 =
∫ ∞

−∞
e−μ(x)dx (9.16)
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with x �→ μ(x) a convex, even (that is, μ(x) = μ( − x)) function; assume it to be
twice differentiable, with derivatives μ′ and μ′′. Then, ϕg(x) = μ′(x), so that

J1(u) := ϕg(G−1(u)) = μ′(G−1(u)), K(J1)=
∫ ∞

−∞
(μ′(x))2 g(x)dx = I(g)

where I(g) the Fisher information of g (which we assume to be finite), and

J′1(u) = μ′′(G−1(u))/g(G−1(u)), hence J′1(1/2) = μ′′(0)

g(0)
= μ′′(0)

K
.

Specializing (9.15) to this situation, we obtain the following proposition.

Proposition 1. If the square-integrable score-generating function J1 is of the form
ϕg ◦G−1 with g given by (9.16), μ even, convex, and twice differentiable, then, under
any f ∈ FJ1 ,

(
μ′′(0)

K

)2

≤ 12 I(g)AREf (φJ1/φW) ≤ ( lim
u→1

J′1(u))2 = ( lim
x→∞ (μ′′(x)/g(x))2.

(9.17)

With μ(x) = x2/2 (so that K−1 = √
2π ) in (9.16), g is the standard Gaussian

density; μ′′(0) = 1, I(g) = 1, and the lower bound in (9.17) becomes (μ′′(0)/K)2 =
2π , whereas the upper bound is trivially infinite. This yields the Hodges–Lehmann
result (9.4).

Turning back to (9.12) and (9.13), but with J1 concave (and still nondecreasing)
on [1/2, 1), J′1 is nonincreasing, so that κ+

J1
= J′1(1/2) and

12AREf

(
φJ1/φW

) ≤ (J′1(1/2))2/K(J1). (9.18)

Not much can be said on the lower bound, though, without further assumptions
on the behavior of J1 around u = 1.

Replacing, for various score-generating functions J1 and densities f , the quanti-
ties appearing in (9.12), (9.15) or (9.18) with their explicit values provides a variety
of bounds of the Hodges–Lehmann type. Below, we consider the van der Waerden
tests φvdW, based on the score-generating function (9.9) and the Cauchy-score rank
tests φCauchy, based on the score-generating function

JCauchy(u) = sin (2π (u − 1/2)). (9.19)

Proposition 2. For all symmetric densities f in FvdW, FCauchy and FvdW
⋂

FCauchy,
respectively,

(1) AREf (φW/φvdW) ≤ 6/π ;
(2) AREf (φCauchy/φW) ≤ 2π2/3;
(3) AREf (φCauchy/φvdW) ≤ 4π .
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Proof. The van der Waerden score (9.9) is strictly increasing, and convex
over[1/2, 1). One readily obtains

K(JvdW) = 1 and J′vdW(u) = √
2π exp{(�−1(u))2/2},

hence κ−
vdW = J′vdW(1/2) = √

2π . Plugging this into the left-hand side inequality
of (9.15) yields (1). Alternatively one can directly apply (9.17).

The Cauchy score is concave over [1/2, 1), but not monotone (being of bounded
variation, however, it is the difference of two monotone function). Direct inspection
of (9.19) nevertheless reveals that

K(JCauchy) = 1/2 and J′Cauchy(u) = 2π cos (2π (u − 1/2)),

hence κ+
Cauchy = J′Cauchy(1/2) = 2π . Substituting this in (9.12) yields (2). The product

of the upper bounds in (1) and (2) yields (3). �

Remarkably, those three bounds are sharp. Indeed, numerical evaluation shows
that they can be approached arbitrarily well by taking extremely heavy-tails such as
those of stable densities fα with tail index α → 0, Student densities with degrees
of freedom ν → 0, or Pareto densities with α → 0; see also the family FHL of
densities fa,ε(x) defined in Eq. (9.24).

Figure 9.1 provides plots of AREf (φW/φvdW) and AREf (φCauchy/φvdW) for var-
ious densities. Inspection of those graphs shows that both AREs are decreasing as
the tails become lighter; the sharpness of bounds (1) and (3), hence also that of
bound (2), is graphically confirmed.

The bounds proposed in Proposition 2 are not new, and have been obtained already
in Gastwirth (1970). One would like to see similar bounds for other score functions,
such as the Student ones

Jtν (u) = (ν + 1)F−1
tν

(u)/(ν + F−1
tν

(u)2) 0 < u < 1

= 1 + ν√
ν

√

−1 + 1

IBν(1 − 2u)
IBν(1 − 2u) 1/2 ≤ u < 1 (9.20)

where IBν(v) denotes the inverse of the regularized incomplete beta function
evaluated at (1, v, ν/2, 1/2) and F−1

tν
stands for the Student quantile function with ν

degrees of freedom. Note that limv→−1 IBν(v) = 0, so that limu→1 Jtν (u) = 0.
Since Jtν (1/2) = 0 and J′tν (1/2) > 0, this means that, on [1/2, 1), Jtν is a
redescending function; in general, it is neither convex nor concave on [1/2, 1).

Differentiating (9.20), we get, for u ≥ 1/2,

J ′
tν

(u) =
√
π (ν + 1)�

(
ν
2

)

√
ν�
(
ν+1

2

) (−1 + 2IBν(1 − 2u)) IBν(1 − 2u)
1−ν

2 , (9.21)
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Fig. 9.1 AREf (φW/φvdW) and AREf (φCauchy/φvdW) under various families of densities: symmetric
stable (indexed by their tail parameterα), Student-t (indexed by their degrees of freedom ν) or Pareto
(indexed by their shape parameter α)

from which we deduce that

lim
u→1

J′tν (u) =
⎧
⎨

⎩

0 0 < ν < 1
−2π ν = 1
−∞ 1 < ν .

Except for the ν = 1 case, which is covered by (2) and (3) in Proposition 2, these
values do not provide exploitable values for κ+. For ν < 1, however, one can check
from (9.21) that maxu≥1/2|J′(x)| = J′(1/2), so that

κ+
Jtν

= −√
π (ν + 1)�

(ν
2

)/√
ν �

(
ν + 1

2

)
.

Elementary, though somewhat tedious, algebra yields

K(Jtν ) = (ν + 1)/(ν + 3).

Plugging this into (9.12), we obtain, for ν ≤ 1, the following additional bounds.

Proposition 3. For all 0 < ν ≤ 1 and all symmetric density f in FJtν
and

FJtν

⋂
FJvdW , respectively,

(4) AREf (φtν /φW) ≤ π�2( ν2 )(ν + 3)(ν + 1)/12ν�2( ν+1
2 ), and

(5) AREf (φtν /φvdW) ≤ �2( ν2 )(ν + 3)(ν + 1)/2ν�2( ν+1
2 ).

Inequality (4) is sharp, the bound being achieved, in the limit, under very heavy tails
(stable densities with α ↓ 0, or Student-tμ densities with μ ↓ 0). Since this is also
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the case, under the same sequences of densities, for inequality (1) in Proposition 2,
inequality (5) is sharp as well. The upper bounds (4) and (5) are both decreasing
functions of the tail index ν; both are unbounded at the origin, and both converge to
the corresponding Cauchy values as ν → 1.

9.2.2 The Serial Case

Until the early 1980s, and despite some forerunning time-series applications such
as Wald and Wolfowitz (1943) (published as early as 1943—two years before Frank
Wilcoxon’s pathbreaking 1945 paper), rank-based methods had been essentially lim-
ited to statistical models involving univariate independent observations. Therefore,
the traditional ARE bounds (Hodges and Lehmann 1956, 1961), Chernoff–Savage
(1958) or Gastwirth (1970), as well as the classical monographs (Hájek and Šidáak
1967; Randles and Wolfe 1979; Puri and Sen 1985, to quote only a few) mainly deal
with univariate location and single-output linear (regression) models with indepen-
dent observations. The situation since then has changed, and rank-based procedures
nowadays have been proposed for a much broader class of statistical models, in-
cluding time-series problems, where serial dependencies are the main features under
study.

In this section, we focus on the linear rank statistics of the serial type involving
two square-integrable score functions. Those statistics enjoy optimality properties
in the context of linear time series (ARMA models; see Hallin and Puri 1994 for
details). Once adequately standardized, those statistics yield the so-called rank-
based autocorrelation coefficients that are denoted by R(n)

1, . . . ,R(n)
n, the ranks in

a triangular array X(n)
1, . . . ,X(n)

n of observations. Rank autocorrelations (with lag
k) are linear serial rank statistics of the form

tr∼
(n)

J1J2;k
:= [(n− k)−1

n∑

t=k+1

J1
( R

(n)
t

n+ 1

)
J2
( R(n)

t−k

n+ 1

)−m
(n)
J1J2

]
(s

(n)
J1J2

)−1,

where J1 and J2 are (square-integrable) score-generating functions, whereas m
(n)
J1J2

and s
(n)
J1J2

:= s
(n)
J1J2;k denote the exact mean of J1

(R(n)
t

n+1

)
J2
(R(n)

t−k

n+1

)
and the exact standard

error of (n−k)− 1
2
∑n

t=k+1J1
(R(n)

t

n+1

)
J2
(R(n)

t−k

n+1

)
under the assumption of i.i.d.X(n)

t ’s (more

precisely, exchangeableR(n)
t ’s), respectively; we refer to pages 186 and 187 of Hallin

and Puri (1994) for explicit formulas. Signed-rank autocorrelation coefficients are
defined similarly; see Hallin and Puri (1992) or Hallin and Puri (1994).

Rank and signed-rank autocorrelations are measures of serial dependence offering
rank-based alternatives to the usual autocorrelation coefficients, of the form

r
(n)
k :=

n∑

t=k+1

XtXt−k/

n∑

t=1

X2
t ,

which consitute the Gaussian reference benchmark in this context. Of particular
interest are
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(i) the van der Waerden autocorrelations (Hallin and Puri 1988)

r∼
(n)

vdW;k
:= [(n− k)−1

n∑

t=k+1

�−1
( R

(n)
t

n+ 1

)
�−1

( R(n)
t−k

n+ 1

)−m
(n)
vdW

]
(s

(n)
vdW)−1,

(ii) the Wald-Wolfowitz or Spearman autocorrelations (Wald and Wolfowitz 1943)

r∼
(n)

SWW;k
:= [(n− k)−1

n∑

t=k+1

R
(n)
t R

(n)
t−k −m

(n)
SWW

]
(s

(n)
SWW)−1,

(iii) and the Kendall autocorrelations (Ferguson et al. 2000, where explicit values
of m(n)

K and s
(n)
K are provided)

r∼
(n)

K;k
:= [1 − 4D(n)

k

(n− k)(n− k − 1)
−m

(n)
K

]
(s

(n)
K )−1

with D
(n)
k denoting the number of discordances at lag k, that is, the number of

pairs (R(n)
t ,R(n)

t−k) and (R(n)
s ,R(n)

s−k) that satisfy either

R
(n)
t < R(n)

s and R
(n)
t−k > R

(n)
s−k , or R

(n)
t > R(n)

s and R
(n)
t−k < R

(n)
s−k;

more specifically, D(n)
k :=∑n

t=k+1

∑n
s=t+1 I (R(n)

t < R(n)
s , R(n)

t−k > R
(n)
s−k).

The van der Waerden autocorrelations are optimal—in the sense that they allow
for locally optimal rank tests in the case of ARMA models with normal innovation
densities. The Spearman and Kendall autocorrelations are serial versions of Spear-
man’s rho and Kendall’s tau, respectively, and are asymptotically equivalent under
the null hypothesis of independence; although they are never optimal for any ARMA
alternative, they achieve excellent overall performance. Signed rank autocorrelations
are defined in a similar way.

Let Ji , i = 1, . . . , 4 denote four square-summable score functions, and assume
that they are monotone increasing, or the difference between two monotone increas-
ing functions (that assumption tacitly will be made in the sequel each time AREs
are to be computed). Recall that F2 denotes the subclass of densities f ∈ F having
finite moments of order two. The asymptotic relative efficiency, under innovation
density f ∈ F2, of the rank-based tests φr

J1J2
based on the autocorrelations r

(n)
∼J1J2;k

with respect to the rank-based tests φr
J3J4

based on the autocorrelations r(n)
∼ J3J4;k is

ARE∗
f (φr

J1J2
/φr

J3J4
)

= K(J3)

K(J1)

(∫ 1
0 J1(v)ϕf (F−1(v))dv
∫ 1

0 J3(v)ϕf (F−1(v))dv

)2
K(J4)

K(J2)

(∫ 1
0 J2(v)F−1(v)dv
∫ 1

0 J4(v)F−1(v)dv

)2

= K(J3)

K(J1)
C2

f (J1, J3)
K(J4)

K(J2)
D2

f (J2, J4) (9.22)



148 M. Hallin et al.

with Cf (J1, J3) := K(J1, f )/K(J3, f ) and Df (J2, J4) := J (J2, f )/J (J4, f ).
The Cf ratios have been studied in Sect. 9.2.1, and the same conclusions apply

here; as for the Df ratios, they can be treated by similar methods.
Denote by φr

vdW, φr
SWW, . . . the tests based on r

(n)
∼ vdW;k , r(n)

∼ SWW;k , etc. The serial
counterpart of AREf (φW/φJ1 ) is ARE∗

f (φr
SWW/φr

J1J2
), for which the following result

holds.

Proposition 4. Let the score functions J1 and J2 be monotone increasing, skew-
symmetric about 1/2, and differentiable, with strictly positive J′1(1/2) and J′2(1/2).
Suppose that f ∈ F2

⋂
FJ1

⋂
FJ2 is a symmetric probability density function. Then,

(1) if J1 and J2 are convex on [1/2, 1),

ARE∗
f (φr

SWW/φr
J1J2

) = ARE∗
f (φr

K/φ
r
J1J2

) ≤ 144
K(J1)K(J2)

(J′1(1/2) J′2(1/2))2
;

(2) if J1 and J2 are concave on [1/2, 1),

ARE∗
f (φr

J1J2
/φr

SWW) = ARE∗
f (φr

J1J2
/φr

K) ≤ 1

144

(J′1(1/2) J′2(1/2))2

K(J1)K(J2)
.

Proof. In view of (9.7), we have

ARE∗
f (φr

SWW/φr
J1J2

) = AREf (φW/φJ1 )
K(J2)

K(JW )

(∫ 1
0 (v − 1/2)F−1(v)dv
∫ 1

0 J2(v)F−1(v)dv

)2

.

Consider part (1) of the proposition. It follows from (9.13) that

AREf (φW/φJ1 ) ≤ 12 K(J1)/(J′1(1/2))2.

Since J2 is convex over [1/2, 1), J2(u) ≥ J′2(1/2)(u − 1/2) for all u ∈ [1/2, 1),
so that
∫ 1

0
J2(v)F−1(v)dv = 2

∫ 1

1/2
J2(v)F−1(v)dv ≥ J′2(1/2)

∫ 1

1/2
(v − 1/2)F−1(v)dv.

It follows that

K(J2)

K(JW )

(∫ 1
0 (v − 1/2)F−1(v)dv
∫ 1

0 J2(v)F−1(v)dv

)2

≤ 12 K(J2)

(J′2(1/2))2
,

where the assumption of finite variance is used. Part (1) of the result follows. A similar
argument holds (with reversed inequalities) if J2 is concave, yielding part (2).

Applying this result to the score functions J1(u) = J2(u) = �−1(u) (convex
over [1/2, 0)) for which J′1(1/2) = J′2(1/2) = √

2π and K(J1) = K(J2) = 1, we
readily obtain the following serial extension of Hodges and Lehmann’s “6/π result”:

ARE∗
f (φr

SWW/φr
vdW) = ARE∗

f (φr
K/φ

r
vdW) ≤ (6/π )2. (9.23)
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Table 9.1 Numerical values of Cf , Df , AREf = AREf (φW/φvdW), and ARE∗
f = ARE∗

f (φr
SWW/φr

vdW)
under densities fa,ε in the Hodges–Lehmann family FHL (see (9.24)), for various values of ε and
a → 0

ε Cf Df AREf ARE∗
f

0 0.398942 0.282070 1.90986 1.82346
0.2 0.396313 0.276619 1.88476 1.73062
0.4 0.388772 0.271848 1.81372 1.60844
0.6 0.377291 0.271061 1.70818 1.50608
1 0.348213 0.287973 1.45503 1.44796
2 0.294160 0.303085 1.03836 1.14461
3 0.282852 0.285646 0.960064 0.940023
10 0.282095 0.282095 0.954930 0.911891
100 0.282095 0.282095 0.954930 0.911891

An important difference, though, is that the bound in (9.23) is unlikely to be
sharp. Section 9.3 provides some numerical evidence of that fact, which is hardly
surprising; while the ratio Cf (JvdW, JW) is maximized for densities putting all their
weight about the origin, this no longer holds true for Df (JvdW, JW). In particular,
the sequences of densities considered in Hodges and Lehmann (1961) or Gastwirth
(1970) along which Cf (JvdW, JW) tends to its upper bound typically are not the same
as those along which Df (JvdW, JW) does.

9.3 Some Numerical Results

In this final section, we provide numerical values of AREf (φW/φvdW) (denoted as
AREf in the sequel) and ARE∗

f (φr
SWW/φr

vdW) (denoted as ARE∗
f in the sequel) under

various families of distributions.
First, let us give some ARE values under Gaussian densities: if f = φ, we obtain

Cφ(JW, JvdW) = Dφ(JW, JvdW) = 1

2
√
π

≈ 0.28209

so that

AREφ(φW/φvdW) = 3

π
≈ 0.95493

and

ARE∗
φ(φr

SWW/φr
vdW) = 9

π2
≈ 0.91189.

Tables 9.1, 9.2, and 9.3 provide numerical values of AREf and ARE∗
f under

(1) (Table 9.1) The two-parameter family FHL of densities fa,ε associated with the
distribution functions

Fa,ε(x) =
{

�(x) if 0 ≤ x ≤ ε

�(ε + a(x − ε)) if ε < x
(9.24)
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Table 9.2 Numerical values of Cf , Df , AREf = AREf (φW/φvdW), and ARE∗
f = ARE∗

f (φr
SWW/φr

vdW)
under Student-t densities with various degrees of freedom ν

ν Cf Df AREf ARE∗
f

0.1 0.394451 – 1.86710 –
1 0.343120 – 1.41277 –
2 0.321212 0.243196 1.23813 0.878736
4 0.304695 0.269173 1.11407 0.968623
6 0.297953 0.274541 1.06531 0.963551
8 0.294303 0.276784 1.03937 0.955507
10 0.292017 0.278005 1.02329 0.949042
100 0.283146 0.281737 0.962059 0.916370

Table 9.3 Numerical values of Cf , Df , AREf = AREf (φW/φvdW), and ARE∗
f = ARE∗

f (φr
SWW/φr

vdW)
under Student-t densities with various degrees of freedom ν

α Cf Df AREf ARE∗
f

0.1 0.393903 0.175222 1.86191 0.685991
1 0.313329 0.2720600 1.1781 1.046388
2 0.282095 0.2820950 0.954930 0.911893
10 0.222095 0.2934363 0.591916 0.611600
100 0.168549 0.2953577 0.340904 0.356871

where Fa,ε(x) is defined by symmetry for x ≤ 0 (this family of distributions,
which has been used by Hodges and Lehmann (1961), is such that the nonserial
6/π bound is achieved, in the limit, as both a and ε go to zero),

(2) (Table 9.2) The family FStudent of Student densities with degrees of freedom
ν > 0, and

(3) (Table 9.3) The family Fe of power-exponential densities, of the form

fα(x) := e−|x|α

2�(1 + 1/α)
x ∈ R, α > 0. (9.25)

All tables seem to confirm the same findings: both the serial and the nonerialAREs
are monotone in the size of the tails, with the nonserial AREf attaining its maximal
value (6/π ≈ 1.90986) under heavy-tailed f densities, while the maximal value
for the serial ARE∗

f lies somewhere around (6/π )(3/π ) ≈ 1.82346. Inspection of
Table 9.1 reveals that, although the limit ofCf as a → 0 is monotone in the parameter
ε, the ratio Df is not; from Table 9.3, the highest values of Df under the distribution
(9.24) are attained for a → ∞ and ε ≈ 0.

Under Student densities f = ftν , the nonserial AREf is decreasing with ν, taking
value 1.41277 at the Cauchy (ν = 1), value one about ν = 15.42 (a value of ν

that is not shown in the figure; Wilcoxon is thus outperforming van der Waerden up
to ν = 15 degrees of freedom, with van der Waerden taking over from ν = 16 on),
and tending to the Gaussian value 0.95493 as ν → ∞; the serial ARE∗

f is undefined
for ν ≤ 2, increasing for small values of ν, from an infimum of 0.878736 (obtained
as ν ↓ 2) up to a maximum of 0.968852 (reached about ν = 4.24), then slowly
decreasing to the Gaussian value 0.911891 as ν → ∞. Sperman–Wald–Wolfowitz
and Kendall thus never outperform van der Waerden autocorrelations under Student
densities.
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Fig. 9.2 Nonserial AREf = AREf (φW/φvdW) (left plot) and serial ARE 
f = ARE∗

f (φr
SWW/φr

vdW)
(right plot) under densities fa,ε in the Hodges–Lehmann family FHL (see 9.24), as a function of
ε ∈ [0, 4]], for various choices of the parameter a

Power exponential distributionStudent distribution

non serial
serial

Fig. 9.3 Left plot: AREfν (φW/φvdW) and ARE 
fν

(φr
SWW/φr

vdW) for fν the Student distribution, as
a function of the degrees of freedom ν ∈ [2, 6]. Right plot: AREfα and ARE 

fα
for the power

exponential densities fα (9.25), as a function of the shape parameter α ∈ [0, 11]
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Under the double exponential densities f = fα , the nonserial AREf is decreasing
with α, with a supremum of 6/π (the Hodges–Lehmann bound, obtained as α ↓ 0),
and reaches value one about α = 1.7206 (similar local asymptotic performances
of Wilcoxon and van der Waerden, thus, occur at power-exponentials with parame-
ter α = 1.7206); the serial ARE∗

f is quite bad as α ↓ 0, then rapidly increasing for
small values of α, with a maximum of 1.08552 about α = 0.510, then deteriorating
again as α → ∞; for α larger than 3, the serial and nonserial AREs roughly coincide
(See figs. 9.2 and 9.3).
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Chapter 10
Fiducial Theory for Free-Knot Splines

Derek L. Sonderegger and Jan Hannig

10.1 Introduction

In statistical practice, there is a tension between fitting an easily interpretable model to
our data versus fitting a highly flexible model that fits the data better. One compromise
between these competing ideas is a spline model. The spline model of degree p can be
thought of as connected degree p polynomials with the requirement that the resulting
function be “smooth” at the connection points. These connection points are usually
called “knot points” and the usual smoothness requirement is that thep−1 derivative
exists.

The simplest example is the p = 1 spline with one knot point, which is a linear
function with some slope until the knot point, and then continues with a different
slope. The smoothness requirement is that the 0th derivative exists, which is, that
the function is continuous at the knot point. The resulting function is often called
the hockey-stick function. A degree p = 2 spline with one knot point is just two
quadratic curves joined together such that at the knot point the function has a 1st
derivative and is therefore “smooth”.

When using splines to approximate an unknown but continuous function, one
important question is where to place the knots. In typical nonparametric function
estimation, more knots than necessary are evenly spread along the dependent axis
and a penalty based on the second derivative (also known as function “wiggliness”) is
introduced (Ruppert et al. 2003). An alternative approach is to use a small number of
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knots but carefully place them. This problem of where to place the knots is known as
the free-knot spline problem. The free-knot spline problem is primarily interested in
estimating the location of the knot point and interpreting it as some sort of threshold
(Toms and Lesperance 2003; Sonderegger et al. 2009).

A Bayesian solution to the arbitrary degree p problem with a fixed number of
knot points is given by DiMatteo et al. (2001) and they recommend using a prior
of p

(
α, t , σ 2

) ∝ σ−2 where σ 2 is the usual variance term, α is the polynomial
coefficients, and t is the vector of knot points. The maximum likelihood solution for
the degree p = 1 free-knot spline problem is developed in Muggeo (2003) and is
available in the R package segmented (Muggeo 2008).

In this chapter, we investigate the fiducial solution to the free-knot spline problem
of degree p ≥ 4. In Sect. 10.2, we first extend the univariate fiducial Bernstein-
von Mises theorem to the multivariate setting, which shows that multivariate fiducial
estimators have an asymptotic multivariate normal distribution under certain assump-
tions. In Sect. 10.3, we derive the fiducial solution to the free-knot spline problem,
note that the Bernstein-von Mises assumptions are satisfied and investigate the small
sample properties by conducting a simulation study of degree p = 4 splines com-
paring the fiducial solution to the Bayesian solution of DiMatteo et al. (2001). In
Sect. 10.4, we give our concluding remarks.

10.1.1 Introduction to Fiducial Inference

R. A. Fisher first introduced his idea of fiducial inference (Fisher 1930) to address
what he felt was the major shortcoming of Bayesian inference. His goal was to
invent a posterior-like distribution without the need for a prior distribution. He did
not succeed in developing a general theory for finding these fiducial distributions
and his idea was met with extreme skepticism. In the 1990’s, generalized confidence
intervals (Weerahandi 1993) were found to have very good small sample properties
and (Hannig et al. 2006) shows the connection between generalized confidence
intervals and Fisher’s fiducial inference. Hannig (2009) developed a general theory
for developing fiducial solutions which has been used in a variety of contexts. The
solution for wavelets is given by Hannig and Lee (2009). Other problems include
variance components in normal mixed linear model (Hannig and Iyer 2008; Cisewski
and Hannig 2012), extreme value models (Wandler and Hannig 2011), and multiple
comparison issues (Wandler and Hannig 2012).

The general framework of fiducial inference assumes that the n observed data can
be written as a data generating equation X = G(U, ξ ), where ξ is a p length vector
of parameters, and U is a random vector of with a completely known distribution.

Setting X0 = (X1, . . . ,Xp), Xc = (Xp+1, . . . ,Xn), U0 = (U1, . . . ,Up) and
Uc = (Up+1, . . . ,Un) the data generating equation can be factorized as

X0 = G0(U0, ξ ) and Xc = Gc(Uc, ξ ).
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Assuming that for each ξ ∈ 
 that G0(ξ , ·) and Gc(ξ , ·) are one-to-one and differen-
tiable and that G0(ξ , ·) also invertible, then Hannig (2009) shows that the generalized
fiducial distribution is

r
(
ξ |x0

) = fx
(
x|ξ)J0(x0, ξ )

∫


fx
(
x|ξ ′)J0

(
x0, ξ ′)dξ ′

where

J0(x0, ξ) =
∣
∣
∣
∣
∣
∣

det
(

d
dξ

G−1
0 (x0, ξ)

)

det
(

d
dx0

G−1
0 (x0, ξ)

)

∣
∣
∣
∣
∣
∣

and fx(x|ξ ) is the density function. Since the choice to use the first p observations in
the definition of G0 was arbitrary, we could select any p observations that satisfy the
one-to-one, differentiable, and invertible conditions. Hannig (2009, 2013) suggests
letting the Jacobian J (x, ξ) be the average of all possible values of J0 and using

r(ξ |x) = fx
(
x|ξ)J (x, ξ )

∫


fx(x|ξ ′)J (x, ξ ′)dξ ′ . (10.1)

This distribution is similar to a Bayesian posterior distribution with the Jacobian
taking the role of the prior. This can be seen in the standard regression problem
where the Jacobian simplifies to J (x, ξ) = σ−2h (x). Since h (x) is in Jacobians
in both the numerator and denominator, it will cancel and the fiducial distribution is
the same as the Bayesian posterior with commonly used reference prior distribution
σ−2.

Two numerical issues commonly arise in the evaluation of the fiducial density.
First, it is often not feasible to take the average of all possible values of J0 because
the number of possible permutations grows as np. This is often solved by taking a
random selection of possible J0 and using the sample mean as an approximation to
J (x, ξ). A second challenge comes in evaluating the denominator, which is often
intractable due to the high number of dimensions. To address this issue, we use the
standard Markov Chain Monte Carlo (MCMC) techniques to take a random sample
from the fiducial density and all subsequent inference is based on that sample.

10.2 Asymptotic Consistency of the Multivariate Fiducial
Estimators

Many estimators have an asymptotic normal distribution and fiducial estimators
are no exception. Conditions A0–A6 in Appendix A are the standard conditions
sufficient to prove that the maximum likelihood estimators to have an asymptotic
normal distribution (Lehmann and Casella 1998). That is, the maximum likelihood
estimators ξ̂n are consistent and

√
n(ξ̂n − ξ ) is asymptotically normal with mean 0

and covariance matrix
[
I (ξ )

]−1
, where I (ξ) is the Fisher information matrix.
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The Bernstein-von Mises theorem gives conditions (B1–B2 in appendix A.10.1)
under which the Bayesian posterior distribution is asymptotically normal (van der
Vaart 1998, 2003). In brief, the proof can be thought of as showing that the posterior
distribution becomes close to the distribution of the MLE. Hannig (2009) gives
sufficient conditions (C1–C2) for the univariate fiducial distribution to converge to
the Bayesian posterior which is in turn close to the MLE distribution. Hannig (2009)
defines the following assumptions:

(C1) For any δ > 0

inf
ξ /∈B(ξ0,δ)

mini=1...n log f(ξ , Xi)∣
∣Ln(ξ ) − Ln(ξ 0)

∣
∣

Pξ0−→ 0

where Ln (ξ) =∑n
i=1 log f (xi |ξ) and B

(
ξ 0, δ

)
is a neighborhood of diameter

δ centered at ξ 0.
(C2) Let π (ξ ) = Eξ0

J0(X0, ξ ). The Jacobian function J (X, ξ)
a.s.→ π (ξ) uniformly

on compacts in ξ . In the single variable case, this reduces to assumptions that
J (X, ξ) is continuous in ξ , π (ξ) is finite and π (ξ0) > 0, and for some δ0

Eξ0

(

sup
ξ∈B(ξ0,δ)

J0 (X, ξ)

)

< ∞.

The extension to the multiparameter case follows Yeo and Johnson (2001) and re-
places assumption C2 with C2a, b, and c. Let ω ∈ � be a collection of indices in
{1, 2, . . . p} and ω̄ = {1, 2, . . . p}\ω. Define

Jω (xω; ξ) = Eξ0

[
J0 (xω, Xω̄; ξ)

]
.

(C2.a) There exists an integrable and symmetric function g (·) and compact space
B̄
(
ξ 0, δ

)
such that for ξ ∈ B̄

(
ξ 0, δ

)
and x ∈ R

p then |J (x; ξ)| ≤ g (x).
(C2.b) There exists a sequence of measurable sets Sp

M such that

P
(
R

p − ∪∞
M=1S

p

M

) = 0.

(C2.c) For eachM and for allω ∈ �, Jω (xω; ξ) is equicontinuous in ξ for {xω} ∈ Sω
M

where S
p

M = Sω
M × Sω̄

M .

Let Rξ be an observation from the fiducial distribution r(ξ |x) and denote the density

of s = √
n
(
Rξ − ξ̂n

)
by π∗ (ξ , x).

Theorem 1 Given a random sample of independent observations X1, . . . ,Xn, then
under assumptions A0–A6, B1–B2, and C1–C2.c

∫

Rp

∣∣
∣∣∣
∣∣
π∗ (s, x)−

√
det
∣∣I
(
ξ 0

)∣∣
√

2π
e−sT I(ξ0)s/2

∣∣
∣∣∣
∣∣
ds

Pθ0→ 0. (10.2)

Due to its technical nature, we relegate the proof to Appendix A, Sect. 10.2.
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10.3 Fiducial Free-Knot Splines

We consider the fiducial free-knot spline solution for splines of degreep ≥ 4. We first
derive the fiducial distribution using a simple set of spline basis functions so that the
derivatives necessary derivatives can be calculated for the Jacobian. We then address
the asymptotic behavior of the solution by applying Theorem 1 to this solution. We
next consider the practical issue of creating a proposal distribution for the MCMC
simulation. Finally, we conduct a simulation study to compare the fiducial method
to the Bayesian solution with reference prior ∝ σ−2 in four scenarios.

10.3.1 Deriving the Fiducial Free-Knot Spline

Suppose data {xi , yi} for i ∈ [1, . . . , n] are generated from

yi = g (xi |α, t)+ σεi

where εi
iid∼ N (0, 1) and g (x|α, t) is a degree p ≥ 4 spline with κ knot points

denoted t and p+ κ + 1 polynomial coefficients α. We assume that κ is known, but
the knot locations t are unknown and are the primary target of investigation. The
spline can be written using many different basis functions, but computational ease,
we consider the piecewise truncated polynomial basis

g(xi |α, t) =
p∑

j=0

αjx
j

i +
κ∑

k=1

αp+k (xi − tk)
p
+

where

(u)+ =
{

0 if u < 0

u otherwise

is the truncation operator and has higher precedence than the exponentiation. This
representation makes it clear that the response function changes form at each knot
point. The following derivation of the fiducial solution could, in principle, be done
using more numerically stable basis functions, but the derivatives become more com-
plicated. Our early work on this problem implemented a purely numerical solution
using the b-spline basis, but the lack of closed form representation prevented showing
that Theorem 1 holds.

We derive the fiducial solution the to free-knot spline solution by first inverting the
data generating equation and subsequently solving for εi . The Jacobian is then found
by taking the derivative (with respect to the parameters of interest) of the inversion
result.
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Specifically, we denote the inverse by G−1
0 (yi , ξ) and let ξ = {

α, t , σ 2
}T

. We
recognize that

εi = G−1
0 (yi , ξ) = 1

σ
(yi − g(xi |θ ))

and therefore the partial derivatives with respect to the parameters are

∂G−1
0 (yi , ξ)

∂α
= − 1

σ

(
1, xi , . . . , xp

i , (xi − t1)
p
+ , . . . , (xi − tκ )

p
+
)

∂G−1
0 (yi , ξ)

∂t
= p

σ

(
αp+1 (xi − t1)

p−1
+ , . . . ,αp+κ (xi − tκ )

p−1
+
)

∂G−1
0 (yi , ξ)

∂σ 2
= − 1

2σ 3
(yi − g(xi |θ ))

∂G−1
0 (yi , ξ)

∂yi
= 1

σ

where we define 00 = 0 for notational convenience. Let y0 = {y(1), . . . , y(l)
}

where
l = p+κ+2 be any selection of data points that satisfies the necessary invertability
criteria. The Jacobian using these data points y0 is therefore

J0
(
y0, ξ

) =
∣∣∣∣

1

σ 2
pκ det

[
Bα Bt Bσ 2

]
∣∣∣∣

where

Bα =
⎡

⎢
⎣

1 x(1) . . . x
p

(1) (x(1) − t1)p+ . . . (x(1) − tκ )p+
...

...
. . .

...
...

. . .
...

1 x(l) . . . x
p

(l) (x(l) − t1)p+ . . . (x(l) − tκ )p+

⎤

⎥
⎦ ,

Bt =

⎡

⎢⎢
⎣

α1+p+1
(
x(1) − t1

)p−1
+ . . . α1+p+κ

(
x(1) − tκ

)p−1
+

...
. . .

...

α1+p+1
(
x(l) − t1

)p−1
+ . . . α1+p+κ

(
x(l) − tκ

)p−1
+

⎤

⎥⎥
⎦ ,

and

Bσ 2 =
⎡

⎢
⎣

− 1
2

(
y(1) − g

(
x(1)|θ

))

...

− 1
2

(
y(l) − g

(
x(l)|θ

))

⎤

⎥
⎦ .

Because Bσ 2 contains a subtraction of a linear combination of columns of Bα and
Bt , the subtraction does not change the determinant and therefore

∣
∣∣∣

1

σ 2
pκ det

[
Bα Bt Bσ 2

]
∣∣∣
∣ =

∣∣∣
∣

1

2σ 2
pκ det

[
Bα Bt B̃σ 2

]
∣∣∣
∣
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where

B̃σ 2 =
⎡

⎢
⎣

y(1)
...

y(l)

⎤

⎥
⎦ .

However, the question of which sets of indices satisfy the one-to-one and invertibility
requirements is not obvious. A sufficient condition is that the set of indices includes
at least two observations from each interknot region. As we are primarily interested
in cases where the number of observations is much larger than the number of knots,
this condition is not onerous.

Theorem 2 Given g (x|α, t), a free-knot spline of degree 4 or greater with pa-
rameters α and t with truncated polynomial basis functions and observations
with xi a randomly selected element on some contiguous interval [a, b] of R and

yi = g (xi |α, t) + σεi where εi
iid∼ N (0, 1), define ξ = (α, t , σ 2

)
. Let π∗ (ξ , y) be

the fiducial distribution of Rξ . Then,

∫

Rp

∣∣∣∣∣∣∣
π∗ (s, y)−

√
det
∣∣I
(
ξ 0

)∣∣
√

2π
e−sT I(ξ0)s/2

∣∣∣∣∣∣∣
ds

Pθ0→ 0

Proof. It suffices to show that the free-knot spline satisfies assumptions A0–A6,
B1–B2, C1–C2.c. These are shown in Appendix B, which is available at the author’s
website. �

A shortcoming of this proof is the requirement that p ≥ 4, while many free-knot
spline applications are concerned with degree p = 1 or 2 splines.

10.3.2 Numerical Evaluation of the Fiducial Density

There are two substantial challenges to numerical evaluation of the fiducial density.
The first is that the Jacobian does not simplify to a “nice” expression utilizing all of the
data. We use the suggestion of Hannig (2009) to use the mean of randomly selected
Jacobians as an estimate of J (x, ξ). The second challenge is that the scaling constant
in the denominator of Eq.10.1 is intractable and we only know the fiducial distribution
up to a scaling constant. This is the same numerical challenge found in evaluating
a Bayesian posterior distribution and we use MCMC methods to select a random
sample from the fiducial distribution. The key step of the MCMC is to produce good
proposal values, which is often difficult when model parameters are highly correlated.
Unfortunately, our choice to use the analytically convenient truncated polynomial
basis functions results in numerically inconvenient correlated parameters.
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If the knot point locations were known, then the fiducial distribution of the α and
σ 2 terms is known and is same as the Bayesian posterior distribution with reference
prior distribution ∝ σ−2. More formally, letting X = [Bα , B t ] be the design matrix
with fixed and known knot points, the fiducial distribution is α|σ 2, y ∼ N

(
α̂,Vα

)

where α̂ = (XT X
)−1

XT y and Vα = (XT X
)−1

. Similarly, the marginal distribution
ofσ 2|y is a scaled inverse-χ2 distribution, σ 2|y ∼ Inv-χ2

(
n− p − κ − 1, s2

)
where

s2 is the usual mean squared error term s2 = (y − Xα̂
)T (

y − Xα̂
)
/(n−p−κ−1).

We denote the product of these distributions as the fixed fiducial distribution.
Unfortunately, the fiducial distribution of σ 2 and α conditioned on the knot point

locations t is not the earlier fixed fiducial distribution because the Jacobian term
cannot be factored into terms that contain only t parameters or only α terms. However,
the fixed fiducial distribution does provide a useful . . . proposal distribution in a
MCMC estimation.

The procedure for creating a proposed value in the Markov chain is to take the
current knot locations and perturb them by adding a small amount of noise. The
proposed knots are t∗ = t + u∗ where u∗ ∼ MVN

(
0, σ 2

k I k

)
, I k is the identity

matrix and σ 2
k is the tuning parameter for the MCMC and reflects how much each

knot point is “jittered.” We then take these proposed knot points and consider them as
known and use the aforementioned fixed fiducial distributions to produce proposed
values for σ 2 and then α.

These three proposal distributions are multiplied to create the total proposal
distribution T

(
ξ ∗|ξ). For the given proposed set of parameters, if the ratio

r = f
(
y|ξ ∗)

f (y|ξ)
T
(
ξ |ξ ∗)

T
(
ξ ∗|ξ)

is greater than a Uniform(0,1) random deviate, we accept the proposed value as the
next value in the Markov chain, otherwise the current vector of parameters is used.

The use of the fixed fiducial distribution is similar in spirit to the method of
DiMatteo et al. (2001) where they integrate out the α and σ 2 parameters and consider
only the distribution of the knot points t . The difference is that their prior factored
nicely whereas the Jacobian does not.

10.3.3 Simulation Study for Degree Four Splines

The simulation study will compare the fiducial method to the Bayesian method on
four different degree four splines, all defined on domain x ∈ [0, 1] and with a similar
range of y values.

The software we used to evaluate the performance of the fiducial solution com-
pared to the Bayesian method with prior ∝ σ−2 used the same software for
implementing the MCMC and generating proposed values, with the only differ-
ence in the software being whether the likelihood was multiplied by the Bayesian
prior distribution or the calculated Jacobian.
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Fig. 10.1 Degree four examples—the examples shown are the high sample size and high variability
case. Upper left panel, the “Single” knot case; upper right panel, three knots evenly spread across
the x-axis which we refer to as the “simple” three knot case. Lower left panel, three knots “clustered”
to the left side of the x-axis; lower right panel, 3 evenly spaced knots with with a “subtle” effect
initially but with increasing effect size from left to right

Table 10.1 Coefficients defining the four different simulation scenarios

Scenario Knot point(s) Spline coefficients

Single knot 0.5 0, 8,−60, 144,−108, 256
Three knots-simple 0.25, 0.50, 0.75 0, 30,−203, 386,−179,−276, 854, 270
Three knots-clustered 0.20, 0.40, 0.60 −1, 47,−397, 967,−640,−510, 2002,−1043
Three knots-subtle 0.25, 0.50, 0.75 0,−3, 2, 1, 1, 10,−100, 600

The first spline has a single knot point at the center of the range of x values. The
second has three knot points even spread through the x values. The third function
also has three knot points, but the knots are not evenly distributed across the x values,
instead they are clustered toward the left. The final function has three knot points
evenly spread on the x-axis, but has a subtle change to the function at the first knot
point, a larger change at the middle knot point and a large change at final knot. These
functions are shown in Fig. 10.1 and are defined in table 10.1.

For each scenario, we compared the methods using two different levels of variance
and two samples sizes. The sample sizes n = {40, 100} were chosen to reflect real
world cases of data scarcity and moderate abundance. The two variance levels reflect
an idealistically low level of variance (σ = 0.1) and a more realistic “signal-to-noise”
level (σ = 0.25) commonly seen in the authors’ applied work.
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Fig. 10.2 Coverage rates for the “Three Knot-Clustered” simulation. The color (red, blue) rep-
resents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the
sigma = 0.1, n = 40 simulation. Graphs of the coverage rate for the other scenarios was similar
and can be found in Appendix B

We consider coverage rates (Fig. 10.2) of the fiducial credible intervals of the true
knot point values. In the “coverage plots” presented, the X-axis denotes the desired
confidence level and the Y-axis is the observed coverage rate in the experiment. If
the observed coverage rate is below the equivalence line (y = x), then the method
is considered liberal and if the observed rate is above the equivalence line then
the method is conservative. Ideally, a method would lie exactly on the equivalence
line but a conservative method is more preferable to a liberal because claiming a
95% coverage rate, when, in truth, the coverage rate is less is a more serious error
than having the true coverage rate being larger than claimed. The only complaint
against a conservative method is that the lengths of confidence intervals are larger
than necessary to achieve the desired confidence level.

In the coverage plots presented, the oval lines around the equivalence line are the
region in which we would expect the coverage rates to lie in due to stochastic variation
in the simulation. For each simulation, the α-level necessary for the inclusion of
the true parameter value in a confidence interval was calculated. Since, the data is
actually generated from the model we are fitting, then these α-levels should follow
a uniform distribution if the coverage rates are correct. The jth ordered statistic of
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these, therefore, follows a Beta (j , n− j + 1) distribution and appropriate 95 %
point-wise confidence region can be calculated from this.

For each of the 16 combinations of function type, sample size, and variance,
1,000 simulations were performed and took approximately 4 days to run on a desktop
computer. For the three knot simple case, a fiducial analysis took ≈ 100 s while the
Bayesian solution took ≈ 10 s. The reason for this drastic difference is that for every
evaluation of the fiducial density, the jacobian at that point must be estimated from
averaging repeated samples of J0 (x0, ξ).

10.3.4 Simulation Results

We display only the results of the “Three Knot-Clustered” function here and graphics
of the other functions to the appendix because the results were similar.

The coverage rates (Fig. 10.2) for the for the fiducial method was typically slightly
higher than the desired level, but was generally within the expected coverage region
given the sample size. The Bayesian method was also generally consistent with the
desired rate, but was liberal in a few instances. For the “single knot case,” both the
fiducial and Bayesian methods were neither conservative nor liberal. In the “simple
three knot case”, the Bayesian method was liberal for all knots and sample sizes in
the high variance cases, while the fiducial method was liberal for only the first knot in
the high variance high sample case. In the “three knot clustered” case, the Bayesian
method is conservative for knots one and two, but liberal for the third. In contrast, the
fiducial intervals were conservative for knot one. In the “three knot subtle” case, the
Bayesian method was conservative for knot one and two. The fiducial method was
conservative for knot one in the small variance case. Overall, the fiducial estimator
tends to have a coverage rate that is closer to the nominal rate than the Bayesian.

The lengths of the 95 % confidence (or credible) interval lengths showed a con-
sistent trend across our simulation (Fig. 10.3). The Bayesian intervals were longer in
every scenario we examined, however, the difference was the smallest in the single
knot case.

10.4 Conclusions

Free-knot splines are computationally challenging to fit, but in instances where in-
ference on the knot points is desired, we believe that the fiducial method is a viable
method for analysis. Simulation shows that the fiducial method is an effective method
for the high degree free-knot spline problem and is superior to the Bayesian solution
with prior ∝ σ−2. This is consistent with our previous experience of the fiducial
method being equivalent to or better than the standard Bayesian solution derived
using the default prior (Cisewski and Hannig 2012).
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Fig. 10.3 Confidence interval lengths for the “Three Knot-Clustered” simulation. The color (red,
blue) represents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in
the sigma = 0.1, n = 40 simulation. Graphs of the interval lengths for the other scenarios was
similar and can be found in Appendix B

The foundational theory for fiducial inference is given in Hannig (2009) and this
chapter expands the fiducial Bernstein-von Mises theorem to the multivariate setting.
However, this result is not the most general result possible due to the restrictive
assumption of continuous fourth derivatives. In particular, we believe that replacing
the standard differentiability conditions used in the proof of Theorem 2, with Le
Cam’s continuity in quadratic mean assumptions (van der Vaart 1998) would allow
us to relax the differentiability assumptions to obtain the most general Bernstein-von
Mises type theorem for fiducial distributions. This is a subject of future work.

One case where continuous derivatives do not exist is the case of free-knot splines
of degree one. These are of great interest due to the interpretability of the knot point
as a change point. Based on our simulations results, we conjecture that asymptotic
normality holds even in this case. Further investigation into the the behavior of the
fiducial method in this case relative to both the Bayesian solution and segmented
regression (Muggeo 2003) are of interest.

For this chapter, we assume that the number of knot points to be fit is known. In
some cases, the physical system under investigation provides insight into the number
of knots. In the cases where the number of knots is not known, a reversible jump
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MCMC algorithm could allow for model selection, but would require some penalty
term on models of increasing complexity.

Perhaps, the largest reason for practitioners to not use new methodologies is the
lack of accessible software packages. If a new methodology has no freely available
software, or requires expensive software packages (such as Matlab and its associated
toolboxes), applied researchers tend to not adopt a method. To alleviate this issue, we
have provided the R package “FiducialFreeKnotSplines” that contains the software
used in the simulation studies conducted for this chapter and is freely available on
the Comprehensive R Archive Network (CRAN).

Acknowledgements Dr Hannig thanks Prof. Hira Koul for his encouragement and help ever since
he was a graduate student at Michigan State University. A young researcher cannot ask for a better
role model. The authors also thank the two anonymous referees that made several useful suggestions
for improving the manuscript.

Appendix A: Proof of Asymptotic Normality of Fiducial
Estimators

We start with several assumptions. The assumptions A0–A6 are sufficient for the
maximum likelihood estimate to converge asymptotically to a normal distribution
and can be found in Lehmann and Casella (1998) as 6.3 (A0)–(A2) and 6.5 (A)–(D).
The assumption B2 shows that the Jacobian converges to a prior (Hannig 2009) and
B1 is the assumption necessary for the Bayesian solution to converge to that of the
MLE (Ghosh and Ramamoorthi 2003, Theorem 1.4.1).

A.1 Assumptions

A.1.1 Conditions for Asymptotic Normality of the MLE

(A0) The distributions Pξ are distinct.
(A1) The set {x : f (x|ξ ) > 0} is independent of the choice of ξ .
(A2) The data X = {X1, . . . ,Xn} are independent identically distributed (i.i.d.) with

probability density f ( · |ξ ).
(A3) There exists an open neighborhood about the true parameter value ξ 0 such that

all third partial derivatives
(
∂3/∂ξi∂ξj ∂ξk

)
f (x|ξ ) exist in the neighborhood,

denoted by B(ξ 0, δ).
(A4) The first and second derivatives of L(ξ , x) = log f (x|ξ ) satisfy

Eξ

[
∂

∂ξj
L(ξ , x)

]
= 0
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and

Ij ,k(ξ ) = Eξ

[
∂

∂ξj
L(ξ , x) · ∂

∂ξk
L(ξ , x)

]

= −Eξ

[
∂2

∂ξj ∂ξk
L(ξ , x)

]
.

(A5) The information matrix I (ξ ) is positive definite for all ξ ∈ B(ξ 0, δ)
(A6) There exists functions Mjkl(x) such that

sup
ξ∈B(ξ0,δ)

∣
∣
∣
∣

∂3

∂ξj ∂ξk∂ξl
L(ξ , x)

∣
∣
∣
∣ ≤ Mj ,k,l(x) and Eξ0

Mj ,k,l(x) < ∞

A.1.2 Conditions for the Bayesian Posterior Distribution to be Close to That
of the MLE.

Let π (ξ ) = Eξ0
J0(X0, ξ ) and Ln(ξ ) =∑L(ξ ,Xi)

(B1) For any δ > 0 there exists ε > 0 such that

Pξ0

{

sup
ξ /∈B(ξ0,δ)

1

n

(
Ln(ξ ) − Ln(ξ 0)

) ≤ −ε

}

→ 1

(B2) π (ξ) is positive at ξ 0

A.1.3 Conditions for Showing That the Fiducial Distribution is Close to the
Bayesian Posterior

(C1) For any δ > 0

inf
ξ /∈B(ξ0,δ)

mini=1...nL(ξ , Xi)∣∣Ln(ξ ) − Ln(ξ 0)
∣∣

Pξ0−→ 0

(C2) Let π (ξ ) = Eξ0
J0(X0, ξ ). The Jacobian function J (X, ξ)

a.s.→ π (ξ) uniformly
on compacts in ξ . In the single variable case, this reduces to J (X, ξ) is
continuous in ξ , π (ξ) is finite and π (ξ0) > 0, and for some δ0

Eξ0

(

sup
ξ∈B(ξ0,δ)

J0 (X, ξ)

)

< ∞.

In the multivariate case, we follow Yeo and Johnson (2001). Let

Jj
(
x1, . . . , xj ; ξ

) = Eξ0

[
J0
(
x1, . . . , xj ,Xj+1, . . . ,Xk; ξ

)]
.
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(C2.a) There exists a integrable and symmetric functions g
(
x1, . . . , xj

)
and com-

pact space B̄
(
ξ 0, δ

)
such that for ξ ∈ B̄

(
ξ 0, δ

)
then

∣∣Jj
(
x1, . . . , xj ; ξ

)∣∣ ≤
g
(
x1, . . . , xj

)
for j = 1, . . . , k.

(C2.b) There exists a sequence of measurable sets Sk
M such that

P
(
R

k − ∪∞
M=1S

k
M

) = 0

(C2.c) For each M and for all j ∈ 1, . . . , k, Jj
(
x1, . . . , xj ; ξ

)
is equicontinuous in

ξ for {x1, . . . , xj } ∈ S
j

M where Sk
M = S

j

MS
k−j

M .

A.2 Proof of Asymptotic Normality of Multivariate Fiducial
Estimators

We now prove the asymptotic normality (Theorem 1) for multivariate fiducial
estimators.

Proof. Assume without loss of generality that ξ ∈ 
 = R
p. We denote Jn (xn, ξ) as

the average of all possible Jacobians over a sample of sizen andπ (ξ) = Eξ0
J0 (x, ξ).

Assumption C2 and the uniform strong law of large numbers for U-statistics imply
that Jn (x, ξ)

a.s.→ π (ξ) uniformly in ξ ∈ B̄
(
ξ 0, δ

)
and that π (ξ) is continuous.

Therefore,

sup
ξ∈B̄(ξ0,δ)

|Jn (xn, ξ)− π (ξ)| → 0 Pξ0
a.s.

The multivariate proof now proceeds in a similar fashion as the univariate case. Let

π∗ (s, x) =
Jn

(
xn, ξ̂n + s√

n

)
f
(
xn|ξ̂n + s√

n

)

∫
Rp Jn

(
xn, ξ̂n + t√

n

)
f
(
xn|ξ̂n + t√

n

)
dt

=
Jn

(
xn, ξ̂n + s√

n

)
exp
[
Ln

(
ξ̂n + s√

n

)]

∫
Rp Jn

(
xn, ξ̂n + t√

n

)
exp
[
Ln

(
ξ̂n + t√

n

)]
dt

=
Jn

(
xn, ξ̂n + s√

n

)
exp
[
Ln

(
ξ̂n + s√

n

)
− Ln

(
ξ̂n

)]

∫
Rp Jn

(
xn, ξ̂n + t√

n

)
exp
[
Ln

(
ξ̂n + t√

n

)
− Ln

(
ξ̂n

)]
dt

and just as Ghosh and Ramamoorthi (2003), we let H = − 1
n

∂
∂ξ∂ξ

Ln

(
ξ̂n

)
and we

notice that H → I
(
ξ 0

)
a.s. Pξ0

. It will be sufficient to prove
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∫

Rp

∣∣∣∣Jn

(
xn, ξ̂n + t√

n

)
exp

[
Ln

(
ξ̂n + t√

n

)
− Ln

(
ξ̂n

)]

−π
(
ξ 0

)
exp

[
−tT I

(
ξ 0

)
t

2

]∣∣∣∣∣
dt

Pξ0→ 0 (10.3)

Let ti represent the ith component of vector t . By Taylor’s Theorem, we can compute

Ln

(
ξ̂n + t/

√
n
)
= Ln

(
ξ̂n

)
+

p∑

i=1

(
ti√
n

)
∂

∂ξi
Ln

(
ξ̂n

)

+ 1

2

p∑

i=1

p∑

j=1

(
ti tj
(√

n
)2

∂

∂ξi∂ξj
Ln

(
ξ̂n

)
)

+ 1

6

p∑

i=1

p∑

j=1

p∑

k=1

(
ti tj tk
(√

n
)3

∂

∂ξi∂ξj ∂ξk
Ln

(
ξ ′)
)

= Ln

(
ξ̂n

)
− tT H t

2
+ Rn

for some ξ ′ ∈
[
ξ̂n, ξ̂n + t/

√
n
]
. Notice that Rn = Op

(‖t‖ /n3/2
)
.

Given any 0 < δ < δ0 and c > 0, we break R
p into three regions:

A1 = {t : ‖t‖ < c log
√
n
}

A2 = {t : c log
√
n < ‖t‖ < δ

√
n
}

A3 = {t : δ
√
n < ‖t‖}

On A1 ∪ A2 we compute
∫

A1∪A2

∣∣∣Jn
(
xn, ξ̂n + t/

√
n
)

exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]

−π
(
ξ 0

)
exp

[
−1

2
t ′I
(
ξ 0

)
t

]∣∣∣∣ dt

≤
∫

A1∪A2

∣∣∣Jn
(
xn, ξ̂n + t/

√
n
)
− π

(
ξ̂n + t/

√
n
)∣∣∣

· exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
dt

+
∫

A1∪A2

∣∣∣π
(
ξ̂n + t/

√
n
)

exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]

−π
(
ξ 0

)
exp

[
−1

2
t ′I
(
ξ 0

)
t

]∣∣∣
∣ dt
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Since π (·) is a proper prior on A1 ∪ A2, then the second term goes to 0 by the
Bayesian Bernstein-von Mises theorem. Next we notice that

∫

A1∪A2

∣∣∣Jn
(
x, ξ̂n + t/

√
n
)
− π

(
ξ̂n + t/

√
n
)∣∣∣

· exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
dt

≤ sup
t∈A1∪A2

∣∣
∣Jn
(
x, ξ̂n + t/

√
n
)
− π

(
ξ̂n + t/

√
n
)∣∣
∣

·
∫

A1∪A2

exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
dt

Since
√
n
(
ξ̂n − ξ 0

) D→ N
(

0, I
(
ξ 0

)−1
)

, then

Pξ0

[{
ξ̂n + t/

√
n; t ∈ A1 ∪ A2

}
⊂ B

(
ξ 0, δ0

)]→ 1.

Furthermore, since Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)
= − tT H t

2 + Rn then the integral

converges in probability to 1. Since maxt∈A1∪A2

∥∥t/
√

n
∥∥ ≤ δ and Jn → π , then the

term → 0 in probability.
Next, we turn to

∫

A3

∣∣∣∣Jn

(
xn, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]

−π
(
ξ 0

)
exp

[
−tT I

(
ξ 0

)
t

2

]∣∣∣∣∣
dt

≤
∫

A3

Jn

(
xi , ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
dt

+
∫

A3

π
(
ξ 0

)
exp

[
−tT I

(
ξ 0

)
t

2

]

dt

The second integral goes to 0 in Pξ0
probability because minA3 ‖t‖ → ∞. As for the

first integral,
∫

A3

Jn

(
x, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
dt

= 1

n

n∑

i=1

∫

A3

J

(
xi , ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
dt

= 1

n

n∑

i=1

∫

A3

J

(
xi , ξ̂n +

s√
n

)
f

(
xi |ξ̂n +

s√
n

)

exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)
− log f

(
xi |ξ̂n +

s√
n

)]
dt
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Because J (·) is a probability measure, then so is J (·) f (·). Assumption C1 assures
that the exponent goes to−∞ and therefore the integral converges to 0 in probability.

Having shown Eq. 10.3, we now follow Ghosh and Ramamoorthi (2003) and let

Cn =
∫

Rp

∣∣∣∣Jn

(
xn, ξ̂n +

t√
n

)
exp

[
Ln

(
ξ̂n +

t√
n

)
− Ln

(
ξ̂n

)]∣∣∣∣ dt

then the main result to be proved (Eq. 10.2) becomes

C−1
n

{∫

Rp

∣∣
∣
∣Jn

(
xn, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
.

−Cn

√
det
∣
∣I
(
ξ 0

)∣∣
√

2π
e−sT I(ξ0)s/2

∣
∣
∣
∣
∣
∣
∣

⎫
⎪⎬

⎪⎭
ds

Pξ0→ 0 (10.4)

Because
∫

Rp

Jn

(
xn, ξ̂n

)
exp

[
− sT H s

2

]
ds = Jn

(
xn, ξ̂n

) ∫

Rp

exp

[
− sT H s

2

]
ds

= Jn

(
xn, ξ̂n

) √
2π√

det (H)

a.s.→ π
(
ξ 0

)
√

2π

det
(
I
(
ξ 0

))

and Eq. 10.3 imply thatCn
P→ π

(
ξ 0

)√
2π

det(I(ξ0))
it is enough to show that the integral

in Eq:10.4 goes to 0 in probability. This integral is less than I1 + I2 where

I1 =
∫

RP

∣∣∣∣Jn

(
xn, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]

−Jn

(
xn, ξ̂n

)
exp

[−sT H s

2

]∣∣∣∣ ds

and

I2 =
∫

RP

∣∣∣∣∣∣∣
Jn

(
xn, ξ̂n

)
exp

[−sT H s

2

]
− Cn

√
det
∣∣I
(
ξ 0

)∣∣
√

2π
e−sT I(ξ0)s/2

∣∣∣∣∣∣∣
ds.

Eq. 10.3 shows that I1 → 0 in probability and I2 is

I2 =

∣∣∣
∣∣∣
∣
Jn

(
xn, ξ̂n

)
− Cn

√
det
∣∣I
(
ξ 0

)∣∣
√

2π

∣∣∣∣
∣∣∣

∫

RP

exp

[−sT H s

2

]
ds

P→ 0

because Jn

(
xn, ξ̂n

)
P→ π

(
ξ 0

)
and Cn

P→ π
(
ξ 0

)√
2π

det(I(ξ0))
. �
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Appendix B: Proof of Assumptions for Free-Knot Splines Using a
Truncated Polynomial Basis

We now consider the free-knot spline case. Suppose we are interested in a p degree
(order m = p + 1) polynomial spline with κ knot points, t = {t1, . . . , tκ}T where
tk ∈ (a + δ, b − δ) and

∣∣ti − tj
∣∣ ≤ δ for i �= j and some δ > 0. Furthermore, we

assume that the data points {xi , yi} independent with the distribution of the xi having
positive density on [a, b].

Denote the truncated polynomial spline basis functions as

N (x, t) = {N1(x, t), . . . ,Nκ+m(x, t)}T

= {1, x, . . . , xp, (x − t1)p+, . . . , (x − tκ )p+
}T

and let yi = N (xi , t)T α + σεi where εi
iid∼ N (0, 1) and thus the density function is

f (y, ξ ) = 1√
2πσ 2

exp

[
− 1

2σ 2

(
y −N (x, t)T α

)2
]

where ξ = {t , α, σ 2} and the log-likelihood function is

L(ξ , y) = 1

2
log 2π − 1

2
log σ 2 − 1

2σ 2

(
y −N (x, t)T α

)2

B.1 Assumptions A0–A4

Assumptions A0–A2 are satisfied. We now consider assumption A3 and A4. We note
that if p ≥ 4 then the necessary three continuous derivatives exist and now examine
the derivatives. Let θ = {t , α} and thus

Eξ

[
∂

∂θj
L(ξ , y)

]
= Eξ

[
− 1

2σ 2
2
(
y −N (x, t)T α

) (− ∂

∂θj
N (x, t)T α

)]

= − 1

2σ 2
2
(
Eξ [y] −N (x, t)T α

) (− ∂

∂θj
N (x, t)T α

)

= 0

and

Eξ

[
∂

∂σ 2
L(ξ , y)

]
= Eξ

[

− 1

2σ 2
+ 1

2
(
σ 2
)2
(
y −N (x, t)T α

)2
]

= − 1

2σ 2
+ 1

2
(
σ 2
)2
(
σ 2
)

= 0.
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Next, we consider information matrix. First, we consider the θ terms.

Eξ

[
∂

∂θj
L(ξ , y)

∂

∂θk
L(ξ , y)

]
= Eξ

[
1

σ 4

(
y −N (x, t)T α

)2
(

∂

∂θj
N (x, t)T α

)(
∂

∂θk
N (x, t)T α

)]

= 1

σ 4
Eξ

[(
y −N (x, t)T α

)2]
(

∂

∂θj
N (x, t)T α

)(
∂

∂θk
N (x, t)T α

)

= 1

σ 2

(
∂

∂θj
N (xi , t)T α

)(
∂

∂θk
N (xi , t)T α

)

The j , k partials for the second derivative are

∂2

∂θj ∂θk
L(ξ , y) = ∂

∂θj

[
− 1

2σ 2
2
(
y −N (x, t)T α

)
(
− ∂

∂θk
N (x, t)T α

)]

= ∂

∂θj

[
− 1

σ 2

(
−yi

(
∂

∂θk
N (x, t)T α

)
+N (x, t)T α

(
∂

∂θk
N (x, t)T α

))]

= − 1

σ 2

[
−y

∂2

∂θj ∂θk
N (x, t)T α +

(
∂

∂θj
N (x, t)T α

)(
∂

∂θk
N (x, t)T α

)

+N (x, t)T α
∂2

∂θj ∂θk
N (x, t)T α

]

which have expectation

Eξ

[
∂2

∂θj ∂θk
L(ξ , y)

]
= − 1

σ 2

(
∂

∂θj
N (x, t)T α

)(
∂

∂θk
N (x, t)T α

)

= −Eξ

[
∂

∂θj
L(ξ , y)

∂

∂θk
L(ξ , y)

]

as necessary. Next, we consider

Eξ

[
∂

∂θj
L(ξ , y)

∂

∂σ 2
L(ξ , y)

]

= Eξ

[
1

σ 2

(
y −N (x, t)T α

) ∂

∂θj
N (x, t)T α

[
− 1

2σ 2
+ 1

2σ 4

(
y −N (x, t)T α

)2
]]

= Eξ

[
− 1

2σ 4

(
y −N (x, t)T α

) ∂

∂θj
N (x, t)T α + 1

2σ 6

(
y −N (x, t)T α

)3 ∂

∂θj
N (x, t)T α

]

= 0

which is equal to

Eξ

[
∂

∂θj ∂σ 2
L(ξ , y)

]
= Eξ

[
2

2σ 4

(
y −N (x, t)T α

) ∂

∂θj
N (x, t)T α

]

= 0.
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Finally,

Eξ

[
∂

∂σ 2
L(ξ , y)

∂

∂σ 2
L(ξ , y)

]

= Eξ

[{
− 1

2σ 2
+ 1

2σ 4

(
y −N (x, t)T α

)2
}{

− 1

2σ 2
+ 1

2σ 4

(
y −N (x, t)T α

)2
}]

= Eξ

[
1

4σ 4
− 2

4σ 6

(
y −N (x, t)T α

)2 + 1

4σ 8

(
y −N (x, t)T α

)4
]

= 1

4σ 4
0

− 2

4σ 6
0

σ 2
0 + 1

4σ 8
0

3σ 4
0

= 2

4σ 4
0

which is equal to

−Eξ

[
∂

∂σ 2∂σ 2
L(ξ , y)

]
=− Eξ

[
1

2
σ−4 − 2

2
σ−6

(
y −N (x, t)T α

)2
]

=− 1

2
σ−4

0 + 2

2
σ−4

0 .

Therefore, the interchange of integration and differentiation is justified.

B.2 Assumptions A5

To address whether the information matrix is positive definite, we notice that since

Eξ

[
∂

∂σ 2 L(ξ , y) ∂

∂σ 2 L(ξ , y)
]
> 0 and Eξ

[
∂
∂θj

L(ξ , y) ∂

∂σ 2 L(ξ , y)
]
= 0, we only need

to be concerned with the submatrix

Ij ,k(θ ) =
n∑

i=1

Eξ

[
∂

∂θj
L(ξ , yi)

∂

∂θk
L(ξ , yi)

]

= 1

σ 2

n∑

i=1

(
∂

∂θj
N (xi , t)T α

)(
∂

∂θk
N (xi , t)T α

)
.

where the σ−2 term can be ignored because it does not affect the positive definiteness.
First, we note

∂

∂tj
N (xi , t)T α = −p

(
xi − tj

)p−1
+ αp+j+1

∂

∂αj

N (xi , t)T α = Nj (xi , t).



176 D. L. Sonderegger and J. Hannig

If we let

X =
⎡

⎢
⎣

N1 (x1, t) · · · Nm+κ (x1, t) ∂
∂t1

N (x1, t)T α · · · ∂
∂tκ

N (x1, t)T α

...
. . .

...
...

. . .
...

N1 (xn, t) · · · Nm+κ (xn, t) ∂
∂t1

N (xn, t)T α · · · ∂
∂tκ

N (xn, t)T α

⎤

⎥
⎦

then I (θ ) = XTX. Then, I (θ ) is positive definite if the columns of X are linearly
independent. This is true under the assumptions that tj �= tk and that αm+j �= 0.

B.3 Assumptions A6

We next consider a bound on the third partial derivatives. We start with the derivatives
of the basis functions.

∂2

∂tj ∂tk
N (x, t)T α = 0 if j �= k

∂2

∂tj ∂tj
N (x, t)T α = p(p − 1)

(
x − tj

)p−2
+ αp+j+1

∂2

∂αj∂αk

N (x, t)T α = 0

∂2

∂tj ∂αp+j+1
N (x, t)T α = −p

(
x − tj

)p−1
+

∂3

∂tj ∂tj ∂tj
N (x, t)T α = −p(p − 1)(p − 2)

(
x − tj

)p−3
+ αp+j+1

∂3

∂tj ∂tj ∂αp+j+1
N (x, t)T α = p(p − 1)

(
x − tj

)p−2
+

Since, x is an element of a compact set, then for ξ ∈ B(ξ 0, δ) all of the earlier partials
are bounded as is N (x, t)T α. Therefore

∂3

∂θj ∂θk∂θl
L(ξ , x)

= − 1

σ 2

[
−y

∂3

∂θj ∂θk∂θl
N (x, t)T α +

(
∂2

∂θj ∂θk
N (x, t)T α

)(
∂2

∂θl
N (x, t)T α

)
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+
(

∂2

∂θj ∂θl
N (x, t)T α

)(
∂2

∂θk
N (x, t)T α

)

+
(

∂2

∂θl∂θk
N (x, t)T α

)(
∂2

∂θj
N (x, t)T α

)

+N (x, t)T α

(
∂3

∂θj ∂θk∂θl
N (x, t)T α

)]

and

∂3

∂θj ∂θk∂σ 2
L(ξ , x)

= 1

σ 4

[
−y

∂2

∂θj ∂θk
N (x, t)T α +

(
∂

∂θk
N (x, t)T α

)(
∂

∂θj
N (x, t)T α

)

+N (x, t)T α
∂2

∂θj ∂θk
N (x, t)T α

]

and

∂3

∂θj ∂σ 2∂σ 2
L(ξ , y) = − 2

σ 6

(
y −N (x, t)T α

) (− ∂

∂θj
N (x, t)T α

)

and

∂3

∂σ 2∂σ 2∂σ 2
L(ξ , y) = − 1

σ 6
+ 3

σ 8

(
y −N (x, t)T α

)2

are also bounded ξ ∈ B(ξ 0, δ) since σ 2
0 > 0 by assumption. The expectation of the

bounds also clearly exists.

B.4 Lemmas

To show that the remaining assumptions are satisfied, we first examine the behavior
of

g(θ0, θ , xi) = N (xi , t0)T α0 −N (xi , t)T α.

Notice that for xi chosen on a uniform grid over [a, b] then

1

n

n∑

i=1

(g(θ0, θ , xi))
2 → 1

b − a

∫ b

a

(g(θ0, θ , x))2 dx.

Furthermore we notice that g (θ0, θ , x) is also a spline. The sum of the two splines
is also a spline. Consider the degree p case of g (x|α, t)+ g (x|α∗, t∗) where t < t∗.
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Then the sum is a spline with knot points {t , t∗} and whose first p + 1 coefficients

are α + α∗ and last two coefficients are
{
αp+1,α∗

p+1

}
.

At this point, we also notice

E
[
n−1

∑
g (θ , θ0, xi) εi

]
= n−1

∑
g (θ , θ0, xi) E [εi]

= 0

V
[
n−1

∑
g (θ , θ0, xi) εi

]
= n−2V

[∑
g (θ , θ0, xi) εi

]

= n−2
∑

V [g (θ , θ0, xi) εi]

= n−2
∑

g (θ , θ0, xi)
2 V [εi]

= n−2
∑

g (θ , θ0, xi)
2

→ 0

and that
∑

ε2
i ∼ χ2

n and thus n−1∑ ε2
i converges in probability to the constant 1.

Therefore, by the SLLN,

1

n

n∑

i=1

[g (θ0, θ , xi)+ σ0εi]
2 = 1

n

n∑

i=1

[g (θ0, θ , xi)]
2 + 2σ0

n

n∑

i=1

εig (θ0, θ , xi)+ σ 2
0

n

n∑

i=1

ε2
i

= 1

n

n∑

i=1

[g (θ0, θ , xi)]
2 +Op

(
n−1
)+ σ 2

0

n

n∑

i=1

ε2
i

a.s.→ 1

b − a

∫ b

a

(g(θ0, θ , x))2 dx + σ 2
0 .

Lemma 1. Given a degree p polynomial g(x|α) on [a, b] with coefficients α, then
∃ λn,m, λn,M > 0 such that ||α||2λ2

n,m ≤ 1
n

∑n
i=1 [g(xi |α)]2 ≤ ||α||2λ2

n,M .

Proof. Ifα = 0, theng (x|α) = 0 and the result is obvious. Ifg (x|α) is a polynomial
with at least one non-zero coefficient, it therefore cannot be identically zero on [a, b]
and therefore for n > p then 1

n

∑
[g(xi |α)]2 > 0 since the polynomial can only have

at most p zeros. We notice that

∫ b

a

[g(x|α)]2 dx =
∫ b

a

⎡

⎣
p∑

i=0

α2
i x

2i + 2
p−1∑

i=0

p∑

j=i+1

αiαjx
i+j

⎤

⎦ dx

=
p∑

i=0

α2
i

i + 1
x2i+1 + 2

p−1∑

i=0

p∑

j=i+1

αiαj

i + j + 1
xi+j+1

∣∣∣
∣∣
∣

b

x=a

= αT Xα
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where the matrix X has i, j element
(
bi+j − ai+j

)
/(i+j ). Since

∫ b

a
[g(x|α)]2 dx >

0 for all α then the matrix X must be positive definite. Next we notice that

1

n

n∑

i=1

[g(xi |α)]2 =1

n

n∑

i=1

αT Xiα

=αT

(
1

n

∑
Xi

)
α

=αT Xnα

and therefore Xn → X and therefore, denoting the eigenvalues of Xn as λn and the
eigenvalues of X as λ, we have λn → λ

Letting λn,m and λn,M be the minimum and maximum eigenvalues of Xn be the
largest, then λ2

n,m ‖α‖2 ≤ 1
n

∑
[g(x|α)]2 ≤ λ2

n,M ‖α‖2 . �

The values λn,m, λn,M depend on the interval that the polynomial is inte-
grated/summed over and that if a = b, then the integral is zero. In the following
lemmas, we assume that there is some minimal distance between two knot-points
and between a knot-point and the boundary values a, b.

Lemma 2. Given a degree p spline g(x|θ ) with κ knot points on [a, b], let τ =
(|a| ∨ |b|)κ . Then ∀ δ > 2τ , ∃ λn > 0 such that if ‖θ‖ > δ then 1

n

∑
[g(xi |θ )]2 >(

δ2 + τ 2
)
λn.

Proof. Notice that ||θ ||2 > δ2 > 4τ 2 implies ||α||2 > δ2 − τ 2. First we consider
the case of κ = 1. If α2

0 + · · · + α2
p >

(
δ2 + τ 2

)
/9 then 1

n

∑
[g(xi |θ )]2 1[a,t] (xi) >

λn

(
δ2 + τ 2

)
for some λn > 0. If α2

0 + · · · + α2
p ≤ (

δ2 + τ 2
)
/9 then α2

p+1 ≥
3
(
δ2 + τ 2

)
/4. Therefore (αp+αp+1), the coefficient of thexp term of the polynomial

on [t1, b] is
∥∥αp + αp+1

∥∥2
>
∥∥αp+1

∥∥2 − ∥∥αp

∥∥2

>
3
(
δ2 + τ 2

)

4
−
(
δ2 + τ 2

)

4

>
1

2

(
δ2 + τ 2

)

and thus the squared norm of the coefficients of the polynomial on [t1, b] must also be
greater than 1

2

(
δ2 + τ 2

)
and thus 1

n

∑
[g(xi |θ )]2 1[t ,b] (xi) > λn

(
δ2 + τ 2

)
for some

λn > 0. The proof for multiple knots is similar, only examining all κ+1 polynomial
sections for one with coefficients with squared norm larger than some fraction of(
δ2 + τ 2

)
. �

Lemma 3. For all δ > 0, there exists λn > 0 such that for all θ /∈ B(θ0, δ) then
1
n

∑
(g(θ0, θ , xi))

2 > λnδ.
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Proof. By the previous lemma, for all � > 2τ there exists ∃�n > 0 such that for
all θ /∈ B(θ0,�) then 1

n

∑
(g(θ0, θ , xi))

2 > �n�. We now consider the region

C = closure [B (θ0,�)B (θ0, δ)]

Assume to the contrary that there exists δ > 0 such that ∀ λn > 0, ∃ θ ∈ C such
that 1

n

∑
(g(θ0, θ , xi))

2 ≤ λnδ and we will seek a contradiction. By the negation,
there exists a sequence θn ∈ C such that 1

n

∑
(g(θ0, θ , xi))

2 → 0. But since θn is
in a compact space, there exists a subsequence θnk that converges to θ∞ ∈ C and
1
n

∑
(g(θ0, θ , xi))

2 = 0. But since θ0 /∈ C this is a contradiction. �

Corollary 4. There exists λ such that for any δ > 0 and θ /∈ B(θ0, δ)

1

n

n∑

i=1

[g (θ0, θ , xi)+ σ0εi]
2 ≥ λ2

nδ
2 +Op

(
n−1/2

)+ σ 2
0 .

We now focus our attention on the ratio of the maximum value of a polynomial and
its integral.

Lemma 5. Given a degree p polynomial g (x|α) on [a, b], then

maxi∈{1,...,n}
[
g (xi|α)

]2

1
n

∑n
i=1 [g (xi |α)]2 dx

≤ λ2
M

λ2
n,m

→ λ2
M

λ2
m

for some λM , λm > 0.

Proof. Since we can write [g (x|α)]2 = αTWxα for some nonnegative definite
matrix Wx which has a maximum eigenvalue λM ,x , and because the the maximum
eigenvalue is a continuous function in x, let λM = sup λM ,x . Then the maximum of
[g (x|α)]2 over x ∈ [a, b] is less than ‖α‖2 λ2

M . The denominator is bounded from
below by ‖α‖2 λ2

n,m. �

Lemma 6. Given a degree p spline g (x|θ) on [a, b], then

max
[
g (x|θ)]2

∫ b

a
[g (x|θ)]2 dx

≤ λ2
M

λ2
m

for some λM , λm > 0.

Proof. Since a degree p spline is a degree p polynomial on different regions defined
by the knot-points, and because the integral over the whole interval [a, b] is greater
than the integral over the regions defined by the knot-points, we can use the previous
lemma on each section and then chose the largest ratio. �

Lemma 7. Given a degree p spline g (x|θ) on [a, b] then

n−1/2maxi
[
εiσ0 + g (θ , θ0, xi)

]2

n−1
∑n

i=1 [εiσ0 + g (θ , θ0, xi)]
2 = Op (1) (10.5)
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uniformly over θ .

Proof. Notice

n−1/2maxi
[
εiσ0 + g (θ , θ0, xi)

]2

n−1
∑n

i=1 [εiσ0 + g (θ , θ0, xi)]
2 ≤ 2n−1/2maxi

[
ε2

i σ
2
0

]+ 2n−1/2maxi
[
g (θ , θ0, xi)

]2

n−1
∑n

i=1 [εiσ0 + g (θ , θ0, xi)]
2

= 2σ 2
0 n

−1/2maxiε
2
i + maxi

[
g (θ , θ0, xi)

]2

n−1
∑n

i=1 [εiσ0 + g (θ , θ0, xi)]
2

=
Op

(
log n√

n

)
+ maxi

[
g (θ , θ0, xi)

]2

n−1
∑n

i=1 [εiσ0 + g (θ , θ0, xi)]
2

and since n−1∑n
i=1 [εiσ0 + g (θ , θ0, xi)]

2 P→ 1
b−a

∫ b

a
(g(θ0, θ , x))2 dx + σ 2

0 , and
lemma 8 bounds the ratio of the terms that involve θ , this ratio is bounded in
probability uniformly over θ . �

B.5 Assumptions B1

Returning to assumption B1, we now consider ξ /∈ B(ξ 0, δ) and

Ln (ξ) =
∑

log

{
1√

2πσ
exp

[−1

2σ

∑(
yi −N (xi , t)T α

)2
]}

= −n

2
log (2π)− n log σ − 1

2σ

∑[
yi −N (xi , t)T α

]2

= −n

2
log (2π)− n log σ − 1

2σ

∑[
N (xi , t0)T α0 + σ0εi −N (xi , t)T α

]2

= −n

2
log (2π)− n log σ − 1

2σ

∑
[g (θ , θ0, xi)+ σ0εi]

2

and therefore

1

n

(
Ln(ξ ) − Ln(ξ 0)

)

= − log σ − 1

2nσ 2

∑
[g (θ , θ0, xi)+ σ0εi]

2 + log σ0 + 1

2nσ0

∑
[g (θ0, θ0, xi)+ σ0εi]

2

= log
σ0

σ
− 1

2nσ 2

∑
[g (θ , θ0, xi)+ σ0εi]

2 + 1

2nσ 2
0

∑
[σ0εi]

2

= log
σ0

σ
− (λn (θ , θ0))

2

2σ 2
− σ 2

0

2σ 2
+ 1

2n

∑
[εi]

2
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where

[λn (θ , θ0)]
2 = 1

n

∑
[g (θ , θ0, xi)+ σ0εi]

2 − σ 2
0

which converges in probability to 1
b−a

∫ b

a
[g (θ , θ0, x)]2 dx. The function goes to−∞

as σ → 0 and σ → ∞. Taking the derivative

d

dσ

[
log

σ0

σ
− 1

2σ 2

[
(λn)

2 + σ 2
0

]+ 1

2n

∑
ε2
i

]
= − 1

σ
+ 1

σ 3

[
(λn)

2 + σ 2
0

]

and setting it equal to zero yields a single critical point of at σ 2 = [
(λn)

2 + σ 2
0

]

which results in a maximum of

log

⎛

⎜
⎝

σ0√
(λn)

2 + σ 2
0

⎞

⎟
⎠− 1

2
+ 1

2
n−1

∑
ε2
i (10.6)

which bounded away from zero in probability for ξ /∈ B(ξ 0, δ)

B.6 Assumption C1

Assumption C1 is

inf
ξ /∈B(ξ0,δ)

mini=1...nL(ξ , Xi)∣∣Ln(ξ ) − Ln(ξ 0)
∣∣

Pξ0−→ 0

First notice

L(ξ ,Yi) = −1

2
log (2π)− log σ − 1

2σ 2

(
Yi −N (xi , t)T α

)2

= −1

2
log (2π)− log σ − 1

2σ 2

(
εiσ0 +N (xi , t0)T α0 −N (xi , t)T α

)2

= −1

2
log (2π)− log σ − 1

2σ 2
(εiσ0 + g(θ0, θ , xi))

2

and we consider C = {ξ : ξ /∈ B(ξ 0, δ)
}
. Define

fn (ξ) = min L (ξ , Yi)∣∣Ln (ξ)− Ln

(
ξ 0

)∣∣

= − 1
2 log (2π)− log σ − 1

2σ 2 max
[
εiσ0 + g(θ0, θ , xi)

]2

n · 1
n

∣
∣Ln (ξ)− Ln

(
ξ 0

)∣∣
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and notice that the denominator is bounded away from 0 by 10.6.

fn (ξ) =
− 1

2 log (2π)− log σ − 1
2σ 2 max

[
εiσ0 + g(θ0, θ , xi)

]2

−n · 1
n

(
Ln (ξ)− Ln

(
ξ 0

))

=
1√
n

[
− 1

2 log (2π)− log σ − 1
2σ 2 max

[
εiσ0 + g(θ0, θ , xi)

]2]

−√
n · 1

n

[
n log σ0

σ
− 1

2σ 2

∑
[g (θ , θ0, xi)+ σ0εi]

2 + 1
2

∑
ε2
i

]

= 1√
n
·
− 1

2
√
n

log (2π)− 1√
n

log σ − 1
2
√
nσ 2 max

[
εiσ0 + g(θ0, θ , xi)

]2

− log σ0
σ
+ 1

2nσ 2

∑
[g (θ , θ0, xi)+ σ0εi]

2 − 1
2n

∑
ε2
i

= 1√
n

[ − 1
2
√
n

log (2π)

− log σ0
σ
+ 1

2nσ 2

∑
[g (θ , θ0, xi)+ σ0εi]

2 − 1
2n

∑
ε2
i

+
− 1√

n
log σ − 1

2
√
nσ 2 max

[
εiσ0 + g(θ0, θ , xi)

]2

− log σ0
σ
+ 1

2nσ 2

∑
[g (θ , θ0, xi)+ σ0εi]

2 − 1
2n

∑
ε2
i

⎤

⎦

We consider the infimums of the terms inside the brackets separately.
For the first term, since the denominator is bounded in probability above 0 uni-

formly in θ , and the numerator goes to zero, the infimum of the first term goes to 0
in probability.

The second term is uniformly bounded over θ by lemma 9. Notice that the
numerator is

− 1√
n

log σ − 1

2
√
nσ 2

max
[
εiσ0 + g(θ0, θ , xi)

]2

≥ − 1√
n

log σ − max [εiσ0]2

√
nσ 2

− max
[
g(θ0, θ , xi)

]2
√
nσ 2

= − 1√
n

log σ − σ 2
0 Op (log n)√

nσ 2
− max

[
g(θ0, θ , xi)

]2
√
nσ 2

≥ − log n√
n

log σ − σ 2
0 Op (log n)√

nσ 2
− max

[
g(θ0, θ , xi)

]2
√
nσ 2

and all three terms of the numerator converge to 0 for every σ . Therefore, for σ ∈
[0, d] for some large d , the infimum converges to 0. For σ > d, the log σ terms
dominate and the infimum occurs at σ = d which also converges to 0. Therefore

inf
ξ /∈ B(ξ 0, δ)

minL (ξ , Yi)∣
∣Ln (ξ)− Ln

(
ξ 0

)∣∣
P→ 0.
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B.7 Assumptions C2

Finally we turn our attention to the Jacobian. Recall that the Jacobian is

J0
(
y0, ξ

) =
∣
∣
∣
∣

1

σ 2
pκ det

[
Bα Bt Bσ 2

]
∣
∣
∣
∣

where

Bα =
⎡

⎢
⎣

1 x(1) . . . x
p

(1) (x(1) − t1)p+ . . . (x(1) − tκ )p+
...

...
. . .

...
...

. . .
...

1 x(l) . . . x
p

(l) (x(l) − t1)p+ . . . (x(l) − tκ )p+

⎤

⎥
⎦ ,

Bt =

⎡

⎢
⎢
⎣

α1+p+1
(
x(1) − t1

)p−1
+ I

(
x(1) − t1

)
. . . α1+p+κ

(
x(1) − tκ

)p−1
+ I

(
x(1) − tκ

)

...
. . .

...

α1+p+1
(
x(l) − t1

)p−1
+ I

(
x(l) − t1

)
. . . α1+p+κ

(
x(l) − tκ

)p−1
+ I

(
x(l) − tκ

)

⎤

⎥
⎥
⎦ ,

and

Bσ 2 =
⎡

⎢
⎣

− 1
2

(
y(1) − g(x(1)|θ )

)

...

− 1
2

(
y(l) − g(x(l)|θ )

)

⎤

⎥
⎦ .

Following the notation ofYeo and Johnson, we suppress parenthesis and 0 subscripts.
We consider the ξ in compact space B̄(ξ 0, δ). We notice that for δ < σ−2 that
J (y; ξ ) ≤ δκ+1pκg(y) for some g(y) because Bα and Bt are functions of x, t which
are bounded.

We let Sl
M be the unit square in R

l of radius M .
Finally, we notice that Jj (y1, . . . , yj ; ξ ) = E

[
J
(
y1, . . . , yj ,Yj+1, . . . ,Yl ; ξ

)]
is a

polynomial in θ scaled by σ 2, which is equicontinuous on compacts of ξ where σ is
bounded away from 0.
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Appendix C: Full Simulation Results
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Fig. 10.4 Coverage rates for the single knot scenario. The color (red, blue) represents the method
(fiducial, Bayesian)
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Fig. 10.5 Coverage rates for the three knot “Simple” scenario. The color (red, blue) represents
the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the sigma =
0.1, n = 40 simulation
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Fig. 10.6 Coverage rates for the three knot “Clustered” scenario. The color (red, blue) represents
the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the sigma =
0.1, n = 40 simulation
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Fig. 10.7 Coverage rates for the three knot “Subtle” scenario. The color (red, blue) represents the
method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the sigma = 0.1, n =
40 simulation



10 Fiducial Theory for Free-Knot Splines 187

sigma = 0.1
n = 40

sigma = 0.1
n = 100

sigma = 0.25
n = 40

sigma = 0.25
n = 100

0.25

0.50

0.75

Fiducial Bayesian Fiducial Bayesian Fiducial Bayesian Fiducial Bayesian
Method Type

Le
ng

th

method
Fiducial
Bayesian

95% Confidence Interval Length

Fig. 10.8 Confidence interval lengths for the single knot scenario. The color (red, blue) represents
the method (fiducial, Bayesian)
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Fig. 10.9 Confidence interval lengths for the three knot “Simple” scenario. The color (red, blue)
represents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the
sigma = 0.1, n = 40 simulation
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Fig. 10.10 Confidence interval lengths for the three knot “Clustered” scenario. The color (red,
blue) represents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in
the sigma = 0.1, n = 40 simulation
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Fig. 10.11 Confidence interval lengths for the three knot “Subtle” scenario. The color (red, blue)
represents the method (fiducial, Bayesian). The topmost panel is the coverage of knot one in the
sigma = 0.1, n = 40 simulation
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Chapter 11
An Empirical Characteristic Function Approach
to Selecting a Transformation to Symmetry

In-Kwon Yeo and Richard A. Johnson

11.1 Introduction

Many statistical techniques are based on assumption about the form of population
distribution. The validity of those results may depend on the assumed conditions
being satisfied. When the observed data seriously violate these assumptions, trans-
formation of data can improve the agreement with the assumption about underlying
distribution. As an objective way of determining a transformation was introduced by
Box and Cox (1964), transformation of data has widely used in applied statistics as
well as theoretical statistics.

Generally, a main goal of transforming data is to enhance the normality and
homoscedasticity of data. Box and Cox (1964) discussed estimating transformation
parameter by the maximum likelihood approach and by a Bayesian method. It is well
known that, under the normality assumption, the maximum likelihood estimator of
the Box–Cox transformation parameter is very sensitive to outliers, see (Andrews
1971). Carroll (1980) proposed a robust method for selecting a power transformation
to achieve approximate normality in a linear model.

Robust techniques sometimes require symmetry rather than normality of data.
Hinkley (1975) and Taylor (1985) suggested methods for estimating the transforma-
tion parameter in the Box–Cox transformation when the goal is to obtain approximate
symmetry.Yeo and Johnson (2001) andYeo (2001) introduced anM-estimator which
is obtained by minimizing the integrated square of the imaginary part of the empirical
characteristic function of Yeo–Johnson transformed data.

Many authors including Koutrouvelis (1980); Koutrouvelis and Kellermeier
(1981); Fan (1997); Klar and Meintanis (2005), and Jimenez-Gamero et al. (2009)
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have proposed the goodness-of-fit test statistics based on measuring differences be-
tween the empirical characteristic function and the characteristic function in the null
hypothesis.

Our estimators are obtained by minimizing a squared distance between the em-
pirical characteristic function of the transformed data and the target characteristic
function. Specifically, we minimize the integral of the squared modulus of the dif-
ference of the two characteristic functions multiplied by a weight function. This
estimation procedure for a vector-valued parameter can be viewed as solving esti-
mating equations based on a U -statistic, see Lee (1990). According to Yeo et al.
(2013), the estimator by the empirical characteristic function approach is still sensi-
tive, but less sensitive than the maximum likelihood estimate, to an outlier when the
target distribution is normal.

11.2 Estimation

Let ψ(x, λ) be a general class of transformations which are indexed by the trans-
formation parameter λ. Examples include the families introduced by (Box and Cox
1964; John and Draper 1980; Burbidge et al. 1988, and Yeo and Johnson 2000).
Based on calculations of the relative skewness by van Zwet (1964), the Box–Cox
transformation and the Yeo–Johnson transformation can improve the symmetry of
data and be applied to skewed data. By contrast, the modulus transformation by John
and Draper (1980) and the inverse hyperbolic sine transformation by Johnson (1949)
and Burbidge et al. (1988) are useful to reduce the kurtosis of heavy-tailed data.
Hence, we focus on the Box–Cox transformation, for x > 0,

ψ(x, λ) =
{(
xλ − 1

)
/λ, λ �= 0

log (x), λ = 0

and the Yeo–Johnson transformation

ψ(x, λ) =

⎧
⎪⎪⎨

⎪⎪⎩

{
(x + 1)λ − 1

}
/λ, λ �= 0, x ≥ 0

log (x + 1), λ = 0, x ≥ 0
− {(− x + 1)2−λ − 1

}
/(2 − λ), λ �= 2, x < 0

− log (− x + 1), λ = 2, x < 0

and theorems derived below are based on these transformations. Note that, for these
transformations, ∂kψ(x, λ)/∂xk and ∂lψ(x, λ)/∂λl are continuous in (x, λ) for k =
0, 1, 2 and l = 0, 1, . . . and ψ(x, λ) is increasing in both x and λ.

Let X1, . . . ,Xn be independent and identically distributed random variables with
distribution function F (·).
Assumption 1 There exists a λ for which the distribution of ψ(X, λ) is a location-
scale family with parameters μ and σ and symmetric about μ.

Usually, in a given example, it may not be possible to select λ so thatAssumption 1
holds. Nevertheless, we make that assumption similar to the assumption of normality
in Box and Cox (1964).
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Letφ(t) be the characteristic function of the standardized target distribution and let
φn(θ , t) be the empirical characteristic function of standardized transformed variables
Zj (θ ) = {ψ(Xj , λ) − μ

}
/σ , j = 1, . . . , n, that is,

φn(θ , t) = 1

n

n∑

j=1

exp (itZj (θ )) = φcn(θ , t) + iφsn(θ , t),

where θ = (θ1, θ2, θ3)T = (λ,μ, σ )T denotes the vector of parameters of interest and
φcn(θ , t) = n−1∑n

j=1 cos (tZj (θ )) and φsn(θ , t) = n−1∑n
j=1 sin (tZj (θ )).

Yeo and Johnson (2001) andYeo (2001) studied selecting transformation so that the
transformed variable is nearly symmetrically distributed aboutμ. They selectedλ and
μ to make the integrated square of the imaginary part of the empirical characteristic
function of ψ(X1, λ), . . . , ψ(Xn, λ) with factor exp (− itμ) minimized,

∫
Im{exp (− itμ)φn(λ, t)}2 dG(t) =

∫
⎧
⎨

⎩
1

n

n∑

j=1

sin
(
t(ψ(λ,Xj ) − μ)

)
⎫
⎬

⎭

2

dG(t),

where φn(t) = n−1∑n
j=1 exp (itψ(Xj , λ)) and G(·) is a symmetric distribution

function.
In this chapter, we propose to transformX according toZ(θ ) and then to select θ to

minimize an integrated weighted version of the distance between the empirical char-
acteristic function and a real-valued target characteristic function, φ(t). Specifically,
we minimize,

ϕn(θ ) = ||φn(θ ) − φ||2w
=

∫ ∞

−∞
{φn(θ , t) − φ(t)} {φn(θ , t) − φ(t)}w(t) dt,

where {φn(θ , t) − φ(t)} denotes the complex conjugate and w(t) is a nonnegative real-
valued weight function. We assume that w(t) is nonnegative and symmetric about zero
and

∫
w(t) dt < ∞. Since the target distribution is assumed to be symmetric about

zero, the characteristic function φ(t) is real-valued so that φ(t) = φ(t). Therefore,

ϕn(θ ) =
∫

w(t)φn(θ , t)φn(θ , t) dt

−
∫

w(t)φ(t)
{
φn(θ , t) + φn(θ , t)

}
dt +

∫
w(t)φ(t)2 dt

∝ 1

n

∑

j<k

∫
w(t) cos

(
t
{
Zj (θ ) − Zk(θ )

})
dt

−
n∑

j=1

∫
w(t)φ(t) cos

(
tZj (θ )

)
dt. (11.1)

The behavior in neighborhood of zero is important for characteristic functions. As in
Szekely et al. (2007), we may choose w(t) equal to t−2 on some interval containing
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zero and define integrals as the principal values. The integral on 0 to ∞ is the limit
as ε → 0 of the integral over (ε, ε−1). Under this preferred weight function, the
estimation procedure involves some difficult numerical integrations and the proof
of the asymptotic results is somewhat cumbersome. Instead, we impose moment
conditions on w(t) below.

Let ϕ(θ ) be the integrated distance between the true characteristic function of
Z(θ ) and φ(t), that is,

ϕ(θ ) = ||φ(θ ) − φ ||2w =
∫ ∞

−∞
{φ(θ , t) − φ(t)} {φ(θ , t) − φ(t)}w(t) dt,

where φ(θ , t) = E[ exp (itZ(θ ))] denotes the characteristic function of the standard-
ized transformed variable Z(θ ). The distribution of Z(θ ) is equivalent to the target
distribution if and only if ϕ(θ ) is zero. Hence, a reasonable approach to estimation is
to select the value θ̂ = (λ̂, μ̂, σ̂ )T which minimizes ϕn(θ ), that is θ̂ = arg minϕn(θ ).

11.3 Asymptotic Theory

Assume that the parameter space  is a compact set of the form

 = {θ | ai ≤ θi ≤ bi where 0 < a3 and |ai |, |bi | < ∞ for i = 1, 2, 3}. (11.2)

Theorem 1. Suppose that the parameter space  is a compact set such as (11.2)
and w(t) is nonnegative and symmetric about zero and

∫
w(t) dt < ∞. Then,

ϕn(θ )
a.s.−→ϕ(θ ) uniformly in θ ∈  and ϕ(θ ) is continuous in θ .

Proof. Since |φcn(θ , t)| ≤ 1, |φsn(θ , t)| ≤ 1, and |φ(t)| ≤ 1, it is clear that

ϕn(θ ) =
∫ ∞

−∞
{φn(θ , t) − φ(t)} {φn(θ , t) − φ(t)}w(t) dt

=
∫ ∞

−∞

{
(φcn(θ , t) − φ(t))2 + φsn(θ , t)2

}
w(t) dt (11.3)

≤ 5
∫ ∞

−∞
w(t) dt < ∞.

We begin by defining

η(z1, z2; θ ) =
∫ ∞

−∞
{(cos (tz1(θ )) − φ(t)) (cos (tz2(θ )) − φ(t)) (11.4)

+ sin (tz1(θ )) sin (tz2(θ ))}w(t) dt,

and then have, from (11.3),

ϕn(θ ) = 1

n2

n∑

j=1

n∑

k=1

η(Zj ,Zk; θ ) = n− 1

n
Un(θ ) + 1

n2

n∑

j=1

η(Zj ,Zj ; θ ) (11.5)
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where

Un(θ ) =
(
n

2

)−1∑

j<k

η(Zj ,Zk; θ ).

Letting SM = [− M ,M] and ΩM = SM × SM × θ , we can conclude that, since
η(z1, z2; θ ) is bounded and continuous in (z1, z2; θ ) ∈ ΩM , η1(z1, z2; θ ) is equicontin-
uous in . Furthermore, the uniform strong law of large numbers of U -statistics in
Yeo and Johnson (2001) ensures that Un(θ )

a.s.−→E[η(Z1,Z2; θ )] = η(θ ) uniformly in
θ ∈  and η(θ ) is continuous in θ ∈ .

Since, by the uniform strong law of large numbers in Rubin (1956),

1

n

n∑

j=1

η(Zj ,Zj ; θ )
a.s.−→E

[
η(Zj ,Zj ; θ )

]
(11.6)

uniformly in θ ∈  and this limit function in (11.6) is continuous in θ ∈ , the last
term in (11.5) can be neglected. Therefore, as claimed

ϕn(θ )
a.s.−→η(θ )

uniformly in θ ∈  and the limit is continuous in θ ∈ .
Finally we note that

ϕ(θ ) =
∫ ∞

−∞

{
(E[ cos (tZ1(θ )) ] − φ(t))2 + E[ sin (tZ1(θ ))]2

}
w(t) dt = η(θ )

(11.7)

because Z1 and Z2 are independent and identically distributed. �

Lemma 1. Let {gn(θ )} be a sequence of random functions defined on a probability
space and depend on a compact set, θ ∈ . Suppose that

(i) There exists a continuous function g(θ ) defined on  such that gn(θ )
a.s.−→g(θ )

uniformly in θ ∈ ,
(ii) T (θ ) has a unique minimum at θ0 ∈ .

Then, θ̂n = arg mingn(θ ) is a strongly consistent estimator of θ0.
Since it is a standard result, we omit the proof.

Theorem 2. Suppose the conditions of Theorem 1 hold and ϕ(θ ) has a unique global
minimum at θ0 = (λ0,μ0, σ0)T . Then, θ̂

a.s.−→θ0.

Proof. Since, according to Theorem 1, ϕn(θ )
a.s.−→ϕ(θ ) uniformly in θ and ϕ(θ ) is

continuous in θ and, by assumption, θ0 is unique minimizer of ϕ(θ ), Lemma 1 allows
us to conclude that θ̂

a.s.−→θ0. �
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Before stating asymptotic normality, we introduce some notations. For any
function g(θ ),

∇g(θ∗) =
(
∂g(θ )

∂θj

∣∣∣∣
θ=θ∗

)

and ∇2 g(θ∗) =
(
∂2 g(θ )

∂θj ∂θk

∣∣∣∣
θ=θ∗

)

are the gradient and the Hessian of g evaluated at θ∗, respectively, for j , k = 1, 2, 3.
We also write

∇j g(θ∗) = ∂g(θ )

∂θj

∣
∣
∣
∣
θ=θ∗

and ∇2
jk g(θ∗) = ∂2 g(θ )

∂θj ∂θk

∣
∣
∣
∣
θ=θ∗

.

Theorem 3. Suppose the conditions of Theorem 2 hold and that
∫ |t |w(t)dt < ∞.

Furthermore, assume that ψ1(x, λ) = ∂ψ(x, λ)/∂λ is continuous in (x, λ), and that
there exist functions h(x) and h1(x) that satisfy |ψ(x, λ)| ≤ h(x) and |ψ1(x, λ)| ≤
h1(x) for all λ in  andE

[
h2(X)

]
< ∞ andE

[
h2

1(X)
]
< ∞, respectively. Then, for

θ0 an interior point of , n1/2∇ϕn(θ0) is asymptotically distributed withN (θ , θ (θ0)),
where θ (θ0) is specified in the proof.

Proof. We need to obtain an expression ∇η(z1, z2; θ ) where η(z1, z2; θ ) is defined in
(11.4). Note that

∇η(z1, z2; θ ) =
∫ ∞

−∞

{
A(z1, z2, t , θ ) + B(z1, z2, t , θ )

}
tw(t) dt

+
∫ ∞

−∞

{
A(z2, z1, t , θ ) + B(z2, z1, t , θ )

}
tw(t) dt,

where

A(z1, z2, t , θ ) = {φ(t) − cos (tz2(θ ))} sin (tz1(θ ))∇z1(θ )

B(z1, z2, t , θ ) = cos (tz1(θ )) sin (tz2(θ ))∇z1(θ )

and these involve the factor ∇z(θ ). Since |ψ(x, λ)| and |ψ1(x, λ)| are bounded and
 is compact, each entry of

∇z(θ ) = (ψ1(x, θ1)/θ3,−1/θ3,− (ψ(x, θ1) − θ2
)
/θ2

3 )T

is bounded. We can now verify that ∇η(z1, z2; θ ) can be obtained by differentiating
under the integral sign in (11.4). The result is, for j = 1, 2, 3,

∇j η(z1, z2; θ ) ≤ 4
{ ∣∣∇j z1(θ )

∣
∣+ ∣∣∇j z2(θ )

∣
∣ }
∫ ∞

−∞
|t |w(t) dt < ∞.

Since ∇η(z1, z2; θ ) is bounded and continuous in (z1, z2; θ ) ∈ ΩM , ∇η(z1, z2; θ ) is
equicontinuous in . The random quantity ψ(X, λ) and ψ1(X, λ) are each assumed
to be dominated for all θ by a function with finite expectation. The same is clearly
true all of the entries of ∇η(Zj ,Zk; θ ).
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We now turn to the main proof. From (11.5), we see that

∇ϕn(θ ) = n− 1

n
∇Un(θ ) + 1

n2

n∑

j=1

∇η(Zj ,Zj ; θ )

= n− 1

n

(
n

2

)−1∑

j<k

∇η(Zj ,Zk; θ ) + 1

n2

n∑

j=1

∇η(Zj ,Zj ; θ ) (11.8)

Again, by the uniform strong law of large numbers, the second term in (11.8) can be
neglected.

Note that, since the sine function is odd and the cosine function even, ∇η(z1, z2; θ )
is a symmetric kernel and so ∇Un(θ ) = (

n

2

)−1∑
j<k ∇η(Zj ,Zk; θ ) is also a U -

statistics. Thus, the multivariate central limit theorems for random samples and U -
statistics ensure the asymptotic normality of∇ϕn(θ0) with the mean vector∇ϕ(θ0) =
θ and the covariance matrix Wn(θ0), where the (j , k)-th element of Wn(θ0) is

W (j ,k)
n (θ0) = (n− 1)2

n2

(
n

2

)−1{
2(n− 2)E[∇j η(Z1,Z2; θ0)∇kη(Z1,Z3; θ0)]

+E[∇j η(Z1,Z2; θ0)∇kη(Z1,Z2; θ0)]
}

Therefore, n1/2∇ϕn(θ0) is asymptotically normally distributed asN (0,$(θ0)), where
the (j , k)-th element of $(θ0) is

$(j ,k)(θ0) = 4E[∇j η(Z1,Z2; θ0)∇kη(Z1,Z3; θ0)] �

Theorem 4. Suppose the conditions of Theorem 3 hold and
∫
t2w(t)dt < ∞.

Furthermore, assume that ψ2(x, λ) = ∂2ψ(x, λ)/∂λ2 is continuous in (x, λ), and
that there exists a function h2(x) that satisfies |ψ2(x, λ)| ≤ h2(x) for all λ in

 and E
[
h2(X)2

]
< ∞. Then, n1/2(θ̂ − θ0) is asymptotically distributed with

N (θ , V(θ0)�(θ0)V(θ0)T ), where V(θ0) = (∇2ϕ(θ0)
)−1

.

Proof. Expanding n1/2∇ϕn(θ̂ ) about θ0, we obtain that

n1/2∇ϕn(θ̂ ) = n1/2∇ϕn(θ0) + ∇2ϕn(θ̃ )n1/2(θ̂ − θ0),

where θ̃ = αnθ̂ + (1 − αn)θ0 for αn ∈ [0, 1]. Since n1/2∇ϕ(θ̂ ) = θ at the minimum
when θ̂ lies in the interior of , n1/2∇ϕn(θ0) + ∇2ϕn(θ̃ )n1/2(θ̂ − θ0) converges in
probability to θ . From (11.8), ∇2ϕn can be written as

∇2ϕn(θ ) = n− 1

n

(
n

2

)−1∑

j<k

∇2η(Zj ,Zk; θ ) + 1

n2

n∑

j=1

∇2η(Zj ,Zj ; θ ). (11.9)
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Since |ψ(x, θ1)|, |ψ1(x, θ1)|, and |ψ2(x, θ1)| are bounded and  is compact, each
element of

∇2z(θ ) =
⎡

⎣
ψ2(x, θ1)/θ3 0 −ψ1(x, θ1)/θ2

3
0 0 1/θ2

3
−ψ1(x, θ1)/θ2

3 1/θ2
3 2

(
ψ(x, θ1) − θ2

)
/θ3

3

⎤

⎦

is bounded and, after some manipulation, we can show, for j , k = 1, 2, 3,

∇2
jkη(z1, z2; θ ) ≤ 3

{∣∣∇j z1(θ )∇kz1(θ )
∣
∣+ ∣∣∇j z2(θ )∇kz2(θ )

∣
∣}
∫ ∞

−∞
t2 w(t) dt

+2
{∣∣∇2

jkz1(θ )
∣
∣+ ∣∣∇2

jkz2(θ )
∣
∣}
∫ ∞

−∞
|t |w(t) dt < ∞.

By the uniform strong law of large numbers, the last term in (11.9) can be neglected.
Since ∇2η(z1, z2; θ ) is a symmetric kernel,

∇2Un(θ ) =
(
n

2

)−1∑

j<k

∇2η(Zj ,Zk; θ )

is a U -statistic. Applying the uniform strong law of large numbers for U -statistic by
Yeo and Johnson (2001) to∇2Un , we conclude that∇2ϕn(θ ) converges almost surely
to ∇2ϕ(θ ) uniformly in θ ∈ . Further, the limit function ∇2ϕ(θ ) is continuous in
θ . Hence, using the uniform convergence of ∇2ϕn and the continuity of ∇2ϕ with
almost sure convergence of θ̂ to θ0, it is easy to show that

∇2ϕn(θ̃ )converges almost surely to∇2ϕ(θ0). (11.10)

By Slutsky’s theorem along with asymptotic normality of n1/2ϕn(θ0) and (11.10),
we conclude that

n1/2(θ̂ − θ0) is asymptotically distributed withN
(
θ , V(θ0)�(θ0)V(θ0)T

)
,

where V(θ0) = (∇2ϕ(θ0))−1. �

Remark 1. Note that, for a1 ≤ λ ≤ b1, the Box–Cox transformation and the
Yeo–Johnson transformation satisfy the following inequalities;

∣∣ψ(x, λ)
∣∣ ≤ ∣∣ψ(x, a1)

∣∣+ ∣∣ψ(x, b1)
∣∣ = h(x)

ψ1(x, λ) ≤ ψ1(x, a1) + ψ1(x, b1) = h1(x)
∣∣ψ2(x, λ)

∣∣ ≤ ∣
∣ψ2(x, a1)

∣∣+ ∣∣ψ2(x, b1)
∣∣ = h2(x).

Here ψ1(x, λ) ≥ 0 for all (x, λ). This was established in Hernandez and Johnson
(1980) andYeo and Johnson (2000), respectively, where it is also shown that ψ(x, λ),
ψ1(x, λ), and ψ2(x, λ) are continuous in (x, λ).
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11.4 Some Exact Calculations with Weight Functions

We have to decide upon a specific weight function to calculate ϕn(θ ). Our choice here
is to obtain some weight functions that yield a closed form for the distance function.
Suppose the weight function w(t) is a symmetric probability density function about
zero and its characteristic function is ν( ·). Then, ν(a) = ∫

cos (at)w(t) dt and the
first term in (11.1) is written as n−1∑

j<k ν
(
Zj (θ ) − Zk(θ )

)
. Some examples for

weight functions and their characteristic functions are as follows;

w (t) = 1√
2πδ

e−t2/2δ2
, −∞ < t < ∞, ν (s) = e−δ2 s2/2

w (t) = |t |α−1

2Γ(α)δα
e−|t |/δ , −∞ < t < ∞, ν (s) = 1

2

(
1

1 + δ2 s2

)α

(11.11)

w (t) = 1

2δ
, −δ < t < δ, ν (s) = sin (δs)

δs
.

Note that weight distributions are indexed by a scale parameter, δ > 0. As mentioned
in Epps and Pulley (1983), w(t) should assign high weight in some interval around
the origin. This implies that the scale parameter must be a small value. A simulation
study shows that the shape of weight distribution may not exert a strong influence
on the estimation if the scale parameter is sufficiently small.

When the target distribution is normal, the normal density function w(t) gives the
closed form for the second term in (11.1) as follows;

∫
φ(t)w(t)cos(tz) dt = 1√

1 + δ2

∫ √
1 + δ2

√
2πδ

exp

(
−1 + δ2

2δ2
t2

)
cos(tz) dt

= 1√
1 + δ2

exp

{
− δ2z2

2(1 + δ2)

}
.

Since the integration gives the same family as the weight function, we call this type
of weight a conjugate weight. Hence, the second term in (11.1) is written as

n∑

j=1

∫
w(t)φ(t) cos (tZj (θ )) dt = 1√

1 + δ2

n∑

j=1

exp

{
− δ2Zj (θ )2

2(1 + δ2)

}
.

Consequently, when the normal density function with the standard deviation (SD) δ
is employed as the weight function w(t), estimates are obtained by minimizing

ϕ∗
n(θ ) ∝ 1

n

∑

j<k

exp

{
−δ2

2
(Zj (θ ) − Zk(θ ))2

}

− 1√
1 + δ2

n∑

j=1

exp

{
− δ2

2(1 + δ2)
Zj (θ )2

}
.

Note that if the degrees of freedom m are odd, the characteristic function of tm
distribution is
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φ(t) = exp ( −√
m|t |)

p−1∑

k=0

ck,p−1
√
m|t |k

where p = (m+1)/2 and the ck,ps are some constants given in Johnson et al. (1995,
p. 367). If w(t) is the double gamma density function such as (11.11), for some k ≥ 0
and a > 0,

∫
|t |k exp (− a|t |)w(t) cos (tz)dt = δkΓ(α + k)

2Γ(α)

{
(1 + aδ)

(
1 + δ2z2

(1 + aδ)2

)}−(α+k)

and we can also have a closed form for ϕ∗
n(θ ) when the target distribution is

t-distribution with m degree of freedom and m is odd. Suppose the goal of transfor-
mation is to achieve the Cauchy distribution. Then φ(t) = exp (− |t |) and, for some
α > 0,
∫

φ(t)w(t) cos (tz)dt = 1

(1 + δ)α

∫ |t |α−1

2Γ(α)

(
1 + δ

δ

)α

exp

(
−1 + δ

δ
|t |
)

cos (tz)dt

= 1

2(1 + δ)α

{
1 + δ2z2

(1 + δ)2

}−α

.

The estimates are obtained by minimizing

ϕ∗
n(θ ) ∝ 1

n

∑

j<k

{
1 + δ2(Zj (θ ) − Zk(θ ))2

}−α −
n∑

j=1

{
(1 + δ)

(
1 + δ2Zj (θ )2

(1 + δ)2

)}−α

.

11.5 Simulation Study

In this section, we present a small simulation to compare the proposed method
(MECF) with maximum likelihood estimation (MLE) of λ. A series of 1,000 repli-
cations, of samples of size n = 30, 50, and 100, were generated for λ0 = 0.0 and
0.5 according to ψ(X, λ0) ∼f where ψ is Yeo–Johnson transformation and f is one
of following distributions: tm with degrees of freedom m = 3, 5, 7 and the stan-
dard normal distribution. The double exponential weight function for t-distribution
and the normal weight function for standard normal distribution were employed and
δ = 0.1 was applied. The R program ‘nlminb’ is used to obtain optimizers of the
likelihood and ϕn(θ ).

Since our goal of transformation is to approximate symmetry, we also calculate
the Pearson’s skewness of transformed data as follows;

√
b1 = 1

n− 1

n∑

j=1

(
ψ(xj , λ̂) − ψ̄

sψ

)3
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Table 11.1 The Monte Carlo Bias, standard deviation (SD) and mean squared error (MSE) of λ̂
and

√
b1 for MLE and MECF

λ0 = 0.0 λ0 = 0.5
λ̂

√
b1 λ̂

√
b1

Target n MLE MECF MLE MECF MLE MECF MLE MECF

ta3 30 Bias 0.069 0.055 0.086 0.101 0.041 0.038 0.023 0.037
SD 0.228 0.262 0.754 0.328 0.300 0.315 0.674 0.303
MSE 0.057 0.071 0.576 0.117 0.092 0.100 0.455 0.093

50 Bias 0.056 0.055 0.064 0.079 0.018 0.021 0.015 0.004
SD 0.173 0.198 0.983 0.447 0.216 0.234 1.006 0.484
MSE 0.033 0.042 0.969 0.206 0.047 0.055 1.011 0.234

100 Bias 0.032 0.034 0.000 −0.052 0.012 0.019 −0.095 −0.096
SD 0.114 0.125 1.117 0.779 0.152 0.168 1.367 0.777
MSE 0.014 0.017 1.247 0.608 0.023 0.029 1.876 0.613

t5 30 Bias 0.068 0.063 0.051 0.089 0.024 0.022 0.037 0.051
SD 0.234 0.255 0.373 0.263 0.273 0.285 0.326 0.245
MSE 0.059 0.069 0.142 0.077 0.075 0.082 0.108 0.062

50 Bias 0.036 0.048 0.028 0.102 0.019 0.028 −0.007 0.042
SD 0.166 0.177 0.387 0.273 0.212 0.214 0.374 0.239
MSE 0.029 0.034 0.150 0.085 0.045 0.047 0.139 0.059

100 Bias 0.015 0.035 0.007 0.103 0.007 0.022 −0.022 0.036
SD 0.112 0.115 0.436 0.284 0.140 0.144 0.462 0.245
MSE 0.013 0.014 0.190 0.091 0.020 0.021 0.214 0.061

t7 30 Bias 0.060 0.058 0.063 0.099 0.024 0.025 0.016 0.032
SD 0.218 0.240 0.223 0.226 0.270 0.279 0.225 0.224
MSE 0.051 0.061 0.054 0.061 0.073 0.078 0.051 0.051

50 Bias 0.041 0.058 0.035 0.111 0.011 0.018 0.016 0.043
SD 0.181 0.190 0.249 0.230 0.205 0.206 0.254 0.211
MSE 0.034 0.039 0.063 0.065 0.042 0.043 0.065 0.046

100 Bias 0.018 0.043 −0.006 0.096 0.006 0.020 −0.020 0.028
SD 0.118 0.119 0.286 0.229 0.143 0.142 0.259 0.195
MSE 0.014 0.016 0.082 0.061 0.020 0.020 0.068 0.039

N (0, 1) 30 Bias 0.030 0.041 0.017 0.032 0.005 0.013 −0.004 0.008
SD 0.205 0.211 0.299 0.336 0.232 0.220 0.264 0.285
MSE 0.043 0.046 0.090 0.114 0.054 0.049 0.070 0.081

50 Bias 0.033 0.031 0.060 0.071 0.019 0.006 0.038 0.024
SD 0.194 0.183 0.506 0.511 0.193 0.197 0.374 0.397
MSE 0.039 0.034 0.260 0.266 0.038 0.039 0.141 0.158

100 Bias 0.039 0.038 0.130 0.125 0.013 0.024 0.028 0.057
SD 0.176 0.165 0.663 0.617 0.158 0.170 0.362 0.412
MSE 0.032 0.029 0.456 0.396 0.025 0.029 0.132 0.172

aUsual proof of asymptotic normality of λ̂ does not hold because the necessary moments do not
exist

where ψ̄ and sψ are the sample mean and the sample SD of ψ(xj , λ̂)s, respectively.
For each estimation method, we summarize performance by calculating the means,
the SD and the mean squared errors (MSE) of λ̂ and

√
b1.

Table 11.1 gives bias, standard deviation and mean squared error of estimates for
λ0 and

√
β0 = 0. One unexpected finding is that MLE provides better estimates λ̂
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when the underlying distribution has heavier tails, especially for small n, and MECF
perform well for the normal distribution with large n and λ0 = 0. For n = 100,
both methods provide similar performances. However, based on the inspection of
the skewness

√
b1 of transformed data, in all cases where the underlying distribution

is t-distribution, MECF is definitely better than MLE. From the Pearson skewness
point of view, this suggests that transforming data by our method leads to be more
symmetric when the population has heavy tails.
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Chapter 12
Averaged Regression Quantiles

Jana Jurečková and Jan Picek

12.1 Introduction

Consider the linear regression model

Yn = Xnβ + Un (12.1)

with observations Yn = (Y1, . . . ,Yn)
, i.i.d. errors Un = (U1, . . . ,Un)
 with an
unknown distribution function F , and unknown parameter β = (β0,β1, . . . ,βp)
.
The n × (p + 1) matrix X = Xn is known and xi0 = 1 for i = 1, . . . , n (i.e., β0 is
an intercept). The α-regression quantile β̂n(α) of model (12.1) is a solution of the
minimization

n∑

i=1

ρα(Yi − x

i b) := min (12.2)

with respect to b = (b0, . . . , bp)
 ∈ R
p+1, where x


i is the i-th row of Xn, i =
1, . . . , n and ρα(z) = |z|{αI [z > 0] + (1 − α)I [z < 0]}, z ∈ R

1. The population
counterpart of β̂n(α) is the vectorβ(α) = (β0+F−1(α),β1, . . . ,βp)
.For the brevity,
we shall occasionally use the notation

x∗
i = (xi1, . . . , xip)
, i = 1, . . . , n and X∗

n = [x∗
1, . . . , x∗

n

]


and β̂∗
n (α) = (β̂1(α), . . . , β̂p(α))
.Assume that the distribution function F (x) of the

errors Ui is increasing on the set {x : 0 < F (x) < 1}. For any fixed α ∈ (0, 1),
denote Uiα = Ui − F−1(α), i = 1, . . . , n. Then U1α , . . . ,Unα are i.i.d. random
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variables with distribution function Fα(x) = F (x + F−1(α)), x ∈ R, and F−1
α (u) =

F−1(u) − F−1(α), 0 < u < 1, so that F−1
α (α) = 0. It is sometimes convenient to

rewrite the model (12.1) in the following way:

Yni = β0(α) + x∗ 

ni β∗ + Uiα , i = 1, . . . , n (12.3)

with β0(α) = β0 +F−1(α).We shall omit the subscript n whenever it does not cause
a confusion. The α-regression quantile for the reparametrized model (12.3) is then a
solution of the minimization

n∑

i=1

{
α[Yi − b0(α) − x∗ 


i b]+ + (1 − α)[Yi − b0(α) − x∗ 

i b]−

} = min

with respect to b0(α) ∈ R
1, b ∈ R

p, (12.4)

where z+ = max{z, 0}, z− = max{−z, 0} for z ∈ R
1.

The α-regression quantile was introduced by Koenker and Bassett (1978), who
used a linear programming algorithm for its calculation. They also used the following
dual algorithm as a computational device:

n∑

i=1

Yi âi := max

under the constraint
n∑

i=1

âi = n(1 − α), (12.5)

n∑

i=1

xijâi = (1 − α)
n∑

i=1

xij, j = 1, . . . ,p,

0 ≤ âi ≤ 1, i = 1, . . . , n, 0 < α < 1.

The components of the optimal solution of (12.5),

ân(α) = (ân1(α), . . . , ânn(α))
, 0 ≤ α ≤ 1

were named the regression rank scores by Gutenbrunner and Jurečková (1992), who
used them for construction of the rank tests in the linear model. The matrix form of
program (12.5) is more compact:

Y

n â := max

under the constraint (Xn)
â = (1 − α)(Xn)
1n, (12.6)

â ∈ [0, 1]n, 0 ≤ α ≤ 1.

This implies that the regression rank scores are invariant with respect to the shift in
location and scale and to the changes of β, i.e.,

ân(α, Y + Xnb) = ân(α, Y) ∀b ∈ R
p+1. (12.7)
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As β̂n(α) and ân(α) are dual to each other, we get from the linear programming
theory that

âni(α) =
{

1 . . . Yi > x

i β̂n(α),

0 . . . Yi < x

i β̂n(α), i = 1, . . . , n

(12.8)

and if Yi = x

i β̂n(α) for some i (the exact fit), then 0 < âni(α) < 1; there are

exactly p+1 such components for each α, corresponding to the optimal base among
x1, . . . , xn.The pertinent values of âni(α) are determined by the constraints in (12.6).

Assume the following regularity conditions on the matrix Xn:

A1 limn→∞ Qn = Q, where Qn = n−1X

n Xn and Q is a positive definite matrix.

A2 n−1∑n
i=1 x

4
ij = O(1), as n → ∞, forj = 1, . . . ,p.

Then the α-regression quantile admits the following Bahadur-type representation
(for the proof see e.g., Jurečková et al. 2012):

Theorem 1. Suppose that the distribution function F is continuous and twice differ-
entiable in a neighborhood of F−1(α) and that F ′(F−1(α)) = f (F−1(α)) > 0, 0 <

α < 1. Then, under the conditions A1–A2,

β̂n(α) − β̃(α) = 1

nf (F−1(α))
Q−1

n

n∑

i=1

xiψα
(Ui − F−1(α)) + Rn(α), (12.9)

where ‖Rn(α)‖ = Op(n−3/4) as n → ∞ and

β̃(α) = (β0 + F−1(α),β1, . . . ,βp)
, ψ
α
(z) = α − I [z < 0], z ∈ R

1.

The convergence is uniform on interval [ε, 1 − ε] for every fixed ε ∈ (0, 1/2). The
process on the right-hand side of (12.9) is the weighted empirical process. Such
processes and their asymptotic properties were systematically studied by H. L. Koul;
we refer to his excellent monograph Koul (2002) with a rich bibliography.

The regression quantiles were intensively applied in the statistical and econometric
inference; here we refer to Koenker’s (2005) monograph and to the references cited
in, among others. Their extension to the autoregression processes was studied by
Koul and Saleh (1995).

Parallelly, the two-step α-regression quantile was proposed by the authors in
Jurečková and Picek (2005): It first estimates the slope components β∗ by means of
an R-estimate β̃

∗
R(α) ∈ R

p as a minimizer of the Jaeckel’s measure of rank dispersion
(Jaeckel 1972)

n∑

i=1

(Yi − x∗ 

i b∗)[ai(α, b∗) − (1 − α)] = min with respect to b∗ ∈ R

p (12.10)

where

ai(α, b∗) =
⎧
⎨

⎩

0 . . . Rni(Yi − x∗ 

i b∗) < nα

Ri − nα . . . nα ≤ Rni(Yi − x∗ 

i b∗) < nα + 1

1 . . . nα + 1 ≤ Rni(Yi − x∗

i b∗),

(12.11)
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Rni(Yi − x∗ 

i b∗) are the ranks of the residuals and ai(α, b∗) are known as Hájek’s

rank scores (Hájek 1965), i = 1, . . . , n. The second step of the procedure determines
the [nα]-quantile β̃0R(α) of the residuals {Yi − x∗


i β̃
∗
R(α)}, i = 1, . . . , n. Then the

two-step regression quantile is β̃R(α) = (β̃0R(α), β̃∗

R (α))
. It is asymptotically

equivalent to the standard regression quantile β̂n(α), i.e.,
∥∥β̂n(α) − β̃nR(α)

∥∥ = op(n−1/2) (12.12)

as n → ∞. The common population counterpart of β̂n(α) and β̃n(α) is (F−1(α) +
β0,β1, . . . ,βp)
. The finite-sample relations of both versions of regression quan-
tiles are studied in Jurečková and Picek (2005); for special α’s their values exactly
coincide.

If the inference concerns mainly the functionals of F−1(α) rather than the
regressors, we try to reduce the influence of the matrix Xn. It turns out that a
suitable projection of β̂n(α) (a special weighted empirical process) depends asymp-
totically only on the quantile of the model errors U1, . . . ,Un. This considerably
simplifies the inference, and we shall deal with this phenomenon further.

12.2 Averaged Regression Quantiles

We shall call the scalar statistic

B̄n(α) = x̄

n β̂n(α), x̄n = 1

n

n∑

i=1

xni (12.13)

the averaged regression quantile, and will study its properties and relations to other
statistics. Notice that B̄n(α) is scale equivariant and it is regression equivariant in the
sense that

B̄n(α; Y + Xb) = B̄n(α, Y) + x̄
b ∀b ∈ Rp+1.

Some properties of B̄n(α) are surprising; indeed, B̄n(α) is asymptotically equivalent
to the [nα]-quantile of the location model. The following useful identity for B̄n(α)
was first proven in Hallin and Jurečková (1999) for the linear autoregression model:

Lemma 1 (i) If α ∈ (0, 1) is a continuity point of β̂n(α), then

B̄n(α) = −1

n

n∑

i=1

Yi

d

dα
âi(α).

(ii) B̄n(α) and hence also − 1
n

∑n
i=1 Yi

d
dα

âi(α) are nondecreasing step-functions of
α ∈ (0, 1).
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Proof. The duality between β̂n(α) and ân(α) implies that

n∑

i=1

ρα(Yi − x

i β̂n(α)) =

n∑

i=1

Yi(âi(α) − (1 − α)).

Hence, for 0 < α1 < α2 < 1,

n∑

i=1

[
ρα2 (Yi − x


i β̂(α1)) − ρα1 (Yi − x

i β̂(α1))

]

= (α2 − α1)
n∑

i=1

(Yi − x

i β̂1(α1)) ≥

n∑

i=1

Yi

[
âi(α2) − âi(α1) + (α2 − α1)

]
,

thus

(α2 − α1)
n∑

i=1

x

i β̂(α1)) ≤ −

n∑

i=1

Yi(âi(α2) − âi(α1)). (12.14)

Analogously, we obtain

(α2 − α1)
n∑

i=1

x

i β̂1(α2)) ≥ −

n∑

i=1

Yi(âi(α2) − âi(α1)). (12.15)

(12.14) and (12.15) imply

x̄

n β̂n(α1) ≤ −1

n

n∑

i=1

Yi

âi(α2) − âi(α1)

α2 − α1
≤ x̄


n β̂n(α2).

This entails the monotonicity of x̄

n β̂n(α).On the other hand, β̂n(α) is a step-function,

and ân(α) is a piecewice linear function of α, and the points of discontinuity of β̂n(α)
and of d

dα
ân(α) coincide. Hence, letting α2 → α1, we obtain the Lemma. �

The following theorem shows that the averaged regression α-quantile is asymp-
totically equivalent to the location α-quantile:

Theorem 2. Under the conditions of Theorem 1,

n1/2
[
x̄

n (β̂n(α) − β) − Un:[nα]

] = Op(n−1/4) (12.16)

as n → ∞, where Un:1 ≤ . . . ≤ Un:n are the order statistics corresponding to
U1, . . . ,Un.

Proof. By A1, A2 and Theorem 1,
√
nx̄


n (β̂n(α) − β̃(α)) (12.17)

= 1

f (F−1(α))

√
nx̄


n (X

n Xn)−1

n∑

i=1

xi(α − I [Ui < F−1(α)]) + Op(n−1/4)
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= [
√

nf (F−1(α))]−1
n∑

k,i=1

x

k (X


n Xn)−1xi(α − I [Ui < F−1(α)]) + Op(n−1/4)

= [
√

nf (F−1(α))]−11

n Ĥncn(α) + Op(n−1/4)

= [
√

nf (F−1(α))]−11

n cn(α) + Op(n−1/4)

= [
√

nf (F−1(α))]−1
n∑

i=1

(
α − I [Ui < F−1(α)]

)+ Op(n−1/4)

= √
n
(
Un:[nα] − F−1(α)

)+ Op(n−1/4)

where cn(α) = (α − I [U1 < F−1(α)], . . . ,α − I [Un < F−1(α)])
 and
Ĥn = Xn(X


n Xn)−1X

n is the projection matrix.

Remark 1 It follows from (12.12) that the approximation (12.16) is true also for
the two-step regression quantile β̃R(α). Moreover,

n1/2[β̃0R(α) − β0 − Un:[nα]] = op(1) as n → ∞. (12.18)

Theorem 2 has an easy corollary:

Corollary 1 Under the conditions of Theorem 1,

n1/2
[
x̄

n (β̂n(α2) − β̂n(α1)) − (Un:[nα2] − Un:[nα1])

] = Op(n−1/4) (12.19)

for any 0 < α1 ≤ α2 < 1.

The statistics of type x̄

n (β̂n(α2) − β̂n(α1)) are invariant to the regression with

design X and equivariant with respect to the scale. As such, they provide a tool for
studentization of M-estimators in linear regression model and always when one needs
to make a statistic scale-equivariant. The properties of studentized M-estimators are
thoroughly studied in Jurečková et al. (2012). In Jurečková et al. (2003), the authors
use the regression interquartile range with α1 = 1

4 , α2 = 3
4 in goodness-of-fit testing

with nuisance regression and scale.

12.3 Local Heteroscedasticity

The approximation (12.16) remains true under a sequence of local alternative distri-
butions, contiguous with respect to the sequence

{∏n
i=1 F (uni)

}
. Among them, the

local heteroscedasticity deserves a special study. The frequent heteroscedastic model
has the form

Yi = β0 + x

i β + σiUi , i = 1, . . . , n (12.20)
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where Un = (U1, . . . ,Un)
 are the i.i.d. errors with the joint distribution function F

and

σi = exp {d

i γ }, i = 1, . . . , n (12.21)

with known or observable di ∈ R
q , 1 ≤ i ≤ n and unknown parameter γ ∈ R

q . We
assume that

n∑

i=1

dij = 0, j = 1, . . . , q,

max
1≤i≤n

‖di‖ = o(n
1
2 ) as n → ∞, (12.22)

lim
n→∞ Dn = lim

n→∞
1

n

n∑

i=1

did

i = D,

max
1≤i≤n

{
d

i

(
n∑

k=1

dkd

k

)−1

di

}→ 0 as n → ∞

where D is positive definite (q×q) matrix. The homoscedasticity means that γ = 0;
then (12.16) applies. The local heteroscedasticity means that

γ = γn = n−
1
2 δ, δ ∈ R

q , δ �= 0, ‖δ‖ ≤ C < ∞. (12.23)

The following theorem shows that (12.16) remains true under the local heteroscedas-
ticity:

Theorem 3. Consider the model (12.20) under the local heteroscedasticity satisfy-
ing (12.21), (12.22) and (12.23). Then (12.16) remains true for any fixed α ∈ (0, 1).
Moreover,

√
nx̄


n (β̂n(α) − β − e0F
−1(α))

= 1√
nf (F−1(α))

n∑

i=1

(
α − I [Ui < F−1(α)]

)+ Op(n−1/4),

√
n(Un:[nα] − F−1(α)) (12.24)

= 1√
nf (F−1(α))

n∑

i=1

(
α − I [Ui < F−1(α)]

)+ Op(n−1/4)

and both {√nx̄

n (β̂n(α) − β − e0F

−1(α))} and {√n(Un:[nα] − F−1(α))} are asymp-
totically normally distributed N

(
0, α(1−α)

f 2(F−1(α))

)
also under local heteroscedasticity;

e0 = (1, 0, . . . , 0)
 ∈ R
p+1.

Proof. Under (12.20), (12.21) and (12.23), the random vector Y has the density

qnγ (y1, . . . , yn) =
n∏

i=1

exp{d

i γ }f

(
yi exp{d


i γ }
)
. (12.25)
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Under local heteroscedasticity (12.23), the sequence of densities {qnγ } is contiguous
to {qn0} corresponding toγ = 0 (see Hájek 1965, Chap.VI). Hence, then propositions
(12.16) and (12.17) remain true. The asymptotic distributions follow from (12.24),
using expansions of the moments. �

12.4 Quantile Density Function

The quantile density function q(u) = 1
f (F−1(u)) is used in nonparametric statistical

inference, as in the studentization, adaptive procedures, in the sequential confidence
sets, in tests on β based on L1-regression and elsewhere. It is a scale statistic, being
location invariant and scale equivariant. The sum of quantile densities is again a
quantile density of some random variable.A typical term in the asymptotic variance of
empiricalα-quantile is q2(α). Siddiqui (1960), Bloch and Gastwirth (1968), Bofinger
(1975), Lai et al. (1983), and others considered the histogram estimate of q(α) in the
location model. Parzen (1979), Yang (1985), Falk (1986), Zelterman (1990), Soni et
al. (2012), among others, considered kernel-type estimators of q(α). Xiang (1995)
studied the kernel estimator of the conditional quantile density function.

Based on observations Yn1, . . . ,Ynn in model (12.1), we want to estimate q(α) at
the point α. Such estimator should be regression invariant and scale equivariant. The
first estimates of q(α) in the linear regression model were proposed by Koenker and
Bassett (1978) and Welsh (1987). Welsh (1987) constructed a class of estimators of
q(α) based on a kernel smoothing the empirical quantile function of the residuals from
an estimator of β. Dodge and Jurečková (1995) extended Falk’s (1986) estimator
to the linear model, using the first component of β̂(α) under the assumption that
x̄j =∑n

i=1 xij = 0 for j = 1, . . . ,p.
Applying Theorem 1, we can construct analogues of estimators of Dodge and

Jurečková (1995) based on B̄(α). These estimators, not demanding x̄j = 0 for
j = 1, . . . ,p, can be used also in autoregression and sequential models, where this
condition does not hold.

Let us first consider the histogram type estimate

Hn(α) = 1

2νn
[B̄n(α + νn) − B̄n(α − νn)] (12.26)

where

νn = o(n−1/3), nνn → ∞ as n → ∞.

Then Hn(α) is consistent and asymptotically normal.

Theorem 4. Under (12.26) and under the conditions of Theorem 2,

Hn(α) − q(α) = Op(nνn)−1/2 as n → ∞, (12.27)

uniformly in α ∈ (ε, 1 − ε), ∀ ε ∈ (0, 1/2).
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Moreover, Hn(α) is asymptotically normal for every fixed α ∈ (ε, 1 − ε),

(nνn)1/2(Hn(α) − q(α))
D→ N

(
0,

1

2
q2(α)

)
as n → ∞. (12.28)

Proof. LetFn denote the empirical distribution function ofUn1, . . . ,Unn.By (12.17)
and (12.26),

Hn(α) = (2νn)−1
(
F−1(α + νn) − F−1(α − νn)

)

+(2νn)−1
{
q(α + νn)[α + νn − Fn(F−1(α + νn))]

−q(α − νn)[α − νn − Fn(F−1(α − νn))]
}+ Op(n−3/4ν−1

n )

= q(α) + Op((nνn)−1/2),

what demonstrates (12.27).
To prove (12.28), notice that by Csörgö and Révész (1978), there exists a sequence

of Brownian Bridges Bn(·), dependent on Un1, . . . ,Unn, respectively, such that

(2nνn)1/2(Hn(α) − q(α)) = (2νn)−1/2q(α)[Bn(α + νn) − Bn(α − νn)] + op(1)

as n → ∞. This implies (12.28).
Following Falk (1986) and Dodge and Jurečková (1995), define the kernel estimate
of q(α) as follows:

κ̂n(α) = 1

ν2
n

∫ 1

0
B̄n(u)k

(α − u

νn

)
du, (12.29)

assuming that

νn ↓ 0, nν3
n ↓ 0 and nν2

n → ∞ as n → ∞. (12.30)

The kernel function k : R
1 �→ R

1 is assumed to satisfy the following condition:

K1: k(·) is continuous on its compact support and
∫

k(x)dx = 0,
∫

xk(x)dx = −1.

The estimator κ̂n(α) is consistent and asymptotically normal:

Theorem 5. In the model (12.1), let distribution function F of U1 have continuous
density f which is positive and finite in {x : 0 < F (x) < 1}. Let F−1 be twice
differentiable with bounded second derivative in a neighborhood of α. Then, under
the conditions of Theorem 2,

κ̂n(α) − q(α) = Op((nνn))−1/2 as n → ∞. (12.31)
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Moreover, κ̂n(α) is asymptotically normally distributed,

(nνn)1/2(̂κn(α) − q(α))
D→ N

(
0, q2(α)

∫
K2(x)dx

)
, (12.32)

where K(x) = ∫ x

−∞ k(y)dy.

Proof. First notice that

κ̂n(α) = 1

ν2
n

∫ 1

0
[B̄n(u) − x̄


n β]k
(α − u

νn

)
du.

Starting with n ≥ n0, the interval
(
α−1
νn

, α
νn

)
contains the support of k(·). Hence, by

(12.16) and (12.17),

κ̂n(α) = ν−2
n

∫ 1

0
F−1(u)k

(α − u

νn

)
du

+ν−2
n

∫ 1

0
q(u)[u − Fn(F−1(u))]k

(α − u

νn

)
du + Op(n−3/4ν−1

n )

= q(α) + n−1ν−2
n

n∑

i=1

∫ 1

0
q(u){u − I [F (Ui) ≤ u]}k(α − u

νn

)
du

+Op(n−3/4ν−1
n ) (12.33)

= q(α) + (nνn)−1
n∑

i=1

∫
q(α − νnz){α − νnz − I [F (Ui) ≤ (α − νnz)]}dK(z)

+Op(n−3/4ν−1
n ) = q(α) + Op((nνn)−1/2),

what proves (12.31). Applying the central limit theorem in the fourth line of (12.33),
we arrive at (12.32).

Remark 2 As an example of kernel satisfying K1, consider the Epanechnikov (1969)
kernel with

k(x) =
{− 3

2b3 · x if −b ≤ x ≤ b

0 elsewhere.

The kernel estimate gets ahead of the histogram for b > 6
5 , when∫

K2(x)dx = 3
5b < 1

2 .

12.5 Numerical Illustrations

In order to illustrate the differences of the averaged regression α-quantile and the
location α-quantile for moderate samples we have conducted a simulation study.
We considered the following linear regression model
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Fig. 12.1 The median, 5 %-,
95 %-quantiles in the sample
of 10,000 differences between
averaged regression and
location α-quantiles in model
(12.34); normal distributions
of errors; sample sizes n =20
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Fig. 12.2 The median, 5 %-,
95 %-quantiles in the sample
of 10,000 differences between
averaged regression and
location α-quantiles in model
(12.34); normal distributions
of errors; sample sizes
n =500
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Yi = β0 + xiβ1 + Ui , i = 1, . . . , n, (12.34)

The errorsUi , i = 1, . . . , n, were simulated from the normal, exponential and Cauchy
distributions. The design points x1,1, . . . , x1,n were generated from the uniform dis-
tribution on the interval (−5, 50). They remain fixed for all simulations under given
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Fig. 12.3 The median, 5 %-,
95 %-quantiles in the sample
of 10,000 differences between
averaged regression and
location α-quantiles in model
(12.34); Cauchy distribution
of errors; sample sizes
n =500
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Table 12.1 Mean, standard deviation and quantiles of difference between averaged regression and
location 0.55-quantiles in model (12.34)

n, law Mean Stand.
dev.

Quantiles

0 0.05 0.25 0.5 0.75 0.95 1

20, N −0.155 0.280 −1.856 −0.639 −0.270 −0.098 −0.010 0.209 1.017
20, E −0.006 0.049 −0.236 −0.081 −0.025 −0.006 0.008 0.071 0.303
20, C −20.032 100.811 −1699.680 −76.138 −7.176 −1.875 −0.298 0.467 16.006

100, N −0.033 0.102 −0.484 −0.202 −0.081 −0.025 0.018 0.132 0.368
100, E 0.000 0.013 −0.042 −0.018 −0.007 −0.001 0.005 0.025 0.055
100, C −1.486 2.988 −38.802 −6.527 −1.803 −0.635 −0.074 0.656 4.648
500, N −0.006 0.034 −0.143 −0.062 −0.023 −0.005 0.011 0.050 0.132
500, E 0.000 0.004 −0.013 −0.006 −0.002 0.000 0.002 0.007 0.021
500, C −0.234 0.535 −3.737 −1.200 −0.440 −0.141 0.044 0.475 1.503

Sample sizes n =20, 100, 500, and 10,000 replications
N normal, E exponential, C Cauchy distributions of errors

n. The following parameter values of models were used: n = 20, 100, 500; β0 = 1
and β1 = −2.

Our interest is comparing the averaged regression α-quantiles and the location
α-quantiles. We chose α = 0.05, 0.15, 0.55, 0.95 and 10,000 replications of the
models were simulated for each combination of the parameters and each α, and the
averaged regression α-quantiles and the location α-quantiles were then computed.
Figures 12.1–12.3 and Tables 12.1–12.3 compare some characteristics of differ-
ences of the averaged regression α-quantile and the location α-quantile for different
combination of the parameters.
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Table 12.2 Mean, standard deviation and quantiles of difference between averaged regression and
location 0.05-quantiles in model (12.34)

n, law Mean Stand.
dev.

Quantiles

0 0.05 0.25 0.5 0.75 0.95 1

20, N −0.055 0.179 −0.773 −0.368 −0.128 −0.042 0.018 0.224 0.666
20, E 0.003 0.056 −0.182 −0.079 −0.024 −0.004 0.026 0.100 0.312
20, C −0.788 2.107 −37.602 −3.385 −0.853 −0.247 −0.018 0.413 5.238

100, N −0.016 0.061 −0.233 −0.117 −0.052 −0.014 0.016 0.087 0.210
100, E 0.001 0.019 −0.076 −0.025 −0.008 −0.001 0.009 0.036 0.078
100, C −0.131 0.289 −1.947 −0.691 −0.220 −0.066 0.012 0.220 1.017
500, N −0.001 0.019 −0.071 −0.032 −0.011 −0.001 0.008 0.029 0.079
500, E 0.000 0.006 −0.020 −0.008 −0.003 0.000 0.003 0.010 0.027
500, C −0.021 0.070 −0.333 −0.140 −0.056 −0.013 0.015 0.083 0.260

Sample sizes n =20, 100, 500, and 10,000 replications
N normal, E exponential, C Cauchy distributions of errors

Table 12.3 Mean, standard deviation and quantiles of difference between averaged regression and
location 0.15-quantiles in model (12.34)

n, law Mean Stand.
dev.

Quantiles

0 0.05 0.25 0.5 0.75 0.95 1

20, N 0.065 0.179 −0.592 −0.215 −0.014 0.047 0.149 0.387 1.065
20, E 0.123 0.269 −0.871 −0.214 −0.008 0.073 0.230 0.669 1.453
20, C 0.880 2.314 −2.577 −0.378 0.024 0.260 0.875 3.899 32.680

100, N 0.012 0.061 −0.281 −0.089 −0.018 0.008 0.042 0.118 0.281
100, E 0.032 0.098 −0.275 −0.113 −0.019 0.021 0.078 0.196 0.579
100, C 0.139 0.325 −0.629 −0.217 −0.017 0.067 0.228 0.692 3.420
500, N 0.002 0.019 −0.060 −0.030 −0.008 0.003 0.013 0.034 0.085
500, E 0.007 0.031 −0.123 −0.042 −0.009 0.005 0.021 0.059 0.159
500, C 0.023 0.074 −0.206 −0.085 −0.015 0.013 0.057 0.152 0.401

Sample sizes n =20, 100, 500, and 10,000 replications
N normal, E exponential, C Cauchy distributions of errors
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Gutenbrunner C, Jurečková J (1992) Regression rank scores and regression quantiles. Ann Stat

20:305–330
Hájek J (1965). Extensions of the Kolmogorov-Smirnov tests to regression alternatives. Bernoulli-

Bayes-Laplace Seminar, (ed. L. LeCam), University California Press, California, pp 45–60
Hájek J, Šidák Z (1967) Theory of rank tests. Academia, Prague
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Chapter 13
A Study of One Null Array of Random Variables

Estate Khmaladze (with contribution from Thuong Nguyen)

13.1 The Sum

Suppose U1, . . . ,Um are independent and uniformly distributed on [0, 1], and let m
be a large integer. Consider the sum

Sm =
m∑

i=1

Um
i .

It certainly is sum of asymptotically negligible random variables with distribution
function

P(Um ≤ s) = P(U ≤ s1/m) = s1/m.

We want to say as much as we can about the limit distribution of Sm.
This limiting distribution is, certainly, infinitely divisible. In order to obtain the

characteristic function of it, consider the characteristic function of the sum Sm:

[φm(t)]m = exp [m ln φm(t)] ∼ exp [m(φm(t) − 1)]

= exp [m
∫ 1

0
(eits − 1)

1

m
s1/m−1ds]

where

φm(t) = 1

m

∫ 1

0
eitss1/m−1ds

is characteristic function of one summand. This immediately implies that

lim
m→∞ [φm(t)]m = exp [ lim

m→∞

∫ 1

0

eits − 1

s
s1/mds] = exp

∫ 1

0

eits − 1

s
ds. (13.1)
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Later, we use notation

ψ(t) =
∫ 1

0

eits − 1

s
ds,

so that the characteristic function of the limit distribution of Sm is

exp [ψ(t)].

This, basically, means that the L ’evy - Khinchine measure of the limiting distribution
is ds/s, 0 < s < 1.

Since the distribution function of Um is a B- distribution function with the density

1

B(α,β)
sα−1(1 − s)β−1, where α = 1/m,β = 1,

we have the representation of its characteristic function as an infinite series, see
Johnson et al. (1995),

φm(t) = 1 +
∞∑

k=1

1/m

1/m+ k

(it)k

k! .

Therefore, for our earlier limit we obtain

m(φm(t) − 1) =
∞∑

k=1

1

1/m+ k

(it)k

k! →
∞∑

k=1

1

k

(it)k

k! ,

which is another expression for ψ(t).
It is good to verify that the two expressions agree. To do this, it seems easiest to

differentiate both expressions. Differentiating the infinite series, one obtains

d

dt

∞∑

k=1

(it)k

k! =
∞∑

k=1

d

dt

1

k

(it)k

k! =
∞∑

k=1

1

t

(it)k

k! = 1

t
[eit − 1].

Differentiating the integral form of ψ(t), one obtains

d

dt

∫ 1

0

eits − 1

s
ds = i

∫ 1

0
eitsds = 1

t
[eit − 1],

and the derivatives coincide. To sum up: ψ can be written in two different forms,

ψ(t) =
∫ 1

0

eits − 1

s
ds =

∞∑

k=1

1

k

(it)k

k! =
∫ t

0

1

τ
[eiτ − 1]dτ.
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13.2 Slightly Different View

Let us split the sum Sm as follows:

Sm=
m∑

i=1

Um
i II (Ui ≥ 1−ε)+

m∑

i=1

Um
i II (Ui < 1−ε)=

m∑

i=1

Um
i II (Ui ≥ 1−ε)+oP (1),

which is correct because the second sum is asymptotically negligible:

m∑

i=1

Um
i II (Ui < 1 − ε) ≤ m(1 − ε)m → 0, as m → ∞.

This sum stays asymptotically negligible with slowly decreasing ε, say, ε ∼ m−2/3.
Rewrite the first sum as

m∑

i=1

Um
i II (Ui ≥ 1 − ε) =

m∑

i=1

em ln Ui II (Ui ≥ 1 − ε)

=
m∑

i=1

e−m(1−Ui )emO(1−Ui )2
II (Ui ≥ 1 − ε) ∼

m∑

i=1

e−m(1−Ui )II (Ui ≥ 1 − ε),

which is true because 1 ≤ em(1−Ui )2 ≤ emε2 → 1 with our choice of ε.
Finally, we can drop II (Ui ≥ 1 − ε), which will increase the last sum by

asymptotically negligible random variable. Altogether

m∑

i=1

Um
i =

m∑

i=1

e−m(1−Ui ) + op(1). (13.2)

This relationship may not be obvious initially, but becomes apparent when we turn
to characteristic functions. The distribution function of each summand e−m(1−Ui ) is

P(e−m(1−Ui ) ≤ x) = 1 + 1

m
ln x, for x ∈ [e−m, 1].

Therefore its characteristic function is

ϕm(t) = 1

m

∫ 1

e−m

eits
1

s
ds

and what 13.2 actually says is simply the probabilistic equivalent of the fact that

lim
m→∞m(φm(t) − 1) = lim

m→∞m(ϕm(t) − 1)

or

lim
m→∞

∫ 1

0
(eits − 1)s1/m−1ds = lim

m→∞

∫ 1

e−m

(eits − 1)s−1ds.



220 E. Khmaladze

13.3 Two More Modifications of the Same Facts

Suppose the limit distribution of sum

Sm =
m∑

i=1

Um
i

is some F . It certainly is a member of semigroup of distributions F = {Fs(x), s ≥ 0}
with convolution, see, e.g., Feller. We can always assume F = F1. Infinitesimal
operator of this semigroup of distributions is the operator defined as

Ua(x) = lim
m→∞mE[a(x − Um) − a(x)] = lim

m→∞m

∫ 1

0
[a(x − y) − a(x)]dy1/m.

Therefore

Ua(x) =
∫ 1

0
[a(x − y) − a(x)]

dy

y
.

The operator defined by the distribution Fs can be represented then as

∫ ∞

0
a(x − y)dFs(y) = esUa =

∞∑

k=0

sk

k!U
ka(x).

The power U k , and the operator U itself, is intuitively very appealing. Namely,

U ka(x) =
∫ 1

0
· · ·
∫ 1

0

�y1,y2,...,yk a(x)

y1y2 . . . yk
dy1dy2 . . . dyk

where �y1,y2,...,yk a(x) is the k-th increment of a, i.e.,

�y1a(x) = a(x − y1) − a(x)

is the first increment,

�y1,y2a(x) = a(x − y1 − y2) − a(x − y1) − a(x − y2) + a(x)

is the second increment, and so on. Since y1y2 . . . yk is the area of k-th increment,
U ka(x) is the “average size of k-th increment”.

As we discovered in the previous sections, the dK(y) = I(0 < y < 1) dy
y

is Lévy -
Khinchine measure, corresponding to the semigroup F, and its relationship to U is

Ua(x) =
∫

[a(x − y) − a(x)]dK(y),

which is true in general.
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The second remark here is that

m∑

i=1

Um
i = m

∫ 1

0
xmdF̂m(x),

where F̂m is the empirical distribution function of m uniformly distributed random
variables.

If we choose now ε = εm = C/m, with C – large but fixed, which is radically
smaller than in the pervious section, we can proceed as

m

∫ 1

0
xmdF̂m(x) = m

∫ 1−C/m

0
xmdF̂m(x) +m

∫ 1

1−C/m

xmdF̂m(x)

The first integral

m

∫ 1−C/m

0
xmdF̂m(x) = $m

i=1U
m
i I(0 < Ui <

C

m
)

has expected value

m

∫ 1−C/m

0
xmdx = m

m+ 1
(1 − C

m
)m+1 → e−C ,

and the variance

m

[∫ 1−C/m

0
x2 mdx −

(
1

m+ 1
(1 − C

m
)m+1

)2
]

→ e−2 C ,

and both can be made arbitrarily small for sufficiently large C.
In the second integral, we can change the variable, z = m(1−u) and consider the

empirical distribution function F̂m,Z (z) of random variables m(1 − Ui) = Zi , which
are uniformly distributed on [0,m]:

m

∫ 1

1−C/m

xmdF̂m(x) = m

∫ C

0
(1 − z

m
)mdF̂m,Z (z)

However, on interval [0,C], for any fixed C, the process

mF̂m,Z
d→ ξ ,

where ξ is standard Poisson process, see, e.g., Reiss and Thomas (2007) or Karr
(2002). From this, it can be derived that

m

∫ C

0
(1 − z

m
)mdF̂m,Z (z)

d→
∫ C

0
e−zdξ (z). (13.3)
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At the same time, the random variable
∫ ∞

C

e−zdξ (z)

also has small expected value and variance; they are
∫ ∞

C

e−zdz = e−C and
∫ ∞

C

e−2zdz = e−2 C.

Therefore,

m

∫ 1

1−C/m

xmdF̂m(x)
d→
∫ ∞

0
e−zdξ (z),

and, altogether, we the following stochastic representation for the limiting random
variable:

m∑

i=1

Um
i

d→
∫ ∞

0
e−zdξ (z). (13.4)

Limit theorem 13.3 is very suitable for simulations.

13.4 Distribution Function

We obtained the limit of characteristic function of our sum

Sm =
m∑

i=1

Um
i

and the stochastic representation 13.4 of this limit. Let us use it now to derive what
we can for distribution function of this limit.

We first obtain two equations for the distribution function, although we will not
use them. We have

X =
∫ ∞

0
e−zdξ (z) =

∞∑

i=1

e−Ti ,

where Ti is the moment of i-th jump of ξ (or i-th arrival time). Then

∞∑

i=1

e−Ti = e−T1 [1 +
∞∑

i=2

e−Ti+T1 ].

Since T1 is standard exponential random variable, e−T1 is uniform random variable
on [0, 1], independent from the infinite sum on the right hand side, while two infinite
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sums have the same distribution. In notation,

X = U [1 +X′], X
d= X′, U ⊥ X′.

This implies

P(X ≤ x) = P(X′ ≤ x

U
− 1)

or

F (x) =
∫ 1

0
F (

x

u
− 1)du.

This also implies

P(
X

U
≤ x) = P(1 +X′ < x),

or ∫ 1

0
F (x u)du = F (x − 1).

Both equations define F uniquely, but we find it easier to use another equation later.
This equation is recursive, and leads to explicit expression for the limiting distribution
function.

Start with
∫ ∞

0
e−zdξ (z) =

∫ ε

0
e−zdξ (z) + e−ε

∫ ∞

ε

e−z+εdξ (z),

or, in different but similar notations,

X =
∫ ε

0
e−zdξ (z) + e−εX′

For the integral, we have

P(
∫ ε

0
e−zdξ (z) − e−T1II (T1 ≤ ε) �= 0) = P(T2 ≤ ε) = O(ε2)

and therefore

P(X ≤ x) = P(X′ ≤ eε(x − e−T1II (T1 ≤ ε))) = F (eεx)e−ε +
∫ 1

e−ε

F (eε(x − u))du,

or
F (x) = (F (x) + f (x)xε)(1 − ε) + F (x − 1)ε + o(ε),

and, finally,
xf (x) = F (x) − F (x − 1).

This can be solved recurrently: F (x) = 0 for x ≤ 0 and then

F (x) = x[c −
∫ x

0

1

y2
F (y − 1)dy]. (13.5)
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Namely, for 0 ≤ x ≤ 1, F (x) is just linear,

F (x) = cx, f (x) = c;

for 1 ≤ x ≤ 2

F (x) = c[2x − x ln x − 1], f (x) = c[1 − ln x].

For 2 ≤ x ≤ 3, Thuong Nguyen derived

F (x) = c[3x − x ln x − 3 + ln (x − 1) − x ln (x − 1) + x

∫ x

2

ln (y − 1)

y
dy].

To derive an analytic expression beyond x = 3 is possible, but looks like somewhat
unnecessary hassle, because F (3) = 0.988, quite high value already. The value of
the constant c is about 0.563.

13.5 The Stretched Sum

Now, as m → ∞, let am → ∞ but a
1/m
m → 1. There are many such sequences.

For example, am = mα for any constant α > 0, has this property. Consider random
variable

amU
m

It is asymptotically negligible: for any x > 0

P(amU
m < x) = min(

x1/m

a
1/m
m

, 1) → 1.

Still, its moments can very well diverge to ∞, or remain bounded away from zero,
because

EamU
m = am

1

m+ 1
, Var amU

m = a2
m

1

2m+ 1

(
m

m+ 1

)2

.

How small is amUm? To answer this, note that

P(amU
m < zm) = min(

z

a
1/m
m

, 1) →
{

1, if z > 1,

z, if z ≤ 1.

and that

P(Um < zm) = min(z, 1) =
{

1, if z > 1,

z, if z ≤ 1.

Therefore, on the scale zm random variables amUm and Um look equally small.
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Can we say something about the limit behavior of the sum

Rm =
cm∑

i=1

amU
m
i = amScm ,

and what should be the choice of cm? In the previous case it was cm = m, but
now—not clear.

To find the limit for the characteristic function of Rm is the same as to find the
limit for cm[φm(tam) − 1]. We have:

cm[φm(tam) − 1] = cm

∫ 1

0
[eit ams − 1]ds1/m = cm

m

1

(am)1/m

∫ am

0

eity − 1

y
y1/mdy

Here, as m → ∞, the integral tends to ∞, while (am)1/m → 1. In order to obtain a
limit of the form ∫ ∞

0

eity − 1

y
dM(y)

the measure
dMm(y) = cm

m
y1/mdy, y ≤ am,

should have a weak limit dM(y) and 1/y should be integrable with respect to this
limit. But this can not happen. The sequence of normalized measures

m

cmam
dMm(y),

which are probability distributions on [0, am], “runs away” from the space.

13.6 Notes and Acknowledgment

This work was motivated by authors interest to null-arrays of positive random vari-
ables and their limiting Lévy measures. In the author’s view, they should play an
essential role in the statistical analysis of large number of rare events (statistical
theory of diversity), see Khmaladze (1989). Hopefully, this will be demonstrated in
subsequent publication(s).

Representation 13.1 describes the limiting infinitely divisible distribution as self-
decomposable. This also follows from stochastic representation 13.4—see for these
results Sato (2002), pp. 109–112. The fact that the density of F is constant on some
interval [0, a] is known in much more general situation, described in Sato (2002),
Lemma 53.2. At the same time, instead of looking for an aggregate general statement
it may be easier to derive the fact directly.

Limiting characteristic function 13.1 appears in the literature in several contexts.
For example, it was used as early as 1957 by I.A. Ibragimov (1957) in an attempt to
construct example of nonunimodal density of self-decomposable distribution.
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Fig. 13.1 The graph of the
distribution function F along
with computer simulated
distribution function of Sm

with m = 50. The difference
is barely visible. For m as
small as 30 the difference
between the two is noticeable.
In the interval [3, 4] the
recurrence 13.5 was used for
calculation of F .
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to read the text and provide a feedback.
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Chapter 14
Frailty, Profile Likelihood, and Medfly Mortality

Roger Koenker and Jiaying Gu

14.1 Introduction

The notion of frailty to describe unobserved heterogeneity of population risks has
become a familiar feature of demographic analysis since Vaupel et al. (1979), and
has gradually spread to other statistical domains. A valuable early exposition of
the impact of frailty in models of treatment evaluation is provided by Shepard and
Zeckhauser (1980). Often, as in the aforementioned sources, parametric models are
posited for the frailty effects, but it is usually difficult to justify such assumptions
given the unobserved nature of the frailty components. Recent progress in estimation
and inference for general, nonparametric mixture models has opened the way to a
more flexible approach. We will illustrate some features of such an approach with a
reanalysis of the influential Carey et al. (1992) study of medfly mortality.

14.2 Data

In the largest of the three experiments reported in Carey et al. (1992), 1.2 million
Mediterranean fruit flies (Ceratitis capitata) were raised in a large facility in Mexico,

. . . Pupae were sorted into one of five size classes using a pupal sorter. This enabled size
dimorphism to be eliminated as a potential source of sex-specific mortality differences.
Approximately, 7,200 medflies (both sexes) of a given size class were maintained in each of
167 mesh covered, 15 cm by 60 cm by 90 cm aluminum cages. Adults were given a diet of
sugar and water, ad libitum, and each day dead flies were removed, counted and their sex
determined . . .

The primary objective of the experiment was to study the upper tail of the mortality
distribution, an endeavor that revealed several surprising features.
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Fig. 14.1 Raw daily medfly mortality rates and moving average smooth

14.3 Declining Mortality Rates

Prior to this experiment it was an article of faith throughout biology that within
species mortality (hazard) rates were monotonically increasing with age. Indeed it
was commonly suggested that each species had a species specific upper bound for age
rendering the whole notion of investigating the “tail behavior” of the mortality distri-
bution pointless. In Fig. 14.1 we plot raw daily mortality rates from the experiment
and superimpose a smoothed, geometric moving average curve. More explicitly, let
yt denote the number of flies alive (at risk) at the beginning of day t , then the raw
mortality rates plotted in Fig. 14.1 are, rt = 1 − yt+1/yt , and the smoothed (geo-
metric) weekly moving average. Contrary to the received wisdom, mortality rates
actually declined after about age 60. This finding provoked an extensive reappraisal
of the biology of aging. The observed decline in mortality offered no consolation to
the 99.8 % of the flies that were already dead by age 60, but to the remaining, more
than 2000 less frail ones, it offered some hope of a prolonged retirement. The oldest
flies in the experiment expired on day 172.

How should we interpret this remarkably long tail? One explanation, suggested
by Vaupel and Carey (1998), was that the population under study was really a mix-
ture of several subpopulations of varying frailties. Rather than assume a particular
parametric form for the mixing distribution, Vaupel and Carey adopted a nonpara-
metric mixture model. While their two-page note in Science precluded a detailed
description of their computational methods, we have been able to “reverse engineer”
an approach that closely mimics the results reported in their Figure 1.
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Fig. 14.2 Estimated baseline Gompertz and Weibull hazard models: linear (Gompertz) and log
linear (Weibull) fits to the initial k observations of raw daily log mortality rates

The first question is: What are we mixing? Here we follow Vaupel and Carey
and consider both Gompertz and Weibull mixtures. The Gompertz model assumes
that log hazard is linear in age, while the Weibull model assumes that log hazard
is linear in log age. Figure 14.2 illustrates raw log-hazard rates plotted against age,
and superimposed are two estimates of the baseline model. The dashed line repre-
sents the estimated baseline Gompertz model fit to the data for the first 15 days of
the experiment by weighted least squares, with weights given by the relative fre-
quencies of the daily counts. It appears that the first day is an outlier in this plot,
however since few flies died on the first day, it exerts little influence on the fitted
line. The solid curve represents the baseline Weibull fit based on the first 20 days
of the experiment. How many observations to use to estimate the parameters of
the baseline model is obviously somewhat debatable, in this respect the problem is
somewhat similar to the notorious controversies over how to choose k in the Hill
estimator of the Pareto exponent. We will not indulge in further speculation about
these choices, but simply remark that our k selection yields baseline Gompertz haz-
ard of h(t) = 0.002 exp (0.24t), while Vaupel and Carey use h(t) = 0.003 exp (0.3t),
and for the Weibull model we obtain h(t) = 0.0004t1.85, against Vaupel and Carey’s
h(t) = 0.001t2. The intercept in these models is not crucial since the estimated
mixture distribution is scale-equivariant. It simply fixes a normalization. The shape
parameter is more important, but in both cases our approach of fitting the left tail
of the distribution yields rather similar estimates to those employed by Vaupel and
Carey. An intriguing, open theoretical and practical question remains: can likelihood
methods be brought to bear to estimate these shape parameters. We will return to this
question when we consider profile likelihoods.
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Given our estimated baseline models it is now time to address the problem of
estimating the mixing or frailty distribution. There is a long history and exten-
sive literature on this subject. Lindsay (1995) provides a thorough overview. Kiefer
and Wolfowitz (1956) demonstrated that such mixture models were consistently es-
timable under weak conditions by maximum likelihood. If we write the baseline
density as ϕ(x, θ ) and the mixture density as,

g(x) =
∫

ϕ(x, θ )dF (θ ),

then given independent and identically distributed (iid) observations, x1, · · · , xn from
g, we wish to solve

max
F∈F

n∑

i=1

log (g(xi)).

Following Laird (1978), the expectation-maximization (EM) algorithm, or a variant
of it, has been employed to solve such problems. However, EM is notoriously slow to
converge. Koenker and Mizera (2013) proposed an alternative computational strategy
based on convex optimization. Let, t0 < t1 < · · · < tm denote a grid of values for
the potential mass points of the distribution F , and let fi denote the mass associated
with the ith grid interval. Then, we can rewrite the MLE problem as,

max
f∈Rm

{∑
log (g(xi)) | g = Af ,

∑
fiΔti = 1, f ≥ 0

}
,

where A denotes the n by m matrix with typical element, ϕ(xi , tj ), and g denote the
n vector with typical element g(xi). This is a garden variety convex optimization
problem that can be efficiently solved by modern interior point methods. We employ
MOSEK (Andersen 2010) for this purpose. The R package, REBayes (Koenker
2012), implements a variety of related problems, all of the computational results
reported here were carried out in this environment.

In Fig. 14.3 we plot the two mixing distributions estimated by the Kiefer–
Wolfowitz maximum likelihood procedure. Note that the vertical axis in these plots
is the cube root of the density to exaggerate the smaller mass points that are nearly
invisible on the original f (θ ) scale. The Kiefer–Wolfowitz estimator is known to
deliver a discrete distribution, here represented by a “density” with a small number
of “almost” point masses. The Weibull model is considerably more parsimonious in
this respect with only six distinct points of support. The implied hazard functions
for the two estimated mixture densities are shown in Fig. 14.4, superimposed over
the raw mortality rates. Fewer mass points in the Weibull model translates to much
smoother behavior of the hazard function, but this is ultimately traceable back to the
forms of the base density, the Gompertz being more sharply peaked and consequently
generating a rougher mixture. In both cases the mixing parameter θ functions as a
scale parameter, but the mixing distribution is estimated on the log θ scale, so we
can interpret the mixing as convolution as with the familiar kernel density estimator.
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Fig. 14.3 Estimated mixing distributions for the Gompertz (left) and Weibull (right) models
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Fig. 14.4 Hazard functions for the estimated Gompertz and Weibull models

14.4 Gender Crossover

An obvious source of observed heterogeneity is gender differences. Again, the Carey
et al. experiment revealed some surprising new facts. When we repeat our prior
exercise fitting separate baseline Weibull models for males and females, we obtain
the results appearing in Fig. 14.5. The Weibull model fits considerably better in both
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Fig. 14.5 Gender specific of baseline Weibull models: weighted least squares fitting of the initial
k observations on daily mortality rates. The percentage of the sample population dead by day k is
given in parentheses. The estimated shape parameter of the baseline Weibull model is α

of these plots than in the previous aggregated plot, and considerably better than the
corresponding Gompertz plots, so we will restrict attention henceforth to the Weibull
model. Given the baseline models the Kiefer–Wolfowitz estimates of the mixture
model yields the gender-specific hazard functions of Fig. 14.6. Several features of
this plot are worth noting. Until about age 20, female mortality is higher than that
of males, but after age 20, female mortality is substantially below male mortality.
This crossover of the hazard functions clearly contradicts the proportional hazard
assumption that is frequently made in survival analysis. The second crossover of the
estimated hazard curves at about age 75 probably shouldn’t be taken too seriously, but
the initial crossing is quite precisely estimated and induces a crossing of the estimated
gender-specific survival functions at about age 36. It is impossible to resist noting
that this pattern reverses the typical finding for human populations for which males
are more frail than females with a possible crossover only at very advanced ages.

14.5 Profile Likelihood and Covariate Effects

If nonparametric maximum likelihood estimation of frailty effects were restricted to
univariate survival models, it would still be a very valuable addition to the statistical
repertoire, but it would be much more useful if it could be extended to semiparametric
applications including covariate effects. Of course we already have the proportional
hazard model for this purpose, however frailty offers another valuable perspective.
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Fig. 14.6 Gender Specific of hazard functions for the Weibull Mixture model: raw daily mortality
rates are plotted in black for males and red for females, superimposed are the estimated hazard
functions for the Weibull mixture models using the baseline models shown in Fig. 14.6

Factorization of the likelihood makes the proportional hazard assumption especially
convenient from a computational viewpoint. The Weibull mixture model has no
comparable factorization; nevertheless, it is possible to employ a profile likelihood
formulation to elaborate the model to include covariate effects.

From the beginning a controversial aspect of the Carey experiment was the effect
of cage density. Critics claimed that flies raised in more crowded cages would be
more likely to die earlier. Carey et al. (1993) responded that the cage density was
quite low after 60 days, only 16 flies per cage, on average, survived beyond this age,
so it seemed difficult to attribute differences in mortality rates in elderly medflies
to differences in crowding. To investigate whether differences in initial cage density
had a significant impact on mortality we considered a model in which it entered as
a linear multiplicative scale shift in the Weibull model, that is, the baseline Weibull
scale becomes θ0 exp (diβ) where di denotes initial cage density. To estimate the
density effect parameter, β, we simply evaluated the profiled likelihood on a grid of
values on the interval [−1, 1], yielding Fig. 14.7. This exercise yields a point estimate
of about β̂ = −0.5 that is quite precise, at least if we are to believe the confidence
bounds implied by the classicalWilks, 2 log λ � χ2

1 , theory. Leaving the reliability of
such intervals to future investigation, we conclude simply that the negative estimated
coefficient implies that higher density shifts the survival distribution to the right, thus
prolonging lifetimes, and directly contradicting the conjecture of the Carey critics.
This finding is confirmed by other methods, see for example Koenker and Geling
(2001), where similar results are reported for both the Cox model and several quantile
regression models.
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Fig. 14.7 Profile likelihood for the initial cage density effect in the Weibull mixture model

The success of profile likelihood in a few cases prompts one to wonder how far
similar methods can be extended to other semiparametric mixture settings. There is
a considerable literature on this topic, pioneered by Lindsay. When profiling leads
to fully adaptive estimation of structural parameters, not only do we get efficient
estimates of those parameters, as a by-product we also get valid inference from the
profiled likelihood ratio statistic, see Murphy and Van der Vaart (2000). The latter
bonus is sometimes referred to as the Wilks phenomenon, e.g., Fan et al. (2001).

But profiling is not always so perceptive; sometimes it can lead the unwary toward
disaster. To illustrate this less benign side of profile likelihood for mixture models,
we would like to briefly reconsider estimation of the Weibull shape parameter, α,
based on the medfly data. In Fig. 14.8 we show the profile likelihood for α based on
the full medfly data. Based on our earlier results we know that α ≈ 2.8 fits the initial
portion of the log hazard plot quite well. What does the profile likelihood have to
say about it? The message is a bit confusing: the profile likelihood increases sharply
up to about α = 2.8, and then dramatically flattens out. In fact, closer examination
reveals that the profile likelihood continues to increase beyond this value, but very,
very gradually. Indeed, as α → ∞, the profile likelihood also tends to infinity. To
understand this better it is helpful to consider how the estimated mixture distribution
responds to changes in α. For small α, the estimated mixture distribution has only
a single mass point, and this single mass point persists for a while, by the time we
get to α between 2.5 and 3.0 though we have 5 or 6 mass points as in Fig. 14.3. As
α becomes larger we get more and more mass points, eventually yielding positive
mass corresponding to virtually all the distinct observed values. This is reminiscent
of the familiar Dirac catastrophe produced by kernel density bandwidths chosen by
maximum likelihood. Indeed, the situation is quite similar, as α becomes large the
effective bandwidth of the baseline Weibull model becomes narrower and more mass
points are needed in the mixture distribution to mimic the density of the observed data.
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Fig. 14.8 Profile likelihood for the shape parameter in the Weibull mixture model

So profile likelihood has failed us. Now what? There is a familiar litany of cir-
cumstances in which naive adherence to the principle of maximum likelihood leads
to absurd results: various Gaussian examples in which driving variance parameters
to zero yields unbounded likelihood at unlikely places in parameter space, estima-
tion of the threshold parameter of the three-parameter lognormal distribution, and
many others. One approach that has proven successful in such situations is the maxi-
mum product-spacing methods introduced by Cheng and Amin (1983) and Ranneby
(1984). Roeder (1990) describes an application of this approach in astronomy that
although based on Gaussian assumptions is qualitatively quite similar to our Weibull
problem.

Log product spacings optimization can be viewed as a discretization of classical
maximum likelihood. Let G(x, θ ) denote the distribution function of a parametric
model for a scalar random variable, X. Given a sample, X1, · · · ,Xn of identical
copies of X, let

ΔGi(θ ) = G(X(i), θ ) −G(X(i−1), θ ),

for i = 1, . . . , n + 1 with X(0) = −∞ and X(n+1) = +∞ and X(i) : i = 1, · · · , n
denoting the order statistics of the original sample. Since G(X, θ0) is uniform when
evaluated at the true parameter, θ0 of the model, the ΔGi(θ0) constitute a sample of
uniform spacings for which there is an extensive theory. Considering

Rn(θ ) = 1√
n+ 1

n+1∑

i=1

( log (ΔGi(θ )(n+ 1)) + γ )/(π2/6 − 1)1/2

with γ ≈ 0.577216, the Euler constant, we have a normalized sum that satisfies a
central limit theorem with a standard normal limiting distribution. MaximizingRn(θ )
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with respect to θ requires computing the Kiefer–Wolfowitz mixture distribution,
Ĝ(x, θ ), at each θ to obtain the profile log product spacing objective function. The
function Rn(θ ) behaves like the usual log-likelihood; this is to be expected since the
summands can be viewed as difference quotient approximations of g(x̃i , θ ) for x̃i ∈
(X(i−1),X(i)). However, by avoiding the direct evaluation of densities we circumvent
the pathological behavior of the log likelihood.

An important feature of the maximum product spacing method noted by Roeder
(1990), is that for given θ , it selects an Ĝ(x, θ ) that is asymptotically equivalent to the
mixture distribution estimated by nonparametric maximum likelihood, that we have
focused on thus far. For θ taking various values, we get a profiled objective function
similar to the profiled nonparametric likelihood. Yet unlike the problematic profiled
likelihood, the limiting form of Rn(θ ) yields an estimating function centered at zero
for the true parameter and a simple confidence interval construction for the structural
parameter. Further details regarding the maximum product spacing method can be
found in Roeder (1990), Roeder (1992), and Ekström (2008).

We have seen already that an α parameter that fits the left tail of the survival
distribution can be estimated well by a simple regression of log hazards on log event
times using data from the first few days of the experiment. This assumes that flies that
only survive for the first k days are all from a homogeneous parametric survival model.
When we move on to the semiparametric mixture model using all the observations,
a natural question becomes how reasonable is it to assume a global value for α while
allowing scale heterogeneity with frailty. We employ a first-order form of the log-
product-spacing method and find that the test strongly rejects the mixture models
with α = 2.85. However, when we use only the observations surviving up to 50
days, a subsample that actually contains 99.5 % of the full sample, we obtain a test
statistic of only 0.33 and the model is not rejected. Similar conclusions are drawn
when we estimate gender-specific models. The message seems to be that the Weibull
semiparametric mixture model fits the majority of the data quite well, but fails to
perform adequately for the extreme right tail.

This conclusion may simply reassert that estimating a fixed shape parameter in
the Weibull mixture model is an extremely difficult task; this is indeed the impression
one gets from the prior literature. Hahn (1994) shows that the information matrix is
singular for mixed Weibull proportional hazard model. When there are no covariates,
the score function for α is identically zero, hence also the Fisher information. This
means that the Weibull shape parameter can not be estimated at a root-n rate. Various
estimation strategies for α are nevertheless available, for example, Honoré (1990),
Honoré (1997), and Ishwaran (1996). We would like to highlight what seems to
be a somewhat neglected paper by Ishwaran (1999) discussing the information loss
phenomenon for a class of semiparametric mixture models. Ishwaran shows that
for the Weibull mixture model, there is information loss for αs bigger than the true
value α0, so that with α > α0, one can find a mixing distribution that produces a
model that is arbitrarily close to the true model in the sense of Hellinger distance.
This corresponds to the flat region in our profile likelihood. On the other hand, as
he notes, it is curious that the same information loss phenomenon does not occur for
α’s that are smaller than α0. Whether one could take advantage of this asymmetric
behavior for estimation of α is left for future investigations.
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Chapter 15
Comparison of Autoregressive Curves Through
Partial Sums of Quasi-Residuals

Fang Li

15.1 Introduction

This chapter is concerned with testing the equality of two autoregressive functions
against two sided alternatives when observing two independent strictly stationary and
ergodic autoregressive times series of order one. More precisely, let Y1,i , Y2,i , i ∈
Z := {0,±1, · · · }, be two observable autoregressive time series such that for some
real valued functions μ1 and μ2, and for some positive functions σ1, σ2,

Y1,i = μ1(Y1,i−1) + σ1(Y1,i−1)ε1,i , Y2,i = μ2(Y2,i−1) + σ2(Y2,i−1)ε2,i . (15.1)

The errors {ε1,i , i ∈ Z} and {ε2,i , i ∈ Z} are assumed to be two independent
sequences of independent and identically distributed (i.i.d.) r.v.’s with mean zero
and unit variance. Moreover, ε1,i , i ≥ 1 are independent of Y1,0, and ε2,i , i ≥ 1 are
independent of Y2,0. And the time series are assumed to be stationary and ergodic.

Consider a bounded interval [a, b] of R. The problem of interest is to test the null
hypothesis:

H0 : μ1(x) = μ2(x), ∀ x ∈ [a, b],

against the two sided alternative hypothesis:

H1 : μ1(x) �= μ2(x), for some x ∈ [a, b], (15.2)

based on the data set Y1,0,Y1,1, · · · ,Y1,n1 , Y2,0,Y2,1, · · · ,Y2,n2 .
In hydrology, autoregressive time series are often used to model water reser-

voirs, see, e.g., Bloomfield (1992). The above testing problem could be applied in
comparing the water levels of two rivers.

Few related studies had been conducted under the two sample autoregressive
setting. Koul and Li (2005) adapts the covariate matching idea used in regression
setting to a one-sided tests for the superiority among two time series. Li (2009)
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studied the same testing problem, but the test is based on the difference of two sums
of quasi-residuals. This method is also an extension of T2 in Koul and Schick (1997)
from regression setting to autoregressive setting.

The papers that address the above two sided testing problem in regression set-
ting include Hall and Hart (1990); Delgado (1993); Kulasekera (1995) and Scheike
(2000). In particular, Delgado (1993) used the absolute difference of the cumula-
tive regression functions for the same problem, assuming common design in the
two regression models. Kulasekera (1995) used quasi-residuals to test the difference
between two regression curves, under the conditions that do not require common
design points or equal sample sizes. The current article adapts Delgado’s idea of
using partial sum process and Kulasekera’s idea of using quasi residuals to construct
the tests for testing the difference between two autoregressive functions.

Similarly, as in Delgado (1993), let

�(t) :=
∫ t

a

(
μ1(x) − μ2(x)

)
(f1(x) + f2(x)) dx, ∀ a ≤ t ≤ b, (15.3)

where μ1, μ2 are assumed to be continuous on [a, b] and f1, f2 are the stationary
densities of the two time series Y1,i and Y2,i , respectively. We also assume that f1, f2

are continuous and positive on [a, b]. It is easy to show that �(t) ≡ 0 when the null
hypothesis holds and �(t) �= 0 for some t under Ha . This suggests to construct tests
of H0 vs. Ha based on some consistent estimators of �(t). One such estimator is
obtained as follows.

First, as in Kulasekera (1995), we define quasi-residuals

e1,i = Y1,i − μ̂2(Y1,i−1), i = 1, · · · , n1, (15.4)

and

e2,j = Y2,j − μ̂1(Y2,j−1), j = 1, · · · , n2. (15.5)

Here, μ̂1 and μ̂2 are appropriate estimators, such as Nadaraya–Watson estimators
used in this article, of μ1 and μ2. See Nadaraya (1964) and Watson (1994).

Now, let

Un(t) = 1

n1

n1∑

i=1

e1,i1[a≤Y1,i−1≤t] − 1

n2

n2∑

j=1

e2,j1[a≤Y2,j−1≤t], (15.6)

where the subscript n, here and through out the chapter, represents the dependence
on n1 and n2. With uniformly consistent estimators μ̂1 and μ̂2 of μ1 and μ2 such as
kernel estimates and under some mixing condition on the time series Y1,i and Y2,j

such as strongly α−mixing, Un(t) can be shown to be U1n(t)+U2n(t)+U3n(t) with

U1n(t) = 1

n1

n1∑

i=1

σ1(Y1,i−1)ε1,i1[a≤Y1,i−1≤t]

− 1

n2

n2∑

j=1

σ2(Y2,j−1)ε2,j1[a≤Y2,j−1≤t] = oP (1),
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U2n(t) = 1

n1

n1∑

i=1

(μ1(Y1,i−1) − μ2(Y1,i−1))1[a≤Y1,i−1≤t]

− 1

n2

n2∑

j=1

(μ2(Y2,j−1) − μ1(Y2,j−1))1[a≤Y2,j−1≤t]

=
∫ t

a

(
μ1(x) − μ2(x)

)
(f1(x) + f2(x)) dx + oP (1),

U3n(t) = 1

n1

n1∑

i=1

(μ2(Y1,i−1) − μ̂2(Y1,i−1))1[a≤Y1,i−1≤t]

− 1

n2

n2∑

j=1

(μ1(Y2,j−1) − μ̂1(Y2,j−1))1[a≤Y2,j−1≤t] = oP(1),

uniformly for all t ∈ [a, b]. Thus, Un(t) provides a uniformly consistent estimator
of �(t). This suggests to base tests of H0 on some suitable functions of this pro-
cess. In this chapter, we shall focus on the Kolmogorov–Smirnov type test based on
supa≤t≤b |Un(t)|.

To determine the large sample distribution of the process Un(t), one needs to
normalize this process suitably. Let

τ 2
n (t) = q1E

{

σ 2
1 (Y1,0)

(
1 + f2(Y1,0)

f1(Y1,0)

)2

1[a≤Y1,0≤t]

}

+ q2E

{

σ 2
2 (Y2,0)

(
1 + f1(Y2,0)

f2(Y2,0)

)2

1[a≤Y2,0≤t]

}

, (15.7)

where, q1 = N
n1

= n2
n1+n2

, q2 = N
n2

= n1
n1+n2

and N = n1n2
n1+n2

.
We consider the following normalized test statistics:

T := sup
a≤t≤b

∣∣N
1/2Un(t)
√
τ 2
n (b)

∣∣. (15.8)

In the case σi’s and fi’s are known, the tests of H0 could be based on T , being
significant for its large value. But, usually those functions are unknown which renders
T of little use. This suggests to replace τn with its estimate τ̂ 2

n which satisfies

τ̂ 2
n (b)

τ 2
n (b)

→P 1. (15.9)

An example of such estimator τ̂n(t) of τn(t) is

τ̂ 2
n (t) = q1

1

n1

n1∑

i=1

⎧
⎨

⎩
(
Y1,i − μ̃1(Y1,i−1)

)2
(

1 + f̂2(Y1,i−1)

f̂1(Y1,i−1)

)2

1[a≤Y1,i−1≤t]

⎫
⎬

⎭

+ q2
1

n2

n2∑

j=1

⎧
⎨

⎩
(
Y2,j − μ̃2(Y2,j−1)

)2
(

1 + f̂1(Y2,j−1)

f̂2(Y2,j−1)

)2

1[a≤Y2,j−1≤t]

⎫
⎬

⎭
,

(15.10)
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where, μ̃i’s and f̂i’s are appropriate estimators, such as kernel estimators used in this
paper, of μi’s and fi’s. Therefore, the proposed tests will be based on the adaptive
version of T , namely

T̂ := sup
a≤t≤b

∣∣N
1/2Un(t)
√
τ̂ 2
n (b)

∣∣ (15.11)

We shall study the asymptotic behavior of T̂ as the sample sizes n1 and n2 tend
to infinity. Theorem 2.1 of Sect. 15.2 shows that under H0, T weakly converge to
supremum of Brownian motion over [0, 1], under some general assumptions and
with μ̂1 and μ̂2 being Nadaraya–Watson estimators of μ1 and μ2. Then, in Corollary
2.1, under some general assumptions on the estimates μ̃1, μ̃2 and f̂1, f̂2, we derive
the same asymptotic distributions of T̂ under H0. Remark 2.2 proves that the power
of the test basted on T̂ converges to 1, at the fixed alternative (15.2) or even at
the alternatives that converge to H0 at a rate lower than

√
τ 2
n (b). In Sect. 15.3,

we conduct a Monte Carlo simulation study of the finite sample level and power
behavior of the proposed test T̂ . The simulation results are shown to be consistent
with the asymptotic theory at the moderate sample sizes considered. In Sect. 15.4, we
study some properties of kernel smoothers and weak convergence of both empirical
processes and marked empirical processes. Those studies facilitate the proof of our
main results in Sect. 15.2. But, they may also be of interest on their own, hence are
formulated and proved in Sect. 15.4. The other proofs are deferred to Sect. 15.5.

15.2 Asymptotic Behavior of T and T̂

This section investigates the asymptotic behavior ofT given in (15.8) and the adaptive
statistic T̂ given in (15.11) under the null hypothesis and the alternatives (15.2).
We write P for the underline probability measures and E for the corresponding
expectations. In this chapter we consider Nadaraya–Watson estimators μ̂1, μ̂2 of μ1

and μ2, i.e.,

μ̂i(x) =
∑ni

j=1 Yi,jKhi (Yi,j−1 − x)
∑ni

j=1 Khi (Yi,j−1 − x)
, i = 1, 2, (15.12)

where Khi (x) = 1
hi
K( x

hi
), with K being a kernel density function on the real line

with compact support [ − 1, 1], h1, h2 > 0 are the bandwidths. First, we recall the
following definition from Bosq (1998):

Definition 2.1 For any real discrete time process (Xi , i ∈ Z) define the strongly
mixing coefficients

α(k) := sup
t∈Z

α(σ -field(Xi , i ≤ t), σ -field(Xi , i ≥ t + k)); k = 1, 2, . . .

where, for any two sub σ -fields B and C,

α(B, C) = sup
B∈B,C∈C

|P (B ∩ C) − P (B)P (C)|.
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Definition 2.2. The process (Xi , i ∈ Z) is said to be geometrically strong mixing
(GSM) if there exists c0 > 0 and ρ ∈ [0, 1) such that α(k) ≤ c0ρ

k , for all k ≥ 1.
The following assumptions are needed in this paper.

(A.1) The autoregressive functions μ1, μ2 are continuous on an open interval
containing [a, b] and they have continuous derivatives on [a, b].

(A.2) The kernel function K(x) is a symmetric Lipschitz-continuous density on R

with compact support [ − 1, 1].
(A.3) The bandwidths h1, h2 are chosen such that h2

i N1−c → ∞ for some c > 0
and h4

i N → 0.
(A.4) The densities f1 and f2 are bounded and their restrictions to [a, b] are posi-

tive. Moreover, they have continuous second derivatives over an open interval
containing [a, b].

(A.5) The conditional variance functions σ 2
1 and σ 2

2 are positive on [a, b] and
continuous on an open interval containing [a, b].

(A.6) Y1,i , Y2,i , i ∈ Z are GSM processes.
(A.7) For some M < ∞, we have

E(ε4
i,1) ≤ M , i = 1, 2.

(A.8) For i = 1, 2, the joint densities gi,l between Yi,0 and Yi,l for all l ≥
1 are uniformly bounded over an open interval I0 containing I, i.e.,
supl≥1 supx,y∈I0

gi,l(x, y) < ∞.
(A.9) The densities g1 and g2 of the innovations ε1,1 and ε2,1 are bounded.

Let K(y) = ∫ y

−1 K(t) dt be the distribution function corresponding to the kernel
density K(y) on [ − 1, 1] and let

Vn(t) = 1

n1

n1∑

i=1

ε1,i σ1(Y1,i−1)

(
1[a≤Y1,i−1≤t] + f2(Y1,i−1)

f1(Y1,i−1)

(
K
(
t − Y1,i−1

h2

)

−K
(
a − Y1,i−1

h2

)))

− 1

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)

(
1[a≤Y2,j−1≤t] + f1(Y2,j−1)

f2(Y2,j−1)

(
K
(
t − Y2,j−1

h1

)

−K
(
a − Y2,j−1

h1

)))
(15.13)

and

Wn(t) = 1

n1

n1∑

i=1

(μ1(Y1,i−1) − μ2(Y1,i−1))1[a≤Y1,i−1≤t]

+ 1

n2

n2∑

j=1

(μ1(Y2,j−1) − μ2(Y2,j−1))1[a≤Y2,j−1≤t] (15.14)

We are now ready to state the main result.
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Theorem 2.1 Suppose, the conditions (A.1)–(A.9) hold true. Then, under both null
and alternative hypotheses, as n1 ∧ n2 → ∞,

sup
a≤t≤b

∣∣∣∣∣
N1/2

√
τ 2
n (b)

(Un(t) − Vn(t) −Wn(t))

∣∣∣∣∣
= oP (1). (15.15)

Here, Un is given in (15.6) with μ̂1, μ̂2 of (15.12), and Vn and Wn are given in
(15.13) and (15.14). Consequently,

N1/2

√
τ 2
n (b)

(Un(t) −Wn(t)) �⇒ B ◦ ϕ(t), ϕ(t) = lim
n1∧n2→∞

τ 2
n (t)

τ 2
n (b)

, (15.16)

in the Skorohod space D[a, b], where B ◦ ϕ is a continuous Brownian motion on
[a, b] with respect to time ϕ. Therefore, under H0, T of (15.8) satisfies

T �⇒ sup
0≤t≤1

|B(t)|,

where B(t) is a continuous Brownian motion on R.

Proof: The proof is given in Sect. 15.5.
Next, we need the following additional assumption to obtain the asymptotic

distribution of T̂ given in (15.11)

Assumption 2.1 Let μ̃i , f̂i be estimators of μi and fi , respectively, satisfying

sup
a≤x≤b

|μ̃i(x) − μi(x)| = oP (1), sup
a≤x≤b

|f̂i(x) − fi(x)| = oP (1), i = 1, 2,

under both null and alternative hypotheses.

Corollary 2.1 Suppose the conditions of Theorem 2.1 hold true. In addition, suppose
that there are estimates μ̃i and f̂i in (15.10) satisfying Assumption 2.1. Then, as
n1 ∧ n2 → ∞ and under H0, T̂ of (15.11) satisfies

T̂ �⇒ sup
0≤t≤1

|B(t)|.

Proof: It suffices to prove (15.9). Let

O1 = E

{

σ 2
1 (Y1,0)

(
1 + f2(Y1,0)

f1(Y1,0)

)2

1[a≤Y1,0≤b]

}

and

O1n = 1

n1

n1∑

i=1

⎧
⎨

⎩
(
Y1,i − μ̃1(Y1,i−1)

)2
(

1 + f̂2(Y1,i−1)

f̂1(Y1,i−1)

)2

1[a≤Y1,i−1≤b]

⎫
⎬

⎭
.
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ByAssumption 2.1, (A.4), (A.5) and Chebyshev’s inequality, it can be derived that

O1n = O1 + oP (1). (15.17)

Similarly, we obtain

O2n = O2 + oP (1), (15.18)

with

O2 = E

{

σ 2
2 (Y2,0)

(
1 + f1(Y2,0)

f2(Y2,0)

)2

1[a≤Y2,0≤b]

}

and

O2n = 1

n2

n2∑

j=1

⎧
⎨

⎩
(
Y2,j − μ̃2(Y2,j−1)

)2
(

1 + f̂1(Y2,j−1)

f̂2(Y2,j−1)

)2

1[a≤Y2,j−1≤b]

⎫
⎬

⎭
.

From (15.17), (15.18) and the fact that O1, O2 are some positive constants, we
have

τ̂ 2
n (b) − τ̂ 2

n (a)

τ 2
n (b) − τ 2

n (a)
= q1(O1 + oP (1)) + q2(O2 + oP (1))

q1O1 + q2O2
→P 1,

which completes the proof of the corollary. �
Remark 2.1 An example of estimates μ̃i and f̂i satisfying Assumption 2.1 are:
μ̃i = μ̂i of (15.12) and

f̂i(x) = 1

ni

ni∑

j=1

Khi (Yi,j−1 − x), i = 1, 2, (15.19)

with h1,h2 being appropriate bandwidths that could be different for constructing μ̂i

in Un of (15.6). For example, here we can take hi = O(n−1/5
i ), See Bosq (1998). But

to construct μ̂i in Un of (15.6), we need to choose bandwidths that satisfy (A.3).

Remark 2.2 Testing property of T̂ : Under the model (15.1), consider the following
alternative that is the same as in (15.2):

Ha : μ1(x) − μ2(x) = δ(x) �= 0 for some x ∈ [a, b],

where δ is continuous on [a, b] since μ1, μ2 are continuous.
Theorem 2.1 and its corollary suggest to reject the null hypothesis for large values

of T̂ given in (15.11) under Assumption 2.1.
Let

T̂ (t) = N1/2

√
τ̂ 2
n (b)

Un(t), T̂1(t) = N1/2

√
τ̂ 2
n (b)

(Un(t) −Wn(t))
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Then,

T̂ (t) = T̂1(t) + h(t), h(t) = N1/2

√
τ̂ 2
n (b)

Wn(t)

By Ergodic theorem,

Wn →P

∫ t

a

δ(x) dx,

h(t) ∼ N1/2

√
τ̂ 2
n (b)

∫ t

a

δ(x) dx. (15.20)

This, together with N1/2√
τ 2
n (b)

→ ∞, (15.9), and the fact that
∫ t

a
δ(x) dx is not 0 for

some a ≤ t ≤ b implies,

sup
a≤t≤b

|h(t)| →P ∞. (15.21)

Hence, in view of (15.16) and (15.9),

T̂ = sup
a≤t≤b

|T̂ (t)| = sup
a≤t≤b

|T̂1(t) + h(t)| →P ∞. (15.22)

This, together with Corollary 2.1 indicates that the test bases on T̂ is consistent
for Ha .

Note: By using the same arguments as above, we even can claim that under As-
sumption 2.1, the test based on T̂ is consistent for the alternatives converging to the
null hypothesis at any rate αn that is lower than N−1/2, since (15.21) is still satis-
fied when δ(x) is replaced by δ(x)αn. Furthermore, under H1 : μ1(x) − μ2(x) =√

τ 2
n (b)

N1/2 δ(x), x ∈ [0, 1], the limiting powers of the asymptotic level α tests T is
computed as

lim
n→∞P (T̂1 > bα) = P

(
sup

a≤t≤b

|B ◦ ϕ(t) + g(t)| > bα

)
,

where bα is defined such that

P

(
sup

0≤t≤1
|B(t)| > bα

)
= α.

15.3 Simulation

In this section, we investigate the finite sample behavior of the nominal level of the
proposed test T̂ under H0 and power of T̂ against some nonparametric alternatives.
As sample sizes, we choose the moderate sample sizes n1 = n2 = n = 50, 100, 300,
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Table 15.1 The critical
values bα

α 0.05 0.025 0.01
bα 2.24241 2.49771 2.80705

600, 1, 000, and 2,000 with each simulation being repeated for 1,000 times. The data
is simulated from model (15.1), where the two autoregressive functions are chosen
to be μ2(x) = 1 + x/2 and μ1(x) = μ2(x) + δ(x), and the innovations {ε1,i} and
{ε2,i} are taken to be independent standard normal N (0, 1). We choose δ(x) = 0

corresponding to H0 and δ(x) = 1, 2(x − 3)/x, and 2
(

n1n2
n1+n2

)−1/2 = 2 N−1/2

corresponding to Ha . Note that the second choice of δ is negative for x < 3 and
positive for x > 3 and converge to 0 for x → 3; the last choice of δ corresponds to
the local alternatives with a rate being the same as τn of (15.7). For simplicity, the
conditional variance functions σ1 and σ2 are chosen to be (i) σ1(x) = σ2(x) = 1 and
(ii) σ1(x) = σ2(x) = 3/

√
1 + x2. Finally, the interval [a, b] in (15.2) is taken to be

[2, 4].
To construct the test statistics T̂ of (15.11), we consider Nadaraya–Watson esti-

mators μ̂1, μ̂2 of (15.12) with kernel K(x) = 3
4 (1−x2)1(|x| ≤ 1) and we considered

three different bandwidths h1 = h2 = 0.15, 0.2 and 0.25. The estimates μ̃1, μ̃2 and
f̂1, f̂2 in τ̂n of (15.10) are from Remark 2.1 with hi = n

−1/5
i , i = 1, 2. Let bα satisfy

P( sup0≤t≤1 |B(t)| > bα) = α. Then, the empirical size (power) is computed by the

proportion of rejects # of [T̂ >bα ]
1000 .

In Table 15.1, we give the critical values bα obtained from the formula
P
(
sup0≤t≤1 |B(t)| < b

) = P ( |B(1)| < b ) + 2
∑∞

i=1 ( − 1)iP ( (2i − 1)b < B(1) <
(2i + 1)b ) given on page 553 of the book by Resnick (1992).

The simulation programming was done using R. To generate each of the two
samples, we first generated (500 + n) error variables from N (0, 1). Using these
errors and model (15.1) with the initial value Yi,0 randomly chosen from N (0, 1), we
generated (501 + n) observations. The last (n + 1) observations from the data thus
generated are used in carrying out the simulation study.

The results of the simulation study are shown in Table 15.2 below. Three rows
correspond each choice of δ(x) with the first row corresponding to bandwidth 0.15,
the second to 0.2 and the third to 0.25. The finite sample level and power behavior
of the tests are shown to be quite stable across the various choices of the bandwidth.
One sees that for both choices of σ1 and σ2, the empirical sizes of the test are not
much different from the nominal levels for most moderate samples sizes, but they are
closer to the true levels when the sample size gets larger. The simulated powers under
fixed alternative δ(x) = 1 are close to 1 for all moderate sample sizes, even at α-level
.025. The simulated powers under fixed alternative δ(x) = 2(x − 3)/x are seen to
increase quickly with n and they are quite large for n ≥ 600. The simulated powers
under local alternative δ(x) = 2 N−1/2 are stable for most moderate sample sizes. In
summary, the simulated levels and powers are consistent with the asymptotic theory
at most moderate sample sizes considered.
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15.4 Properties of Kernel Smoothers and Weak Convergence
of Empirical Processes

In this section, we first study the asymptotic behavior of the following kernel
smoothers over [a, b] for i = 1, 2:

f̂i(x) = 1

ni

ni∑

j=1

Khi (Yi,j−1 − x), �i,n(x) = 1

ni

ni∑

j=1

σi(Yi,j−1)εi,jKhi (Yi,j−1 − x),

(15.23)

�i(x, y) = 1

ni

ni∑

j=1

Khi (Yi,j−1 − x)

�i(Yi,j−1)
1[Yi,j−1≤y], �1 = f2, �2 = f1, (15.24)

�1(y) = 1

n1

n1∑

i=1

ε1,i�2(Y1,i−1, y), �2(y) = 1

n2

n2∑

i=1

ε2,i�1(Y2,i−1, y), (15.25)

Hi,j (y) = 1

ni

ni∑

k=1

Khi (Yi,k−1 − y)(Yi,k−1 − y)j , i, j = 1, 2. (15.26)

By Lemma 1–4 in Li (2008), we have the following results.

Lemma 4.1 Suppose conditions (A.2), (A.3) and (A.4)–(A.8) hold. Then,

sup
a≤x≤b

∣∣�i,n(x)
∣∣ = OP

(√
log ni

nihi

)

, i = 1, 2,

where �i,n(x) is given in (15.23).

Lemma 4.2 Suppose conditions (A.2), (A.3), (A.4), (A.6) and (A.8) hold. Then fi

of (15.23) satisfies

sup
a≤x≤b

|f̂i(x) − fi(x)| = OP

(√
log ni

nihi

)

+O(h2
i ), i = 1, 2.

Lemma 4.3 Suppose condition (A.2), (A.3), (A.4), (A.6) and (A.8) hold. Then,
�i(x, y) of (15.24) satisfies

sup
a − hi ≤ x ≤ b + hi

a ≤ y ≤ b

Var{�i(x, y)} = O(
1

nihi

), i = 1, 2.
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Lemma 4.4 Suppose condition (A.2)- (A.4), (A.6) and (A.8) hold. Then Hi,j of
(15.26) satisfies

Hi,j (y) = h
j

i fi(y)uj +OP

(

h
j+1
i + h

j

j

√
log ni

nihi

)

,

uj =
∫ 1

−1
K(u)uj du, i, j = 1, 2

uniformly on a ≤ x ≤ b.
Next, we study the property of some empirical processes. The weak convergence

of marked empirical process proved in Theorem 2.2.6 of Koul (2002) implied the
following lemma:

Lemma 4.5 Suppose conditions (A.4), (A.6), (A.7) and (A.9) hold, then for i = 1, 2,

sup
a≤y≤b

∣
∣
∣
∣
∣∣

1

ni

ni∑

j=1

(|εi,j | − E|εi,j |)1[Yi,j−1≤y]

∣
∣
∣
∣
∣∣
= OP (n−1/2

i ).

Next, recall that K(y) = ∫ y

−1 K(t) dt is the distribution function corresponding to
the kernel density K(y) on [ − 1, 1]. We prove the following lemma:

Lemma 4.6 Suppose conditions (A.2), (A.3), (A.4), (A.6) and (A.8) hold. Then �i

of (15.25) satisfies

sup
a≤y≤b

∣∣∣∣∣
N1/2

(

�1(y) − 1

n1

n1∑

i=1

ε1,i
f2(Y1,i−1)

f1(Y1,i−1)
K
(
y − Y1,i−1

h2

))∣∣∣∣∣
= oP (1),

sup
a≤y≤b

∣∣∣∣∣
N1/2

(

�2(y) − 1

n2

n2∑

i=1

ε2,i
f1(Y2,i−1)

f2(Y2,i−1)
K
(
y − Y2,i−1

h1

))∣∣∣∣∣
= oP (1).

Proof: The proof is similar to the proof of Lemma 1 of Li (2008) which is in turn
similar to Lemma 6.1 of Fan andYao (2003). It is sufficient to prove the first equality.
Let C denote a generic constant, which can vary from one place to another. Also let

N1/2

(

�1(y) − 1

n1

n1∑

i=1

ε1,i
f2(Y1,i−1)

f1(Y1,i−1)
K
(
y − Y1,i−1

h2

))

= An(y)

Now, decompose An(y) into A1,n(y) + A2,n(y) with

A1,n(y) = N1/2 1

n1

n1∑

i=1

ε1,i
(
�2(Y1,i−1, y) − E(�2(Y1,i−1, y))

)
,

A2,n(y) = N1/2 1

n1

n1∑

i=1

ε1,i

(
E(�2(Y1,i−1, y)) − f2(Y1,i−1)

f1(Y1,i−1)
K
(
y − Y1,i−1

h2

))
.
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First, we show supa≤y≤b |A2,n(y)| = oP (1). For some (Y ∗
1,i−1 ∈ [a−2h2, b+2h2],

By Tayler expansion, We have

A2,n(y)

= N1/2 1

n1

n1∑

i=1

ε1,i

⎛

⎝
∫ y−Y1,i−1

h2

−1
K(u)

(
f2(Y1,i−1 + h2u)

f1(Y1,i−1 + h2u)
− f2(Y1,i−1)

f1(Y1,i−1)

)
du

⎞

⎠

= N1/2 1

n1

n1∑

i=1

ε1,i

⎛

⎝h2

∫ y−Y1,i−1
h2

−1
uK(u)

f ′
2(Y1,i−1)f1(Y1,i−1) − f ′

1(Y1,i−1)f2(Y1,i−1)

f1(Y1,i−1 + h2u)f1(Y1,i−1)
du

+ h2
2

2

∫ y−Y1,i−1
h2

−1
u2 K(u)

f ′′
2 (Y ∗

1,i−1)f1(Y1,i−1) − f ′′
1 (Y ∗

1,i−1)f2(Y1,i−1)

f1(Y1,i−1 + h2u)f1(Y1,i−1)
du

⎞

⎠

≤ N1/2h2
1

n1

n1∑

i=1

ε1,i

∫ y−Y1,i−1
h2

−1
uK(u)

f ′
2(Y1,i−1)f1(Y1,i−1) − f ′

1(Y1,i−1)f2(Y1,i−1)

f1(Y1,i−1 + h2u)f1(Y1,i−1)
du

+N1/2h2
2

1

n1

n1∑

i=1

|ε1,i | · C, by (A.2) and (A.4),

uniformly over [a, b],
By a similar argument in proving Lemma 4.1 or Lemma 1 of Li (2008), it can be

shown that

sup
a≤y≤b

∣∣∣∣∣∣

1

n1

n1∑

i=1

ε1,i

∫ y−Y1,i−1
h2

−1
uK(u)

f ′
2(Y1,i−1)f1(Y1,i−1) − f ′

1(Y1,i−1)f2(Y1,i−1)

f1(Y1,i−1 + h2u)f1(Y1,i−1)
du

∣∣∣∣∣∣

= OP

(√
log n1

n1h2

)

.

Also, N1/2h2
2

1
n1

∑n1
i=1 |ε1,i | = OP (N1/2h2

2)) = oP (1) by (A.3). Hence, by (A.3)
we have

sup
a≤y≤b

|A2,n(y)| = OP

(√
q1h2 log n1

)
+ oP (1)

= OP

(√

q1h2 log
N

q1

)

+ oP (1) = oP (1). (15.27)

Now, it is left to prove

sup
a≤y≤b

|A1,n(y)| = oP (1). (15.28)

Slightly simpler than the proof of Lemma 1 in Li (2008) and Lemma 6.1 in Fan
and Yao (2003), the proof consists of the following two steps:
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(a) (Discretization). Partition the interval [a, b] with length L into M = [(N1+c)1/2]
subintervals {Ik} of equal length. Let {yk} be the centers of Ik . Then

sup
a≤y≤b

|A1,n(y)| ≤ max
1≤k≤M

|A1,n(yk)| + oP (1). (15.29)

(b) (Maximum deviation for discretized series). For any small ε,

P

(
max

1≤j≤M
|A1,n(yj )| > ε

)
→ 0. (15.30)

Let Gi,n(y) = √
ni

(
1
ni

∑ni
j=1 1[Yi,j−1≤y] − P (Yi,j−1 ≤ y)

)
. The strong approxi-

mation theorem for the empirical process of a stationary sequence of strong mixing
random variables established in Berkes and Philipp (1997) and in Theorem 4.3 of
the monograph edited by Dehling et al (2002) implied

sup
1≤k≤M

sup
y∈Ik

∣
∣G1,n(y) −G1,n(yk)

∣
∣ = oP (1). (15.31)

Now, we prove part (a). First, for any 1 ≤ K ≤ M and all y ∈ Ik , we decompose
A1,n(y) − A1,n(yk) as D1,n(y) +D2,n(y) with

D1,n(y) = N1/2 1

n1

n1∑

i=1

ε1,i
(
�2(Y1,i−1, y) −�2(Y1,i−1, yk))

)
,

D2,n(y) = N1/2 1

n1

n1∑

i=1

ε1,i
(
E(�2(Y1,i−1, y)) − E(�2(Y1,i−1, yk))

)
,

Without losing generality, it is sufficient to consider all yk ≤ y ∈ Ik . It is easy to see
that

|D1,n(y)|

≤ CN1/2

(
1

n1

n1∑

i=1

|ε1,i |1[yk−h2≤Y1,i−1≤y+h2]

)(
1

n2h2

n2∑

i=1

1[yk≤Y2,i−1≤y]

)

≤ CN1/2

(
1

n1

n1∑

i=1

(|ε1,i | − E|ε1,i |)1[yk−h2≤Y1,i−1≤y+h2] + 1

n1

n1∑

i=1

1[yk−h2≤Y1,i−1≤y+h2]

)

(
1

h2

[
1√
n2

(G2,n(y) −G2,n(yk)) + P (yk ≤ Y2,i−1 ≤ y)

])

= C
N1/2

h2

(
OP

(
1√
n1

)
+ 1√

n1
(G1,n(y + h2) −G1,n(yk − h2))

+ P (yk − h2 ≤ y1,i−1 ≤ y + h2)
)(
oP (

1√
n2

) +OP (
1

M
)

)
by Lemma 4.5, (15.31)

= C
N1/2

h2

(
OP

(
1√
n1

)
+OP (h2)

)(
oP (

1√
n2

) +OP (
1

M
)

)
again by (15.31)

= oP (1),
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and similarly,

|D2,n(y)| ≤ CN1/2

(
1

n1

n1∑

i=1

|ε1,i |1[yk−h2≤Y1,i−1≤y+h2]

)(
1

h 2
P (yk ≤ Y2,i−1 ≤ y)

)

= C
N1/2

h2
OP (h2)OP

(
1

N1/2+c/2

)
= oP (1).

Hence, we have

sup
1≤k≤M

sup
y∈Ij

|A1,n(y) − A1,n(yk)| = oP (1).

This proves part (a). Next,

P ( max
1≤k≤M

|A1,n(yk)| > ε) ≤ M max
1≤k≤M

E
(
A2

1,n(yk)
)
/ε2

= N1/2+c/2N
1

n1
O

(
1

n2h2

)
→ 0, by Lemma 4.3 and (A.3).

This proves part (b) and hence finishes the proof of (15.28) and the Lemma. �

15.5 Proofs

Here, we shall give the proof of our main result, Theorem 2.1. The lemmas proved
in Sect. 15.4 will facilitate the proof of this theorem. As usual, let C be a generic
constant. It suffices to prove (15.15) and (15.16). Now consider N1/2Un(t) for all
a ≤ t ≤ b. We decompose N1/2Un(t) as B1,n(t) − B2,n(t) with

B1,n(t) = N1/2 1

n1

n1∑

i=1

(Y1,i − μ̂2(Y1,i−1))1[a≤Y1,i−1≤t],

B2,n(t) = N1/2 1

n2

n2∑

i=1

(Y2,i − μ̂1(Y2,i−1))1[a≤Y2,i−1≤t].

We first consider B1,n(t). Recall definitions (15.12) and (15.23)–(15.25). By
decomposition and simple algebra, we rewrite B1,n(t) as I (t) − II(t) + III(t) with

I(t) = N1/2

n1

n1∑

i=1

(ε1,iσ1(Y1,i−1) + (μ1(Y1,i−1) − μ2(Y1,i−1)))1[a≤Y1,i−1≤t] (15.32)

II(t) = N1/2

n1

n1∑

i=1

∑n2
j=1 ε2,j σ2(Y2,j−1)Kh2 (Y2,j−1 − Y1,i−1)

n2f2(Y1,n−1)
1[a≤Y1,i−1≤t] (15.33)

III(t) = N1/2

n1

n1∑

i=1

∑n2
j=1 (μ2(Y1,i−1) − μ2(Y2,j−1))Kh2 (Y2,j−1 − Y1,i−1)

n2f̂2(Y1,i−1)
1[a≤Y1,i−1≤t]

(15.34)
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Now we consider II(t). By decomposition, we rewrite it as II1(t) + II2(t) with

II1(t) = N1/2 1

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)(�1(Y2,j−1, t) −�1(Y2,j−1, a))

= N1/2 1

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)
f1(Y2,j−1)

f2(Y2,j−1)

(
K
(
t − Y2,j−1

h1

)

− K
(
a − Y2,j−1

h1

))
+ oP (1), (15.35)

uniformly on a ≤ t ≤ b by Lemma 4.6 and its proof, and uniformly on a ≤ t ≤ b,

II2(t) = N1/2

n1

n1∑

i=1

∑n2
j=1 ε2,j σ2(Y2,j−1)Kh2 (Y2,j−1 − Y1,i−1)

n2f2(Y1,i−1)
1[a≤Y1,i−1≤t]

f2(Y1,i−1) − f̂2(Y1,i−1)

f̂2(Y1,i−1)

≤ C
N1/2

n1

n1∑

i=1

∣∣∣∣∣∣

1

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)Kh2 (Y2,j−1 − Y1,i−1)

∣∣∣∣∣∣
1[a≤Y1,i−1≤t]

· sup
a≤Y1,i−1≤t

∣∣∣∣∣
f2(Y1,i−1) − f̂2(Y1,i−1)

f̂2(Y1,i−1)

∣∣∣∣∣

= CN1/2OP

(√
log n2

n2h2

)

·
(

OP

(√
log n2

n2h2

)

+OP (h2
2)

)

, by Lemma 4.1 and 4.2

= oP (1), by (A.3).

Next, we consider III(t). Let μ(1)
2 denote the first derivative of μ2. Then, by (A.1),

uniformly on a ≤ t ≤ b,

III(t) ≤ N1/2

n1

n1∑

i=1

μ
(1)
2 (Y1,i−1)|H2,1(Y1,i−1)| + C|H2,2(Y1,i−1)|

f̂2(Y1,i−1)
1[a≤Y1,i−1≤t]

= OP

(

N1/2

(

h2
2 + h2

√
log n2

n2h2

))

= 0P (1), by Lemma 4 and (A.3) (15.36)
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Hence, by (15.32) and (15.35)–(15.36), we have uniformly on a ≤ t ≤ b,

B1,n(t) = N1/2

n1

n1∑

i=1

(ε1,iσ1(Y1,i−1) + (μ1(Y1,i−1) − μ2(Y1,i−1)))1[a≤Y1,i−1≤t]

− N1/2

n2

n2∑

j=1

ε2,j σ2(Y2,j−1)
f1(Y2,j−1)

f2(Y2,j−1)

(
K
(
t − Y2,j−1

h1

)

− K
(
a − Y2,j−1

h1

))
+ oP (1) (15.37)

Similarly, we have uniformly on a ≤ t ≤ b,

B2,n(t) = N1/2

n2

n2∑

j=1

(ε2,j σ2(Y2,j−1) + (μ2(Y2,j−1) − μ1(Y2,j−1)))1[a≤Y2,j−1≤t]

− N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)
f2(Y1,i−1)

f1(Y1,i−1)

(
K
(
t − Y1,i−1

h2

)

− K
(
a − Y1,i−1

h2

))
+ oP (1) (15.38)

By (15.37) and (15.38), we proved (15.15).
Now, we need to prove (15.16). Applying the CLT for martingales [Hall and Heyde

(1980), Corollary 3.1], we first could show that the finite-dimensional distributions
of N1/2

τ 2
n (b)Vn(t) tend to the right limit. Then, apply theorem for weak convergence

on functional space [Hall and Heyde (1980), Theorem A.2], we need to prove the
tightness of N1/2

τ 2
n (b)Vn(t). It suffices to prove the tightness of

N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)1[a≤Y1,i−1≤t]

and

N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)
f2(Y1,i−1)

f1(Y1,i−1)
K
(
t − Y1,i−1

h2

)
.

The tightness of the first sequence is implied by the weak convergence of a marked
empirical process [Koul and Stute (1999), Lemma3.1].

Since K
(

t−Y1,i−1
h2

)
= 1 for Y1,i−1 ≤ t −h2 and K

(
t−Y1,i−1

h2

)
1[t−h2≤Y1,i−1≤t+h2] just

behaves like h2Kh2 (t − Y1,i−1), the second sequence can be rewritten as

N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)
f2(Y1,i−1)

f1(Y1,i−1)
1[Y1,i−1≤t−h2]

+ N1/2

n1

n1∑

i=1

ε1,iσ1(Y1,i−1)
f2(Y1,i−1)

f1(Y1,i−1)
K
(
t − Y1,i−1

h2

)
1[t−h2≤Y1,i−1≤t+h2],
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with second term bing oP (1) uniformly on a ≤ t ≤ b by a proof similar
to that of Lemma 4.1. Again, by the weak convergence of a marked empiri-
cal process [Koul and Stute (1999), Lemma3.1], we could prove the tightness of
N1/2

n1

∑n1
i=1 ε1,iσ1(Y1,i−1) f2(Y1,i−1)

f1(Y1,i−1) 1[Y1,i−1≤t−h2]. Therefore, we complete the proof of
the main theory. �
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Chapter 16
Testing for Long Memory Using Penalized
Splines and Adaptive Neyman Methods

Linyuan Li and Kewei Lu

16.1 Introduction

Autoregressive moving average (ARMA) and autoregressive integrated moving av-
erage (ARIMA) models have been used extensively to analyze experimental data that
have been observed at different points in time. The landmark work of Box and Jenk-
ins (1970) developed a systematic class of ARIMA models to handle time-correlated
modeling and forecasting. However, many economic and financial time series, e.g.,
inflation and interest rates, exhibit slow decay in correlation which is often referred
to as long-range dependence or long memory. These time series are not well captured
by ARMA or ARIMA models. Most often, long memory is modeled by fractionally
integrated processes of order d (0 < d < 1). Non-integer orders of integration pro-
voke the concept of fractional cointegration; see Granger and Joyeux (1980). Hence,
there is an increasing number of econometric papers which are concerned with the
tests of short memory against long memory processes. The literature on long memory
processes is very extensive, see, e.g., the recent monograph by Giraitis et al. (2012)
and the references cited therein.

Several test statistics have been proposed in the literature for testing short memory
against long memory. Among them, we mention the KPSS statistic by Kwiatkowski
et al. (1992), the Lagrange multiplier (LM) test by Robinson (1994) and a variation
of LM test by Tanaka (1999). Above tests typically assume a known behavior of
the underlying short memory process. Hence, they usually fit a parametric model
and whiten the data prior to testing. The difficulty is that one usually does not know
the true short memory model, so the fitted model may not be appropriate. In this
case, the tests based on the whitened data from the wrong-fitted model may not have
the right sizes or levels. Thus, the powers of the corresponding tests may not be
reliable. Therefore, one could reach a wrong conclusion. In order to overcome this
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issue, Harris et al. (2008) proposed a test which doesn’t depend on any short memory
parametric model assumption. The rationale for their tests is that, for short memory
processes, there exist significant low order sample autocovariances and their high
order autocovariances are typically negligible. Thus, they constructed the test from
appropriately chosen and weighted high order sample autocovariances to effectively
eliminate the effects induced by the short memory. Simulation studies demonstrate
that their tests exhibit very good size control across a range of stationary short memory
processes and display particularly good power for long memory alternatives.

In this chapter, we propose a new test statistic based on the estimate of spectral
density using penalized splines method, which does not assume any short memory
parametric models either. For a typical short memory process or a general linear
process, its spectral density typically is very smooth. So it can be estimated very
well using penalized splines approach with simple rules of thumb for the selection
of the number of knots. Ruppert et al. (2003, 2009) and Li and Ruppert (2008)
have shown that penalized splines estimate does not depend on the number of knots
crucially, as long as the number of knots exceeds the minimum rate with the corre-
sponding sample size. Thus, the corresponding residuals behave like random noises.
Therefore, the test based on the corresponding residuals could eliminate the effects
induced by short memory. The advantage of our new approach is that our test does
not depend on any parameter-selection crucially, because of the adaptivity of the pe-
nalized splines estimate. The main contribution of our approach is that our proposed
test is completely data-driven or adaptive, avoiding the need to select any smoothing
parameters. Under a very general short memory linear process assumption, our test
follows a known distribution asymptotically. We perform Monte Carlo simulation
experiments that demonstrate that our new statistic can exhibit very good size control
across a range of stationary short memory processes and display a very good power
property to the well-known tests for a short memory null hypothesis against long
memory alternatives.

The remainder of this chapter is organized as follows. We review several current
test statistics in Sect. 16.2. In Sect. 16.3, we introduce penalized splines estimate for
spectral density, explain Fan’s (1996) adaptive Neyman test, and discuss how it can
be used in our hypothesis testing. The asymptotic result of our test is presented too.
In Sect. 16.4, we provide simulation studies and demonstrate that our proposed new
test is very competitive with current test statistics. We conclude in Sect. 16.5 with
some remarks. Proofs of the main results are relegated to the Appendix.

16.2 Some Current Test Statistics

Consider the I (d) process zt

(1 − L)dzt = ut , t = 1, 2, . . . , T , (16.1)

where ut is a zero mean stationary short memory process and L is a backward shift
operator. Our hypothesis testing problem is
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H0 : d = 0 versus H1 : 0 < d < 0.5. (16.2)

In other words, we wish to test the null hypothesis that zt has I (0) stationary short
memory against the alternative that it has I (d) stationary long memory (0 < d < .5).
The autocovariance function of zt is denoted as γj = E(ztzt−j ), which is absolutely
summable under H0 but not under H1.

Several test statistics have been proposed in the literature for testing such hypothe-
ses. Among them, we mention the KPSS statistic by Kwiatkowski et al. (1992),
Lagrange multiplier (LM) test and its variation by Robinson (1994) and Tanaka
(1999), and a recent test Ŝk by Harris et al. (2008).

Kwiatkowski et al. (1992) proposed a test for the hypothesis that the deviations
of a series from deterministic trend are short memory against I (d) alternatives. For
our simpler model (16.1) case (i.e., without a linear trend), their test statistic, known
as KPSS statistic, can be simplified as

KPSS = T −2
T∑

t=1

S2
t /s

2(l), (16.3)

where St is a partial sum process: St = ∑t
i=1 zi , t = 1, 2, . . . , T and s2(l) =

T −1∑T
t=1 z2

t + 2 T −1∑l
s=1 W (s, l)

∑T
t=s+1 ztzt−s with W (s, l) = 1 − s/(l + 1) is

the Newey-West (1987) estimator of the long-run variance of the process ut . Lee and
Schmidt (1996) showed that the KPSS test is a consistent test of short memory against
long memory. Based on their simulations, they concluded that a rather large sample
size, such asT = 500 or 1, 000, will be required to distinguish a long memory process
from a short memory process. Moreover, the finite sample performance of the KPSS
test depends on the selection of l. With a more strongly autocorrelated series, a larger
value of l is required to control size distortions under the null. However, choosing a
large value of l will reduce the power against the long memory substantially.

Robinson (1994) and Tanaka (1999) proposed the following LM test statistic
under the assumption that ut is a Gaussian white noise

Ñ = √
T

T−1∑

j=1

γ̃j

j
, (16.4)

where γ̃j = T −1∑T
t=j+1 ztzt−j . They demonstrated that, when ut is a white noise,

Ñ (when suitably studentized) has a standard normal limiting distribution under the
null hypothesis. However, in the more general case when ut is an autocorrelated
short memory process, the statistic has an asymptotic size of either zero or one, if
standard normal critical values are used. For details, see Harris et al. (2008). In order
to overcome this difficulty, Tanaka (1999) suggested that the γ̃j be calculated not
from the zt but instead using the residuals from an ARMA model estimated for zt .
The resulting statistic has been demonstrated to be asymptotically centered at zero
in the case where zt is generated by a stationary ARMA model and assuming the
correct model is fitted.
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The effectiveness of the above LM test depends on whether the fitted model is
appropriate or not. In practice, one does not know the true underlying short memory
model. Hence, the inference based on wrong-fitted model may be misleading. In
order to eliminate this effect induced by the dependence in ut under H0, Harris et
al. (2008) provided a modified statistic Ŝk , which is based on Ñ . Specifically, they
considered the truncated statistic

Ñk =
√
T − k

T−1∑

j=k

γ̃j

j − k + 1
, (16.5)

which can be viewed as Ñ calculated only from the sample autocovariances at lag
k and above. They showed that under H0, Ŝk , which is an appropriately studentized
Ñk (for details, see Harris et al. 2008, p. 146), has an asymptotic standard normal
null distribution. Therefore, provided that the class of linear processes is appropriate,
there is no need to postulate and fit a parametric model for any short memory behavior.
However, the choice of the starting point of the lag k is very critical. The authors
assumed that k = √

c T for some constant c > 0. They demonstrated that the choice
of the scaling parameter c, which controls the truncation k, has no asymptotic effect
on the properties of Ñk . Nevertheless, its finite sample performance will inherently
depend on the specific value selected by the users. Thus, they considered the values
c = .5, 1.0, 2.0 in their Monte Carlo simulation.

16.3 Our New Adaptive Test Statistic

In this chapter, we pursue another nonparametric approach to eliminating the need to
postulate and fit a parametric model for ut . Our test statistic is constructed completely
by the data, and does not involve any unknown smoothing parameters seriously. In
particular, our test statistic is based on the estimate of the spectral density using
penalized splines method. Specifically, the spectral density of zt is defined as

f (ω) = 1

2π

∞∑

j=−∞
γj e

−iωj, −π < ω ≤ π , (16.6)

whenever this exists. Because of the symmetry of f (ω), we only need to consider
ω ∈ [0,π ). It is well known that the basic tool to estimate the spectral density f (ω)
is its periodogram defined at the Fourier frequencies ωj = 2πj/T , ωj ∈ [0,π ), by

I (ωj ) = 1

2πT

∣∣
∣∣∣

T∑

t=1

zt e
−itωj

∣∣
∣∣
∣

2

. (16.7)

For the simplicity and convenience of the exposition of our test, we assume the
sample size T = 2n. Also, let xj = ωj−1/(2π )+ 1/T , yj = I (xj ), j = 1, 2, . . . , n.
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Then, these new notations match those in Li and Ruppert (2008). Therefore, in the
proof part of the main result in Appendix below, we can cite the results from Li and
Ruppert (2008) directly without any confusion. If zt is a stationary linear process
with i.i.d. Gaussian innovations, then, by Theorem 10.3.2 of Brockwell and Davis
(1991), yj are asymptotically exponentially distributed with mean f (xj ) and that
they are approximately independent. That is, with Rj denoting an asymptotically
negligible term, we have

yj = f (xj ) + f (xj )ηj + Rj , (16.8)

where the random variables ηj for j = 2, 3, . . . , n are i.i.d. with ηj = χ2(2)/2 − 1
and η1 = χ2(1) − 1. Above model (16.8) could be written as

yt = f (xt ) + εt , t = 1, 2, . . . , n, (16.9)

with εt = f (xt )ηt+Rt . Li and Ruppert (2008) considered model (16.9) and provided
an estimate for f using penalized splines method. Note that, in the estimation step, Li
and Ruppert (2008) do not need the assumption that εt are independent (it is required
in the derivation of the limit distribution of their estimator). In this chapter, we simply
apply their estimation method to estimate f based on the periodogram yt as that in
Li and Ruppert (2008). Since the remainder term Rj is negligible, our model (16.8)
is equivalent to their model (16.9) (with independent errors) asymptotically.

The penalized spline method approximates the regression function f with splines.
Typically, the modeling bias due to approximation to the regression function by a
spline is negligible compared to the shrinkage bias due to estimation. Specifically,
one approximates regression with a spline f (x) =∑K(n)+p

k=1 bkB
[p]
k (x), where {B[p]

k :
k = 1, 2, . . . ,K(n) + p} is the pth degree B-spline basis with knots 0 = κ0 < κ1 <

. . . < κK(n) = 1. The value of K(n) will depend upon n as discussed below. The
penalized least-squares estimator b̂ = (b̂1, . . . , b̂K(n)+p) minimizes

n∑

j=1

{

yj −
K(n)+p∑

k=1

bkB
[p]
k (xj )

}2

+ λ∗n
K(n)+p∑

k=m+1

{�m(bk)}2, λ∗n ≥ 0, (16.10)

where � is the difference operator, i.e., �bk = bk − bk−1, m is a positive in-
teger, and �m = �(�m−1). The nonparametric regression estimator f̂ (x) =∑K(n)+p

k=1 b̂kB
[p]
k (x) is called the P-spline estimator. For details, see Li and Rup-

pert (2008, p. 415) and Eilers and Marx (1996). In this chapter, we only consider
the first-order penalized estimator using zero-degree splines, that is piecewise con-
stant, m = 1 and p = 0, with equally spaced knots κ0 = 0, κ1 = 1/K(n), κ2 =
2/K(n), . . . , κK(n) = 1. In particular, B [0]

k (x) = χ{κk−1<x≤κk}, 1 ≤ k ≤ K(n), where
χ is the indicator function, and f̂ (x) = b̂k for any x ∈ (κk−1, κk], k = 1, 2, . . . ,K(n).
For this special case, we have explicit expressions for those b̂k values, which solve
{IK(n) + λn(Dm)′Dm}b̂ = ȳ. For more details, again see Li and Ruppert (2008,
p. 418–422).
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Let η̂j = (yj − f̂ (xj ))/f̂ (xj ), where f̂ (xj ) is obtained from the above penalized
spline estimate as in Li and Ruppert (2008). We propose the following statistic as a
test statistic

n∑

j=1

η̂2
j =

n∑

j=1

(yj − f̂ (xj ))2

f̂ (xj )2
. (16.11)

Under the null hypothesis of short memory processes, the spectral densities are more
or less very smooth. Hence, splines approximate the underlying regression (or spec-
tral density in our case) very well with certain number of knots, which is equivalent
to saying that the modeling bias is asymptotically negligible. Thus, the penalized
splines method estimates the spectral densities very well across a broad range of
short memory processes. Therefore, η̂j behaves very similar to ηj , j = 1, 2, . . . , n
under null hypothesis. Furthermore, one can derive a known limit distribution for the
above statistic in (16.11) under the null, which can be used to carry out the hypothesis
testing.

On the other hand, under long memory alternatives, one observes f (x) → ∞
as x → 0. Hence, splines could not approximate the regression function very well
near the zero. Thus, the modeling bias will not be negligible and the the penalized
spline estimator f̂ (x) will not do a good job in estimating f (x) when x is near 0.
Consequently, η̂2

j tends to be relatively large when j ’s are small. Thus, under H1,
the statistic in (16.11) tends to be very large. Therefore, testing hypothesis could be
reached based on the statistic

∑n
j=1 η̂

2
j . However, based on the observation of Fan

(1996), this test statistic has very low power at certain alternatives. The main reason
is that the test involves too many individual terms (n terms in total in this case),
which accumulate too much stochastic errors.

Specifically, we will use Fan’s (1996) canonical multivariate normal hypothesis
testing procedure to construct a new test statistic. Fan (1996) considered the following
testing problem: Let X ∼ N (θ , In) be an n-dimensional normal random vector. One
wishes to test

H0 : θ = 0 versus H1 : θ �= 0. (16.12)

He demonstrated that the test based on ||X||2 has very low power at alternative
θ = θ0 �= 0, since the test includes too many individual terms and has too many
stochastic errors. Neyman (1937) proposed testing the first m-dimensional subspace,
leading to the test statistic

∑m
i=1 X

2
i . Based on the power calculation, Fan (1996)

proposed adaptive Neyman test for the testing problem (16.12):

T ∗
AN = max

1 ≤ m ≤ n
1√
2m

m∑

i=1

(X2
i − 1). (16.13)

For more details, see Fan (1996). Large values of test T ∗
AN tend to reject null hy-

potheses H0 in (16.12). With theoretical power calculation and empirical simulation
studies, Fan (1996) showed that the adaptive Neyman test has a higher power than
those of Kolmogorov-Smirnov and Cramér-Von Mises tests.



16 Testing for Long Memory Using Penalized Splines and Adaptive Neyman Methods 263

Although Fan (1996) considered hypothesis testing on n-dimensional normal dis-
tribution in (16.12), our testing problem is conceptually equivalent to his test problem.
Under H0, our η̂j , j = 1, 2, . . . , n behave like a sequence of i.i.d. random variables
ηj with mean 0. Hence, we can construct a similar test as in Fan (1996). In particular,
we propose the following analogous test statistic

T ∗
S = max

1 ≤ m≤ Mn

1√
8m

m∑

i=1

(η̂2
i − 1), (16.14)

whereMn = n4/5/( log log n)2. First, one notices that our proposed test is maximized
in m over the range [1, Mn] instead of [1, n]. This modification of the range mainly
follows from a technical reason (for details, see the proof of Theorem in Appendix).
From the large sample theoretical point of view, this difference between Mn and n is
hardly significant. Second, from the practical implementation point of view, one does
not have to apply the test with maximization of m over the entire range [1, n]. The
main reason is that the difference between short memory and long memory is mainly
carried by those η̂j ’s with small j ’s. Thus, with this observation, we know those
η̂2
i , with smaller j ’s, are relatively large in alternatives. Thus, the test T ∗

S attains
the maximum usually when m belongs to range [1, Mn]. Our simulation studies
confirm this observation. In our extensive simulation studies, we find that the test
with the maximum over range [1, Mn] is not significantly different from that with the
maximum over the whole range [1, n]. We tried both tests (over the range [1, Mn]
and [1, n]), and find that their results are very close. Therefore, for the definiteness
and convenience, we simply use the test with the maximization of m over [1, n] for
simplicity. For more discussion on this similar modification over the maximization
range, see Fan and Huang (2001, p. 642) and Fan and Yao (2003, p. 300).

Following Fan (1996), we normalize the test statistic to obtain

TS = √2 log logMn T
∗
S − {2 log logMn + .5 log log logMn − .5 log (4π )}.

(16.15)

Before we provide the asymptotic null distribution of TS , we require the following
technical assumptions on the short memory process ut in (16.1) to simplify technical
arguments in the proof.

A1. The series ut is a linear Gaussian process; that is ut = ∑∞
j=−∞ ψ

j
εt−j with

εt ∼ i.i.d. N (0, σ 2) and
∑∞

j=−∞ |ψ
j
||j |2 < ∞.

A2. The spectral density f (x) of ut is positive; i.e., it satisfies infx f (x) > 0.
The above assumptions are used in the estimation and testing for spectral density,

e.g., Fan and Zhang (2004). We mention that, under the above assumption A1, one
obtains that the second derivative f

′′
( · ) of the spectral density f ( · ) is continuous

on [0, π ]. Thus, the assumption of Theorem 1 in Li and Ruppert (2008) is satisfied
for our penalized splines estimation.

Similar to that in Fan (1996), we have the following asymptotic null distribution
of TS . The proof of the main theorem is postponed to Appendix.
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Theorem 3.1. Assume the assumptions A1 and A2 are satisfied, then, under H0 :
d = 0, we have

P (TS < x) → exp ( − exp ( − x)), as n → ∞. (16.16)

The above limiting distribution could be used to determine the rejection region at
a given significant level. Nevertheless, the rate of convergence of TS to the above
limiting distribution is very slow (one needs very large sample size n to approximate
the above distribution well). Thus, for any fixed sample size T , the distribution of
the test TS (denoted with JT ) is different from its limit distribution in (16.16). Since
the explicit distribution of JT is very difficult to be derived, we will use Monte Carlo
simulation studies to determine the rejection region for the finite sample size under
H0 and the power of the test under alternative H1. With powerful computers, this
computing is no longer an issue. We have MATLAB codes available for computing
the distribution of JT and are happy to provide those codes upon request.

The theoretical power of the test statistic TS is difficult to evaluate analytically
under the alternative hypothesis. However, from our simulation studies in the next
section, the asymptotic power tends to 1 as the sample size becomes very large.

16.4 Simulation Studies

16.4.1 Densities Under Null Hypothesis

Because of the technical reason stated before, we propose our test TS in (16.15)
with maximization over range [1, Mn]. As we have discussed before, because of the
nature of our test problem, this test is very close to the test with maximization over
range [1, n]. So for the definiteness, we provide the simulation studies in this section
using the test with maximization over range [1, n]. We still use the same notation
TS , simply replacing Mn with n.

As mentioned earlier, the theoretical limit distributions in (16.16) for TS in (16.15)
are not good approximations for finite sample size n. Thus, one typically uses sim-
ulation study to determine the rejection region for finite sample size under H0 and
calculate the power of the test under alternative H1. Following Fan (1996), we in-
vestigate the finite-sample distributions of the test statistic TS via simulations. As
an illustration, we generate a white noise time series for ut with length T = 500
and 1,000 and study N = 5, 000 simulations. The distribution of 5,000 simulated
test statistics under the null hypothesis are presented using a kernel density estimate.
More precisely, let Z1,Z2, . . . ,ZN be a sequence of i.i.d. random variables with a
common density f . Then its kernel density estimator is

f̂h(x) = N−1
N∑

i=1

h−1K{(Zi − x)/h},
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Fig. 16.1 The Estimated Densities for Test Statistic TS under the Null Hypothesis for T = 500 and
1000 based on 5000 simulations, and the limiting extreme distribution in (16.16)

where K is the Gaussian kernel function K(x) = (2π )−1/2 exp ( − x2/2), and h is
the bandwidth. By the normal reference bandwidth rule, h = 1.06 ∗ sN ∗ N−1/5,
where sN is the standard deviation of Z1,Z2, . . . ,ZN . For more discussion on the
selections of K and bandwidth h, see Fan and Yao (2003, Chap. 5).

Specifically, we calculated Z1 = TS,1, Z2 = TS,2, · · · ,Z5000 = TS,5000 from the
5,000 simulations. The result is presented in Fig. 16.1. From the estimated distribu-
tion of our test statistic TS , one can see that none of the finite sample versions are
close to the theoretic limiting distribution in (16.16). This is in line with the previ-
ous findings stating that the adaptive Neyman test statistics converge rather slowly
toward their asymptotic limit.

16.4.2 Empirical Sizes

This section explores the empirical sizes of the suggested testing procedure for
finite sample performances. We consider an ARMA(1,1) data generating process
(DGP): (1 − ρL)ut = (1 + θL) εt , εt ∼ i.i.d.N (0, 1). The sample sizes are
T = 200, 500, 1, 000. From Li and Ruppert (2008), the number of knots K(n)
does not effect the asymptotic distribution of the penalized spline estimators, as long
as the number of knots satisfies certain rates with the sample size. In our case with
m = 1 andp = 0, one needs the number of knotsK(n) = Cnγ with γ > 2/5. (see Li
and Ruppert, 2008, p. 420). In the practical point of view, this does not provide much
useful guidelines. Ruppert et al. (2003, p.126) suggest K(n) = min(35, n/4) from
their empirical studies. In the following simulation studies, we select K(n) = 3n0.42,
where n = T/2. Thus for T = 200, 500, and 1,000, the number of knots are
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K(n) = 20, 30, and 40 respectively. We find that it works well in our simulation.
The advantage of the penalized spline estimator is that it does not depend on the
number of knots crucially, as long as the number of knots exceeds the minimum
rates with the corresponding sample size. So the corresponding test does not depend
on the parameters (number of knots and penalty term λ) seriously. The penalty term
automatically eliminates the autocorrelation induced by the short memory process.
Table 16.1 reports the proportion of times the test statistics reject the short memory
at level 5 %. The results of empirical sizes of our test are based on the empirical
critical values (ECVs). We find that for the sample sizes T = 200, 500, and 1,000,
the corresponding ECVs are around 4.57, 4.74, and 4.78 based on 5,000 simulations.
The standard error of the empirical sizes is

√
.05 ∗ .95/5, 000 = .31 %.

We also include the simulation results of three other well-known tests of long
memory: Harris et al. (2008) test, KPSS test, and Robinson (1994) and Tanaka (1999)
test. These numbers are taken from Harris et al. (2008) for comparison purposes.
Although being undersized forARMA(1, 1) with θ = −.8 and ρ ∈ {0, .5, .7}, our test
statistic generally provides reasonable size control across the ARMA(1, 1) parameter
space. The Harris et al. (2008) test (c = 1.0) has good size properties in general,
although with some oversizing for large values of ρ when T = 200 and T = 500.
However, if one selects a smaller c, say, c = .5, the sizes would be deteriorated.
On the other hand, the test managed to have perfect size control when c = 2.0.
For details, see Harris et al. (2008). This suggests that the empirical sizes of their
test depend largely on the selection of c. The KPSS test only achieves good size
properties for small AR coefficients, and becomes oversized for large values of ρ

across all of the sample sizes. The Robinson (1994)/Tanaka (1999) test assuming
an ARMA(1, 1) model for ut has very good size control for all of the ARMA(1, 1)
models across all of the sample sizes, although being a little undersized for small
values of AR coefficients when T = 200 and T = 500. However, the size properties
of their test are based on the correct model specification of ut , which, in reality,
is usually unknown. Harris et al. (2008) considers another version of the Robinson
(1994)/Tanaka (1999) test assuming anAR(1) model for ut for comparison. The sizes
are either badly oversized or undersized in those cases where the AR(1) model is
incorrect while ARMA(1, 1) is the true DGP.

In those undersized cases for TS , the periodograms near 0 are always smaller than
the estimated spectral density, which leads to the failure to reject the null (because
our test is one-sided, and only large values of TS reject the null). We also notice
that it is modestly oversized for ARMA(1, 1) with ρ = .9 and θ = −.8. Increasing
the sample size does reduce the size, although the effect is not obvious (the size
for T = 200 is .09, and for T = 1, 000 is .08). This is due to the fact that for this
particular model, the spectral density near zero is very steep. Thus, the penalized
spline estimator requires a fairly large sample size to approximate the true density
well. Obviously, the sample size T = 1, 000 (n = 500) is not large enough for
our test statistic in this particular model. Other than that, there are no notable size
distortions elsewhere.
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16.4.3 Power Comparisons

In this section, we compare the powers of our proposed adaptive Neyman test TS with
those of Harris et al. (2008) test, KPSS test, and Robinson (1994)/Tanaka (1999) test.
The empirical powers of the tests are evaluated under the alternatives d = 0.2 and
d = 0.4. The results are summarized in Tables 16.2–16.3. As the spectral density of
long memory near 0 is approaching infinity, our penalized-spline-based test TS is a
powerful test procedure. We also notice that the power of TS increases with both T

and d, as expected.
The power of TS is greater than that of the Harris et al. (2008) test almost every-

where across all of the sample sizes when ρ ∈ {0, 0.5, 0.7}. When the AR coefficient
takes the largest value of ρ = 0.9, the Harris et al. (2008) test with c = 1.0 has
greater power than TS when d = 0.2. Nevertheless, the two tests are almost equally
powerful for ρ = 0.9 when d = 0.4 (with TS slightly outperforming the Harris
et al. (2008) test when T = 200, and the latter slightly outperforming the former
when T = 500). Moreover, TS has a significant power improvement over the Harris
et al. (2008) test for the other AR coefficients when d = 0.4. Considering the fact
that the performance of the Harris et al. (2008) test depends on the selection of the
truncation parameter c, our adaptive Neyman test TS , which avoids the need to select
any smoothing parameter, would appear to provide a good competitor to the Harris
et al. (2008) test as a test of short memory against long memory, particularly for
large stationary values of d .

The KPSS test generally has greater power than TS in most cases when d = 0.2.
However, when d is increased to 0.4, TS takes the lead everywhere. With its superior
control of size over the KPSS test, TS would tend to be a competitive testing proce-
dure. The Robinson (1994)/Tanaka (1999) test has great power in some models while
it has very small power in the others. Furthermore, in some cases, its power curiously
decreases as d increases. As we mentioned earlier, the performance of the Robinson
(1994)/Tanaka (1999) test is based on the correct model assumption of the true DGP.
If it is misspecified, as illustrated in Harris et al. (2008) by assuming a AR(1) model
while the true DGP is ARMA(1, 1), the power of the test would be largely affected,
with some extreme situations where the power would be either 1 or 0.

We do find that the power of TS is 0 for the model ARMA(1, 1) with ρ = 0 and
θ = −0.8 when T = 200 and d = 0.2. In this particular case, the periodograms near
0 are smaller than the estimated spectral density. Even though one would expect the
periodograms near 0 to be large with d = 0.2, in fact they still fall behind the esti-
mated spectral density because of the small sample size, leading to a failure to reject
the short memory. Increasing the sample size, however, improves the power signif-
icantly; for example, the power is increased to 0.11 when the sample size is 1,000.

For the nonstationary process zt in (16.1) with d > 0.5 case, we find that TS is still
comparable to its competitors in general (for the brevity of expression, the simulation
results are not included in this chapter. They are available upon request). When d is
approaching 1 (d = 0.8 and 1.0), Harris et al. (2008) test performs slightly better
than TS . Both TS and KPSS tests perform equally well. Therefore, it is hoped that the
proposed test statistic will present a useful complement to the the current tests for
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Table 16.4 ARMA(1, 1) Empirical Type I Errors when d=0.0 using ECVs assuming i.i.d. normal
errors for the i.i.d. non-Gaussian uniform distribution

T=200 T=500 T=1,000
ρ/θ −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8

0.0 0.00 0.00 0.02 0.02 0.02 0.00 0.01 0.03 0.03 0.02 0.00 0.01 0.03 0.02 0.03
0.5 0.00 0.03 0.02 0.03 0.03 0.00 0.04 0.04 0.02 0.04 0.00 0.05 0.04 0.02 0.04
0.7 0.00 0.04 0.04 0.03 0.03 0.00 0.04 0.04 0.03 0.04 0.00 0.04 0.04 0.04 0.03
0.9 0.09 0.06 0.06 0.06 0.07 0.09 0.06 0.05 0.06 0.05 0.08 0.06 0.05 0.05 0.05

Table 16.5 ARMA(1, 1) Empirical Type I Errors when d=0.0 using ECVs assuming i.i.d. normal
errors for the i.i.d. non-Gaussian lognormal distribution

T=200 T=500 T=1,000
ρ/θ −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8

0.0 0.00 0.01 0.02 0.02 0.02 0.00 0.01 0.02 0.02 0.02 0.00 0.01 0.03 0.03 0.02
0.5 0.00 0.04 0.03 0.03 0.02 0.00 0.04 0.03 0.03 0.02 0.00 0.04 0.03 0.03 0.03
0.7 0.00 0.03 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.00 0.04 0.03 0.03 0.03
0.9 0.09 0.07 0.06 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.05

testing stationary short memory versus long memory alternatives. All the computer
codes are written in R and MATLAB, and are available upon request.

16.4.4 Robustness Study Under Non-Gaussian Errors

In the main theorem and previous simulation studies, we assume that the series
ut =∑∞

j=−∞ ψ
j
εt−j is a linear Gaussian process (i.e., ε′t s are i.i.d. normal variables)

because of the technical argument reason. In this section, we would like to investigate
whether the results remain valid when the errors εt are not Gaussian. In particular,
we consider uniform and lognormal distributions for εt respectively in the following
simulation studies. Specifically, we report the Empirical Type I Errors (or empirical
levels) using the ECVs assuming i.i.d. normal errors for the i.i.d. non-Gaussian
errors (normalized uniform and lognormal distributions respectively). The results are
displayed in Tables 16.4 and 16.5. It is seen that under non-normal errors (uniform
and lognormal distributions), the empirical levels using the ECVs for normal errors
are reasonably close to those for normal errors. This suggests that if the errors are not
Gaussian (which is assumed in the main theorem), the test statistics are reasonably
robust to the other non-Gaussian errors from this modest simulation study.

16.5 Conclusion

In this chapter, we propose a new test statistic based on penalized splines method
and ideas in Fan’s (1996) adaptive Neyman tests. Our test does not assume any short
memory parametric models and is completely data-driven or adaptive, avoiding the
need to select any smoothing parameters. Under a general linear process null hypoth-
esis, our test follows a known distribution asymptotically. Since the convergence of
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the proposed test statistics toward their asymptotic distributions is known to be slow,
we apply Monte Carlo simulation method to investigate their distributions and pow-
ers. Our test is compared to the three well-known tests in literature (KPSS, LM in
Robinson (1994) and Tanaka (1999), and the test in Harris et al. (2008)). The em-
pirical powers of our proposed test statistic are always competitive and, for certain
alternatives, the most powerful.

16.6 Appendix

Proof of Theorem 3.1 During the following proof, we use C to denote a positive
generic constant. The notation op(1) is short for a sequence of random variables
that converge to zero in probability. The expression Op(1) denotes a sequence that is
bounded in probability. Similarly, o(1) and O(1) are short notations for deterministic
sequences. More generally, Un = op(Vn) means |Un/Vn| = op(1), and Un = o(Vn)
indicates |Un/Vn| = o(1). Similar notations apply toUn = Op(Vn) andUn = O(Vn).
There are many rules of calculations with o and O symbols, which we apply without
comment. For example, op(1) + op(1) = op(1), op(1) + Op(1) = Op(1), and
op(1)Op(1) = op(1).

The idea of the proof is similar to that of Theorem 1 in Fan and Huang (2001).
They considered the Goodness-of-fit to parametric regression models, whereas we
consider the nonparametric (penalized splines) estimates to the spectral densities. So
the bias of our estimates (penalized splines estimates) have different rates than theirs
(least squares estimate). Because of this difference, we propose our test statistic with
a modification on the maximization range over [1, Mn]. Other than this difference,
overall structure of the proof is the same. Denote f (xj) as fj and f̂ (xj) as f̂j, in view
of (16.8) and (16.11), we have

m∑

j=1

η̂2
j =

m∑

j=1

(yj − f̂j)2

f̂ 2
j

=
m∑

j=1

(
fj − f̂j + fjηj + Rj

fj
· fj

f̂j

)2

=
m∑

j=1

[(

ηj + fj − f̂j

fj
+ Rj

fj

)(

1 + fj − f̂j

f̂j

)]2

=
m∑

j=1

[

ηj + ηj
fj − f̂j

f̂j

+ fj − f̂j

fj
+ (fj − f̂j)2

fjf̂j

+ Rj

fj
+ Rj(fj − f̂j)

fjf̂j

]2

=
m∑

j=1

[

η2
j + η2

j

(fj − f̂j)2

f̂ 2
j

+ (fj − f̂j)2

f 2
j

+ (fj − f̂j)4

f 2
j f̂

2
j

+R2
j

f 2
j

+ R2
j (fj − f̂j)2

f 2
j f̂

2
j

+ Rest

]

,
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where the term Rest includes all 15 intercross terms. For the brevity of exposition,
we do not provide all 15 terms explicitly here. We will show that the first term is the
leading term and the rest terms are negligible compared to the first main term. Now,
our test statistic T ∗

S can be written as

T ∗
S = max

1 ≤ m ≤ Mn

1√
8m

m∑

j=1

(η̂2
j − 1)

= max
1 ≤ m ≤ Mn

⎧
⎨

⎩
1√
8m

m∑

j=1

(η2
j − 1) + 1√

8m

m∑

j=1

η2
j

(fj − f̂j)2

f̂ 2
j

+ 1√
8m

m∑

j=1

(fj − f̂j)2

f 2
j

+ 1√
8m

m∑

j=1

(fj − f̂j)4

f 2
j f̂

2
j

+ 1√
8m

m∑

j=1

R2
j

f 2
j

+ 1√
8m

m∑

j=1

R2
j (fj − f̂j)2

f 2
j f̂

2
j

+ 1√
8m

m∑

j=1

Rest

⎫
⎬

⎭

= max
1 ≤ m ≤ Mn

⎧
⎨

⎩
1√
8m

m∑

j=1

(η2
j − 1) + I2 + I3 + I4 + I5 + I6 + I7

⎫
⎬

⎭
.

Let

T ∗
Mn

= max
1 ≤m ≤ Mn

1√
8m

m∑

j=1

(η2
j − 1).

Thus, the proof of the Theorem follows from the following two Lemmas and Slutsky’s
theorem.

Lemma 6.1 Under the conditions of Theorem 3.1, we have

P
(√

2 log logMn T ∗
Mn

− {2 log logMn + .5 log log logMn

− .5 log (4π )} < x
)→ exp ( − exp ( − x)).

Lemma 6.2 Under the conditions of Theorem 3.1, we have

max
1 ≤ m ≤ Mn

Ii = op(( log logMn)−1/2), i = 2, 3, . . . , 7.

In what follows in this section, we provide the proofs of the above two Lemmas.

Proof of Lemma 6.1: Let’s consider statistic T ∗a
Mn

:= max2≤m≤Mn
(8m)−1/2∑m

j=2

(η2
j − 1) first. Under the assumption A1, by Theorem 10.3.2 of Brockwell and

Davis (1991), we have η1 ∼ χ2(1) − 1 and ηj ∼ χ2(2)/2 − 1, j = 2, 3, . . . , n
(note those ηj, j ≥ 2 are i.i.d. random variables). From the observation made
by Fan and Huang (2001, p. 651), the maximization of m over [2, Mn] cannot be
achieved at m < logMn and T ∗a

Mn
is at least (2 log logMn)1/2(1 + op(1)). Now,
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since η1 = Op(1) and m ≥ logMn → ∞, we derive that T ∗a
Mn

has the same limit
distribution as that of T ∗

Mn
from Slutsky theorem. In another words, the first term

η2
1 − 1 is negligible compared to the sum, since m ≥ logMn → ∞. From the

same argument, the above statistic T ∗a
Mn

has the same distribution as that of T ∗b
Mn

:=
max1≤m≤Mn

(8m)−1/2
[∑m

j=2 (η2
j − 1) + (η2

1∗ − 1)
]
, where η1∗ ∼ χ2(2)/2−1. Thus,

T ∗
Mn

and T ∗b
Mn

have the same limit distributions. (i.e., η1 can be replaced with η1∗ ).
Notice that the statistic T ∗b

Mn
involves m i.i.d. random variables. From simple calcu-

lation, we have E(ηj ) = 0, E(η2
j ) = 1 and E(η2

j − 1)2 = 8 for j = 1∗ and j ≥ 2.
Apply the Theorem 1 of Darling and Erdős (1956) (here ηj have any finite moments),
we derive that T ∗b

Mn
has the limit distribution stated in Lemma 6.1. Since T ∗

Mn
has the

same limit distribution as T ∗b
Mn

, we complete the proof of the Lemma.

Remark 6.1 In the most frequency analysis of time series, one typically only con-
siders those ηj , j ≥ 2. However, in our testing hypothesis problem, η1 provides
useful information. This is understandable from the difference between null and al-
ternatives. This observation is confirmed in our simulation studies with finite sample
size. We find that the test statistic including the first term η1 provides a little bit larger
power than the test not including η1. Therefore, we recommend the test statistic T ∗

S

which includes η1 in practical implementation, although two test statistics (T ∗
Mn

and
T ∗a
Mn

) have the same limit distribution asymptotically.
In order to prove the the Lemma 6.2, we need following two auxiliary results.

The first Proposition is from Kooperberg et al. (1995).

Proposition 6.1 Under the conditions of Theorem 3.1, we have max1≤j≤n|Rj | =
Op( log n/

√
n).

Proposition 6.2 Under the conditions of Theorem 3.1, we have max1≤j≤n

∣∣∣1/f̂j

∣∣∣ =
Op(1).

Proof. Under the conditions of Theorem 3.1, we have infj fj ≥ c > 0. Also, for
all M > 0,

P

(
max
j

∣∣∣∣∣
1

f̂j

∣∣∣∣∣
> M

)

≤ P

(
max
j

1

|fj | − |fj − f̂j |
> M

)

= P

(
max
j

1

|fj | − |fj − f̂j |
> M , max

j |fj − f̂j | > c

2

)

+ P

(
max
j

1

|fj | − |fj − f̂j |
> M , max

j |fj − f̂j | ≤ c

2

)

≤ P

(
max
j |fj − f̂j | > c

2

)
+ P

(
max
j

1

|fj | − c/2

> M , max
j |fj − f̂j | ≤ c

2

)
.
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Although one can show directly that the first probability in the right hand side (RHS)
of the above inequality goes to zero from the explicit expression for f̂j in Li and
Ruppert (2008, p. 420), the details are very tedious. However, one can use the
equivalence between penalized spline estimators and kernel estimators to derive the
same conclusion. From Li and Ruppert (2008), one can see that f̂j can be written as a
kernel estimator (denoted with f̂ K

j ) with a Laplace kernel plus a negligible remainder
term O(n−2/5) which is from the modeling bias and the remainder Rj ’s in model
(16.8). For the kernel estimator f̂ K

j , one has a known result maxj |fj − f̂ K
j | = op(1).

Thus, the first probability in RHS of the above inequality goes to zero. (Regarding
the equivalence between penalized spline estimators and kernel estimators, see also
Silverman (1984) and Wang et al. (2011)). As to the second probability in the RHS
of the above inequality, it goes to 0 too from the assumption A2 with infj fj ≥ c > 0
and letting M go to infinity. Thus we prove the Proposition.

Now we are ready to prove the Lemma 6.2.

Proof of the Lemma 6.2. We will prove the Lemma for each value of i = 2, 3, . . . , 7.
Consider i = 2 first. By Cauchy-Schwartz inequality, we have

I 2
2 ≤ 1

8m

m∑

j=1

η4
j

m∑

j=1

(fj − f̂j )4

f̂ 4
j

.

Under the conditions of Theorem 3.1, those conditions of Theorem 1 in Li and Rup-
pert (2008) are satisfied. Specifically, assumption A1 implies that f has continuous
second derivative. Also yj has any finite moments from Gaussian assumptation. Thus,
from Theorem 1 in Li and Ruppert (2008), we have E(fj − f̂j )2 = O(n−4/5). Again,
from the explicit expression for f̂j in Li and Ruppert (2008, p.420), fj − f̂j can be
written as a weighted sum of centered ηj ’s (they are χ2 random variables) plus a
negligible remainder term Rn with E(R2

n) = O(n−1). Therefore it can be shown that
E(fj − f̂j )4 = O(n−8/5). Thus, max1≤m≤Mn

∑m
j=1 (fj − f̂j )4 = Op(Mn n

−8/5).

Together with Proposition 6.2, we have max1≤m≤Mn

∑m
j=1 (fj − f̂j )4/f̂ 4

j =
Op(Mn n

−8/5). From the similar argument as in Fan and Huang (2001, p. 651),
we have max1≤m≤Mn

(8m)−1∑m
j=1 η

4
j = Op(( log logMn)1/2). Combining these

two results together, we have max1≤m≤Mn
I 2

2 = Op(( log logMn)1/2 Mn n
−8/5)) =

Op(( log log n)−3/2n−4/5)). Thus, max1≤m≤Mn
I2 = Op(( log log n)−3/4n−2/5)) =

op(( log log n)−1/2) = op(( log logMn)−1/2). Thus, we prove the term I2. For the
other terms, arguments are very similar to and simpler than the term I2. As to i = 3,

we have I3 ≤ Cm−1/2∑m
j=1 (fj − f̂j )2. Thus, max1≤m≤Mn

I3 = Op

(
M

1/2
n n−4/5

)
=

Op

(
( log log n)−1n−2/5

) = op(( log log n)−1/2) = op(( log logMn)−1/2). For i = 4,

we have I4 ≤ Cm−1/2∑m
j=1 (fj − f̂j )4. Thus, max1≤m≤Mn

I4 = Op

(
M

1/2
n n−8/5

)
=

Op

(
( log log n)−1n−6/5

) = op(( log log n)−1/2) = op(( log logMn)−1/2). As to
term I5, we have I5 ≤ Cm−1/2∑m

j=1 R
2
j . From Proposition 6.1, we have

max1≤m≤Mn
I5 = Op

(
M

1/2
n ( log n)2 n−1

)
= Op

(
( log log n)−1n−3/5( log n)2

) =
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op(( log log n)−1/2) = op(( log logMn)−1/2). For the term I6, we have

I6 ≤ C√
m

√√√√
m∑

j=1

R4
j

m∑

j=1

(fj − f̂j )4.

Thus,

max
1 ≤ m ≤ Mn

I6 = Op

(
M1/2

n

( log n)2

n
n−4/5

)
= Op

(
( log log n)−1n−7/5( log n)2

)

= op(( log log n)−1/2) = op(( log logMn)−1/2).

For the intercross terms in I7, we only provide one of these terms here for the brevity
of the exposition. The proofs for the other terms follow from the similar arguments.

max
1 ≤ m ≤ Mn

∣∣∣∣∣∣

1√
8m

m∑

j=1

ηj
fj − f̂j

fj

∣∣∣∣∣∣
≤ max

1 ≤ m ≤ Mn

√√√√ 1

8m

m∑

j=1

η2
j

m∑

j=1

(fj − f̂j )2

f 2
j

=
√
Op(( log logMn)1/2)Op(Mnn−4/5)

= Op

(
( log log n)−3/4

) = op(( log log n)−1/2)

= op(( log logMn)−1/2).
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Chapter 17
On the Computation of R-Estimators

Kanchan Mukherjee and Yuankun Wang

17.1 Introduction

The idea of estimating location parameter based on rank statistics finds its root in
the seminal work of Hodges and Lehmann (1963). Since then, a major branch of
nonparametric statistics deals with the rank-estimation (R-estimation) of parameters
by minimizing certain dispersions or equivalently, solving a system of equations
based on the ranks of residual observations. In general, these equations are expressed
in terms of linear rank statistics.

Hodges and Lehmann (1963) provided the R-estimator of the center of symmetry
in the one-sample location model as well as that of location in the two-sample model
and showed that they coincide with the corresponding Wilcoxon estimators. These
estimators never have much lower but sometimes infinitely higher efficiencies than
the sample mean or the difference of means in the case of two-sample location.
Subsequently, Huber (1964) proposed the class of M-estimators and Bickel (1965)
and Stigler (1974) discussed L-estimators of location.

The robust methods of estimating the location parameters can be extended nat-
urally to the linear models where we are interested in estimating the unknown
regression parameters based on very general score function. There is a vast litera-
ture on the rank estimation (R-estimation) of parameters in linear regression models.
Major contributions include Adichie (1967), Sen (1969), Jurečková (1971), Koul
(1971), Jaeckel (1972), and Heiler and Willers (1988), among others. R-estimators
are sometimes preferable to their other competitors for their global robustness and
efficiency considerations (classical Chernoff and Savage (1958) phenomenon). For
details, see Hájek, Šidák and Sen (1999, Sect. 10.3) Koul (2002, Sect. 4.4) and
Jurečková and Sen (1996, Sect. 3.4), among others.
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Although R-estimators are useful robust estimators, unfortunately their compu-
tation is a challenging and long-standing problem. To date, working computational
algorithm for these estimators is not well-developed and consequently their practi-
cal applications are restricted. The aim of this note is to propose a simple working
algorithm for the computation of R-estimators for linear regression models and to
discuss its various applications.

For notable previous attempts on the computation of R-estimators, we mention
McKean and Hettmansperger (1978), Terpstra and McKean (2005), and Kloke
and McKean (2012). McKean and Hettmansperger (1978) considered one-step
R-estimates and illustrated its use in computing Wilcoxon R-estimator based on sim-
ulated data. Terpstra and McKean (2005) considered ‘Wilcoxon weights’ to compute
an analogue of the Wilcoxon R-estimator and advocated its use through the R-code
ww. Kloke and McKean (2012) used the R-function optim to compute the rank
estimates with general score functions. In our opinion, Kloke and McKean (2012)
has been one of the most important contributions in the computation that deals with
general score function. Our algorithm of this chapter is in fact simpler than this and
is easy to implement.

The rest of the chapter is organized as follows. We describe the algorithm in
Sect. 17.2. In Sect. 17.3, this is applied to compute R-estimates of parameters when
a simple linear regression model is fitted to a dataset. Similar applications were
discussed in the context of multiple linear regression in Sect. 17.4. The concluding
section describes applications to other area and plans for future research.

17.2 Algorithm

Consider the usual setup of a linear model where one observes {yi ; 1 ≤ i ≤ n} with
regressors {xi ; 1 ≤ i ≤ n} such that

yi = x t
iβ + εi

or, in matrix notation,
y = Xβ + ε,

where y = (yl , . . . , yn) is the observation vector, X is the known n×p design matrix
of rank p with i-th row x t

i , β is the unknown parameter vector and ε = (ε1, . . . , εn)t

is the error vector. Let Rib denote the “b-residual rank” of the i-th observation, that is

Rib =
n∑

j=1

I (yj − x t
jb ≤ yi − x t

ib).

Jurečková (1971) defined the R-estimator of β as a solution of the equation

S(b) = 0 (17.1)
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where

S(b) =
n∑

i=1

(xi − x̄)ϕ

(
Rib

n+ 1

)

with ϕ(u) : (0, 1) → IR is a score function. We assume that ϕ is nondecreasing with
at most finite number of discontinuities but is not necessarily bounded. Let

ϕ̄ = 1

n

n∑

i=1

ϕ(
i

n+ 1
) = 1

n

n∑

i=1

ϕ

(
Rib

n+ 1

)
.

To solve the Eq. (17.1) numerically, we write this as

0 = S(b) =
n∑

i=1

(xi − x̄)

{
ϕ

(
Rib

n+ 1

)
− ϕ̄

}

=
n∑

i=1

xi

{
ϕ

(
Rib

n+ 1

)
− ϕ̄

}
− x̄

n∑

i=1

{
ϕ

(
Rib

n+ 1

)
− ϕ̄

}

=
n∑

i=1

xi

{
ϕ
(
Rib
n+1

)− ϕ̄

yi − xt
i b

}

(yi − xt
i b)

=
n∑

i=1

xiwi(b)(yi − xt
i b)

where

wi(b) = ϕ( Rib
n+1 ) − ϕ̄

yi − xt
i b

, 1 ≤ i ≤ n.

Let W (b) be a diagonal matrix with (i, i)-th entry wi(b). Then

S(b) = XtW (b)(Y −Xb).

Rearranging 0 = S(b), we obtain

b = [XtW (b)X]−1[XtW (b)y].

This yields an iterative procedure

bi+1 = [XtW (bi)X]−1[XtW (bi)y], i ≥ 0 (17.2)

with a starting value b0 = [XtX]−1[Xty], the least squares estimator of β.

Remark The previous algorithm does not assume any specific form of the score
function. It can be mechanically implemented for both bounded and unbounded
score functions. If there is an intercept present in the linear regression model, we
use R-estimates for the slope parameters and use the median of the R-residuals to
estimate the intercept parameter.

We illustrate the use of the previous algorithm in the following sections with some
real datasets.



282 K. Mukherjee and Y. Wang

Table 17.1 Number of
international calls from
Belgium

Year Number Year Number
(xi ) of calls (yi ) (xi ) of calls (yi )

50 0.44 62 1.61
51 0.47 63 2.12
52 0.47 64 11.90
53 0.59 65 12.40
54 0.66 66 14.20
55 0.73 67 15.90
56 0.81 68 18.20
57 0.88 69 21.20
58 1.06 70 4.30
59 1.20 71 2.40
60 1.35 72 2.70
61 1.49 73 2.90

Table 17.2 Simple linear
regression functions for the
number of international calls
from Belgium

Score function Estimated regression function

Least squares ŷ = − 26.01 + 0.504x
Wilcoxon ŷ = − 7.185 + 0.146x
Van der Waerden ŷ = − 6.731 + 0.138x
Sign ŷ = − 6.757 + 0.138x

17.3 Simple Linear Regression

The following data (Belgian telephone data), published by the Belgian Statistical
Survey, consist of the number of international phone calls {yi} made from Belgium
(in tens of millions) over 24 different years {xi}, 1 ≤ i ≤ n = 24 where x1 =
50 corresponds to the year 1950. The dataset contains some heavy contamination
between 1964 and 1969 as a different recording system was used which recorded the
total number of minutes of calls made rather than simply the numbers. The years 1963
and 1970 were partially affected as well since the transition between the recording
systems did not occur on the New Year’s day exactly. This dataset was discussed in
Rousseeuw and Leroy (1987) also for demostrating the robustness of M-estimators
in the linear regression model.

We fitted a simple linear regression model

yi = β0 + β1xi + εi , 1 ≤ i ≤ n = 24,

to this and estimated the parameters using the least squares as well as different R-
estimators based on different score functions ϕ. The estimated regression functions
are given in the following Table 17.2.

As can be seen from Figs. 17.1, 17.2 and 17.3, the three R-estimate fits are not
affected much by the contaminated observations, while the least squares solution is
pulled towards the y values associated with the years 1964–1969. All three regression
functions still mostly run through the uncontaminated data points, and provide similar
good estimates of the number of calls for the contaminated years.
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Fig. 17.1 Plot of the
regression functions of the
international calls based on
the Wilcoxon score and least
squares estimates
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Fig. 17.2 Plot of the
regression functions of the
international calls based on
the van der Waerden score
and least squares estimates
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Our results are comparable to the findings of Rousseeuw and Leroy (1987) who
proposed least median squares estimators of parameters to obtain the regression
function y = −5.610 + 0.115x.

We have also performed simple linear regression analysis of some standard
datasets to demonstrate that R-estimates based on different score functions are
similar to the least squares estimates for relatively clean data containing no outlier.
The results will be reported elsewhere.
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Fig. 17.3 Plot of the
regression functions of the
international calls based on
the sign score and least
squares estimates
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17.4 Multiple Linear Regression

Next we consider examples of multiple linear regression models. The stackloss
dataset has been examined by many methods. The dataset describes the operation of
a plant for the oxidation of ammonia to nitric acid and consist of 21 four dimensional
observations. The dependent variable stackloss is explained by the rate of operation,
the cooling water inlet temperature and the acid concentration.

The least squares regression gives the regression function

y = −39.92 + 0.7156x1 + 1.2953x2 − 0.1521x3

while the Wilcoxon and the van der Waerden R-estimates yield

y = −30.16 + 0.7789x1 + 0.9853x2 − 0.2340x3

and
y = −37.61 + 0.7735x1 + 1.0552x2 − 0.1646x3

respectively. The standardized residual plots for the different fits are shown in
Figs. 17.4 and 17.5. The standardization of the residuals is performed based on
the division of the raw residuals by the scale estimates corresponding to the fit. From
Fig. 17.4 of the standardized least squares residuals, it might appear that the dataset
only contains one outlier, observation 21. However, looking at Fig. 17.5 of the stan-
dardized R-residuals, we can see that observations 1, 3, and 4 are also outliers. This
would not have been picked up if one had only used least squares analysis.

Next we consider an example of the polynomial regression. Table 17.4 shows
cloud data, where the dependent variable is the cloud point of a liquid, a measure of
the degree of crystallization in a stock. The independent variable is the percentage of
I-8 in the base stock. This data was analyzed in Hettmansperger and McKean (2010)
who used Wilcoxon estimates of the cubic polynomial regression.
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Fig. 17.4 Plot of
standardized residuals for the
least squares fit
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Fig. 17.5 Plot of
standardized residuals for the
Wilcoxon R-estimate fit
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We fitted a linear, a quadratic and a cubic fit to this data and the corre-
sponding Wilcoxon estimates are exhibited in Table 17.5. The rank estimates
based on different score functions are quite similar to each other as well as to
the least squares estimate. There is slight difference between the Wilcoxon es-
timates obtained using our algorithm and those reported in Hettmansperger and
McKean (2010) where the corresponding estimates are 22.35, 2.24, −0.23, and
0.01. This is due to the use of different algorithms and some rounding off errors.
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Table 17.3 Stackloss dataset Index Rate Temperature Acid con-
centration

Stackloss

(i) (x1) (x2) (x3) (y)

1 80 27 89 42
2 80 27 88 37
3 75 25 90 37
4 62 24 87 28
5 62 22 87 18
6 62 23 87 18
7 62 24 93 19
8 62 24 93 20
9 58 23 87 15

10 58 18 80 14
11 58 18 89 14
12 58 17 88 13
13 58 18 82 11
14 58 19 93 12
15 50 18 89 8
16 50 18 86 7
17 50 19 72 8
18 50 19 79 8
19 50 20 80 9
20 56 20 82 15
21 70 20 91 15

Table 17.4 Cloud data,
CP=Cloud Point

% I–8 CP % I–8 CP

0 22.1 2 26.1
1 24.5 4 28.5
2 26.0 6 30.3
3 26.8 8 31.5
4 28.2 10 33.1
5 28.9 0 22.8
6 30.0 3 27.3
7 30.4 6 29.8
8 31.4 9 31.8
0 21.9

Table 17.5 Regression
functions based on the least
squares and different
R-estimates for the Cloud
data

Score function Estimated regression function

Least squares ŷ = 22.31 + 2.22x − 0.22x2 + 0.01x3

Wilcoxon ŷ = 22.38 + 2.21x − 0.22x2 + 0.011x3

van der Waerden ŷ = 22.40 + 2.19x − 0.22x2 + 0.01x3

Sign ŷ = 22.1 + 2.46x − 0.29x2 + 0.015x3

Figure 17.6 exhibits different residual plots of the Wilcoxon estimates based on the
linear, quadratic, and cubic fits as well as the normal q-q plot of the cubic fit residuals.
This is a small dataset; nevertheless, the q-q plot suggests a slightly heavier tails than
the normal distribution for errors and hence the use of the robust R-estimators is
justified.
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Fig. 17.6 Plot of standardized residuals for the Wilcoxon R-estimate fits

17.5 Conclusion

Computation of R-estimators has been a long-standing problem in the literature. In
this chapter, we have proposed an iterative algorithm which can be applied routinely
to compute R-estimates based on any score function. This algorithm depends on the
form of a mean function that is linear in parameters. Therefore, the algorithm can be
applied to compute R-estimators of the linear autoregressive models also and we plan
to investigate this further. The algorithm yields convergent sequence of estimates for
many well-known datasets considered in this chapter as well as elsewhere. In fact, we
applied R-estimators to identify some outliers which would not have been detected
using least squares.

Because of its simplicity, the algorithm can be applied to compute R-estimators
from bootstrap samples and we plan to pursue this in future. In fact, it opens up various
other possibilities and avenues to use R-estimators as one of the most competitive
robust class of estimators in various fields of statistics.

Acknowledgement Kanchan Mukherjee would like to thank Prof. Koul for introducing him to the
fascinating area of R-estimation and for his encouragement.
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Chapter 18
Multiple Change-Point Detection in Piecewise
Exponential Hazard Regression Models with
Long-Term Survivors and Right Censoring

Lianfen Qian and Wei Zhang

18.1 Introduction

Hazard rate is an important function in survival analysis. It quantifies the instan-
taneous failure rate of a subject (component in reliability analysis) which has not
failed at a given time point. In some real life applications, abrupt change in the haz-
ard function is observed due to overhaul, major operation, or specific maintenance
activity. This type of change could happen multiple times. In such situations one is
interested to detect the locations where such changes occur and to estimate the sizes
of the changes if detected.

18.1.1 A Single Change-Point Hazard Model

In the last century, the main stream of the change-point detection in hazard function
is for a single change-point piecewise constant hazard model. That is, let T be the
failure time and suppose the hazard rate of T is a constant α1 until a change-point τ ,
at which point the hazard rate makes a jump and stays another constant thereafter.
The problem of interest is to detect the location of the change and to estimate the
size if τ exists. To be more precise, the hazard rate of T is

λT (t) = α1I (0 ≤ t < τ ) + α2I (t ≥ τ ). (18.1)

There are mainly three different approaches for inference and estimation under
the single change-point model (18.1). They are parametric, semi-parametric, and
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Bayesian approaches. More approaches can be found in the review paper on a single
change point in a hazard rate by Anis (2009). The parametric approach is mainly the
likelihood ratio based methods considered by Matthews and Farewell (1982); Nguyen
et al. (1984); Matthews et al. (1985);Yao (1986); Worsley (1988); Henderson (1990)
and Loader (1991).

Matthews and Farewell (1982) first noted the existence of the change-point in the
hazard rate when analyzing the failure times of nonlymphoblastic leukemia patients.
Nguyen et al. (1984) discussed the unboundedness feature of the likelihood func-
tion when the change-point approaches to the maximum observation of the failure
times. Matthews et al. (1985) suggested to normalize the score statistic and showed
that the asymptotic limiting process of the normalized score process is related to
the Ornstein–Uhlenbeck process and the standard Brownian bridge. If T(n−1) is the
second largest observation, Yao (1986) suggested to maximize the log-likelihood
function in the change-point over [0, T(n−1)] and derived the asymptotic properties
of the estimators for both the change-point and the piecewise exponential hazard
rates. Worsley (1988) gave the exact critical values of the maximum likelihood es-
timator over three intervals: i.e. [0, T(n−1)], from pth to (1 − p)th sample quantiles,
and artificially censor the largest observation so that the likelihood function in the
change-point is finite. Pham and Nyugen (1990) extended Yao’s result to a random
compact set. However, it is shown that the result is not better than Yao’s. Henderson
(1990) noticed that the likelihood ratio test is not sufficient and derived exact critical
values for a weighted and standardized likelihood ratio. Loader (1991) derived the
approximate confidence regions and joint confidence regions for the change-point
and the size of change over another interval.

The semi-parametric approach is studied by Chang et al. (1994), Gijbels and
Gürler (2003). This approach is a hybrid martingale based method. The formal
one combines the score function with the martingale approach, while the latter one
combines the least squared principle with the martingale approach. They assume that
the unknown change-point τ belongs to a certain known interval [0,B]. Specifically,
Chang et al. (1994) constructed the following process

X(t) =
[
Λ(B) −Λ(t)

B − t
− Λ(t)

t

]
k(t(B − t)), for 0 < t < B

where k(t) = td , 0 ≤ d ≤ 1 and Λ(t) is the cumulative hazard rate. The estimator of
τ is defined as the smallest maximizer of Xn(t), which is defined as the process when
Λ(t) in X(t) is replaced by its Nelson–Aalen estimator. They obtain the consistency
and the limiting distribution of the estimator of τ using a martingale inequality and
Poisson approximation.

On the other hand, Gijbels and Gürler (2003) considered the following process

Y (t) = Λ(t)

t
.

Once again replacing Λ by its Nelson–Aalen estimator to obtain the empirical hazard
rate process Yn(t). Then the splitting point which gives the best least square fit
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between Yn(t) and Y (t) over a set of pre-chosen grid points is defined as the estimator
of τ .

The last method is Bayesian approach. Achcar and Bolfarine (1998) first ex-
amined the Bayes estimator assuming a discrete random change-point. Achcar and
Loibel (1998) extended the method to noninformative reference priors. No asymp-
totic results are obtained. Ebrahimi et al. (1997) proposed a Bayes estimator avoiding
asymptotics to provide a more reliable inference conditional only upon the data actu-
ally observed. Xu and Qian (2013) discussed the method to accommodate censored
data in the presence of both covariates and long-term survivors.

18.1.2 Multiple Change-Points Hazard Model with Covariates

Assuming the existence of the change-points in a hazard function, Pons (2003) con-
sidered estimation in a Cox regression model with a change-point according to a
threshold in a covariate; Dupuy (2006) studied the estimation in a change-point
right-censored exponential model with covariates. Goodman et al. (2011) proposed
a Wald-type test statistic for multiple change-points in a piecewise linear hazard
model incorporating covariates. They assumed that the changes only affect parame-
ters of the baseline hazard function. Properties of the suggested test and estimators
of the change-points are investigated via simulations, but no theoretical results are
available. Dupuy (2009) studied the likelihood ratio type test for the existence of
a change in both baseline hazard rate and covariate effects in an exponential re-
gression model with right-censoring. Non-asymptotic bounds for the type II error
probability are obtained. Li et al. (2013) extended the work to include long-term
survivors, but all, except Goodman et al. (2011), of above literatures still assumed
single change-point.

In this chapter, we are interested in multiple change-points detection problem.
To be more precise, suppose that the failure times of the subjects under study in
medical applications (or components in reliability analysis) are independent. Let T ∗
be the failure time of a subject with hazard rate λ∗ and Z be the covariate vector. We
consider a piecewise exponential hazard model with multiple change-points both in
the baseline hazard and in the covariates as follows:

λ∗(t |Z) =
q+1∑

i=1

αie
β ′
iZI (τi−1 ≤ t < τi), (18.2)

where q is the number of change-points, 0 < τ1 < τ2 < . . . < τq < ∞ are the
change-points, τ0 = 0 and τq+1 = ∞. For i = 1, . . ., q + 1, denote Ii(t) = I (τi−1 ≤
t < τi) and

ci(t |Z) = β ′
iZ − αi(t − τi−1)eβ

′
iZ −

i−1∑

j=1

aj (τj − τj−1)eβ
′
j Z.
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Then, the corresponding density and survival functions of model (18.2) are:

f ∗(t |Z) =
q+1∑

i=1

αie
ci (t |Z)Ii(t) and S∗(t |Z) =

q+1∑

i=1

exp
{
ci(t |Z) − β ′

iZ
}
Ii(t).

Let τ = (τ1, . . ., τq)′ and θ ′ = (α1, . . .,αq+1,β ′
1, . . .,β ′

q+1). For i = 1, 2, 3, . . ., q+1,
denote bi(Z) = −αi exp (β ′

iZ). Then, for given (q, τ ′), the cumulative hazard
function is

Λ∗(t |Z) ≡ Λ∗(t , θ |Z) =
q+1∑

i=1

⎡

⎣bi(Z)(t − τi−1) +
i−1∑

j=1

bj (Z)(τj − τj−1)

⎤

⎦ Ii(t).

(18.3)

Therefore, Λ∗(t , θ |Z) is a piecewise linear function in t for a given Z.

18.1.3 Hazard with a Change Point in the Presence of Long-Term
Survivors

On the other hand, it has been noticed that survival data often show long-term sur-
vivors. For example, Matthews and Farewell (1982) noticed that the Kaplan–Meier
estimator of the failure time distribution function of leukemia patients levels off sig-
nificantly below one, which indicates the presence of long-term survivors. Taylor
(1995) observed that only some of the patients with tumors in head and neck will
experience local recurrences after radiation therapy. The remaining patients will not
have recurrences because all of the tumor cells would have been killed by the radi-
ation. For survival data in a mixture model with long-term survivors, there are two
types of individuals: susceptibles and long-term survivors. The susceptibles are at
risk of developing the event under consideration, and the event would be observed
with certainty if complete follow-up were possible. The long-term survivors will
never experience the event.

The existence of long-term survivors leads to estimates of both the probability of
being a susceptible and the failure time distribution for susceptibles. Though survival
models with long-term survivors have been studied for decades and many applica-
tions have been reported in Maller and Zhou (1996), these models have not been
considered for possible change-point phenomena. In reality, however, change-point
may well exist in a survival data with long-term survivors. Zhao et al. (2009) studied
parameter estimation for a piecewise constant hazard model with one change-point
in the presence of long-term survivors via the non-parametric Nelson–Aalen esti-
mator. They didn’t detail out the case when covariate effects exist. Li et al. (2013)
derived similar results via maximum likelihood estimation in the presence of both
covariates and long-term survivors for right censored failure time data. However,
all those results are limited to one change-point hazard model. While earlier stud-
ies focus on the single change-point hazard model, the attention has shifted to the
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multiple change-points in recent years. Goodman et al. (2011) studied the multiple
change-points detection problem without considering long-term survivors. Zhang
et al. (2013) proposed a hybrid sequential martingale based maximum likelihood
approach to detect multiple change-points for a piecewise constant hazard model in
the presence of long-term survivors. However, Zhang et al. (2013) did not include
possible covariate effects.

In this chapter, we consider the multiple change-points detection for hazard rates
in the presence of both covariates and long-term survivors for right censored fail-
ure times. The rest of this chapter is structured as follows. Section 18.2 introduces
the piecewise constant hazard regression model with multiple change-points. Sec-
tion 18.3 proposes a multiple change-points detection algorithm and gives estimators
based on the Nelson–Aalen estimator and weighted least squares principle. Sec-
tion 18.4 reports the finite sample performance, sensitivity, and reliability analyses
of the proposed method through a simulation study. We apply the proposed method
to test for change-points in the hazard rates of prostate cancer patients in Sect. 18.5.
We conclude our results in Sect. 18.6.

18.2 Multiple Change-Points Hazard Regression Model with
Long-Term Survivors

In this section, we introduce a piecewise constant hazard model with multiple change-
points. In the presence of long-term survivors and covariates, we notice that the
susceptible proportion may depend on the covariates. Let p(Z) be the probability of
being susceptible subjects and 1−p(Z) is the probability being long-term survivors
for a given covariate Z. Let T and T ∗ be the failure times of each and a susceptible
subject with survival functions S and S∗, respectively. Then, for t < ∞, the survival
function of T is

S(t |Z) = P (T > t |Z) = 1−p(Z)+p(Z)P (T ∗ > t |Z) = 1−p(Z)+p(Z)S∗(t |Z)

with the hazard function

λ(t |Z) = −S ′(t |Z)

S(t |Z)
= −p(Z)(S∗(t |Z))

′

S(t |Z)
= p(Z)f ∗(t |Z)

1 − p(Z) + p(Z)S∗(t |Z)
. (18.4)

In this chapter, we assume that the susceptible hazard rate of T ∗ satisfies Eq. (18.2).
Then the hazard function of T for a given Z is

λ(t |Z) =
q+1∑

i=1

p(Z)αie
ci (t |Z)

1 − p(Z) + p(Z)eci (t |Z)−β
′
i Z

Ii(t)

and the corresponding cumulative hazard function is

Λ(t |Z) = −
q+1∑

i=1

log

⎡

⎣1 − p(Z) + p(Z) exp

⎧
⎨

⎩
−bi(t − τi−1) −

i−1∑

j=1

bj (τj − τj−1)

⎫
⎬

⎭

⎤

⎦ Ii(t).
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Combining with (18.3), one implies the following relationship

Λ∗(t |Z) = − log

{
1

p(Z)

[
−1 + p(Z) + e−Λ(t |Z)

]}
. (18.5)

18.3 Change-Points Detection and Estimation

Let C be a censoring variable. Under non-informative censoring, we observe
(Xi , δi ,Zi), i = 1, . . ., n, where Xi = min(Ti ,Ci), δi = I (Ti ≤ Ci). We pro-
pose a semi-parametric detection algorithm for change-points including the number
of change-points. As in Maller and Zhou (1996), we first define the estimator of the
susceptible proportion p(Z) for each given Z = z as:

p̂z = F̂n(X(n)|Z = z),

where X(n) = max δi=1,i=1,...,nXi is the largest uncensored observation and F̂n(· |Z)
denotes the Kaplan–Meier estimator of F (·|Z) = 1 − S(·|Z) .

18.3.1 A Weighted Average Hazard Process

We construct a weighted average hazard function in time t for a given Z:

Y ∗(t |Z) = Λ∗(t |Z)

t
k(t),

where k(t) = td , 0 ≤ d ≤ 1. For d = 0, Eq. (18.3) implies that

Y ∗(t |Z) =
q+1∑

i=1

[

bi(Z) +
∑i−1

j=1 bj (Z)(τj − τj−1) − bi(Z)τi−1

t

]

Ii(t).

This function has a simple structure: it remains constant up to time τ1 and thereafter
changes as a function of t−1 before τ2, and another function of t−1 after τ2 and so
on. So the estimating procedure now consists of fitting a constant line up to τ1, and
from τ1 to τ2 a function of the second form in above equation and from τ2 on another
function of t−1 of the third form and so on.

Gijbels and Gürler (2003) studied a single change-point estimation using d = 0.
However, when d = 0, a dramatic boundary effect near 0 is present due to the
denominator, hence the fraction Y ∗(t |Z) is unstable. This brings some difficulty in
estimation if we choose the first few grid points relatively small. To overcome this
difficulty, we introduce the weight function k for an appropriate non-zero d > 0 to
adjust the boundary effect. Simulation results show the adjustment is effective.
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18.3.2 Least Squared Approach

Let Λ∗
n(t |Z) be the Nelson-Aalen estimator of Λ∗(t |Z). Denote the empirical version

Y ∗
n (t |Z) of Y ∗(t |Z) by replacing Λ∗(t |Z) with the Nelson-Aalen estimator Λ∗

n(t |Z).
Let GZ be the cumulative distribution function of Z. We assume that all potential
change-points lie in a certain known interval [B1,B2]. We choose grid points {tg}
such that B1 ≤ t1 < t2 < . . . < tg ≤ B2, where g is the number of grid points
greater than the true number of change-points.

For each integer q ∈ {1, 2, . . ., g} and a given subset {i1, i2, . . ., iq} such that
0 = ti0 < t1 ≤ ti1 < ti2 < . . . < tiq ≤ tg , we carry out least square fit by minimizing
the following object function first:

S(θ |i1, i2, . . ., iq)

=
∫
⎧
⎨

⎩

i1∑

j=1

[
Y ∗
n (tj |z) − b1(z)

]2 +
i2∑

i1+1

[
Y ∗
n (tj |z) − b2(z) − {b1(z) − b2(z)} ti1

tj

]2

+ · · · +
ik+1∑

ik+1

[

Y ∗
n (tj |z) − bk+1(z) + bk+1(z)

tik

tj
−

k∑

m=1

bm(z)
tim − tim−1

tj

]2

+ · · · +
g∑

iq+1

[

Y ∗
n (tj |z) − bq+1(z) + bq+1(z)

tiq

tj
−

q∑

m=1

bm(z)
tim − tim−1

tj

]2
⎫
⎬

⎭
dGZ(z).

Now we are ready to describe the proposed change-points detection algorithm. This
algorithm includes four steps:

Step 1. For a given integer q ∈ {1, . . ., g} and indices i1, i2, . . ., iq such that
1 ≤ t1 ≤ ti1 ≤ ti2 ≤ . . . ≤ tiq ≤ g, we define θ̂ (i1, i2, . . ., iq) =
arg min θS(θ |i1, i2, . . ., iq). Substitute θ̂ (i1, i2, . . ., iq) into S(θ |i1, i2, . . ., iq)
to obtain

S̃(i1, . . ., iq) = S(θ̂ (i1, i2, . . ., iq)|i1, . . ., iq).

Step 2. Minimize S̃(i1, . . ., iq) over all possible combinations of q chosen indices
1 ≤ i1 ≤ i2 ≤ · · · ≤ iq ≤ g. Denote

(ĩ1, ĩ2, . . ., ĩq) = argmin(1≤i1≤i2≤...≤iq≤g)S̃(i1, . . ., iq) and Ŝ(q)

= S̃(ĩ1, ĩ2, . . ., ĩq).

Step 3. Define q̃ = argmin1≤q≤gŜ(q).
Use χ2

s+1 = −2
[
Ŝ(q̃) − Ŝ(q̃ − 1)

]
to test H0q : q = q̃ − 1 versus H1q :

q = q̃, where s is the dimension of Z. If the null hypothesis is not rejected,
we continue the hypothesis test for one less change-points until to reach
rejection of null hypothesis. If we can not reject the null hypothesis for
q̃ = 1, we conclude there is no change-point. Otherwise, we choose the
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smallest q̃ ≥ 1 which leads to the rejection as the estimator of the true
number of change-points, denoted by q̂.

Step 4. If there is no change-point, the estimation of parameters are well worked out.
If q̂ ≥ 1, we define our estimators as τ̂ ′ = (tĩ1 , . . ., tĩq̂ ) and θ̂ = θ̂ (ĩ1, . . ., ĩq̂).

18.4 A Simulation Study

In this section, we conduct a simulation study to examine the finite sample perfor-
mance, sensitivity, and reliability analyses for our algorithm. To examine the effect
of the model misspecification, we generate data from three models: model 1 has no
change-point; model 2 has one change-point; and model 3 has two change-points.
The sample sizes range from 50 to 500 with 1000 replications. For each given sample
size n, the covariate sample z = {z1, . . ., zn} is generated from a Bernoulli random
variable with the success probability 0.5. This is of practical meaning since we are
often dealing with treatment effect for comparable studies, so we consider 0 as treat-
ment (group) 1 and 1 as treatment (group) 2. Denote n0 = ∑n

i=1 I (zi = 0) and
n1 = ∑n

i=1 I (zi = 1). The susceptible proportion takes two values: p(0) and p(1).
In our simulation, we consider (p(0),p(1)) = (0.8, 0.8), (0.8, 0.9), (0.9, 0.8) and
(0.9, 0.9). Denote ns = [n0p(0) + n1p(1)], the number of susceptible subjects. For
each model, we use two parameter settings. That is:

For model 1 with no change-point, we set

θ ′ = (α1,β1) = (0.50,−0.40) and (0.80,−0.50);

For model 2 with one change-point, we set τ1 = 1,

θ ′ = (α1,α2,β1,β2) = (0.80, 0.20,−0.15,−0.70) and (0.60, 0.10,−0.40, 0.70).

For model 3 with two change-points, we set τ1 = 1 and τ2 = 2,

θ ′ = (α1,α2,α3,β1,β2,β3) = (0.90, 0.30, 0.10,−0.10,−0.40,−0.70)

and (0.60, 0.10, 0.30, 0.40, 0.70, 0.50).

We generate the failure time samples with right censoring and long-term survivors
using the following algorithm for model 3. For models 1 and 2, set τ1 = τ2 = ∞ for
model 1 and τ2 = ∞ for model 2, respectively.

1. Generate a simple random sample u1, . . .uns from uniform distribution U (0, 1).
2. Denote J1(u|z) = I

(−α1τ1e
β1z ≤ ln u < 0

)
,

J2(u|z) = I
(−α1τ1e

β1z − α2(τ2 − τ1)eβ2z ≤ ln u < −α1τ1e
β1z
)

and
J3(u|z) = I

(
ln u < −α1τ1e

β1z − α2(τ2 − τ1)eβ2z
)
.

Generate the failure time sample t1, . . ., tns by the inverse function of S∗(ti |zi).
That is:
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Fig. 18.1 The Nelson–Aalen
estimator of Λ∗

n(t |z)
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Fig. 18.2 Y ∗
n (t) when d = 0
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ti = −
[

ln ui

α1eβ1zi

]
J (ui |zi) −

[
ln ui + α1τ1e

β1zi

α2eβ2zi
+ τ1

]
J2(ui |zi)

−
[

ln ui + α1τ1e
β1zi + α2(τ2 − τ1)eβ2zi

α3eβ3zi
+ τ2

]
J3(ui |zi).

3. Notice that the long-term survivor proportion is n−ns . So we add n−ns number
of the largest observation of {t1, . . ., tns } as the long-term survivor observations.

4. Generate the censoring sample c1, . . ., cn from uniform distribution from 0 to the
largest failure time.

We illustrate the estimated cumulative hazard for data from two change-points model
with θ

′ = (α1,α2,α3,β1,β2,β3) = (0.90, 0.30, 0.10,−0.10,−0.40,−0.70), p(0) =
0.9,p(1) = 0.9, τ1 = 1, τ2 = 2 and n = 200. Figure 18.1 shows the graph of
Λ∗

n(t |z), while Figs. 18.2 and 18.3 show the plots of Y ∗
n (t |z) when setting d = 0 and

d = 0.5, respectively. Compared with Λ∗
n(t |z), the function Y ∗

n (t |z) magnifies the
changes in shape before and after the change-points. However, under our simulation
setting, there exists some boundary effect when d = 0. To adjust the boundary
effect, we introduce the weight function k(x) = xd . It is observed that by setting
d = 0.5, the boundary effect is adjusted and the changes of shapes are magnified
even more as desired. By using our algorithm, we found q̂ = 2 and numerical results
are given in Table 18.3. From Table 18.3, one observes that, as the sample size
increases, our estimates shrink to the true parameters with small standard error and
almost ignorable miscalssification error for both parameter settings. Tables 18.1–18.3
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Fig. 18.3 Y ∗
n (t) when d = 0.5
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report the simulation results on the sample mean (Mean), the sample standard error
(Se), and the over-fitting error (Oe) for the two parameter settings (Set 1 and Set 2)
for data generated from the models 1–3, respectively. Our algorithm allows model
misspecification.

Table 18.3 shows that our algorithm works well if the susceptible proportion
depends on the covariate. Figures 18.4–18.6 show comparison between the true
λ∗(t |z) and its estimate based on one realization for the parameter settings (Set 1)
for sample size 500. From these three figures, one observes that our estimates of
change-points and other parameters are very accurate.

18.5 Real Data Analysis

We consider data from a retrospective study of 45 women who had surgery for breast
cancer. Tumor cells, surgically removed from each woman, were classified accord-
ing to the results of staining on a marker taken from the Roman snail, the Helix
pomatia agglutinin (HPA). The marker binds to cancer cells associated with metasta-
sis to nearby lymph nodes. Upon microscopic examination, the cancer cells stained
with HPA are classified as positive, corresponding to a tumor with the potential for
metastasis. Otherwise is negative. Eight individuals in the negative stained group,
and eleven in the positive stained group are censored. It is of interest to determine
the relationship of HPA staining and the survival of women with breast cancer. The
survival times for the positive stained group are:

5; 8; 10; 13; 18; 24; 26; 26; 31; 35; 40; 41; 48; 50; 59; 61; 68; 71; 76+; 105+;
107+; 109+; 113; 116+; 118; 143; 154+; 162+; 188+; 212+; 217+; 225+;
where + denotes a right-censored observation. The survival times for the negative
stained group are:

23; 47; 69; 70+; 71+; 100+; 101+; 148; 181; 198+; 208+; 212+; 224+.
First of all, we estimate the susceptible proportion. Here the stain group is the

covariate. Using the KM-estimator, we have p(1) = 0.4609 and p(2) = 0.6906,
where p(1) and p(2) are the susceptible proportions corresponding to the negative
and positive stained group respectively. Figure 18.7 shows the graph of Nelson-
Aalen estimator Λ∗

n(t |Z). From the relation of Λn(t |Z) and Λ∗
n(t |Z), we can graph

the figure of Λn(t |Z), as shown in Fig. 18.8. Figure 18.7 indicates the existence of
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Table 18.1 The summary statistics for data generating from no change-point model

Sample size Parameter Set 1 Mean Se Oe Set 2 Mean Se Oe

50 p 0.90 0.8714 0.0188 0.026 0.80 0.7759 0.0205 0.018
α 0.50 0.5020 0.0785 0.80 0.7954 0.0689
β −0.40 −0.3859 0.1156 −0.50 −0.4952 0.1659

100 p 0.90 0.8899 0.009 0.025 0.80 0.7859 0.0169 0.014
α 0.50 0.4995 0.0568 0.80 0.8025 0.0468
β −0.40 −0.3864 0.1454 −0.50 −0.5145 0.1382

200 p 0.90 0.8944 0.006 0.015 0.80 0.7921 0.0085 0.011
α 0.50 0.4974 0.0374 0.80 0.7986 0.0268
β −0.40 −0.4166 0.1254 −0.50 −0.5086 0.0964

500 p 0.90 0.8971 0.001 0.009 0.80 0.7964 0.0033 0.006
α 0.50 0.4989 0.0259 0.80 0.7994 0.0198
β −0.40 −0.4059 0.0062 −0.50 −0.5065 0.0073

Table 18.2 The summary statistics for data generating from one change-point model

Sample size Parameter Set 1 Mean Se Oe Set 2 Mean Se Oe

50 p 0.80 0.7806 0.0078 0.031 0.90 0.8924 0.0042 0.036
τ 1 0.9930 0.2527 1 1.0235 0.1825
α1 0.80 0.8180 0.1419 0.60 0.5684 0.1008
α2 0.20 0.2093 0.0859 0.10 0.1105 0.0457
β1 −0.15 −0.1259 0.2598 −0.40 −0.3689 0.1986
β2 −0.70 −0.6784 0.1956 0.70 0.7126 0.2564

100 p 0.80 0.7910 0.004 0.026 0.90 0.8936 0.0035 0.018
τ 1 1.0026 0.2026 1 0.9568 0.1865
α1 0.80 0.8203 0.1103 0.60 0.5875 0.0849
α2 0.20 0.2019 0.0387 0.10 0.0986 0.0356
β1 −0.15 −0.1359 0.2105 −0.40 −0.3853 0.1854
β2 −0.70 −0.6825 0.1882 0.70 0.6958 0.1987

200 p 0.80 0.7935 0.002 0.019 0.90 0.8964 0.0028 0.012
τ 1 0.9985 0.1548 1 0.9689 0.1321
α1 0.80 0.8086 0.0569 0.60 0.5964 0.0549
α2 0.20 0.2011 0.0256 0.10 0.1105 0.0259
β1 −0.15 −0.1398 0.1758 −0.40 −0.3868 0.1221
β2 −0.70 −0.6882 0.1569 0.70 0.7052 0.1524

500 p 0.80 0.7973 0.0008 0.009 0.90 0.8995 0.0010 0.005
τ 1 1.0011 0.0956 1 0.9865 0.1102
α1 0.80 0.8009 0.0368 0.60 0.5987 0.0465
α2 0.20 0.2007 0.0095 0.10 0.1028 0.0208
β1 −0.15 −0.1425 0.1185 −0.40 -0.3964 0.0952
β2 −0.70 −0.6912 0.0906 0.70 0.7014 0.0684

more than one change-points and piecewise linear property in Λ∗
n(t |Z). Hence, our

algorithm is suitable to model this data. Using our algorithm, we found q̂ = 2. The
estimation for the rest parameters are:

(τ̂1, τ̂2, α̂1, α̂2, α̂3, β̂1, β̂2, β̂3)

= (71, 105, 0.009, 0.0001, 0.0171, 0.6931, 3.5556, 1.2730).
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Table 18.3 The summary statistics for data generating from two change-points model

Sample size Parameter Set 1 Mean Se Oe Set 2 Mean Se Oe

50 p(0) 0.80 0.7928 0.0065 0.011 0.90 0.8962 0.0031 0.013
p(1) 0.80 0.7928 0.0065 0.80 0.7964 0.0048
τ1 1 0.8864 0.2008 1 0.9548 0.2159
τ2 2 2.1058 0.3548 2 2.0345 0.2015
α1 0.90 0.9478 0.0756 0.60 0.5725 0.0854
α2 0.30 0.3517 0.1622 0.10 0.0825 0.0454
α3 0.10 0.0966 0.0278 0.30 0.3191 0.1025
β1 −0.10 −0.0828 0.0598 0.40 0.3462 0.0846
β2 −0.40 −0.3857 0.2105 0.70 0.7251 0.1964
β3 −0.70 −0.6748 0.2958 0.50 0.4751 0.1326

100 p(0) 0.80 0.7954 0.0058 0.008 0.90 0.8938 0.0036 0.006
p(1) 0.80 0.7954 0.0058 0.80 0.7971 0.0038
τ1 1 0.9124 0.1954 1 0.9452 0.1764
τ2 2 2.0824 0.2759 2 1.9624 0.2185
α1 0.90 0.9328 0.0648 0.60 0.5824 0.0576
α2 0.30 0.3324 0.1198 0.10 0.0862 0.0368
α3 0.10 0.0948 0.0195 0.30 0.2915 0.0675
β1 −0.10 −0.0915 0.0359 0.40 0.3654 0.1124
β2 −0.40 −0.3912 0.1541 0.70 0.7104 0.1346
β3 −0.70 −0.7059 0.1654 0.50 0.4822 0.1124

200 p(0) 0.80 0.7969 0.0043 0.005 0.90 0.8954 0.0038 0.004
p(1) 0.80 0.7969 0.0043 0.80 0.7974 0.0036
τ1 1 0.9459 0.1548 1 0.9457 0.1344
τ2 2 2.0359 0.1258 2 2.0247 0.1547
α1 0.90 0.9254 0.0569 0.60 0.5871 0.0476
α2 0.30 0.3259 0.0954 0.10 0.1085 0.0249
α3 0.10 0.0971 0.0154 0.30 0.2964 0.0568
β1 −0.10 −0.0955 0.0295 0.40 0.3794 0.0956
β2 −0.40 −0.3964 0.1056 0.70 0.7105 0.0906
β3 −0.70 −0.6954 0.1259 0.50 0.4862 0.0854

500 p(0) 0.80 0.7985 0.0028 0.001 0.90 0.8975 0.0027 0.003
p(1) 0.80 0.7985 0.0028 0.80 0.7982 0.0021
τ1 1 0.9851 0.0684 1 0.9907 0.0615
τ2 2 2.0124 0.0589 2 2.0217 0.0708
α1 0.90 0.9117 0.0359 0.60 0.5938 0.0412
α2 0.30 0.2958 0.0548 0.10 0.0957 0.0217
α3 0.10 0.0974 0.0085 0.30 0.2918 0.0386
β1 −0.10 −0.1059 0.0219 0.40 0.3815 0.0518
β2 −0.40 −0.4021 0.0658 0.70 0.7077 0.0734
β3 −0.70 −0.7021 0.0705 0.50 0.4938 0.0615

Figure 18.9 shows our estimated λ∗(t |Z) for both positive and negative stained
groups. One observes that the estimated hazard rate shows similar pattern for both
groups. That is, the hazard rate starts moderate, followed by a stable stage, then high
risk. One also notices that the negative group shows lower hazard rate than positive
stained group all the time, specifically significant during the periods of the beginning
and the end of the study.
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Fig. 18.4 Comparison of
λ∗(t |z) and λ̂∗(t |z) for no
change-point model
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Fig. 18.5 Comparison of
λ∗(t |z) and λ̂∗(t |z) for one
change-point model
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Fig. 18.6 Comparison of
λ∗(t |z) and λ̂∗(t |z) for two
change-points model
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Fig. 18.7 Λ∗
n(t) for breast

cancer data
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Fig. 18.8 Λn(t) for breast
cancer data
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Fig. 18.9 Our estimated
λ∗(t |Z) for positive and
negative stained group
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18.6 Conclusions

In this chapter, we introduce a method for fitting failure times in a mixture model
that allows the existence of both susceptibles and long-term survivors with covari-
ates observed. We propose an algorithm to fit this kind of data through a grid search
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weighted least squared method. The simulation study shows that the misclassification
rate is almost ignorable, especially when sample size is relatively large. It also con-
firms that our algorithm works superiorly on detecting the number of change-points.
Furthermore, the estimation for other model parameters are robust and accuracy
against various model parameter settings, hence the algorithm is effective. The real
data analysis shows the existence of multiple change-points problems with covariate
effects and long-term survivors in real life, thus illustrates the importance of the
research topic.
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Chapter 19
How to Choose the Number of Gradient
Directions for Estimation Problems
from Noisy Diffusion Tensor Data

Lyudmila Sakhanenko

19.1 Introduction

Low angular resolution diffusion tensor imaging (DTI) is en vivo brain imaging
technique. It is based on measurements of water diffusion on a grid of points. Locally
the relative amount of water diffusion along a spatial direction g ∈ R3, ‖g‖ = 1, at
a voxel x, S(x, g), is estimated as follows:

log

(
S(x, g)

S0(x)

)
= −cg∗M(x)g + σ (x, g)ξg , (19.1)

where S0(x) is the amount of water diffusion without gradient application; σ (x, g) >
0; ξg describes noise; the constant c depends only on the proton gyromagnetic ra-
tio, the gradient pulse sequence shape, duration and other timing parameters of the
imaging procedure; see (Basser and Pierpaoli 1998). Here and throughout the paper
all vectors are columns. M(x) is a diffusion tensor, which is a positive definite 3× 3
matrix. In the absence of noise this relationship is known as the Stejskal-Tanner
equation. If measurements of S along at least six directions g are recorded, and an
ellipsoidal spatial distribution of water diffusion is assumed at each voxel x, then
there is sufficient data to estimate the diffusion tensor M(x). Its eigenvector field
corresponding to the largest eigenvalue models the gradient field along neural fibers
when the tensor is anisotropic. Tracing the fibers is then usually done by following
the gradient field in small steps; see (Assemlal et al. 2011) and (Koltchinskii et al.
2007).

DT-MRI data sets along prominent water diffusion directions can provide a ge-
ometric representation of those fibers. The axon fibers are scientifically important
because they provide pathways through which brain regions communicate, and their
integrity is compromised by a variety of diseases as well as invasive neurosurgery.
Tracing fiber pathways through DT-MRI data sets allows neuroscientists to study the
effects of diseases and treatments on inter-regional communication in the brain, and
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it allows neurosurgeons to plan procedures such that these communication pathways
are preserved; see (Assemlal et al. 2011).

Suppose, at a fixed location x, we observe S along N ≥ 6 gradients. Using a
vector representation vecM (x) = (M1,1,M1,2,M1,3,M2,2,M2,3,M3,3)∗(x) ∈ R6 of
the symmetrical tensor M(x) ∈ R3×3 for a fixed x we observe

Z(x) = BvecM (x) +Σ1/2(x)Ξx , (19.2)

where B ∈ RN×6 is a fixed matrix, Z(x),Ξx ∈ RN are vectors, and the N × N -
tensor $(x) is symmetric positive definite. Here the entries of Z are estimated by
(19.1). The rows of the matrix B are obtained from gg∗ for the corresponding vectors
g. We assume EΞxΞ

∗
x = I . Note that this is a linear model with the fixed design.

First, one needs to estimate the tensor M(x) at a fixed location x ∈ G from the
raw Z measurements. There are various ways to do so. The popular approach is to
use the ordinary least squares estimator of M(x) for x in some set G ⊂ R

˜vecM (x) = (B∗B)−1B∗Z(x), (19.3)

provided that (B∗B)−1 exists. Another estimator is the weighted least squares esti-
mator of M(x), x ∈ G, which is studied extensively in the work of (Zhu et al. 2007,
2009). This estimator has an improved statistical efficiency and is defined as follows:

˜vecMw(x) = (B∗Σ−1(x)B)−1B∗Σ−1(x)Z(x). (19.4)

Note that formula (19.3) can be rewritten as

˜vecM (x) = vecM (x) + Γ, Γ = (B∗B)−1B∗Σ1/2(x)Ξx , (19.5)

where � denotes a 6D-vector representation of a random tensor in R3×3.
Note that EΓ = 0 and

E(ΓΓ∗) = (B∗B)−1B∗E[Σ1/2(x)ΞxΞx(Σ1/2(x))∗]B(B∗B)−1

= (B∗B)−1B∗Σ(x)B(B∗B)−1 =: C(x),

where C : R3 → R6×6 is a tensor field.
Quite similarly, define

˜vecMw(x) = vecM (x) + Γw, Γw = (B∗Σ−1(x)B)−1B∗$−1/2(x)Ξx , (19.6)

where Γw denotes a 6D-vector representation of a random tensor in R3×3. Note that
EΓw = 0 and E(ΓwΓ

∗
w) = (B∗Σ−1(x)B)−1 =: Cw(x), where Cw : R3 → R6×6 is a

tensor field. Since the expression for Cw contains the inverse of $ the arguments of
this paper do not apply readily and go beyond the scope of this work.

The uncertainty in tensor components of M propagates to the eigenvectors and
then into trajectories. This uncertainty is often characterized in terms of covariances
of estimators of tensors, eigenvectors and trajectories. These covariances are compli-
cated functionals of C(x); see (Koltchinskii et al. 2007) for example. It is of practical
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interest to select gradient directions, and thus define B, in a somewhat optimal way
in order to make the Lebesgue 2-norm of this matrix C(x) as small as possible for a
fixed x ∈ G. This is the goal of this paper.

We show that m independent repetitions using one set of six directions yield
smaller norms of C(x) than designs where a large set of 6 m directions is used,
assuming that norms of covariances of image components Zi are similar for both
designs. The difference is of the order m−1. On practice m is often 10 or so. This
holds for each location on the grid where a brain image is obtained. When a fiber
track is estimated, a functional of this covariance integrated along the track gives
the covariance of the fiber estimator. This essentially means that the covariances
C(x) are accumulated along the track. So the savings in the covariance of fiber track
estimator are again of the order m−1. It would mean, in particular, that the confidence
ellipsoids are m times wider for a general design of 6 m directions compared to the
confidence ellipsoids for a design based on m independent repetitions of a set of just
six directions.

We need to keep in mind that this conclusion holds for so-called low resolution
case, when the diffusion is adequately described by a 3× 3 tensor. This corresponds
to locations where diffusion is highly anisotropic and there is just one dominant fiber.
However, for locations where several fibers cross or branch the previous model is not
sufficient. There the diffusion can be described by means of a 3 × . . .× 3︸ ︷︷ ︸

r

tensor of

a higher order r > 2. Then in this paper we show that designs with m independent
repetitions using one set of Jr = (r + 1)(r + 2)/2 directions yield smaller norms of
C(x) than designs where a large set of Jrm directions is used, assuming that norms
of covariances of image components Zi are similar for both designs. The difference
is of the order m−1. On practice Jrm is often 60 or more. For r = 4 we have Jr = 15,
so m = 4. This holds for each location on the grid where a brain image is obtained.
When a fiber track is estimated, a functional of this covariance integrated along the
track gives the covariance of the fiber estimator. Again this essentially means that the
covariancesC(x) are accumulated along the track. So the savings in the covariance of
fiber track estimator are of the orderm−1. As in the low resolution case, the confidence
ellipsoids based on a general design of Jrm directions, are m times wider than those
confidence ellipsoids that are based on a design with m independent repetitions of a
set of Jr directions.

The rest of the chapter is split into three sections. We study the low angular
resolution case in Sect. 19.2, and the high angular resolution case in Sect. 19.3.
Section 19.4 contains conclusions.

19.2 Low Angular Resolution Case

Let m ≥ 6 be an integer, and let N = 6 m. Let us present matrices B and Σ as

B = (B1, . . . ,Bm)∗, Bk ∈ R6×6, $ = ($kl)k,l=1,...,m, $kl ∈ R6×6.
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Typically, B1 is constructed from two orthogonal systems of vectors in R3. For
example the oblique double gradient encoding uses directions g1 = 2−1/2(1, 0, 1),
g2 = 2−1/2(1, 0,−1), g3 = 2−1/2(0, 1, 1), g4 = 2−1/2(0,−1, 1), g5 = 2−1/2(1, 1, 0),
g6 = 2−1/2( − 1, 1, 0). The matrix B1 has the k-th row that is proportional to (g2

k,1,
2gk,1gk,2, 2gk,1gk,3, g2

k,2, 2gk,2gk,3, g2
k,3) for k = 1, . . ., 6; see (Basser and Pierpaoli

1998) for details. Hence, the matrixB1 corresponding to this set of gradient directions
is proportional to

B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 −2 0 0 −1
−1 0 2 0 0 −1

0 0 0 −1 2 −1
0 0 0 −1 −2 −1

−1 2 0 −1 0 0
−1 −2 0 −1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Often the other parts Bk , k = 2, . . .,m, are constructed from the same systems by
means of rotations. So more precisely Bk = AkB1 for some finite matrices Ak with
bounded norms for k = 2, . . .,m. Let A1 = I . Then,

B∗B =
m∑

k=1

B∗
k Bk = B∗

1

(

I +
m∑

k=2

A∗
kAk

)

B1,

B∗Σ(x)B =
m∑

i=1

m∑

k=1

B∗
kΣki(x)Bi = B∗

1

(
m∑

i=1

m∑

k=1

A∗
kΣki(x)Ai

)

B1.

We obtain

C(x) = B−1
1

(

I +
m∑

k=2

A∗
kAk

)−1 ( m∑

i=1

m∑

k=1

A∗
kΣki(x)Ai

)(

I +
m∑

k=2

A∗
kAk

)−1

(B∗
1 )−1.

(19.7)

Proposition. Let Σkl = 0 for all but C1m
α of the matrices, where α ∈ [0, 2] and

C1 > 0. Then ‖C(x)‖2 = C2m
α−2 for some finite positive constant C2.

The proof is obvious. Now let us consider several cases.

Case 1. Let Σkl = 0 for all but a fixed number p of the matrices. Then ‖C(x)‖2 =
Cpm

−2, where the constant depends on p only. In this case the log-losses of signal
can be observed without noise in most of the experiments. This is not a realistic
scenario.

Case 2. LetΣkl = 0 for all butm of the matrices. For example, Σkl = 0 for all k �= l.
Then ‖C(x)‖2 = Cm−1. This is a typical scenario when six directions are chosen and
fixed. Then the measurements along these directions are repeated independently m

times. In this caseAk = I , k = 1, 2, . . .,m andS(x) = m−2B−1
1

∑m
k=1 Σkk(x)(B∗

1 )−1.
Then ‖C(x)‖ = m−1‖B−1

1 ‖2maxk=1,...,m‖Σkk(x)‖.
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Case 3. Let Σkl = 0 for all but γm2 of the matrices, where γ ∈ (0, 1]. For example,
Σkl = 0 for all k > l. Then ‖C(x)‖2 is a finite constant. This is a typical scenario
when N = 6 m directions are chosen and no independence is assumed.

Once B is selected and the measurements Z(xi), i = 1, . . ., n, are collected on a
grid xi , i = 1, . . ., n, one can estimate the tensor M , its main eigenvector and the
trajectory along the eigenvector field. Under proper assumptions all these entities
can be estimated by asymptotically normal estimators. Thus, the covariances of
these estimators are an appropriate gauge of the uncertainty in image measurements.
Since these covariances are functionals of C(x), the optimal designs should have
small norms of C(x). Then case 2 is an appealing design.

19.3 High Angular Resolution Case

The model for low angular resolution DTI does not allow branching or crossing of
fibers. To generalize to these scenarios several other models have been suggested. We
consider only nonparametric models in order to be fair in comparison with the model
(19.8). (Özarslan and Mareci 2003) and (Descoteaux et al. 2006) propose to model
the relative amount of water diffusion along a spatial direction g ∈ R3, ‖g‖ = 1, at
a voxel x by a tensor of higher order r > 2:

log

(
S(x, g)

S0(x)

)
= −c

3∑

i1=1

· · ·
3∑

ir=1

Ti1...ir (x)gi1 . . .gir + σ (x, g)ξg ,

σ (x, g) > 0; ξg describes noise; the constant c depends only on the proton gyromag-
netic ratio, the gradient pulse sequence shape, duration and other timing parameters
of the imaging procedure. T (x) with componentsTi1...ir (x) is a diffusion tensor, which
is a supersymmetrical positive definite 3 × . . .× 3︸ ︷︷ ︸

r

tensor. So r is an even number.

Due to symmetry T (x) can be represented by a vector vecT ∈ RJr with the dimension
Jr = (r + 1)(r + 2)/2. We repeat the procedure in the previous section where we
replace 6 by Jr and M by T . So with a slight abuse of notation, let N = Jrm for
some m ≥ 1 and then at a fixed location x we observe

Z(x) = BvecT (x) +Σ1/2(x)Ξx (19.8)

where B ∈ RN×Jr is a fixed matrix, Z(x),Ξx ∈ RN are vectors, the N × N -tensor
Σ(x) is symmetric positive definite. We estimate vecT (x) by ˜vecT (x) :=
(B∗B)−1B∗Z(x). As in the previous section we represent B and Σ as

B = (B1, . . . ,Bm)∗, Bk ∈ RJr×Jr , Σ = (Σkl)k,l=1,...,m, Σkl ∈ RJr×Jr ,

so that the covariance of ˜vecT (x) is written in (19.7). Then, the proposition also holds
for the high angular resolution case. Thus, designs based on independent repetitions
of the same system of gradients would yield smaller norms of covariance C(x), so



310 L. Sakhanenko

the tensor T would be estimated better. Currently, there is no statistical work on
how the uncertainty in Z propagates to pseudo-eigenvectors and to trajectories, but
we conjecture that better estimators of tensor T would yield better estimators for
pseudo-eigenvectors and for trajectories.

19.4 Conclusion

Right now most practitioners agreed that it is better to increase the number of distinct
directions rather than to increase m. Pretty much everybody is using the largest N
possible with m = 1. Contrary to the common practice, in both cases r = 2 and
r > 2 the designs with m independent repetitions of a set of Jr directions lead to
smaller norms of covariance C(x) at all locations x, than those obtained by means
of general designs with Jrm directions. Smaller norms of covariance C(x) translate
into tighter confidence cones for eigenvectors and tighter confidence ellipsoids along
estimated fibers. Thus, we would recommend to use these special designs with m

independent repetitions on practice. From the statistical point of view these designs
yield better estimators for all the objects of interest, including tensor components,
eigenvectors, and fibers.
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Chapter 20
Efficient Estimation in Two-Sided Truncated
Location Models

Weixing Song

20.1 Introduction

The adaptiveness and the asymptotic efficiency are very important concepts in the
theory of statistical estimation. Extensive research has been done when the under-
lying distributions have common support. See Ibragimov and Hasminski (1981);
Akahira and Takeuchi (1981), and Bickel et al. (1998) for detailed discussion on
these topics. Starting from 1970s, the research on the adaptiveness and the asymp-
totic efficiency in nonregular models, in particular, when the underlying distributions
are not commonly supported, began to emerge. Early works on this topic were sum-
marized in Akahira and Takeuchi (2003) and the references therein. For the unknown
parameter θ in a class of uniformly distributed distribution family, Akahira (1982)
successfully constructed an upper bound of the asymptotic distributions of n(θ̂n− θ )
for all asymptotically median unbiased (AMU, which will be defined later) estima-
tors θ̂n of θ using the Neyman–Pearson testing framework. The concept of two-sided
asymptotic efficiency is thus defined based on this bound and some examples were
supplied. Akahira (1982) also noticed that for some examples, the proposed AMU
estimators only attain the bound at one point, or are uniformly “close” to the bound.
It is not clear, however, whether there exist any AMU estimators to be two-sided
asymptotically efficient.

To be specific, let X be a random variable with distribution Pθ , θ ∈ �. The
parameter space � is assumed to be an open set in R. Denote θ̂n an estimator of θ
based on a sampleX1,X2, . . . ,Xn of sizen fromX. Let {cn} be a sequence of positive
numbers tending to infinity as n → ∞. Then θ̂n is called a consistent estimator of
order {cn} if for every ε > 0 and every ϑ ∈ � there exists a sufficiently small number
δ > 0 and a sufficiently large number L satisfying the following inequality

lim sup
n→∞

sup
θ :|θ−ϑ |<δ

Pθ {cn|θ̂n − θ | ≥ L} < ε. (20.1)
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A cumulative distribution functionFθ (·) is called the asymptotic distribution function
of cn(θ̂n − θ ), if for each real number t , Fθ (t) is continuous in θ , and for any ϑ ∈ �

there exists a positive number δ such that for any continuity point t of Fθ (·),
lim sup
n→∞

sup
θ :|θ−ϑ |<δ

∣∣∣Pθ {cn(θ̂n − θ ) ≤ t} − Fθ (t)
∣∣∣ < ε.

Note that some requirements, such as the uniform requirement of supθ :|θ−ϑ |<δ , do
not present in the usual definitions of consistency and asymptotic distribution with
order {cn}. An estimator θ̂n is called to be an AMU if for every ϑ ∈ �, there exists a
positive number δ such that

lim sup
n→∞

sup
θ :|θ−ϑ |<δ

∣
∣
∣
∣Pθ {θ̂n ≤ θ} − 1

2

∣
∣
∣
∣ = 0,

lim sup
n→∞

sup
θ :|θ−ϑ |<δ

∣
∣
∣
∣Pθ {θ̂n ≥ θ} − 1

2

∣
∣
∣
∣ = 0.

For the class of AMU estimators of θ , Akahira (1982) proposed the following left-
hand side and right-hand side asymptotic efficiency.

Definition 1. An AMU estimator θ̂n is called right-hand side (left-hand side) asy-
mptotically efficient if for any AMU estimator θ̃n,

lim inf
n→∞

[
Pθ {cn(θ̂n − θ ) ≤ t} − Pθ {cn(θ̃n − θ ) ≤ t}

]
≥ 0, for all t > 0

( lim inf
n→∞

[
Pθ {cn(θ̃n − θ ) ≤ t} − Pθ {cn(θ̂n − θ ) ≤ t}

]
≥ 0, for all t < 0).

The above definition is intuitively well-defined, but in practice, to use the defi-
nition as a criterion to check an AMU estimator to be left-hand or right-hand side
asymptotically efficient, we have to find a tangible upper bound forPθ {cn(θ̃n−θ ) ≤ t}
when t > 0, Pθ {cn(θ̃n − θ ) ≥ t} when t < 0, for all AMU estimators θ̃n of θ . For
some particular distribution families, such an upper bound is constructed based on
the Neyman–Pearson lemma after properly setting up a simple versus simple hy-
pothesis testing problem about the unknown parameter. The detailed derivation of
the upper bound can be found in (Akahira 1982). In some nonregular cases, Akahira
(1982) also showed that there exist either right-hand side asymptotically efficient
estimator or left-hand side asymptotically efficient estimators. However, in general
there are no AMU estimators to be both right-hand and left-hand side asymptotically
efficient. See Takeuchi (1974) for some examples.

A weaker version than both right-hand and left-hand side asymptotic efficiency
is the following two-sided asymptotic efficiency.

Definition 2. An AMU estimator θ̂n of θ is called two-sided asymptotically efficient
if for any AMU estimator θ̃n and t > 0,

lim inf
n→∞

[
Pθ {cn|θ̂n − θ | ≤ t} − Pθ {cn|θ̃n − θ | ≤ t}

]
≥ 0.
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For a special case in which X, or some transformation of X, is uniformly dis-
tributed over [a(θ ), b(θ )], a(θ ) < b(θ ) and a′(θ ) ≤ b′(θ ) < 0, where a′(θ ) and
b′(θ ) are the derivatives of a(θ ) and b(θ ) with respect to θ , respectively, Akahira
(1982) proposed an upper bound for lim supn→∞ Pθ {n|θ̂n − θ | ≤ t}, based on
the generalized Neyman–Pearson lemma. For a uniform distribution and a sym-
metric truncated normal distribution, Akahira (1982) showed that [X(1) + X(n)]/2
is two-sided asymptotically efficient, while in a truncated exponential distribu-
tion case and an asymmetric truncated normal distribution case, two estimators
are considered, but they are not asymptotically efficient, although for some t val-
ues, lim supn→∞ Pθ {n|θ̂n − θ | ≤ t} attains the upper bound. The existence of
asymptotically efficient estimator in such distribution families has not been answered.

In this paper, we shall focus on a class of truncated location family which subsume
the truncation family discussed in (Akahira 1982). By adopting the Neyman–Pearson
testing framework, the left-hand side, right-hand side, and two-sided efficiency are
discussed. The question of the existence of two-sided efficient estimation will be
completely addressed in the paper, based on the newly defined notion of the asymp-
totically weak inadmissible median unbiased estimator. In fact, it is shown that in
this particular distribution family, whether or not there exist asymptotically efficient
estimators is totally determined by whether or not the density function at both ends
are equal.

The paper is organized as follows. The model of interest and technical assumptions
are laid out in Sect. 20.2, together with an important lemma and two examples.
Section 20.3 includes the main results on one-sided asymptotic efficiency and the
two-sided efficiency is discussed in Sect. 20.4; all the technical proofs are deferred
to Sect. 20.5.

20.2 Models and Assumptions

Let X = {X1,X2, . . . ,Xn} be a sample of sizen from a truncated location distribution

dPθ (x) = f (x − θ )I[θ+a,θ+b](x)dx, (20.2)

where a and b are two known real numbers, and θ is the unknown location parameter
to be estimated. Here we do not have to assume f is known, even at the truncation
points. Hence the model discussed here is essentially a semiparametric model and is
more flexible than the one discussed in Akahira (1982).

The following regularity conditions on model (2) are needed to set up the bounds
for defining the one-sided and two-sided efficiencies.

Assumptions:

(A1). f (x) is twice continuously differentiable on [a, b], and f (x) > 0 on [a, b].
(A2). f (a)f (b) > 0.
(A3). 0 ≤ I = ∫ b

a
[f ′(x)]2/f (x)dx < ∞.
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(A1) guarantees that a Taylor expansion of f (x) up to second order can be imple-
mented and the second order term can be neglected in some integrals when n is
large. Similar to Akahira (1982), we only consider all consistent estimators of θ of
order cn = n, see (20.1) for the definition of consistency. In fact, one can show
that for the truncated distribution family (20.2), n is the largest consistency order
under assumption (A2). In condition (A3), if the integration is positive, then the
central limit theorem can be applied to derive the asymptotic power functions of the
tests for the hypothesis proposed in the following discussion; if the integration is 0,
which implies that f (x) is constant almost everywhere with respect to the Lebesgue
measure on [a, b], that is, the underlying distribution of X is uniform on [a, b]. In
this case, a randomized most powerful test is needed to calculate the power function.
This is also the case discussed by (Weiss and Wolfowitz 1968), and Akahira (1982).

The following lemma will be frequently used in the proof of the main results
stated in the next two sections.

Lemma 1 Suppose the two-sided truncation model (2) satisfies condition (A1), (A2)
and (A3) with strict inequality. Then for any real number t > 0,

n∏

i=1

f (Xi − θ − t/n)

f (Xi − θ )
→ exp (t[f (a) − f (b)]) (20.3)

in probability conditioning on An = ∩n
i=1Ani , where Ani = {a + θ + t/n < Xi <

b + θ} no matter the true parameter is θ or θ + t/n, and

n∏

i=1

f (Xi − θ + t/n)

f (Xi − θ )
→ exp ( − t[f (a) − f (b)]) (20.4)

in probability conditioning onBn = ∩n
i=1Bni, whereBni = {a+θ < Xi < b+θ−t/n}

no matter the true parameter is θ or θ − t/n. Furthermore, for t > 0,

√
n

(
n∑

i=1

log

[
f (Xi − θ − t/n)

f (Xi − θ )
IAni

]
− t[f (a) − f (b)]

)

�⇒ N (0, σ 2(t)),

(20.5)

√
n

(
n∑

i=1

log

[
f (Xi − θ + t/n)

f (Xi − θ )
IBni

]
+ t[f (a) − f (b)]

)

�⇒ N (0, σ 2(t)) (20.6)

conditioning on An and Bn, respectively, where σ 2(t) = t2[I− (f (b)−f (a))2]. Two
examples are given below to illustrate the validity of (20.3) and (20.4) in Lemma 1.

Example 1. Suppose X1,X2, . . . ,Xn are independent and identically distributed
(i.i.d.) from a truncated exponential distribution f (x− θ ) = ce−(x−θ )I (a ≤ x− θ ≤
b), where a < b, and c = (e−a − e−b)−1. Note that f (a) = ce−a , f (b) = ce−b and
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f (a)−f (b) = 1. For t > 0, and conditioning on {a+θ+t/n < X(1) ≤ X(n) < b+θ},
we simply have

n∏

i=1

f (Xi − θ − t/n)

f (Xi − θ )
= et = et[f (a)−f (b)],

no matter the true parameter is θ or θ + t/n, and conditioning on {a + θ < X(1) ≤
X(n) < b + θ − t/n}, we simply have

n∏

i=1

f (Xi − θ + t/n)

f (Xi − θ )
= e−t = e−t[f (a)−f (b)],

no matter the true parameter is θ or θ − t/n.

Example 2. Suppose X1,X2, . . . ,Xn are i.i.d. from a truncated normal distribution
distribution f (x−θ ) = ce−(x−θ )2/2I (a < x−θ < b), where a < b and c = (�(b)−
�(a))−1, � is the CDF of the standard normal variable. Note that f (a) = ce−a2/2,
f (b) = ce−b2/2. For t > 0, and conditioning on {a+θ+t/n < X(1) ≤ X(n) < b+θ},
we can show that, in probability,

n∏

i=1

f (Xi − θ − t/n)

f (Xi − θ )
= exp

(

− t2

2n
+ t

n

n∑

i=1

(Xi − θ )

)

→ et[f (a)−f (b)],

since, by law of large numbers, no matter the true parameter is θ or θ + t/n,
n−1∑n

i=1 (Xi − θ ) → f (a) − f (b) in probability as n → ∞. Similarly one can
obtain (20.4).

20.3 Left-hand and Right-hand Side Asymptotic Efficiency

Let θ̂n be a AMU estimator of θ , and define

B(t) =
{

lim infn→∞ Pθ {n(θ̂n − θ ) ≥ t}, t < 0,
lim infn→∞ Pθ {n(θ̂n − θ ) ≤ t}, t ≥ 0.

It is easy to see that the larger the value of B(t), the smaller the deviation of the AMU
estimator θ̂n from θ . To find an upper bound for B(t). we consider the most powerful
test for the following hypothesis,

H0 : θ = θ0 + t

n
, v.s. H1 : θ = θ0.

Let φn(X) be the most powerful test determined by the Neyman–Pearson lemma with
asymptotic significance level 1/2, and denote β(t) the asymptotic power function
of φn. Then the optimality of most powerful test implies that B(t) ≤ β(t) for any
θ ∈ � and t ∈ R. Thus, an AMU estimator θ̂n is left-hand side or right-hand side
asymptotically efficient if and only if B(t) = β(t) for all t .

The following theorem provides an explicit form for β(t).
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Theorem 1. Suppose the two-sided truncation model (2) satisfies condition (A1),
(A2) and (A3). Then

β(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, t < − log 2
f (a) ,

1 − ef (b)t + 1
2e

[f (b)−f (a)]t , − log 2
f (a) ≤ t ≤ 0,

1 − e−f (a)t + 1
2e

[f (b)−f (a)]t , 0 ≤ t ≤ log 2
f (b) ,

1, t >
log 2
f (b) .

(20.7)

The condition in Theorem 1 is similar to the one used in Weiss and Wolfowitz (1968).
They also provide a sufficient condition on f to ensure the validity of (20.3). It is
not difficult to modify their sufficient condition to fit the current setup.

In fact, the above result is also true when f (a) = 0, f (b) > 0, or f (a) > 0,
f (b) = 0, see the proof of Theorem 1. In these cases, one can easily construct
left-hand side or right-hand side asymptotically efficient estimators. However, there
is no AMU estimator to be both left-hand side and right-hand side asymptotically
efficient. Also see Takeuchi (1974) for some interesting examples. In particular, for
our current setup, we can show that

Corollary 1. If f (a) = f (b) in model (2), then β(t) = 1.5 − ef (a)|t | for |t | ≤
log2/f (a), and 1 otherwise. Furthermore, we claim that θ̂1/2 = (X(1)+X(n)−a−b)/2
is not left-hand side or right-hand side asymptotically efficient.

20.4 Two-Sided Asymptotic Efficiency

In this section we shall discuss the two-sided asymptotic efficiency of AMU estima-
tors in model (2). Denote θ0 the true value of θ , and for each t > 0, θ1 = θ0 + t/n,
θ2 = θ0 − t/n. Then in the neighborhood of θ0, by a similar argument as in Akahira
(1982), we can show that an upper bound for lim supn→∞ Pθ {n|θ̂n−θ0| < t} is given
by β(t) = lim supn→∞ (Eθ2φn(X) − Eθ1φn(X)), and φn(X) is defined as

φn(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,
n∏

i=1

f (Xi − θ2)IAi
−

n∏

i=1

f (Xi − θ1)IBi
> λn

n∏

i=1

f (Xi − θ0)ICi
,

r ,
n∏

i=1

f (Xi − θ2)IAi
−

n∏

i=1

f (Xi − θ1)IBi
= λn

n∏

i=1

f (Xi − θ0)ICi
,

0,
n∏

i=1

f (Xi − θ2)IAi
−

n∏

i=1

f (Xi − θ1)IBi
< λn

n∏

i=1

f (Xi − θ0)ICi
,

(20.8)

where λn satisfies

lim
n→∞Eθ0φn(X) = 1

2
(20.9)
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and Ai = {Xi : a ≤ Xi − θ2 ≤ b}, Bi = {Xi : a ≤ Xi − θ1 ≤ b}, Ci = {Xi : a ≤
Xi−θ0 ≤ b}, i = 1, 2, . . . , n. For the sake of completeness, we restate the definition
of the two-sided asymptotically efficiency below.

Definition 3. An estimator θ̂n is said to be a two-sided asymptotic efficient estimator
of θ in the distribution (20.2) if it satisfies

(1). θ̂n is an AMU estimator of θ with order n,
(2). lim supn→∞ Pθ {n|θ̂n − θ | < t} = β(t) for all t > 0 and all θ ∈ �.

For the sake of brevity, denote f1 = min{f(a), f(b)}, f2 = max{f(a), f(b)}, f − =
f (a) − f (b) and f + = f (a) + f (b). The upper bound β(t) is provided in the
following theorem.

Theorem 2. For the distribution family (20.1), when (A1), (A2) and (A3) hold, we
have

β(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − e−tf2 + 1
2e

−tf−
, if e−tf1 − e−tf+ ≥ 1

2 ,
1 − e−2tf2 , if e−tf1 − e−tf+ ≤ 1

2 , t ≥ log 2
f2

,

1 − e−tf2 + (1 − 2e−tf2 ) sinh (tf −), if e−tf1 − e−tf+ ≤ 1
2 ,

e−tf2 − e−tf+ ≤ 1
2 , t < log 2

f2
,

1 − e−tf1 + 1
2e

tf−
, if e−tf1 − e−tf+ ≤ 1

2 ,
e−tf2 − e−tf+

> 1
2 , t < log 2

f2
.

where sinh (x) = (ex − e−x)/2 is the hyperbolic sine function.
In particular, if f (a) = f (b) > 0, we have

Corollary 2. In addition to the conditions in Theorem 2, we further assume that
f (a) = f (b) > 0 in the distribution family (20.1). Then β(t) = 1 − e−2tf (a).

Now, define

θ̂∗n = 1

2
[X(1) +X(n) − a − b].

By the asymptotic independence of X(1) and X(n), one can show that, for any
t > 0,

lim
n→∞Pθ {n|θ̂∗n − θ0| < t} = 1 − e−2 f (a)t + f (a)

f (a) + f (b)
[e−2 f (a)t − e−2 f (b)t ].

In the case of f (a) = f (b) > 0, we can see that, for any t > 0,

lim
n→∞Pθ {n|θ̂∗n − θ0| < t} = 1 − e−2 f (a)t

which is equal to β(t) given in Corollary 2. That is, θ̂∗n is two-sided asymptotically
efficient when f (a) = f (b). However, one can check that θ̂∗n is not two-sided
asymptotically efficient in the case of f (a) �= f (b). In fact, we will show that no
AMU estimator attains the upper bound β(t), that is, no AMU estimator is two-sided
asymptotically efficient in the sense of Definition 3. To prove our claim, the following
definition is needed and the definition itself may not be just limited to the location
model (2).
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Definition 4. Let X1,X2, . . . ,Xn be a sample from the distribution family f (x, θ ),
and denote A as the set of all the AMU estimators of θ . An estimator θ̂n ∈ A is called
to be an asymptotically weak inadmissible median unbiased estimator, if there exists
an estimator θ̃n ∈ A − {θ̂n} such that

lim inf
n→∞ Pθ {cn|θ̃n − θ | < t} ≥ lim sup

n→∞
Pθ {cn|θ̂n − θ | < t}

holds for all θ ∈ �, and t > 0; moreover, for every θ ∈ �, there exists a set Aθ with
positive Lebesgue measure, the strict inequality holds for all θ ∈ � and t ∈ Aθ .

Without loss of generality, we shall assume that f (a) > f (b). The main result
we obtained is the following theorem.

Theorem 3. Let X = {X1,X2, . . . ,Xn} be a sample from the distribution family
(20.2),then the solution Tn(X) of the following equation

∫ Tn(X)
X(n)−b

∏n
i=1 f (Xi − θ )dθ

∫ X(1)−a

X(n)−b

∏n
i=1 f (Xi − θ )dθ

= 1

2
(20.10)

is an asymptotically weak admissible median unbiased estimator of θ , and Tn(X) is
equivalent to the solution T ∗

n (X) of the following equation

enkT
∗
n (X) = 1

2

[
enk(X(n)−b) + enk(X(1)−a)

]
(20.11)

in the sense that Tn(X) and T ∗
n (X) have the same asymptotic distribution, where

k = f (a) − f (b) > 0. Moreover, we claim that there is no AMU estimator in A
which is two sided asymptotically efficient.

As an example, we consider the following two-sided truncated exponential
distribution family

f (x) =
{

ce−(x−θ ), θ ≤ x ≤ θ + 1,
0, otherwise,

where c = (1 − e−1)−1. Then the solution Tn(X) defined in (20.10) has the form

Tn(X) = 1

n
log

1

2

[
enX(1) + en(X(n))−1

]
.

We can show that, as n → ∞, Pθ {|Tn(X) − θ | < t} converges to

W (t) =
{

1 − 1
2et (2e

t − 1)−ce−1 − 1
2e−t (2e−t − 1)c, 0 ≤ t ≤ log 2,

1 − 1
2et (2e

t − 1)−ce−1
, t > log 2.

Akahira (1982) showed that among all AMU estimators having the form of θ̂p =
pX(1) + (1−p)(X(n) −1), the one with p = e/(1+ e) is the best in the sense that the
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Fig. 20.1 x-Axis represents the t-values; y-axis represents the values of β(t) (solid line), W (t)
(dashed line) and L(t) (dotted line)

larger the probability Pθ {n|θ̂p − θ | < t}, the better the estimator, and for all t ≥ 0,

L(t) = lim
n→∞Pθ {n|θ̂e/(1+e) − θ | < t} = 1 − e−c(1+e−1)t .

The upper bound β(t) in this two-sided truncated exponential distribution family is
given by

β(t) =
{

1 − e−2ct − (1 − 2e−ct ) sinh (t), 0 ≤ t ≤ log 2/c,
1 − e−2ct , t > log 2/c.

For ease of comparison, the plots of the function β(t), W (t) and L(t) for t ∈ [0, 3]
are drawn in the left panel of Fig. 20.1. As expected, β(t), denoted by the solid line,
is uniformly higher than the other two curves. The curves of W (t), denoted by the
dashed line, and L(T ), denoted by the dotted line, show that no one is uniformly
higher than the other. This is clearer from the right panel of Fig. 20.1, which magnifies
the upper-right corner of the plot in the left panel. It is also evident that W (t) is closer
to the upper bound β(t) than L(t).

The estimator T ∗
n (X) defined in (20.11) only depends on the values of the density

function f at both ends, and does not rely on the true form of f on (a, b), so it is
an adaptive estimator. If both f (a) and f (b) are unknown, then we can estimate
them by kernel technique. In fact, let K be a symmetric kernel density function,
K(a, b) = ∫ b−a

0 K(x)dx, and define

f̂n(a) = 1

nhK(a, b)

n∑

i=1

K

(
Xi −X(1)

h

)
, f̂n(b) = 1

nhK(a, b)

n∑

i=1

K

(
X(n) −Xi

h

)
.

Then one can show that f̂n(a) and f̂n(b) are consistent estimators of f (a) and f (b),
respectively. Replace f (a) and f (b) in (20.11), one can get a two-sided adaptive
admissible estimator of θ .
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20.5 Proofs

Let’s prove Lemma 1 first.

Proof of Lemma 1: Let us show (20.5) first. For convenience, let Zni =
log f (Xi−θ−t/n)

f (Xi−θ ) IAni
. Then for each n,

∑n
i=1 Zni is a sum of i.i.d. random variables no

matter the true parameter is θ or θ + t/n, conditioning on a + θ + t/n ≤ X(1) ≤
X(n) ≤ b+θ and a+θ ≤ X(1) ≤ X(n) ≤ b+θ−t/n. Let’s assume the true parameter
is θ . Then conditioning a + θ + t/n ≤ X(1) ≤ X(n) ≤ b + θ , Xi , i = 1, 2, . . . , n
are i.i.d. and have density function cf (x − θ )I (a + θ + t/n ≤ x ≤ b + θ ), where
c−1 = P (a+ θ + t/n ≤ X ≤ b+ θ ) = 1+O(1/n). In the following discussion, all
expectations are calculated under this conditional distribution. For k = 1, 2, 3, we
have

EZk
ni = c

∫ b+θ

a+θ+ t
n

[
log

f (x − θ − t/n)

f (x − θ )

]k
f (x − θ )dx

= c

∫ b

a+ t
n

[
log

f (x − t/n)

f (x)

]k
f (x)dx

= c

∫ b

a+ t
n

[
log f (x) − t

n

f ′(x)

f (x)
+O

(
1

n2

)
− log f (x)

]k
f (x)dx

=
(

1 +O

(
1

n

))
·
[∫ b

a+ t
n

[
− t

n

f ′(x)

f (x)

]k
f (x)dx +O

(
1

n2k

)]

= ( − t)k

nk

∫ b

a

[
f ′(x)

f (x)

]k
f (x)dx +O

(
1

nk+1

)
.

In particular,

EZn1 = t[f (a) − f (b)]

n
+O

(
1

n2

)
, EZ2

n1 = t2I

n2
+O

(
1

n3

)
, EZ3

ni = O

(
1

n3

)
.

Therefore,
∑n

i=1 E[Zni − EZni]3

(√
Var(

∑n
i=1 Zni)

)3 = nE[Zn1 − EZn1]3

(√
nVar(Zni)

)3 = n ·O(n−3)

[n ·O(n−2)]3/2
= o(1).

By Lyapunov central limit theorem, we have
∑n

i=1 Zni − nEZn1√
Var(

∑n
i=1 Zni)

�⇒ N (0, 1)

in distribution. Further note that

nEZn1 − t[f (a) − f (b)]
√

Var(
∑n

i=1 Zni)
= O(n−1)

O(n−1/2)
= o(1),

Var(
∑n

i=1 Zni)

n−1σ 2(t)
→ 1,
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we obtain that

√
n

[
n∑

i=1

Zni − t[f (a) − f (b)]

]

�⇒ N (0, σ 2(t)).

So, (20.5) is proved, and hence (20.3). If the true parameter is θ + t/n, then still
c = 1 +O(1/n). So for k = 1, 2, 3,

EZk
ni = c

∫ b

a+ t
n

[
log

f (x − t/n)

f (x)

]k
f (x − t/n)dx

= c

∫ b

a+ t
n

[
log f (x) − t

n

f ′(x)

f (x)
+O

(
1

n2

)
− log f (x)

]k [
f (x) +O

(
1

n

)]
dx

=
∫ b

a+ t
n

[
− t

n

f ′(x)

f (x)

]k
f (x)dx +O

(
1

nk+1

)

= ( − t)k

nk

∫ b

a

[
f ′(x)

f (x)

]k
f (x)dx +O

(
1

nk+1

)
.

Therefore, the proofs of (20.5) and (20.3) are the same as the one when θ is the true
parameter. Similarly, one can show (20.6) and (20.4). The details are omitted for the
sake of brevity. �

Proof of Theorem 1: First assume that t > 0. For a sample X1,X2, . . . ,Xn from
model (2), denote Cn = {

Xi , i = 1, 2, . . . , n : X(1) < θ0 + t/n+ a
}

and An as in
Lemma 20.1. By Neyman–Pearson lemma, the uniformly most powerful (UMP) test
of the hypothesis H0 : θn = θ0 + t/n versus H1 : θ0 has the following form

ϕn(X) =
⎧
⎨

⎩

1, ifX ∈ Cn

⋃[
An

⋂{∏n
i=1 f (Xi − θ0) > kn

∏n
i=1 f (Xi − θn)

}]

rn, An

⋂{∏n
i=1 f (Xi − θ0) = kn

∏n
i=1 f (Xi − θn)

}

0, otherwise

where kn is chosen so that

lim
n→∞Eθnϕn(X) = 1

2
. (20.12)

Based on the asymptotic result (20.4) in Lemma 1, a proper kn can be chosen so that
rn = 0, that is, a nonrandomized test can be constructed. Also limn→∞ Eθnϕn(X)
equals

lim
n→∞

[

Pθn (Cn) + Pθn (An)Pθn

(
n∏

i=1

f (Xi − θ0) > kn

n∏

i=1

f (Xi − θn)
∣∣An

)]

= 1

2
.

Since Pθn (Cn) = 0, limn→∞ P (An) = e−f (b)t , so, we can choose kn so that

Pθn

(
n∏

i=1

f (Xi − θ0) > kn

n∏

i=1

f (Xi − θn)
∣∣An

)

→ 1

2
ef (b)t , (20.13)
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if 0 ≤ t ≤ ( log 2)/f (b). Also note that

lim
n→∞Pθ0 (Cn) = 1 − e−f (a)t , lim

n→∞Pθ0 (An) = e−f (a)t ,

and by Lemma 20.1, (20.13) also holds when the true parameter is θ0. Therefore,

lim
n→∞Eθ0ϕn(X) = 1 − e−f (a)t + 1

2
e[f (b)−f (a)]t . (20.14)

If t > log 2/f (b), a most powerful test can be defined as

ϕn(X) =
{

1, ifX ∈ Bn

⋃{
θ0 + t/n+ a ≤ X(1) ≤ X(n) ≤ θ0 + u/n+ b

}

0, otherwise,

where 0 < u < t . Note that

Eθnϕn(X) = Pθn

{
θ0 + t/n+ a ≤ X(1) ≤ X(n) ≤ θ0 + u/n+ b

}

=
[∫ θ0+u/n+b

θ0+t/n+a

f (x − θ0 − t/n)dx

]n
=
[

1 −
∫ b

(u−t)/n+b

f (x)dx

]n
.

So limn→∞ Eθnϕn(X) = e−f (b)(t−u). Choose u = t − log 2/f (b), then ϕn(X) has the
desired asymptotic level 1/2. Accordingly, with such a u, the asymptotic power of
ϕn(X) at θ0 is given by

lim
n→∞Eθ0ϕn(X) = 1. (20.15)

For t < 0, the MPT for testingH0 : θn = θ0+t/n versusH1 : θ0 has the following
form

ϕn(X) =
⎧
⎨

⎩

1, ifX ∈ Dn

⋃[
Bn

⋂{∏n
i=1 f (Xi − θ0) > kn

∏n
i=1 f (Xi − θn)

}]

rn, Bn

⋂{∏n
i=1 f (Xi − θ0) = kn

∏n
i=1 f (Xi − θn)

}

0, otherwise,

where Dn={Xi : i=1, 2, . . . , n : X(n) > θ0 + t/n + b}, and Bn={Xi : i=1, 2,
. . . , n : θ0 + a ≤ X(1) ≤ X(n) ≤ θ0 + t/n+ b}. A similar argument as before shows
that, under the constraint (20.12), for − log 2/f (a) ≤ t ≤ 0, the power function
satisfies

lim
n→∞Eθ0ϕn(X) = 1 − ef (b)t + 1

2
e[f (b)−f (a)]t . (20.16)

If t < − log 2/f (a), we can choose u = t + log 2/f (a) and the following test

ϕn(X) =
{

1, ifX ∈ Dn

⋃{
θ0 + u/n+ a ≤ X(1) ≤ X(n) ≤ θ0 + t/n+ b

}

0, otherwise,

is most powerful with the asymptotic level 1/2 and the asymptotic power 1. This,
together with the results (20.14), (20.16), and (20.15), completes the proof of
Theorem 1. �
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Proof of Corollary 1: The form of β(t) is an immediate consequence of Theorem
1 with f (a) = f (b) in (20.7). When f (a) = f (b), we can also show that

lim
n→∞Pθ {n(θ̂1/2 − θ ) ≤ t} =

{ 1
2e

2 f (a)t , t < 0,
1 − 1

2e
−2 f (a)t , t ≥ 0.

It is easy to see that θ̂1/2 is an AMU estimator, and for 0 < t < log 2/f (a),

lim
n→∞Pθ {n(θ̂1/2 − θ ) ≤ t} = 1 − 1

2
e−2 f (a)t < 1.5 − e−f (a)t ,

and for t ≥ log 2/f (a), limn→∞ Pθ {n(θ̂1/2 − θ ) ≤ t} = 1 − 1
2e

−2 f (a)t < 1. For
− log 2/f (a) < t < 0,

lim
n→∞Pθ {n(θ̂1/2 − θ ) ≥ t} = 1 − 1

2
e2 f (a)t < 1.5 − ef (a)t ,

and for t < − log 2/f (a), limn→∞ Pθ {n(θ̂1/2 − θ ) ≥ t} = 1 − 1
2e

2 f (a)t < 1.

That is, for all t > 0, limn→∞ Pθ {n(θ̂1/2 − θ ) ≤ t} < β(t), and for all t < 0,
limn→∞ Pθ {n(θ̂1/2 − θ ) ≥ t} < β(t). One can see that the equality holds only at
t = 0. This concludes the proof of Corollary 1. �

Proof of Theorem 2: Without loss of generality, we only prove the result for f (a) >
f (b) > 0.

The proof will be divided into three parts based on λn < 0, λn = 0 and λn > 0 in
(20.8). Since the proofs are similar, only the proof for λn > 0 is present here for the
sake of brevity. Denote

An = {X(1) < θ0+a,X(n) < θ2+b}, Bn = {θ0+a < X(1) < θ1+a,X(n) < θ0+b},
Cn = {X(1) > θ1+a, θ2+b < X(n) < θ0+b}, Dn = {θ1+a < X(1) ≤ X(n) < θ2+b},
and En = {θ1 + a < X(1) ≤ X(n) < θ0 + b}. Then, φ∗

n = 1 if and only if
X1,X2, . . . ,Xn belongs to

An

⋃
Bn

⋃[
Dn

⋂{∏n
i=1 f (Xi − θ2)

∏n
i=1 f (Xi − θ0)

−
∏n

i=1 f (Xi − θ1)
∏n

i=1 f (Xi − θ0)
> λn

}]

⋃
[
Cn

⋂{∏n
i=1 f (Xi − θ1)

∏n
i=1 f (Xi − θ0)

< −λn

}]
.

Similarly to the proof of Lemma 1, we can show that under θ0, θ1, and θ2, in
probability,

∏n
i=1 f (Xi − θ2)

∏n
i=1 f (Xi − θ0)

I [θ1 + a < Xi < θ2 + b] → e−tf−
,

∏n
i=1 f (Xi − θ1)

∏n
i=1 f (Xi − θ0)

I [θ1 + a < Xi < θ2 + b] → etf
−
.

as n → ∞. This is also true after replacing I [θ1 +a < Xi < θ2 +b] with I [θ1 +a <

Xi < θ0 + b]. After certain normalization, asymptotical normalities can also be
achieved as in Lemma 1.
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If t < log 2/f (a) and e−f (a)t − e−tf+
> 1/2, we can choose λn such that

limn→∞ λn = −e−tf−
and

lim
n→∞Pθ0

{∏n
i=1 f (Xi − θ1)

∏n
i=1 f (Xi − θ0)

≤ −λn

∣∣Cn

}
= 1 − ef (a)t /2 − e−f (b)t

1 − e−f (b)t
.

Since etf
− − e−tf−

< etf
−

, with such a choice of λn, we will have

lim
n→∞Pθ0

{∏n
i=1 f (Xi − θ2)

∏n
i=1 f (Xi − θ0)

−
∏n

i=1 f (Xi − θ1)
∏n

i=1 f (Xi − θ0)
> λn

∣
∣Dn

}
= 1.

Therefore,

lim
n→∞Eθ0φ

∗
n(X) = 1 − e−f (a)t

+e−tf+ · lim
n→∞Pθ0

{∏n
i=1 f (Xi − θ2)

∏n
i=1 f (Xi − θ0)

−
∏n

i=1 f (Xi − θ1)
∏n

i=1 f (Xi − θ0)
> λn

∣
∣Dn

}

+
[
e−f (a)t − e−tf+] · lim

n→∞Pθ0

{∏n
i=1 f (Xi − θ1)

∏n
i=1 f (Xi − θ0)

≤ −λn

∣∣Cn

}

= 1

2
.

It is also easy to check that

lim
n→∞ (Eθ2φ

∗
n(X) − Eθ1φ

∗
n(X)) = 1 − e−f (a)t + e−f (a)t − e−2 f (a)t

+ (e−2(a)t − e−2 f (b)t ) · lim
n→∞Pθ1

{∏n
i=1 f (Xi − θ2)

∏n
i=1 f (Xi − θ0)

−
∏n

i=1 f (Xi − θ1)
∏n

i=1 f (Xi − θ0)
> λn

∣∣Dn

}

− (e−f (b)t − e−2 f (b)t ) · lim
n→∞Pθ1

{∏n
i=1 f (Xi − θ1)

∏n
i=1 f (Xi − θ0)

≤ −λn

∣∣Cn

}

= 1 − e−f (b)t + 1

2
etf

−
. (20.17)

If t < log 2/f (a) and e−f (a)t − e−tf+ ≤ 1/2, we can choose λn such that
limn→∞ λn = etf

− − e−tf−
and

lim
n→∞Pθ0

{∏n
i=1 f (Xi − θ2)

∏n
i=1 f (Xi − θ0)

−
∏n

i=1 f (Xi − θ1)
∏n

i=1 f (Xi − θ0)
> λn

∣∣Dn

}
= ef (b)t − 1

2
etf

+
.

Since etf
− − e−tf−

< etf
−

, with such a choice of λn, we will have

lim
n→∞Pθ0

{∏n
i=1 f (Xi − θ1)

∏n
i=1 f (Xi − θ0)

≤ −λn

∣
∣Cn

}
= 0.

Therefore, we still have limn→∞ Eθ0φ
∗
n(X) = 1/2, but

lim
n→∞ (Eθ2φ

∗
n(X) − Eθ1φ

∗
n(X)) = 1 − e−2 f (a)t + (1 − 2e−f (a)t ) sinh [tf −]. (20.18)
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The similar argument can be extended to the cases of λn = 0 and λn > 0 by
looking for a proper critical function φ∗

n . For the sake of brevity, the proofs are left
out. �

Remark: If the asymptotic distribution of the likelihood ratios, after normalization,
are degenerated, then for t < log 2/f (a) and e−f (a)t − e−tf+

> 1/2, we can choose
φ∗
n(X) = 1−I [Fn∪Gn], where Fn = {X(1) > θ0+a+u/n, θ2+b < X(n) < θ0+b},

Gn = {X(1) > θ0 + a, θ0 + b < X(n) < θ1 + b}, and 0 < u < t such that Eθ0φ
∗
n →

1/2. Then we also have (20.17). If t < log 2/f (a) and e−f (a)t − e−tf+ ≤ 1/2,
then we can choose φn(X) to be the indicator function of the union of three sets:
{X(1) < θ0 + a,X(n) < θ2 + b}, Gn = {θ0 + a < X(1) < θ1 + a,X(n) < θ0 + b} and
{θ1 + a < X(1) < θ0 + u/n+ a,X(n) < θ2 + b}, where u is chosen so that u ≥ t and
Eθ0φ

∗
n → 1/2. With such choices of φ∗

n and u, we can obtain (20.18).

Proof of Theorem 3: By Fox and Rubin (1964), the roof Tn(X) of Eq. (20.10) is an
AMU and an admissible estimator of θ under the absolute deviation loss L(θ , t) =
|t − θ |. Suppose there is another AMU estimator θ̂n of θ such that

lim inf
n→∞ Pθ {n|θ̂n − θ | < t} ≥ lim sup

n→∞
Pθ {n|T (X(1),X(n)) − θ | < t}

or equivalently,

lim sup
n→∞

Pθ {n|θ̂n − θ | > t} ≤ lim inf
n→∞ Pθ {n|T (X(1),X(n)) − θ | > t}

holds for all θ ∈ � and t > 0. Moreover, for each θ ∈ �, there exists a set Aθ

with positive Lebesgue measure such that the strict inequality holds for all t ∈ Aθ .
Therefore,

lim sup
n→∞

Eθ [n|θ̂n − θ |] = lim sup
n→∞

∫ ∞

0
Pθ {n|θ̂n − θ | > t}dt

≤
∫ ∞

0
lim sup
n→∞

Pθ {n|θ̂n − θ | > t}dt <
∫ ∞

0
lim inf
n→∞ Pθ {n|Tn(X) − θ | > t}dt

≤ lim inf
n→∞

∫ ∞

0
Pθ {n|Tn(X) − θ | > t}dt = lim inf

n→∞ Eθ [n|Tn(X) − θ |]

which implies, when n is large enough, Eθ |θ̂n−θ | < Eθ |Tn(X)−θ |. This contradicts
the admissibility of Tn(X), and therefore, Tn(X) must be an asymptotically weak
admissible median unbiased estimator.

To show the equivalence of Tn(X) and T ∗
n (X) defined in (20.11), note that by

Taylor expansion

∏n
i=1 f (Xi − θ )
∏n

i=1 f (Xi)
= exp

[
n∑

i=1

log
f (Xi − θ )

f (Xi)

]

= exp

[

θ

n∑

i=1

f ′(Xi)

f (Xi)
+ op(nθ )

]

,
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then from θ ∈ [X(n) − b,X(1) − a] which implies that θ = Op(1/n), then op(nθ ) =
op(1), therefore, we obtain

1

2
=
∫ Tn(X)
X(n)−b

∏n
i=1 f (Xi − θ )dθ

∫ X(1)−a

X(n)−b

∏n
i=1 f (Xi − θ )dθ

=
∫ Tn(X)
X(n)−b

exp [ − θ
∑n

i=1 f
′(Xi)/f (Xi)]dθ

∫ X(1)−a

X(n)−b
exp [ − θ

∑n
i=1 f

′(Xi)/f (Xi)]dθ
[1 + op(1)].

Denote Mn(X)= n−1∑n
i=1 f

′(Xi)/f (Xi), then the above equality indeed is equiva-
lent to

exp [ − n(X(n) − b)Mn(X)] − exp [ − nTn(X)Mn(X)]

exp [ − n(X(n) − b)Mn(X)] − exp [ − n(X(1) − a)Mn(X)]
[1 + op(1)] = 1

2
,

or

e−nTn(X)Mn(X) = 1

2

[
e−n(X(n)−b)Mn(X) + e−n(X(1)−a)Mn(X)

]+ op(1).

The the desired result follows from the facts that Mn(X) → E0[f ′(X)/f (X)] =
f (b) − f (a) in probability.

The proof of the theorem will be complete if we can show thatTn(X) defined above
is not two-sided asymptotic efficient. For this purpose, the asymptotic distribution of
Tn(X) should be derived. The equivalence of Tn(X) and T ∗

n (X) implies that it suffices
to discuss T ∗

n (X) only. Without loss of generality, let us assume that θ = 0. It is easy
to see that

P0
{
2−1enk[X(n)−b] < x

} =

⎧
⎪⎨

⎪⎩

0, x < 0,[
1 + f (b) log 2x

nk
+ o

(
1
n

)]n → (2x)f (b)/k , 0 ≤ x ≤ 1/2,

1, x > 1/2.

and

P0
{
2−1enk[X(1)−a] < x

} =
{

1 −
[
1 − f (a) log 2x

nk
+ o

(
1
n

)]n → (2x)−f (a)/k , x ≥ 1/2,

0, x < 1/2.

Based on these two probabilities, and also the asymptotic independence of X(1) and
X(n), we can obtain

lim
n→∞Pθ {n|Tn(X) − θ | < t} = lim

n→∞Pθ {nk|T ∗
n (X) − θ | < kt}

=
{

1 − 1
2ekt (2e

kt − 1)−f (b)/f− − 1
2e−kt (2e−kt − 1)f (a)/f−

, 0 ≤ t ≤ log 2
k

,
1 − 1

2ekt (2e
kt − 1)−f (b)/f−

, t >
log 2
k

.

We can check that this limit indeed does not exceed the β(t) function for all t ≥ 0,
and when t is big enough, it is also easy to see that this limit is strictly less than
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β(t). That is, we proved that Tn(X) is not two-sided asymptotically efficient. This,
together with the fact that Tn(X) is an asymptotically weak admissible median
unbiased estimator, implies that there is no AMU in the location family (20.2) to be
two-sided asymptotically efficient. �
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Chapter 21
Semiparametric Analysis of Treatment Effect
via Failure Probability Ratio and the Ratio
of Cumulative Hazards

Song Yang

21.1 Introduction

For clinical trials with time to event data, often proportional hazards (Cox 1972)
is assumed when comparing two treatment arms, and a single value of the hazard
ratio is used to describe the group difference. When the proportionality assumption
may not hold true, a natural approach to assess the time-dependency of the treatment
effect is to analyze the hazard ratio function. For example, a conventional method is
to give a hazard ratio estimate over each of a few time intervals, by fitting a piece-
wise proportional hazards model. Alternatively, a “defined” time-varying covariate
can be used in a Cox regression model, resulting in a parametric form for the hazard
ratio function (e.g., Kalbfleisch and Prentice 2002, Chap. 6). With these approaches,
it may not be easy to pre-specify the partition of the time axis or the parametric form
of the hazard ratio function. Also, although the hazard ratio provides a nice display
of temporal pattern of the treatment effect, it may not directly translate to the survival
experience. It is possible for the hazard ratio to be less than 1 in a region where there
is no improvement in the survival probability, or more than 1 in a region where the
survival probability is not reduced. Similar phenomena also exists for the average of
hazard ratio. Thus to assess the cumulative treatment effect, other measures can be
used to supplement the hazard ratio.

LetFT (t) andFC(t) be the cumulative distribution functions of the two comparison
groups, named treatment and control, respectively. The failure probability ratio

RR(t) = FT (t)

FC(t)

is the process version of relative risk, a measure often used in epidemiology. It directly
indicates if the failure probability in the time interval (0, t] is lower in the treatment
group than in the control group, regardless of the possible up and down pattern

S. Yang (�)
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of the hazard ratio within (0, t]. Let �T (t) and �C(t) be the cumulative distribution
functions of the two comparison groups respectively. The ratio of cumulative hazards

CHR(t) = �T (t)

�C(t)

also indicates the cumulative treatment effect, taking value< 1 if and only ifFT (t) <
FC(t). Unlike the failure probability ratio, a value 0.8 for the ratio of cumulative
hazards does not translate to a 20 % reduction of the failure probability. However,
there is a nice property that if one adopts a proportional hazards adjustment for
baseline covariates, then the ratio of cumulative hazards remains the same while the
failure probability ratio depends on those covariates.

Although measures such as the failure probability ratio and the ratio of cumulative
hazards provide usual supplementary information in addition to the hazard ratio, and
the non-parametric estimators are easily available via the Nelson–Aalen estimator for
the cumulative hazard function (Nelson 1969; Aalen 1975) and the Kaplan–Meier
estimator of the survival function (Kaplan and Meier 1958), the non-parametric
inference procedures are not used frequently, as the estimates are often not very
smooth and the confidence intervals can be quite wide near the beginning of the data
range. In this chapter, we consider semiparametric inference on the two ratios under
a sufficiently flexible model. Assume that the failure times are absolutely continuous.
The short-term and long-term hazards model proposed in Yang and Prentice (2005)
postulates that

λT (t) = 1

e−β2 + (e−β1 − e−β2
)
SC(t)

λC(t), t < τ0, (21.1)

where β1, β2 are scalar parameters, SC the survivor function of the control group,
λT (t), λC(t) the hazard function of the two groups respectively, and

τ0 = sup

{
x :
∫ x

0
λC(t)dt < ∞

}
. (21.2)

Under this model, limt↓0 λT (t)/λC(t) = eβ1 , limt↑τ0 λT (t)/λC(t) = eβ2 . Thus, vari-
ous patterns of the hazard ratio can be realized, including proportional hazards, no
initial effect, disappearing effect, and crossing hazards. In particular, model (21.1)
includes the proportional hazards model and the proportional odds model as special
cases. There is no need to pre-specify a partition of the time axis or a parametric
form of the hazard ratio function. For this model,Yang and Prentice (2005) proposed
a pseudo-likelihood method for estimating the parameters, and Yang and Prentice
(2011) studied inference procedures on the hazard ratio function and the average of
the hazard ratio function. Extension of model (21.1) to the regression setting was
also studied for current status data in Tong et al. (2007).

In the sections to follow, we first obtain the estimates and point-wise confidence
intervals of the two ratios under model (21.1). Since the ratios are functions of
time, simultaneous confidence intervals, or confidence bands, of the ratios are more
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appropriate than the point-wise confidence intervals. We will employ a resampling
scheme to obtain the confidence bands of the ratios. Such semiparametric inference
procedures are applicable in a wide range of applications due to the properties of
model (21.1) mentioned before. They will be illustrated through applications to data
from two clinical trials.

Some previous work is related to the problems considered here. Dong and
Matthews (2012) developed empirical likelihood estimator for the ratio of cumula-
tive hazards with covariate adjustment. Schaubel and Wei (2011) considered several
measures under dependent censoring and non-proportional hazards, and point-wise
confidence intervals were constructed. In earlier works, Dabrowska et al. (1989)
introduced a relative change function defined in terms of cumulative hazards and
found simultaneous bands for this function under the assumption of proportional
hazards. Parzen et al. (1997) constructed nonparametric simultaneous confidence
bands for the survival probability difference. Cheng et al. (1997) proposed point-
wise and simultaneous confidence interval procedures for the survival probability
under semiparametric transformation models. McKeague and Zhao (2002) proposed
simultaneous confidence bands for ratios of survival functions via the empirical
likelihood method.

The article is organized as follows. In Sect. 21.2 the short-term and long-term
hazard ratio model and the parameter estimator are described. Point-wise confidence
intervals are established for the failure probability ratio and the ratio of cumula-
tive hazards. In Sect. 21.3, confidence bands are developed. Simulation results are
presented in Sect. 21.4. Applications to data from two clinical trials are given in
Sect. 21.5. Some discussion is given in Sect. 21.6.

21.2 The Estimators and Point-Wise Confidence Intervals

Denote the pooled lifetimes of the two groups by T1, · · · , Tn, with T1, · · · , Tn1 , n1 <

n, constituting the control group. Let C1, · · · ,Cn be the censoring variables, and
Zi = I (i > n1), i = 1, · · · , n, where I (·) is the indicator function. The available data
consist of the independent triplets (Xi , δi ,Zi), i = 1, . . . , n, where Xi = min(Ti, Ci)
and δi = I (Ti ≤ Ci).We assume that Ti , Ci are independent given Zi . The censoring
variables (Ci’s) need not be identically distributed, and in particular the two groups
may have different censoring patterns. For t < τ0 with τ0 defined in (21.2), let R(t)
be the odds function 1/SC(t)−1 of the control group. The model ofYang and Prentice
(2005) can be expressed as

λi(t) = 1

e−β1Zi + e−β2ZiR(t)

dR(t)

dt
, i = 1, . . . , n, t < τ0,

where λi(t) is the hazard function for Ti given Zi .
Under model (21.1), RR(t) and CHR(t) depends on the parameter β = (β1,β2

)T

and the baseline function R(t), where “T " denotes transpose. Yang and Prentice
(2005) studied a pseudo likelihood estimator β̂ of β which we describe below.
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Let τ < τ0 be such that

lim
n

n∑

i=1

I
(
Xi ≥ τ

)
> 0, (21.3)

with probability 1. For t ≤ τ , define

P̂ (t ; b) =
∏

s≤t

(
1 −

∑n
i=1 δie

−b2Zi I (Xi = s)
∑n

i=1 I (Xi ≥ s)

)
,

R̂(t ; b) = 1

P̂ (t ; b)

∫ t

0

P̂−(s; b)
∑n

i=1 I
(
Xi ≥ s

)d

(
n∑

i=1

δie
−b1Zi I

(
Xi ≤ s

)
)

,

where P̂−(s; b) denotes the left continuous (in s) version of P̂ (s; b). Let L(β,R) be
the likelihood function of β under model (21.1) when the function R(t) is known,
with the corresponding score vector S(β,R) = ∂ ln L(β,R)/∂β. Define Q(b) =
S(b,R)|R(t)=R̂(t ;b). Then the pseudo maximum likelihood estimator β̂ = (β̂1, β̂2)T of

β is the zero of Q(b). Note that the use of R̂(t ; b) results in the estimating function
Q(b) which does not involve the infinite dimensional nuisance parameter R(t), thus
the finite dimensional parameter β can be estimated much more easily.

Once β̂ is obtained, R(t) can be estimated by R̂
(
t ; β̂
)
. Thus under model (21.1),

plugging-in the estimators β̂ and R̂
(
t ; β̂
)
, we can estimate the failure probability

ratio RR(t) and the ratio of cumulative hazards CHR(t) by

R̂R(t) = 1 + R̂
(
t ; β̂
)

R̂
(
t ; β̂
)
(

1 − {1 + e−β̂2+β̂1R̂
(
t ; β̂
)}−eβ̂2

)
, (21.4)

and

ĈHR(t) = eβ̂2 ln
{
1 + e−β̂2+β̂1R̂

(
t ; β̂
)}

ln
{
1 + R̂

(
t ; β̂
)} , (21.5)

respectively. Note that under the model and with the pseudo likelihood estimator,
the distributions of the two groups share a common baseline function R(t) which
is estimated using pooled data. Thus the resulting estimators for RR(t) and CHR(t)
are expected to be smoother and more stable than the nonparametric estimators.
In Appendix A, we show that, under certain regularity conditions, the two estima-
tors in (21.4) and (21.5) are strongly consistent under model (21.1). To study the
distributional properties of the estimators, let

Un(t) = √
n(R̂R(t) − RR(t)), t ≤ τ ,

Vn(t) = √
n(ĈHR(t) − CHR(t)), t ≤ τ ,
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and

� = {− 1

n

∂Q(β)

∂β

}−1
.

Let �̂ be an estimator of � defined by replacing β with β̂ and R(t) with R̂
(
t ; β̂
)
.

InAppendix B we show that, for t ≤ τ , the processesUn andVn are asymptotically
equivalent to, respectively,

Ũn(t) = AT
RR(t)�√

n

(
∑

i≤n1

∫ τ

0
μ1dMi +

∑

i>n1

∫ τ

0
μ2dMi

)

+ BRR(t)√
n

(
∑

i≤n1

∫ t

0
ν1dMi +

∑

i>n1

∫ t

0
ν2dMi

)

(21.6)

and

Ṽn(t) = AT
CHR(t)�√

n

(
∑

i≤n1

∫ τ

0
μ1dMi +

∑

i>n1

∫ τ

0
μ2dMi

)

+ BCHR(t)√
n

(
∑

i≤n1

∫ t

0
ν1dMi +

∑

i>n1

∫ t

0
ν2dMi

)

, (21.7)

where ARR , ACHR, μ1, μ2 are appropriately defined 2 × 1 vector functions and
BRR , BCHR, ν1, ν2 scalar functions given in Appendix B. It will then be shown
that Un and Vn converge weakly to some zero-mean Gaussian processes U ∗ and V ∗
respectively. With estimators B̂RR(t), ÂRR(t), . . . , given in Appendix B, it will
be shown that the limiting covariance functions of U ∗ and V ∗ can be consistently
estimated, respectively, by

σ̂RR(s, t) = ÂT
RR(s)�̂

(∫ τ

0

μ̂1(w)μ̂T
1 (w)K1(w)dR̂

(
w; β̂

)

n
(
1 + R̂

(
w; β̂

))

+
∫ τ

0

μ̂2(w)μ̂T
2 (w)K2(w)dR̂

(
w; β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

�̂T ÂRR(t)

+ B̂RR(s)B̂RR(t)

(∫ s

0

ν̂2
1 (w)K1(w)dR̂

(
w; β̂

)

n
(
1 + R̂

(
w; β̂

))

+
∫ s

0

ν̂2
2 (w)K2(w)dR̂

(
w; β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

+ B̂RR(t)ÂT
RR(s)�̂

(∫ t

0

μ̂1(w)ν̂1(w)K1(w)dR̂
(
w, β̂

)

n
(
1 + R̂

(
w; β̂

))
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+
∫ t

0

μ̂2(w)ν̂2(w)K2(w)dR̂
(
w, β̂

)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

+ B̂RR(s)ÂT
RR(t)�̂
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)

, (21.8)

and

σ̂CHR(s, t) = ÂT
CHR(s)�̂

(∫ τ

0

μ̂1(w)μ̂T
1 (w)K1(w)dR̂

(
w; β̂

)

n
(
1 + R̂

(
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))

+
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μ̂2(w)μ̂T
2 (w)K2(w)dR̂
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(
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))

)
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(∫ s

0

ν̂2
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(
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)
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))
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(
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))

)
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(
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(
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))

+
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0
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(
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)

n
(
e−β̂1 + e−β̂2R̂

(
w; β̂

))

)

. (21.9)

The estimators �̂, ÂRR(t), ÂCHR(t) involve the derivative vector ∂R̂
(
t ;β
)
/∂β and

the derivative matrix in �. From various simulation studies, these derivatives can
be approximated by numerical derivatives for easier calculation, and the results are
fairly stable with respect to the choice of the jump size in the numerical derivatives.

For a fixed t0 ≤ τ , confidence intervals for RR
(
t0
)

can be obtained from the
asymptotic normality of R̂R(t0) and the estimated variance σ̂RR

(
t0, t0

)
. For better

small sample behavior and to ensure that the confidence intervals remain on the
positive side of the axis as usual, we make a logarithm transformation resulting in
the asymptotic 100(1 − α)% confidence interval
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R̂R(t0) exp

(

∓zα/2

√
σ̂RR(t0, t0)√
nR̂R(t0)

)

, (21.10)

where zα/2 is the 100(1 − α/2)% percentile of the standard normal distribution.
Similarly, for CHR(t0), an asymptotic 100(1 − α)% confidence interval is

ĈHR(t0) exp

(

∓zα/2

√
σ̂CHR(t0, t0)√
nĈHR(t0)

)

. (21.11)

21.3 Confidence Bands

For simultaneous inference on RR(t) over a time interval I = [a, b] ⊂ [0, τ ], let
wn(t) be a data-dependent function that converges in probability to a bounded func-
tion w∗(t) > 0, uniformly in t over I. Then, it follows that Un/wn converges weakly
U∗/w∗. Let cα be the upper αth percentile of supt∈I |U ∗/w∗|, then an asymptotic
100(1 − α)% simultaneous confidence band for RR(t), t ∈ I , can be obtained as

R̂R(t) exp

(
∓cα

wn(t)√
nR̂R(t)

)
. (21.12)

The analytic form of cα is quite intractable. The bootstrapping method provides a
well established alternative approach. However, it is very time-consuming. More
discussion on this is described further on the applications to clinical trial data in
Sect. 21.5. Here we have used a normal resampling approximation similar to the
approach used in Lin et al. (1993). This approach results in substantial savings in
computing time, and has been used in many works, including Lin et al. (1994), Cheng
et al. (1997), Tian et al. (2005), and Peng and Huang (2007).

For t ≤ τ , let Ni(t) = δiI (Xi ≤ t), i = 1, · · · , n, and define the process

Ûn(t) = ÂT
RR(t)�̂√

n

(
∑

i≤n1

∫ τ

0
μ̂1d(εiNi) +

∑

i>n1

∫ τ

0
μ̂2d(εiNi)

)

+ B̂RR(t)√
n

(
∑

i≤n1

∫ t

0
ν̂1d(εiNi) +

∑

i>n1

∫ t

0
ν̂2d(εiNi)

)

= ÂT
RR(t)�̂√

n

(
∑

i≤n1

εiδiμ̂1(Xi)I (Xi ≤ τ ) +
∑

i>n1

εiδiμ̂2(Xi)I (Xi ≤ τ )

)

+ B̂RR(t)√
n

(
∑

i≤n1

εiδi ν̂1(Xi)I (Xi ≤ t) +
∑

i>n1

εiδi ν̂2(Xi)I (Xi ≤ t)

)

,

(21.13)
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where εi , i = 1, . . . , n, are independent standard normal variables that are also
independent of the data. Conditional on (Xi , δi ,Zi), i = 1, . . . , n, Ûn is a sum of n
independent variables at each time point. In Appendix B, it will be shown that Ûn

given the data converges weakly to U ∗. It follows that supt∈I |Ûn(t)/wn(t)| given the
data converges in distribution to supt∈I |U ∗(t)/w∗(t)|. Therefore, cα can be estimated
empirically from a large number of realizations of the conditional distribution of
supt∈I |Û/w| given the data.

Similarly, to considerations in Yang and Prentice (2011) for inference on the
hazard ratio, we look at several choices of the weight wn. For wn(t) = √

σ̂RR(t , t)
we obtain the equal precision bands (Nair 1984), which only differ from point-wise
confidence intervals in using cα instead of zα/2. For wn(t) = 1 + σ̂RR(t , t) we obtain
the Hall–Wellner type bands recommended by Bie et al. (1987). The simplest case
wn(t) ≡ 1 does not require the computation of σ̂RR(t , t), and hence is easier to
implement.

To obtain simultaneous confidence bands for CHR(t), let

V̂n(t) = ÂT
CHR(t)�̂√

n

(
∑

i≤n1

∫ τ

0
μ̂1d(εiNi) +

∑

i>n1

∫ τ

0
μ̂2d(εiNi)

)

+ B̂CHR(t)√
n

(
∑

i≤n1

∫ t

0
ν̂1d(εiNi) +

∑

i>n1

∫ t

0
ν̂2d(εiNi)

)

= ÂT
CHR(t)�̂√

n

(
∑

i≤n1

εiδiμ̂1(Xi)I (Xi ≤ τ ) +
∑

i>n1

εiδiμ̂2(Xi)I (Xi ≤ τ )

)

+ B̂CHR(t)√
n

(
∑

i≤n1

εiδi ν̂1(Xi)I (Xi ≤ t) +
∑

i>n1

εiδi ν̂2(Xi)I (Xi ≤ t)

)

,

(21.14)

where εi , i = 1, . . . , n, are independent standard normal variables that are also
independent of the data. Let w̃n(t) be a data-dependent function that converges in
probability to a bounded function w̃∗(t) > 0, uniformly in t over I . Let c̃α be upper
αth percentile of supt∈[a,b] |V ∗(t)/w̃∗| . Similarly, to the argument above for RR(t),
an asymptotic 100(1 − α)% simultaneous confidence band for CHR(t), t ∈ I , can
be obtained as

ĈHR(t) exp

(
∓c̃α

w̃n(t)√
nĈHR(t)

)
, (21.15)

where c̃α can be approximated empirically from a large number of realizations
of the conditional distribution of supt∈[a,b] |V̂ (t)/w̃n| given the data. For w̃n =√
σ̂CHR(t , t), 1 + σ̂CHR(t , t) and w̃n ≡ 1 respectively, we obtain the equal precision,

Hall–Wellner type, and unweighted confidence bands for CHR(t).
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21.4 Simulation Studies

For stable moderate sample behavior, we restrict the range of the confidence bands
for both RR(t) and CHR(t). The range is between the 40th percentile of the uncen-
sored data at the lower end and the 95th percentile of the uncensored data at the
upper end. The lower end point of this range seems a little high compared to other
situations such as the inference on the hazard ratio in Yang and Prentice (2011).
This is to provide a range in which the nonparametric procedures and the proposed
model-based procedures in (21.10–21.12) and (21.15) are to be compared. Toward
the beginning of the data range, the nonparametric estimates can be very unstable
and the confidence intervals can be quite wide, as will be illustrated in the data ex-
ample to follow. Also, compared with the hazard ratio as a measure of the temporal
pattern of the treatment effect, RR(t) and CHR(t) measure the cumulative treatment
effect. Thus in biomedical research, there is little interest in their behaviors near the
beginning of the data range. In various applications to clinical trial data, the specified
range for the confidence bands is not nearly as restrictive as it seems and contains
a meaningful interval of the data range. In the estimating procedures, the function
P̂ (t ; b) is replaced by an asymptotically equivalent form

exp

(

−
∫ t

0

1
∑n

i=1 I
(
Xi ≥ s

)d

{
n∑

i=1

δie
−b2Zi I

(
Xi ≤ s

)
})

.

For simulation studies reported here and for the real data application in Sect. 21.5,
τ was set to include all data in calculating β̂. All numerical computations were done
in Matlab. Some representative results of simulation studies are given in Table 21.1,
where lifetime variables were generated with R(t) chosen to yield the standard expo-
nential distribution for the control group. The values ofβ were ( log (.9), log (1.2)) and
( log (1.2), log (.8)), representing 1/3 increase or decrease over time from the initial
hazard ratio, respectively. The censoring variables were independent and identically
distributed with the log-normal distribution, where the normal distribution had mean
c and standard deviation 0.5, with c chosen to achieve various censoring rates. The
data were split into the treatment and control groups by a 1:1 ratio. The empirical
coverage probabilities were obtained from 1000 repetitions, and for each repetition,
the critical values cα and c̃α were calculated empirically from 1,000 realizations of
relevant conditional distributions. For both RR(t) and CHR(t), the equal precision
bands, Hall–Wellner type bands and unweighted bands are denoted by EP, HW, and
UW respectively.

Note that with 1,000 repetitions and 1.96
√
.95 · 0.05/1000 = 0.0135, we expect

the empirical coverage probabilities to be mostly greater than 0.9365. In Table 21.1,
for RR, the empirical coverage probabilities are greater than 0.9365 for all but one
case with the smallest sample size n = 100 and at 50 % censoring. For CHR, the
confidence bands are mostly conservative, with all empirical coverage probabilities
greater than 0.95. One plausible explanation for this conservative phenomenon could
be that the estimate for CHR(t) is more directly related to the martingales associated
with censored data, resulting in better approximations.
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Table 21.1 Empirical coverage probabilities of the three types of confidence bands HW, EP, and
UW, for the failure probability ratio RR and the ratio of cumulative hazards CHR, under model
(21.1), based on 1000 repetitions

Hazard ratio Censoring n RR CHR

HW EP UW HW EP UW

0.9 ↑ 1.2 10 % 100 0.949 0.967 0.958 0.977 0.983 0.986
30 % 0.967 0.966 0.962 0.976 0.984 0.989
50 % 0.943 0.957 0.966 0.969 0.970 0.975
10 % 200 0.950 0.973 0.965 0.972 0.978 0.985
30 % 0.964 0.969 0.968 0.959 0.970 0.986
50 % 0.959 0.968 0.974 0.969 0.975 0.980
10 % 400 0.960 0.974 0.971 0.958 0.969 0.982
30 % 0.961 0.970 0.971 0.959 0.968 0.981
50 % 0.958 0.974 0.977 0.967 0.975 0.983

1.2 ↓ 0.8 10 % 100 0.946 0.963 0.962 0.974 0.980 0.980
30 % 0.958 0.964 0.968 0.969 0.977 0.981
50 % 0.926 0.940 0.966 0.962 0.969 0.974
10 % 200 0.958 0.967 0.952 0.968 0.975 0.971
30 % 0.958 0.959 0.958 0.972 0.974 0.968
50 % 0.946 0.954 0.961 0.962 0.964 0.974
10 % 400 0.960 0.957 0.954 0.969 0.972 0.973
30 % 0.960 0.969 0.960 0.966 0.969 0.970
50 % 0.949 0.962 0.959 0.967 0.974 0.972

21.5 Applications

For the Women’s Health Initiative (WHI) randomized controlled trial of combined
(estrogen plus progestin) postmenopausal hormone therapy, an elevated coronary
heart disease risk was reported, with overall unfavorable health benefits versus risks
over an average of 5.6-year study period (Writing Group 2002; Manson et al. 2003).
After controlling for time from estrogen-plus-progestin initiation and confounding,
hazard ratio estimates still indicate elevated risk of coronary heart disease and venous
thromboembolism early on during the trial, under a piece-wise Cox model assuming
constant hazard ratio separately on 0–2 years, 2–5 years, and 5+ years (Prentice
et al. 2005). Let us first illustrate the methods developed in the previous sections
with the venous thromboembolism (VTE) data from the WHI clinical trial. Among
the 16,608 postmenopausal women (n1 = 8102), there were 167 and 76 events
observed in the treatment and control group respectively, implying about 98.5 %
censoring, primarily by the trial stopping time. Fitting model (21.1) to this data set,
we get β̂ = (4.72, 0.014)T . Plots of the model based survival curves and the Kaplan–
Meier curves for the two groups show that the model is reasonable. For RR(t), the
three 95 % simultaneous confidence bands (EP, HW, and UW) under model (21.1)
are given in Fig. 21.1, together with the point estimates. The nonparametric point
estimates are also included to compare with the model-based estimates. Furthermore,
model-based 95 % point-wise confidence intervals are included as well, to indicate
by how much the confidence intervals are widened to improve from point-wise to
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Fig. 21.1 95 % point-wise confidence intervals and simultaneous confidence bands of the fail-
ure probability ratio for the WHI VTE data: Outside red solid lines—equal precision confidence
band, magenta dash-dotted lines—Hall–Wellner confidence band, outside cyan dashed lines—
unweighted confidence band, dotted lines—95 % point-wise confidence intervals, central black
solid line—the estimated failure probability ratio under the model, central green dashed line—the
estimated failure probability ratio using Kaplan–Meier estimators

simultaneous coverage. From Fig. 21.1, it can be seen that the Hall–Wellner type
band and the equal precision band are almost the same a little after the 4th year.
However, the Hall–Wellner type band is noticeably wider toward the beginning of
the date range. The unweighted band maintains a roughly constant width through the
data range considered, which is roughly as wide as the equal precision band at the
begining of the data range, but wider throughout the rest of the data range. Similar
phenomena are often seen in additional applications not reported here. Based on
various applications and simulation studies, we recommend that the equal precision
band be used in making inference on RR(t) under model (21.1).

For CHR(t), the 95 % point-wise confidence intervals and confidence bands under
model (21.1) are given in Fig. 21.2. Similarly to the case forRR(t), the equal precision
band is preferred in making inference on CHR(t) under model (21.1). From Fig. 21.1
and 21.2, there is evidence that from 2.5 to 7.5 years, the event probability is higher
in the treatment group than in the control group.
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Fig. 21.2 95 % point-wise confidence intervals and simultaneous confidence bands of the ratio of
cumulative hazards for the WHI VTE data: Outside red solid lines—equal precision confidence
band, magenta dash-dotted lines—Hall–Wellner confidence band, em outside cyan dashed lines—
unweighted confidence band, dotted lines—95 % point-wise confidence intervals, central black
solid line—the estimated failure probability ratio under the model, central green dashed line—the
estimated failure probability ratio using Kaplan–Meier estimators

For comparison, from Yang and Prentice (2011), the 95 % point-wise confidence
intervals and equal precision confidence band are obtained for the hazard ratio under
model (21.1), given in Fig. 21.3. The results are in good agreement with the results
under the piece-wise Cox model used in Prentice et al. (2005). In an interval near
the beginning of the data range, there is greater hazard of venous thromboembolism
in the treatment group than in the control group. This interval has shorter length
than the intervals in Fig. 21.1 and 21.2 where the treatment group has a higher event
probability than in the control group.

Note that the simple bootstrap method for approximating cα and c̃α , when wn ≡ 1
and w̃n ≡ 1 respectively, is already much more computationally intensive than
the normal resampling approximation employed here. With wn(t) = √

σ̂RR(t) and
w̃n = √

σ̂CHR(t), the bootstrap method would require one more level of bootstrap-
ping samples to obtain the estimated variance functions, thus further increasing the
computational burden. In comparison, once σ̂RR(t) and σ̂CHR(t) are obtained, the
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Fig. 21.3 95 % point-wise confidence intervals and simultaneous confidence bands of the hazard
ratio function for the WHI VTE data: Red solid lines—equal precision confidence band, blue
dash-dotted lines—95 % point-wise confidence intervals, dotted line—the estimated hazard ratio
function

normal resampling approximation only needs a small additional computation and
programming cost.

To see how the nonparametric procedures compare with the proposed model-based
procedures, Fig. 21.4 presents 95 % point-wise confidence intervals, both model-
based and nonparametric, together with the point estimates, of CHR(t) for the VTE
data from WHI. It can be seen that the nonparametric estimates and confidence
intervals can be quite unstable near the beginning of the data range. As t ↓ 0, the
hazard ratio at t and CHR(t) should both approach the same limit, which is eβ1

under the model. From Fig. 21.4, the model-based estimator of CHR(t) near t = 0
takes values around 5, which is comparable to results in the literature, while the
nonparametric estimator of CHR(t) near t = 0 takes much more extreme values.
Also, the model-based estimates and confidence intervals are smoother throughout,
and the confidence intervals are often narrower than their nonparametric counterparts.
Similar phenomena are also present for RR(t) (omitted). This is a major reason that
the nonparametric estimates for RR(t) and CHR(t) are rarely used in biomedical
studies.
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Fig. 21.4 Model-based and nonparametric 95 % point-wise confidence intervals of the ratio of
cumulative hazards for the WHI VTE data: Outside red solid lines—model based 95 % point-
wise confidence intervals, outside blue dashed lines—nonparametric 95 % point-wise confidence
intervals, central magenta solid line—model based estimate of the ratio of cumulative hazards,
central blue dashed line—nonparametric estimate of the ratio of cumulative hazards

Next, we look at an example with mild violation of the proportional hazards as-
sumption. The Digoxin Intervention Group trial (The Digitalis investigation group
1997) was a randomized, double-blind clinical trial on the effect of digoxin on mor-
tality and hospitalization. In the main trial, patients with left ventricular ejection
fraction of 0.45 or less were randomized to digoxin (3397 patients) or placebo (3403
patients) in addition to diuretics and angiotensin-converting-enzyme inhibitors. We
look at the data on death attributed to worsening heart failure. For testing the pro-
portional hazards assumption, the acceleration test statistic of Breslow et al. (1984)
gives a p- value of 0.098. This indicates some mild proportionality violation. For
RR(t),the 95 % point-wise confidence intervals and confidence bands under model
(21.1) are given in Fig. 21.4. Possibly due to only a mild violation of the propor-
tionality assumption, the Hall–Wellner type band, the equal precision band and the
unweighted band are almost the same for the entire data range considered. From
Fig. 21.4, there is evidence that for the range of 1.5–3 year, the treatment reduces
the event probability.
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Fig. 21.5 95 % point-wise confidence intervals and simultaneous confidence bands of the failure
probability ratio for the DIG data: Outside red solid lines—equal precision confidence band, ma-
genta dash-dotted lines—Hall–Wellner confidence band, outside cyan dashed lines—unweighted
confidence band, Dotted lines—95 % point-wise confidence intervals, central black solid line—the
estimated failure probability ratio under the model, central green dashed line—the estimated failure
probability ratio using Kaplan–Meier estimators

For CHR(t), the 95 % point-wise confidence intervals and confidence bands under
model (21.1) are given in Fig. 21.5. Again all three confidence bands are very close
to each other. From Fig. 21.5, there is evidence of reduced event probability in the
treatment group for the range of 1.3 year to 3 years.

Again for comparison, fromYang and Prentice (2011), the 95 % point-wise confi-
dence intervals and equal precision confidence band are obtained for the hazard ratio
under model (21.1), given in Fig. 21.6. From Fig. 21.6, there is evidence that from 0
to .75 year, in the treatment group there is reduced hazard of death attributed to wors-
ening heart failure. Note that this range is much narrower than the range where there
is evidence of reduced event probability in the treatment group seen from Fig. 21.4
and 21.5 (Fig. 21.7).



344 S. Yang

1 1.5 2 2.5 3 3.5 4
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

years

ra
tio

 o
f c

um
ul

at
iv

e 
ha

za
rd

s
95%  CI and CB for CHR, DIG

Fig. 21.6 95 % point-wise confidence intervals and simultaneous confidence bands of the ratio of
cumulative hazards for the DIG data: Outside red solid lines—equal precision confidence band, ma-
genta dash-dotted lines—Hall–Wellner confidence band, outside cyan dashed lines—unweighted
confidence band, dotted lines—95 % point-wise confidence intervals, central black solid line—the
estimated failure probability ratio under the model, central green dashed line—the estimated failure
probability ratio using Kaplan–Meier estimators

21.6 Discussion

We have studied the asymptotic properties of the estimators for the failure probability
ratio and the ratio of cumulative hazards under a semiparametric model applicable
to a sufficiently wide range of applications. Point-wise confidence intervals and con-
fidence bands are developed for the two ratios. In simulation studies, the confidence
bands have good performance for moderate samples. Among the confidence bands
with different weights, the equal precision confidence band is recommended based
on various simulation studies and clinical trial data applications. Similarly, inference
procedures can be developed for the odds ratio. The point-wise confidence intervals
and confidence bands for the odds ratio are usually wider than the corresponding
intervals and bands for the failure probability ratio and the ratio of cumulative haz-
ards. Due to space limit those results are not presented here. When the censoring is
heavy, there are very little differences among the confidence intervals and bands for
the failure probability ratio, the ratio of cumulative hazards, and the odds ratio. The
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Fig. 21.7 95 % point-wise confidence intervals and simultaneous confidence bands of the hazard
ratio function for the DIG data: Red solid lines—equal precision confidence band, blue dash-dotted
lines—95 % point-wise confidence intervals, dotted line—the estimated hazard ratio function

confidence intervals and bands presented here provide good visual tools for assessing
cumulative effect of the treatment. They can supplement the visual tools based on
the hazard ratio which focuses the temporal pattern of the treatment effect. It is also
of interest to extend the results here by considering adjustment for covariate via a
regression analysis. These and other problems are worthy of further exploration.
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Appendix A: Consistency

The following regularity conditions will be assumed throughout the Appendices:

Condition 1. lim n1
n
= ρ ∈ (0, 1).

Condition 2. The survivor function Gi of Ci given Zi is continuous and satisfies

1

n

∑

i≤n1

Gi(t) → �1,
1

n

∑

i>n1

Gi(t) → �2,
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uniformly for t ≤ τ , for some �1, �2, and τ < τ0 such that �j (τ ) > 0, j = 1, 2.
Condition 3. The survivor functions SC and ST are absolutely continuous and
SC(τ ) > 0.

Under these conditions, the strong law of large numbers implies that (21.3) is
satisfied.

For t ≤ τ , define

L(t) = �1SC + �2ST ,

Uj (t ; b) =
∫ t

0
�1dFC + exp

(− bj
)∫ t

0
�2dFT , j = 1, 2,

�j (t ; b) =
∫ t

0

dUj (s; b)

L(s)
, j = 1, 2,

P (t ; b) = exp{−�2(t ; b)}, R(t ; b) = 1

P (t ; b)

∫ t

0
P (s; b)d�1(s; b),

f 0
j (t ; b) = exp ( − bj )Rj−1(t ; b)

exp ( − b1) + exp ( − b2)R(t ; b)
, j = 1, 2,

mj (b) =
{∫ τ

0
f 0
j �2(t)dFT (t) −

∫ τ

0

f 0
j �2(t)ST (t)dR(t ; b)

exp
(− b1

)+ exp
(− b2

)
R(t ; b)

}

, j=1, 2,

and m(b) = (m1(b),m2(b)
)′

. We will also assume

Condition 4. The function m(b) is non-zero for b ∈ B−{β}, where B is a compact
neighborhood of β.

Theorem 1. Suppose that Conditions 1 ∼ 4 hold. Then, (i) the zero β̂ of Q(b) in
B is strongly consistent for β; (ii) R̂R(t) is strongly consistent for RR(t), uniformly
for t ∈ [0, τ ], and ĈHR(t) is strongly consistent for CHR(t), uniformly on t ∈ [0, τ ];
(iii) �̂ converges almost surely to a limiting matrix �∗.

Proof. Under Conditions 1 ∼ 3, the limit of
∑n

i=1I
(
Xi ≥ t

)
/n is bounded away

from zero on t ∈ [0, τ ]. Thus, it can be shown that, with probability 1,

∑n
i=1δie

−bjZi I
(
Xi = t

)

∑n
i=1δiI

(
Xi ≥ t

) → 0, j = 1, 2, |�P̂ (t ; b)| → 0, |�R̂(t ; b)| → 0,

(21.16)

uniformly for t ∈ [0, τ ] and b ∈ B, where � indicates the jump of the function in t .
Define the martingale residuals

M̂i(t ; b) = δiI
(
Xi ≤ t

)−
∫ t

0
I
(
Xi ≥ s

) R̂(ds; b)

e−b1Zi + e−b2Zi R̂(s; b)
, 1 ≤ i ≤ n.
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From (21.16) and the fundamental theorem of calculus, it can be shown that, with
probability 1,

Q(b) =
n∑

i=1

∫ τ

0

{
fi(t ; b) + o(1)

}
M̂i(dt ; b), (21.17)

uniformly in t ≤ τ , b ∈ B and i ≤ n, where fi = (f1i , f2i)T , with

f1i(t ; b) = Zie
−b1Zi

e−b1Zi + e−b2Zi R̂(t ; b)
, f2i(t ; b) = Zie

−b2Zi R̂(t ; b)

e−b1Zi + e−b2Zi R̂(t ; b)
.

From the strong law of large numbers (Pollard 1990, p. 41) and repeated use of
Lemma A1 of Yang and Prentice (2005), one obtain, with probability 1,

P̂ (t ; b) → P̂ (t ; b), R̂(t ; b) → R(t ; b), Q(b)/n → m(b), (21.18)

uniformly in t ≤ τ and b ∈ B. From these results and Condition 4, one obtains the
strong consistency of R̂R(t) and ĈHR(t), and almost sure convergence of �̂.

Appendix B: Weak Convergence

Let ξ0(t) = 1 + R(t), ξ (t) = e−β1 + e−β2R(t), ξ̂0(t) = 1 + R̂(t ;β), ξ̂ (t) = e−β1 +
e−β2R̂(t ;β), and define

K1(t) =
∑

i≤n1

I (Xi ≥ t), K2(t) =
∑

i>n1

I (Xi ≥ t),

H (t) = 1

ξ̂ (t)
(e−β1 , e−β2R̂(t ;β))T ,

J (t) =
∫ τ

t

H (s)K1(s)K2(s)

ξ̂ (s)P̂ (s;β)

(
e−β2

ξ (s)
− 1

ξ0(s)

)
dR(s).

Similarly, to the proof of Theorem 1, it can be shown that, with probability 1,

Q(β) =
∑

i≤n1

∫ τ

0
{μ1(t) + o(1)}dMi(t) +

∑

i>n1

∫ τ

0

{
μ2(t) + o(1)

}
dMi(t), (21.19)

uniformly in t ≤ τ and i ≤ n, where

μ1(t) = − ξ̂0(t)H (t)K2(t)

ξ̂ (t)K(t)
+ ξ̂0(t)P̂−(t ;β)

K
J (t),

μ2(t) = H (t)
K1(t)

K(t)
+ ξ̂ (t)P̂−(t ;β)

K(t)
J (t), (21.20)
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Mi(t) = δiI (Xi ≤ t) −
∫ t

0
I (Xi ≥ s)

dR(s)

e−β1Zi + e−β2ZiR(s)
, i = 1, . . . , n.

By Lemma A3 of Yang and Prentice (2005),

√
n(R̂(t ;β) − R(t)) = 1√

nP̂ (t ;β)

(
∑

i≤n1

∫ t

0
ν1dMi +

∑

i>n1

∫ t

0
ν2dMi

)

(21.21)

where

ν1(t) = nξ0(t)P̂−(t ;β)

K(t)
, ν2(t) = nξ (t)P̂−(t ;β)

K(t)
.

Define

ARR(t) =
(

ŜT (t)

F̂C(t)ξ̂ (t)
− F̂T (t)Ŝ2

C(t)

F̂ 2
C(t)

)
∂R̂(t ;β)

∂β
+ ŜT (t)

F̂C(t)

(
R(t)

ξ (t)
,�T (t) − R(t)

ξ (t)

)T

,

BRR(t) = 1

P̂ (t ;β)

(
ŜT (t)

F̂C(t)ξ̂ (t)
− F̂T (t)Ŝ2

C(t)

F̂ 2
C(t)

)

,

ACHR(t) =
(

1

�C(t)ξ̂ (t)
− �T (t)ŜC(t)

�2
C(t)

)
∂R̂(t ;β)

∂β
+ 1

�C(t)

(
R(t)

ξ (t)
,�T (t) − R(t)

ξ (t)

)T

,

BCHR(t) = 1

P̂ (t ;β)

(
1

�C(t)ξ̂ (t)
− �T (t)ŜC(t)

�2
C(t)

)

.

For ARR(t), BRR(t), ACHR(t), BCHR(t), mu1(t),μ2(t), ν1(t), ν2(t), let
A∗

RR(t), B∗
RR(t), . . . etc. be their almost sure limit. In addition, let Lj be the

almost sure limit of Kj/n, j = 1, 2. For 0 ≤ s, t < τ , let

σRR(s, t)

=A∗T
RR(s)�∗

(∫ τ

0

μ∗
1μ

∗T
1

1 + R
L1dR +

∫ τ

0

μ∗
2μ

∗T
2

e−β1 + e−β2R
L2dR

)
�∗T D∗(t)

+ B∗
RR(s)B∗

RR(t)

(∫ s

0

ν∗2
1

1 + R
L1dR +

∫ s

0

ν∗2
2

e−β1 + e−β2R
L2dR

)

+ B∗
RR(t)A∗T

RR(s)�∗
(∫ t

0

μ∗
1ν

∗
1

1 + R
L1dR +

∫ t

0

μ∗
2ν

∗
2

e−β1 + e−β2R
L2dR

)

+ B∗
RR(s)A∗T

RR(t)�∗
(∫ s

0

μ∗
1ν

∗
1

1 + R
L1dR +

∫ s

0

μ∗
2ν

∗
2

e−β1 + e−β2R
L2dR

)
, (21.22)

and

σCHR(s, t)
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=A∗T
CHR(s)�∗

(∫ τ

0

μ∗
1μ

∗T
1

1 + R
L1dR +

∫ τ

0

μ∗
2μ

∗T
2

e−β1 + e−β2R
L2dR

)
�∗T D∗(t)

+ B∗
CHR(s)B∗

CHR(t)

(∫ s

0

ν∗2
1

1 + R
L1dR +

∫ s

0

ν∗2
2

e−β1 + e−β2R
L2dR

)

+ B∗
CHR(t)A∗T

CHR(s)�∗
(∫ t

0

μ∗
1ν

∗
1

1 + R
L1dR +

∫ t

0

μ∗
2ν

∗
2

e−β1 + e−β2R
L2dR

)

+ B∗
CHR(s)A∗T

CHR(t)�∗
(∫ s

0

μ∗
1ν

∗
1

1 + R
L1dR +

∫ s

0

μ∗
2ν

∗
2

e−β1 + e−β2R
L2dR

)
. (21.23)

For ARR(t), BRR(t), . . ., etc. define corresponding estimator B̂RR(t), ÂRR(t), . . .
by replacing β with β̂, R(t) with R̂(t ; β̂). Defince σ̂RR(s, t) and σ̂CHR(s, t) by repal-
cing BRR(t), ARR(t), μ1(t), μ2(t), ν1(t), ν2(t), . . . in σRR(s, t) and σCHR(s, t) by
B̂RR(t), ÂRR(t), . . . etc.

Theorem 2. Suppose that Conditions 1 ∼ 4 hold and that the matrix �∗ is non-
singular. Then, (i) Un is asymptotically equivalent to the process Ũn in (21.6) which
converges weakly to a zero-mean Gaussian process U ∗ on [0, τ ], with covariance
function σRR(s, t) in (21.22). σRR(s, t) can be consistently estimated by σ̂RR(s, t). In
addition, Ûn(s) given the data converges weakly to the same limiting process U∗. (ii)
Vn(t) is asymptotically equivalent to the process Ṽn in (21.7) which converges weakly
to a zero-mean Gaussian process V ∗ on [0, τ ], with covariance function σCHR(s, t)
in (21.23). σCHR(s, t) can be consistently estimated by σ̂CHR(s, t). In addition, V̂n(s)
given the data converges weakly to the same limiting process V ∗.

Proof. (i) As in the proof for Theorem A2 (ii) in Yang and Prentice (2005), by the
strong embedding theorem and (21.19), Q(β)/

√
n can be shown to be asymptotically

normal. Now Taylor series expansion of Q(b) around β and the non-singularity of
�∗ imply that

√
n
(
β̂ − β

)
is asymptotically normal. From the

√
n- boundedness

of β̂,

√
n
(
R̂
(
t ; β̂
)− R̂

(
t ;β
)) = ∂R(t ;β)

∂β

√
n
(
β̂ − β

)+ op(1),

uniformly in t ≤ τ.These results, some algebra and Taylor series expansion together
show that Un is asymptotically equivalent to Ũn. Similarly, to the proof of the asymp-
totic normality of Q(β)/

√
n, one can show that Ũn converges weakly to a zero-mean

Gaussian process. Denote the limiting process by U ∗. From the martingale integral
representation of Ũn, it can be shown that the covariation process of U ∗ is given by
σ (s, t) in (21.22). The consistency of σ̂RR(s, t) can be shown similarly to the proof
of Theorem 1.

By checking the tightness condition and the convergence of the finite-dimensional
distributions, it can be shown that Ûn(s) given the data also converges weakly to U ∗.

(ii) The assertions on Vn, Ṽn, etc. can be proved similarly to the case for Un, Ũn,
etc. in (i).
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Chapter 22
Inference for the Standardized Median

Robert G. Staudte

22.1 Introduction

We carry out inference for the median, divided by a fixed interquantile range (IQR).
It is a standardized effect or ‘effect size’ defined by 3 quantiles. Applied statisticians
sometimes prefer effect sizes to raw effects, such as the median, because it is scale-
free. Inference regarding the median itself has already been thoroughly investigated
by a number of authors, including (McKean and Schrader (1984) and Sheather and
McKean 1987). More generally, the problem of Studentizing a quantile estimator has
been studied by (Bloch and Gastwirth 1968; Hall and Sheather 1988 and Siddiqui
1960), amongst others.

We are given a location-scale family Fα,β(x) = F ((x−α)/β) where α, β > 0 are
unknown. Assume F = F0,1 has a continuous derivative f which is symmetric about
0 and is positive over a possibly infinite symmetric interval containing 0. Denote the
quantile function of F by G = F−1, its value at any 0 < r < 1 by xr = G(r), and
its derivative at r by g(r) = {f (xr )}−1. The rth quantile of Fα,β is related to xr of F
by α + βxr , and gα,β(r) = β g(r).

For 0 < r < 0.5, a value to be chosen later, let the rth IQR of Fα,β be β IQRr ,
where IQRr = x1−r − xr . Also define the rth standardized median of Fα,β by:

δr = δr (α,β) = α + βx0.5

β IQRr

= α

β IQRr

. (22.1)

Let X([nr]) denote the [nr]th order statistic of a sample of size n from F .
Let M = X([n/2]) be the sample median, which is consistent for x0.5 and for a
fixed 0 < r < 1/2 define the rth sample IQR by Rr = X([(1−r)n]) −X([nr]), which is
a consistent estimator of x1−r −xr .We want to estimate the rth standardized median
defined in (22.1) by δ̂r = M/Rr.

In the next Sect. 22.2 we derive a variance stabilizing transformation (VST) of δ̂r .
This leads to confidence intervals for δr , whose effectiveness of coverage is evaluated
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for several examples in Sect. 22.3. Then we consider the use of the VST-transformed
standardized median for testing, and the choice of r , in Sect. 22.4, and in Sect. 22.5
we summarize the results and point to several extensions.

22.2 Deriving an Effective Variance Stabilizer

For 1 ≤ r ≤ s ≤ n, ignoring terms of lower order, we have for large n, (see, for
example, DasGupta 2006 p. 80)

E[X([rn]]
.= xr

Cov[X([rn],X([sn]]
.= r(1 − s) g(r)g(s)

n
. (22.2)

When F = Fα,β the expectation of δ̂ is, up to terms of smaller order,

E[δ̂r ]
.= E[M]

E[Rr ]
= α

βIQRr

= δr . (22.3)

The first and second asymptotic moments of M and Rr are obtained from (22.2). The
expression for Var[Rr ] requires a little more care and is given by

nVar[Rr ] = h2(r) = r(1 − r){g2(r) + g2(1 − r)} − 2r2 g(r)g(1 − r) . (22.4)

When F is symmetric, g(r) = g(1 − r) and h2(r) = 2r(1 − 2r)g2(r).
But the following expressions hold for asymmetric f as well. For the location-

scale family, Fα,β , fα,β(α + βxr ) = f (xr )/β. Without loss of generality, we take
β = 1. Recall the standard formula for the variance of a ratio of random variables:

Var[δ̂r ]
.= 1

E2[Rr ]

{
Var[M] − 2 Cov[M ,Rr ]

E[M]

E[Rr ]
+Var[Rr ]

E2[M]

E2[Rr ]

}
. (22.5)

It follows from (22.2) that the required second moments of M ,Rr under the
distribution Fα,1 are:

Var[M]
.= g2(0.5)

4n

Cov[M ,Rr ]
.= r g(0.5)

2n
{g(1 − r) − g(r)} (22.6)

Var[Rr ]
.= h2(r)

n
.

Note that Cov[M ,Rr ]
.= 0 for symmetric F . Therefore, Vr = Var[δ̂r ] is from (22.2),

(22.3), and (22.5), approximately equal to
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Vr
.= 1

n

{
g2(0.5)

4IQR2
r

+ h2(r)

IQR2
r

δ2
r

}

= brc
2
r

n
(1 + δ2

r /c
2
r ) , (22.7)

where

br = h2(r)

IQR2
r

.= nVar[Rr ]

E2[Rr ]
. (22.8)

cr = g(0.5)

2 h(r)
.= SD[M]

SD[Rr ]
. (22.9)

We also introduce ar = {brc2
r }−1/2 = 2 IQRr/g(0.5)

.= E[Rr ]/SD[M]. Note that
the constants br , cr are free of n, α, and β.

Now to first order E[δ̂r ] = δr , so (22.7) shows that the variance of δ̂r is a simple
quadratic in its mean; solving in the usual way [Bickel and Doksum (1977) p.32]
leads to the VST

Tn(x) =
√

n

brc2
r

cr log

(
x

cr
+
√

1 + x2

c2
r

)

= √
n ar cr sinh−1

(
x

cr

)
. (22.10)

We expect that, at least for large n, Tn ∼ N (
√
nK(δr ), 1), where

K(δr ) = ar cr sinh−1

(
δr

cr

)
. (22.11)

This function is called the Key Inferential Function, or simply the Key, by (Kulinskaya
et al. 2008; Morgenthaler and Staudte 2012) because of its appearance in power
functions in testing hypotheses, see Sect. 22.4 and in finding confidence intervals, as
shown in Sect. 22.3. Further, it is quite generally an excellent approximation to the
signed square root of the Kullback–Leibler symmetrized divergence between null
and alternative distributions, for a large neighborhood of the null, see Morgenthaler
and Staudte (2012).

22.3 Examples

Now for various choices of r we find the VST’s for several examples and make plots
of the empirical coverage probabilities of nominal 95 % confidence intervals for δ.
Such intervals are found as follows: nominal 95 % confidence intervals for κ = K(δ)
are of the form (Tn ± z0.975)/

√
n , and the intervals for δ, clearly having the same
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Table 22.1 Normal model
constants used for obtaining a
variance stabilization of δ̂r

r IQRr g(r) h(r) ar br cr

0.20 1.683 3.572 1.750 1.343 1.081 0.716
0.25 1.349 3.147 1.573 1.076 1.360 0.797
0.30 1.049 2.876 1.409 0.837 1.805 0.890
0.35 0.771 2.700 1.237 0.615 2.577 1.013
0.40 0.507 2.588 1.035 0.404 4.175 1.211

coverage, are obtained by back-transformation; that is, applying K−1 to the interval
for κ. Simulation studies were carried out using the software package R (2008),
version 2.15.2, based on 40,000 replications at each δ in 0:6/0.25. The quantiles
were estimated using the quantile function (Type 8) recommended by Hyndman and
Fan (1996). It estimates quantiles by a mixture of adjacent order statistics and is
median-unbiased.

22.3.1 Normal

For the normal density f = ϕ, the constant g(1/2) = 1/ϕ(z0.5) = 2.506628. Some
selected values of the other constants required for defining theVST for selected values
of r are given in Table 22.1. In Fig. 22.1, the top four plots show the performance of
the VST T15 defined by (22.10). The top left hand plot shows the Key together with
the estimate of it κ̂ = T15/

√
15 . The graph is only plotted for δ ≥ 0 because the Key

and its estimate are skew symmetric in δ. The top right hand plot shows the bias in
T15 is approximately 0.1, while the bottom left plot shows that the VST has stabilized
the variance to a value less than, but close to 1. In any case, the bias-squared of T15

is negligible compared to its variance (This is not the case in general, especially as r
approaches 0.5). The bottom right plot shows the empirical coverage probability of
nominal 95 % confidence intervals for δ based on samples of size n = 15, plotted as
a function of δ.

In the bottom plots of Fig. 22.1, the empirical coverage probabilities of nominal
95 % confidence intervals for δ based on the VST’s are shown for selected values
of r and n. The solid line is for n = 10, the red-dashed line is for n = 20, the
blue dotted line is for n = 40 and the magenta dot-dashed line is for n = 100. The
coverage probabilities are close to the nominal value for n in the range 20–100 for
r = 0.2, 0.25 and r = 0.3. Note that the coverage is not monotonically approaching
the nominal value with increasing n, but is nevertheless satisfactory even for small n.

22.3.2 Uniform

When the distribution belongs to a location-scale family generated by the uniform
distribution on [− 1, 1], the constants required for analysis are shown in Table 22.2.
Note the simplicity of the constants for r = 0.25; in this case, the VST is Tn =√
n sinh−1 (δ̂). The empirical coverage probabilities of nominal 95 % confidence
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Fig. 22.1 Normal Model: The top left plot shows the graph of the Key (22.11) (solid line) together
with the estimate κ̂ (dashed black line) based on n= 15 observations when r = 0.25. The top right
plot shows

√
15 times the bias of κ̂ . The bottom left plot depicts the standard deviations of T15;

and the bottom right plot shows the empirical coverages of nominal 95 % confidence intervals
for δ based on T15. Below are examples of empirical coverage probabilities based on the VST for
r = 0.2,0.25,0.3, and 0.35 and sample sizes n = 10, 20, 40, and 100
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Fig. 22.2 Uniform Model: Plots of empirical coverage probabilities based on the variance stabi-
lizing transformation (VST) defined by (22.10) for r = 0.2,0.25,0.3, and 0.35. The notation and
sample sizes are the same as for the normal model, and indeed, for the examples to follow

Table 22.2 Uniform model
constants for obtaining a
variance stabilizer of δ̂r

r IQRr g(r) h(r) ar br cr

0.20 1.2 2 0.980 1.2 0.667 1.021
0.25 1.0 2 1.000 1.0 1.000 1.000
0.30 0.8 2 0.980 0.8 1.500 1.021
0.35 0.6 2 0.917 0.6 2.333 1.091
0.40 0.4 2 0.800 0.4 4.000 1.250

intervals are quite good over the entire range of δ for n ≥ 20 and r = 0.2 to r = 0.3;
see Fig. 22.2.

22.3.3 Logistic

For the location-scale family generated by the the logistic distribution function
F (x) = 1/(1 + e−x), the required constants for variance stabilization are given
in Table 22.3. In Fig. 22.3 are shown examples of empirical coverages of nominal
95 % confidence intervals for δ. These plots demonstrate that sample sizes of 20 or
more will yield accurate confidence intervals for δ for these values of r .
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Table 22.3 Logistic model
constants for obtaining a
variance stabilizer of δ̂r

r IQRr g(r) h(r) ar br cr

0.20 2.773 6.250 3.062 1.386 1.220 0.653
0.25 2.197 5.333 2.667 1.099 1.473 0.750
0.30 1.695 4.762 2.333 0.847 1.895 0.857
0.35 1.238 4.396 2.014 0.619 2.647 0.993
0.40 0.811 4.167 1.667 0.405 4.224 1.200

22.3.4 Cauchy

For the location-scale family generated by the the Cauchy distribution with density
f (x) = 1/{π (1 + x2)}, the required constants for variance stabilization are given
in Table 22.4. In Fig. 22.4 are shown examples of empirical coverages of nominal
95 % confidence intervals for δ. Much larger sample sizes are required to obtain
adequate coverage than in the previous examples; this could be explained by the lack
of moments for the Cauchy model.

22.3.5 Double Exponential

For the location-scale family generated by the the double exponential distribution
with density f (x) = e−|x|/2, the required constants for variance stabilization are
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Fig. 22.3 Logistic Model: Examples of empirical coverage probabilities based on the variance
stabilizing transformation (VST) defined by (22.10) for r = 0.2,0.25,0.3, and 0.35
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Table 22.4 Cauchy model
constants for obtaining a
variance stabilizer of δ̂r

r IQRr g(r) h(r) ar br cr

0.20 2.753 9.093 4.455 1.752 2.619 0.353
0.25 2.000 6.283 3.142 1.273 2.467 0.500
0.30 1.453 4.800 2.351 0.925 2.619 0.668
0.35 1.019 3.957 1.813 0.649 3.167 0.866
0.40 0.650 3.473 1.389 0.414 4.571 1.131

given in Table 22.5. In Fig. 22.5 are shown examples of empirical coverages of
nominal 95 % confidence intervals for δ. Sample sizes of 100 or more appear to be
required to obtain satisfactory coverage, especially for δ near 0.

22.4 Testing for the Standardized Median

22.4.1 Choosing r

One of the reasons for estimating a parameter such as δr = α/(β IQR) for the
location-scale family Fα,β is that its sample version δ̂r = M/Rr is then automatically
robust to outliers in the sense that the breakdown point is min{r, 1−2r}. The examples
in the last section show that for short-tailed distributions, much smaller sample sizes
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Fig. 22.4 Cauchy Model: Examples of empirical coverage probabilities of nominal 95 % confidence
intervals for δ based on the variance stabilizing transformation (VST) given by (22.10) for r =
0.2,0.25,0.3, and 0.35
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Table 22.5 Double
exponential model constants
for obtaining a variance
stabilizer of δ̂r

r IQRr g(r) h(r) ar br cr

0.20 1.833 5.000 2.449 1.833 1.787 0.408
0.25 1.386 4.000 2.000 1.386 2.081 0.500
0.30 1.022 3.333 1.633 1.022 2.555 0.612
0.35 0.713 2.857 1.309 0.713 3.369 0.764
0.40 0.446 2.500 1.000 0.446 5.021 1.000

are required to obtain good coverage probability of δr , regardless of the choice of r
ranging from 0.2 to 0.35.

Also, the Key appears to be a decreasing function of r as it increases from 0 to
0.5, even though δr is increasing in r. Why is a large Key important? Consider the
Neyman–Pearson setting: a test of the null hypothesis δr = 0 against the alternative
δr > 0 is to be based on the VST Tn defined by (22.10). Because it is asymptotically
normal with mean

√
nK(δr ), variance 1, one can reject the hypothesis at level α if

Tn ≥ z1−α . Further, the power against alternative δr > 0 at this level is readily shown
to be

�(δr )
.= �(

√
nK(δr ) − z1−α) . (22.12)

This shows that larger K means more power at any given level, so one would want
to choose r small to maximize power. Of course the test is easily broken down by
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Fig. 22.5 Double Exponential Model: Plots of empirical coverage probabilities of confidence
intervals for δ based on the VST for r = 0.2,0.25,0.3 and r = 0.35
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outliers as r becomes small. Thus, a compromise value such as r = 0.25 to obtain
good power and outlier resistance is recommended.

We remark that the VST Tn can be interpreted as the evidence for the alternative
hypothesis. Its expectation factors into the square root of the sample size and the
Key, so the latter can be interpreted as the expected evidence per

√
n observation.

Moreover, Tn has a natural calibration scale in terms of its standard error, which
is unit normal. Thus, a value of Tn = 4 is interpreted as evidence 4 ± 1 for the
alternative that δr is positive. Values near 1.645 are considered “weak” evidence, 3.3
“moderate” evidence, and 5 “strong” evidence, for the alternative, see (Kulinskaya et
al. 2008). As seen earlier in this paper, the Key plays an important role in estimation
by confidence intervals. Another advantage of variance stabilized statistics is that
they can be readily combined in a meta-analysis of effects from multiple studies, as
shown in (Kulinskaya et al. 2008; Malloy et al. 2013; and Morgenthaler and Staudte
2012).

22.4.2 Toward a Distribution-Free Version

The choice of constant ar , br , and cr requires knowledge of g(r) and g(0.5) where
g(p) = 1/f (xp) for the f that generates the location-scale family. The Bloch and
Gastwirth (1968) and Siddiqui (1960) estimator of g(0.5), for example, divides the
sample median by a normalized IQR Rr(n), where r = r(n) = 1/2 − n−γ , with
0 < γ < 1 guaranteeing consistency of the estimator. Alternative estimates of
g(0.5) are also available in (McKean and Schrader 1984 and Sheather and McKean
1987). It is possible that the theory provided herein for a fixed range can be combined
with such estimates of the variance of quantiles to provide a desirable data-driven
choice of constants, and hence greatly reduce the assumptions on f .

22.5 Summary

We have derived a VST for the sample standardized median and demonstrated how
to use it for inference in the form of confidence intervals and tests. Evaluation of
examples shows that the sample sizes required for practical usage vary greatly, and
are much larger depending on the fatness of the tails of the underlying location-scale
family (Cauchy) or the peakedness at the median (double-expondential). It is possible
to extend the results to the asymmetric case, and it would be insightful to relate the
constants of the VST to measures of ‘peakedness’ based on quantiles as for example
found in (Jones and Pewsey 2011 and Ruppert 1987), and references therein. Even
better it would be useful to derive a distribution-free approach based on estimation
of the constants, which now require specification of the location-scale family.
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Chapter 23
Efficient Quantile Regression with Auxiliary
Information

Ursula U. Müller and Ingrid Van Keilegom

23.1 Introduction

Completely observed data. The quantile regression model (Koenker and Bassett
1978; Koenker 2005) for a random sample (Xi ,Yi), i = 1, . . . , n, assumes that
the conditional quantile of a response variable Y given a covariate vector X can be
modeled parametrically, i.e. it can be written as a parametric quantile regression
function qθ (X), θ ∈ R

d . In this chapter, we consider, more generally, a class of
regression models that can be written in the form

E{aϑ (X,Y )|X} = 0, aθ = (a1θ , ã
θ )
, (23.1)

where the true parameter ϑ belongs to the interior of some compact parameter space
� ⊂ R

d . The first component of the k-dimensional vector aθ is

a1θ (X,Y ) = p − 1{Y − qθ (X) < 0}, p ∈ (0, 1).

This specifies the familiar quantile regression model since

0 = E{a1ϑ (X,Y )|X} = E[p − 1{Y − qϑ (X) < 0}|X] (23.2)

⇐⇒ P {Y < qϑ (X)|X} = p.

The vector ãθ represents auxiliary information in the form of k − 1 conditional
parametric constraints. This is the case, for example, if there are reliable parametric
models for certain moments of the conditional distribution of Y given X, including
the conditional mean and the conditional variance.
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Note that the number of parameters, d , and the number of equations, k, are
unrelated. Later on we will transform the equations so as to obtain as many equations
as parameters. Also, note that the vector θ contains the parameters that determine
the model for the p-th quantile, as well as the parameters on which the auxiliary
information depends. Usually when we have auxiliary information the latter set is
part of (or equal to) the former, but this is not necessarily the case.

We are interested in finding an efficient estimator forϑ . Efficient estimation ofϑ in
model (23.1), with an arbitrary vector aθ of constraints, has been addressed by Müller
and Van Keilegom 2012. There we also briefly discuss the quantile regression model
(23.2) as an example of a one-dimensional constraint, without assuming the presence
of the additional vector ãθ . Let us discuss this model first. The usual estimator
under model (23.2) is based on the check function approach, and solves the quantile
regression estimating equation

n∑

i=1

q̇θ (Xi)[p − 1{Yi − qθ (Xi) < 0}] = 0

with respect to θ (see e.g., Koenker 2005) or more precisely, it minimizes

∥∥
n∑

i=1

q̇θ (Xi)[p − 1{Yi − qθ (Xi) < 0}]∥∥ (23.3)

with respect to θ , where ‖ · ‖ denotes the Euclidean norm, since an exact solution of
the earlier equation might not exist. Here, q̇θ (X) denotes the (d×1)-vector of partial
derivatives ∂/(∂θj ) qθ (X), j = 1, . . . , d . This is indeed an unbiased estimating
equation since

E(q̇ϑ (X)[p − 1{Y − qϑ (X) < 0}]) = E(q̇ϑ (X)E[p − 1{Y − qϑ (X) < 0}|X]) = 0.

This calculation shows that one could, more generally, obtain a consistent
estimator ϑ̂ by minimizing the norm of a weighted sum

∥∥
n∑

i=1

Wθ (Xi)[p − 1{Yi − qθ (Xi) < 0}]∥∥,

where Wθ is a d-dimensional vector of weights. Müller and Van Keilegom 2012
proved that an asymptotically efficient estimator of ϑ is obtained for the weight
vector

Wθ (X) = − fY |X{qθ (X)}q̇θ (X)

p2 + (1 − 2p)FY |X{qθ (X)}, (23.4)

with fY |X(y) = d
dy
FY |X(y) (provided it exists) and FY |X(y) = P {Y ≤ y|X}. A

simpler (but asymptotically equivalent) version of this estimator is based on weights

fY |X{qθ (X)}q̇θ (X), (23.5)

since the denominator in (23.4) equals p − p2 for θ = ϑ and hence it does not
need to be estimated. The weight vector is undetermined in both cases: it involves



23 Efficient Quantile Regression with Auxiliary Information 367

the unknown conditional density fY |X{qθ (X)} (and FY |X in the first case) and must
therefore be replaced by a suitable consistent estimator. Using these estimated weight
vectors in the estimating previous equation will yield two asymptotically efficient
estimators of ϑ .

Note that if we use the simpler weights (23.5), then an asymptotically efficient
estimator of ϑ is obtained by minimizing

∥∥
n∑

i=1

fY |X{qθ (Xi)}q̇θ (Xi)[p − 1{Yi − qθ (Xi) < 0}]∥∥, (23.6)

which is different from the widely used and commonly accepted estimator given
in (23.3), that corresponds to the check function approach, and that is in fact not
efficient.

In this chapter, we consider model (23.1) which, aside from (23.2), assumes that
auxiliary information in the form of a constraint E{ãϑ (X,Y )|X} = 0 is available.
This is related to Tang and Leng 2012 who consider the linear quantile regression
model with qβ(X) = X
β, where β is a parameter vector. They assume additional
information in the form of an unconditional constraint, E{ãϑ (X,Y )} = 0, and sug-
gest an empirical likelihood approach. Such a constraint applies if, for example, there
is knowledge about unconditional moments of the joint distribution of (X,Y ). This
is conceptually different from our model, since models for moments of the condi-
tional distribution are not included, e.g., models for the conditional mean E(Y |X) or
the variance function mentioned earlier. Another related paper that does consider a
conditional constraint is by Qin and Wu (2001), who estimate conditional quantiles.
However, neither the quantiles nor the constraint are modeled parametrically. There
is more literature dating back several years on estimating unconditional quantiles
when auxiliary information is available; see, e.g., (Kuk and Mak 1989; Rao et al.
1990; Zhang 1997).

Missing data. As in Müller and Van Keilegom (2012) we now assume further
that some responses Y are allowed to be missing at random (MAR). This means
that one has independent identically distributed (i.i.d.) observations (Xi , δiYi , δi),
i = 1, . . . , n, having the same distribution as (X, δY , δ), with indicator δ = 1 if Y is
observed and δ = 0 if Y is missing. In particular, one assumes that the missingness
mechanism depends only on X,

P (δ = 1|X,Y ) = P (δ = 1|X) = π (X),

where π ( ·) is the propensity score. This implies that Y and δ are conditionally in-
dependent given X. One reason for considering the MAR model is that it contains
the “full model”, where no data are missing, as a special case with π ( ·) = 1 (and
all indicators δ = 1), so both models can be treated together. Of course, this does not
always apply since the construction of reasonable estimators can be quite different,
depending on the model. Here we are specifically interested in estimating the param-
eter ϑ . In this case, we can work with a simple complete case estimator (an estimator
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for the full model that ignores observations that are only partially observed). One
possibility is to estimate ϑ by a minimizer of

∥∥
n∑

i=1

δiWθ (Xi)aθ (Xi ,Yi)
∥∥

with respect to θ , where Wθ is a d × k weight matrix. In this way, we obtain a
system of d equations with d unknown parameters, although we started off with k

constraints. That the weighted previous sum leads to an unbiased estimator is easy
to see using the fact that δ and Y are conditionally independent given X under the
MAR assumption. Beyond that, one can show that a complete case version of any
consistent estimator ofϑ is again consistent. This can be seen by applying the transfer
principle for complete case statistics, introduced by Koul et al. 2012, which makes it
possible to adapt results for the full model to the MAR model. The transfer principle
provides the limiting distribution of a complete case version of a statistic as the
limiting distribution of that statistic conditional on δ = 1. To verify consistency, one
only has to show that the functional of interest, i.e., in our case the parameter vector
ϑ , is the same in the unconditional and in the conditional model. This is indeed true,
since ϑ is in both models defined as a solution of the same conditional constraint:

0 = E{aϑ (X,Y )|X} = E(δ|X)E{aϑ (X,Y )|X}
E(δ|X)

= E{δaϑ (X,Y )|X}
E(δ|X)

= E{aϑ (X,Y )|X, δ = 1}.
So far we know that an efficient estimator of ϑ in the (unextended) quantile

regression model with MAR responses is given as a minimizer of

∥∥
n∑

i=1

δiŴθ (Xi)[p − 1{Yi − qθ (Xi) < 0}]∥∥

with respect to θ , where Ŵθ is a suitable estimator of the weight vector Wθ given in
(23.4) or (23.5) (see Sect. 3.4 in Müller and Van Keilegom 2012).

In the next section, we will provide the formulas for an efficient estimator of
ϑ in the general quantile regression model (23.1) with auxiliary information in the
form of a general conditional constraint. In Sect. 23.3 we discuss three examples of
auxiliary information, namely when we have a parametric model for the mean and
for the median, respectively, and when we have two responses that share the same
p-th quantile. Section 23.4 shows the results of a small simulation study, and we end
this chapter in Sect. 23.5 with some general conclusions.
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23.2 The Estimator

As in Müller and Van Keilegom (2012) we write

�θ (X,Y ) = −Wθ (X)aθ (X,Y ), I = E{δ�ϑ (X,Y )�ϑ (X,Y )
},

Wθ (X) = [
∂

∂θ
E{aθ (X,Y )|X}]
Aθ (X)−1, (23.7)

now with

aθ (X,Y ) =
(
a1θ (X,Y )

ãθ (X,Y )

)
=
(
p − 1{Y − qθ (X) < 0}

ãθ (X,Y )

)
, (23.8)

where for θ = ϑ the k × k matrix Aϑ (X) is given by

Aϑ (X) = E{aϑ (X,Y )aϑ (X,Y )
|X},
and where for θ �= ϑ , the matrix Aθ (X) is obtained by replacing ϑ by θ in the
expression of Aϑ (X). Note that, in general Aθ (X) and E{aθ (X,Y )aθ (X,Y )
|X}
are different, since in certain entries of the matrix Aϑ (X), the parameter ϑ will
disappear when using the underlying model assumptions. For example, the first
entry is E([p − 1{Y − qϑ (X) < 0}]2|X) = p2 + (1 − 2p)FY |X{qϑ (X)} = p − p2,
which is independent of ϑ .

The estimator in model (23.1) can then be written ϑ̂ = argminθ‖
∑n

i=1δi
�θ (Xi ,Yi)‖. In the full model, we simply set δi = 1 for i = 1, . . . , n, i.e., the indi-
cators δ can be ignored. Under the assumptions stated in Müller and Van Keilegom
(2012), ϑ̂ is asymptotically linear,

n1/2(ϑ̂ − ϑ) = I−1n−1/2
n∑

i=1

δi�ϑ (Xi ,Yi) + op(1),

and efficient in the sense of Hájek and Le Cam.
Let us take a closer look at the formula of the weight matrix. The estimating

equation for model (23.1) involves Wθ and aθ given in equations (23.7) and (23.8).
Using the specific form of aθ , the matrix Wθ (X) computes to

Wθ (X) =
(
−fY |X{qθ (X)}q̇θ (X)

∂

∂θ
E{ãθ (X,Y )
|X}

)
Aθ (X)−1, (23.9)

where Aϑ (X) is the matrix
(
p − p2 E([p − 1{Y < qϑ (X)}]ãϑ (X,Y )
|X)
E([p − 1{Y < qϑ (X)}]ãϑ (X,Y )|X) E{ãϑ (X,Y )ãϑ (X,Y )
|X}

)
,

and where the matrix Aθ (X) is obtained by replacing in the formula of Aϑ (X) every
ϑ that does not disappear after using the model assumptions, by θ .
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In Sect. 3.1 of Müller and Van Keilegom (2012), it is shown that if we replace
the weight matrix Wθ (X) given in (23.9) by an estimator Ŵθ (X) that is uniformly
consistent in θ and x, i.e., supθ∈� supx ‖Ŵθ (x)−Wθ (x)‖ = op(1), then the resulting
estimator (that depends now on Ŵθ instead of Wθ ) remains asymptotically efficient.

Note that the weight matrixWθ (X) involves, among others, the conditional density
fY |X. The density can be estimated by using e.g., a kernel smoother of the form

f̂Y |X=x(y) =
n∑

i=1

δikb(x −Xi)kh(y − Yi)∑n
i=1δikb(x −Xi)

,

with kernel k and smoothing parameters b and h, and where kb( ·) = k(·/b)/b for
any bandwidth b. The estimation of the other components of the weight matrixWθ (X)
depends on the specific form of the auxiliary information. We will consider three
examples in the next section.

23.3 Examples

Example 1. We start with a situation in which we have some auxiliary information
concerning the conditional mean r(X) = E(Y |X). Suppose that r(X) can be modeled
parametrically r(X) = rϑ (X). The function ãθ (X,Y ) is given by

ãθ (X,Y ) = Y − rθ (X),

i.e., k = 2 and, for example, rθ (X) = θ
X. Some straightforward algebra shows
that the optimal weight matrix is then given by

Wθ (X) = (−fY |X{qθ (X)}q̇θ (X) − ṙθ (X)
)
Aθ (X)−1,

where Aθ (X) is the 2 × 2 matrix
(
p − p2 p rθ (X) − E(1{Y < qθ (X)}]Y |X)
p rθ (X) − E(1{Y < qθ (X)}]Y |X) Var(Y |X)

)
.

The conditional varianceVar(Y |X) can be estimated by standard kernel smoothers,
whereas a consistent estimator of the term E(1{Y < qθ (X)}]Y |X) in the off-diagonal
element of the matrix Aθ (X) is given by

n∑

i=1

δikb(x −Xi)1{Yi < qθ (Xi)}Yi∑n
i=1δikb(x −Xi)

,

with kernel k and smoothing parameter b.

Example 2. Let us now consider the case when p �= 1/2, i.e., we want to estimate
quantiles other than the median, and we have some auxiliary information regarding
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the median. For instance, we know that the p-th quantile and the median are parallel
functions (of X). Let us denote the parametric model for the median by vθ , and so

ãθ (X,Y ) = 1/2 − 1{Y − vθ (X) < 0}.
In this case, it is easily seen that

Wθ (X) = (−fY |X{qθ (X)}q̇θ (X) − fY |X{vθ (X)}v̇θ (X)
)
Aθ (X)−1,

where

Aθ (X) =
(
p − p2 p ∧ (1/2) − p/2
p ∧ (1/2) − p/2 1/4

)
,

since for θ = ϑ the off-diagonal element is given by

p/2 − pFY |X{vϑ (X)} − (1/2)FY |X{qϑ (X)} + FY |X{qϑ (X) ∧ vϑ (X)}
= −p/2 + {p ∧ (1/2)}.

The estimation of this weight matrix only involves the estimation of the conditional
density fY |X, which was discussed in the previous section.

Example 3. The model considered in this chapter can be extended to the case
where we have a multivariate response Y = (Y1, . . . ,YdY )
. For simplicity, we
consider the bivariate case. Let (Xi , δiYi ,Yi), i = 1, . . . , n, be an i.i.d. sample, where
Yi = (Y1i ,Y2i)
, Xi = (X1i , . . . ,XdXi)
 and δi = (δ1i , δ2i)
. We could then consider
the case where the two responses have the same conditional p-th quantile, which
means that we should take

a1θ (X,Y ) = p − I {Y1 − qθ (X) < 0},
and

ãθ (X,Y ) = p − I {Y2 − qθ (X) < 0},
and the true parameter vector ϑ satisfies FY1|X{qϑ (X)} = p = FY2|X{qϑ (X)}. As
in the previous two examples, it can be seen that the weight matrix that leads to an
asymptotically efficient estimator of ϑ is given by

Wθ (X) = (−fY1|X{qθ (X)} − fY2|X{qθ (X)})q̇θ (X)Aθ (X)−1

with

Aθ (X) =
(
p − p2 FY1,Y2|X{qθ (X), qθ (X)} − p2

FY1,Y2|X{qθ (X), qθ (X)} − p2) p − p2

)
,

where FY1,Y2|X(y1, y2) = P (Y1 ≤ y1,Y2 ≤ y2|X). To verify the formula for the
off-diagonal element of Aθ (X) consider the corresponding entry in Aϑ (X), which
computes to

p2 − p[FY1|X{qϑ (X)} + FY2|X{qϑ (X)}] + FY1,Y2|X{qϑ (X), qϑ (X)}
= −p2 + FY1,Y2|X{qϑ (X), qϑ (X)}.
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Table 23.1 Simulated MSEs of parameter estimators of qϑ (X) = ϑ1 + ϑ2X

Estimators of ϑ1 Estimators of ϑ2

σ (x) p QR1 QR2 EFF QR1 QR2 EFF

0.6 − 0.5x 0.25 0.00632 0.00637 0.00143 0.01083 0.00805 0.00271
0.5 0.00546 0.00513 0.00095 0.00902 0.00601 0.00190
0.75 0.00523 0.00502 0.00177 0.00610 0.00438 0.00358

0.6 + 0.5x 0.25 0.00248 0.00151 0.00111 0.00294 0.00158 0.00169
0.5 0.00287 0.00177 0.00088 0.00495 0.00250 0.00110
0.75 0.00311 0.00209 0.00169 0.00579 0.00365 0.00149

The table entries give the simulated mean squared errors (MSE) for three estimators of ϑ1 and ϑ2.
The estimator “QR1” is based on the check function approach (23.3), the estimator “QR2” is the
minimizer of (23.6), and “EFF” is the efficient estimator that uses the auxiliary information that rϑ
is linear, rϑ (X) = ϑ3X.

23.4 Simulations

In order to gain some insight into the performance of our proposed method if n is
finite, we conducted a small simulation study based on 50,000 simulated samples
of size n = 100. In this study, we consider only the case where all responses
are observed. Since our estimator for missing data is a complete case statistic, this
essentially means that we use all n = 100 data pairs (X,Y ), and not just a proportion.
The comparisons are equally meaningful.

We considered the scenario from Example 1 in the previous section, with a linear
quantile regression function qϑ (X) = ϑ1 + ϑ2X, and with the auxiliary information
that the mean regression function is linear as well, E(Y |X) = rϑ (X) = ϑ3X. The
parameters of interest areϑ1 andϑ2, whereasϑ3 can be regarded a nuisance parameter.
In order to create this scenario, we generated responses Y givenX = x from a normal
distribution with mean rϑ (x) = ϑ3x (with ϑ3 = 1) and standard deviation σ (x) =
a+bx. Modeling rϑ and σ linearly suffices to ensure that the quantile function is also
linear: we have p = Φ[{qϑ (x) − rϑ (x)}/σ (x)] (see (23.2)), with Φ the distribution
function of the standard normal distribution. Solving this with respect to qϑ (x) gives
qϑ (x) = ϑ1 + ϑ2x with ϑ1 = ϑ1(p) = a�−1(p), and ϑ2 = ϑ2(p) = ϑ3 + b�−1(p).
The covariates X were generated from a uniform(−1, 1) distribution.

The results are in Table 23.1. For simplicity, we used the true (3 × 2) weight ma-
trix Wθ to implement our efficient estimator. We compared it with the two estimators
discussed in the introduction that use only the quantile regression structure, namely
the check function approach (23.3) and the estimator that minimizes (23.6) (based on
weights (23.5)). To compute the latter estimator we also used the true weights. Com-
paring the estimators that employ the true weights with the check function approach
(which does not require estimation of weights) may not be quite fair, we neverthe-
less find it interesting since the results make us feel confident that our estimator will
outperform the usual approach even if an estimated weight matrix Ŵθ is used.

Let us briefly discuss these results. We considered two different slopes for σ (x) =
0.6 + bx, namely b = −0.5 and b = 0.5. The first case yields a variance reduction
and the second case a variance gain as x increases from −1 to 1. In most cases, the
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efficient estimator (EFF) is clearly better than the two approaches that do not exploit
the auxiliary information. This is remarkable, in particular when one considers that
the optimization algorithm involves an additional parameter. The efficient estimator
performs best in the case of a conditional median (p = 0.5), which is not surprising
since we use a normal density fY |X in our simulations. The conditional median qϑ
and the conditional mean rϑ are the same in this setting.

The proposed estimator lacks performance only in the case p = 0.25 with an
increasing variance (b = 0.5). Here, the estimator QR2 is slightly better for ϑ2.
Simulations with larger sample sizes confirm, however, that our estimator indeed
outperforms QR2 asymptotically. (For example, for n = 500 our simulated MSEs
for QR2 and EFF were 0.00097 and 0.00048, respectively.)

Comparing the two estimators QR1 and QR2 that use only the quantile regression
structure, we notice that both estimate the intercept similarly well in the case of a
decreasing variance function. In all other cases, the weighted estimator QR2 is better
than the check function approach QR1. Since QR2 is efficient in the original quantile
regression model that does not assume auxiliary information, this corresponds to the
theoretical findings.

23.5 Concluding Remarks

In this chapter, we studied a parametric quantile regression model in which the re-
sponses are allowed to be missing at random (but do not have to be), and in which, the
covariates are always observed. We were interested in the estimation of a particular
conditional quantile when auxiliary information regarding that quantile is available.
We constructed an asymptotically efficient estimator of the model parameters based
on weighted estimating equations, and studied three examples in more detail. One of
these examples was further examined via a small simulation study, which confirmed
the effectiveness of the proposed estimation procedure.

There are numerous other situations where auxiliary information is available.
We could, for example, have information regarding the variance, the interquartile
range, or the quantile of order 1 − p. It would also be interesting to study a model
where responses are subject to censoring, or the case with missing covariates. Such
extensions definitely seem feasible, but will be somewhat more challenging from
a technical point of view. Finally, an interesting project for future work would be
to develop an efficient empirical likelihood-based method to estimate conditional
quantiles, in a similar spirit as Qin and Lawless (1994) or Tang and Leng (2012).
This would provide an alternative (asymptotically equivalent) approach to exploit
information in the form of (conditional) constraints. Although our estimator cannot
be outperformed asymptotically, it is nevertheless possible that there are situations
where the empirical likelihood approach performs better for moderate sample sizes,
or where it has computational advantages.
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Chapter 24
Nonuniform Approximations for Sums of
Discrete m-Dependent Random Variables

P. Vellaisamy and V. Čekanavičius

24.1 Introduction

Nonuniform estimates for normal approximation are well known, see the classical
results in Chap. 5 of Petrov (1995) and the references (Chen and Shao 2001, Chen
and Shao 2004 and Nefedova and Shevtsova 2012) for some recent developments.
On the other hand, nonuniform estimates for discrete approximations are only a few.
For example, the Poisson approximation to Poisson binomial distribution has been
considered in (Neammanee 2003) and translated Poisson approximation for inde-
pendent lattice summands via the Stein method has been discussed in Barbour and
Choi (2004). Some general estimates for independent summands under assumption
of matching of pseudomoments were obtained in Čekanavičius (1993). For possi-
bly dependent Bernoulli variables, nonuniform estimates for Poisson approximation
problems were discussed in Teerapabolarn and Santiwipanont (2007). However, the
estimates obtained had a better accuracy than estimates in total variation only for x
larger than exponent of the sum’s mean. In Čekanavičius and Petrauskienė (2011),
2-runs statistic was approximated by compound Poisson distribution. In this paper,
we obtain nonuniform estimates for Poisson, compound Poisson, translated Pois-
son, negative binomial and binomial approximations, under a quite general set of
assumptions.

We recall that the sequence of random variables {Xk}k≥1 is called m-
dependent if, for 1 < s < t < ∞, t − s > m, the sigma algebras generated
by X1, . . . ,Xs and Xt ,Xt+1 . . . are independent. Without loss of generality,
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V. Čekanavičius
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we can reduce the sum of m-dependent variables to the sum of 1-dependent ones,
by grouping consecutive m summands. Therefore, we consider henceforth, without
loss of generality, the sum Sn = X1 +X2 + · · · +Xn of non-identically distributed
1-dependent random variables concentrated on nonnegative integers.

We denote the distribution function and the characteristic function of Sn by
Fn(x) and F̂n(t), respectively. Similarly, for a signed measure M concentrated
on the set N of nonnegative integers, we denote by M(x) = ∑x

k=0 M{k} and
M̂(t) =∑∞

k=0 eitkM{k}, the analogues of distribution function and Fourier-Stieltjes
transform, respectively. Though our aim is to obtain the nonuniform estimates, we
obtain also estimates for Wasserstein norm defined as

‖M‖W =
∞∑

j=0

|M(j )|.

Note that Wasserstein norm is stronger than total variation norm defined by ‖M‖
=∑∞

j=0 |M{j}|.
Next we introduce the approximations considered in this paper. Let

λ = ESn, �2 = 1

2
(VarSn − ESn).

For brevity, let z(t) = eit − 1. Also, let � and �1 respectively denote the Poisson
distribution with parameter λ and its second order difference multiplied by �2. More
precisely,

�̂(t) = exp{λz}, �̂1(t) = �̂(t)�2z2.

It is clear that�+�1 is second-order (and, consequently, two-parametric) Poisson
approximation. As an alternative to the Poisson based two-parametric approxima-
tion, we choose compound Poisson measure G with the following Fourier-Stieltjes
transform

Ĝ(t) = exp{λz + �2z2}.
The approximation G was used in many papers, see Barbour and Čekanavičius
(2002), Barbour and Xia (1999), Roos (2003) and the references therein. If �2 < 0,
then G becomes signed measure, which is not always convenient and natural
for approximation to nonnegative Sn. Therefore, we define next three distribu-
tional approximations. Translated Poisson (T P ) approximation has the following
characteristic function:

T̂P(t) = exp{-−2�2.it + (λ+ 2�2 + δ̃)z} = exp{λz + (2�2 + δ̃)(z − it)}.

Here -−2�2. and δ̃ are respectively the integer part and the fractional part of −2�2,
so that −2�2 = -−2�2. + δ̃, 0 � δ̃ < 1. The TP approximation was investigated
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in numerous papers, see, for example, Barbour and Čekanavičius (2002), Barbour
and Choi (2004), Röllin (2005) and Röllin (2007). If ESn < VarSn, then one can
apply the negative binomial approximation, which is defined in the following way:

NB{j} = �(r + j )

j !�(r)
qr (1 − q)j , (j ∈ Z+),

r(1 − q)

q
= λ, r

(1 − q

q

)2 = 2�2.

Note that

N̂B(t) =
( q

1 − (1 − q)eit

)r =
(

1 − (1 − q)z

q

)−r

.

If VarSn < ESn, the more natural approximation is the binomial one defined as
follows:

B̂i(t) = (1 + pz)N , N = -Ñ., Ñ = λ2

2|�2| , p̄ = λ

N
ε = Ñ −N.

Note that symbols q and p are not related and, in general, q + p �= 1.
Finally, we introduce some technical notations, related to the method of proof.

Let {Yk}k≥1 be a sequence of arbitrary real or complex-valued random variables. We
assume that Ê(Y1) = EY1 and, for k � 2, define Ê(Y1,Y2, · · · ,Yk) by

Ê(Y1,Y2, · · · ,Yk) = EY1Y2 · · ·Yk −
k−1∑

j=1

Ê(Y1, · · · ,Yj )EYj+1 · · ·Yk.

Let

Ê+(X1) = EX1, Ê+(X1,X2) = EX1X2 + EX1EX2,

Ê+(X1, . . . ,Xk) = EX1 . . . Xk +
k−1∑

j=1

Ê+(X1, . . . ,Xj )EXj+1Xj+2 · · ·Xk ,

Ê+
2 (Xk−1,Xk) = Ê+(Xk−1(Xk−1 − 1),Xk) + Ê+(Xk−1,Xk(Xk − 1)),

Ê+
2 (Xk−2,Xk−1,Xk) = Ê+(Xk−2(Xk−2 − 1),Xk−1,Xk)

+ Ê+(Xk−2,Xk−1(Xk−1 − 1),Xk).

We define j -th factorial moment of Xk by νj (k) = EXk(Xk − 1) · · · (Xk − j + 1),
(k = 1, 2, . . . , n, j = 1, 2, . . . ). For the sake of convenience, we assume that Xk ≡ 0
and νj (k) = 0 if k � 0 and

∑n
k = 0 if k > n. Next, we define remainder terms R0

and R1, which appear in the main results, as

R0 =
n∑

k=1

{
ν2(k) + ν2

1 (k) + EXk−1Xk

}
,
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R1 =
n∑

k=1

{
ν3

1 (k) + ν1(k)ν2(k) + ν3(k) + [ν1(k − 2) + ν1(k − 1) + ν1(k)] EXk−1Xk

+ Ê+
2 (Xk−1,Xk) + Ê+(Xk−2,Xk−1,Xk)

}
.

We use symbol C to denote (in general different) positive absolute constants.

24.2 The Main Results

All the results are obtained under the following conditions:

ν1(k) � 1/100, ν2(k) � ν1(k), |Xk| � C0, (k = 1, 2, . . . , n), (24.1)

λ � 1,
n∑

k=1

ν2(k) � λ

20
,

n∑

k=2

|Cov(Xk−1,Xk)| � λ

20
. (24.2)

Assumptions (24.1) and (24.2) are rather restrictive. However, they (a) allow to
include independent random variables as partial case of general results and (b) are
satisfied for many cases of k-runs and (k1, k2)-events. The method of proof does not
allow to get small constants. Therefore, we have concentrated our efforts on the order
of the accuracy of approximation. Next, we state the main results of this paper.

Theorem 2.1 Let conditions (24.1) and (24.2) be satisfied. Then, for any x ∈ N,

(
1 + (x − λ)2

λ

)
|Fn(x) −�(x)| � C1

R0

λ
, (24.3)

(
1 + (x − λ)2

λ

)
|Fn(x) −�(x) −�1(x)| � C2

(
R2

0

λ2
+ R1

λ
√
λ

)
, (24.4)

(
1 + (x − λ)2

λ

)
|Fn(x) − G(x)| � C3

R1

λ
√
λ

, (24.5)

(
1 + (x − λ)2

λ

)
|Fn(x) − TP(x)| � C4

(
R1 + |�2|

λ
√
λ

+ δ̃

λ

)

. (24.6)

If in addition �2 > 0, then

(
1 + (x − λ)2

λ

)
|Fn(x) − NB(x)| � C5

(
R1

λ
√
λ
+ �2

2

λ2
√
λ

)
. (24.7)

If instead �2 < 0, then

(
1 + (x − λ)2

λ

)
|Fn(x) − Bi(x)| � C6

(
R1

λ
√
λ
+ �2

2

λ2
√
λ

)
. (24.8)
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Remark 2.1 Nonuniform normal estimates usually match estimates in Kolmogorov
metric. Similarly, the bounds in (24.3)-(24.8) match estimates in total variation:

‖Fn −�‖ � C7
R0

λ
, ‖Fn −�−�1‖ � C8

(
R2

0

λ2
+ R1

λ
√
λ

)
, ‖Fn − G‖ � C9

R1

λ
√
λ

,

and etc., see Čekanavičius and Vellaisamy (2013).
Estimates for Wasserstein metric easily follow by summing up nonuniform

estimates.

Theorem 2.2 Let conditions (24.1) and (24.2) be satisfied. Then,

‖Fn −�‖W � C10
R0√
λ

, (24.9)

‖Fn −�−�1‖W � C11

(
R2

0

λ
√
λ
+ R1

λ

)
, (24.10)

‖Fn − G‖W � C12
R1

λ
, (24.11)

‖Fn − TP‖W � C13

(
R1 + |�2|

λ
+ δ̃√

λ

)

. (24.12)

When in addition �2 > 0, we have

‖Fn − NB‖W � C14

(
R1

λ
+ �2

2

λ2

)
, (24.13)

and when �2 < 0, we have

‖Fn − Bi‖W � C15

(
R1

λ
+ �2

2

λ2

)
. (24.14)

Observe that the local nonuniform estimates have better order of accuracy.

Theorem 2.3 Let conditions (24.1) and (24.2) hold. Then, for any x ∈ N,

(
1 + (x − λ)2

λ

)
|Fn{x} −�{x}| � C16

R0

λ
√
λ

, (24.15)

(
1 + (x − λ)2

λ

)
|Fn{x} −�{x} −�1{x}| � C17

(
R2

0

λ2
√
λ
+ R1

λ2

)
, (24.16)

(
1 + (x − λ)2

λ

)
|Fn{x} − G{x}| � C18

R1

λ2
, (24.17)

(
1 + (x − λ)2

λ

)
|Fn{x} − TP{x}| � C19

(
R1 + |�2|

λ2
+ δ̃

λ
√
λ

)

. (24.18)
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If in addition �2 > 0, then

(
1 + (x − λ)2

λ

)
|Fn{x} − NB{x}| � C20

(R1

λ2
+ �2

2

λ3

)
. (24.19)

If instead �2 < 0, then

(
1 + (x − λ)2

λ

)
|Fn{x} − Bi{x}| � C21

(R1

λ2
+ �2

2

λ3

)
. (24.20)

Remark 2.2 (i) Estimates in (24.15)-(24.20) match estimates in local metric, see
Čekanavičius and Vellaisamy (2013).
(ii) Consider the case of independent Bernoulli variables with pj � 1/20 and λ � 1.
Then, for all integers x, Poisson approximation is of the order

C
∑n

j=1 p
2
j

(1 + (x − λ)2/λ)λ
√
λ

,

which is usually much better than

min
(

x−1, λ−1
) n∑

j=1

p2
j

from Neammanee (2003).

24.3 Some Applications

(i) Asymptotically sharp constant for Poisson approximation to Poisson bi-
nomial distribution. Formally, independent random variables make a subset of
1-dependent variables. Therefore, one can rightly expect that results of the pre-
vious section apply to independent summands as well. We exemplify this fact by
considering one of the best known cases in Poisson approximation theory. Let
W = ξ1 + ξ2 + · · · + ξn, where ξi are independent Bernoulli variables with
P (ξi = 1) = 1 − P (ξi = 0) = pi . Let λ = ∑n

1 pi , λ2 = ∑n
1 p

2
i . As shown in

Barbour and Xia (2006) (see Eq. (1.8)),

‖L(W ) −�‖W � 1.1437λ2√
λ

. (24.21)

Though absolute constant in (24.21) is small, we shall show that asymptotically sharp
constant is much smaller. Let max

i
pi → 0 and λ → ∞, as n → ∞. Then

lim
n→∞

√
λ

λ2
‖L(W ) −�‖W = 1√

2π
� 0.399. (24.22)
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Indeed, we have
∣∣∣∣‖L(W ) −�‖W − λ2√

2πλ
| � ‖L(W ) −�−�1‖W + |‖�1‖W − λ2√

2πλ

∣∣∣∣ .

If max
i

pi � 1/20 and λ � 1, then it follows from (24.10) that

‖L(W ) −�−�1‖W � Cλ2√
λ

(
max

j
pj + 1√

λ

)
.

For the estimation of the second difference, we require some notations for measures.
Let Z be a measure, corresponding to Fourier-Stieltjes transform z(t) = (eit − 1).
Let product and powers of measures be understood in the convolution sense. Then,
by the properties of norms and Proposition 4 from Roos (1999) (see also Lemma
6.2 in Čekanavičius and Vellaisamy (2013)), we get

∣
∣
∣
∣‖�1‖W − λ2√

2πλ

∣
∣
∣
∣ =

∣
∣
∣
∣
λ2

2
‖�Z2‖

W
− λ2√

2πλ

∣
∣
∣
∣ =

λ2

2

∣
∣
∣
∣‖�Z2‖W −

√
2/π√
λ

∣
∣
∣
∣

= λ2

2

∣∣∣∣‖�Z‖ −
√

2/π√
λ

∣∣∣∣ �
Cλ2

2λ
= λ2√

λ

C

2
√
λ
.

Thus, for max
i

pi � 1/20 and λ � 1, we obtain asymptotically sharp norm estimate

∣∣∣∣‖L(W ) −�‖W − λ2√
2πλ

∣∣∣∣ �
Cλ2√

λ

(
max

j
pj + 1√

λ

)
,

which is even more general than (24.22).
(ii) Negative binomial approximation to 2-runs The k-runs (and especially
2-runs) statistic is one of the best investigated cases of sums of dependent dis-
crete random variables, see Wang and Xia (2008) and the references therein. Let Sn

= X1 +X2 + · · · +Xn, where Xi = ηiηi+1 and ηj ∼ Be(p), (j = 1, 2, . . . , n+ 1)
are independent Bernoulli variables. Then Sn is called 2-runs statistic. It is known
that then

λ = np2, �2 = np3(2 − 3p) − 2p3(1 − p)

2
.

Let p � 1/20 and np2 � 1. Then, from (24.7) it follows for any x ∈ N,
(

1 + (x − λ)2

λ

)
|Fn(x) − NB(x)| � C

p√
n
.

This estimate has the same order as the estimate in total variation, see and Brown
and Xia (2001) and Čekanavičius and Vellaisamy (2013).
(iii) Binomial approximation to (k1, k2)-events Let ηi be independent Bernoulli
Be(p) (0 < p < 1) variables and let Yj = (1 − ηj−m+1) · · · (1 −
ηj−k2 )ηj−k2+1 · · · ηj−1ηj , j = m,m + 1, . . . , n, k1 + k2 = m. Further, we assume
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that k1 > 0 and k2 > 0. Then N (n; k1, k2) = Ym+Ym+1+· · ·+Yn denote the number
of (k1, k2)-events and we denote its distribution by H. The Poisson approximation to
H has been considered in Vellaisamy (2004). Let a(p) = (1 − p)k1pk2 .

Note that Y1,Y2, . . . are m-dependent. However, one can group summands in the
following natural way:

N (n; k1, k2) = (Ym + Ym+1 + · · · + Y2m−1) + (Y2m + Y2m+1 + · · · + Y3m−1) + . . .

= X1 +X2 + . . . .

Each Xj , with probable exception of the last one, contains m summands. It is
not difficult to check that X1,X2, . . . are 1-dependent Bernoulli variables. Then all
parameters can be written explicitly. SetN = -Ñ. be the integer part of Ñ defined by

Ñ = (n−m+ 1)2

(n−m+ 1)(2m− 1) −m(m− 1)
, p̄ = (n−m+ 1)a(p)

N
.

It is known (see Čekanavičius and Vellaisamy (2013)) that

λ =(n−m+ 1)a(p), �2 = −a2(p)

2
[(n−m+ 1)(2 m− 1) −m(m− 1)],

R1 � C(n−m+ 1)m2a3(p).

Let now λ ≥ 1 and ma(p) � 0.01. Then it follows from (24.8) that, for any x ∈ N,

(
1 + (x − λ)2

λ

)
|H(x) − Bi(x)| � C

a3/2(p)m2

√
n−m+ 1

.

24.4 Auxiliary results

Let θ denote a real or complex quantity satisfying |θ | � 1. Moreover, let Zj =
exp{itXj } − 1, �j ,k = Ê(Zj ,Zj+1, . . . ,Zk). As before, we assume that νj (k) = 0
and Xk = 0 for k � 0 and z(t) = eit − 1. Also, we omit the argument t , wherever
possible and, for example, write z instead of z(t). Hereafter, the primes denote the
derivatives with respect to t .

Lemma 4.1 Let X be concentrated on nonnegative integers and ν3 < ∞. Then, for
all t ∈ R,

Eexp{itX} = 1 + ν1z + ν2
z2

2
+ θ

ν3|z|3
6

,

E(exp{itX})′ = ν1z′ + ν2
(z2)′

2
+ θ

ν3|z|2
2

,

E(exp{itX})′′ = ν1z′′ + ν2
(z2)′′

2
+ 2θν3|z|.
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Proof First equality is well known expansion of characteristic function in factorial
moments. The other two equalities also easily follow from expansions in powers of
z. For example,

(eitX)′′ = i2X2eitX = i2X(X − 1)(eit )2eit(X−2) + i2eitXeit(X−1)

= i2(eit )2X(X − 1)[1 + θ (X − 2)|z|]
+ i2eitX[1 + (X − 1)z + θ (X − 1)(X − 2)|z|2/2]

= Xz′′ + X(X − 1)

2
(z2)′′ + 2θX(X − 1)(X − 2)|z|. � (24.23)

Lemma 4.2 (Heinrich 1982) Let Y1,Y2, . . . ,Yk be 1-dependent complex-valued
random variables with E|Ym|2 < ∞, 1 ≤ m ≤ k. Then

|̂E(Y1,Y2, · · · ,Yk)| � 2k−1
k∏

m=1

(E|Ym|2)1/2.

Lemma 4.3 Let conditions (24.1) be satisfied and j < k − 1. Then, for all real t ,

|�j ,k| � 4k−j |z|
k∏

l=j

√
ν1(l), (24.24)

|� ′
j ,k| � 4k−j |z|(k − j + 1)

k∏

l=j

√
ν1(l), (24.25)

|� ′′
j ,k| �

√
2C04k−j |z|(k − j + 1)(k − j )

k∏

l=j

√
ν1(l). (24.26)

Proof First two estimates follow from more general estimates in (47) and Lemma
7.5 in Čekanavičius and Vellaisamy (2013). Note also the following inequalities:

|z| � 2, |Zk| � 2, |Zk| � Xk|z|, EX2
i = ν2(i) + ν1(i) � 2ν1(i). (24.27)

Therefore, by Lemma 4.2 and for m ≤ k,

|̂E(Zj , . . . ,Z′
m, . . . ,Z′

i , . . . Zk)| � 2k−j

√
E|Z′

m|2E|Z′
i |2

k∏

l=j ,l �=m,i

√
2|z|ν1(l)

� 2k−j
√

2ν1(m)2ν1(i)2(k−j−1)/2|z|(k−j−1)/2
k∏

l=j ,l �=m,i

√
ν1(l) � 4k−j2−1|z|

k∏

l=j

√
ν1(l).

Similarly,

|̂E(Zj , . . . ,Z′′
i , . . . ,Zk)| � 2k−j

√
E|Z′′

i |2
k∏

l=j ,l �=i

√
2|z|ν1(l)
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� 2k−j

√
EX4

i 2(k−j )/2|z|(k−j )/2
k∏

l=j ,l �=i

√
ν1(l)

� 4k−j2−1|z|C0

√
EX2

i

k∏

l=j ,l �=i

√
ν1(l) � 4k−j2−1/2C0

k∏

l=j

√
ν1(l).

Thus,

|� ′′
j ,k| �

k∑

i=j

|̂E(Zj , . . . ,Z′′
i , . . . ,Zk)| +

k∑

i=j

k∑

m=j ,m�=i

|̂E(Zj , . . . ,Z′
m, . . . ,Z′

i , . . . ,Zk)|

� (k − j + 1)4k−jC02−1/2|z|
k∏

l=j

√
ν1(l) + (k − j + 1)

(k − j )4k−j2−1|z|
k∏

l=j

√
ν1(l)

�
√

2C04k−j (k − j + 1)(k − j )|z|
k∏

l=j

√
ν1(l). �

In the following Lemmas 4.4–4.5, we present some facts about characteristic func-
tion F̂n(t) from Čekanavičius and Vellaisamy (2013). Here again we assume (24.1),
though many relations hold also under weaker assumptions, see Čekanavičius and
Vellaisamy (2013). We begin from Heinrich’s representation of F̂n as product of
functions.

Lemma 4.4 Let (24.1) hold. Then F̂n(t) = ϕ1(t)ϕ2(t) . . . ϕn(t), where ϕ1(t) =
EeitX1 and, for k = 2, . . . , n,

ϕk = 1 + EZk +
k−1∑

j=1

�j ,k

ϕjϕj+1 . . . ϕk−1
. (24.28)

Let

gj (t) = exp

{
ν1(j )z + (ν2(j ) − ν2

1 (j )

2
+ Ê(Xj−1,Xj )

)
z2

}
,

λk = 1.6ν1(k) − 0.3ν1(k − 1) − 2ν2(k) − 0.1EXk−2Xk−1 − 15.58EXk−1Xk ,

γ2(k) = ν2(k)

2
+ Ê(Xk−1,Xk),

r1(k) = ν3(k) +
5∑

l=0

ν3
1 (k − l) + [ν1(k − 1) + ν1(k − 2)]EXk−1Xk + Ê+

2 (Xk−1,Xk)
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+ Ê+(Xk−2,Xk−1,Xk),

Lemma 4.5 Let the conditions in (24.1) hold. Then

1

|ϕk| � 10

9
, (24.29)

|ϕk| � exp{−λk sin2 (t/2)}, |gk| � exp{−λksin2(t/2)}, (24.30)

1

ϕk−1
= 1 + Cθ |z|{ν1(k − 2) + ν1(k − 1)}, (24.31)

ϕ′
k = 33θ [ν1(k) + ν1(k − 1)], (24.32)

n∑

k=1

|ϕk − gk| � CR1|z|3,
n∑

k=1

|ϕ′
k − g′

k| � CR1|z|2. (24.33)

Similar estimates hold for the second derivative, as seen in the next lemma.

Lemma 4.6 Let (24.1) hold. Then, for k = 1, 2, . . . , n,

ϕ′′
k = θC22[ν1(k) + ν1(k − 1)], (24.34)

ϕ′′
k = ν1(k)z′′ + γ2(k)(z2)′′ + θC|z|r1(k). (24.35)

Proof From Lemma 4.4, it follows that

ϕ′′
k = (EZk)′′ +

k−1∑

j=1

� ′′
j ,k

ϕj · · ·ϕk−1
− 2

k−1∑

j=1

� ′
j ,k

ϕj · · ·ϕk−1

k−1∑

i=j

ϕ′
i

ϕi

+
k−1∑

j=1

�j ,k

ϕj · · ·ϕk−1

( k−1∑

i=j

ϕ′
i

ϕi

)2 +
k−1∑

j=1

�j ,k

ϕj · · ·ϕk−1

k−1∑

i=j

(ϕ′
i

ϕi

)2

−
k−1∑

j=1

�j ,k

ϕj · · ·ϕk−1

k−1∑

i=j

ϕ′′
i

ϕi

. (24.36)

We prove (24.34) by mathematical induction. Note that by Lemma 4.1, (EZk)′′
= Cθν1(k). Moreover, for j � k − 2,

k∏

l=j

√
ν1(l) = √ν1(k)ν1(k − 1)

k−2∏

l=j

√
ν1(l) � ν1(k) + ν1(k − 1)

2
10−(k−j−1).

(24.37)
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Applying (24.37) to (24.24), for all j � k − 2, we prove

|�j ,k| � 10
( 4

10

)k−j

[ν1(k) + ν1(k − 1)]. (24.38)

Taking into account (24.27) and (24.1), it is easy to check that

|̂E(Zk−1,Zk)| � E|Zk−1Zk| + E|Zk−1|E|Zk| = E|Zk−1Zk|/2

+ E|Zk−1Zk|/2 + E|Zk−1|E|Zk|/2 + E|Zk−1|E|Zk|/2

� E|Zk−1| + E|Zk| + 0.01E|Zk−1| + 0.01E|Zk|
� 2.02[ν1(k − 1) + ν1(k)].

Therefore, we see that (24.38) holds also for j = k−1. From inductional assumption,
(24.29), (24.32) and (24.1), it follows

|ϕ′′
i |

|ϕi | � C22[ν1(i − 1) + ν1(i)]
10

9
� 2C22

90
.

Using (24.29) and the previous estimate, we obtain

∣∣∣
k−1∑

j=1

�j ,k

ϕj · · ·ϕk−1

k−1∑

i=j

ϕ′′
i

ϕi

∣∣∣ �
k−1∑

j=1

(
10

9

)k−j

|�j ,k|
k−1∑

i=j

|ϕ′′
i |

|ϕi |

�
k−1∑

j=1

10
(4

9

)k−j

[ν1(k) + ν1(k − 1)](k − j )
2C22

90
� 8C22

25
[ν1(k) + ν1(k − 1)].

Estimating all other sums (without using induction arguments) in a similar manner,
we finally arrive at the estimate

|ϕ′′
k | � C23[ν1(k − 1) + ν1(k)] + 8C22

25
[ν1(k) + ν1(k − 1)].

It remains to choose C22 = 25C23/17 to complete the proof of (24.34).
Since the proof of (24.35) is quite similar, we give only a general outline of it. First,
we assume that k � 6. Then in (24.36) split all sums into

∑k−5
j=1 +

∑k−1
j=k−4. Next,

note that

k∏

l=j

√
ν1(l) �

k∏

l=k−5

√
ν1(l)

k−6∏

l=j

( 1

10

)
�

k∑

l=k−5

ν3
1 (l)10−(k−j−5) � r1(k)10−(k−j−5).

Therefore, applying (24.24)–(24.26) and using (24.29), (24.32) and (24.34), we
easily prove that all sums

∑k−5
j=1 are by absolute value less than C|z|r1(k). The cases

j = k − 4, k − 3, k − 2 all contain at least three Zi and can be estimated directly by
C|z|r1(k). For example,

|̂E(Zk−3,Zk−2,Zk−1,Zk)| � 4Ê+(|Zk−2|, |Zk−1|, |Zk|)
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� C|z|3Ê+(Xk−2,Xk−1,Xk) � C|z|r1(k).

Easily verifiable estimates |(̂E(Zk−1,Zk))′||ϕ′
k−1| � C|z|r1(k), |̂E(Zk−1,Zk)||ϕ′

k−1|2
� C|z|r1(k), and |̂E(Zk−1,Zk)||ϕ′′

k−1| � C|z|r1(k) and Lemma 4.1 allow us to obtain
the expression

ϕ′′
k = ν1(k)z′′ + ν2(k)

2
(z2)′′ + (̂E(Zk−1,Zk))′′

ϕk−1
+ C|(z)|r1(k). (24.39)

It follows, from (24.31), that

(̂E(Zk−1,Zk))′′

ϕk−1
= (̂E(Zk−1,Zk))′′ + C|z|r1(k). (24.40)

Now (̂E(Zk−1,Zk))′′ = Ê(Z′′
k−1,Zk) + 2Ê(Z′

k−1,Z′
k) + Ê(Zk−1,Z′′

k ).
Due to

Z′
k−1 = iXk−1eitXk−1 = z′Xk−1(1 + θ (Xk−1 − 1)|z|/2)

= z′Xk−1 + θXk−1(Xk−1 − 1),

we obtain

2Ê(Z′
k−1,Z′

k) = 2z′Ê(Xk−1,Z′
k) + θ Ê+

2 (Xk−1,Xk)|z|
= 2(z′)2Ê(Xk−1,Xk) + θCÊ+

2 (Xk−1,Xk)|z|.
Similarly, Zk = Xkz + θXk(Xk − 1)|z|2/2 and

Ê(Z′′
k−1,Zk) + Ê(Zk−1,Z′′

k ) = z(̂E(Z′′
k−1,Xk) + Ê(Xk−1,Z′′

k ))

+ θC|z|̂E+
2 (Xk−1,Xk).

Applying (24.23), we prove Ê(Z′′
k−1,Xk) = z′′Ê(Xk−1,Xk) + θCÊ+

2 (Xk−1,Xk).
Consequently,

(̂E(Zk−1,Zk))′′ = (z2)′′Ê(Xk−1,Xk) + θC|z|̂E+
2 (Xk−1,Xk).

Combining the last estimate with (24.40) and (24.39), we complete the proof of
(24.35). The case k < 6 is proved exactly by the same arguments. �

Let ϕ̃k = ϕkexp{−itν1(k)}, g̃k = gkexp{−itν1(k)}, ψ = exp{−0.1λ sin2 (t/2)}.

Lemma 4.7 Let (24.1) hold. Then

n∑

l=1

|ϕ̃′
l | � Cλ|z|,

n∑

l=1

|g̃′
l| � Cλ|z|,

n∑

l=1

|ϕ̃′′
l | � Cλ,

n∑

l=1

|g̃′′
l | � Cλ, |

n∏

l=1

ϕ̃l −
n∏

l=1

g̃l| � CR1|z|3ψ,
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∣∣∣
( n∏

l=1

ϕ̃l −
n∏

l=1

g̃l

)′∣∣∣ � CR1|z|2ψ,
∣∣∣
( n∏

l=1

ϕ̃l −
n∏

l=1

g̃l

)′′∣∣∣ � CR1|z|ψ.

Proof The first four estimates follow from Lemmas 4.5 and 4.6 and trivial estimate
EXk−1Xk � C0ν1(k). Also, using (24.1) and (24.30), we get

n∏

l=1,l �=k

exp{−λl sin2 (t/2)} � C

n∏

l=1

exp{−λl sin2 (t/2)} � Cψ2.

Therefore, by (24.30) and (24.33),

∣
∣
∣

n∏

l=1

ϕ̃l −
n∏

l=1

g̃l

∣
∣
∣ =

∣
∣
∣

n∏

l=1

ϕl −
n∏

l=1

gl

∣
∣
∣ �

n∑

j=1

|ϕj − gj |
j−1∏

l=1

|gl|
n∏

l=j+1

|ϕl|

� Cψ2
n∑

j=1

|ϕj − gj | � CR1|z|3ψ2.

From (24.1) and trivial estimate ze−x � 1, for x > 0, we get

|�2| � 0.08λ, λ|z|2ψ � C.

Therefore,

∣∣∣
( n∏

l=1

ϕ̃l −
n∏

l=1

g̃l

)′∣∣∣ �
n∑

l=1

|ϕ̃′
l − g̃′

l|
∏

k �=l

|ϕ̃k| +
n∑

l=1

|g̃′
l|
∣∣∣
∏

k �=l

ϕ̃k −
∏

k �=l

g̃k

∣∣∣

� Cψ2[R1|z|2 + λ|z|R1|z|3] � CψR1|z|2.
The proof of last estimate is very similar and therefore omitted. �

24.5 Proof of Theorems

Proof of Theorem 2.1 Hereafter, x ∈ N, the set of nonnegative integers. The
beginning of the proof is almost identical to the proof of Tsaregradsky’s inequality.
Let M be concentrated on integers. Then summing up the formula of inversion

M{k} = 1

2π

∫ π

−π

M̂(t)e−itkdt , (24.41)
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we get

x∑

k=m

M{k} = 1

2π

∫ π

−π

M̂(t)
e−it(m−1) − e−itx

z
dt.

If |M̂(t)/z| is bounded, then as m → −∞ and by Riemann-Lebesgue theorem, we
get

M(x) = − 1

2π

∫ π

−π

M̂(t)e−itx

z
dt = − 1

2π

∫ π

−π

M̂(t)e−it/2e−itx

2i sin (t/2)
dt. (24.42)

The Tsaregradsky’s inequality

|M(x)| � 1

2π

∫ π

−π

|M̂(t)|
|z| dt (24.43)

now follows easily. Let next M = Fn −G. Then expressing M̂(t) in powers of z, we
get M̂(t) =∑∞

k=2 akzk , for some coefficients ak which depend on factorial moments
of Sn. Therefore, M̂(π )/z(π ) = M̂(−π )/z(−π ). Consequently, integrating (24.42)
by parts, we obtain, for x �= λ,

M(x) = − 1

2π

∫ π

−π

M̂(t)e−it(λ+1/2)

2i sin (t/2)
e−it(x−λ) dt = 1

2π (x − λ)2

∫ π

−π

u′′(t)e−it(x−λ)dt ,

where

u(t) = e−(λ+1/2)it M̂(t)

2i sin (t/2)
=
∏n

j=1 ϕ̃j −∏n
j=1 g̃j

z
.

Thus, for all x ∈ N,

(x − λ)2M(x) � 1

2π

∫ π

−π

|u′′(t)|dt. (24.44)

Using Lemma 24.7, Eqs. (24.43), (24.44) and the trivial estimate
∫ π

−π

|z|kψ(t)dt � C(k)

λ(k+1)/2
(24.45)

the proof of (24.5) follows.
All other approximations are compared to compound Poisson measure G and then

the triangle inequality is applied. We begin from the negative binomial distribution.
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Due to the assumptions,

�2 � 3

40
λ,

1 − q

q
= 2�2

λ
� 0.15,

see Čekanavičius and Vellaisamy (2013). Therefore, N̂B(t) exp{−λit} =
exp{A},where

A = λz − it + �2z2 +
∞∑

j=3

r

j

(1 − q

q

)j
zj = λ(z − it) + �2z2 + θC�2

2λ
−1|z|3.

Moreover,

|A′| � Cλ|z|, |A′′| � Cλ, |eA| � ψ2.

Let B = λ(z− it)+�2z2 so that Ĝ(t) exp{−λit} = exp{B} and u1(t) = (eA − eB)/z.
Then

|u1| � |eA − eB |
|z| � ψ2 |A− B|

|z| � Cψ2 �
2
2 |z|2
λ

,
∫ π

−π

|u1|dt � C
�2

2

λ2
√
λ
.

(24.46)

Also,

|(eA − eB)′′| � |A′′||eA − eB | + |(A′)2||eA − eB | + |A′′ − B ′′||eB |
+ |(A′)2 − (B ′)2||eB |

� Cψ2
{
λ
�2

2

λ
|z|3 + λ2|z|2 �

2
2

λ
|z|3 + �2

2

λ
|z| + λ|z|�

2
2

λ
|z|2
}

� Cψ|z|�
2
2

λ
.

Similarly,

|(eA − eB)′| � |A′||eA − eB | + |eB ||A′ − B ′| � Cψ|z|2 �
2
2

λ

and we obtain finally

|u′′
1| � Cψ

�2
2

λ
,
∫ π

−π

|u′′
1|dt � C

�2
2

λ
√
λ
. (24.47)

Estimates in (24.46) and (24.47) allow us to write

(
1 + (x − λ)2

λ

)
|G(x) − NB(x)| � C

�2
2

λ2
√
λ

,

which combined with (24.5) proves (24.7).
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For the proof of translated Poisson approximation, let B be defined as in above,

T = λ(z − it) + (2�2 + δ̃)(z − it), D = λ(z − it) + (�2 + δ̃/2)z2,

and

u2 = (eD − eT )/z, u3 = (eB − eD)/z.

Note that, for |t | � π , we have |t |/π � | sin (t/2)| � |t |/2. Therefore, arguing
similarly as in above, we obtain

∫ π

−π

|u2|dt � C(|�2| + δ̃)

λ
√
λ

,
∫ π

−π

|u′′
2|dt � C(|�2| + δ̃)√

λ
. (24.48)

Observe next that

u3 = eB

z
(eδ̃z2/z − 1) = eB

z

∫ 1

0
(δ̃z2/2)eτ δ̃z2/2dτ =

∫ 1

0

δ̃z

2
eB+τ δ̃z2/2dτ.

Consequently,

∫ π

−π

|u3|dt � C

∫ π

−π

ψ2δ̃|z|dt � Cδ̃

λ
. (24.49)

Similarly,

u′′
3 = δ̃

2

∫ 1

0
eB+τ δ̃t [z′′ + 2z′(B ′ + τ δ̃zz′) + z(B ′′ + τ δ̃(zz′)′) + z(B ′ + τ δ̃zz′)2]dτ

and using δ̃ � 1 � λ, we get

|u′′
3| � Cψ2δ̃(1 + λ|z| + δ̃|z| + |z|(λ|z| + δ̃|z|)2) � Cδ̃ψ

√
λ.

Consequently,
∫ π

−π

|u′′
3|dt � Cδ̃.

Combining the last estimate, the inequalities in (24.48), (24.49) and the estimate for
Ĝ = eB , the result in (24.6) is proved.

For binomial approximation, note first that

e−λit B̂i = eE , ε = Ñ−N. E = λ(z − it) + �2z2 + z2θ
50�2

2

21λ2
ε + θ

5 Np3|z|3
9

,
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p � 50|�2|
21λ

<
1

5
, |�2| � 0.08λ, |N3

p̄| � C
�2

2

λ
,

see Čekanavičius and Vellaisamy (2013). Let

L = λ(z − it) + �2z2 + z2θ
50�2

2

21λ2
ε, u4 = (eL − eE)/z, u5 = (eB − eL)/z.

Next,

u5 =
∫ 1

0
eBz exp

{
τ z2θ

50�2
2

21λ2
ε

}
θ

50�2
2

21λ2
εdτ.

Now the proof is practically identical to that of (24.6) and is, therefore, omitted.
The proofs of (24.3) and (24.4) are also very similar and use the facts

eB − e−λit (�̂+ �̂1)

z
=
∫ 1

0
(1 − τ )�2

2z3exp{λ(z − it) + τ�2z2}dτ ,

eB − e−λit �̂

z
=
∫ 1

0
�2z exp{λ(z − it) + τ�2z2}dτ.

�

Proof of Theorem 2.3 Let M be a measure concentrated on integers and M̂(t)
=∑∞

k=1 M{k}eitk . Then from formula (24.41) of inversion, we get

|M{x}| 1

2π
�
∫ π

−π

|M̂(t)|dt.

Moreover, integrating (24.41) by parts, we obtain

(x − λ)2|M{x}| � 1

2π

∫ π

−π

|(M̂(t)) exp{−λit})′′|dt.

The rest of the proof is a simplified version of the proof of Theorem 2.1 and hence
omitted. �
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