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Preface

The last 10 to 15 years have seen a great surge of statistical research motivated by
data from high-throughput genomic assays. Microarray technology, in particular,
has driven many statistical advances in high-dimensional data analysis. Novel and
older concepts of error rate control for testing multiple hypotheses, various adapta-
tions of empirical Bayes methods, penalized and shrinkage regression techniques,
etc., have all found new glory. It is not unjust to say that statisticians have done
their fair share of work in developing the field of array-based bioinformatics and
biomedical research.

In the last five or so years, next generation sequencing (NGS) technology
has been changing the face of biomedical research, replacing the old (micro)-
array technology in many ways. Overall, NGS offers a more accurate and cost
effective means of studying a variety of genomic signals with a wide range of
applications. With any new high-throughput technology come new data analytic
challenges. Statisticians are in a unique position to make a difference in this exciting
new interdisciplinary area by offering valid methods for studying signals in noisy
data and the means to compare signals across multiple experimental conditions.
Statistical methods for this relatively new data type have been sufficiently developed
to warrant compilation of this book, which in turn may generate further interest in
NGS technology amongst statisticians and lead to additional advances in the field.

The idea of editing a volume on statistical methods for analyzing NGS data first
came to us about two years ago. We discussed the possibility during a conference
on NGS data analysis that took place at Iowa State University. Subsequently, we
approached several prominent researchers with extensive experience in the area.
We were fortunate to have received overwhelming support and commitment from
many individuals and their research teams. As a result, we now have this exciting
volume consisting of twenty chapters written by statistical experts with first-hand
knowledge in the field of NGS data analysis.

The first chapter of the book provides an introduction and an overview of
NGS technologies, statistical challenges, and data analysis techniques. The next
six chapters discuss design issues and inferential techniques for analyzing gene
expression data as measured by next generation sequencing of RNA (RNA-seq).
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viii Preface

Mapping of expression QTL is discussed next, followed by normalization of RNA-
seq data. Statistical clustering and classification methods specially geared toward
RNA-seq data are covered in Chaps. 10 and 11. Chapters 12 and 13 present different
aspects of isoform detection using RNA-seq data. Another important NGS data type,
CHIP-seq, is covered in the next two chapters. Other specialized applications of
NGS technology—such as genotype calling, metagenomic analysis, detection of
copy number changes and other structural variations, analysis for paired samples,
and analysis of rare variants—are discussed in the last five chapters of this book.

This volume has been written primarily for statisticians who are interested in
conducting methodological research in this area. No prior knowledge of NGS
or genomics is assumed. Most of the required concepts from genomics and
biochemistry have been explained, and references have been provided for a deeper
understanding of such concepts. Scientists and practitioners dealing with NGS data
will also find this book useful. Powerful software tools for NGS data analysis are
illustrated in several chapters. Also, many chapters from this book could be used in
a one to two semester graduate-level course in statistical bioinformatics.

We wish to thank the outstanding researchers who provided chapters for this
book. We appreciate their hard work and their willingness to make the revisions
we requested. Reading their work has enhanced our knowledge of the field, and we
hope many other readers will benefit from the contributions of the authors.

Louisville, KY, USA Somnath Datta
Ames, IA, USA Dan Nettleton
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Chapter 1
Statistical Analyses of Next Generation
Sequencing Data: An Overview

Riten Mitra, Ryan Gill, Susmita Datta, and Somnath Datta

Abstract Next generation sequencing (NGS) is a significant technological advance
in biomedical sciences. The sequencing platforms have advanced rapidly to the point
that several genomes can now be sequenced simultaneously in a single instrument
run in under two weeks. Its applications range from detecting transcription factor
binding sites and quantifying gene expression to discovering methylation patterns
and comparing genomes. We discuss and review some of the major NGS platforms
that are currently in use. Some of these platforms like Illumina represent the fastest
evolving genomic technologies in terms of cost, throughput and speed. However,
despite overcoming the limitations of first generation platforms and microarray
based studies, the generated data is not free of noise. The sources of noise are diverse
and complex depending on the generating platform and sequencing chemistry. For
example, errors can creep in from any intermediate sequencing steps like ligand
adaption, fragmentation, Polymerase Chain Reaction (PCR) amplification and
nucleotide removal. In methods like Chromatin Immunoprecipitation Sequencing
(ChIP-Seq), non-specific binding is a major source of noise. All of this raises
novel statistical and computational challenges, e.g., in basecalling and differential
profiling. In this chapter, we point out the critical challenges that arise in NGS
data analysis and provide an objective overview of the existing literature. As we
shall see, NGS is not only transforming genomics but driving new methodological
development in several branches of quantitative science.
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1.1 Introduction

1.1.1 DNA: The Unit of Sequencing

Deoxyribonucleic acid, more commonly known as DNA, is a complex doubly
stranded molecule present in the nucleus of all living cells. The two strands are held
together by weak thermodynamic forces. They form the familiar helical structure,
with the double strands winding around a helix like the railing of a spiral staircase.
DNA is often referred to as the building block of life.

Structurally, each strand of the DNA is a polymer. The polymer is a chain
of linked monomer units called nucleotides. A nucleotide consists of a five-
carbon sugar (deoxyribose), a nitrogen containing base attached to the sugar, and
a phosphate group. There are four different types of nucleotides found in DNA,
differing only in the nitrogenous base. These four nucleotides are assigned single
letter abbreviations to represent the four bases. A stands for adenine, G is for
guanine C, refers to cytosine and T denotes thymine. The terms nucleotides and
bases are interchangeably used in the sequencing literature.

The deoxyribose sugar of the DNA backbone has five carbons and three oxygens.
The carbons are numbered 1′, 2′ and so on. The hydroxyl groups of the sugars
are joined at the 5′- and 3′-carbon ends to the phosphate groups by ester links,
also known as phosphodiester bonds. Thus, the DNA backbone can be thought
of as an alternating sugar-phosphate sequence. Each strand in the backbone is
associated with a direction (known as polarity) from top to bottom, determined by
the ending and starting carbons. We commonly refer to them as 5′ or 3′ ends. The
two polynucleotide chains or strands run in opposite directions within the double
helix.

The bases of the individual nucleotides are on the inside of the helix, stacked
on top of each other, resembling the steps of the spiral staircase. The bases on
both strands are paired by hydrogen bonds. A forms two hydrogen bonds with
T on the opposite strand, and G forms three hydrogen bonds with C on the
opposite strand. Due to such complementarity, the sequence of bases on one strand
uniquely determine the entire set of base pairs. The length of a DNA fragment
is conventionally measured by the number of base pairs it has—in kBp or mBp
(Kilo/Mega base pairs).

What we refer to as a DNA primary sequence is essentially a collection of these
bases. They are the repository of all biological information. It is well known that
the order in which the bases occur in a DNA determines the information to make
proteins. The protein synthesis from DNA is in fact a two-step procedure. The first
step is “transcription” by which information is read from sequence of bases to make
amino acids and RNA. The next step is “translation” by which these RNA form
proteins. These proteins, in turn, regulate all biological processes, ranging from
survival to reproduction and regulation of other proteins. In summary, the bases
code for proteins, and the proteins are the chief executors of all important cellular
functions. However, not all bases in DNA code for proteins. The special coding
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subunits are called genes. This two step module of protein synthesis is often
referred to as the “central dogma of molecular biology”. The central dogma is the
cornerstone of modern genetics.

Thus, in order to grasp the genetic code, one must know the order in which the
bases occur. Sequencing is precisely the process of determining the bases of a given
DNA sequence.

1.1.2 Sequencing Technologies: An Overview

The established role of DNA as a primary coding unit of life has made genome
sequencing highly relevant for almost any kind of biological research. Sequence
information can now be used to identify, diagnose and potentially develop treat-
ments for several genetic diseases. With high rates of growth in pharmacology and
medicine, fast and easy sequencing methods has become the need of the hour. Next
generation sequencing [64] is currently meeting this demand at a tremendous pace.
In fact, it has revolutionized the fields of computational biology, evolution and
medicine. This has indirectly triggered a competition among several companies,
each trying to come up with faster and cheaper sequencing platforms. In terms
of usage, today’s platforms can be classified into two broad categories: high-
end and bench-top. High end platforms (e.g Illumina-HiSeq) typically have bulky
instruments and offer high setup costs, high throughput, and longer reads. Hence
they are more suitable for large sequencing centers or core facilities. Bench-top
instruments (Ion PGM, MiSeq) are less costly and more appropriate for microbial
applications. Irrespective of their sizes, most of these platforms share a common
three-step module of library preparation, template amplification and sequencing
chemistry. We outline these steps below and present Fig. 1.1 as a pictorial illustration
of the entire process.

Library preparation begins with the extraction and purification of genomic DNA.
The extracted DNA is then broken into several overlapping fragments. The size of
the fragments are selected to provide comprehensive and uniform coverage of the
target genome. While older fragmenting protocols used mechanistic methods like
nebulization and ultrasonication, newly developed enzymatic methods cleave the
DNA chemically using fragmentase enzymes. Mechanically generated fragments
undergo an extra step of repair and end-polishing. Enzymatic methods, on the other
hand, typically require less input DNA and offer faster sample processing. The
cleavage is done in a time-dependent manner, allowing the user to obtain fragments
of the desired length.

The amplification step clones the DNA molecules in the library and prepares
them for sequencing. This step is required since the size of sample DNA extracted
from experiments is typically too small for raw detection. The polymerase chain
reaction (PCR) is a biochemical technology designed for such amplification. It acts
on a single or a few copies of a specific region of the target DNA and generates
thousands to millions of copies of a particular DNA sequence. Most PCR methods
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Fig. 1.1 A general workflow of the next generation sequencing technology. The last step is the
sequencing process, which vary across different platforms. This picture is reproduced from Loman
et al. [41]

typically amplify DNA fragments of between 0.1 and 10 kilo base pairs (kb),
although some techniques allow for amplification of fragments up to 40 kb in size.
A PCR requires the following key components. First, it must employ an available
DNA template that contains the DNA region (target) to be amplified. A DNA
polymerase enzyme is required to catalyze the reaction. The next step requires
adding of primers that are complementary to the 3′ ends of the DNA targets.
Primers are basically nucleic acid strands that serve as a starting point for DNA
synthesis. They are required for DNA replication because the polymerase enzymes
can add new nucleotides only to an existing strand of DNA. Finally, certain types
of nucleotides containing triphosphates (Deoxynucleoside triphosphates or dNTPs)
act as substrates for the reaction. A chain reaction ensues leading to the synthesis of
replicate DNA strands.
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Tagging of the amplified DNA fragments follows. In this step, platform-specific
adaptors are ligated to the ends of fragments. These adaptors act as primer-binding
sites for the subsequent template amplification and sequencing. Tagmentation is
a new alternative technique that fragments DNA and incorporates sequence tags
simultaneously with the help of transposase enzymes. Nextera (only available for
the Illumina platform) is the only system currently providing tagmentation facilities.
Paired-end tagging, which allows for tagging at both ends, has become a fairly
common method. For details of these tagging technologies, we refer the readers
to [23].

Sequencing chemistry is the final step in the next generation sequencing (NGS)
protocol. The base pairs from ends of the fragments are read in this step. Sequencing
both ends of DNA fragments has become common and is now a part of many
standard platforms. This is referred to as “paired-end sequencing”. In single-end
sequencing protocols, however, only one end is sequenced. The end sequences
would later be mapped to locations in the genome through mapping algorithms.
However, in single-end sequencing, some reads may not be mapped uniquely. This
leads to decreased efficiency and increased since these ambiguous sequences would
normally be discarded. Paired end sequencing addresses this problem. By mapping
one half of the pair uniquely to a single location in the genome, it determines the
location of the other ambiguous half.

As stated earlier, the details of the sequencing chemistries vary across platforms.
We shall discuss them in detail while describing the individual platforms.

1.1.3 Downstream Applications

“Reads” are the immediate products of sequencing and the final products of all next
generation sequencing platforms. A read is a contiguous stretch of bases sequenced
from one or both ends of the DNA fragment. Recording the base sequence of a
read is known as “base-calling”. A natural next step is to reconstruct the original
sequence from these reads. For this, we have to rely on computational algorithms to
merge the sequenced DNA fragments and recover the original genome. This process
is called genome assembly. This is a necessary challenging; there is no alternative
to processing reads since it is impossible to sequence the whole DNA in one go.
Genome assembly can be done in two ways. The first way is by mapping or aligning
to a “reference genome”. The reference genome is an existing sequence against
which reads are aligned. At the end of alignment, each read would correspond to a
particular position in the reference genome. This leads to a sequence that is similar
but not necessarily identical to the reference sequence. The second method is “de-
novo” assembly. Under this method, novel sequences are constructed without the aid
of a reference genome. They usually involve complex computational approaches
like construction of de Bruijn graphs using k-mers (for short reads) or using an
overlap-layout-consensus approach (for longer reads). De novo methods are free of
the errors associated with alignment tools or with the reference genome itself. It
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can discover novel individual variations that could be suppressed while aligning to
a reference. On the other hand, reference genome mapping is relatively faster and
far less resource-intensive.

Apart from “discovering” the sequence per se, sequencing has several important
and immediate applications. For example, one might be interested in knowing how
certain regions of DNA are functionally different from the rest. The ability of
sequencing to discover such special functional regions has profoundly impacted
many scientific disciplines like medicine, pharmacology and evolution. For exam-
ple, one would be interested in genomic regions that are more susceptible to
binding by certain drugs or proteins; or detecting DNA segments unbounded by
nucleosomes. For this, one needs to couple the NGS technology with state-of-the-art
tools for extraction of the relevant genomic portions. This has led to the development
of an array of technical platforms. The ChIP-Seq method is a good example of
this kind. It is primarily used to analyze protein interactions with DNA. As the
name suggests, it combines chromatin immunoprecipitation (ChIP) with massively
parallel DNA sequencing to identify the binding sites of DNA-associated proteins.
The protein of interest (POI) is cross-linked with the parts of DNA. The entire
DNA is fragmented by sonication and the cross linked portions form a DNA protein
complex. These fragments are then filtered and purified by removing the bound
proteins (by heating). The fragments are then fed into the sequencing step. Again,
the outputted reads form the basis of downstream analysis. Any such analysis would
act upon a normalized version of the number of reads mapped to particular region.
The normalized counts would represent the susceptibility of protein binding in that
particular region.

Finally, the capabilities of NGS are not just restricted to genome sequencing.
The same techniques can be applied to sequence the bases of any other nucleic
acids like RNA. From the central dogma, we know that RNA synthesizes proteins
after transcription. The expression of genes is quantified by the amount of mRNA
transcripts produced by them. To measure this amount (also known as “transcript
abundance”), one would require to sequence the RNA fragments and map them
to the genome. Here the number of mapped reads would represent the intensity of
expression. The application of NGS to sequence RNA transcripts is called RNA-seq.
It has emerged as a powerful and appealing alternative to microarrays for measuring
gene expression.

It is no surprise that the new technological developments discussed above is also
fundamentally modifying older statistical methods for analyzing genomic data. One
reason for this is the marked change in the nature and distribution of the observations
For example, in gene expression analysis, statisticians would now have to deal with
the read counts instead of log-hybridization ratios traditionally used for microarrays.

Thus depending on the requirement, a typical post-sequencing workflow would
consist of steps like base-calling, alignment techniques, de novo genome assembly
and estimating transcript abundance. Each of these steps require sophisticated
mathematical and statistical techniques and are separate topics in themselves. We
shall provide a short overview of these specific areas in Sects. 1.2–1.4. An earlier
overview of the NGS and technology and data analysis was provided in [14]. Before
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describing these methods, we shall discuss some individual NGS platforms and their
sequencing techniques in greater detail.

1.2 Examples of NGS Platforms

1.2.1 SOLiD by Applied Biosystem

This technology uses a special PCR called emulsion polymerase chain reaction (em-
PCR) to amplify copies of templates of DNA molecules. Initially, the templates are
arranged into microscopic magnetic chips called beads. The amplified templates are
sequenced in parallel.

For sequencing, SOLiD uses a unique ligation based strategy. Under this method,
each data point represents two adjacent bases, and each base is sequenced twice.
A sequencing round begins with the addition of a universal primer. All fragments
attached to the same magnetic bead will have this universal primer attached. Thus
the starting sequence of every fragment is both known and identical. A cycle begins
by addition of a mixture of fluorescent probes. The first two bases of some of these
probes (starting at the 3′ end) turn out to be complementary to the nucleotides about
to be sequenced. These probes get ligated to the primer while the remaining unbound
ones are washed out. The fluorescent signal from the bound probe is then measured.
Finally the primer and probes are all reset for the next round. Now the 5′-end of
the new universal primer will match to the base just preceding the earlier base.
The entire sequencing step consists of five rounds and each round spans about 5–7
cycles.

The most useful feature of this technique is the double interrogation strategy.
This causes a single nucleotide polymorphism (SNP) to result in a two-color
change. However a measurement error would result in a single color change.
Thus only adjacent color differences can represent a true SNP. This leads to a
better discrimination between true polymorphisms and erroneous sequences. Also,
SOLiD beads are typically small and very densely packed (100 million beads per
sequencing run). Consequently, this platform can produce approximately 20 Gb of
short-read sequence data (25–50 bases) per run. Hence it is more preferable for re-
sequencing than de novo assembly.

However, decoding the raw data from SOLiD can be problematic. Since SOLiD
encodes by two bases, the concept of ‘color space’ becomes necessary. A color space
is an alternative representation of the base sequence. The conventional nucleotide
code using the letters A C G and T is replaced by colors. Previously, in Sanger
sequencing, each color represented a single nucleotide and was automatically
translated. In the SOLID system, each color represents four potential two base
combinations. Direct translation of color reads into base reads is not recommended
as sequencing errors might be carried forward resulting in a frameshift of the
base calls. To reduce such errors, it is deemed best to convert the base reference
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sequence itself into color-space. Reconversion into nucleotide base space is done
after the sequence is aligned to a reference genome encoded in color space. This
conversion from the color space to sequence and to a mapped reference genome can
be challenging. Overall, the error rate of this platform is significantly higher than
for traditional Sanger sequencing.

1.2.2 Illumina/Solexa Genome Analyzer

The Illumina sequencers (including the Genome Analyzers I/II/IIe/IIx and the new
Miseq and HiSeq) represent one of the most widely used platforms for NGS
experiments. This platform was first introduced by Solexa in 2006 and later on re-
branded as Illumina Genome Analyzer (GA).

This technology does not depend on em-PCR to amplify the template DNA
strands like SOLiD. Instead, DNA molecules are first attached to primers on a
hollow glass slide called the flow cell. Adaptor-ligated template molecules now flow
into this cell. DNA polymerase enzyme starts replication of the template at the 3′-
end of the primer, and copies the opposite strand. This newly synthesized strand
serves as templates for further isothermal amplification. Finally we get clusters of
DNA molecules on the flow cell.

Illumina follows a sequencing strategy called “sequencing by synthesis”. Briefly,
a single-stranded DNA fragment in the cluster is copied with the use of enzymes
making the fragment double stranded. Starting at one end of the DNA fragment, the
enzyme sequentially adds a single nucleotide that is the match of the nucleotide on
the single strand. The synthesis proceeds by adding a mixture of dNTPs attached
with four terminator nucleotides (A, C, G, and T) to the amplified fragments.
Each dNTP is fluorescently labeled with a different color corresponding to its
constituent base. The four bases then compete for binding sites on the template
DNA to be sequenced. Each DNA strand within a cluster incorporates one of the
nucleotides. This nucleotide is the same for all strands within a single cycle. The
non-incorporated molecules are washed away and a laser is applied to chemically
remove the terminators and the fluorophores. A detecting device then records the
fluorescent color corresponding to the sequenced base. The process is repeated for
several cycles until the entire DNA molecule is sequenced. Since the technique relies
on generating reverse complimentary copies of the template it is also referred to as
“reversible dye-based termination”.

Between 2008 and 2010 there were several technical updates to the Genome
Analyzer (GA) platform in mechanics, chemistry and software. In 2009 GAIIx
series replaced GA-I instruments offering outputs of 85 GB/run. In early 2010,
Illumina launched HiSeq 2000—a high end instrument that handles 600 GB per
run. HiSeq can currently sequence 1.6 billion 100-base paired-end reads in a 10.8
day run and handle 120 million clusters per lane. MiSeq, a bench top sequencer
was launched in 2011 and shares most technologies with HiSeq. It uses a smaller
flow cell and hence a reduced imaging time and dramatically reduced run times.
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The template amplification is carried out directly on the instrument which makes
it popular among bench top instruments. HiSeq 2000 is now equipped with HiSeq
control software (HCS), a real-time analyzer software (RTA-to perform basecalling
directly on instrument) and BaseSpace. The latter is Illumina’s own genomics cloud
computing environment for secure analysis, archiving and sharing of NGS data.
An app-store was recently added to BaseSpace to minimize transfer time to the
cloud through compression and serialization technologies. This feature is directly
integrated with all MiSeq and HiSeq instruments, enabling automated software
installation and upgrading. Among high-end platforms, HiSeq 2000 has currently
the lowest sequencing cost at 0.02 dollars per million bases.

1.2.3 Ion Semiconductor Sequencing

This technology was released in early 2010. The sequencing is conducted on a
set of ion semiconductor chips, each containing an array of microwells. These
microwells are equipped with one single-stranded template DNA and one DNA
polymerase molecule. An ion sensitive layer is placed beneath each well. The
sequencing starts by flooding the micro wells with a single species of deoxyri-
bonucleotide triphosphate (dNTPs). Complementary dNTPs get sequentially affixed
into the strand complementary to the template. The resulting process of DNA
polymerization releases a hydrogen ion which triggers a corresponding sensor. The
electric pulses from the sensors are then transmitted to a computer and gets directly
translated into a DNA sequence without any intermediate steps. The final steps of
signal processing and DNA assembly are carried out in an embedded software.
The ion based approached is innovative and has completely removed the use of
modified nucleotides or optical instruments for this platform. This has led to a rapid
sequencing speed and reduced the upfront and operating costs. However two major
limitations exist. First, the technology cannot handle repeats of the same nucleotide
(e.g. GGGGG) which are present on the template strand. In such cases, multiple
nucleotides are included leading to release of more hydrogen ions per cycle. This
causes a greater pH change and a proportionally greater electronic signal. Hence,
high repeat numbers cannot be effectively distinguished from repeats of a similar
but different number. Another major disadvantage is the short size of their reads
(400 base pairs per run). Their throughput is also currently lower than that of other
sequencing technologies, although the developers hope to change this by increasing
the density of the chip. Ion semiconductor sequencing may also be referred to as ion
torrent sequencing, pH-mediated sequencing, silicon sequencing, or semiconductor
sequencing in NGS literature. Despite its shortcomings, this technology is well
suited to whole genome sequencing in bacteria.
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1.2.4 Single Molecule Real-Time Sequencing

Single-molecule real-time (SMRT) is a “third-generation” sequencing method
developed by Pacific Biosciences [44]. A SMRT chip consists of millions of nano-
photonic confinement structures called zero-mode waveguides (ZMWs). A ZMW
is an extremely tiny hole fabricated in a 100 nm metal film deposited on a glass
substrate. An active DNA polymerase and a stranded DNA template is fixed to its
bottom. Light enters through the ZMW hole and creates a visualization chamber
small enough to record a single nucleotide. The sequencing now proceeds by
incorporating dyed bases to the template strand by the action of DNA polymerase.
A fluorescence pulse is produced by the polymerase retaining the nucleotide with
its dyed fluorophore. This reaction is observed in real time. SMRT provides
information for both signal strengths and signal differences across time. This feature
could be used to study structural properties of sequences and is highly relevant for
epigenetic studies. The final sequencing results are generated through consensus
analysis, i.e., by averaging the sequence information from multiple reads for each
reference position. Murray et al. [50] used SMRT sequencing to generate six full
bacteria methylomes.

SMRT is also being employed in several resequencing projects. Resequencing
of candidate genes is essential to detect mutations linked with various congenital
diseases. Smith et al. [65] used SMRT to assess the presence of activating internal
tandem duplication mutations in FLT3—a therapeutic target in acute myeloid
leukemia. In August 2012, scientists from the Broad Institute published an eval-
uation of SMRT sequencing in the context of SNP calling [1]. Compared to second
generation platforms, SMRT has several advantages. It provides significantly longer
reads (average read length is 1,300 bp) and has a low error profile. The absence
of any PCR step reduces any bias or artifacts due to amplification. Although the
throughput is lower than any second-generation sequencer, it is more appropriate
for clinical laboratories, especially for microbiology research.

1.3 Statistical Tools for Using Sequence Reads

Downstream analysis of NGS data consists of a sequence of steps. Depending on
the application, these usually include a combination of quality monitoring, base-
calling, alignment to a reference genome, de novo genome assembly and estimating
transcript abundance. Each of these steps require sophisticated mathematical and
statistical techniques and are separate topics in themselves. In this chapter, we shall
provide a short overview of the important developments in these specific areas.
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1.3.1 Data Quality and Reproducibility

While many earlier papers examined and proved the reliability and reproducibility
of the next generation sequencing platforms, some studies found systematic diffi-
culties with the reads obtained from next generation sequencing platforms.

Marioni et al. [42] showed that Illumina sequencing can be a good alternative to
microarray technology for studying mRNA expression levels. However, they were
concerned that the technical variance associated with Illumina would affect the final
inference of differentially expressed genes. To check this, they proposed a statistical
testing procedure to determine the lane to lane variability in sequencing results. The
authors concluded that next generation sequencing data from the Illumina platform
are highly reproducible with very few systematic differences between technical
replicates. They also found that the results are better than microarray technology,
especially for genes with high expression. High correlation between gene counts
provided strong evidence for the reliability of the replicates.

In order to test the “lane” effect, they modeled the number of reads mapped to
gene j for lane k and sample i as a Poisson random variable with mean μik = cikλi jk,
where cik is the total rate at which sample i produced reads at lane k and λi jk is
the rate of mapping of gene j in the kth lane for sample i relative to other genes.
The terms λi jk sum to 1 across all genes for each i and k. In order to test the null
hypothesis that the lane effect corresponding to λi jk for lane k remains constant
across all the L lanes, they computed a goodness-of-fit statistic across L lanes. A qq
plot of the quantiles showed evidence of a “lane effect” for only a small percentage
of genes (0.5 %). The authors also proved that using the Poisson model for read
counts from this technology could identify a significantly higher number of genes
to be differentially expressed compared to the corresponding microarray data using
the same False Discovery Rate (FDR) cutoff. They used quantitative PCR (qPCR)
to examine discrepancies in the two platforms. Results of the qPCR study agreed
more with Illumina study than with the microarrays.

Additionally, there are multiple studies which showed good correlation between
microarray and RNA-seq results [2,80]. Fu et al. [22] compared the relative accuracy
of RNA-seq and microarrays with protein expression data from the adult human
cerebellum using 2D-LC MS/MS. They found that the RNA-seq data provided more
accurate estimation of absolute transcript levels. Wall et al. [71] compared next
generation sequencing with traditional capillary-based sequencing by a simulation
model. They concluded that next generation sequencing offers better coverage
over capillary-based sequencing. However, they suggested combining sequencing
technologies such as FLX and Solexa to obtain optimal performance at a modest
cost.

In contrast with the above mentioned results, some studies such as [6] showed
that two-channel microarrays were more sensitive in identifying genes with low
expression than RNA-seq data. Williams et al. [75] also suggested that microarrays
showed better correlation with the synthetic miRNA data compared to RNA-seq
data.
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Dohm et al. [16] considered two Solexa read data sets and observed that error
rates were greater at the end of reads (0.3 % at the beginning compared with
3.8 % at the end) and that incorrect basecalls are often preceded by base G. Also,
base substitution errors with A to C were significantly higher (ten times more
frequent) than the C to G substitution. Similar scenarios were observed by [8].
They considered data from the control lane of an Illumina ChIP-Seq experiment
and reported the A to T miscall to be the most common error in their calibration
study.

These conflicting experimental outcomes emphasize the importance of determin-
ing NGS performance measures based on some standardized objective benchmarks.
The measures include accuracy, detection limits, reproducibility, dynamic range,
and several other diagnostics. A comprehensive effort in this direction was initiated
by the external RNA Control Consortium (ERCC). A set of external RNA standards
for microarray, qPCR and sequencing experiments was developed [5, 15, 57].
Jiang et al. [27] suggested that RNA-seq data generated from GA-II in several
modENCODE and ENCODE experiments should be used as ERCC RNA-seq
benchmarks. They employed such data as spike-in controls in their study to
determine the sensitivity and biases.

Oshlack et al. [53] considered three sequencing data sets from Illumina and
SOLiD platforms. For each data set, they demonstrated an important result: if gene
expression was measured by aggregated tag counts (directly obtained from RNA-
seq) for each gene, then the length of the transcript would highly correlate with
the ability to call differentially expression. Bullard et al. [9] studied the effects of
different systematic sources of variability in measuring the differential expression
of genes using the platforms such as mRNA-seq data from Illumina sequencing,
microarray and quantitative real time PCR assay data. All these measurements
were based on the Microarray quality control project (MAQC). Moreover, they
emphasized that using an auto-calibration instead of Illumina’s standard way of
reserving one flowcell lane for the control can improve the mapping quality of
the reads resulting in a more efficient and cost-effective experimental design.
Additionally, they suggested different normalization strategies to overcome the
systematic biases.

Trimar et al. [68] discussed the quality control issue for next generation
sequencing data in the context of DNA methylation. Next generation sequencing
allowing unbiased methylome profiling of a large number of patient cohorts can
be very useful for biomarker discovery. They showed that post sequencing quality
control matrices [11] can help in excluding poor quality samples from the analysis.
This would lead to reduced noise and greater accuracy in identifying differentially
methylated regions. They also suggested direct removal of some data due to validity
concerns. The validity would usually depend on the enrichment of methylated
fragments before sequencing. Another critical recommendation was to check the
statistical reproducibility of the data by replicating sequencing lanes. They advised
that this replicability should be computationally tested before going forward with
any downstream analysis. They also formalized the enrichment of certain regions in
the genome known as “CpG islands”.
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The CpG islands are segments characterized by high CpG dinucleotide content
compared to the rest of the genome. It has been observed that CpG islands of
promoters are unmethylated when the genes are expressed. This observation has led
to the hypothesis that methylation of CpG sites in the promoter of a gene may inhibit
gene expression. Trimar et al. [68] defined the enrichment of the CpG parameter
by comparing the frequency of CpGs in the sequenced sample with respect to
the reference genome. Statistical reproducibility was then determined by the high
Pearson correlation coefficient of the enrichment score at two random partitions of
the sequenced sample. A benchmark of breath and strength of methylation signal
(confidence in methylation calls) was created using 5×CpG coverage. The latter
represents the fraction of the total number of CpG loci that correspond to five or
more reads in the sample.

Accumulation of B-tails at the read ends is another major problem that persists
even in the state-of-the-art technologies HiSEQ and GA-II. B-tails are low quality
3′ ends (marked with a B-tail in the quality string). These were observed at distinct
locations, and in several cases only on one strand. Illumina recommends excluding
this portion of the read in further analysis. Extreme cases of reads entirely composed
of Bs are also common. From a recent study [47], the fraction of bases lying within
B-tails was found to be 13.8 % for HiSeq data and 25.8 % for GAIIx data. The
B-tail errors could also be sequence specific and are often attributed to an artifact of
sequencing called “phasing”.

Errors like these and several others may bias conclusions drawn from NGS
data. Though these artifacts are embedded into the specific technologies, a detailed
understanding of their sources could help us counteract them through statistical
methods. We discuss such approaches in the next section.

1.3.2 Basecalling

Improved basecalling techniques are required to account for some of the errors
described above. For a long time, Phred was the conventional and only computer-
based program for base calling.

For the Illumina platform, images obtained from a charged coupled device record
fluorescence intensities in each of the four nucleotide channels for each cycle of the
sequencing-by-synthesis procedure. In a typical intensity matrix the rows represent
the channels and the columns contain the cycles. Illumina’s standard basecaller
Bustard converts these intensities into concentrations by multiplying the observed
intensities by the inverse of an estimated crosstalk matrix to adjust for the correlation
between the four channels. As the cycles progress, loss of fragment copies leads
to reduced intensities and consequently reduced concentrations. Thus, Bustard
rescales the concentrations in each cycle by a factor proportional to the reciprocal
of the average concentration for the cycle so that all cycles have the same average
concentration. Finally, Bustard uses a Markov chain to model the probabilities of
the events that one base is correctly synthesized during a cycle, that no new base
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is synthesized (known as phasing or lagging), and that two bases are synthesized
(known as pre-phasing or leading), and it adjusts the rescaled concentrations based
on estimates of the transition probabilities in the Markov chain. These adjusted
concentrations are then used to make basecalls and assign quality scores for the
bases. More details about Bustard can be found in [8, 29, 33, 38, 74].

Recently several algorithms have been proposed to improve the standard Illumina
basecalls. Alta-Cyclic [19] used a support vector machine (SVM) to classify each
nucleotide as one of the four possible bases. This basecaller first trains the SVM
using a known reference genome in one of the flow cell lanes. The aim here is to find
optimal phasing deconvolution parameters as well as internal parameters related to
dynamic estimates for the crosstalk. Then the optimized SVM is applied to classify
the bases in the other lanes and obtain quality scores. On the other hand, Rolexa,
a basecaller for Solexa [59], used a probabilistic model. The algorithm corrects
for positional bias, phasing, rephrasing and crosstalk. Then it estimates conditional
probabilities of each base given a quadruple of intensities. The quadruple is modeled
as a mixture of four multivariate normal random variables. As a byproduct, it
also computes entropies for each basecall and uses them to identify and remove
ambiguous basecalls.

Swift [74] and BING [35] provided alternative image processing and basecalling
pipelines. Swift includes several modifications to Illumina’s image processing
procedures including the way it handles crosstalk and removal of the background
noise in the image. Among other modifications, BING includes the option to
perform pixel-based basecalling as to opposed cluster-based basecalling. Bravo
et al. [8] proposed a probabilistic model for the log intensity which includes
read and base-cycle effects and latent indicator variables for each possible base
in a given read and cycle. They obtained posterior probabilities for each base
as well as estimates of the other effects using the Expectation-Maximization
algorithm. BayesCall [29] assumed a full Bayesian model for the nucleotide bases,
concentration of active templates, and observed fluorescence intensities. A notable
feature is the incorporation of cycle dependent parameters. The model parameters
are estimated using MCEM [73], ECM [45], and simulated annealing [34]. The final
quality scores are based on the maximum a posteriori estimates.

Recently, for GA-II, a cycle dependent basecaller named Ibis (Improved base
identification system) was developed. It used multiclass-SVM and based its infor-
mation about phasing at a given cycle on intensities on the preceding and subsequent
cycles. In a recent comparison with other basecallers considered by [38], Ibis
clearly emerged as the fastest and the most accurate algorithm and maintained
its superiority consistently across different genomes. An updated version called
freeIbis [58] has been recently published. AYB (All Your Base), yet another
basecaller, was recently proposed by [43]. This used an iteratively reweighted least
squares algorithm to fit a cluster-specific multivariate statistical regression model
for the intensity matrix.

For the SOLiD platform, data points collected in color space represent two
adjacent bases. Rsolid [76] proposed a quantile normalization procedure to improve
the basecaller provided by the manufacturer at that time. SOLiD Exact Call
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Chemistry—the 5500 Series SOLiD [43] system uses convolutional coding theory
with error-correcting codes and resolves ambiguous read positions. Recently, [70]
proposed a supervised learning method using a multi-class support vector machine
for basecalling data from the SOLID 5500/5500 XL platform.

By assigning quality scores to the calls, one can assess the performances of the
various basecallers. Phred is the conventional and the mostly widely used quality
scoring program. The phred algorithm analyzes the sequences in a four-phase
procedure to estimate several parameters about peak shape and peak resolution.
It then uses these parameters to look up a corresponding quality score in some
known lookup tables. The accuracy of Phred quality scores have been verified for a
wide variety of sequencing platforms. Quality scores range from 4 to about 60, with
higher values corresponding to higher quality. The quality score Q is logarithmically
linked to error probability of basecall, P, by the formula Q =− log10 P.

1.3.3 Alignment and Assembly Tools

After the bases in sequence reads have been called, mapping tools for assembling
the reads are needed, and several algorithms have been proposed to align the
reads to a reference genome. MAQ [40] uses a Eland-like hashing technique
to align the reads. Then it uses a Bayesian statistical model to produce phred-
scaled quality scores for the read alignments. This score is based on posterior
probabilities and is ten times the common logarithm of the probability of incorrect
assignment. MAQ efficiently combines the mapping quality information with the
quality scores and utilizes mate-pair information for paired-end read alignment in
diploid samples. Bowtie [36] has recently emerged as a widely used alignment
tool. It employs a Burrows-Wheeler transform from string matching theory with an
efficient backward search. This allows high-quality alignments with double indexing
to prevent excessive backtracking. Bowtie’s procedure is greedy and hence sub-
optimal. But it includes options which allow users to trade efficiency for accuracy.
BWA [39] is yet another algorithm which uses the computational advantages of
the Burrows-Wheeler transform while allowing for inexact matching and gapped
alignment.

For RNA seq data, a major challenge lies in identifying novel splice junctions.
The sampled RNA also has several attributes such as single nucleotide polymor-
phisms (SNPs) and indels (insertions or deletions of certain bases). Tophat [67] was
the first software designed to discover such junctions ab initio. The algorithm works
in two steps. First, it maps all reads to the reference genome using Bowtie. All reads
that do not map to the genome are set aside as “initially unmapped” (IUM) reads. It
then assembles the mapped reads using MAQ [40] to construct an initial consensus.
Sequences flanking potential donor/acceptor splice sites within neighboring regions
are joined to form potential splice junctions. The IUM reads are then indexed and
aligned to these splice junction sequences. A new version of the original software
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named Tophat2 was released in early 2013. TopHat2 has the additional capacity
to align variable length reads and allow variable-length indels with respect to the
reference genome.

1.3.4 Post-Alignment Analysis

Processing of NGS data is incomplete without statistical procedures connecting the
mapped reads to relevant biological hypotheses. This requires developing rigorous
tools for normalization, peak calling, enrichment testing etc. These tools would
apply to a wide range of applications, e.g. detecting activated histone marks,
exploring DNA methylation patterns, estimating RNA transcript abundance and
so on.

Post-alignment transcriptome analysis encompasses a broad range of research;
see, e.g., [51] in yeast; [13] and [42] in human; [49] in mouse; [69] in butterfly,
and so on. Transcriptome analysis typically involves solving two subproblems—(1)
aligning reads to the transcriptome and (2) estimation of the abundance of unique
transcripts.

The analysis begins by normalizing the mapped read counts. RPKM (reads
per kilobase per million mapped reads) was originally introduced by [49] for this
purpose. Based on transcript lengths and the sequencing depths, this RPKM measure
can compare the expression measures across different genes and samples. Since
mapped reads are frequently shared by multiple isoforms, using the normalized
reads to estimate transcript abundance is another big challenge. Older count based
abundance models avoid this issue by assuming all transcripts have a single isoform
and reads are uniquely mappable to transcripts. One ad hoc approach is to allocate
fractions of multi-mapped reads to target transcript isoforms equally. Another
approach is to allocate fractions of the reads in proportion to the coverage of
uniquely mapped reads divided by the length of the transcript isoforms (“rescue”
method) [49].

More realistic multi-read models [26, 78] addressed the case for multiple
isoforms. Jiang et al. [26] was one of the first model-based approaches in this
direction. The major assumption was that the number of reads coming from an
exon of a certain length is Poisson where the mean is a normalized function of
the exon length. The primary estimable parameters were the relative abundances
of different transcripts. Concave optimization was used to maximize the likelihood.
With the advent of paired-end sequencing, such models were slowly replaced by
more complex ones which included length distribution of fragments along with
transcript lengths. Recall that in paired-end tagging, reads correspond to both ends
of the sequenced fragments. Thus, when the reads in a pair map upstream and
downstream of an alternatively spliced exon, the inclusion and exclusion isoforms
will typically imply different intervening insert lengths. Such evidence is utilized
to sharpen the inference on abundance estimation. The first insert length model
was published in [67] which essentially extended the approach of Jiang and Wong
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to paired-end reads. Their algorithm was made available through a comprehensive
software called Cuffllinks in early 2011. For a review of general insert length models
we refer the readers to [30,52,61]. Insert length models implicitly assume that reads
are filtered based on length independent of their sequence. Conditional on insert
length, the sampling of transcripts is modeled as uniform. The read pairs are then
probabilistically assigned to isoforms that are consistent with both individual reads.
These assignments are weighted by the relative probability of observing the given
insert length.

Katz et al. [30] introduced a Bayesian RNA-seq algorithm called MISO and
explicitly showed how the distribution of the insert lengths affects our knowledge
of splicing events. They based their length distribution on the implied length of
read pairs which map to large constitutive intronless regions such as 3′ UTRs.
Mezilini et al. [46] identified the importance of solving the problems of alignment
and estimation simultaneously through an iterative algorithm. They pointed out that
accurate estimation of isoform abundance is extremely difficult if not all isoforms
are known since the read pairs from unknown isoforms can affect the estimation
of known ones. IsoInfer/IsoLasso [21] is a similar algorithm that solves the two
subproblems by computing a large set of possible isoforms and then using lasso
[66] to select a best subset.

A number of broad data analytic tools to handle different types of NGS data have
been developed over last five or so years. As for example, the software package
F-seq [7] produces continuous signals along a chromosome by kernel smoothing
the high-throughput sequencing read counts. The user can visualize the resulting
signal directly in the UCSC Genome Browser. A number of specific features such as
transcription factor binding sites (ChIP-Seq) or regions of open chromatin (DNase-
seq) can be identified this way. Often a statistical distribution such as the gamma
distribution is fit to the maximum F-seq signal in an enriched region to determine if
a peak is significant; see, e.g., [72]. Other tools besides mapping [28] and alignment
[36] include MACS (Model-based Analysis of ChIP-Seq)—a more robust predictor
of binding sites; a tool for enrichment analysis [20]; tools for ChIP-Seq data [60,79];
tools for protein-DNA interactions [63]; and a tool for DNA copy number variation
detection [77]. Pepke et al. [56] provided a useful review of methods for RNA-seq
and ChIP-Seq data; also see [25]. More recent reviews of RNA-seq data analytic
tools are provided in [12,24]. Methods related to splicing based on RNA-seq data are
reviewed in [3]. Computational and statistical tools for ChIP-Seq data are reviewed
in [32]. A number of post-alignment data analytic tools have been incorporated into
R and Bioconductor packages. These are discussed in the next section.

1.3.5 R and Bioconductor Packages

We briefly describe a selected number of R and Bioconductor packages useful for
developing a basic NGS data analysis pipeline. More statistically oriented packages
for specific and advanced analyses are introduced in other chapters of this book.



18 R. Mitra et al.

The ShortRead package [48] is quite popular in working with raw short
read outputs of standard NGS platforms. It can perform quality assessment, data
manipulation and provide high-level data summary useful for subsequent statistical
analysis. It can also work with a number of standard alignment programs such as
Bowtie [36], MAQ [40] and ELAND (Illumina’s proprietary alignment program).
The ShortRead package can be used in conjunction with [54, 55]. The last two
packages are useful for efficient manipulation of big strings. Lawrence et al. [55]
has tools for representation, manipulation, and analysis tools of large sequences and
subsequences; it can also attach additional information to such subsequences. The
rtracklayer package [37] is useful for interfacing R with genome browsers.

The biomaRt package [17] provides an interface to BioMart databases (e.g.
Ensembl, COSMIC, Wormbase, Gramene etc). Using this tool, users can gain direct
access to a diverse set of data in a simple and uniform manner. They are able
to mine these databases and obtain gene annotations. An infrastructure package
BSgenome [54] is available for accessing, analyzing, creating, or modifying
Biostrings-based genome data packages. The rGADEM package is a de novo motif
discovery tool for large-scale genomic sequence data. It depends on the seqLogo
package for plotting sequence logos for DNA sequence alignments. Visualization
of NGS data by means of Hilbert curves is possible using the HilbertVis
package [4]. Plotting tools for NGS and other genomic data are provided in
GenomeGraphs [18].

ChIP-Seq is an important technology for detecting transcription factor binding
sites and epigenetic marks. It uses NGS platforms as a part of its workflow.
Amongst various packages for analyzing ChIP-seq experiments are the chipseq
[31], ChIPpeakAnno [81], BayesPeak [10] and the Rcade package (http://
www.bioconductor.org/packages/release/bioc/vignettes/Rcade/). Tools for design
and analysis of ChIP-Seq experiments are provided in chipseq which corrects
for background signals and improves tag alignment. The ChIPpeakAnno package
has tools for batch annotation of the identified peaks from ChIP-Seq experiments.
As the name suggests, BayesPeak is a peak detection software based on Bayesian
methods. Rcade provides an integrated analysis of ChIP-Seq together with differ-
ential gene expression summary.

Several statistical methods and related R packages for differential gene expres-
sion analysis based on RNA-seq data have been developed over the years. The
packages DESeq and EdgeR are popular choice amongst users of RNA-seq.
BaySeq is a Bioconductor package that identifies differential expression using
next-generation sequencing data via empirical Bayesian methods. A number of
these packages and the corresponding statistical methods are described in greater
details in Chapter 2 of this book.

http://www.bioconductor.org/packages/release/bioc/vignettes/Rcade/
http://www.bioconductor.org/packages/release/bioc/vignettes/Rcade/
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1.4 Conclusion

Decoding the DNA sequence is fundamental to all branches of biological research.
Therefore it is essential to have a widely available technology for accurate and
complete sequencing. Early DNA sequencing capability relied on some version
of Sanger sequencing [62]. Despite its widespread use in scientific laboratories
in the 1990s, this “first generation” technology suffered from inherent limitations
in throughput, speed and cost. To remedy these deficiencies, next generation
sequencing arrived in 2005 and quickly rose to prominence within the span of
few years. It represents a fundamental departure from the previous generation,
primarily in its ability to sequence millions of reads in parallel. For today’s genome
researchers, a wide variety of platforms is available to choose from. We reviewed
these various platforms and discussed their relative merits with respect to cost, speed
and suitability for certain kinds of biological experiments. Competition between
manufacturers is increasingly leading to lower costs and improved speed. It has
been estimated that sequencing capability is now accelerating at a rate faster than
Moore’s law.

To keep pace with the ever growing technology considerable demands are
being placed on the IT infrastructure, storage capabilities and data tracking. Cloud
service is now getting used for efficient information exchange and project manage-
ment. More importantly, sophisticated computational and statistical software are in
demand for analyzing the gigabytes of generated data. A critical challenge is that
the measurement of gene expression or TF binding affinity is now based on direct
counts of reads rather than on hybridization to probes. This has reduced the noise
caused by cross-hybridization and the bias caused by the variation in probe binding
efficiency. However, the read data is accompanied by its own unique features and
problems.

Overall, NGS presents some novel methodological issues for statisticians.
Mapping or constructing de-novo genome assembly demands fast computational
algorithms for alignment. Analyzing mapped reads is the next major challenge since
the count data is hard to fit by conventional Gaussian distributions. Basecalling
and differential profiling increasingly requires sophisticated hierarchical models.
One critical concern is the curse of dimensionality. For example, in RNA-seq
experiments we often have very few replicate samples, where conventional methods
for quantifying uncertainty fail. Bayesian hierarchical models partially mitigate
this problem by borrowing strength across different genes and/or experimental
units. NGS is significantly impacting network analysis as well . Deciphering
bimolecular pathways through proteomic or genomic networks is one of the holy
grails of modern biology. Pathway inference has huge implications for a wide
range of applications including targeted drug therapy, personal genomics and
pharmacokinetics. However, traditional graphical models fail to account for non-
Gaussian count distributions and miss the correlation between the true biological
signals. Again, small n large p issues emerge as a major challenge in such network
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inference. Bayesian models utilizing novel graphical priors become highly relevant
in this context. Some of these issues are discussed at length in later chapters.

Apart from the primary goal of mere sequencing, NGS technologies have a
broad range of applications. With the rapid decline in sequencing cost, personal
genomics is soon to become a reality. The platforms are now maturing to the
point where NGS is being considered by many laboratories for routine diagnostic
use. NGS platforms have now made genomic analysis possible for any organism,
allowing comparison across individuals and ecotypes. Recent applications of deep
sequencing in microbial genomes highlight the striking impact it has on the fields
of evolutionary biology and metagenomics. Thus NGS has an enormous potential to
transform current genomic research and enhance our fundamental understanding
of biological processes. It is equally critical both for biologists and quantitative
scientists to acquire a detailed comprehension of this technology and tap into this
powerful resource.
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Chapter 2
Using RNA-seq Data to Detect Differentially
Expressed Genes

Douglas J. Lorenz, Ryan S. Gill, Ritendranath Mitra, and Susmita Datta

Abstract RNA-sequencing (RNA-seq) technology has become a major choice
in detecting differentially expressed genes across different biological conditions.
Although microarray technology is used for the same purpose, statistical methods
available for identifying differential expression for microarray data are generally
not readily applicable to the analysis of RNA-seq data, as RNA-seq data comprise
discrete counts of reads mapped to particular genes. In this chapter, we review
statistical methods uniquely developed for detecting differential expression among
different populations of RNA-seq data as well as techniques designed originally for
the analysis of microarray data that have been modified for the analysis of RNA-seq
data. We include a very brief description of the normalization of RNA-seq data
and then elaborate on parametric and nonparametric testing procedures, as well
as empirical and fully Bayesian methods. We include a brief review of software
available for the analysis of differential expression and summarize the results of a
recent comprehensive simulation study comparing existing methods.

2.1 Introduction: RNA-seq Data

RNA-seq is a next generation sequencing (NGS) procedure of the entire tran-
scriptome by which one can measure the expression of several features such
as gene expression, allelic expression, and intragenic expression. The number
of reads mapped to a given gene or transcript is considered to be the estimate
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Table 2.1 Table of read counts from a hypothetical RNA-seq experiment

Population 1 Population 2

Gene Sample 1 Sample 2 Sample 3 Sample 1 Sample 2

1 22 26 15 66 44
2 4 1 20 1 4
3 75 113 281 116 97
...

...
...

...
...

...
10,000 0 9 0 1 2
Total 824,015 782,345 1,345,387 693,428 923,450

In this example, there are K = 2 populations, J1 = 3 samples in the first population,
J2 = 2 samples in the second population, and G = 10,000 genes. The final row lists
the cumulative read counts for each sample, frequently referred to as the library
size for a sample

of the expression level of that feature using this technology [24]. Microarray
technology has been the method of choice to measure gene expression since the
nineteen-nineties. However, RNA-seq is generally acknowledged to be a better
platform for transcription profiling for several reasons [8, 22, 25, 26, 28, 43, 50].
RNA-seq is believed to have a wider range of signal detection. The resolution of
microarray expression measures cannot go beyond the probe level. In contrast, the
majority of the reads from NGS technology map to the reference genome with
single base resolution and consequently RNA-seq can be evaluated at single-base
resolution. Moreover, in microarray technology one needs to have knowledge of the
target sequences to construct the probe sets. Hence, RNA-seq is more suitable for
the discovery of novel transcripts.

The end-product of a RNA-seq experiment is a sequence of read counts, typically
represented as a matrix with rows representing genes and columns representing
samples from one or more populations, as in Table 2.1. When RNA-seq data
are generated from two or more populations, interest often is in the detection of
differentially expressed genes among the populations, i.e., genes for which read
count distributions differ among populations. Methods for detecting differential
expression in microarray data are well-established but generally not applicable to
RNA-seq data, as the data from a RNA-seq experiment are discrete counts rather
than continuous measures of expression levels.

A challenge in the detection of differential expression for RNA-seq data results
from the way in which reads are mapped to features such as genes, transcripts
or exons. One of the issues is that the expression quantification from short reads
using RNA-seq data depends on the length of the features; longer features usually
produce more reads. Normalization by dividing by the length of the transcript [25]
alleviates this problems somewhat but not completely [54]. The expression value
used by Mortazavi et al. [25] is referred to as Reads per Kilobase per Million reads
(RPKM). Differential RNA-seq analysis using an empirical Bayes procedure by the
limma method [38] uses log-counts per million (log-cpm), analogous to the log-
intensity values in microarray studies.
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Differential expression analysis may also be affected by the sequence depth of
the NGS data generation. Sequence depth can be calculated as N × L/G, where
N is the number of reads, L is the average read length and G is the length of the
original genome. For example, N = 8 reads for a genome with G = 2,000 base pairs
at average length L = 500 will have a sequence depth of 2 or 2× redundancy. This
also is equivalent to the percentage of genome covered by reads and the average
number of times a base is read. Higher coverage can improve the power to identify
differential expression using RNA-seq data. However, read counts are subject to
technical variation in which the overall read count for a sample, referred to as the
library size, can substantially vary among repeated NGS experiments on the same
sample. In order to accommodate this source of variability, log-cpm values need to
be adjusted by accounting for mean-variance trends typically observed in RNA-seq
data, particularly among genes with lower counts. Zero counts are augmented by
a small positive value to avoid taking the logarithm of zero, ensuring non-missing
log-cpm and reducing the variability at lower count values.

An additional challenge is that some of genes may exhibit very large read counts
while the rest of the reads are distributed among the remaining genes. Hence, even if
library sizes are identical between samples, some genes may mask the expression
of others which may be moderately equivalently expressed. Thus, the expression
signals of genes or transcripts in RNA-seq data not only depend on sequence depth,
but also are dependent on the expression levels of other transcripts. Because of
this and the technical variation of NGS experiments noted above, raw read counts
from different populations are not necessarily directly comparable in an analysis of
differential expression without adjustment for technical variation. In other words,
simply viewing the count for a given gene and sample as proportional to the
sample’s total read count is problematic because a few genes may have extremely
large counts that artificially inflate a sample’s total read count. Alternative complex
normalization schemes for RNA-seq data have been proposed by Bullard et al.
[6], Anders and Huber [1], and Robinson and Oshlack [32]. In these methods,
there are additional sample specific normalizations combined with library sizes.
There are other methods of normalization as well. A thorough evaluation of
many normalization methods for RNA-seq data is provided in Dillies et al. [11].
Trimmed mean of M-values normalization (TMM) [32] and the normalization
scheme provided by Anders and Huber [1] are among the easiest to use and provide a
decent solution to the normalization problem of RNA-seq data. However, even these
methods assume that very few genes are differentially expressed between different
populations and those are equivalently spread between the up- and down-regulated
genes. Other types of normalization strategies deal with the GC content of the reads.
Normalization for this specific reason transforms RNA-seq data in such a way that it
no longer remains count data and should be dealt with differently in terms of further
analysis for finding differentially expressed genes. Cufflinks/Cuffdiff [48] provides a
normalization scheme in their integrated differential analysis algorithm. For a more
thorough discussion of normalization methods, we encourage the reader to consult
the chapter on normalization in this volume.
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The focus of this chapter is to provide a comprehensive review of the methods
related to the analysis of differential expression for RNA-seq data. In recent years,
a number of reviews of RNA-seq data analysis methods have been published,
and they all are effective in communicating the current status of the analysis of
RNA-seq data [2,40,53]. Much further work will be devoted to developing statistical
methods for the detection of differentially expressed genes for RNA-seq data. In
this chapter, we review statistical methods for detecting differential expression in
RNA-seq data, including the application of techniques for analyzing microarray
data to RNA-seq data, parametric and nonparametric tests, and empirical and
fully Bayesian methods. We summarize the results of several simulation studies,
including a recently published thorough examination of several of these methods.
We briefly describe some existing open source R and Bioconductor software for
testing differential expression for RNA-seq data. We conclude the chapter with a
discussion section.

2.2 Statistical Methods for Testing Differential Expression

For consistency of notation in what follows, we have established a single unifying
notation for the RNA-seq read counts. As a result, the notation we use here
is frequently different from the source works. We consider read counts for G
genes measured in K populations. Let Yi jg denote the number of RNA-seq reads
mapped to gene g in replicate j of population i, where 1 ≤ i ≤ K, 1 ≤ j ≤ Ji,
and 1 ≤ g ≤ G. We will generally refer to “genes” as that which are being tested
for differential expression, with the understanding that other features (transcripts,
exome expression, etc.) may be tested as well. While the developments below will
focus on detection of differential expression between two populations, several of
the methods have natural extensions permitting the comparison of more than two
populations.

2.2.1 Simple Approaches

An early treatment [6] of differential expression for RNA-seq data examined the
performance of Fisher’s exact test and test statistics derived from generalized linear
models used to derive and normalize expression counts. We temporarily extend our
notation and let Yi jgk denote the read count for gene g along lane k in sample j of
population i. A Poisson generalized linear model for Yi jgk is

log
(
E[Yi jgk | di jk]

)
= log
(
di jk
)
+λi jg +θi jgk, (2.1)
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relating the logarithm of the expected read count for gene g in lane k as a linear
function of the gene g rate in sample j of population i (λi jg), an offset term adjusting
for variation in lane depths (di jk), and other unspecified technical effects that vary by
gene, lane, and sample (θi jgk). Tests of differential expression are derived from this
model through a likelihood ratio test (LRT) or t-tests of the maximum likelihood
estimates (MLE) of the expression parameters λi jg. The performance of these
tests as well as Fisher’s exact test in detecting differentially expressed genes was
evaluated on a gold standard data set [7]. Two variants of the GLM-derived t-tests—
one using the variance of the MLE of λi jg and one using variance calculated via
the delta method—exhibited reduced detection rates. Fisher’s exact test and the
LRT performed equivalently and exhibited uniformly greater true positive rates
(TPR) than the t-tests. The authors noted that screening genes based on read
counts improved the performance of both the t-test and LRT. When genes with
read counts lower than 20 were filtered out, detection rates for the LRT and t-test
greatly improved and were roughly equivalent. The filtering threshold, however, was
arbitrarily selected and tested only on the single gold standard data set.

A recently developed R software package, DEGseq [51], also employs Fisher’s
exact test as well as the two versions of the likelihood ratio test noted by Bullard
et al. [6]. Additionally, DEGseq introduces two tests based on the thresholding of
plots of log fold change as a function of mean log expression level (MA plots)
commonly used in microarray data, one for analyses based on single samples in
each population and one for analyses based on technical replicates. These MA
plot-based tests are based upon binomial assumptions for the read counts and a
normal approximation of the conditional distribution of the log count ratio between
populations (M) and average of log counts (A) between populations.

Another simple two-sample test can be constructed by assuming a Poisson
distribution for the read counts. To this end, suppose that the Yi jg ∼ POI(ci jλig),
where λig represents the relative rate parameter for gene g in population i and
ci j is a replicate-specific constant. The constant ci j is included to account for
variation in read intensity among biological replicates, which can artificially inflate
overall library sizes for replicates with high intensity. The within-population and
overall read counts are defined as Yi·g = ∑ j Yi jg and Y··g = ∑i, j Yi jg, which follow
POI(∑ j λigci j) and POI(∑i, j λigci j) distributions, respectively, under the Poisson
assumption for the individual read counts. The null hypothesis for testing differential
expression for gene g is that of equal relative rates of expression, which takes the
form H0,g : λ1g = λ2g. Under the null, the conditional distribution of the read count
for gene g in population i (Yi·g) given the total read count for gene g (Y··g) is binomial
with size Y··g and success probability π0 = ∑ j ci j/∑i, j ci j, which is common to all
G genes. The test of H0,g is then any binomial test (e.g. asymptotic, exact, Clopper-
Pearson) of Yi·g successes in Y··g trials against null probability π0. Adjustment of
p-values from the G tests to control the false discovery rate (FDR) can be achieved
via the Benjamini–Hochberg [4] correction, or any other suitable method.
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Fisher’s exact test, GLM-based tests, the MA plot tests of DEGSeq, and the
conditional binomial test have received little attention, in large part due to the
practical infeasibility of assumptions about the marginal or conditional distributions
of the read counts. In particular, the Poisson assumption for read count distributions
and the binomial assumption for conditional read count distributions have proven
infeasible for real data. The variation in replicate samples is typically far greater than
that modeled by the Poisson distribution even after adjustment for read intensity.
Other tests for differential expression have focused on extensions of the Poisson
model for read counts or alternative discrete probability distributions.

2.2.2 Tests Based on Extensions of the Poisson Distribution

Srivastava and Chen [41] proposed a test of differential expression based upon the
generalized Poisson distribution. In terms of RNA-seq data, the generalized Poisson
model is

P(Yi jg = y) = λig (λig +θigy)y−1 e−λig−θigy/y!, (2.2)

where λig is the read intensity parameter for gene g in population i and θig is a
parameter referred to by the authors as the average bias caused by the sample
preparation and sequencing process. The authors note that the bias parameter θig

serves as a shrinkage factor relative to the Poisson distribution, as E[Yi jg] = λig(1−
θig)

−1 and Var[Yi jg] = λig(1− θig)
−3. To construct a likelihood ratio test based on

the generalized Poisson (GP) model, the intensity and sequencing-bias parameters
(λig,θig) are first estimated freely. The intensity parameters are then estimated under
the restriction λ2g = wλ1g, where w represents a normalization constant accounting
for different sequencing depths between populations. In practice, this normalization
constant w is chosen as the ratio of the total amount of sequenced RNA in the two
populations. This in turn is estimated in each population as a weighted sum over all
genes of the unrestricted MLE of the λig, with weights defined by gene lengths. The
LRT statistic calculated from the restricted (λi2 =wλi1) and unrestricted likelihoods
approximately follows the χ2

1 distribution. Using a standard data set [37], the GP
test was shown to be more sensitive than the Poisson LRT as well as LRT derived
from generalized linear models under Poisson, negative binomial, and quasi-Poisson
distributions. The generalized Poisson distribution does permit negative intensities
λig which are not interpretable in a practical sense. The authors note that the GP test
fails when data produce a negative estimate of λig as likelihoods become zero and
maximum likelihood estimation fails, a notable drawback to the applicability of the
GP test.

Auer and Doerge [3] introduced the two-stage Poisson model (TSPM), in which
gene counts are first screened for overdispersion and different test statistics are
calculated for genes determined to be overdispersed/not overdispersed. In the first
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stage of TSPM, genes are filtered so that those with small cumulative counts
over replicates and populations are not given further consideration. The authors
arbitrarily select 10 as the cutoff, but do note that the cutoff can be varied based
on the number of replicates and overall read intensity. After filtering, a random
effects Poisson model is fitted to the gene counts assuming no overdispersion, and an
adjusted score statistic is calculated to test the null hypothesis of no overdispersion
per gene, H0g : φg = 1, where φg is the overdispersion parameter for gene g,
1 ≤ g ≤ G. The quantiles of the adjusted score statistic are compared to theoretical
quantiles from the χ2

1 distribution. Genes for which the adjusted score statistic is
greater than the upper bound of the Working-Hotelling simultaneous confidence
band for the theoretical χ2

1 quantiles are classified as overdispersed. All other
genes are classified as not overdispersed. In the second stage of the TSPM, genes
classified as overdispersed are tested using a likelihood ratio test derived from fitting
overdispersed quasi-likelihood models under the null and alternative hypotheses of
no differential expression and differential expression, respectively. Genes classified
as not overdispersed in stage 1 are tested using a standard likelihood ratio test from a
Poisson model. The authors recommend that corrections for FDR control be applied
separately within the sets of genes found to be overdispersed and not overdispersed
as a power-saving strategy, diverging from common implementation of methods
for FDR control. In a simulation study, the authors show that the TSPM exhibited
improved power over a negative binomial model and a quasi-likelihood approach in
settings where some genes were overdispersed and others not.

Pounds et al. [30] proposed two procedures for identifying differentially
expressed genes using both a likelihood ratio test with a Poisson distribution and
a quasi-likelihood model which adjusts for overdispersion. Both procedures are
based on the adaptive histogram estimator of empirical Bayesian probabilities of
no differential expression and of no overdispersion. The Assumption Adequacy
Averaging (AAA) procedure uses the law of total probability to estimate the
empirical Bayesian probabilities of no differential expression for each gene.
These estimates are based on a weighted average of the empirical Bayesian
probabilities of no differential expression for the gene using the Poisson and quasi-
likelihood models, with weights based on the empirical Bayesian probability of no
overdispersion. The Empirical Best Test (EBT) procedure alternatively selects the
best test based on the empirical Bayesian probabilities of no overdispersion for each
gene. The EBT procedure then applies the adaptive histogram estimator to obtain
the empirical Bayesian probabilities based on the set of p-values for the tests for
differential expression, using the best test for each individual gene. The authors
present simulation studies which evaluate the performance of these two procedures
based on various performance metrics and scenarios, and also compare them to
the Poisson model, the quasi-likelihood model, TSPM, and negative binomial and
Bayesian tests discussed below. The authors also discuss some nice theoretical
properties of the two proposed procedures.
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2.2.3 Negative Binomial and Quasi-Likelihood Tests

Rather than extend the Poisson distribution [41] or work around overdispersion
via screening [3], several authors have proposed differential expression methods
based on the negative binomial distribution. The use of the negative binomial
distribution was motivated by observation that real RNA-seq data sets typically
exhibited greater variability than could be modeled via the Poisson distribution.
Robinson and Smyth [33] assume a negative binomial distribution for the read
counts for all genes with a common dispersion parameter, (i.e.) Yi jg ∼ NB(μi jg,φ),
where μi jg = mi jλig, mi j the library size for sample j in population i, and λig a
relative abundance parameter for gene g in population i, which is assumed to be
common to the replicate samples within a population. The dispersion parameter φ
is estimated by maximizing the conditional likelihood given the sum of the counts
in each population. This conditional maximization is straightforward when library
sizes are assumed to be equal within each population. When this is not the case,
a quantile adjustment is applied to the library sizes, adjusting observed counts to
the geometric mean of the replicates. These adjusted library sizes are then used
in the maximization of the conditional likelihood for the dispersion parameter, a
process referred to as quantile adjusted conditional maximum likelihood (qCML)
estimation. The null hypothesis for the test of differential expression is the equality
of the relative abundance parameters, H0g : λ1g = λ2g,g = 1, . . . ,G. The authors
suggest an exact negative binomial test based on the same quantile adjustment
used in estimating the dispersion parameter, in which the “pseudosum” of adjusted
counts for a given population is conditioned on the pseudosum of counts across
populations, and a p-value calculated as the probability of observing counts greater
than those observed.

The assumption of a dispersion parameter φ common to all genes is frequently
biologically implausible. As such, Robinson and Smyth [34] extended their original
negative binomial approach and suggested the use of gene specific dispersion
parameters φg, so that the distributional assumption on read counts becomes
Yi jg ∼ NB(μi jg,φg). The authors suggested estimation of the φg via a weighted
likelihood approach, approximating an empirical Bayes procedure. The weighted
likelihood for φg is defined as the weighted sum of the likelihood with gene-
specific overdispersion (φg) and the common likelihood function with common
overdispersion (φ ). The weight parameter α determines the weight assigned to
the common likelihood relative to the gene-specific likelihood. In practice, the
parameter α is selected based on a Bayesian normal hierarchical model for the gene-
specific dispersion parameters φg. The authors demonstrate that when dispersions
do not differ among genes, this approach results in greater values of α , which
gives greater weight to the common likelihood in the weighted likelihood equations
and thus shrinks the gene-specific φg to a common value. A simulation study
demonstrated that the ability of the exact test [33] to detect differentially expressed
genes improved when the empirical Bayes estimation of the gene-specific dispersion
parameters was implemented, and was equivalent to the performance of a Wald test
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from an overdispersed log-linear model when genes were commonly overdispersed.
Further, the exact test with empirical Bayes adjustment was better able to control
false discovery rates when gene-specific overdispersion was introduced.

Anders and Huber [1] noted that in practice, dispersion often varies with
expected read count, and suggested an extended negative binomial model in which
the variances of the read count are defined as a nonparametric function of their
expectation. Formally, Yi jg ∼ NB(μi jg,φμ), where, as in the Robinson–Smyth
approach, μi jg = mi jλig, and mi j is a library size parameter accounting for the
sampling depth in replicate j in population i. The notation φμ is understood to imply
that dispersion varies in an unspecified fashion with the expectation. Under this
approach, Var(Yi jg) = μi jg(1+ φμ μi jg), which departs from the Robinson–Smyth
[33] negative binomial approach for which Var(Yi jg) = μi jg(1+ φ μi jg). As noted
above, Robinson and Smyth [34] extended the standard negative binomial approach
by estimating gene-specific dispersion parameters via empirical Bayes weighted
likelihood estimation, in which gene-specific dispersion parameter estimates were
shrunk toward a common dispersion. Anders and Huber [1] employ a gamma-family
generalized linear local regression to model the mean-dispersion relationship. The
null hypothesis in the test of differential expression, H0g : λ1g = λ2g, is tested via
an exact test constructed similarly to the Robinson and Smyth test. The Robinson
and Smyth approach adjusts counts by qCML to achieve equal pseudocounts per
replication. The equality of the pseudocounts is then used in the construction of
exact negative binomial test statistics. In contrast, Anders and Huber approximated
the distribution of the sum of negative binomial random variables assuming unequal
library sizes. The authors demonstrated their method on four standard data sets,
noting that both approaches were effective at controlling false discovery rates, while
a Poisson-based χ2 test failed. The authors note that the overall sensitivities of
their test and the common-dispersion version of the Robinson and Smyth test were
roughly equivalent. However, the Robinson and Smyth test was less conservative
for weakly expressed genes and more conservative for strongly expressed genes, an
apparent product of the flexibility of the nonparametric variance estimator in the
Anders and Huber test.

Di et al. [9] applied a generalized negative binomial distribution, known as the
negative binomial power (NBP) distribution, to test for differential expression. The
NBP distribution is a gamma mixture of Poisson distributions; if Y |Z ∼ POI(Z)
and Z ∼ Γ with mean μ and variance φ μα , then marginal distribution of Y is
NBP. The authors note that by assuming NBP-distributed read counts, Var(Yi jg) =
μig(1+ φ(μig)

α−1). While the dispersion parameter is common to all genes, the
mean-variance relationship is given flexibility via the power parameter α . This is
in contrast to the Robinson–Smyth and Anders–Huber approaches, in which the
dispersion parameters themselves are varied. The NBP tests is constructed as an
exact test based on the NBP assumption. The null hypothesis is λ1g = λ2g, where,
as in the other negative binomial tests, μi jg = mi jλig, and mi j represents the library
size for replicate j in population i. Under the assumption of equal library sizes,
the authors estimate the relative frequency parameters λig as simple averages over
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replicates weighted by the common library size. The dispersion parameters φ and
α are estimated via maximum likelihood conditional on the sum of read counts
within each population and the estimated λig. The exact test is constructed in the
fashion of Robinson and Smyth [33], based on the conditional distribution of the
read count sums in one population given the read count sum over both populations.
To permit varying library sizes, the authors randomly sample read counts to force
equal active library sizes, a process they term “thinning”. A simulation study was
conducted in which read counts were simulated from the Poisson and several
variants of the negative binomial distribution, under different assumptions on the
functional form of the negative binomial variance. The authors noted that each of
the negative binomial tests, including their own, appeared adequate at controlling the
false discovery rate under their simulation settings, while the NBP test appeared to
be most powerful, particularly under a simulation model in which the log-dispersion
parameter was defined as a quadratic function of the log-mean.

Lund et al. [23] noted that while methods based on extensions of the Poisson
distribution or the negative binomial distribution provide added flexibility in
modeling read count overdispersion, these methods fail to properly account for
uncertainty arising from estimating this overdispersion. In general, this results in
overly liberal tests of differential expression and skewed p-value distributions when
genes are not differentially expressed. The authors suggest modeling read counts
via quasi-likelihood (QL) by defining the read count variance to be proportional to
a user-defined function—Var(Yi jg) = ΦgVg(μi jg), where Φg is a quasi-dispersion
parameter to be estimated from the data, and the variance function Vg() must
possess a corresponding quasi-likelihood function satisfying ∂ l(μi jg|yi jg)/∂ μi jg =
(yi jg − μi jg)/Vg(μi jg). Differential expression is tested through a quasi-likelihood
ratio test, for which three methods for estimating the QL dispersion parameter Φg

are discussed. The first is a standard deviance-based estimator. The second is an
empirical Bayes estimator, adapted from an approach introduced by Smyth [38],
which borrows information across genes in estimating gene specific dispersions
by placing a scaled inverse χ2 prior distribution on the QL dispersion parameter.
The third approach accounts for mean-variance relationships in the read counts by
fitting a cubic spline of the logarithm of the deviance-based QL dispersion estimator
against the log-average counts. A preliminary estimator of the QL dispersion is
derived from the spline function, and the aforementioned empirical Bayes approach
of Smyth is employed to arrive at the spline-based estimator of the QL dispersion.
The authors note that the latter two methods, termed QLShrink and QLSpline, can
be characterized as shrinkage estimators—weighted averages of the deviance-based
and Bayesian or spline estimators. Lund et al. [23] conducted a simulation study
demonstrating the liberal nature of existing Poisson and negative binomial tests, and
noted that of the three proposed QL methods, the spline-based method (QLSpline)
appeared to perform best.
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2.2.4 Other Methods

Parametric approaches to modeling RNA-seq data based on discrete distributions
for counts can be adversely affected by model misspecifications and the presence of
outliers. A nonparametric approach to the identification of differentially expressed
genes in RNA-seq data was proposed by Li and Tibshirani [20]. A modified two-
sample Wilcoxon statistic

T ∗
g =

1
S

S

∑
s=1

{

∑
j

R1 jg(Y
′s)− J1(J + 1)

2

}

(2.3)

based on a multiple Poisson sampling procedure over S iterations is used to examine
the differential expression of the gth feature (gene) in two-class data. As in the
previous section, Yi jg denotes the RNA-seq count for the gth gene in the jth
experimental observation in population i, Ji is the number of observations in the ith
population for i = 1,2, and we define J = J1 + J2. The rank statistic Ri jg(Y ) gives
the rank of Yi jg in the set Y =

{
Y11g, . . . ,Y1J1g,Y21g, . . . ,Y2J2g

}
. The use of equation

(2.3) requires equal sequencing depths, so the authors suggest Poisson sampling of
the read counts, replacing original counts Yi jg with random variables Y ′

i jg resampled
from a Poisson distribution with mean d̄Yi jg/di j for i = 1,2 and j = 1, . . . ,Ji where
the di j represent the original sequencing depths for replicate j in population i, and

d̄ =
(
∏i, j di j
)1/n

is the geometric mean of all sequencing depths. This Poisson
sampling procedure is repeated S times and the resulting average test statistic
is computed to alleviate limitations resulting from the additional randomness
introduced by resampling and by tie-breaking procedures for the rank statistic.
Since the distribution of the average of the Wilcoxon statistics is complicated, the
false discovery rate (FDR) is estimated based on a permutation plug-in estimate. The
FDR estimates for this test are more conservative than for parametric alternatives,
and were shown to be accurate in simulated data with outliers for which some
parametric models greatly underestimated the FDR. In overdispersed data sets with
outliers, parametric methods often identified features with a small number of very
large count values as differentially expressed, whereas the Li and Tibshirani test
tended to identify features where the counts in one class were consistently larger
than the counts in the other class.

Tarazona et al. [44] introduced a nonparametric approach designed to be robust
against sequencing depth effects. The empirical distributions of fold-change differ-
ences Mg = log2(Ỹ1·g/Ỹ2·g) and absolute expression differences Dg = |Ỹ1·g − Ỹ2·g|
are used to estimate the probability that the gth gene is differentially expressed,
where the Ỹi·g represent cumulative read counts normalized to correct for different
sequencing depths and adjusted to avoid zero counts. Genes are declared to be
differentially expressed if the estimated probability exceeds a specified threshold;
0.8 is used by the authors. The empirical probabilities are computed using technical
replicates when available, or through technical replicates simulated from the
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multinomial distribution when not available. Tarazona et al. [44] examined the effect
of sequencing depth on the identification of expressed genes via their nonparametric
test, sequencing noise, transcript length, and genes declared to be differentially
expressed. A thorough comparison to other novel methods [1, 14, 35] as well as
Fisher’s Exact Test was made. The authors found that the number of differentially
expressed genes as well as the length, fold-change, and expression level of the
discovered genes strongly depended on the sequencing depth for the parametric
methods, while their nonparametric method was relatively consistent. Further, the
authors noted an increase in the number of false positives as the sequencing
depth increased for the parametric methods, which was also found by Li and
Tibshirani [20], while their nonparametric method was able to control the rate of
false discovery.

Recently, a Markov random field approach was proposed by Yang et al. [52].
Consider the set X = {x1, . . . ,xG} of binary random variables defining indicators xi

which equal 1 if a gene is differentially expressed and equal 0 otherwise. A vector
Y = {y1, . . . ,yG} of observed discretized FDRs are computed for the individual
genes using the Anders and Huber [1] test, and the joint probability of X given Y is
modeled as proportional to the product ∏(i, j)∈E ψ(i, j)(xi,x j)∏G

i=1 φi(xi) where E is
the set of vertices with coexpressed gene database (COXPRESdb) correlations ci, j

larger than a specified value [27] and ψ(i, j)(xi,x j) = eci, j if xi = x j and 1 otherwise.
The unary function φi(xi) are defined to be P(xi = 1|yi)/P(xi = 0|yi) if P(xi = 1|yi)>
P(xi = 0|yi) and xi = 1, P(xi = 0|yi)/P(xi = 1|yi) if P(xi = 0|yi)> P(xi = 1|yi) and
xi = 0, and 1 otherwise. It is shown that these clique potential functions of this
pairwise Markov random field model are selected so that maximum a posteriori
estimation of the differentially expressed genes is reduced to a maximum flow
problem discussed in Kolmogorov and Zabih [15]. By including information about
the dependence of gene expressions, Yang et al. [52] show through simulation
studies and real data examples that this method exhibited improved sensitivity
without a loss of precision. Through the inclusion of additional coexpression
information, this method additionally helped remove bias against detection of genes
with low read counts.

Zhou et al. [55] proposed a beta-binomial model where the probabilities that
a single read in each sample is mapped to gene g is a vector θg· of beta random
variables for which the logits of the expected values are modeled linearly by
XBg. The design matrix X is flexible and can include columns indicating group
assignments for experimental conditions as well as any other desired covariates. The
vector of regression coefficients Bg corresponds to the effects of the variables in the
columns of X for the gth gene. Two approaches are considered—(1) a free model
where the likelihood function is directly maximized, and (2) a shrinkage approach
with a constrained model where the overdispersion φg of the beta distribution is
modeled as a polynomial function of the mean. The authors additionally suggest
an automatic correction for outliers. While other penalized approaches and the
constrained model offer some advantages for very small sample sizes, simulation
studies and a real data example support direct parametric modeling with the free
model.
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2.2.5 Bayesian and Empirical Bayes Approaches

A number of fully Bayesian and empirical Bayes methods have been developed
for analyzing differential expression. Typically inferences on differential expression
span across multiple genes and conditions, each characterized by its own set of
parameters. It is frequently natural to express these parameters as a mixture over
two latent states. The states may imply the presence or absence of differential effects
and hence define the primary objects of inference. In Bayesian approaches, such
gene-specific parameters are assigned prior distributions, which are in turn indexed
by a common hyper-parameter. The model is then completed by assuming specific
sampling models for normalized count data conditional on these parameters. As in
frequentist settings, these distributions are chosen to allow for overdispersion, which
poses a critical challenge in analyzing RNA-seq data. All Bayesian models typically
follow this common hierarchy.

However, empirical Bayes and fully Bayesian methods differ sharply in their
approaches to inference and shrinkage. The former estimates the relevant hyper-
parameters directly from the data and through this combined estimate, pools
information among genes. In contrast, fully Bayesian methods borrow strength by
fixing the hyper-parameter at the highest level of the Bayesian hierarchy and sharing
the parameters themselves across different levels. For example, one could achieve
some shrinkage by simply assuming a common probability for the presence of
indicators. More generally, the extent and nature of shrinkage vary with the desired
level. Shrinkage is highly relevant in differential expression settings, where we have
multiple genes but very few replicates per gene. In the following discussion, we
shall review some commonly used empirical Bayes approaches introduced by van
de Wiel et al. [49], Leng et al. [19], and Hardcastle and Kelly [14], and conclude by
describing a fully-Bayesian method [17].

The sampling model considered by van de Wiel et al. [49] is a zero-inflated
negative binomial regression: Yi jg ∼ ZI −NB(μi jg,φg,w0g) and μi jg = h−1(βg0 +

∑k βgkxi jk), where g indexes the genes, h is a link function, φg the negative binomial
overdispersion parameter, and w0g a zero-inflation parameter. The zero-inflation
parameter is defined to be a probability mixing the negative binomial distribution
NB(μi jg,φg) with probability 1 −w0g and a point mass at zero with probability
w0g. The regression coefficients are permitted to have their own normal random
effects. The covariates typically correspond to different conditions or populations
corresponding to possible differential expression. In assigning priors, van de
Wiel et al. examined several different choices. Both flat and mixture priors were
considered for βgl , while the prior for log(φg) was assumed to be a mixture. Each
parameter family had its own associated set of hyper-parameters. A conventional
method of estimating hyper-parameters in an empirical Bayes framework is by
maximizing the marginal likelihood. As an alternative, van de Wiel et al. [49]
utilize the fact that the likelihood estimator α approximately satisfies πα(·) =
(1/G)∑G

g=1 πα(·|Yg), where G is the number of genes and Yg the vector of read
counts for gene g. This approximation can be seen by setting the derivative of the
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log-marginal likelihood to 0. Since the model includes multiple parameter families
(e.g overdispersion, regression coefficients), this generic procedure was extended
to an iterative algorithm which conditioned on a given set of parameters at each
step. Shrinkage of overdispersion is treated separately. Since the overdispersion and
mean are intertwined in NB models, a univariate shrinkage of the former may not
work. The authors suggest shrinking the individual φg through a prior that regresses
them against the gene counts. Specifically, they assume φg = h(cg)+ εg where cg

is the log of the gene count and the function h is left unspecified and estimated
via LOESS. Initial values required by this iterative algorithm are fixed at the
posterior mean estimates of the φg obtained under a flat prior. Having obtained these
estimates, the shrinkage prior was assigned as φg− φ̂g ∼N(0,σ2) where σ2 was also
estimated from the iterative procedure. The authors also suggest the importance of
the zero-inflation component in this context, describing it as a potential reason for
overdispersion. Indeed, including factors accounting for zero inflation was shown
to effectively account for the residual trends of φg in simulation settings. Finally,
posterior estimates of the specific contrasts involving the regression coefficients are
computed, and then Bayesian and local false discovery rates are applied to these
estimates to infer differential expression.

The approach of Hardcastle and Kelly [14] deals directly with the latent
indicators of differential expression. In the most general version of this approach,
a broad space of models is encompassed, each corresponding to a hypothesis to be
tested. For simplicity of exposition, we consider here just two exclusive models:
(1) no differential expression and (2) differential expression. Each gene in the data
set then has an associated latent indicator identifying whether it is differentially
expressed. A key difference with the method of van de Wiel et al. [49] is that
Hardcastle and Kelly [14] do not explicitly estimate a hyper-parameter. Instead,
their method estimates the entire prior distribution through resampling and quasi-
likelihood. The pooling of prior probabilities for the different indicators is done
through iterative estimation. The sampling model in this approach is negative
binomial, with the probabilities weighted by library sizes. Posterior probabilities
are obtained as the final step.

Leng et al. [19] introduced an empirical Bayes method that not only models
differential expression among genes but also among isoforms of the same gene.
In this setup, let Yi jgl denote the read counts in isoform l of gene g in sample j
of population i. This count is assumed to follow a negative binomial distribution,
where the parameters of the negative binomial can vary across genes, isoforms, and
biological conditions. The prior distribution of the negative binomial mean-variance
ratio is assumed to be Beta(α,β Ig), where Ig denotes a grouping of genes. The
hyper-parameter α is shared across all isoforms and genes, while β varies by gene
group (Ig). These gene groups can be defined freely to provide flexibility to the
approach; for example, genes can be grouped by the number of their isoforms. As
in other differential expression approaches, the full model was expressed as mixture
over two latent states. In the EB step, the four global hyper-parameters (each pair
corresponding to a state) are estimated via the EM algorithm. Conditioned on these
estimates, the state-specific posterior probabilities are calculated.
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Lee et al. [17] proposed a fully Bayesian hierarchical model that diverged
from existing approaches in that the cumulative read count of gene g at each
genomic position l in population i is explicitly modeled as Yi·gl ∼ Bin(Y··gl; pgl),
independently across the positions. The binomial probability pgl is modeled by
adding another layer in the hierarchy and assuming pgl ∼ (1−wgl)Beta(αg;βg)+
wglBeta(.5, .5). In this formulation, wgl expresses the outlier effect, while the αg

and βg are gene specific and centered around a mixture prior. This mixture is over
three possible indicators encoding for high, low, and non-differential expression.
The parameters corresponding to each indicator are assigned their own Gaussian
priors. These priors allow for the usual inter-gene pooling as in previous hierarchical
setups. However, this method implements full posterior inference using MCMC
methods. Final results are obtained by direct posterior sampling of the latent
indicators. This approach offers a number of advantages. First, prior normalization
of the mapped read counts is not required. Rather, normalization and differential
calling are done simultaneously via the model. Second, this approach effectively
downweights outliers at the position level through the wgl . The authors showed
that this step played a significant role in increasing the specificity and sensitivity
of differential expression calls. Third, the pooling across positions increased the
effective sample size per gene per sample. Importantly, this model uses each position
in the gene as a data point, thus we have multiple observations per gene in the
absence of replicates. This can be relevant for many cost-prohibitive RNA-seq
studies where replicates are difficult to obtain.

2.3 Software for Differential Expression in RNA-seq Data

Several of the novel methods for detecting differential expression in RNA-seq
data have associated software packages, most of which have been released via
the open source R [31] and Bioconductor [12] software environments. Below we
provide a brief summary of R and Bioconductor implementations of the different
techniques for detecting differential expression in RNA-seq data. We do not discuss
other methods such as Fisher’s exact test, two sample t-tests, GLM-derived tests,
and methods for microarray data analysis applied to RNA-seq data. The package
names we use in the discussion below can be used to load the R and Bioconductor
libraries for the associated methods, via the commands library(pkgname) for
R packages (after local installation) and biocLite(pkgname) for Bioconductor
packages.

The general convention for formatting RNA-seq data for use in frequentist
analyses is as a G× J matrix for G genes measured in J samples, with the columns
typically arranged so that the first few columns are read counts of replicates from
population 1 and the remaining columns read counts of replicates from population 2.
Most functions for detecting differential expression accept two arguments at a
minimum—the matrix of read counts and a vector defining a population identifier
for the columns (e.g. 1 or 2).
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The R package GPseq [42] implements the generalized Poisson test via the
function estimate_differential_expression. The interface for this
function differs somewhat from other implementations, in that the function accepts
an annotated read count matrix as well as exon and gene annotation matrices for
unraveling the annotated read count matrix. The GPseq package also includes
functions to calculate chi-square goodness-of-fit tests for the generalized Poisson
distribution and workhorse functions for the generalized Poisson likelihood and
likelihood ratios, and functions for permutation tests of the generalized Poisson
test statistic. The other Poisson test, based on the two-stage Poisson model [3],
is not available through an R library, rather as an R function downloadable from
the authors’ website (http://www.stat.purdue.edu/~doerge/software/TSPM.R). The
function reads in a matrix of read counts and indicators defining populations for
the columns of the matrix, and returns adjusted and unadjusted p-values as well
as vectors of indicators defining genes found to be overdispersed. The R functions
used to implement the procedures introduced by Pounds et al. [30] utilize some
of the code for TSPM and are available on the personal website (http://www.
stjuderesearch.org/site/depts/biostats/software/ebshtpasced).

DEGseq is a Bioconductor package implementing Fisher’s exact test, two
likelihood ratio tests, and tests based on MA plots [51], all through the function
DEGseq. This function also does not follow the convention of accepting matrices
of read counts. Rather, DEGseq accepts mapping files for samples from two
populations as well as arguments specifying characteristics of the RNA-seq data
files. Additional arguments specify the differential expression test to be conducted
and customize the characteristics of said tests, such as p- and q-value thresholds and
thresholds for tests derived from MA plots.

Libraries for the negative binomial tests [1, 9, 33, 34] are available in R and
Bioconductor. The Robinson–Smyth test can be found in the Bionconductor
package edgeR [35]. To obtain the Robinson–Smyth test, users of edgeR format
a matrix of counts into a package-specific object that is then fed to the function
estimateCommonDisp, which estimates the common dispersion parameters and
outputs a matrix of pseudocounts and pseudo-library sizes. The object created by
this function is fed to the function exactTest which calculates p-values from
the exact negative binomial tests based on the quantile-adjusted counts. Additional
functions in the edgeR library provide tests based on the assumption of gene-specific
dispersion parameters, utility functions for RNA-seq data, workhorse functions for
estimation and testing, and additional functions for the analysis of RNA-seq data.
We refer the reader to this book’s chapter on the edgeR package for further details.
The test of Anders and Huber [1] is available via the Bioconductor package DESeq.
To test differential expression using DESeq, users must create a package-specific
object containing the read count matrix via the function newCountDataSet,
normalize the counts using the function estimateSizeFactors, estimate
overdispersion using estimateDispersions, and then conduct the negative
binomial test using nbinomTest. DESeq includes additional functions for con-
ducting the negative binomial test directly on count matrices, as well as functions
for graphics (e.g. MA plots), variance stabilizing transformations, and negative

http://www.stat.purdue.edu/~doerge/software/TSPM.R
http://www.stjuderesearch.org/site/depts/biostats/software/ebshtpasced
http://www.stjuderesearch.org/site/depts/biostats/software/ebshtpasced
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binomial GLM tests per gene. The R package NBPSeq [10] implements the
NBP test [9]. The function nbp.test accepts a matrix of read counts and
vector of indicators for group membership. Normalization of read counts by
the random resampling process (“thinning” as termed by the authors) is accom-
plished internally within nbp.test. Additional functions in NBPSeq estimate the
negative binomial dispersion parameters (estimate.disp) and normalization
factors (estimate.norm.factors), perform exact negative binomial tests
(exact.nb.test) and GLM-based tests (nb.glm.test), and perform utility
functions on package-specific objects. Most of these functions are workhorses for
nbp.test. The quasi-likelihood approach of Lund et al. [23] is implemented in
the R package QuasiSeq, which requires the edgeR library. The function QL.fit
accepts a matrix of read counts and a list containing design matrices for full and
reduced models. Additional options permit customization of the QL model and
estimation of dispersion parameters. The list object returned by QL.fit can be
fed to the function QL.results, which produces lists of p-values and q-values.

The nonparametric approach of Li and Tibshirani [20] is implemented by the R
package samr [46]. The function SAMseq is specifically designed for the analysis
of count data, whereas samr and other functions in the package are designed for
microarray data analysis. SAMseq permits flexibility in the type of analysis to be
conducted via the resp.type argument, which can be used to request paired
and unpaired two-class comparisons, comparison of three or more classes, analysis
of association with a quantitative predictor, and analysis of a survival outcome.
Other functions in samr can be used to estimate sequencing depths and normalize
read counts. Registered academic users can also download a supplementary Addin
for Microsoft Excel from the developers web page (http://www-stat.stanford.edu/~
tibs/SAM/). The nonparametric test of Tarazona et al. [44] is implemented in the
Bioconductor package NOISeq [45] using the functions noiseq and noiseqbio.
These functions, which operate on package-specific objects containing the read
counts, include options for handling data with technical and biological replicates,
as well as data with no replicates. The function outputs a list of differentially
expressed genes based on the desired threshold probability. This package also
provides several exploratory plots for biotype detection, sequencing depth and
expression quantification, and sequencing bias that are useful for detecting potential
problems that need to be corrected by normalization procedures and several plots
which summarize the differentially expressed genes identified by the algorithm.

The Markov random field approach of Yang et al. [52], termed MRFSeq, is
implemented as C++ code and distributed from the author’s website (http://
www.cs.ucr.edu/~yyang027/mrfseq.htm). MRFSeq depends upon the coexpressed
gene database COXPRESdb [27], available at http://coxpresdb.jp, and DESeq,
the Bioconductor package for the negative binomial test of Anders and Huber
[1]. The beta-binomial test of Zhou et al. [55] is available in the R pack-
age BBSeq, available only from the author’s webpage (http://www.bios.unc.edu/
research/genomic_software/BBSeq/). The separate functions free.estimate
and constrained.estimate compute parameter estimates and estimate p-
values based on the corresponding likelihood and shrinkage approaches discussed in

http://www-stat.stanford.edu/ ~tibs/SAM/
http://www-stat.stanford.edu/ ~tibs/SAM/
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the previous section. An additional utility function (outlier.flag) is included
to identify potential outliers among the read counts.

Among the Bayesian methods, the multiple shrinkage priors approach of van
de Wiel et al. [49] is implemented in the R package ShrinkBayes, available
from the primary author’s webpage (http://www.few.vu.nl/~mavdwiel/ShrinkBayes.
html).The function ShrinkSeq is used to fit the multiple shrinkage priors model
based on specification of a model formula, the model parameters to be shrunk,
whether or not a mixture prior for overdispersion is to be implemented, and the
family of distributions used to fit the data (zero-inflated negative binomial being
the default). Since ShrinkSeq is computationally intensive, parallel computing is
implemented, and the user is permitted to specify the number of processors to be
used in parallel. Formal documentation of the functions comprising ShrinkSeq are
unavailable, but thorough examples of code usage are provided in the package doc-
umentation. Use of the ShrinkBayes package requires the installation of inla [36],
an R package for Bayesian modeling via integrated nested Laplace approximation.

The Bioconductor package baySeq [13] implements the empirical Bayes method
of Hardcastle and Kelly [14]. The functions getPriors and getLikelihood
are the two most important functions in this package. The first constructs the
empirical priors by bootstrapping, while the second yields posterior probabilities.
baySeq offers a fair amount of choice in analysis, e.g., in the number of bootstrap
samples and in techniques for re-estimating priors. baySeq can be run in parallel
mode, via the independent R package snow [47] for networking workstations.
EBSeq [18] is the Bioconductor package implementing the method of Leng et al.
[19]. The EBtest function in this package uses the EM algorithm to obtain
posterior probabilities for the detection of two-condition differential expression.
The function EBMultitest extends this utility for multiple conditions. The
underlying model in EBSeq is assumed to be negative binomial. EBSeq offers the
users a range of simulated datasets upon which to test the algorithm. The R package
BMDE implements the fully Bayesian method of Lee et al. [17], and is available
for download at http://health.bsd.uchicago.edu/yji/soft.html. Since BMDE uses full
posterior inference, it is able to provide the entire set of posterior samples, allowing
the users to choose their own posterior summaries. Unlike the empirical Bayes
algorithms mentioned above, BMDE relies on certain hyper-parameter settings. The
users are provided the flexibility to choose them and examine the sensitivity of
results based on selections for the hyper-parameters.

2.4 Comparison of Methods for Detecting Differential
Expression

In most of the source works for the methods detailed in Sect. 2.2, simulation studies
and/or analyses of live RNA-seq data sets were conducted to evaluate the detection
capabilities of the proposed methods and to make comparisons to existing methods.

http://www.few.vu.nl/~mavdwiel/ShrinkBayes.html
http://www.few.vu.nl/~mavdwiel/ShrinkBayes.html
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2 Differential Expression for RNA-seq 43

These simulation studies were largely designed to highlight special features of the
proposed methods and demonstrate the superiority of these methods under specific
conditions. More general comparative simulation studies have been conducted to
compare these methods; we discuss three such studies below. We note that these
comparative studies generally implemented default settings that were defined in
the software packages corresponding to each method, that these default settings
can change over time with new package version releases, and that the conclusions
reached by each the comparative studies may be version specific.

Bullard et al. [6] compared the performance of Fisher’s exact test and three tests
derived from the generalized linear model in (2.1)—the likelihood ratio test (LRT),
and t-tests based on the GLM-derived variance and the delta method variance. The
authors compared RNA-seq data from two biological samples from the MicroArray
Quality Control (MAQC) Project [37]. The detection capability of these four tests
were compared using the results of analysis of 375 genes by qRT-PCR gold standard
for differential expression. The authors found that the LRT and Fisher’s exact test
performed comparably in detecting differential expression, while the two t-tests
were also comparable but exhibited substantially reduced detection rates relative
to the LRT and Fisher tests. A notable contribution of this paper was the impact of
filtering genes with low read counts on the detection of differential expression. After
removing 186 genes with read counts less than 20 and repeating the analysis of the
MAQC data, the authors noted that the detection rate of both the LRT and the t-test
with GLM-based variance improved greatly and, in particular, the detection rate of
the t-test was roughly equivalent to that of the LRT.

Kvam et al. [16] conducted a comparative study of the two-stage Poisson
model [3] and three tests based on the negative binomial distribution—edgeR [35],
DESeq [1], and baySeq [14]. The authors simulated data under four models—
Poisson read counts with half of the genes simulated from an overdispersed Poisson
model, following a simulation conducted by Auer and Doerge [3] to evaluate
the TSPM, counts generated from the Poisson or negative binomial distribution
with mean and dispersion parameters estimated from a known plant data set [21],
and counts generated from a data set of human lymphoblastoid cell lines [29]
with randomly-induced differential expression. The authors noted that the three
negative binomial tests edgeR, DESeq, and baySeq performed similarly under each
simulation setting. The performance of the TSPM test was notably affected by the
number of replicates simulated, as detection capability was severely reduced for
two replicates per population. Further, the TSPM notably underperformed relative
to the negative binomial tests when all counts were simulated from the negative
binomial distribution. An analysis of a plant data set [21] showed that edgeR and
DESeq largely identified the same genes as differentially expressed, while most
of the genes identified by the TSPM were not declared differentially expressed by
edgeR or DESeq.

A recently published study by Soneson and Delorenzi [40] comprehensively
examined via simulation the performance of nine tests—DESeq, edgeR, NBPSeq,
TSPM, baySeq, EBSeq, NOISeq, SAMSeq, ShrinkSeq—and two tests based on
the empirical Bayes linear model limma [38, 39] after variance-stabilizing or
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logarithmic transformation. Using the negative binomial distribution with common
dispersion between the two populations as a foundation for simulating RNA-
seq data, the authors compared the performance of the 11 tests and noted the
impact on performance of mixing in Poisson-simulated counts, adding high-count
outlier genes, varying the number of differentially expressed genes, the direction
of differential expression (up- or down-regulated), sample size, and altering the
dispersion parameter in one of the populations.

Under these multiple simulation scenarios, the authors compared the methods
in terms of true positive rates (TPR), ranking of differential expression, type I
error control, and false discovery rate control. We paraphrase the general charac-
teristics of each test here, and refer the reader to the source work [40] for more
detailed explanations. Among the negative binomial tests, DESeq was generally
conservative, exhibiting low detection capability but strong FDR control, even
in the presence of outliers except for when sample sizes were small (two per
population). Both edgeR and NBPSeq were liberal, particularly when outliers were
present. edgeR exhibited greater sensitivity than NBPSeq in most settings, and
became less liberal under large sample sizes while NBPSeq was liberal for all
sample sizes. Both were poor at controlling the FDR, and NBPSeq often ranked
truly non-differentially expressed genes as the most differentially expressed. The
hallmark characteristic of the TSPM, which relies on asymptotic theory for its test
of differential expression, was its sample-size dependence. For small samples the
TSPM was poor at controlling FDR and ranking differentially expressed genes,
although performance improved greatly with minimal increases in sample size and
outliers were generally non-problematic. The TSPM performed poorly in terms of
differential expression rankings when all genes were overdispersed, but this was
improved when non-overdispersed genes were mixed in.

When differential expression occurred in a uniform direction (e.g. all genes up-
regulated in one population), baySeq exhibited highly variable performance for
each metric (TPR, FDR control, type I error control). This effect was mitigated
when differential expression was mixed. baySeq was largely conservative with good
FDR control, except when sample sizes were low. EBSeq provided a liberal test
with good sensitivity and poor FDR control, and was particularly resistant to the
effect of outliers. Control of the FDR for NOISeq was unevaluated due to lack of
clarity in how thresholds could be set, but it was noted that NOISeq was particularly
adept at ranking genes when populations were differentially overdispersed. SAMSeq
was non-sensitive at low sample sizes, but power rapidly increased with sample
size, and SAMSeq was particularly resistant to the presence of outliers. ShrinkSeq
exhibited high sensitivity and poor FDR control at default settings, but featured
a user-controlled fold-change thresholding procedure that could conceivably offer
stronger FDR control.

limma with transformation exhibited strong control of type I error that was
resistant to outliers. Control of FDR was also strong and resistant to outliers, except
under settings in which a large proportion of genes were uniformly upregulated in
one population and when populations were differentially overdispersed. The limma
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method was relatively conservative, particularly under low sample sizes, where no
genes were declared differentially expressed when only two samples per population
were available.

In addition to the simulation study, Soneson and Delorenzi [40] analyzed
RNA-seq data from two mouse strains [5] to compare methods. ShrinkSeq and
SAMSeq called the most genes as differentially expressed, while baySeq, DESeq,
and EBSeq were particularly conservative. Among the negative binomial methods
and TSPM, all genes called as differentially-expressed by DESeq were also called by
one or more of the other methods. NBPSeq, TSPM, and edgeR called a substantial
number of the same genes, but also called a non-trivial number of distinct genes
not called by the other methods. Genes called by baySeq were a subset of those
called by the log-transformed limma method, and the genes called by the variance-
stabilized limma method contained most genes called by log-transformed limma.
Genes called by EBSeq were effectively a subset of the variance-stabilized limma
method, although EBSeq called a substantial number of unique genes. A resampled
analysis of one of the mouse-strains, under which no genes would be expected to
be differentially expressed, showed the tendency of TSPM to be too liberal, as the
average number of genes called differentially expressed by TSPM was far greater
than the other methods.

2.5 Discussion

The challenge in analyzing RNA-seq data, particularly in the detection of differen-
tial expression, has three primary sources. The first is the inherent problem with the
technology; the second is the laboratory or experimental errors causing technical
variation across samples. However, these sources of error are usually present in
any relatively new technology. The third and the most important challenge is that
current costs of producing RNA-seq data are prohibitive to the generation of many
biological replicates, which poses a problem for statistical data analysis. Very small
sample sizes for a typical RNA-seq study prevent the appropriate use of asymptotic
statistical inference commonly employed for count data analysis. Frequently, due to
these reasons, estimated false discovery rates (FDR) are not less than the selected
FDR cut-off. Thus, asymptotic tests are adversely affected by small sample size in
the analysis of RNA-seq data.

Small sample sizes (two samples per condition) imposed problems also for the
methods that were indeed able to find differentially expressed genes, thereby leading
to false discovery rates sometimes widely exceeding the desired threshold implied
by the FDR cut-off. For the parametric methods, this may also be due to inaccuracies
in the estimation of mean and dispersion parameters. In the previous section, we
noted that TSPM stood out as the method being most affected by sample size,
potentially due to the use of asymptotic statistics. Currently, RNA-seq experiments
are often too expensive to allow extensive replication in scientific experiments.
Hence, we strongly suggest that the differentially expressed genes found between
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small sample studies be interpreted with caution and that the true FDR may
be several times higher than the selected FDR threshold. The negative binomial
methods [1, 9, 33, 34] tests are based on similar principles and work relatively well.
However, due to differences in the estimation of the overdispersion parameters, lists
of differentially expressed genes produced by these methods at the same FDR level
were different.

In Sect. 2.4, we summarized the results of a detailed comparison of many
existing methods and the resulting guidelines to users about the suitability of
one method over others for a given data type. We advocate that those testing
differential expression in RNA-seq data be cognizant of the characteristics of their
data, particularly with regard to the simulation settings evaluated by Soneson and
Delorenzi [40]—sample size, direction of regulation, presence of outliers, degree
and variability of overdispersion. Awareness of these characteristics will permit
a more informed choice of test for differential expression. We also advocate that
analysts not rely on a single test of differential expression nor on a single setting
for a given test, and rather perform several tests or several settings of a given test
based on their suitability for the data set at hand and compare lists of differentially
expressed genes. We have also provided brief descriptions of existing software and
their respective functionality in analysis of RNA-seq data. We hope that this review
will provide a comprehensive description of the current status of the analysis of
RNA-seq data.
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Chapter 3
Differential Expression Analysis of Complex
RNA-seq Experiments Using edgeR

Yunshun Chen, Aaron T.L. Lun, and Gordon K. Smyth

Abstract This article reviews the statistical theory underlying the edgeR software
package for differential expression of RNA-seq data. Negative binomial models
are used to capture the quadratic mean-variance relationship that can be observed
in RNA-seq data. Conditional likelihood methods are used to avoid bias when
estimating the level of variation. Empirical Bayes methods are used to allow gene-
specific variation estimates even when the number of replicate samples is very small.
Generalized linear models are used to accommodate arbitrarily complex designs.
A key feature of the edgeR package is the use of weighted likelihood methods to
implement a flexible empirical Bayes approach in the absence of easily tractable
sampling distributions. The methodology is implemented in flexible software that is
easy to use even for users who are not professional statisticians or bioinformaticians.
The software is part of the Bioconductor project.

This article describes some recently implemented features. Loess-style weighting
is used to improve the weighted likelihood approach, and an analogy with quasi-
likelihood is used to estimate the optimal weight to be given to the empirical Bayes
prior. The article includes a fully worked case study with complete code.

3.1 Introduction

With the dramatic drop in sequencing costs provided by the Next Generation
sequencing technologies in past few years, RNA-seq has now supplanted microar-
rays as the technology of choice for genome level expression profiling of RNA
samples [17,24,28]. RNA-seq data is typically summarized by counting the number
of sequence reads that map to genomic features of interest [9]. In this article we will
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assume that the aim is to conduct a gene-level analysis, but similar analyses could
be done for exons or exon-junctions or other genomic constructs. One very common
problem is to use the read counts to identify genes that are differentially expressed
between experimental conditions.

This article reviews the statistical theory underlying the edgeR software package
[23] for differential expression analysis of RNA-seq data. Rigorous and statistically
powerful analysis of RNA-seq data requires careful attention to a number of issues.
The read counts are discrete integers that show strong mean-variance relationships.
Different genes show different levels of variability, but the number of replicate
samples from which variability is estimated can be very small indeed. Meanwhile,
experiments may involve complex experimental designs with multiple treatment
factors and other experimental variables.

edgeR uses negative binomial based models to capture the quadratic mean-
variance relationship that can be observed in RNA-seq data, and to distinguish
between biological and technical sources of variation [15]. By technical variation,
we mean that associated with the sequencing technology whereas biological
variation refers to changes in expression levels between experimental subjects.
Information is shared between genes to estimate biological variation reliably
even when the number of replicates is very small [22]. Conditional likelihood
methods are used to avoid bias when estimating the level of variation [15, 22].
Empirical Bayes methods are used to allow gene-specific variation estimates while
borrowing information between genes [15,21]. A key feature of the edgeR package
is the use of weighted likelihood methods to implement a flexible empirical
Bayes approach in the absence of easily tractable sampling distributions. Finally,
generalized linear models are used to accommodate arbitrarily complex designs,
and the conditional likelihood and empirical Bayes procedures are generalized to
work in this context [15].

This article also describes some recent additions to the package, not previously
described in published form. In particular, loess-style weighting is used to improved
the weighted likelihood approach, and an analogy with quasi-likelihood [11] is used
to estimate the optimal weight to be given to the empirical Bayes prior. The article
includes a fully worked case study.

The edgeR package is part of the Bioconductor project [7]. Some advanced
numerical algorithms are used to ensure reliable convergence of the iterative
algorithms, and some of the core code has been implemented in C++ for speed and
numerical stability. The package can be installed from the Bioconductor website
http://www.bioconductor.org.

http://www.bioconductor.org
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3.2 The Negative Binomial Model

3.2.1 Summarizing an RNA-seq Experiment
with a Count Matrix

In a typical RNA-seq experiment, purified RNA is converted to cDNA and
sequenced on one of the high-throughput platforms. Millions of short ‘read’
sequences ranging from 25 to 300 base pairs in length are generated from one
(single-end) or both (paired-end) ends of the cDNA fragments. These sequences
must be aligned (or mapped) to a reference genome or transcriptome. Summariza-
tion is then performed by counting the number of reads mapped to known genomic
features such as genes or exons. For simplicity, we will refer to these features as
‘genes’ although any genomic interval can be used. This results in a table of read
counts for tens of thousands of genes across a number of samples. These samples
are associated with a variety of treatment conditions that we want to compare.

Table 3.1 shows an example of the matrix of read counts for a very simple
RNA-seq experiment. The dataset consists of two groups (wild-type and mutant),
each of which contains samples from two mice, i.e., two biological replicates. After
sequencing, reads for each sample are mapped to the mouse genome and summa-
rized into gene-level counts. The final RNA-seq expression profile is represented
by a table of read counts for tens of thousands of genes in all four mice samples
(Table 3.1). The aim of this experiment is to identify differentially expressed genes
between wild-type and mutant mice.

In this article, the total number of genes is denoted by G and the total number
of samples is denoted by n. Hence, the table of read counts from an RNA-seq
experiment is a G× n matrix of non-negative integers. We refer to the set of read
counts for a sample as a library and the total number of reads in the library as the

Table 3.1 Table of read counts for a simple RNA-seq experiment with
four samples

Wild-type Mutant

Sample 1 Sample 2 Sample 3 Sample 4

Gene 1 24 31 76 59
Gene 2 0 3 7 2
Gene 3 1,988 1,125 3,052 2,450
Gene 4 5 0 0 1
. . . . . . . . . . . . . . .
Total 22,341,961 20,739,175 15,669,423 23,711,320

Each column corresponds to a sample from a mouse with a wild-type or
mutant genotype. Each row corresponds to a gene in the mouse genome.
Each entry is set at the number of reads mapped to a particular gene in a
particular sample. The sum of counts in each column is the library size for
the corresponding sample
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library size. For a particular gene g, let ygi denote the read count in the ith sample.
The expected value of ygi given the experimental conditions and the sequencing
depths is then

E(ygi) = μgi = λgi ·Ni, (3.1)

where Ni is the library size and λgi is the expected proportion of reads mapped to
gene g in the ith sample.

In the above example, we have λg1 = λg2 = λW
g and λg3 = λg4 = λ M

g where λW
g

and λ M
g are the expected proportion of reads mapped to gene g in the wild-type and

the mutant groups, respectively. Then, the aim of the differential expression analysis
is to test

H0 : λW
g = λ M

g against H1 : λW
g �= λ M

g , (3.2)

for each gene g = 1,2, . . . ,G.

3.2.2 Distinguishing Technical from Biological Variation

Two levels of variation can be distinguished in any RNA-seq experiment. First, there
is the basic variability in the expression level of each gene from one biological
sample to another, even when the experimental conditions have not been changed.
Second, because expression levels can never be measured perfectly, there is a certain
level of technical variation arising from measurement error. RNA-seq provides the
possibility of disentangling these two sources of variation. Unlike microarrays,
RNA-seq can do this without technical replicates of the same RNA samples, because
the level of technical variation from sequencing is of a predictable nature.

Let πgi be the fraction of all cDNA fragments in the ith sample that originate
from gene g. This can be viewed as the true unobserved expression level of gene
g in individual sample i. Given πgi and the library size Ni, the expected count is
E(ygi|πgi) = πgiNi. The read counts for any given gene are usually considered to
follow a Poisson law under repeated sequencing runs of the same RNA sample [14],
so it is reasonable to suppose that var(ygi|πgi) = πgiNi also. This represents technical
variability associated with the sequencing technology.

Let us further suppose that πgi varies between biological replicates in such a
way that the coefficient of variation (CV) remains constant for any given gene. This
implies that E(πgi) = λgi and var(πgi) = φgλ 2

gi, where φg is the squared CV and
λgi is the population mean proportion for gene g given the experimental conditions
applied to sample i. The unconditional variance of ygi can then be derived as

var(ygi) = Eπ [var(y|π)]+ varπ [E(y|π)] = μgi +φgμ2
gi (3.3)
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where μgi = λgiNi is the population mean of ygi. Dividing both sides by μ2
gi gives

CV2(ygi) = 1/μgi+φg (3.4)

The first term is the squared CV of ygi given πgi and the second is the squared CV
of πgi. In other words,

Total CV2 = Technical CV2 +Biological CV2 . (3.5)

This partition of CV2 into technical and biological components was first derived
by [15].

We call φ1/2
g the biological coefficient of variation (BCV). BCV represents the

coefficient of variation with which the true abundance of the gene varies between
replicate RNA samples. It represents the CV that would remain between biological
replicates if sequencing depth could be increased indefinitely. Note that the technical
CV decreases as the size of the counts increases whereas the BCV does not. Thus,
the BCV is likely to be the dominant source of uncertainty for high-count genes.
Reliable estimation of the BCV is therefore crucial for realistic assessment of
differential expression in RNA-seq experiments.

3.2.3 Generalized Linear Models Accommodate Complex
Experiments

Generalized linear models (GLMs) are an extension of classical linear models to
non-normally distributed response data [16, 18]. We use GLMs to accommodate
complex experimental designs with multiple explanatory factors. GLMs allow the
responses to follow any linear exponential family of probability distributions, and
each distribution family is characterized by it mean-variance relationship. In our
case, the quadratic mean-variance relationship shown above in (3.3) determines the
negative binomial distribution family for read counts. We assume therefore that

ygi ∼ NB(μgi,φg) , (3.6)

where μgi is the mean and φg is now the negative binomial dispersion parameter. The
assumption of negative binomial variation for ygi is equivalent to assuming that the
true gene abundances πgi follow a gamma distributional law across replicate RNA
samples.

We use a log-linear model to represent the influence of the treatment conditions
and the library sizes on the expected count sizes for any gene. Recall that μgi is the
product of the expression proportion λgi and the library size. We suppose that λgi

can be represented by a log-linear model,

logλgi = xT
i βg, (3.7)
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where xi is a covariate vector indicating the treatment conditions applied to sample
i and βg is a vector of regression coefficients by which the covariate effects are
mediated for gene g. It follows that

log μgi = xT
i βg + logNi. (3.8)

Gathering the covariate vectors xi into a design matrix X , the vector of linear
predictors for gene g is the matrix product Xβg. The standard GLM method would
use Fisher-scoring to estimate the parameter vector βg. This is usually successful
but can fail to converge for some datasets. edgeR enhances the usual Fisher-scoring
algorithm with a Levenberg damping modification to ensure that the sequence of
iterations converges for all genes and all datasets [15]. The modified algorithm
forces a reduction in the residual deviance at each iteration. The sequence of
deviances is monotonic and bounded, and so always converges unless floating point
inaccuracies intervene first.

In the simple example shown in Sect. 3.2.1, the design matrix might take the form

X =

⎛

⎜
⎜
⎝

1 0
1 0
1 1
1 1

⎞

⎟
⎟
⎠ . (3.9)

In that case the first regression coefficient βg1 would represent the log-expression
proportion in the wild-type group and the second coefficient βg2 would represent
the log-fold change in expression in the mutant group relative to wild-type. In the
notation of Sect. 3.2.1, βg1 = logλW

g and βg2 = log(λ M
g /λW

g ). The hypothesis of
interest in this example is

H0g : βg2 = 0 against H1g : βg2 �= 0, (3.10)

and this hypothesis is tested for all genes.
edgeR provides the ability to test whether any contrast of the regresssion

coefficients equal to zero. Specifically, one can test the null hypothesis H0 : cT βg = 0
where c is an arbitrary contrast vector. By default, hypotheses are tested using the
usual asymptotic chisquare approximation to the likelihood ratio statistic, although
edgeR also offers two more conservative F-test approximations as alternative
options.

3.3 Empirical Bayes Dispersion Estimation

3.3.1 Overview

Accurate estimation of the dispersion parameter φ in the negative binomial model is
vital for fitting GLMs and assessing differential expression. Given that an RNA-seq
dataset often has a small number of samples, traditional univariate estimators of φ
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tend to perform poorly [22]. Maximum likelihood estimators (MLEs) in particular
tend to underestimate dispersion parameters because they make no adjustment for
the fact that the mean is estimated from the same data [22].

The differential expression analysis of an RNA-seq experiment with a one-way
layout was studied by Robinson and Smyth [21, 22] who proposed a quantile-
adjusted conditional maximum likelihood method for dispersion estimation. This
approach is available in edgeR via the estimateTagwiseDisp function, but is
restricted to experiments with a one-way layout, i.e., to experiments with only one
experimental factor.

In this chapter, we will focus on the general case in which RNA-seq experiments
may involve multiple treatment conditions and blocking variables. Dispersion
estimation for complex experimental designs was studied by McCarthy et al. [15].
Their method is based on the idea of an adjusted profile likelihood proposed by Cox
and Reid [4].

3.3.2 Cox-Reid Adjusted Profile Likelihood

For general RNA-seq experiments with multiple factors, negative binomial disper-
sions are estimated using the Cox-Reid (CR) adjusted profile likelihood method
[4, 15]. The CR method is based on the idea of approximate conditional likelihood
which reduces to residual maximum likelihood (REML). Briefly, REML removes
the effect of nuisance parameters which allows unbiased estimation of the disper-
sion. This accounts for all systematic sources of variation in the model.

For the purpose of estimating the dispersion, φg is the parameter of interest
whereas the regression coefficients βg and the means μgi are nuisance parameters.
One condition of the CR method is that the nuisance parameters are assumed to be
orthogonal to the parameter of interest, i.e., the Fisher information matrix must be
block diagonal [4]. It can be shown that orthogonality between βg and φg follows
here from the fact that φg appears only in the variance function and not in the mean
of the negative binomial GLMs [26].

The Cox-Reid adjusted profile likelihood (APL) for φg is the penalized log-
likelihood, i.e.,

APLg(φg) = �(φg;yg, β̂g)− 1
2

logdet(Ig), (3.11)

where yg is the vector of counts for gene g, β̂g is the estimated coefficient vector, �
is the log-likelihood function and Ig is the Fisher information of βg evaluated at β̂g

and φg.
Note that the β̂g is the MLE of βg given φg. Thus, β̂g is also a function of φg. This

means that the log-likelihood � can be considered as a profile likelihood �p which
depends only on φg, i.e., �(φg;yg, β̂g) = �p(φg;yg). Similarly, the adjustment term
Ig can be treated as a function of φg. Maximization of APLg(φg) can then be used
to obtain an estimate for φg.
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3.3.3 Weighted Likelihood Empirical Bayes

The empirical Bayes method is one of the most powerful tools in data analysis. The
aim is to estimate the prior distribution from the data and then apply the standard
Bayesian approach to obtain posterior estimates. Empirical Bayes estimation has
been shown to outperform classical maximum likelihood estimates for high dimen-
sional problems [5, 6, 25].

The cost of RNA-seq experiments often limits RNA-seq studies to only a small
number of replicate libraries. This makes it difficult to obtain reliable dispersion
estimates. The situation is further complicated by the fact that different genes
may have different dispersions. For microarray data, this problem has been solved
by applying an empirical Bayes strategy [25] where information is shared across
genes or probes to stabilize the gene-wise variance estimates. It is tempting to
apply a similar approach to RNA-seq data. Unfortunately, the direct empirical
Bayes approach to stabilize the dispersion estimates is not applicable in the case of
RNA-seq data since there is no conjugate prior distribution for the negative binomial
dispersion φ .

One way to approximate the empirical Bayes strategy is to use a weighted likeli-
hood. It can be shown that an empirical Bayes estimator is equivalent to an estimate
obtained by maximizing a weighted likelihood function on a set of observations
[3, 27]. This result provides an opportunity to implement an approximation of the
empirical Bayes method for RNA-seq data.

3.3.3.1 Common Dispersion

The simplest approach of sharing information between genes is to assume that all
genes share a same dispersion value φ , which is called the common dispersion
[15, 22]. It can be estimated by maximizing the common APL, which is defined as

APLC(φ) =
1
G

G

∑
g=1

APLg(φ), (3.12)

where G is the total number of genes in the dataset.
The common APL can be considered as a special weighted likelihood in which

the likelihoods for each gene have equal weights. Hence, all genes contribute equally
to the estimation of this common dispersion. A common dispersion can be estimated
in edgeR via the estimateGLMCommonDisp function.

3.3.3.2 Trended Dispersion

The common dispersion approach is almost certainly too simple. It is far more
likely that some genes have larger or smaller dispersion values than other genes.
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It has been found in many RNA-seq datasets that genes with lower expression level
tend to have larger dispersions, and vice versa. Hence, it is reasonable to assume
that the dispersion values depend on the gene-wise expression levels and can be
modelled by a mean-dispersion trend [1]. In edgeR, the dispersion values obtained
from the mean-dispersion trend are referred to as the trended dispersion, and in
principle genes with the same expression level (or the same mean) should have the
same trended dispersion.

The trended dispersion can also be estimated by the weighted likelihood
approach. Given an RNA-seq dataset, the overall expression level of each gene is
calculated as an average across all samples and expressed as an average log count-
per-million (logCPM) using the aveLogCPM function. This average is computed by a
simple GLM, taking into account the common dispersion and the library sizes. Then,
all the genes are sorted according to their average logCPM values. For a particular
gene g, a locally shared APL denoted APLSg(φg) is formed by averaging the APLs
of the set of genes, denoted Cg, that are nearest to gene g in average logCPM. By
default, the neighbourhood set Cg is chosen to contain at least 25 % of all genes, and
the proportion is automatically increased if the total number of genes in the dataset
is small. This ensures that each set Cg contains enough genes (and hence sufficient
information) to represent the dispersion trend locally.

A graduated weighting approach was used to account for the relevance in
expression level between gene g and other genes in the set Cg. The weight for the
APL of gene a in Cg, denoted wa, is determined by the tricube function, i.e.,

wa = (1−|xa|3)3, (3.13)

where −1 < xa < 1 represents the scaled difference in average logCPMs for genes
g and a. In other words, the closer the expression levels of genes g and a are, the
smaller |xa| will be, and thus the larger wa will be. This process can be repeated for
all the genes in the set to obtain

APLSg(φg) =
∑a∈Cg wa ·APLa(φg)

∑a∈Cg wa
, (3.14)

as the locally shared APL for gene g. This is equivalent to fixing φ to a constant,
fitting a loess curve of degree 0 through those APLa(φ) for a= 1,2, . . . ,G, and using
the fitted value as the final value of the locally shared APL at φ for each gene. The
trended dispersion for gene g can then be estimated by maximizing APLSg(φg).

3.3.3.3 Gene-Specific Dispersion

The trended dispersion approach would be sufficient if the true dispersions followed
the mean-dispersion trend and genes with the same expression level had identical
dispersion. This however is rarely true for real datasets and in practice dispersions
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are gene-specific. An individual dispersion therefore should be estimated for each
individual gene, yet we are faced with the problem that the data from a single gene
are often insufficient for reliable estimation of this dispersion. We need therefore
a method that allows each gene to have its own dispersion estimate while still
gaining information from the other genes. This can be achieved by an empirical
Bayes approach that combines individual and shared information to obtain stable
dispersion estimators. Such an approach has the effect of squeezing the genewise
dispersions towards a pooled estimate, resulting in more stable inference when
the number of samples is small.

The problem with directly applying the empirical Bayes approach is that there
is no conjugate prior for the negative binomial dispersion φg. Thus, a weighted
likelihood method has been proposed to approximate the empirical Bayes strategy
for RNA-seq count data [15, 21]. To estimate the gene-specific dispersion, the
weighted APL for a particular gene g is constructed as

APLWg(φg) = APLg(φg)+G0 ·APLSg(φg), (3.15)

where APLg(φg) is the gene-wise APL using the information from gene g only,
APLSg(φg) is the locally shared APL for gene g, and G0 is the weight assigned to
the APLSg(φg). The gene-specific dispersion φg is then estimated by maximizing
APLWg(φg). This weighted APL approach is described in Fig. 3.1.

In empirical Bayes terms, the locally shared APL, APLSg(φg), can be interpreted
as the prior distribution for φg, and the APLg(φg) as the likelihood from the direct
observed data. This means that the APLWg(φg) can be interpreted as the posterior
distribution for φg, which is a compromise between the prior and the observation. In
the weighed likelihood approach, the prior distribution for φg can be thought of as
arising from prior observations on a set of G0 genes. Hence, the prior weight G0 is
referred to as the prior number of observations.

The optimal choice for G0 depends on the variability of the dispersions. Large
values are best when the dispersions are a constant for all the genes or they
closely follow the mean-dispersion trend. Smaller values are recommended when
the dispersions are more variable among different genes. If G0 = 0, no information
is borrowed from other genes. This means that the gene-specific dispersion for
a particular gene is purely estimated from its gene-wise APL. If G0 is set to be
infinitely large, information from that individual gene will be ignored. This means
that the gene-specific dispersion will be fully determined by its locally shared APL
such that the result will be the same as the trended dispersion. This information
borrowing strategy can be viewed as shrinking individual dispersion estimates
towards the dispersion trend (Fig. 3.2) where the value of G0 represents the amount
of shrinkage.
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Fig. 3.1 Genes are sorted by
their expression level. The
gene-specific dispersion for a
particular gene g is estimated
by maximizing the weighted
APL, i.e., the weighted
average between the
gene-wise APL and the
locally shared APL. The
weight assigned to the locally
shared likelihood is denoted
by G0 which can be
interpreted as the prior
number of observations

Fig. 3.2 The empirical Bayes shrinkage by weighted likelihood on simulated data. The plot on the
left shows the dispersion estimates without empirical Bayes shrinkage. For each gene, the gene-
wise dispersion estimate is obtained using the information of that gene only. The plot on the right
shows the gene-wise dispersion estimates after empirical Bayes shrinkage. Gene-wise dispersion
estimates are squeezed towards the dispersion trend which represents the use of prior information
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3.3.4 Estimating Prior Weight

As mentioned previously, there is no conjugate prior for the genewise dispersion
parameters. This means that there is no automatic estimation for the prior number
of observations G0. Thus, an alterative approach must be used. To account for the
fact that more samples result in more gene-wise information, we write G0 as

G0 =
d0

dg
, (3.16)

where d0 is the prior degrees of freedom and dg is the (known) residual degrees
of freedom for gene g. The prior degrees of freedom represents the precision of
the prior and does not depend on the total number of samples. The prior degrees
of freedom can also be viewed as a measure of the consistency of the genewise
dispersions. If the dispersions tend to be very gene-specific, then d0 should be small
and the prior will be vague. If the genewise dispersions tend to be consistent, i.e.,
close to the global trend, then d0 should be large making the prior very informative.
Once we estimate the d0, we can easily calculate the prior weight G0 in the weighted
likelihood to obtain the best estimator for φg.

One way to estimate the prior degrees of freedom under the GLM framework is
to use a quasi-likelihood in which the uncertainty of the variance can be absorbed
into an overdispersion parameter. In GLM theory, the variance function V (μ)
uniquely specifies a probability distribution such as the Poisson or negative binomial
distribution. The quasi-likelihood variance function can then be written as

var(ygi) = σ2
g ·V (μgi), (3.17)

where σ2
g is a factor that we will call the quasi-dispersion parameter. Note that

the quasi-likelihood function is not a log-likelihood corresponding to any actual
probability distribution. Instead, it can be used to describe a function that has similar
properties to a log-likelihood function.

Following [11], we assume that the prior distribution for σ2
g is a scaled inverse

χ2-distribution with degrees of freedom d0 and scaling factor s2
0d0, i.e.,

σ2
g ∼ s2

0 ·
d0

χ2
d0

, (3.18)

where s2
0 can be considered as a prior mean for the quasi-dispersion. Our aim is to

estimate d0, which represents the precision of the prior distribution for σ2
g .

Write Dg for the residual deviance of the generalized linear model fitted to the
read counts for gene g. The mean residual deviance

s2
g =

1
dg

Dg (3.19)
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is an estimator of σ2
g . It can be shown [3] using the saddlepoint approximation [8]

that the mean deviance s2
g follows approximately a χ2-distribution with degrees of

freedom dg and scaling factor σ2
g /dg , i.e.,

s2
g|σ2

g ∼ σ2
g ·

χ2
dg

dg
. (3.20)

To make this approximation more accurate, a special calculation is required for the
residual degrees of freedom dg when some of the fitted values are exactly zero. In
particular, we ensure that any experimental condition for which the counts are all
zero does not contribute to dg. This is because such counts will have fitted values
exactly zero and will make zero contribution to the residual deviance regardless of
the value of the dispersion. This calculation is a refinement on the procedure of
Lund et al. [11], and serves to make s2

g more nearly unbiased for σ2
g in the presence

of zero counts.
The values of s2

0 and d0 can be estimated from the marginal distribution of s2
g,

which is scaled F-distribution,

s2
g ∼ s2

0 ·Fdg,d0 , (3.21)

where Fdg,d0 denotes the F-distribution with degrees of freedom dg and d0 [11, 25].
Estimators of s2

0 and d0 can then be obtained by the method of moments [25].
In the main edgeR analysis pipeline, the quasi-likelihood is used only to

estimate d0. We assume that it is reasonable to use the same d0 for empirical Bayes
estimation of the negative binomial dispersions φg as for the quasi-dispersions σ2

g .
This allows us to calculate the prior weight G0 required for (3.15) from (3.16) using
dg and the quasi-likelihood estimate for d0.

3.4 Case Study: Transcriptional Program Regulation
by IRF4

3.4.1 Experimental Design

We now demonstrate by way of a case study how the statistical theory in Sects. 3.2
and 3.3 is applied in practice to analyze RNA-seq datasets. The case study includes
the complete R code used to undertake the analysis. The data are from a study on
the transcription factor IRF4 [13]. In the study, it was found that IRF4 regulated the
expression of key molecules required for the aerobic glycolysis of effector T cells
and was essential for the clonal expansion and maintenance of effector function of
antigen-specific CD8+ T cells [13].
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One part of this study was to identify the transcriptional program regulated by
IRF4 during the TCR affinity-driven population expansion of CD8+ T cells. To
investigate this, T cells were harvested from Irf4+/+ wild-type or Irf4−/− knock-
out mice. The knock-out mice have a mutation which prevents the Irf4 gene from
producing a viable protein. T cells were stimulated with high-affinity peptides (N4)
or low-affinity peptides (V4). RNA was extracted from the cells and profiled using
RNA-seq.

The study can be viewed as a 2× 2 factorial experiment with 2–3 replicates for
each combination of IRF4 and affinity peptide conditions. There are nine RNA
samples in all. As is usual for an edgeR analysis, we start with experimental
information about each RNA sample contained in a data frame called targets. The
data frame was created using a spreadsheet and read into R using readTargets.
It contains the two experimental factors, Genotype and Treatment, as well as the
identifier for each sample on the public ENA repository:

> targets
ENA Label Genotype Treatment

1 SRR953136 WT.N4.rep1 WT N4
2 SRR953137 WT.N4.rep2 WT N4
3 SRR953138 WT.V4.rep1 WT V4
4 SRR953139 WT.V4.rep2 WT V4
5 SRR953140 KO.N4.rep1 KO N4
6 SRR953141 KO.N4.rep2 KO N4
7 SRR953142 KO.N4.rep3 KO N4
8 SRR953143 KO.V4.rep1 KO V4
9 SRR953144 KO.V4.rep2 KO V4

The aim is to detect genes that are differentially expressed (DE) between different
conditions.

3.4.2 Mapping Reads to the Mouse Genome

The RNA samples were sequenced on an Illumina HiSeq 2000 at the Australian
Genome Research Facility. Paired end sequencing was used, and reads were 100
bases long. This means that the first and last 100 bases of each RNA fragment were
sequenced. Fragments were up to about 600 bases long in total.

The raw sequence reads are available either in SRA format from the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) as series GSE49929 or in
FastQ format from the European Nucleotide Archive (ENA) (http://www.ebi.ac.uk/
ena) as series SRP028864. We analyse here gzipped FastQ files downloaded from
ENA. There are a total of 11 samples under ENA series SRP028864, the first 9 of
which are analyzed here.

We start with a data frame of file names in R:

> files
Forward Reverse SAM

1 SRR953136_1.fastq.gz SRR953136_2.fastq.gz SRR953136.sam
2 SRR953137_1.fastq.gz SRR953137_2.fastq.gz SRR953137.sam

http://www.ncbi.nlm.nih.gov/geo
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
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3 SRR953138_1.fastq.gz SRR953138_2.fastq.gz SRR953138.sam
4 SRR953139_1.fastq.gz SRR953139_2.fastq.gz SRR953139.sam
5 SRR953140_1.fastq.gz SRR953140_2.fastq.gz SRR953140.sam
6 SRR953141_1.fastq.gz SRR953141_2.fastq.gz SRR953141.sam
7 SRR953142_1.fastq.gz SRR953142_2.fastq.gz SRR953142.sam
8 SRR953143_1.fastq.gz SRR953143_2.fastq.gz SRR953143.sam
9 SRR953144_1.fastq.gz SRR953144_2.fastq.gz SRR953144.sam

Each row corresponds to an RNA sample. The first column gives the name of the
file containing the sequences of the forward strand ends of the RNA fragments. The
second column gives the name of the file containing the reverse strand reads.

The paired reads were mapped to the mouse genome using the Subread
aligner [10]. The aligner uses the reads from both ends of each fragment to locate
the fragment on the genome.

> library(Rsubread)
> align("mm9", readfile1=files$Forward, readfile2=files$Reverse,
+ "gzFASTQ", output_file=files$SAM, tieBreakQS=TRUE)

This code also uses an index ("mm9") of the mouse genome. The index was
created from the NCBI37/mm9 (July 2007) build of the mouse genome using the
buildindex command of the subread package [10]. The mm9 index file can be
downloaded from the Subread website http://subread.sourceforge.net.

The number of reads (forward and reverse) varies from 12 million to 19 million
for each sample. For this dataset, the proportion of reads successfully mapped to
the genome was more than 99 % for all samples. This suggests good quality RNA
samples and successful alignment:

> propmapped(file$SAM)
Samples NumTotal NumMapped PropMapped

1 SRR953136.sam 13164036 13089886 0.994
2 SRR953137.sam 13007946 12932901 0.994
3 SRR953138.sam 12919854 12849910 0.995
4 SRR953139.sam 12334822 12262014 0.994
5 SRR953140.sam 12454324 12370667 0.993
6 SRR953141.sam 18595382 18487656 0.994
7 SRR953142.sam 19119234 19008197 0.994
8 SRR953143.sam 13217130 13125153 0.993
9 SRR953144.sam 13273338 13200580 0.995

3.4.3 Fragment Counts for Each Gene

Now we compute a table of genewise counts. This is a two-step process. First the
mapped reads are converted into mapped RNA fragments. A pair of forward and
reverse reads is considered to represent an RNA fragment whenever they map to
compatible nearby locations on the genome. The fragment is then assigned to a gene
whenever the fragment overlaps at least one exon of the gene. This computation is
done by the featureCounts function of the Rsubread package [9]:

> fc <- featureCounts(files$SAM, isPairedEnd=TRUE)

http://subread.sourceforge.net
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By default, the function uses RefSeq annotation from the National Center for
Biotechnology Information (NCBI) giving the start and end positions of each
exon [19]. The output is a matrix of counts, one row for each NCBI Entrez Gene
identifier and one column for each RNA sample.

3.4.4 Creating a DGEList Object

The edgeR package stores data in a simple list-based data object called a DGEList.
edgeR provides a range of generic functions and methods for such data objects,
but they can at the same time be manipulated like ordinary lists in R. The main
components of a DGEList object are a matrix of integer counts, a data frame of
sample information and an optional data frame of gene annotation.

> library(edgeR)
> y <- DGEList(counts=fc$counts, group=targets$Genotype)
> colnames(y) <- targets$Label

There are entries for 26,310 genes and 9 samples:

> dim(y)
[1] 26301 9

Note the application of standard generic functions colnames and dim which have
methods defined for DGEList objects. Many other generic functions in R that are
applicable to matrices or data frames also have methods for DGEList objects.

The library sizes are automatically computed by DGEList as the total number
of assigned RNA fragments for each sample. The number of mapped fragments is
slightly less than half the total number of mapped reads shown in Sect. 3.4.2, and
the number of fragments assigned to genes is about 80 % of that.

> y$samples
group lib.size norm.factors

WT.N4.rep1 WT 5038159 1
WT.N4.rep2 WT 4966457 1
WT.V4.rep1 WT 5026320 1
WT.V4.rep2 WT 4665370 1
KO.N4.rep1 KO 4703442 1
KO.N4.rep2 KO 6975408 1
KO.N4.rep3 KO 7271163 1
KO.V4.rep1 KO 4726829 1
KO.V4.rep2 KO 4995218 1

Many edgeR functions will accept an ordinary matrix of counts, but a DGEList
object is more convenient because it automatically collates a variety of related
information. For example, subsetting the above DGEList object y by column would
automatically subset both the counts and the sample information at the same time.
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3.4.5 Filtering and Normalization

Genes with counts that are all zero or all very low are usually not of interest in
a differential expression analysis for two reasons. The biological reason is that a
gene must be expressed at some minimal level before it is likely to be translated
into a protein or to be biologically important. The statistical reason is that very
low counts provide little statistical information to distinguish between the null and
alternative hypotheses. In this particular dataset, we consider a gene to be expressed
at a reasonable level in a sample if its count-per-million (CPM) value is above 1,
which is equivalent to having 5–7 fragments in that sample. A gene is kept in the
analysis if it is sufficiently expressed (CPM > 1) in at least two samples:

> CPM <- cpm(y)
> keep <- rowSums(CPM > 1) >= 2
> y <- y[keep, ]

The filtering rule doesn’t use the experimental design information, yet will keep any
gene that is expressed in both the samples for any combinations of genotype and
treatment condition.

After filtering, there are 12,347 genes remaining and most of the counts are
greater than zero:

> dim(y)
[1] 12347 9
> head(y$counts)

WT.N4.rep1 WT.N4.rep2 WT.V4.rep1 WT.V4.rep2 KO.N4.rep1
27395 305 291 430 499 599
18777 510 527 653 642 404
21399 333 361 445 608 424
108664 194 124 230 281 264
12421 326 355 158 210 193
100504079 15 15 3 10 23

KO.N4.rep2 KO.N4.rep3 KO.V4.rep1 KO.V4.rep2
27395 702 895 785 671
18777 888 724 585 544
21399 710 806 771 572
108664 398 444 334 340
12421 388 263 175 237
100504079 36 10 5 10

It is also useful to compute relative scaling factors for the libraries by

> y <- calcNormFactors(y)
> y$samples

group lib.size norm.factors
WT.N4.rep1 WT 5038159 1.033
WT.N4.rep2 WT 4966457 1.013
WT.V4.rep1 WT 5026320 0.964
WT.V4.rep2 WT 4665370 0.986
KO.N4.rep1 KO 4703442 1.009
KO.N4.rep2 KO 6975408 1.015
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KO.N4.rep3 KO 7271163 1.039
KO.V4.rep1 KO 4726829 0.931
KO.V4.rep2 KO 4995218 1.016

The calcNormFactors function returns the DGEList data argument back with
only the norm.factors changed. The scaling factors here represent compositional
differences between the shape of the count distributions for the samples. The
normalization factors multiply to unity. Factors below 1 indicate that an excessive
number of fragments have been assigned to a small number of very highly expressed
genes in that library, meaning that less sequencing depth is available for the
remaining genes [20].

3.4.6 Gene Annotation

The summarized counts from Rsubread include Entrez Gene IDs as rownames. The
Entrez IDs link to gene-specific information from the NCBI database [12]. To get
more details such as gene symbol and chromosome number, we use the annotation
file ‘Mus_musculus.gene_info’ obtained from the NCBI website (ftp://ftp.ncbi.nih.
gov/gene/DATA/GENE_INFO/Mammalia).

> anno <- read.delim(file="Mus_musculus.gene_info",
+ header=FALSE, skip=1)

We add selected annotation columns to the DGEList object:

> m <- match(rownames(y), anno[,2])
> y$genes <- anno[m, c(2,3,7)]
> colnames(y$genes) <- c("GeneID", "Symbol", "Chr")
> head(y$genes)

GeneID Symbol Chr
7060 27395 Mrpl15 1
4165 18777 Lypla1 1
5899 21399 Tcea1 1
24191 108664 Atp6v1h 1
625 12421 Rb1cc1 1

3.4.7 Data Exploration

A multiple dimensional scaling (MDS) plot can be used to check the dissimilarities
among the samples:

> plotMDS(y, col=as.numeric(targets$Genotype))

plotMDS is a generic function defined in the limma package with a method
defined for DGEList objects. The distance between each pair of samples is
calculated as the leading fold change, defined as the root-mean-square of the largest

ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia
ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia


3 Differential Expression Analysis of Complex RNA-seq Experiments Using edgeR 69

Fig. 3.3 The MDS plot of
the IRF4 RNA-seq dataset.
Samples are separated by the
genotype (IRF4 wild-type
and knock-out) in the first
dimension. A separation by
the affinity peptide level
(N4 and V4) is also observed
in the second dimension

500 log2-fold changes between that pair of samples. The MDS plot is shown in
Fig. 3.3. Samples are well separated by the genotype condition (i.e., IRF4 wild-type
and knock-out) in the first dimension. A separation by the affinity peptide level
(N4 and V4) is also observed in the second dimension. All the replicates are close
to each other except for the ones in the IRF4 knock-out (KO) with high-affinity
peptides (N4).

3.4.8 The Design Matrix

We create a design matrix to capture all the experimental information. In this case
study, the IRF4 genotype conditions (KO and WT) and the affinity peptide levels
(N4 and V4) divide the data into four separate groups. The design matrix can be
constructed using the model.matrix function as described below.

> fac <- paste(targets$Genotype, targets$Treatment, sep=".")
> fac <- factor(fac)
> design <- model.matrix(~0+fac)
> colnames(design) <- levels(fac)
> design

KO.N4 KO.V4 WT.N4 WT.V4
1 0 0 1 0
2 0 0 1 0
3 0 0 0 1
4 0 0 0 1
5 1 0 0 0
6 1 0 0 0
7 1 0 0 0
8 0 1 0 0
9 0 1 0 0
attr(,"assign")
[1] 1 1 1 1
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attr(,"contrasts")
attr(,"contrasts")$fac
[1] "contr.treatment"

We use this simple group-mean parametrization instead of a classic factorial model
because it allows contrasts between the groups to be extracted in a simple and
transparent way.

3.4.9 Estimating Dispersions

Now we can proceed to dispersion estimation. The estimateDisp function imple-
ments the weighted likelihood empirical Bayes strategy described earlier in this
chapter. It takes the data object and the design matrix as arguments, and inserts the
common, trended and genewise (tagwise) dispersions into the data object:

> y <- estimateDisp(y, design)

The common dispersion of 0.051 is equivalent to a overall BCV of 23 %:

> y$common.dispersion
[1] 0.051

The gene-specific dispersions vary between 0.024 and 1.1:

> summary(y$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.024 0.034 0.046 0.065 0.073 1.100

The estimated prior degrees of freedom for this dataset is 6.9:

> y$prior.df
[1] 6.9

This can be compared to the residual degrees of freedom dg, which is equal to 5
for most genes in this dataset. The prior degrees of freedom is slightly greater than
the residual degrees of freedom, meaning that slightly more weight is being given
to the global trend rather than the individual gene when estimating each genewise
dispersion.

The BCV plot, as shown in Fig. 3.4, shows the common, trended and genewise
dispersions as a function of average logCPM.

> plotBCV(y)

Recall that the BCV is the square root of the dispersion. Most of the gene-specific
BCVs cluster around the BCV trend, which decreases and then asymptotes to a
constant value as the gene expression level increases.
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Fig. 3.4 The BCV plot of the
IRF4 RNA-seq dataset.
Gene-specific BCVs cluster
around the BCV trend, which
decreases and then
asymptotes to a constant
value as the gene expression
level increases

3.4.10 Detecting Differentially Expressed Genes

In this study, one particular comparison of interest is between IRF4 wild-type (WT)
cells stimulated with high-affinity peptide (N4) and WT cells stimulated with low-
affinity peptide (V4). To find genes that are DE for this comparison, the first step is to
fit genewise negative binomial GLMs using the gene-specific dispersions estimated
above:

> fit <- glmFit(y, design)

Then likelihood ratio statistics are computed for the comparison of interest:

> lrt <- glmLRT(fit, contrast=c(0,0,1,-1))

Here the contrast argument specifies that the third and fourth groups are to be
compared.

The topTags function collates results for the most significant genes:

> topTags(lrt)
Coefficient: 1*WT.N4 -1*WT.V4

GeneID Symbol Chr logFC logCPM LR PValue FDR
1505 13813 Eomes 9 -5.70 7.07 225.7 5.29e-51 6.53e-47
10096 60596 Gucy1a3 3 5.88 4.93 179.9 5.06e-41 3.12e-37
2549 16001 Igf1r 7 3.75 4.88 127.4 1.51e-29 6.20e-26
14239 68404 Nrn1 13 4.16 5.41 109.4 1.30e-25 4.01e-22
30622 236915 Arhgef9 X 5.91 3.38 98.6 3.09e-23 7.62e-20
27600 140795 P2ry14 3 -3.86 4.70 92.9 5.54e-22 9.78e-19
3811 18186 Nrp1 8 3.97 4.99 92.9 5.54e-22 9.78e-19
2157 14945 Gzmk 13 -3.40 3.72 85.0 2.94e-20 4.54e-17
35406 380797 Ighd 12 3.70 3.59 83.4 6.56e-20 9.00e-17
34084 320407 Klri2 6 3.83 3.63 78.2 9.35e-19 1.15e-15

Local false discovery rates (FDR) are calculated using the Benjamini-Hochberg
(BH) method [2]. By default, topTags displays the top 10 genes, but can be asked
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Fig. 3.5 The smear plot of
the IRF4 RNA-seq dataset
comparing IRF4 wild-type
(WT) cells stimulated with
high-affinity peptide (N4) and
with low-affinity peptide
(V4). DE genes are
highlighted in red. The blue
lines indicate twofold up or
down

to select any number. By ranking all genes, we can see that there are 1,181 genes
detected as DE at an FDR cutoff of 1%:

> tp <- topTags(lrt, n=Inf)
> sum(tp$table$FDR < 0.01)
[1] 1181

A smearplot (a form of MA-plot) can be produced to display the DE results
graphically (Fig. 3.5):

> DE <- tp$table[tp$table$FDR < 0.01,]$GeneID
> plotSmear(lrt, de.tags=DE, cex = 0.4)
> abline(h=c(-1, 1), col="blue")

The axes of the plot correspond to the logCPM and logFC columns of the results
table.

3.4.11 Session Information

The following output shows the R session and package versions used for this case
study:

> sessionInfo()
R version 3.0.2 (2013-09-25)
Platform: i386-w64-mingw32/i386 (32-bit)

locale:
[1] LC_COLLATE=English_Australia.1252
[2] LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252
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attached base packages:
[1] splines stats graphics grDevices utils datasets
[7] methods base

other attached packages:
[1] locfit_1.5-9.1 edgeR_3.4.0 limma_3.18.3 Rsubread_1.12.6

loaded via a namespace (and not attached):
[1] grid_3.0.2 lattice_0.20-24

Acknowledgements Thanks to Wei Shi for providing the fragment counts and alignment code for
the IRF4 data, and to Davis McCarthy who programmed the original implementation of the loess
local likelihood trend described in Sect. 3.3.3.

References

[1] Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome
Biol. 11(10), R106 (2010). doi:10.1186/gb-2010-11-10-r106

[2] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. R. Stat. Soc. Series B 57, 289–300 (1995)

[3] Chen, Y.: Differential expression analysis of complex RNA-seq experiments. Ph.D. thesis,
University of Melbourne (2013)

[4] Cox, D.R., Reid, N.: Parameter orthogonality and approximate conditional inference. J. R.
Stat. Soc. Series B 49, 1–39 (1987)

[5] Efron, B.: Robbins, empirical Bayes and microarrays. Ann. Stat. 31(2), 366–378 (2003)
[6] Efron, B., Morris, C.: Stein’s estimation rule and its competitors: an empirical Bayes

approach. J. Am. Stat. Assoc. 68(341), 117–130 (1973)
[7] Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,

Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,
Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G.K., Tierney,
L., Yang, J.Y., Zhang, J.: Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 5(10), R80 (2004)

[8] Jørgensen, B.: The Theory of Dispersion Models. Chapman & Hall, London (1997)
[9] Liao, Y., Smyth, G.K., Shi, W.: featureCounts: an efficient general-purpose read summariza-

tion program. Bioinformatics 30, 923–930 (2014)
[10] Liao, Y., Smyth, G.K., Shi, W.: The Subread aligner: fast, accurate and scalable read mapping

by seed-and-vote. Nucleic Acids Res. 41(10), e108 (2013)
[11] Lund, S., Nettleton, D., McCarthy, D., Smyth, G.: Detecting differential expression in RNA-

sequence data using quasi-likelihood with shrunken dispersion estimates. Stat. Appl. Genet.
Mol. Biol. 11(5), Article 8 (2012)

[12] Maglott, D., Ostell, J., Pruitt, K., Tatusova, T.: Entrez Gene: gene-centered information at
NCBI. Nucleic Acids Res. 39, D52–D57 (2011)

[13] Man, K., Miasari, M., Shi, W., Xin, A., Henstridge, D., Preston, S., Pellegrini, M., Belz, G.,
Smyth, G., Febbraio M Kallies, A.: IRF4 is essential for T cell receptor affinity mediated
metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165
(2013)

[14] Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., Gilad, Y.: RNA-seq: an assessment
of technical reproducibility and comparison with gene expression arrays. Genome Res. 18,
1509–1517 (2008). doi:10.1101/gr.079558.108

[15] McCarthy, D.J., Chen, Y., Smyth, G.K.: Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40(10),
4288–4297 (2012)



74 Y. Chen et al.

[16] McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman & Hall/CRC,
Boca Raton (1989)

[17] Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying
mammalian transcriptomes by RNA-seq. Nat. Meth. 5(7), 621–628 (2008)

[18] Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. J. R. Stat. Soc. Series A
(General) 135(3), 370–384 (1972). http://www.jstor.org/stable/2344614

[19] Pruitt, K., Tatusova, T., Brown, G., Maglott, D.: NCBI reference sequences (RefSeq): current
status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135
(2012)

[20] Robinson, M.D., Oshlack, A.: A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol. 11(3), R25 (2010). doi:10.1186/gb-2010-11-3-r25

[21] Robinson, M.D., Smyth, G.K.: Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics 23(21), 2881–2887 (2007)

[22] Robinson, M.D., Smyth, G.K.: Small-sample estimation of negative binomial dispersion, with
applications to SAGE data. Biostatistics 9(2), 321–332 (2008)

[23] Robinson, M., McCarthy, D., Smyth, G.: edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010)

[24] Shendure, J., Aiden, E.L.: The expanding scope of DNA sequencing. Nat. Biotechnol. 30(11),
1084–1094 (2012)

[25] Smyth, G.: Linear models and empirical Bayes methods for assessing differential expression
in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3(1), Article 3 (2004)

[26] Smyth, G., Verbyla, A.: Adjusted likelihood methods for modelling dispersion in generalized
linear models. Environmetrics 10(6), 695–709 (1999)

[27] Wang, X.: Approximating Bayesian inference by weighted likelihood. Can. J. Stat. 34(2),
279–298 (2006)

[28] Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nat.
Rev. Genet. 10(1), 57–63 (2009). doi:10.1038/nrg2484

http://www.jstor.org/stable/2344614


Chapter 4
Analysis of Next Generation Sequencing
Data Using Integrated Nested Laplace
Approximation (INLA)

Andrea Riebler, Mark D. Robinson, and Mark A. van de Wiel

Abstract Integrated Nested Laplace Approximation (INLA), implemented in the
R-package r-inla, is a very versatile methodology for the Bayesian analysis of
next generation sequencing count data: it can account for zero-inflation, random
effects and correlation across genomic features. We demonstrate its use and provide
some insights on its approximations of marginal posteriors. In high-dimension
settings like these, INLA is in particular attractive in combination with empirical
Bayes. We show how to apply this by estimating priors from the output of INLA.
We extend this methodology to estimation of joint priors for a limited number
of parameters, which effectuates multivariate shrinkage. Joint priors are useful
for appropriate inference when two or more parameters are likely to be strongly
correlated. Two examples serve as illustrations: (1) joint inference for differential
zero-inflation and means between two groups; (2) correlated group effects on
mRNA expression. For both simulated and real data we show that multivariate
shrinkage may lead to improved marker selection. We end with a discussion on
the use of this INLA-based method within the spectrum of other available methods.
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4.1 Introduction

The rapid development of next generation sequencing (NGS) technologies has
opened up new possibilities for biological and medical investigation. To account
for the discrete nature of the data produced by NGS, new statistical approaches
have been proposed. Bayesian approaches are interesting, because they account for
uncertainty in hyperparameters, and, more importantly, are able to incorporate prior
information from historical data or expert knowledge. However, in high-dimensional
settings full Bayesian inference is often practically unfeasible when the posterior
distribution is analytically unavailable. Sampling approaches, such as Markov chain
Monte Carlo techniques, would be required but are computationally intractable.
Furthermore, application-specific implementations and convergence checks would
be needed, which might be one reason for the rare use of Bayesian approaches. In
contrast, empirical Bayes statistical methods are often computationally lighter and
may be used to borrow strength across data.

Rue et al. [10] proposed a deterministic approach based on integrated nested
Laplace approximations (INLA) for full Bayesian inference in latent Gaussian
models. A wide range of count models, such as binomial, Poisson, negative binomial
and their zero-inflated extensions, are possible within INLA. Furthermore, it allows
flexible study designs where fixed effects can be combined with different random
effects. This allows the incorporation of potential dependence structures along
the genome. Uncertainty regarding hyperparameters is thereby integrated in a full
Bayesian way. Since no sampling is involved, INLA is reasonably fast. Van de
Wiel et al. [15] used INLA successfully as a central component for analyzing RNA
sequencing (RNA-seq) count data.

The goal of this chapter is to introduce INLA and sketch its potential for
analyzing NGS data, in particular for complex inferential settings, such as inference
for multiple correlated parameters. In Sect. 4.2, we give a short introduction to
latent Gaussian models and INLA, while Sect. 4.3 points out potential advan-
tages of INLA, but at the same time describes limitations. We shall introduce
the R-package ShrinkBayes [15], which extends the functionality of INLA.
In particular, a combination of INLA and empirical Bayes for multiparameter
shrinkage is implemented. Section 4.4 extends the work of van de Wiel et al. [15]
on RNA-seq to the use of multivariate shrinkage priors. The use of such priors
and corresponding posterior distributions is proposed to accommodate dependence
between parameters, which allows for simultaneous estimation and inference. In
Sect. 4.5, results based on two simulated scenarios are presented, which show that
while multivariate shrinkage provides only small gain in terms of ranking, it is
clearly beneficial for feature selection at a given false discovery rate. In Sect. 4.6,
we apply the methodology to lymphoblastoid cell lines of the International HapMap
project [6]. We conclude with a discussion and an outline of the potential of INLA
for other NGS data analyses.
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4.2 INLA: A Deterministic Framework for Bayesian
Inference in Latent Gaussian Models

4.2.1 Theoretical Background

Data arising from NGS experiments are represented as counts. In RNA-seq, for
example, the number of tags mapping to certain genomic features is counted
[2]. Consider a structured additive regression model for RNA-seq counts Y =
(Y11, . . . ,Ymn)

�, Here, the count Yi j, with i = 1, . . . ,m denoting variables (genomic
features) and j = 1, . . . ,n samples, is assumed to follow a distribution Fμi j ,γγγ i

in an
exponential family. The mean μi j is thereby linked to the linear predictor ηi j using
a link function g(·), so that μi j = g−1(ηi j). The distribution function Fμi j ,γγγ i

can be
controlled by further hyperparameters γγγ i, including, for example, overdispersion,
zero-inflation, variance or correlation parameters. The linear predictor ηi j is then
additively described by

ηi j = βi0 +
H

∑
h=1

βihx jh +
L

∑
l=1

f l(uil), (4.1)

where x jh is the value of the hth covariate for sample j and f l is an unknown function
of covariate l, which takes value uil for variable i. It can be used to model random
effects and (genomic) dependencies between different features.

A latent Gaussian model is obtained by assigning a Gaussian prior distribution to
the latent field vvv = {{ f l(·)},βi0,{βih}}. This Gaussian prior depends on the inverse
covariance matrix, the precision matrix, Q(τττ) with hyperparameters τττ . Finally, prior
distributions are assigned to the hyperparameters θθθ , which is the set containing all
elements of γγγ = (γγγ i)

m
i=1 and τττ .

When analyzing RNA-seq data with a model of type (4.1), we are usually
interested in the differential behavior between samples. Hence, one focus may be on
the posterior estimates of the regression coefficients, and contrasts between those
for different samples. This means we are interested in single components of vvv,
or linear combinations of those. To assess the model at hand, posterior marginal
distributions for single hyperparameters θk, such as zero-inflation or overdispersion,
should be inspected. If random effects are included, such as random walks of
first or second order, which model the dependence between neighboring genomic
features, we would like to analyze the fitted pattern along the genome. All these
statistics are based on the posterior distribution of the Gaussian latent field vvv and the
hyperparameters θθθ , which is given as:

p(vvv,θθθ |Y) ∝ p(Y |vvv,θθθ )p(vvv |θθθ)p(θθθ ). (4.2)

The posterior marginal distributions of single components v� of vvv or θk of θθθ can
then be derived from (4.2) as
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p(v� |Y) =

∫

θθθ

∫

vvv−�

p(vvv,θθθ |Y)dvvv−�dθθθ , (4.3)

p(θk |Y) =

∫

vvv

∫

θθθ−k

p(vvv,θθθ |Y) dθθθ−kdvvv (4.4)

where vvv−� and θθθ−k denote the vectors vvv and θθθ without the �th and kth element,
respectively. The computation of high dimension integrals is challenging, when
the integral cannot be solved analytically. Hence, sampling-based approaches have
been commonly used [3]. However, these approaches are time-consuming and
in particular in high-dimensional settings, as we consider here, computationally
intractable.

With INLA, Rue et al. [10] proposed an efficient deterministic computational
method based on accurate approximations. A central component in their approach
is the Laplace approximation, as proposed by Tierney and Kadane [13]. The Laplace
approximation is often used to approximate integrals appearing in the estimation of
moments, but can also be used to approximate marginal posterior densities.

INLA uses the fact that (4.3) can be written as

p(v� |Y) =

∫

θθθ
p(v� |θθθ ,Y)p(θθθ |Y)dθθθ ,

and approximates this term by the finite sum

p̃(v� |Y) = ∑
t

p̃(v� |θθθ t ,Y)p̃(θθθ t |Y)Δt .

Here, p̃(v� |θθθ ,Y) and p̃(θθθ |Y) denote approximations of p(v� |θθθ ,Y) and p(θθθ |Y),
respectively, and the sum is computed over suitable support points θt with appropri-
ate weights Δt . Since

p(vvv,θθθ ,Y) = p(vvv |θθθ ,Y)p(θθθ | Y)p(Y)

it follows that

p(θθθ | Y) ∝
p(vvv,θθθ ,Y)

p(vvv |θθθ ,Y)

for all vvv. INLA uses a Laplace approximation to approximate θθθ | Y as

p̃(θθθ | Y) ∝
p(vvv,θθθ ,Y)

p̃G(vvv |θθθ ,Y)
|vvv=vvv�(θθθ) . (4.5)

Here, p̃G(.) represents a Gaussian approximation of the full conditional distribution
of vvv, and vvv�(θθθ ) denotes the mode of p(vvv |θθθ ,Y) as determined by an iterative opti-
mization algorithm. As shown in Rue and Held [9], a full conditional distribution
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can be well approximated by a Gaussian distribution by matching the mode and
curvature at the mode, so that (4.5) is a sensible choice. For p(v� |θθθ ,Y) three
different approximation models are available. They differ not only in accuracy, but
also in computational efficiency; for details we refer to [10]. As default, a simplified
Laplace approximation is used. Posterior marginals for p(θk |Y) can be obtained
similarly from p̃(θθθ |Y). For a discussion of the accuracy of INLA we refer to [10].
In practice, the approximation error of INLA was found to be small compared to the
Monte Carlo error, see for example [5, 11].

4.2.2 The R-package r-inla

The R-package r-inla allows the user to combine different types of likelihood
functions with different regression models. Similar to model formulations based on
lm() or glm() in R, the linear predictor ηηη of a model is defined using a formula.
That is, we use a formula notation:

formula = y ~ a + b + a:b
+ f(c, model="iid", hyper=list(...), ...) + ...

to specify the model of interest. Here, y is the response of length n ·m1, where
m1 ≤ m denotes the number of features for which a joint fit is desired (for
example, m1 = 1 refers to the univariate case). Moreover, a, b denote fixed effects
and their interaction terms are included using “:”. Gaussian random effects are
included using the f() function. Here, we define an independent and identically
distributed (iid) random effect for each observation, where c represents an index
1, . . . ,n ·m1. More complex models such as random walks, user-defined Gaussian
models and even multivariate random effects are supported. Prior distributions for
the hyperparameters of a random effect are defined within the corresponding f()
function using the argument hyper=list(...). Once the linear predictor is
specified, the function inla() is called with the formula object as first argument:

result = inla(formula, data=data.frame(y,a,b,c, ...),
family="zeroinflatednbinomial1",
control.family=list(hyper=list(...), ...),
control.fixed=list(correlation.matrix=TRUE, ...),
control.compute=list(config=TRUE, ...),
num.threads=4, ...).

Using the second argument family, we define the likelihood family. Settings for
potential hyperparameters γγγ i can be specified in the control.family() argu-
ment. Additional specifications for the fixed effects are listed in control.fixed.
Here, we specify that the correlation matrix between the fixed effects should be
returned. This is needed, for example, if we would like to look at the joint posterior
marginal distributions of several fixed effects for one sample. Using the argument
control.compute, different options regarding the output generation are avail-
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able. By setting config=TRUE, INLA saves all internal approximations. The
r-inla package is an interface to the core INLA program which is implemented
in C and parallelized using OpenMP. By using the argument num.threads we
can specify the number of threads, which the r-inla program will use, but it is
usually more efficient to parallelize computations over genomic features.

After the inla(.)-call finishes, all output is saved in the result object.
Marginal posteriors of fixed effects are saved in result$marginals.fixed
and those of random effects in result$marginals.random. Summary infor-
mation including posterior mean, standard deviation and posterior quantiles is found
in result$summary.fixed and result$summary.random, respectively.

Linear combinations between different latent components can be specified within
the inla()-call and become part of the latent field vvv. Non-linear combinations or
multivariate posterior marginals are not directly available. However, the function

inla.posterior.sample(n=1000, result)

may be used to generate 1,000 samples, say, from the approximated joint posterior
distribution of the fitted model, as stored in result. These samples can then be
further processed to derive quantities of interest. For further details, we refer the
interested reader to www.r-inla.org.

4.3 Combining INLA with Empirical Bayes

Flexibility, computational efficiency (relative to other Bayesian methods) and
accuracy make INLA a very suitable method for analysis of RNA-seq and
other count-based sequencing data. In particular the versatility in terms of count
models is attractive: besides the often used negative binomial (Poisson-gamma)
likelihood model, it provides alternatives like Poisson-Gaussian, beta-binomial
and zero-inflated versions thereof. INLA, however, is not designed for high-
dimensional data, and hence lacks some functionality for this purpose. The
R-package ShrinkBayes [15] aims at providing such functionality.

In the following sections, all models are assumed to be univariate in the feature
space i = 1, . . . ,m, which allows the use of some notational shortcuts: yyy denotes any
random count vector of length n, whereas Yi = (Yi1, . . . ,Yin) specifically refers to
the ith data row. In addition, we do not use a feature index i for any parameter, or
sets of those including θθθ and vvv. Then, ShrinkBayes extends INLA by:

• Implementation of Bayesian multi-parameter shrinkage by empirical Bayes-type
estimation of parameters of the prior distributions. The estimation method relies
only on marginal posterior distributions: for any parameter α = θk or α = v� its
prior p(α) can be approximated by the empirical point-wise mean (over the data
for feature i, Yi) of posteriors:

http://www.r-inla.org
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p(α) =

∫
p(α|yyy)P(yyy)dμ(yyy)≈ 1

m

m

∑
i=1

p(α|Yi),

where μ() is a suitable measure for the data generating process. Iteration is then
required, because the latter posteriors depend on the prior as well (hence, in the
iteration on the current estimate of the prior).

• Extension of the class of admissible prior distributions for one central parameter
of interest towards nonparametric or mixture priors, which may contain a point
mass. For a smooth new prior pnew it uses a simple re-scaling argument to
recompute posterior distributions from the INLA-results:

Pnew(α|yyy) ∝ Pinla(α|yyy) · pnew(α)

pinla(α)
,

where the integral required to compute the proportionality constant is conve-
niently computed by means of the function inla.expectation. For mixture
priors it combines the INLA-results from the fits under the separate mixture
components and the corresponding marginal likelihoods.

• Providing a Bayesian estimate of FDR [BFDR;16] allowing easy interpretation of
significant results. Note that BFDR is actually an estimate of the False Discovery
Proportion (FDP), rather than FDR, but we use the conventional terminology
here. Basically, BFDR(t) = E[lfdr|lfdr < t], where local FDR, lfdr, equals the
posterior probability of the parameter to be included in the null-domain H0:
lfdr = P(α ∈H0|yyy).
Multi-parameter shrinkage can be particularly beneficial for relatively small

studies: shrinkage of a nuisance parameter diminishes its influence and consump-
tion of degrees of freedom when it is unimportant across features, shrinkage of
dispersion-related parameters leads to more reproducible results, and shrinkage of
the parameter of interest leads to better inference in terms of FDR estimation.

The versatility of INLA allows the extension of ShrinkBayes in various
directions, such as data integration, gene set testing and multi-parameter inference
using multivariate priors. Below we detail the latter. A disadvantage of INLA
(relative to MCMC) is that, by default, it only approximates marginal posterior
distributions. The illustration below, however, also shows that summaries and
samples of the posterior can be computed with the most recent version of INLA.

4.4 Extension: Bayesian Multivariate Shrinkage

In many practical problems, joint inference on multiple parameters is desirable. In
a frequentist GLM-setting, likelihood-ratio tests may serve this purpose, although
these generally do not account for potential relations between the parameters and
are not straightforward in application when the parameters are a mix of regression
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parameters and hyper-parameters (e.g. zero-inflation or dispersion). Below we
illustrate how to extend INLA for the purpose of multivariate shrinkage and
inference. Two practical problems motivate this work. First, in an RNA-seq setting,
we wish to jointly infer the difference in mean and difference in zero-inflation.
Excess of zeros is a phenomenon observed by many for RNA-seq data, but often
not modeled explicitly, partly because it complicates inference. INLA nicely allows
for differential zero-inflation by use of strata. Combined inference for differential
means and differential zero-inflation may lead to more power than inference for
differential means only [14], and may render more meaningful parameter estimates.

Second, we wish to improve inference when correlation in the parameters is
likely to occur. For example, suppose a fixed set of microRNAs may regulate genes
of a given pathway in a coordinated manner or two pathological tumor staging
covariates are available, and one would prefer not to a priori select one of the two.

We will consider three types of models. Initially, we do not distinguish between
regression parameters and hyper-parameters, and simply denote all parameters for
which joint inference is desired by ααα ⊂ ⋃k{θk}∪⋃�{v�}. For example, let β1 and
β2 denote the means of group 1 and group 2, respectively, and ω1 and ω2 their
group-specific zero-inflation parameters. Then ααα = {β ,ω}, with β = β2 −β1 and
ω = ω2 −ω1 includes the differences in mean and zero-inflation between the two
groups. The three models share the same core model M and differ only by the prior
on ααα . The core model M may depend on the context, and hence is not specified
here. Example models which contain a zero-inflated negative binomial likelihood,
a log-linear regression for the mean and appropriate priors are given in [15]. We
do emphasize that in our setting M should contain an intercept; hence, group-
related parameters are interpreted as deviations from the intercept. Below we simply
identify the three models of interest by the prior on ααα; null model M0 with a point
mass on 0, and alternative models MU

1 and M J
1 with univariate (U) priors on the R

single components of ααα , or a joint (J) prior for ααα:

M0 : π(ααα) = δ (0)

MU
1 : π(ααα) = πU(ααα) =

R

∏
r=1

πr(αr)

M J
1 : π(ααα) = πJ(ααα),

where δ is the delta-Dirac function to denote a point mass. Ultimately, we are
interested in obtaining posteriors under the mixture model (allowing some abuse
of notation):

M J
mixt = q0M0 +(1− q0)M

J
1 . (4.6)

For this, the marginal likelihoods under models M0 and M J
1 are required. The

auxiliary model MU
1 is needed for obtaining the desired results from INLA,

which only allows univariate priors as input. Below we show how to re-scale a



4 Analysis of Next Generation Sequencing Data Using INLA 83

marginal likelihood obtained fromINLA under univariate priors to obtain a marginal
likelihood under the joint prior. The marginal likelihoods under model M J

1 and MU
1

are denoted by pJ(yyy) and pU(yyy), respectively. Then, we have:

pJ(yyy) =
∫

pJ(yyy|ααα)πJ(ααα)dααα =
∫

pU (yyy|ααα)πJ(ααα)dααα = pU (yyy)
∫

pU (ααα |yyy)πJ(ααα)

∏R
r=1 πr(αr)

dααα

= pU (yyy)EpU (ααα |yyy)
[

πJ(ααα)

∏R
r=1 πr(αr)

]
. (4.7)

Likewise, it is easy to show that

pJ(ααα|yyy) ∝ pU(ααα|yyy) πJ(ααα)

∏R
r=1 πr(αr)

. (4.8)

Both (4.7) and (4.8) require numerical integration, which is explained below. Also,
we need to estimate the unknown prior parameters in (4.6): q0 and the parameters
of πJ(ααα). After transforming all components of ααα that are not yet on a Gaussian
scale to a Gaussian scale, e.g. by a logistic-transformation on the zero-inflation
parameters, it seems reasonable to use πJ(ααα) = N(0,ΣΣΣ ). Note that in INLA the
Gaussian scale is default for all parameters in vvv. Likewise, on the internal scale, the
hyper-parameters for zero-inflation and over-dispersion are endowed with Gaussian
priors in INLA. However, for other hyper-parameters, e.g. precisions with log-
Gamma priors, a different multivariate distribution may be required (e.g. constructed
by use of a copula). The methodology below applies to any multivariate parametric
form.

Iterative estimating of q0 and ΣΣΣ is performed analogously as in [15]: sample
from the empirical (point-wise) mean of current posteriors under mixture model
M J

mixt: pJ
mixt(ααα|Yi), where index i = 1, . . . ,m represents a feature and ααα denotes the

corresponding instance of ααα; then, q̂0 is simply the fraction of features for which
ααα = 0 and Σ̂ is the usual covariance estimate pooled across all features for which
ααα �= 0. Note that given the current estimates of q0,pJ(yyy),pJ(ααα|yyy) and the marginal
likelihood under null-model M0, p0(yyy) (available from INLA), it is straightforward
to compute pJ

mixt(ααα|yyy) using Bayes’ rule:

pJ
mixt(ααα|yyy) =

{
q0 p0(yyy)/p(yyy), for ααα = 0;
(1− q0) pJ(yyy) pJ(ααα|yyy)/p(yyy), for ααα �= 0,

(4.9)

with p(yyy) = q0 p0(yyy)+ (1− q0) pJ(yyy).
The integral in (4.7) is approximated by a Monte Carlo sum, so we use the fact

that the integral can be written as an expectation. We generate n samples from the
joint posteriors pU(ααα|yyy) using the function inla.posterior.sample, then
compute ws = πJ(αααs)/∏R

r=1 πr(αs
r ) for each sample αααs and compute ∑S

s=1 ws/S.
The function inla.posterior.sample is very convenient here, in particular
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when ααα consists of both regression and hyper-parameters. Use of this function
requires to set config=TRUE in the control.compute argument of the
inla function. The sampling by inla.posterior.sample is, however,
somewhat slow when many samples are required for many features i = 1, . . . ,m.
When ααα consists of fixed effect parameters only, there is a very fast and often
accurate alternative: as indicated before, INLA computes posterior correlations
between the components of ααα when setting correlation.matrix=TRUE in
the control.fixed argument of the inla function. These correlations are used
to approximate the joint posterior by a multivariate Gaussian, which is then used for
extremely fast sampling. The algorithm to perform inference under mixture model
M J

mixt is given below.

Algorithm

1. Fit models M0 and MU
1 with INLA.

2. Initiate q0, e.g. q0 = 0.9 and πJ(ααα) = ∏R
r=1 πr(αr).

3. Start iterative estimation of q0 and πJ(ααα) until convergence

a. Compute pJ
mixt(ααα |Yi) for i ∈I using (4.7)–(4.9). Here, I denotes a random

subset of the entire set of feature indices {1, . . . ,m} with |I |<m, see Remark
3(a) below.

b. Sample from the empirical mixture of the posteriors pJ
mixt(ααα|Yi), i ∈I .

c. Re-estimate q0,πJ(ααα) and recompute pJ(ααα |Yi).

4. Compute pJ
mixt(ααα|Yi) for all i = 1, . . . ,m.

5. Compute local false discovery rate (lfdr): lfdr = pJ
mixt(0|yyy) and, for any threshold

t, the Bayesian False Discovery Rate: BFDR(t) = E[lfdr|lfdr < t].

Remarks.

1. For numerical stability in the computation of (4.7) we prefer the univariate priors
to be not very vague, but still cover a reasonably large range.

2. Hence, the initial joint prior is just the product prior of Gaussians.
3. Convergence is assessed by successive evaluation of the total log-marginal

likelihood, which equals ∑|I |
i=1 logp(Yi).

a. The random set I should be large enough for the empirical Bayes estimation
of the priors to work, but may be smaller than m for computational conve-
nience. We use |I |= min{m,104}.

b. Generate, e.g., five samples for each i ∈I .
c. Use (4.8) for computing pJ(ααα|Yi).

4. This may be time-consuming when ααα contains regression and hyper-parameters
(requiring use of inla.posterior.sample). One may consider to first
apply an initial liberal significance screening using univariate priors.

5. Hence, for threshold t, BFDR is simply computed by averaging all lfdrs smaller
than t.
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4.5 Multivariate Shrinkage Improves Feature Selection
at Given FDR

We conducted a simulation study for two settings: (I) four correlated regression
parameters β� and (II) correlated differential mean group parameter βg and dif-
ferential zero-inflation parameter ωg (on the internal logit-scale). Setting I is a
4-group comparison with four samples per group for 5,000 features, 1,000 of which
are differential. The four differential parameters β� are drawn from a N(0,ΣΣΣ)
with Σ�,� = 1 and Σk,� = ρ for k �= � = 1, . . . ,4, with ρ = 0.4,0.8. We assume
� = 1, . . . ,4 represent 4 levels of a factor. Any data point corresponding to level
� is drawn from a negative binomial distribution with log-mean equal to β�+ 5 and
equal overdispersion varying over features according to a log-normal distribution
with μ = σ = 0.5 (roughly based on values observed in real data). Setting II is a
2-group comparison with ten samples per group for 1,000 features, 200 of which are
differential. Here, βg and ωg are drawn from a bivariate N(0,ΣΣΣ ′) with Σ ′

g,g = 1 and
Σ ′

g,h = ρ ′ for g �= h= 1,2, with ρ =−0.4,−0.8. The negative correlation reflects the
realistic situation of an increase in group mean to go hand-in-hand with a decrease in
zero-inflation. For both groups each data point is drawn from a zero-inflated negative
binomial distribution with zero-inflation equal to exp(ωg)/(1+exp(ωg)), log-mean
equal to βg + 2 and equal overdispersion varying over features according to a log-
normal distribution with μ = σ = 0.5.

The iterative procedures described above seem fairly adequate in estimating
the parameters of the multivariate priors. The estimate of the proportion of non-
differential features, q̂0, ranges from 0.79 to 0.88 across the four simulations,
whereas for |ρ | = 0.4,0.8 ρ̂I = 0.32,0.51 and ρ̂II = −0.43,−0.61 for settings I
and II, respectively. The somewhat conservative estimate of q̂0 (true q0 = 0.8) is
probably caused by features with small values of the differential parameters for
which the null-model is preferred. For the cases |ρ | = 0.8 the estimate of ρ is
dampened by the noise in the data.

In setting I, we compared the results from multivariate shrinkage with those of
univariate shrinkage, which only shrinks the variances of β� using the same proce-
dures. We also compare with two popular p-value based methods: edgeR v3.2.3,
[8] and DESeq v1.12.0, [1], using their default settings. Both methods provide
likelihood ratio tests in the negative binomial setting for K-sample inference. The
ROC-curves in Fig. 4.1 show that the shrinkage-based methods render somewhat
better feature rankings than the p-value based methods, in particular when the
correlation is strong. Quality of ranking is improved only marginally when using
multivariate rather than univariate shrinkage. However, when considering the actual
number of selected features at target BFDR = 0.1, multivariate shrinkage seems
beneficial, see Table 4.1.

In setting II, we compared the results from multivariate shrinkage with those of
univariate shrinkage and those of a simple alternative model with group-independent
zero-inflation and differential group mean. Again, the ROC-curves in Fig. 4.2 show
only small qualitative differences in terms of rankings, but when considering the
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Fig. 4.1 ROC-curves (x-axis: FPR vs y-axis: TPR) for simulation setting I, correlated β ’s, for
ρ = 0.4 (a) and ρ = 0.8 (b)

Table 4.1 Selection results
for simulation setting I

# significant True FDP

MV UV MV UV

ρ = 0.4 339 293 0.053 0.044
ρ = 0.8 38 32 0.105 0.125

# significant number of significant features at target
BFDR= 0.1, UV univariate Gaussian prior approach, MV
multivariate Gaussian prior approach, True FDP true false
discovery proportion of the significant features

actual number of selected features at target BFDR = 0.1 in Table 4.2, differential
zero-inflation plus multivariate shrinkage is somewhat superior when the correla-
tion is strong (ρ = −0.8; most detections and comparable BFDRs). For weaker
correlation (ρ = −0.4), the simple alternative model (ZI+UV), is competitive: its
corresponding true BFDR is closer to the target, but it also detects fewer features.

In both settings, the small gain in terms of ranking is not unexpected: the prior
(which is the same for all features) is unlikely to have a strong impact on the ranking
and in setting II the group mean parameter of the alternative model can also partly
pick up differences in zero-inflation. For actual selection, however, the prior is
known to be very important in a multiple testing setting [12], which explains the
larger differences in the selection results.
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Fig. 4.2 ROC-curves (x-axis: FPR vs y-axis: TPR) for simulation setting II, differential zero-
inflation correlated with differential β , for ρ =−0.4 (a) and ρ =−0.8 (b)

Table 4.2 Selection results for simulation setting II

# significant True FDP

diff ZI+MV diff ZI+UV ZI+UV diff ZI+MV diff ZI+UV ZI+UV

ρ =−0.4 65 61 58 0.138 0.148 0.103
ρ =−0.8 68 62 61 0.132 0.145 0.131

# significant number of significant features at target BFDR = 0.1, UV univariate Gaussian prior
approach, MV multivariate Gaussian prior approach, diff ZI model with differential zero-inflations,
ZI model with group-independent zero-inflation, True FDP true false discovery proportion of the
significant features

4.6 RNA-seq Analysis of Lymphoblastoid Cell Lines

As a proof of principle, we analyzed RNA-seq data from lymphoblastoid cell lines
generated as part of the International HapMap project from 69 unrelated Nigerian
individuals [6]. We contrasted 29 males to 40 females. Given this contrast, we
focus on chromosomes X and Y: one expects the majority of differences here;
hence, a full genome analysis could largely diminish power in a multiple testing
setting, in particular because X and Y are relatively small chromosomes. As a
reference, we do add chromosome 1 to compare the findings for chromosomes X
and Y to that of chromosome 1. The entire count matrix was normalized using
edgeR’s calcNormFactors function, with “method=TMM” [7]. This function
produces after multiplication by the relative library size a normalization factor for
each individual. Raw counts were divided by this factor and rounded to integers
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again. Modest filtering on the minimum number of non-zeros was applied, which
should be at least 10. The zero-inflated negative binomial likelihood [15] is used
for the analysis. Since we aim to assess the effect of allowing group-dependent
zero-inflation instead of group-independent zero-inflation, we focus on features with
at least a modest number of zeros, minimally 10%. This renders 1,811 features,
of which 66% are located on chromosome 1, 28% on chromosome X and the
remaining 6% on chromosome Y.

At BFDR ≤ 0.1, the multivariate shrinkage model M J
1 with differential zero-

inflation (diffZI+MV) identifies 18 significant features, of which only 1 is located
on chromosome 1, 4 are located on chromosome X and 13 are located on chro-
mosome Y. The difference in zero-inflation proportions can be large: its estimate
exceeds 0.3 for 50% of those features, which supports the explicit modeling
of differential zero-inflation. The estimated bivariate prior for differential zero-
inflation (ω =ω2−ω1; on the logit-scale) and differential group effect (β = β2−β1)
indeed contains a quite strong negative correlation: ρ = −0.50. This indicates that
multivariate shrinkage is relevant here. For all these 18 features, the estimate of ω
is in line with that of β in the sense that either ω is very small (and β is not) or they
are in opposite directions. This facilitates interpretation. Note that the multivariate
prior with negative correlation can in fact help to avoid ‘detecting’ features with
contradictive estimates of ω and β .

We compared the results from diffZI+MV with those from the more standard
model: group-independent zero-inflation with univariate shrinkage for the differ-
ential group effect (ZI+UV). Of course, the two models are rather competitive in
terms of power, in particular because the differential group effect in the standard
model may partly pick up a difference in zero-inflation as well. We define a quasi-
False Positive Rate, quasiFPR, as the ratio of the number of detected features
located on chromosome 1 and #P: the total number of detections. We are aware
that, for RNA, differences between males and females may exist on the autosomes;
yet quasiFPR quantifies to what extent a method succeeds in prioritizing the sex
chromosomes over the autosomes from the data only. Figure 4.3a shows quasiFPR
for 10 ≤#P≤ 40, which covers the range of number of detections for any 0.05 ≤
BFDR ≤ 0.2. Note that, locally, an increase in number of selected positives, reduces
the quasiFPR when only the denominator of this quantity increases, which explains
the zigzag pattern. We observe that diffZI+MV is better able to prioritize the sex
chromosomes features than ZI+UV. When including chromosomes other than 1, we
observed similar performances: e.g. quasiFPR is 30–40 % lower for diffZI+MV than
for ZI+UV when including chromosomes 2 and 3.

Since outliers are known to be a potential problem, in particular for features in
the low range spectrum, we briefly study the effect of creating one single outlier for
25 features in the lymphoblastoid data set; the outlier was created by multiplying
the largest count for the specific feature by 10. Given the sparse signal in the data
set (q̂0 = 0.982) (and the majority of features with an outlier lies on chromosome
1) it seems reasonable to assume that any detection of these 25 is false. Figure 4.3b
shows the FPR for 10 ≤#P≤ 40, hence the same range as before. We observe that
diffZI+MV is more robust against outliers than ZI+UV. The intuitive reason for this
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Fig. 4.3 Number of detections (x-axis) versus quasiFPR (a) and FPR (b) in the chromosome
1+X+Y data set, and the same data set with 25 artificial outliers, respectively

is that the diffZI+MV model recognizes that the β2 −β1 difference is not supported
by the zero-inflation difference, ω2 −ω1 : the apparent increase in β2 (if the outlier
is in the second group) is countered by an increase in ω2 to better fit the zeros, which
does not comply well with the a priori negative correlation, and leads to a decrease
in marginal likelihood.

4.7 Discussion

We demonstrated the potential of INLA for the analysis of sequencing data. Here,
we focused mostly on flexibility in terms of prior-specification by extending INLA
to allow multivariate priors. In addition, INLA provides a large amount of flexibility
regarding specification of the observation model, the regression model, and the
definition of hyperparameter settings. In the following, we will shortly summarize
these three levels.

For count data, several likelihood functions such as Poisson, binomial, negative
binomial and their zero-inflated variations are available. Furthermore, it is possible
to combine several likelihood functions, so that different groups of observations
can have different likelihoods [4]. For example, one subset may follow a Poisson
likelihood and the rest a Gaussian likelihood. This is an interesting feature for
the coupling of two (or more) observed processes which are assumed to share the
same covariates or latent structure. A potential application might be data integration
where different high-throughput sequencing experiments are used to learn about a
biological phenomenon.
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The linear predictor can be additively composed by fixed effects and different
types of random effects. Dependence along the genome, say, can be accounted for
by the random effects. This makes sense whenever neighboring regions are likely
to exhibit more similar behavior than regions lying further apart. Even correlated
random effects between different data sources, for example methylation sequencing
data and copy number variation data, can be specified within the same framework
without requiring novel application-specific implementations.

The advantage of a Bayesian approach is the incorporation of hyperparameter
uncertainty. While the latent parameters need to follow a Gaussian distribution (in
the standard INLA-setting; this can be relaxed in ShrinkBayes), arbitrary prior
distributions can be designed to the hyperparameters. Here, the user can choose from
different standard distributions, but also use expert-based prior distributions. These
can be either defined using a function or by assigning a matrix which represent
the prior distribution by specific paired x and y values. This is of interest when
incorporating either expert knowledge or information available from related studies.

The flexibility of INLA and its extension ShrinkBayes comes at a price:
although more efficient than most other Bayesian approaches, it is inherently
computationally more demanding than frequentist methods. Typically, an analysis
with ShrinkBayes takes a few hours, whereas p-value based methods usually
render results within a couple of minutes. The comparison with edgeR and DESeq
in Fig. 4.1 should also be seen in that light: while, in this setting, ShrinkBayes
performs better, edgeR and DESeq are more convenient in use given their compu-
tational advantage. Also, performances are likely to converge when sample sizes
increase due to the diminishing effect of shrinkage. Hence, in practice the method
of choice will depend on a number of factors like sample sizes, complexity of the
inferential problem, presence of random effects, importance of accounting for zero-
inflation and the balance between performance and computational burden.

In the future, computing times may decrease by reducing the INLA-overhead,
which stores more results than necessary sometimes. Importantly, the number of
features has little to no impact on computing time for the shrinkage procedures,
only for the actual fitting procedures. Therefore, a pragmatic solution for very high-
dimensional data sets may be to first apply an initial screen by a fast method. Then,
apply shrinkage to a large enough random subset of all features, and apply the INLA
fitting only to those features that pass a (liberal) initial screen. If the initial screen
is a non-parametric one, this may also help in terms of robustness against outliers.
Note that it can be verified whether the threshold for the initial screen was set too
strictly: if many features close to the screening threshold turn out to be significant
with ShrinkBayes, then a more liberal threshold should be used.

We conclude that INLA is certainly a useful addition to the colorful spectrum of
analysis methods of count-based sequencing data. Possibly, its largest potential lies
in complex inferential problems for which its abilities to use dedicated (multivariate)
shrinkage priors, and to account for (correlated) random effects can be fully
exploited.
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Chapter 5
Design of RNA Sequencing Experiments

Dan Nettleton

Abstract This chapter presents strategies for the design of RNA sequencing
(RNA-seq) experiments aimed at identifying differentially expressed genes. We
discuss the multiphase nature of RNA-seq experiments and point out the utility
of intentionally confounding nuisance factors, that inevitably arise in different
design phases, with one another. We cover the concepts of biological and technical
replication. We show that experimental designs that prioritize biological replication
over both technical replication and increased sequencing depth per experimental
unit provide improved assessments of differential expression. Several example
experimental designs are presented to illustrate the featured design principles.

5.1 Introduction

RNA sequencing (RNA-seq) has become the preferred approach for comparing
the abundance of each of tens of thousands of transcribed RNA molecules across
treatments of scientific interest. A prototypical RNA-seq experiment involves the
following steps:

1. A total of n experimental units are selected for use in the experiment.
2. The n experimental units are assigned to t treatments of interest.
3. Each experimental unit is treated with its assigned treatment.
4. A relevant biological sample of tissue or cells of a certain type is collected from

each experimental unit.
5. An RNA sample is extracted from each biological sample.

D. Nettleton (�)
Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
e-mail: dnett@iastate.edu

S. Datta and D. Nettleton (eds.), Statistical Analysis of Next Generation Sequencing Data,
Frontiers in Probability and the Statistical Sciences, DOI 10.1007/978-3-319-07212-8__5,
© Springer International Publishing Switzerland 2014

93

mailto:dnett@iastate.edu


94 D. Nettleton

6. Each RNA sample is used to generate a sample of cDNA fragments ready for
sequencing with Next Generation Sequencing (NGS) technology. (This resulting
sample is often referred to as a library, and this step is known as library
preparation.)

7. NGS technology is used to determine the identity of millions of short nucleotide
sequences (known as reads) from each library of cDNA fragments.

The reads generated from steps 1–7 are processed using bioinformatic algorithms
that match reads from each sample to p RNA sequences of interest. These RNA
sequences of interest could be genes, specific gene transcripts, exons, microRNAs,
etc. For simplicity and generality, we will refer to the sequences of interest as
features throughout the remainder of this chapter. The results of matching reads
to features are often summarized in a p×n matrix of counts. The count in row i and
column j of the matrix is assumed to be positively associated with the abundance of
the ith feature in the jth experimental unit. A major goal of the ensuing analysis is to
determine which, if any, features show significant evidence of changes in abundance
due to treatment. Features whose abundance does truly depend on treatment are
often referred to as differentially expressed (DE).

Each of steps 1–7 can introduce variation in the count matrix. The way each step
is carried out can have important implications about how the count matrix should
be interpreted and DE features identified. If the steps are performed carefully with
experimental design principles in mind, the matrix of counts can contain valuable
information about DE features. On the other hand, DE features may be unnecessarily
difficult or impossible to identify if the matrix of counts is produced from a poorly
planned and executed experiment. Because RNA-seq experiments are expensive
endeavors, it is especially important that they be carefully designed and executed
to make the best use of available resources.

In this chapter, we present practical experimental design advice for statisticians
and biological researchers who wish to use RNA-seq to identify DE features. For
simplicity of terminology and presentation, we focus primarily on experiments
rather than observational studies. However, most of the ideas covered in this chapter
apply to observational studies as well as experiments. We assume that readers have
at least a basic understanding of the fundamental experimental design principles
promoted by R.A. Fisher—namely, randomization, replication, and blocking. We
discuss the important role of each principle in the context of RNA-seq experiments.

In addition to fundamental experimental design principles, RNA-seq experiments
require special design considerations because the complex steps required for
measuring transcript abundance levels with RNA-seq technology lead to multiphase
experiments. McIntyre [15] discussed design and analysis strategies for two-phase
experiments. In the first phase of a two-phase experiment, fundamental experimental
design principles are used to apply treatments to experimental units as would be
done in any standard experiment. The need for a second design phase arises when
measuring the response variable or variables of interest is a complex process that
requires experimental design considerations. Kerr [11], Jarrett and Ruggiero [10],
and Nettleton [17] have discussed the two-phase nature of microarray experiments
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Fig. 5.1 A schematic representation of an Illumina flowcell. Each box in the figure represents a
particular combination of barcode and lane that can be used to sequence a single library. In the
final phase of an RNA-seq experimental design, libraries must be assigned to barcode × lane
combinations

to measure the transcript abundance. Likewise, many RNA-seq experiments are
multiphase experiments because the steps 1–7 described above can be naturally
partitioned into distinct phases, with each phase requiring its own design consider-
ations. The first phase is typically comprised of steps 1–3. The next phase or phases
may naturally consist of steps 4 and 5. Finally, steps 6 and 7 can be viewed as a final
phase that is often conducted by a specialized sequencing facility that produces read
data from the RNA samples provided by an experimenter.

The final phase of an RNA-seq experiment is perhaps the most unique and
interesting phase from a statistical perspective. The possible design options depend
on the NGS sequencing platform. We will focus on the Illumina platform that has
been considered by several others [1,4,5,8,14,16,21] in the RNA-seq experimental
design context. Illumina sequencing occurs within the lanes of flowcells. Each
flowcell has eight lanes. In the simplest scenario, eight libraries can be separately
sequenced on a flowcell, with one library in each lane.1 However, it is also possible
to sequence multiple libraries together in a single lane using a technique known as
multiplexing [4,7,9]. To enable attribution of a read to the appropriate library when
multiplexing is used, a short library-specific DNA sequence known as a barcode
is appended to the sequences in each library prior to sequencing. A given read
generated from sequencing the combined and barcoded libraries in a single lane
begins with the barcode that uniquely identifies the source library for that read. This
allows for the feature read counts to be computed separately for each of the libraries
sequenced together in a single lane.

With the structure provided by the Illumina NGS platform (see Fig. 5.1), there
are many strategies that can be employed to measure feature abundance in the
RNA samples extracted from experimental units. Ideally, the third-phase design
strategies used to assign libraries to flowcells, lanes, and barcodes will match well

1Although Illumina has recommended that one of the eight lanes be used to sequence a special
control sample, [5] showed that better results can be obtained by using all eight lanes to sequence
libraries of direct interest.
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with the design of the first and second phases of the RNA-seq experiment. Careful
attention to the design of each phase and the relationship between phases will
facilitate data analysis and discovery of DE features. In Sect. 5.4, we present several
examples of effective RNA-seq experimental designs that account for the multiphase
nature of RNA-seq experiments. Before presenting those examples, we address two
issues that have important implications for the design of all phases of RNA-seq
experiments: replication (Sect. 5.2) and sequencing depth (Sect. 5.3).

5.2 Replication

As stated in Sect. 5.1, a major goal of most RNA-seq experiments is to determine
which features show significant evidence of changes in RNA abundance due
to treatment. To determine if a treatment causes changes in the abundance of
a feature, it is necessary to understand variation in feature abundance among
independent experimental units treated alike. This variation in feature abundance
among independent experimental units treated alike is often referred to as biological
variation. To learn about biological variation, it is necessary to treat multiple
independent experimental units alike and measure their feature abundance. This
type of replication, known as biological replication, is an indispensable aspect
of RNA-seq experiments aimed at identifying DE features. Biological replication
allows for the assessment of biological variation, which permits a data analyst to
determine if differences in feature abundance between experimental units treated
differently are caused by the different treatments or are simply differences that can
be expected by chance due to natural biological variation.

A second type of variation, known as technical variation, can be assessed
through technical replication. Technical replication involves replicating the process
of measuring feature abundance for one or more experimental units. Technical
variation describes the variation in replicate measurements of feature abundance
on a single experimental unit that is due to the measurement technology. For
example, if a library derived from a single experimental unit is sequenced twice,
once in each of two flowcell lanes, the two read counts obtained for a given feature
often differ. This is not surprising because RNA-seq technology does not provide a
complete and error free enumeration of all sequence fragments in a library. Instead,
the collection of fragments that is sequenced and correctly matched to features is
randomly selected from the sequence fragments in a library. Marioni et al. [14]
provides empirical evidence that the read counts for a given feature obtained from
repeated measurements of a single library tend to follow a Poisson distribution.
However, it is reasonable to expect greater variation among measurements on a
single experimental unit if the entire measurement process (steps 4 through 7 in
Sect. 5.1) were replicated.

Biological and technical replication have been discussed in the context of
RNA-seq experimental design by several authors. Examples include [4,6,8,16], and
[21]. Auer and Doerge [4] emphasized the need for biological replication to draw
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conclusions about treatment effects that can be generalized beyond the experiment
at hand. Busby et al. [6] pointed out that power for detecting DE features will be
maximized by maximizing biological replication. Fang and Cui [8] claimed that “the
most desirable replicates are biological replicates.” Robles et al. [21] also favored
biological over technical replicates. McIntyre et al. [16] assessed biological and
technical variation in three experiments and concluded that “technical variation,
while smaller than biological variation, cannot be ignored and should be accounted
for in the study design.”

In this chapter, we will argue that all replicates should be biological replicates
when the number of measurements (i.e., number of libraries sequenced) is the
limiting factor and the goal of the RNA-seq experiment is to detect features that
are differentially expressed across treatments. Our claim is that, given a fixed
number of measurements m, precision for estimating differential expression will
be maximized by measuring m experimental units once each. This is relevant for
RNA-seq experiments because the cost of each high-dimensional measurement (i.e.,
sequencing a library to obtain a vector of read counts) is non-trivial so that the
number of measurements is the single most important factor driving experimental
cost in many cases. There are, of course, exceptions. In situations where the number
of experimental units is capped but budgets allow for additional measurements
beyond the number of experimental units, technical replication can help reduce
the impact of measurement error. However, it should be understood that repeatedly
measuring the same experimental units is no substitute for measuring additional
experimental units. These points are illustrated in the following subsections.

5.2.1 A Simple Comparison of Replication Strategies

We begin our argument in favor of exclusive biological replication with an
elementary example outside the context of RNA-seq experimentation. Consider
an experiment with a single treatment and a single response variable that can be
measured multiple times for each experimental unit. Denote the jth measurement of
the response variable for the ith experimental unit by

Yi j = θ + ui + ei j, (5.1)

where θ is an unknown parameter, ui denotes an unobserved random variable with
mean zero and variance σ2

u , and ei j denotes an unobserved random variable with
mean zero and variance σ2

e . Furthermore, suppose all ui and ei j terms are mutually
independent. Suppose an unlimited number of experimental units are available but
we can afford to make only four measurements of the response. If our goal is to
estimate θ , how shall we design the measurement process?

This is a classic measurement-error scenario where the unobserved value θ + ui

represents the true value of the response for the ith experimental unit, while Yi j is the
jth measurement of the response for the ith experimental unit, which differs from the
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Fig. 5.2 A comparison of three replication strategies for estimating a mean parameter θ in a
simple linear model with random experimental unit effects (ui) and random measurement errors
(ei j)

true value of the response by the measurement error ei j. The variance components
σ2

u and σ2
e represent variation in the true response among experimental units and

variation among measurements of the response on an individual experimental unit,
respectively.

Three potential designs for the measurement process are illustrated in Fig. 5.2. In
design D1, four different experimental units are each measured once. In design D2,
two experimental units are each measured twice. One experimental unit is measured
four times in design D3. For all three designs, the average of the response
measurements is an unbiased estimator of θ , and the best design can be identified
by determining which estimator of θ has the smallest variance. Expressions for the
average of the response measurements are presented on the right side of Fig. 5.2.
The variance of the average is σ2

u /4+σ2
e /4 for design D1, σ2

u /2+σ2
e /4 for design

D2, and σ2
u +σ2

e /4 for design D3.
Note that design D1 is guaranteed to have the smallest variance of all three

designs regardless of the values of σ2
u and σ2

e (unless σ2
u = 0, in which case

all three designs have the same variance). This is clearly a special case of a
more general result that implies that each experimental unit should be measured
at most once, regardless of the measurement error variance, when the number of
experimental units is plentiful, the number of measurements is limited, and the
goal is to estimate θ with minimum variance. The result can be easily extended
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to the multiple treatment case, where a design D1 measurement strategy should be
used for each treatment group if the goal is to estimate or test for differences in
treatment means. Although this result is very simple from the statistical standpoint,
many experimenters find it surprising. Their intuition may incorrectly suggest that
measurements of the response of an experimental unit should be repeated, especially
when the measurement error variance is known to be high.

There are, of course, situations where multiple measurements per experimental
unit are important. For example, in order to separately estimate σ2

u and σ2
e , a design

like design D2 is needed. Thus, when a new measurement technology is developed,
it is quite natural to conduct some initial experiments using designs like design D2 to
obtain information about both variation in true responses of experimental units (σ2

u )
and variation introduced by the measurement process (σ2

e ). A design like design
D2 can also be useful if the number of experimental units is limited. For example,
design D2 would clearly be preferable to a design in which two experimental units
are each measured just once. A design like design D3 can be useful if the entire
goal of the experiment is to estimate only the measurement error variance σ2

e or the
response of a particular experimental unit (θ + ui) rather than the mean response of
experimental units (θ ). However, a design like design D3 is a disastrous choice if the
goal is to estimate θ (or a difference in treatment means in the multiple treatment
case); in addition to producing an estimator that is more variable than the estimators
of designs D1 and D2, design D3 provides no information about σ2

u , which makes
it impossible to construct a confidence interval or test a hypothesis about θ (or a
difference in treatment means in the multiple treatment case).

5.2.2 A Comparison of Replication Strategies for RNA-seq

The simple design comparison of Sect. 5.2.1 provides some support for using
exclusively biological rather than technical replication. However, the linear model
with additive random effects assumed for the responses in Sect. 5.2.1 is not
appropriate for RNA-seq count data. Currently, the most popular model for RNA-
seq data assumes that the counts for a given feature follow a negative binomial
distribution with a treatment-specific mean and a dispersion parameter common
across treatments (see, for example, [2, 3, 18–20], and Chaps. 2 and 3). It is well
known that a negative binomial distribution can be characterized as a gamma
mixture of Poisson distributions. In this subsection, we will assume that RNA-
seq count data follow a lognormal mixture of Poisson distributions. Because of
the similarity between lognormal and gamma distributions, a lognormal mixture
of Poissons is very similar to a negative binomial distribution but has an advantage
when modeling multiple sources of variability as illustrated in our formal model
specification below.

Consider an RNA-seq experiment with two treatments. Suppose that one of the
designs D1, D2, or D3 from Sect. 5.2.1 is used to measure the experimental units
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Table 5.1 Count data simulated according to model (5.2) for each design whose structure for a
single treatment group is depicted in the second column of Fig. 5.2

Design Treatment 1 data Treatment 2 data Obs./Exp.Unita Exp.Units/Trtb

D1 Y111 ,Y121,Y131,Y141 Y211 ,Y221,Y231,Y241 1 4
D2 Y111 ,Y112,Y121,Y122 Y211 ,Y212,Y221,Y222 2 2
D3 Y111 ,Y112,Y113,Y114 Y211 ,Y212,Y213,Y214 4 1
aNumber of observations per experimental unit
bNumber of experimental units per treatment

within each treatment group. For a given feature, let Yi jk be the read count for
treatment i, experimental unit j, and measurement k. Suppose

Yi jk|λi jk ∼ Poisson(λi jk) and log(λi jk) = θ + τi + ui j + ei jk, (5.2)

where θ , τ1, τ2 ∈ R are unknown parameters, ui j ∼ N(0,σ2
u ), ei jk ∼ N(0,σ2

e ), all
ui j terms and ei jk terms are mutually independent, and σ2

u and σ2
e are unknown,

non-negative variance components.
In model (5.2), the ui j terms are random experimental unit effects that reflect bio-

logical variation in experimental units treated alike. The ei jk terms represent random
measurement errors that account for technical variation in the measurement process.
These ei jk terms allow for multiple measurements of the same experimental unit to
show variation greater than Poisson variation due to the effects of measurement
steps like tissue sampling, RNA extraction, and library preparation. The Poisson
mean λi jk follows a lognormal distribution with mean exp(θ + τi +σ2

u/2+σ2
e /2).

Thus, E(Yi jk) = exp(θ +τi+σ2
u /2+σ2

e /2), and the mean read count for treatment 1
divided by the mean read count for treatment 2 (often referred to as the fold change)
is exp(τ1 − τ2). As in the case of a negative binomial distribution, the variance of a
lognormal mixture of Poisson distributions is a quadratic function of the mean. In
particular,

Var(Yi jk) = E(Yi jk)+φ{E(Yi jk)}2, (5.3)

where φ = exp(σ2
u +σ2

e )− 1.
We present a simulation study to evaluate the use of design D1, D2, or D3 within

each treatment group under model (5.2). The data simulated for each design are
noted in Table 5.1. For each design, model (5.2) was fit to the simulated data using
the function glmer from the R package lme4,2 and the maximum likelihood
estimate (MLE) of the log fold change τ1 − τ2 was recorded. The simulation was
repeated 1,000 times and the mean squared error of the MLE was computed for
each of the parameter settings indicated in Table 5.2.

2R version 2.15.2 and lme4 version 1.0–4 were used in the simulation studies of Sects. 5.2.2
and 5.3.1.
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Table 5.2 Empirical
estimates of mean squared
error (MSE) for the maximum
likelihood estimator of log
fold change (τ1 − τ2) for
designs D1, D2, and D3

θ τ1 − τ2 σ 2
u /σ 2

e MSE D1 MSE D2 MSE D3

2 0 4 0.098 0.121 0.170
2 0 1 0.093 0.102 0.130
2 1 4 0.107 0.136 0.164
2 1 1 0.104 0.128 0.148
2 2 4 0.144 0.149 0.201
2 2 1 0.150 0.158 0.224

4 0 4 0.034 0.057 0.091
4 0 1 0.032 0.044 0.069
4 1 4 0.037 0.061 0.100
4 1 1 0.034 0.045 0.075
4 2 4 0.038 0.063 0.101
4 2 1 0.042 0.053 0.075

8 0 4 0.025 0.045 0.090
8 0 1 0.026 0.039 0.064
8 1 4 0.024 0.042 0.084
8 1 1 0.026 0.038 0.065
8 2 4 0.026 0.044 0.083
8 2 1 0.024 0.035 0.056

For each setting, τ1 + τ2 = 0, and σ 2
u +σ 2

e = 0.05

Parameter values were chosen so that characteristics of the simulated read count
data would match well with real RNA-seq data. The expected value of the simulated
read count ranged from a low of 2.8 (when θ = 2 and τ2 = −1) to a high of
8,308 (when θ = 8 and τ1 = 1). To ensure a realistic mean-variance relationship
in simulated read counts, the variance parameters σ2

u and σ2
e were chosen to sum to

0.05 so that the value of φ in (5.3) would be between the median and mean values of
the gene-specific negative binomial dispersion parameter estimates in the case study
of Chap. 3. The values 4 and 1 were selected for the variance ratio σ2

u/σ2
e to examine

behavior of the log fold change estimator in a typical situation where biological
variation is higher than technical variation, and in a more extreme situation in which
measurement error variance matches biological variation.

The mean squared errors in Table 5.2 show that design D1 produced the best
estimates of log fold change while design D3 produced the worst estimates for all
simulation settings. Although the results are not reported in detail here, this same
ranking of designs (D1 better than D2 better than D3) was seen in a second analogous
study with eight observations (rather than four) per treatment group. These results
indicate that researchers interested in accurately estimating the extent of differential
expression due to treatment (log fold change) should use experimental designs that
maximize biological replication. Simply put, adding an additional experimental unit
is preferable to measuring an existing experimental unit twice. This conclusion is in
complete accordance with the conclusion derived analytically in Sect. 5.2.1 for the
simple linear model.
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5.3 Sequencing Depth

Sequencing depth (defined formally in Chap. 2) is proportional to the number of
reads obtained per library. The number of reads obtained per library is often referred
to as the library size. If we imagine the sequencing process as a simple random
sampling of the DNA fragments in a library, the number of reads Y matching
any particular feature has a hypergeometric distribution well approximated by a
binomial distribution with number of trials equal to the library size N and success
probability p equal to the proportion of all fragments in the library that match
the given feature. Because N is large and p is small, this binomial distribution
is approximately Poisson with mean λ = N p. Although this characterization of
the sequencing process is an oversimplification, the Y ∼ Poisson(λ ) assumption is
consistent with empirical data obtained by repeatedly sequencing a single library in
multiple flowcell lanes [14]. The lognormal mixture of Poisson distributions detailed
in model (5.2) of Sect. 5.2.2 arises because the biological and technical variation
introduced in the steps leading up through library preparation cause p (and thus λ )
to vary from library to library.

The coefficient of variation of the Poisson(λ = N p) distribution is (N p)−1/2.
Thus, the greater the library size N, the lower the coefficient of variation. Because
a low coefficient of variation is desirable for accurate estimation of λ , high library
size N is preferred. However, sequencing cost constraints limit the total number of
reads obtained across all libraries in an experiment. Thus, there is a tradeoff between
high sequencing depth on the one hand and the total number of libraries sequenced
on the other. In this section, we investigate this tradeoff for designs with a one-to-
one correspondence between libraries and experimental units, which are the designs
recommended by the arguments of Sect. 5.2.

5.3.1 Examination of the Tradeoff Between Depth
and Replication

Suppose an experiment is conducted to compare the effect of two treatments
(denoted as T1 and T2) on transcript abundance. Furthermore, suppose the budget
allows one entire flowcell to be used for sequencing libraries associated with the
experimental units. A simple design assigns the two treatments to a total of eight
experimental units using a balanced and completely randomized strategy. Then the
eight libraries associated with the eight experimental units can be randomly assigned
to the eight lanes of the flowcell for sequencing. Such a design is depicted as design
D4 in Fig. 5.3.

Design D5 in Fig. 5.3 shows how multiplexing can be used to sequence twice as
many experimental units but at half the depth relative to design D4. Note how four
of the eight lanes use barcode B1 for sequencing the treatment T1 experimental units
and barcode B2 for sequencing the treatment T2 experimental units. The other four



5 Design of RNA Sequencing Experiments 103

Design D4
L1

T1 T2 T1 T2 T1 T2 T1 T2

L2 L3 L4 L5 L6 L7 L8

L1

T1 T2

T2 T1 T2 T1 T2 T1 T2 T1

T2 T1 T2 T1 T2 T1 T2 T1

T2 T1 T2 T1 T2 T1 T2 T1

T1 T2 T1 T2 T1 T2

L2 L3 L4 L5 L6 L7 L8

L1

T1 T2 T1 T2 T1 T2 T1 T2

T1 T2 T1 T2 T1 T2 T1 T2

L2 L3 L4 L5 L6 L7 L8

Design D5

B1

B2

Design D6

B1

B2

B3

B4

Fig. 5.3 Three design
choices for comparing two
treatments. For k = 4,5,6,
design Dk uses one flowcell
to sequence 2k−1

experimental units at depth
proportional to N/2k−4 reads
per experimental unit. For
i = 1,2, each appearance of
the term Ti represents a
distinct experimental unit
treated with treatment i.
Treatments are arranged
systematically in the designs
of Fig. 5.3 to make patterns
clear, but in practice, designs
that randomly exchange
entire rows and randomly
exchange entire columns
within any depicted design
are recommended

lanes use the reverse assignment of barcodes to treatments to avoid any confounding
between the effects of barcodes and treatments. Design D6 in Fig. 5.3 is a design
analogous to D5 but with double the number of experimental units and half the
sequencing depth.

To evaluate the merit of these designs for estimating treatment effects, we
conducted a simulation study similar to the study in Sect. 5.2.2. For a given feature,
let Yi j be the read count for the jth experimental unit treated with treatment Ti.
Let l(i, j) be the lane number in which the jth experimental unit treated with
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treatment Ti was sequenced. For design D5 or D6, let b(i, j) be the number of the
barcode assigned to the jth experimental unit treated with treatment Ti. Then l(i, j)∈
{1, . . . ,8} for all three designs, b(i, j)∈ {1,2} for design D5, and b(i, j)∈ {1,2,3,4}
for design D6. For design D4, we assume

Yi j|λi j ∼ Poisson(λi j) and log(λi j) = θ + τi + �l(i, j) + ei j, (5.4)

where terms in the model are defined as follows:

• The unknown real-valued parameters θ , τ1, and τ2 determine baseline expression
level for each treatment group. In all our simulations, we set τ1 + τ2 to zero so
that θ controls the overall expression level. As in Sect. 5.2.2, τ1 − τ2 represents
the log fold change due to the effects of treatments.

• We assume �l(i, j) ∼ N(0,σ2
� ), where σ2

� is an unknown, non-negative variance
component. Together, the terms �1, . . . , �8 account for technical variation asso-
ciated with the last steps of preparing eight libraries and sequencing the eight
libraries in eight distinct lanes.

• We assume ei j ∼ N(0,σ2
e ), where σ2

e is an unknown, non-negative variance
component. The ei j error terms account for biological variation in RNA levels
between experimental units and all technical variation associated with steps in
the measurement process that occur prior to the steps accounted for by the �l(i, j)
terms. None of the variance components for technical or biological sources of
variation can be separately estimated with design D4, but we list the terms �l(i, j)
and ei j separately and explicitly in (5.4) because of the important role these terms
play in the models for data from designs D5 and D6 that are discussed below.

• To complete the model specification, we assume all random terms are mutually
independent.

For design D5, we assume

Yi j|λi j ∼ Poisson(λi j/2) and log(λi j) = θ + τi +βb(i, j) + �l(i, j) + ei j, (5.5)

where the terms β1 and β2 are the effects of barcodes B1 and B2, respectively, and
all other terms are as defined for model (5.4). For design D6, we assume

Yi j|λi j ∼ Poisson(λi j/4) and log(λi j) = θ + τi +βb(i, j) + �l(i, j) + ei j, (5.6)

where the terms β1, β2, β3, and β4 are the effects of barcodes B1, B2, B3, and
B4, respectively, and all other terms are as defined for model (5.4). Note that the
Poisson means in models (5.5) and (5.6) are divided by factors two and four,
respectively, to reflect the loss of sequencing depth associated with sequencing
two times and four times as many experimental units as in design D4 with the
same total sequencing resources (eight lanes of a single flowcell). The motivation
for introducing barcode effect terms in models (5.5) and (5.6) originates from
empirical data presented by [1, 7, 22]. Depending on the experimental protocols
and the barcoding technology used, the effects of barcodes may be substantial or
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Table 5.3 Empirical
estimates of mean squared
error (MSE) for the maximum
likelihood estimator of log
fold change (τ1 − τ2) for
designs D4, D5, and D6

θ τ1 − τ2 MSE D4 MSE D5 MSE D6

2 0 0.099 0.086 0.076
2 1 0.105 0.097 0.092
2 2 0.143 0.128 0.121
4 0 0.032 0.021 0.013
4 1 0.037 0.022 0.017
4 2 0.037 0.024 0.017
8 0 0.025 0.010 0.004
8 1 0.024 0.009 0.005
8 2 0.025 0.010 0.005

For each setting, τ1 + τ2 = 0, σ 2
� = 0.01, and

σ 2
e = 0.05

nearly negligible. In the simulation study of this section, we drew the barcode effects
independently for each simulation run from a normal distribution with mean 0 and
variance 0.05.

Using models (5.4)–(5.6), 1,000 datasets were simulated for each design and
each of the parameter settings indicated in Table 5.3. As in Sect. 5.2.2, the function
glmer from the R packagelme4was used to obtain the MLE of the log fold change
τ1 − τ2 for each dataset. The mean squared error of the MLE is provided for each
combination of simulation scenario and design in Table 5.3. Figure 5.4 illustrates
the distribution of log fold change estimates obtained for each design when the true
log fold change τ1 − τ2 = 1. Although not shown here, figures for the τ1 − τ2 = 0
and τ1 − τ2 = 2 cases appear similar to Fig. 5.4.

The results in Table 5.3 and Fig. 5.4 show that design D6 provides the best
estimates of differential expression as quantified by log fold change. The mean
squared error was highest for design D4 and lowest for design D6 for every
simulation setting. These results favor designs that maximize biological replication
at the sacrifice of reduced sequencing depth per experimental unit. This conclusion
is consistent with the conclusions of [21], who used a different simulation strategy
to show that increasing biological replication while decreasing sequencing depth led
to increased power for detecting differentially expressed features. Our conclusions
are also in agreement with the conclusions of [13], who used RNA-seq data and
empirical analysis to determine that increased biological replication should be
favored over increased depth.

Our results also show that log fold changes are more precisely estimated for
features with relatively high expression levels (e.g., see the results for θ = 2 vs.
θ = 8). This conclusion is consistent with the sample size calculations of [12] based
on an exact test for differential expression [18, 19]. These sample size calculations
show that power for detecting differential expression decreases as expression levels
decrease. For features with very low expression levels, designs with both high
sequencing depth and high biological replication may be needed to obtain precise
fold change estimates and high power for detecting differential expression.
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Fig. 5.4 Boxplots of 1,000 maximum likelihood estimates of log fold change (τ1 − τ2 = 1)
produced with simulated data from designs D4, D5, and D6 (depicted in Fig. 5.3) for features with
low (θ = 2), medium (θ = 4), and high (θ = 8) expression levels

5.3.2 A Comparison with Another Design for Maintaining
Depth

As an alternative to a design like D4 in Fig. 5.3, Auer and Doerge [4] proposed
the use of multiplexing to sequence each of the eight samples together in each of
the eight lanes.3 Their strategy requires the creation of only one multiplex sample
that is sequenced eight times. They proposed summing the eight read counts per
feature obtained for each experimental unit so that the resulting dataset would have
the same basic structure as a dataset generated using design D4, i.e., one count
per feature for each of the eight experimental units. Auer and Doerge pointed out
that their approach provides the same sequencing depth as design D4 but has the

3The example design considered by Auer and Doerge actually involved three (rather than four)
experimental units for each treatment group and six (rather than eight) flowcell lanes, but we have
used a natural extension of their design to match our slightly larger experimental setup.
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advantage that all the presequencing preparation steps that occur after barcoding and
sample combination may impact all experimental units simultaneously and equally.

Although lane effects and effects associated with post-pooling steps are balanced
across treatments in Auer and Doerge’s design, barcode effects are not balanced
across treatments in much the same way that library preparation and lane effects
are not balanced across treatments in design D4. For this reason, we recommend
designs like D5 or D6 that balance all known nuisance effects across treatment
groups. However, it is important to acknowledge that designs like D5 and D6 are
more labor intensive and expensive than design D4 or the design proposed in [4]
because additional experimental units and extra library preparation steps are not
free. To save some sequencing expense while still maintaining balance of nuisance
effects across experimental units, a subset consisting of the first two, four, or six
lanes in design D5 or D6 may be used.

5.4 Other Example Designs

Section 5.3 presented example designs for the final phase of two-treatment RNA-seq
experiments that use a balanced and completely randomized design in the initial
phase. In the current section, we describe three other hypothetical but realistic
RNA-seq experimental design scenarios of varying complexity.

5.4.1 An Experiment with Four Treatments

Consider an experiment to study the effects of four treatments on transcription
in liver tissue of pigs. In the first phase of the experiment, 16 pigs from a
population of interest are randomly assigned to the four treatments using a balanced
and completely randomized design. The pigs are housed in individual pens, and
the assigned treatments are imposed for a specified duration. These steps, which
correspond to steps 1–3 of Sect. 5.1, comprise the first phase of the experiment.

The second phase involves collecting liver tissue from each pig (step 4 of
Sect. 5.1). Because harvesting liver tissue from a pig is a non-trivial activity,
the work is broken up into multiple sessions in which four pigs are processed
per session. To avoid confounding potential session effects with the effects of
treatments, a randomized complete block design is used to assign pigs to sessions,
with one pig from each treatment in each session.

Within a given session, it is possible for the order in which pigs are processed
to affect measurements of feature expression. For example, factors like room
temperature or time since an animal’s most recent meal could be associated with
expression. Thus, processing order is assigned to pigs in sessions according to the
Latin square design shown in the left panel of Fig. 5.5. The tissue samples collected
in phase two are stored in ultra-low-temperature freezers until the remaining steps
of the experiment can be completed.
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Tissue/RNA Collection Design Sequencing Design
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Fig. 5.5 Designs for tissue collection, RNA extraction, and sequencing in a four-treatment

experiment. For i = 1,2,3,4 and j = 1,2,3,4, the term T ( j)
i represents the jth experimental unit

treated with treatment i. The rows of the left panel define the order in which samples are processed
during the tissue-collection and RNA-extraction sessions. The columns in the left panel correspond
to the four sessions. The rows and columns in the right panel correspond to barcodes and flowcell
lanes, respectively. Due to the intentional confounding of session effects and lane effects, and the
intentional confounding of order effects with barcode effects, each experimental unit appears in
the same relative position within both figure panels

The third experimental phase begins with thawing samples and extracting RNA.
Just as in the second phase, the work of the third phase is split into manageable ses-
sions. Because neither the session effects for tissue collection nor the session effects
for RNA extraction are of scientific interest, they are intentionally confounded with
each other so that the kth tissue collection session involves the same pigs as the kth
RNA extraction session (k = 1,2,3,4). Furthermore, the order that RNA is extracted
from samples within phase-three sessions is chosen to match the tissue collection
order used in phase two.

In the final phase of the experiment, the 16 RNA samples from 16 experimental
units are converted to libraries and sequenced on four lanes of a flowcell. The session
factor is intentionally confounded with flowcell lane so that the libraries from any
one session are sequenced together in a single lane using multiplexing. Furthermore,
the order factor is intentionally confounded with barcode so that samples processed
in the bth position are always tagged with barcode Bb (b = 1,2,3,4) as indicated
in the right panel of Fig. 5.5. This confounding allows the effects of the nuisance
factors tissue-collection session, RNA-extraction session, and flowcell lane to be
accounted for with a single factor in the model ultimately used for data analysis.
Likewise, the effects of tissue-collection order, RNA-extraction order, and barcode
can be accounted for with a single factor.
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Fig. 5.6 Designs for tissue collection, RNA extraction, and sequencing in a split-plot experiment.

The term T (k)
i j represents the experimental unit that received diet i and drug j in pen k. The

rows of the table define processing order, which is intentionally confounded with barcode. The
columns of the table define sessions, which are intentionally confounded with flowcell lanes. Note
that a pair of pigs from a given pen (i.e., a whole-plot experimental unit) is always processed
consecutively in either the first two or last two order positions of a session

5.4.2 A Split-Plot Experiment

Consider an experiment to study the effects of two diets and two drugs on
transcription in liver tissue of pigs. Suppose 16 pigs, housed in eight pens with
two pigs per pen, are available for use in the experiment. Because each pen contains
a single feeder from which both pigs in a given pen eat, the two diets are randomly
assigned to pens rather than individual pigs; i.e., the two pigs in any given pen are
necessarily treated with the same diet. Because the drug is delivered by injection,
the two drugs are randomly assigned to individual pigs within each pen. Thus, the
first phase of the experiment is conducted according to a split-plot design with diet
as the whole-plot factor and drug as the split-plot factor.

The four combinations of diet and drug define four treatments. Hence, the same
basic strategy used to determine tissue collection, RNA extraction, and sequencing
plans in Sect. 5.4.1 can be used here. However, slightly more care should be taken
due to the phase-one split-plot design. Whole-plot experimental units (pairs of
pigs from the same pen) should be kept together during subsequent phases of the
experiment. Thus, each session should involve a pair of pens that received different
diets. Furthermore, pigs from the same pen should be processed consecutively so
that the ordering of the four treatments within the four sessions follows a restricted
Latin square design. One example design that satisfies these principles is depicted
in Fig. 5.6. Note that the processing and sequencing structure shown in the figure
mimics the structure of the phase-one split-plot design.
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5.4.3 A Balanced Incomplete Block Design

Consider an experiment to study the effects of four treatments on feature expression.
Suppose available resources allow for sequencing of 12 experimental units in two
flowcell lanes. One option would be to conduct the first phase of the experiment as a
randomized complete block design with three blocks, where each block consists of
one experimental unit for each of the four treatments. However, with access to only
two flowcell lanes, a randomized complete block design in the first phase would
not lead to attractive options for the final phase of the experiment. For example,
two blocks could be sequenced in the first lane and the third block sequenced in the
second lane, but this strategy would lead to a twofold difference in depth between
experimental units sequenced in the first and second lanes. While normalization
methods (see Chap. 9) could help adjust for this imbalance, it is much better to work
with data from experimental units sequenced at a consistent depth. If processing
order and barcode effects are ignorable, the strategy of [4] could be used to sequence
all 12 RNA-samples together in both lanes. Because both of these approaches (and
others not mentioned here) have potentially serious drawbacks, we seek a better
option.

Rather than trying to make a first-phase randomized complete block design with
three blocks fit with final-phase sequencing in two flowcell lanes, we recommend a
balanced incomplete block design for the first phase that will allow for better control
of the effects of potential nuisance factors. Experimental units should be grouped
into six blocks of two experimental units each. The

(4
2

)
= 6 possible treatment

pairs are randomly assigned to the six blocks, with the two treatments for any one
block randomly assigned to the two experimental units in the block. Subsequent
processing steps are then carried out on a block-by-block basis. In final-phase
sequencing, all 12 samples can be sequenced together in lane one, and sequenced
a second time in lane two but with reversed barcode assignments as illustrated
in Fig. 5.7. By reversing the barcode assignments within each incomplete block,
confounding between barcode and treatment effects is avoided.

In contrast to the designs we have recommended previously, this balanced
incomplete block design involves measuring feature expression levels twice for each
experimental unit. We consider this strategy to be the best choice given the available
resources (12 experimental units and two flowcell lanes) for studying expression
differences across four treatments. An even better design would sequence a new
set of 12 experimental units in the second flowcell lane rather than sequencing the
same 12 experimental units a second time, but additional experimental units are not
always affordable or available.



5 Design of RNA Sequencing Experiments 111

L1 L2

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

T1
(1)

T1
(1)

T2
(1)

T2
(1)

T3
(2)

T3
(4)

T3
(4)

T3
(6)

T3
(6)

T4
(3)

T4
(3)

T4
(5)

T4
(6)

T4
(6)

T4
(5)

T1
(2)

T1
(3)

T1
(3)

T1
(2)

T2
(4)

T2
(5)

T2
(5)

T2
(4)

T3
(2)

Fig. 5.7 Final-phase
sequencing design for the
balanced incomplete block

design. The term T (k)
i

represents the experimental
unit that received treatment i
in block k. The rows and
columns of the table indicate
barcode and lane
assignments, respectively.
Note that each of the 12
experimental units is
sequenced once in lane L1
and once in lane L2, but with
different barcodes

5.5 Conclusions

Modern high-throughput DNA sequencing technologies provide powerful tools
for simultaneously measuring the transcript abundance of thousands of genomic
features. The RNA-seq measurement process is complex and results in the need
for carefully coordinating multiphase experiments. The nuisance factors inevitably
introduced in various experimental phases should be intentionally confounded with
one another to simplify data analysis and to keep the focus of the analysis on
factors of primary scientific interest. When the goal of an RNA-seq experiment is to
detect differentially expressed features, maximizing the number of biological repli-
cations should take precedence over replicating technical steps in the measurement
process or obtaining high sequencing depth for each experimental unit. RNA-seq
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experiments designed with these principles in mind will produce datasets rich in
information about differential expression and well structured for analysis with the
techniques described in Chaps. 2–4.
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Chapter 6
Measurement, Summary, and Methodological
Variation in RNA-sequencing
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Abstract There has been a major shift from microarrays to RNA-sequencing
(RNA-seq) for measuring gene expression as the price per measurement between
these technologies has become comparable. The advantages of RNA-seq are
increased measurement flexibility to detect alternative transcription, allele specific
transcription, or transcription outside of known coding regions. The price of this
increased flexibility is: (a) an increase in raw data size and (b) more decisions that
must be made by the data analyst. Here we provide a selective review and extension
of our previous work in attempting to measure variability in results due to different
choices about how to summarize and analyze RNA-sequencing data. We discuss a
standard model for gene expression measurements that breaks variability down into
variation due to technology, biology, and measurement error. Finally, wee show the
importance of gene model selection, normalization, and choice for statistical model
on the ultimate results of an RNA-sequencing experiment.
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6.1 Introduction

RNA-sequencing (RNA-seq) has replaced microarray technology as the preferred
assay for measuring gene expression [20]. The reasons include a dramatic drop
in the price of measuring gene expression with RNA-seq [10, 33] and increased
measurement flexibility. Specifically, RNA-seq experiments are more flexible than
their microarray counterparts because they produce “reads” from the transcripts in
the cells being sequenced rather than measuring only a pre-specified set of gene
sequences [41]. A typical modern experiment in humans produces between 40
million and 100 million sequencing reads of length 50–100 base pairs (bp) from
the transcripts in each sample. The reads are often paired-end, meaning that each
transcript fragment is sequenced from both ends, producing a pair of reads from each
fragment. These reads can then be aligned to the genome and assembled together to
create estimates of the unobserved transcripts in the sample [24, 45]; see Chap. 1 of
this book.

The added flexibility of RNA-seq data comes at a cost: unlike microarray data,
the raw data from RNA-seq experiments are huge, measuring in gigabytes or, for
larger projects, terabytes. The size of the raw data makes even simple questions
computationally difficult to answer. Most of the early work in methods development
for RNA-seq focused on the computational challenges associated with aligning
millions of reads to large genomes [18,44] and assembling transcripts for individual
samples [9]. The maturity of these computational methods and the increased use
of parallel processing and cloud computing have helped to address some of these
computational challenges [19, 42].

More recently, attention has turned to understanding sources of variation in RNA-
sequencing data through statistical modeling [34]. In this chapter we discuss the
sources of variation in RNA-sequencing measurements. We categorize this variation
into three main types: across group variation, natural biological variation, and
measurement error. We explain why some of the early over-optimism surrounding
RNA-seq was due to underestimation of the effect of biological variation in
RNA-seq. The analysis of microarray data provides an instructive historical lesson
in this context—similar over-optimism about the measurement technology led to
reproducibility and replicability problems early on in the application of this new
technology due to underestimates of multiple sources of variability.

We also discuss sources of variation in the results of RNA-seq experiments. The
extra flexibility afforded by RNA-seq gives researchers several options for how data
should be analyzed, which in turn introduces variation in the processes used to
move from raw RNA-seq reads to estimates of feature abundances and differential
expression results. We discuss summarization variability, which is due partly to
choices of which level of expression should be summarized (e.g., gene, transcript,
or exon) and partly to choices about the model to use to obtain the selected summary
measurement. We also discuss variability in results due to differences in how
expression measurements are normalized and differences in the statistical models
used to analyze the final, summarized, normalized expression data. Finally, we
conclude with some thoughts about open questions related to modeling variability
in RNA-seq data, summaries, and normalization.
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6.2 Variability in RNA-Sequencing Data

Improvements in sequencing technology have not reduced the cost or effort
associated with sample collection and sample preparation. Most investigator-
initiated sequencing projects are still constrained to small or moderate sample
sizes because of cost or logistics. Many RNA-seq experiments analyze fewer than
three samples [12]. It has been noted that there is a relationship between depth of
coverage (the amount of data) and power to detect regions of interest in sequencing
experiments [3]. Despite this relationship, studies with limited sample sizes remain
underpowered and prone to false positives [14, 30]. Small sample sizes also make
it difficult for individual researchers to determine whether discoveries are due
to artifacts or bugs in any one of the computational pipelines they have applied
[16, 28, 29, 37].

Here we review and extend the approach undertaken in [12]. We proposed
a general form for the variability in gene expression data measured with any
technology:

Var(Expr) = Across Group Variation+Measurement Error+Biological Variation.

Across group variability is the type of variability under investigation in most
experiments. This type of variability may represent changes in gene expression over
time, over developmental phases, or between biological groups.

Measurement error is variation due to the technology, unrelated to the biology
of interest. Factors contributing to this variability could arise at various stages:
during sample collection, during sample preparation, or within the sequencer
itself. For example, the amount (“depth”) of sequencing data produced can vary
between samples. When one sample is sequenced to a greater depth than another, a
normalization procedure can be applied to avoid spuriously concluding that genes
are more highly expressed in the sample with greater depth. Normalization methods
are discussed further later.

Other measurement errors are more subtle, requiring other statistical methods.
For instance, sequencers are “biased” in favor of reporting reads from portions of
the genome that have a certain favorable fraction of C (cytosine) and G (guanine)
nucleotides [5, 36]. This fraction is called GC content. Sequencers tend to under-
report reads from portions of the genome with extreme GC content (very high
or low), and over-report reads from portions with intermediate GC content. The
magnitude of this imbalance can vary from sample to sample, and therefore can
confound results. GC-content bias and other sequence- and position-specific biases
have been studied by several groups, and solutions have been proposed that involve
re-weighting reads [11], integrating bias correction with isoform quantitation [39],
and using conditional quantile normalization [13], among other methods [27, 38].
Other measurement errors that have been observed in sequencing data include batch
effects [23] and lab effects [1].
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Biological variation is natural variation in gene expression between individuals.
Gene expression has been shown to be a stochastic process [6] which can only be
incompletely modeled by phenotypic or technical characteristics of the samples
being considered. We previously demonstrated that variability between unrelated
individuals from the same population exists regardless of whether microarrays or
RNA-sequencing are applied to measure gene expression [12]. Briefly, we collected
RNA-seq and microarray data on n = 60 and n = 69 distinct individuals from
two biological populations. We then summarized both the microarray and RNA-
sequencing data at the level of genes. Figure 6.1 plots the standard deviation of
the expression measurements comparing microarrays for two distinct populations
(Fig. 6.1a, b). It also highlights two specific genes which show consistent levels of
variability in expression regardless of measurement technology (Fig. 6.1c).

An important and often-overlooked component of biological variability involves
biological factors as potential confounders [21]. Batch and other technological
artifacts are well-known confounders, now commonly included in models for gene
expression data [23]. But common sources of biological variation due to environ-
mental, genetic, or demographic variables may also confound estimates of across
group variation. Some of these variables might be measured in the course of a study,
but some might not. Statistical methods have been developed to identify, estimate,
and remove these sources of signal directly from the expression measurements using
latent factor estimation techniques [8, 22, 43]. An alternative approach is to reduce
the impact of confounding factors by binarizing expression measurements into two
categories—expressed or not expressed. This type of binarization is called gene
expression barcoding and was originally proposed for expression measurements
from microarrays [32] but has recently been extended to the analysis of RNA-seq
experiments [35].

Our estimates of biological variation (Fig. 6.1) also suggest two key properties
about variation in gene expression data that have a bearing on experimental design.
The first is that biological variation is not eliminated by the choice of technology.
It has been suggested that RNA-seq data summarized at the level of counts may
be modeled using a Poisson or over-dispersed Poisson model [4]. If the model
is reasonable, this implies that it may be possible to estimate both the mean and
variance of gene expression measurements. Our results suggest that it will be
difficult to appropriately capture the potentially large inter-individual biological
variability using only a small number of biological replicates. Therefore, studies
using a small number of samples may be underpowered and more likely to produce
spurious results. The second property is that with a small number of replicates, it
is difficult to distinguish whether specific expression patterns are characteristic to
the individuals in the study or can be generalized to larger populations. These ideas
are well known in the statistical community, but were overlooked in early RNA-seq
experiments. To appropriately and reproducibly characterize patterns of variation in
expression between groups or over time, experiments must be designed to do the
following:
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Fig. 6.1 Biological variability measured with sequencing and microarrays. (a) A plot of the stan-
dard deviation (s.d.) of expression values as measured with microarrays (x axis) and sequencing
(y axis) in a Caucasian population. The estimates of expression variability from sequencing are
similar to the estimates from microarrays. (b) A plot of the s.d. of expression values as measured
with microarrays (x axis) and sequencing (y axis) in an African population. The estimates of
expression variability from sequencing are again almost the same as estimates from microarrays.
In each plot, the black line is the best linear fit and the red line is the line y = x. (c) A plot of
the expression for two genes COX4NB (left column, pink) and RASGRP1 (right column, blue)
as measured with sequencing (top row) and microarrays (bottom row) versus biological sample.
Mean-centered measurements from the two studies are plotted as circles and triangles, respectively.
The s.d. for the two genes are highlighted in a, b. The plot shows that regardless of the measurement
technology or study, COX4NB expression is much less variable than RASGRP1 expression. This
figure and caption reproduced from Hansen et al. [12]

1. Analyze enough biological replicates to accurately capture and model biological
variation.

2. Block or randomize to reduce the role of potential confounding factors such as
batch effects.
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6.3 Variability in Summarization Methods
for RNA-Sequencing Data

The model we proposed for variation in gene expression measurements derived from
RNA-seq experiments assumes that a choice of summary has already been put into
place. Microarrays again provide an instructive example: generally, each gene on
a microarray is measured by more than one probe. The probes represent distinct
sequences whose abundances were measured with hybridization-based technology.
Translating raw microarray data—measurements of light intensity from multiple
probes falling within the same gene—into an overall gene expression measurement
is not straightforward. Robust estimates of gene expression levels derived from
probe intensities were eventually developed [31].

There is a similar issue in summarizing RNA-seq data: how should researchers
translate raw RNA-seq data (reads) into measurements of expression for specific
genes? An idealized version of the data generating and counting process shows
some of the potential sources of variation created when choosing how to measure
expression for each gene (Fig. 6.2). Each gene represents a sequence consisting of
exons (colored blocks in Fig. 6.2a) and introns (grey lines in Fig. 6.2b). The exons
are spliced together into potentially multiple transcripts for each gene. The RNA-seq
reads are then sequences from these mature transcripts, with the introns ostensibly
removed. The technology produces millions or billions of these reads.

Given reads, our first job is to determine where each read originated with
respect to the set of all gene sequences, also called the “transcriptome.” This
is accomplished using a read aligner: a software tool that attempts to determine
each read’s point of origin with respect to one or more reference sequences.
For RNA sequencing data analysis, the reference sequences might consist of
all the previously-observed (“annotated”) transcripts for the species under study.
Alternately, the reference sequences might simply consist of the chromosomes of
the genome. The latter approach has the advantage that it does not pre-suppose
a particular, possibly incomplete, set of possible transcripts. However, the latter
approach also requires that the read aligner handle RNA sequencing reads that
overlap introns. When a read spans an intron, its alignment to the genome will
contain large (intron-sized) gaps (Fig. 6.2b). Such read aligners are called spliced
read aligners and popular spliced read aligners include TopHat [45], GSNAP [47]
and MapSplice [46]. Standard non-spliced read aligners include Bowtie [17,18] and
BWA [25, 26].

Whether a spliced or non-spliced read aligner is used, the aligner itself is an
important source of measurement error and variability. Different aligners have
different policies about which alignments are “good enough” to be reported to the
user, as well as about which alignments are filtered out for the sake of speed. Also,
the problem of read alignment (both spliced and unspliced) is inherently ambiguous.
Because of repeated sequences in the genome, the read aligner cannot necessarily
determine a read’s point of origin with high confidence. The analyst therefore might
instruct the read aligner to discard or otherwise down-weight evidence from reads
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Fig. 6.2 Idealized summary of RNA-seq data generation and gene-level summarization. (a) The
genome sequence may produce multiple transcripts—corresponding to different combinations
of exons within genes. The reads represent sequences from the transcripts, which may not be
contiguous sequences in the genome. (b) The first step in summarizing RNA-sequencing data is to
identify the places in the genome or transcriptome where the reads came from—called alignment.
This image shows splicing-aware alignment which is able to identify reads that do not cover
contiguous sequence in the genome. Counts for each gene are obtained by adding the number
of alignments that intersect a particular gene model. (c) In the union model, all reads touching
any exon in the gene count toward the measurement for that gene. (d) In the union-intersection
model only reads that touch exons which appear in all transcripts for that gene count toward
the measurement. (e) Assembly pipelines first combine the aligned reads to estimate assembled
transcripts. These assemblies may be unidentified or ambitious based on the read alignments.
In this example, both assemblies (shown below the aligned reads) are equally supported by the
observed reads. (f) Abundance estimates for each transcripts are obtained by assigning proportions
of the reads to each transcript (grey versus black) using, e.g., mixture models
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whose point of origin is ambiguous. The analyst has many choices when deciding
how to parameterize such tools, and these choices can themselves have a major
impact on the tool’s ability to find correct alignments.

Once we have obtained alignments, we can observe where the alignments fall
with respect to genes (or exons or transcripts), and summarize expression levels.
Until recently there have been two major classes of summarization methods after
alignment. The first class summarizes the reads based on previously annotated
features such as exons or genes (Fig. 6.2c, d) [4]. There are multiple ways that
variability may be introduced at this counting step. For example, a read may align to
the genome in a position that lies entirely within the boundaries of two versions of
an exon—say with alternative starting sites. In this case, a choice must be made as
to whether to assign the count for that read to one exon, to both, or to neither. This
variability is compounded when considering features consisting of multiple distinct
genomic regions. A large percentage of variability in RNA-seq measurements at
this stage is due to the choice of a gene model. The union model counts all of the
reads that touch any exon within a particular gene (Fig. 6.2c). The advantage of
this approach is that it does not throw away data and gives a global summary of
that gene’s expression. However, if the gene has multiple transcripts then the union
model may not be a stable estimate of that gene’s abundance. For example, consider
the case of transcript switching. Imagine two transcripts for the same gene that show
dramatically different expression when comparing biological groups of interest. It is
entirely possible that the sum of the counts for these two transcripts may be nearly
identical across samples, but the expression levels of specific exons are dramatically
different. The union-intersection model is an alternative that counts only the reads
that touch exons that appear in all transcripts for that gene. The union-intersection
model may be more stable in the presence of alternative transcription, but may also
unnecessarily throw away a large amount of data [4].

An alternative to summarizing features at the level of genes is to attempt to
assemble and quantify transcripts directly from the reads themselves (Fig. 6.2e, f)
[9]. In this model, the read alignments are aggregated within specific regions
of the genome and estimates of the transcripts are “assembled” based on those
read alignments. There are several potential sources of variability in the assembly
process, including ambiguous start and end points for individual exons and junctions
with a small number of supporting reads. In some cases it is not possible to unam-
biguously choose between different assemblies that are nearly equally supported by
the observed raw data (Fig. 6.2e). There has been relatively little work to quantify
the impact of assembly variation on downstream significance analyses, although
hierarchical models for assembly and abundance estimation have been proposed.

Once a set of transcripts is obtained—either through estimation from the reads
themselves or through previous knowledge—the abundance of each transcript must
be estimated (Fig. 6.2b). The most common approach to obtaining these estimates
is to form a count for each exon and potentially for each junction, then fit a mixture
model for the abundance of each transcript based on these raw quantities [15].
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In addition to the inherent variability that comes from estimating latent mixture
models, choices about how to map reads may again introduce variability into the
abundance estimates if they affect the counts for individual exons or junctions.

6.4 Variability in Statistical Methods
for RNA-Sequencing Data

After abundance estimates have been obtained for the features of interest, down-
stream normalization and statistical modeling can be performed to identify differ-
entially expressed features: exons, genes, or transcripts. There is a large and rapidly
growing literature dedicated to developing statistical models that appropriately
address the sources of variability in summarized RNA-seq data [34]. Early efforts
focused primarily on developing Poisson-based models, since expression estimates
obtained from RNA-seq at this time were usually counts of reads per feature [4].
These methods have been extended to account for over-dispersion in sequencing
count data and to borrow strength across features to better estimate variances
and differential expression effects [2, 40]. These extended methods have been
extensively used and tested, and they are approaching the maturity level of well-
known statistical methods for analyzing differential expression using microarray
data. This maturity illustrates that many of the ideas from microarray analysis have
been successfully carried over and adapted to the new technology. In the sequel we
present a selective review and extension of our recent work.

A comparative disadvantage of RNA-seq at this stage is that there do not
exist spike-in experiments that properly incorporate natural biological variability.
Comprehensive comparisons of statistical methods for differential expression have
thus largely focused on comparing how they perform when the only source of
variability in the experiment is measurement error. To explore statistical properties
in a more realistic setting, we analyzed a large public dataset with software we
had developed, called Myrna, to perform differential expression analysis at scale on
commercial cloud-computing resources such as Amazon EC2 [19]. We conducted
an experiment comparing multiple metrologies for differential expression on this
large dataset, which included 69 distinct individuals and thus had real biological
variation in the gene expression measurements.

We compared three categories of statistical tests for detecting differential expres-
sion: (1) a test assuming a naive Poisson model, (2) a test using log-transformed
counts and a standard linear (Gaussian) model, and (3) a permutation test after
modeling the log-transformed counts using a linear (Gaussian) model. We also
compared multiple normalization strategies: (1) modeling variation in sequencing
depth using the 75th percentile of the count or log-count distribution as an offset
and (2) allowing for a gene-specific relationship between the 75th percentile and
the counts. The first normalization strategy corresponds to the usual approach of
normalizing read counts by dividing by library size.
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We applied these methods to a set of data from a genetically homogeneous
population where the group labels for differential expression testing were assigned
at random. Because groups were randomly assigned, testing for differential expres-
sion between the groups should not yield any differential expression signal. This
means the experiment does not give insight into the power of each method for
detecting differential expression, but it does speak to the control of type I error
rates and model fit. The results suggested that the Poisson model fails to capture
biological variability and, in this case, leads to spurious differential expression
signal (Fig. 6.3a, b). Our results also suggested that including the library size as
an offset term—equivalent to dividing by library size—may introduce differential
expression in genes with low counts when library size is correlated with the groups
of interest [19] (Fig. 6.3a, c, e). Under gene-specific library size normalization, both
the standard linear model and the permutation procedure produce the expected null
distribution of P-values (Fig. 6.3e, f).

Our results suggest that even after summarization, the choice of statistical method
can have a strong impact on the results of differential expression analysis of RNA-
seq data. In particular, methods that do not flexibly estimate the relationship between
mean and variance in RNA-seq measurements may underestimate biological vari-
ability and lead to spurious results. This is particularly true for lowly expressed
features supported by only a small number of reads that can be heavily influenced
by normalization factors. In our work, we have shown that gene and feature specific
normalization performs best when analyzing RNA-seq data. This observation is
not unique to our analysis; it has also been pointed out that sample-specific GC
content normalization may be most appropriate for RNA-seq count data [13]. The
most mature statistical methods [2, 40] for count-based RNA-seq data take these
principles into account.

6.5 Where Do We Go from Here?

Early tools for RNA-seq analysis focused on the computational and engineering
challenges associated with the size of the raw data [42]. Statisticians primarily
focused on highly summarized RNA-seq data at the level of counts for exons, genes,
or transcripts. As the computational and engineering challenges have been resolved,
statistical modeling has been brought closer to the raw data. This trend will likely
continue as statisticians aim to model the sources of variation in RNA-seq data due
to technology, biology, alignment, assembly, and summarization. Statistical models
will also continue to do a better job of capturing variability across samples and due
to confounding factors.

One example of how statisticians are dealing with less processed forms of RNA-
seq data is an approach we have recently proposed that is intermediate between
summarizing reads into feature counts and full-scale assembly [7]. The approach
involves first aligning the reads to the genome using a splicing-aware alignment
tool. For each base, we calculate the number of reads that overlap that base, leading
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Fig. 6.3 Histograms of P-values from six different analysis strategies applied to randomly labeled
samples. In each case the P-values should be uniformly distributed (blue dotted line) since the
labels are randomly assigned. (a) Poisson model, 75th percentile normalization. (b) Poisson model,
75th percentile included as term. (c) Gaussian model, 75th percentile normalization. (d) Gaussian
model, 75th percentile included as term. (e) Permutation model, 75th percentile normalization.
(f) Permutation model, 75th percentile included as term. Figure and caption reproduced from
Langmead et al. [19]

to an estimate of coverage. We then perform a statistical test at each base to identify
bases that show a differential expression signal of interest, appropriately modeling
all sources of variability. Contiguous bases showing similar differential expression
signals are then grouped into candidate differentially expression regions (DERs). We
then treat candidate DERs as the measurement unit of interest, estimate measures of
statistical significance for these DERs, and attempt to reconcile them with previous
annotation. This approach to identifying regions of differential expression from
RNA-seq data does not incur the variability due to choosing gene models or due to
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assembly. Analyzing data at the level of base-resolution coverage can reveal novel
transcribed regions and help identify mistakes in annotation.

Substantial development is still needed from the statistical community to tackle
the complexity of RNA-seq data. Normalization approaches are still immature and
do not fully incorporate information from genomic architecture, mappability, or
summarization choices. Statistical models for assessing, comparing, and modeling
assemblies are largely undeveloped. Comparisons between approaches are limited
by the relatively small number of spike-in experiments and the limited set of sim-
ulation tools that can produce raw reads from differential expression experiments.
Many of these areas are focuses of active development in the statistical community
and promise to dramatically improve our understanding of the statistical properties
of RNA-seq data.

6.6 Acknowledgement of Previous Publication

Section 6.2 of this chapter is based on paraphrasing and extending reference [12],
including reproduction of the figure and figure caption from that paper in Fig. 6.1.
Section 6.4 of this chapter is based on paraphrasing and extending reference [19],
including reproduction of a figure and figure caption from that paper in Fig. 6.3.
The reproduction of these figures is permitted under the publishing agreements for
Nature Biotechnology and Genome Biology.

References

[1] A C’t Hoen, P., Friedländer, M.R., Almlöf, J., Sammeth, M., Pulyakhina, I., Anvar, S.Y.,
Laros, J.F., Buermans, H.P., Karlberg, O., Brännvall, M., et al.: Reproducibility of high-
throughput mrna and small rna sequencing across laboratories. Nat. Biotechnol. 31,
1015–1022 (2013)

[2] Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome
Biol. 11, R106 (2010). doi:10.1186/gb-2010-11-10-r106. http://genomebiology.com/2010/
11/10/R106/

[3] Auer, P.L., Doerge, R.W.: Statistical design and analysis of RNA sequencing data. Genetics
185(2), 405–416 (2010)

[4] Bullard, J., Purdom, E., Hansen, K.D., Dudoit, S.: Evaluation of statistical methods for
normalization and differential expression in mrna-seq experiments. BMC Bioinform. 11,
94 (2010). R package version 1.10.0

[5] Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: Substantial biases in ultra-short read
data sets from high-throughput dna sequencing. Nucleic Acids Res. 36(16), e105–e105
(2008)

[6] Elowitz, M., Levine, A., Siggia, E., Swain, P.: Stochastic gene expression in a single cell.
Science 297(5584), 1183 (2002)

[7] Frazee, A., Sabunciyan, S., Hansen, K., Irizarry, R., Leek, J.: Differential expression analysis
362 of RNA-seq data at single-base resolution. Biostatistics doi: 10.1093/biostatistics/kxt053
(2014)

http://genomebiology.com/2010/11/10/R106/
http://genomebiology.com/2010/11/10/R106/
http://10.1093/biostatistics/kxt053


6 Measurement, Summary, and Methodological Variation in RNA-sequencing 127

[8] Friguet, C., Kloareg, M., Causer, D.: A factor model approach to multiple testing under
dependence. J. Am. Stat. Assoc., 104:488, 1406–1415 (2009)

[9] Garber, M., Grabherr, M., Guttman, M., Trapnell, C.: Computational methods for transcrip-
tome annotation and quantification using rna-seq. Nat. Meth. 8(6), 469–477 (2011)

[10] Glenn, T.C.: Field guide to next-generation dna sequencers. Mol. Ecol. Resour. 11(5), 759–
769 (2011)

[11] Hansen, K.D., Brenner, S.E., Dudoit, S.: Biases in illumina transcriptome sequencing caused
by random hexamer priming. Nucleic Acids Res. 38(12), e131 (2010)

[12] Hansen, K.D., Wu, Z., Irizarry, R.A., Leek, J.T.: Sequencing technology does not eliminate
biological variability. Nat. Biotechnol. 29(7), 572–573 (2011)

[13] Hansen, K.D., Irizarry, R.A., Wu, Z.: Removing technical variability in rna-seq data using
conditional quantile normalization. Biostatistics 13(2), 204–216 (2012)

[14] Ioannidis, J.P.: Why most published research findings are false. PLoS Med. 2(8), e124 (2005)
[15] Jiang, H., Wong, W.: Statistical inferences for isoform expression in rna-seq. Bioinformatics

25(8), 1026–1032 (2009)
[16] Kleinman, C.L., Majewski, J.: Comment on “widespread RNA and DNA sequence differ-

ences in the human transcriptome”. Science 335(6074), 1302; author reply 1302 (2012)
[17] Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with bowtie 2. Nat. Meth. 9(4),

357–359 (2012)
[18] Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient align-

ment of short DNA sequences to the human genome. Genome Biol. 10(3), R25 (2009)
[19] Langmead, B., Hansen, K.D., Leek, J.T.: Cloud-scale RNA-sequencing differential expres-

sion analysis with Myrna. Genome Biol. 11(8), R83 (2010)
[20] Ledford, H.: The death of microarrays? Nature 455(7215), 847 (2008)
[21] Leek, J., Storey, J.: Capturing heterogeneity in gene expression studies by ‘surrogate variable

analysis’. PLoS Genet. 3, e161 (2007)
[22] Leek, J., Storey, J.: A general framework for multiple testing dependence. PNAS 105,

18,718–18,723 (2008)
[23] Leek, J.T., Scharpf, R.B., Bravo, H.C., Simcha, D., Langmead, B., Johnson, W.E., Geman,

D., Baggerly, K., Irizarry, R.A.: Tackling the widespread and critical impact of batch effects
in high-throughput data. Nat. Rev. Genet. 11, 733–739 (2010)

[24] Li, B., Dewey, C.: Rsem: accurate transcript quantification from rna-seq data with or without
a reference genome. BMC Bioinform. 12(1), 323 (2011)

[25] Li, H., Durbin, R.: Fast and accurate short read alignment with burrows–wheeler transform.
Bioinformatics 25(14), 1754–1760 (2009)

[26] Li, H., Durbin, R.: Fast and accurate long-read alignment with burrows–wheeler transform.
Bioinformatics 26(5), 589–595 (2010)

[27] Li, J., Jiang, H., Wong, W.: Modeling non-uniformity in short-read rates in rna-seq data.
Genome Biol. 11(5), R25 (2010)

[28] Li, M., Wang, I.X., Li, Y., Bruzel, A., Richards, A.L., Toung, J.M., Cheung, V.G.: Widespread
rna and dna sequence differences in the human transcriptome. Science 333(6038), 53–58
(2011)

[29] Lin, W., Piskol, R., Tan, M.H., Li, J.B.: Comment on “widespread RNA and DNA sequence
differences in the human transcriptome”. Science 335(6074), 1302; author reply 1302 (2012)

[30] MacArthur, D.: Methods: face up to false positives. Nature 487(7408), 427–428 (2012)
[31] McCall, M.N., Bolstad, B.M., Irizarry, R.A.: Frozen robust multiarray analysis (frma).

Biostatistics 11(2), 242–253 (2010)
[32] McCall, M.N., Uppal, K., Jaffee, H.A., Zilliox, M.J., Irizarry, R.A.: The gene expression

barcode: leveraging public data repositories to begin cataloging the human and murine
transcriptomes. Nucleic Acids Res. 39(Suppl 1), D1011–D1015 (2011)

[33] NHGRI: DNA sequencing costs. http://www.genome.gov/sequencingcosts/
[34] Oshlack, A., Robinson, M.D., Young, M.D., et al.: From rna-seq reads to differential

expression results. Genome Biol. 11(12), 220 (2010)

http://www.genome.gov/sequencingcosts/


128 A.C. Frazee et al.

[35] Piccolo, S.R., Withers, M.R., Francis, O.E., Bild, A.H., Johnson, W.E.: Multiplatform single-
sample estimates of transcriptional activation. Proc. Natl. Acad. Sci. 110(44), 17,778–17,783
(2013)

[36] Pickrell, J., Marioni, J., Pai, A., Degner, J., Engelhardt, B., Nkadori, E., Veyrieras, J.,
Stephens, M., Gilad, Y., Pritchard, J.: Understanding mechanisms underlying human gene
expression variation with rna sequencing. Nature 464(7289), 768–772 (2010)

[37] Pickrell, J.K., Gilad, Y., Pritchard, J.K.: Comment on “widespread RNA and DNA sequence
differences in the human transcriptome”. Science 335(6074), 1302; author reply 1302 (2012)

[38] Risso, D., Schwartz, K., Sherlock, G., Dudoit, S.: Gc-content normalization for rna-seq data.
BMC Bioinform. 12(1), 480 (2011)

[39] Roberts, A., Trapnell, C., Donaghey, J., Rinn, J., Pachter, L., et al.: Improving rna-seq
expression estimates by correcting for fragment bias. Genome Biol. 12(3), R22 (2011)

[40] Robinson, M., McCarthy, D., Smyth, G.: edgeR: a bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010)

[41] Shendure, J., Ji, H.: Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145
(2008)

[42] Stein, L.D.: The case for cloud computing in genome informatics. Genome Biol. 11(5), 207
(2010)

[43] Teschendorff, A.E., Zhuang, J., Widschwendter, M.: Independent surrogate variable analysis
to deconvolve confounding factors in large-scale microarray profiling studies. Bioinformatics
27, 1496–1505 (2011)

[44] Trapnell, C., Pachter, L., Salzberg, S.L.: TopHat: discovering splice junctions with RNA-Seq.
Bioinformatics 25(9), 1105–1111 (2009)

[45] Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg,
S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol.
28(5), 511–515 (2010)

[46] Wang, K., Singh, D., Zeng, Z., Coleman, S.J., Huang, Y., Savich, G.L., He, X., Mieczkowski,
P., Grimm, S.A., Perou, C.M., et al.: Mapsplice: accurate mapping of rna-seq reads for splice
junction discovery. Nucleic Acids Res. 38(18), e178 (2010)

[47] Wu, T.D., Nacu, S.: Fast and snp-tolerant detection of complex variants and splicing in short
reads. Bioinformatics 26(7), 873–881 (2010)



Chapter 7
DE-FPCA: Testing Gene Differential Expression
and Exon Usage Through Functional Principal
Component Analysis

Hao Xiong, James Bentley Brown, Nathan Boley, Peter J. Bickel,
and Haiyan Huang

Abstract RNA-seq, next-generation sequencing (NGS) applied to RNA, is rapidly
becoming the platform of choice for gene expression profiling. Existing methods,
mostly parametric, describe the expression level of a gene or transcript by a single
number that summarizes all reads mapped to that gene or transcript. However, assay
noise often makes such parametric models unwieldy, non-intuitive, and difficult
to implement. To overcome these limitations, we have developed a nonparametric
approach, based on functional principal component analysis (FPCA), to differential
expression estimation. Our approach, named DE-FPCA, represents the expression
profile of a gene by a random curve, which is modeled as a linear combination of
orthogonal functional principal components (FPCs), and tests differential expression
between two groups of samples using a statistic defined by the FPC scores. We
applied our method to 26 RNA-seq samples collected in Drosophila melanogaster.
This application demonstrates that our new FPCA-based test statistic has substantial
power to detect differential usage of exons and isoforms, in addition to gene-level
differential expression, and is robust to random fluctuations in the RNA-seq data.
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7.1 Introduction

RNA-seq, the application of next-generation sequencing (NGS) technology to
transcriptomes, is rapidly the platform of choice for gene expression profiling
[43]. RNA-seq has the ability to measure isoform and allele-specific expressions
[2, 40], and identify SNP variants, small or large indels, alternative splicing,
alternative transcript start and end sites, post-transcriptional RNA editing, gene
fusions, gene inversions, and chromosome rearrangements [29]. RNA-seq gene
expression estimates have less background noise and a wider dynamic range than
the microarray estimates [11, 43]. However, the analysis of RNA-seq data can be
challenging due to bias and noise introduced during data generation [14, 39].

One of the main goals of RNA-seq data analysis is to discover genes that are
differentially expressed between two groups of samples [29]. The primary task in
such analysis is to model and distinguish between different types of expression
variability, which arise from three primary sources: (i) real biological differences
in different experimental groups or conditions, (ii) measurement errors and (iii)
random biological and/or technical variation [15]. The first type of variability is
of real biological interest; however, it is confounded with measurement errors and
random biological/technical variation. Properly accounting for the latter two types
of variability is the fundamental question in differential expression analysis of RNA-
seq data [18] and the topic of this paper.

The most widely used software tools for differential expression analysis include
Cuffdiff [42], edgeR [34], DESeq [1], PoissonSeq [22], baySeq [16], and limma
[37]. Each of these takes a parametric approach, assuming that read counts follow a
Poisson distribution [26], or a negative binomial distribution [1,24] or other variants
[4,21]. The Poisson-based approaches assume that the number of reads overlapping
a gene is independently sampled from a multinomial distribution which can be
approximated by a Poisson distribution [23,26,38,44]. However, the Poisson model
is too restrictive to model all sources of variability in RNA-seq data; in particular it
tends to underestimate the variance [1, 24]. Attempts to model the overdispersion
have been approached with two-parameter models, typically based on negative
binomial distributions or generalized Poisson distributions [1, 5, 33, 34]. In these
models, an additional parameter is introduced to model the over-dispersion, and it
appears that this can help reduce bias [21, 24].

All the above models assume that reads are sampled uniformly from a transcript.
However, empirically, the coverage of reads across transcripts varies greatly even
within an exon. Some of this variance has been characterized. It is well known
that base-composition bias (e.g., GC-content [45]) and position-specific bias (e.g.
5’ end, 3’ end depletion [46]) exist. Methods have been developed that model GC-
content bias [31], fragment size bias [32], and 5’/3’ end effects [41]. PennSeq
[19] improves upon Cufflinks2’s [42] approach for quantification by allowing
non-uniform sampling probabilities at each base. Li et al. (2010) and Hu et al.
(2012) incorporate base-specific variation into their models which tend improves
the accuracy of quantification. These models are useful but also computationally



7 DE-FPCA: Testing Gene Differential Expression and Exon Usage Through. . . 131

intensive and involve a large number of parameters. Furthermore, these methods
cannot fully describe observed read inhomogeneity, suggesting that uncharacterized
sources of bias still exist.

Genes can express multiple transcript isoforms. In mammals it has been esti-
mated that 95 % of genes express multiple isoforms [25]; in Drosophila half of all
genes express multiple transcript isoforms. The estimation of expression at isoform
level relies on the correct identification of all expressed isoforms within a gene, a
challenging problem which is not solvable in all gene loci [21].

In summary, attempting to identify differentially expressed loci using single-
value representations of gene expression introduces many (known or unknown)
sources of bias and variability, which can lead to decisions with high and often
unknown type-I or type-II errors.

DEXSeq [2] attempts to overcome these problems by identifying differential
expression at the exon level. The method uses generalized linear models to estimate
an overall expression level for each exon or bin (merged exons), and then infers
differential gene expression by assessing the changes of expression/usages at the
exon/bin level between genes. This is an improvement over early methods such as
DESeq [1] that models the expression level of a gene with a single number, but it still
does not permit read variation within exons. In addition, multiple testing issues are
exacerbated due to testing each exon in every gene. To overcome these limitations,
coverage functions were proposed by Okoniewski et al. (2012) [27], where read
counts at each base along a gene sequence are viewed as a function of genomic
position. However, that method is hampered by ad hoc comparison methods and a
lack of formal test statistics for differential expression analysis.

We developed a statistically grounded method for testing gene differential
expression with expression values considered at single-base resolution. Our method
represents the expression profile of a gene by a functional curve, called a “gene
expression function”. We use the Karhunen-Loève decomposition [28] to decom-
pose the random gene expression function into orthogonal FPCs. Then, we test for
differential gene expression by comparing FPC coefficients between two groups
of samples. Our method, named DE-FPCA, makes minimum assumptions about
the data generation procedure and is sensitive to subtle changes in the expression
level of genes. However, our method requires multiple replicates in each treatment
group. Because our approach is sensitive even in low read-coverage regimes, we
propose that sequencing additional biological replicates in multiplexed sequencing
runs may be more advantageous than deep sequencing of particular replicates when
differential gene expression is the primary analysis goal.

We applied our method DE-FPCA to the modENCODE Drosophila RNA-seq
dataset [13]. The results demonstrate that our FPCA-based method is especially
powerful in detecting alternative splicing, while remaining robust to assay noise.
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7.2 Method

7.2.1 Definition of a Gene Expression or Coverage Function

We define a gene expression function as follows. Let t be a genomic position within
a genomic region and T be the length of the genomic region being considered. We
consider two conditions (or two groups of samples): case and control. Assume that
nA random case samples and nB random control samples are sequenced. Let xi(t)
denote the number of reads, covering the genomic position t, from the ith case
sample. We similarly define yi(t) for the ith control sample. The functions xi(t)
and yi(t) are the empirical gene expression or coverage functions.

7.2.2 Differential Analysis of RNA-seq Data Using
Functional Principal Component Analysis

7.2.2.1 Review on Functional Principal Component Analysis (FPCA)

We first give a brief review of FPCA [28]. Let X(t) be a centered, square-integrable
function, in our case describing read coverage over a gene region, and therefore gene
expression. Let φ1,φ2, . . . be the orthonormal eigenfunctions. By the Karhunen-
Loève theorem, one can express the centered process in the eigenbasis functions
as X(t) = ∑∞

k=1 ξkφk(t), where ξk =
∫

X(t)φk(t)dt is the principal component
coefficient associated with the kth eigenfunction φk(t), and has the property that
E(ξk) = 0 and E(ξkξl) = 0 for k �= l. Furthermore, the covariance function R(s, t)
can be written as R(s, t) =Cov(X(s),X(t)) = ∑∞

k=1 λkφk(s)φk(t) with λk =Var(ξk).
The first eigenfunction φ1(t) depicts the dominant mode of variation in X(t).

That is, φ1(t) is the φ that maximizes the variance of ξ =
∫

X(t)φ(t)dt [17]:

var(ξ ) = var

[∫
X(t)φ(t)dt

]
=

∫ ∫
φ(s)R(s, t)φ(t)dsdt.

Similarly, φk is the function that maximizes var(ξ ) in the functional space that is
orthogonal to φ1, . . . ,φk−1.

Since X(t) = ∑∞
k=1 ξkφk(t), the centered process X(t) is equivalent to the vector

(ξ1,ξ2, . . . ). Also note that since R(s, t) =Cov(X(s),X(t)) = ∑∞
k=1 λkφk(s)φk(t) , the

eigenfunctions φ1,φ2, . . . should satisfy, with λ1 ≥ λ2 ≥ λ3 ≥ . . . ,

∫
R(s, t)φk(s)ds = λkφk(t), (7.1)

for any integer k ≥ 1. Solving this equation provides a way to find φ1,φ2, . . . [28].
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7.2.2.2 Performing FPCA on RNA-seq Data

We name our method DE-FPCA. In the context of our study, we can perform
FPCA and find the eigenfunctions and corresponding principal components as
follows. Let X(t) = [X1(t),X2(t), . . . ]T be a vector-valued function with Xi(t)
denoting the gene expression function for the ith sample. There are N replicate
samples. We select an orthonormal basis (e.g., a Fourier basis) with P functions
Δ(t) = [δ1(t),δ2(t), . . . ,δp(t)] and assume that the gene expression functions
X1(t), · · · ,XN(t) and the eigenfunctions φ1,φ2, · · · can be expressed as a linear
combination of δ1(t),δ2(t), . . . ,δp(t) (Note that this is a function approximation).
That is, for the N replicate gene expression profiles, we have X(t) =CΔ(t), where
the i jth element in the matrix C is Ci j =

∫
Xi(t)δ j(t)dt, with i = 1, . . . ,N and j =

1, . . . ,P. Similarly, we can express φ(t) as φ(t) = Δ T (t)β , where β = [β1, . . . ,βp]
T

with β j =
∫

φ(t)δ j(t)dt. To find eigenfunctions, or equivalently, to determine β , we
make use of (7.1), which has the following equivalent expressions under the current
context:

E

⎡

⎢
⎣

⎛

⎜
⎝

ξ1
...

ξp

⎞

⎟
⎠
(

ξ1 . . . ξp
)
⎤

⎥
⎦

⎛

⎜
⎝

β1
...

βp

⎞

⎟
⎠= λ

⎛

⎜
⎝

β1
...

βp

⎞

⎟
⎠ . (7.2)

Next we replace E(ξiξ j) by its empirical estimate from the sample gene expression
functions X1(t), · · · ,XN(t) to obtain an empirical version of equation (7.2):

1
N

CTCβ = λ β . (7.3)

The eigenfunctions can be found by solving the above multivariate eigenvalue (λ )
and eigenvector (β ) problem. The number of eigenfunctions can be chosen based
on percentage of variance explained. We used 90 % in the following applications.
Different values other than 90 % could be used depending on how accurate the
function approximation is needed.

7.2.3 Test Statistic

We pooled the expression functions xi(t)’s (for case samples) and yi(t)’s (for
control samples) together to estimate the orthonormal eigenfunctions φ j(t),
j = 1, . . . ,k following the procedure described in Sect. 7.2.2. We expanded
xi(t)’s and yi(t)’s on the obtained eigenfunctions. Let the corresponding principal
components associated with φ j(t) be ξi j and ηi j, for xi(t) and yi(t) respectively.
We next use the Hotelling T 2 statistic defined through the ξi j’s and ηi j’s to



134 H. Xiong et al.

assess the difference between the case and control samples. In more details, we
denote the average vector of functional principal components in the case and
control groups by ξ̄ = [ξ̄1, . . . , ξ̄k]

T and η̄ = [η̄1, . . . , η̄k]
T respectively, where

ξ̄ j =
1

nA
∑nA

i=1 ξi j, and η̄ j =
1

nB
∑nB

i=1 ηi j, j = 1, . . . ,k. Then the pooled covariance

matrix is S = 1
nA+nB−2

(
∑nA

i=1(ξi − ξ̄)(ξi − ξ̄ )T +∑nB
i=1(ηi − η̄)(ηi − η̄)T

)
, where

ξi = [ξi1, . . . ,ξik]
T , ηi = [ηi1, . . . ,ηik]

T . Let Λ = ( 1
nA

+ 1
nB
)S. Now we define our test

statistic as T 2 = (ξ̄ − η̄)T Λ−1(ξ̄ − η̄). Under the null hypothesis of no differential
expression between the case and control groups, the statistic T 2 asymptotically
follows a central χ2

(k) distribution, where k is the number of functional principal
components used for expansion of expression functions. Alternatively, we can
also empirically estimate the null distribution of T 2 and then obtain p-values by
randomly shuffling the case and control samples. To get an accurate estimation of
p-values, a large number of replicates in each treatment group is preferred. We note
that when there are enough samples, statistics other than T 2, such as the maximum
of the absolute difference between principal curves, max|ξ̄ − η̄ | which focus on
particular aspects of the curves, could also be used as a test statistic.

7.3 Results

7.3.1 Data Set

We used the following dataset to validate our method. Libraries (consisting of poly-
A(+) RNAs) extracted from adult fly heads (18 samples) and adult fly carcasses
(8 samples) were sequenced on Illumina Analyzer IIx or HiSeq 2000 platforms,
generating paired-end reads of length 76 or 100 bases. A total of 14,125 genes
were analyzed after filtering out genes with zero read coverage and genes in
heterochromatin.

7.3.2 Assessment of Expression Representation by FPCA

We used DE-FPCA to fit nonparametric functional gene expression curves at base
resolution: we first derived the principal eigenfunctions based on 401 Fourier basis
functions, and then expanded the observed gene expression function in terms of
the derived eigenfunctions, as described in Sect. 7.2.2. To demonstrate how well
the estimated curves approximate the observed read counts along a gene sequence,
we plotted the estimated curve and the observed average expression profile (over
the 26 samples) for the gene Dscam1 in Fig. 7.1. Dscam is about 25,000 bp long,
and contains 95 alternative exons giving it the potential to encode 38,016 distinct
proteins [7]. Figure 7.1 shows that the estimated curve nicely approximates the
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Fig. 7.1 The observed and predicted read counts of gene Dscam where curves in red and blue
represent predicted and observed read count curves, respectively

observed read-count curve even though the expressions of the first several exons
in the gene are dramatically fluctuating across the bases. Since Dscam has a large
number of alternative isoforms, we observe large read count variation between the
alternate exons. Figure 7.1 demonstrates that FPCA can capture expression variation
at the levels of genes, exons and single bases.

7.3.3 Differential Expression Analysis

We next used the DE-FPCA statistic (Sect. 7.2.3) to identify gene regions differ-
entially expressed between the head and carcass samples, testing 14,125 genes.
We identified 588 genes that were differentially expressed (significance level 0.05
after Bonferroni correction). The most significantly differentially expressed gene
between heads and carcass is Abdominal B (Abd-B) with p-value < 1.0× 10−17

(this is before Bonferroni correction, the same as the p-values listed below). The
Hox protein Abd-B is critical for early body patterning during embryogenesis [6].
Another Hox protein Ultrabithorax (Ubx) was also identified as highly differentially
expressed between heads and carcass (p-value < 1.11× 10−16). Ubx encodes a
transcription factor that regulates many levels of developmental pathways and spec-
ifies morphological traits [20]. As expected, key early body patterning factors are
expressed both at different relative levels and in different isoforms in adult heads vs.
carcass. Similarly, the gene mushroom body defect (mud) (p-value < 6.9× 10−15),
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the critical brain-development factor is differentially expressed in heads [3]. We
note that mud, known for neurological phenotypes, is a regulator of mitotic spindle
orientation in neuroblasts, and interestingly, the abnormal spindle protein (ASP)
(p-value < 1.7× 10−12), also a spindle organization factor [30], is differentially
expressed. A few more examples of differentially expressed genes are listed below:
Rhodopsin 3 (Rh3) and Rhodopsin 4 (Rh4) with p-values < 1.98 × 10−12 and
< 2.89 × 10−12, respectively, are known to control neural cell fate decisions,
particularly in the eye, a substantial component of fly heads [8]; Antennapedia
(Antp) with p-value < 5.51× 10−12 is involved in the generation of morphological
diversity among segmental units of the nervous system and formation of functional
neuromuscular networks [20, 35]; and retinophilin (rtp) with p-value < 1.21 ×
10−11, which is highly regulated in the adult head and central nervous system
tissues [12]. These results highlight the advantage of working in perhaps the best
genetically characterized model system available: a century of prior functional and
genetic work in Drosophila makes interpretation of differential expression analysis
tenable.

7.3.4 Differentially Expressed Isoforms and Differential
Exon Usage

One strength of the DE-FPCA statistic is its ability to detect differential expression
at the isoform and exon levels. Figures 7.2, 7.3, 7.4 illustrate this.

Figure 7.2 shows the expression profiles of the gene shaggy (sgg) in heads and
carcasses. Our method found that sgg was differentially expressed between heads
and carcasses with p-value < 3.13×10−8. However, DEseq [1] analysis did not find
sgg differentially expressed (p-value < 0.42). It is estimated that sgg has at least 17
isoforms [10]. The plot in Fig. 7.2 reveals complex sample-to-sample expression
variation among head samples and among carcass samples. It is interesting to see
that the expression curves, particularly near the end of sgg, are significantly different
between heads and carcasses while the difference in the mean number of reads for
the entire gene can be ignored.

Another differentially expressed gene detected by DE-FPCA is gene Moe with p-
value< 4.13×10−6. Moe plays a role in synaptic development at the neuromuscular
junction [36]. We plotted the expression profiles of gene Moesin (Moe) as a function
of genome position in Fig. 7.3. The mean average numbers of reads in the heads and
carcasses are 11,994.83 and 11,119.22, respectively. Due to these close values in the
mean number of reads, as expected, DESeq did not detect a significant difference
between the heads and carcasses (p-value ≈ 0.866). This detection difference
between DE-FPCA and DEseq is that Moe exhibits differential expression at the
exon level: Some exons have higher expression levels in carcass samples while other
exons have the opposite property, and these regional differences cancel each other
out. As a result, overall read counts are similar but the difference is apparent in the
graph of gene expression functions.
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Fig. 7.2 RNA-seq expression profiles for gene shaggy (sgg) where curves in red and blue
represent expression profiles for sgg in carcass and heads, respectively

Fig. 7.3 RNA-seq expression profiles for gene Moesin (Moe) where curves in red and blue
represent expression profiles for Moe in carcass and heads, respectively



138 H. Xiong et al.

Fig. 7.4 RNA-seq expression profiles for gene ion transport peptide (itp) where curves in red and
blue represent expression profiles for itp in carcass and heads, respectively

Figure 7.4 plotted the expression profiles of gene ion transport peptide (itp) as
a function of genomic position. The expression pattern of gene itp is similar to that
of Moe. The expression profiles of gene itp look very different between heads and
carcasses. Our method DE-FPCA successfully detects the differential expression of
gene itp between heads and carcasses (p-value< 1.68×10−6), but again DEseq fails
to detect the difference (p-value ≈ 0.92). The mean number of reads overlapping itp
in heads and carcasses are 4,367.865 and 4,249.504, respectively. The gene itp is
involved in neuropeptide hormone activity [9].

7.3.5 Robustness in Differential Expression Analysis

To examine the robustness of DE-FPCA for testing differential expression, we
plotted the expression profiles of gene CG32553 (Fig. 7.5). We see that the
expression profiles in carcasses are close to zero and the expression profiles in heads
are randomly fluctuating across the entire gene with large positive overall expression
values. Accordingly, DEseq concluded that gene CG32553 is significantly differ-
entially expressed between heads and carcasses (p-value < 2.02× 10−10), but our
method DE-FPCA did not find a significant differential expression for CG32553
(p-value < 0.423). To illustrate that the significant results of CG32553 identified by
DEseq was likely to be false positive, we further plotted Fig. 7.6 showing expression
profiles of CG32553 in the adult heads samples corresponding to 1, 4 and 20 day
old adults, respectively. A couple of samples displayed large peaks in one or two
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Fig. 7.5 RNA-seq expression profiles for gene CG32553 where curves in red and blue represent
expression profiles for CG32553 in carcass and heads, respectively

Fig. 7.6 RNA-seq expression profiles for gene CG32553 of six head samples at 1, 4 and 20 days,
respectively

regions, but most head samples had low read counts throughout the gene with no
discernible pattern. The random pattern of read counts in Fig. 7.6 suggests that the
observed peaks in read coverage are likely either unrelated to the underlying gene
model, or that they arise from another source of noise in the assay, and thus the
detection of significant differential expression for CG32553 may be spurious.
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7.4 Discussion

We have developed an FPCA-based approach, DE-FPCA, for testing differential
gene expression, which uses the difference in functional principal component
coefficients of the expression functions to identify genes that are differentially
expressed between treatment groups. By testing for differences in expression
function curves, our method can identify differential usage of exons and isoforms
without having to first estimate isoform expression.

DE-FPCA employs high-dimensional data reduction techniques to compress
high dimensional RNA-seq data into a few principal components that greatly
reduce degrees of freedom in testing, while preserving most of the underlying
biological signals. We observe that noise contained in read coverage patterns across
a gene region can accumulate when gene expression, or even exon expression, is
summarized by a single number, which can lead to both false positives and false
negatives. Notably, DE-FPCA can compress noise curves or outliers into minor
principal components and hence help mitigate the impact of sequencing errors on
tests. Hence, FPCA-based tests for differential expression are more robust than those
based simply on counts.

Since the expression curves contain enriched information on isoforms that are
due to varying usage of splice sites and transcription start and end sites, our method
should constitute a useful supplement to existing techniques. One could apply our
method as the first step in a differential expression analysis pipeline, and then use
other tools to identify the exons responsible.

Because our approach is sensitive even in low read-coverage regimes, we propose
that sequencing additional biological replicates in multiplexed sequencing runs
may be more advantageous than deep sequencing of particular replicates when
differential gene expression is the primary analytical goal.
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Chapter 8
Mapping of Expression Quantitative Trait Loci
Using RNA-seq Data

Wei Sun and Yijuan Hu

Abstract RNA sequencing (RNA-seq) is replacing expression microarrays for
genome-wide assessment of gene expression abundance. Many sophisticated sta-
tistical methods have been developed to map gene expression quantitative trait loci
(eQTL) using microarray data. These methods can potentially be applied to RNA-
seq data with minor modifications. However, they fail to exploit two types of novel
information that are available from RNA-seq but not from microarrays: the allele-
specific expression (ASE) and the isoform-specific expression (ISE). This chapter
gives an overview of the statistical methods that are specifically designed for eQTL
mapping using RNA-seq data, as well as the challenges and some future directions.

8.1 Introduction

In most living organisms, the DNA information stored in a cell is transcribed into
messenger RNA (mRNA) and then translated into protein, which is the working
force of the cell. The amount of mRNA produced by a gene is generally referred
to as gene expression. Since mid 1990s, gene expression microarrays have been
widely employed to assess mRNA abundance genome-wide. The huge amount
of data produced by expression microarrays have not only greatly improved our
understanding of cell biology, but also provided invaluable resources to guide the
diagnosis and treatment of human diseases. For example, gene expression profiles
have been used to dissect cancer subtypes [45] and to predict drug sensitivities [20].
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The mRNA abundance of a gene may be associated with the genotype of one or
more genetic loci, which are referred to as expression quantitative trait loci (eQTL).
In most eQTL studies, genome-wide gene expression data and DNA genotype data
of genetic markers such as single nucleotide polymorphisms (SNPs) are collected in
a common set of samples. Then eQTLs are identified by linkage/association analysis
in which the expression of each gene is treated as a quantitative trait. We refer
the readers to [10, 51] for reviews on eQTL studies and their potential impacts
on understanding the genomic basis of human complex traits, and to [33, 68] for
reviews on statistical methods and computational tools for eQTL studies using gene
expression from microarrays.

In this chapter, we will focus on eQTL mapping using RNA-seq data. RNA-
seq, i.e., high-throughput RNA sequencing, is replacing expression microarrays for
transcriptome studies. To explain the motivations of designing statistical methods
specifically for RNA-seq data, it is helpful to first describe the differences between
the microarray and RNA-seq platforms. In microarray experiments, the abundance
of gene expression is measured by fluorescent signals on a set of probes, where each
probe contains a specific short piece of DNA sequence (e.g., 25 base pairs for most
Affymetrix arrays). The amount of information that can be obtained is limited by
the design of the microarray:

• The quantification of gene expression is confined to the regions where the probes
are placed. The probes are pre-selected to cover known genes, and in most array
platforms, the probes are located at the 3’ ends of the transcripts instead of being
uniformly distributed across exonic regions. Therefore, previously unknown
transcripts cannot be measured for expression and the measurements at known
transcripts may be biased by the signals at the 3’ ends.

• The same probe sequences are used for all samples and do not accommodate the
genetic differences across samples or the differences between the paternal and
maternal alleles of a sample. Therefore, the gene expression from the paternal
and maternal alleles cannot be distinguished.

In RNA-seq experiments, the expression of a gene is measured by the number
of sequence reads mapped to that gene [18, 42]. RNA-seq overcomes the two
limitations of microarrays. First, RNA-seq objectively quantifies the genome-wide
transcript abundance without relying on pre-selected probes. Second, an RNA-seq
read delivers allele-specific information if it overlaps with at least one heterozygous
SNP/indel (i.e., a SNP or an insertion or deletion that is heterozygous between the
paternal and maternal alleles).

Figure 8.1 illustrates the data generated by the two platforms. In particular,
microarray data take continuous values and RNA-seq data are discrete counts.
If that is all the difference between the two platforms, then there is no need to
develop novel statistical methods for RNA-seq data because one can simply replace
the linear regression model for continuous microarray data with the generalized
linear regression model (with Poisson or negative binomial distribution assumption)
for count data. In fact, the raw sequence data from RNA-seq contain much more
information than a single count as shown in Fig. 8.1. First, in a diploid genome such
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Sample 1 Sample 2 Sample Sample 1 Sample 2 Sample n n

Gene 1 512 339 286
Gene 2 1043 1212 888
Gene 3 20 12 10

Gene 

Gene 1

Gene 2

Gene 3

Gene p p 78 65 42

Gene 1

Gene 3

10.45 10.52 10.40

4.63 4.76 4.70

8.80 8.96 8.82

8.30 8.44 8.27

a b

Fig. 8.1 (a) Gene expression data from a microarray. Each sample is measured by an array with
tens of thousands of pre-selected probes. The expression of one gene is estimated by combining
the fluorescent signals of multiple probes. (b) Gene expression data from RNA-seq. The data of
each sample is stored in a text file, usually in the FASTQ format. An FASTQ file contains millions
of records and each record corresponds to an RNA-seq read with four lines: the sequence identifier,
the actual DNA sequence, a separator, and the sequencing quality scores for every base pair of the
sequence

as the genome of human or mouse, there are two sets of chromosomes, one from
the father and one from the mother. Thus most genes (e.g., autosomal genes and
X-linked genes in females) have two copies and each copy is called an allele of
this gene. The expression of each allele of a gene, i.e., allele-specific expression
(ASE), can be extracted from the raw RNA-seq data. Second, in a higher organism
such as a human or mouse, one gene often comprises of several exons and the exons
can be grouped in different ways to produce different proteins or non-coding RNA
molecules. Each combination of the exons of a gene is called a transcript or an
RNA isoform. The expression of each isoform, i.e., isoform-specific expression
(ISE), can also be inferred from the raw RNA-seq data. In summary, the RNA-seq
platform delivers much more information than the microarrays and thus warrants
the development of novel statistical methods to fully exploit the new features.

The remainder of this chapter is organized as follows. Sections 8.2 and 8.3 will
introduce eQTL mapping using ASE and ISE, respectively. Section 8.4 will discuss
some challenges and future directions.

8.2 eQTL Mapping Using ASE

We will first describe the quantification of ASE and show how the ASE enables the
detection of cis-regulatory eQTLs. Then we will introduce statistical methods for
eQTL mapping using ASE under two scenarios, namely, with and without known
haplotypes between the candidate eQTL and the gene of interest.
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Fig. 8.2 An example of ASE abundance quantification using RNA-seq, for a hypothetical gene
with two exons and one heterozygous SNP within each exon. (a) Two haplotypes of this gene.
(b) The number of allele-specific reads from these two haplotypes

8.2.1 Quantification of ASE Using RNA-seq

ASE can be measured by the number of RNA-seq reads that are mapped to the
gene and overlapped with at least one SNP or indel with heterozygous genotype.
Figure 8.2 illustrates the quantification of ASE for a hypothetical gene with two
exons. There are two SNPs with heterozygous genotypes on the exonic regions of
this gene, one SNP for each exon. Given the genotype at each SNP, allele-specific
read count (ASReC) can be obtained by counting the number of reads harboring a
particular SNP allele. For example, there are 6 reads overlapping with the first SNP
with genotype CT, and the ASReCs are 4 and 2 for SNP alleles C and T, respectively.
Then, the ASE of this gene can be estimated by combining ASReCs across multiple
SNPs if the haplotype information is available. In the example shown in Fig. 8.2a,
the genotypes of the two SNPs are CT and GA and the possible haplotype pairs are
(C-G, T-A) and (C-A, T-G). If we knew that the underlying haplotype pair is (C-G,
T-A), we could obtain the gene-level ASReCs as shown in Fig. 8.2b.

Next we discuss a few issues related to ASE quantification: haplotype phasing,
sequence mapping bias, and expected ASReC.

8.2.1.1 Haplotype Phasing

Many algorithms (e.g., [8,12,36]) have been developed to infer the haplotype phases
from the genotypes of unrelated individuals. It is well known that the phasing
accuracy deteriorates as the length of the haplotype increases. However, it is still
reasonable to assume that the phasing is accurate within the exonic regions of a
gene because those regions are relatively short (∼90 % of the annotated genes are
shorter than 100 kb [16]) and tend to undergo less recombination [62]. In addition,
the switch errors (i.e., mistaken swapping from one haplotype to the other) in
exonic regions can be captured and corrected by RNA-seq reads (either single or
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paired-end reads) that overlap with two or more heterozygous SNPs (i.e., SNPs
with heterozygous genotypes) and thus provide direct information on the haplotype
phase. Some reads may even span over non-adjacent exons due to alternative
splicing and thus provide information on long-range phase.

8.2.1.2 Sequence Mapping Bias

A common practice in RNA-seq studies is to map the reads of all samples against the
same reference genome. This may induce mapping bias because the reads harboring
reference alleles tend to be mapped more accurately than those harboring alternative
alleles. There are several solutions to this problem.

1. Identify and remove SNPs that may cause mapping bias by mapping simulated
reads to the reference genome [46].

2. Employ an allele-aware sequence aligner [70] that uses both the reference
genome and alternate alleles to map reads.

3. Construct the two haploid genomes for each diploid individual and map the reads
against the two genomes separately [26, 30].

The third approach is the most unbiased and most comprehensive one, although
it requires more information, i.e., the complete haploid genomes, and more compu-
tational time. Such an effort can be well justified for certain diploid samples with
two very different haploid genomes, e.g., F1 mice from a cross of two inbred mouse
strains with different genome backgrounds.

8.2.1.3 Expected ASReC

What proportion of RNA-seq reads are allele-specific? The answer depends on
two factors, the density of DNA polymorphisms (usually SNPs or indels) with
heterozygous genotypes and the read length. Clearly, the more different are the
two haploid genomes, the more reads are allele-specific; the longer the reads are,
the more likely they overlap with heterozygous DNA polymorphisms. The expected
proportion of allele-specific reads can vary from 0.5 % in a human study with short
reads [46, 55] (Fig. 8.3a) to 35 % in an F1 mouse study with longer reads [11]
(Fig. 8.3b). To be specific, the human study [46,55] adopted an RNA-seq experiment
with 35 bp single-end reads and used ∼1.4 million HapMap SNPs to extract allele-
specific reads. The number of heterozygous SNPs for an individual ranges from
392,800 to 415,500 with a median of 409,100. In another on-going study involving
550 breast cancer patients from The Cancer Genome Atlas (TCGA) using 2×50 bp
paired-end reads and ∼30 million 1000G SNPs, we identified 3.4 % reads as allele-
specific. The number of heterozygous SNPs across these TCGA samples ranges
from 1.91 million to 2.02 million with a median of 1.97 million. The increase of
the proportion of allele-specific reads from 0.5 % to 3.4 % in the two human studies
can be attributed to both the longer reads and the larger number of heterozygous
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Fig. 8.3 Scatter plot of the total number of RNA-seq reads versus the total number of allele-
specific reads for all the samples in (a) a human study of unrelated individuals of African
population (HapMap YRI samples) [55] and (b) a mouse study of three reciprocal F1 crosses of
three mouse inbred strains (CAST/EiJ, PWK/PhJ and WSB/EiJ) representative of three subspecies
within the Mus musculus species group (M. m. castaneus, M. m. musculus and M. m. domesticus,
respectively)

SNPs. By contrast, the mouse study [11] collected 2×100 bp paired-end RNA-seq
reads from F1 mice with around 17.5 million heterozygous SNPs/indels per sample,
making it possible to harvest 35 % of RNA-seq reads as allele-specific.

8.2.2 ASE for cis-eQTL Mapping

Given ASE, we can assess whether there is allelic imbalance of gene expression.
In some publications, the terms ASE and allelic imbalance are used exchangeably.
In this book chapter, however, ASE indicates the expression measurement from
a particular allele. ASE is available for a gene if it has exonic SNPs/indels with
heterozygous genotypes, and thus having ASE does not imply allelic balance.
A number of pioneering studies have shown that allelic imbalance in gene expres-
sion exists and may be associated with disease susceptibility [17, 27, 35, 40, 60, 73].
For example, the reduction in the expression of one allele at the TGFBR1 gene in
blood cells (germline) leads to an elevated risk of colorectal cancer [60]. In addition,
effective treatments can be developed by silencing the disease allele while sparing
the expression of the wild-type allele [41]. Here, we focus on mapping the DNA
polymorphism that leads to allelic imbalance of gene expression, which is called a
cis-eQTL and is a main mechanism of allelic imbalance.

To better understand cis-eQTLs, it is helpful to introduce the concept of trans-
eQTL and clarify their differences. Cis-eQTL and trans-eQTL have been widely
used to refer to eQTLs that are close to the associated genes and eQTLs that are
distant, respectively. An arbitrary distance, such as 200 kb or 1 Mb, is often used
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to distinguish local and distant eQTLs. It has been pointed out before [51] and is
worthwhile to be emphasized again: it is misleading to refer to a local or distant
eQTL as a cis- or trans-eQTL as the latter have their own biological meanings.

The Latin words cis and trans mean “on the same side” and “across”, respec-
tively. A cis-eQTL is located on the same chromosome as its target gene and
influences the gene expression in an allele-specific manner. Specifically, a mutation
in the maternal allele only changes the gene expression from the maternal allele
but does not affect the expression from the paternal allele (Fig. 8.4a). A plausible
scenario is that a cis-eQTL is located at the transcriptional factor binding site of a
gene and thus interferes with the transcriptional factor binding in the allele-specific
manner. A cis-eQTL is likely to be a local eQTL, though this is not always true.
By contrast, a trans-eQTL of a gene can be located anywhere in the genome and
it influences the gene expression of both alleles to the same extent. One possible
mechanism is that a trans-eQTL modifies the activity or abundance of a protein
that regulates the gene and such regulation does not distinguish the two alleles of
the gene [67] (Fig. 8.4b). Therefore, cis- and trans-eQTLs should be distinguished
by ASE (Fig. 8.4a, b) [14, 52] rather than their physical distance to the target gene.
Note that cis- and trans-eQTLs cannot be distinguished by the total expression of
the gene, which shows the same pattern at the population level (Fig. 8.4c, d).

From the above discussions, it is clear that ASE is informative for cis-eQTL
mapping. Figure 8.5a–d shows a hypothetical example of cis-eQTL mapping using
ASE. Assume that the gene of interest has two exons with one SNP for each.
We wish to test whether a candidate eQTL, displayed on the left of the gene in
Fig. 8.5a, cis-regulates the gene expression. First, we count the number of allele-
specific reads. As mentioned in Sect. 8.2.1, an RNA-seq read is allele-specific if
it can be assigned to one of the two alleles of the gene without ambiguity. As
illustrated in Fig. 8.5a, individuals (i) and (ii) have heterozygous genotypes for
at least one exonic SNP, and thus their ASE can be measured by the number of
reads that overlap with the heterozygous SNPs. Haplotype information is required
to combine ASE measured at individual exonic SNPs into the gene-level ASE. For
example, for individual (i), we count the number of allele-specific reads mapped to
the haplotypes A-A and T-G. Next, we associate ASE with the candidate eQTL. For
individual (i) in Fig. 8.5a, given the longer haplotypes C-A-A and T-T-G that span
over the gene as well as the candidate eQTL, we can link ASE of the A-A and T-G
haplotypes of the gene to the C and T alleles of the candidate eQTL, respectively
(Fig. 8.5c). The association testing seeks to answer the question whether one allele
of the candidate eQTL is associated with a higher or lower ASE of the gene.
If the answer is yes (and assuming there is no other factor inducing the allelic
imbalance), then we expect allelic imbalanced expression when the genotype of the
candidate eQTL is heterozygous and allelic balanced expression when the genotype
is homozygous; in other words, the candidate eQTL is a cis-eQTL. For example,
individual (i) has a heterozygous genotype C/T at the candidate eQTL and has a
higher ASE corresponding to the C allele than the T allele (Fig. 8.5c). Individual (ii)
has a homozygous genotype C/C at the candidate eQTL, each C allele corresponding
to the same ASE (Fig. 8.5d). A real data example of 65 HapMap samples is shown
in Fig. 8.5f.
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Fig. 8.4 (a) An example of a cis-eQTL in two samples. In sample 2 where the candidate eQTL
(the SNP for which we test association) has a heterozygous genotype CG, the expression of the
two alleles are different. (b) An example of a trans-eQTL in two samples. In sample 2 where the
candidate eQTL has a heterozygous genotype TA, the expression of the two alleles are the same.
(c) A simulated data for a cis-eQTL across 60 samples with 20 samples within each genotype class.
(d) A simulated data for a trans-eQTL across 60 samples with 20 samples within each genotype
class. This figure is adapted from Fig. 1 in our earlier paper Sun and Hu (2013) [56]

The total read count (TReC) is also informative for cis-eQTL mapping, which
is similar to the traditional eQTL mapping using gene expression measured by
microarrays. While ASE provides information at the allele level, TReC contributes
at the individual level and in a way that is consistent with the allele level. In
Fig. 8.5a–d, the C allele of the candidate eQTL is associated with a higher ASE,
which is manifested at the allele level (Fig. 8.5c, d) and at the individual level
(Fig. 8.5b). In general, the TReC of a gene is much greater than the sum of the
two ASReCs in that TReC includes many reads that do not overlap with any
heterozygous SNPs/indels.
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Fig. 8.5 (a)–(d) A hypothetical example of cis-eQTL mapping. (a) RNA-seq measurements of a
gene with two exons in three individuals. (b) TReC (total read count) for the three individuals.
(c–d) ASE for individual (i) and (ii). (e)–(f) A real data example of cis-eQTL mapping between
gene KLK1 and SNP rs1054713. (e) Association between the genotypes and TReC. The y-axis
is the total number of reads mapped to the gene KLK1 and each point corresponds to one of the
65 samples. (f) Association between the genotypes and ASE. When the genotype of rs1054713
is heterozygous, the ASE of the two alleles of this gene can be associated with the two alleles of
rs1054713. ASET and ASEC denote the ASReC corresponding to the T and C allele of rs1054713,
respectively. When the genotype of rs1054713 is homozygous, we denote the ASReC of the two
alleles of this gene by ASE1 and ASE2, respectively. This figure is a modified version of Figs. 2
and 4 of the earlier paper by Sun and Hu (2013) [56]

8.2.3 eQTL Mapping Using ASE with Known Haplotypes

While the haplotypes across the exonic regions of a gene can be accurately phased,
those extending from the gene to a candidate eQTL may not be reliably phased
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because the candidate eQTL may be far away from the gene. In this section,
we assume that the extended haplotypes are known and defer the scenario with
unknown haplotypes to the next section.

Our statistical model is for a particular gene of interest. To simplify the notation,
we skip the index for gene. The model was originally proposed by Sun (2012) [55]
and reviewed by Sun and Hu (2013) [56]. We use the following notation.

• Let H = (h1,h2) denote the haplotype pair consisting of haplotypes h1 and h2

across the exonic SNPs. Let H̃ = (h̃1, h̃2) denote the extended haplotype pair
consisting of both the exonic SNPs and the candidate eQTL. Here the order of the
two haplotypes is arbitrary and thus (h1,h2) is the same as (h2,h1) and (h̃1, h̃2)
is the same as (h̃2, h̃1). We assume that both H and H̃ are known here.

• Let T be the total read count (TReC). Note that a paired-end sequence read is
counted as one read.

• Let N1, N2 and N denote the allele-specific read count (ASReC) from haplotypes
h1 and h2 and the total ASReC, respectively. Naturally, N = N1 +N2.

• Let G be the genotype of the candidate eQTL, which has two alleles A and B.
Under the additive genetic effect, G = 0, 1, and 2 for genotypes AA, AB and BB,
respectively. Dominant, recessive, and co-dominant effects can also be modeled
using appropriate coding for genotypes.

• Let X be the relevant covariates including an intercept. Typically, X include the
log form of the total read count per sample reflecting the read depth.

We model the probability of T given G and X by a negative binomial distribution
indexed by parameters (γγγ,βT ,φ), which is denoted by PTReC(T |G,X;γγγ,βT ,φ).
A negative binomial distribution can be considered as an infinite gamma mixture
of Poisson distributions. It allows over-dispersion in the read counts, a phenomenon
that is often observed in sequencing data across biological replicates. Thus the neg-
ative binomial distribution has been commonly used for RNA-seq data analysis [5].
In particular, we assume that T follows the negative binomial distribution with mean
μ and a dispersion parameter φ :

PTReC(T |G,X;γγγ,βT ,φ) =
Γ (T + 1/φ)
T !Γ (1/φ)

(
1

1+φ μ

)1/φ ( φ μ
1+φ μ

)T

,

where

log(μ) = γγγTX+w(G,βT ),

and

w(G,βT ) =

⎧
⎨

⎩

0 if G = 0
log [1+ exp(βT )]− log2 if G = 1
βT if G = 2.
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The functional form of w(G,βT ) reflects the additive genetic effect. To see this, we
write the means of T given X and G= 0,1,2 by μAA,X, μAB,X and μBB,X, respectively,
where

μAA,X = exp(γγγTX),

μAB,X = exp(γγγTX+ log[1+ exp(βT )]− log2)

μBB,X = exp(γγγTX+βT ).

We can see that βT characterizes the difference between log(μAA,X) and log(μBB,X)
and μAB,X is at the mid point between μAAX and μBB,X, i.e., μAB,X = (μAA,X +
μBB,X)/2.

We model the probability of N1 given N, H̃ and X assuming that N1 follows
a beta-binomial distribution indexed by parameters (βA,ψ) and denote the model
by PASReC(N1|N, H̃ ,X;βA,ψ). A beta-binomial distribution extends a binomial
distribution to allow over-dispersion. In particular, we assume that N1 follows a
beta-binomial distribution with mean p and a dispersion parameter ψ :

PASReC(N1|N, H̃,X;βA,ψ) =

(
N
N1

)
∏N1−1

k=0 (p+ kψ)∏N−N1−1
k=0 (1− p+ kψ)

∏N−1
k=1 (1+ kψ)

,

where

p =

⎧
⎨

⎩

0.5 if the candidate eQTL has a homozygous genotype AA or BB,
q if H̃ indicates haplotype configuration B-h1 and A-h2, respectively,
1− q if H̃ indicates haplotype configuration A-h1 and B-h2, respectively.

Thus q characterizes the proportion of ASReC corresponding to the B allele
among the total ASReC corresponding to the heterozygous genotype AB. We
further express q as eβA/(1+ eβA). Note that the covariate effects are ignored here
because they are expected to be the same on the two alleles of a gene within an
individual. When the candidate eQTL cis-regulates the expression of the gene,
we have βA = βT . To see this, we first define μA and μB as the mean ASReC
corresponding to the A and B alleles, respectively, at the baseline of X. Then,
βA = log[q/(1− q)] = log(μB/μA). On the other hand, βT = log(μBB,X/μAA,X) =
log{(2μB)/(2μA)}, where the second equation follows from the additive genetic
effect and from canceling out the individual-specific covariate effects. By contrast,
when the candidate eQTL trans-regulates the gene expression, we have βT �= 0 but
βA = 0.

The likelihood based on the TReC and ASReC data of n unrelated individuals
takes the form

L(ΘΘΘ) =
n

∏
i=1

PTReC(Ti|Gi,Xi;γγγ,βT ,φ)PASReC(Ni1|Ni, H̃i,Xi;βA,ψ), (8.1)
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where ΘΘΘ = (γγγ,βT ,φ ,βA,ψ). We refer to (8.1) as the TReCASE model, which
is the novel model for cis-eQTL mapping using RNA-seq data. For trans-eQTL
mapping, since ASE data are uninformative, the likelihood is only based on the
TReC data: L(γγγ,βT ,φ) = ∏n

i=1 PTReC(Ti|Gi,Xi;γγγ,βT ,φ). A hypothesis testing
method has been developed to distinguish whether an eQTL is cis- or trans- by
testing H0: βT = βA [55].

8.2.4 eQTL Mapping Using ASE with Unknown Haplotypes

When the haplotypes connecting the candidate eQTL and the gene of interest are
unknown, we consider all possible haplotype pairs (h̃k, h̃l) that are compatible with
the known haplotypes in the gene body (H) and the genotype at the candidate
eQTL (G). We denote these haplotype pairs as (h̃k, h̃l)∼ (G,H). Then the likelihood
function is a weighted summation of the probabilities, each corresponding to a
possible haplotype pair and given by (8.1), i.e.,

L(ΘΘΘ) =
n

∏
i=1

PTReC(Ti|Gi,Xi;γγγ,βT ,φ)

× ∑
(h̃k,h̃l)∼(Gi,Hi)

PASReC(Ni1|Ni, h̃k, h̃l ,Xi;βA,ψ)P(h̃k, h̃l;πππ) fkl(Xi), (8.2)

where ΘΘΘ = (γγγ,βT ,φ ,βA,ψ ,πππ ,{ fkl(.)}k,l). We explain the terms that are not in (8.1)
as follows.

Suppose there are K possible haplotypes across the exonic SNPs and the
candidate eQTL. Write the frequency of the kth haplotype by πk = Pr(h̃ = h̃k)
and πππ = (π1, . . . ,πK). We denote the model for the probability of H̃ = (h̃k, h̃l)
indexed by πππ by P(h̃k, h̃l;πππ). Under the assumption of Hardy-Weinberg equilibrium,
P(h̃k, h̃l;πππ) = πkπl .

The density function of X given H̃ = (h̃k, h̃l) is denoted by fkl(X). Under the
assumption of gene-environment independence, fkl(X) reduces to the marginal
density function of X and will drop out from (8.2). In some applications, H̃ and X are
correlated. One important example is when X represent the principal components
for ancestry. Another example is when the gene influences both the environmental
exposure (e.g., cigarette smoking) and the disease occurrence (e.g., lung cancer) [3].
In such cases, fkl(X) can be specified using a generalized odds-ratio function [28].

8.3 Isoform-Specific eQTL Mapping

More than 90 % of human multi-exon genes can be alternatively spliced, resulting
in RNA isoforms [44, 64]. Alternative splicing may directly cause a disease or
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modify certain disease susceptibility [19, 61, 63]. Although several methods have
been proposed for detecting the event of alternative splicing and estimating the
RNA-isoform abundance [2, 4, 21, 23, 31, 34, 38, 39, 50, 59, 65], only a few have
been developed for testing the differential RNA-isoform usage between two groups
of samples (e.g., cases vs. controls) [22, 54, 59]. Differential isoform usage refers
to the changes of RNA-isoform expression relative to the total expression of the
corresponding gene. The purpose of isoform-specific eQTL mapping is to dissect
the genetic basis of the differential isoform usage. There are a few points worth
mentioning from the statistical perspective on isoform-specific eQTL mapping.

• Because the isoform structure or abundance cannot be directly measured,
transcriptome reconstruction and abundance estimation are necessary steps of
isoform-specific eQTL mapping. The uncertainty of the transcriptome recon-
struction and the abundance estimation should be incorporated into isoform-
specific eQTL mapping.

• In most eQTL studies or genome-wide association studies, SNP genotype effects
are assumed to be additive. Thus the SNP genotype is essentially a quantitative
covariate. However, most existing methods assess the differential isoform usage
between two groups of samples (e.g., cases vs. controls) and few methods can
test the association between the isoform usage and a quantitative covariate.

• One gene may be differentially expressed with respect to a covariate, both in
terms of the total expression and the isoform usage. It will be useful to jointly
test for differential expression and differential isoform usage.

8.3.1 Transcriptome Reconstruction and Isoform Abundance
Estimation

A gene usually occupies a consecutive segment of the DNA sequence and it is
often composed of several exons that are separated by introns. A subset of the
exons may be employed by the cell to construct alternatively spliced messenger
RNAs (mRNAs). These mRNAs may be translated to different proteins. Each RNA
isoform is often referred to as a transcript and thus each gene can be considered
as a transcript cluster. In some organism such as a human or a mouse, there are
existing annotations on the kinds of transcripts a gene may encode. Such annotations
are often incomplete or inaccurate, for example, some transcripts may be express
in a particular tissue and/or developmental stage. In some other organisms, such
as those without complete reference genomes, such transcriptome annotations are
not available at all. Therefore, one may need to reconstruct the transcriptome
from the observed RNA-seq data. This task can be achieved with or without
a reference genome [18]. The reference genome-guided reconstruction is often
more accurate and computationally more efficient than the de novo transcriptome
construction without a reference genome. Thus the former approach is more popular
for organisms that have reference genomes. Given the transcriptome annotation, the
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Fig. 8.6 All possible isoforms of a gene with three exons and the corresponding design matrix XT

abundance of each transcript can be estimated by the number of RNA-seq reads
aligned to that transcript. However, most RNA-seq fragments cannot be uniquely
assigned to a specific transcript. To estimate transcript abundance in the presence
of such alignment ambiguity is the focus of many existing works [31, 32, 37, 43, 48,
49,53,59,72]. Penalized regression methods have been developed to simultaneously
reconstruct transcriptome and estimate transcript/isoform abundance [6, 38, 39, 71].
The method we will describe next is an example of such penalized regression
methods.

8.3.2 Isoform-Specific eQTL Mapping

The method presented here is based on Sun et al. (2013) [58]. We first illustrate the
statistical model by a hypothetical gene with three exons (Fig. 8.6). An RNA-seq
read may overlap with one or more exons. Thus we count the number of RNA-seq
reads per exon set. For this simple gene, there are seven possible exon sets, denoted
by {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, and {1,2,3}. Note that each RNA-seq read
is only counted once. For example, if an RNA-seq read overlaps with both exon 1
and 2, it will be counted for exon set {1,2} instead of exon set {1} or {2}. There
are seven possible isoforms (right panel of Fig. 8.6). We code each isoform as a
covariate, which corresponds to one row of the design matrix XT (left panel), where
T denotes matrix transpose. The seven columns of matrix XT correspond to exon
sets {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, and {1,2,3}. Each element in XT is the
effective length of the column-specific exon set within the row-specific isoform.
Intuitively, the effective length of an exon set A, denoted by ηA, is the number of
unique locations within A, where a randomly selected sequence fragment can be
sampled. We defer the details of effective length calculation to the next section, but
would like to point out that there are special exon sets that consist of non-contiguous
exons in the specific isoform. For example, the exons in set {1,3} is non-contiguous
with respective to isoform 1-2-3 and the effective length of {1,3} is denoted by
η{1,(2),3}. Our effective length calculation accurately reflects the fact that sequence
reads of exon set {1,3} are more likely from isoform 1-3 rather than isoform 1-2-3.
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In this example, the gene expression in the ith sample is denoted by a vector:
yi = (yi{1},yi{2},yi{3},yi{1,2},yi{2,3},yi{1,3},yi{1,2,3})T, where yiA indicates the TReC
at the exon set A. As in Sect. 8.2.3, we model the probability of a TReC via a negative
binomial distribution. Let fNB(μ ,φ) be a negative binomial distribution with mean
μ and a dispersion parameter φ . We assume that yiA ∼ fNB(μiA,φ). Assuming
independence of yiA’s given the underlying RNA isoforms, then yi ∼ fNB(μμμ i,φ) ≡
∏A fNB(μiA,φ) where μμμ i = (μi{1},μi{2}, . . . ,μi{1,2,3})T. By the definition of the
design matrix X, we transform the problem of isoform deconvolution to a regression
problem: yi ∼ fNB(μμμ i,φ), μμμ i = TiXγγγ = Ti ∑7

u=1 xubu, where Ti is TReC of this gene
in sample i, X = (x1, . . . ,x7), γγγ = (b1, . . . ,b7)

T, and bu ≥ 0 is the expression rate
of the uth isoform. Note that bu quantifies the relative expression abundance with
respect to the total expression Ti.

Next, we present the general method. Suppose that we study the isoform-specific
expression of a gene with m exon sets and p possible isoforms across n individuals,
and we are particularly interested in whether a covariate G has an influence on the
isoform-specific expression of this gene. We assess this hypothesis by a likelihood
ratio test. Under the null hypothesis, we solve the problems of isoform selection
and abundance estimation by assuming that the isoform usage is the same for all
samples. Thus we use a negative binomial regression with the link function μμμ i =
TiXγγγ . Note that a linear link function instead of commonly used log link function
is used to reflect the fact that the total number of reads is the summation of the
number of reads from all the isoforms. Under the alternative, we model the effect of
G as follows. Let gi be the value of G in the ith sample. Without loss of generality,
we restrict the range of gi to be [0,1]. For example, if G is genotype of a SNP,
we set gi = 0, 1/2, and 1 for genotypes AA, AB, and BB, respectively. Provided
μμμ i = TiXγγγ, we model the influence of G on bu (1 ≤ u ≤ p) by a linear model:
bu = γu(1 − gi) + γu+pgi, where γ j ≥ 0 for 1 ≤ j ≤ 2p. Therefore, we have two
negative binomial problems, with p and 2p covariates, under null and alternative,
respectively.

The major difficulty of this problem comes from the high dimensionality of
the possible isoforms [25]. We address this difficulty by two sequential steps.
First we identify the candidate isoforms for a gene using a modified connectivity
graph approach [23, 38]. Next we select among the candidate isoforms using a
penalized negative binomial regression problem. For example, under the alternative,
the objective function becomes f (γγγ,φ) =∑n

i=1 log [ fNB(μμμ i,φ)]−∑2p
j=1 λ log(γ j +τ),

where λ and τ are two tuning parameters that can be selected by BIC or extended
BIC [57]. We use the log penalty λ log(γ j+τ) because of its superior theoretical and
empirical advantages over other penalties [9,15,57]. Given λ and τ , the parameters
γγγ and φ can be estimated by a coordinate descent algorithm [57]. The above model
is formulated when the isoform usage is associated with one quantitative covariate;
it is straightforward to extend it to include multiple quantitative covariates. For a
categorical covariate (e.g., under the dominant or recessive effect of a SNP), we can
simply code it as a number of dummy variables, which can be treated as multiple
quantitative covariates.
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Due to the variable selection (i.e., selecting expressed RNA isoforms) under both
the null and the alternative hypotheses, the asymptotic distribution of the likelihood
ratio statistic is unknown. Thus we estimate the null distribution of the statistic by
parametric bootstrap. Specifically, we generate the vth bootstrap sample, denoted
by ỹ(v) (a vector of length nm), by sampling from a negative binomial distribution
with mean μ̂μμ0 and a dispersion parameter φ̂0, where μ̂μμ0 (a vector of length nm)
and φ̂0 are estimated under the null. Then using this bootstrap sample, we apply
the penalized regression approach under the null and the alternative to obtain a
likelihood ratio statistic LRv. Repeat the parametric bootstrap for a large number
of times (e.g. 10,000 times) and pool the LRv’s, we obtain the null distribution for
the observed statistic LR. The final p-value is the proportion of LRv’s that are equal
to or larger than the likelihood ratio statistic from original data.

The above solution only tests differential isoform usage, which is the difference
of relative abundance of an isoform with respect to the total expression of the
gene for different values of G. If we are interested in testing both the differential
expression and the differential isoform usage of a gene, the original link function
μμμ i = TiXγγγ can be changed to be μμμ i = RiXγγγ , where Ri is the total number of RNA-
seq reads of the ith sample across all genes. The reason is as follows. The original
link function can be written as μμμ i = TiXγγγ = Ri(Ti/Ri)Xγγγ , where (Ti/Ri) measures
the total expression of the gene in the ith sample. Then skipping the ratio (Ti/Ri)
in the original link function leads to the new link function, which is equivalent to
assuming this gene has a constant expression rate across samples.

8.3.3 Calculation of Effective Length

An RNA-seq fragment is a segment of RNA to be sequenced. Usually only part of an
RNA-seq fragment is sequenced: one end or both ends, hence single-end sequencing
or paired-end sequencing. All the discussions in this section are for paired-end
reads, though the extension to single-end reads is straightforward. The minimum
fragment size is the read length, denoted by d. This happens when the two reads of
a fragment completely overlap. We impose an upper bound for the fragment length
based on prior knowledge of the experimental procedure and denote the upper bound
by lM . Then the fragment length l satisfies d ≤ l ≤ lM . We denote the distribution of
the fragment length for sample i by ϕi(l), which can be calculated using observed
read alignment information. The fragment length distribution is incorporated in our
model to allow across-sample variations due to the differences in fragment length
distribution.

For the ith sample, the effective length of exon j of r j base pairs (bps) is

ηi,{ j} = f (r j ,d, lM,ϕi) =

⎧
⎪⎨

⎪⎩

0 if r j < d
min(r j ,lM)

∑
l=d

ϕi(l)(r j + 1− l) if r j ≥ d
.
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rjrj + 1 − ll1

Fig. 8.7 An illustration of effective length calculation for an exon of r j bps and RNA-seq fragment
of l bps. The orange box indicates the exon, and the black lines above the orange box indicate two
RNA-seq fragments, while each RNA-seq fragment is sequenced by a paired-end read. There are
r j + 1− l distinct choices to select an RNA-seq fragment of l bps from this exon, and thus the
effective length is r j +1− l

If r j < d, the exon is shorter than the shortest fragment length, and thus the effective
length of this exon is 0. In other words, no RNA-seq fragment is expected to overlap
and only overlap with this exon. If r j ≥ d, the effective length is r j +1− l, i.e., there
are r j + 1− l distinct RNA-seq fragments that can be sequenced from this exon

(Fig. 8.7). Then ∑
min(r j ,lM)

l=d ϕi(l)(r j + 1− l) is summation across all likely fragment
lengths, weighted by the probability of having fragment length l.

In the following discussions, to simplify the notation, we skip the subscript of i.
For two exons j and k ( j < k) of lengths r j and rk, which are adjacent in the
transcript, the effective length for the fragments that cover both exons is

η{ j,k} = f (r j + rk,d, lM,ϕ)−η{ j}−η{k}. (8.3)

For three exons j, h, and k ( j < h < k) of lengths r j, rh and rk, which are adjacent in
the transcript, the effective length for the fragments that cover all three exons is

η{ j,h,k} = f (r j + rh + rk,d, lM)−η{ j,h}−η{h,k}−η{ j,(h),k}−η{ j}−η{h}−η{k},

where η{ j,(h),k} is the effective length in the scenario that the transcript covers
consecutive exons j, h, and k, whereas the observed paired-end read only covers
exons j and k.

η{ j,(h),k} =

⎧
⎪⎪⎨

⎪⎪⎩

0 if (r j,rh,rk) ∈ R1
min(r j+rh+rk,lM)

∑
l=2d+rh

ϕ(l)δl otherwise

where R1 = {(r j,rh,rk) : r j < d or rk < d or rh + 2d > lM}, and δl = min(r j, l −
rh − d)−max(d, l − rh − rk) + 1. The above formula is derived by the following
arguments. Let l j and lk be the lengths of the parts of the fragment that overlaps with
exon j and k, respectively. Given l, the restriction of l j and lk are l = l j + lk + rh,
d ≤ l j ≤ r j, and d ≤ lk ≤ rk, and thus the range of l j is max(d, l − rh − rk) ≤ l j ≤
min(r j, l − rh −d). For more than three consecutive exons, the effective lengths can
be calculated using recursive calls to the above equations.
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In practice, a few sequence fragments may be observed even when the effective
length is zero, which may be due to sequencing errors. To improve the robustness
of our method, we modify the design matrix X by adding a pre-determined constant
eLenMin to each element of X.

8.4 Discussion

We conclude this chapter by a few discussion points.

8.4.1 eQTL Mapping Using Both ASE and ISE

We have introduced statistical methods of using ASE or ISE for eQTL mapping.
A natural extension is to use both ASE and ISE for eQTL mapping. The likelihood
can be similar to the one for eQTL mapping using ASE, but using count data from
exon sets intend of genes. Such a model can explain more subtle changes in the gene
expression data. For example, one isoform is used in one allele, but not in the other
allele, i.e., allele-specific isoform usage. A major challenge would be computational
feasibility. Thus a more computationally efficient implementation is needed for such
an effort.

8.4.2 cis-eQTL and Imprinting

Allelic imbalance of gene expressions may be due to factors other than cis-eQTL.
Arguably, the second most likely factor causing allelic imbalance, after cis-eQTL,
is imprinting. Imprinted genes are differentially expressed on maternal and paternal
alleles. Thus imprinting is also referred to as the parent-of-origin effect [47]. An
important lesson we learned from our recent study of ASE in F1 mice [11] is that
“imprinting is incomplete for most genes and cis-acting mutations can modify the
strength of imprinting”. Usually imprinting effect is much more subtle than cis-
eQTL effects. Therefore, to obtain more sensitive and more accurate estimates of
imprinting effects, it is crucial to jointly study imprinting and cis-eQTL.

8.4.3 Quality Control and Possible Non-genetic Factors

Quality control (QC) is a necessary step for eQTL mapping using RNA-seq
data. Low quality samples may be detected by checking the sequencing quality
scores, mapping quality, percentage of uniquely mapped reads, percentage of reads
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mapped to exonic regions, percentage of rRNA reads, and the distribution of insert
size for paired-end reads [1, 13, 66]. Sample identity check is a very important
step in genome-wide genomic studies. Between sample contamination may be
detected by the percentage of heterozygous SNPs, sex-mismatch (recorded sex from
demographic information vs. sex inferred from genomic data), or the D-statistic that
measures the median correlation of gene expression between one sample versus each
of the other samples [1, 69]. Sample swap will seriously reduce the power of eQTL
analysis. Fortunately, checking for sample swap is relatively easy using RNA-seq
data than using microarray data [29]. A QC step that is crucial for ASE data is the
mapping bias toward reference alleles, which has been discussed at Sect. 8.2. For
ISE data, checking the coverage of the whole gene body is important because there
may be a trend of increasing read depth towards the 3’ end of a gene. The method
described in Sect. 8.3 assumes a uniform distribution of read depth, though the
hypothesis testing method is not sensitive to this assumption due to the resampling
nature of the test [58].

The effect of non-genetic factors can be accounted for by including them (or
an appropriate transformation of them) as covariates in eQTL mapping. First, the
overall read depth per sample is one factor that should always be included. In
addition, GC content and dinucleotide frequencies may influence gene expression
in a sample-specific manner. For example, gene expression and GC content
may be positively correlated in some samples, but negatively correlated in other
samples [74]. A conditional quantile normalization method has been proposed to
model such sample-specific effects from sequence contents within the framework
of generalized linear regression models [24]. This approach can be employed in the
eQTL-mapping framework described in this book chapter.

8.4.4 The Genetic Architecture of Gene Expression

Figure 8.8 shows the results of two genome-wide eQTL studies: a yeast study of
∼6,000 genes and ∼1,000 SNPs in 112 yeast segregants (offspring) (Fig. 8.8a) and
a human study of ∼18,000 genes and ∼1,000,000 SNPs (germline genotype) in 550
breast cancer patients. Gene expression abundance was measured by microarrays
in the yeast study and by RNA-seq in the human study. The difference in the
genetic architecture of gene expression between the two studies is remarkable. In
both studies, the eQTL plots have a diagonal pattern, which corresponds to a large
number of local eQTLs. In the yeast study, there are several vertical bands, each
corresponding to an eQTL hotspot, i.e., a genetic locus that is eQTL of many genes.
In contrast, there is no such eQTL hotspot in the human study. The two studies
are representative for experimental cross and human studies. In experimental cross,
usually two strains with very different genetic backgrounds are crossed and thus
some loci may have large and broad effects on many genes. For example, in the yeast
study, several eQTL hotspots arise because one strain has several genes deleted.
In human studies, the genetic differences across humans are much smaller than
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Fig. 8.8 The results of eQTL studies in (a) 112 yeast sergeants of two yeast strains [7] and (b)
550 breast cancer patients of an on-going study. Each point represents a genome-wide significant
association. The color indicates certain range of the p-value. More liberal p-values are used for the
yeast study because there is a smaller number of genes and SNPs and hence less burden of multiple
testing correction

in experimental crosses and generally no single locus can substantially alter the
expression of many genes. We have reported similar findings in a recent human
eQTL studies with 2,494 twins and a validation data set of 1,895 independent
subjects [69]. The conclusion is that, for human studies, the vast majority of genetic
effects on gene expression are through local eQTL and most of the local eQTL are
likely to be cis-eQTL [55]. This implies that the identification of distant eQTLs
may be as difficult as or even more difficult than genome-wide association studies
for complex traits.
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Chapter 9
The Role of Spike-In Standards
in the Normalization of RNA-seq

Davide Risso, John Ngai, Terence P. Speed, and Sandrine Dudoit

Abstract Normalization of RNA-seq data is essential to ensure accurate inference
of expression levels, by adjusting for sequencing depth and other more complex
nuisance effects, both within and between samples. Recently, the External RNA
Control Consortium (ERCC) developed a set of 92 synthetic spike-in standards
that are commercially available and relatively easy to add to a typical library
preparation. In this chapter, we compare the performance of several state-of-the-art
normalization methods, including adaptations that directly use spike-in sequences
as controls. We show that although the ERCC spike-ins could in principle be
valuable for assessing accuracy in RNA-seq experiments, their read counts are not
stable enough to be used for normalization purposes. We propose a novel approach
to normalization that can successfully make use of control sequences to remove
unwanted effects and lead to accurate estimation of expression fold-changes and
tests of differential expression.
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9.1 Introduction

RNA-seq has become the assay of choice for measuring gene expression levels,
and its routine use has grown exponentially in the last few years. Despite initial
optimistic claims [37], normalization remains a crucial, yet often overlooked step
that can have a large impact on subsequent analyses, such as differential expression
(DE) or clustering [7, 10]. Normalization is essential to ensure that observed
differences in expression measures between samples and/or genomic regions are
truly due to differential expression and not nuisance experimental/technical effects.

A variety of normalization approaches have been proposed to correct for
between-sample nuisance effects, e.g., differences in sequencing depths, library
preparation effects [7, 32], as well as within-sample gene-specific effects, e.g., due
to gene length or GC-content [17, 28].

The simplest and most intuitive normalization method adjusts each sample for
sequencing depth (i.e., total number of mapped reads) by dividing gene-level read
counts by the total read count. This is the approach used in the multiplicative Poisson
model of [20] and in the Reads Per Kilobase of exon model per Million mapped
reads (RPKM) of [22]. Several authors have shown that the total number of reads
in a sample is influenced by very few highly-expressed genes, making total-count
(TC) normalization less effective and sensitive to outliers [7, 32]. In addition to
sequencing depth, the RPKM method adjusts for gene length, assuming uniform
read coverage within genic regions. Since this assumption is hardly ever met in prac-
tice, RPKM-normalized measures are often still dependent on gene length [7,23,34].

In addition to length effects, other gene-specific biases have been documented.
Risso et al. [28] proposed within-sample normalization methods to account for
library-specific GC-content effects; Hansen et al. [17] proposed a conditional
quantile normalization (CQN) procedure to account for GC-content and length
effects, as well as between-sample effects. Finally, several authors have proposed
normalization methods to account for sequence composition biases, such as random
hexamer priming biases [16], non-uniform cDNA fragment distribution [30], and
nucleotide composition [40].

In this chapter, we focus on between-sample normalization methods. Bullard
et al. [7] demonstrated the large impact of normalization on differential expression
results; in some contexts, sensitivity varies more between normalization procedures
than between testing methods. They showed that upper-quartile (UQ) and full-
quantile (FQ) normalization procedures are more robust than TC normalization
and improve sensitivity without loss of specificity. Robinson and Oshlack [32]
and Anders and Huber [1] independently proposed two pairwise global-scaling
normalization procedures that scale read counts by a robust measure of “global
expression fold-change” between each sample and a reference.

In the context of differential expression analysis, and as with microarrays, all
between-sample normalization methods mentioned thus far work properly when the
majority of the genes are not DE between the conditions under study, a reasonable
assumption in most applications. In practice, most procedures continue to work
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well even when a high proportion of genes are DE, provided that they are roughly
equi-distributed between up- and down-regulation (see [27] for a discussion in the
context of microarrays). However, in case of a global shift in expression, usual
between-sample normalization approaches will fail [19]. Consider a simple example
where there are two samples, a treated and a control sample, and the treatment
is so strong that it causes more than half of the genes to be up-regulated. Then,
all standard normalization procedures will wrongly scale down the counts of the
treated sample, causing an increase in both false negatives (undetected up-regulated
genes) and false positives (unaffected genes declared down-regulated). In this case,
normalization based on control sequences may be the only option. Lovén et al.
[19] proposed a three-step normalization procedure for such a situation: (i) count
the number of cells in each sample; (ii) spike in control sequences to each sample
in proportion to the number of cells; (iii) normalize read counts based on cyclic
loess regression [5] only on the spike-in counts. The spike-in sequences used in
[19] were developed by the External RNA Control Consortium (ERCC) as a set of
RNA standards for RNA-seq experiments [3, 18].

The aims of this chapter are threefold: (i) to assess the performance of the ERCC
spike-in standards; (ii) to evaluate and compare normalization methods; (iii) to
explore the possibility of using the ERCC spike-ins as controls in the normalization
procedure. In particular, we extend several normalization methods proposed in
the literature for the latter purpose. Our study is based on two datasets that differ
greatly in terms of organisms, experimental designs, and biological and technical
effects: the “real” Zebrafish dataset [11] and the “artificial” SEQC benchmarking
dataset [33].

9.2 Methods

9.2.1 Datasets

9.2.1.1 Zebrafish Dataset

Olfactory sensory neurons were isolated from three pairs of gallein-treated and
control embryonic zebrafish pools and purified by fluorescence activated cell sorting
(FACS) [11]. Each RNA sample was enriched in poly(A)+ RNA from 10–30 ng total
RNA and 1 μL (1:1000 dilution) of Ambion ERCC ExFold RNA Spike-in Control
Mix 1 was added to 30 ng of total RNA before mRNA isolation. cDNA libraries were
prepared according to manufacturer’s protocol. The six libraries were sequenced in
two multiplex runs on an Illumina HiSeq2000 sequencer, yielding approximately
50 million 100 base pair (bp) paired-end reads per library. See Fig. 9.1a for a schema
of the experimental design. We made use of a custom reference sequence, defined as
the union of the zebrafish reference genome (Zv9, downloaded from Ensembl [12],
v. 67) and the ERCC spike-in sequences (http://tools.invitrogen.com/downloads/

http://tools.invitrogen.com/downloads/ERCC92.fa
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Ctl. 3 Ctl. 1 Ctl. 5 Trt. 9 Trt. 11 Trt. 13 

Day 1 Day 2 Day 3 

Run 1 
1 multiplex lane 

Run 2 
1 multiplex lane 

2 sample types x 3 lib. prep. x 2 runs = 12 samples

92 negative controls ERCC Mix 1 a

b
ERCC Mix 1

A1 A2 A3 A4 B1 B2 B3 

ERCC Mix 2

Flow-cell F1 
8 multiplex lanes

Flow-cell F2 
8 multiplex lanes

2 sample types x 4 lib. prep. x 2 flow-cells x 8 lanes = 128 samples

23 negative controls 
69 positive controls 

B4 

Fig. 9.1 Experimental design. Schematic representation of the design of the two experiments
considered in this chapter (a) Zebrafish dataset (b) SEQC dataset

ERCC92.fa). Reads were mapped with TopHat [36] (v. 2.0.4, default parameters
and supplying the Ensembl GTF annotation through the -G option). Gene-level read
counts were obtained using the htseq-count python script [2] in the “union” mode
and Ensembl (v. 67) gene annotation. After verifying that there were no run-specific
biases (data not shown), we used the sums of the counts of the two runs as the
expression measures for each library. Genes/spike-ins with more than five reads in
at least two libraries were retained, resulting in a total of 20,806 (out of 32,561)
expressed genes and 59 (out of 92) “present” spike-ins. The FASTQ files containing
the raw data are publicly available in GEO with the accession number GSE53334.

http://tools.invitrogen.com/downloads/ERCC92.fa
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9.2.1.2 SEQC Dataset

The third phase of the MicroArray Quality Control (MAQC) Project, also known
as SEquencing Quality Control (SEQC) Project [33], aims to assess the technical
performance of high-throughput sequencing platforms by generating benchmarking
datasets. The design includes four different sample types, namely Samples A, B, C,
and D. Sample A is Stratagene’s universal human reference (UHR) RNA; Sample B
is Ambion’s human brain reference RNA; Samples C and D are mixes of Samples
A and B, in a 3:1 and 1:3 ratio, respectively. The four types of reference RNA
samples were sent to several sequencing centers around the world and sequenced
using different platforms. We focus on the Illumina HiSeq2000 data. Each center
prepared 4 libraries for each sample type and multiplex pools of the resulting 16
barcoded libraries were sequenced in 8 lanes of 2 flow-cells, yielding a total of 16
(technical) replicates per library and 64 replicates per sample type. Prior to library
preparation, Ambion ERCC ExFold RNA Spike-in Control Mix 1 and Mix 2 were
added to Sample A and Sample B RNA, respectively, in a proportion of 50 μL per
2,500 μL of total RNA (nominal proportion of 0.02). Here, we consider only Sample
A and Sample B sequenced at the Australian Genome Research Facility (AGRF).
See Fig. 9.1b for a schema of the experimental design.

The data consist of an average of ten million 100 bp paired-end reads per
sample.1 We made use of a custom reference sequence, defined as the union of
the human reference genome (GRCh37, downloaded from Ensembl, v. 69) and
the ERCC spike-in sequences. Reads were mapped with TopHat (v. 2.0.6, default
parameters and supplying the Ensembl GTF annotation through the -G option).
Gene-level read counts were obtained using the htseq-count python script in the
“union” mode and Ensembl (v. 69) gene annotation. Genes/Spike-ins with more than
five reads in at least ten samples were retained, resulting in a total of 21,559 (out
of 55,933) expressed genes and 59 (out of 92) present spike-ins. The FASTQ files
containing the raw data will be made publicly available in GEO upon publication of
the main SEQC report.

In addition to the internal ERCC spike-in positive and negative controls, we use
external qRT-PCR positive and negative controls from the original MAQC study [8].
As in our previous work [7,28], among the genes assayed by qRT-PCR, we consider
only those that match a unique Ensembl gene, are called present in at least three out
of each of the four Sample A and Sample B qRT-PCR runs, and have standard errors
across the 8 runs not exceeding 0.25. We found 698 qRT-PCR genes in common
with the RNA-seq filtered genes and use this subset to compare expression measures
between the two assays.

1Throughout this chapter, we shall use the term sample to refer to an observational unit of interest,
i.e., a set of reads from a given lane for a particular library. Thus, as indicated in Fig. 9.1b, there
are 128 samples in total for the SEQC dataset, 64 of the reference Sample A type and 64 of the
reference Sample B type.
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9.2.1.3 ERCC Spike-In Standards

The External RNA Control Consortium (ERCC) [3] developed a set of 92
polyadenylated transcripts that mimic natural eukaryotic mRNAs. These standards
are designed to have a wide range of lengths (250–2,000 nucleotides) and GC-
contents (5–51 %) and can be spiked into RNA samples prior to library preparation
at various concentrations. Ambion commercializes two ERCC spike-in mixes,
ERCC ExFold RNA Spike-in Control Mix 1 and Mix 2. The two mixes contain
the same set of 92 spike-in standards, but at different concentrations. This allows
the design of experiments in which the spike-ins can be used both as positive and
negative controls. In particular, the spike-ins are divided into four groups of 23
transcripts each, spanning a 106-fold concentration range, with approximately the
same length and GC-content distributions. The first group has an expected fold-
change (cf. molar ratio) of 4:1 between the two mixes (Mix1:Mix2); the second
group has an expected fold-change of 1:1 (negative controls); the third and fourth
groups have expected fold-changes of 2:3 and 1:2, respectively. (See the white paper
at http://tools.invitrogen.com/content/sfs/manuals/cms_086340.pdf for additional
details.)

In the Zebrafish dataset, Mix 1 was added to all samples, so that all spike-ins can
be used as negative controls. In the SEQC dataset, Mix 1 was added to Sample A
and Mix 2 to Sample B, so that 23 spike-ins can be used as negative controls and
69 as positive controls (23 over-represented and 46 under-represented in Sample A
compared to Sample B).

9.2.2 Normalization Methods

In the remainder of the chapter, in order to avoid problems with the log trans-
formation of zero counts, we will adopt the convention (typical in the RNA-seq
literature) of adding a small offset to the counts. Hence, log(x) should be interpreted
as log(x+ ε). In the data analysis, we set ε = 1.

Recently-proposed between-sample normalization procedures to be compared in
our study fall into two main groups, global-scaling and non-linear approaches.

9.2.2.1 Global-Scaling Normalization

Most normalization approaches proposed thus far scale gene-level read counts by a
single normalization factor per sample, implicitly assuming linear nuisance effects
on gene expression measures. Such global-scaling normalization methods differ in
their choice of summary statistic for the per-sample read count distribution to be
used as scaling factor.

http://tools.invitrogen.com/content/sfs/manuals/cms_086340.pdf
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Using notation similar to that of [32], one can present all global-scaling
normalization procedures within the following common framework. Define Yi j as
the observed read count for gene j ( j = 1, . . . ,J) in sample i (i = 1, . . . ,n) and μi j as
the corresponding unknown expected expression level, i.e., the number of transcripts
for gene j in sample i, times the length of gene j. The expected value of Yi j can then
be modeled as

E[Yi j|Ni] = μi j ·Si, (9.1)

where Ni = Yi· = ∑ j Yi j is the total number of mapped reads for sample i and Si the
unknown normalization factor for sample i.

Total-count (TC) normalization estimates Si by Ŝi = Ni, implicitly assuming that
all samples have the same total RNA output. This assumption is problematic, as
total RNA output can vary drastically from sample to sample depending on RNA
composition, and explains why TC normalization can lead to biased inference of
differential expression [7, 32].

Upper-quartile (UQ) normalization estimates Si by the upper-quartile of the
distribution of gene-level read counts for sample i [7].

The Trimmed Mean of M values or TMM method of [32] takes a slightly different,
pairwise approach to global-scaling normalization. Since relative RNA abundance
in two samples is easier to estimate than absolute abundance in one sample, the
normalization factors Si are estimated based on measures of expression fold-changes
between each sample and a reference, such as the sample for which the upper-
quartile of the read count distribution is closest to the average upper-quartile across
samples. Specifically, given a reference sample r, define, for each gene j and sample
i, measures of expression log-fold-change (Mr

i j) and absolute expression (Ar
i j) in the

following way:

Mr
i j = log2

Yi j/Ni

Yr j/Nr
,

Ar
i j =

1
2

log2 ((Yi j/Ni) · (Yr j/Nr)) , for Yi j > 0, Yr j > 0. (9.2)

The gene-level read counts for sample i are then scaled by Ŝr
i , defined in terms of a

variance-weighted trimmed average of M values,

log2(Ni/Ŝr
i ) =

∑ j∈J r wr
i jM

r
i j

∑ j∈J r wr
i j

,

where the set J r corresponds to the genes that remain after discarding those with
M values in the top and bottom 30th percentiles and A values in the top and bottom
fifth percentiles (trimming percentages could be tailored to the data at hand) and the
weights

wr
i j =

Ni −Yi j

NiYi j
+

Nr −Yr j

NrYr j
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reflect the variance of the read counts, as estimated by the delta method. The
resulting estimator of Si can hence be seen as a robust estimator of the global
expression fold-change between sample i and the reference r.

Anders and Huber [1] independently proposed a very similar pairwise global-
scaling normalization procedure, where Si is estimated by the median fold-change
between the counts of sample i and a synthetic reference sample, whose counts
are defined as the geometric means of the counts across samples. We refer to this
method as AH, after the authors’ initials.

9.2.2.2 Non-Linear Normalization

Bullard et al. [7] proposed to normalize RNA-seq gene-level read counts using a
full-quantile (FQ) approach inspired from the microarray literature [5]. Briefly, the
procedure consists in specifying a common reference distribution defined in terms
of a function of the sorted counts (e.g., median) across samples and in projecting
the quantiles of the count distribution of each sample onto that reference. This is
equivalent to matching all quantiles of the read count distributions across samples.

Also borrowed from the microarray literature, loess normalization involves
robust local regression fits for mean-difference plots (MD-plots) of log counts
for pairs of samples [5, 9]. Specifically, cyclic loess (CL) normalization considers
all possible pairs of samples (i, i′), regresses log-fold-change measures logYi′ j −
logYi j on overall expression measures (logYi j + logYi′ j)/2 using loess, and defines
normalized expression measures based on residuals from the regression. Loess
normalization can also be performed for each sample paired with a synthetic
reference obtained, for example, by averaging counts across samples. The loess
fits can be based on either all genes or only a set of controls. For instance, Lovén
et al. [19] applied CL normalization to RNA-seq with ERCC spike-in sequences, by
performing loess fits only on the spike-ins and then interpolating/extrapolating the
fits and computing residuals for all of the genes.

Building on the microarray normalization method of [13], we developed a novel
normalization strategy for RNA-seq, coined RUV for remove unwanted variation
[29]. Briefly, RUV works as follows. Consider a generalized linear model, where
the observed RNA-seq read counts are regressed on both the known covariates of
interest (e.g., treatment) and unknown factors of unwanted variation (e.g., library
preparation). RUV makes use of a subset of the data (e.g., negative control genes)
to estimate the unwanted factors and adjusts for these in the model for differential
expression analysis (see Sect. 9.2.3 for details).

9.2.2.3 Using Control Sequences for Normalization

Suppose one has a set of negative control sequences known a priori not to be
differentially expressed between samples, e.g., ERCC spike-ins. Global-scaling
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normalization methods can be readily adapted to make use of such controls, by
simply computing the normalization factors based only on the controls.

Likewise, in loess normalization, the regression can be fit using only the control
sequences and then interpolated/extrapolated to normalize all of the genes. In RUV,
the factors of unwanted variation can be estimated using only the controls. Full-
quantile normalization, however, cannot be readily adapted to make use of controls.

Note that although Lovén et al. [19] used cyclic loess normalization based on the
ERCC spike-ins, our conclusions with CL normalization are not fully applicable to
their entire method, as the ERCC sequences were not spiked in proportion to the
number of cells in either the Zebrafish or SEQC dataset.

9.2.3 A General Framework for Normalization in the Context
of Differential Expression

In several RNA-seq applications, it is inevitable to separate normalization from
subsequent analyses. For instance, when dealing with class prediction or clustering,
the obvious pipeline is to first normalize gene-level counts into pseudo-counts
and then apply the classifier or clustering algorithm to the normalized expression
measures.

In differential expression (DE) analysis, however, it might be sensible and
convenient to directly model the original read counts and include normalization as
part of the model. Specifically, in the context of DE, the normalization model of
(9.1) can be combined with a Poisson or negative binomial generalized linear model
(GLM) [21] for read counts, such as the one used by edgeR [31] and DESeq [1].
Considering all J genes and n samples at once, this leads to the log-linear model

E[Y |X ] = exp(Xβ ), (9.3)

where Y is the n × J matrix of observed read counts, X an n× p design matrix
corresponding to covariates of interest/factors of “wanted variation” (e.g., treatment
effects), and β a p× J matrix of parameters of interest. In the typical context of
multiple class comparison, X is an ANOVA-like design matrix of indicator dummy
variables and the parameters in β represent expression log-fold-changes between
pairs of classes. Combining the models in (9.1) and (9.3), it is easy to show that

log μ = Xβ − logS, (9.4)

where μ is the n× J matrix of unknown expected expression levels and S is an
n× J matrix of normalization factors. The term O = − logS is referred to as an
offset in the usual GLM terminology [21]. For global-scaling normalization, the
offsets are constant within samples/rows, i.e., Si j = Si for each gene j. By allowing
gene-specific offsets, one can generalize the model to non-linear between-sample
normalization, as well as within-sample normalization, such as in [17, 28] for GC-
content effects.
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Remove unwanted variation (RUV) normalization is a somewhat different
approach, that includes in the model a term representing the nuisance factors. This
leads to the general model,

log μ = Xβ +Wα +O, (9.5)

where W is an n× k matrix with the unknown factors of “unwanted variation”, α
a k × J matrix of corresponding parameters, and O an n× J matrix of (possibly
gene-specific) offsets. This specification includes as special cases all normalization
methods of interest in this study. In particular, by forcing Wα = 0, one recovers all
the usual normalization methods of Sect. 9.2.2.

In order to estimate W for a given k, RUV assumes that one can identify a set
of Jc negative control sequences, i.e., a set of non-DE genes, for which βc = 0 and
log μc =W αc +Oc, where the subscript c denotes the restriction of matrices to the
set of Jc control sequences. The procedure works as follows.

• Either set the offset O to zero or estimate O from some other normalization
procedure such as upper-quartile normalization.

• Perform the singular value decomposition (SVD) of logYc −Oc, that is, write
logYc −Oc = UΛV T , where U is an n× n orthogonal matrix with columns the
left singular vectors of logYc −Oc, V a Jc × Jc orthogonal matrix with columns
the right singular vectors, and Λ an n×Jc rectangular diagonal matrix of singular
values (at most min(n,Jc) distinct non-zero singular values).

• For a given k, estimate W αc by Ŵαc = UΛkV T and W by Ŵ = UΛk, where
Λk is the n× Jc rectangular diagonal matrix obtained from Λ by retaining only
the k largest singular values and setting other diagonal entries to zero (drop null
columns to obtain W ).

• Plug Ŵ into (9.5), for the full set of J genes, and estimate both α and β by GLM
regression.

Note that for RUV normalization, one may or may not include an offset O in the
model. In practice, we found that estimating O via upper-quartile normalization or
forcing O = 0 in (9.5) lead to very similar results (data not shown).

The two main tuning parameters of RUV are the set of negative control sequences
and the number k of factors of unwanted variation. Here, we consider two types of
negative controls: a set of “in silico” empirical controls, defined as all but the 5,000
most DE genes (found prior to RUV normalization, e.g., based on UQ-normalized
counts) and the set of ERCC spike-in controls. The choice of k should be guided
by considerations that include sample size, extent of technical effects captured by
the first k factors, and extent of differential expression [13, 14]. For instance, the
small sample size (n = 6) for the Zebrafish dataset only allows one or two factors
of unwanted variation. Here, we set k = 1. The SEQC dataset has a much greater
sample size (n = 128) and more factors can be considered. Here, we drop the first
factor, as it captures the biological factor of interest, and retain the next k = 3 factors.
We observed that RUV is robust to the choice of k for the SEQC dataset [29].
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9.2.4 Evaluation Criteria

9.2.4.1 Relative Log Expression

A particularly useful transformation of read counts is the relative log expression
(RLE), defined, for each gene, as the log-ratio of a read count to the median read
count across samples. Comparable samples should have similar RLE distributions,
that are centered around zero. Unusual RLE distributions could reveal suspicious
samples (e.g., problematic library) or batch effects.

9.2.4.2 Differential Expression Analysis

To compare normalization procedures in terms of their impact on differential
expression results, we consider the negative binomial GLM analysis of edgeR [31],
with tag-wise dispersion. Likelihood ratio tests of DE are performed for the
following effects: for the Zebrafish dataset, treatment effect, and for the SEQC
dataset, Sample A vs. B effect and, in the “null” experiment of Fig. 9.6, library
preparation effects for samples of type A. A gene is declared DE if the associated
null hypothesis is rejected at a false discovery rate (FDR) [4] of 0.05.

9.2.4.3 Bias in Expression Fold-Change Estimation

Expression log-fold-changes are estimated by log-ratios of average normalized read
counts between two sets of samples corresponding to the two conditions of interest.
In order to compute bias, one needs to know the true value of an expression fold-
change.

Since qRT-PCR is typically viewed as producing accurate estimates of expression
levels, we use the qRT-PCR expression measures as a gold standard for the SEQC
dataset. Specifically, we define as “true” Sample A/Sample B expression log-fold-
change the log-ratio between the average of the 4 qRT-PCR measures of Sample
A and the average of the 4 measures of Sample B. The corresponding RNA-seq
estimate is the log-ratio between the average of the normalized counts for the 64
samples of type A and the average of the normalized counts for the 64 samples
of type B. For a given gene, bias is then estimated as the difference between the
estimated log-fold-changes from the two technologies.

9.2.5 Software Implementation

All normalization methods examined in this study are implemented in open-
source R [26] packages released through the Bioconductor Project (http://www.
biocondutor.org) [15]: affy (CL), DESeq (AH), EDASeq (UQ, FQ), edgeR (TMM),
RUVSeq (RUV).

http://www.biocondutor.org
http://www.biocondutor.org
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9.3 Results

9.3.1 Behavior of the ERCC Spike-In Controls

One of the aims of this chapter is to evaluate the performance of the ERCC spike-in
standards, with particular focus on the possibility of using them as controls in the
normalization procedure. In order for the spike-ins to be trusted for normalization,
two conditions must be satisfied: (i) spike-in read counts are not affected by the
biological factors of interest and (ii) the unwanted variation affects spike-in and
gene read counts similarly.

Figures 9.2, 9.3, and 9.4 show that, in our datasets, neither condition is met. In
Fig. 9.2, while the proportion of reads mapping to the ERCC spike-in sequences is
similar for samples from the same library, it can vary substantially between libraries
and can deviate markedly from the nominal value. This result confirms the findings
of [25] that suggest that poly(A) selection may play a role in spike-in detection.
Even more troubling is the observed dependence of spike-in counts on the biological
condition: for the SEQC dataset, the proportion of reads mapping to the spike-ins is
consistently greater in Sample B than in Sample A (Fig. 9.2a); for the Zebrafish
dataset, the proportion is consistently greater in treated than in control samples
(Fig. 9.2b).

Figure 9.3 illustrates the variability across samples of individual spike-in read
counts for the SEQC dataset (similar findings for the Zebrafish dataset are not
shown). It is clear that the variability of read counts is very large, especially for

reads mapping to ERCC spike−ins

0% 0.5% 1% 1.5% 2% 2.5% 3%
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A4

B1
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B4

a b

reads mapping to ERCC spike−ins

0% 2% 4% 6% 8% 10%

Ctl. 1

Ctl. 3

Ctl. 5
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Trt. 11

Trt. 13

Fig. 9.2 Behavior of the ERCC spike-in controls. Proportion of reads mapping to ERCC spike-in
sequences out of total number of mapped reads; vertical dashed line indicates nominal proportion.
(a): SEQC dataset, each shade of blue represents one of the four Sample A libraries and each
shade of red represents one of the four Sample B libraries (16 replicates per library). (b): Zebrafish
dataset, treated libraries are displayed in orange and control libraries in purple. There is an evident
library preparation effect and, more disturbingly, a treatment effect, on the proportion of reads
mapping to the spike-ins. This may lead to confounding when identifying differentially expressed
genes
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Fig. 9.3 Behavior of the ERCC spike-in controls, SEQC dataset. Unnormalized log(count+1) for
individual ERCC spike-in sequences across the 128 samples, by ERCC control group. Sample A:
Sample B nominal fold-change: (a) Group A: 4:1; (b) Group B: 1:1; (c) Group C: 2:3; (d) Group
D: 1:2. The color bar at the top of each plot indicates the library corresponding to each sample,
using the same color code as in Fig. 9.2a

sequences spiked in at low concentrations. Out of the full set of 92 spike-ins, only
the ∼ 40 most abundant have a reasonable signal-to-noise ratio, while counts for the
least abundant are practically noise. Even though the variability in read counts is
expected to depend on sequencing depth, we found that the same set of 59 spike-ins
were present in our two datasets, despite much deeper sequencing for the Zebrafish
dataset (see Sect. 9.2.1). Not surprisingly, these were the 59 spike-ins with highest
concentration and, hence, highest read counts.

Finally, systematic library and/or treatment effects on the ERCC spike-ins have
important downstream effects. For instance, when comparing two control libraries
in the Zebrafish dataset, the distribution of log-ratios of read counts for the spike-ins
is markedly different from the corresponding distribution for the ensemble of genes
(Fig. 9.4a). This is most likely an artifact, as one does not expect any treatment
effects when comparing two control samples.
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Fig. 9.4 Behavior of the ERCC spike-in controls, Zebrafish dataset. Mean-difference plots (MD-
plots) of log counts for two control samples (Library 3 vs. Library 1): red points correspond
to ERCC spike-ins; black and red lines are lowess fits for all genes and only the spike-ins,
respectively. (a): Unnormalized counts. As expected, count log-ratios are scattered around the zero
line, indicating that most genes are equally expressed in the two control samples. The negative
slope of the black line indicates the need for normalization. The very different behavior of the
spike-ins with respect to the bulk of the genes is highlighted by the difference in the two lowess
fits (red and black lines). (b): Cyclic loess normalization on ERCC spike-ins. By normalizing all
genes based on the spike-in loess fit, CL normalization wrongly shifts upward gene expression
log-fold-changes for the ensemble of genes

9.3.2 Normalization

9.3.2.1 Normalization Based on All Genes

In this section, we evaluate the performance of several normalization methods,
applied to the full set of genes.

Figure 9.5 displays boxplots of relative log expression for normalized counts for
the Zebrafish dataset. Properly normalized counts should have RLE distributions
centered around zero and as similar as possible across samples. All methods lead
to reasonable normalized counts, with the exception of TC normalization which
leads to RLE distributions similar to those of unnormalized counts. The excessive
variability of Library 11 is not removed by global-scaling normalization and only
partially reduced by FQ and CL normalization. By contrast, RUV has the extreme
effect of shrinking the expression measures of Library 11 towards zero.

To assess the ability of each normalization method to remove unwanted technical
effects in the SEQC dataset, we test the null hypothesis of equal mean expression
for the four libraries of Sample A (i.e., libraries A1–4), considering the 16 samples
within each library as replicates. Given the same starting RNA sample, none of the
genes are expected to be DE between the four libraries and p-values are expected
to follow a uniform distribution. Figure 9.6 displays the empirical cumulative
distribution function (ECDF) of edgeR p-values for tests of differential expression
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Fig. 9.5 RLE distributions for normalized counts, Zebrafish dataset. Boxplots of relative log
expression (RLE) for normalized counts. RLE distributions are expected to be centered around
zero and as similar as possible across samples (a) Unnormalized (b) TC (c) UQ (d) TMM (e) AH
(f) FQ (g) CL (h) RUV

between replicate libraries. The significant library preparation effect observed for
unnormalized counts is only attenuated by almost all normalization methods; only
RUV is able to remove most of this unwanted effect.

9.3.2.2 Normalization Based on ERCC Spike-In Controls

One largely unexplored direction is the use of control sequences in the RNA-seq nor-
malization procedure itself. Control sequences have been successfully employed in
microarray normalization, for mRNA arrays [24,39] and, more recently, microRNA
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Fig. 9.6 p-value distributions for tests of library preparation effects based on normalized counts,
SEQC dataset. Empirical cumulative distribution function (ECDF) of p-values for tests of
differential expression between Sample A replicate libraries. Solid and dashed lines correspond,
respectively, to normalization procedures based on all genes and only the ERCC spike-in
sequences. We expect no DE and hence p-values to follow a uniform distribution, with ECDF
as close as possible to the identity line. Only with RUV based on all genes do p-values behave
close to expectation

arrays [38]. One of the advantages of using negative controls for normalization is
the possibility of relaxing the common assumption that the majority of the genes are
not differentially expressed between the conditions under study.

For the Zebrafish dataset, the RLE boxplots of Fig. 9.7 indicate that none of the
normalization procedures, except for RUV, lead to reliable read count distributions
when based only on the ERCC spike-ins. The poor performance of control-based
normalization is likely due to the misbehavior of the spike-ins, as noted above and
illustrated, in particular, in Fig. 9.2, which suggests that the proportion of reads
mapping to the spike-ins could be confounded with sequencing depth. The MD-
plots of log counts for a pair of control libraries in Fig. 9.4 further demonstrate
the poor results of control-based CL normalization: normalizing based on a loess
fit only on the spike-ins (red line) wrongly shifts upward all count log-ratios in a
situation where one does not expect any global shift in expression.

The poor performance of normalization based on the ERCC spike-ins is con-
firmed with the SEQC dataset. The ECDF of p-values in Fig. 9.6 indicate that, for
each normalization procedure, the version based on all of the genes (solid lines) is
always more successful in reducing library preparation effects than that based only
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Fig. 9.7 RLE distributions for spike-in-normalized counts, Zebrafish dataset. Boxplots of relative
log expression for normalized counts based on the ERCC spike-in controls. RLE distributions are
expected to be centered around zero and as similar as possible across samples (a) Unnormalized
(b) TC (c) UQ (d) TMM (e) AH (f) CL (g) RUV

on the spike-ins (dashed lines). This is true for RUV as well; although its spike-in-
based version still outperforms all other approaches.

9.3.2.3 Impact on Differential Expression

Normalization has been shown to have a strong impact on the inference of
differential expression [7, 10, 28]. Here, we exploit the availability of external qRT-
PCR controls for the SEQC dataset (see Sect. 9.2.1.2) to compare normalization
methods in terms of DE results.
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Fig. 9.8 Impact of normalization on differential expression results, SEQC dataset. Difference
between RNA-seq and qRT-PCR estimates of Sample A/Sample B expression log-fold-changes,
i.e., bias in RNA-seq when viewing qRT-PCR as a gold standard. (a): Normalization based on all
genes. (b): Normalization based only on the ERCC spike-ins

Figure 9.8 displays boxplots of differences between RNA-seq and qRT-PCR
estimated Sample A/Sample B expression log-fold-changes for various normaliza-
tion approaches. By viewing qRT-PCR as a gold standard, one can interpret these
differences as estimating bias in RNA-seq. When using all genes to normalize
the data (Fig. 9.8a), all methods lead to good results with respect to qRT-PCR.
Thanks to the large sample size and balanced design of the SEQC dataset, even
without normalization, there is only a slight bias in log-fold-change estimation.
TC-normalized log-fold-changes are more biased than unnormalized log-fold-
changes; all other methods improve upon no normalization, with UQ, FQ, and RUV
leading to unbiased estimates. The results are much worse when normalization is
based only on the ERCC spike-ins. All spike-in-based methods, but RUV, introduce
more bias than no normalization and only RUV leads to unbiased estimates.

The absence of biological replication and the extreme difference between Sample
A and Sample B make the SEQC dataset rather artificial and a more realistic and
biologically meaningful dataset is required to confirm our findings. However, the
Zebrafish dataset lacks external controls to validate differential expression results.
One can nonetheless examine the distribution of p-values for tests of DE between
treated and control samples. Under the assumption that most genes are non DE,
one expects this distribution to be a mixture between a uniform distribution (for the
majority of non-DE genes) and a point mass at zero (for the few DE genes). The
ECDF of p-values in Fig. 9.9 show that this is indeed the case for normalization
procedures based on all genes (solid lines). However, using only the ERCC spike-
ins leads to unrealistic distributions, very far from uniform (dashed lines). Once
again, the notable exception is RUV, which leads to good results even when using
the spike-ins as negative controls.
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Fig. 9.9 Impact of normalization on differential expression results, Zebrafish dataset. Empirical
cumulative distribution functions of p-values for tests of differential expression between treated
and control samples. Solid and dashed lines correspond, respectively, to normalization procedures
based on all genes and only the ERCC spike-in sequences. We expect a uniform distribution for
the bulk of non-DE genes, with a spike at zero corresponding to a few DE genes. This is the case
for normalization procedures based on all genes (solid lines), but, with the exception of RUV, not
for procedures based only on the ERCC spike-ins (dashed lines)

9.4 Conclusions

The possibility of using spike-in sequences as controls to normalize RNA-seq data
is appealing, as it allows us, among other things, to relax the usual assumption that
only a small proportion of genes are differentially expressed. Here, we have seen
that the ERCC spike-in standards are not reliable or stable enough to be used in
standard global-scaling or regression-based normalization procedures. In particular,
for both the Zebrafish and the SEQC datasets, spike-in read count distributions vary
substantially between technical replicate libraries (Fig. 9.2). Moreover, signal-to-
noise ratio is disturbingly low, especially for low-concentration spike-ins (Fig. 9.3).

All normalization methods compared here perform similarly in terms of relative
log expression and impact on differential expression results: they lead to satisfactory
results when based on all genes and to very poor results when based only on
the ERCC spike-ins (Figs. 9.5, 9.7, 9.8, and 9.9). This is not surprising, given the
previously-noted misbehavior of the spike-ins. One notable exception is RUV, which
leads to good results whether based on all genes or only the spike-ins. For the
SEQC dataset, RUV is the only normalization procedure able to fully remove library
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preparation effects (Fig. 9.6); for the Zebrafish dataset, its effect is to down-weight
outlying Library 11 (Fig. 9.5h), thereby adding robustness to subsequent tests of
differential expression.

Internal and external controls are essential for the analysis of high-throughput
data and spike-in sequences have the potential to help researchers better adjust
for unwanted technical effects. With the advent of single-cell sequencing [35], the
role of spike-in standards should become even more important, both to account
for technical variability [6] and to allow the move from relative to absolute RNA
expression quantification. It is therefore essential to ensure that spike-in standards
behave as expected and to develop a set of controls that are stable enough across
replicate libraries and robust to both differences in library composition and library
preparation protocols.

Acknowledgements We thank Leming Shi for providing the SEQC pilot data and Laurent Jacob
for his help with the software implementation of the RUV method.
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Chapter 10
Cluster Analysis of RNA-Sequencing Data

Peng Liu and Yaqing Si

Abstract RNA-seq technology has been widely adopted to study global gene
expression. By grouping genes with similar expression profiles across treatments,
cluster analysis enables us to organize and visualize results from RNA-seq experi-
ments. Such analysis often provides insights into gene functions and gene networks,
and hence it is a useful technique that has been routinely applied in gene expression
studies. In this chapter, we describe several clustering algorithms that have been
applied to RNA-seq data analysis: K-means clustering, hierarchical clustering,
model-based clustering, and hybrid-hierarchical clustering algorithms. In addition,
we illustrate the applications of these clustering algorithms in a maize dataset and
discuss some remaining challenges in cluster analysis of RNA-seq data.

10.1 Introduction

Next-generation sequencing (NGS) technologies can be used to measure the
abundance of messenger RNA (mRNA) in a sample, and this resulting technology is
called RNA-sequencing (RNA-seq). In the pioneering studies using RNA-seq, only
two treatment groups were analyzed [22, 40]. In such experiments, detecting genes
that are differentially expressed between treatment groups is the major goal of the
analysis. With the increasing popularity of RNA-seq experiments, there have been
more experiments with larger scale that involve multiple treatment groups or many
samples. Cluster analysis is a useful tool for learning information from such data.
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Table 10.1 An RNA-seq
data matrix [19]. A total of G
genes are measured for each
of the n samples, and the
count of sequence reads
mapped to each gene
measures the expression level
of the corresponding gene

Sample

Gene 1 2 3 · · · n

1 16 35 27 · · · 22
2 313 306 300 · · · 279
3 8 8 6 · · · 30
4 226 156 231 · · · 350
· · · · · · · · · · · · · · · · · ·
G 11 18 17 · · · 28

Cluster analysis is the process of “grouping similar objects”. In other words,
cluster analysis searches for groups (clusters) in the data, in such a way that
objects belonging to the same cluster share similar features whereas objects in
different clusters are dissimilar. In the context of gene expression studies, either
gene-based or sample-based clustering may be applied. Gene-based clustering refers
to the process of grouping genes based on their expression values across different
treatment groups. Such cluster analysis helps identify groups of genes that are co-
expressed, and co-expressed genes tend to be functionally related. For example,
such genes might be co-regulated by the same transcription factor or be involved
in the same biological pathway. Hence gene-based clustering may shed light on
functions of genes that may not be easy to discover by going through the list
of differentially expressed genes one by one. Cluster analysis may also facilitate
gene network analysis and gene annotation. Hence, gene-based clustering has
been widely used in interpreting gene expression data. Alternatively, sample-based
clustering refers to the process of grouping samples based on a long list of features
that correspond to the expression levels of genes. Such sample-based clustering
might reveal relationships among the samples. For example, patients with similar
clinical phenotype might have different molecular profiles. Clustering samples may
be used for the detection of sub-groups which are difficult to identify based on
traditional morphology-based methods [16]. Many of the clustering algorithms can
be applied to both gene-based and sample-based clustering. In this chapter, we focus
on gene-based clustering algorithms that cluster genes according to their expression
profiles. We will comment on sample-based clustering in Sect. 10.3.

In a typical RNA-seq experiment, mRNA molecules of each sample are
extracted, converted to a library of complementary DNA fragments, and then
sequenced with a high-throughput sequencing platform, such as Illumina’s Genome
Analyzer. Millions of short sequences, or reads, are obtained for each sample and
then mapped to a reference genome. The count of reads mapped to a given gene
measures the expression level of this gene. Note that we use the term gene loosely
in this chapter, and it may refer to any interesting genomic feature which might
correspond to an exon or a gene isoform. Table 10.1 presents partial RNA-seq data
from a maize study [19], where each row corresponds to a gene and each column
corresponds to a sample.
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By the nature of the technology, RNA-seq data are counts, different from
microarray data that are typically treated as continuous and modeled with normal
distributions after a log transformation. In addition, there exists an apparent mean-
variance relationship for RNA-seq data [1], and the majority of genes have low
counts [4]. Based on these characteristics, normal distributions are not appropriate
for directly modeling of such data. Methods for microarray data are mostly based
on normal distributions and cannot be directly applied to the count data generated
by RNA-seq. Two types of methods have been applied for cluster analysis of
RNA-seq data. The first type of methods are based on transformed data where the
transformations aim to result in distributions that are closer to normal. Then methods
for microarray analysis can be borrowed to analyze the transformed RNA-seq data.
The other type of methods work with the count data directly by using appropriate
discrete distributions.

Another characteristic of RNA-seq data is its high-dimensionality. RNA-seq
technology measures an enormous number of genes simultaneously for each sample.
For example, the number of measured genes is more than 30,000 for human beings
[27], and more than 50,000 for maize [19]. In many biological systems, it is often
believed that only a small proportion of genes are differentially expressed between
different conditions or treatments. Including genes that are equivalently expressed
across conditions would increase the background noise and computational cost of
cluster analysis. Therefore, we recommend cluster analysis only for genes that are
identified as differentially expressed with proper multiple testing error control. This
typically leads to clustering a much smaller number of genes and results in more
meaningful interpretations.

This chapter is organized as follows. In Sect. 10.2, we describe the models that
could be used to fit RNA-seq data. In Sect. 10.3, we present several clustering
algorithms that have been applied to RNA-seq data analysis. Section 10.4 presents
an example study, and Sect. 10.5 describes the implementation of different algo-
rithms using available R packages. This chapter concludes with some discussion in
Sect. 10.6.

10.2 Models for RNA-seq Data

In this chapter, we let Ygi j denote the count of reads mapped to gene g for replicate j
of treatment i for g= 1, · · · ,G, i = 1, · · · , I, j = 1, · · · ,ni, where G is the total number
of genes of interest, I is the number of treatment groups, and ni is the number of
replicates for treatment i. In this section, we first introduce some transformation
methods that have been applied to RNA-seq data, and then we discuss two models
used to fit the count data directly.
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10.2.1 Transformations Applied to RNA-seq Data

Gene expression measurements using RNA-seq technology are discrete counts.
Typically, the majority of genes have low counts, and the distributions of data are
right-skewed. Commonly used dissimilarity measures in cluster analysis, such as the
Euclidean distance and correlation based distance (to be introduced in Sect. 10.3)
may not work well for the count data because these dissimilarity measures are
sensitive to outliers and skewness. There were several published cluster analyses
of RNA-seq data applied to the log-transformed RPKM values [19, 24, 34] where
RPKM stands for reads per kilobase of exon model per million mapped reads and is
defined [23] as

RPKMgi j =
109 ·Ygi j

Ci j ·Lg
(10.1)

where Ci j = ∑G
g=1 Ygi j is the total count for the i jth sample, and Lg is the length

of gene g in number of bases. RPKM was introduced by Mortazavi et al. [23] as a
normalization method to make RNA-seq data comparable across samples and across
genes because the read count Ygi j is influenced by the sequencing depth (which is
measured by the total number of reads for each sample in RPKM) and the length of
each gene. The RPKM values are no longer discrete counts, and log-transformation
of RPKM values reduces the skewness of the data. The log-transformed RPKM
values are closer to normally distributed than the original count data. Methods
that work well for normally distributed data, such as hierarchical clustering and K-
means clustering using Euclidean distance, have been applied to the log-transformed
RPKM values [19, 24, 34]. Note that the original definition of RPKM uses the
total number of reads for each sample, Ci j , to measure the sequencing depth [23].
Because this measure is affected by the most highly expressed genes that are only
a small proportion of all genes [4], it may not be a good quantification of the
sequencing depth. Several different estimates of the relative sequencing depth (the
normalization factor) have been proposed and will be reviewed in Sect. 10.2.3.
These normalization factors (sgi j) can be used as a substitute for Ci j in (10.1) to
calculate normalized expression values. The average of transformed data can be
calculated for each gene and treatment, and the resulting data can be subjected to
gene-based clustering.

Another characteristic of RNA-seq data is that there exists an apparent mean-
variance relationship [1]. It was noted that “it is more important to model the mean-
variance relationship correctly than it is to specify the exact probabilistic distribution
of the counts” [18]. Several efforts have been made to transform RNA-seq data to
reduce or eliminate the mean-variance relationship. The R package, DESeq [1],
provides a function that performs variance stabilizing transformation, and the R
package, limma [35], includes a function voom that estimates the mean-variance
relationship and generates a precision weight for each individual observation. It has
been shown in differential expression analysis that both transformations followed
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by the normal-distribution based empirical Bayes method (limma, [35]) provide
reasonably good results [38]. Such transformed data may also be used for cluster
analysis.

10.2.2 Discrete Distributions Proposed for RNA-seq Data

Other than making efforts to transform the count data generated by RNA-seq
experiments, there are also methods proposed to directly model the count data
using discrete probability distributions. The Poisson distribution has been shown
to be appropriate when only technical replicates are included [4, 22]. When there
are biological replicates, RNA-seq data may exhibit more variability than expected
by a Poisson distribution, which is known as the overdispersion phenomenon [1].
The negative binomial model has been proposed to handle the overdispersion
problem [1,32]. Methods based on Poisson and negative binomial models have been
developed recently by Witten [43] and Si et al. [37] for cluster analysis of RNA-seq
data. In this subsection, we describe our parameterization of the two models and
normalization for RNA-seq data.

10.2.2.1 Poisson Distribution

Suppose that Ygi j follows a Poisson distribution with mean λgi j that is parameterized
as

logλgi j = log(sgi j)+αg +βgi (10.2)

with ∑I
i=1 βgi = 0. The offset term sgi j is a normalization factor to adjust for varying

sequencing depths and other technical effects across replicates and across genes.
Several methods have been offered to estimate the normalization factor, and we will
review them in Sect. 10.2.3. These reviewed methods estimate one normalization
factor for each sample, i.e., sgi j = si j for g = 1,2, · · · ,G. To be more general, we
still denote the normalization factor by sgi j just in case gene-specific features, such
as gene length, are also involved in estimating the normalization factor.

10.2.2.2 Negative Binomial Distribution

The mean of the negative binomial distribution, λgi j, is modeled the same way as in
(10.2) for the Poisson distribution. As in Robinson and Smyth [31], the variance of
the negative binomial distribution is parameterized as

Var(Ygi j) = λgi j +φgλ 2
gi j. (10.3)
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Compared with the Poisson model, an extra dispersion parameter, φg, is introduced
for each gene and this allows the negative binomial model to handle extra variability
in the data as compared with the Poisson model. As φg → 0, the negative binomial
distribution converges to the Poisson distribution [5]. Because the negative binomial
model allows more flexibility in modeling the variance, and has been shown to fit
RNA-seq data well [1], it has been used often in differential expression analysis of
RNA-seq data [1, 15, 32, 36].

10.2.3 Normalization for RNA-seq Data

As in microarray data analysis, normalization needs to be done to remove or reduce
systematic biases, such as sequencing depth, in order to make different samples
comparable. Several methods have been proposed to normalize RNA-seq data
through estimating the offset term sgi j in both the Poisson and the negative binomial
models. A simple minded estimate of sgi j is the total number of reads for the i jth
sample [25], Ci j. Because the total read count is largely influenced by those highly
expressed genes that may only be a small proportion of all genes, Bullard et al.
[4] proposed the upper quartile of gene counts within the i jth sample as a more
robust estimate for sgi j where the upper quartile is calculated only using genes with
non-zero reads in at least one sample. Similar to the upper quartile normalization
method, two popularly applied R packages for RNA-seq data analysis, DESeq and
edgeR, employ normalization methods that are also robust. The DESeq package
uses a method that estimates sgi j by first calculating the ratio of the gene count in
a sample to the geometric mean of this gene across samples and then obtaining the
median of those ratios across genes for each sample [1]:

sgi j = si j = mediang

(
Ygi j

(∏i, j Ygi j)1/∑i ni

)

.

The Trimmed Mean of M Values (TMM) method [30] implemented in edgeR
computes each normalization factor from a trimmed mean of the gene-wise log fold
changes of the current sample to a reference sample. The reference [9] provides a
comprehensive evaluation of normalization methods using several datasets, and the
authors found that the median method of DESeq and the TMM method performed
better than other methods, including the total count and the upper quartile methods.
This observation is consistent with our experience in differential expression analysis
[36]. Once estimated from data, the normalization factor is often treated as known
in subsequent analysis [4, 22, 30].
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10.3 Clustering Methods

Cluster analysis has been routinely applied in multivariate analysis to discover
interesting patterns in a dataset. Many clustering methods tend to work well for
data that follow the normal distribution, either exactly or approximately, in each true
cluster. Examples of such algorithms include the K-means clustering [11,17] and the
model-based clustering [12]. The hierarchical clustering [11,17] using the Euclidean
distance is also a popular method for clustering continuous data. Such methods have
been applied to transformed RNA-seq data [19, 34], and they will be introduced in
Sect. 10.3.1. There have been two methods [37, 43] proposed for cluster analysis
using RNA-seq count data directly; these will be described in Sect. 10.3.2.

10.3.1 Clustering Methods for Transformed RNA-seq Data

Cluster analysis has been applied to transformed RNA-seq data such as the log-
transformed RPKM values [19, 34]. A variance stabilizing transformation or other
functions that transform count data closer to normality could also be applied with the
clustering methods discussed in this subsection. To cluster gene expression profiles,
we first take the average transformed data over replicates for each treatment and
each gene. The resulting vector of sample treatment means for each gene g, Xg, is
of length I and stores the features for gene (object) g to be used in cluster analysis.

10.3.1.1 Dissimilarity Measures

When clustering objects, we aim to put similar objects in the same cluster and
dissimilar objects in different clusters. The dissimilarity measure determines how
different two objects are. There are many choices of dissimilarity measures. Here,
we discuss two that have been widely used in gene expression data analysis.

Suppose Xg and Xh are the I-dimensional data vectors for the gth and hth objects,
respectively. Euclidean distance is one of the most commonly used dissimilarity
measure in a cluster analysis:

dE(Xg,Xh) = ||Xg −Xh||=
√

I

∑
i=1

(Xgi −Xhi)2. (10.4)

Euclidean distance measures the geometric distance between two objects, and it
is sensitive to mean-shifting and scale-changing because the magnitude of each
individual feature enters the calculation of this distance. In gene expression data
analysis, biologists are often more interested in grouping the patterns of gene
expression profiles, not necessarily requiring the expression magnitudes to be
similar for genes in the same cluster. Thus, the Euclidean distance is often applied
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to mean-centered data, where the mean (X̄g = ∑I
i=1 Xgi/I) is subtracted from each

element of the vector Xg. It is also common to apply the Euclidean distance to
standardized data, where standardization is done to each object by subtracting the
mean and dividing by the standard deviation of the elements in Xg.

Another commonly used dissimilarity measure is based on the Pearson correla-
tion. The 1 minus correlation dissimilarity is defined as:

dcorr(Xg,Xh) = 1− rXg,Xh = 1− ∑I
i=1 (Xgi − X̄g)(Xhi − X̄h)√

∑I
i=1 (Xgi − X̄g)

2
√

∑I
i=1 (Xhi − X̄h)

2
. (10.5)

Using the dissimilarity defined in (10.5), genes with similar expression profiles
tend to be clustered together, and hence it is one of the most popularly used
dissimilarity measures in gene expression analysis. In fact, the Euclidean distance
of the standardized data for Xg and Xh is equal to

√
2(I− 1)

√
1− rXg,Xh . So the

relative rankings of similarity using the two distance measures are the same.
Although we use gene-based clustering to illustrate the dissimilarity measure,

both the Euclidean distance and the Pearson-correlation based dissimilarity can be
applied to sample-based clustering too. In sample-based clustering, the objects are
the samples and each object has G features, one for each gene.

Both Euclidean distance and 1 minus correlation dissimilarity tend to be influ-
enced by skewness or outliers in the data and may not work well for non-normally
distributed data [16]. Although non-parametric measures of dissimilarity, such as
distance based on the Spearman’s rank correlation, may be used, such rank-based
measures use substantially less information [16]. Therefore, the transformations
discussed in Sect. 10.2.1 are recommended when using these Euclidean and 1 minus
correlation dissimilarities.

10.3.1.2 K-Means Clustering

The K-means algorithm partitions the whole set of objects into K groups. Let
X1,X2, . . . ,XG denote the objects to be clustered (each Xg is an I-dimensional
vector). Let C(g) denote the cluster assignment for the gth object. For a given K,
the K-means algorithm attempts to find a clustering of objects that minimizes

K

∑
k=1

∑
C(g)=k

||Xg − X̄k||2, (10.6)

where X̄k = ∑C(i)=k Xi/nk and nk is the number of objects in the kth cluster.
The K-means algorithm starts from an initial partition of the objects (genes) and

proceeds by iteratively calculating the centers (means) of clusters and reassigning
each object to the closest cluster center. This iteration continues until no more
reassignments take place. The initial clustering is often random, and several different
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runs of the K-means algorithm starting from different random initializations are
recommended. The top K-means clustering solution used in practice is obtained by
selecting the one that results in the smallest within-cluster sum of distances. The
number of runs that results in the solution may be used to check the reliability of the
solution. If it is only found in a few runs, better K-means clustering solutions may
exist, and more runs may be needed [8].

The K-means algorithm is fast and has been included in many standard statistical
software like R or popular tools for analyzing gene expression data such as “Gene
Cluster” [8] or “Cluster and TreeView” [10]. Hence, it has been widely applied
in gene expression data analysis. However, it requires a pre-specified K which is
typically unknown in practice. Determining the correct number of clusters, K, is an
interesting statistical problem and many solutions have been offered in the cluster
analysis literature, such as using the silhouette width [33], the gap statistic [41]
or the weighted rank aggregation method [28]. Ideally, different algorithms should
arrive at the same K, the optimal number of clusters. However, in the analysis of real
data that may consist of groups of genes whose expression profiles are not easily
distinguished from each other, different algorithms may lead to different choices
of K. Practitioners of K-means algorithm may use different choices of K in the
hopes that the results will provide a more complete view of the data. Alternatively,
hierarchical clustering can be applied.

10.3.1.3 Hierarchical Clustering

Hierarchical clustering algorithms use a different philosophy from the partitioning
methods such as the K-means algorithm. Instead of partitioning all objects into
a pre-defined number of groups, hierarchical clustering methods build a nested
sequence of clusters that can be displayed using a dendrogram. On the dendrogram,
the height of a node represents the dissimilarity between the two clusters merged
together at the node (Fig. 10.1). The tree can be cut at different levels to generate
the partition of objects into different numbers of clusters. Consequently, hierarchical
clustering allows the flexibility of choosing different K’s. In addition, the resulting
dendrogram or tree structure reveals the relationships among clusters and such
relationships are often interesting in studying functions of genes. Because of these
advantages, hierarchical clustering has been popularly applied to both microarray
and RNA-seq data analysis.

Two different algorithms can be used to generate the hierarchical tree. The
agglomerative (bottom–up) method starts with each object in its own little cluster,
and then successively merges clusters until only one large cluster remains which is
the whole dataset. On the other hand, the divisive (top–down) method works in an
opposite direction. It starts by considering the whole dataset as one cluster, and then
splits up clusters until each object is separate. The divisive method requires higher
computational cost, and thus it is not so popular in analysis of gene expression data
that often include thousands of objects (genes) to be clustered. Here, we focus on
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Fig. 10.1 The dendrogram of hierarchical clusters. The height of a node represents the dissimilar-
ity between the two clusters merged together at the node
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Fig. 10.2 The linkage methods that determine between-cluster dissimilarity

the agglomerative algorithm; readers are referred to [11] for more discussion on
divisive algorithms.

Once a dissimilarity measure is determined, the first step of agglomerative
method is to merge the pair of objects that have the smallest dissimilarity. When
we have clusters with several objects, we need to define the dissimilarity between
different clusters using linkage methods. Several linkage methods have been applied
in hierarchical agglomerative clustering (Fig. 10.2). Suppose that we want to
measure the dissimilarity between cluster A (shown in blue in Fig. 10.2) and cluster
B (shown in red in Fig. 10.2).

• Single linkage uses the minimum of all dissimilarities from an object in cluster
A to an object in cluster B to measure the dissimilarity between clusters A and B.
It is also called the nearest neighbor approach.
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• Complete linkage uses the maximum of all dissimilarities from an object in
cluster A to an object in cluster B to measure the dissimilarity between clusters
A and B. It is also called the farthest neighbor approach.

• Centroid linkage uses the dissimilarity between the centers of the clusters to
measure the dissimilarity between them.

• The average linkage uses the average of all dissimilarities from an object in
cluster A to an object in cluster B to measure the dissimilarity between clusters
A and B.

Different linkage methods often result in different hierarchical trees. Discussion
on properties and problems of these linkage methods can be found in [11,17]. Single
linkage method tends to result in long chains and cannot discern poorly separated
clusters. On the other hand, complete linkage may produce distinct clusters when
they do not really exist. Average linkage tends to produce the most appealing trees.
When using single linkage and complete linkage, the dissimilarity between two
clusters is measured by one pair of objects. Thus, different dissimilarity measures
that have the same relative ranking of dissimilarities will result in the same clusters.
For example, the Euclidean distance of standardized data and the 1 minus correlation
dissimilarity will result in the same results when single linkage or complete linkage
is used. However, when using average linkage method, two dissimilarity measures
that have the same relative ranking may result in different final configurations of
clusters.

10.3.2 Clustering Methods for Count Data

The K-means algorithm and the hierarchical algorithms using the dissimilarity
measures described in previous subsections have been widely applied to gene
expression data including transformed RNA-seq data. These methods provide
reasonable results if data are normally distributed, and many studies of the properties
of these methods also focus on normally distributed data [11]. However, the count
data that arise from RNA-seq experiments are far from normally distributed for most
genes. Another problem is that many genes may have low counts or zero counts
in some treatment groups, and this introduces problems in the log transformation.
Alternatively, model-based approaches using Poisson or negative binomial models
can handle this problem easily. Recently, there have been methods proposed for
clustering count data based on Poisson and negative binomial models [37, 43], and
these methods will be described in this subsection.

10.3.2.1 Hierarchical Clustering Using Poisson Dissimilarity

The Euclidean distance works well for normal distributions. In fact, the likelihood
ratio test statistic for testing the equality of two mean vectors of multivariate normal
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random variables [43] is a monotonic function of the Euclidean distance. In a similar
fashion, Witten [43] defined the Poisson dissimilarity measure for RNA-seq data
under the assumptions of Poisson distribution and independence among genes and
replicates. Basically, the Poisson dissimilarity is calculated as the approximated log
likelihood ratio statistic for testing whether two objects have the same mean vector
or not (with appropriate normalization adjustment for RNA-seq data). The paper
[43] focuses on sample-based clustering, not gene-based clustering. The Poisson
dissimilarity expression in [43] is proposed specifically for clustering samples.
Here, we follow the same idea and derive the Poisson dissimilarity for gene-based
clustering.

Assuming gene g and gene h have Poisson read counts Ygi j ∼ Pois(sgi jλgi)
and Yhi j ∼ Pois(shi jλhi), respectively, where sgi j,shi j are normalization factors and
λgi,λhi are the normalized gene expression levels under treatment i. Using our
notation in (10.2), log(λgi) = αg + βgi, and log(λhi) = αh + βhi. The Poisson
dissimilarity can be derived as the log likelihood ratio statistic to test the null
hypothesis H0 : λgi = λhi for all i = 1,2, · · · , I:

dpois(Yg,Yh) = ∑
i

[
Ygi log

(
Ygi(Sgi + Shi)

Sgi(Ygi +Yhi)

)
+Yhi log

(
Yhi(Sgi + Shi)

Shi(Ygi +Yhi)

)]
, (10.7)

where Ygi = ∑ j Ygi j,Sgi = ∑ j sgi j and Yhi = ∑ j Yhi j,Shi = ∑ j shi j. Here, we use the
additive property of independent Poisson distributions which implies that Ygi ∼
Pois(Sgiλgi) and Yhi ∼Pois(Shiλhi). When the normalization factors are only sample-
specific but not gene specific, i.e., Sgi = Shi = Si, (10.7) can be simplified to

dpois(Yg,Yh) = ∑
i

[
Ygi log

(
2Ygi

Ygi +Yhi

)
+Yhi log

(
2Yhi

Ygi +Yhi

)]
. (10.8)

Note that Ygi or Yhi can equal zero for genes that are not detected in ith treatment.
However, the log of zero is not defined. Such problem exists both in gene-based
and sample-based clustering. To avoid this problem, [43] replaces the maximum
likelihood estimators (MLEs) of the mean parameters by the posterior means
under a Gamma prior. Similar strategy could be applied for λgi and λhi here.
More specifically, assuming that λgi and λhi follow a Gamma(a,a) distribution
with mean 1 as in [43], the posterior means for of λgi and λhi can be derived as
(Ygi + a)/(Sgi + a) and (Yhi + a)/(Shi + a). The author of [43] used a = 1 in all
examples of that paper. These posterior means can be used to get a modified log
likelihood ratio statistic that does not suffer from the problem of having to take the
logarithm of zero.

As mentioned in Sect. 10.2, RNA-seq data with biological replicates often exhibit
over-dispersion compared to the Poisson model. To use the Poisson dissimilarity,
[43] proposed a power transformation introduced in [20]: Y a

gi → Y ′
gi where a ∈ (0,1]

so that
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I

∑
i=1

G

∑
g=1

(Y ′
gi −Y ′

g·Y ′·i/Y ′
..)

2

Y ′
g·Y ′

·i/Y ′
..

≈ (I − 1)(G− 1).

Such transformed data approximately follow a Poisson distribution, and formulas
(10.7) and (10.8) still apply although the transformed data do not take on integer
values.

Note that with the Poisson dissimilarity defined as (10.7) and (10.8), the goal
is to cluster λ g = (λg1,λg2, · · · ,λgI)

′. If clustering gene expression profiles β g =
(βg1, · · · ,βgI)

′ is of interest, then the likelihood ratio statistics should be derived for
testing this null hypothesis: H0 : βgi = βhi for all i = 1,2, · · · , I, where gene-specific
αg needs to be estimated under null hypothesis. There is no closed-form expression
of the maximum-likelihood estimator of the parameters in this case, and the Poisson
dissimilarity needs to be evaluated numerically.

Given the Poisson dissimilarity, hierarchical clustering may be applied with any
linkage method described in Sect. 10.3.1.3. In [43], the author applied complete
linkage with the Poisson dissimilarity derived for sample-based clustering, and
found that the proposed Poisson dissimilarity outperformed the Euclidean distance
whether applied directly to count data or applied to data transformed to stabilize
variance using the DESeq method [1].

10.3.2.2 Model-Based Clustering

Different from the hierarchical clustering approach using a Poisson dissimilarity
measure, Si et al. [37] proposed a partitioning method: model-based cluster analysis
for count data generated by RNA-seq experiments. Studies of clustering algorithms
with microarray data suggested that model-based algorithms perform better than
heuristic algorithms such as the K-means method [45]. Extensive research has
been done in model-based clustering with multivariate normal mixture distributions.
See, for example, [13], for an excellent review among others. As described in
Sect. 10.2, RNA-seq data are counts, and are typically fitted with Poisson or
negative binomial distributions. In [37], a model-based method based on Poisson
and negative binomial models is introduced for clustering gene expression profiles
of RNA-seq data.

The mean of Poisson and negative binomial models are both expressed as λgi j

where log(λgi j) = log(sgi j) + αg + βgi [model (10.2)]. As in [37], we focus on
clustering gene expression profiles according to gene expression changes along
different treatment groups, i.e., β g = (βg1, · · · ,βgI)

′, because this is often more
interesting than clustering the actual gene expression levels. The reference [37]
explains how to change the clustering algorithm if the goal is to cluster on the basis
of λλλ g which define gene expression levels across I treatments.

Model-based clustering methods assume that data are generated by a mixture of
probability distributions where each component corresponds to one cluster. We will
first present the model-based clustering algorithm using a Poisson mixture model.
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Then we discuss the algorithm for negative binomial mixture models. Suppose there
are K clusters, and let μk = (μk1, · · · ,μkI)

′ denote the center of cluster k with
∑I

i=1 μki = 0 for k = 1, · · · ,K. The likelihood of the Poisson mixture model for
gene g is ∑k pk f (Yg|αg,β g = μk), where Yg = {Ygi j}, f (Yg|αg,β g = μk) is the
likelihood if gene g belongs to the kth cluster and pk is the mixing proportion with
pk ≥ 0 and ∑K

k=1 pk = 1. Taking all genes together, the likelihood is:

L = ∏
g

∑
k

pk f (Yg|αg,β g = μk). (10.9)

Note that [37] assumed independence among genes as in other studies of gene
expression data analysis [43, 45]. In reality, it is likely that some subsets of genes
are dependent on each other. Currently there is little prior knowledge about the
relationship among genes, and reliable estimation of the correlation structure cannot
be done for tens of thousands of genes with only several replicates. For now, we
proceed with the assumption of independence among genes in calculating the like-
lihood. Under this assumption, [37] proposed an Expectation-Maximization (EM)
algorithm, as described below, to estimate the model parameters and cluster genes.

The MB-EM Algorithm

This entire algorithm effectively consists of the following two parts. Let the cluster
indicator, Zgk, be 1 if gene g belongs to the kth cluster and Zgk = 0 otherwise. Taking
all indicator variables Z = {Zgk : g = 1, · · · ,G;k = 1, · · · ,K} as missing data and the
EM algorithm proceeds by iteratively calculating the conditional expectations of Z
and updating the estimates for model parameters until convergence. Here is the EM
algorithm proposed in [37].

Part 1: The EM Algorithm

(i) Initialization: Set p(1)k according to prior knowledge about the cluster size.

If no such information is available, let p(1)k = 1/K for k = 1, · · · ,K. Choose

K vectors μ(1)
1 , · · · ,μ (1)

K , with ∑I
i=1 μ (1)

ki = 0, for k = 1, · · · ,K, as the initial
set of cluster centers. See Part 2 for one recommended way to choose these

μ (1)
k . Obtain the initial values of ααα (1) = {α(1)

gk : g = 1, · · · ,G;k = 1, · · · ,K} by

maximizing f (Yg|αgk,μ
(1)
k ) with respect to αgk for each combination of gene

g and cluster k.
(ii) E-step: Calculate the conditional expectation of Zgk given data and parameters

estimated from the mth step (μ (m),p(m),ααα(m)), where μ(m) = {μ(m)
k : k =

1, · · · ,K},p(m) = {p(m)
k : k = 1, · · · ,K}, and ααα(m) = {α(m)

gk : g = 1, · · · ,G;k =
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1, · · · ,K}. To simplify the notation, we use Ẑ(m)
gk to denote the conditional

expectation E(Zgk|Yg,μ (m),p(m),ααα(m)) given by

Ẑ(m)
gk =

p(m)
k f (Yg|α(m)

gk ,μ (m)
k )

∑l p(m)
l f (Yg|α(m)

gl ,μ (m)
l )

. (10.10)

(iii) M-step: Update the parameter estimates by

μ(m+1)
k = argmax

{∑i μki=0}
∑
g

Ẑ(m)
gk log f

(
Yg

∣
∣
∣α(m)

gk ,μk

)
,

p(m+1)
k = ∑

g
Ẑ(m)

gk /G,

and

α(m+1)
gk = argmax

αgk

f
(

Yg|αgk,μ
(m+1)
k

)
.

(iv) Return to step (ii) or stop the iteration if change of the total log-likelihood is
small.

(v) For each g = 1, · · · ,G, assign gene g to cluster k = argmaxl Ẑgl , where Ẑgl is
obtained by (10.10) after the convergence of above steps.

Note the EM algorithm not only assigns each gene g to a cluster k but also
provides a measure of the uncertainty in the assignment by 1− Ẑgk. This measure
provides additional information compared to hierarchical clustering and K-means
clustering.

It is well known that the initialization of EM algorithm impacts both the speed
of convergence and the final results [13, 14, 26]. Through simulation studies, the
authors of [37] compared the initialization by random sampling from the whole
set of objects with a model-based initialization of cluster centers for the EM
algorithm, and reported that the model-based initialization dramatically improved
the performance of the EM algorithm. The idea of the model-based initialization is
to select initial cluster centers in a specific way such that they are well separated
from each other with respect to a likelihood-based dissimilarity measure. In the
context of gene-based clustering with a Poisson mixture model, the model-based
initialization algorithm [37] is described below:

Part 2: Model-based Initialization for Cluster Centers

Initialization Step. Choose one gene randomly from all genes, and set the initial

center for cluster 1, μ (1)
1 , to be the maximum likelihood estimate (MLE) of β g of

the selected gene.
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Addition Step. In the mth step, where m = 2,3, · · · ,K, one additional cluster center
is selected by the following procedures conditional on the current set of (m− 1)
cluster centers.

(1) Calculate a measure of distance, dg,l , between each gene g and each selected

cluster center μ (1)
l by

dg,l = log
maxαg∈R,∑βgi=0 f (Yg|αg,β g)

maxαg∈R f (Yg|αg,β g = μ(1)
l )

,

for g = 1, · · · ,G and l = 1, · · · ,m− 1.
(2) Randomly select a gene from the multinomial distribution with probabilities

qg = d2
g/∑G

g′=1 d2
g′ for g = 1,2, · · · ,G and dg = min{dg,1, · · · ,dg,(m−1)}.

(3) Set the new cluster center, μ (1)
m , at β̂ g, where β̂ g is the maximum likelihood

estimate of β g for the selected gene in (2).

Using Part 2, a total of K steps select the K initial cluster centers. Only the first
cluster center is chosen uniformly at random, and the additional centers are selected
one at a time based on the distance between each gene and each of the selected
centers. The selection is done through the distance dg and the selection probability
qg, which are defined such that a gene is more likely to be selected if it is far away
from all existing centers. Hence the K centers chosen by this algorithm are expected
to be separated better than a set of centers that are randomly selected.

In [37], the authors also evaluated two stochastic versions of the EM algorithm,
the simulated annealing (SA) and the deterministic annealing (DA) algorithms. In
their simulation study, these stochastic versions did not show further improvement
over the EM algorithm initialized by the model-based initialization.

Model-Based Clustering Using the Negative Binomial Mixture Model

The model-based clustering method using the MB-EM algorithm can be applied
to a negative binomial mixture model too. Compared with the Poisson model, an
extra parameter, φg, is introduced for each gene in the negative binomial model,
and this dispersion parameter needs to be estimated for each gene. The reference
[31] describes several methods to estimate φg. The paper [37] recommends first
estimating φg for each gene g using methods such as the quasi-likelihood (QL)
method, and then treating the estimated φg as known when calculating the likelihood
for negative binomial model. By this means, the unknown parameters are the same
for the Poisson and the negative binomial models. Then the MB-EM algorithm can
be directly applied to the negative binomial mixture model, where the likelihood
function f (Yg|αg,β g) is evaluated using the negative binomial probability mass
function with estimated φg for gene g. Through simulation studies, Si et al.
[37] found that the performance of model-based clustering using such estimated
dispersion was very close to the performance when true dispersion parameter values
were used to calculate the likelihood in the EM-algorithm.
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Choosing the Number of Clusters

As in K-means clustering, the model-based clustering algorithm is also a partition-
ing algorithm and requires the specification of the number of partitions, K. The
silhouette width [33] or the gap statistic [41] can both be applied here. Because
the model-based clustering is a likelihood-based approach, criteria used for model-
selection can also be applied. The authors of [37] recommended using the Akaike
information criterion (AIC) defined by −2(logL−np), where L is the likelihood and
is calculated by (10.9) and np is the number of parameters in the model. A low value
of AIC indicates a better model. In [37], it was shown that AIC identified the true
number of clusters in their simulation studies, and AIC also provided a reasonable
number of clusters in their real data analysis.

10.3.2.3 Hybrid-Hierarchical Clustering Algorithm

The partitioning algorithms such as a model-based method or the K-means method
group objects into a pre-specified number of groups. Such algorithms are fast,
but the relationships between clusters are not revealed. In addition, choosing the
number of clusters, K, is challenging, and different algorithms might result in
different K values. On the other hand, the results of hierarchical clustering provide
information about the relationships of clusters and allows flexibility of obtaining
different number of clusters by cutting the tree at different levels. However, the
computational cost is high because the number of genes included in the cluster
analysis is often large. To borrow strength from both hierarchical clustering and
partitioning methods, hybrid-hierarchical (HH) clustering algorithms have been
introduced [42, 46]. Following such an idea, a model-based HH clustering has been
proposed by combining the model-based and hierarchical clustering methods [37].

The model-based HH clustering algorithm proposed in [37] uses an agglomera-
tive (bottom-up) strategy starting with K0 clusters, where K0 is a number relatively
large to allow enough resolution but far less than the number of genes, G. The
model-based clustering algorithm is used to obtain the initial set of K0 clusters. Then
two clusters with the smallest ‘distance’ among all possible pairs are merged at each
of the following steps. After K0 −1 steps, all genes belong to a single cluster and the
hierarchical tree is built up. Here, the term ‘hybrid’ is used to point out that the HH
algorithm combines the starting steps that obtain K0 clusters using non-hierarchical
methods and the merging steps that are similar to ordinary hierarchical clustering.

In [37], the distance between two clusters is measured by the reduction of total
log-likelihood from before to after the merger of two clusters. Hence, merging
clusters with the minimal distance aims to achieve the maximum log-likelihood
in each step. The hybrid hierarchical clustering algorithm may also combine the
K-means method and hierarchical clustering methods as introduced in Sect. 10.3.2.
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10.4 Case Studies

In this section, we apply the clustering methods described in Sect. 10.3 to a maize
RNA-seq dataset generated by Li et al. [19]. This dataset quantifies transcript abun-
dance of four segments along a leaf developmental gradient, with two biological
replicates for each segment. The total number of genes detected in this experiment is
more than 50,000. For the purpose of cluster analysis, we only use the list of 12,631
genes that were identified as differentially expressed among the four segments
using generalized linear model analysis based on the negative binomial distribution
[19, 37].

10.4.1 Results of Clustering the Count Data

We first the applied the MB-EM algorithm to the count data based on mixture of
negative binomial models as described in Sect. 10.3.2.2. The algorithm was run
for K = 2,3, · · · ,50, and AIC reached its minimum at K = 15 (Fig. 10.3a). When
K = 15, the resulting clusters from the model-based algorithm are presented in
Fig. 10.3b where each grey line plots the expression profile across the four segments
of a gene, and the red line corresponds to the cluster center.

We also applied the hybrid-hierarchical approach as described in Sect. 10.3.2.3.
The list of 12,631 differentially expressed genes were first grouped into 100 small
clusters using the MB-EM algorithm. Genes in each cluster had almost identical
expression profiles at K = 100 based on visual inspection. This indicates that
clustering the 100 small clusters likely leads to similar results to those from
clustering all the genes. Of course, one may increase K = 100 to a bigger number,
which may give better resolution. With the 100 small clusters, the hierarchical
clustering algorithm was applied with dissimilarity between clusters defined by the
likelihood reduction. Figure 10.4 depicts the dendrogram and the heatmap of gene
expression profiles. The cluster tree may be cut at different levels to obtain partitions
of the genes. Based on the heatmap, there are three major clusters depending on
whether the genes were more abundantly expressed in segment 4 (the major cluster
on the left), or in the middle segments (the middle cluster) or in the basal segments,
segments 1 and 2 (the major cluster on the right).

10.4.2 Results of Clustering Transformed Data

We also applied the K-means and hybrid hierarchical methods to transformed
data. Let Xgi be the average of log-transformed RPKM values across replicates
for gene g and treatment i. To avoid taking logarithm of zero, we added a small
constant to those RPKM values at zero before log transformation. Note that the
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Fig. 10.3 Model-based clustering using the negative binomial model and EM algorithm. (a) AIC
scores based on the negative binomial model for different number of clusters. (b) Clustering
results from model-based methods using the negative binomial model and K = 15. Each grey line
corresponds to the expression profile measured using mean-centered, replicate-averaged, and log-
transformed normalized expression values. The red line corresponds to the profile defined by each
cluster center
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Fig. 10.4 Hybrid-Hierarchical clustering results using the model-based method based on the
negative binomial model. The hierarchical structure starts from 100 small clusters. Each number
labeled at the bottom of the graph represents one of the 100 small clusters

model-based method did not require such arbitrary modification of data. We also
subtracted the mean X̄g = ∑I

i=1 Xgi from each Xgi before clustering in order to
group the patterns of gene expression changes along the leaf segments. Then, we
applied the K-means method to partition the list of genes into K = 15 groups
using Euclidean distance. A plot similar to Fig. 10.3b may be presented. One thing
to keep in mind is that the results depend on the initial partition, and different
initialization often ends up with different clustering results using the K-means
method. So in practice, we recommend running the K-means algorithm several
times using different initializations. The Part 2 of the MB-EM algorithm described
in Sect. 10.3.2.2 may be applied with appropriate dissimilarity measures in selecting
the initial objects.

A hierarchical clustering algorithm may also be applied to this dataset. Consid-
ering the dimension of objects (genes), we instead performed a hybrid-hierarchical
clustering. First, we used the K-means method with Euclidean distance to cluster
the transformed data into 100 small clusters. Visual inspection indicated that
genes in each cluster shared very similar patterns. Then we applied hierarchical
clustering with Euclidean distance and complete linkage. The results could be
plotted as in Fig. 10.4, and the tree could be truncated at some level to obtain a
partitioning of genes. The results obtained from the model-based method, K-means,
and hierarchical clustering are presented in the next subsection.
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10.4.3 Comparison Between Different Methods

In simulation studies, the clustering results have been evaluated based on the com-
parison between the true partition of objects used to simulate data and the resulting
partition obtained by a clustering algorithm. Better performance is indicated by
more agreement between the two partitions. The following criteria have been used
to evaluate the agreement. For all four statistics listed below, higher values indicate
better performance.

• Pairwise Sensitivity: the proportion of pairs of genes (objects) that are clustered
together among all pairs that had the same original assignment [2, 37, 44].

• Pairwise Specificity: the proportion of pairs of genes (objects) that are clustered to
different groups among all pairs that had different original assignment [2,37,44].

• Rand Index: the proportion of pairs of genes (objects) that are correctly clustered
together and that are correctly clustered into different clusters out of all possible
pairs of objects. Let M be the number of pairs of genes (objects) that are in the
same cluster in the true partition and in the resulting partition, and let N be the
number of pairs of genes (objects) that are in different clusters in the true partition
and in the resulting partition. Then the Rand Index is defined to be (M+N)/

(G
2

)

where G is the total number of objects. The author of [43] used the clustering
error rate to evaluate clustering results, which is just one minus the rand index.

• Normalized Mutual Information (NMI): Mutual information (MI) is used in
information theory to measure the amount of information one random variable
contains about another, or equivalently, the reduction in the uncertainty of one
due to the knowledge of the other. Here, MI is used to quantify the shared
information between the true partition and the clustering result. Let u be a cluster
given by the true partition U , v be a cluster given by the clustering result
V , and pu, pv, puv be the proportions of genes in u, v, and their intersection,
respectively. The MI between U and V is defined as MI = ∑u,v puv log puv

pu pv
.

The MI value is high if there is strong dependence (more shared information)
between the two partitions, and is close to zero otherwise. Since there is no
upper bound for MI, it is normalized to a range between 0 and 1 by dividing
by the total entropy. The normalized MI (NMI) between two partitions U and V

is NMI = 1− ∑u,v puv log puv

∑u pu log pu+∑v pv log pv
, where 0× log0 ≡ 0 if encountered. NMI is

often desirable for easier comparison [39].

These four criteria are presented to evaluate how one clustering algorithm
performs by comparing its result with the true partition that is used to generate data.
They could also be used to compare the concordance of two clustering results. In real
data analysis, there is no knowledge of true partition. To evaluate the performance of
different clustering algorithms, [6, 7] proposed measures for statistical consistency
(stability) of the clustering results and measures for the biological congruence
of the clustering results. Similar to the idea of using biological functions to
validate clustering results, [37] compared clustering results with the gene functional
categories. Their rationale is that genes within the same functional category tend to
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have correlated expression patterns and thus are more likely to be grouped together.
Here we use the same strategy by comparing gene annotations from Mapman as
described in [19] and clustering results. Excluding categories that contain less than
five or more than 500 genes, we have 306 non-overlapping categories with a total
of 5,002 genes. We quantify the concordance between clustering results and gene
functional categories for these genes using NMI.

We first compare the results of partitioning methods. For K ranging from 10 to
100 in steps of 5, we performed the K-means method using Euclidean distance, and
performed model-based clustering methods based on Poisson and negative binomial
distributions, respectively. Figure 10.5a shows that the NMI scores of the model-
based algorithms are higher than the NMI score of K-means method for all K.
This indicates that the groups partitioned by model-based methods agree more with
the gene categories than the K-means method. We also applied hybrid-hierarchical
clustering by first partitioning the 5,002 genes into 100 small clusters using K-
means and then using average linkage in based on Euclidean or 1 minus correlation
distance, and applied the HH algorithm introduced in Sect. 10.3.2.3 based on
Poisson and negative binomial likelihood functions. Figure 10.5b shows that hybrid-
hierarchical methods perform better in terms of NMI when the distances are based
on likelihoods. The figures also show that the scores for model-based methods using
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Poisson and negative binomial models are similar. This is likely because that this
dataset only has two replicates for each condition, and the difference between the
fitting of the Poisson model and that of the negative binomial distribution is not big.

10.5 Implementation of Clustering Methods

All methods introduced in this chapter may be implemented using the statistical
software R. K-means and hierarchical clustering are implemented in functions
kmeans() and hclust(), respectively, included with the base distribution of
R. Several packages, such as the package amap by [21], can also be applied to
perform K-means and hierarchical clustering. The package MBCluster.Seq is
designed by [37] to perform the model-based clustering algorithms described in
Sect. 10.3.2.2. Packages clValid [3] and RankAggreg [29] contain functions
for validating the results of a clustering analysis. All the above-mentioned packages
can be downloaded from The Comprehensive R Archive Network (CRAN).

The functions Kmeans and hcluster in the R package amap are straight-
forward to apply in order to perform the K-means method and the hierarchical
clustering method, respectively. One could also perform hybrid hierarchical cluster-
ing by first partitioning all objects into K groups using Kmeans and then building
the hierarchical tree using the hcluster function.

The main functions in the package MBCluster.Seq to perform model-based
clustering include the following.

• RNASeq.Data() organizes the data into the format used by this package. For
example:

> mydata=RNASeq.Data(Count=counts,Normalize=log(scalar),
Treatment=treats,GeneID=geneID)

where the matrix counts stores the RNA-seq data with columns corresponding
to treatments specified by the vector treats and rows corresponding to genes
specified by the vectorgeneID. The argumentscalar stores the normalization
factors, one for each column, that may be estimated by the methods introduced
in Sect. 10.2.3.

• KmeansPlus.RNASeq() selects the objects in the initialization step by part 2
of the MB-EM algorithm. For example, to select 100 initial cluster centers:

> c0=KmeansPlus.RNASeq(mydata,nK=100)$centers

• Cluster.RNASeq() performs model-based clustering algorithm using the
EM or other stochastic versions of the EM algorithm given the number of
clusters. For example, to obtain K = 15 clusters:

> cls=Cluster.RNASeq(data=mydata,model="nbinom",
centers=c0[1:15,],method="EM")$cluster

The output stores the cluster IDs for each gene.
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• lglk.cluster() calculates the log-likelihood given the clustering results
from Cluster.RNASeq. For example:

> lglk=lglk.cluster(mydata,model="nbinom",cluster=cls)

The resulting log-likelihood can be used to calculate AIC values to select the
number of clusters, K.

• For model-based hybrid-hierarchical clustering,Hybrid.Tree() performs the
hierarchical clustering after obtaining the results from Cluster.RNASeq().
For example:

> tr=Hybrid.Tree(data=mydata,cluster=cls,model="nbinom")

where cls stores the initial set of clusters obtained by Cluster.RNASeq().
• The results of model-based hybrid-hierarchical clustering can be plotted using
plotHybrid.Tree(). For example:

> plotHybrid.Tree(merge=tr,cluster=cls,logFC=mydata$logFC,
tree.title="Hybrid Cluster for Maize Data",colorful=TRUE)

where mydata$logFC stores the normalized data (Xgi − X̄g) as discussed in
Sect. 10.4.2.

10.6 Discussion

Cluster analysis is a multivariate analysis technique that has been routinely applied
in gene expression studies. Although this chapter focuses on the gene-based clus-
tering, the methods described here can be applied to sample-based clustering with
the appropriate switch of dimension and model specification. In both applications,
the dimension of genes is high in RNA-seq datasets, and the genes are typically not
interesting if their expression levels do not changes across treatment groups. Hence,
we recommend to use only the subset of differentially expressed genes in cluster
analysis to reduce computational cost and noise in the dataset.

This chapter introduces several algorithms for cluster analysis of RNA-seq data.
Unless the dataset includes very distinct clusters, different algorithms usually lead
to different groupings. For the partitioning methods that depend on the initialization,
different initial sets may also result in different groupings. Because of such
uncertainties in the results, cluster analysis is not used to draw inference but is more
of a way to organize and visualize data. In practice, it is reasonable to apply different
algorithms to the same dataset. If all algorithms generate similar clusters, the
results are more reliable and worth further investigating. Widely different groupings
suggest that no distinct cluster structure exists in the dataset.

In this chapter, we have described the K-means method, hierarchical clustering
algorithms, and finite mixture model-based methods. Model-based methods offer a
more unified approach compared with the other two. Model-based methods rely on
a model-selection criterion to select the number of clusters and provide uncertainties
of the clustering results. In cluster analysis of the maize dataset illustrated in
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Sect. 10.4, the model-based method provided good performance. Still, there is room
to improve this method. First, the estimation of parameters may be improved using
some shrinkage method. RNA-seq data is one case of “large p, small n” data, where
there are a large number of variables and a small number of replicates. Shrinkage
methods have been shown to improve the parameter estimation and performance
of hypothesis tests that identify differentially expressed genes. Better estimation of
the parameters might improve the performance of model-based clustering methods.
Second, current models do not consider random effects. Some experimental designs,
such as split-plot designs, result in random effects that should be accounted for.
Also, some experiments might have correlated samples, such as experiments with
repeated measures. It is a challenging question to estimate the parameters for
mixtures of log-linear models with random effects. More statistical research in this
area is warranted.
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Chapter 11
Classification of RNA-seq Data

Kean Ming Tan*, Ashley Petersen*, and Daniela Witten

Abstract Next-generation sequencing technologies have made it possible to obtain,
at a relatively low cost, a detailed snapshot of the RNA transcripts present in a
tissue sample. The resulting reads are usually binned by gene, exon, or other region
of interest; thus the data typically amount to read counts for tens of thousands of
features, on no more than dozens or hundreds of observations. It is often of interest
to use these data to develop a classifier in order to assign an observation to one
of several pre-defined classes. However, the high dimensionality of the data poses
statistical challenges: because there are far more features than observations, many
existing classification techniques cannot be directly applied. In recent years, a num-
ber of proposals have been made to extend existing classification approaches to the
high-dimensional setting. In this chapter, we discuss the use of, and modifications
to, logistic regression, linear discriminant analysis, principal components analysis,
partial least squares, and the support vector machine in the high-dimensional setting.
We illustrate these methods on two RNA-sequencing data sets.

11.1 Introduction

In the past 15 years, much effort has focused on characterizing the transcriptome—
the identity and quantity of all transcripts in a cell or population of cells—under
a variety of conditions and disease states. The first technique that was widely-
used to quantify the transcriptome was the microarray, which uses hybridization
probes in order to measure the relative expression of transcripts in a cell. This
technology is now relatively inexpensive and widespread, but it suffers from some
weaknesses. First, the hybridization probes must be selected a priori, so only known
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transcripts can be measured, and novel transcripts cannot be discovered. Second,
cross-hybridization can occur, in which an unintended molecule binds to the probe;
this results in an imprecise measure of expression of each transcript. Today, with the
advent of RNA-sequencing (RNA-seq), a more sensitive and complete quantification
of the transcriptome is possible [32, 38, 58, 66, 71, 81, 90].

Transcriptomic data (often referred to as gene expression data) can be used for
inference and prediction. For instance, suppose that RNA-sequencing has been
performed on a set of n tissue samples (observations), each of which belongs to
one of K pre-specified classes (such as cancer versus normal, or Disease A versus
Disease B versus Disease C). A common inferential goal is to identify the features
(e.g. genes or exons) that are differentially expressed across the classes—that is,
those that have higher or lower mean expression among the tissue samples belonging
to a certain class, as compared to the baseline. However, in this chapter, our goal
concerns prediction—specifically, classification. Given the class labels and feature
measurements for a set of observations, how can we predict the class membership
for a new observation for which we know the gene expression measurements but not
the class membership?

11.1.1 RNA-Sequencing Data

Here we briefly describe the steps involved in obtaining RNA-seq data. First, the
RNA from a tissue sample is isolated and converted into cDNA. This cDNA is
then fragmented and directly sequenced using next-generation sequencing. Once the
sequencing is complete, the reads are mapped to a reference genome, if available, or
otherwise aligned using de novo assembly. Regions of interest (for instance, genes
or exons) are then identified on the mapping, and the number of reads per region is
quantified. In what follows, we will refer to these regions as features. We refer the
interested reader to [38, 66, 71, 81, 90] for a much more detailed discussion.

We now introduce some notation that will be used throughout the chapter. Let
X be a n× p matrix, where n is the number of observations, and p is the number
of features. Each element xi j contains the number of reads of the jth feature (e.g.
gene or exon) in the ith observation (e.g. tissue sample). Thus, the elements of X are
nonnegative and integer-valued. We let xi denote the ith row of X. Additionally, each
observation is assumed to belong to one of K classes. We define y to be an n-vector
that contains the class labels for the n observations: yi ∈ {1, . . . ,K}. Furthermore,
we let Ck denote the set of indices of observations belonging to the kth class: Ck =
{i : yi = k}. Lastly, we let x∗ denote a vector of feature measurements for a new
observation, which we would like to classify into one of the K classes. That is, we
wish to predict the unknown class label y∗ corresponding to x∗.
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11.1.2 Statistical Issues in Classification
of High-Dimensional Data

RNA-seq data are high-dimensional, in the sense that the number of features,
p, typically greatly exceeds the number of observations, n. As we will see,
most standard approaches for classification, such as logistic regression and linear
discriminant analysis, cannot be applied directly in this setting. Even when standard
techniques can be applied, the resulting models are usually too complex given the
number of observations in the training set.1 This leads to overfitting. Furthermore,
direct application of standard techniques for classification can lead to difficulty in
interpretation in high dimensions. We now briefly discuss both of these concepts.

Overfitting occurs when a fitted classifier models not only the signal, but also the
noise, in the training set. This is a grave concern particularly in high dimensions, in
which direct application of a standard classification technique will typically yield a
classifier that perfectly classifies all training set observations. However, application
of this classifier to an independent set of observations not used in model training
will yield very poor results. In general, classification techniques that are well-suited
for the high-dimensional setting perform dimension reduction or regularization
in order to reduce the complexity of the model fit to the training data, thereby
reducing the risk and extent of overfitting. Such techniques typically involve a user-
specified tuning parameter that controls the amount of regularization or dimension
reduction. That is, the tuning parameter controls the trade-off between an overly
complex model given the number of training observations (overfitting) and an overly
simplistic model that does not capture the underlying signal (underfitting). Tuning
parameter selection is typically performed via cross-validation [3, 27, 34, 79, 82].

In the context of high-dimensional data, we often believe that only a subset of
the features is associated with the response. Hence, we may be interested in sparse
classifiers that make use of only a subset of the features in the classification rule.
Even if we do not truly believe that only a small subset of features is associated with
the response, we may prefer a sparse classifier for practical reasons, since classifying
a new observation using a sparse classifier requires measurement of only a subset
of the features. Furthermore, a sparse classifier can have advantages in terms of
interpretability: it is much easier to obtain intuition about the underlying biological
rationale for a classifier that involves only a small subset of the features.

11.1.3 Organization of This Chapter

The rest of this chapter is organized as follows. In Sects. 11.2–11.6, we consider
various approaches for high-dimensional classification. In Sect. 11.7, we briefly

1The training set is the set of observations used to fit the classifier.
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discuss how to normalize RNA-seq data prior to classification. We illustrate the
performance of the methods on two RNA-seq data sets, and provide guidance on
software, in Sect. 11.8. The Discussion is in Sect. 11.9.

11.2 Logistic Regression

11.2.1 Logistic Regression in Low Dimensions

We first consider the task of performing logistic regression in the low-dimensional
setting, in which n > p. Though logistic regression can be applied in the presence
of K > 2 classes, it is most often used when K = 2; for simplicity, here we restrict
the discussion to the latter setting. The probability that the ith observation belongs
to either class 1 or class 2 is modeled as

Pr(yi = 1|xi) =
1

1+ eα+β T xi
; Pr(yi = 2|xi) =

eα+β T xi

1+ eα+β T xi
, (11.1)

where α is an unknown scalar and β is an unknown vector of length p. The
corresponding log-likelihood takes the form

l(α,β ) =
n

∑
i=1

{
(yi − 1)α +(yi − 1)β T xi − log

(
1+ eα+β T xi

)}
. (11.2)

Then maximum likelihood estimates of α and β —denoted as α̂ and β̂ —can be
obtained by maximizing l(α,β ) using iteratively reweighted least squares [1,42,64].

Logistic regression yields estimates of the probability that a test observation
belongs to a particular class: that is,

P̂r(y∗ = 1|x∗) = 1

1+ eα̂+β̂ T x∗
.

In practice, in order to classify the test observation, we must decide upon a cutoff
point, 0 ≤ t ≤ 1, such that we classify to class 1 if P̂r(y∗ = 1|x∗)> t, and to class 2
otherwise. (This results in a linear decision boundary, in the sense that it amounts to
classifying the test observation based on the value of α̂ + β̂ T x∗.) Typically, either a
cutoff of t = 0.5 is used, or a cutoff is chosen based on other considerations, such as
the intended application for the classifier.
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11.2.2 Logistic Regression in High Dimensions

In the high-dimensional setting when p > n, the classes are typically linearly
separable—that is, it is possible to perfectly separate the n training observations
using a linear decision boundary. Hence, the estimate of β obtained using logistic
regression is unstable, is not unique, and may contain elements that are infinite [99].
Consequently, in high dimensions, the logistic regression classifier is not suitable;
some form of regularization is required to reduce the feature space. Even if n is
slightly larger than p, so that the logistic regression solution is unique, it is likely
that logistic regression will overfit the data.

To overcome this problem, one option is to regularize the log-likelihood (11.2)
by applying a penalty to the coefficient vector β . If we let P(β ) denote a convex
penalty function and λ a nonnegative tuning parameter, then maximization of the
penalized log-likelihood

l(α,β ) =
n

∑
i=1

{
(yi − 1)α +(yi − 1)β T xi − log

(
1+ eα+β T xi

)}
−λ P(β ) (11.3)

is a convex optimization problem. In general, the larger the value of λ in (11.3), the
less prone the model is to overfitting.

In (11.3), two commonly used penalties are P(β ) = ‖β‖2 and P(β ) = ‖β‖1. The
former is a ridge (�2) penalty [43], and the latter is a lasso (�1) penalty [84]. Both
penalties can successfully regularize the logistic regression problem in order to yield
stable, unique, and well-defined coefficient estimates in high dimensions. However,
the �1 penalty has a particularly attractive feature: it encourages the estimated
coefficients to be sparse (equal to zero) when λ is sufficiently large. Hence, it yields
results that are more interpretable.

In (11.3), the tuning parameter λ can be chosen via cross-validation. We typically
center and scale each feature to have mean zero and standard deviation one before
solving (11.3). Many authors have proposed efficient algorithms for solving (11.3)
when P(β ) is an �1 or an �2 penalty [30,51,72]. We note that other types of penalties
in (11.3) are also possible; we refer the reader to [65,98,99,101] for some examples.

When there are more than two classes (K > 2), the penalized logistic regression
approach (11.3) can be easily extended to penalized multinomial logistic regression.
The details can be found in [42].

11.3 Linear Discriminant Analysis

11.3.1 Linear Discriminant Analysis in Low Dimensions

Linear discriminant analysis (LDA) is one of the most commonly-used approaches
for classification [42, 59]. While there are several ways to motivate the LDA
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classifier, here we motivate it as the Bayes decision boundary under a set of
assumptions on the distribution of the observations.

Let X andY denote random variables for the expression data and the class label,
respectively. Let πk = P(Y = k) denote the prior probability that an observation
belongs to the kth class; note that ∑K

k=1 πk = 1. Also, let pk(x) = f(X = x|Y = k)
be the density function of an observation that belongs to the kth class. By Bayes’
theorem, the posterior probability that an observation belongs to the kth class is

Pr(Y = k|X = x) =
πk pk(x)

∑K
l=1 πl pl(x)

. (11.4)

If pk and πk were known for all k ∈ {1, . . . ,K}, then it would be natural to classify a
test observation x∗ to the class for which the posterior probability is largest: that is,
to argmaxkPr(Y = k|X = x∗). This is called the Bayes classifier.

In LDA, we assume that each observation in the kth class is drawn i.i.d. from a
p-dimensional Gaussian distribution N(μk,Σ): that is, each observation has a class-
specific mean vector, and a common within-class covariance matrix Σ . In this case,
the density for an observation in the kth class is

pk(x) =
1

(2π)p/2
|Σ |−1/2 exp

(
−1

2
(x− μk)

T Σ−1(x− μk)

)
. (11.5)

Substituting (11.5) into (11.4) and performing some algebra, we see that a new
observation x∗ is assigned to the class for which

δk(x∗) = xT
∗ Σ−1μk − 1

2
μT

k Σ−1μk + logπk (11.6)

is largest. We refer to (11.6) as the linear discriminant function, since it is linear
in x∗.

In practice, the parameters μk, Σ , and πk are unknown, and must be estimated
based on the data. Let nk denote the number of training observations in the kth class.
Then we typically use the following estimates:

• π̂k = nk/n, the proportion of observations from the kth class;
• μ̂k = ∑i∈Ck

xi/nk, the mean of the observations from the kth class;
• Σ̂ = 1

n ∑K
k=1 ∑i∈Ck

(xi − μ̂k)(xi − μ̂k)
T , the pooled within-class empirical

covariance.

These parameter estimates can be directly plugged into (11.6) in order to obtain
the LDA classifier. Figure 11.1 displays the performance of the LDA classifier on a
simple simulated example.

A simple extension of LDA, called quadratic discriminant analysis (QDA),
results from assuming that the observations in the kth class are i.i.d. from a N(μk,Σk)
distribution, where Σk denotes a class-specific covariance matrix for the kth class.
This results in a quadratic, rather than a linear, decision rule. Other extensions of
LDA and QDA can be found in [31, 39–41].
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Fig. 11.1 Simulated data with K = 2 classes. Each observation is drawn from a two-dimensional
multivariate normal distribution, with a class-specific mean vector and a common covariance
matrix. (a) Most observations from a given class are contained within the corresponding ellipse.
The Bayes decision boundary is shown (dashed line). (b) Forty observations generated from each
class are displayed, as are the LDA (solid line) and Bayes (dashed line) decision boundaries

11.3.2 Linear Discriminant Analysis in High Dimensions

In high-dimensional data where p > n, LDA cannot be directly applied due to the
singularity of the estimated within-class covariance matrix whose inverse is required
in (11.6). We now consider a few proposals for performing LDA in high dimensions.
Many others can be found in the literature [15, 35, 36, 54, 57, 85, 86, 88, 94].

11.3.2.1 Diagonal LDA

As mentioned earlier, in high dimensions, the standard estimate of the within-
class covariance matrix is singular. To overcome this problem, several authors
have considered a modification of LDA in which it is assumed that the features
are independent (i.e. an observation in the kth class has a N(μk,Σ) distribution,
where Σ is diagonal). We refer to this as diagonal LDA. Some authors have shown
that the diagonal LDA classifier performs well in high-dimensional problems [8,26].
The decision rule for diagonal LDA is simple: we assign the observation x∗ to the
class for which

δ ′
k(x∗) =−1

2

p

∑
j=1

(x∗ j − μ̂k j)
2/ŝ2

j + log π̂k (11.7)

is largest. Here, μ̂k j is the mean for the jth feature in the kth class, and ŝ2
j =

1
n ∑K

k=1 ∑i∈Ck
(xi j − μ̂k j)

2 is the pooled within-class variance for the jth feature.
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Though the diagonal LDA classifier can be applied in high dimensions, it leaves
something to be desired, because it yields a decision boundary involving all p
features. When p is large, we may prefer a sparse classifier that involves only a
subset of the features, in the interest of simplicity, interpretability, and reduced
variance. Next we consider an extension of diagonal LDA that achieves sparsity.

11.3.2.2 Nearest Shrunken Centroids

The nearest shrunken centroids (NSC) proposal [85,86] is an extension of diagonal
LDA that yields a decision boundary involving only a subset of the features.
It derives its name from the nearest centroids classifier, a simplified version of
diagonal LDA obtained by assuming that π1 = . . .= πK and s1 = . . .= sp in (11.7).
NSC involves modifying (11.7) so that μ̂k j =

1
nk

∑i∈Ck
xi j is replaced with an estimate

μ̂ ′
k j that satisfies

μ̂ ′
1 j = . . .= μ̂ ′

K j (11.8)

for some features. The motivation is that if (11.8) holds, then the jth feature is not
involved in the classification rule given by (11.7). This leads to a sparse classifier.

We now describe the NSC procedure in detail. Let

dk j =
μ̂k j − μ̂. j

mk(ŝ j + s0)
, (11.9)

where μ̂. j =
1
n ∑n

i=1 xi j is the overall mean of the jth feature, m2
k = 1/nk − 1/n, and

s0 is some positive constant. Then dk j can be interpreted as a t-like statistic that
measures the difference between the mean of the kth class for the jth feature and
the overall mean for the jth feature. Note that (11.9) can be rewritten as

μ̂k j = μ̂. j +mk(ŝ j + s0)dk j. (11.10)

In order to encourage (11.8) to hold, we soft-threshold dk j [25], to yield

d′
k j = sign(dk j)max(|dk j|−λ ,0), (11.11)

where λ is a tuning parameter, typically chosen via cross-validation. We then define

μ̂ ′
k j = μ̂. j +mk(ŝ j + s0)d

′
k j, (11.12)

and we plug μ̂ ′
k j into the decision rule given in (11.7). It is clear that if λ

is sufficiently large, then (11.8) will hold for some of the features, which will
consequently not be involved in the decision rule. There is an interesting connection
between nearest shrunken centroids and an �1 minimization problem; see Exercise
18.2 in [42].
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11.3.2.3 Poisson LDA

As was mentioned in the previous sections, LDA, diagonal LDA, and NSC are
based on the assumption that the observations in the kth class are i.i.d. from
a N(μk,Σ) distribution (where the latter two approaches further assume that Σ
is diagonal). However, recall that RNA-seq data involve counts: the elements
of X are nonnegative and integer-valued. Therefore, a number of authors have
considered modeling RNA-seq data under the assumption that the counts are drawn
from Poisson or negative binomial distributions rather than Gaussian distributions
[4, 12, 55, 60, 76, 92].

Recently, [93] proposed the Poisson LDA method for classification on the basis
of RNA-seq data. This approach mirrors the NSC proposal, except that it is
assumed that the elements of the data matrix X are independently drawn from
Poisson distributions rather than from Gaussian distributions. In greater detail, it
is assumed that

xi j | yi = k ∼ Poisson(sig jek j), (11.13)

where si allows for variability in the number of counts per sample, g j allows for
variability in the number of counts per feature, and ek j is a measure of differential
expression for the jth gene in the kth class. We can use (11.13) to write out the
density for an observation in the kth class, which can then be plugged into (11.4).
After performing some algebra and estimating unknown parameters, we obtain the
decision rule that assigns a test observation x∗ to the class for which the quantity

δ ′′
k (x∗) =

p

∑
j=1

x∗ j log êk j − ŝ∗
p

∑
j=1

êk jĝ j + log π̂k (11.14)

is largest. Note that (11.14) is linear in x∗ and involves the jth feature in x∗, unless
êk j = 1 for all k. To encourage a sparse decision rule, [93] employs soft-thresholding
of êk j towards 1, using a tuning parameter value chosen via cross-validation.

11.4 Principal Components Classification

In this section, we discuss a two-stage approach for building a classifier for high-
dimensional data. We first use principal components analysis (PCA) to obtain a
lower-dimensional feature set, and then build a classifier based on this new set
of features [2, 62]. Together, these two steps are known as principal components
classification (PCC).

The motivation for PCC is that in many settings, most of the signal in the data
is contained in a low-dimensional subspace. By transforming the p original features
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into a set of m denoised features where m � p, we can often obtain a classifier that
has lower variance, greater accuracy, and a reduced risk of overfitting.

Unlike logistic regression and LDA, which must be modified in order to be
applicable in high dimensions (Sects. 11.2.2 and 11.3.2), PCC can be performed
without modification when p > n. This is because regardless of the value of p in
the original data, the classifier built in the second step of PCC is low-dimensional:
it involves only a small set of denoised features.

We now discuss the two steps that make up the PCC approach.

11.4.1 Step 1: Principal Components Analysis

11.4.1.1 Introduction to PCA

PCA has long been used as a technique for dimension reduction [46]; we provide
a brief overview here. We assume that the columns of X are centered to have mean
zero. PCA seeks the linear combinations of the columns of X that have the highest
possible variance, subject to a constraint of orthogonality.

In greater detail, for M = min(n− 1, p), the principal component score vectors
z1, . . . ,zM are n-vectors, defined as zk = Xvk, where vk is the kth principal
component loading vector. The first loading vector v1 is obtained by solving

maximize
v1∈Rp

vT
1 XT Xv1 subject to vT

1 v1 = 1. (11.15)

In other words, the first loading vector v1 is chosen so that the resulting linear
combination of the columns of X has the highest possible variance. The subsequent
loading vectors v2, . . . ,vM can be found by solving

maximize
vk∈Rp

vT
k XT Xvk subject to vT

k vk = 1,vT
k v j = 0 ∀ j < k. (11.16)

Hence, vk maximizes the variance of the kth score vector, subject to the constraint
that vk must be orthogonal to the previous loading vectors.

As mentioned earlier, we assume in (11.15) and (11.16) that the features are
centered to have mean zero. Typically, before performing PCA, we also scale the
features to have standard deviation one. Otherwise, a high-variance feature (perhaps
resulting from the fact that features are measured on different scales) could drive the
vast majority of the variance in the data, and hence play an outsize role in the first
(or first few) loading vectors.

Though there exist M = min(n− 1, p) score vectors, for many purposes only
the first few score vectors are of interest. The first m score vectors, where m � M,
typically capture a large portion of the variation in the data. Hence, they can be used
instead of the original features in downstream analyses, such as data visualization
(examples will be shown in Sects. 11.8.4.1 and 11.8.4.2) or classification (to be
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described in Sect. 11.4.2). The problem of how to choose the value of m is outside
of the scope of this chapter; we refer the reader to Sect. 6 in [46] for a detailed
discussion.

There is a close connection between the singular value decomposition (SVD)
and PCA. The SVD of the matrix X is

X = UDVT , UT U = Ip, VT V = Ip. (11.17)

Here, U is a n× p orthogonal matrix whose columns contain the left singular vectors,
V is a p× p orthogonal matrix whose columns contain the right singular vectors, and
D is a p× p matrix that contains the (non-increasing, nonnegative) singular values.
(Here we are assuming that n ≥ p; if instead p > n, the dimensions of U, D, and V
must be adjusted.) One can show that the kth principal component loading vector in
PCA is exactly equal to the kth right singular vector. It follows that the kth principal
component score vector is proportional to the kth left singular vector; the constant
of proportionality is equal to the kth singular value.

11.4.1.2 Sparse Principal Components Analysis

The principal component loading vectors are typically non-sparse, so that each score
vector is a linear combination of all p features. This renders the interpretation of the
loading vectors difficult. To remedy this, sparse PCA can be used to obtain loading
vectors for which most of the elements are zero. Here, we consider two different
approaches for obtaining sparse loading vectors.

We first consider the proposal of [47]. In order to obtain the first sparse loading
vector, [47] proposed solving the optimization problem

maximize
v1∈Rp

vT
1 XT Xv1 subject to vT

1 v1 = 1, ‖v1‖1 ≤ c. (11.18)

The constraint in (11.18) is roughly equivalent to placing an �1 penalty on v1, and
hence most of its elements are zero when the nonnegative tuning parameter c is
sufficiently small. Subsequent sparse loading vectors can be obtained by solving
(11.16) with an additional orthogonality constraint on the kth loading vector. The
optimization problem (11.18) is not convex, and the computations are difficult. In
recent years, [87] proposed a projected gradient algorithm for (11.18), and [95]
provided a quick iterative algorithm.

We now discuss a different approach for sparse PCA, which involves a low-rank
approximation of X using the connection between PCA and the SVD [80, 95]. The
first sparse loading vector v1 can be found by solving the optimization problem

minimize
d1∈R+, u1∈Rn, v1∈Rp

‖X− d1u1vT
1 ‖2

F subject to uT
1 u1 = vT

1 v1 = 1, ‖v1‖1 ≤ c.

(11.19)
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The kth sparse loading vector can be obtained by solving optimization problem
(11.19) with the data matrix X replaced by the residual matrix X−∑k−1

l=1 dlulvT
l .

The problem (11.19) is bi-convex in u1 and v1, and can be efficiently solved via an
iterative algorithm. Note that the sparse loading vectors from this approach differ
from those of [47], since in (11.19), orthogonality is not imposed on the successive
right singular vectors. Other proposals for sparse PCA can be found in [18, 19, 48,
56, 102].

11.4.1.3 Other Extensions of PCA

Recall that the first few principal component score vectors explain most of the
variation in the data. However, there is no guarantee that they will perform well
when used as predictors in a classifier (as described in Sect. 11.4.2) [5, 6], since
it may be that they provide poor summaries of the aspects of the data that differ
among the classes. To overcome this problem, the supervised PCA proposal of
[5, 6] involves first selecting features that are associated with the outcome, and
then performing PCA on this reduced set of features. In greater detail: (1) Calculate
test statistics that quantify the association between the response and each of the p
features, (2) form a new data matrix X′ that only includes features with test statistics
that exceed a user-specified threshold in absolute value, (3) compute the principal
components of X′, and (4) use the first few score vectors to build a classifier to
predict the outcome, as in Sect. 11.4.2. An extension of supervised PCA can be
found in [7]. Note that Step 1 above can be tailored to RNA-seq data by using test
statistics that are specifically intended to detect differential expression on the basis
of RNA-seq data [4, 12, 55, 60, 63, 77].

The standard approach for PCA assumes that the values of X are continuous.
A few proposals in the recent literature extend PCA to the case where the entries
of X are distributed under some exponential family distribution [16,21,50,78]. Just
as [93] proposed an extension of LDA to the Poisson setting, one could develop an
extension of PCA that is better-suited for Poisson (or negative binomial) data.

11.4.2 Step 2: Build a Classifier

In Sect. 11.4.1, we described how PCA (or a variant, such as sparse PCA or
supervised PCA) can be performed on X in order to obtain M = min(n − 1, p)
score vectors, z1, . . . ,zM , each of length n. We now use the first m � M of
these score vectors as features in a classifier to predict the response y. Since m is
substantially smaller than n, the classifier is constructed based on low-dimensional
data. Therefore, traditional classification approaches such as logistic regression or
LDA can be used. Typically, a small value of m (no greater than 5 or 10) is used;
this value can be chosen by cross-validation.
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11.5 Partial Least Squares

Similar to PCC, partial least squares (PLS) is a two-stage procedure in which a
reduced set of features is constructed, and a model is then fit using this new set of
features [96]. PLS can be applied without modification even in high dimensions.
Unlike PCC, PLS uses the outcome variable to construct the features. We first
discuss PLS in the regression context (Sect. 11.5.1), and then in the classification
context (Sect. 11.5.2).

11.5.1 Partial Least Squares for Regression

Though this chapter focuses on classification, we first discuss PLS in the regression
setting for which it was originally developed. We begin by mean-centering the
continuous response y, and mean-centering and standardizing each feature to have
variance one.

PLS yields a transformed set of features (or components), z1, . . . ,zM , where
zk = Xwk. The direction vectors w1, . . . ,wM can be obtained as follows:

maximize
wk∈Rp

Var(Xwk)Cor2(Xwk,y) subject to wT
k wk = 1, wT

k XT Xw j = 0 ∀ j < k,

(11.20)

where we use Var(Xwk) to denote the sample variance of the elements of Xwk and
Cor(Xwk,y) to denote the sample correlation between the elements of Xwk and
those of y. Therefore, PLS seeks components that not only explain much of the
variability of the original features, but also are highly correlated with the outcome.
Once the PLS components have been obtained, the first m < M are used as features
in a linear regression model to predict the response y. Here m is a tuning parameter
that can be selected using cross-validation [97]. PLS and PCA are closely connected:
the former can be seen as a supervised version of the latter [29].

11.5.2 PLS for Classification

PLS has been extended to the classification setting by a number of authors.
The simplest extension involves some slight modifications to (11.20) [9, 67, 68]:

• If the response is binary, then it is coded as a vector of 0’s and 1’s before solving
(11.20).

• If there are K > 2 classes, then the response is coded using a matrix of dummy
variables, and a problem closely related to (11.20) is solved.
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Once the PLS components have been obtained, the first m < M can be used to fit
a classifier to predict the response y, using logistic regression, LDA, or another
approach suitable for low dimensions.

Several authors have proposed generalized PLS, an alternative framework for
extending PLS to the classification setting, using an approach analogous to the
extension of linear models to generalized linear models [24, 28, 61].

Just as the PCA score vectors involve all p features, each PLS component is a
linear combination of all p features. Recently, [13, 14] reformulated (11.20) using
an �1 penalty on the direction vectors, in order to achieve sparsity.

11.6 Support Vector Machine

The support vector machine (SVM) has become a very popular classification
technique in the computer science community during the past two decades, and
has been extensively used to classify gene expression data measured on microarrays
[11, 17, 33, 37, 89]. Like PCC and PLS, SVM can be applied without modification
even when p > n. Here we present a simple motivation of SVM. Since the standard
SVM is intended for binary classification, we assume that K = 2. Furthermore, in
this section only, suppose that the two classes are coded as yi = 1 or yi =−1.

First, recall that a hyperplane is defined as

{x : xT β +β0 = 0}, (11.21)

where β is a p-vector. Suppose that the training observations are linearly sepa-
rable—that is, the training observations in class 1 and those in class −1 can be
separated by a hyperplane. This means that there exist β and β0 such that an
observation xi for which yi = 1 satisfies xT

i β +β0 > 0, and an observation xi for
which yi =−1 has xT

i β +β0 < 0. Such a separating hyperplane can be used to build
a very simple classifier: we classify a test observation x∗ by assigning it to class

{
1 if xT∗ β +β0 > 0

−1 if xT∗ β +β0 < 0
. (11.22)

Some examples of separating hyperplanes are shown in Fig. 11.2a.
The approach of using a separating hyperplane to build a classifier seems simple

enough, but in general there are two problems.

1. If a separating hyperplane does exist, then typically it is not unique, and
there exist an infinite number of such hyperplanes (Fig. 11.2a). In practice, we
must choose among them. Typically, we choose the separating hyperplane that
is farthest from any training observation (as measured by the perpendicular
distance between the separating hyperplane and each of the observations). This
is equivalent to choosing the separating hyperplane that maximizes the margin
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Fig. 11.2 An illustration of the maximal margin classifier and support vector classifier. (a) The
observations are linearly separable, and three of many possible separating hyperplanes are shown
(solid line). (b) The optimal separating hyperplane is displayed (solid line), along with the
boundaries of the margin (dashed line). The background grid indicates the classification rule that
results. (c) The observations are not linearly separable. (d) The hyperplane and margin of the
support vector classifier are shown, for a given value of the tuning parameter. The background grid
indicates the classification rule that results

around the hyperplane. This approach is often referred to as the maximal margin
classifier, or the optimal separating hyperplane. An example of an optimal
separating hyperplane, and the associated margin, is shown in Fig. 11.2b.

2. When n > p, a separating hyperplane often does not exist—that is, the training
observations may not be linearly separable (Fig. 11.2c). The support vector
classifier extends the maximal margin classifier to this setting, by choosing
the hyperplane that correctly separates most of the training observations, while
allowing some to be misclassified (Fig. 11.2d). Briefly, the support vector
classifier finds a hyperplane that maximizes the margin, while allowing a user-
specified number of observations to fall on the wrong side of the margin.
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It turns out that even if a separating hyperplane does exist (as will generally
be the case when p > n), one can often obtain better results by using the support
vector classifier instead of using a separating hyperplane. In a sense, by allowing for
some training observations to be misclassified, the support vector classifier avoids
overfitting. It can be shown that the support vector classifier is the solution to the
optimization problem

minimize
β0∈R, β∈Rp

n

∑
i=1

max(1− yi f (xi),0)+λ‖β‖2, (11.23)

where f (x) =β0+xT β and λ is a tuning parameter that controls the magnitude of β .
Note that (11.23) involves minimizing the sum of a loss function and an �2 penalty,
and is very similar to the optimization problem for penalized logistic regression
(Sect. 11.2.2). The only difference is the loss function used. In fact, the form of
(11.23) provides insight into the fact that the support vector classifier can be applied
without modification (and can avoid overfitting) when p > n: the λ‖β‖2 term is an
�2 penalty that serves to regularize the solution when λ is sufficiently large.

In some data sets, observations cannot be well-separated with a linear decision
boundary. SVM generalizes the support vector classifier to obtain a non-linear
decision boundary by mapping the feature space into a higher dimension through the
use of a kernel, a generalized notion of the distance between a pair of observations.
In fact, the support vector classifier just described can be thought of as an SVM
with a linear kernel. SVMs are often applied with non-linear kernels in order
to achieve non-linear decision boundaries (radial and polynomial kernels are two
popular choices). However, in high dimensions, using a non-linear kernel is often
not warranted, as it leads to a classifier that is too complex given the very limited
number of observations. We refer the reader to [42] for a more detailed discussion
of SVMs and kernels. A comprehensive list of references for SVM can be found at
http://www.kernel-machines.org.

The ideas described in this section lend themselves most naturally to the task of
binary classification, where K = 2. However, many authors have extended SVM to
the case of K > 2 [44,52,91]. We briefly describe one such approach, referred to as
one-versus-one classification. We construct

(K
2

)
SVM classifiers, one for each pair

of classes. A new observation x∗ is then classified by assigning it to the class to
which it is most frequently assigned by the

(K
2

)
classifiers.

11.7 Normalization of RNA-seq Data

RNA-seq data suffer from some systematic and non-systematic biases that can pose
challenges for data analysis.

First of all, within a single RNA-seq experiment, each observation can have a
vastly different number of total reads [83]. These differences in sequencing depth
are due to technical artifacts, and are non-systematic, in the sense that technical
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replicates of the same observation might have vastly different sequencing depths.
Thus xi j, the count of the ith observation in the jth feature, depends not only on the
expression level of the jth feature, but also on the sequencing depth that resulted
from processing the ith observation. This can cause major problems for downstream
analyses, since unless the data are properly normalized, the variation among the
observations due to differences in sequencing depth can be far greater than the
variation associated with the phenotype of interest.

Second, transcript length bias can have a major impact on the number of reads
obtained per feature [12, 70]. For instance, suppose that the features correspond to
genes. Then a longer gene will tend to have many more reads than a shorter gene. It
has been well-documented that this bias leads to higher power to detect differential
expression for long genes than for short genes [70]. A similar phenomenon can
occur in the context of classification, in which long genes can play an outsize role
in the classifier obtained unless the data are properly normalized before analysis.

The problem of how best to normalize RNA-seq data is far from trivial, and a
number of approaches have been considered in the literature [4, 12, 23, 55, 66, 77].
There is no consensus as to which approach is best. We now briefly summarize
several commonly-used approaches to normalize the observations in order to
account for differences in sequencing depth. Each of these approaches involves
dividing the p-vector of feature measurements for the ith observation by a scaling
factor, si.

1. Total count [60, 66]: si is computed as the total count for the ith observation
divided by the average total count across all observations.

2. Upper quartile [12]: let qi be the 75th percentile, across all features, of the counts
for the ith observation. The scaling factor is computed as si = qi/

1
n ∑n

i=1 qi.

3. Median ratio [4]: let mi = median j

{
xi j

(∏n
i′=1

xi′ j)
1/n

}
; this is the median (across all

features) of the ratio between the jth feature’s count in the ith observation and the
geometric mean of the jth feature’s counts across all n observations. The scaling
factor is then given by si = mi/

1
n ∑n

i=1 mi.

In order to address differences in the total number of reads per feature due to
transcript length bias or other issues, a simple option is to scale each feature to
have standard deviation one. This scaling can be performed after carrying out the
normalization described above.

We explore the normalization approaches described above in Sect. 11.8. We refer
the reader to [23] for a comprehensive review of normalization approaches for
RNA-seq data.

11.8 Evaluation of Methods for Classification

Here, we compare the performances of some of the classifiers described in the
context of two RNA-seq data sets:
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1. Prostate cancer data2 [49]. This data set consists of expression levels of 62,706
gene transcripts from 20 patients with prostate cancer, as well as 10 benign
matched controls.

2. Cervical cancer data [92]. This data set contains the expression levels of 714
microRNAs from 56 cervical tissue samples. Among the 56 observations, 27 are
cancerous and 29 are non-cancerous.

We compare the performances of the following classifiers: �1-penalized logistic
regression, NSC, Poisson LDA, PCC, sparse PCC, supervised PCC, sparse PLS,
and SVM. Before discussing the specific implementation of each of the methods,
we first discuss the general approach that we use to evaluate the methods.

11.8.1 Evaluation Criteria

In evaluating the classifiers, we consider two attributes: (1) sparsity and (2)
accuracy. The sparsity of a classifier can be measured by the number of features
involved in the decision rule. To assess the accuracy of a classifier, more care
must be taken. Here we use classification error, the percentage of observations that
are incorrectly classified, to measure accuracy. However, if classification error is
evaluated on the original training data, the estimate will be overly optimistic [42,45].
Indeed, in high dimensions, it typically is possible to construct a classifier that
perfectly classifies the training data. However, this classifier will perform poorly
in classifying future observations—this phenomenon is known as overfitting. In
practice, we are interested in developing a classifier that is accurate in classifying
observations not used in training. In order to mimic the scenario of having a training
set for model training and a test set for model evaluation, we split the available
observations into a training set and a test set. The model can then be fit on the
training set, and its performance can be evaluated on the test set.

Though we use classification error here as a measure of model accuracy,
alternative measures, such as sensitivity and specificity, may be of interest depend-
ing on the application. In general, regardless of how accuracy is measured, it is very
important to report accuracy on a test set rather than on a training set.

11.8.2 Evaluation Process

In order to obtain the results described in Sect. 11.8.4, we perform the following
steps:

2We thank Liguo Wang for providing us the raw counts for the prostate cancer data set used in [49].
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1. Split data: We randomly split the observations into a training set and a test set,
with 70 % of observations allocated to the training set and 30 % to the test set.
We denote the split data as Xtrain, ytrain and Xtest , ytest .

2. Screen data: We filter the prostate cancer data by retaining only the 2000 features
with the largest variance in Xtrain. Additionally, we discard any features for which
10 % or fewer of the observations in Xtrain have non-zero counts.

3. Normalize data: The observations are normalized as discussed in Sect. 11.7.3 We
also consider simply transforming the data via log(xi j + ε), where ε is a small
nonnegative constant; this approach has been used in the context of microarray
data [74]. Then, for all methods except Poisson LDA, each feature is standardized
to have mean zero and variance one in the training set. Note that normalization
and standardization are performed on the training set; then each test observation
is normalized and standardized relative to the training set. For instance, for a
test observation x∗, the upper quartile scaling factor described in Sect. 11.7 is
calculated as q∗/q̄train, where q∗ is the 75th percentile of the counts for x∗, and
q̄train is the mean of this quantity across the training observations. Similarly, the
features of x∗ are standardized by subtracting the means of the features in Xtrain,
and dividing by the standard deviations of the features in Xtrain.

4. Select tuning parameters: The classification methods for high-dimensional data
introduced in Sects. 11.2–11.6 involve at least one tuning parameter. Choosing
an appropriate tuning parameter value is important, in order to avoid either
overfitting (caused by fitting a model that is too complex given the data) or
underfitting (caused by fitting a model that is not sufficiently complex). We use
R-fold cross-validation4 on the training set to select the tuning parameter [42,45].
If multiple tuning parameter values achieve the minimum cross-validation error,
we choose the tuning parameter value corresponding to the most sparse classifier.
For methods with multiple tuning parameters, cross-validation is performed over
a multi-dimensional grid of tuning parameter values.

5. Fit classifier: We fit the classifier to the data (Xtrain,ytrain) with the selected value
of the tuning parameter.

6. Assess classifier: We apply the classifier to Xtest in order to obtain predictions for
ytest , and calculate the test error, i.e., the proportion of observations in the test set
that are incorrectly classified. We also report the number of features involved in
the decision rule.

3In greater detail, for all methods except for Poisson LDA, we divided each observation by the
scaling factors discussed in Sect. 11.7. In contrast, in applying Poisson LDA, observations were
not divided by the scaling factor—instead, the scaling factor is directly incorporated into (11.14).
4Briefly, R-fold cross-validation involves splitting the observations in the training set into R sets.
Then for r = 1, . . . ,R, we build classifiers for a range of tuning parameters using all observations
except those in the rth fold. We then calculate the error er of each of these classifiers on the
observations in the rth fold. Finally, we calculate the cross-validation error as 1

R ∑R
r=1 er . The tuning

parameter value corresponding to the minimum cross-validation error is selected.
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Since both the prostate and cervical cancer data sets have a relatively small
number of observations, we expect the test error to be highly variable across
different splits of the observations into training and test sets. For this reason, we
repeat the entire process (Steps 1–6 above) a total of ten times. In Sect. 11.8.4, we
report a summary of the results across the ten repetitions.

11.8.3 Implementation of Specific Methods

Here we provide implementation details of the classifiers used in cases where further
elaboration beyond the discussion in Sects. 11.2–11.6 is required.

Recall from Sects. 11.4 and 11.5 that PCC, sparse PCC, supervised PCC, and
sparse PLS are two-step procedures—a lower-dimension feature set is obtained, and
then a classifier is built using this new feature set. For all of these methods, logistic
regression is used to perform classification using the new feature set. For supervised
PCC, features are first selected based on differential expression, as computed using
the edgeR method of [76]; then PCA is performed on the reduced set of features in
order to obtain a lower-dimensional feature set. SVM is implemented with a linear
kernel; this is a support vector classifier.

All analyses are performed using R-CRAN, a freely available language and
environment for statistical computing, available at www.r-project.org [75].
Table 11.1 contains a list of R packages that implement the classification techniques
described in Sects. 11.2–11.6. Additional guidance on the implementation of some
of these methods can be found in [45].

11.8.4 Results

We now report the performances of the classifiers described earlier on the prostate
and cervical cancer data sets.

11.8.4.1 Prostate Cancer

On the prostate cancer data, all methods average a test error of around 30 %
(Fig. 11.3), and the type of normalization performed seems to have little effect. In
these data, the test set contains only nine observations, six of which have prostate
cancer. Hence a test error of 33 % could be achieved by simply assigning each
observation to the cancer class, regardless of its feature measurements! In light of
this fact, it is clear that all methods are performing quite poorly on these data.

To provide insight into this poor performance, we plot the first three principal
component score vectors of the data, after performing total count normalization
and standardizing each feature to have mean zero and variance one (Fig. 11.4).
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Table 11.1 A list of R packages for implementing the classifiers described in
Sects. 11.2–11.6

Method [citation] R package

�1 penalized logistic/multinomial regression [30] glmnet

Diagonal linear discriminant analysis [26] sfsmisc
Sparse linear discriminant analysis

Sparse discriminant analysis [15] SparseLDA
Regularized linear discriminant analysis [36] rda
Nearest shrunken centroids [86] pamr
Penalized Fisher’s linear discriminant [94] penalizedLDA

Poisson linear discriminant analysis [93] PoiClaClu

Principal component analysis stats
Sparse principal component analysis

Sparse PCA, [102] elasticnet
Penalized matrix decomposition [95] PMD

Supervised principal components [5] superPC

Partial least squares pls
Generalized partial least squares [24] gpls
Partial least squares with �1 penalized logistic regression [28] plsgenomics
Sparse partial least squares [13, 14] spls

Support vector machine e1071
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Fig. 11.3 Results for the prostate cancer data set [49]. The test error (averaged over ten splits of the
data into training and test sets) is shown, along with 95 % confidence intervals. Four normalization
methods are displayed: total count (blue line), median ratio (orange line), upper quartile (purple
line), and log transformation (green line)

The figure reveals that in the first three principal component score vectors, the
non-cancerous observations are intermixed with the cancerous ones. Therefore,
it is not surprising that classification is very challenging on the basis of these
data—there simply is not much difference between the two classes in terms of
the feature measurements. Results similar to Fig. 11.4 are obtained using the other
normalization techniques.
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Fig. 11.4 The first three principal component score vectors (PCs) of the prostate cancer data,
after normalization using total counts and then standardization of each feature to have mean zero
and standard deviation one. Similar results are obtained if features are not standardized to have
standard deviation one. The symbols indicate the class membership of the observations: prostate
cancer (orange triangle) and non-cancer (blue open circle)
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Fig. 11.5 Results for the cervical cancer data set [92]. Details are as in Fig. 11.3

11.8.4.2 Cervical Cancer

Results on the cervical cancer data set are presented in Fig. 11.5. Among the
classification techniques that we consider, PCC and sparse PCC have the highest
average test errors, and SVM has the lowest average test error.

The number of features used by each method is presented in Table 11.2. Recall
that PCC and SVM5 do not induce sparsity, and so all features are used by those
classifiers. In contrast, �1-penalized logistic regression only uses 13 features on
average. For this particular data set, we recommend choosing �1-penalized logistic
regression, since its average test error is comparable to that of the other classification
methods, and it uses substantially fewer features.

5Proposals have been made for an �1-penalized SVM that results in a sparse decision rule, but the
standard SVM decision rule involves all of the features [100].
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Table 11.2 The mean (and standard error) of the number of features used in each classifier across
the ten splits of data

Method Total count Median ratio Upper quartile Log transformation

�1-logistic 13.2 (1.7) 15.2 (2.3) 17.8 (2.8) 14.5 (2.0)
NSC 121.6 (48.4) 179.8 (55.0) 201.3 (36.2) 34.7 (12.8)
Poisson LDA 96.4 (39.7) 101.8 (41.4) 97.9 (40.4) 38.1 (12.6)
Sparse PCC 217.6 (82.4) 193.8 (70.2) 150.0 (64.0) 267.5 (73.0)
Supervised PCC 198.6 (6.7) 209.7 (14.4) 218.1 (16.4) 202.3 (16.8)
Sparse PLS 383.0 (63.5) 517.9 (24.0) 294.2 (65.0) 421.1 (56.9)
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Fig. 11.6 The first three principal component score vectors (PCs) of the cervical cancer data.
Details are as in Fig. 11.4

In this data set, the test set has 16 observations, of which seven belong to
the cancer class. Thus a test error of 44 % can be achieved by always assigning
observations in the test set to the non-cancer class. However, in contrast to the
prostate cancer data, all of the classification methods provide a significant reduction
in test error compared to not taking any expression data into account. This is
consistent with the fact that the first three principal component score vectors show
clear separation into the two classes (Fig. 11.6).

11.9 Discussion

We briefly discussed normalization of RNA-seq data in Sect. 11.7. Due to sequenc-
ing depth bias, transcript length bias, and other issues, RNA-seq data need to be
normalized before any statistical analysis is performed. We note that normalization
of RNA-seq data is currently an ongoing research area [4, 12, 55, 66, 70, 76, 77].

Batch effects are another important technical issue that comes into play in the
analysis of RNA-seq data. Batch effects are defined by [53] as “sub-groups of
measurements that have qualitatively different behaviour across conditions and are
unrelated to the biological or scientific variables in a study”. For instance, consider
an extreme example: suppose that all of the observations in class 1 are processed at
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location A, and all of the observations in class 2 are processed at location B. Then
some features may have differential expression between the two classes due not to
inherent biological differences between the classes, but due to artifacts induced by
the different locations in which the observations were processed. Failure to consider
the presence of such batch effects can lead to a classifier that exploits this artificial
signal; unfortunately, this classifier will not perform well on future observations.

In this chapter, we have focused on using RNA-seq data to build a classifier.
A related problem, which we have mentioned in passing, involves testing individual
features for differential expression across classes. While standard approaches
such as the two-sample t-test can be applied to RNA-seq data, some authors
have considered specialized approaches that exploit the fact that RNA-seq data
are made up counts, which can perhaps be better modeled using a Poisson or
negative binomial distribution [4, 12, 55, 60, 76, 77, 92].

In addition, we have presented classification methods in the context of RNA-seq
data. However, with the exception of Poisson LDA (which is intended for count
data), these methods are applicable to any type of high-dimensional data. All of
the methods discussed here could be applied to other types of high-dimensional
sequencing data, such as chromatin immunoprecipitation sequencing [73] and
methylation sequencing, provided that classification is of interest.

In this chapter, we have presented some popular approaches for classification
of high-dimensional data. However, we could barely scratch the surface of avail-
able methods, and a more detailed overview is outside the scope of this work.
For instance, an interested reader might wish to also investigate ensemble-based
approaches [10,20,22,69], which are known to perform well in a variety of settings.

Acknowledgements D.W. received support for this work from NIH Grant DP5OD009145, NSF
CAREER Award DMS-1252624, and a Sloan Foundation Research Fellowship.

References

[1] Agresti, A.: Categorical Data Analysis. Wiley, New York (2002)
[2] Aguilera, A.M., Escabias, M., Valderrama, M.J.: Using principal components for estimating

logistic regression with high-dimensional multicollinear data. Comput. Stat. Data Anal.
50(8), 1905–1924 (2006)

[3] Allen, D.M.: The relationship between variable selection and data augmentation and a
method for prediction. Technometrics 16(1), 125–127 (1974)

[4] Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome
Biol. 11, R106 (2010)

[5] Bair, E., Hastie, T., Paul, D., Tibshirani, R.: Prediction by supervised principal components.
J. Am. Stat. Assoc. 101(473), 119–137 (2006)

[6] Bair, E., Tibshirani, R.: Semi-supervised methods to predict patient survival from gene
expression data. PLoS Biol. 2(4), e108 (2004)

[7] Barshan, E., Ghodsi, A., Azimifar, Z., Zolghadri Jahromi, M.: Supervised principal compo-
nent analysis: Visualization, classification and regression on subspaces and submanifolds.
Pattern Recogn. 44(7), 1357–1371 (2011)



11 Classification of RNA-seq Data 243

[8] Bickel, P.J., Levina, E.: Some theory for Fisher’s linear discriminant function, naive Bayes’,
and some alternatives when there are many more variables than observations. Bernoulli
10(6), 989–1010 (2004)

[9] Boulesteix, A.L.: PLS dimension reduction for classification with microarray data. Stat.
Appl. Genet. Mol. Biol. 3(1), 1–33 (2004)

[10] Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
[11] Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares,

M., Haussler, D.: Knowledge-based analysis of microarray gene expression data by using
support vector machines. Proc. Natl. Acad. Sci. 97(1), 262–267 (2000)

[12] Bullard, J., Purdom, E., Hansen, K., Dudoit, S.: Evaluation of statistical methods for
normalization and differential expression in mRNA-seq experiments. BMC Bioinform. 11,
94 (2010)
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Chapter 12
Isoform Expression Analysis Based
on RNA-seq Data

Hongzhe Li

Abstract The development of novel high-throughput DNA sequencing methods
has provided a powerful method for both mapping and quantifying transcriptomes.
This method, termed RNA-seq (RNA sequencing), has advantages over microarray-
based approaches in terms of wide dynamic range of expressions, less reliance
on existing knowledge about genome sequence, and low background noise. After
aligning the reads to the reference genomes, the first step of RNA-seq analysis is to
infer relative transcript abundances. This can be done at the whole transcript level,
at the isoform-specific relative abundance level assuming a known set of isoforms,
and at the level where transcripts are identified and their abundances are quantified.
We review these methods briefly and add some recent developments in dealing
with non-uniform read distribution within a transcript. We focus on methods for
simultaneous transcript discovery and quantification.

12.1 Introduction

The transcriptome is the complete set of transcripts and their respective quantities in
a cell of a specific tissue for a specific developmental stage, including all expressed
transcripts or isoforms. An important aspect of the transcriptome complexity is
the generation of multiple transcript isoforms from a single gene in a genomic
locus, due to the use of alternative initiation and/or termination of transcription and
alternative splicing of pre-mRNAs. Understanding the transcriptome is important
for revealing the molecular signatures of cells and tissues, and also for understand-
ing development and disease. The primary aims of transcriptome analysis are to

H. Li (�)
Department of Biostatistics and Epidemiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
e-mail: hongzhe@upenn.edu

S. Datta and D. Nettleton (eds.), Statistical Analysis of Next Generation Sequencing Data,
Frontiers in Probability and the Statistical Sciences, DOI 10.1007/978-3-319-07212-8__12,
© Springer International Publishing Switzerland 2014

247

mailto:hongzhe@upenn.edu


248 H. Li

catalogue all transcript isoforms (including mRNAs and non-coding RNAs) and to
determine the transcriptional structure of genes in terms of their start sites, 5′ and
3′ ends, and splicing patterns [30]. Major applications of transcriptome analysis
include quantification of the changing expression levels of each transcript during
development, under different conditions and disease states.

The development of novel high-throughput DNA sequencing methods has
provided a powerful method for both mapping and quantifying transcriptomes.
This method, termed RNA-seq (RNA sequencing), has advantages over microarray-
based approaches in terms of wide dynamic range of expressions, less reliance on
existing knowledge about genome sequence, and low background noise. Large-scale
RNA sequencing has been explored to understand mechanisms underlying human
gene expression variation [20], to study the transcriptome genetics in a Caucasian
population [17], and to uncover functional variations in humans [10].

Briefly RNA-seq involves the following steps. Long RNAs are first converted into
a library of cDNA fragments through RNA fragmentation, followed by first-strand
synthesis priming, which selects the 3′ fragment end (in transcript orientation), to
make single stranded cDNA. Double stranded cDNA created during second-strand
synthesis, which selects the 5′ fragment end, is then size selected, resulting in
fragments suitable for sequencing. Sequencing adaptors are subsequently added to
each cDNA fragment, and a short sequence is obtained from each cDNA fragment
using high-throughput sequencing technology. The resulting sequence reads are then
aligned to the reference genome or transcriptome, and classified as one of three
types: exonic reads, junction reads, or poly(A) end-reads. These three types are
used to generate a base-resolution expression profile for each gene [30]. The most
advanced and commonly used tool for mapping the RNA-seq reads is TopHat [26],
a fast splice junction mapper for RNA-seq reads. It aligns RNA-seq reads to the
reference genome using the short read aligner Bowtie [9], and then analyzes the
mapping results to identify splice junctions between exons.

After aligning the reads to reference genomes, the first step of RNA-seq analysis
is to infer relative transcript abundances. This can be done at the whole gene
level, at the isoform-specific relative abundance level assuming a known set of
isoforms, and at the level where all transcripts are identified/assembled and their
abundances are quantified. Pachter [19] gave a detailed review of methods for
transcript quantification using RNA-seq assuming that the isoforms are known
and pre-specified. We first review these methods for quantifying isoform specific
expressions in Sect. 12.2. Special attention is given to some recent developments
in dealing with non-uniformity of the read distribution within a transcript in
Sect. 12.2.2. We then review methods for simultaneous transcript discovery and
quantification in Sect. 12.3 and methods for allelic-specific expression analysis in
Sect. 12.4. Finally, we present areas that need further methodological developments.
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12.2 Transcript Quantification Assuming
the Isoforms Are Known

A simple quantification of transcript abundance assumes that the transcriptome
consist of a set isoforms with different abundances. In addition, the starting position
of a read is assumed to be generated by choosing a site of an isoform uniformly at
random among all the positions in the transcriptome. Then the number of reads per
kilobase per millions reads (RPKM) [18] mapped to a gene can be used to quantify
the gene’s transcript abundance adjusting for the transcript length and total number
of mapped reads. Alternatively, for paired-end RNA-seq experiments, fragments
per kilobase per million mapped reads (FPRM) can be used to approximates the
relative abundance of transcripts in terms of fragments observed from an RNA-Seq
experiment.

12.2.1 Isoform-Level Transcript Quantification

Because most reads that are mapped to the gene are shared by more than one
isoform, it is difficult to compute isoform-specific RPKM directly. Statistical
methods are required to assign these reads to isoforms probabilistically. Typical
alternative splicing (AS) events include alternative 5′ (or 3′) splice sites, exon
skipping, intron retention, and mutually exclusive exons. Information about these
events can be gained by partitioning a gene into a sequence of expressed segments
(or simply segments) based on exon-intron boundaries [2, 14]. Figure 12.1 shows
examples of six-exon genes with two and three isoforms.

-

-

Fig. 12.1 Illustration of isoforms, where the top gene have two isoforms and the bottom gene has
three isoforms. Both genes have six exons
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For a given gene g, assuming the set of n isoforms is known (see Fig. 12.1), one
can then define a set of expressed segments (e.g. all exons, and exon-exon junctions)
denoted by S that define these n isoforms. With these ideas in mind, Jiang and Wong
[8] developed a Poisson mixture model for estimating isoform-specific expression
levels. Specifically, let X = {Xs,s ∈ S} be the set of observed read counts and S is an
index set of the expressed segments. Each observation X ∈ X is a random variable
representing the number of reads falling into some expressed segment in g, including
exon or exon-exon junction. Assuming a uniform-sampling of the reads, we can
assume that each X ∈ X follows a Poisson distribution with some mean parameter λ .
Let θi be the relative abundance of the ith isoform, which is simply the proportion of
transcripts. The mean number of reads falling into exon s is lsw∑n

i=1 bisθi, where ls
is the length (in bps) of exon s, w is the total number of reads, and bis is 1 if isoform i
contains exon s and 0 otherwise. For exon-exon junctions, the λs is lsw∑n

i=1 bi jbikθi,
where l is the length of the junction region, and j and k are indices of the two exons
involved in the junction. In general, for s ∈ S, λs is a linear function of θ1,θ2, · · · ,θn,
i.e., λs = ∑n

i=1 aisθi for some known coefficients ais. The likelihood function for the
observed read counts X is then

l(Θ |X) = ∑
s∈S

{

−
n

∑
i=1

θiais +Xs log

(
n

∑
i=1

θiais

)}

. (12.1)

This model can be interpreted as the read count Xs being sampled from a
mixture of n Poisson distributions with different rate parameters determined by the
isoform abundances and the lengths of the isoforms. An efficient EM algorithm
can be developed to estimate the relative isoform abundances. When the number
of isoforms specified in the model is large, there is potentially a problem of
identifiability since different parameter settings in isoform abundances can explain
the data equally well. Salzman et al. [22] discussed this identifiability problem in
detail. In addition, the design matrix (ais) can be further modified to account for
pair-end reads mapping results and potential non-uniform sampling of the reads.

12.2.2 Accounting for Non-uniform Sampling

Non-uniform distributions of the sequenced fragments or reads over different
positions across different isoforms have been observed in RNA-seq data [13].
Figure 12.2 shows the coverage plots of three genes, indicating the non-uniform
distribution of the read coverage within the exons. Such non-uniformity can be
due to sequencing and positional biases or due to mappability of the reads.
Statistical methods are needed to correct for such biases in isoform abundance
estimation. Hu et al. [6] presented a method that uses the empirical distribution
of the read distribution along the transcripts to adjust for such biases in the EM
iterations. Noting that uniform sampling of reads from a given isoform implies
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Fig. 12.2 Coverage plots of three genes in an RNA-seq dataset, showing non-uniform distribu-
tions of read coverage. This plot was reproduced from [6]

Poisson-distributed read counts, Li and Jiang [12] proposed to use a generalized
Poisson distribution to model the read counts and proposed a component elimination
EM algorithm to estimate the isoform abundances.

Alternatively, one can use a penalized likelihood approach to select the isoforms
and estimate their abundances. Jiang and Salzman [7] proposed to assign a bias
parameter βs to each read type s and to reparameterize βs as βs = exp(bs) for some
bs ∈ R to constrain βs ≥ 0. The actual effective sampling rate for read type s from
isoform i now becomes a′is = aisβs, and the corresponding log-likelihood function is

l(Θ |X) = ∑
s∈S

{−λs +Xs log(λs)}

= ∑
s∈S

{

−
n

∑
i=1

θiais exp(bs)+Xs log

(
n

∑
i=1

θiais exp(bs)

)}

. (12.2)

To estimate the read-type specific non-uniformity parameter bs and the relative
abundances θi, Jiang and Salzman [7] proposed an �1 penalized likelihood estima-
tion method based on the likelihood function (12.2),
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Start End

Fig. 12.3 An illustration of a splice graph, where cassettes represent exons and connecting lines
represent splice paths. The splice graph provides a representation of all transcript splice paths
represented in the transcript models

l(Θ |X)−λ ∑ |bs|,

where λ is a tuning parameter. The rational of using this penalized estimation is
to assume that most of the segments do not have sampling bias (i.e., bs = 0) and
therefore the vector b=(bs,s∈ S) should be sparse. This also provides an interesting
way of dealing with outliers that are often observed in sequencing counts.

12.2.3 Inference of Alternative Splicing Using
Probabilistic Splice Graphs

LeGault and Dewey [11] developed a method for inference of alternative splicing
using an interesting idea of a probabilistic splice graph model. The method is still
based on a set of annotated isoforms and provides a probability estimate of each
alternative processing event. The key of the method is the use of splice graphs [5],
a data structure that can represent all isoforms of a gene and show the structural
relationships among these isoforms. The splice graph of a gene was originally
defined by [5] as a directed acyclic graph, G = (V,E), with a vertex for each
exonic genomic position of the gene and an edge from vertex v to vertex u if
the corresponding genomic position of v immediately precedes that of u in some
isoform of the gene. One merges vertices v and u if (v,u) ∈ E and outdegree(v) =
indegree(u) = 1. In general, the vertices of a splice graph represent exonic segments
of a gene, and an edge represents that one segment precedes another segment. The
key property of a gene’s splice graph is that every isoform of the gene corresponds
to a path through the graph. Figure 12.3 illustrates one such splice graph, which
provides a representation of all transcript splice paths represented in the transcript
model.

The problem of identifying isoforms is equivalent to identifying the most
probable pathways that explain the observed count data. The parameters associated
with a given probability splice graph are the edge weights ai j ∈ [0,1] for each
edge (ui,v j), where ∑ j ai j = 1. These edge weight probabilities can then be used
to quantify the probability of a transcript as the product of the edge weights of its
corresponding path on the splice graph. LeGault and Dewey [11] developed an EM
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algorithm to estimate these edge weights treating the observed read sequences as the
data for a pre-specified splice graph. Different from the penalized approaches given
in Sect. 12.3.1, the method provides probability estimates of the different alternative
processing events, which themselves can be biologically interesting. Since for a
given set of gene annotations there can be different types of splicing graphs, it would
be interesting to develop a statistical method to select probability splice graph that
best fits the data. Based on this model, one can also test for differential alternative
processing events between two RNA-seq samples using a likelihood ratio test.

12.3 Approaches for Simultaneous Isoform Discovery
and Quantification

12.3.1 Penalized Regression Approaches for Simultaneous
Isoform Discovery and Quantification Based
on Known Annotations

Instead of pre-specifying the set of isoforms as in [8], Li et al. [15] considered all
the possible isoforms by enumerating exons of every gene. For example, a gene of J
nonoverlapping exons has n = 2J − 1 possible isoforms, each composed of a subset
of the J exons. However, because of the possible occurrence of alternative splicing
within exons, isoforms of the same gene may have partially overlapping but different
exons. Li et al. [15] further defined a subexon as a transcribed region between
adjacent splicing sites in any annotated mRNA isoforms. Figure 12.4 illustrate how
these subexons are defined based on the annotated isoforms. This uses the same
idea of treating gene as being partitioned into a sequence of expressed segments
based on exon-intron boundaries [2,14]. With this definition, every gene has a set of
nonoverlapping subexons, from which we can enumerate all the possible isoforms
including the annotated ones. For a J-subexon gene, possible paired-end bins are
{(i, j,k, l),1 ≤ i ≤ j ≤ k ≤ l = J}. Then RNA-seq data are transformed into bin
counts (i.e., number of reads in each bin), which are further normalized into a vector
of proportions b. Let θi be the relative abundance of the ith possible isoform. Li et al.
[15] relates the unknown θ =(θ1, · · · ,θn) to observed b by a design matrix F , where

Isoform 1

Isoform 2

Isoform 3

Subexons

Fig. 12.4 An illustration of subexons: transcribed regions between adjacent alternative splicing
sites
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Fjk = Pr( jth bin|kth isoform) (i.e., the conditional probability of observing a read in
the jth bin given that the read is from the kth isoform). They assume the following
linear model:

b j =
2J−1

∑
i=1

Fjiθi + ε j, j = 1, · · · ,J,

where ε j is the random noise whose components are independent and have mean 0.
Li et al. [15] proposed to apply an �1 penalized least squares procedure for isoform
identification and quantification,

θ̂ = argminθ1,··· ,θn≥0

J

∑
j=1

(

b j −
2J−1

∑
i=1

Fjiθi

)2

+λ
n

∑
i=1

|θi|
ni

,

where ni is the number of subexons in the ith isoform. With ni in the penalty term,
θi would thus be favored if the length of the isoform ni is large. Li et al. [15]
implemented this method in a software package SLIDE.

Li et al. [14] developed a similar approach, IsoLasso, which also applies a Lasso
regression approach to RNA-seq based transcriptome assembly. They use a simple
0/1 value for Fjk, indicating whether the kth isoform contributes to bin j. Using the
same idea of regularized regression, Mezlini et al. [16] developed another penalized
approach (named iReckon) that is different from IsoLasso in several ways. First,
iReckon accepts a set of annotations but also aligns all of the reads to the genome
using TopHat [26]. The alignments and the known isoforms are used to generate the
set of all observed and known splice junctions, which in turn are used to construct
splice graphs [5]. A splice graph can represent all the isoforms possibly present
within the sample. This also includes pre-mRNA as a possible isoform. Second,
instead of using an �1 penalty, iReckon uses a penalty of this form

exp

{
n

∑
i=1

4
√

θi

}

.

The rationale of using this penalty function is that the isoform abundances
(in RPKM) are similar to normalized frequencies; they have positivity constraints as
well as a fixed sum. This penalty function is the exponential function of the bridge
penalty, which can lead to sparse solutions.

The penalized regression approaches in Sect. 12.3 still assume that the all exons
and sub-exons of a given gene are known from the current annotations of the
transcriptomes. The method of [16] extends the possible isoform set to include those
identified from spliced reads based on reads assembly.



12 Isoform Quantification from RNA-seq Data 255

12.3.2 Ab initio Reconstruction of Cell-Type Specific
Transcriptomes and lincRNA Quantification

Methods based on Ab initio reconstruction of cell-type specific transcriptomes have
also been developed, among which the most important and popular are Cufflinks [27]
and Scripture [4]. These methods both align observed reads to a reference genome
using TopHat, assemble transcripts, and estimate their abundances. Cufflinks con-
structs a parsimonious set of transcripts that are compatible with the reads observed
by reducing the comparative assembly problem to a problem of maximum matching
in a weighted bipartite graph.Cufflinks tends to choose a minimal set of isoforms.
Cufflinks can estimate the abundances of the isoforms present in the sample, either
using a known reference annotation, or after an ab-initio assembly of the transcripts
using only the reference genome. The model used by Cufflinks is similar to the
Poisson mixture model of Jiang and Wong [8].

Scripture constructs a connectivity graph of individual bases and then applies
a statistical segmentation approach to identify paths in the graph that are enriched
by reads compared to the background noise. In the path-scoring step, a threshold
for genome-wide significance for each region is computed using a sliding window
and a test statistic. Scripture then constructs a transcript graph that merges all
significant windows to generate a set of transcripts in which each node represents
an exon and each edge a splice junction. Scripture reports all possible isoforms that
are comparable with the observed read data, which makes estimating abundances
difficult.

Besides quantifying the transcripts that correspond to protein-coding genes, both
Cufflinks and Scripture can also quantify the large intergenic noncoding RNAs
(lincRNAs), which are non-protein coding transcripts longer than 200 nucleotides.
These lincRNAs can serve as key regulators of diverse cellular processes [3]. Cabili
et al. [1] presented an integrative approach to define a reference catalog of more
than 8,000 human lincRNAs and found that lincRNA expression is tissue-specific
compared with coding genes, and that lincRNAs are typically coexpressed with
their neighboring genes. However, the ability of identifying and quantifying these
lincRNAs is often limited by lower expression levels of non-coding transcripts
relative to that of many protein-coding genes.

12.4 Allele-Specific Transcripts Quantification

RNA-seq can also be used to measure allele-specific expression (ASE) and to
identify allelic expression imbalance (AEI) by assigning sequence reads to indi-
vidual alleles (see Fig. 12.5 for an illustration). In order to do so, we need to have
differential sites that are polymorphic. However, relative ASE can be systematically
biased when sequence reads are aligned to a single reference genome [25] since
allele-specific reads map preferentially to the reference allele when using a single



256 H. Li

A

G

T

C

Fig. 12.5 Allele-specific expression represented as sequencing coverage per allele. Allelic expres-
sion imbalance is observed at site with alleles (A, G), but not at site with alleles (T, C)

reference genome to quantify ASE. The inability of mapping reads with more
differences from the reference genome than mismatches allowed can lead to
underestimation of the abundance of the alternative alleles and therefore cause
measures of ASE to be biased toward the reference allele [25]. This has been clearly
demonstrated in [25] using both simulated and real data sets. One approach to
overcome this potential bias is to map the reads to the reference genome using the
program GSNAP [31] which allows SNP-tolerant alignment. This was the approach
taken by Skelly et al. [23]. Alternatively, one can construct a diploid personal
genome sequence using genomic sequence variants (SNPs, indels, and structural
variants), and then identify allele-specific events with significant differences in the
number of mapped reads between maternal and paternal alleles [21].

For a given differentiating site, we can measure the relative ASE for individual
variable sites. A simple binomial exact test can be performed to test the null
hypothesis that each allele is equally expressed. It is often more interesting to
estimate the relative ASE for individual exons or genes. Skelly et el. [23] proposed
a hierarchical Bayesian model for testing the hypothesis of allele-specific gene
expression, allowing different differential sites to have different degrees of ASEs.
Turro et al. [28] presented another Bayesian approach for haplotype and isoform
specific expression estimation using multi-mapping RNA-seq reads.

12.5 Discussion and Future Directions

We have reviewed some statistical methods for identifying all transcripts from
RNA-seq data and quantifying the isoform-specific gene expression levels. Our
reviews were focused mainly on isoform identification and quantification for one
RNA-seq sample. Other very important areas related to RNA-seq data analysis
include methods for isoform-specific differential expression analysis and differential
exon usage analysis. Steijger et al. [24] have recently presented a comprehensive
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comparison of different methods for transcript reconstruction from RNA-seq and
observed that expression-level estimates varied widely across methods. In addition,
assembly of complete isoform structures also poses a major challenge even when
all constituent elements are identified. Penalized regression using Lasso provides
one approach for isoform structure discovery, however, its results can be sensitive
to tuning parameter selection. Statistical methods are needed to quantify the
uncertainty of the abundance estimates after the isoforms are identified through
variable selection.

Interesting future directions include isoform-specific expression analysis based
on multiple RNA-seq samples. Such multi-sample RNA-seq data analyses are
especially important in controlling biases that show consistent patterns across
multiple RNA-seq samples. An attempt for such a multi-sample RNA-seq data
analysis was reported in [29], in which they proposed a Bayesian hierarchical model
for multi-sample RNA-seq data analysis and showed a clear reduction of variance
the isoform expression estimates. It is also interesting to extend the penalized
estimation methods we reviewed to multi-sample RNA-seq data in order to increase
the power of identifying the isoforms that are observed in most of the samples.
Multiple-sample RNA-seq data can takes into account the population-level isoform
expression abundances and allele frequency to improve quantification of allele-
specific expression at the level of individual sample. Finally, large-scale RNA-seq
data provide a unique opportunity to study how lincRNAs regulate expressions of
protein-coding genes.
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Chapter 13
RNA Isoform Discovery Through Goodness
of Fit Diagnostics

Julia Salzman

Abstract There is great interest from the biological community—basic scientists
to clinicians—in determining the expressed RNA isoforms in cells. Determining the
extent of RNA expression has potential implications for basic scientific models in
biology and for diagnosing and treating diseases such as cancer. Next generation
sequencing provides an opportunity to discover expressed RNA isoforms that have
previously not been detected. Algorithms for detecting these isoforms from RNA-
seq data have attracted great interest and have been quite successful. However, even
the most widely used algorithms generally do not assess goodness of fit statistics,
even when they are based on statistical models. This leads to high rates of false
positives in algorithm output and makes real biological signal more difficult to
detect. The goal of this chapter is to present a simple statistical method for isoform
discovery based on assessing goodness of fit of a statistical model for mismatches
of aligned reads to putative isoforms in RNA-seq data.

13.1 Introduction

DNA is essentially a simple quaternary code (A/C/G/T) that is highly stable and
encodes almost all the information required for cellular function. Its sequence
is generally highly conserved from generation to generation. In ways that are
only partially understood, the same DNA quaternary code exists in every cell of
organisms like flies, mice and humans, yet, different cells within an organisms have
dramatically different shapes and behaviors called “phenotypes”.
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Much is known about some of the diverse set of phenotypes that can be generated
by the same DNA: a major function of DNA is to serve as a template for the
production of RNA, which is copied, with important and regulated modifications,
from underlying DNA in a process called transcription. RNA performs a huge num-
ber of only partially understood functions in the cell: it codes for and regulates the
production of proteins, thought to be ‘work-horses’ in biological systems, and also
has functional roles, for example, performing chemical reactions, interacting with
DNA to control transcription, performing immune-like roles, and other functions
that are currently being brought to light. See [9,14,15,23,26] for examples of RNA
regulation across the tree of life. While almost all human cells have two copies
of each chromosome and the same DNA, no matter what cell type is being studied,
RNA is much more complex and variable in its expression across cell types, and this
complexity and variation is thought to control the diversification of an organism’s
cells.

There are two major characteristics of the complexity of the expressed RNA
in a cell (the “transcriptome”). The first is its copy number or abundance: while
each human gene exists in two copies at the level of DNA in a cell, the number
of molecules of RNA copied from a gene (the expression level) can vary widely—
from zero to tens of thousands of copies per cell. Expression of RNA can be studied
using a variety of technologies: from very classical biochemical approaches (called
“Northern blotting”) to more advanced ones such as quantitative PCR and more
recently, microarray analysis. Next generation sequencing (NGS) also provides an
opportunity to study RNA expression levels, posing many interesting biological and
statistical issues (see, e.g., [7,11,17,20,25], and Chapters 1 through 10 of this book).

The second characteristic of the complexity of RNA expression is the variation
in expressed RNA sequences derived from a “gene”, which can be thought of as a
DNA sequence of n A/C/G/Ts (“nucleotides”) that is subsequently processed into
RNA. A very simplified model of how DNA is copied to RNA is that this copying is
a 1-1 mapping: each DNA nucleotide is either present or absent in any RNA copied
from the gene. This is an oversimplified model for most human genes, but can still be
potentially useful in some contexts, although we will not discuss them here. Instead,
we will focus on studying the only partially understood and very complex process
by which DNA is copied into RNA.

The copying is extremely complex because a single DNA sequence can give rise
to huge numbers of RNA sequences: essentially any substring of the DNA in a gene
can be present in the RNA transcribed from it. In almost all eukaryotes, such as
humans, worms, flies and even yeast, the copying mechanism that transcribes DNA
into RNA is not 1-1. Instead, expressed RNA sequences are actually substrings of
the DNA templates from which they are derived (see Fig. 13.1). This process is
called splicing. Since in principle, any substring of the DNA can be processed
into RNA, at least 2n − 1 linear RNA molecules could be generated from a gene
with n bases, and more if reverse splicing is considered [21, 22]. In reality, there
are biological mechanisms that restrict the number of RNA molecules that can
be spliced from n DNA nucleotides to be much smaller than 2n − 1, but still, there
is a huge diversity of potential RNA expression.
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Fig. 13.1 DNA is
represented at the top with
introns as thin lines and exons
as thick colored boxes. Two
RNA isoforms are depicted,
differing only in whether they
include exon 2

This diversity is fascinating from a biological and statistical perspective, and
much remains to be learned about it. Splicing is very important from a biological
perspective because RNAs of even slightly different sequence are likely to perform
a very different role in the cell. For example, expression of different substrings of
RNA from the same gene may contribute to cancer metabolism [27]. The biological
community is greatly interested in characterizing the expressed RNA sequences.

In fact, despite decades of study, models for which RNAs are expressed are still
incomplete: new transcripts being discovered every month [4]. This is significant
both because it means scientists have not fully characterized which RNAs are
expressed in human cells—diseased or normal, and because incomplete annotation
of isoforms cause the estimates of isoform abundance to be unreliable [1]. Thus, it is
of great interest to determine the set of expressed RNAs, called RNA isoforms, and
discover new annotated transcripts. In fact, in the past four years, more than 1,500
papers have been published that aim to make such discoveries.

Despite this interest and success, isoform discovery algorithms generally do not
assess goodness of fit statistics, even when they are based on statistical models.
This leads to high rates of false positives in the algorithm output and makes real
biological signal more difficult to detect. The goal of this chapter is to present a
simple statistical method for isoform discovery based on assessing goodness of fit of
a statistical model for mismatches of aligned reads to putative isoforms in RNA-seq
data that can reduce false positive rates in isoform discovery.

13.2 Biological and Statistical Background

To refresh the definition of DNA sequences that may or may not be retained in RNA,
consider the following:

Definition 1. An intron is a continuous substring of DNA that is never represented
in processed RNA.
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Definition 2. An exon is a continuous substring of DNA that may or may not be
represented in processed RNA.

Definition 3. An RNA isoform is a specific subset of exons contained in a single
RNA molecule and processed from a single DNA sequence.

For simplicity, in this chapter, we assume each RNA string of length L (the “read
length”) is sampled independently in proportion to its abundance of the RNA in
the population. Each letter (nucleotide) is observed with an error dependent only
on the experiment. The resulting n reads of length L, {s j}n

j=1, are the data. This
assumed sampling scheme is used to simplify and state our approach and methods.
As is known, this assumption is overly simplifying (see, e.g., [18] and [16]), but
all methods developed here can be extended to deal with more intricate parametric
error models.

The biological problem motivating the statistical development below is to deter-
mine which RNA isoforms are expressed in a sample. The dataset that can be used
to address this problem is the set of the nucleotide strings generated in a sequencing
run. The following is simple overview of many statistical and bioinformatic methods
that estimate the expression of RNA isoforms. It is conceptually outlined for the case
of two isoforms (labeled 1 and 2) as follows:

1. The data are a sequence of strings (A/C/G/T) of length L, {s j}n
j=1, e.g. s1 =

AGGA . . .TAA.
2. For each j = 1, . . . ,n, an aligner (black box) takes the data and outputs the

Hamming distance of s j to a set of all RNA isoforms determined by exon
combinations (in this case, just isoforms 1 and 2).

3. If there is an isoform with unique minimal Hamming distance to s j , s j is assumed
to have been generated by this isoform. For simplicity, we do not consider the
case where such a unique isoform does not exist.

4. The read alignments are considered counts and used to estimate the underlying
RNA isoform expression through a Poisson model specified in the next section.

The above algorithm is simplified, but it is the basis of many popular alignment
and isoform specific gene expression tools (see [17] for a review). Note that the
effect of steps 2 and 3 in the above procedure can have significant impact on the
resulting analysis but is not typically statistically modeled. This chapter addresses
this key point.

For intuition, consider the classical case of sampling from a Gaussian mixture
distribution with two means μ1 and μ2, which are known, where α , the parameter
of interest, satisfies 0 ≤ α ≤ 1,

αN(μ1,1)+ (1−α)N(μ2,1).

If x is sampled from this distribution, one well studied algorithm for assigning the
generating mean is to assign x to the distribution with mean μi where i satisfies

argmini||x− μi||22.
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In analogy to the problem considered in this chapter, estimating the set of all
expressed isoforms of a gene, an observed sequence s j would be assigned to the
isoform i with minimum Hamming distance between s j and i. In both scenarios,
this assignment can also take important features of the underlying statistical model
into account. In the case of the Gaussian mixture, clearly, and as is well known, the
smaller the difference

||x− μ1||22 −||x− μ2||22
and the larger the value of

||x− μi||22
the lesser the confidence that x is drawn from N(μi,1). This is typically quantified
using Bayesian posterior probabilities.

In analogy, in the RNA-seq framework, there may be interest in assigning s j to
an isoform. Some isoform assignment algorithms similarly provide a probabilistic
estimate of the posterior probability that a particular read is generated from isoform
i, and this is called an “alignment score” (see, e.g., [10]).

But importantly, the biological problem of interest is actually analogous to
estimating α , not estimating the posterior probability that s j is drawn from N(μi,1).
In other words, the biological problem of interest is in assessing the probability
(analogous to estimating α) that isoform i is expressed and will generate a read,
not primarily whether s j is sampled from isoform i. Therefore, the above algorithm
(steps 1–4) is formally a solution to estimating isoform expression levels. But, its
use of an assignment of s j to a particular isoform is not necessary, and moreover,
even alignment scores don’t properly estimate the underlying statistical quantity
of interest. In fact, under mild assumptions, commonly used estimators of isoform
abundance will be biased, as we will see below.

To continue the analogy with Gaussian mixtures, in many biological applications,
the statistical problem of determining which isoforms are expressed can be formu-
lated as sampling from a mixture of an unknown number of Gaussians (the number
being possibly large or small) each with a mixing coefficients α0, . . . ,αN . The goal
(and biological problem) is usually to estimate a potentially sparse solution to αi.
As a note, other authors have suggested a solution to this problem by introducing
an L1 penalty on the number of isoforms in the model (see [13]). The assumption
of sparsity may be a useful assumption in many cases, but is not generally true. For
example, some well known genes have thousands of RNA isoforms (see [24]).

Below, we develop a statistical framework and provide a disciplined statistical
procedure that is analogous to finding a potentially sparse estimate of the αi.
The estimate is obtained by residual analysis from a model that takes into account
the mismatches found in alignments and represents an estimate of the isoforms that
are actually present in a pool of sequenced RNA.
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13.3 Poisson Modeling

13.3.1 Review of Poisson Model Framework

To formulate the typical statistical analysis performed with RNA-seq, we will first
introduce a particular case of the model in [20]. See this reference for further
discussion of the terminology and background for this model. This model is actually
quite general, and will be used subsequently to explore model selection for isoform
expression using residual analysis. The notation Po(λ ) will denote the Poisson
distribution with mean λ .

The model specifies that for a gene g with I annotated distinct transcript isoforms,
the sequencing reads from g are comprised of J possible distinct read types.
The simplest case is to consider a read type to be each unique sequence, although
we will consider other statistical properties and definitions of read types in later in
the chapter.

We will adopt the following terminology. Let θ be the I × 1 isoform abundance
vector whose i-th component represents the expression level of the RNA isoform i.
Let A be the I×J sampling rate matrix with its (i, j)-th element ai j denoting the rate
that read type j is sampled from isoform i. For the purposes of this chapter, we will
sometimes ignore sequencing depth, although this issue is discussed in [20] and can
be modeled with A. Given θ and A, we assume that the J × 1 read count vector n,
where n j denotes the number of reads of type j mapped to any of the I isoforms,
follows a Poisson distribution

n j|θ ,A ∼ Poisson

(
I

∑
i=1

θiai j

)

.

The log-likelihood function is therefore

l(θ ;n,A) =
J

∑
j=1

{

n j ln

(
I

∑
i=1

θiai j

)

−
I

∑
i=1

θiai j

}

,

where the term − ln(n j!) was ignored because it does not contain θ . Given this
model, the primary goal is to estimate θ .

This is one of many model that have been proposed for isoform-specific RNA-seq
(see [17] for a review); the simple most commonly applied special case of this model
(and most others) has the following characteristics:

1. It ignores the effect of sequencing errors, with some notable exceptions in work
on allele specific expression—see [2].

2. The estimated abundance of an RNA species does not depend on the average
number of mismatches (Hamming distance) in the reads aligned to the RNA
species.
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The sampling rate matrix A is a set of parameters, assumed to be a known
function of the sequencing library and gene. For single-end RNA-seq data, the
simplest model is to assume the uniform sampling model which assigns ai j as c
where c is the sequencing depth (proportional to total number of mapped reads and
the length of the transcript) of the experiment if isoform i can generate read type
j and is 0 otherwise. For paired-end RNA-seq data, an insert length model can be
used such that ai j = q(li j)c if read type j can be mapped to isoform i with insert
length (fragment length) li j, where q() is the empirical probability mass based on
all the mapped read pairs.

Because J (the number of distinct read types) is usually very large, especially
for paired-end RNA-seq data, we introduced the following collapsing technique.
This approach merges read types of proportional sampling rate vectors into read
categories which we proved to be minimal sufficient statistics of the model. This
does not change the model except that j now represents a read category rather than
a read type. Another data reduction technique is to ignore all the read categories with
zero read counts by introducing an additional term with the total sampling rates for
each isoform wi = ∑J

j=1 ai j. In this case, the log-likelihood function becomes

l(θ ;n,A,w) = ∑
n j>0

{

n j ln

(
I

∑
i=1

θiai j

)}

−
I

∑
i=1

θiwi. (13.1)

The sampling rate matrix A is supposed to be known in the model. Other work [6]
has focused on methods for estimating A and assessing statistical properties of these
models. Typically, the sampling rate matrix is used to improve statistical models by
incorporating inference using paired end RNA-seq [20, 25] and sequence specific
biases [16, 18]. However, the sampling rate matrix is quite general. In this chapter
we use it to assess the goodness of fit of a model which specifies the expected rate
of mismatches between a read and the isoform to which it best aligns. This will be
discussed in Sect. 13.4.

13.3.2 Isoform Detection Is Confounded by Mismatches

This section contains the major point of this chapter: false discovery for isoforms
expression can be reduced by the following simple observation. The probability of
mismatches in alignments to isoforms which appear to be expressed, but are actually
artifacts, is greater than the probability of mismatches in alignments to isoforms that
are truly expressed. This idea is intuitive, but its statistical formulation is lacking
in popular bioinformatic tools for isoform discovery. The concepts are formalized
below.

Example 1 (Key example). Suppose an RNA molecule GGG is sequenced with an
independent error rate per base that misreads G to T with probability p. Suppose
n observations (reads) of this molecule are observed, each with length L = 3, and
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an aligner assigns read j (s j) to the string I1 := GGG or I2 := T TT based on the
minimum Hamming distance of s j to I1 or I2. Thus, s j is aligned to I1 iff and only
if its Hamming distance to I1 is less than or equal to 1. Simple binomial modeling
shows that if the true RNA molecule from which read j is derived has the sequence
GGG, and if x j is the number of mismatches between read j and the isoform to
which it best aligns, the distribution of xi is given in the following table:

Observed sequence xi Probability

GGG 0 (1− p)3

GGT,GTG, or TGG 1 3p(1− p)2

GTT,TGT, or TTG 1 3p2(1− p)
TTT 0 p3

The above table of probabilities leads us to the following simple observation.
Suppose for i = 1 or i = 2, μi is expected mismatch rate (Hamming distance) of
{s j}n

j=1 assigned to Ii. Then, if p < .5,

μ1 < μ2, (13.2)

i.e., the average number of mismatches in all aligning reads, conditional on
being assigned to I1, is smaller than the average number of mismatches of reads,
conditional on being assigned to I2.

Note that this example easily generalizes to the quaternary code (rather than the
binary code (G,T) in the simplified model) as follows. The aligner determines that
a read aligns to I1 = GGG or I2 = T T T if and only if it has Hamming distance to I1

or I2 less than or equal to 1. In this case, let pT be the probability G is read as T and
pAC the probability G is read as A or C, and let p = pT + pAC. The above distribution
of xi conditional on reads aligning to I1 remains the same; for reads aligning to I2,
xi = 1 with probability 3p2

T (1− p) and xi = 0 with probability p3
T . Again, if p is

small, (13.2) still holds.

This example illustrates that under mild assumptions, if isoform 1 is the only
expressed isoform, but is observed with some rate of error, most alignment algo-
rithms, and consequently, most isoform-specific RNA-seq estimation algorithms
will find evidence that isoform 2 is expressed, even when all reads aligning to
it can be explained by observing isoform 1 with errors, which result in the reads
with sequence different than GGG. Thus, while Example 1 seems trivial, it has real
consequences: the concept illustrated this example is ignored by almost all RNA-
seq algorithms, including those that attempt to discover structural sequence variants;
the output of these algorithms will be noisier than necessary, and, as the preceding
example illustrates, provably biased.

The following section introduces a statistical model that uses mismatches
between reads and the isoform to which they best align (minimal Hamming
distance) to detect isoforms whose expression could be attributed to noise. It is
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Fig. 13.2 DNA is represented at the top with introns as thin lines and exons as thick colored boxes.
Two RNA isoforms are depicted, differing only in whether they include exon 2. The sequence of
each exon is given schematically to represent the statistical challenge: the sequences of exons 2 and
3 are nearly identical, only differing by two bases at their start. If mismatches in the sequencing
reads are present, a read that was derived from an exon 1 - exon 3 junction (boundary) may assigned
by an alignment algorithm to the second isoform because the error-ridden sequence is the same as
the sequence spanning the junction between exon 1 - exon 2

worth noting that some alignment algorithms do assign alignment quality scores
to alignments (i.e. posterior probabilities that read j was generated from isoform i).
However, this is conceptually and practically very different from Example 1.

We will first restate the intuitive motivation in the real biological problem with
a commonly used bioinformatic approach and then give one very simple statistical
approach to model selection for the number of expressed isoforms.

Example 2 (Biological example). Consider a case of two isoforms expressed from
one gene, as in Fig. 13.2. Suppose exons 2 and 3 are highly homologous, differing
only by 2 nucleotides. Suppose that only isoform 1 is expressed, but sequencing is
used to test whether isoform 1 or isoform 2 is expressed. Assume that the error rate,
that is, the rate a base is misread by the sequencer, is non-zero. If a read is said
to align to isoform i (i = 1 or i = 2) where i is defined so that isoform i and the
read have minimal Hamming distance, some reads will align to isoform 2 and its
abundance will be estimated as strictly larger than zero as the sampling depth tends
to infinity. Therefore, using the log likelihood in (13.1), the estimate of θ will be
biased and is inconsistent.
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By generalizing the example, with simple statistics, we can achieve much better
performance of algorithms used to detect specific isoform expression. The examples
provide a statistical basis for the following heuristic algorithm:

Algorithm 1.

1. Use an empirical null distribution or simulation to model the distribution of μ̂i

(an estimate of μi) when isoform i is actually not expressed (i.e. θi = 0), but
instead, reads from this isoform can be attributed to sequencing artifacts. See
[22] for an example of modeling an empirical null.

2. Impose the following model selection procedure:

(a) Align all reads (e.g. assign a read to the closest isoform in the Hamming
distance metric); compute μ̂i for isoform i.

(b) For a predefined quantile q where 0 ≤ q ≤ 1, remove isoform i if μ̂i falls
below the qth quantile of the empirical null distribution for μ̂i.

An implementation of this procedure is presented in [22] where it was empiri-
cally successful. This approach will not be further discussed here but has a fuller
statistical development. Instead we will explore a residual-based analysis of model
selection.

13.4 Model Selection Via the Sampling Rate Matrix

This section develops a basic theory of model selection in a simplified case of
isoform-specific expression where we assume there is no multi-mapping, that is,
each read can be uniquely assigned to a single isoform by the minimal Hamming
distance. The theory can be extended in a straightforward way to the case of multi-
mapping.

13.4.1 Using the Sampling Rate Matrix A to Model
Alignment Quality

As in [20], ai j is interpreted as the probability that isoform i generates a read
of type j. Here “type” is quite general and can be used to model the effects of
sequence biases, insert lengths or more. In [20], the probabilities corresponding
to ai j were introduced and modeled for deconvolving isoform specific expression,
ignoring mismatches in alignment. Here we will show how the generality of the
model allows it to be used to assess fit of RNA-seq models even in the case
of estimating expression of a single isoform. Also, although sampling depth and
RNA-seq normalization factors are incorporated into the {ai j} when differential
expression is of interest, we ignore the issue of normalization in this model, since
including a normalizing constant is a straightforward extension and tangential to the
purpose of the exposition.
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Suppose we are interested in the expression of only one isoform at a time and
assume each read has a unique isoform to which it best aligns. In this case, i is
repressed, and a j is the probability that a read of type j is generated from the isoform
to which it best aligns. In principle, a j can be computed for each read as a function
of the read start and any feature of the read. Here, we will use a simple model where
a j is a function of the Hamming distance between a read of type j and the isoform
to which it is assigned. This leads to a simple minimal statistic for the model and a
closed form maximum likelihood estimator.

Definition 4 (Simple mismatch model). Suppose p is the per base probability of
an error, errors occur independently at each base, and sequencing reads are of length
L. We assume p is known, a common assumption for NGS platforms. A read of type
j will correspond to any read that aligns with j mismatches to its best alignment (to
isoform i). We assume a j =

(L
j

)
p j(1− p)L− j. This assumption for the form of a j

is a reasonable simplifying assumption, but the true a j parameters depend on the
set of other isoforms and their sequence similarity to the isoform whose abundance
we wish to estimate. The statistician can choose to model a j in a way that takes this
into account. Our choice of a j assumes that all reads aligning to an isoform originate
from this isoform and that all reads with j mismatches originating from the isoform
of interest have a best alignment to that isoform.

Proposition 1. For a fixed isoform i, let nk denote the number of reads (of length
L where isoform i is the closest alignment in Hamming distance) with k mismatches
to isoform i, that is,

nk = ∑
1≤ j≤n

1d(s j ,i)=k,

where d(s j, i) is the Hamming distance between read s j and isoform i. Suppose up to
K mismatches are allowed in an alignment. Then the minimal sufficient statistic in
the model (13.1) is (n0,n1, . . . ,nK). Furthermore, with θ representing the abundance
of isoform i,

nk ∼ Po(akθ ) = Po

((
L
k

)
pk(1− p)(L−k) θ

)
,

and the MLE for θ is

θ̂ =
∑0≤k≤K nk

∑0≤k≤K

(L
k

)
pk(1− p)L−k

.

Note that in this formulation, as in Example 1, for small pL, the more mismatches
the read has, the less likely it is to have been generated from isoform i. Also, note
that empirically, reads with greater than K mismatches are ignored; however, if

∑
K<k

(
L
k

)
pk(1− p)L−k
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is very small, the resulting bias in θ̂ will be small. Also, note that the above
model will give an very biased estimate of θ if all reads aligning to isoform i
have mismatches, because of situations such as in Example 1. The latter case can
be easily identified with standard statistical techniques to assess the fit of the model,
for example, residual analysis.

13.4.2 Residual Analysis

Under Proposition 1, we can assess the fit of each component of the minimal
sufficient statistics and perform a standard goodness of fit test. For each k, let

θ̂k = akθ̂ =

(
L
k

)
pk(1− p)L−kθ̂ .

Pearson residuals from this model are

nk − θ̂k√
θ̂k

for 0 ≤ k ≤ K.

For the case of isoform TT T in Example 1, n0 will be much smaller than its
expectation causing the residual to large and negative, whereas n1 will be much
larger than its expectation, causing the residual to be large and positive. This lack of
fit can be formally detected with the Pearson chi-squared test.

An advantage of residual analysis, and especially χ2, is that decompositions of
χ2 can used to produce interpretable summaries and ways of diagnosing lack of fit.
This idea will just be sketched below; for more details, see [8] or [19]. In the context
of sequencing data, this means that it is possible to obtain interpretable summaries to
detect lack of fit of the model that is due to specific biases, such as read mismatches
or bias in read distribution. An example of a decomposition of χ2 and how it can be
applied to Example 1 follows.

13.4.3 Detecting Lack of Fit

In our situation, the Pearson chi-square statistic is:

χ2 =
K

∑
k=0

(nk − θ̂k)
2

θ̂k
.
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A large value of χ2 implies a lack of fit of the data to the model. In this case,
the model is primarily an error model, and lack of fit is consistent with artifactual
expression of the isoform due to sequencing error. If K is small, each individual
residual can be examined. A real data example is presented below:

Example 3 (Leukocyte data [21]). In this example, we illustrate how residual anal-
ysis can be applied by considering alignments to the gene encoding a hemoglobin
protein (HBG1, NM 000559) from the dataset [21]. As described in [21], evidence
of exon rearrangement in the sample was identified by testing all reads that failed
alignment to the human transcriptome as currently annotated. Using this method,
a particular isoform of HBG1 was apparently expressed: 80 reads mapped to a
junction between exon 3 and exon 1. Read lengths were 80 nucleotides.

Examining alignments of these reads reveals that 79 reads mapping to this
putative junction have three mismatches and one read has two mismatches. This rate
is much higher than what is expected, and intuitively means that this gene model (an
exon 3 - exon 1 junction) will be identified as an artifact.

Fitting a Poisson model where p = .01 and K = 3 yields the following estimate
of θ :

θ̂ =
0+ 0+ 1+ 79

((80
0

)
p0(1− p)80+

(80
1

)
p1(1− p)79 +

(80
2

)
p2(1− p)78+

(80
3

)
p3(1− p)77

)

Therefore, θ̂k =
(80

k

)
pk(1− p)(80−k)80.7. The residuals rk for 0 ≤ k ≤ 3 are

r0 =−6.01, r1 =−5.40, r2 =−3.12, and r3 = 43.43.

It is clear that the Pearson χ2 statistic rejects the fit of this model, and we conclude
that the putative expression of a novel isoform of HBG1 is highly likely to be an
artifact because of the size of r3 which reflects the excess of reads with 3 mismatches
to the gene.

13.4.4 Extensions

We have considered a simple method to detect lack of fit for residuals using a simple
error model that models the probability of a particular read being generated by an
isoform as a binomial random variable. This assumes each position in each read is
equally likely to produce an error. However, this error model is overly simplified:
it has been shown that real RNA-seq data has positional and sequence-dependent
error rates.

Several approaches have been developed to model and correct such biases [3,12,
18]. However, completely removing sampling biases is almost impossible because
the technical procedure of sequencing and read mapping is often too complex.
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More involved models of the mismatch rate, which take into account the position
of the mismatch or its sequence specific context, can also be adapted for residual
analysis by estimating the expression of an isoform and subsequently testing
whether the residuals, through χ2 are consistent with this model. In applied
statistics, the decision to reject a particular model (isoform) can be made based
on an empirical null distribution of χ2 or a simulation. In addition, projections of
χ2 (see [19]) could instead be used to determine lack of fit and possibly to improve
genome-wide error models.

13.5 Conclusion

This chapter presents two simple methods for detecting lack of fit between a simple
one-isoform Poisson model and the raw sequencing alignments. We illustrated the
method in this special case, and it is easy to see how it extends to more complex
models of isoform specific expression (such as in [21]), non-Poisson models, such
as the negative binomial, or more complex models of error rates (such as in [16]).
Using these simple methods may dramatically reduce the false positive rates of
isoform-discovery algorithms. Indeed, we have applied a more basic version of this
algorithm [21] to successfully significantly reduce false positives.

Because we suggest model selection to be based on χ2, the method as outlined
here can be adapted to statistical measures of lack of fit of a model such as
projections of χ2, a simple case of which is considering the norm of individual
residuals. Other examples include decomposing χ2 to reflect many other features
of interest in NGS data, such as position-specific distribution of mismatches in a
read’s alignment and lack of fit of a paired end insert length model. Pursuing these
directions may yield useful statistical tools.

In summary, we have applied a simple statistical procedure to diagnose lack of fit,
such as was suggested in [5], to NGS data. This is not a new statistical concept, but it
rarely used by applied statisticians and practicing bioinformaticians. These simple
statistical procedures are likely to significantly improve the performance of many
commonly used bioinformatic algorithms. These algorithms are put into practice to
address scientific questions that are investigated at a cost millions of dollars each
year. Thus simple statistical ideas may lead to huge savings in costs required for
validation and follow-up.

Acknowledgements I thank the editors for helpful comments that improved the exposition of this
chapter.
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Chapter 14
MOSAiCS-HMM: A Model-Based Approach
for Detecting Regions of Histone Modifications
from ChIP-Seq Data

Dongjun Chung, Qi Zhang, and Sündüz Keleş

Abstract Chromatin immunoprecipitation followed by high throughput sequencing
(ChIP-seq) experiments are routinely utilized for studying epigenomics of
transcriptional regulation. We review some of the important statistical issues in
the analysis of these experiments and extend our previous model for the analysis
of ChIP-seq data of transcription factors, named MOSAiCS, with a hidden Markov
model architecture (MOSAiCS-HMM). MOSAiCS-HMM provides a model-based
approach for modeling read counts in histone modification ChIP-seq experiments
and accounts for the spatial dependence in their ChIP-seq profiles. In addition, its
R package implementation provides many functionality for summarizing these data
and generating files that can be directly uploaded to the UCSC genome browser.
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14.1 Introduction

Regulation of gene expression is a multi-faceted process. DNA binding proteins, i.e.,
transcription factors, and histone modifications are two of the critical mechanisms
for regulating gene expression. Transcription factors (TFs) interact with the DNA
in a sequence specific or non-specific manner and can act alone or in protein
complexes with co-factors. They promote (activate) or block (repress) expression
of their specific target genes. In contrast, histones are a specific class of proteins
that package DNA. Every 146 base pairs of DNA winds around a histone complex
consisting of two of each of the H2A, H2B, H3, and H4 histone proteins, and form
the structural unit of DNA called nucleosomes. The H3 and H4 histones have long
tails that can be covalently modified at several places. Methylation, acetylation, and
phosphorylation are some of the most commonly studied histone modifications and
they affect diverse biological processes including gene regulation [30].

Chromatin immunoprecipitation followed by high throughput sequencing
(ChIP-seq) has become a versatile experimental technique for profiling TF-DNA
interactions, histone modifications, chromatin remodeling enzymes, RNA
polymerase, and nucleosomes [2,15]. A typical TF or histone modification ChIP-seq
experiment involves isolating regions of the genome interacting with the protein of
interest or undergoing the targeted modification. This is accomplished by first cross-
linking proteins and associated chromatin in a cell lysate and then shearing DNA
to an average of 500 base pair fragments. Then, the DNA fragments associated
with the protein of interest are selectively captured by immunoprecipitation with
an antibody specific to that protein. In the case of histone modifications, antibodies
targeting specific histone proteins with a specific modification are utilized. The
associated DNA fragments are then purified and one (single-end sequencing) or
both ends (paired-end sequencing) of the captured fragments are sequenced by
using a high throughput sequencing platform.

These high throughput in vivo biological assays are embraced by large consortia
projects such as ENCODE [10] and RoadMap EpiGenomics [4] and have resulted
in large volumes of publicly available data. ChIP-seq experiments for transcription
factors enable identification of where a protein binds to in the genome in vivo,
whereas experiments targeting histone modifications identify which regions of the
genome are undergoing the targeted histone modifications. Because both binding of
transcription factors and histone modifications play important roles in cell specific
gene regulatory programs, their genome-wide mapping is crucial for understanding
and diagnosing human diseases.

Characteristics of data from ChIP-seq experiments vary based on what is being
profiled (e.g., transcription factor, modified histone, RNA polymerase) and which
sequencing parameters (e.g., single-end, paired-end) are being utilized. Illumina
platform is by far the most popular choice for ChIP-seq experiments [2, 15, 21, 27].
As a result of sequencing, reads of size 36–100 base pairs (bps) representing
one or both ends of immunoprecipitated DNA fragments with varying lengths are
obtained. The lengths of DNA fragments are typically kept around 150–300 bps for



14 MOSAiCS-HMM 279

Fig. 14.1 Typical work flow
of statistical analysis of
ChIP-seq experiments

optimal sequencing by a size selection step in the experimental protocol. ChIP-seq
experiments are typically coupled with control experiments which either skip the
immunoprecipitation step (Input control) or use a non-specific antibody (IgG con-
trol) to measure non-specific protein DNA interactions and characterize background
read distribution. Compared to their array-based analogues (ChIP-chip experiments
[5, 16]), ChIP-seq provides higher resolution and genomic coverage [38].

Analysis of ChIP-seq data involves multiple steps from quality assessment to
downstream analysis for biological interpretation (Fig. 14.1). The main statistical
task is, however, identifying regions of the genome that exhibit significantly higher
levels of ChIP read counts compared to background read counts. Figure 14.2
displays ChIP and Input control profiles for such a region from a H3K4me3
experiment in GM12878 cell lines which was generated as part of the ENCODE
project [10]. There are a plethora of computational and statistical approaches for
analyzing data from ChIP-seq experiments (reviewed in [1]). Most of the well-
studied approaches [7, 17, 18, 26, 37] are geared towards ChIP-seq experiments of
transcription factors which generate punctuated peaks. In such data, ChIP reads
concentrate on the TF-DNA interaction sites and have a clear summit. In contrast,
ChIP-seq experiments profiling modified histones can result in punctuated, broad
(e.g., H3K27me3, H3K36me3, and H3K9me3), or a mixture of punctuated and
broad peaks and show larger variations in the widths of the enriched regions
compared to TF ChIP-seq. Methods for analyzing ChIP-seq data of histone mod-
ifications either require running methods for punctuated signals in a special “broad”
model [17, 37] or primarily focus on identifying differential histone modifications
[23, 28, 32, 34]. Recently, a stochastic Bayesian Change-Point method named BCP
[33] has been proposed for the analysis of diffuse histone ChIP-seq data and has
been shown to be also effective in analyzing punctuate transcription factor ChIP-seq
data.
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Fig. 14.2 H3K4me3 ChIP-seq read profile generated by R package dpeak [7]. Black and gray
curves depict ChIP and sequencing depth normalized Input read counts for a peak identified by
all of MOSAiCS-HMM, MOSAiCS, and BCP. Vertical lines depict the boundaries of the peak as
determined by different peak callers

We have recently developed a model-based, versatile method, named MOSAiCS
(Model-based One- and Two-Sample Analysis and Inference for ChIP-seq), for the
analysis of ChIP-seq data [18]. MOSAiCS accommodates both one- (in the absence
of a control sample) and two-sample analysis of ChIP-seq data. Unlike other popular
ChIP-seq methods that consider explicit modeling of data only under the null
hypothesis of no enrichment [26, 37], MOSAiCS provides biologically motivated
statistical models for reads that arise under both non-enrichment (background)
and enrichment (signal). Furthermore, MOSAiCS builds a parametric background
model that takes into account biases such as GC content [8] and mappability [38]
that are inherent to ChIP-seq data. MOSAiCS model does not assume punctuated
or broad peak structures but instead quantifies whether the ChIP reads show
enrichment compared to the background reads for every genomic interval (e.g., bin)
of user defined size in the genome. Although such analysis captures most parts of
the broad domains, large regions with low but consistent enrichment might be prone
to misidentification. In this paper, we extend the MOSAiCS model with a hidden
Markov model architecture to allow spatial dependence between adjacent bins and
facilitate identification of broad enriched regions in ChIP-seq data. We conclude
with a brief discussion of other issues concerning ChIP-seq data analysis (Fig. 14.1).
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14.2 MOSAiCS-HMM Model

14.2.1 MOSAiCS

We first review the MOSAiCS model [18] that MOSAiCS-HMM builds on. Previous
work by others and us have established that next generation sequencing datasets
including naked DNA, Input DNA, and ChIP samples are prone to sequencing
and other sources of biases [3, 8, 18, 26]. Specifically, observed read counts are
affected by local sequence characteristics such as mappability and GC content.
In order to correct these biases and obtain accurate measurements of enrichment
signals, we developed MOSAiCS, a flexible mixture model that incorporates various
sequence biases in modeling the background read distribution. We implemented the
MOSAiCS model as R package mosaics which is available from Bioconductor
(http://www.bioconductor.org/) [12]. In this R package, the MOSAiCS model is
implemented in a computationally efficient way by using Rcpp and parallel R
packages for C++ implementation and parallel computing, respectively. mosaics
package also provides various tools for exploratory analysis, model fitting, model
selection, and diagnostics for ChIP-seq data analysis with MOSAiCS [31].

In the MOSAiCS model, reference genome is divided into non-overlapping
intervals (e.g., bins) of typically 200 bps. We consider ChIP reads in each bin as
arising from a mixture of non-enriched and enriched distributions. Let Yj denote the
ChIP read counts in j-th bin. Let Mj and GCj be the bin-specific mappability and GC
content scores. These quantities are defined as functions of base pair mappability
and GC scores [6]. For a read length of k and library size of L, let x(i):(i+k−1) denote
the kmer starting at position i and ending at position i+ k − 1 from 5′ to 3′. Let
xc
(i):(i−k+1) denote the kmer starting at position i and ending in i− k+ 1 in the other

strand. Then, the nucleotide-level mappability is defined as:

δi =

{
1 if x(i):(i+k−1) is unique,
0 o.w.

Mappability for a position in the reverse strand is similarly defined as:

δ c
i =

{
1 if xc

(i):(i−k+1) is unique,

0 o.w.,
,

where δ c
i = δi−k+1. The GC content at the nucleotide level is defined similarly by

setting δi = I{i-th position is a G or C}, where I{.} is an indicator function. In the
MOSAiCS model, bin-level versions of these quantities are utilized to account for
the fact that the total number of observed counts at position i could be contributed
by forward strand reads that originate between positions i − L + 1 and i and get
extended to L bps or the reverse strand reads that originate between positions i and
i+L−1 and get extended to L bps. The bin-level mappability/GC content for single-
end reads is defined as:

http://www.bioconductor.org/
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δ ∗
i =

1
2L

(
i

∑
j=i−L+1

δ j +
i+L−1

∑
j=i

δ c
j

)

, (14.1)

=
1

2L

(
i

∑
j=i−L+1

δ j +
i+L−k

∑
j=i−k+1

δ j

)

. (14.2)

Bin-level mappability and GC content scores for paired-end reads can be computed
similarly by taking into account the actual lengths of the fragments that two end
reads represent.

When a matching control sample, such as Input control, is available, we further
denote the control read counts in j-th bin by Xj. Finally, we denote the indicator
of enrichment status of j-th bin as Zj, where Zj = 1 if j-th bin is enriched, i.e.,
exhibiting TF binding or histone modification, and Zj = 0 otherwise. We assume
that enrichment status of individual bins are independent and is given as follows for
j = 1,2, · · · ,M,

Pr(Zj = 0) = π0, Pr(Zj = 1) = 1−π0. (14.3)

Given these underlying enrichment states for j-th bin, we assume that

(Yj|Zj = 0)∼ Nj , (Yj|Zj = 1)∼ Nj + S j, (14.4)

where Nj and S j represent background and signal, respectively. MOSAiCS models
reads from the background component with Negative Binomial regression:

Nj ∼ NegBin(a,a/μ j), (14.5)

where we model its mean, μ j, slightly differently under three different scenarios.
The specifications of these models emerged from exploratory analysis of a large
collection of ENCODE datasets [18] and other datasets across multiple organisms
[14, 22, 29]. The mappability scores contribute the mean model with a log trans-
formation to account for the curvature that is apparent from the mappability versus
ChIP read count relationship. Similarly, the piecewise linear B-spline model for the
GC-content score enables a flexible way of capturing the GC content versus ChIP
read count relationship observed in multiple ChIP-seq datasets. Next, we detail the
three mean models and discuss the conditions under which they are appropriate.

• Case 1: In the absence of a control sample:

log μ j = β0 +βM log2 (Mj + 1)+β ′
GCSp (GCj) ,

where Sp(GCj) is a vector of piecewise linear B-spline basis functions with
knots at the first and third quantiles of the GC content. β GC is vector-valued
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Fig. 14.3 Goodness-of-fit (GOF) plots. (a) MOSAiCS goodness-of-fit plot for replicate 1. Both
axes are in the log10 scale. SIM:N: reads simulated from the estimated background read
distribution. Sim:N+S1: reads simulated from the MOSAiCS model with one signal component
for the ChIP reads. Sim:N+S1+S2: reads simulated from the MOSAiCS model with two signal
components for the ChIP reads. Simulated data Sim:N+S1+S2 overlap the actual ChIP data
well, indicating good overall fit. (b) MOSAiCS and MOSAiCS-HMM goodness-of-fit plot for
replicate 1. Both axes are in the log10 scale. SIM:Background: reads simulated from the estimated
background read distribution. Sim: MOSAiCS: reads simulated from the estimated MOSAiCS
model with two signal components for the ChIP reads. Sim: MOSAiCS-HMM : reads simulated
from the estimated MOSAiCS-HMM model with two signal components for the ChIP reads

and represents all the coefficients in the spline model. Current standard practice
for ChIP-seq experiments is to couple each ChIP sample with a Input control
sample. However, investigators occasionally generate ChIP samples without
control samples especially when choosing among different antibodies for the
same factor. This mean model facilitates the analysis of such samples without
a control sample by approximating the background mean read counts using
mappability and GC content scores.

• Case 2a: In the presence of a shallowly sequenced control sample:

log μ j = β0 +
[
βM log2 (Mj + 1)+β ′

GCSp(GCj)+βX1Xd
j

]
1
{

Xj ≤ s
}

+βX2Xd
j 1
{

Xj > s
}
,

where s and d are tuning parameters. This model is essentially performing a
power transformation with exponent d on the control read counts and incorpo-
rating mappability and GC content values for bins with less than or equal to s
control read counts. In our previous work [18], we have shown that even in the
presence of a control sample, utilizing mappability and GC content values for
estimating the background read distribution might improve detection power and
eliminate false positives. From a practical point of view, inclusion of mappability
and GC content values matters the most when the background read distribution
cannot be estimated well just based on the control sample. MOSAiCS framework
provides goodness-of-fit plots (Fig. 14.3a) which aid in this decision.
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• Case 2b: In the presence of an adequately sequenced control sample:

log μ j = β0 +βXXd
j ,

where d is again the exponent in the power transformation of the control read
counts. This model is suitable for cases where the control sample is deeply
sequenced and the fit can again be evaluated by the goodness-of-fit plots provided
by MOSAiCS. Since its publications, we have applied MOSAiCS to tens to a
few hundreds of datasets and observed that s = 2 and d = 0.25 work well in
practice. Therefore, these values are currently the default values in the mosaics
R package.

For the signal component, we consider both a single negative binomial distribution
and a mixture of two negative binomial distributions, i.e.,

(1) S j ∼ NegBin(b,c)+ k,

(2) S j ∼ p1NegBin(b1,c1)+ (1− p1)NegBin(b2,c2)+ k,

where k is a constant set to 3 and represents the minimum observable read count in
an enriched region. The optimal model for signal component is determined based
on Bayesian information criterion (BIC). The parameters in the MOSAiCS model
are estimated using a computationally efficient Expectation-Maximization (EM)
algorithm described in [18].

After we fit the MOSAiCS model, enriched regions are identified using a direct
posterior probability approach [24] for false discovery rate (FDR) control based
on the posterior probability that read counts for each bin are generated from the
background component. Specifically, we first rank the bins according to increasing
values of Pr

(
Zj = 0|Y;Θ̂

)
, where Θ̂ denotes the final parameter estimates obtained

from the EM algorithm. Let f dr j denote the sorted Pr
(
Zj = 0|Y;Θ̂

)
values. Then,

we increase the cutoff κ until the expected proportion of false discoveries given by

∑M
j=1 f dr j1

{
f dr j ≤ κ

}

∑M
j=1 1
{

f dr j ≤ κ
} ,

reaches the pre-specified cutoff (α) for false discovery rate. Finally, using this
determined cutoff κ̂ , bins satisfying the condition that Pr

(
Zj = 0|Y;Θ̂

) ≤ κ̂ are
reported as enriched regions. This FDR control ensures that reported enriched
regions achieve a certain level of statistical significance. However, in addition to
statistical significance, investigators often would like to require each enriched region
to have a minimum number of ChIP reads. Therefore, R package mosaics allows
such a threshold as input. In practice, setting this threshold to a certain percentile
(e.g., 0.90− 0.99) of the ChIP read count distribution works well if the control
sample is shallowly sequenced (e.g., less than 20 million reads for human samples).
In the presence of a deeply sequenced control sample, this threshold can also be set
to a depth normalized percentile of the control read count distribution.
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14.2.2 MOSAiCS-HMM

In the MOSAiCS model, enrichment states of adjacent bins are assumed to be
independent. This assumption might be mildly violated in practice for the ChIP-seq
data of TFs with narrow enrichment profiles that typically span 1–3 bins. However, it
is more likely to be invalid for the ChIP-seq data of histone modifications which can
easily cover a larger number of bins and might exhibit broad enrichment signals. In
the case of broad signals, multiple adjacent bins constitute a wide block-shaped peak
and a spatial correlation structure underlies the relation between enrichment status
of adjacent bins. Hidden Markov Models (HMMs) provide a graceful way to handle
these types of spatial correlations without losing spatial resolution (reviewed in [9]
and [25] among many others). This observation motivates our development of the
MOSAiCS-HMM framework to account for spatial correlations in ChIP-seq data.

In MOSAiCS-HMM, we assume that enrichment states constitute a Markov
chain along each chromosome. Specifically, Eq. (14.3) of the MOSAiCS model is
replaced by

Pr
(
Zj+1 = b|Zj = a

)≡ πab, a,b ∈ {0,1}, j = 1, · · · ,M− 1 (14.6)

and ∑1
b=0 πab = 1 for a = 0,1. Finally, conditional on these underlying enrichment

states, ChIP read counts are assumed to follow the read count distributions of the
MOSAiCS model, given in Eqs. (14.4), (14.5), and (14.6). This allows effective
adjustment of sequence biases in the binding site identification, as shown in [18].

14.2.3 Parameter Estimation for the MOSAiCS-HMM Model

We estimate the parameters of MOSAiCS-HMM using the Baum-Welch algorithm,
which is a special case of the EM algorithm. MOSAiCS-HMM inherits estimates of
the emission distributions from the MOSAiCS fits to the data. Although this is in
principle statistically inefficient, the MOSAiCS-HMM goodness-of-fit plots suggest
that this procedure results in good fit to the data (Fig. 14.3b). More importantly, this
approach accelerates fitting of MOSAiCS-HMM significantly because the Baum-
Welch algorithm needs to only estimate the transition matrix and state probabilities
for the starting bin. We fit the MOSAiCS-HMM model to each chromosome
separately because a smooth transition between end of one chromosome and start of
another chromosome is not expected. Furthermore, by analyzing each chromosome
separately, the fitting of MOSAiCS-HMM can be easily parallelized to decrease
computational cost.

Since MOSAiCS-HMM fit utilizes the background and signal distribution
estimates of the MOSAiCS fit, the only parameters that need to be estimated for each
chromosome with the Baum-Welch algorithm are Θ = (π00,π10,π01,π11,π∗0,π∗1),
where π00, π10, π01, and π11 are transition probabilities defined in Eq. (14.6), and π∗0
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and π∗1 are probabilities of enrichment states in the first bin of each chromosome,
i.e., π∗0 ≡ Pr(Z1 = 0), π∗1 ≡ Pr(Z1 = 1), and π∗0 + π∗1 = 1. Then, the complete
data likelihood function is given by

Lc =
1

∏
k=0

πZ0k
∗k

M−1

∏
j=1

1

∏
k=0

1

∏
l=0

π
ZjkZ( j+1)l
kl

M

∏
j=1

1

∏
l=0

{
Pr(Yj|Zj = l)

}Zjl .

Because Pr(Yj|Zj = l) are obtained from the MOSAiCS fit, the MOSAiCS-HMM
EM algorithm iterates between the following E- and M-steps until the likelihood or
the parameter estimates converge or a fixed number of iterations specified by the
user is reached. For the m-th iteration, we have the following and E- and M-steps.

E-step:

We first update the conditional probabilities of the enrichment states k = 0,1 in the
first bin of each chromosome as

z(m)
∗k = Pr

(
Z1 = k|Y;Θ(m)

)
=

π (m)
∗k Pr(Y1|Z1 = k)

P(Y1;Θ(m))
.

The conditional expectation of transition between the states can be computed
efficiently using the forward and backward algorithms as follows. In the forward
algorithm, we have

f (m)
1l = π (m)

∗l Pr(Y1|Z1 = l), l = 0,1,

f (m)
jl = Pr

(
Y1,Y2, · · · ,Yj,Zj = l;Θ(m)

)

= Pr(Yj|Zj = l)
1

∑
k=0

f (m)
( j−1)kπ (m)

kl , j =,2,3 · · · ,M, l = 0,1.

In the backward algorithm, we have

b(m)
Mk = 1, ,k = 0,1,

b(m)
jk = Pr

(
Yj+1,Yj+2, · · · ,YM|Zj = k;Θ(m)

)

=
1

∑
l=0

π (m)
kl Pr(Yj+1|Zj+1 = l)b(m)

( j+1)l, j = (M − 1),(M− 2), · · · ,1, k = 0,1.

Finally, we calculate the conditional probabilities of transition from state k = 0,1 to
l = 0,1 based on the quantities from the forward and backward algorithms as
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z(m)
jkl = Pr

(
Zj = k,Zj+1 = l|Y;Θ(m)

)

=
f (m)

jk π (m)
kl Pr(Yj+1|Zj+1 = l)b(m)

( j+1)l

P(Y;Θ(m))
, j = 1,2, · · · ,(M − 1).

M step:

For states k = 0,1 and l = 0,1, we update the transition probabilities as

π (m+1)
kl =

∑M−1
j=1 z(m)

jkl

∑1
l′=0 ∑M−1

j=1 z(m)
jkl′

and the probabilities of states k = 0,1 in the first bin of each chromosome as

π (m+1)
∗k =

z(m)
∗k

∑1
k′=0 z(m)

∗k′
.

We use the scaling procedures provided in [9] to avoid numerical problems in the
forward and backward algorithms.

With MOSAiCS-HMM, users can finalize the set of enriched regions by either
the Viterbi algorithm or the posterior decoding. If the Viterbi algorithm is used, the
most likely sequences of enrichment states are determined across each chromosome.
With the posterior decoding approach, enrichment state of each bin is determined
using the direct posterior probability approach [24] for FDR control. We next
discuss the details of the decoding procedures.

14.2.3.1 Viterbi Algorithm for the MOSAiCS-HMM Model

The Viterbi algorithm for MOSAiCS-HMM identifies the most likely sequences of
enrichment states across each chromosome, i.e.,

Ẑ = argmax
Z

Pr
(
Y,Z;Θ̂

)
,

where Θ̂ is the final parameter estimates obtained from the EM algorithm. Specifi-
cally, the Viterbi algorithm is implemented in the following four steps. First, in the
initialization step, for states l = 0,1, we set

v1l = π̂∗l Pr(Y1|Z1 = l),

ptr1l = 0,
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where π̂∗l is the final estimate for π∗l. Second, in the recursion step, from bin
j = 2,3, · · · to bin M,

v jl = Pr(Yj|Zj = l)max
k

{
v( j−1)kπ̂kl

}
,

ptr jl = argmax
k

{
v( j−1)kπ̂kl

}
,

where π̂kl is the final estimate for πkl . Third, in the termination step, we set

ẑM = argmax
k

{vMk} .

Finally, in the trace back step from bin j = (M− 1),(M− 2), · · · to bin 1,

ẑ j = ptr( j+1)ẑ j+1
,

where ẑ j is the estimated state for j-th bin.

14.2.3.2 Posterior Decoding for MOSAiCS-HMM Model

In the posterior decoding approach, the enrichment state for j-th bin is determined
using the direct posterior probability approach of [24] for false discovery rate control
based on the following posterior probabilities:

Pr
(
Zj = k|Y;Θ̂

)
=

f̂ jkb̂ jk

P(Y;Θ̂)
,

where Θ̂ denotes the final parameter estimates obtained from the EM algorithm,
and f̂ jk and b̂ jk are the values from the forward and backward algorithms based
on the final parameter estimates. Specifically, we first rank the bins according to
increasing values of Pr

(
Zj = 0|Y;Θ̂

)
and denote these sorted values with f dr j .

Then, we increase the cutoff κ until the expected proportion of false discoveries
given by

∑M
j=1 f dr j1

{
f dr j ≤ κ

}

∑M
j=1 1
{

f dr j ≤ κ
} ,

reaches the pre-specified false discovery rate α . Finally, using this determined cutoff
κ̂ , we report the bins satisfying the condition that Pr

(
Zj = 0|Y;Θ̂

)≤ κ̂ as enriched
regions.

The MOSAiCS-HMM model is now part of the R package mosaics (≥ 1.6.0).
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14.3 Case Study: H3K4me3 Profiling in GM12878 Cells

We used ChIP-seq data of H3K4me3 in GM12878 cells from the ENCODE project
to evaluate performances of MOSAiCS, MOSAiCS-HMM, and BCP. The dataset
contained two ChIP replicates with 21.3 and 18.1 million aligned reads each. Each
ChIP sample was analyzed with respect to a common Input control sample of 13.4
million aligned reads. We used the default parameter values for BCP and a false
discovery rate of 0.05 and a threshold value equal to the 99-th percentile of the
bin-level ChIP read counts for MOSAiCS and MOSAiCS-HMM with the posterior
decoding approach. Overall, MOSAiCS-HMM fits had better BIC values than
the MOSAiCS fits for both replicates (36,273,306 (MOSAiCS) versus 33,169,356
(MOSAiCS-HMM) for replicate 1; 32,568,329 (MOSAiCS) versus 29,652,020
(MOSAiCS-HMM) for replicate 2). The goodness-of-fit plots indicate that both
models fit the data adequately (Fig. 14.3b).

BCP identified 17664 and 16964 peaks for the two replicates whereas MOSAiCS
and MOSAiCS-HMM identified 16438 and 20079 peaks for replicate 1 and 16730
and 20294 peaks for replicate 2, respectively. We allowed MOSAiCS to merge
enriched bins that are within 200 bps of each other to facilitate identification of
wide enriched regions. We then evaluated the replicate consistency of the methods
by ranking and comparing the peaks from the two replicates of each method. For
BCP, peak-specific posterior means, which are the only statistical measurements
of enrichment reported in the BCP output, were used for ranking whereas for
MOSAiCS and MOSAiCS-HMM, maximum signal which denotes the maximum
bin-level ChIP read count within the peak region was used. Similar results were
obtained when the MOSAiCS and MOSAiCS-HMM peaks were ranked with
respect to their maximum posterior probability of enrichment over the bins within
the enriched regions. Figure 14.4a depicts the percentage overlap between the peak
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Fig. 14.4 Comparison of MOSAiCS, MOSAiCS-HMM, and BCP on H3K4me3 ChIP-seq data
from GM12878. (a) Overlap percentages of enriched regions identified by two independent
replicates as a function of the peak rank. (b) Median widths across top (500,1000,1500, · · · ,20000)
ranked peaks
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Fig. 14.5 Comparison of MOSAiCS, MOSAiCS-HMM, and BCP on H3K4me3 ChIP-seq data
from GM12878. H3K4me3 ChIP-seq read profile generated by the R package dpeak [7] for a wide
BCP peak. Dashed, vertical gray lines mark the boundaries of the BCP peak. Both MOSAiCS and
MOSAiCS-HMM identify two peaks within this enriched region

sets of the two replicates for each method as a function of peak rank. We note
that both MOSAiCS and MOSAiCS-HMM provide better ranking of the peaks
than BCP. The final overlap percentages of the peak sets of the replicates are
comparable between the methods, indicating that MOSAiCS-HMM is identifying
more peaks with the same overlap consistency rate. This overlap analysis is based
on the original widths of the peaks reported by each method. Figure 14.4b displays
the median widths across top 500,1000,1500, · · · ,20000 peaks for the peak sets of
replicate 2 from each method. Similar results are obtained with replicate 1 (data not
shown). We observe that BCP peaks are the widest. Despite this, overlap percentages
of the ranked BCP peaks are the smallest as illustrated in Fig. 14.4a. BCP peaks
often have long flanking regions lacking enrichment (Fig. 14.2) or a single BCP peak
harbours multiple enriched regions separated by long regions lacking enrichment.
An example of the latter case is provided in Fig. 14.5, where two enriched regions
separated by about 5000 bps are reported as a single peak. We also note that
MOSAiCS-HMM actually provides slightly narrower peaks than MOSAiCS. This
indicates that the gain from the HMM architecture cannot simply be attained by
merging of enriched bins within close proximity of each other in the MOSAiCS
output.

H3K4me3 is a promoter-specific histone modification associated with active
transcription; therefore H3K4me3 enrichment is expected at the promoter regions
of genes that are transcribed in GM12878. To evaluate biological relevance of
peaks identified by each method, we overlapped promoter regions of the expressed
genes in GM12878 with each of the peak sets. Expressed genes are defined based



14 MOSAiCS-HMM 291

Table 14.1 H3K4me3 peak coverage of the promoters of the 5979 expressed genes in
GM12878

BCP MOSAiCS MOSAiCS-HMM

# of overlapping promoters 2782 (5484) 4514 (5360) 4745 (5363)
# of completely covered promoters 546 656 704

The numbers of overlapping promoters are based on the intersection of promoters
overlapping with peaks of both replicates. Numbers in parentheses denote the numbers
of promoters overlapping with the peaks when the original peak widths are used. The
numbers of completely covered promoters are based on the minimum of the number of
promoters completely covered by the peaks of each of the replicates

on ENCODE2 RNA-seq data from GM12878 by subsetting genes with transcripts
per million larger than 20. For each gene, we defined the promoter region as the
[-1000, +500] bps interval anchored at the transcription start site. Since wider peaks
are expected to provide higher overlap by definition, we resized the peaks of each
method to 2000 bps by using the midpoint of the peak as the anchoring point.
MOSAiCS pipeline reports a summit. Ideally, a summit denoting the location of
the highest signal would be a better anchoring point for all the methods; however
since BCP only reports intervals of enrichment, using the midpoint as the anchor
minimized the summit selection bias between the methods. Table 14.1 summarizes
the total number of promoters that overlap with peak lists of each method and
also specifies how many of the promoters are completely within a H3K4me3
peak. We observe that MOSAiCS-HMM peaks overlap with a larger fraction of
the active promoters and completely cover the largest number of promoters. When
the promoter overlap of the peaks is calculated using the original widths (numbers
reported in parentheses in Table 14.1), a slightly higher number of promoters are
overlapping with the BCP peaks; however as depicted in Fig. 14.5, this gain comes
at the price of many base pairs that lack any enrichment within the peak regions.

14.4 Discussion

We presented an extension of MOSAiCS, named MOSAiCS-HMM, for analyzing
ChIP-seq data of histone modifications. MOSAiCS-HMM can analyze ChIP-seq
experiments with or without a Input control experiment and provides FDR control.

We conclude by discussing some other key issues related to histone ChIP-seq
data, and more generally ChIP-seq data (Fig. 14.1). The commonly used read
lengths in ChIP-seq protocols are 50 to 100 bps. This results in about 10–25 % of the
reads aligning to multiple locations on the reference genome for human and mouse
samples. These reads are commonly referred to as multi-reads and are typically
discarded from the analysis. This leads to missing read data for highly repetitive
regions of the genome and such reads are important to recover for studying TFs or
histone modifications that interact with repetitive DNA. To address this issue, we
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developed a ChIP-seq-specific read mapper [6] named CSEM. This mapper utilizes
Bowtie [20] alignments of the reads, where multi-reads are retained, and fractionally
allocates multi-mapping reads by considering the local read contents of the mapping
positions. As a result, it can generate both an alignment file with all the mapping
reads and their allocation probabilities and a pseudo alignment file in bed file format
where each multi-read is allocated to its most probable mapping location. The latter
alignment file is accepted as input by multiple peak callers.

There are multiple quality control procedures developed for ChIP-seq data.
Most notable of these is the cross-correlation analysis which is built on calculating
cross-correlation between strand-specific genome-wide ChIP read profiles [19]. In
ChIP-seq experiments with high signal-to-noise ratios, cross-correlation between
the base-pair level forward and reverse strand read counts is expected to attain its
maximum value around the average fragment length. A maximum cross-correlation
value at a length vastly different from that of the average fragment size indicates
potential problems with the ChIP-seq data and requires further attention. ChIP-
seq experiments are prone to a wide range of amplification biases. A commonly
encountered bias is the extreme amplification of local regions. For such abnormally
amplified regions, the same set of nucleotides covering the region appears in the
data set hundreds and even thousands of times. The common practice to alleviate
problems due to abnormal amplification effects is the removal of multiple copies
of a given read. More specifically, only a single read is allowed to start at each
distinct genomic position. This feature is also part of the mosaics R package.
Many ChIP-seq analysis methods provide some level of FDR control. However, the
reliability of the FDR control typically depends on how well the assumed model
fits the data. An alternative approach, which relies on the consistency between two
independent replicates of the ChIP-seq data, is control of irreproducible discovery
rate (IDR). This approach has been widely adapted by the ENCODE project [19]
and is shown to stabilize the number of peaks obtained from the same data set by
different methods. When the MOSAiCS-HMM GOF plots indicate a lack of fit, IDR
provides a robust alternative for choosing the number of peaks in MOSAiCS-HMM.

Once the enriched regions are identified in a ChIP-seq experiment, downstream
analysis depends on the specific application. For TFs, especially in compact
genomes, an important issue is the deconvolution of closely located binding events.
Most of the commonly used ChIP-seq analysis methods [17, 18, 26, 37] are not
specifically designed to deconvolve closely located binding; however, the number
of methods which can perform such a task is on the increase [7, 13, 36]. In TF
ChIP-seq experiments, summits of the peaks (predicted binding locations) are
the main parameters of interest. In contrast, for histone ChIP-seq experiments,
the boundaries of the enriched regions constitute one of the most important
features. Most of the commonly used histone ChIP-seq analysis methods operate by
binning the genome into small non-overlapping intervals. As a result, the resulting
enriched regions might have inaccurate boundaries and require post trimming and
extension procedures. It is often of interest to study multiple histone modifications
simultaneously and divide genome into regions exhibiting different combinations
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of histone modifications [11]. To this end, we developed jMOSAiCS [35], which
efficiently analyses multiple TF or histone modification datasets simultaneously and
identifies regions showing combinatorial enrichment of the studied factors.
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[16] Keleş, S.: Mixture modeling for genome-wide localization of transcription factors. Biomet-
rics 63, 10–21 (2007)

[17] Kharchenko, P.V., Tolstorukov, M., Park, P.J.: Design and analysis of ChIP-seq experiments
for DNA-binding proteins. Nat. Biotechnol. 6, 1351–1359 (2008)

[18] Kuan, P., Chung, D., Pan, G., Thomson, J., Stewart, R., Keleş, S.: A Statistical Framework
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Chapter 15
Hierarchical Bayesian Models for ChIP-seq Data

Riten Mitra and Peter Müller

Abstract Histone modifications (HMs) are post-translational modifications of the
nucleosome. Studying the presence or absence of these modifications in genomic
regions is a central topic in modern epigenetics. HMs regulate various biological
processes by overwriting the DNA-inscribed code. Experimental evidence suggests
that they perform this task through a complex biological network. In other words,
HMs combinatorially influence gene expression. We present two model-based
approaches to decode this mechanism using ChIP-seq data. Both approaches are
based on hierarchical Bayesian models. The first model derives a conditional
independence structure among the HMs through a graphical model. The challenge
here is to model the unobserved binary (presence/absence) status of HMs on the
basis of read counts. The other critical aspect is to model the dependence between
these latent binaries in a way that allows tractable posterior inference. The second
model relates HMs and functional genomics through a local bi-clustering approach.
Here HMs are clustered and each HM cluster gives rise to a (nested) partition
of genomic loactions, with respect to that subset of HMs. These models are, to
the best of our knowledge, the first model-based fully Bayesian approaches to
discovering epigenetic associations. Validation with known experimental findings
suggests the importance and usefulness of these approaches in our understanding of
gene regulation.
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15.1 Introduction: Histone Codes

The advent of high-throughput technologies such as ChIP-seq [25, 26] has greatly
facilitated the study of histone modifications (HMs). This in turn has led to a prolif-
eration of computational tools specially designed for ChIP-seq data. Most of these
tools are useful aids for data preprocessing and visualization. However, to extract
significant insights about the epigenome, probabilistic model-based approaches
beyond pre-processing of the raw data are required. Such algorithms require to
incorporate expert knowledge on the experimental setup and a mathematically
rigorous, yet interpretable, statistical framework.

Understanding the dynamics of HMs and their occurrences are important scien-
tific goals in themselves. However, HMs are critical to epigenetic research primarily
because of their roles in the transcriptional process [13, 18, 31]. For example, con-
sider a specific modification, say histone acetylation, which is generally associated
with increased transcriptional activity. This modification occurs when HAT (histone
acetyl transferase) enzymes adds an acetyl group on the lysine residue of a H3 tail.
The positive charge on the residue is neutralized by the negative charge on the acetyl
ions. This reduces electrostatic attraction between the histone and the charged DNA
backbone, loosening the chromatin structure. A loosened up chromatin is more
accessible to binding by transcription factors. In contrast, removal of the acetyl
group make the wrapping of DNA around nucleosome tighter. Similarly histone
methylation (caused by addition of methyl groups by methyltransferases) is mostly
associated with repressive activity [15, 30]

Current scientific knowledge about HMs precludes the possibility for a single
HM to cause transcription activation or repression. On the contrary, accumulating
evidence suggests that the regulation of gene expression by HMs is not as simple as
an on-off switch, but involves convoluted combinatorial effects, some times referred
to as the ‘histone code’ [5]. The combinatorial nature of the effects suggests a
complex cross-talk mechanism among the different HMs. Such interactions are
the subject of substantial scientific interest and can shed considerable light on
the epistatic relationships among the related nearby genes. In general, HMs could
compete antagonistically with each other if there are multiple modification pathways
targeting the same site. While one modification may be totally dependent upon
another, the binding of a protein to a particular modification can be disrupted by
an adjacent modification. There may also be cooperation between modifications in
order to efficiently recruit specific factors and enzymes. For a comprehensive review,
we refer the readers to [1] which discusses different types of crosstalk, describes
their level of complexity and provides interesting examples. These examples suggest
that HM occurrences are very likely to be correlated, but we still lack a unified
picture of the interactions between a group of HMs.

In Sect. 15.3 we build a comprehensive model for inferring statistical relation-
ships among various HMs. However, network inference itself is not sufficient for
unraveling the histone code. To go a step further, we need to integrate informa-
tion about genome functionality with HMs in a co-association model. Mounting
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experimental evidence of recruitment by modified histones of their respective
enzymes hint towards a clustering of HM data across genomic locations. We
implemented related inference by means of a recently developed nonparametric
Bayesian biclustering approach. Related work is summarized in Sect. 15.4. The
biclustering yields two partitions – a genomic partition nested within another
partition of HMs. In other words, we allow for a separate partition of genomic loci
with respect to each HM cluster. Both models offer coherent posterior inference.

The aim of this chapter, therefore, is twofold. First, we describe a network model
to capture the HM interactions. The model facilitates inference on the dependence
structure across HMs. We refer the interested readers to [23] for a detailed
discussion of the inference strategies from this model. Second, we describe a method
to capture co-clustering patterns of HMs. Applying both of these models to human
CD4+ T cell data, we recovered many existing relationships and hypothesized many
more interesting ones Before describing the models, we give a brief overview of
ChIP-seq technology and the associated statistical issues in Sect. 15.2.

15.2 ChIP-seq Technology

ChIP-seq [27] is a new high throughput technology developed to directly sequence
DNA fragments at low cost. It combines chromatin immunoprecipitation (ChIP) of
DNA fragments with next generation sequencing. The ChIP part of the workflow is
similar to the older microarray based ChIP-ChIP protocols. First, the HM specific
antibodies are crosslinked to DNA in vivo by treating cells with formaldehyde.
An enzyme called micrococcal nuclease (MNase) is then used to extract the
nucleosomal DNA. Next, an antibody specific to the HM of interest is used to
immunoprecipitate the DNA-HM complex. Finally, the crosslinks are reversed
and the released DNA fragments are prepared for direct sequencing. That is, the
fragments of interest are not hybridized on an array. Millions of short sequence
reads are generated from regions bound to the antibody target (the signal).

ChIP-seq offers single base-pair resolution and greater coverage than ChIP-chip,
and thus significantly improves data quality. The first comprehensive genome-
wide maps using ChIP-seq were created in 2007 [4]. Twenty histone methylation
marks, as well as the histone variant H2A.Z, RNA Polymerase II, and the DNA-
binding protein CTCF, were profiled in human T cells, with an average of 8 million
tags per sample using Solexa 1G. This was followed by a map of 18 histone
acetylation marks in the same cell type [33]. However, as with the development
of microarray data platforms a decade ago, this new technology raises important
statistical problems and issues. A major challenge lies in modeling the experimental
noise. This noise originates from multiple sources including non-specific binding
to the antibody, errors in amplification (local PCR), and sequencing errors. The
quality of the antibody is usually the most critical factor. Even high-quality ChIP-
seq libraries are likely to consist mainly of noise rather than signal, with 80–90%
background signal possible. As we shall see next, an important contribution of our
proposed models is an automated model-based procedure to filter away such noise.
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15.3 Inference on HM Networks: A Hierarchical
Graphical Model

15.3.1 A Graphical Model for Conditional Independence
Structure

A hierarchical model traces the model construction from the unknown variables to
the observed data. It thus provides a roadmap for hypothetical data generation. In
Fig. 15.1 we illustrate this process with a flow chart.

At the root lies a graph G that encodes conditional independence structure
among the HMs. For the moment, we only note that G represents the association
among HMs. It is the main target of inference. The bottommost layer is the
data matrix y. The intermediate layers include a matrix of latent indicators e.
Its entries eit are indicators for the presence of HM i at location t. The use
of eit formalizes the biologically meaningful notion of presence versus absence
of HMs. The raw data y can be viewed as a noise-corrupted version of e. For
reasons specified in the introduction, it makes more biological sense to model the
dependence structure among the latter rather than the former. We find a description
of similar data reduction approaches in the microarray literature. For example, in
[24] the probability of expression (POE) model was proposed to account for the
latent categories of gene expression. The latent indicator matrix e has the same
dimension as y.

G-the latent
graph

Autologistic
coefficients:

bij

e (describes
the binary

states)

Sampling
Model

parameters-
q

y (count
data)

dependence

sampling model

Fig. 15.1 Data generating mechanism
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Mathematically, a probabilistic network (or graphical model) G represents the
dependence structure that is implied by a joint distribution of a set of random
variables. It can be pictorially depicted by a graph. The graph consists of a set
of vertices (or nodes) and a set of edges (or connections) between pairs of nodes.
The vertices correspond to the variables. The presence of a connection between two
vertices implies interaction between the nodes. Formally, the absence of an edge
(i, j) between nodes i and j indicates independence of variables i and j, conditional
on all other variables. Graphical models have been widely applied to reconstruct
gene regulatory networks and protein interaction networks. However, applications to
analyzing HM data are still limited. In [23] we report an approach of using graphical
models for inference about the dependence structure of HMs. Our approach is
based on modeling the dependence at the level of the latent binary indicators eit .
That is, we model dependence at the level of a meaningful biological signal of
absence versus presence of HMs, rather than at the level of noisy measurements.
This approach requires us to define a joint prior probability model p(et | G) for et =
(eit ; i = 1, . . . ,m). The model is defined in such a way that the implied conditional
independence structure for et matches the structure that is encoded in G, as described
earlier. It is always possible to define such a joint probability model p(et | G). This
is guaranteed by the Hammersley Clifford Theorem [7]. The latter posits necessary
and sufficient conditions for a joint probability model to be identified from the set of
conditional distributions. This result allows us to write the joint probability model
p(et) indexed by a set of parameters β as follows:

p(et | β ,G) = p(0 | β ,G) · exp

{

∑
i

βieit +∑
i< j

βi j(eit −νi)(e jt −ν j)

}

(15.1)

where νi = exp(βi)/{1+ exp(βi)} is a deterministic function of βi that centers
the model. The centering of eit with νi improves the convergence of posterior
simulation [8]. The assignment of edges in G is a deterministic function of the
restrictions on β . A pair of vertices (i,j) is not connected by an edge if and only
if βi j = 0.

Model (15.1) is known as the autologistic model. In our statement, we restricted
the model to cliques, that is, interaction terms in the exponential, of size at most 2.
In an extension with arbitrary size interaction terms, the family of autologistic
models includes all possible joint probability models p(et).

We continue the prior model construction with a prior model p(G) for the
conditional independence graph G. We define the prior p(G) as a uniform distri-
bution over all possible subgraphs with vertex set V . Next, we complete the model
construction with a sampling model

p(y | e,θ ) = ∏
t,i

p(yit | eit ,θ ),
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Histogram of the positive histone counts with density estimate
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Fig. 15.2 Fit of a Poisson/
lognormal mixture model to
the count data of an HM. The
red (peaked) curve is the
density of 0.5×Pois(1)
I(yit < 2)+0.3×LN(1,0.4)+
0.2×LN(2,0.6). The
histogram shows the
empirical distribution
of the data

for the observed counts yit given the latent eit . Here θ are additional parameters
that index the sampling model. In particular, we propose a mixture model with a
Poisson distribution (Poi) for the low counts, say yit < ci, and a mixture of two
log-normal (LN) distributions for moderate to high counts. In the specification
of the sampling model we give meaning to the binary indicators eit by defining
p(yit | eit = 0) as the Poisson distribution, and p(yit | eit = 1) as the mixture of two
log normal distributions. This particular specification is motivated by an inspection
of the empirical distribution, that is, the histograms of observed HM counts as shown
below. The red curve in Fig. 15.2 is an example of a fit using the proposed mixture
model. As stated before, the model hierarchy implies the conditional independence
of y given e across both HMs i and loci t. This simplifying assumption is
motivated by a preference for parsimony. As an additional empirical verification, we
implemented a simple diagnostic check. Specifically, we investigated the variance-
covariance matrix of residuals obtained after a model fit. The low correlations
reaffirmed the validity of our conditional independence assumptions. A discussion
of related issues and conditional independence appears in [23].

Posterior inference is carried out as posterior Markov chain Monte Carlo
(MCMC) simulation, using a combination of Gibbs and Metropolis-Hastings tran-
sition probabilities. Specifically, the MCMC iterates over the following transition
probabilities:

[e | G,β ,θ ,y], [θ | y, [β | e,G], [G | β ,e].

In implementing the above transition probabilities, we exploit the fact that the auto-
logistic model 15.1 implies easily interpreted and understood complete conditional
models.

Conditional on the other variables, the distribution of eit at node i is a logistic
regression with two-way interaction coefficients. This is a desirable property of
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the joint distribution and simplifies the Gibbs sampling of e in the following way.
Suppose e−it = (eht , h �= i) denote the indicators for all HMs other than i at genomic
location t and let i ∼ j indicate that i and j are neighbors in the graph G. We update
eit , i = 1, . . . ,m, using

p(eit | e−it ,β ,θ ,y) ∝ exp

{

βieit + ∑
j: j∼i

βi j(eit −νi)(e jt −ν j)

}

p(y | e,θ ),

eit ∈ {0,1}, and repeat the same loop for each t = 1, . . . ,n. Note that et , t = 1, . . . ,n,
are conditionally independent given all other parameters and y.

15.3.2 Results: A ChIP-Seq Graph

We analyzed ChIP-seq counts from randomly sampled 50,000 genomic locations in
a ChIP-seq experiment for CD4+ T lymphocytes [4, 33]. We considered inference
for a selected subset of 17 HMs. Using the previously described model, we estimated
the conditional independence structure G for these 17 HMs. We summarize p(G |
y) by recording for each edge (i, j) a posterior inclusion probability defined by
Pi j = p(Gi j = 1 | y). We summarize these estimates into a single posterior graph
by thresholding of the Pi j. The thresholds are chosen to achieve a posterior expected
false discovery rate (FDR) close to 0.05. That is, we obtain a graph G by including
all edges with Pi j > c. The posterior expected FDR corresponding to any given
threshold c is calculated by

FDRc =
∑i j [(1−Pi j)I(Pi j > c)]

∑i, j I(Pi j > c)
.

Figure 15.3 shows the estimated HM network. In [23] we discuss the implications
of the estimated dependence structure and relate it to known results. Many of the
reported edges corroborate the existing literature on HMs.

Building on the inference for (global) conditional independence structure, next
we compare dependence structure across different genomic locations. We address
this problem in [20] and [21]. We briefly describe the extension below. Mainly, we
exploit the flexible nature of the hierarchical setup to consider inference on network
Gk across different regions, k = 1, . . . ,K.

First it is reasonable to expect that HM networks in different regulatory regions
share an underlying global mechanism but differ in small but important aspects.
The formal representation of such prior information requires a joint model over
multiple regions. We describe an approach based on a hierarchical model across
graphs Gk, k = 1, . . . ,K. Here we assume that we have K genomic regions, each
characterized by its unique network structure Gk. For example, we can consider
K = 3 different types of genomic regions: promoters, insulators and enhancers.
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Fig. 15.3 Estimated graph G
for the conditional
independence structure of the
selected 17 HMs. n the figure
we indicate the different HMs
with running indices 1
through 17, using
H2BK120ac (1), H2BK12ac
(2), H2BK20ac (3), H2BK5ac
(4), H3K4AC (5), H3K4ME1
(6), H3K4ME2 (7),
H3K4ME3 (8), H3K9AC (9),
H3K9ME1 (10), H3K27AC
(11), H3K36AC (12),
H3K18AC (13), H4K91AC
(14), H2A.Z (15), H4K5AC
(16) and H4K8AC (17)

We now add a latent common graph G0 to the model and construct a hierarchical
prior for Gk. Let Gk

i j = I({i, j} ∈ Ek) denote the event that an edge connects nodes

i and j in graph Gk. We assume

p(Gk
i j = 1 | G0

i j) =

{
ρ1 for G0

i j = 1

ρ2 for G0
i j = 0,

k = 1,2,3,

p(G0
i j = 1) = ρ0. (15.2)

Here ρ j, j = 0,1,2 are unknown hyperparameters. These equations represent a
hierarchical prior for Gk, with a hyperprior on the common latent graph G0. The
model is completed with uniform hyperpriors for the probabilities ρ0, ρ1 and ρ2. The
proposed hierarchical graphical models borrow strength across regions and allow
inference on the differences between the regions.

The model for the observed data y and the latent indicators eit remains almost
unchanged, except that {G,β ,e,y,θ} in the single graph model are now replaced by
{Gk,β k,ek,yk,θ k}. Here yk refers to the data restricted to the k-th region. Similarly,
β k denotes parameters that index the prior for the binary indicators in the k-th
submodel, etc. Let θ k denote the parameters that index the sampling model for yk.
The joint model is summarized as

p(G0) p(G1 . . .GK | G0) p(β 1 . . .β K | G1 . . .GK) p(e1 . . .ek | β 1 . . .β K)

× p(y1 . . .yK | e1 . . .eK ,θ 1 . . .θ K) p(θ 1 . . .θ K). (15.3)
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The first factor is the hyperprior on G0. The next term denotes the prior on the
individual graphs conditional on the common network, as in (15.2). The dependence
is induced at the level of the graphical models. Each of factors beyond the first one
can be written as product over K factors, corresponding to the K submodels. For
details of the posterior inference in multiple graphs and the results from a larger
ChiP-seq data, we refer the readers to [22].

In summary, network inference highlights some interesting features of the human
epigenome. The high degree of connectivity in the posterior global network and in
the subsequent domain specific networks is striking evidence of a thriving cross-talk
within HMs. Moreover, the differential edges among the domain-specific networks
suggest that the regulatory processes of HM vary with transcriptional activity. Thus
the network inference is a significant step towards elucidating the ‘histone code’.
However, cracking the code would demand a model that explicitly incorporates a
variety range of genomic domains. In fact, it should rely less on segments a-priori
known to be functionally important, and instead be able to discover associations
de novo. Since the direction of causality between HMs and transcription is still a
matter of ongoing debate, the desired model should depict associations between
HMs and genomic features, rather than be interpreted as conditional regressions. In
the next section, we discuss a novel method for biclustering that accounts for all
these features in a single hierarchical framework.

15.4 NoB-LCP: A Bi-Clustering Method to Crack
the ‘Histone Code’

15.4.1 Clustering of HMs

A model was developed ([19, 35]) that allows formal inference about clustering
HMs, in particular allowing for the tendency of HMs to cluster along certain genetic
domains. Many HMs are known to cluster into broad groups [4, 33]. Moreover,
such domains are reported to propagate through cell division [6]. There are several
notable findings on individual HM domains, e.g., the trimethylation of histone
H3 at lysine residue 9. H3K9me3 recruits HP1 which in turn recruits a specific
H3K9 methyltransferase enzyme. The latter modifies H3K9 on other histones in the
neighborhood, thereby self-propagating the heterochromatin state [2, 17]. Another
notable example is the trimethylation of histone H3 lysine 27 (H3K27me3). In
Drosophila, the spread of H3K27ME3 is associated with the looping action of two
polycomb complexes PRC1 and PRC2 [28]. PRC2 generates the HM which in turn
recruits PRC1. Histone acetylation marks also show individual clustering pattern
[10, 16].

However, little is known about the joint co-clustering patterns of these HMs.
The latter is absolutely essential to test the hypothesized histone code which
suggests that some degree of HM co-localization determines the functionality of
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genomic regions. One dimensional clustering would fail to capture this complex
interdependence between HMs and the genome. This motivated us to formulate a
local clustering approach. As the name suggests, this model is designed to cluster
the rows (genomic locations) in a way that is nested within the clusters of HMs
(columns). In other words, the model co-clusters any two HMs which correspond
to the same genomic partition. Methodologically it charts a definite departure from
traditional Bayesian clustering models that rely on unique and distinct parameters
to distinguish clusters. We describe the model below. The model builds on a nested
clustering model developed in [19]. It generalizes the model to accommodate the
data formats that are required for the application to HM data.

15.4.2 A Nested Clustering Model

Let y denote the observed data matrix with N rows and G columns. In the application
to HM data G will be the number of HMs and N will be the number of genomic
locations. Let C = {C0,C1,C2 . . .CQ} be a family of mutually exclusive subsets that
define a latent random partition of {1, . . . ,G} (columns). For each q ∈ 1 . . .Q, Rq =
{Rq1,Rq2 . . .RqN} defines a local clustership indicator of genomic locations (rows).
By this formulation, we allow a different partition of genomic locations for each
subset of HMs. We construct a prior p(C,R1, . . . ,RQ) in a hierarchical fashion by
first formulating the prior p(C) along HMs and then, conditional on C, extending
the model along the genome. To do the former, we first distinguish between two HM
types. In the context of epigenetic pathways, it is natural that only a selected subset
of the HMs would contribute to a nested partition of genomic locations, but not all
HMs necessarily do. This is similar to the concept of variable selection in regression
where we filter out the insignificant variables to improve power in detecting a signal
for the remaining significant variables. In our specific model, we incorporate this
assumption by creating a latent category (indexed by C0) of HMs that do not give
rise to a nested partition of genomic locations. We refer to C0 as idle HMs and to
the remainder as active HMs.

The prior p(C) for the random partition is given by a zero-enriched Polya Urn
model [29] as follows. Let G′ < G denote the number of active HMs. Also, let
pq = |Cq| denote the cardinality of the q-th set of HMs. We define,

P(C) = πG′
0 (1−π0)

G−G′ αQ ∏Q
q=1 Γ (pq)

∏G′
g=1(α + g− 1)

. (15.4)

Here α represents the total mass parameter of the underlying Polya Urn prior. The
mass parameter in Polya Urn priors represents how the prior probability mass is
distributed among clusters. For example, with values of α much lesser than 1, the
mass will be highly concentrated in a handful of clusters. In addition, the zero-
enriched prior assigns each HM with probability (1− π0) to the idle set. Among
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those HMs that are not in the idle set, the ratio in the third factor in (15.4) determines
the probability of building clusters C1, . . . ,CQ, including the actual number of
clusters. In fact, this third factor defines a random partition that is well known as
the Polya Urn prior. A Polya Urn prior is a well known non-parameteric prior for
clustering of experimental units. The specific form of this prior can be obtained by
integrating out the random probability measure in a model with iid sampling, where
the random probability measure itself has a Dirichlet Process (DP) prior. Conditional
on the random measure, the experimental units are assumed to be generated from an
iid (independent and identically distributed) model. In this way, a prior on clustering
is induced marginally. Thus, while the support of DP is on random distributions of
the experimental units, the Polya Urn acts on the space of clusters. As a result of
this relationship, it is a common practice to refer to the underlying DP process while
describing such clustering models.

Having defined the partitioning for HMs, we now impose a prior for the random
genomic partitions, nested within HM clusters. Let Dq be the number of genomic
clusters defined by Rq = {Rq1, . . . ,RqDq}, that is, the partition of genomic locations
with respect to the HMs in the qth HM set. We shall use d as the running index for
the active clusters in the qth HM set and let nqd = |Rqd| be the number of genomic
locations in the dth active cluster. Here again, we allow for an idle cluster Rq0. This
is the set of inactive genomic locations that do not meaningfully co-cluster with
other loci with respect to the qth HM set. The probability of belonging to this set is
denoted by 1−π1. Let mq = ∑d>=1 nqd . Now assuming independent zero-enriched
Polya Urn priors for each of the Rqs, we get

P(R |C) =
Q

∏
q=1

P(Rq) with P(Rq) = πmq
1 (1−π1)

N−mq
β Dq ∏Dq

d=1 Γ (nqd)

∏mq
i=1(β + i− 1)

. (15.5)

Here β is the mass parameter of the underlying Polya Urn prior. We observe that the
functional form of the P(Rq)s is very similar to that in 15.4. However, these terms are
now indexed by the number of genomic locations specific to each active cluster. This
is an important feature of our model that underlines the local clustering paradigm.
Again, as in the case of α defined before, the mass parameter is a hyper parameter
indexing the Polya Urn prior. The nonparametric prior relaxes the requirement to fix
the number of clusters. Recall that Q is random and depends on the HM clustering C.

We finally complete the hierarchy with a sampling model,

yig ∼ Poi(θig).

Here Poi represents the Poisson likelihood, i indexes a genomic location and g
represents a HM.

Note that for any particular HM, we force all locations in the same cluster to
share the same rate i.e., θig = θ �

dg for all i ∈ Rqd . Here θ �
dg denotes the common

unique value of θig for all loci in Rqd . However we allow HMs within the same
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Fig. 15.4 A sample realization of the NoB-LCP model with 9 HMs and 10 genomic locations.
There are two active HM sets and an idle HM set, including HMs 5, 8, 9. This figure is adapted
from [35]

partition to have different rates for the same location segment, i.e., HMs in the same
HM cluster share the same partition of locations only, but not the same rate.

The remaining step is to specify the priors for the rate parameters. Here, we
allow them to have their own independent gamma priors. Specifically, we use the
same gamma prior for all active genomic locations within active HM sets. For an
idle HM set and for the inactive locations of active HM sets, we assign gamma
distributions with different hyperparameters. We index the set of all gamma hyper
parameter pairs as k and λ .

These prior specifications for the Poisson rates imply a negative binomial
distribution for the HM counts marginally. In this way, we implicitly accounted
for the over dispersion in the sequencing data. Beta priors are allocated for π0 and
π1 – the probabilities for the idle set. The hyper-parameters for the Beta priors
are carefully chosen to control multiplicity and induce sparsity. When strong prior
knowledge are not available for real data, they could be easily set to reflect our lack
of information. In summary, we state the joint model as

P(y,C,R1, . . . ,RQ,θ ,k,λ ,π0,π1) =

P(y | θ)P(θ |C,R1, . . . ,RQ,k,λ )

× p(k,λ )P(R1, . . . ,RQ |C)P(C)P(π0)P(π1). (15.6)

In Fig. 15.4, we show the structure of the proposed non-parametric Bayesian local
clustering for Poisson (NoB-LCP) model. The vertical gray block indicates the idle
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HMs. Cells marked with the same color share the same Poisson rates θdg. The
different colors across the HM columns in the same active HM set show that the
rates are allowed to vary, keeping the partitions fixed. There are gray horizontal
blocks within each HM set indicating the inactive genomic locations with respect
to that HM set. Note that there is no partition along the columns (HMs) in those
regions.

To sample from this joint model, we construct a Gibbs sampler that iterates over
the following transition steps

[R1, . . . ,RQ | y,C,π1], [C | y,R1, . . . ,RQ,π0], [θ | y,C,R1, . . . ,RQ]

[π0 |C], [π1 |C,R1, . . . ,RQ] (15.7)

The NoB-LCP model considers two axes of variation– the genome and the HMs.
The primary objectives of inference are the partitions along the two axes. Posterior
distributions of the partitions are characterized by the MCMC posterior samples.
However, summarizing them is a major challenge. We use the algorithm defined
by [9] to propose a summary of partitions. Briefly, the algorithm is as follows. We
first define a matrix H of co-clustering probabilities. The (i, j)th entry of H is the
posterior probability that HM i shares the same cluster with HM j. The entries of H
can be easily estimated from the posterior distributions of clusters as the proportion
of sampled clusters where HM i coclusters with HM j.

Now for any imputed partition C in the MCMC output, we define a matrix SC.
The (i, j)th entry of SC is the indicator that HM i co-clusters with HM j in the
partition C. Thus SC can be thought of as a discretized version of H. We now define
the optimum clustering as one which minimizes the Frobenius distances between SC

and H. For details, we refer the readers to [9].

15.4.3 Results: Co-Clustering ChIP-seq Data

We selected two important regulatory regions for illustrating our approach, namely,
promoters and insulators. Promoters are regions of DNA upstream of a gene that
initiate transcription of the particular gene. Promoters are sometimes regulated by
enhancers, which are short genomic regions that bind to transcription factors. The
enhancers can influence a set of genes and unlike promoters, need not be in close
proximity to those genes. An insulator, on the other hand, is a boundary region
that blocks the interaction between enhancers and promoters. The promoter data
was obtained from the UCSC Genome Browser [12]. The insulator information
was obtained from the CTCFBSDB [3], a CTCF binding site database to identify
insulators. The rows of the data matrix are a sample of 50 genomic locations in
promoter regions and 50 genomic locations in insulator regions.

We employed a total of 10,000 MCMC iterations with the initial 5,000 samples
discarded as burn-in. The initial clustering is determined from a hierarchical
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Fig. 15.5 Heatmaps of three active HM sets for ChIP-seq data. White horizontal lines indicate
division of location clusters. This figure is adapted from [35]

clustering algorithm. Summarizing the posterior distribution by Dahl’s method as
described above, we finally obtained 3 active HM sets. Each of them is characterized
by its unique pattern of clustering genomic locations. The results confirm that
posterior inference distinguishes different types of regulatory elements and clusters
similar elements together reasonably well. Figure 15.5 shows the heatmaps of all
estimated active HM sets. These three sets are candidates of co-localized HMs
that relate to gene transcription. In addition, the heatmap shows genomic location
clusters nested within each active HM set. The local clustering patterns are clearly
noticeable. In the active HM sets, there is hardly any significant pattern in the idle
genomic locations based on the observation that colors are more or less randomly
scattered. In contrast, the active genomic locations nested within active HM sets
show more homogeneity. The single idle HM set combines all genomic regions and
hence show greater variability.

Evidence from epigenetic literature [4, 13, 14, 30, 31] has broadly categorized
HMs into either activating or repressing modifications for transcription of protein
coding genes. It is well known that the transcription activating HMs generally
correspond to acetylations while the transcription repressing ones map to methy-
lations. A remarkable result is that the clusters obtained after inference are clearly
distinguished by methylations and acetylation sets. Out of the 12 HMs in active
HM set 2, all of them turned out to be acetylations; out of the 21 HMs in the



15 Hierarchical Bayesian Models for ChIP-seq Data 311

active HM set 3 only two of them are methylations. Another notable finding is the
list of HMs known to be highly correlated in previous studies that were identified
by the NoB-LCP model. This list includes H2BK120ac, H2BK12ac, H2BK20ac,
H2BK5ac, H3K18ac, H3K27ac, H3K36ac, H3K4ac, H3K9ac, and H4K91ac. Here
we find a considerable overlap with the HM pairs reported to have strong edges
from our network analysis. Similarly, the clustering pattern along the genomic axis
validates known properties of the regulatory regions. The active HM set 1 include
only promoter regions, in which H4K12ac, H3K79me2 andH3K79me3 clearly show
relatively high expression. This is consistent with previous findings which show that
H4K12ac counts are elevated in the promoter and transcribed regions of active genes
[33]. It is also well known that H3K79me2 and H3K79me3 are important histone
markers for the prediction of promoter regions [32, 34].

15.5 Conclusion

We describe a class of hierarchical Bayesian models which hold a special relevance
to an important topic in next generation genomics and proteomics, namely histone
modifications. Compared to traditional graphical models, the proposed models
induce greater flexibility by means of latent variables at different levels of the
model hierarchy. This is critical, for example, in modeling interactions among
latent indicators of presence of HMs, thus discovering biologically more meaningful
associations than raw correlations. The bottommost layers of the hierarchy allow
widely different choices of sampling distributions. This is a highly desirable
property for sequencing data whose distributions deviate markedly from standard
models.

One of these approaches is a graphical model that represents the global depen-
dencies among HMs. The latent graphs characterize the conditional independence
structure among HMs. Though initially built for single networks, the associated
graphical priors allow easy extension to models for dependent families of graphs.
The results of the single network model point towards the existence of a strong
cross-talk mechanism among the HMs. To complete the picture, we also consider
inference related to the association of these HMs with gene expression. Again,
previous studies had confirmed that ChIP signals from many HMs form diffuse,
broad domains. Some of the relationships have been tested previously in mammalian
embryonic stem (ES) cells and fruitflies. Based on this, we introduce a non-
parametric clustering model to provide a formal structure of co-localization between
HMs and regulatory elements. We emphasize the role of Bayesian paradigm all
through our inference. The ‘unknown’ model parameters are random variables
having prior distributions. This provides us with much more than a point estimate,
viz, the entire posterior distribution of partitions and networks. Posterior inference
mainly requires Gibbs sampling, which relies on the full conditionals from the data
generating model.
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Not all relationships inferred from our models have been tested experimentally
and represent potentially new causal and/or combinatorial relationships. Such
relationships provide a blueprint for mapping the histone code. The objectives
attained by our models could also be approached through multistep procedures.
However, such ad-hoc measures would propagate biased uncertainty estimates. In
contrast, our models offer the advantages of full model-based inference. Flexibility
is an important feature of the two proposed models. For example, covariates (e.g.,
transcription binding sites) could be included to provide a more realistic picture of
regulatory processes. Some other possible extensions include the sampling models.
We note that these parameters represent the leaves of the model hierarchy and
could be specified independently of the graphical priors. Here, they are used to
model count data obtained from ChIP-seq experiments. These could be replaced by
essentially arbitrary other models without any change in the underlying probability
models on the random partitions. Also, the auto logistic model for networks can
be easily extended to accommodate inference for cliques of size 3 or more. The
coefficients βi1···ik will have interpretations as many-way interaction coefficients.
Cliques of size 3, for example, would model three-way interactions between triplets
of connected HMs that are connected to each other. This would imply that statistical
relationships between two HMs would depend on the value of the third HM.

Finally, we acknowledge that formal statistical approaches to histone modifica-
tions are still in their infancy. The biology of HMs and their implications in medical
research is attaining higher relevance with new experimental evidence pouring
in at a fast rate. These findings are attracting novel and insightful computational
approaches. Recently [11] made a genome wide map of HMs based on multivariate
HMMs. We find ample scope as Bayesian statisticians to follow that direction
and formally extend their approach. Currently we incorporate dependence among
genomic regions through clustering. This assumes an exchangeable prior across
locations. However, the underlying biology suggests a more complex relationship.
The length of regions over which histone marks remains stable are known to
vary across different domains. Genomic regions contiguous to one another are
more likely to have the same histone signatures. Non-exchangeable segmentation
priors like Hidden Markov Models can potentially exploit these features. However,
we are uncertain if a simple multi-dimensional HMM would be optimal for this
purpose. There are two concerns. First, there could be several HMs which would
not participate in the segmentation. Second, the assumption of modeling individual
HMs independently is itself questionable. It would be best, both for dimension-
reduction and biological interpretability, if we could capture this varying effect
of HMs through non-overlapping clusters. Briefly, this would demand a combined
approach of genome segmentation and HM clustering. Flexible length-based priors
may be considered for the former. Such priors should be able to accommodate prior
information on the functionality of genomic regions. We hope to pursue these ideas
in the future.
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Chapter 16
Genotype Calling and Haplotype Phasing
from Next Generation Sequencing Data

Degui Zhi and Kui Zhang

Abstract In this chapter, we will review current statistical and computational
approaches for genotype calling and haplotype phasing from next generation data.
We will focus on statistical ideas and ignore many practical bioinformatics issues
such as image processing for base calling, read mapping, sequencing error rate
recalibration, etc, each of which is a topic in its own right. We will give derivations
of commonly used approaches, emphasize their assumptions, and aim to unify
them in an all-encompassing Bayesian framework. We will point out limitations of
single-site genotype likelihood methods that dominate current practice and discuss
strategies to use haplotype informative reads.

16.1 Introduction and Overall Pipeline of Analysis
of NGS Data

One of the primary applications of next-generation sequencing (NGS) technologies
is to sequence human individuals and derive their genotype information. Tradition-
ally, after a reference genome sequence was assembled and a set of genetic variants
was discovered, microarrays can be used to profile genotypes of samples. However,
microarrays can only identify the genotype information over a predefined set of
variants, typically of high minor allele frequencies. NGS technologies can identify
all variants including single nucleotide polymorphisms (SNPs), short insertion and
deletions (INDELs), and structural variations (SVs) across all frequency spectrum.
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Downstream analyses

Fig. 16.1 Diagram of NGS analytical pipeline

In addition, exome sequencing or candidate gene sequencing can efficiently profile
all genotype information in given regions with much lower cost. Therefore, NGS is
becoming the method of choice of many human genetic studies.

However, data generated from NGS technologies are far more complex than
data from microarray technologies. Due to the inherent random sampling nature
of sequencing technologies, flexible experimental designs, and various practices
in bioinformatics processing, many advanced methods are required to handle such
analytic challenges of NGS data.

In a typical human population sequencing study, the DNAs of a number of
samples are broken into fragments and tips of a set of fragments are read out from
sequencing machines. Continuous strings of nucleotides of A, C, G, and T, or reads,
are generated from sequencing machines containing the base calls. Typically, for
each called nucleotide (also called a base call), there is an associated quality score
indicating the confidence of that base call. Base calls and quality scores are routinely
encoded in files of the FASTQ format. These reads are subject to the following
analyses (Fig. 16.1).

First, these files are mapped to the reference genome sequence, forming a pile-up
alignment of reads over the genome, typically in the compressed BAM format.
These alignments are subject to estimated alignment quality [8] or re-alignment
around potential short insertion/deletion sites [5]. Methods have also been devel-
oped to adjust the base quality scores from read alignments. Once the alignment files
are generated, genotype likelihoods, summary statistics for the marginal probability
of genotypes at individual positions, are calculated. Afterwards, with a certain
specification of the prior distribution for genotypes, the posterior probability of
a position being a potential genetic variant is calculated. Sites with posterior
probability above a certain predefined threshold are elected as potential polymorphic
sites (PPSs), and the likelihoods of genotypes of each individual over these PPSs
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are calculated. The results from variant calling and genotype calling are typically
packaged in a VCF format file. Various additional information can be used to refine
these preliminary variant and genotype calls and to phase haplotypes. While the
current practice is to use the linkage disequilibrium (LD) information for refinement,
methods that can also leverage direct haplotype information from sequencing reads
are available.

In this chapter, we will focus on reviewing the current statistical and
computational approaches for genotype calling and haplotype phasing from next
generation data but ignore many practical bioinformatics issues such as image
processing for base calling, read mapping, sequencing error rate recalibration, etc,
each of which is a topic of its own right. We will give the derivations of commonly
used approaches, emphasize their assumptions, and aim to unify them in an all-
encompassing framework. For simplicity, we will mainly focus on biallelic variants
(e.g., single nucleotide polymorphisms (SNPs)) from unrelated, diploid samples.
We acknowledge the existence but will not discuss the following topics: short
insertion/deletion (indel) calling, structural variation and copy number variation
(CNV) calling, multiploidy (such as in cancer) sample calling, and family-based
methods.

16.2 Basic Notations

In a population sequencing project, N unrelated diploid individuals (or samples,
we use these two terms interchangeably) are sequenced, covering a number of
base pairs. After the preliminary variant call, L sites are identified as potential
polymorphic sites (PPSs). For each individual n, Kn reads are generated. For
simplicity, two paired-end reads are considered as a single read. The read data for
nth sample are a pair of Kn-by-L matrices, Rn = {rn

kl} and En = {en
kl} , where

rn
kl =

⎧
⎨

⎩

0, read k of individual n has the alternative allele at site l;
1, read k of individual n has the reference allele at site l;
NA, otherwise.

(16.1)

and

en
kl =

{
Pr(sequencing error), read k of individual n covers site l
NA, otherwise.

(16.2)

Please refer to Fig. 16.2 for an example of the r-matrix for an individual.
In this chapter, we only consider biallelic variants, while the equations for

multi-allelic variants can be derived similarly. Throughout this chapter, we denote
N as the number of samples, Dn = (Rn,En) = ({rn

kl},{en
kl}) as sequencing read data

and error from nth sample, Gn as the genotype (# of ref-alleles) of nth sample,
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Ref: ACCGATCTA 
Alt: ATCGAACGA 
-------------- 
R1 : .T..       0  NA NA
R2 :  C...T.G   1  1  0 
R3 :    ..T.G.  NA 1  0

r-matrix

0  NA NA
1  1  0
NA 1 0

Fig. 16.2 Example for a read
data matrix for an individual,
converted from three reads
covering three variant sites

and Hn as the haplotype pair of nth sample. When it is clear from the context,
we will omit subscripts and/or superscripts for the sake of simplicity. For example,
for a fixed individual and a fixed variant site, we will omit the sample index and
the site index and use D = (R,E) to represent the sequencing read data of that
specific sample at that specific variant site. For a fixed individual, we will only
omit the sample index and use Dl = (Rl ,El) to represent the sequencing read data
of that specific sample at site l.

The goal of deriving genotype information from NGS data can be divided into
three related tasks: variant detection, genotype calling, and haplotype phasing.
Variant detection, also called site promotion, is to identify all potential polymorphic
sites among a set of samples. Genotype calling is the task of determining the
genotype of each sample at all variant sties. Haplotype phasing is the task of
determining the haplotypes at heterozygous sites for each sample.

16.3 Basic Statistical Approaches for Genotype
Calling and Haplotype Phasing

Modern methods for genotype calling generally follow a Bayesian framework.
Specifically, the posterior probability of a genotype given the sequencing reads is

Pr(G|D) ∝ Pr(D|G)∗Pr(G), (16.3)

where D represents the sequencing reads and G represents the underlying genotypes
at all variant sites across all samples. The likelihood Pr(D|G) describes the
conditional probability of the observed sequencing reads given genotypes. The prior
term Pr(G) captures our prior knowledge about the genotypes of these samples.
Often Pr(G) can be written as a parametric form Pr(G) = Pr(G;θ ). The genotypes
that maximize the posterior probability are selected as true genotypes.

The benefit of such approaches is that the likelihood of sequencing reads and
the prior term of genotypes can be computed separately. The likelihood term
summarizes only the read data and nothing else. Also, it implicitly assumes that all
information in sequencing reads that are relevant to genotype calling is summarized
in the likelihood, and thus raw read alignments can be discarded and only the
likelihood needs to be stored. However, as will be discussed below, the genotype
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Table 16.1 Classes of genotype calling and haplotype phasing methods and their representatives

Genotype likelihood

Prior Single-site Multi-site

Single site Single-sample Samtools-pileup [10] HASH [2]
Multi-sample Sampletool-mpileup [7], GATK [5]

Multi-site, multi-sample MVNcall [14] HapSeq [19], HapSeq2 [18]
Thunder [12] HARSH [17]

likelihood may not be a sufficient summary of information in sequencing reads,
resulting in loss of power in the subsequent analysis.

The prior term encodes the conditional distributions of the genotype of one
sample given the population information, which includes both population param-
eters and the data from other samples. For single-sample calling, it is often
straightforward to find the maximum posterior probability Pr(G|D) over genotypes
considered. For multi-sample calling, genotypes of all samples are jointly mod-
eled. Such approaches are more powerful than single sample calling approaches.
Unfortunately, it is often difficult to find the genotypes of a set of samples that
maximize the posterior probability due to the complicated formula of Pr(G|D)
and the large number of possible genotypes. Two general strategies are commonly
used: expectation-maximization (EM) based approaches and Gibbs-sampling based
approaches.

The EM based approaches are suited when the parametric form Pr(G) = Pr(G;θ )
is relatively simple. In such approaches, in the E-step, the genotype G of each
sample will be treated as “missing data” and E(G) is estimated given the sequencing
reads and the current estimate of the population parameter θ . Then the θ that
maximizes Pr(G;θ ) given E(G) from the E-step will be used as updated estimates
in the M-step.

If the form Pr(G) is too complicated, it is often not possible to estimate it directly.
In many situations, it is often possible to write out the conditional probability of the
genotype of one sample given the other samples. In such case, a Gibbs-sampling like
approach can be used to iteratively sample the genotypes of each sample in turn.

Depending on the forms of the likelihood term and the prior term in the
calculation of Pr(G|D), current approaches of genotype calling and haplotype
phasing can be largely classified into 6 categories (Table ).

16.4 Single-Site Genotype Likelihood

In the Bayesian framework of genotype calling, the genotype likelihood, Pr(D|G),
summarizes the information of sequencing reads in individual alignment columns
for a sample. Assuming unrelated samples, the genotype likelihood for each sample
can be calculated independently.

 16.1
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In current practice, most existing methods assume that read data at different sites
are independent. As a result, the term genotype likelihood is often a synonym of
single-site genotype likelihood. However, even though NGS reads are often consid-
ered “short”, they may still cover multiple sites and provide important genotype
and haplotype information. Below, we follow this convention but we will also
discuss multi-site genotype likelihood or haplotype-likelihood. This independent
site assumption is obviously with a heritage from the practice of genotyping
microarray analyses. The major benefit of this assumption is that read data for an
individual at a site can be represented succinctly by just three numbers (of 2 degree
of freedom): LG(g) = Pr(D|G = g),g = 0,1,2, and the information on individual
reads is no longer needed for downstream analyses.

Here is how the genotype likelihood is calculated. Suppose for an individual at
a site there are K reads. The likelihood of a pair of haploid alleles of an individual
h = (h(1),h(2)) is

LH(h) = Pr((D,E)|h = (h(1),h(2)))

= ∏K
k=1

(
1
2

Pr((rk,ek)|h(1))+ 1
2

Pr((rk,ek)|h(2))
)
, (16.4)

where the sequencing error term is used to calculate

Pr((rk,ek)|h) =
{

1− ek, rk = h;
ek, rk �= h.

(16.5)

Suppose for an individual at a site, K1 is the set of reads having the reference
allele and K2 is the set of reads having the alternative allele, and |K1|+ |K2| = K,
we have [7]:

LG(g) = Pr(D|G = g) =
1

2K ∏ j1∈K1
((2− g)e j1 + g(1− e j1))

∗∏ j2∈K2
((2− g)(1− e j2)+ ge j2) . (16.6)

This information can be extracted from the read alignments, and once calculated,
the raw alignment files are no longer needed. Li [7] even advocated that genotype
likelihood may be preferred over the actual genotype calls as it captures the
uncertainties in genotype calling. The common practice, however, is still to select
the genotype that maximize the posterior likelihood as the true underlying genotype.

In practice, the genotype likelihood becomes the central interface between
the low-level read alignment and quality recalibration and the high-level genotype
probability calculation and downstream analyses. Informatically, the genotype
likelihood is typically encoded by the GL or PL fields in the Variant Call Format
(VCF) files. The GL field is three real numbers (L(0), L(1), and L(2)) for a
biallelic variant. PL field contains three integers corresponding to “[N]ormalized,
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Phred-scaled likelihoods for genotypes” as defined in the VCF specification, i.e.,
round[−10∗ log10(L(0))], round[−10∗ log10(L(1))], and round[−10∗ log10(L(2))].

While the genotype likelihood is convenient and has been widely used, one
should be aware of the limitation of the site independence assumption. After all,
a sequencing read is a continuous “readout” of the genetic information along a
single physical chromosome. Therefore, sequencing reads indeed carry haplotype
information. In the Sects. 16.6–16.7, we will show how the haplotype information
in reads can be used to improve genotype calling and haplotype phasing.

16.5 Single-Sample Genotype Calling

Within the Bayesian framework, once the genotype likelihood is calculated, one
only needs to assign a proper prior and a cutoff of the posterior probability for
genotype calling. The prior can be from a public database of genetic variants with
allele frequency information. But importantly, the prior for any site to be a variant
should be non-zero.

There is a danger for doing single-sample calling when multiple samples are
sequenced and analyzed together in the downstream, e.g., for genetic association
studies after genotype calling. For single-sample calling, variant detection and
genotype calling are essentially the same task. The result of single-sample calling
is only a list of discovered variants, i.e., sites where the sample has a different
allele from the reference genome. However, different samples may have different
set of variants discovered when they are individually processed. There are two
possible reasons why a variant at a site is not called by one sample but is called
in others: (i) that sample is homozygote reference allele with sufficient sequencing
coverage, or (ii) that sample does not have sufficient sequencing coverage. Single
sample calling does not have a way to distinguish between these two scenarios.
Therefore, the standard practice is to use multi-sample calling. Admittedly, single-
sample calling can be straightforwardly implemented, and can be appropriate if
a sufficient sequencing depth is obtained. However, when multiple samples are
sequenced together, it is always more powerful to consider all samples together [15].
Even if a single sample is sequenced, say, in a clinical lab setting, it is still desired
to use information from other samples, either from the same lab, or from a public
database, for variant-calling.

16.6 Multi-Sample Calling

16.6.1 Joint Likelihood

Jointly calling genotypes from multiple samples is a standard practice for NGS
data analysis. The main additional information that multi-sample calling uses over
single-sample calling is the genotype frequency: p11 = Pr(G = 0), p12 = Pr(G = 1),
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and p22 = Pr(G = 2). There are 2 free parameters as p11 + p12 + p22 = 1. Often in
practice, the Hardy-Weinberg equilibrium (HWE) is assumed. This assumption will
reduce the number of parameters by one, but it is not required. This classical result
of population genetics states that for a site with reference allele frequency φ , the
genotype frequencies are φ2, 2φ(1− φ), and (1− φ)2, for genotypes 2, 1, and 0
(number of reference alleles), respectively, i.e.,

PrHW E(G = g|φ) =
(

2
g

)
φg(1−φ)2−g. (16.7)

Pr(Gn = g,(Rn,En)|φ) = Pr((Rn,En)|Gn = g)∗Pr(Gn = g|φ)
= LG(Gn = g)PrHW E(G

n = g|φ), (16.8)

where LG(Gn = g) is the genotype likelihood defined in Eq. 16.6. Based on that and
assuming sample independence, we can write out the joint genotype likelihood of a
collection of N samples from a population with the HWE assumption:

LP(φ) = ∏N
n=1 Pr((Rn,En)|φ) = ∏N

n=1 ∑2
g=0 LG(Gn = g)PrHW E(G

n = g|φ).
(16.9)

16.6.2 Maximum Likelihood Estimation

From this joint likelihood, the analytical solution for maximization is difficulty
but we can maximize the likelihood according to φ by numerical methods. Martin
et al. [13] developed an Expectation Maximization algorithm (EM) to estimate φ .

In the E-step, we estimate the parameter E(Gn|(Rn,En),φ (t)) given the sequenc-
ing read data and current estimate φ (t):

E(Gn|(Rn,En),φ (t)) = ∑2
g=0 g ∗Pr(Gn = g|(Rn,En),φ (t))

= ∑2
g=0 g ∗ Pr(Gn = g,(Rn,En)|φ (t))

Pr((Rn,En)|φ (t))

=
∑2

g=0 g ∗Pr(Gn = g,(Rn,En)|φ (t))

Pr((Rn,En)|φ (t))

=
∑2

g=0 g ∗Pr(Gn = g,(Rn,En)|φ (t))

∑2
g=0 Pr(Gn = g,(Rn,En)|φ (t))

, (16.10)

where Pr(Gn = g,(Rn,En)|φ (t)) = LG(Gn = g)PrHW E(Gn = g|φ (t)) (Eq. 16.8).
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In the M-step, the multi-sample likelihood of φ is maximized at

φ (t+1) =
∑N

n=1 E(Gn|(Rn,En),φ (t))

2N

=
1

2N ∑N
n=1

∑2
g=0 g ∗Pr(Gn = g,(Rn,En)|φ (t))

∑2
g=0 Pr(Gn = g,(Rn,En)|φ (t))

. (16.11)

The EM algorithm will run to convergence when the update Δφ = φ (t+1)− φ (t)

is small. In practice, the EM algorithm may converge very slowly when the sample
size is small or read depth is not high, i.e., the signal from the data is weak [7]. In
such case, numerical methods such as Brent’s method [4] is recommended [7].

Once the maximum likelihood (ML) estimate of φ is obtained, one can obtain the
estimate of Gn,n = 1, · · · ,N, through the maximization of the posterior probability
Pr(G|D). Based on the maximum likelihood genotype call, Ĝn, one can obtain a
variant call: claiming any position with ∑N

n=1 Ĝn < 2N as a variant. However, this
approach only gives a point estimate of genotypes. Since it does not consider the
distribution of Gn’s, it cannot offer a posterior probability assessment of a given
position to be a true variant site. As discussed below, a more appropriate method for
variant calling is to estimate the posterior probability Pr(∑N

n=1 Gn < 2N).

16.6.3 Estimating the Number of Non-Reference Alleles

For a potential polymorphic site, we define the random variable X = ∑N
n=1 Gn, the

number of reference alleles in all samples. In order to call a variant (by calculating
the posterior probability that the site has non-reference alleles from all samples), we
need to derive the distribution of X .

Assuming HWE, we have

Pr(G1 = g1, · · · ,GN = gN |X = q) =

{
∑N

n=1

( 2
gn

)
/
(2N

q

)
, ∑N

n=1 gn = q;

0, otherwise.
(16.12)

Then the overall likelihood of allele count is

LQ(q) = Pr(D|X = q)

= ∑∑N
n=1 gn=q

Pr(G1 = g1, · · · ,GN = gN |X = q)∏N
n=1 LG(Gn = gn)

=
1
(2N

q

)∑∑N
n=1 gn=q ∏N

n=1

(
2
gn

)
LG(Gn = gn). (16.13)

However, this likelihood function is difficult to compute as it involves sum-
ming over all elements in the set {(g1, · · · ,gN)|∑N

n=1 gn = q}. Li [7] proposed
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the following efficient dynamic programming algorithm to calculate L(q),q =
0,1, · · · ,2N. First define the partial sum:

zn,q = ∑∑n
n′=1

gn′=q ∏n
n′=1

(
2

gn′

)
LG(Gn′ = gn′), (16.14)

for 0 ≤ q ≤ 2N. Setting z0,0 = 0, zn,q can be calculated iteratively:

zn,q = ∑2
gn=0 zn−1,q−gn

(
2
gn

)
LG(Gn = gn), (16.15)

and finally

LQ(q) =
zn,q(2N

q

) . (16.16)

16.6.4 Variant Detection

For calling potential polymorphic site or site promotion, we are interested in the
posterior probability Pr(X < 2N|D). Commonly, assuming an infinite-sites neutral
model, the probability distribution of the allele count in 2N chromosomes is:

Pr(X = q) =

{
θ/(2N − q), q < 2N;
1−θ ∑2N

n=1
1
n , q = 2N.

(16.17)

where θ is the population-specific heterozygosity parameter. In practice, θ is set to
a small number reflecting the fact that most sites are not a variant. For European
population θ is usually set to about 0.8 ∗ 10−3 .

Using Bayes’ rule, we have the probably that the site is not a variant is:

Pr(X = 2N|D) =
Pr(X = 2N)Pr(D|X = 2N)

∑2N
q=0 Pr(X = q)Pr(D|X = q)

. (16.18)

With this, we a can assign a Phred-scale variant quality score as Q = −10 ∗
log10[Pr(X = 2N|D)], and call the site as a variant site if Q is greater than a threshold.

16.7 Multi-Site Multi-Sample Methods

The above multi-sample variant and genotype calling methods only work on one
site at a time. It is well-known that genotypes at adjacent variant sites are correlated
due to the linkage disequilibrium (LD). Moreover, the assumption that genotype
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likelihoods at different variant sites are independent is invalid when reads are
long enough to cover more than one site, i.e., we need both multi-site priors and
multi-site genotype likelihoods. In this section we will describe statistical models
that can capture the correlation structures among multiple sites across multiple
individuals, i.e., the LD information and/or the haplotype information in reads of
each individual.

With the added complexity in these models, advanced algorithms have been
developed to find the maximum likelihood estimates. Most of the popular algorithms
are based on Markov Chain Monte Carlo (MCMC). Because these methods are
usually much slower than single-site methods, they are typically run for a set
of potential polymorphic sites (PPSs) that are preliminarily called by single-site
methods, in order to refine the genotype calls made by single-site methods.

When the LD information is used, these methods are often called “LD-based
refinement” methods or “LD-refinement” for short. Often these methods infer the
genotypes through inference on the underlying haplotypes, therefore LD-refinement
methods are also the mainstream methods for haplotype phasing. The resulted
haplotypes out of LD-refinement methods from NGS projects, such as the 1,000
Genomes Project [1], become standard resources that serve as reference haplotypes
for high-resolution genotype imputation of existing genome-wide association stud-
ies (GWAS) data [6].

16.7.1 Multi-Site Prior: Models for Chromosome Sharing
Among Multiple Individuals

Following the literature of haplotype phasing and genotype imputation, Li and
Stephens’ PAC model [9] becomes the standard method for LD-based refinement
of genotype calling and haplotype phasing from NGS data. The essence of the
Li and Stephens’ PAC model is that the haplotype pair of an individual is the
recombinant of a set of reference haplotypes, which can be described by the Hidden
Markov Model (HMM): Pr(D,S) = Pr(D|S) ∗Pr(S), where D is the observed data
and S = {S1, · · · ,SL} are the “hidden state” variables that indicate from which of the
reference haplotypes that the current haplotype pair of that will be generated. In this
formula, Pr(S) = Pr(S1)∏L

l=2 Pr(Sl |Sl−1) forms a Markov chain and is considered
as the prior information of the genotypes across all L PPSs of an individual.

Although the calculation of the above likelihood function is straightforward given
the hidden state, it is extremely difficult to find the hidden state that maximize
the likelihood function due to the huge number of possible hidden states, which
is O(W 2L) if we have W reference haplotypes across L sites. In practice, the
number of reference haplotypes is set to be at least a few hundred to achieve
high accuracy. Therefore, the parameters (and hidden states) are estimated through
MCMC sampling based on the Baum’s forward algorithm [3] and backward
selection.
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Notably, there are alternative multi-site prior distributions proposed. Wen and
Stephens [16] used multi-variate normal distribution over a pre-defined number of
sites among a set of reference haplotypes. This prior can be efficiently calculated as
only the first and the second moments are needed to estimate a normal distribution.
However, Menalaou and Marcini [14] implemented a genotype calling algorithm in
a Gibbs sampler fashion and found that it offers suboptimal performance compared
to methods based on PAC models. This is likely due to that multi-variate normal
distribution is only an approximation of the underlying chromosomal sharing
process and it is limited to normal distributions over a fixed number of sites, which
may not captures long-range LD information among sites.

16.7.2 The HMM for Genotype Calling and Haplotype Phasing

In this section, we give the detailed description of the Hidden Markov Model
(HMM) for genotype calling and haplotype phasing from NGS data implemented in
Thunder [11]. Specifically, the model can be described as follows:

Pr(D,S) = Pr(S1)∏L
l=2 Pr(Sl |Sl−1)∏L

l=1 Pr(Dl |Sl). (16.19)

Again, D is the observed data and S = {S1, · · · ,SL} are the “hidden state”
variables. At each site l, we use a pair of indicator variables, Sl = (xl ,yl) to indicate
from which of the reference haplotypes the current haplotypes will be generated.

To make inference from this HMM, we need to specify the prior probability
Pr(S1), the emission probability Pr(Dl |Sl), and the transition probability Pr(Sl |Sl−1).

The prior probability, Pr(S1), is often assumed to be equal for all possible
compatible haplotype configurations of each individual.

To specify the emission probability Pr(Dl |Sl), we further denote Tl(i)(l = 1, · · · ,L
and i = 1, · · · ,H) as the number of reference allele observed at the site l in the
reference haplotype i, so Tl(Sn

l ) = Tl(xn
l ) +Tl(yn

l ) is the observed genotype at the
site l for the nth individual given the underlying hidden state Sn

l . When this model is
applied to genotype imputation where D is the observed genotype data and G = 0,1,
or 2 derived from microarrays, the emission probability is typically of the form:

Pr(Gl |Sl) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1− εl)
2 + ε2

l , Tl(Sl) = 1 & Gl = 1;
2(1− εl)εl , Tl(Sl) = 0 or Tl(Sl) = 2 & Gl = 1;
(1− εl)

2, Tl(Sl) = Gl = 0 or Tl(Sl) = Gl = 2;
(1− εl)εl , Tl(Sl) = 1 & Gl = 0 or Gl = 2;
ε2

l , Tl(Sl) = 0 & Gl = 2 or Tl(Sl) = 2 & Gl = 0.
(16.20)

where εl is an error parameter that reflects the combined effect of gene conversion,
mutation, and genotyping error. For next generation sequencing data, the emission
probability includes the genotype likelihood [11] and is the summation over all
possible genotypes:
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Pr(Dl |Sl) = ∑2
Gl=0 Pr(Dl |Gl)Pr(Gl |Sl). (16.21)

The transition probability, Pr(Sl |Sl−1), following the Li and Stephens’ paper [9],
is defined as a function of the crossover parameter θl . The probability of no
recombinant staying at the same haplotype (no recombinant) at site l is 1−θl , and
the probability of jumping to any of the W reference haplotypes (including itself)
is θl/W . We will see below that this parameterization allows efficient computation
of forward probabilities. The reference haplotypes can either be internal (i.e.,
haplotypes from other samples—in the situation, the set of haplotypes is changed
in each HMM iteration) or external (i.e., haplotypes from other projects such as the
1,000 Genomes Project - in the situation, the set of haplotypes remains same in each
HMM iteration) or a mixture of both. Therefore for the pair of haplotypes, we have
the following transition probability:

Pr(Sl |Sl−1) =

⎧
⎪⎪⎨

⎪⎪⎩

θ 2
l

W 2 if xl �= xl−1 and yl �= yl−1;
(1−θl)θl

W +
θ 2

l
W2 , if xl �= xl−1 or yl �= yl−1 but not both;

(1−θl)
2 + 2(1−θl)θl

W +
θ 2

l
W 2 , if xl = xl−1 and yl = yl−1.

(16.22)

After these terms are defined, the genotype calling and haplotype phasing is
based on a Gibbs sampler: a random pair of haplotypes of each individual is
assigned according to the observed sequencing reads data. That is, S1, · · · ,SL for
each individual n are sampled separately according to the likelihood function
LS(S|D) ∝ Pr(D,S). Specifically, SL is first sampled according to Pr(D,S), then
Sl(l = L−1, · · · ,1) are sampled according to the following conditional probability:

Pr(Sl = (xl ,yl)|D = (D1, · · · ,Dl),Sl+1 = (xl+1,yl+1)) ∝

Pr(Sl+1 = (xl+1,yl+1)|Sl = (xl ,yl))Pr(Sl = (xl ,yl),D1, · · · ,Dl), (16.23)

where Pr(Sl = (xl ,yl),D1, · · · ,Dl) is the forward probability and can be efficiently
calculated through Baum’s forward algorithm [3]. Then S1, · · · ,SL are used to
impute genotype G1, · · · ,GL of that individual according to Pr(Dl |Sl) and determine
the new pair of haplotypes of that individual. Then new pair of haplotypes
replaces the old pair of haplotypes and is used as the reference haplotypes for
other individuals. The sampling procedure is performed over all individuals and
repeated for a number of rounds (e.g., 50–100). The consensus genotype and pair
of haplotypes of each individual can then be determined by averaging results over
replicates.

It is worth mentioning the calculation of the forward probability here. The
forward probability is the summation over all W 2 states and the overall complexity
of calculation can be O(W 4) without the simplification. As we have mentioned that
the HMM often uses W = 2(N − 1) internal reference haplotypes, the direct calcu-
lation can be time consuming. However, from the design of transition probability
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Fig. 16.3 Read cover and span distributions in the 1,000 Genomes Project data sets [1]. Only
chromosome 20 for Utah residents with ancestry from northern and western Europe (CEU) and
Yoruba in Ibadan of Nigeria(YRI) data are shown. The following measures are relevant to LD-
refinement algorithms based on haplotype-informative reads: (i) read-cover: the numbers of sites
that are covered by a read; (ii) read-span: the number of sites between the first site and the last site
covered by a read. The only difference between these two measures is that sites skipped by the gap
between the paired-end reads are counted in read-span, but not in read-cover. For non-paired-end
reads, the two statistics are same. In the 1,000G Phase 1 data we see read cover tapers off quickly
and few reads cover more than 40 sites. The patterns of read-span are more complex. There are
pairs of reads that span over 1,000 sites. This is likely due to structural variations or technical
artifacts. Still, bimodal patterns of readspan are evident in both CEU and YRI samples. Note that
CEU data have a fraction of 454 reads that are longer, are thus CEU data have longer read-cover
and read-span. Adapted from Fig. 4 of [18]

in Li and Stephens’ model, all hidden states are symmetric, and the transition
probability, Pr(Sl = (xl ,yl)|Sl−1 = (xl−1,yl−1)), only depends on weather there is
a recombination between Sl and Sl−1. Therefore the calculation can be simplified so
that the complexity of the computation is O(W 2) rather than O(W 4) [11].

16.7.3 Incorporating Haplotype Information in Reads
for Genotype Calling and Phasing Haplotype
Information in Reads

After preliminary variant calling, reads that span more than one potential poly-
morphic sites (PPSs) contain important haplotype information. Such reads are
sometimes called “haplotype informative reads” [18]. Fig. 16.3 provides an different
variant sites that is used in the HMM of Thunder is invalid. New models are needed
to capture the haplotype information from reads.

Based on the haplotype information contained, we identify three sets of read
information: R1, R2, and R3: R1 captures single site information, R2 captures
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haplotype information across two adjacent sites, and R3 captures long-range
haplotype information (see HapSeq2 paper for more details [18]). Different methods
use different aspects of the read data. Traditional methods like Thunder [11] break
all information in R2 and R3 into R1. HapSeq [19] uses R1 and R2, but breaks R3.
HapSeq2 is the first method that efficiently uses all information in R1, R2, and R3.
It is worth noting that the assignment of a read to R1, R2, and R3 is based on
the number of sites not the number of heterozygote sites that it covers. Such
construction is only performed once, when the set of potential variant sites are fixed
at the beginning of algorithm, and not changed according to genotypes or haplotypes
of samples.

16.7.4 Multi-Site Haplotype Likelihood

For the reads spanning multiple variant sites, we can define their corresponding
multi-site haplotype likelihood. Following the notations, we define the haplotype
likelihood (HL) for a multi-site haplotype pair H = {h,h} = {{hm},{hm},m =
l1, · · · , lM} for a read that covers M sites l1, · · · , lM with the corresponding bases
rl1 , · · · ,rlM and the error rates el1 , · · · ,elM , as the joint probability:

HL(H) = Pr(rl1 , · · · ,rlM ,el1 , · · · ,elM |(h,h))
= 0.5 ∗Pr(rl1 , · · · ,rlM ,el1 , · · · ,elM |h)

+0.5 ∗Pr(rl1 , · · · ,rlM ,el1 , · · · ,elM |h), (16.24)

where

Pr(rl1 , · · · ,rlM ,el1 , · · · ,elM |(hl1 , · · · ,hlM)) =
M

∏
m=1

Pr(rlm ,elm |hlm) (16.25)

and Pr(rlm ,elm |hlm) = 1 − elm if rlm = hlm and Pr(rlm ,elm |hlm) = elm otherwise.
Here, Pr(rlm ,elm |hlm) is similar with that is defined in genotype likelihood (GL) as
specified in VCF files. The site-specific error rate, elm , can be readily obtained from
BAM files.

16.7.5 The HMM Model in HapSeq

Zhi et al. [19] extended the HMM in Thunder by incorporating the haplotype
information in reads, R2, and implemented it in the HapSeq program. Essentially,
the HapSeq’s HMM is defined as follows:

Pr(D = (R1,R2),S) = Pr(S)Pr(R1|S)Pr(R2|S)
= Pr(S1)∏L

l=2 Pr(Sl |Sl−1)∏L
l=2 Pr(R2,l |Sl−1,Sl)∏L

l=1 Pr(R1,l |Sl) (16.26)
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Here R1 and R2 are set of reads that are non-overlapping and independent as
described above. R3 reads are broken to R1 and R2 reads. Here we introduce some
more notations. We denote Rn

1,l as the set of reads that cover the single site l for
the individual n, Rn

2,l as the set of reads that cover two adjacent site l and l + 1 for
the individual n.

The major difference between the HapSeq’s HMM and the Thunder’s HMM is
that HapSeq’s HMM introduces a new emission probability term, Pr(R2,l |Sl−1,Sl),
to model the 2 site read information. Pr(R2,l |Sl−1,Sl) is the probability of observed
jumping reads conditioning on the underlying state at the PPSs l − 1 and l. In
addition, HapSeq’ HMM still has the computational complexity of O(W 2) rather
than O(W 4) when there are W reference haplotypes [18].

16.7.6 The HMM Model and Metropolis-Hastings
Procedure in HapSeq2

Theoretically, the R3 reads can also be incorporated into the HMM:

Pr(R1,R2,R3,S) = Pr(S)Pr(R1|S)Pr(R2|S)Pr(R3|S)
= Pr(S1)∏L

l=2 Pr(Sl |Sl−1)∏L
l=1 Pr(R1,l |Sl)

∏L
l=2 Pr(R2,l |Sl−1,Sl)

L

∏
l=2

Pr(R3,l |Sl ,Sl−1, · · · ,S1) (16.27)

It can be seen that the emission probability, Pr(R3,l |Sl,Sl−1, · · · ,S1) depends on
not only Sl and Sl−1 if R3,l covers sites l and l − 1 and some sites from 1 to l − 2.
This greatly increases the computational complexity when we perform the forward
probability calculation in Monte-Carlo sampling. The computation increases rapidly
with the inclusion of reads that cover more sites. Note when we only consider the
reads that cover a single site and two adjacent sites, the complexity of calculation
of the forward probability is still O(W 2) with W reference haplotypes. Therefore,
the above pure HMM is not practical to handle R3 type of reads due to the highly
computational complexity.

To incorporate the haplotype information of reads spanning two or more adjacent
and nonadjacent sites, Zhang and Zhi [18] developed a Metropolis-Hastings proce-
dure to sample the haplotype pair of each individual according given the sequencing
reads, the reference haplotypes, and the genotypes obtained from the HMM in
HapSeq.
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16.8 Results

Multi-sample joint calling and LD-refinement are standard practice in large
population sequencing projects such as the 1,000 Genomes Project [1]. In the
phase 1 release of the project, 1,092 individuals from multiple populations around
the world are sequenced using exome (50–100×) sequencing and low-coverage
(2–6×) whole sequencing. As shown in Fig. 16.4, multi-sample variant calling for
low-coverage whole-genome sequencing reaches the level of accuracy to the high-
coverage exome sequencing when the non-reference alleles are present over 10
times out of the 2,184 chromosomes. Moreover, LD-refinement greatly improved
the genotype calling across the entire spectrum of variants except for very rare
(singletons and doubletons).

Zhang and Zhi [18] compared the performance of Thunder, HapSeq, and
HapSeq2 in terms of accuracy of genotype calling and haplotype phasing using
simulated data as well as data from the 1,000 Genomes Project Phase 1 Chromo-
some 20.

Fig. 16.5 show the results with the data from the 1,000 Genome Project. Again,
haplotype phasing by interlaced MH-flipping produced longer SEF-blocks, while
genotype calling accuracy is also improved (Fig. 16.5). For all pairs of methods
one with and one without interlaced HM flipping, interlaced HM flipping increase
the average length of SEF-block by 70 KB to 86 KB. This represents 23.6 % to
44.6 % improvement. Between Thunder to HapSeq2, the improvement of the length
of the SEF-block is 148 KB (77.6 %) for CEU and 148 KB (66.7 %) for YRI. All
these improvements coincide with improvement of genotype calling accuracy.

Fig. 16.4 Power to discover and call rare variants. Adapted from Fig. 1 of the 1,000 Genomes
Project phase 1 paper [1]
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Fig. 16.5 Haplotype phasing (a) and genotype calling (b) in real data. Results are obtained from
the 1,000 Genomes Phase 1 data for CEU and YRI individuals. Methods labels: T = Thunder, H =
HapSeq, MH = interlaced MH-flipping. Adapted from Fig. 5 of [18]

16.9 Conclusions

In this chapter, we reviewed statistical approaches for variant and genotype calling
as well as haplotype phasing from NGS data. We focused on the settings of
low-coverage sequencing from unrelated individuals. Under an overall Bayesian
framework, various models and algorithms for representing the information of
sequencing reads (likelihoods) and for representing population knowledge (priors)
of variants and their corresponding genotypes were discussed. We specifically made
the distinction between single-site and multi-site models. While previous methods
focused on single-site likelihoods, we emphasized the importance of using multi-site
likelihoods. We described efficient algorithms that can make genotype calling and
haplotype phasing more accurate under multi-site likelihoods and multi-site prior
models. With these methodological advancements, genotype calling and haplotype
phasing are quite accurate. According to the 1,000 Genomes Project [21], the power
of detecting variants with frequency of 1 % is 99.3 % and the genotype calling
accuracy for heterozygous sites is more than 99 % for common SNPs and 95 %
for SNPs at frequency of 0.5 % (Fig. 16.4). It is also estimated that switch error for
haplotype phasing over common variants occurs at about every 300–400 kb.

While these are exciting achievements, there is still room for improvement.
In particular, the power for detecting rare variants, especially for singletons
and doubletons, is still low in low-coverage sequencing. While this problem is
largely due to the limited availability of sequencing data, more advanced methods
taking advantage of haplotype informative reads may help. Moreover, with the
advancements of sequencing technologies, longer reads are becoming available.
Current practice of ignoring haplotype information in reads will not be optimal.
However, efficient computational strategies are required to handle reads covering a
large number of potential polymorphic sites. Finally, NGS genotype data are being
generated and accumulated with a fast pace and there will be a need to jointly
analyze one’s in-house data together with the rich resources of publicly available
data. Efficient statistical and informatics methods, along with well designed and
implemented software packages, are indispensable for meeting the analytical
challenges of this kind of big-data research.



16 Genotype Calling and Haplotype Phasing from Next Generation Sequencing Data 333

Acknowledgements This work is partly supported by National Institute of Health (NIH) grant
R00 RR024163. Computational portions of this research were supported by NIH S10RR026723.

References

[1] Abecasis, G.R., et al.: An integrated map of genetic variation from 1,092 human genomes.
Nature 491, 56–65 (2012)

[2] Bansal, V., et al.: An MCMC algorithm for haplotype assembly from wholegenome sequence
data. Genome Res. 18, 1336–1346 (2008)

[3] Baum, L.E.: An inequality and associated maximization technique in statistical estimation for
probabilistic functions of Markov processes. Inequalities 3, 1–8 (1972)

[4] Brent, R.P.: Algorithms for Minimization Without Derivatives. Courier Dover Publications,
New York (1973)

[5] DePristo, M.A., et al.: A framework for variation discovery and genotyping using next-
generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011)

[6] Howie, B., et al.: Fast and accurate genotype imputation in genome-wide association studies
through pre-phasing. Nat. Genet. 44 955–959 (2012)

[7] Li, H.: A statistical framework for SNP calling, mutation discovery, association mapping
and population genetical parameter estimation from sequencing data. Bioinformatics. 27,
2987–2993 (2011)

[8] Li, H.: Improving SNP discovery by base alignment quality. Bioinformatics 27, 1157–1158
(2011)

[9] Li, N., Stephens, M.: Modeling linkage disequilibrium and identifying recombination
hotspots using single-nucleotide polymorphism data. Genetics 165, 2213–2233 (2003)

[10] Li, H., et al.: The sequence alignment/map format and SAMtools. Bioinformatics 25,
2078–2079 (2009)

[11] Li, Y., et al.: MaCH: using sequence and genotype data to estimate haplotypes and unobserved
genotypes. Genet. Epidemiol. 34, 816–834 (2010)

[12] Li, Y., et al.: Low-coverage sequencing: Implications for design of complex trait association
studies. Genome Res. 21, 940–951 (2011)

[13] Martin, E.R., et al.: SeqEM: an adaptive genotype-calling approach for nextgeneration
sequencing studies. Bioinformatics 26, 2803–2810 (2010)

[14] Menelaou, A., Marchini, J.: Genotype calling and phasing using nextgeneration sequencing
reads and a haplotype scaffold. Bioinformatics 29, 84–91 (2013)

[15] Nielsen, R., et al.: Genotype and SNP calling from next-generation sequencing data. Nat.
Rev. Genet. 12, 443–451 (2011)

[16] Wen, X., Stephens, M.: Using linear predictors to impute allele frequencies from summary or
pooled genotype data. Ann. Appl. Stat. 4, 1158–1182 (2010)

[17] Yang, W.Y., et al.: Leveraging reads that span multiple single nucleotide polymorphisms for
haplotype inference from sequencing data. Bioinformatics 29, 2245–2252 (2013)

[18] Zhang, K., Zhi, D.: Joint haplotype phasing and genotype calling of multiple individuals using
haplotype informative reads. Bioinformatics 29, 2427–2434 (2013)

[19] Zhi, D., et al.: Genotype calling from next-generation sequencing data using haplotype
information of reads. Bioinformatics 28, 938–946 (2012)



Chapter 17
Analysis of Metagenomic Data

Ruofei Du and Zhide Fang

Abstract In this chapter, we first briefly introduce the background of next-
generation sequencing metagenomics, including the special properties in this
research field and the challenges for statistical analysis. A metagenomic study
typically consists of sampling, filtering, DNA extraction, sequencing, binning,
assembly, profiling and down-stream analysis. We describe the widely used sta-
tistical methods in determining the sufficiency of a metagenomic sample size,
or classifying metagenomic sequencing reads into taxonomic bins, or assessing
the accuracy of metagenomic assembly. In addition, we outline the steps and
statistical methods for correcting the systematic errors in metagenomic profiling.
Last, statistical methods for metagenomic comparison are discussed, including both
parametric and non-parametric methods for comparison among different groups of
multiple samples. The multiple comparison problem is also simply discussed.

17.1 Introduction

17.1.1 The Emergence of Metagenomics

As tiny as they are, microbes (or microorganisms) cannot be recognized by human
naked eyes. There exist various types of microbes, including bacteria and archaea,
and eukaryotes such as fungi and algae. These tiny creatures are everywhere in the
ecosystem and play an important role in our daily life. Thus, deep and intensive
explorations of the microbial world are appealing.

R. Du • Z. Fang (�)
Louisiana State University Health Sciences Center, 433 Bolivar Street,
New Orleans, LA 70112, USA
e-mail: rdu@lsuhsc.edu; zfang@lsuhsc.edu

S. Datta and D. Nettleton (eds.), Statistical Analysis of Next Generation Sequencing Data,
Frontiers in Probability and the Statistical Sciences, DOI 10.1007/978-3-319-07212-8__17,
© Springer International Publishing Switzerland 2014

335

mailto:rdu@lsuhsc.edu
mailto:zfang@lsuhsc.edu


336 R. Du and Z. Fang

Traditional microbial experimentation emphasizes pure culture. That is a single
microbial species is isolated and cultured in laboratory conditions for investigation.
Pure culture was successful in identifying disease causation, and/or association
between a bacterial species and particular infectious disease. In terms of power
and precision, pure culture had become a gold standard for microbiological
experimentation until the middle of the twentieth century, and most knowledge
of the modern microbiology was obtained by using pure culture [32]. However,
the majority of the microbial species are unculturable. It is estimated that less
than 1 % microbial species have been identified through laboratory culture [20, 38].
Additionally, we cannot, by the pure culture approach, detect the diversity of species
in a microbial community and their functional properties. New approaches are
needed to systematically study microbial communities.

After the discovery of the DNA double helix structure, techniques based on
DNA sequencing, such as the Sanger method [35], have helped scientists to make
breakthroughs in biological research. With microbial DNA sequencing, a pioneering
work by Carl Woese [44] revealed that rRNA genes carry phylogenetic information
of microbes. Researchers in Pace’s group studied the sequences of rRNA genes
and successfully obtained the microbial phylogenetic structure of an environmental
sample [34]. This sequencing approach avoids nurturing a microbial community for
investigation under a microscope. Since then, the paradigm for researchers to study
the microbial world has gradually shifted, not only on microscopic individuals, but
also on microbial community which is accessed by its genetic material. Strictly
speaking, analyzing rRNA sequences of a community to access its phylogenic
structure is not a typical metagenomic study, because only the specific genes are
included instead of the entire genomic information of the microbes. Nonetheless, it
offers a new avenue to look into the microbial world wider (for new species) and
deeper (for new functions).

Metagenomics, sometimes called environmental or community genomics,
emphasizes that the object of the study is the collective set of genomes (compared
to microscopic species); and it is a culture-independent approach (compared to a
culture-based approach).

17.1.2 A Brief View of Metagenomic Studies

Metagenomic studies can be broadly split into function-based analysis and
sequence-based analysis [14]. In function-based analysis, the cloned environmental
genomic DNAs are screened for desired phenotypes, such as enzyme activity or
antibiotic production [11]. Once effective clones are identified, their sequences
can be determined. The key advantage of function-based analysis is the discovery
of novel genes related to given functions. In sequence-based metagenomics, the
entire genomic DNAs will go through the sequencing process. Since statistics is
mainly involved in the sequence-based approach, in this Chapter, unless otherwise
specified, by metagenomics or metagenomic study, we refer to the sequence-based
metagenomics.
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Fig. 17.1 The typical steps
involved in a metagenomic
study: (a) sampling; (b)
filtering; (c) genomic material
extraction; (d) preparation
prior to sequencing; (e) DNA
sequencing; (f) computational
or statistical analysis (This
figure has been reproduced
from Wooley et al. (2010))

Fig. 17.1 exhibits the typical steps in a metagenomic study, including sampling,
filtering, genomic material extraction, DNA sequencing, sequencing read binning,
sequencing read assembly (optional), sequencing read functional annotation and the
down-stream analysis [45]. Environmental samples contain genomic information
which can be used to identify a population, regarding the diversity and relative
abundance of microbiota. Filtering is necessary due to the fact that these samples
may contain information on more than just microbial communities. Typically, a
molecular particle of size outside the microbe scope, either smaller or larger,
will be left out. Then, genomic DNA is extracted from the filtered samples. If
the goal of a study is to assess the species diversity and abundance, 16S rRNA
sequence calling may be performed based on the extracted genomic DNA [41].
On the other hand, to profile gene expression or expression dynamics, cDNA can
be synthesized from environmental RNA samples [13]. The sequencing step is
to determine the exact nucleotide base orders of the DNAs. In the binning step
we put sequencing reads into the bins (e.g., phylogenetic categories) for future
analysis. By assembly, the sequencing reads are concatenated and merged into a
longer sequence, called a contig. Similar to the binning step, sequencing reads
are associated to biological functional tags for future functional diversity analysis.
The down-stream analysis includes profiling of the microbial communities and
conducting comparisons between communities.
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17.1.3 Next-Generation Sequencing Metagenomics

A metagenomic study is referred to as next generation sequencing (NGS) metage-
nomics if the metagenomic DNA is sequenced on a NGS platform from Roche
454 Life Sciences, or Illumina/Solexa, or Applied Biosystems, or others. NGS
technologies adopt an array-based work flow by setting up millions of DNA
fragments on a single chip and determining the nucleotide base compositions of all
these fragments in parallel. This work flow is far more efficient than the traditional
chain-termination approach used in the Sanger method, and thus makes NGS a high
throughput cost-effective technology.

For currently available sequencing technologies, the first required step of the
process is always to break up the intact metagenomic DNA into small fragments,
due to the fact that we will become concerned about sequencing errors after the
sequencing circles run for a certain number of times. This fragment process actually
bestows a nickname on NGS as shotgun sequencing because it has the firing pattern
of a shotgun. The another crucial step is to amplify the copies of DNA fragments
in order to get enough copies for sequencing cycles. In the Sanger method, this
is usually achieved by cloning the DNA into plasmid vectors and letting them self-
replicate in E. coli cells. However, cloning bias exists because some DNA sequences
do not adjust well or may even be lethal to E. coli so that they are cloned less often
than the others. Cloning-free NGS technologies can eliminate the possibility of this
bias, and thus, are more suitable to metagenomic studies [30, 31].

17.2 Statistical Analyses in a NGS Metagenomic Experiment

As in other NGS technologies such as RNA-seq, ChIP-seq, etc., variations may be
introduced in different steps of a NGS metagenomic experiment. Statistical methods
can be applied to model such variations for achieving validity and efficiency. In this
section, we describe the statistical applications in NGS metagenomics.

17.2.1 Sufficiency of Sample Size

As a necessary step of the analysis for a metagenomic study, we need to know how
well a collected sample represents the microbial population in the environment. That
is, we want to know whether or not the sample is sufficient for the study. Ideally, a
sample should contain all the species presented in the environment and reflect the
relative abundance among them.
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17.2.1.1 Species Richness Estimators

Assume there is a total of N individual microbes in a microbial community, each
belonging to one of S different species. Let pi be the probability that a randomly
selected microbe is from the ith species, where i = 1,2, . . . ,S, and ∑ pi = 1.
A random sample of n microbes is collected from the community. Let Yi be the
number of microbes representing the ith species in the sample so that ∑S

i=1 Yi = n.
Define ST as the total number of distinct species in the sample, and Ck as the count of
species which occur exactly k times in the sample, 0 ≤ k ≤ n, then Ck = ∑S

i=1 I(Yi =
k), with I(·) being the indicator function, ST = ∑n

k=1 Ck and ∑n
k=1 kCk = n. We

will use corresponding lower-case letters for the observed values of these random
variables in a sample of n microbes. Obviously,

S = ST +C0.

But C0 is unobservable. Hence, we need to find an estimate for the expected value
of C0 in order to estimate S.

It is clear that we have the probability, for any i = 1,2, . . . ,n,

P{Yi = k}=
(

n
k

)
pk

i (1− pi)
n−k,

and thus the expectation

E(Ck) =
S

∑
i=1

(
n
k

)
pk

i (1− pi)
n−k.

When k is very small compared to n, this expectation can be approximated as
follows [16].

E(Ck)≈ 1
k!

S

∑
i=1

(npi)
ke−npi . (17.1)

Let X be a random variable with the cumulative distribution function

F(x) =
∑npi≤x npie−npi

∑S
i=1 npie−npi

. (17.2)

Then, the rth moment of X can be derived as [16]:

μr =
∑S

i=1(npi)
r+1e−npi

∑S
i=1(npi)e−npi

≈ (r+ 1)!
E(Cr+1)

E(C1)
,
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where r ≥ 1, and the approximation comes from (17.1). Thus, given a sample of
microbes from the community, we can obtain an estimate of μr by replacing the
expectations with the corresponding observed values:

mr = (r+ 1)!
cr+1

c1
. (17.3)

Furthermore, from (17.1) and (17.2), we have

E(C0)≈
S

∑
i=1

e−npi =
S

∑
i=1

npie
−npi ∑S

i=1 e−npi

∑S
i=1 npie−npi

≈ E(C1)

∫ n

0
x−1dF(x). (17.4)

Now, denote F (μ1,μ2) as the class of all cumulative distribution functions in [0,n]
with fixed first two moments, μ1, μ2, and define G(x) as

G(x) =
(n− μ1)

2

(n− μ1)2 +(μ2 − μ2
1)

I

(
nμ1 − μ2

n− μ1
≤ x < n

)
+ I(x ≥ n).

Then G(x) ∈F (μ1,μ2). It can be shown that [5, 16], for F ∈F (μ1,μ2),

∫ n

0
x−1dF(x) ≥

∫ n

0
x−1dG(x)

=
1

(n− μ1)2 +(μ2 − μ2
1 )

(
(n− μ1)

3

nμ1 − μ2
+

μ2 − μ2
1

n

)
.

Then, by (17.4) and replacing E(C1) with the observed value c1, we have a lower
bound estimate of E(C0) [5]:

Ê(C0)min ≈ c1

(n− μ1)2 +(μ2 − μ2
1 )

(
(n− μ1)

3

nμ1 − μ2
+

μ2 − μ2
1

n

)

→ c1

μ1
, as n → ∞.

Replacing μ1 by its estimate in (17.3), we have an estimate Ê(C0) = c2
1/(2c2). Thus,

the number of species in the community can be estimated by

Ŝ = sT + Ê(C0) = sT +
c2

1

2c2
,
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which is widely known as the Chao1 estimator if c2 > 0 [5, 10, 21]. A modification
can be used when c2 = 0 [6]:

S̃ = sT +
c1(c1 − 1)
2(c2 + 1)

.

For a community with many rare species, the abundance-based coverage estimate
(ACE), which makes use of all ck instead of only c1 and c2, appears to be more
appropriate for the species richness [7,8]. Specifically, with a pre-selected frequency
cutoff r (usually r = 10) and three estimated quantities: sabund = ∑i I(yi > r) as
the observed number of abundant species, srare = ∑i I(0 < yi ≤ r) as the observed
number of rare species and yrare = ∑i yiI(0 < yi ≤ r) as the observed number of
microbes belonging to the rare species, the ACE of the species richness is defined as

Ŝ = sabund +
srare

ŜCACE

+
c1

ŜCACE

γ̂2
ACE ,

where ŜCACE = 1− c1/yrare is the estimated sample coverage and

γ̂2
ACE = max

{
srare ∑r

k=1 k(k− 1)ck

yrare(yrare − 1)ŜCACE

− 1, 0

}

is the estimated coefficient of variation. Readers are referred to [7, 8] for detailed
discussions about these estimators.

17.2.1.2 Using Species Richness Estimates to Evaluate Sufficiency
of Sample Size

The 16S rRNA genes are usually used as the biomarkers for bacterial species
analysis. Specifically, the 16S rRNA gene fragments are detected from metagenomic
sequencing reads, and grouped into Operational Taxonomic Units (OTUs), so that
the reads in an OTU are likely sampled from the same species [36, 47]. The species
richness can then be estimated through the number of distinct OTUs (that is, sT ) and
the numbers of the fragments grouped into each OTU (i.e., the yi values).

Rarefaction curves are usually used to estimate the fraction of species being
sequenced [17, 21, 25]. A rarefaction curve plots the estimated number of species
in a community as a function of the number of microbes sampled. By subsampling
within the detected 16S rRNA fragment pool, for a subsample size, the Chao1
estimator or ACE is computed accordingly. Starting from a small subsample size and
ending at n, the rarefaction curve can be drawn. The curve usually begins with an
increasing slope. If, after a certain point, the curve consistently flattens, it suggests
that the richness estimates reach a stable asymptotic value, and we may determine
that the sample size is sufficient. Otherwise, more observations should be collected.
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17.2.2 Statistical Methods in Metagenomic Binning

Metagenomic binning refers to the process of classifying metagenomic sequencing
reads into taxonomic groups (e.g., OTUs). Depending on the information taken
for the classification, the widely used binning methods may be divided into
two categories: similarity-based methods and composition-based methods [33]. In
similarity-based methods, the measurements of the sequence similarities between
the metagenomic reads and the genomic references are employed to determine
the taxonomic groups from which the reads come. Composition-based methods
usually take into account the patterns of conserved short oligonucleotides (also
called K-mers, or K-tuples) appearing in the metagenomic reads. If a method first
learns the patterns from the reference database and applies the learned result for
classification, it is a supervised method. On the other hand, if the patterns of the short
oligonucleotides are purely counted from the reads themselves, the approach is an
unsupervised method. In the following two subsections, we describe the statistical
aspects in both similarity-based and composition-based methods.

17.2.2.1 A Similarity-Based Statistical Framework

This method was proposed in [24]. Suppose that there are N metagenomic sequenc-
ing reads being aligned against a database of genomic references, and that S
genomes (species) are detected being hit by at least one read. Denote Ai j as the
alignment length, and Mi j as the number of matched base pairs when the ith read
(i = 1,2, . . . ,N) is aligned to the genome j ( j = 1,2, . . . ,S). Set Mi j equal to 0 if
the read is not aligned to the genome. Define R j as the probability of a read from
the genome j in the metagenome, ∑S

j=1 R j = 1. We assume that, for any aligned
base pair within two aligned sequences, the probability of having a mismatch
is a constant, denoted by p. Let Ai = max{Ai j, j = 1,2, . . . ,S} be the maximum
alignment length between the ith read and the S candidate genomes. We believe
that if the ith read is generated from one of the S genomes, then Ai is the length
of the alignment when it is compared to that genome. Under the assumption that
the base pair matching is independent across sequence positions, the probability
of the ith read coming from the genome j with (Ai −Mi j) aligned mismatches is
R j pAi−Mi j (1− p)Mi j . Let Zi be the genome that the ith read comes from. Then the
probability of observing the ith read with similarity measurements Ai and Mi j is
∑S

j=1 I(Zi = j)R j pAi−Mi j (1− p)Mi j .
Assume that the sequencing reads are independent of one another, then given

the alignment results {Ai : i = 1, . . . ,N} and {Mi j : i = 1, . . . ,N, j = 1, . . . ,S}, the
likelihood function for the parameters p and Ri is

L(p,R j, j = 1, . . . ,S) =
N

∏
i=1

S

∑
j=1

I(Zi = j)R j p
Ai−Mi j (1− p)Mi j .
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Since a read comes from a single genome, the summation in the likelihood function
actually includes only one addend, and thus it is easy to obtain the log likelihood
function. However, the genome that a read is generated from is unobservable, that
is, Zi are latent variables. Hence the Expectation-Maximization (EM) algorithm can
be applied to find the maximum likelihood estimates (MLEs) of p and R j.

Let p̂ and R̂ j be the MLEs obtained by the EM algorithm. Then the probability
that the ith read is generated from genome g, given the similarity measurements, can
be calculated as

Pig = P(Zi = g|Ai,Mi j, j = 1,2, . . . ,S) =
R̂g p̂Ai−Mig(1− p̂)Mig

∑S
j=1 R̂ j p̂Ai−Mi j (1− p̂)Mi j

,

for i = 1,2, . . . ,N, and the ith read is classified as the genome which corresponds to
the maximum of {Pig,g = 1,2, . . . ,S}. Other similarity-based binning tools, such
as MEGAN [22] and CARMA3 [15], are also available in literature. Based on
simulated datasets, Jiang et al. [24] demonstrated that their procedure has the best
performance.

17.2.2.2 Composition-Based Statistical Approaches

In this subsection, we further introduce two more metagenomic binning tools which
are based on genome sequence composition.

17.2.2.3 Relative Abundance Index (RAI)

In this approach, the RAI profile of a genome consists of K-mer scores, each of
which is defined to measure the relative abundance of the K-mer in the metagenomic
reads [33]. The probability of observing any K-mer, x1, . . . ,xK , can be written as
P(x1, . . . ,xK) = P(xK |x1, . . . ,xK−1)P(x1, . . . ,xK−1). The conditional probability can
be reduced to P(xK) if xK occurs independently to all previous bases. Under the
assumption that the sequence {xk} follows a Markov chain of order r, we have

P(xK |x1, . . . ,xK−1) = P(xK |xK−r, . . . ,xK−1) =
P(xK−r, . . . ,xK)

P(xK−r, . . . ,xK−1)
.

Given a K-mer, x1,x2, . . . ,xK , the relative abundance index of order r is defined as
the log base 2 of the ratio between the probability of observing (x1,x2, . . . ,xK) and
the expected probability under the assumption on specific r. That is,

RAIr(x1, . . . ,xK) = log2
P(x1, . . . ,xK)P(xK−r, . . . ,xK−1)

P(xK−r, . . . ,xK)P(x1, . . . ,xK−1)
,
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where r = 0,1, . . . ,K −2. Note that when r = 0, P(xK−r, . . . ,xK−1) = 1, and RAI0 is
for the independent case. Adding these RAIr, over r, gives the RAI of the K-mer on
a genome:

RAI(x1, . . . ,xK) =
K−2

∑
r=0

RAIr(x1, . . . ,xK).

For a sample metagenome the probabilities in RAI are estimated by relative
frequencies of the K-mer in a genome reference. To classify a sequencing read,
say R, calculate the frequency of one K-mer in R, fR(x1, . . . ,xK), and define the
membership score of R belonging to the genome j as

MR( j) = ∑
all K-mers in R

fR(x1, . . . ,xK)R̂AI
( j)
(x1, . . . ,xK),

where R̂AI
( j)

is the estimated RAI on the genome j. Note that if the pattern of the K-
mer matches between the sequencing read and the genome j, the positive R̂AI values
will be weighted by higher frequencies, and the negative R̂AI will be weighted by
lower frequencies. Thus, the membership score is larger for a matched pattern than
a mismatched one. So the rule is to classify R to the genome with the largest score,
max{MR( j) : j = 1,2, . . . ,S}. Interested readers are referred to [33] for more details
and discussions.

17.2.2.4 AbundanceBin

This approach was proposed in [46] and is based on the Lander-Waterman model
[26, 27]. It assumes that the number of occurrences of a K-tuple in the sequencing
reads generated from the genomes of the same species follows a Poisson distribu-
tion. Let M be the total number of K-tuples. Let wi be the ith K-tuple, i = 1,2, . . . ,M.
Let n(wi) be the count of the sequencing reads covering wi, and let λ j be the
parameter of the Poisson distribution for the jth species s j (λ j depends on the
abundance of the species, j = 1,2, . . . ,S). Let l j be the total genome size of the
jth species and L be the total size of the metagenomes. Denote Zi as the species
that the ith K-tuple belongs to. Since Zi are latent variables, the EM algorithm is
applied to find the maximum likelihood estimates of λ j and g j, using the conditional
probability of wi being from the jth species given the observations {n(wi)} in the
E-step:

P(Zi = s j|n(wi), i = 1,2, . . . ,M) =
l j

∑S
k=1

(
λk
λ j

)n(wi)
e−λk+λ j lk

,

which can be derived by Bayes’ rule with the prior probabilities P(Zi = s j) ∝ l j.
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For a metagenomic sample, the number of species, S, is generally unknown.
A recursive procedure is suggested in [46] to search for this number. Once the EM
algorithm converges, the proposed classification rule claims that a sequencing read,
r, comes from the species corresponding to the maximum of the probabilities:

P(r ∈ s j) =
∏wi∈r P(Zi = s j |n(wi))

∑S
k=1 ∏wi∈r P(Zi = sk|n(wi))

, j = 1,2, . . . ,S.

17.2.3 Assessing the Accuracy of a Metagenomic Study

Assembling is an important step in a metagenomic study, especially for the
species without existing reference genomes. Thus, given an assembly result of the
metagenomic reads, it is very crucial to check the accuracy before the assembly
is used for further analysis. On the other hand, facing many assembly tools with
different pros and cons, one may need to select the one with the best performance.
Assembly Likelihood Evaluation (ALE) was proposed to fulfill this need [9].

Let R be the metagenomic reads utilized to assemble a genome. Let A be the
event that the assembled sequence is equal to the true genome sequence. Then, by
Bayes’ rule, the conditional probability that the assembly is correct, given the reads,
is P(A|R) = P(R|A)P(A)/P(R). The ALE score is defined as the logarithm of this
probability. For the comparison of two assemblies, the difference of the ALE scores
does not depend on P(R), which is difficult to calculate.

Under the assumption of independence, the conditional probability P(R|A) can
be decomposed as

P(R|A) = Pplacement(R|A)Pinsert(R|A)Pdepth(R|A),
where “placement” represents the event that the reads are placed/mapped to the
genome, “insert” represents the event that, for paired-end reads, the lengths of the
inserts found in reads agree with the lengths of inserts used to generate the reads,
and “depth” represents the event that the read depth/coverage at each location of
the genome is equivalent to the expected depth. Note that for single-end reads, the
insert probability is set to be one. Next we briefly explain each term and how the
probability is computed. Readers are referred to [9] for technical details.

The probability, Pplacement(R|A), quantifies the accuracy of the reads being placed
back to the assembled genome. If the bases in a read are independently generated by
the sequencer, then the probability, Pmatch(ri|A) that a read ri matches to the genome
is the product of P(base j|A), for all base j in ri. Here,

P(base j|A) = Q jI(base j is correctly matched)+
1−Q j

4
I(base j is not matched)

+
1
4

I(base j is not determined),
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where Q j is the probability of the base j being correctly called by the sequencer.
Note that Q j can be calculated from the quality score provided in the sequencing
result. The orientation of a read can be either forward or backward, so the orientation
probability, Porientation(ri|A), is calculated as the empirical frequency of the observed
orientation of the read ri. Thus, we can calculate the placement probability as:

Pplacement(R|A) = ∏
ri∈R

Pplacement(ri|A) = ∏
ri∈R

Pmatch(ri|A)Porientation(ri|A).

For paired-end reads, the insert lengths from all the mappings of the reads are
collected and the mean μ and the variance σ2 of the lengths are then calculated. The
computation is unnecessary if these two quantities are known from the sequencing
procedure. The insert likelihood, based on the observed insert length Li, is set to be
(
√

2πσ)−1exp(−(Li − μ)2/(2 ∗σ2)), under the normality assumption on Li. This,
along with the assumption of independently inserting, gives

Pinsert(R|A) = ∏
ri∈R

1√
2πσ

e
− (Li−μ)2

2σ2 .

For the depth probability, by the Lander-Waterman theory, the read depth at a
position ideally follows a Poisson rule. However, this distribution may be affected
by the GC content at the position, because DNA fragments from different GC-
content areas are unequally amplified [1]. Thus, Clark et al. [9] model the read
depth at a position by a Poisson distribution, with Poisson mean following a Gamma
distribution. That is, the read depth is modeled by a Negative Binomial distribution.
Then, the depth likelihood is calculated as:

Pdepth(R|A) = ∏
p

Pdepth(dp|A) = ∏
p

(
dp +λp− 1

dp

)(
1
2

)dp+λp

,

where dp is the depth in position p, and λp is the larger of a pre-defined integer (say,
10) and the average of the observed depths over positions in the region, defined by
GC content, at which the position p locates.

The prior probability, P(A), of an assembly A is determined based on the authors’
belief that a single genome has its own specific K-mer profile (for any user-defined
integer K). Let M be the number of all possible K-mers, and n j be the number of
times the jth K-mer appears in the assembly A. For m = 1,2, . . . ,M, define fm =
nm/∑M

j=1 n j as the observed frequency of the mth K-mer. Then the probability P(A)
is proportional to

PK-mer(S) =
M

∏
m=1

f nm
m .
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After obtaining these three probabilities for each assembly, the difference in
ALEs for any two assemblies, A1 and A2, can then be determined by

ALE1 −ALE2 = log
Pplacement(R|A1)Pinsert(R|A1)Pdepth(R|A1)

Pplacement(R|A2)Pinsert(R|A2)Pdepth(R|A2)
,

and a positive difference indicates that the assembly A1 has higher likelihood of
being correct than the assembly A2. The example of applying ALE on real data, and
the study on ALE ′s sensitivity and specificity can be found in [9].

17.3 Statistical Methods in Metagenomic Profiling
and Comparison

17.3.1 Statistical Methods to Adjust Metagenomic Profiling

With metagenomic sequencing reads, researchers are interested in obtaining the
taxonomic structure and the functional properties of a microbial community. These
have been vividly presented as questions like “Who is there?” and “What are they
doing?” [32]. By sequence homology searching, a count dataset representing the
relative abundances of the features (i.e, OTUs or functional families) associated
to the microbial sample can be generated. This is called metagenomic profiling.
However, when using NGS metagenomic reads for profiling, systematic errors can
be introduced during sequence homology searching and quantifying the abundance
of a feature with the number of reads being aligned. Here we use the functional
profiling of a metagenomic sample as an example to explain how the errors are
produced.

The metagenomic reads are compared against a protein sequence database. A
read is usually assigned a function according to its best-hit alignment. The list of
all the detected functional families and the read counts to these families present
the functional profile of the metagenomic sample. Due to the short length of reads
and local sequence similarity among different functions in the database, a short
read originating from a non-coding sequence may be assigned a function; or a short
read originating from a coding sequence associated to a specific function may be
erroneously assigned a different function. This introduces artificial functions to the
profile, and incorrect read counts are assigned to the functions as well. In [12], a
proposed method suggests taking a justified BLAST similarity score cut-off strategy
instead of empirical BLAST E-value cut-offs, which may be only good for long
reads, to filter out the artificial functions in alignments. Then Fisher’s Quadratic
Discriminate function is applied on the values of a ratio, computed from the outputs
by different alignment tools (e.g., BLAST and RPS-BLAST), to remove the artificial
functions that cannot be filtered out by the cut-off and have large counts. Interested
readers are referred to [12] for technical details of the methods.
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Developing statistical methods to adjust the read counts for the functions they
are truly associated with is our current research topic. In addition, Sharon et al. [37]
pointed out that it is not proper to use the raw read counts to quantify the relative
abundances among different functional families, since more short reads are usually
generated from a longer coding sequence than from a shorter one.

We comment that the errors for metagenomic profiling lie in the constructed
list of features (e.g., artifacts), the read counts to the features (e.g., reads being
assigned to wrong functions), and the relative abundance assessed by the read
count (e.g., read count bias). They are systematic errors, similar to those in
microarray experiments (corrected through the normalization process), but more
complex. It is an ongoing active research area. In order to make the downstream
comparisons meaningful, these errors need to be corrected with sophisticated
statistical methods/models.

17.3.2 Statistical Methods for Metagenomic Comparison

For many metagenomic studies, the goal is to carry out the comparison among the
metagenomic profiles, to detect the features with significantly different abundances.
The result will help us to correlate the enrichment or the scarcity of specific
features (i.e., species or functions) with the environmental/clinical characteristics
of microbial communities. The comparison is among different groups of samples
and follows the setting in a general clinical comparison–two or more treatment
populations with each comprising of multiple samples. Note that multiple testing
corrections should be considered because many features are being compared
simultaneously.

For a metagenomic profile, it is a common observation that there is a large
between-sample variation in the abundance counts to a feature. Different statistical
methods have been proposed to address this problem. We describe four approaches
in the following.

17.3.2.1 Beta-Binomial Approach

This method is for a two-group comparison. The goal is to test whether the
proportions, pg1 and pg2, of the abundance for each feature are significantly
different. More details about the Beta-binomial approach can be found in [2].

Denote n j as the total abundance count in the jth sample ( j = 1, · · · ,J) of a group,
and p j as the true proportion of the abundance of the feature in this sample. Let Yj

be the random variable representing the abundance count of the feature. Assume
that Yj follows a Binomial(n j, p j) distribution with p j having a Beta(α,β ) prior
distribution. A weighted linear combination of single sample estimates, p̂ j =Yj/n j,
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was proposed to construct the test statistic. That is, define p̂ = ∑J
j=1 wj p̂ j, with any

positive weights wj whose sum is one. Then we have the mean E(p̂) = α/(α +β ),
and the variance,

Var(p̂) =
J

∑
j=1

w2
jαβ

(α +β )(α +β + 1)

[
1

α +β
+

1
n j

]
.

Thus, we can choose the wj’s by minimizing this variance. By the method of

Lagrange multipliers, it is easy to get wj ∝
[

1
α+β + 1

n j

]−1
. Baggerly et al. [2]

obtained an unbiased estimator of Var(p̂): V̂0 = (∑w2
j p̂2

j − (∑w2
j)p̂2)/(1−∑w2

j ).
They claimed that this estimate might be too small in some cases and suggested a
modified estimator, V̂ , as the larger of V̂0 and (∑Yj/(∑n j)

2)(1−∑Yj/∑n j).
In practice, since α and β are unknown parameters, an iteration process can

be used to find wj . Starting from the initial values of w(0)
j = n j/∑n j, and the

corresponding p̂(0), V̂ (0), we can find the method of moment estimators of α , β
from the above expressions of the mean and variance of p̂, and then update wj .
Repeat the process until the values of wj stabilize.

Based on these estimates for each of two groups separately, the test statistic for
the equality of the proportions of the abundance of the feature is,

tw =
p̂g1 − p̂g2√
V̂g1 + V̂g2

,

where g1 and g2 represent group 1 and group 2 correspondingly. The null
distribution of tw is approximately a t-distribution with degrees of freedom,

d f =
(V̂g1 + V̂g2)

2

V̂ 2
g1

ng1−1 +
V̂ 2

g2
ng2−1

.

17.3.2.2 Overdispersed Logistic Regression Approach

Using the t statistic in the Beta-binomial approach confines its application to two-
group comparison only. To address the overdispersion problem in the comparison
of G (G ≥ 3) groups, logistic regression can be used [3].

We adopt the notation in the previous section except that the observation index
j now includes all G groups. Assume that x jg = 1 if the jth observation belongs to
the gth group, or 0 otherwise, g = 1, . . . ,G− 1. The logistic model for proportions
is logit(p j) = β0 +∑G−1

g=1 βgx jg, with Var(Yj) = n j p j(1− p j)[1+(n j − 1)φ ], where
φ is the parameter to reflect the dispersion scale. Instead of computing the statistics
separately for each group, the model is fitted by using all the observations.
The parameter βg reflects the group effect. In other words, the hypothesis of
β1 = · · ·= βG−1 = 0 is equivalent to that of the abundance proportions of the feature
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being the same among all groups. The model also provides opportunity to look at
other contrasts. Note that more x variables can be added to the model should more
covariates have an effect on the feature abundance. The estimates of the model
parameters can be obtained using the iteratively reweighted least squares (IRLS)
procedure [43], where the weight wj is 1/[1+(n j − 1)φ ]. The model can also be
fitted by the quasi-likelihood method [29].

17.3.2.3 Overdispersed Log-Linear Regression Approach

Instead of the proportions, this approach models the expected abundance count, that
is, log(λ j) = β0 +∑G−1

g=1 βgx jg with E(Yj) = λ j and Var(Yj) = λ j(1+ λ jφ). Note
that Yj can be viewed as the random sample from a Gamma-Poisson rather than a
Beta-Binomial population. The estimates of the model parameters can be obtained
by the IRLS procedure with the weight wj equal to 1/(1+λ jφ) [23, 28].

17.3.2.4 Nonparametric T-Test

A nonparametric approach is used when there is no assumption on the distribu-
tion. A nonparametric t-test, proposed and discussed in [40, 42], is one of these
approaches.

Let yi jl , i = 1,2; j = 1, · · ·Ji; l = 1, · · ·L, be the abundance count of the sample j
in group i for a feature l. A simple normalization converts the raw count to a fraction
of the feature in the sample: fi jl = yi jl/∑l yi jl . For the feature l, denote f̄il and s2

il
as the sample mean and variance of the fractions in group i. Then the t statistic is

defined as tl = ( f̄1l − f̄2l)/

√
s2
1l

J1
+

s2
2l

J2
, and the p-value is determined by permutation.

We randomly permute the fi jl’s within feature l and keep J1 samples in group 1 and

J2 samples in group 2. Repeat the permutation B times, and obtain a t statistic t(b)l
for the bth permutation. Then the p-value of the nonparametric t-test is calculated as
the percentage of the t statistics from the permutations as extreme or more extreme
than the observed tl:

pl =
#
{

b : |t(b)l | ≥ |tl |, b = 1, · · · ,B
}

B
.

Obviously, 1/B is the lowest attainable p-value, so B should be set large enough
(e.g., 1000). In the case that J1, J2 are small (say, < 8), this is not a proper way to
compute the p-value. We instead use the permuted t statistics from all the features
to calculate the p-values. That is,

pl =
∑B

b=1 #
{

m : |t(b)m | ≥ |tl |, m = 1, · · · ,L
}

BL
.
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17.3.3 Multiple Testing Correction

As in gene expression data analysis, statistical analysis of metagenomic data
involves testing multiple hypotheses simultaneously since there are thousands of
features in one metagenomic experiment. That is, we have to address the problem
of an inflated false positive rate caused by multiple hypothesis testing.

There are plenty of methods in the literature to address this problem. They either
adjust the p-values from tests for individual features, or calculate the corresponding
q-values [39, 40]. Methods to adjust p-values include Bonferroni’s single-step
adjusted p-values, Holm’s step-down adjusted p-values [19], Hochberg’s step-up
adjusted p-values [18], Benjamini-Hochberg’s adjusted p-values [4], and many
more. These methods have been implemented in most statistical software such as
R and SAS.
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Chapter 18
Detecting Copy Number Changes and Structural
Rearrangements Using DNA Sequencing

Venkatraman E. Seshan

Abstract Chromosomal abnormalities in the form of deletions, duplications,
inversions and translocations are common in cancer. These changes feed the
oncogenic process by affecting genes that are involved in tumor growth. Next
generation sequencing has aided our ability to study these changes at very high
resolution. In this chapter we will describe the nature of these data and the
information contained in them for the detection of the structural changes. We will
present the circular binary segmentation algorithm for the segmentation of array
based copy number data and adapt it to NGS data. We will also present a method for
the detection of somatic structural rearrangement. We will illustrate these methods
using data from breast cancer cell line (tumor) along with its blood (normal)
counterpart generated by the cancer cell-line encyclopedia project.

18.1 Introduction

The flow of genetic information in cells [3, Chap. 5] occurs primarily through
the transcription of DNA into RNA which is then translated into proteins that
carry out the cellular functions. This is stated as DNA makes RNA, RNA makes
proteins, proteins make us [18] and referred to as the central dogma of molecular
biology [8]. This implies that changes to DNA can have an effect on the biological
processes. These changes in DNA can be mutations as well as structural changes.
In humans, autosomal chromosomes appear in pairs, one from each parent, and
thus have two copies of every gene; the allosomes (sex chromosomes) are XX in
females (two copies of X) and XY in males (one copy each of X and Y). Gains
and losses of all or parts of chromosomes are known as copy number changes
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and are implicated in many diseases. These changes could either be germline
(inherited) or somatic (acquired). Examples of germline changes are 3 copies of
chromosome 21 (copy number gain) resulting in Down’s syndrome [15, Chap. 5] or
single X (copy number loss) resulting in Turner’s syndrome [15, Chap. 5]. Somatic
changes are very common in cancer, where a gene is gained and it promotes growth
(oncogene, e.g., ERBB2 (HER2/Neu) in breast cancer [14]), or a gene is deleted
and the ability to control growth is lost (tumor suppressor gene, e.g., PTEN in
prostate cancer [38]). Other changes to DNA such as the Philadelphia chromosome
[23], a reciprocal translocation between chromosomes 9 and 22, is another type of
structural change implicated in cancer (chronic myelogenous leukemia or acute
lymphocytic leukemia). Thus, studying copy number changes and other structural
rearrangements is important for understanding the oncogenic process.

Karyotyping, which is the study of the number and appearance of chromo-
somes, was the earliest method used for detecting chromosomal aberrations and
provides information at a low resolution. The development of comparative genomic
hybridization (CGH) [13, 20] allowed measurement of copy number changes over
the entire genome and enabled it to be localized to a chromosome at an improved
resolution of 10 to 20 megabase. High throughput methods such as BAC (bacterial
artificial chromosome), aCGH (array comparative genomic hybridization) and SNP
(single nucleotide polymorphism) arrays, based on the microarray technology have
systematically increased the resolution and thereby our ability to detect gains
and losses of smaller chromosomal regions; see [27] for a review of array CGH
technology. Whereas a karyotype assay can clearly show trisomy of chromosome
21, the loss of PTEN cannot be readily visualized in a Affymetrix SNP 6.0 array
with over 1.8 million markers. Thus sound analytic methods are required for the
large volume of noisy data generated by the high throughput methods.

The analysis of copy number data is composed of two parts—the identification of
regions of gains and losses in each subject followed by combining this information
across samples to identify recurrent events associated with cancer. Several methods
have been proposed for the per sample analysis of copy number data which can
be characterized as “smoothing and thresholding” or “segmentation” methods.
A comprehensive comparison of the performance of several of these methods was
done by [16]. Overall, segmentation methods were found to be most suitable for
the per sample analysis of copy number data. The principal concept behind the
segmentation methods is that since copy number for a cell is integer valued, gains
and losses are discrete events and thus along a chromosome the gain or loss induces
a jump discontinuity. Note that the tissue sample being assayed is a collection of
cells all of which will not have the same changes. However, the distinct clones that
make up the tissue sample is expected to be far fewer than the number of cells and
hence the average copy number will have the form of a step function. We formulated
this as a change point problem to develop the circular binary segmentation (CBS)
algorithm [25, 36] which is one of the widely used methods. GISTIC [4], GRIN
[28] and RAE [34] are frequently used algorithms to combine the copy number
changes detected in the per sample analysis in order to identify recurrent events and
implicated genes.
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Next generation sequencing (NGS) of genomic DNA enables us to obtain infor-
mation on somatic mutations and structural changes. The structural changes include
copy number gains and losses as well as rearrangements such as inversions and
translocations. [Note: Inversions and translocations are explained in Sect. 18.3.1]
Several algorithms such as BreakDancer [6], CNVnator [1], CNVseq [40], CREST
[37], SegSeq [7], seqCBS [33], SVminer [12] are currently used for obtaining
structural change information from NGS data. In the following sections we will
describe the CBS algorithm, adapt it to sequencing data, and demonstrate it using
cell line data. We will finish the chapter by presenting a simplified summary of the
procedure for identifying other structural variations.

18.2 Background

In this section we will describe the design and techniques used to generate the
data that are to be analyzed. The first step in the process of obtaining the data is
the generation of a library of genomic DNA composed of short DNA fragments,
typically 100 to 500 nucleotides long, from the sample of interest. This library
can encompass the entire genome (whole genome sequencing) or selected genomic
regions (targeted sequencing). The creation of the library in either case begins
with generating DNA fragments by randomly breaking the entire genome using a
technique such as sonication. The fragments are then sorted by molecular weight to
enable the selection of fragments of the desired length. In targeted sequencing an
additional selection process is employed where the DNA is hybridized to arrays with
probes that are designed to capture DNA fragments that cover the genomic regions
of interest. A specific case of targeted sequencing is whole exome sequencing where
the genomic regions selected are all the exons (coding regions) of all known genes
(approximately 20,000). Custom gene panels [11] that cover a smaller collection
of genes known to be most commonly associated with cancer are also currently in
use. The regions in targeted sequencing span a small fraction of the whole genome,
1–2% in the case of whole exome and even less for custom panels, allowing for
high coverage of the target.

The library that is generated is then sequenced to obtain reads, which are the
strings of bases or nucleotides, that make up a part of the fragment. Sequencing can
either be single-end or paired-end where the DNA fragments are sequenced (read)
from either one end or both ends, respectively. Read length, which is the number
of nucleotides sequenced, can be specified in the instrument for an experiment. The
reads are then mapped to a reference genome to obtain positional information on
where the reads, and hence the fragments, come from, i.e., their locations. These
locations follow a probability distribution that is influenced by factors such as
the GC content and mappability. The data used for identifying structural changes
are various characteristics of the reads such as their locations and fragment size.
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In cancer research, the principal goal of DNA sequencing is to identify changes in
DNA (mutations and structural) acquired by the tumor. Hence, typically, both tumor
and normal cells are sequenced. The sequencing of normal cells will help identify
any germline events, for example, BRCA1 mutation, that may be present. In paired
tumor-normal sequencing, the comparison of the tumor to its matched normal will
benefit from the canceling out of the influence of the technical factors that affect
sequencing. Running them in the same batch would additionally ensure that batch
effects are minimized. Although the use of paired tumor-normal samples is ideal for
identifying changes that are specific to the tumor, it may not always be feasible. For
instance, the analysis of archival tumors in which only tissue samples from the tumor
are available will need an external pool of normal samples to identify tumor specific
changes. However, large scale copy number polymorphisms have been seen in the
germline [31] and Redon et al. (2006) [29] created a first-generation copy number
variation (CNV) map from copy number profiling of the HapMap samples. Thus,
the comparison of tumor data to an external normal needs to account for technical
artifacts that may not cancel as well as inherited copy number events.

Unlike karyotying, both sequencing and array based measurement of copy
numbers query the DNA fragments directly and do not contain information on
individual cells. This introduces an identifiability problem as follows. Let us
suppose that a global change in copy number has occurred in which every single
chromosome in the cell is duplicated resulting in a total copy number of four.
Whole genome duplication such as these and aneuploidy in general are common
in cancer [9]. In terms of information contained in the DNA, a tissue with cells of
this kind is indistinguishable from a tissue of normal cells. In general, both the array
based and sequencing approaches to copy numbers can only provide relative copy
number changes and require external information to resolve the relative numbers
into absolute copy numbers. The ABSOLUTE algorithm [5] provides a method to
use the ploidy (which is the average copy number) and tumor purity to obtain the
absolute copy numbers.

In the next section, we will present a method for analyzing copy numbers from
matched tumor-normal sequencing data. Furthermore, the changes identified will be
based on the relative copy numbers and thus gains and losses will be relative to the
average copy number of the tumor.

18.3 Methods

The read data generated from DNA sequencing contains not only information on the
nucleotides that make up the subject’s genome but also the relative abundance of a
locus as well as distances between loci. These additional elements can be leveraged
to detect structural changes to the DNA. In the following subsections we will
develop a method to obtain the copy number profile from the relative abundance
measure.
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Fig. 18.1 Different types of fragments in a paired end DNA sequencing data

18.3.1 Structural Change Information in NGS Data

In the background section, we described how the reads data that are to be used for
identifying structural changes are generated. We will now describe the information
contained in these data using Fig. 18.1 which shows a portion of the tumor genome
and five fragments from it.

The displayed portion of the tumor genome consists of a striped and a shaded
part both of which are contiguous in the germline but the transition from the
striped to the shaded does not occur in the germline and thus represents a structural
change boundary. The fragments shown are from paired end reads where the thick
rectangles are the reads and the thin one connecting them is the inferred intermediate
region once the reads are mapped.

In the germline, both the striped and the shaded regions will appear exactly
twice in a cell provided they are not polymorphic but in a tumor cell they appear
more than twice if the region is gained and fewer than twice if it is lost. The
transition corresponds to a translocation if both the regions have the same orientation
as in the reference genome and an inversion if their orientations are opposite.
The translocations can be intra- or inter-chromosomal depending on whether both
regions come from the same chromosome and different chromosomes, respectively.

The fragments shown in the figure are read pairs for which at least one of the two
ends is mapped to either the striped or the shaded genomic region. The top three
fragments have both ends mapped and the bottom two have only one end mapped.
Note that, although both reads of Fragment 4 are shown, only the read contained
in the striped region will be mapped using a standard alignment procedure and the
other end would require a partial read mapping algorithm such as CREST [37] to
be mapped. Unmappable reads, such as the mate pair of Fragment 5, can occur if
the read contains repetitive elements that are not uniquely identifiable.

A region that is gained in the tumor will contribute more fragments to the tumor
reads and one that is lost will contribute fewer fragments. So the counts of the reads
within a region, namely its abundance measure, is related to the copy number. Since
the reads in Fragments 1, 2 and 5 are completely contained within the striped and
shaded regions, they only contribute to the abundance measure. Since the two ends
of Fragments 3 and 4 are mapped to the two regions, not only do they contribute to
the abundance measure, they can also inform directly on the possible location of a
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structural change. Zhao et al. (2013) [41] provide a review of various computational
tools available for CNV detection that use one or a combination of these features.

In a targeted sequencing experiment, a read pair will contain the location of a
structural transition, only if that transition occurs near a targeted genomic region
which enables such a fragment to be captured. So a targeted sequencing experiment
is unlikely to detect translocations and inversions unless the regions where such
events could occur are specifically targeted, for example, the translocation in
Philadelphia chromosome. Hence de novo structural rearrangements are rarely
identifiable in targeted sequencing. The abundance measure however, is available
and effective for copy number profiling both in whole genome and targeted
sequencing. We will describe our method based on abundance measure (read-depth)
in detail.

18.3.2 Circular Binary Segmentation

Let X1,X2, . . . be a sequence of random variables. A change-point is an index
ν such that the random variables X1, . . . ,Xν have a common distribution F0 and
Xν+1, . . . have a different distribution F1 (until the next change-point or the end of
the sequence). For the copy number problem using data from array CGH the Xis
are the log-transformed normalized intensities (or log-ratios) of the markers which
are ordered by the position along the chromosome and thus is a finite sequence of
length m. Since the copy number of a cell is integer valued and the tumor consists
of far fewer distinct clones than cells, it is appropriate to view the locations where
the copy number changes to be the change-points that we wish to detect.

The test statistic introduced in the CBS algorithm [25] to detect the change-points
is the maximal t-statistic given by:
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The motivation for this test statistic is as follows. If the Xis are normally distributed
with a common variance then the change-points correspond to a change in mean.
Suppose the change-points are fixed at i and j then the optimal statistic to test the
equality of the means of the two sets {Xi+1, . . . ,Xj} and {X1, . . . ,Xi,Xj+1, . . . ,Xm} is
the t-statistic. Because the change-points are unknown we obtain our test statistic by
maximizing the t-statistic over all possible i and j. Note that j = m corresponds to
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the case of a single change-point. The null hypothesis of no change-points is rejected
if the p-value of the test statistic is below the significance threshold. Since the log-
ratio data may not be normally distributed the CBS procedure was made robust
by using a permutation reference distribution. The algorithm begins by testing for
the presence of change-points in whole chromosomes. If the null hypothesis of no
change-points is rejected, then the change-points that are detected will segment the
chromosome into two (test detects one change-point) or three contiguous regions
(test detects two change-points). The test procedure is applied recursively to each of
the regions until no change-points are detected in any of them.

In comparative studies, the CBS algorithm was found to perform well consis-
tently [39] and had the best operational characteristics [16] amongst several methods
for analyzing copy number data. However, since the test statistic is maximizing over
both i and j the computing time grew as the square of the number of markers which
made the analysis burdensome as the resolution of arrays increased. To address
this, [36] developed a faster CBS algorithm using tail probability approximations
of Gaussian random fields as well as sequential testing. These and additional
algorithmic improvements have made the use of this procedure routine for the
analysis of array based copy number data.

18.3.3 Adapting CBS to NGS Data

In a sequencing experiment, the DNA fragments are sampled randomly and thus,
a region that has a higher copy number contributes a larger number of fragments
than a region with a lower copy number. The locations that the reads are mapped
to is a function of several factors such as sequence composition and fragment size.
Although the distribution of the locations of the mapped reads is non-uniform, the
ratio of the read counts between tumor and normal will be proportional to the tumor
to normal copy number ratio. Two additional scaling factors are needed for the read
count ratio to reflect the true copy number ratio. The first is the ratio of total number
of reads in the tumor and normal, which adjusts for the fact that tumors are often
sequenced to a higher coverage than normal. The second factor depends on the
purity and ploidy of the tumor. Thus the read count ratio data enables us to detect
the regions of copy number change but will only give us a relative copy number. For
instance, suppose we are interested in knowing whether the ERBB2 gene is gained
(relative to the average copy number of the tumor) in a breast cancer sample; we
can count the fragments that map to this gene in the tumor and normal samples
and compare that ratio to the ratio of total number of fragments mapped in the two
samples.

The independent elements in a sequencing experiment are the DNA fragments
which are represented by a read pair, if both ends are mapped, and a single read, if
only one end is mapped. If the abundance measure is calculated at the nucleotide
level, then a DNA fragment contributes to the read count of all the positions within
the read as well as all those in its mate pair. This induces a serial correlation in
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the abundance measure data indexed by genomic position. Read pairs that span a
structural transition, such as Fragment 3, can induce a longer range correlation.
In order to obtain copy number data that are independent, we need that each
fragment be counted towards only one abundance measure data point.

A deterministic approach to ensure that each fragment is counted towards one
copy number data point only, is to represent each fragment by its mid-point. This
presents a problem for fragments where only one end is mapped as well as those
fragments with both ends mapped that are not consistent with the lengths of the
fragments selected for sequencing. Such fragments can be removed from the copy
number calculations and since they typically represent a small fraction of the reads,
it is expected to have minor effect on the copy number profile. Alternately, we
can include them as follows: for fragments with only one end mapped, use the
midpoint of the read; for fragments with both ends mapped, pick one of the reads
at random and pick its midpoint. In targeted sequencing, we expect only one of the
two reads in a read pair that needs such probabilistic assignment, to be near a target
interval and can choose the midpoint of that read to represent it. We will calculate
the abundance measure for copy number profiling from these positional data. Note
that under this data representation, the average number of fragments per position
will be the average coverage divided by the read length for single-end sequencing
and average coverage divided by twice the read length for paired-end sequencing.
For example, in an experiment with 50× coverage using 2×75bp sequencing this
translates to a read count of 1/3 fragments per base. Since this number is small, we
will require that the data be binned to aggregate information and provide reliable
copy number profile. We recommend a bin size that gives an average bin count of
25 or higher which for this example will result in a bin size of 100 bases.

A final feature of the data that requires attention is specific to targeted sequencing
where capture technique is used to enrich DNA fragments from genomic regions of
interest. Although these capture technologies have high specificity, it is not perfect,
i.e., the library being sequenced will consist of DNA fragments that are not on target.
This will lead to a large number of bins, far exceeding the bins that cover the regions
being targeted, with very low counts (typically singletons). Since these bins are
spread over the entire genome, the data from them will have an undue influence
on the copy number profile and should be discarded prior to analysis. We address
this by using primarily bins that span the regions of interest with target intervals
enlarged to allow for fragment overhang.

With these preliminaries in place, let N1 and N0 be the total number of mapped
fragments for the tumor and normal samples, respectively. Let (n1i,n0i) be the tumor
and normal fragment counts for the ith bin, and m be the number of bins. Similar
to the log-ratios from copy number arrays we define the copy number data used
for the segmentation as Xi = log2[(1+ n1i)/(1+ n0i)]− log2(N1/N0), where the 1
is added to address bins with zero counts. The average fragment counts for bins
within a region of constant copy number is proportionally increased or decreased
and thus the log-ratio has a constant mean. However, the variability of fragment
count is proportional to the average and thus we expect the variability of the log-ratio
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to be inversely proportional to the average fragment count. While the test statistic
shown in Sect. 18.3.2 is adequate, a weighted version of the statistic will be more
appropriate.

Suppose {Y1, . . . ,Yk} and {Z1, . . . ,Zl} are two sets of random variables where
Yis have mean μ and variance σ2

i and Zjs have mean θ and variance τ2
j . Then

the minimum variance estimate of the difference in means μ − θ is the difference
in weighted average with weights given by the inverse of the variances, i.e.,
(∑σ−2

i Yi/∑σ−2
i )− (∑τ−2

j Z j/∑τ−2
j ). Thus the optimal statistic for testing the

hypothesis μ = θ is the weighted t-statistic based on this difference in weighted
average. The maximal t-statistic we will use for change-point detection will be the
maximum over all i and j of the weighted t-statistic suggested by the minimum
variance estimate. Note that we need to know the parameters σ2

i and τ2
j , at least up

to a constant, to obtain the weighted t-statistic.
For the fragment count data, we expect the variance of the counts to be

proportional to the mean. The proportionality constant is 1 if the counts have a
Poisson distribution and the relationship holds for distributions with extra variation
such as negative binomial. So the variance of the log of the counts will be inversely
proportional to the mean counts and thus the weight will be proportional to counts.
Note that the tumor counts in the log ratio is affected by gains and losses and which
can influence the weights. Thus we recommend using only the normal counts for
the weights which is consistent with the null hypothesis of no change. In order to
dampen the effect of bins with very large counts we suggest that the weights grow
as the logarithm of the counts. In the next section we will present an example of the
copy number analysis of sequencing data to demonstrate all these.

An alternate approach to the analysis is to use a variance stabilizing transfor-
mation. Anscombe (1948) [2] showed that for a Poisson random variable X , the
transformation

√
X + 3/8 is variance stabilizing, if the rate parameter is large

enough (≥ 5). However, in order to allow for extra variation if we posit that
the count data are distributed as negative binomial, then the variance stabilizing

transformation is either sinh−1
[√

(X + 3/8)/(k− 3/4)
]

or log(X + k/2) where

k is the dispersion parameter. Ignoring the transformation’s dependence on the
dispersion parameter k, one can define the copy number data as

√
n1i + 3/8−√

n0i + 3/8 and segment them using the unweighted CBS algorithm. Note that these
data will not be centered at zero and hence the sign of the segment mean does
not indicate a gain or a loss from the average tumor copy number. However, the
underlying true regions of constant copy number will be the same as in the log-ratio.

18.4 An Example

In this section we will illustrate in detail the steps involved in the analysis of DNA
sequencing data for copy number changes using data from a cancer cell line. The
data are from the breast cancer cell line HCC1143 and its blood (normal) counterpart
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HCC1143BL which are part of the cancer cell line encyclopedia (CCLE) project
(http://www.broadinstitute.org/ccle/home). Whole exome sequencing (paired-end
2×75bp) was done for these two samples and the read data, aligned to the
HG19_Broad_variant (Human reference GRCh37) reference genome, are available
at the Cancer Genomics Hub (https://cghub.ucsc.edu/datasets/data_sets.html). The
size of these two data sets are 10.8 Gb and 8.3 Gb, respectively, and the analysis will
require powerful computers. Software requirement for this analysis are: Bioconduc-
tor [10], specifically the Rsamtools [22] and DNAcopy [32] packages, Integrative
Genomics Viewer [30], Picard [26] and samtools [19]. Note that all dependencies
of these software should also be available.

We begin with using samtools to summarize the data file that was downloaded
from CCLE. The summary data (with line numbers added) for the normal sam-
ple are:

1 68629600 + 6562518 in total (QC-passed reads +
QC-failed reads)

2 10054468 + 1517557 duplicates
3 67842739 + 5593779 mapped (98.85%:85.24%)
4 68629600 + 6562518 paired in sequencing
5 34314800 + 3281259 read1
6 34314800 + 3281259 read2
7 66854380 + 5314442 properly paired (97.41%:80.98%)
8 67196156 + 5353240 with itself and mate mapped
9 646583 + 240539 singletons (0.94%:3.67%)

10 301196 + 35316 with mate mapped to a different chr
11 260127 + 29485 with mate mapped to a different chr

(mapQ>=5)

The first line says that there are approximately 75 million reads in total in this
sample which are decomposed into those that passed quality control (QC) and
those that did not. This QC flag is platform and aligner specific. We will restrict
the analysis to only those reads that passed QC (over 90% of the total). Lines 4
through 6 give the breakdown of the reads in Line 1, namely they are paired (Line
4) and that each end contributes half of the reads (Lines 5 and 6). Line 3 gives
the number of reads that are mapped to the reference genome among the number
listed in Line 1. The reasons the reads are unmapped are varied, such as structural
rearrangement as seen in Fragment 4 of Fig. 18.1 or viral DNA mixed in with the
sample. Line 7 gives the number of reads from fragments with both ends mapped
and the two reads are consistent with the expected fragment sizes and the reads are
in the proper direction (5′ to 3′ and vice versa, respectively). Line 8 gives the reads
from fragments for which both ends are mapped. This number is larger than the one
in Line 7 as it includes improperly paired reads as well. The counts of improperly
paired reads with the two ends mapped to two different chromosomes is given in
Line 10 and the subset that meets a mapping quality threshold is given in Line 11.
Line 9 gives the number of fragments for which only one of the two reads is mapped.
Finally, Line 2 gives the numbers of reads that are considered duplicates.

http://www.broadinstitute.org/ccle/home
https://cghub.ucsc.edu/datasets/data_sets.html
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Duplicates are fragments for which the two ends, when mapped, give the
same start and end locations and (nearly) identical read sequences. Since it is
very unlikely that two identical DNA fragments are generated during the original
DNA preparation, these are considered to have risen at the PCR amplification step
where some fragments can get overamplified. Thus, duplicate reads do not provide
independent information on the DNA of the sample and hence, only the read pair
with the best read qualities is kept and the rest are removed from further analysis.
We accomplish the deduplication step using the Picard software (MarkDuplicates
option) which unlike samtools can also remove inter-chromosomal duplicates.

In summary, these data come from approximately 34 million fragments of
which 5 million are potential PCR duplicates resulting in 29 million fragments
of usable data. The pairs that are not proper (the excess of Line 8 over Line 7),
especially, the ones with the mate mapped to a different chromosome (Lines
10 and 11), are the informative ones for non copy number structural changes
(translocations and inversions). Additionally, information in the mate pair of the
singletons in line 9 can potentially be extracted using partial read alignment
for use in detecting structural variations. A similar breakdown of the summary
data of the tumor file tells us that there are approximately 34 million usable
fragments in that sample. The target enrichment intervals used for the whole
exome sequencing is available in the CGHUB website (https://cghub.ucsc.edu/
datasets/whole_exome_agilent_1.1_refseq_plus_3_boosters_plus_10bp_padding_
minus_mito.Homo_sapiens_assembly19.targets.interval_list.tsv). There are a total
of 36.6 million bases in these intervals (31.8 million if the targets labeled
new_exome_1.1_content are excluded) which results in an expected count of
1 fragment per base in the target region.

Note that for variant (somatic mutation) detection, it is customary to conduct
indel realignment and recalibration of quality score steps on the sequence data using
GATK [21]. The copy number analysis can be performed after these steps and can
benefit from them, particularly if read quality is accounted for in the analysis since
the influence of poor quality reads can be eliminated. The quality recalibration step
is valuable for identifying other structural variations reliably.

Once the data have been deduplicated, we extract the properly paired reads
from both the tumor and normal samples. Since the data are from a cancer
cell that originated in a female, we only extracted the reads that mapped to the
22 autosomes and the X chromosome which resulted in 28.5 and 33.5 million
fragments, respectively, for tumor and normal. The number of reads mapped to
the Y chromosome is approximately 16,000 for both the tumor and the normal
which is reassuringly negligible. The densities of the fragment lengths for the tumor
and normal samples are shown in Fig. 18.2. Fragments with lengths smaller that
76 or larger than 750 were not included in this figure for visual clarity. Although
the fragments not included in the density plot can provide alternate information
on structural changes, their contribution to the abundance measure is minimal as
they represent 0.49% and 0.66% of normal and tumor fragments, respectively. The
fragment lengths of the normal sample (median 163) are slightly larger than that for

https://cghub.ucsc.edu/datasets/whole_exome_agilent_1.1_refseq_plus_3_boosters_plus_10bp_padding_minus_mito.Homo_sapiens_assembly19.targets.interval_list.tsv
https://cghub.ucsc.edu/datasets/whole_exome_agilent_1.1_refseq_plus_3_boosters_plus_10bp_padding_minus_mito.Homo_sapiens_assembly19.targets.interval_list.tsv
https://cghub.ucsc.edu/datasets/whole_exome_agilent_1.1_refseq_plus_3_boosters_plus_10bp_padding_minus_mito.Homo_sapiens_assembly19.targets.interval_list.tsv
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Fig. 18.2 The distribution of fragment lengths in tumor (dashed line) and normal (solid line)
samples. The densities were generated using fragments whose lengths are between 76 and 750
bases

Table 18.1 The target
intervals in the TP53 gene

Chr Start End Width Target

17 7572915 7573020 106 Target_128140
17 7573915 7574045 131 Target_128141
17 7576841 7576938 98 Target_128142
17 7577007 7577167 161 Target_128143
17 7577487 7577620 134 Target_128144
17 7578165 7578301 137 Target_128145
17 7578359 7578566 208 Target_128146
17 7579300 7579602 303 Target_128147
17 7579688 7579733 46 Target_128148
17 7579827 7579924 98 Target_128149

the tumor sample (median 154), and a vast majority of fragments (93.8% of normal
and 96.6% of tumor) are fewer than 300 bases in length.

In order to provide further insight into the nature of targeted sequencing data, we
will take an in depth look at the well known cancer gene TP53. This gene spans a 10
kilobase region on chromosome 17 with target intervals of different widths which
are shown in Table 18.1. A figure of the data from this region for the normal sample
generated using Integrative Genomics Viewer is in Fig 18.3. In the top part of the
figure, the chromosome is shown with the region of interest in p13.1 highlighted in
red and the genomic positions in bases. Below that are the genes in that region and
the exons. The gene display is packed to show various forms of the gene present in
RefSeq (http://www.ncbi.nlm.nih.gov/refseq/); the tall blue rectangles are the exons

http://www.ncbi.nlm.nih.gov/refseq/
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Fig. 18.3 The normal sample coverage plot for TP53 as obtained from the Integrative Genomics
Viewer. The tall blue rectangles are the exons targeted in sequencing

and the shorter ones are start and end of untranslated regions (UTR). The labels for
the target intervals in Table 18.1 were added to the figure generated by IGV. The
labels are 0 to 9 for the 10 intervals in the table, and the third rectangle is labeled
with a star as it does not appear to be a target interval in this sequencing experiment.
In the bottom three-quarters of the figure, the coverage histogram is shown in the
upper part and a stacked display of individual reads in the lower part.

Aspects of the data seen in the figure are:

• In order to achieve target coverage, the capture probes must be designed such
that either end of the fragment falls on the target interval. This leads the coverage
to extend beyond the target intervals (overhang on all target intervals).

• Overlap of fragments leads to non-uniform coverage within a target interval. This
is attributable to varying widths of the fragments as well as tiling of capture
probes. (Notice the bimodality of the coverage histogram for the eighth target.)

• Targets need not achieve the same average coverage as seen in the intervals
labeled 0 and 7 having much higher coverage than the rest and the interval labeled
1 having a low coverage. Possible reasons for this are capture probe efficiency
and interval characteristics such as size and GC content.

The figure provides several pieces of information on the individual reads. It color
codes fragments in red to indicate that they are too wide compared to expected
width and blue to indicate that these fragments are narrower than read length.
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Such fragments are suggestive of insertions and deletions respectively. Other colors
are used to indicate the two ends mapping to different parts of the genome which
are inconsistent with the expected fragment lengths (see http://www.broadinstitute.
org/software/igv/AlignmentData for details).

While a majority of fragments will be on target, there is a non-negligible
proportion of fragments that are off-target and they can influence copy number
computations which we will illustrate now. We obtained all the fragments (279,702
for normal and 339,030 for tumor) that are mapped to a 10 megabase region on
chromosome 17 beginning at the 40 megabase mark. We binned the fragments
by their midpoints into consecutive bins of length 100 bases where the genomic
position a bin represents is its midpoint. We obtained the number of fragments in
each bin for both normal and tumor samples. Of the 100,000 possible bins in the
region, 13,297 had a nonzero count for at least one of the two samples. We expanded
the target intervals in this region by 100 base pairs in both directions and derived
the bins that intersect with the intervals. Of the 13,297 bins, only 6,835 of them
do and hence are expected to have nonzero counts. However, bins with very small
counts in the normal sample are inconsistent with the desired high coverage of the
targets and thus are candidates for removal. There are 784 bins with fragment count
of 2 or lower. Of the 6,439 bins that do not intersect with the target intervals 553
have fragment counts in the normal sample of at least 10, far more than the small
number expected due to off-target fragments. Therefore, we included them in the
copy number analysis. This results in 6,604 bins that are to be used in the copy
number analysis and 6,693 bins to be discarded. The discarded bins account for
just 5,807 fragments in the normal and 8,582 in the tumor (less than 3%). Fig. 18.4
shows the log-ratio computed as the ratio of scaled fragment counts where the grey
and red points correspond to the included and discarded bins, respectively. Note that
the red points form a band around zero with a significant presence near 1 and -1,
which are the bins with one fragment in the tumor sample and zero in the normal,
and vice versa. Despite the clear gain visible at the 46 megabase location, the loss
in the 40–41.3 megabase region and focal loss around 42.7 megabase, the large
number of red points in those regions will have an adverse effect on the copy number
analysis, demonstrating the utility of pruning these bins. For the whole genome,
binning the data results in 1,723,210 bins with nonzero counts in either sample of
which 1,039,881 are to be discarded using the same consideration; they account for
less than 4% of the total fragment count which is far lower than that expected from
target efficiency.

The final piece of information needed for applying weighted CBS to the data
are the weights assigned to the bins. The optimal weight for a bin is proportional to
the variance of the fragment count for that bin which is a function of the unobserved
rate parameter. The fragment counts which are the estimates of the rates are also very
skewed thus using weights proportional to counts will make a handful of bins with
large counts highly influential. Thus, we chose weights proportional to the logarithm
of bin counts assigning greater weights to bins with large counts but protects against
undue influence of bins with extreme counts. Although the optimal weights for the
weighted t-statistic will depend on the mean counts of both the normal and the tumor

http://www.broadinstitute.org/software/igv/AlignmentData
http://www.broadinstitute.org/software/igv/AlignmentData
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Fig. 18.4 The copy number log-ratio plot of the 40–50 megabase region on chromosome 17. The
bins included in the analysis are in grey and the ones excluded are in red

samples, the tumor counts can change dramatically due to gains and losses. Thus,
a more suitable choice of weights is to use the logarithm of just the normal counts
(or median of several normal samples, if available).

Using the DNAcopy package, we segmented the logarithm of the ratio of scaled
fragment counts for the bins to be used in the analysis. In Fig. 18.5, we show
the whole genome copy number profile for this sample. The points are the log-
ratio of the bins which are shown in alternate shades of grey to indicate different
chromosomes. The algorithm segmented the genome into 419 regions with constant
copy number which are shown as blue lines drawn at the level of the segment mean.
The number of segments vary between chromosomes with the largest number (44)
in chromosome 1 and the smallest number (7) in chromosome 22. The figure also
shows the segmentation results from a SNP array analysis as red lines. Note that
the SNP array data are not necessarily in the same scale and thus the red and
blue lines may not overlap. Furthermore, since the SNP array probes cover the
genome more uniformly than the targeted exome sequencing, there are far more red
segments. However, the two sets of results show remarkable concordance except
for chromosomes 2 and X, where the systematic large gap between the blue and red
lines suggests that the cells used for exome sequencing have one fewer copy of these
two chromosomes compared to the cells used for the SNP array.

In Fig. 18.6, we present a 25 megabase region on chromosome 17 to highlight
the results. Note that while the exome segments (blue) and SNP segments (red)
are similar, there are some locations where they differ. There is a small region
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Fig. 18.5 The copy number profile of the whole genome. The chromosomes are colored in
alternate shades of grey. The blue lines are regions of constant copy number identified from exome
sequencing data. The red lines are the regions from SNP array data

Fig. 18.6 The copy number profile of the 25–40 megabase region on chromosome 17. The blue
lines are the segment means from exome sequencing data. The red lines from SNP array data
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around 29 megabase and several small regions around 44 megabase the SNP array
identifies that are not seen in the exome data. This may be attributable to the lack
of data since the exome target intervals do not span the genome uniformly. In
order to ascertain this, we reviewed the intervals identified by the SNP array and
compared it to the target interval. The interval around 29 megabase spanned from
positions 28,931,871 to 29,187,109 which is a 255 kilobase region. There are 17
target intervals in the whole exome sequencing in the last one third of this region
starting from positions 29,111,193 and ending at 29,185,353 that covered just 4,676
bases. Likewise, the seven regions identified around 44 megabase in the SNP array
covered an area that is 1.1 megabase long but were target poor for exome sequencing
in that the target intervals only spanned 23 kilobases. The region between 35 and 38
megabase shows three segments for the exome where as just one for the SNP. This
could be either due to higher resolution of exome data or the cell lines not being
static.

It is common practice to undo small changes that do not meet a magnitude
threshold. This occurs when a gentle wave in the data due to technical artifact looks
like a change in mean. This step was not applied in the results presented as the
goal was to present the full results. The overarching message from this analysis is
that DNA sequencing, in particular targeted sequencing, can be successfully used to
obtain copy number profiles.

18.5 Other Structural Variations

DNA sequencing can be used to identify other structural variants such as inversions
and translocations. As seen in Sect. 18.2, the informative fragments for identifying
these are those of Type 3 in Fig. 18.1. These are fragments that have high
quality reads on both ends that are reliably mapped to the genome but are not
properly paired. The improper pairing can occur due to an inter-chromosomal
translocation, where the two reads are mapped to two different chromosomes, an
intra-chromosomal translocation, where the reads from the two ends are mapped to
the same chromosome but are directed away from each other rather than towards
each other, or an inversion, where the reads from the two ends are mapped in the
same direction. In all cases, the inferred fragment size is far larger than the expected
fragment size. [Note: A proper pair can result in a large fragment size when there
is a deletion in between the two reads; Fragments of type 4 in Fig. 18.1 can also
be used for identifying these structural variations provided partial alignments can
be done.]

The “bam” files used in this step have been deduplicated, realigned and their base
quality scores recalibrated. The first step in identifying inversions and translocations
is to extract all the improperly paired fragments where both reads are mapped
to chromosome 1 through X and pass the instrument’s quality control. There are
158,433 such fragments in the normal sample and 145,858 in the tumor. Note that
these counts are just 0.5% of the total number of fragments in the sample. This is
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to be expected since the striped-shaded region junction (seen in Fig. 18.1) needed
for these structural events are uncommon as most fragments are interior fragments
(of Types 1 and 2). Additionally fragments of Types 4 and 5 will be unmapped
using standard alignment software. Although a read may pass quality control as
determined by the sequencing machine, the mapping quality of the read may not be
high enough to provide valid information. Thus, we will use the mapping quality
filter of 20 (possible error in alignment of 1%) to restrict the analysis to high quality
reads. This reduced the number of fragments where both ends are mapped with a
quality greater than 20 to 108,055 for the normal and 98,385 for the tumor. Note
that there are more improperly paired fragments in the normal than the tumor. This
might be due to the sequence similarity between different regions in the genome and
hence mapping may not be unique and absolute.

A single fragment suggesting a structural variation is not a proof of it. The more
the number of fragments indicating a structural variation the stronger the evidence.
However, a somatic structural change acquired in the tumor will not be present
in the germline. Hence one must verify that any structural variant identified in
the tumor is present only in the tumor and not the germline. We begin this by
counting the number of fragments from both tumor and normal samples that are in a
neighborhood of every fragment. In the Example section earlier, we noted that most
fragments are between 75 and 300 bases long. Thus, we define the neighborhood
of a fragment to be within 1,000 bases of the starting location of the reads from
both ends. Note that the neighborhood of each fragment will contain itself and
hence the minimum fragment count is 1. Of the 206,440 combined fragments, only
3,042 have fragment counts greater than 1. Furthermore, if a fragment has several
other fragments in its neighborhood, then all of them have this fragment in their
neighborhoods as well. In fact, they cluster strongly and the 3,042 fragments with
neighborhood count of more than one reduce to a far smaller number of clusters.

In Fig. 18.7, we display the fragment counts in the tumor plotted against the
counts in the normal. The scatterplot shows that, in this data, there is a strong
relationship between the tumor and normal counts suggesting that most of the
suggested changes are present in both tumor and normal cells. In order to identify
possible tumor specific changes we restricted ourselves to the fragments for which
the normal count in the neighborhood is at most 3 and conducted a Binomial test for
the hypothesis that the proportion of tumor counts out of the total is greater than 0.5.
Table 18.2 lists the three clusters of fragments that are significant after adjusting for
multiple comparison. The table gives the chromosome to which the fragments are
mapped, the median start location of the first and second read, and the number of
fragments in tumor and normal.

In Fig. 18.8, we show the copy number profiles, obtained using the abundance
measure data, for these two regions. The top and bottom row of figures correspond
to chromosomes 21 and 14, respectively. The first figure in each row shows the
entire region where the start locations of the respective reads are marked by a
vertical line. For chromosome 14, the two lines at position 105.412 megabase
appear as one due to their closeness. The second and third figures in the top
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Fig. 18.7 The number of fragments in the neighborhood of an improperly paired fragment that
belong to tumor and normal samples

Table 18.2 The details of the three clusters of fragments identified as present in
tumor only

First read Second read Fragment count

Chromosome Location Chromosome Location Tumor Normal

21 43,246,325 21 47,347,121 21 0
14 106,471,416 14 107,282,893 20 0
14 105,412,008 14 105,412,453 26 3

row show the read locations of the first and second read are close to breakpoints
identified in the copy number segmentation in the previous section and thus this
rearrangement is consistent with copy number data. The second figure in the bottom
row corresponds to the read location of 106.471 megabase in the second row of
Table. 18.2. While this location is close to a break point, its companion is close
to the end of chromosome with just two target intervals in its vicinity, and thus
no additional information on the structural change is available. The third figure in
the bottom row shows the two read locations in the third row and the two points
in the interval between them that are seen in the figure are below the majority of
the points in their vicinity. This suggests a small deletion since the two locations are
just 445 bases apart. However the copy number segmentation does not pick them up
as the magnitude of the change is within the noise of the copy number ratio. In all,
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Fig. 18.8 The copy number profiles of the regions with plausible structural variants listed
in Table 18.2

the presence of breakpoints in the copy number profile near the read locations of the
plausible structural variations, lend support to their presence.

Although there are extensive structural rearrangements present in this cell line
(the spectral karyotype of these cells is at http://www.path.cam.ac.uk/~pawefish/
BreastCellLineDescriptions/HCC1143.html), we identified just 3 of them and none
of the inter-chromosomal ones. Our inability to detect such an event is primarily
due to fact that these data rose from a targeted sequencing and hence has large gaps
in information. In order for targeted sequencing to be able to detect inversions and
translocations, the junction (the striped-shaded region boundary in Fig. 18.1) should
be close to a target interval and the capture probe should fully reside within the
striped or the shaded region. This makes the likelihood of a fragment that contains
an inversion or a translocation event being captured and sequenced very low. Thus
whole genome sequencing is more apt for identifying structural rearrangements as
it does not select for specific fragments to be sequenced and is thus far more likely
to contain fragments with such events.

18.6 Summary

DNA sequencing, in particular targeted sequencing, is widely used in cancer
research with the primary purpose of identifying somatic mutations. In this chapter,
we adapted the Circular Binary Segmentation algorithm for the analysis of copy

http://www.path.cam.ac.uk/~pawefish/BreastCellLine Descriptions/HCC1143.html
http://www.path.cam.ac.uk/~pawefish/BreastCellLine Descriptions/HCC1143.html
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numbers using DNA sequencing data. We showed using a whole exome sequencing
dataset that copy number profile can be obtained from it. Despite the target intervals
covering less than 2% of the genome, this profile is highly concordant with profile
obtained from SNP array with whole genome coverage. The high coverage used in
exome sequencing has the potential to identify intragenic changes such as deletion
of a few exons which may not be feasible with current whole genome arrays.

DNA sequencing also provides information on polymorphic sites (SNPs) within
the target intervals which in turn provides allele specific copy number information.
We adapted CBS to obtain parent specific copy number profile from SNP array
data [24] which can in turn be adapted to sequencing data. Similarly, the ASCAT
algorithm, developed by Van Loo et al. (2010) [35], for the analysis of allele specific
copy numbers can also be applied in the sequencing context. Such an analysis can
provide additional information such as copy neutral loss of heterozygosity or uni-
parental disomy which enhances our understanding of the oncogenic process.

DNA sequencing contains three types of information - copy number, genotype
and structural rearrangement. The methods we described treat these separately.
However, since these data elements are not orthogonal to each other, there is
potential to borrow information from all three types of data to develop a unified
method to detect these structural variations. Other considerations such as the optimal
bin size and the choice of filtering parameters and their effect should be studied for
existing methods as well as those being developed.

The purpose behind studying structural variations is their impact on gene expres-
sion and their consequences. There is a positive correlation between copy numbers
and gene expression. Likewise, the bcr-abl fusion protein provides a powerful
example for the consequences of translocations. However, a comprehensive catalog
of all possible events will require several tens of thousands of samples [17]. Thus
careful consideration of the design of these experiments is essential. As we noted,
targeted sequencing may not provide information on structural rearrangements
but the high coverage that they can achieve to detect somatic mutations will be
prohibitively resource intense for whole genome sequencing. Additionally, fusion
transcripts are best detected using RNA sequencing. These aspects present a vibrant
area for future research on how best to combine different sequencing methodologies
to extract the information in a sample. A related problem is how best data from
multiple samples can be combined to identify the affected biological processes and
pathways and how they can be prioritized for further study.

Finally, the volume of data from these experiments are immense and will require
efficient software for processing them. This presents a venue for the development of
efficient methods and algorithms. In summary, DNA sequencing provides a wealth
of data which can add to our knowledge with further research and proper analytic
tools.
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Chapter 19
Statistical Methods for the Analysis of Next
Generation Sequencing Data from Paired
Tumor-Normal Samples

Mengjie Chen∗, Lin Hou∗, and Hongyu Zhao

Abstract The emergence of next generation sequencing technologies has brought
cancer studies into a genomic era. With reasonable cost, cancer genomes can be
scrutinized with unprecedented resolution and sensitivity. In this chapter, we discuss
statistical methods that have been proposed to detect somatic variations at the DNA
level using paired tumor and normal sequencing data, including single nucleotide
alterations (SNAs) and copy number alterations (CNAs). We describe selected
statistical methods, their strengths and limitations, and discuss future directions.

19.1 Introduction

Starting from 2006, large-scale profiling of mutational landscapes of cancer
genomes has brought remarkable advances in our understanding of tumorigenesis.
Represented by large community efforts such as The Cancer Genome Atlas
(TCGA) [25, 42], a great number of discoveries of cancer-specific alterations and
cancer drivers have been enabled by next generation sequencing technology. With
sequencing cost continuously decreasing, cancer genome profiling will continue
to shift from whole genome array/Sanger sequencing to whole exome/genome
sequencing. Next generation platforms can produce data to characterize DNA
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alteration, transcriptome, methylation, nucleosome positioning and many other
features. With a pair of tumor and normal samples, this strategy can potentially
yield a comprehensive characterization of genomic alterations for the tumor. In this
chapter, we focus on the analysis of DNA alteration, including single nucleotide
alterations (SNAs), representing changes at the single base pair level, and copy
number alterations (CNAs), representing changes at the structural level. We describe
strengths and weaknesses of selected statistical methods and future methodology
development directions.

19.2 Single Nucleotide Aberration Detection

Somatic mutations refer to genetic abnormalities in a cell that can be passed on to the
daughter cells during the process of cell division. In this section we are interested in
a specific type of somatic mutations, namely, the SNAs which are defined as single
nucleotide variants that are present in tumor tissues, but not in the matched normal
tissue. At first, researchers used a “subtraction” approach to identify SNAs [45].
Genotypes of tumor/normal tissues are called separately, and SNAs are then inferred
at genomic positions of inconsistent results between the two calling results. In other
words, SNAs are inferred by subtracting the variants identified in normal tissues
from those identified in tumor tissues. As intuitive as it sounds, the “subtraction”
method fails to take into account the uncertainty in the genotyping results in
tumor/normal tissue and the dependencies between tumor/normal genotypes. Later
on, instead of comparing the genotypes in tumor/normal tissues, the alignments of
two genomes are directly compared to call SNAs [15, 17, 18, 33, 35].

Before describing the statistical models of each SNA detection method, we first
introduce some notations. For a genomic position, we denote the reference allele as
A and the non-reference allele as B. For simplicity, we assume, as in all somatic
mutation calling algorithms discussed here, each position is bi-allelic with neutral
ploidy (diploid). In the normal tissue, the numbers of reads that are mapped to this
position with allele A and allele B, named “allelic counts”, are denoted by nA and
nB respectively; and the corresponding numbers in the tumor tissue are denoted by
tA and tB. Let Gt and Gn denote the genotypes of the tumor and normal samples,
respectively. Let T and N denote all the information collected from sequencing data
of tumor and normal samples respectively, including allelic counts, read depths,
base qualities, and other information. Let D represent the union of tumor and
normal information, D = {T,N}. Lastly, let Si denote the somatic state of variant i,
where Si = 1 if the genotype of variant i in the tumor sample (Gi

t ) differs from the
corresponding genotype in the normal sample (Gi

n), and Si = 0 otherwise. We will
omit the position indicator i hereafter.

Many SNA calling methods have been proposed to compare the sequencing
data from tumor and normal tissues to identify SNAs. Based on the underlying
methodology, we can classify these algorithms into three categories: heuristic
methods, statistical methods, and machine learning methods. The remainder of
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Table 19.1 Contingency
Table of Fisher’s Exact Test
in VarScan2

Reference Allele Non-reference Allele

Tumor tA tB
Normal nA nB

this section is organized as follows: first, we will introduce various types of SNA
detection algorithms; second, we will discuss the empirical filters and compare the
performance of different algorithms.

19.2.1 Heuristic Methods

In heuristic approaches, tumor and normal samples are analyzed separately, and
the results are then combined and compared to infer somatic mutations. The
“subtraction” method falls into this category. VarScan2 [17] first compares the
genotypes between normal and tumor samples. When the two genotypes do not
match, the one-tailed Fisher’s exact test is utilized to test whether the non-reference
allele is more abundant in tumor reads (see Table 19.1 for the contingency table). If
the p-value of the test meets the significance level (set to 0.1 by default), the variant
is called somatic. Shimmer [15] also uses Fisher’s exact test, but the p-values are
corrected for multiple testing. A variant is called somatic if the corresponding false
discovery rate is below a user-specified threshold.

Besides the inferred genotype, single sample genotyping algorithms usually
calculate the genotype likelihood, P(D|Genotype). There are ten possible genotypes
in a diploid genome (AA, AC, AG, AT, CC, CG, CT, GG, GT, TT). Thus Genotype
is coded as 0 to 9. SomaticSniper [18] combines the genotype likelihood of tumor
samples and normal samples in a Bayesian framework (Equations (19.1) and (19.2)),
to assign a phred-scale somatic score to each candidate variant (Equation (19.3)):

P(S = 0|T,N) = P(Gt = Gn|T,N) =
9

∑
j=0

P(Gt = Gn = j|T,N), (19.1)

P(Gt = Gn = i|T,N)

=
P(T,N|Gt = Gn = i)P(Gt = Gn = i)

(
∑9

j=0 P(T|Gt = j)P(Gt = j)
)(

∑9
j=0 P(N|Gn = j)P(Gn = j)

)

=
P(T|Gt = i)P(N|Gn = i)P(Gt = i)P(Gn = i)

(
∑9

j=0 P(T|Gt = j)P(Gt = j)
)(

∑9
j=0 P(N|Gn = j)P(Gn = j)

) , (19.2)

SomaticScore =−10log10 P(S = 0|D). (19.3)

In the initial derivation of SomaticSniper, the genotypes of tumor sample and nor-
mal sample are assumed to be independent. However, the independence assumption,
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P(Gt = Gn = i) = P(Gt = i)P(Gn = i), is obviously not true. Thus in the second
derivation, the dependence is taken into account, so that the calculation of the second
term of the numerator in Equation (19.2) is modified, assuming a small probability
of somatic mutation. In Equations (19.4, 19.5), i denotes one of the ten possible
diploid genotypes listed before; μ is the empirical estimate of somatic mutation
rate; and P(Gt = i|Gn = i) is defined as the probability that the tumor sample has
the same genotype as the normal sample conditioning on the genotype of the normal
sample.The genotype likelihoods are taken from the MAQ algorithm [21], and the
prior distribution of genotypes is specified through empirical data. That is, we have

P(Gt = i,Gn = i) = P(Gn = i)P(Gt = i|Gn = i), (19.4)

P(Gt = i|Gn = j) =

⎧
⎨

⎩

μ , i shares one allele with j,
μ2, i shares no allele with j,

1−P(Gt �= j|Gn = j) i = j,

where P(Gt �= j|Gn = j) =
9

∑
k=0

I(k �= j)P(Gt = k|Gn = j). (19.5)

For example, the conditional probability that the tumor sample has genotype AC,
given that the normal sample has genotype AA, is P(Gt = 1|Gn = 0) = μ because
genotype AA (coded as 0) shares one allele with genotype AC (coded as 1). Like-
wise, the conditional probability that the tumor sample has genotype CC, given that
the normal sample has genotype AA, is P(Gt = 5|Gn = 0) = μ2 because genotype
AA (coded as 0) shares no alleles with genotype CC (coded as 5). The conditional
probability that the tumor sample has genotype CC, given that the normal sample
has genotype CC, is P(Gt = 5|Gn = 5) = 1− (3μ + 6μ2) by Equation (19.5).

19.2.2 Statistical Modeling Based Methods

In statistical modeling approaches, the observed allele count at each genomic
position is a random sample from a binomial distribution, n ∼ Binomial(d, p),
where d is the sequencing depth at that position, and p is a function of the
underlying genotypes and the error rate abstracted in both sequencing and mapping.
The genotypes of tumor and normal tissues are considered as hidden variables of
interest. In a Bayesian framework, the task of detecting SNAs reduces to computing
P(Gt �= Gn|T,N), the posterior probability that the tumor and normal genotype are
different, given the allelic counts in tumor and normal samples. In JointSNVMix
[33], a Bayesian hierarchical model is used to formulate the problem (see Equation
(19.6)). The joint genotypes, (Gn,Gt), follow a multinomial distribution. There
are nine possible joint genotypes, determined by two homozygous genotypes and
one heterozygous genotype for both tumor and normal samples. Conditional on
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the joint genotypes, the allele counts in normal and tumor samples are distributed
as independent binomials. Conjugate priors are used as prior distributions of the
multinomial and binomial parameters π and μ :

(Gn,Gt)|π ∼ Multinomial(1,π),

T ⊥ N | (Gn,Gt),

tA|dt ,μt ∼ Binomial(dt ,μt),

nA|dn,μn ∼ Binomial(dn,μn),

π ∼ Dirichlet(δ ), (19.6)

μn|Gn ∼ Beta(αn,βn|Gn),

μt |Gt ∼ Beta(αt ,βt |Gt).

Rather than modeling the discrete “joint genotype”, Strelka [35] takes the
continuous “joint allelic fractions” in tumor and normal samples (see Equation
(19.7)) as the observed data. In the tumor samples, the genotype at a position with
somatic SNA usually deviates from the discrete genotype (AA, AB, BB) due to
sample impurity, copy number variations, and existence of sub-clonal mutations,
which are mutations that are only found in some of the cancer cells. For example,
for an SNA in a region with copy number variation, if the ploidy (the number of
sets of chromosomes in a cell) is m, the set of possible genotypes will be {AkBl ,
k+ l = m,k ≥ 0, l ≥ 0}. In a normal human genome, the ploidy is 2. In a cancer
cell undergoing whole genome duplication, the ploidy is 4. As m increases, the
genotype and the allele counts will deviate more from the diploid model. In addition,
for tumor samples, ploidy is not necessarily an integer, since it is confounded
by contamination of normal cells and sub-clonal copy number variations. Hence,
the intrinsic advantage of Strelka‘s approach is that it allows allelic fractions to
be continuous under the diploid model, not necessarily one among {0,0.5,1}.
However, the definition and inference of SNAs is less straightforward. The authors
defined somatic state as {S = 1}= {( ft , fn) : ft �= fn}, and the posterior probability
of a somatic event is derived in Equation (19.8).

ft = tB/(tA + tB)

fn = nB/(nA + nB) (19.7)

P(S = 1|D) =

∫

ft , fn
I( ft �= fn)P( ft , fn|D). (19.8)

Thus, the problem reduces to inferring the posterior distribution of ( ft , fn), which
in turn is obtained in a standard Bayesian framework as follows:

P( ft , fn|D) ∝ P(D| ft , fn)P( ft , fn). (19.9)
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Assuming conditional independence of tumor and normal data, given allelic
fractions, the likelihood term in Equation (19.9) can be computed by incorporating
any single sample SNA likelihood methods (see Equation (19.10)). In the prior term
P( ft , fn), the dependency between tumor and normal genotypes and the extensive
range of tumor genotype is incorporated (see Equation (19.11)). The dependency is
introduced by assuming a small probability P(S = 1) that allows the tumor allelic
fraction to be different from normal allelic fraction. To allow non-diploid and even
fractional genotype, a uniform term U( ft) is introduced, so that the distribution of
tumor allelic fraction can be much dispersed:

P(D| ft , fn) ∼ P(T| ft )P(N| fn), (19.10)

P( ft , fn) =

⎧
⎨

⎩

P( fn)P(S = 1)U( ft), ft �= fn

P( fn)P(S = 0), ft = fn

0, otherwise.
(19.11)

The prior probability P( fn) is a mixture of the expected diploid variation and a
noise term,

P( fn) = Pdiploid( fn)(1− μ)+Pnoise( fn)μ . (19.12)

Pdiploid( fn) is specified as follows:

Pdiploid( fn) =

⎧
⎪⎪⎨

⎪⎪⎩

θ/3, α = 0.5,
θ/6, α = 0,β = 0
θ 2/3, α = 0,β = 0.5

1− 3θ/2+θ 2, α = 1,

(19.13)

where θ is the heterozygosity term, set to 0.001. Here α is the frequency of the
reference allele and β is the allele frequency ratio of the first and second most
frequent alleles. The noise term is also a mixture of two components; we refer to
[35] for the distribution of the two components.

Similar to Strelka, MuTect [10] also considers the possibility that tumor genotype
deviates from diploid genotypes; thus the expected allelic fraction at each site is
estimated from data by f̂ = tB

d instead of being pre-specified by genotype models.
By modeling the sequencing reads to be generated from a binomial model, the like-
lihood of the tumor sample sequencing data is derived as L(T| f ) ∝ ∏d

i=1 P(nti| f ),
where nti is the nucleotide in the ith tumor read. The individual terms in this product
are given by:

P(nti| f ) =
⎧
⎨

⎩

f ei/3+(1− f )(1− ei), nti = A
f (1− ei)+ (1− f )ei, nti = B

ei/3, otherwise.
(19.14)



19 Paired Tumor-Normal Sequencing 385

P(nti = A| f ) is derived from law of total probability, by conditional on whether or
not the nucleotide read is an sequencing error. Under the null model, any reads with
the non-reference allele is deemed as a sequencing error, corresponding to f = 0
in Equation (19.14). In the mutant model, the non-reference reads are a mixture of
sequencing errors and SNAs, f is set to f̂ in Equation (19.14), and ei denotes the
sequencing error. In order to detect SNAs, MuTect defined a log likelihood ratio
by comparing the mutant model and the null model (Equation (19.15)). A hard-
threshold is applied to the log likelihood ratio (LOD) to infer a candidate SNA.

LOD =
L(T| f = 0)

L(T| f = f̂ )
. (19.15)

19.2.3 Machine Learning Methods

Besides the methods mentioned above, the problem of somatic mutation detection
has been approached with machine learning methods by Ding et al. [12]. In their
formulation, each candidate site in the genome is assigned a label, either “somatic”
or “non-somatic”, by a classifier that combines 106 features derived from the
mapping and genotyping of both tumor and normal reads. The features cover a
broad spectrum of statistics reported by read mapping and genotyping algorithms,
including allelic counts, which are the most informative source in statistical
modeling approaches, and quality control metrics such as depth of coverages, allelic
counts breakdown by strand, base quality, mapping quality, genotyping quality
score, and others. In order to train the classifier, a set of SNAs were generated by
whole exome sequencing of 48 breast cancer patients. In the initial step, variants in
tumor were predicted by allelic counts and liberal thresholds. Then, the mutations
identified were followed-up by re-sequencing experiments with ∼6000× coverage.
A mutation was labeled as “somatic” if validated, and “non-somatic” if it was
found to be wild-type or a germline variation. In this way, a training set of 1015
somatic mutations and 2354 non-somatic sites were compiled. Different machine
learning algorithms, including Random Forests, Bayesian additive regression trees,
support vector machines, and logistic regression, were employed to predict somatic
mutations. In cross-validation studies, all four machine learning methods outper-
formed the subtraction method. However, the performance of these methods was
not compared with any method based on to statistical modeling approaches.

19.3 Copy Number Aberration Detection

During carcinogenesis, there are often alterations of the dosage and/or structure of
tumor suppressor genes or oncogenes in cancer cells through somatic chromosomal
alterations. Identifying genomic regions with recurrent copy number alterations



386 M. Chen et al.

(gains and losses) in tumor genomes is an efficient way of tracing cancer driver
genes. Ideally, such characterization should include both the precise identification
of the chromosomal breakpoints of each alteration and the absolute estimation
of copy numbers in each chromosomal segment. Recent advances in massively
parallel sequencing provide a powerful alternative to DNA microarrays for detecting
copy-number alterations. Sequencing-based approaches not only provide a compre-
hensive and unbiased survey of all genomic variations, but also enable the detection
of both CNAs and SNAs simultaneously in one sample, which may potentially offer
critical information for the understanding of cancer genome evolution.

19.3.1 GC Content and Mappability Issue

Sequencing coverage is dependent on the characteristic of the local DNA sequence.
Among many factors, GC content and mappability [13] are the two main factors
contributing to the inhomogeneity of the sequence depth.

It has been observed that the sequence depth has a unimodal relationship
with GC-content, where regions with high or low GC-content manifest decreased
sequence coverage [47]. Such bias makes the sequence depth fluctuate even when
there is no change in copy number. To differentiate the true deletions/amplifications
from under/over-sequenced regions, it is necessary to adjust for the baseline
fluctuation in the sequencing data before applying any CNA detection method. Most
published methods correct for GC-content by adjusting the sequencing depth in the
binned window using the GC-content of that window [2, 47]. More specifically, a
curve describing the conditional mean count per GC value is estimated, which leads
to the prediction of the count for each bin based on its GC value. This strategy
may be inadequate as the choice of bin sizes is often set arbitrarily to accommodate
downstream analyses. Because no prior knowledge about the GC effect is utilized
in these binning approaches, sometimes the key features of the GC curve have been
overlooked or even completely missed in the estimation [5].

To address this limitation, Benjamini and Speed [5] recently proposed a method
that produces count predictions at the base pair level for Illumina sequencing
data, which allows strand-specific GC-effect correction regardless of downstream
smoothing or binning. More specifically, they consider “single position models” to
estimate the effect of GC on the fragment counts for individual locations and seek
a parsimonious description for this family of models. In their models, the expected
count of fragments starting (5’ end) at x depends on the GC count in a window
starting a bp from x. Each single position model can be characterized by the shift a
and the length l of its “driving” window.

Let Wa,l denote the model in which the fragment count starting at x depends
on the GC between x+ a and x+ a+ l. Let GCx+a,l denote the GC count of the l
bp window starting at x+ a. The model Wa,l has l + 1 rate parameters, λ0, . . . ,λl ,
corresponding to windows with GC count g = 0, . . . , l. To estimate those rate
parameters, they first take a large random sample of mappable locations (millions)
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from the genome and remove regions with either zero or extremely high counts
from the sample. Then the sample is stratified according to the GC of the reference
genome: if g = GC(x+ a, l) then position x is assigned to stratum Sg. Using Ng

to denote the number of positions assigned to Sg and Fg denote the total number
of fragments (reads) starting at the x’s in Sg, the ratio λg can be estimated by
λ̂g =Fg/Ng. Each choice of GC window will correspond to a prediction for counts in
genomic regions. To compare the quality of correction from different models, they
propose to use the normalized ‘total variation distance’ (TV) between the stratified
estimate (Wa,l) and a uniform rate (U , equal to the global mean rate in the sample
and estimated by λ̂ = F/n, where F denotes the total number of reads and n denotes
the total number of mappable locations.):

TV (Wa,l ,U) =
1

2 ∗ λ̂

l

∑
gc=0

Ngc

n
|λ̂gc − λ̂ |. (19.16)

This metric can be seen as the total variation distance between the empirical distri-
bution for a single fragment under specific GC categories and a uniform distribution,
which measures the proportion of fragments influenced by the stratification. Thus
a model with high TV indicates that counts are strongly dependent on GC under
this particular stratification. In other words, correcting for this model would best
correct the GC dependence. Note that the use of TV scores enables the search of
the best correction model for each dataset separately. The final prediction of mean
rate λx for position x using model Wa,l is λ̂GC(x+a,l) if x is uniquely mappable,
i.e., the average of all such numbers in x’s with the same value of GC(x + a, l).
Therefore, the corrected counts will be the observed counts divided by λx. To
take into account the effect of read lengths, one can further use fragment length
models to fit separate single position models for fragment (reads) of different length.
The above method is implemented as an R package GCcorrect and is available
for download from http://www.stat.berkeley.edu/∼yuvalb. Another single position
based model, BEADS [8], generates mean rates for the observed reads rather than
the genomic locations. This may overlook the uncovered locations from sequencing
and lead to inadequate correction in the regions of deletion.

Due to the non-linearity of the GC effect, the pair of normal and tumor samples
may not have the same GC curves [5]. Thus before applying two-sample correction
methods, where counts in tumor sample are corrected by counts in the normal
sample, the GC effects of those samples need to be carefully studied.

Mappability is another issue that may complicate CNA detection. Next gen-
eration sequencing technology usually generates short reads less than 200bp.
When aligned to the reference genome, reads that are mappable to repetitive
regions may be inevitably discarded as it is difficult to determine their locations
without ambiguity. Thus the sensitivity to detect the CNAs is compromised in
repeated/segmental-duplicated regions [23]. This may be exacerbated when muta-
tions or sequencing errors occur in those regions that cause reads to be mapped
incorrectly. In the Pilot 2 studies (trios studies) in the 1,000 Genomes Project [4],

http://www.stat.berkeley.edu/~yuvalb
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about 20% of the reference genome was considered inaccessible (defined as regions
with many ambiguously mapped reads or unexpected high or low number of mapped
reads) [1]. The detection of CNAs in those regions is still poorly studied [43].

Alkan [3] proposed a new alignment strategy, called mrFAST, which aligns
sequence reads to a repeat-masked reference genome, where all loci with known
highly repetitive sequences are masked before alignment, and reports all locations
for multi-reads. A similar approach has been used in Sudmant [41] to identify
CNAs within segmental duplications. However, these methods only work for deeply
sequenced data (>20×) [43]. Extending the read lengths may potentially improve
the mappability in repeat regions; however even with a read length of 1kb, over
1.5 % of the human genome sequence still can not be uniquely covered [36].

19.3.2 CNA Identification by Change Point Detection Methods

Many methods for identification of CNAs with paired tumor-normal sequencing
data follow the change-point detection paradigm. This is natural since change points
in depth of coverage (DOC) reflect the breakpoints of CNAs. Thus those methods
also called DOC methods. One drawback of DOC methods is that they can not detect
copy-neutral events, such as copy-neutral Loss of Heterogeneity(LOH), where one
parental copy is lost but the copy number stays unchanged. A dominant strategy to
handle sequencing data is binning or imposing fixed local windows. For example,
Event-Wise Testing [47] uses a fixed window to scan the GC-content-adjusted read
counts; SegSeq [9] also scans the genome by a sliding fixed window and reduces
counts data into the ratio of read counts in the paired tumor and normal sample;
CNAseg [16] applies Hidden Markov Model segmentation using read counts in
fixed windows. The strategy relies heavily on the assumption that the generative
process of sequencing is uniform, where the number of reads or the read ratio in each
window is assumed to follow the same parametric distribution across the genome
and is proportional to the number of copies. However, this assumption hardly holds
due to sequencing biases. Moreover, due to inhomogeneity of sequencing reads,
fixed window size may not be the optimal for varied regions across the genome.
Some methods, such as SegSeq, apply methods developed for array based data
after binning, in which CNA signals are modeled as approximately normal random
variables with shifts in mean. However, sequencing data are realizations of point
processes and CNA signals can be represented as shift in intensity [38]. A direct
modeling of this process or a nonparametric model without assuming homogeneity
may be more precise and efficient. In this subsection, we describe two recent efforts
to address the heterogeneity of sequencing data, namely, seqCBS [38] and BIC-
seq [46].
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19.3.2.1 seqCBS

SeqCBS models the sequencing process directly with non-homogeneous Poisson
process (NHPP). Let {Xt |t ≤ T} and {Yt |t ≤ T} denote the number of reads whose
first bases map to the left of genomic location t for the tumor and paired normal
samples, respectively. Then:

{Xt} ∼ NHPP(μt), (19.17)

{Yt} ∼ NHPP(λt). (19.18)

The NHPP model can be viewed as a Poisson process with rate parameter μt (or
λt) such that the rate parameter of the process is a function of genomic location t
in base pairs. The conditional probability of an event at position t being from {Xt}
given that such an event is from either {Xt} or {Yt} can be expressed as:

p(t) =
μt

μt +λt
= pk if tk ≤ t ≤ tk+1,k = 1, . . . ,K,

where tk belongs to a collection of change points that lie within the observation
window on the genome: 0 = t0 < t1 < .. . < tK+1 = T . This can be equivalently
expressed as

μt = λt f (t), (19.19)

where f (t) = p(t)/[1− p(t)] is piecewise constant with change points {tk}. One
interpretation of the above equation is that the fluctuation of sequence depth in the
tumor sample is the same as that in the paired normal sample. This assumption
is reasonable when paired samples are sequenced by the same protocol and pre-
processed by the same alignment procedure. Let m denote the total number of
sorted sequences from both tumor and normal samples, j denote the indices of
the m sequences, Wj denote the genomic location of sequence j, and Zj be the
indicator of whether the jth sequence comes from tumor sample. Since estimating
the change points on genomic locations {W1, . . . ,Wm} is equivalent to doing so for
the neighboring pair of reads, the change point model can be defined on the indices
{1, . . . ,m} of sequence reads. Thus the conditional likelihood only depends on {Zj}:

p( j) = pk if τk ≤ j < τk+1, (19.20)

where τk belongs to a collection of change points on sequence indices, i.e., 0= τ0 <
τ1 < .. . < τK+1 = m.

The problem of searching for change points over {1, . . . ,m} could be solved by
searching through all possible combinations of {τ̂k}. However, this strategy cannot
be scaled up for millions of sequencing reads. Instead, seqCBS adapts Circular
Binary Segmentation (CBS) [28] as a greedy search method, where it finds the most
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significant interval over the entire chromosome, divides the chromosome into three
regions, and further scans each of the intervals. For each interval (i, j), seqCBS
tests whether the probability that the sequences come from tumor sample within
that interval, pi j, is different from the overall probability p. The authors proposed
two statistics to test the null hypothesis pi j = p. The first statistic is the difference
between the number of observed and expected events under the null model given by,

Si j =
m

∑
k=1

(Zk − p̂)(1i≤k≤ j − 1
m

m

∑
k=1

1i≤k≤ j) = ∑
i≤k≤ j

Zk − p̂( j− i+ 1), (19.21)

where p̂ = 1
m ∑m

k=1 Zk. Si j needs to be standardized for comparison between different
regions of different sizes. The standardized score statistic Ti j is approximately
standard normal when j− i is large. When the region has a small number of reads,
this normal approximation is not accurate. A second statistic is proposed to improve
the accuracy for regions with few reads. Based on the observation that ∑i≤k≤ j Zk

is a binomial random variable, the second statistic is derived as an exact binomial
generalized likelihood ratio (GLR) statistics,

Gi j = sup
p0,pi j

l1(p0, pi j)− sup
p

l0(p) (19.22)

= ∑
k∈[i, j]

{
Zk log(

p̂i j

p̂
)+ (1−Zk) log(

1− p̂i j

1− p̂
)

}

+ ∑
k/∈[i, j]

{
Zk log(

p̂0

p̂
)+ (1−Zk) log(

1− p̂0

1− p̂
)

}
, (19.23)

where Equation (19.22) represents the difference in log-likelihood between the
null model with probability p and the alternative model with probability pi j for
the interval [i, j] and p0 for outside the interval; Equation (19.23) is obtained by
replacing the parameters in the binomial log likelihood with their corresponding
maximum likelihood estimators (MLEs): p̂ = ∑m

k=1 Zk/m, p̂i j = ∑k∈[i, j] Zk/( j− i+
1), p̂0 = ∑k/∈[i, j] Zk/(m− j+ i− 1).

SeqCBS uses Modified Bayes Information Criterion (mBIC) [49] to choose the
number of change points K, which is derived as a large sample approximation to the
classic BIC of Schwarz [37]:

mBIC(K) = log

(
supp(t),τ L(p(t),τ)

supp L(p)

)
− 1

2

K

∑
k=0

log(τ̂k+1 − τ̂k)

+
1
2

log(m)−K log(m′), (19.24)

where m′ is the number of unique locations in {W1, . . . ,Wm}. The number of change
points will be selected as K̂ = argmaxK mBIC(K). Searching of change points by
CBS will stop when K̂ most significant change points are collected.
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19.3.2.2 BIC-seq

BIC-seq is a nonparametric model for detecting CNAs for paired tumor sequencing
data. Given read i mapped to the reference genome, let Zi be the indicator whether
read i is from the tumor sample, and Wi be the genomic location. Each read can be
represented by a bivariate random variable (Z,W ). Thus the joint likelihood of reads
{1, . . . ,m} on a chromosome can be written as

L =
m

∏
i=1

P(Zi,Wi) =
m

∏
i=1

P(Zi|Wi)P(Wi) =
m

∏
i=1

pZi
i (1− pi)

1−Zi f (Wi), (19.25)

where pi = P(Zi = 1|Wi) is the conditional probability of a read from tumor sample
given the read being mapped to Wi and f (Wi) is the unknown marginal distribution
of Wi. The conditional probability pi is constant for all Wi in a region flanked by
two consecutive change points. BIC-seq uses BIC to select the number of change
points K. Let qk denote the conditional probability for the region flanked by two
consecutive change points τk and τk+1. The BIC is derived as:

BIC = −2log(L)+ (K + 1)λ log(m) (19.26)

= −2
K+1

∑
k=0

[tk log(q̂k)+ nk log(1− q̂k)]

−2
m

∑
i=0

f (Wi)+ (K + 1)λ log(m), (19.27)

where tk and nk denote the number of reads between τk and τk+1 from tumor and
normal, respectively, q̂k = tk/(tk + nk) is the MLE of qk and a tuning parameter λ
is introduced to give more flexibility to the method. In practice, λ can be tuned
according to the sequence coverage. Note that the BIC of any two models can
be compared without specifying f . The best model can be found by exhaustedly
sampling and comparing models with different {τk}. Due to computational com-
plexity mentioned earlier, BIC-seq uses a heuristic greedy search procedure to find
the change points. Given an initial configuration of small bins (e.g., 10 bp), BIC-seq
attempts to reduce the overall BIC by merging neighboring bins. The merging is
repeated until the overall BIC cannot be further reduced.

Both seqCBS and BIC-seq provide procedures to derive credible intervals for
detected CNAs. Compared to seqCBS, BIC-seq is more computationally efficient
since a more greedy searching strategy is used. SeqCBS is available as an R-package
that can be downloaded from CRAN at http://cran.r-project.org/web/packages/
seqCBS/index.html. The R-package BICseq can be obtained from http://compbio.
med.harvard.edu/Supplements/PNAS11.html.

http://cran.r-project.org/web/packages/seqCBS/index.html
http://cran.r-project.org/web/packages/seqCBS/index.html
http://compbio.med.harvard.edu/Supplements/PNAS11.html
http://compbio.med.harvard.edu/Supplements/PNAS11.html
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19.3.3 Copy Ratio Estimation and Accounting
for Admixture Rate

After obtaining a segmentation of the chromosome, we need to estimate the copy
ratio for each chromosomal segment to infer its copy number in the tumor sample.
In BIC-seq, the copy ratio ρk in the interval of (τk,τk+1] is estimated by

ρk =
q̂k(1− π̂)
π̂(1− q̂k)

, (19.28)

where π̂ = ∑k tk/(∑k tk +∑k nk) is the proportion of reads from the tumor sample
in the combined samples. However, the estimate of π is not accurate when losses
or gains occur on the whole chromosome. In practice, BIC-seq first obtains an
estimation from Equation (19.28), removes regions with | log2(ρk)| < 0.2 and
re-estimates π̂ . The significance of detected CNA can be assessed by a normal
approximation. Under the null hypothesis H0: qk = π ,

√
tk + nk(q̂k −π)∼ N(0,π(1−π)). (19.29)

Using π̂ to estimate π , the p-value is given by

2Φ
(
−
√

tk + nk

π̂(1− π̂)
|q̂k − π̂|

)
. (19.30)

In samples with high sequencing coverage (∼30×), we can use a normal
approximation to estimate the copy ratio [7]. With a little abuse of notation, we
now use j to index the genomic positions within the segment (τk,τk+1]. Let t j be the
read depth (RD) at the j-th position of that segment in the tumor sample, n j be the
RD at this position of that segment in the normal sample. Both t j and n j are Poisson
distributed and approximately modeled by t j ∼ N(μt ,μt) and n j ∼ N(μn,μn). Let
the ratio at the j-th position be r j = t j/n j. Then the Geary-Hinkley transformation

Tj =
μnr j − μt√
μnr2

j + μt

(19.31)

follows an approximately standard normal distribution. Let ρ = μt/μn be the true
copy ratio in this segment. We can estimate ρ by its MLE

ρ̂ = argmin
ρ ∑

j

(
(r j −ρ)2

r2
j +ρ

)

. (19.32)

However, sometimes the estimated copy ratio may not directly reflect the true
copy number because of the heterogeneity of tumor samples. Compared to normal
samples, tumor samples are: (i) nearly always intermixed with an unknown fraction
of normal cells (admixture rate); and (ii) undergoing subclonal evolution [7]
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contributing to the heterogeneity of cancer cell populations. To get an accurate
quantification of copy number, it is necessary to account for the admixture rate of
tumor samples. Several methods have been proposed to estimate the admixture rate,
using information from either CNAs or SNAs. Here we first introduce a method
using information from CNAs, called SomatiCA [7], and then give an overview of
alternative methods at the end of this subsection.

In tumor samples, clonal events refer to the CNAs that occur in all cancer cell
population whereas subclonal events refer to CNA that only occur in a proportion of
cancer cells owing to the tumor evolution. As a consequence, in the pure tumor
samples, we expect copy number for clonal CNAs to be integer levels whereas
copy numbers for subclonal CNAs may not be integers. Taking into account
the contamination from normal samples, the copy ratios of clonal segments are
centered around a certain discrete level whereas those of subclonal segments have
no constraints. The basic idea in SomatiCA is that each genomic segment can
be either assigned as clonal or subclonal based on its copy ratio, and the proportion
of intermixed normal cells can be estimated from the shift of copy ratios of clonal
SCNAs from their expectations in the pure and homogeneous tumor samples.

SomatiCA estimates the admixture rate with a Bayesian normal mixture model.
With K segments called from change point methods and each segment with copy
ratio ρk, we introduce somatic copy level for each segment as ηk = 2ρk for
convenience, since the expectation of which is an integer for clonal events in pure
and homogeneous tumor samples. Assume there are S integer copy number levels
in the tumor sample indexed by s belonging to a set L. For example, in a tumor
sample with CNAs including one copy loss, one copy gain and double deletion, the
number of integer copy number levels is 4 (including copy number 0, 1, 2, and 3).
Each ηk is assumed to arise from one of the S integer copy number levels. Define
{Gk : k = 1, . . . ,K} as indicators of copy number levels.

For each segment k, SomatiCA models Gk by

Gk|Θ ∼ Multinomial(Θ), (19.33)

where Θ = {θs} specify the expected fraction allocation to each level. SomatiCA
further puts the conjugate prior on the multinomial distribution, Dirichlet prior
Dir(1/S, . . . ,1/S) on Θ , which means the allocation of copy levels is mainly driven
by the input data. Given Gk = s, ηi is modeled by

ηi|(Gi = s,νs)∼ N(νs,σ2), (19.34)

where νs ∼ N(Ls,τ2).
Under the above model, the posterior distribution of νs is given by:

νs|{ρ},{G} ∼ N

(
σ2Ls + τ2 ∑k:Gk=s ρk

σ2 + #{k : Gk = s}τ2 ,
σ2τ2

σ2 + #{k : Gk = s}τ2

)

, (19.35)
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where # denotes the cardinality of the set. The posterior distribution of Θ is given by:

Θ |{G} ∼ Dir
(1

n
+ #{Gk = 1}, . . . , 1

n
+ #{Gk = s}

)
. (19.36)

The Metropolis-Hasting algorithm is used to infer the allocation of copy levels.
The segment with ambiguous assignment reflected in posterior probability will
be assigned as potential subclonal events and excluded from the estimation of
admixture rate. Denote the set of indices of candidate subclonal segments by E .
Then the admixture rate ζ is estimated by

ζ̂ = argmin
ζ

∑
k/∈E

(
(1− ζ )∗Gk/2− ζ + ζi/2

)2
. (19.37)

In practice, the number of components n can be set as the number of nearest
integer levels for all ηk. Or it can be estimated from some model selection procedure.
Hyperparameters σ2 and τ2 reflect the tolerance of the shift of the copy level of
clonal events from integer levels, for example, σ2 = τ2 = 0.01 means the tolerance
is about 0.1. Moreover, the minimum distance between νs can be constrained to
avoid over-fitting, for example, to restrain from reporting any case with normal
contamination greater than 80%. In addition, SomatiCA assumes that the copy
ratio of 1 corresponds to the integer copy number of 2. This assumption does not
hold when the paired tumor and normal sample are sequenced at very different
sequencing depths.

For other methods accounting for tumor purity, ExomeCNV [34] estimates the
admixture rate based on the largest Loss of Heterozygosity (LOH) region. in a
genome, which likely produces a biased estimation. ASCAT [44] and ABSOLUTE
[6], are two methods developed on arrays that are similar in spirit to SomatiCA,
which can be also applied to sequencing data. Besides admixture rate, both methods
model the global measure of tumor ploidy, and their input, copy ratio, is defined as
a quantity measures the local DNA dosage conditioning on the aneuploidy of the
tumor. ASCAT can be seen as directly using Equation (19.37) to find a solution to
minimize the distance of nearest integer level and observed levels for all segments
where subclonal heterogeneity is not considered. Moreover, it has low tolerance to
normal contamination and tends to underestimates the admixture rate. ABSOLUTE
uses a different formulation of a Bayesian normal mixture model, with the main
difference being that it assumes a uniform distribution on subclonal events and
it constrains the genomic mass allocated to each copy level. PurityEst [40] and
PurBayes [19] are methods for estimating tumor purity based on SNAs, which can
be applied as alternative approaches in practice. The above methods assume a single
clonal cancer population and estimate tumor purity and subclonality based on an
identified clonal cancer population. This assumption may be violated when there
are multiple clonal cancer genomes within a sequencing profile. THetA [27] is a
method developed to address this problem, which supports deconvolution of the
tumor genome mixture to a normal genome and any number of cancer genomes.
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19.3.4 CNA Identification by Other Methods

Other methods detect CNAs by taking advantage of sequencing design or de novo
assembly, including paired-end mapping (PEM), split-read (SR) and assembly-
based (AS) methods [43].

In PEM methods, reads are required to be paired with an insert size ranging
from 200–300 bp to approximately 3–5 kb [46]. When the sequenced paired ends
map to the reference with a distance longer than expected, it may suggest the
existence of a deletion between the two ends. Similarly, if the distance is shorter
than expected, it may suggest an insertion. The size of CNAs detected by PEM
methods depends on the insert size. Therefore, PEM methods often identify CNAs
with smaller size compared to DOC methods. SR methods also utilize paired end
sequences but focus on pairs where only one read uniquely mapped to the genome.
The mapped read is then used as an anchor to narrow down the search space for the
unmapped read [43], the location of which may indicate the breakpoint of CNAs.
AS methods rely on a genome ab initio assembled from the sequencing reads. The
CNAs can be identified by comparing assembled tumor and normal genomes. These
methods are complementary to one another and complementary to DOC methods.
To discover different types of CNAs with a broad range of sizes, these methods
can be jointly applied in practice. As shown in some studies [24], combination of
more than one sequence signature can significantly improve the detection of CNAs.
Computational methods CNVer [22], HYDRA [30] and SVDetect [48] incorporate
PEM information into DOC methods. Genome STRiP [14] combines information
from DOC, PEM, SR and other sequence features. We refer interested readers to
reviews written by Teo [43] and Medvedev [23] for more information of these
methods.

19.3.5 A Case Study

Here we use the TCGA mutation calling benchmark 4 datasets to illustrate the usage
of some introduced software. This genome sequencing benchmark dataset consists
of artificially mixed samples with the proportion of tumor samples (a cancer cell
line, HCC1143) in a gradient from 5 % to 95 %. We focus our analysis on the sample
n20t80 (mixed with 80 % of the HCC1143 sample and 20 % of the normal sample)
and its paired normal sample. The corresponding sequencing data in the BAM for-
mat HCC1143.n20t80.bam and HCC1143.normal.bam can be downloaded
from https://cghub.ucsc.edu/datasets/benchmark_download.html. A BAM file is the
binary version of a SAM (Sequence Alignment/Map) file, which is a tab-delimited
text file that stores sequence alignment data. To manipulate alignments in the BAM
format, variant data in the VCF format (Variant Call Format) and interval data in
BED (Browser extensible data) format, we use utilities provided by SAMtools [20],
VCFtools [11], and BEDTools [31]. In the following analysis, we assume those tools
have been installed.

https://cghub.ucsc.edu/datasets/benchmark_download.html
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We demonstrate the analysis of SNAs using VarScan2. The somatic variant
calling features of VarScan2 expect input in SAMtools pileup or mpileup format.
Since the BAM file in this example is larger than 200GB in size, to save memory,
we process the file by each chromosome separately. In the following analysis, we
focus on chromosome 1.

Suppose we have reference sequences in Homo.sapiens.assembly19-
.fasta; the following commands generate mpileup files for the tumor and the
normal samples, respectively:

samtools mpileup -C50 \\
-f Homo.sapiens.assembly19.fasta \\
-r 1 HCC1143.n20t80.bam > tumor_chr1.mpileup
samtools mpileup -C50 \\
-f Homo.sapiens.assembly19.fasta \\
-r 1 HCC1143.normal.bam > normal_chr1.mpileup

where the -C50 option reduces the effect of reads with excessive mismatches and
the -r option specifies the chromosome.

Then we use VarScan2 to call variants and identify their somatic status (Germline
/LOH /Somatic) using pileup files:

java -jar VarScan.jar somatic normal_ch1.mpileup \\
tumor_chr1.mpileup somatic.chr1 \\
--tumor-purity 0.8

where the -tumor-purity option sets the estimate of the percentage of cancer
cells in the tumor sample and somatic.chr1 is the base name for the output.

After running the above command, we obtain two files named
somatic.chr1.snp and somatic.chr1.indel in the working directory,
which store the calling results for somatic mutations and indels (short insertion
and deletions), respectively. We further filter the somatic variants to remove
clusters of false positives and SNAs calls near indels using VarScan2 utility
somaticFilter:

java -jar VarScan.jar somaticFilter somatic.chr1.snp\\
--min-coverage 10 \\
--p-value 0.00001 \\
--indel-file somatic_chr1.indel \\
--output-file chr1.filtered

where the -min-coverage option sets the minimum read depth to support the
variants and -p-value specifies the p-value threshold for calling variants. The
minimum supporting reads for a variant, the minimum average base quality for
variant-supporting reads and the minimum variant allele frequency threshold are
set at the default values. The numbers of variants filtered out by each step are
summarized by the following message from VarScan2:



19 Paired Tumor-Normal Sequencing 397

Window size: 10
Window SNPs: 3
Indel margin: 3
Reading input from somatic.chr1.snp
940 cluster SNPs identified
Reading input from somatic.chr1.snp
272578 variants in input stream
11365 failed to meet coverage requirement
15416 failed to meet reads2 requirement
6372 failed to meet varfreq requirement
238624 failed to meet p-value requirement
8 in SNP clusters were removed
1 were removed near indels
792 passed filters

Variants that pass the filters are saved in the output file chr1.filtered.
We then check whether these somatic mutations affect protein coding regions by

RefSeq gene annotations [29] using BEDTools. First we convertchr1.filtered
into the BED format by:

grep "Somatic" chr1.filtered | \\
awk ’{print $1 "\t" $2 "\t" $2 "\t" $3 "\t" $4}’ \\
> chr1.filtered.bed

Here we show first several lines of chr1.filtered.bed as an example of the
BED format:

1 449862 449862 T C
1 990394 990394 A C
1 4800099 4800099 G A
1 5179714 5179714 C T
1 5541162 5541162 G A

The first three fields, chromosome, start position and end position, are required in
the BED format.

Suppose RefSeq gene annotations are stored as the BED format in
refseq.bed, the following command returns the gene annotation result for
chr1.filtered.bed:

intersectBed -a refseq.bed \\
-b chr1.filtered.bed \\
-wa -wb > chr1.filtered.refseq.bed

To determine whether these identified somatic variants are deleterious, one can
further consult commonly used prediction methods such as SIFT [26] and PolyPhen
[]. Although driver mutations might be in the coding regions of the genome, some
may be in regulatory elements and other non-coding sequences. Whenever the
related annotations are available in the BED format, we can use BEDTools utility
intersectBed to annotate somatic variants as shown above.
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In the second part, we demonstrate the analysis of CNAs using SomatiCA.
SomatiCA is a R package that is capable of identifying, characterizing, and
quantifying somatic CNAs from cancer genome sequencing. It expects both read
depths and lesser allele frequencies (LAF) from SNPs for the paired tumor-normal
sample.

We first call SNPs and short indels from HCC1143.normal.bam:

samtools mpileup -C50 -uf \\
-r 1 Homo.sapiens.assembly19.fasta \\
HCC1143.normal.bam | \\
bcftools view -bvcg - > normal.chr1.bcf
bcftools view normal.chr1.bcf \\
| vcfutils.pl varFilter -D300 > normal.chr1.vcf

where the -C50 option reduces the effect of reads with excessive mismatches and
the -D option sets the maximum read depths to call a SNP.

After SNP calling, we filter out low quality variants with quality scores less than
10 by the following commands:

bgzip normal.chr1.vcf
tabix -p vcf normal.chr1.vcf.gz
vcf-annotate --filter Qual=10 \\
normal.chr1.vcf.gz > normal.chr1.filter.vcf

Then we retrieve read depths from SNPs by:

grep -v "INDEL" normal.chr1.filter.vcf | grep \\
-w "PASS\|#\|CHROM" | bgzip \\
-c > normal.chr1.pass.vcf.gz
vcf-query \\
-f ’\%POS\t\%INFO/DP4\t\%INFO/DP\t[\%GTR\t]\n’ \\
normal.chr1.pass.vcf.gz \\
> normal.chr1.pass.vcf
cut -f1-4 normal.chr1.pass.vcf | \\
awk ’NR==1{$0="POS\tTUMOR.DP4 \\
\tTUMOR.DP\tTUMOR.GT\t\n"$0}1’ \\
> normal.chr1.RD.vcf

normal.chr1.RD.vcf contains genomic position, number of reads support-
ing A,T,C,G, total number of reads and genotype for each SNP as shown in the
following:

POS TUMOR.DP4 TUMOR.DP TUMOR.GT
10052 10,3,2,2 18 0/1
11597 0,1,20,0 21 1/1
11637 7,1,19,0 27 0/1
11900 25,13,13,10 64 0/1
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Applying the same procedure to sample n20t80, we obtain tumor.
chr1.RD.vcf. We can combine lines of two VCF files based on genomic
locations using:

join -j 1 <(sort normal.chr1.RD.vcf) \\
<(sort tumor.chr1.RD.vcf) | sort \\
-n > tumor.normal.chr1.vcf

tumor.normal.chr1.vcf needs to be further converted into the SomatiCA
input format as the following (consulting SomatiCA manual for details):

chr1 16378 het 91 0.40 85 0.46
chr1 28563 hom 12 0.5 14 0.43
chr1 52238 hom 3 0 2 0
chr1 54676 het 23 0.26 17 0.41
chr1 54708 het 21 0.19 16 0.31

where the 7 required fields are chromosome, genomic positions, zygosity, total read
counts for tumor sample, LAF for tumor sample, total read count for normal sample
and germline LAF.

Suppose the required information for SNPs from all chromosomes is stored in
somatica.input.txt, we can call CNAs and analyze the sample purity using
the following commands in R.

> library(SomatiCA)
> y <- read.table("somatica.input.txt", as.is=T)
> colnames(y) <- c("seqnames", "start", "zygosity",
+ "tCount", "LAF", "tCountN", "germLAF")
> input <- SomatiCAFormat(y, missing = T,
+ verbose = T)
> seg <- larsCBSsegment(input, collapse.k = 0,
+ ncores = 1, verbose = T, rss=F)
> segmentwithRatio <- somaticRatio(seg$segment,
+ input, method = "mle", adjust=T)
> refined <- refineSegment(segmentwithRatio, input)
> rate <- admixtureRate(refined)$admix

The estimate of admixture rate for sample n20t80 is 0.23. We can further correct
the CNA calls by the estimated admixture rate using:

> z <- copynumberCorrected(refined, rate)

SomatiCA provides utilities to estimate clonality for each somatic copy number
aberration.

> data(GCcontent)
> segmentGCcorrected <- segmentGCbiasRemoval(
+ z, input, GCcontent)
> segmentClonality <- subclonality(
+ segmentGCcorrected, rate)
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Fig. 19.1 Visualization of subclonality and somatic copy number for HCC1143 sample n20t80

The subclonality and somatic copy number for a sample can be visualized by
plotSubclonality as shown in Fig. 19.1.

19.4 Discussion

In this chapter, we have surveyed some recent developments in the analysis of
next generation sequencing data with paired tumor and normal samples, particularly
for SNA and CNA detection. Next generation sequencing technologies provide an
unprecedented opportunity to scrutinize the genome at a single base pair resolution
at an economically feasible cost. Despite many methods that have been developed,
there is still a great need for more efficient and accurate methods to enable the
detections of SNAs and CNAs.

The detection of SNAs is an important first step in cancer genome analysis.
Various SNA detection methods differ in their principles and approaches, and
a comparison of their performance on sensitivity, specificity, and computational
speed is greatly needed. Such results will help end users to choose appropri-
ate computational tools for their studies. Recently, Roberts [32] compared four
SNA callers, VarScan2, SomaticSniper, JointSNVMix2, and Strelka, through their
applications to a whole exome sequencing dataset of a chronic myeloid leukemia
patient. Without a gold standard set of somatic mutations, the comparison has been
oriented to assess the consistency between methods instead of precisely addressing
sensitivity and specificity. The authors concluded that output of each algorithm
has “significant differences and contradictions”. They suggested that the use and
interpretation of the results of any individual algorithm should be made with caution.
These algorithms were also evaluated by applying them to a sequence dataset
of a non-cancerous sample, which was randomly split into two sets to mimic
tumor/normal matched data. Thus any SNA detected in this dataset is a false positive
discovery. The four algorithms detected 5, 7, 10 and 11 mutations, respectively,
indicating very high specificity. In practice, the output of SNA detection algorithms
is substantially filtered with various quality control metrics to remove false positive
discoveries [10,17,32]. Although the filtering strategies differ among methods, they
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generally fall into the following categories: (1) base calling quality; (2) alignment
quality; (3) strand bias; (4) occurrences in normal samples, such as documented
in dbSNP, or platform specific control panel; and (5) depth of coverage. These
filters are demonstrated to effectively reduce the number of false positive discoveries
[10, 17, 32].

Currently, there is no standard protocol or quality control measures for
CNV/CNA detection [43]. In the 1,000 Genomes Project, DOC, PEM and SR
methods are used and each uniquely contributes to the identification of 30∼60 of
the reported CNVs [3]. In addition, their performances largely depend on what
alignment algorithm is used in pre-processing, especially, for repeat regions.

Here we list several statistical challenges associated with detecting CNAs using
next generation sequencing data:

1. GC-content bias correction. Current correction methods accounts for a large
portion of the variation, but additional heterogeneity such as unexplained
hot spots and zero-counts needs to be incorporated. Furthermore, how the
selection of the alignment algorithm affects the GC effect needs to be further
investigated [5].

2. Fast computation. DOC methods following the change point paradigm essen-
tially solve a combinational problem. With sequencing capacity increasing
rapidly, even existing greedy search methods, such as CBS, may not be feasible.
It is important to develop faster solutions to the change point detection problem.

3. Quality/False discovery control. New statistics are needed to control the quality
of detected CNAs.

4. Multiple sequence change point detection. Simultaneous segmentation of
multiple samples may increase the power for the detection of recurrent CNAs
but raises new challenges such as modeling batch effects. Related recent
developments on array data can be found in [39] and [50].

5. Heterogeneity of tumor samples. Accounting for normal contamination and
subclonal heterogeneity is essential for characterization of CNAs. This problem
is still not completely solved.

Progress in the above areas will help cancer researchers to better analyze next
generation sequencing data to identify somatic mutations in cancer tissues that may
lead to better understanding of cancinogenesis in the future.
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Chapter 20
Statistical Considerations in the Analysis
of Rare Variants

Debashis Ghosh and Santhosh Girirajan

Abstract Recently, whole-genome and whole-exome sequencing has begun to
demonstrate success in the identification of disease-causing genes. Many of these
genes exhibit abnormal genetic behavior and low prevalence in the population; these
molecules are commonly referred to as rare variants. In this chapter, we provide an
overview of rare variants and their scientific relevance in medicine and public health.
We then provide a review of existing methods for association, primarily focusing on
the sequence kernel association test (SKAT) and related methods. These procedures
are related to kernel machines, which we will also describe. Finally, we discuss the
implications of rare variants in terms of multiple testing.

20.1 Introduction

Large-scale genomics has been at the forefront of science and medicine over the
last decade. The advent of high-throughput technologies including single nucleotide
polymorphism (SNPs) microarrays, array comparative genomic hybridization and
genome sequencing have enabled rapid discovery of genetic variants varying in size
and frequency [18]. Copy number variants are deletions and duplications in the
genome that constitute the most genetic variation, in total base pairs, between
individuals [35]. Classically, disease-association studies involved evaluation of
either variants of high frequency in the population, also termed common variants,
or variants of low frequency or rare variants. In this chapter, we will consider
analysis of rare variants with specific focus on copy number variants. One of
the key statistical challenges in the analysis of rare variants is that they have
small population prevalences. If we view the rare variants as predictors that we
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wish to associate with a phenotype, then they in fact contain very little statistical
information. To illustrate the idea, suppose we wish to regress the phenotype on a
rare variant that we treat as binary, where zero indicates absence and one indicates
presence. We assume that the regression model is linear. Then it can be shown
analytically that the information about the regression coefficient in such a setup is
maximized when half of the subjects have the rare variant and half do not. However,
by definition, for rare variants, a majority of subjects will not have the rare variant,
the implication being that we are in an inherently low-power situation. Thus, it is
necessary to begin to think about pooling information in various ways; this will be
one of the themes explicated on in the chapter.

The structure of this chapter is as follows. In Sect. 20.2, we provide some
biological background to rare variants. Section 20.3 reviews association methods
for the analysis of rare variants and in particular focuses on the sequence kernel
association test (SKAT) [56] and its extensions. The SKAT methodology is based
on the kernel machine framework originally proposed by Liu et al. [33, 34], so we
also expand on this. Finally, we discuss the multiple comparisons problem and how
its consideration needs to be modified for the rare variant problem in Sect. 20.4.
This chapter concludes with some discussion in Sect. 20.5.

20.2 Biological Background

Association of disease genes to phenotypic traits or overt disease has been carried
out with the discovery, characterization or genotyping of variants. Genetic studies
have relied upon identifying causative genes by finding genetic variants, common
(>1 % or >5 % in the population) or rare, and whether they are enriched in cases
compared to controls. Common variants are contributed by alleles that originated
during the development of humans and are therefore shared between different
human populations [39]. These variants constitute most of the human genetic
variation, in frequency, and are also represented as SNPs that tag specific haplotypes
mapped by the HapMap project [10, 11]. While technologies and genetic methods
have concentrated on implicating common or rare variants of extreme size for
disease etiology, identification and characterization of variants of intermediate size
and frequency remains a challenge [50].

The basis for rare variants can be best understood in a historical context. In
the field of human genetics of complex traits, the dominant school of thought
in the early 2000s was based on the so-called common disease-common variant
(CDCV) hypothesis [45, 46]. This framework postulated that for many diseases,
multiple SNPs would be needed to explain a large percentage of variation in the
phenotype. Identification of SNPs in linkage disequilibrium or functional variants
in the neighborhood of causative genes is the basis of genome-wide association
studies (GWAS) [22]. This thought very much influenced the design of GWAS
and the technology used to measure DNA variation. The dominant platform for
measuring SNPs was the microarray platform, which was being used simultaneously
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for measuring transcript mRNA expression. The major company that developed
the SNP microarray platform was Affymetrix (http://www.affymetrix.com), and
the DNA variations selected to be on the chip primarily represented variants
that satisfied the CDCV hypothesis, i.e., all of the variants had to be sufficiently
present in the population. In particular, what tended to be excluded from the SNP
microarrays were DNA variants where the less prevalent form had a population
prevalence (termed minor allele frequency) that was less than 5 %.

Currently, there have been over 2000 GWAS studies that have been conducted in
humans (genome.gov, 2013) with a major finding that DNA variations in the form
of SNPs can only explain a limited amount of variation for several human disease
associated phenotypes [37, 38]. GWAS has been only successful in studies on type-
2 diabetes, age-related macular degeneration, coronary artery disease, and Crohn
disease as well as for obesity and height. These studies were not successful for
a majority of common complex diseases including neurodevelopmental disorders
such as autism, schizophrenia, and epilepsy. This has led to consideration of
reasons for the missing heritability [38]. The difficulty of achieving statistical
power to identify multiple loci of small effect sizes is considered as a major factor.
Other factors, not considered in traditional GWAS studies [5], such as gene-gene
interactions and gene-environment interactions, have also been proposed [57].

Rare variants, on the other hand, tend to have much bigger effects than the
DNA variants identified from first-generation GWAS. This alternative model is
termed common disease rare variant (CDRV). From an evolutionary point of view,
these variants are under strong selection and their frequency in the population is
maintained by de novo mutations. In fact, new germline mutations arise constantly,
based on the underlying sequencing architecture or age of the parents, at a rate of
about 61 base pairs for single nucleotide mutations [4] and 16–50 kbp per diploid
genome [24]. Genetic associations for copy number variants have met with higher
success for variants of low frequency. These variants were classically associated
with clinically recognizable syndromes such as 7q11.2 deletions in individuals with
features of Williams syndrome, 22q11.2 deletions in individuals with features of
DiGeorge syndrome, and 17p11.2 deletions in Smith-Magenis syndrome [19].

Developments in microarray technology and rapid incorporation of high-
throughput genotyping in diagnostic laboratories have resulted in the identification
of about two dozen CNVs that are strongly enriched in affected cases with
neurodevelopmental impairments compared to controls. However, extensive phe-
notypic heterogeneity even in individuals carrying the same CNV has complicated
further analysis. For example, the 16p11.2 deletion was originally associated with
autism, but was later identified to be enriched in individuals with intellectual
disability, epilepsy, schizophrenia, and obesity [40, 47, 55]. Comparison of CNV
load (measured as the proportion of population carrying a deletion or duplication
of a particular size) across cohorts of affected population suggests that the CNV
load correlates with the severity of neurodevelopmental disorders [17]. Similarly,
phenotypic variability and severity associated with a specific disease-associated
CNV can be also explained by rare variants in the genetic background [19, 21].
These variants modulate the ultimate phenotypic expression either by additive

http://www.affymetrix.com
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or synergistic effect, in genetic terms, in a digenic or oligogenic manner [53]
Genome sequencing has made tremendous strides in finding the missing heritability.
Sequencing of the protein coding sequences in the genome for neurodevelopmental
disorders has identified several rare, de novo variants that cluster in pathways related
to nervous system development, maturation, and maintenance [16,41,42,48]. These
studies have, however, revealed a complex genetic basis for common diseases; for
example, recent estimates suggest that a minimum of 1000 genes as causal for
autism. These disorders can be explained by an infinitesimal model consistent with
the role of multiple rare variants in complex disease [14]. According to this model
the genetic etiology can be explained by a hybrid of the two models. The challenge
therefore lies in understanding how these variants work together in causing the
disease rather than if they are rare or common [14].

The implications of rare variants for medicine and public health are potentially
quite paradigm shifting. Both disciplines have placed a tremendous emphasis on
evidence that has been gathered from consideration of population-based analyses
of biomedical data. However, rare variants are predictor variables that by definition
are quite individual-specific. Simply based on their prevalence, standard population-
based analyses will have low power to detect them. The rare variant paradigm also
is quite in tune with the notion of personalized medicine, where treatments and/or
interventions would be tailored to the particular variant present in the individual.
Very broadly speaking, this is consistent with the patient-centered/patient-oriented
paradigm in medicine that has been developing over the last few years. Figure 20.1
describes the genetic spectrum for disease that analysts must contend with.

20.3 Kernel Machine Methodology

20.3.1 Setup and Review of Methods

We now describe tests of associations between rare variants and a phenotype. To
make the ideas concrete in this chapter, we will suppose that we have available
(Yi,Gi,Zi), i = 1, . . . ,n for n subjects, which is a random sample from (Y,G,Z).
Here, Y denotes the phenotype, G is a p−dimensional vector for the genotypes for
the p variants within a region, and Z is a q−dimensional vector of confounding
variables to adjust for. Here and in the sequel, we will assume that each component
of G will count the number of minor alleles. We can postulate a class of regression
models for Y given G and Z; a standard one would be to postulate a generalized
linear model:

h(E[Yi|Gi,Zi]) = α0 +αT Gi +β T Zi, (20.1)
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Fig. 20.1 (a) Size of variant. Genetic variants are ordered by size on the horizontal axis versus
frequency on the vertical axis. Note that single nucleotide variants or more specifically single
nucleotide polymorphisms (used for GWAS studies) are more frequent than copy number variants
(i.e., deletions and duplications) in the human genome. The large chromosomal aberrations such
as trisomies and monosomies are rarer and are the cause for severe developmental disabilities.
(b) Frequency of Variants. Variants can be classified by the frequency (on the horizontal axis)
and its effect, i.e. penetrance (proportion of individuals carrying a variant also manifesting a
phenotype) on the vertical axis. Note that rare variants (typically <0.1 % to <5 %) are highly
penetrant, associated with severe developmental disorders, while common variants have modest
effect. Variants of intermediate frequency are currently missed by most studies. Current studies
also suggest that multiple rare alleles interacting in common or related pathways are responsible
for several human disorders

where (α0,α,β ) are the regression coefficients to be estimated, and h is a link
function. Note that the current model (20.1) can allow for both continuous and
binary phenotypes.

While model (20.1) is quite standard in the statistical literature, new issues arise
when attempting to apply it to rare variant data. First, due to the sparsity of G
the components of α will not be estimated very well. Due to this as well as for
computationally feasibility, there has been a reliance on the use of score-based
tests, which will be less sensitive to this type of sparsity relative to a Wald test,
for example. A second problem is one of power. Models such as (20.1) that treat
the genetic effects as fixed effects will have lower power due to the number of
degrees of freedom for jointly testing α = 0. To circumvent this issue, two classes
of approaches have been developed. The first includes methods that can broadly
interpreted as collapsing methods [31, 32, 36, 44]. These tests effectively reduce G
into a scalar quantity G∗ and to fit model (20.1), where αT Gi is replaced by γG∗

i .
The reduction to a one-dimensional quantity leads to a reduction in the number of
parameters and a potential gain in power.

Collapsing approaches will work in situations in which the components of G
have effects on Y that are in the same direction. However, it might be the case that
this assumption is not true. The SKAT methodology of Wu et al. [56] then becomes
quite useful in this regard. In particular, it generalizes (20.1):
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h(E[Yi|Gi,Zi]) = α0 + f (Gi)+β T Zi, (20.2)

where now f is a flexible non-linear function of the rare variants. This is a special
case of the kernel machine framework originally proposed by Liu et al. [33, 34].
We will describe the technical details of the approach in the next section. We point
out here that the rare variant effects are allowed to be much more flexible than
in (20.1). Further, the test of the genetic effect in (20.2) is identical to testing for a
random effect being zero for a certain linear mixed effects model. This amounts to an
effective shrinking of the degrees of freedom and allows for pooling of information
across the rare variants. The score test amounts to a quadratic form that takes
deviations of the individual rare variant effects and squares them.

20.3.2 Kernel Machines: Technical Details

In this section, we review the technical details behind the SKAT model in the case
of h in (20.2) being the identity link. This material is intended for mathematically
minded readers and can be skipped upon initial reading of this chapter. Recall the
model from the previous section with α0 = 0:

Yi = β T Zi + f (Gi)+ ei, (20.3)

where β is a q× 1 vector of regression coefficients, f (Gi) is an unknown centered
smooth function, and the errors ei are assumed to be independent and follow
N(0,σ2). Here, we are centering the response so that there is no intercept term as
in (20.2). Note that when f (·) = 0, (20.3) reduces to the standard linear regression
model.

20.3.2.1 Function Space of f (G): Specification

We assume the nonparametric function f (G) lies in a function space F spanned by
a set of basis functions {φ1(G), · · · ,φ j(G), · · · ,φJ(G)}J

j=1 such that any function in

the space F can be written as f (G) = ∑J
j=1 ω jφ j(G) for some constants {ω j}J

j=1.

Note that the set of basis functions can be finite (J < ∞) or infinite (J = ∞). In the
machine learning literature, such basis functions are called features.

Specification of a function space using basis functions or features might be
complicated since explicit expressions of features are required and the number of
features might be high or even infinite. An alternative way to conveniently specify
a function space is to use a kernel function K(G,G′) instead of the basis functions.
Specifically, a kernel function K(G,G′) is a bounded, symmetric, positive function
satisfying

∫
K(G,G′) f (G) f (G′)dGdG′ ≥ 0, (20.4)
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for any arbitrary square integrable function f (G) and all G,G′ ∈ Rp. The kernel
function can be viewed as a measure of similarity between two values of the
covariate vector G and G′. Following from the Mercer Theorem (e.g., see p. 33 of
[6]), any kernel function satisfying some regularity conditions implicitly specifies
an unique function space spanned by a particular set of basis functions (features),
and vice versa. Before formally defining such a function space, we give a few
examples.

1. The dth degree Polynomial Kernel: K(G,G′) = [G ·G′ + 1]d , where G · G′ =
∑p

k=1 gkg′k denotes the dot product. Recall that g represents components of the
vector G in (20.3). This dth degree polynomial kernel generates the function
space F spanned by all possible dth order monomials of the components of G.
For example, if d = 1, the first polynomial kernel generates the linear function
space with basis functions {z1, · · · ,zp}. If d = 2, the second polynomial kernel
corresponds the quadratic function space with basis functions {zk,zkz′k} (k,k′ =
1, · · · , p), i.e., the main effects, all two-way interactions and quadratic main
effects. Note that the function space determined by the dth degree polynomial
kernel is of finite dimension.

2. The Gaussian Kernel: K(G,G′) = exp{−||G− G′||2/ρ}, where ||G − G′|| =
∑p

k=1(gk − g′k)
2. The Gaussian kernel generates the function space spanned by

radial basis functions, whose nice properties can be found in Bühmann [3]. The
function space determined by the Gaussian kernel is of infinite dimension.

3. The identity by state kernel: Kwee et al. [26] propose the use of the concept of
identity by state to define a new kernel. The kernel is given by

K(G,G′) = ∑p
s=1 IBS(Gs,G′

s)

2p
,

where the IBS function denotes the number of alleles shared identically by state
at position s.

The above examples suggest that the choice of a kernel function determines which
function space one would like to use to approximate f (G). The dimension of the
function space defined by a kernel function K(·, ·) is determined by the dimension
of the eigenfunctions of K(·, ·). The use of a kernel to specify a function space avoids
specifications of complicated basis functions (features) and inner products. One
will see in the next section that it has significant computational advantages in high
dimensional problems. It should be noted that the term “kernel” here has a rather
different meaning from that used in the kernel smoothing literature. A commonly
used function space defined by a kernel is a Reproducing Kernel Hilbert Space
(RKHS), which we label as FK . Technical details on RKHS can be found in Wahba
[54] or Chapter 3 of Cristianini and Shawe-Taylor [6].
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20.3.2.2 Primal and Dual Representations of f (G)

Any function f (G) in the function space FK defined by a kernel K(·, ·) can have a
primal representation directly using the basis functions (features) of FK , and it can
equivalently have a dual representation using the kernel function K(G,G′) directly.
Specifically, for an arbitrary function h(G)∈FK , its primal representation takes the
form

f (G) =
J

∑
j=1

ω jφ j(G) = φ(G)T ω , (20.5)

where φ (·) = {φ1(·), · · · ,φJ(·)}T is a J × 1 vector of the standardized orthogonal
basis functions (features), i.e., standardized Mercer features of the function space
FK , and ω ≡ (ω1, · · · ,ωJ)

′ is a vector of some constants. The square norm of f (·)
can be written as

‖ f‖2
FK

=
J

∑
j=1

ω2
j = ωT ω . (20.6)

Alternatively, the same f (G) can be equivalently written in a dual representation
using the kernel function K(·, ·) directly as

f (G) =
L

∑
l=1

αlK(G∗
l ,G), (20.7)

for some integer L, some constants α1, . . . ,αL and some {G∗
1, · · · ,G∗

L} ∈ Rp. For
justifications of these results and more details about the RKHS, see Cristianini and
Shawe-Taylor (2000[6], Chapter 3).

Estimation of β and f (·) proceeds by maximizing the scaled penalized likelihood
function

− 1
2

n

∑
i=1

{Yi −β T Zi − f (Gi)}2 − 1
2

λ‖ f‖2
FK

, (20.8)

where λ is a tuning parameter and controls the tradeoff between goodness of fit
and complexity of the model. When λ = 0, the model interpolates the data, whereas
when λ = ∞, the model reduces to a simple linear model.

While the function (20.8) is hard to optimize directly, we introduce the
Lagrangian multiplier (also called the dual parameter) γ to obtain

L (ω ,β ,e,γ) =−1
2

n

∑
i=1

e2
i −

1
2

λ ωT ω +
n

∑
i=1

γi{β T Zi +φ(Gi)
T ω + ei−Yi}. (20.9)
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The dual problem is formulated by constructing an objective function by removing
the high-dimensional primal coefficient vector ω and the constraint parameters
e from L (ω ,β ,e,γ) and writing L (ω ,β ,e,γ) as a function of β and the dual
parameter vector γ only. We will see that the resulting estimators β̂ and γ̂ can be
expressed as a function of some kernel function K(·, ·). One can then conveniently
obtain the maximizer of the original primal problem ω̂ and then f̂ (G) at any
arbitrary G as a function of the kernel function K(·, ·).

Specifically, the dual problem to minimizing (20.8) is

min
β ,γ

Q(β ,γ) (20.10)

where Q(β ,γ) = supω,eL (ω ,β ,e,γ). Note that (20.10) is an unconstrained opti-
mization problem, and the number of unknown parameters depends only on β and
the dual parameters γ , whose dimension is equal to the sample size n, often much
smaller than J, the dimension of the primal vector ω . Therefore the dual formulation
(20.10) effectively transforms the often infinite-dimensional optimization problem
(20.8) into a finite-dimensional problem.

To obtain Q(β ,γ), one differentiates L (ω ,β ,e,γ) with respect to e and ω and
sets the derivatives to zero. We have

ê = γ

ω̂ = λ−1
n

∑
i=1

γiφ(Gi). (20.11)

Substituting ω̂ and ê into L (·), some calculations give

Q(β ,γ) = (Y −β T Z)T γ − 1
2

γT (I+λ−1K
)

γ (20.12)

where Y = (Y1, · · · ,Yn)
T and Z = (Z1, · · · ,Zn)

T , K is an n×n matrix whose (i, i′)th
element is K(Gi,Gi′), the kernel function evaluated at the pair of the design points
(Gi,Gi′). Note that the kernel matrix K measures the similarity among the covariate
values (G1, · · · ,Gn). One can see that even when p (the dimension of G) or J (the
dimension of the feature space) is high, the dimension of K is not affected by p and
J and remains the same as the sample size n.

Differentiating Q(β ,γ) with respect to γ and β , some calculations give

β̂ =
{

ZT (I +λ−1K)−1Z
}−1

ZT (I +λ−1K)−1Y (20.13)

γ̂ = (I +λ−1K)−1(Y − β̂
T

Z). (20.14)
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Plugging (20.14) into (20.11), we have

ω̂ = λ−1{φ(G1), · · · ,φ (Gn)}γ̂ = λ−1{φ(G1), · · · ,φ (Gn)}(I+λ−1K)−1(Y − β̂
T

Z).

It follows that the nonparametric function f (·) evaluated at the design points
(G1, · · · ,Gn)

T is estimated as

f̂ = λ−1Kγ̂ = λ−1K(I +λ−1K)−1(Y − β̂
T

Z). (20.15)

The estimator of the nonparametric function f (·) at an arbitrary G is

f̂ (G) = φ(G)T ω̂ (20.16)

= λ−1{K(G,G1), · · · ,K(G,Gn)}(I +λ−1K)−1(Y − β̂
T

Z). (20.17)

Note that the estimators β̂ and f̂ (·) in (20.13) and (20.15) are the maximizer
of the original primal problem. Examination of equations (20.13) and (20.17)
suggests that the estimators β̂ and f̂ (·) are both conveniently evaluated using the
kernel function K(·, ·) and do not require specifying the high (maybe infinite)
dimensional basis functions (features) {φ(G)}. This means one simply summarizes
the similarity of high-dimensional covariates (G1, · · · ,Gn) using a kernel matrix K,
then calculates β̂ and f̂ (·) by inventing an n× n matrix involving the kernel matrix
K, which is of the dimension of sample size and is often small in high dimensional
problems, e.g., microarray problems. Using (20.14), one can easily see that f̂ (G)
can be rewritten as

f̂ (G) =
n

∑
i=1

λ−1γ̂iK(G,Gi).

A comparison of this equation with equation (20.7) suggests that f̂ (G) takes exactly
a dual representation with L = n, (G∗

1, · · · ,G∗
n) = (G1, · · · ,Gn) and α = λ−1γ̂ .

Hence the estimated Lagrangian multiplier γ̂ serves as the coefficients in the dual
representation of f̂ (G), apart from a scale factor.

In Liu et al. [33], it is shown that the estimates of f and β can be derived as
estimates from a random effects model of the following form:

Y = β T Z+ f + e, (20.18)

where β is a q× 1 vector of regression coefficients, f is an n× 1 vector random
effects following f ∼ N{0,τK(ρ)}, ρ is a scale parameter, and e ∼ N(0,R = σ2I).
Because of this equivalence, all regression parameters in the model can be estimated
by maximum likelihood, while the variance component parameters can be estimated
by restricted maximum likelihood. If we assume f (G) ∈ FK , one can easily see
from the linear mixed model representation (20.18) of the least squares kernel
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machine that H0 : f (G) = 0 is equivalent to testing the variance component τ = 0.
The null hypothesis H0 : τ = 0 places τ on the boundary of the parameter space. Liu
et al. [33] developed a score test for testing H0.

20.3.3 SKAT Extensions

Since the seminal work of Wu et al. [56] on this topic, there have been several
notable extensions of the SKAT methodology. One extension was by Lee et al.
[28, 29], which made the observation that the collapsed approaches and SKAT
could be combined into a unified framework based on a prior distribution for the
linkage disequilibrium between rare variants within a genomic region of interest.
An application of the SKAT statistics to meta-analysis has been developed by Lee
et al. [27]. Finally, we note that Ionita-Laza et al. [23] have extended the SKAT
approach to simultaneously incorporate common and rare variants.

20.3.4 SKAT Example

We now describe the application of the SKAT methodology to data from Girirajan
et al. [20], in which the role of structural variants in autism was explored. The
data come from the Simons Simplex Complex Foundation. For the purposes of this
chapter, we will assume that the rows of the data matrix below represent statistically
independent observations. A sample of the data is given below:

chrom start end size pheno
1 chr1 6191784 6494317 302533 0
2 chr1 108655067 108718023 62956 0
3 chr1 143636400 143700636 64236 0
4 chr1 143636400 143701095 64695 0
5 chr1 143639096 143701095 61999 0

In this file, start and end denote the beginning and end of the structural variant, and
size denotes the length of the variant and is the difference between start and end.
Finally, pheno is a coding of the phenotype as zero for control and one for case
(i.e., autism). Our analyses using SKAT will use start, end and pheno.

We consider data from chromosome 1, which has been considered to be a hotspot
for structural variations in autism. We have measurements from 99 cases and 76
controls. We note that the hotspots have variable length, which is why the size
column shows variation. In order to implement the SKAT method, we need to
convert each row of the dataset into a vector of zeroes and ones. The zero represents
absence of a structural variant while one indicates its presence. We partitioned
chromosome 1 into 2000 nonoverlapping windows of equal size and determined for
each row of the dataset how many windows the alteration overlapped with. This is
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Fig. 20.2 Boxplot of distribution of copy number burden for chromosome 1 in controls (left
boxplot) versus autism cases (right boxplot). The data represent the total number of structural
variants from 50 windows that had at least one variant across the 175 samples

done by comparing both the start and end to the window in question. Note that
this will give us a 175 by 2000 matrix with zeroes and ones. However, of the 2,000
columns, only 50 have at least one nonzero entry. This means that for each subject,
we have a 50-dimensional vector of counts. It is not easy to perform descriptive
statistics on this type of data. As in [20], we can define a concept of copy number
burden, which means to simply add the up the counts over the 50 dimensions for
each subject. A plot of the distribution of copy number burden between cases and
controls is given in Fig. 20.2.

Based on Fig. 20.2, we find almost no difference between the copy number
burden distribution of cases and controls, aside from two high outliers among the
autism cases. However, the SKAT methodology may be able to identify differences
between the controls and cases when examining the 50-dimensional count vectors
that cannot be seen in the copy number burden data. To illustrate our method,
we simulated a covariate Z = Z from a standard normal distribution and used the
following R code to run SKAT.

# y.b = pheno variable from the dataset; Z: simulated
# normal(0,1) covariate;
# G: structural variant data, here a 50-dimensional
# vector of counts
# kernel specifies the kernel matrix needed to run
# SKAT; options include linear, IBS, quadratic
# and 2 way interaction; the first three have the
# option of being weighted by the
# inverse of the variance of the estimated
# proportion of the rare variant, as described
# in Madsen and Browning (2009)
#
# Here, we use the weighted linear kernel.
#
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obj = SKAT_Null_Model(y.b~Z,out_type="D",
kernel="linear.weighted")

skat1 = SKAT(G,obj)

Further details about the code can be found in the SKAT manual. We note that
the default procedure of Wu et al. [56] is recommended for a sample size greater
than 2000. Given that our example has a sample size of 175, SKAT performs an
adjustment in terms of using higher-order approximations in order to estimate the
null distribution of the test statistic. Using this adjustment, the p-value from SKAT
is 5.27× 10−5. Thus there is strong evidence of structural variants in chromosome
one being associated with autism.

20.4 Multiple Testing

Next, we discuss the impact of multiple comparisons on the analysis of rare variant
data from sequencing studies. While genomics has experienced an explosion in
the literature on multiple testing, there are two unique issues in the sequencing
context. First, because these variations are rare by definition, the number of single
variant hypothesis tests that need to be performed are actually quite small relative to
numbers of tests in other problems (e.g., number of tests in common-variant GWAS
studies). What is more challenging, however, is the fact that there is an inherent
discreteness in the data structure. For a given rare variant, we can represent the data
as in Table 20.1, where the cell entries represent the number of samples in each of
the groups. We wish to test for independence of the rows and columns, and many
methods exist for testing the null hypothesis of no association between presence of
rare variant and group label. If the expected cell count is greater than five in all the
cells, then one can safely use chi-squared statistics. However, when the cell counts
are small, we then use Fisher’s exact test, where the p-value is computed using a
hypergeometric distribution.

While there has been a lot of work on extensions and generalizations of the
FDR estimation methodology, most of the literature in this area has used the fact
that under the null distribution, the p-values are uniformly distributed on (0,1) or
more generally, that the test statistics have a continuous distribution. This will not
apply in the case of rare variant data with respect to the presence/absence calls. The
literature on multiple testing with discrete p-values is much more limited. An initial
procedure was proposed by Tarone [51] which involves only considering hypotheses

Table 20.1 Rare variant presence/absence analysis

Rare variant present Rare variant absent Total

Y = 0 a b a+b
Y = 1 c d c+d

a+c b+d a+b+c+d
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where a sufficiently small rejection probability is possible and to then perform a
Bonferroni test on those selected hypotheses. This procedure has been modified to
the false discovery setting in Gilbert [15], where the Bonferroni adjustment was
replaced by the Benjamini-Hochberg [2] procedure. Theoretical aspects of the B-H
procedure with discrete test statistics have been addressed by Ferreira [9]. An FDR-
based estimation procedure in the spirit of the q-value methodology of Storey [49]
was developed in Pounds and Cheng [43]. In Kulinskaya and Lewin [25], the B-H
procedure was applied to so-called fuzzy p-values, whose behavior under the null
hypothesis is identical to that of a Uniform(0,1) random variable so that the usual
methods apply. Applications of discrete multiple testing ideas to a cancer genomics
problem can be found in Ghosh [12, 13]. Some recent work of Bancroft et al. [1]
uses a novel sequential permutation p-value approach to estimate FDR that would
be applicable in this setting as well.

Finally, an open problem in this area is the incorporation of dependence into
multiple testing procedure. While there has been a lot of recent work in the area
on multiple comparisons with dependent data [8, 30], almost all of this work again
assumes that the p-values are derived from continuous distribution, which is not
the case here. However, the argument that rare variants operate with a network
structure is less plausible than for phenomena such as gene expression, so a case
could be made that dependence is not as big of an issue as in other genomic settings.
Again, this topic is definitely worthy of future exploration.

20.5 Discussion

This chapter has attempted to discuss issues in the analysis of rare variant data
for a statistical audience. One of the major messages from this chapter is that the
phenomenon being described is one with a low probability of occurring, but given
its occurrence, it can have a large effect.

One of the major challenges in this area will be development of methods that
will have high power of detecting these events. A major statistical lesson that has
been used here is that the score method of testing has definite merits. While classical
statistical theory teaches us that the behavior of the likelihood ratio test, Wald test
and score test will be identical as the sample size tends to infinity, it is also the case
that we are definitely in a small-sample scenario where asymptotic theory will not
hold. The score statistic provides many advantages, one of the major ones being that
of avoiding having to estimate rare variant effects.

An area not discussed in this chapter is meta-analysis. This has become the de
rigueur method for identifying candidate genes from genomewide studies. We point
the reader to the recent review by Evangelou and Ioannidis [7] and note the SKAT
approach to this problem that was described in Lee et al. [27].

While this area is relatively new, we should also be wise to lessons that have been
learnt in many other settings. For example, it is well-known that selected variables
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or SNPs suffer from the so-called ‘winner’s curse’ so that estimated effects will be
biased. This will also be the case for the rare variants and is inherent to the statistical
task at hand.

Finally, we believe that a tactic that will be useful in the future is what we term
‘pooling information.’ One of the major reasons that SKAT methods have had such
a major impact in this area is that the equivalence with variance components models
and the introduction of random effects models leads to the ability to pool infor-
mation across estimated parameters. Statistically, this can be conceptualized using
shrinkage theory, Empirical Bayes and more generally, Bayesian methods. Given
the increasing availability of genomewide information from different data sources,
pooling information using ‘vertical integration’ techniques [52] will be needed to
identify and to elucidate the functionality of rare variants in the foreseeable future.
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