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Chapter 1

Introduction

Gini’s mean difference (hereafter, GMD) was first introduced by Corrado Gini in

1912 as an alternative measure of variability. GMD and the parameters which are

derived from it (such as the Gini coefficient, also referred to as the concentration

ratio) have been in use in the area of income distribution for almost a century, and

there is evidence that the GMD was introduced even earlier (Harter, 1978). In other

areas it seems to make sporadic appearances and to be “rediscovered” again and

again under different names. It turns out that GMD has at least 14 different alterna-

tive representations. Each representation can be given its own interpretation and

naturally leads to a different analytical tool such as L1 metric, order statistics theory,

extreme value theory, concentration curves, and more. Some of the representations

hold only for nonnegative variables while others need adjustments for handling

discrete distributions. On top of that, the GMDwas developed in different areas and

in different languages. Corrado Gini himself mentioned this difficulty (Gini, 1921).

Therefore in many cases even an experienced expert in the area may fail to identify a

Gini when he or she sees one.

Covering all the approaches in detail can become tiresome and possibly uninter-

esting. Therefore, in order to overcome this “curse of the plenty” we set one target

in mind. We shall focus on imitating the analyses that are based on the variance by

replacing the variance by the GMD and its variants. We intend to show that almost

everything that can be done with the variance as a measure of variability can be

replicated by using the Gini. With this target in mind we will mainly focus our

attention on one representation—the covariance-based approach—and limit the

coverage of other approaches.

The use of GMD as a measure of variability is justified whenever the investigator

is not ready to impose, without questioning, the convenient world of normality.

When the underlying distribution is univariate and normal, the sample mean and

variance are sufficient statistics to describe it and the GMD is redundant. Likewise,

when dealing with multivariate distributions, the case of multivariate normality is

fully described by the individual means, the individual variances, and Pearson’s

correlation coefficients. The GMD and the equivalents of the correlation coefficient

have nothing to add to the understanding of the data, nor to the analysis. However

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_1,
# Springer Science+Business Media New York 2013
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when the distribution is not multivariate normal, then, as Lambert and Decoster

(2005) put it—the GMD reveals more! As will be demonstrated in this book, it

reveals whether the relationships between random variables (as described by the

covariance and by the correlation) are symmetric or not, whether the population is

stratified and to what extent, whether the assumption of linearity in regression

analysis is supported by the data, and more. The use of GMD may add insight

and understanding of the data at hand. For example, it can be used whenever one

wants to see if the assumption that the underlying distribution is multivariate

normal holds, or if the regression model is truly linear. However it comes with a

price tag on it. It turns out that using the GMD as a substitute for the variance

implies that the number of economic models is doubled because every variance-

based model will now have beside it a Gini-based model that may give different

results. We will show that many of the properties of the variance-based models are

included as special cases of Gini-based models. As a result, we argue that if the

estimates of the variance-based and Gini-based models are close to each other then

we obtain reassurance that the model is robust in the sense that it is not sensitive to

the implicit assumptions imposed on the data by treating it as if the underlying

distribution is multivariate normal. On the other hand, if the estimates differ then it

is an indication that the implicit assumptions of the variance-based model are

responsible for the deviation. As far as we can see, in many cases using the Gini

methodology in addition to the variance-based methods will lead to a reduction in

the number of possibilities of generating “empirical proofs” that support the

researcher’s theory but are not supported by the data itself.

This book is a first attempt to present the family of parameters based on GMD

and to illustrate its applications in different areas, mainly in the areas of economics

and statistics. The main thrust is to “translate” the commonly used analyses based

on the variance and the parameters based on it into the Gini world. Parameters such

as the covariance and Pearson’s correlation coefficient, as well as methodologies

such as ANOVA and Ordinary Least Squares (OLS) regressions, are “translated”

where the variance is replaced by (the square of) the GMD, the covariance and

Pearson’s correlation are replaced by Gini covariance and Gini correlation,

ANOVA is changed to ANalysis Of GIni (ANOGI), and OLS regression is replaced

by Gini regression. As will be shown, the above “translation” gives rise to addi-

tional parameters and the alternative approach reveals more when the underlying

distribution deviates from the multivariate normal. The slogan of this book is

“(almost) everything you can do (with the variance), we can do better (with the

Gini).” By “doing better” we mean that the approach offers richer tools for statisti-

cal analyses and that the additional parameters that the Gini method offers enable

the researcher to adjust the statistical analysis to the needs of the area of research.

We argue that the convenience of the assumption of multivariate normality could

blur some of the issues that are relevant in several areas of research such as risk

analysis, income distribution, economics, and sociology. It should be stated that the

task of “translating” the variance world into the Gini regime is not yet completed. In

some sense we feel that we are touching the tip of the iceberg and plenty of
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additional theoretical work as well as user-friendly software are called for to fully

utilize the Gini methodology as an analytical tool.

One of the advantages of using the Gini methodology is that it provides a unified

system that enables the user to learn about various aspects of the underlying

distribution. Almost every property of the underlying distribution that the Gini

method enables us to present or test can also be described and tested using other

approaches but the advantage here is that we provide a systematic method and a

unified terminology.

Let us illustrate this point. Consider the methodology of estimating and verifying

a simple linear regression model. The Gini methodology enables the user to

estimate the regression coefficient, draw inferences on it, check whether the

model is linear, and verify that the residuals are normally distributed—all under

one systematic method.

The variance is the most popular measure of variability. There are two properties

which seem natural and are implicit when dealing with the variance: the symmetry

and the decomposition (to be detailed below). The Gini approach deviates from this

conventional (and convenient) approach. Understanding these two points will make

the ideas that are stressed in the book easier to follow.

(a) Symmetric relationship: There are two kinds of symmetric relationships that are

imposed in the conventional statistical analysis in general but are not followed

in this book. The first one is the symmetry of the variability measure with

respect to the underlying distribution and the second one is the symmetry in the

relationship between variables. The first symmetry can be described as requir-

ing that the variability of X will be equal to the variability of (�X). The

justification for not following this kind of symmetry is because some of

the subject matters that we are dealing with such as the areas of risk and income

distributions are governed by theories that call for asymmetric treatments of the

distributions. This issue is handled in Chap. 6 which presents the extended Gini

and in Chaps. 13, 17, and 19 which present applications in the areas of welfare

economics and finance and in econometrics. The second deviation from the

symmetry properties is concerned with the treatment of the relationship

between two random variables. Most measures of association are symmetric

with respect to the two variables, as is the case in cov(X, Y) ¼ cov(Y, X), even

if the underlying bivariate distribution is not symmetric. Symmetry between

random variables is a convenient property to have, but it comes with a price tag.

The price paid is in the value imposed on the correlation. To see this consider

two normally distributed random variables X and Y with a Pearson correlation

coefficient of (�1). A researcher not knowing what the underlying distribution

is may decide to use the exponential transformation to get eX and eY changing

the distributions to be lognormal. By doing that, the researcher inadvertently

reduces the Pearson correlation coefficient to �0.36 (De Veaux, 1976). We

argue that the change of the Pearson correlation from (�1) to (�0.36) should be

attributed to the symmetry imposed by the covariance. We can also reverse the

example. By taking the natural logarithm of two lognormally distributed
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random variables with a Pearson correlation coefficient of (�0.36) the

researcher changes the Pearson correlation coefficient to (�1). The above

example is a bit extreme and only rarely occurs in practice. Consider a more

plausible story. Given two normally distributed random variables with a

Pearson correlation of 1, a researcher transforms one of them into a binary

variable, a procedure intended to describe the participating/nonparticipating

dichotomy. This is a common practice when applying Instrumental Variable

procedure in regression analysis. In this case the researcher reduces the Pearson

correlation from 1 to 0.8. The conclusion from these two examples is that a

transformation can change the correlation, enabling the researcher to change the

conclusion of the research. The Gini approach offers a remedy to this problem.

There are two correlation coefficients defined between each pair of variables.

These two correlations are equal if the distributions are exchangeable up to a

linear transformation, which we will refer to as symmetric relationships.

Applying a transformation to a variable changes only one (Gini) correlation

coefficient leaving the other intact. Hence the difference in the correlations

enables one to see the vulnerability of the correlation. This issue will be dealt

with in Chaps. 3, 4, 8, 18, and 19.

There are at least two other major applications of having two (Gini)

correlations between each pair of variables instead of one. First, as will be

shown in Chap. 8, every optimization results in first order conditions that can be

described as “orthogonality conditions.” Those conditions can be interpreted as

setting a covariance to zero. Having two correlations (and covariances) between

two variables enables one to test whether the other covariance is also equal to

zero so that one can have a specification test with respect to the underlying

model. The second application is related to the properties of the decomposition

of Gini of a linear combination of random variables as is discussed next.

(b) Decompositions: There are two types of decompositions. One is the decompo-

sition of a variability measure of a linear combination of random variables

into the contributions of the individual variables and the contributions of the

relationships between them. The other decomposition is the one that decomposes

the variability of a population that is composed of several subpopulations into

the contributions of the subpopulations and some extra terms. In both cases the

decomposition of the GMD includes the structure of the decomposition of

the variance as a special case. We refer to the assumptions that lead to the

structure of the decomposition of the variance as hidden assumptions imposed

on the data that lead to the simplicity of the structure of the variance

decompositions. We refer to this property as the property of “revealing more.”

The Gini of a linear combination of random variables does not, in general,

decompose into two components as neatly as the variance does. (In the

variance decomposition one component is based on the individual variances

and the other is based on the correlations among the variables.) Instead, it

extracts more information about the underlying distributions, as will be

discussed in Chaps. 3 and 23.
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The decomposition of the Gini leads, under certain conditions, to a decomposi-

tion formula with the same structure as the decomposition of the variance. This fact

enables us to test for the hidden (implicit) assumptions that are leading to the

simplicity that has made the variance-based analysis so convenient. More specifi-

cally, the Gini of a population does not decompose neatly (i.e., additively) into

intra- and inter-group Ginis. For this reason it was rejected by several economists

who tried to imitate Analysis of Variance. As will be shown in this book, this

disadvantage may turn into an advantage. The decomposition of the Gini coefficient

of a population extracts more information from the underlying distribution than just

the inter- and intra-components. It gives a quantitative measure of the amount of the

overlapping between the subgroups which is important whenever one is interested

in stratification and/or in evaluating the quality of the classification of a general

population into groups. The decomposition will be discussed in Chap. 4 while the

empirical applications will be demonstrated in Chaps. 13 and 22.

The usefulness of the GMD and its contribution to our statistical analysis is

especially important whenever the concepts that are used are not symmetric by

definition. Among those concepts are regression in statistics and elasticity in

economics. The properties of the Gini enable one to check the validity of the

implicit use of symmetry whenever those concepts are used. In the regression

concept the use of the Gini plays an important role in checking whether the

assumptions that led to the estimates are supported by the data or not. For example,

the Gini methodology can be used to check whether the relationship between Y and

X is monotonic over the entire range of X or not by a simple graphical technique.

This will be demonstrated in Chaps. 5, 19, and 21.

Having listed these advantages of using the Gini, it is worth mentioning the

“cost” of using it. First, its use is cumbersome because sometimes the additional

information that the Gini offers may be redundant. Second, in order to use the Gini

one has to ignore some of the intuition and conventional wisdom that come with the

variance. As will be shown, the Gini describes the variability by two attributes:

the variate and its rank. For the economist, this should resemble the intuition that

comes with what is known as “the index number problem” that is taught in interme-

diate economic theory. The index number problem arises whenever one tries to

describe a phenomenon by two attributes: the price and the quantity of a commodity.

In these cases one attribute is kept unchanged, while the other is allowed to change.

Because in real life the two attributes can change simultaneously, the choice of

which attribute is held constant and which one is allowed to change may result in

some cases in contradicting conclusions. The cases of contradictions are the cases

that diverge from the analysis based on the variance, and remembering them may

help in understanding the intuition needed for evaluating the results.

An alternative approach to be taken when reading this book is to view the GMD

and the parameters that are related to it as representing several theories that

originate in the social sciences. Among these theories are (a) the expected utility

hypothesis which represents the main paradigm in the area of risk and social

welfare, (b) the relative deprivation theory which plays a major role in explaining

social unrest, and (c) mobility, horizontal equity, and similar concepts that are used
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in the social sciences. In this respect the book presents the essence of these theories

and advocates the use of the decomposition properties of the Gini so that one can

offer statistical tools for understanding, analyzing, and developing these theories.

These theories and the relationships with the Gini are presented in the applications

part of this book.

To be able to fully utilize the properties of the Gini we will not make any

assumptions concerning the distribution of the random variable throughout this

book. The only case in which we will assume a particular distribution is to illustrate

a point.

Finally, we wish to add an apology. Darling, in his Annals of Mathematical

Statistics paper (1957), writes:

The reader is advised that the relative amount of space and emphasis allotted to the various

phases of the subject do not reflect necessarily their intrinsic merit and importance, but

rather the author’s personal interest and familiarity. Also, for the sake of uniformity the

notation of many of the writers quoted has been altered so that when referring to the original

papers it will be necessary to check their nomenclature (Darling, 1957, p. 823).

We could not find better words for describing our approach in this book. Also,

we apologize in advance for not giving the appropriate credit to the appropriate

authors in some occasions. One serious difficulty is to define the meaning of an

innovation and to decide to whom to give the credit for it in this area of research.

The reason is that on top of independent developments, where researchers could not

read the language or were not aware of the developments in their or other areas,

there is a difficult issue in this crowded area. Is the person who wrote a formula in

passing the one who should be credited for it, or is it the person who correctly

interpreted it and developed its implications? In order to illustrate this issue let us

investigate the history of expressing the GMD as a covariance. The fact that one can

express GMD as a covariance and use the covariance properties to further develop

the theoretical aspects is in our opinion a major breakthrough.

As far as we know, the first step in this direction was to write the Gini as a

covariance without noticing that it actually is a covariance. This was done by

Corrado Gini (1914). The next step, some 40 years later, was to realize that Gini

can be expressed as a covariance, with no further implications. This fact was

realized by Stuart (1954). Fei, Ranis, and Kou (1978) constructed the Gini-

covariance, referring to it as pseudo-Gini. Pyatt, Chen, and Fei (1980) used the

term covariance in constructing the pseudo-Gini. The final breakthrough was made

by Lerman and Yitzhaki (1984) who pointed out that because the Gini can be

expressed as a covariance it is possible and helpful to use the properties of the

covariance in handling it. This observation opened the way to investigating the Gini

covariances and correlations and their properties.

On the anecdotal side, the person who triggered Lerman and Yitzhaki to write

the Gini as a covariance was an anonymous referee of Yitzhaki (1982a). He/she

argued that the covariance is more important than the variance in the area of

finance, and therefore a sentence should be added to say whether it is possible to

develop a covariance that is suitable for the Gini or not.
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Similar issues arose concerning the development of the extended Gini which was

discovered independently and from different angles by Donaldson and Weymark

(1980, 1983) and Yitzhaki (1983). Kakwani (1980) mentions the possibility of the

extended Gini in passing. Moreover, all the above-mentioned papers and

Chakravarty (1983) can be classified as the Gini response to Atkinson (1970)

who suggested an inequality measure that depends on a parameter. Clearly, there

can be other scenarios for describing the development of the extended Gini and the

expression of the Gini as a covariance. In order not to enter into such a debate, we

apologize in advance for not taking the appropriate actions to attribute each concept

to the original person who developed and coined it. In addition, in order to keep the

presentation flowing, and to avoid sidetracking the reader into what we consider as

dead end from the point of view of our target, some papers that may be important in

the future are only mentioned in passing.

The target audience of this book is mainly applied economists, statisticians, and

econometricians who are interested in applications for which the variance is not

suitable. These applications arise mostly (but not only) when the underlying

distribution deviates from normality. Possible areas of application are welfare

economics, finance, and general econometric theory. As will be seen in this book,

Gini-based analyses are robust to the asymmetry of the distribution and to the

existence of outliers. In addition, the use of the Gini allows one to identify and test

the existence of implicit assumptions about the underlying distributions that make

the variance-based analyses so simple to apply, yet may not be satisfied by the data,

or, alternatively, violate basic principles of economic theory.

The complexity and the different representations and applications of the GMD in

different fields forced us to use different notations to represent the GMD in different

areas. The reason is that in some areas it is convenient to use GMD/4 as the GMD,

and in other areas GMD/2 or simply GMD. This implies the need to carry constants

that affect all equations in a specific application and complicate the representation

without adding any content. To overcome this problem, we use different

representations of the GMD in different chapters and we will state in the introduc-

tion of each chapter which definition is used.

The book consists of two main parts. The first part (Chaps. 2–11) contains the

theory while the second part (Chaps. 12–22) deals with applications. The

applications chapters contain a short review of the needed theory to make them

readable on their own. The structure of the book is the following: In Chap. 2 we

provide the various definitions of the Gini. The Gini covariance, correlation, and

regressions are introduced in Chap. 3. In Chap. 4 we present the decompositions of

the Gini while Chap. 5 deals with the relation to the Lorenz and the concentration

curves. The extended Gini family of measures is introduced in Chap. 6. Next, two

chapters are devoted to Gini regression: the simple regression case is detailed in

Chap. 7 while the extension to the multiple regression case is detailed in Chap. 8.

The next three chapters are devoted to the statistical inference. Estimation of the

Gini-based parameters is the topic of Chap. 9, a selection of formal tests is

presented in Chap. 10, while tests that are related to the intersection of concentra-

tion curves are the topic of Chap. 11.
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The second part of the book contains applications of the Gini methodology in

various areas. We start with an introduction to the applications part (Chap. 12). In

Chap. 13 we demonstrate the role of the Gini coefficient in two major competing

theories that dominate the theoretical considerations in the area of income distribu-

tion, namely: the social welfare function approach and the theory of relative

deprivation.

In Chap. 14 we illustrate the use of the concentration curves and the Gini

methodology in the areas of taxation and progressivity of public expenditure.

Chapter 15 deals with the usefulness of several decompositions of the Gini and

the extendedGini in analyzing government policies by non-marginal analyses, while

in Chap. 16 the marginal analysis is illustrated. The applications in finance are the

topic of Chaps. 17 and 18. These applications are relevant whenever one is interested

in decision making under risk. Chapters 19–21 are devoted to applications of the

Gini regression: in Chap. 19we apply the simple Gini and extendedGini regressions,

in Chap. 20 the multiple regression is applied, and in Chap. 21 we apply the mixed

OLS, Gini, and extended Gini regressions. Chapter 22 deals with one application of

the GMD and the Gini coefficient in statistics—an application that replicates the

commonly used ANOVA and is denoted by ANOGI (ANalysis Of GIni). The last

chapter (Chap. 23) concludes and lists several topics for further research.

Readers who will read the book will find some repetitions between the theoreti-

cal and the applications parts of the book. The reason for those repetitions is that

each chapter in the applications part is written as a self-contained application. This

approach is intended to enable the specialist in a field to read the relevant applica-

tion chapter without having to read the whole book. Readers who want to see a

proof for an argument are referred to the theoretical part.
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Part I

Theory



Chapter 2

More Than a Dozen Alternative Ways

of Spelling Gini

Introduction

Gini’s mean difference (GMD) as a measure of variability has been known for over

a century.1 It has more than 14 alternative representations.2 Some of them hold only

for continuous distributions while others hold only for nonnegative variables. It

seems that the richness of alternative representations and the need to distinguish

among definitions that hold for different types of distributions are the main causes

for its sporadic reappearances in the statistics and economics literature as well as in

other areas of research. An exception is the area of income inequality, where it is

holding the position as the most popular measure of inequality. GMD was

“rediscovered” several times (see, for example, Chambers & Quiggin, 2007;

David, 1968; Jaeckel, 1972; Jurečková, 1969; Olkin & Yitzhaki, 1992; Kőszegi

& Rabin, 2007; Simpson, 1949) and has been used by investigators who did not

know that they were using a statistic which was a version of the GMD. This is

unfortunate, because by recognizing the fact that a GMD is being used the

researcher could save time and research effort and use the already known properties

of GMD.

The aim of this chapter is to survey alternative representations of the GMD. In

order to simplify the presentation and to concentrate on the main issues we restrict

the main line of the presentation in several ways. First, the survey is restricted to

This chapter is based on Yitzhaki (1998) and Yitzhaki (2003).
1 For a description of its early development see Dalton (1920), Gini (1921, 1936), David (1981,

p. 192), and several entries in Harter (1978). Unfortunately we are unable to survey the Italian

literature which includes, among others, several papers by Gini, Galvani, and Castellano. A survey

on those contributions can be found in Wold (1935). An additional comprehensive survey of this

literature can be found in Giorgi (1990, 1993). See Yntema (1933) on the debate between Dalton

and Gini concerning the relevant approach to inequality measurement.
2 Ceriani and Verme (2012) present several additional forms in Gini’s original writing that as

observed by Lambert (2011) do not correspond to the presentations used in this book.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_2,
# Springer Science+Business Media New York 2013
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quantitative random variables. As a result the literature on diversity which is mainly

concerned with categorical data is not covered.3 Second, the survey is restricted

to continuous, bounded from below but not necessarily nonnegative variables. The

continuous formulation is more convenient, yielding insights that are not as acces-

sible when the random variable is discrete. In addition, the continuous formulation

is preferred because it can be handled using calculus.4 As will be shown in Sect. 2.4

there is an additional reason for the use of a continuous distribution: there is an

inconsistency between the various tools used in defining the GMD when the

distribution is discrete. This inconsistency complicates the presentation without

adding any insight. To avoid problems of existence, only continuous distributions

with finite first moment will be considered. The distinction between discrete and

continuous variables will be dealt with in Sect. 2.4, while properties that are

restricted to nonnegative variables will be discussed separately whenever they

arise. Third, the representations in this chapter are restricted to population

parameters. We deal with the estimation issue in Chap. 9.

Finally, as far as we know these alternative representations cover most, if not all,

known cases but we would not be surprised if others turn up. The different

formulations explain why the GMD can be applied in so many different areas and

can be given so many different interpretations. We conclude this chapter with a few

thoughts about the reasons why Gini was “rediscovered” again and again and with

four examples that illustrate this point.

The structure of this chapter is as follows: Section 2.1 derives the alternative

representations of the GMD. Section 2.2 investigates the similarity between GMD

and the variance. Section 2.3 deals with the Gini coefficient and presents some of its

properties. In sect. 2.4 the adjustments to the discrete case are discussed and

Sect. 2.5 gives some examples. Section 2.6 concludes.

2.1 Alternative Representations of GMD

There are four types of formulas for GMD, depending on the elements involved: (a)

a formulation that is based on absolute values, which is also known to be based on

the L1 metric; (b) a formulation which relies on integrals of cumulative distribution

functions; (c) a formulation that relies on covariances; and (d) a formulation that

3 For the use of the GMD in categorical data see the bibliography in Dennis, Patil, Rossi, Stehman,

and Taille (1979) and Rao (1982) in biology, Lieberson (1969) in sociology, Bachi (1956) in

linguistic homogeneity, and Gibbs and Martin (1962) for industry diversification. Burrell (2006)

uses it in informetrics, while Druckman and Jackson (2008) use it in resource usage, Puyenbroeck

(2008) uses it in political science while Portnov and Felsenstein (2010) in regional diversity.
4 One way of writing the Gini is based on vectors and matrices. This form is clearly restricted to

discrete variables and hence it is not covered in this book. For a description of the method see

Silber (1989).
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relies on Lorenz curves (or integrals of first moment distributions). The first type is

the most convenient one for dealing with conceptual issues, while the covariance

presentation is the most convenient whenever one wants to replicate the statistical

analyses that rely on the variance such as decompositions, correlation analysis,

ANOVA, and Ordinary Least Squares (OLS) regressions.

Let X1 and X2 be independent, identically distributed (i.i.d.) continuous random

variables with F(x) and f(x) representing their cumulative distribution and the

density function, respectively. It is assumed that the expected value m exists;

hence limt!�1tF(t) ¼ limt!1t[1 � F(t)] ¼ 0.

2.1.1 Formulas Based on Absolute Values

The original definition of the GMD is the expected absolute difference between two

realizations of i.i.d. random variables. That is, the GMD in the population is

D ¼ E jX1 � X2jf g; (2.1)

which can be given the following interpretation: consider an investigator who is

interested in measuring the variability of a certain property in the population. He or

she draws a random sample of two observations and records the absolute difference

between them.

Repeating the sampling procedure an infinite number of times and averaging

the absolute differences yield the GMD.5 Hence, the GMD can be interpreted as

the expected absolute difference between two randomly drawn members from the

population. This interpretation explains the fact that for nonnegative variables

the GMD is bounded from above by twice the mean because the mean can be

viewed as the result of infinite repetitions of drawing a single draw from a distribu-

tion and averaging the outcomes, while the GMD is the average of the absolute

differences between two random draws. Note, however, that this property does not

necessarily hold for random variables that are not restricted to be nonnegative.

Equation (2.1) resembles the variance, which can be presented as

s2 ¼ 0:5EfðX1 � X2Þ2g : (2.2)

Equation (2.2) shows that the variance can be defined without a reference to a

location parameter (the mean) and that the only difference between the definitions

of the variance and the GMD is the metrics used for the derivations of the concepts.

That is, the GMD is the expected absolute difference between two randomly drawn

5 See also Pyatt (1976) for an interesting interpretation based on a view of the Gini as the

equilibrium of a game.
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observations, while the variance is the expected square of the same difference. It is

interesting to note that replacing the power 2 by a general power r in (2.2) is

referred to as the generalized mean difference (Gini, 1966; Ramasubban, 1958,

1959, 1960). However, as far as we know, they were not aware of the fact that when

r ¼ 2 it is identical to the variance.

An alternative presentation of the GMD that will be helpful when we describe

the properties of the Gini regressions and their resemblance to quantile regressions

can be developed in the following way:

Let Q and X be two i.i.d. random variables; then by the law of iterated means the

GMD can be presented as the average (over all possible values of Q) of all absolute

deviations of X from Q. In other words

D ¼ EQEXjQ jX� Qjf g: (2.3)

Next, we note that Q in (2.3) can represent the quantile of the distribution. The

reason is that the quantile can be assumed to have the same distribution function as X

does, and can be assumed to be independent of X. To see that let FX(Q) ¼ P; then

FX(Q) is uniformly distributed on [0, 1]. It follows thatQ ¼ F�1
X (P) is distributed as X,

GQ(t) ¼ P(Q � t) ¼ PðF�1
X (P) � t) ¼ P(P � FX(t)) ¼ FX(t),

and independent of it. Therefore the term EX|Q{|X � Q|} in (2.3) can be viewed as

the conditional expectation of the absolute deviation from a given quantile Q of the

distribution of X. Hence equation (2.3) presents the GMD as the average absolute

deviation from all possible quantiles.

From (2.3) one can see that minimizing the GMD of the residuals in a regression

context (to be discussed in Chap. 7) can be interpreted as minimizing an average of
all possible absolute deviations from all possible quantiles of the residual. We note

in passing that (2.3) reveals the difference between the GMD and the expected

absolute deviation from the mean. The former is the expected absolute difference

from every possible value of Q, while the latter is the expected absolute deviation

from the mean. We will return to this point in Chap. 23.

A slightly different set of representations relies on the following identities: let X1

and X2 be two i.i.d. random variables having mean m. Then

X1 � X2j j ¼ X1 þ X2ð Þ � 2Min X1;X2f g ¼ Max X1;X2f g �Min X1;X2f g
¼ 2Max X1;X2f g � X1 þ X2ð Þ: (2.4)

Using the first equation from the left of (2.4), the GMD can be expressed as

D ¼ 2m� 2E Min X1;X2f g½ �: (2.5)
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That is, the GMD is twice the difference between the expected values of one

random draw and the minimum of two random draws from the distribution.

Alternatively, we can use the middle part of (2.4) to write

D ¼ E MaxfX1;X2g½ � � E MinfX1;X2g½ �: (2.6)

Here, the interpretation of the GMD is as the expected difference between the

maximum and the minimum of two random draws. Finally, one can use the right-

hand side of (2.4) to write the GMD as twice the expected value of the maximum of

two random draws minus twice the expected value of one random draw. These

presentations can be easily extended to involve more than two draws, leading to the

extended Gini (Yitzhaki, 1983). (This issue will be discussed in Chap. 6.) They can

be useful whenever the interpretation of the GMD is related to extreme value

theory.

2.1.2 Formulas Based on Integrals of the Cumulative
Distributions

This section focuses on representations of the GMD that are based on integrals of

the cumulative distribution. The basic equation needed in order to develop such

representations is an alternative expression for the expected value of a distribution.

Claim Let X be a continuous random variable distributed in the range [a,1). Then

the expected value of X is given by6

m ¼ aþ
ð1
a

1� F xð Þ½ �dx: (2.7)

Proof The standard definition of the expected value is m ¼ Ð1
a

xf xð Þdx:Using
integration by parts with u ¼ x and v ¼ � [1 � F(x)] yields (2.7).

Using (2.7) and the fact that the cumulative distribution of the minimum of two

i.i.d. random variables can be expressed as {1 � [1 � F(x)]2} we can rewrite (2.5) as

D ¼ 2

ð
1� F tð Þ½ �dt� 2

ð
1� F tð Þ½ �2dt; (2.8)

and by combining the two integrals

6 The GMD is based on the difference of two such formulae, so this restriction on the range (to be

bounded from below) does not affect the GMD. See Dorfman (1979).
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D ¼ 2

ð
F tð Þ 1� F tð Þ½ �dt: (2.9)

See Dorfman (1979). Equation (2.9) can be given an interesting interpretation.

Let Fn(x) be the empirical cumulative distribution of X based on a sample of n

observations. Then for a given x, Fn(x) is the sample mean of n i.i.d. Bernoulli

variables with p ¼ F(x). The variance of Fn(x) is equal to

s2FnðxÞ ¼ F xð Þ 1� F xð Þ½ �=n (2.10)

(Serfling, 1980, p. 57) and the GMD can be interpreted as 2n
Ð
s2FnðxÞdx.

A similar (and older) variant of this formula is

D ¼ 2nE

ð
Fn xð Þ � F xð Þ½ �2dx

� �
; (2.11)

which is the original Cramer–Von Mises–Smirnov criterion for testing goodness of

fit of a distribution.7 In some sense (2.11) can be viewed as a “dual” approach to the

central moments of a distribution. Central moments are linear in the probabilities

and power functions of deviations of the variate from its expected value. In the

GMD, the power function is applied to the deviation of the cumulative distribution

from its expected value while the linearity is applied to the variate itself. Hence the

“duality.”8 This interpretation also suggests a possible explanation to some robust-

ness properties of the “dual” approach. The range of F(·) is [0, 1] while the range of

the variate can be unlimited. Using a power function as is done in the regular

moments may lead to unboundedness of the statistics, while all the moments of the

dual approach are bounded, provided that the mean is bounded.

7 This formula, which is a special case of the statistic suggested by Cramer, plays an important role

in his composition of elementary errors although it seems that he did not identify the implied GMD

(see Cramer, 1928, pp. 144–147). Von Mises (1931) made an independent equivalent suggestion

and developed additional properties of the statistic. Smirnov (1937) modified the statistic to be

w2 ¼ n
Ð
Fn xð Þ � F xð Þ½ �2dF xð Þ.

Changing the integration from dx to dF(x) eliminates the connection to the GMD and creates a

distribution-free statistic. The above description of the non-English literature is based on the

excellent review in Darling (1957). Further insight about the connection between the Cramér–Von

Mises test can be found in Baker (1997) which also corrects for the discrepancy in calculating the

GMD in discrete distributions.
8 This “duality” resembles the alternative approach to the expected utility theory as suggested by

Yaari (1988) and others. While expected utility theory is linear in the probabilities and nonlinear in

the income, Yaari’s approach is linear in the income and nonlinear in the probabilities. In this

sense, one can argue that the relationship between “dual” approach and the GMD resembles the

relationship between expected utility theory and the variance. Both indices can be used to

construct a specific utility function for the appropriate approach (the quadratic utility function is

based on the mean and the variance while the mean minus the GMD is a specific utility function of

the dual approach).
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Finally, we can write (2.9) as

D ¼ 2

ð1

a

ðx

a

fðtÞdt
ð1

x

fðtÞdt
2
4

3
5dx; (2.12)

which is the way Wold (1935) presented it.

An additional presentation byWold (1935, equation 12, p. 47)9 which is valid for

nonnegative variables is

D ¼ 2

ð1

0

ðt

0

F(u)du

2
4

3
5dF(t): (2.13)

Equation (2.13) is listed for completeness.

2.1.3 Covariance-Based Formulas

It is well known that the variance is a special case of the covariance, because it can

be written as var(X) ¼ cov(X, X). In this section we show that the GMD can be

expressed as a covariance as well. Once the GMD is written as a covariance, the

properties of the covariance are called for to define the Gini correlation and the

decomposition of a GMD of a linear combination of random variables, which

naturally leads to Gini regressions, Gini Instrumental Variable, time-series Gini

analysis, and numerous other applications. Generally speaking, one can take an

econometrics textbook that is based on the variance and rewrite (most of) it in terms

of the GMD. Another advantage of the covariance presentation is that the covari-

ance formula opens the way to the decomposition of the Gini coefficient (to be

defined later) of an overall population into the contributions of several subgroups.

In addition, it opens the way to the extended Gini family of measures of variability

(to be discussed in Chap. 6), which means replicating (almost) everything that was

developed with the Gini and finding out which properties carry on to an infinite

number of measures of variability.

Let us start with presentation (2.9). Applying integration by parts to (2.9), with

v ¼ F(t) [1 � F(t)] and u ¼ t, one gets, after deleting zeros and rearranging terms,

D ¼ 2

ð
F tð Þ 1� F tð Þ½ �dt ¼ 4

ð
t F tð Þ � 0:5½ �f tð Þdt: (2.14)

9Wold (1935) used a slightly different presentation, based on Stieltjes integrals.
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Recall that the expected value of F, which is uniformly distributed on [0, 1], is

0.5. Therefore one can rewrite (2.14) as

D ¼ 4E X F Xð Þ � E F Xð Þ½ �ð Þf g ¼ 4 cov X; F Xð Þ½ �: (2.15)

Equation (2.15) lets us calculate the GMD using a simple regression program as

will be shown next.10 Recall that F(X) is uniformly distributed on [0, 1]. Therefore,

cov[F(X), F(X)] ¼ 1/12 (a constant) and we can write the GMD as

D ¼ 1=3ð Þcov X; F Xð Þ½ �=cov F Xð Þ; F Xð Þ½ �: (2.16)

In order to gain some intuition assume that the observations are arrayed in

ascending order (say, by height as in the case of soldiers in a parade) with equal

distance between each two observations (soldiers). The following proposition

summarizes two interpretations of the GMD.

Proposition 2.1

(a) The GMD is equal to one-third of the slope of the OLS regression curve of the
observed variable (height, the dependent variable) as a function of the
observation’s position in the array (F(X), the explanatory variable).

(b) The GMD is a weighted average of the differences in, say, heights between
adjacent soldiers (alternatively, it is a weighted average of the slopes defined
by each two adjacent heights in the array). The weights are symmetric around
the median, with the median having the highest weight.

Proof of (a) Trivial. Recall that the OLS regression coefficient in a linear regres-

sion model is given by

b ¼ cov(Y,X)

cov(X,X)

and see (2.16) above.

Proof of (b) Let X(p) be the height of a soldier as a function of his

position, p. For example, X(0.5) is the height of the median soldier. That is,

P(X < X(p)) ¼ p ¼ F(X(p)). Note that X(p) is the inverse of the cumulative

10 See Lerman and Yitzhaki (1984) for the derivation and interpretation of the formula, see Jenkins

(1988) and Milanovic (1997) on actual calculations using available software, and see Lerman and

Yitzhaki (1989) on using this equation to calculate the GMD in stratified samples. As far as we

know, Stuart (1954) was the first to notice that the GMD can be written as a covariance. However,

his findings were confined to normal distributions. Pyatt, Chen and Fei (1980) also write the GMD

as a covariance. Sen (1973) uses the covariance formula for the Gini, but without noticing that he is

dealing with a covariance. Hart (1975) argues that the moment-generating function was at the heart

of the debate between Corrado Gini and the western statisticians. Hence, it is a bit ironic to find

that one can write the GMD as some kind of a central moment.
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distribution of X at p. Writing explicitly the numerator in (2.16) we get

cov(X, p) ¼ R
X(p)(p � 0.5)dp and by using integration by parts with u ¼ X(p)

and v ¼ (p � 0.5)2/2 we get

cov X; pð Þ ¼ X pð Þ p� 0:5ð Þ2=2j10 � 0:5

ð
X’ pð Þ p� 0:5ð Þ2dp:

Substituting X(1) � X(0) ¼ R
X0(p)dp, where X0 denotes a derivative, we get

cov X; pð Þ ¼ 0:5

ð
X’ pð Þp 1� pð Þdp: (2.17)

Equation (2.17) shows that the GMD is equal to the weighted average of the

slopes X0(p) and the weighting scheme p(1 � p) is symmetric in p around

the median (p ¼ 0.5). The maximum weight is assigned to the median (p ¼ 0.5),

and the weights decline the farther the rank of the observation gets from the median.

A consequence of (2.17) is that the flatter the density function of X is, the larger

the GMD becomes (which is intuitively clear for a measure of spread). To sum up,

according to these presentations the GMD is the weighted average change in a

random variable as a result of a small change in the ranks. Because X(p) is the

inverse of the cumulative distribution it is easy to see that X’ pð Þ ¼ 1

f(x)
dx. That is,

the slope is the reciprocal of the density function.

Equation (2.15), the covariance representation of the GMD, can be used to show

that R-regressions (Hettmansperger, 1984) are actually based on minimizing the

GMD of the residuals in the regression. To see that, note that the target function in

R-regression is to minimize ∑ieiR(ei), where ei is the error term of the i-th

observation in the regression while R(ei) is its rank. Note that the mean of the

residuals is equal to zero, and that the rank of the variable represents the cumulative

distribution in the sample. Taking into account those facts, it is easy to see that

R-regression is actually based on minimizing the GMD of the residuals. Therefore

some properties of these regressions can be traced to the properties of the GMD.We

will further elaborate on this point in Chap. 7.

We will be using the covariance formula of the GMD extensively in this book. It

makes it very natural and convenient to “translate” the variance-based parameters

such as the regression and the correlation coefficients into the Gini language. It is

interesting to note that for the discrete case these facts were already mentioned in

Gini (1914) and were repeated in Wold (1935). For the continuous case one can find

the covariance presentation in Stuart (1954). Fei, Ranis, and Kou (1978)

constructed the Gini-covariance, referring to it as pseudo-Gini. Pyatt, Chen, and

Fei (1980) used the term covariance in constructing the pseudo-Gini. The contribu-

tion of Lerman and Yitzhaki (1984) is in recognizing the implications of the term

covariance when dealing with the decomposition of the variability measure and in

producing the additional parameters which are based on it—a step that opened the

way to applying the GMD method in the multivariate case.
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2.1.4 Lorenz Curve-Based Formulas

The fourth set of representations of the GMD is based on the Absolute Lorenz

Curve (ALC), which is also referred to as the generalized Lorenz curve.11 The ALC

and the concentration curve play important roles in the understanding of the

compositions and the contributions of different sections of the distribution to the

GMD and other related parameters such as Gini covariance and Gini correlation.

Therefore they will be discussed in detail in Chap. 5. In this section we briefly

mention the Lorenz curve-based formulas. There are several definitions of the ALC.

We follow Gastwirth’s (1971, 1972) definition, which is based on the inverse of the

cumulative distribution. Let F X pð Þð Þ ¼ p; then X pð Þ ¼ F�1ðpÞ. The ALC is plot-

ted as follows: p is plotted on the horizontal axis while the vertical axis represents

the cumulative value of the variate, �1
R
pX(t)dt. The familiar (relative) Lorenz

curve (LC) is derived from the ALC by dividing the cumulative value of the variate

by its expected value. The vertical axis is then (1/m)�1
R
pX(t)dt. The ALC has the

following properties:

1. The ALC passes through (0, 0) and (1, m). The LC passes through (0, 0) and

(1, 1).

2. The derivative of the curve at p is X(p), which is the inverse of the cumulative

distribution function; hence the curve is increasing (decreasing) depending on

whether X(p) is positive (negative). Because X(p) is always a nondecreasing

function of p the ALC is convex.

Figure 2.1 presents a typical ALC, the curve OAB. The slope of the line

connecting the two extremes of the curve is m. We refer to this line as the Line of

Equality (LOE), because when all observations are equal, the curve coincides with

the line. The line OEGB in Fig. 2.1 represents the LOE. It can be shown (details will

be given in Chap. 5) that the area between LOE and the ALC, OAB is cov(X, F(X))

(that is, one-fourth of the GMD). We will return to this topic when dealing with the

properties of ALC in Chap. 5.

As far as we know, we have covered all known interesting presentations of the

GMD. The rest of this chapter is intended to supply some intuition and to compare

the GMD with the variance.

11 The term “generalized Lorenz curve” (GLC) was coined by Shorrocks (1983). Lambert and

Aronson (1993) give an excellent description of the properties of GLC. However, it seems that the

term “absolute” is more intuitive because it distinguishes the absolute curve from the relative one.

Hart (1975) presents inequality indices in terms of the distribution of first moments, which is

related to the GLC.
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2.2 The GMD and the Variance

In this section we investigate the similarities and the differences between the GMD

and the variance. As will be seen, on one hand they share many properties, but on

the other hand there are some fundamental differences.

2.2.1 The Similarities Between GMD and the Variance

The first similarity between the GMD and the variance is the fact that both can

be written as covariances. The variance of X is cov(X, X), while the GMD of X is

cov(X, F(X)). This similarity serves as the basis for the ability to “translate” the

variance world into the Gini world.

The second similarity is the fact that the decomposition of the variance of a

linear combination of random variables is a special case of the decomposition of the

GMD of the same combination. The decomposition of the GMD includes some

extra parameters that provide additional information about the underlying distribu-

tion, as will be developed in Chap. 4. If these additional parameters are equal to

Fig. 2.1 The absolute Lorenz curve. Source: Yitzhaki, 1998, p. 21. Reprinted with permission by

Physica Verlag, Heidelberg
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zero then the decompositions of the GMD and the variance have identical

structures. This property makes the GMD suitable for testing implicit assumptions

that lead to the convenience of using the variance. This property is also the base for

the claim that was put forward by Lambert and Decoster (2005) that “the Gini

reveals more.”

The third similarity is the fact that both the variance and the GMD are based on

averaging the distances between all pairs of observations (see (2.1), (2.2), and

Daniels, 1944, 1948) or, alternatively, averaging the distances between random

draws of two i.i.d. random variables. However, the difference between them is in

the distance function used. The effects of the distance functions on the properties of

the indices will be illustrated when we deal with the properties of OLS and the Gini

regression coefficients in Chap. 7. The source of this difference will be discussed in

the next section.

2.2.2 The Differences Between the GMD and the Variance:
City Block vs. Euclidean

Let Dxk denote the difference between adjacent observations. That is, Dxk ¼ Xkþ1

�Xk, where the observations are arranged in an increasing order. Then for any two

ordered observations Xi > Xj

Xi � Xj ¼
Xi�1

k¼j

Dxk: (2.18)

TheGMDand the variance can be presented asweighted averages of these distances

between adjacent observations.12 In both cases the weighting scheme attaches the

highest weight to the mid-rank observation (i.e., the median), and the weights decline

symmetrically the farther the rank of the observation is from the mid-rank.

The fundamental difference between the two measures of variability is attributed

to the distance function they rely on. The GMD’s distance function is referred to

as the “city block” distance (or L1 metric), while the variance’s distance is

Euclidean. It is interesting to note that other measures of variability (e.g., the

mean deviation) also rely on the L1 metric, but they do not share the weighting

scheme caused by the averaging of differences between all pairs of observations.

To shed some light on the difference between the distance functions, note that the

most basic measure of variability is the range, which is equivalent to the simple

12 In the case of the GMD, the weights are not functions of Dxk so that it is reasonable to refer to

them as weights. In the case of the variance, the “weights” are also functions of Dxk which makes

the reference to them as weights to be incorrect. We refer to them as weights in order to compare

with the GMD. See Yitzhaki (1996).
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sum of the distances between adjacent observations, so that we end up with the

difference between the most extreme parts of the distribution. If the distributions

are restricted to have only two observations then the variance and the GMD

(and all other measures of variability) will order all distributions in accordance

with the ordering of the range. However, the range suffers from two major

deficiencies: (1) it is not sensitive to the distribution of the non-extreme

observations and (2) there are many important distributions with an infinite range.

In order to illustrate the difference between the distance functions embodied in

the GMD and the variance one can ask, for a given range, what characterizes the

distribution with the smallest/largest variance (GMD). Alternatively, for a given

variance (GMD) one can ask what characterizes the distribution with the smallest/

largest range. Presumably by answering those questions we will be able to form an

opinion as to which distance function is more appropriate for a given situation and

which one reflects our intuition better. To illustrate, let us restrict the distributions

to have only three possible values and assume a given (normalized) range (equals to

1 in our example) so that the discussion is restricted to distributions of the type: [0,

d, 1]. Which d will maximize or minimize each variability index? Ignoring

constants, the GMD is

D(d) ¼
XX

jXi � Xjj ¼ 1þ dþ j1� dj; (2.19)

and it equals 2 regardless of the value of d. (More generally, it is equal to twice the

range). Thus the position of the middle observation does not change the GMD.

Repeating the same exercise with the variance yields (again, ignoring constants)

s2ðdÞ ¼ 1þ d2 þ ð1� d)2 (2.20)

and the variance is maximized for d ¼ 0 or 1 and minimized for d ¼ 0.5. That is,

for a given range, the more equal the distances defined by adjacent observations are,

the smaller is the variance. The conclusion is that the variance is more sensitive to

the variability in Dxi than the GMD. In other words, if one of the differences will be

extremely large the variance will be affected by it more than the GMD. This fact is

responsible for the sensitivity of the variance to extreme observations.

An alternative way to illustrate the difference between the variance and the

GMD can be presented geometrically. Let d1 be the difference between the second

and first observations and let d2 be the difference between the third and second

observations. Figure 2.2 presents an example of equal GMD and equal variance

curves. That is, we allow the range to vary and instead, we are asking what should

d1 and d2 be so that we get equal Ginis or equal variances. The horizontal axis

represents d1 while the vertical axis represents d2. The range, of course, is equal to
d1 + d2. Gini (2.19) becomes 1 + d1 + d2 while the variance (2.20) is 1þ d1

2

þ d2
2. By changing the value of the GMD or the variance, one gets parallel curves

of different distances from the origin, which can be referred to as equi-variance

(GMD) curves. The point A is on the equi-GMD curve, so that all the points on the
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graph have a value of GMD that is equal to the GMD at A. The points B and C are

on the equi-variance curve. (In Fig. 2.2 the chosen value is 2).

As can be seen, the two measures represent different types of curves of equal

distances. Imagine you are in a city. If you are allowed to only move in the east/west

or north/south directions then you are in a GMD (city block) world. If, on the other

hand, you are allowed to move in any direction you want, and you are Pythagorean,

then you are in a variance world. It is hard to determine in general which distance

function should be preferred. If one is traveling on the sea then the variance metric

makes sense. However, the money metric which is extensively used by economists

resembles the city block metric because the distance function embodied in the

budget constraint is identical to the distance function of the GMD. One does not get

a discount for spending equally on two commodities, as is the case of the variance

(see Deaton, 1979; Jorgenson & Slesnick, 1984; McKenzie & Pearce, 1982 on uses

of the money metric in economics). Hence when it comes to choosing a metric, the

natural choice for the economists should be the GMD-type metric because spending

money and the budget constraint follow the money metric rules.

The implication of the difference in metrics can also be seen from the following

question which should be answered intuitively, without calculations. Consider the

following distributions: [0, 0, 1] vs. [0, 0.575, 1.15]. Which distribution portrays a

higher variability? If your intuitive answer points to the former (latter) distribution

then you want to be in a variance (GMD) world (the variances are 0.222 and 0.220,

respectively, while the Ginis are 0.667 and 0.767, respectively). The extension to

more than three observations is straightforward.

This difference is responsible for the sensitivity of OLS regression to extreme

observations and for the robustness properties of the GMD regressions as will be

discussed in Chap. 7. Another implication of the difference in metrics is that the

Fig. 2.2 Equal GMD and

variance curves. Source:
Yitzhaki, 2003, p. 292.

Reprinted with permission by

Metron International Journal

of Statistics
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GMD exists whenever the expected value exists while the existence of the variance

requires the existence of a second moment.

It is interesting to note that if the underlying distribution is normal, then the

increase in the distance between adjacent observations when moving from the

middle to the extremes is identical to the decrease in the weight due to being farther

away from the median, so that each observation gets an equal weight (Yitzhaki,

1996). Our conjecture is that this property leads to the statistical efficiency of

variance-based statistics in cases of normality: the weights are distributed equally

among observations. The main conclusion from the above discussion is that it is not

obvious which metric is the preferred one, and the subject matter one is dealing with

should also be taken into account when considering the appropriate metric.

Finally, an important property of the GMD is that it is bounded from above by
2ffiffi
3

p sX (as is shown below). The advantage of having the bound from above by a

function of the standard deviation is that whenever the standard deviation

converges to zero, so does the GMD. Note that

1 � r(X,F(X)) ¼ cov(X,F(X))

sX sF
¼ DX

4 sX sF
:

Recall that F is uniformly distributed. Hence its standard deviation is equal to
1ffiffiffiffi
12

p . Therefore we get the bound

DX � 2ffiffiffi
3

p sX: (2.21)

Note that if X is uniformly distributed on [0, 1] then r(X,F(X)) = r(X,X) = 1

and (2.21) holds as equality. This implies that (a) it is impossible to improve the

bound and (b) for the uniform distribution the GMD is a constant multiplied by the

standard deviation. (A similar case occurs under the normality, where the GMD

¼ 2s=
ffiffiffiffiffi
p

p
.)

Our main purpose in this book is to imitate the applications of variance-based

methods. Equation (2.21) enables us to simplify the analysis in this book by

restricting the distributions to those with a finite lower bound. The reason for the

above statement is that any convergence property that can be attributed to the

variance can also be proved for the GMD. For additional bounds on the GMD see

Cerone and Dragomir (2005, 2006) and Dragomir (2010).

We mention, for completeness, that there is also a bound which is related to the

mean absolute deviation (MAD). The bound can be derived from

1

2

1

n

Xn
i¼1

jxi � �xj � 1

n2

X
i<j

jxi � xjj � 1

n

Xn
i¼1

jxi � �xj: (2.22)

For details see Cerone and Dragomir (2006). Further discussion on the relation-

ship between MAD and GMD will be given in Chap. 23.
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2.3 The Gini Coefficient

The most well-known member of the Gini family is the Gini coefficient. It is mainly

used to measure income inequality. The Gini coefficient can be defined in two

alternative ways:

(a) The Gini coefficient is the GMD divided by twice the mean. For this definition

to hold, the mean must be positive.

(b) The Gini coefficient, also known as the concentration ratio, is the area enclosed

between the 45� line and the actual Lorenz curve divided by the area between

the 45� line and the Lorenz curve that yields the maximum possible value that

the index can have. This definition which is based on the areas enclosed by the

actual and potential Lorenz curves holds for nonnegative variables only. (Zenga

(1987) describes the historical development of the connection between the

concentration ratio and the GMD.)

There are two differences between the two alternative definitions. The first differ-

ence is that the first definition applies only when the expected value of the variable is

positive while the second imposes the restriction that the variable is bounded to be

nonnegative (otherwise the maximum inequality may be unbounded). The second

difference is that the first definition is valid only for continuous distributions while the

second definition has a built-in correction for discrete distributions with finite number

of observations. To see that assume that the distribution is composed of n observations.

Then the upper bound of the Gini coefficient is (n � 1)/n. (It is attained when all

observations except one are equal to zero). As a result, the area enclosed between the

45� line and the Lorenz curve is divided by (n � 1)/n. This correction plays a similar

role as the correction for degrees of freedom.

The Gini coefficient was developed independently of the GMD, directly from

the Lorenz curve and for a while it was called “the concentration ratio.” Gini (1914)

has shown the connection between the GMD and the concentration ratio. Ignoring

the differences in definitions, the relationship between the GMD and the Gini

coefficient is similar to the one between the variance and the coefficient of varia-

tion, CV ¼ s
m , a property that was already known in 1914. That is, the Gini

coefficient is a normalized version of the GMD and it is unit-free (measured in

percent). In order to calculate it one only needs to derive the GMD, and then easily

convert the representation into a Gini coefficient by dividing by twice the mean.

The best known version of the Gini coefficient is as twice the area between the

45� line and the Lorenz curve (definition (b) above). For this definition the range of
the coefficient is [0, 1], with 0 representing perfect equality while 1 is reached when

one observation is positive and all other observations are zero. Similar to the

coefficient of variation, the Gini coefficient can be defined for distributions with

negative lower bound, provided that the expected value is positive (definition (a)

above). However in this case the upper bound for the Gini coefficient can be greater

than one. Also similar to the coefficient of variation, the Gini coefficient is not

defined for distributions with expected value of zero. Being a unit-free index, the

Gini coefficient is unaffected by multiplication of the variable by a constant.
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Although the normalization seems innocent—normalization of the units in

which the Gini is measured—it may have implications on the notion of inequality

and variability. It is worth mentioning that reference to “variability” or “risk” (most

common among statisticians and finance specialists) implies the use of the GMD,

whereas reference to “inequality” (usually in the context of income distribution)

implies the use of the Gini coefficient. To see the implication of the normalization,

assume a distribution that is bounded in the range [a, b]. Try to answer the

following question: What characterizes a distribution that is the most unequal

according to a relative measure (either the Gini coefficient or the coefficient of

variation), and what characterizes a distribution that is most unequal according to

an absolute measure like the GMD or the variance? It is easy to see that when an

absolute measure is used to rank inequality or variability, then the most unequal

distribution is the one with half of the population at a and the other half at b. On the

other hand, the answer according to a relative measure will be that the most unequal

distribution is the one with almost all the population at a and only a tiny fraction at

b. Therefore when dealing with issues of justice, a minor unnoticeable change may

reflect a major change of opinion. By a seemingly innocent division by (twice) the

mean one can switch between what Kolm (1976) refers to as “leftist” and “rightist”

measures of inequality, a point that we will discuss at length in Chap. 13 when we

deal with applications of the Gini methodology.

2.4 Adjustments Needed for Discrete Distributions

The discussion so far was limited to continuous distributions. When dealing with

discrete distributions, or with empirical distributions that are discrete in nature, or

even when the distributions are continuous while one is interested to do a decom-

position of the variability according to population subgroups, one encounters

a problem of inconsistent definitions of the basic concepts which imply a serious

problem of incompatible calculations. For a survey of some of the problems arising

in discrete distributions see Niewiadomska-Bugaj and Kowalczyk (2005).

In what follows we point out two inconsistencies. The first is that the definitions

of the absolute and relative Lorenz curves and the cumulative distribution are

incompatible (to be detailed below) and the second is similar to the issue of degrees

of freedom.

2.4.1 Inconsistencies in the Definitions of Lorenz Curves
and Cumulative Distributions

Assume the following pairs of observed values and their probabilities of occur-

rence: (x1, p1), . . ., (xk, pk), . . ., (xn, pn). For simplicity of exposition we assume

that the observations are ordered in a nondecreasing order. That is, if i < j
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then xi � xj. This means that we observe at most n points on the cumulative

distribution and on the absolute (or relative) Lorenz curve. We also assume that

at least one pk is not equal to the others. The cumulative distribution at xk is

Fk ¼ F(xkÞ ¼
Xk
i¼1

pi: (2.23)

The commonly used definition of a cumulative distribution function (cdf) is as a

step function, continuous from the right, as shown on the left side of Fig. 2.3 for the

case n ¼ 3.

That is, the horizontal axis representing the variate is assumed to be continuous

almost everywhere, while the vertical axis representing the cumulative distribution

is discontinuous and jumps between the points. The right-hand side of Fig. 2.3

presents the ALC. In the absolute (or relative) Lorenz curve the horizontal axis

represents the cdf while the vertical axis represents the cumulative value of the

weighted mean. Formally, the vertical axis of the absolute Lorenz curve, qk, is

qk ¼ q(FkÞ ¼
Xk

i¼1
pixi: (2.24)

When plotting a Lorenz curve, the usual procedure is to connect the points

(Fk, qk) by linear segments, making the curve continuous in F, and discontinuous in

the variate (which is the slope of the Lorenz curve). These definitions of the

cumulative distribution and the Lorenz curve are not compatible with each other

because if we use definition (2.23) in plotting the Lorenz curve, we should plot the

Lorenz curve as a step function and this would change the value of the Gini

coefficient. This complicates the curves, the convexity property is lost, and even

if this treatment solves the problem for the Gini, it is not clear how to solve this

issue when dealing with other parameters of the Gini method such as the Gini

Cumulative distribution

0 X1 X2 X3

A

B

CF3=1=P1+P2+P3

F3=1=P1+P2+P3

F2=P1+P2

F2=P1+P2

F1=P1

F1=P1

ALC
µ

0

X1

X2
A'

B'

C'

Fig. 2.3 The cumulative distribution and the ALC for discrete distributions
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covariance, to be presented in Chap. 3. Whenever the number of points is small one

should expect large discrepancies between the different methods of calculations.

Several solutions are available in the literature to handle those problems.

The inconsistency between the definitions of the Lorenz and the cumulative

distribution and the effect on the Gini as defined in (2.1) have already been

mentioned in the original paper by Gini who suggested to plot the Lorenz curve

as a step function (see the translation in Metron, 2005, p. 25). But this solution has

several disadvantages: (1) the convexity property of the Lorenz curve disappears

and (2) to be consistent, the 45� line has to be changed into a step function as well.

Another solution was suggested by Lerman and Yitzhaki (1989). They suggested

using a mid-point approximation of the cumulative distribution in the covariance

formula. That is,

D ¼ 4
Xn
i¼1

piðxi � m)
F(xiÞ þ F(xi�1Þ

2

� �
; with F x0ð Þ ¼ 0: (2.25)

This solution overcomes the problem of inequality between the Lorenz and the

covariance formulas. However, it may raise difficulties in interpretation because the

mid-point cumulative distribution is not formally a cumulative distribution. Also,

this solution is useful with respect to the Gini but it does not solve the problem in an

extended Gini context. See Chap. 6.

2.4.2 Adjustment for a Small Number of Observations

When dealing with discrete distributions two additional problems arise. The first is

that the upper bound of the Gini coefficient ceases to be one; instead, it is equal to

(n � 1)/n. Therefore, the number of observations affects the estimated inequality.

In some sense this is similar to the correction for degrees of freedom. The other

problem arises when trying to implement (2.1). The issue is how to handle ties,

whether to add them with zero value to the numerator which reduces the average

absolute deviation or to omit them both from the numerator and the denominator.

2.5 Gini Rediscovered: Examples

The GMD is an intuitive measure of variability. Therefore it can be easily

conceived. It turns out that (as was shown above) there is a large number of

seemingly unrelated presentations of the GMD (and other parameters that are

derived from it), making it hard to identify that one is dealing with a GMD and

also to identify which version of the GMD one is dealing with. The GMD takes

different forms for discrete vs. continuous distributions and for nonnegative vs.
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bounded-from-below random variables. The fact that one has to differentiate between

discrete and continuous distributions and between nonnegative and bounded-

from-below variables, together with the wealth of alternative presentations,

makes it hard to identify a GMD. In addition, as will be seen throughout the

book, the GMD falls in between parametric and nonparametric statistics. Some of

the properties resemble nonparametric while the others resemble parametric statis-

tics. This can make it complicated for the “purists” to grasp. And finally, the

alternative representations are scattered throughout many papers and languages,

spread over a long period of time and in many areas of interest, and not all are

readily accessible.13

The advantage of being able to identify a GMD is that it enables the investigator

to use the existing literature in order to derive additional properties of the parameter

at hand and rewrite it in an alternative, more user-friendly way. It also enables the

investigator to find new interpretations of the GMD and of Gini-related parameters

as well as draw inference about them. In order to illustrate this point we present four

cases in details. We start with a recent reinvention of GMD that appeared in 2007 in

a paper published in the American Economic Review by Kőszegi and Rabin,

entitled: “Reference-Dependent Risk Attitudes.” In Appendix A of the paper,

entitled “Further Definitions and Results” on p. 1063, the authors write: “In this

appendix we present an array of concepts and results that may be of practical use in

applying our model but that are not key to any of the main points of the paper.”

Definition 5 is the following:

“DEFINITION 5: The average self-distance of a lottery F is

SðFÞ ¼
ð ð

jx� yjdFðxÞdFðyÞ:

The average self-distance of a lottery is the average distance between two

independent draws from the lottery. A lower average self-distance is a necessary

but not sufficient condition for one lottery to be unambiguously less risky than

another.” p. 1063. Anyone who is familiar with GMD will recognize the index (see

Yitzhaki, 1982a). The Kőszegi and Rabin article may be the starting point of a new

branch in the literature that will not be recognized as related to the GMD, and

therefore will not rely on the already proven properties, and maybe several years

down the road a future author will notice that the properties of the GMD were

investigated again, using new terminology.

The second example is what is referred to as R-regression (Hettmansperger,

1984). As will be clear in Chap. 7, R-regression is actually a regression technique

based on minimizing the GMD of the residuals of the regression. Knowing this fact

can simplify many of the proofs of the properties of R-regression.

13 This phenomenon seems to be a characteristic of the literature on the GMD from its early

development. Gini (1921) argues: “probably these papers have escaped Mr. Dalton’s attention

owing to the difficulty of access to the publications in which they appeared.” (Gini, 1921, p. 124).
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A third example is the debate between Corrado Gini and the Anglo-Saxon

statisticians. The most popular presentation of the variance is as a second central

moment of the distribution. The most popular presentation of the GMD is as the

expected absolute difference between two i.i.d. variables. See Giorgi (1990) for a

bibliographical portrait. Using the expected absolute difference between two i.i.d.

variables in order to measure variability characterized the Italian school, led by

Corrado Gini, while reliance on moments of the distribution characterized the

Anglo-Saxon school. However, as shown by Hart (1975) and the covariance

presentation, and as will be shown in Chap. 6, the GMD can also be defined as a

central moment. Had both sides known about the alternative presentations of the

GMD, this debate which was a source of confrontation between the Italian school

and what Gini viewed as the Western schools could be avoided (see Gini, 1965,

1966, p. 199; Hart, 1975).

A fourth example is the presentation of the GMD as four times the covariance

between the variate and its cumulative distribution (Lerman & Yitzhaki, 1984).

This formula can be seen in Wold (1935, p. 43) except that it was not referred to as

covariance. Understanding that the GMD is actually a covariance enables the

imitation of the decomposition properties of the variance. This property turns

Gini into an analytical tool and enables replicating ANOVA, regression, and

correlations—which in some sense doubles and triples the possibilities of modeling

in economics and statistics. The result is that almost every model that can be

constructed using the variance can be replicated using the Gini.

2.6 Summary

This chapter surveys all (known to us and relevant to the purpose of the book)

alternative representations of the GMD and the Gini coefficient. While it is hard to

make an accurate count of how many independent alternative definitions exist,

there are clearly more than a dozen of them. Each representation is naturally related

to a specific area of application. For example, the covariance formulation is natural

when one is interested in regression analysis or in the decomposition of a Gini of a

population into the contributions of the subpopulations.

The fact that the GMD is an intuitive measure and the need to distinguish

between discrete and continuous and between negative and nonnegative variables

may explain why the Gini has been “reinvented” so often. It also explains why it is

harder to work with the Gini than with the variance.

The Gini is an alternative measure of variability. Therefore it is only natural that

it shares some properties with the variance on one hand, and exhibits some

differences on the other hand. These similarities and differences are discussed in

this chapter. The main difference between the two measures lies in the distance

function used. While the Gini uses the absolute value as the distance, the variance

uses the square. This difference has practical implications that will be discussed

later.
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Chapter 3

The Gini Equivalents of the Covariance,

the Correlation, and the Regression Coefficient

Introduction

Given two random variables, one may be interested in the correlation or association

or concordance between them (Gili & Bettuzzi 1987). This purpose can be

generalized by following Daniels who stated the target as “the degree of agreement”

(Daniels, 1950, p. 171) between the order and the rank-order of two variables.

Measures of association are treated in the literature for the parametric and the

nonparametric settings. In the parametric case the widely known and usedmeasure is

Pearson’s product-moment correlation coefficient, r, which is based on the norm-

alized covariance between the two variables. In the nonparametric case the most

commonly used measure is Spearman’s correlation coefficient which is based on the

normalized sample covariance between the ranks (i.e., cumulative distributions) of

the variables. In this chapter we define the Gini correlation which is, in a way, in

between the two types of correlations. It is based on the normalized covariance

between one variable and the rank of the other variable.We note in passing that there

are two Gini correlations between each pair of random variables, depending on

which one is taken in its variate value and which one is ranked.

In order to be able to compare the properties of the measures of association we

first list the properties that are desired from a good measure of association.

1. Nonparametric: A desirable measure of association should measure a meaning-

ful concept of association regardless of the underlying distributions.

2. Known bounds: In order to have some idea on whether the association is strong

or weak, one needs common reference points. The usual reference points are the

upper bound (for positive association), the lower bound (for negative associa-

tion), and the mid-point (no association, or statistical independence between the

variables).

3. A desirable measure should be able to detect monotonic and non-monotonic

relationships as well as the turning points in relationships if they exist.

(By monotonic relationship it is meant that the relationship is monotone over

the entire ranges of the variables.) Some relationships tend to be non-monotonic.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_3,
# Springer Science+Business Media New York 2013
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The example that comes to mind is related to age. There are several properties of

the human body that increase with age and then reach a peak and start to decline

(for example, the number of teeth or hair, physical strength, etc.). Also, this kind

of relationship typically exists in time series analysis where the main goal is to

search for turning points, as pointed out by Raveh (1989). However, as far as we

can see, monotonicity cannot be detected by a coefficient but it can be detected

by a curve. This subject will be discussed in Chap. 5.

4. Intuitive explanation: It is desirable to have an intuitive explanation to enable the

researcher to explain the measure to the nonexpert.

5. Computational simplicity: This property is less important nowadays with the

spread of computers, but it is still a desirable property because it is associated

with the ability to find simple explanations.

In addition to the above-mentioned properties there are two issues that are of

concern.

The first issue is the symmetry. Most measures of association are symmetric.

This property is reasonable for symmetric distributions. We argue that it is not a

reasonable property to look for whenever the distributions are nonsymmetric or

whenever the relationship we are looking for is nonsymmetric such as in the case of

regression analysis where the roles of the dependent and explanatory variables are

not symmetric. This can happen if the explanatory variable is assumed to be

measured more precisely than the dependent variable or if one believes that there

is a causal relationship from the explanatory to the dependent variable.

Actually, one of the major issues that are stressed in this book is the usefulness

and importance of the ability to test whether the relationship between two variables

is symmetric or not. By imposing symmetry on the correlation coefficient, the

ability to use the correlation to test for symmetry is lost. In our view, asymmetry

is an advantage of a measure because then it “reveals more” (Lambert & Decoster,

2005). However the need of symmetry goes back to Kendall (1948) who considered

the Gini correlation but rejected it on lack-of-symmetry grounds.

The second issue is related to the decomposition of the measure of variability of

a linear combination of random variables. The measure of variability of a linear

combination of random variables can be decomposed into individual contributions

(that are caused by each individual variable) and contributions of several variables

simultaneously, which are measured by measures of association. In these cases a

good measure of association will enable the decomposition. For the purpose of the

analysis it seems that the last issue is the most important one. The decomposition

enables one to avoid double counting by classifying the contributions to the

variability into individual contributions and those that cannot be associated with

one particular random variable.

The structure of the chapter is as follows: Sect. 3.1 provides some preliminaries

and terminology. In Sect. 3.2 we review the familiar measures of association:

Pearson, Spearman, and Kendall. The Gini correlation coefficient and its properties

are discussed in Sect. 3.3. Section 3.4 deals with the similarity between the two Gini

correlations between a pair of random variables while Sect. 3.5 introduces the Gini

regression coefficient. Section 3.6 concludes.
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3.1 Preliminaries and Terminology

There are two standard approaches to analyzing the relationship between two

variables X and Y. Both are based on the properties of the covariance. In one

approach the variates themselves are used whereas in the other the cumulative

distributions are used. If one uses the variates then the key parameter is cov(X, Y).

This implies that the natural measure of variability of the individual variable is

cov(X, X), which is its variance. Pearson’s correlation coefficient emerges as the

standardized covariance between X and Y. (The standardization factor is the

product of the individual standard deviations.) This method will be referred to as

the variate method. According to Stigler (1989) the idea of this correlation can be

traced to Francis Galton (1888) who was interested in studying heredity. The

correlation helped in reconciling a dilemma: according to the central limit theorem

father’s height and son’s height tend to be normally distributed. The role of the

correlation was to show that “a normal mixture of normal distributions is itself

normally distributed” (Stigler, 1989, p. 75).

The second approach is to consider the covariance between the cumulative

distributions, cov(F(X), G(Y)), where F(X) and G(Y) are the cumulative distributions

of X and Y, respectively. This leads to Spearman’s correlation coefficient as the

standardized covariance between F(X) and G(Y). Here the standardization factor is

a constant. Note, however, that this approach does not lead naturally to a measure of

variability of an individual variable (because cov(F(X),F(X)) is a constant).

Some statisticians (e.g., Barnett, Green, and Robinson, 1976; Daniels, 1944;

Kendall, 1955; Stuart, 1954) use a third method which is a mixture of those basic

methods, namely, cov(X, G(Y)) and cov(F(X),Y), that is, the covariance between a

variate and the cumulative distribution of another variable. This third method is the

base for constructing several Gini-based correlations, aswas explained in Schechtman

and Yitzhaki (1987) and in Yitzhaki and Olkin (1991). In this book we focus on those

that enable the decomposition of the GMD of a linear combination of random

variables into the basic components, as will be detailed in Chap. 4. We turn now to

the definitions and the main properties of the alternative measures of association.

3.2 Measures of Association

3.2.1 Pearson’s Correlation Coefficient

The most widely used measure of correlation is Pearson’s correlation coefficient

which is defined as

rX;Y ¼ cov(X,Y)

sX sY
:
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This measure has the following widely known properties:

(a) If X and Y are statistically independent then rX,Y ¼ 0.

(b) It is symmetric and bounded �1 � rX,Y ¼ rY,X � 1.

(c) It is equal to 1(�1) when Y ¼ a + bX with b > 0 (b < 0).

(d) It is not sensitive to linear nondecreasing monotonic transformations in either

of the variables.

(e) Pearson’s correlation coefficient is a parameter in the multivariate normal

distribution.

(f) It is a parameter in the decomposition of the variance of a linear combination of

random variables into the contributions of the individual components.

(g) Pearson’s correlation coefficient is the easiest to calculate.

(h) It has an intuitive explanation.

There are two rarely mentioned problems in the interpretation of the Pearson

correlation coefficient. The first problem is that in practice researchers tend to

compare its value to the boundaries ( � 1), where large deviation of its absolute

value from 1 is viewed as a weak statistical association between the variables. The

second problem is that an absolute value close to zero is viewed as no association.

In fact, both assertions may be misleading. Shih and Huang (1992) show that unless

the marginal distributions of the two random variables can differ only in their

location and/or scale parameters, the range of Pearson’s r is narrower than [�1, 1]

and depends on the marginal distributions F and G. For example, if (X, Y) have a

bivariate standard lognormal distribution (that is, their natural logs have a standard

bivariate normal distribution), then the range of Pearson’s r is [�0.368, 1] (De

Veaux, 1976). Other examples include a particularly simple class of multivariate

distributions where the given marginals are the Eyraud–Farlie–Gumbel–Mor-

genstern (EFGM) distributions. A bivariate EFGM distribution H(X, Y) with

univariate continuous marginal distributions F(X) and G(Y) is a distribution of

the form

H(X,Y) ¼ F(X)G(Y)(1þ að1� F(X))(1� G(Y)),

where a lies in [�1, 1]. It has been shown (Cambanis, 1991; Kotz & Seeger, 1991)

that the range of Pearson’s r for this family is [�1/3, 1/3], and the maximum is

achieved when both marginals are uniform. All other marginals will result in a

correlation coefficient smaller than 1/3 in absolute value. For example, for EFGM

with standard exponential marginals the range is [�0.25, 0.25] (Johnson & Kotz,

1977). Denuit and Dhaene (2003) present an example with Pearson’s correlation

coefficient converging to zero, while the variables are connected by a monotonic

transformation. Their example is based on the random couple (X1, X2) where ln(X1)

is normally distribution with mean zero and a unit standard deviation and ln(X2) is

normally distributed with mean zero and a standard deviation s. The extreme value

of the correlation is achieved when X1 and X2 are connected by a monotonic

functional relationship:
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1. If X2 ¼ Xs
1 then the maximal value of the correlation coefficient for these

marginals is attained and equals

rmax( s Þ ¼ es � 1

½es2 � 1�0:5[e� 1�0:5
:

2. If X2 ¼ X�s
1 then the minimal value of the correlation coefficient is attained and

equals

rmin( s Þ ¼ e�s � 1

½es2 � 1�0:5[e� 1�0:5
:

Now, provided that s tends to infinity we get

lims!1 rmax( s) ¼ lims!1 rmin( s) ¼ 0:

Denuit and Dhaene (2003) conclude: “it is possible to have a random couple

where the correlation is almost zero even though the components exhibit the

strongest kind of dependence possible for this pair of marginals” (p. 3).

The effect of these properties on econometric analysis should not be

underestimated. Note that econometricians tend to almost freely apply monotonic

transformations to the variables. By doing so they may affect the correlation

between the variables, which in turn may affect the decision on which variable

has a higher explanatory power. The conclusion is that one should be careful when

applying seemingly innocent monotonic transformations to variables when using

Pearson’s correlation coefficient.

3.2.2 Spearman Correlation Coefficient

Spearman’s rank correlation coefficient or Spearman’s r was first introduced by

Charles Spearman (1904). It is often denoted by rs and it is a nonparametric

measure of correlation. It measures a monotonic association between two variables

and inference can be drawn without making any assumptions about the underlying

distributions of these variables.

In principle, rs is simply a special case of Pearson’s correlation coefficient in

which the two variables X and Y are converted to their rankings R(X) and R(Y)

before calculating the coefficient. Formally, the Spearman’s correlation coefficient

is defined by

rs ¼
P

R(XiÞ � nþ1
2

� �
R(YiÞ � nþ1

2

� �
n(n2�1Þ

12

: (3.1)
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We note that when there are ties an alternative formula exists (see, for example,

Conover, 1980, p. 252).

The properties of Spearman’s correlation coefficient are identical to the

properties of Pearson’s correlation coefficient with three exceptions. The first is

that Spearman coefficient will be equal to 1 (�1) whenever Y is anymonotonically

increasing (decreasing) function of X, not necessarily linear. The second excep-

tion—it is not a parameter of any distribution, and the third exception—it is not a

parameter in the decomposition of a measure of variability of a linear combination

of random variables.

3.2.3 Kendall’s t

The Kendall tau (t) rank correlation coefficient (or simply Kendall’s t) is a

nonparametric statistic used to measure the degree of correspondence between

two rankings and to assess the significance of this correspondence. It was developed

by Maurice Kendall in 1938. The measure resembles Spearman’s coefficient in that

it is based on ranks rather than on the original data and its distribution does not

depend on the underlying distribution of the data (that is, it is nonparametric

distribution-free). Kendall’s t is based on concordant and discordant pairs of

observations. A pair of observations is said to be concordant if both members of

one observation are larger than their respective members of the other observation

(for example: (1, 2) and (3, 4)). Otherwise, the pair is discordant.

Kendall’s t coefficient is defined by

t ¼ nc � nd
0:5 n ðn� 1Þ ; (3.2)

where nc is the number of concordant pairs and nd is the number of discordant pairs

in the data set of size n.

The denominator in the definition of t can be interpreted as the total number of

pairs of observations. Hence a high value in the numerator means that most pairs are

concordant, indicating that the two rankings are consistent. Note that a tied pair is

not regarded as concordant or discordant. If there exists a large number of ties then

the total number of pairs (in the denominator of the expression of t) should be

adjusted accordingly.

The Kendall tau coefficient (t) has the following properties:

• If the agreement between the two rankings is perfect (i.e., the two rankings are

the same) the coefficient is equal to 1.

• If the disagreement between the two rankings is perfect (i.e., one ranking is the

reverse of the other) the coefficient is equal to (�1).

• For all other arrangements the value lies between (�1) and 1, and increasing

values imply increasing agreements between the rankings. If the rankings are
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completely independent, the coefficient will be equal to 0 (up to a random

variation).

• Kendall’s t is more difficult to compute than Pearson or Spearman.

• It is intuitively clear.

• It is not associated with the decomposition of any variability measure of a linear

combination of random variables.

• It is not a parameter of any distribution.

3.3 Gini Correlations

As was shown in Chap. 2 there are more than a dozen alternative representations of

the GMD. Therefore it is only natural that there is more than one way to represent

the Gini correlation. The advantage of having several representations is because

some properties are easier to introduce when using a specific representation while

others require an alternative representation. The two main representations that will

be used in this book are the covariance-based (to be detailed in this chapter) and the

one based on concentration curves (to be detailed in Chap. 5). While the covariance

representation of the Gini correlation is convenient for comparing the properties of

Gini’s correlation with Pearson’s and Spearman’s correlation coefficients, an alter-

native representation of the Gini correlations which is based on concentration

curves enables the user to learn more about the behavior of the association along

the distribution of one of the random variables involved. However, to fully

study the properties and usefulness of the alternative representation we have to

start with the properties of the absolute concentration curve (ACC). This will be

done in Chap. 5. We note in passing that this alternative representation preceded the

covariance representation of the Gini correlation (Blitz & Brittain, 1964).

In general the Gini correlation is based on a mixture of the variate and the

cumulative distribution. Daniels (1944), Stuart (1954), Kendall (1948, 1955), and

Barnett et al. (1976) gave examples of measures that are based on such a mixture.

Blitz and Brittain (1964) introduced a definition, but they left it as based on areas of

concentration curves (see Chap. 5). As far as we know, Shalit and Yitzhaki (1984)

and Lerman and Yitzhaki (1985) were the first to realize that it is the measure of

association that appears in the decomposition of the GMD of a linear combination

of random variables. Schechtman and Yitzhaki (1987) investigated its properties,

while Raveh (1989) used it to detect a turning point in time-series data.

We start with the most natural definition, the one that is based on the

covariances. In order to prevent confusion we note that the Gini correlation used

here is not related to the statistic that is referred to by Gini and others by the same

name (Gini, 1936).

In order to define the Gini correlation we start with the definition of the

equivalent of the covariance. There are two Gini covariances between each pair

of random variables. We call them co-Ginis. The co-Ginis are defined as
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Gcov X;Yð Þ ¼ cov X;G Yð Þð Þ; Gcov Y;Xð Þ ¼ cov Y; F Xð Þð Þ: (3.3)

The correlations which are the normalized co-Ginis are written as

GX;Y ¼ cov(X,G(Y))

cov(X,F(X))
; GY;X ¼ cov(Y,F(X))

cov(Y,G(Y))
: (3.4)

In general the Gini covariances and correlations are not symmetric in X and Y.

Moreover, Gcov(X, Y) and Gcov(Y, X) may have different signs. This property

may be viewed as a deficiency of the method. On the other hand, there are

important instances of asymmetric concepts such as, for example, regression

analysis and the concept of elasticity in economics where the asymmetric prop-

erty may come as an advantage, as will be shown in Chaps. 6 and 7 and in the

applications part of the book.

Before we proceed to describe the properties of the Gini correlation we express

the three correlation coefficients in a unified way. Let K(X, Y) denote the joint

distribution of X and Y; then Pearson’s r, Spearman’s rs, and Gini’s G correlation

coefficients can be written as

rX;Y ¼
Ð Ð

(K(x,y)� F(x)G(y))dxdy

sX sY
;

rs;X;Y ¼ 12

ðð
(K(x,y) � F(x)G(y))dF(x)dG(y);

and

GX;Y ¼
Ð Ð

(K(x,y) � F(x)G(y))dxdG(y)

cov(X,F(X))
:

Details can be found in Hoeffding (1948), Schweizer and Wolff (1981), and

Schechtman and Yitzhaki (1999). These representations hint that the properties of

the Gini correlation are a mixture of the properties of Pearson and Spearman

correlations: it is similar to Pearson in X (the variable which is taken in its variate

values) and it is similar to Spearman in Y (the variable that is taken in its ranks).

We now list the properties of the Gini correlation coefficient. Proofs of the

nontrivial properties follow.1

(1) �1 � ГX,Y � 1.

(2) If Y is a monotonic increasing (decreasing) function of X, then both ГX,Y and

ГY,X equal +1 (�1).

1The complete proofs can be found in Schechtman and Yitzhaki (1987, 1999), Yitzhaki (2003),

and Serfling and Xiao (2007).
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(3) If X and Y are statistically independent then ГX,Y ¼ ГY,X ¼ 0.

(4) ГX,Y ¼ � ГX,�Y ¼ � Г�X,Y ¼ Г�X,�Y.

(5) ГX,Y is invariant under all strictly monotonic transformations of Y.

(6) ГX,Y is invariant under changes of scale and location in X.

(7) ГX,Y is symmetric in (X, Y) if (aX + b, cY + d) is exchangeable for some

constants a, b, c, and d with a and c > 0.

(8) If (X, Y) follow a bivariate normal distribution with parameters (mX; mY, s
2
X,

s2Y, r) then ГX,Y ¼ ГY,X ¼ r, where r is Pearson’s correlation coefficient.

Proofs of properties 1, 2, 7, and 8:

Proof of property (1) : Because cov(X, F(X)) is nonnegative, it is enough to show

that cov(X, F(X)) � cov(X, G(Y)) � �cov(X, F(X)).

The proof is based on the following claim:

Claim Given the marginal distribution functions of X and Y, and assuming

that the densities exist and are positive everywhere, cov(X, Y) is maximal when

E{Y|X ¼ x} is an increasing function of X, and minimal when Y is a decreasing

function of X.

Proof of the claim cov(X, Y) ¼ E(XY) � E(X)E(Y). We need to show that E(XY)

is maximal when Y is an increasing function of X.

Let (x1, y1) and (x2, y2) be two pairs of numbers. It is easy to see that if x1 > x2
and y1 > y2 then the following relationships hold:

x1y1 þ x2y2 � x1y2 þ x2y1 , x1 y1 � y2ð Þ þ x2 y2 � y1ð Þ� 0

, x1 � x2ð Þ y1 � y2ð Þ� 0:

In other words, the maximum is achieved when the smaller (larger) number of

one pair is multiplied by the smaller (larger) number of the second pair, that is, if Y

is a monotonic increasing function of X. The proof of the other part is similar.

We now turn to the proof of property 1.

We need to show that

cov(X,G(Y))� cov(X,F(X)):

Note that F(X) and G(Y) have uniform distributions over [0, 1] (that is, they are

U(0, 1) random variables); therefore

E[F(X)] ¼ E[G(Y)] ¼ 1

2
:

Note that X and F(X) are nondecreasing functions of X. By the claim,

cov(X,G(Y)) achieves its maximal value when G(Y) is an increasing function of

X, which implies that F(X) ¼ G(Y). This means that the maximum is achieved at

cov(X,F(X)Þ, which completes the proof. The other direction is similar.
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Proof of property (2) : Let Y ¼ t(X) where t is a monotonic increasing function,

then G yð Þ ¼ PðY� yÞ ¼ Pðt Xð Þ� yÞ ¼ PðX� t�1 yð ÞÞ ¼ PðX� xÞ ¼ F xð Þ. Hence
ГX,Y and ГY,X will equal +1.

The proof for a monotone decreasing transformation is similar.

Proof of property (7) : Without loss of generality assume that d ¼ b ¼ 0 and

a ¼ c ¼ 1. That is, assume that ðX;YÞdðY;XÞ and denote the joint distribution

by h(X, Y) ¼ h(Y, X). (This can be assumed because GX;Y ¼ GaXþb;cYþd.)

GX;Y ¼
Ð Ð

xG(y)h(x,y)dxdy� 0.5E(X)Ð
xF(x)f(x)dx� 0.5E(X)

GY;X ¼
Ð Ð

yF(x)h(y,x)dydx� 0.5E(Y)R
yG(y)g(y)dy� 0.5E(Y)

:

Because (X, Y) is exchangeable, the denominators are equal. Also,

ðð
xG(y)h(x,y)dxdy ¼

ðð
xF(y)h(y,x)dxdy ¼

ðð
yF(x)h(y,x)dydx;

which completes the proof.

Proof of property (8) : It is sufficient to show that ГY,X ¼ r.
The conditional expectation E(Y|X) is given by

E YjXð Þ ¼ mY þ r sY
(X� mXÞ

sX
:

Using this property we can write the numerator as

cov Y; F Xð Þð Þ ¼ EX½ðEYjX YjXð Þ � mY)(F(X) � 0:5Þ� ¼ r sYE(Z(F(X)� 0:5ÞÞ;

where Z ¼ (X� mXÞ
sX

is a standard normal random variable. Let FðZÞ denote the

cumulative distribution of a standard normal random variable. Then FðZÞ ¼ FðXÞ
and cov(Y,F(X)) ¼ r sYcov(Z, F(Z)Þ:

Hence by similar considerations we can express the denominator as

cov Y;G Yð Þð Þ ¼ sYcov(Z, F(Z)), which completes the proof.

Property (7) above states that the Gini correlation is symmetric for exchangeable

variables. Hence it can be used to test for exchangeability in general and to

construct tests for asymmetry (Boos, 1982). We view the ability to test for

exchangeability of random variables as an important contribution of this book.

Therefore exchangeability and its implications will be described in a separate

section, Sect. 3.4.

An additional alternative representation that will be useful later is based on a

combination of earlier presentations: Let (X1, Y1) and (X2, Y2) be two i.i.d. pairs of

random variables. Then
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GX;Y ¼ cov[(X1 � X2)(G(Y1Þ � G(Y2Þ�
cov[(X1 � X2)(F(X1Þ � F(X2Þ� : (3.5)

Equation (3.5) presents the Gini correlation as based on the concordance

between the variate values and their ranks (denominator) as well as the ranks of

the other variable (numerator).

To summarize: The properties of ГX,Y are a mixture of Pearson’s and Spearman’s

correlation coefficients. It behaves like Pearson’s coefficient in X, like Spearman’s

coefficient in Y, and it is equal to Pearson’s r when the distribution follows a

bivariate normal distribution.

3.4 The Similarity Between the Two Gini Correlations

of a Pair of Variables

The variability measure (variance or Gini) of a linear combination of random

variables can be decomposed into the contributions of the individual variables

and the correlations between them. The two decompositions will have the same

structure when the two Gini correlations within some of the pairs of variables will

be equal (details will be given in Chap. 4). The aim of this section is to investigate

the properties of the underlying distribution that will cause the two Gini correlation

coefficients between a pair of variables to be equal. It should be pointed out that the

discussion is not complete and a full characterization needs further research.

A sufficient condition for the equality of the two Gini correlations between X

and Y is that the underlying distributions are exchangeable up to a linear transfor-

mation (see property 7 in Sect. 3.3). Therefore, exchangeability up to a linear

transformation is the feature of the underlying distribution that distinguishes

between the decomposition properties of the GMD vs. the variance. We note in

passing that it has not been investigated yet whether the condition is a necessary

condition as well.

3.4.1 Formal Definitions of Exchangeability

Exchangeability is a fundamental concept that was skipped upon by most

economists but may have major implications on economic theory. A review of

this argument and its implications can be found in McCall (1991).

We start with two definitions. First we define exchangeability and then we define

“exchangeability up to a linear transformation.”

Definition of exchangeability: The random variables X and Y are said to be

exchangeable if F(X, Y) ¼ F(Y, X).
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Definition of exchangeability up to a linear transformation: X and Y are said to

be exchangeable up to a linear transformation if there exist a, b, c, and d (a, c > 0)

such that (X, Y) and (aY + b, cX + d) are equally distributed. Obviously exchange-

ability implies exchangeability up to a linear transformation, but not the other way

around.

For example, (X,Y)�BVN(0,0,1,1, r) are exchangeable. However, (X,Y)�BVN

ð2; 3; 1; 4; rÞ are only exchangeable up to a linear transformation.

Note that a necessary condition for exchangeability is that the marginal

distributions are identical. In addition it was proved that if (X, Y) are exchangeable

up to a linear transformation, then

GX;Y ¼ GY;X:

This means that the equality of the two Gini correlations is a necessary condition

for exchangeability up to a linear transformation, and therefore can be used to test

for its existence. The statistical test of the equality of two Gini correlations is

proposed in Chap. 10.

3.4.2 The Implications and Applications of Exchangeability

The main implications of exchangeability are related to the decomposition of the

Gini of a linear combination of random variables. Those will be detailed in Chap. 4.

Additional applications are the following:

1. An application for testing convergence: If the underlying distributions are not

exchangeable up to a linear transformation then the results of the decompositions

of the variance and the Gini do not follow the same structure. (The decomposi-

tion will be discussed in detail in Chap. 4.) This fact is useful—it allows the user

to test for the convergence of the distribution of an average of i.i.d. random

variables to the normal distribution. Let Ymn ¼ a1Xm1 + a2Xm2 + . . . + anXmn,

where each Xmi is an average of m i.i.d. random variables. That is, Ymn is a linear

combination of n random variables, each of which is an average of m i.i.d.

random variables. According to the central limit theorem for a large enough m

all the Xs are approximately normally distributed and so is Y. If this is the case,

then the two correlations between every pair of variables should be equal (which

implies that the structures of the decompositions of the variance and the Gini are

similar). Developing such a test is beyond the scope of this book. We comment

on this issue in Chap. 23.

2. Directional movements: In time-series analysis the implication of exchangeabil-

ity up to a linear transformation is that moving forward in time is the reverse of

moving backward in time. If the variables in a time series are not exchangeable,

then the trend that we observe when we move forward in time need not be the

reverse of the trend observed when we move backward. The literature on
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convergence in growth economics includes Barro (1991), Barro and Sala-i-

Martin (1992), and Sala-i-Martin (1996) while recent research has put these

initial findings in doubt (e.g., Friedman, 1992; Quah, 1993, 1996; Bliss, 1999).

For an application of the Gini methodology in this field see Wodon and Yitzhaki

(2006) who presented an example where one can find convergence both when

moving forward and moving backward in time using the same data. We will

elaborate on this issue in Chap. 23, when we discuss the application of the Gini

methodology in time-series analysis.

3. Additional applications of exchangeability rely on the suggestions made in an

important paper by McCall (1991). McCall translates the concept to mean

symmetric dependence, interchangeability, and fairness. He differentiates

between local and global exchangeability and applies it to wider situations in

terms of both infinite series and economic settings. The importance of global

exchangeability is emphasized by: “Each society member is exchangeable with

respect to these fundamental traits in the following sense: given that m is a

member of society s, his basic behavior is the same as that exhibited by a

randomly drawn individual from s.” p. 554.
4. McCall (p. 557) also interprets exchangeability as fairness because it means

equal treatment. There is a need for a lot of work to translate those deep ideas

into testable and workable hypotheses. All we do in this subsection is point out

that by using the variance, symmetry is imposed on the data even when the

distributions are not symmetric, and therefore we lose the ability to test for

symmetry.

3.5 The Gini Regression Coefficient

The literature dealing with Gini regression coefficients is much more developed

than the literature dealing with the Gini correlation coefficient. Therefore we devote

several chapters to the alternative concepts and presentations of the Gini regression

coefficients. However, a complete presentation has to be postponed until we

introduce additional tools such as concentration curves (Chap. 5). In this section

we briefly introduce the simple Gini regression coefficients.

There are two types of regression coefficients that can be attributed to the GMD.

One is based on the minimization of the GMD of the residuals, while the other is

based on substituting the variance-based expressions in the Ordinary Least Squares

(OLS) regression by the equivalent GMD terms. The former has the advantage of

being “optimal” because it is derived by an optimization process while the latter is

based on imitation of the OLS procedure, and hence enables to replicate the

concepts and intuition and even allows to mix Gini regression with the popular

OLS regression (as will be shown in Chap. 8 and illustrated in Chap. 21). In this

section we introduce the second type of the Gini regression coefficient. We refer to

it as “covariance based” because it is based on the covariance presentation of the

GMD and the properties of the covariance are used in order to develop its
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properties. As will be seen later, it is semi-parametric because it can be interpreted

as a weighted average of slopes defined between adjacent observations of the

explanatory variable. Hence no model is assumed in order to estimate the regression

coefficient.

The OLS regression coefficient can be expressed as

bO ¼ cov(Y,X)

cov(X,X)
: (3.6)

Replacing each covariance by the corresponding Gini covariance, we get

bN ¼ cov(Y,F(X))

cov(X,F(X))
; (3.7)

where N indicates that we are dealing with the semi-parametric version of the GMD

regression coefficient. Note that in the numerator we have a co-Gini, while the

denominator is the GMD of the explanatory variable.

It seems natural to view presentation (3.7) as an OLS instrumental variable (IV)

method, with F(X) serving as the instrument. We argue that this is not the appro-

priate interpretation because the Gini regression does not have to fulfill the

requirements needed to be qualified as IV method. (The use of the empirical

cumulative distribution as an IV can be traced to Durbin (1954) who suggested

using the rank of a variable as an IV to overcome the bias caused by errors in the

measurement of the explanatory variable.)

As will be seen in Chap. 7, most of the parameters and the concepts in the Gini

regression framework are parallel in structure to the OLS concepts. However they are

different in their properties and interpretations. For example, one can define an IV in

the framework of theGini regression, but itwill be different from theOLS IV.TheGini

IV can be referred to in an OLS framework as the “double IV,” because the concept of

IV is applied twice: first by using the ranks (the sample’s empirical cumulative

distribution) instead of the variable without questioning the validity of the rank to

serve as an IV, and in the second stage one uses another variable which is required

to obey all the requirements from an IV. That is, one moves from relating Y to X to

relatingY to F(X) and then to relatingY toF(Z) (seeYitzhaki andSchechtman (2004)).

The advantage of the similarity between the Gini and the OLS regression

coefficients is that one can use the OLS software to estimate the parameters of

the Gini regression, but the similarity is misleading and requires caution. As will be

shown in Chap. 9 (estimation), while the OLS software can be used in order to

obtain the point estimates of the coefficients, it cannot be used in order to estimate

the standard errors of the Gini regression coefficients. The distinction between OLS

and Gini regressions should always be kept in mind because the similarity and the

proximity of the concepts may mislead the intuition.

Formally, let (Y, X) be a bivariate random variable that follows a continuous

distribution with finite first and second moments. Similar to the OLS regression

coefficient, a normal equation can be derived from bN.
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To see that, assume that the following model is given:

Y ¼ aþ bXþ e: (3.8)

One of the normal equations in OLS is cov(X, e) ¼ 0. In order to obtain the

normal equation for the Gini coefficient we use the covariance properties and get

cov Y; F Xð Þð Þ � b cov X; F Xð Þð Þ þ cov e; F Xð Þð Þ: (3.9)

Substituting b in (3.9) by bN from (3.7) yields a normal equation that is similar to

the normal equation in OLS. That is:

cov eN; F Xð Þð Þ ¼ 0: (3.10)

Note that both regression coefficients imply orthogonality between the explana-

tory variable and the resultant residual, but the notion of orthogonality is different.

An additional interpretation of the OLS and Gini regression coefficients is that

both are weighted averages of slopes defined between all possible pairs of

observations chosen from (Y, X) as we show next.

Proposition 3.1 Let (Y1, X1) and (Y2, X2) be two independent draws from the
bivariate distribution F(Y, X). Let the slopes be

b21ðx2;x1Þ ¼
Y2�Y1

X2�X1
if X2 6¼ X1

0 if X2 ¼ X1

 !
; (3.11)

then

b ¼
ðð

w21ðx2;x1Þ b21ðx2;x1)f(x1)f(x2)dx1dx2; (3.12)

where w() represents the weighting scheme. Equation (3.12) can be used to
describe the structures of both OLS and Gini regression coefficients. The difference
is in the weighting schemes used. In the case of the OLS the weighting scheme is

w21 x2; x1ð Þ ¼ wo
21 ¼

ðX2 � X1Þ2
EfðX2 � X1Þ2g

:

The weighting scheme for the Gini regression coefficient is

w21 x2; x1ð Þ ¼ wN
21 ¼

ðX2 � X1)(F(X2Þ � F(X1ÞÞ
EfðX2 � X1)(F(X2Þ � F(X1))g :
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Proof The proof will be given for OLS. The adjustment to the Gini regression is

straightforward. The proof is based on the following property of the covariance:

cov Y;Xð Þ ¼ 0:5E Y2 � Y1ð Þ X2 � X1ð Þf g:

bo ¼ cov(Y,X)
cov(X,X)

¼ 0.5Ef (Y2�Y1ÞðX2�X1)g
0.5Ef (X2�X1Þ2g

¼ 1

Ef(X2�X1Þ2g E
ðY2�Y1Þ
ðX2�X1Þ

� �
ðX2 � X1Þ2

h i
¼ E

ðX2�X1Þ2
Ef (X2�X1Þ2g

Y2�Y1

X2�X1

� �� �

¼ RR wo
21ðx2;x1Þ b21ðx2;x1)f(x1)f(x2)dx1dx2

;

where

wo
21 ¼ ðX2 � X1Þ2

EfðX2 � X1Þ2g
:

The proof for the GMD is similar, and it is based on

cov Y; F Xð Þð Þ ¼ 0:5E Y2 � Y1ð Þ F X2ð Þ � F X1ð Þð Þf g:

The corresponding weights are

wN
21 ¼

ðX2 � X1)(F(X2Þ � F(X1ÞÞ
EfðX2 � X1)(F(X2Þ � F(X1))g :

Proposition 3.1 stresses the nonparametric nature of the regression coefficients.

No assumption of a linear model is required in order to produce the regression

coefficients. One can simply interpret them as weighted averages of slopes. This

property of the regression coefficients is used when one is interested in a summary

statistic of average slopes, as we will show when dealing with the use in public

finance and analysis of risk. In these cases assuming and testing for linearity are not

needed. The importance of the linearity assumption is clear when one wants to

predict, in which case it is essential to be able to test whether the assumptions of

linearity and of distributional properties of the residuals are supported by the data.

This point will be discussed in Chap. 7 where we offer additional presentations of

the Gini regression coefficient.

3.6 Summary

The covariance-based presentation of the GMD opens a wide area of research. In

this chapter we have introduced the Gini covariance, the Gini correlation, and the

Gini regression coefficient. It was shown that the Gini covariance and correlation
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are asymmetric measures of association, as opposed to the ordinary covariance and

to Pearson’s correlation coefficient. The Gini regression coefficient is similar in

structure to the OLS regression coefficient. The covariance representation enables

the user to replicate almost every model that is based on the variance by using the

equivalent parameters of the Gini method. In some cases the two representations are

similar in structure. In others the Gini representation contains extra terms. In this

latter case we claim that “the Gini reveals more.” Whenever the estimates of the

variance-based parameters differ from those obtained for the Gini-based equivalent

parameters, one can attribute the difference to the different metrics used. Because

under the normal distribution the expected values of the estimates are equal, the

difference in the estimates may indicate a violation of an assumption. This issue

will be further investigated in the chapters that deal with the comparisons between

the specific parameters. In Chaps. 4–6 we compare them to the familiar measures

that are used in the variance world and discuss some of the differences.
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Chapter 4

Decompositions of the GMD

Introduction

Several basic methods of statistical analysis such as regression and analysis of

variance are based on the properties of the decomposition of the measure of

variability. In the decomposition of a measure of variability we differentiate

between two kinds of decompositions:

(a) Decomposition of the variability of a linear combination of random variables

into the contributions of the components: The most popular example is the

Ordinary Least Squares regression in which the mean of the dependent variable

is a linear combination of the explanatory variables and the objective is to find

the values of the coefficients that maximize the portion of the variance of

the dependent variable that can be explained by the linear combination of

the explanatory variables. A variant of this procedure is the decomposition

of the covariance between two linear combinations of random variables (instead

of a variability measure) into the contributions of the different variables.

(b) Decomposition of the variability of a population composed of several groups

(subpopulations) into the contributions of the groups to the overall variability:

An example is ANOVA (ANalysis Of VAriance) where the variance of an

overall population is decomposed into the intra- and inter-group variances.

The decomposition can be performed on an absolute measure of variability such

as the variance or the GMD, on a relative measure such as the coefficient of

variation or the Gini coefficient, or on a covariance between two random variables

instead of the measure of variability itself. In this chapter we introduce the two

decompositions of the GMD and compare them to the respective decompositions of

the variance. At a later stage we will analyze the implications of those decompo-

sitions. Most of the applications covered in this book in different fields of research

rely on the decompositions of the GMD, but they will be referred to by using

different names, such as inequality or progressivity or risk, depending on the field.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_4,
# Springer Science+Business Media New York 2013
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Hence, presenting the decomposition in advance enables us to transfer additional

properties from one field into the other because the models are similar, only the

subject matters differ.

It is important to emphasize that both decompositions of the GMD share similar

structures to the respective decompositions of the variance. However the

decompositions of the GMD contain additional parameters. In general these extra

parameters do not vanish and they contribute to our understanding of the phenom-

ena that we want to analyze as will be seen below. This is the origin of the slogan

put forward by Lambert and Decoster (2005) “The Gini reveals more.” However

when these additional parameters are equal to zero then the structures of the Gini

decompositions are identical to the structures of the decompositions of the variance.

In these cases the components of the decomposition of the variance are sufficient

statistics in describing the phenomena under study. Note, however, that even when

the additional parameters are equal to zero, they may still add to the analyses

because the number of models that exist for the analysis is doubled. For each

variance-based model there will be an identical Gini-based model which may result

in totally different numerical values. We will return to this subject after describing

the additional parameters that appear in the decompositions of the GMD.

The structure of the chapter is as follows: In Sect. 4.1 we present the decompo-

sition of the GMD of a linear combination of random variables. Section 4.2 is

devoted to the decomposition of the variability of a population by subpopulations.

In Sect. 4.3 we show how the Gini covariance is decomposed and Sect. 4.4

concludes.

4.1 The Decomposition of the GMD of a Linear

Combination of Variables

The variability index of a linear combination of variables can be decomposed into

two types of components: individual components which represent the contribution

of each variable individually and components that are shared by pairs of variables.

This fact enables the researcher to evaluate the impact of each component sepa-

rately. By changing the mixture of the components the user can evaluate the

effectiveness of different policies. An additional advantage of the decompositions

is that the terms involved in the decomposition must add up to the total variability.

Therefore there is no double counting of the same property. For example, if the final

distribution does not change, it is impossible that rearrangements of the elements

will increase one or several terms without causing some other terms to decline in

exactly the same total amount. The downside of this approach is that when dealing

with decompositions one cannot choose the correlation coefficient to be used. It is

determined by the equation because the elements have to add up to a given total. As

far as we know the only measure of variability that allows the decomposition of the

variability measure of a linear combination of random variables into its components

52 4 Decompositions of the GMD



is the variance through the Pearson’s correlation coefficient.1 Therefore we will be

interested mainly in comparing the decomposition of the GMD with the decompo-

sition of the variance. There are two types of terms that cause the decomposition of

the Gini of a linear combination to be different in structure from the decomposition

of the variance of the same combination. Although their roles in the decomposition

are different, they are caused by the same phenomenon: the non-symmetrical nature

of the Gini correlation. This same feature distinguishes the Gini correlations from

Pearson’s and Spearman’s correlation coefficients. As is shown below, this differ-

ence plays a major role in making the decomposition of the GMD more revealing,

and at the same time more complicated than the decomposition of the variance.

Let

Y ¼
XK

k¼0
bkXk; (4.1)

where bk, k ¼ 0, 1, . . ., K are given constants while Xk, k ¼ 1, . . ., K are random

variables and X0 is a constant that takes the value of 1 for all realizations. The

variance of Y can be decomposed into

s2Y ¼
XK

k¼1
b2k s2k þ

X
k6¼j

bk bj sk sj rjk: (4.2)

The decomposition of the (square of the) coefficient of variation is similar in

structure to the decomposition of the variance except that the constant bk is replaced
by dk which is the share of variable k in the expected value of Y.

s2Y
m2Y

¼
XK

k¼1
d2k

s2k
m2k

þ
XK

k¼1

X
j6¼k

dk dj
sk sj
mkmj

rkj;

where dk ¼ bk mk
mY

: (4.3)

The most convenient presentation to use for decomposing the GMD of Y is (4.4)

below (same as equation (2.15)), which allows to utilize the properties of the

covariance:

DY ¼ 4 cov Y; F Yð Þð Þ: (4.4)

The covariance is a function of Y and F(Y). Therefore there are two

decompositions that we will refer to as one- and two-step decompositions,

respectively.

1 Additional potential measures of variability that can be decomposed will be discussed in Chap. 23.
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4.1.1 One-Step Decomposition (Marginal Decomposition)

The one-step decomposition is useful in the analysis of policy in the areas of finance

and income distributions. Basically it is based on replacing Y in (4.4) by (4.1) and

leaving F(Y) untouched.

Proposition 4.1 One-step decomposition of GMD. Given (4.1) then

DY ¼
XK

k¼1
bk GkY Dk where GkY ¼ cov(Xk,F(Y))

cov(Xk,F(XkÞÞ : (4.5)

Proof The proof follows from the properties of the covariance and it is straightfor-

ward:

cov(Y,F(Y)) ¼
XK
k¼0

bkcov(Xk,F(Y)) ¼
XK
k¼0

bk
cov(Xk,F(Y))

cov(Xk,F(XkÞÞ cov(Xk,F(XkÞÞ:

This decomposition plays a crucial role in applications in the areas of income

distribution and taxation which are intended to analyze changes in the income

distribution due to changes in one of its components. Note that the variable Y

still appears on the right-hand side of (4.5) because the rank of Y (i.e., the

cumulative distribution) does not vanish. This in turn limits its applications to

situations where the rank does not change in a significant way. Therefore it is

useful for analyzing marginal changes in the income distribution. We will refer to it

as a marginal decomposition. See Chap. 14.

4.1.2 Two-Step Decomposition

The two-step decomposition is intended to fully replicate the decomposition of the

variance. It is more complicated than the one-step decomposition. For the sake of

simplicity we first assume that there are K ¼ 2 variables and then we extend the

decomposition to the general case with K variables.

Proposition 4.2 Let Y ¼ b0 + b1X1 + b2X2. Then the following identities hold:

(a) D2
Y � ½ b1D1Y D1 þ b2D2Y D2� DY

¼ b21 D2
1 þ b22 D2

2 þ b1 b2 D1 D2ðG12 þ G21Þ; (4.6)

where Gij is Gini’s correlation between Xi and Xj and DiY ¼ GiY � GYi, i ¼ 1, 2.

(b) Provided that DiY ¼ 0, for i ¼ 1, 2, and G12 ¼ G21 ¼ G decomposition (4.6)
can be simplified into

D2
Y ¼ b1

2D1
2 þ b2

2D2
2 þ 2 b1 b2D1D2G: (4.7)
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Note that (4.7) is identical in structure to the decomposition of the variance (4.2).

Proof (Wodon & Yitzhaki, 2003a)
Proof of (a). Using the one-step decomposition above we get

cov Y; F Yð Þð Þ ¼ b1G1Ycov X1; F X1ð Þð Þ þ b2G2Ycov X2; F X2ð Þð Þ: (4.8)

Recall that

GiY ¼ GYi þ DiY for i ¼ 1; 2: (4.9)

That is, DiY is the difference between the two Gini correlations defined between

Y and Xi. Using (4.8) and (4.9), we get

DY ¼ b1ðGY1 þ D1YÞD1 þ b2ðGY2 þ D2YÞD2:

Rearranging terms

DY � b1D1YD1 � b2D2YD2 ¼ b1GY1D1 þ b2GY2D2:

Using the properties of the covariance

GY1 ¼ cov(Y,F(X1ÞÞ
cov(Y,F(Y))

¼ 1

cov(Y,F(Y))
fb1cov(X1,F(X1ÞÞ þ b2cov(X2,F(X1))g

¼ b1cov(X1,F(X1ÞÞ þ b2cov(X2,F(X2ÞÞ G21

cov(Y,F(Y))
¼ b1 D1 þ b2 D2 G21

DY

:

Writing GY2 in a similar manner, we get (4.6)

D2
Y � ½b1D1Y D1 þ b2D2Y D2] DY ¼ b1 D1ðb1 D1 þ b2 D2 G21Þ
þ b2 D2ðb1 G12 D1 þ b2 D2Þ
¼ b21 D2

1 þ b22 D2
2 þ b1b2 D1 D2ð G12 þ G21Þ:

Proof of (b). In order to prove (4.7) we assume equality of the two Gini correlation

coefficients between Y and Xi, which means that DiY ¼ 0 for i ¼ 1, 2. The

assumption G ¼ G12 ¼ G21 completes the proof of (4.7).

The extensions of (4.6) and (4.7) to K variables and to the decomposition of the

Gini coefficient are trivial. The decomposition of the Gini coefficient differs from

the decomposition of the GMD in one respect. Eachbk is substituted by dk ¼ bkmk/mY.
The decomposition of the Gini coefficient GY is presented next:

Let Y ¼PK
k¼0 bkXk , and let dk ¼ bkmk/mY, where m represents the expected

value. Then
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G2
Y � GY

XK
k¼1

dkDkYGk ¼
XK
k¼1

d2kG
2
kþ
XK
k¼1

X
k6¼j

dk djGkGj Gkj: (4.10)

If DkY ¼ 0 for k ¼ 1, . . ., K and Gkj ¼ Gjk for (k, j ¼ 1, . . ., K) then

G2
Y ¼

Xk
k¼1

d2kG
2
kþ
XK
k¼1

X
k 6¼j

dk djGkGj Gkj: (4.11)

Equation (4.10) is similar in its structure to the decomposition of the coeffi-

cient of variation. In order for it to be identical in structure, the two Gini

correlations between each pair of variables Y, X1, . . ., XK must be equal. The

resultant presentation is given in (4.11). Schechtman and Yitzhaki (1987) show

that a sufficient condition for Gkj ¼ Gjk is that the variables are exchangeable up

to a linear transformation. (See property (7) in Sect. 3.3). The meaning and

implication of exchangeability are discussed in the next section (Sect. 4.3).

Examples of such distributions are the multivariate normal and the multivariate

lognormal, provided that sk ¼ sj, where s is the logarithmic standard deviation.

If the Gini correlations between pairs of variables are not equal, one needs to use

(4.10), where each “violation” of the equality of the Gini correlations is captured

by an additional term in the decomposition (hence, we can treat each violation

separately and evaluate its effect on the decomposition; in particular we can see

whether the violation tends to increase or decrease the overall variability or

inequality).

We conclude the theoretical part with an example, showing that a linear combi-

nation of two statistically independent random variables does not necessarily lead

to the similarity between the decompositions of the variance and of the Gini.

In other words, statistical independence is not a sufficient condition for similar-

ity in the structures of the decompositions of the variance and the Gini of a linear

combination of the variables. More specifically, the example shows that while the

variance of a sum of i.i.d. random variables is the sum of the variances, this is not

necessarily true for the Gini of the sum. It will be true if the combination and each

of the individual components are exchangeable up to a linear transformation. This is

an additional insight that the Gini reveals more.

Let X1, X2 be i.i.d. random variables having a uniform distribution on [0, 1] and

let Y ¼ X1 + X2. We show that GX1;Y 6¼ GY;X1
; i.e., the condition DkY ¼ 0 of

equation (4.6) does not hold.
The cumulative distribution of Y is given by

F(y) ¼
0 y < 0
y2

2
0 < y < 1

1� ð2� y)
2=2 1 < y < 2

0
@

1
A
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and the density function is given by

f(y) ¼ y 0 < y < 1

2� y 1 < y < 2

� �
:

The joint density of X1 and Y is given by

f(x1,y) ¼ 1 0 < x1 < 1; x1 < y < x1 þ 1

0 otherwise

� �
:

The calculations give

cov X1; F Yð Þð Þ ¼
ð1

0

ð1

x

(x� 0:5Þ y
2

2
dydxþ

ð1

0

ðxþ1

1

(x� 0:5Þ 1� ð2� y)
2

2

 !
dydx

¼ 0:05833

cov X1; F X1ð Þð Þ ¼
ð1

0

ðx� 0:5Þxdx ¼ 1

12
:

Therefore

GX1;Y ¼ 0:05833

1=12
¼ 0:7:

On the other hand,

cov Y; F X1ð Þð Þ ¼
ð1

0

ðxþ1

x

(y� 1)xdydx ¼ 0:08333

cov Y; F Yð Þð Þ ¼
ð1

0

(y� 1Þ y
2

2
ydy

þ
ð2

1

(y� 1Þ 1� ð2� y)
2

2

 !
ð2� y)dy ¼ 0:116667:

Therefore

GY;X1
¼ 0:08333

0:16667
¼ 0:714:
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Because the correlations are not equal, the term D of (4.6) does not vanish. The

intuitive reason for the result is that the distribution of the sum of the variables is not

identical, up to a linear transformation, to the distribution of the components. This

is also an illustration that “the Gini reveals more.”

The following conclusions can be drawn:

(a) If the underlying distribution is multivariate normal then the decompositions of

the Gini and of the variance of a linear combination of random variables

produce identical results (identical in structure, but not necessarily in their

numerical results), with the decomposition of the Gini being less efficient

than the decomposition of the variance, due to the fact that the estimates of

the variance and the Pearson correlation are sufficient statistics for the

parameters in the normal distribution.

(b) In general, if the underlying distributions of Y, X1, . . ., XK are exchangeable up

to linear transformations then the decompositions of the Gini and of the

variance of a linear combination of random variables produce identical struc-
ture, but with different numerical and expected values. This means that the

number of potential models that can be used is doubled because for every model

based on the variance there is a parallel model based on the Gini. By parallel it

is meant that one can take the solution of a variance-based model, substitute

every variance by the square of the GMD and every Pearson correlation

coefficient by Gini correlation, and obtain a new set of results. For example,

assume that we are interested in minimizing the measure of variability of a

linear combination of random variables subject to a given expected value as is

the case of constructing portfolios in finance (see Chaps. 17 and 18). Then there

are two potential solutions—one for each metric chosen. Another example:

When dealing with models in finance and policy design the question of interest

is how to change the constants bk or dk (k ¼ 1, . . ., K) in order to minimize the

GMD or the variance of the linear combination, Y, subject to additional

constraints. In these cases we can take the solution that was derived for the

variance-based problem, substitute every variance by the square of the GMD,

substitute every Pearson correlation coefficient by the Gini correlation coeffi-

cient, and get a Gini-based solution. The numerical results may, of course,

differ. Actually, the semi-parametric Gini regression and the model of selecting

a portfolio (Chap. 18) are examples of this imitation.

(c) If only some (or all) of the X1, . . ., XK are not exchangeable up to linear

transformations among themselves (but all are exchangeable with Y), then

one can define a symmetric Gini correlation as follows:

SXY ¼ SYX ¼ 0:5 ð GXY þ GYXÞ

and we are back in case (b). (See Yitzhaki & Olkin, 1991.) Yitzhaki and Wodon

(2004) suggest an alternative symmetric measure which will be discussed in

Chap. 15 when dealing with the concept of mobility.
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(d) If DkY 6¼ 0 for some k’s then the linear combination Y ceases to belong to the

family of distributions of the Xk’s. In this case the decompositions of the

variance and the Gini do not have the same structure. The Gini decomposition

includes some extra terms. This case opens the way to developing tests of

convergence, as will be shown in Chap. 23.

We have described the differences in the structures of the decompositions of the

GMD and the variance of a linear combination of random variables as depending on

whether the distributions are exchangeable up to linear transformations or not. We

will define and illustrate the importance of exchangeability at the end of the chapter.

We now move to the second kind of decomposition—the decomposition of the

variability of a population which is composed of several groups (subpopulations)

into the contributions of the individual groups to the overall variability.

4.2 The Decomposition of the Variability of a Population

by Subpopulations

The decomposition of the variability of a population which is composed of several

groups (subpopulations) into the contributions of the groups to the overall

variability leads to similar results as in the decomposition of the variability of a

linear combination of random variables: it adds extra terms. If these terms are

relevant to the area of investigation then the use of the GMD or the Gini coefficient

“reveals more.” If, on the other hand, one is not interested in these extra terms, then

the use of the Gini is cumbersome and complicated.

Intuitively, the methodology presented below can be referred to as ANOGI

(ANalysisOfGIni)—the equivalent of ANOVA performed with the Gini coefficient

(the relative measure). Because in practice most of the decompositions deal with the

Gini coefficient (for example, in the area of income distributions) we will present

the decomposition of the Gini coefficient rather than that of the GMD. In order to

obtain the decomposition of the GMD one only has to substitute the constant terms,

similar to the decomposition of a linear combination of random variables.

The decomposition we follow is the one presented in Yitzhaki (1994a). There are

other versions of the same decomposition such as the one presented in Yitzhaki and

Lerman (1991). The difference between the two is that while Yitzhaki and Lerman

decompose the Gini coefficient according to the contribution of one group vs. all the

others combined, Yitzhaki (1994a) decomposes the Gini coefficient into the contri-

bution of each group vis-à-vis the entire population, including the group itself. As a

result, one can perform a second-stage decomposition that consists of the contribu-

tion of each pair of groups. This latter decomposition enables symmetry in the

decomposition, and therefore it is the preferred one in our view. It should be

mentioned that the decomposition we present is not the only decomposition of

the Gini. See, for example, Dagum (1997) and Deutsch and Silber (1999). However,

they are not covered because they do not imitate ANOVA.
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Let Yi, Fi(Y), fi(Y), mi, and pi represent the income (variate), the cumulative

distribution, the density function, the expected value, and the share of subpopula-

tion i in the overall population, respectively (i ¼ 1, . . ., n). Let si ¼ pimi/mu denote
the share of group i in the overall income, where subscript u denotes the union of the
subpopulations. In other words the income of the overall population is composed of

the union of the incomes of the subpopulations, namely, Yu ¼ Y1 [ Y2 [ � � � [ Yn.

Note that

Fu(Y) ¼
X
i

piFiðYÞ: (4.12)

That is, the cumulative distribution of the overall population is the weighted

average of the cumulative distributions of the subpopulations, weighted by the

relative sizes of the subpopulations. Two representations of the Gini coefficient of

group i are used in this chapter. The first presentation is the covariance-based

formula (2.15):

Gi ¼ 2covi Y,Fi(Y)ð Þ
mi

; (4.13)

which is twice the covariance between the income Y and the rank Fi(Y),

standardized by the mean income mi, and covi() is the covariance calculated under

the distribution Fi. The second presentation is

Gi ¼ EiðjY1 � Y2jÞ
2 mi

; (4.14)

where Y1 and Y2 are i.i.d. coming from the ith group and Ei is the expected value

under distribution Fi . Using these presentations we can write the Gini mean

difference of the overall population as

E(jY1 � Y2jÞ ¼ EuðjY1 � Y2jÞ ¼
Xn
i¼1

Xn
j¼1

pipjE(jYi � YjjÞ; (4.15)

whereY1 andY2 are i.i.d. with cdf Fu() (i.e., the entire population) andE ¼ Eu is the

expected value calculated under the distribution Fu. Next, the expectation can be

written as

E(jYi � YjjÞ ¼ 2fcovi[Y,Fj(Y)]þ covj[Y,Fi(Y)]þ miðFji � 0:5Þ þ mjðFij � 0.5)g,
(4.16)

where

Fji ¼
ð
Fj(t)dFi(t)
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is the expected rank of observations of group i had they been ranked according to

the ranking of group j. (See Appendix 4.1 and Yitzhaki (1994a) for details.)

Substituting (4.16) into (4.15) we get

E(jY1 � Y2jÞ ¼ 2
X
i;j

pipjf covi[Y,Fj(Y)]þ covj[Y,Fi(Y)]g

þ 2
X
i;j

pipjfmiðFji � 0:5Þ þ mjðFij � 0.5)g : (4.17)

Note that

X
i;j

pipj miðFji � 0:5Þ ¼
X
i

pi mi
X
j

pjðFji � 0:5Þ ¼
X
i

pi miðFui � 0:5Þ ¼ covB( m ;�FuÞ;

where covB() is the between-groups covariance, Fui is the expected rank of

observations of group i had they been ranked according to the ranking of the entire

population, Fu is the vector of the expected ranks, and m is the vector of means of the

vector Y of the subpopulations. Therefore (4.17) can be written as

E(jY1 � Y2jÞ ¼ 4
X
i;j

pipjOjicovi[Y,Fi(Y)]þ 4covB( m ;FuÞ;

where

Oji ¼ covi(Y,Fj(Y))

covi(Y,Fi(Y))
(4.18)

is the overlapping index of group j by group i (to be detailed below). Finally,

using the fact that the overlapping of group i by the entire population can be

expressed as

Oi ¼
X
j

pjOji

we get that the Gini coefficient of the entire population, Gu, can be decomposed as

Gu ¼
Xn
i¼1

siGiOi þ GB; (4.19)

where si is the share of subpopulation i in the total income, Gi is the Gini coefficient

of subpopulation i, Oi is the overlapping index of subpopulation i with the entire

population, and GB measures the between-groups inequality (the terms are defined

below). Equation (4.19) decomposes the Gini coefficient of the union into two

4.2 The Decomposition of the Variability of a Population by Subpopulations 61



related components: intra- and inter-group components, connected in a way which

is relatively complicated.

The decomposition of the GMD follows a similar pattern and is given by

Du ¼
Xn
i¼1

pi DiOi þ DB: (4.20)

Equation (4.20) can be compared to the equivalent equation in decomposing the

variance, which is

s2u ¼
Xn
i¼1

pi s
2
i þ s2B: (4.21)

Equation (4.21) is the theoretical basis for ANOVA. It partitions the total

variability into two components—a “within (intra)” component and a “between

(inter)” component. Note that while in ANOVA the total variability is partitioned

into inter- and intra-variances, in ANOGI there are inter- and intra-Gini’s, but in

addition there is an extra parameter Oi which is called the overlapping index. We

will return to this implication following the explanation of the individual

components.

4.2.1 The Overlapping Parameter

Overlapping can be interpreted as the inverse of stratification. Stratification is a

concept used by sociologists. We follow Lasswell’s (1965, p. 10) definition as: “in

its general meaning, a stratum is a horizontal layer, usually thought of as between,

above or below other such layers or strata. Stratification is the process of forming

observable layers, or the state of being comprised of layers. Social stratification

suggests a model in which the mass of society is constructed of layer upon layer of

congealed population qualities.”

According to Lasswell, perfect stratification occurs when the observations of

each subpopulation are confined to a specific range of income, and the ranges of the

subpopulations do not overlap. An example of a perfect stratification is the division

of the society into deciles. Stratification plays an important role in the theory of

relative deprivation (Runciman, 1966), which argues that stratified societies can

tolerate greater inequalities than non-stratified ones (Yitzhaki, 1982b). The rela-

tionship between the Gini and social stratification will be discussed in Chap. 13.

Stratification is also important in cases where the interest is in the quality of the

classification into groups. The more stratified the classification is, the higher is its

quality. For example, Heller and Yitzhaki (2006) used the overlapping index to

evaluate the quality of the classification of families of prehistoric snails according

to observable characteristics of the shells. Stratification also plays a role in
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regression trees but this topic is beyond the scope of this book. (See for example

Lewis, 2000.)

One can rarely find a perfect stratification. Therefore an index which will

quantify the degree of stratification is called for. The index of overlapping (to be

defined below) quantifies the extent to which the different subpopulations are

stratified.

Formally, overlapping of the overall population by subpopulation i is defined as

Oi ¼ Oui ¼ covi(Y,Fu(Y))

covi(Y,Fi(Y))
; (4.22)

where covi is the covariance according to distribution i. (For convenience, the index
u is sometimes omitted.) That is,

covi(Y,Fu(Y)) ¼
ð
(y� miÞ ðFu(y)� FuiÞ fi(y)dy; (4.23)

where Fui is the expected rank of subpopulation i in the union (all observations of

subpopulation i are assigned their ranks in the union Fu(y), and Fui represents the

expected value of those ranks). Here it is worth pointing out two issues: (a) ranking

observations according to a different distribution is a rare concept in statistics.

However, it is common in sports where each athlete is frequently ranked in his or

her country as well as according to other scales (world, continent, gender, age

group, etc.). (b) The overlapping index resembles the Gini correlation. Its numera-

tor involves a covariance between a cumulative distribution and a variate, but it

does not include all the observations of the cumulative distribution, only the ones

belonging to subpopulation i.

The overlapping index (4.22) can be further decomposed to identify the

overlapping of subpopulation i with all other subpopulations that comprise the

union. In other words, the total overlapping of subpopulation i, Oi, is composed

of overlapping of group i with all the subpopulations, including group i itself. This
further decomposition of Oi is

Oi ¼
X
j

pjOji ¼ piOii þ
X
j6¼i

pjOji ¼ pi þ
X
j 6¼i

pjOji; (4.24)

where pj is the share of subpopulation j in the union and Oji ¼ covi(Y,Fj(Y))
covi(Y,Fi(Y))

is the

overlapping of group j by group i.
The properties of the overlapping index Oji are the following:

(a) Oji � 0. The index is equal to zero if no member of the jth distribution lies in

the range of distribution i (i.e., group i is a perfect stratum).

(b) Oji is an increasing function of the fraction of population j that is located in the

range of population i.

4.2 The Decomposition of the Variability of a Population by Subpopulations 63



(c) For a given fraction of distribution j that is in the range of distribution i, the
closer the observations belonging to j are to the expected value of distribution i,
the higher Oji is.

(d) If the distribution of group j is identical to the distribution of group i, then
Oji ¼ 1. Note that by definition Oii ¼ 1. This result explains the second

equality in (4.24). Using (4.24) it is easy to see that Oi � pi, which is a result

to be borne in mind when comparing different overlapping indices of groups

with different sizes.

(e) Oji � 2. That is, Oji is bounded from above by 2. This maximum value is

reached if all observations belonging to distribution j that are located in the

range of distribution i are concentrated at the mean of distribution i. Note,
however, that if distribution i is known then it may be that the upper bound is

lower than 2 (see Schechtman, 2005). That is, if we confine distribution i to be

of a specific type then it may be that the upper bound will be lower than 2,

depending on the assumptions of the distribution. For example, in the exponen-

tial distribution the overlapping index is bounded from above by 1! The upper

bound of 2 is the best bound only when no other assumptions can be made on

the distributions.

(f) In general, the higher the overlapping index Oji is, the lower will Oij be. That is,

the more group j is included in the range of group i, the less group i is expected
to be included in the range of group j.

Properties (a) to (f) show that Oji is an index that measures the extent to which

subpopulation j is included (overlapped) in the range of subpopulation i. Note that
the indices Oji and Oij are not interrelated by a simple relationship. However it is

clear that the two indices of overlapping are not independent.

4.2.2 Between-Groups Component GB and Its Properties

As will be seen later, we are interested in two alternative parameters representing

the between-group inequality. We start with the one appearing in equation (4.19).

The between-groups inequality GB is defined in Yitzhaki and Lerman (1991) as

GB ¼ 2covB m ;Fu
� �
mu

: (4.25)

GB is twice the covariance between the mean incomes of the subpopulations and

the subpopulations’ mean ranks in the overall population, divided by overall mean

income. That is, each subpopulation is represented by its mean income and by the

mean rank of its members in the overall distribution. The term GB equals zero if

either the mean incomes or the mean ranks are equal for all subpopulations. In

extreme cases GB can be negative, which occurs when the mean incomes are

negatively correlated with the mean ranks of the members of the subpopulations.
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For example, imagine a case where in one subpopulation there is one extremely rich

person while the others are extremely poor. In such a case, the average income of

the group will be relatively large while the average rank of its members will be

relatively small.

GB is not a pure Gini coefficient because Fu is not the cumulative distribution of

the variable mi. An alternative between-groups Gini (GBP) was defined by Pyatt

(1976). (Cowell, 1980; Mookherjee & Shorrocks, 1982; Shorrocks, 1984; Silber,

1989 also follow Pyatt.) In this definition, the between-groups Gini is based on the

covariance between the mean income in each subpopulation and its rank among

the mean incomes of the subpopulations. This between-groups component is a pure

Gini (of the vector of means). The difference between the two definitions is in the

rank that is used to represent the group: under Pyatt’s approach it is the rank of the

mean income of the subpopulation, while under Yitzhaki–Lerman it is the mean

rank of all members belonging to the subpopulation.

Generally, it can be shown (Frick, Goebel, Schechtman, Wagner, and Yitzhaki,

2006) that

GB � GBP: (4.26)

The upper limit of GB is reached and (4.26) holds as an equality when the groups

occupy nonoverlapping ranges of incomes (i.e., perfect stratification) because in

that case the ranking of the means of the groups is equivalent to taking the average

of the rankings of the individual members of the groups. Therefore the difference

between the two can supply an indication of the quality of the overlapping.

Having explained the different components we now present an alternative

version of (4.19) that will be used throughout this book.

Gu ¼
Xn
i¼1

siGi þ
Xn
i¼1

siGiðOi � 1Þ þ GBP þ ðGB � GBPÞ: (4.27)

Presentation (4.27) is obtained from (4.19) by adding and subtracting several

terms. Equation (4.27) presents the decomposition of the Gini coefficient of the

entire population into four components. Two of the components are similar in

nature to the components of ANOVA: inter (the first component) and intra (the

third component) variabilities. The other two components are specific to this

decomposition and reflect the overlapping, as is explained below. In addition,

note that the first two components are related to the “intra” group variability and

the last two are related to the “inter” group variability.

Intuitively the overlapping affects both the “intra” and the “inter” parts of the

decomposition: as the amount of overlapping increases we would expect the “intra”

part to become larger while the “inter” part should become smaller. We now turn to

(4.27). We start with the effect on the “intra” part: if there is complete overlapping,

then Oi ¼ 1 for all i, and the second term vanishes. Any deviation from this perfect

(and unrealistic) case will imply a positive contribution to the “intra” term. We now
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turn to the “inter” part. If the groups are perfectly stratified then the between-groups

component reaches its highest value GB (in which case GB ¼ GBP). Overlapping

reduces the quality of the classification and as a result decreases the between-groups

part (in which case the “between” component is reduced by GBP-GB which is

positive). Heller and Yitzhaki (2006) used this property to evaluate the classifica-

tion of families of prehistoric snails according to observable characteristics of the

shells. Frick et al. (2006) used it to compare the distributions of different indepen-

dent samples taken from the same population at different points in time. If the

samples are drawn from the same population (that is, there was no change in the

population over time), then the means and the Ginis should be equal, no stratifica-

tion should be observed (i.e., perfect overlapping), and the between-groups compo-

nent should be equal to zero. In Chap. 13 we analyze the implication of stratification

on social unrest. Wodon (1999) suggests additional results concerning sequential

decomposition in a multidimensional context. Monti and Santoro (2011) restrict the

population to be based on only two groups, which enables them to interpret the

between-groups as representing the probability that a random member of the lower

group (on average) to be higher than a randommember drawn from the (on average)

higher group. Mussard and Richard (2012) suggest a connection between the Gini

decomposition according to subgroups and the decomposition of a linear combina-

tion of random variables. However, the method is applicable to nonoverlapping

distributions.

4.2.3 ANOGI vs. ANOVA: A Summary Table

We conclude this chapter with a comparison between ANOGI and ANOVA as shown

in the summary table (Table 4.1). The four components that comprise the decomposi-

tion of the Gini can be divided into two types: those which carry equivalent informa-

tion as in ANOVA (when using Gini instead of the variance as a measure of

variability), and those which carry an additional information. We note in passing

that the measure of variability in ANOGI is the Gini coefficient (i.e., a relative

Table 4.1 A summary of ANOGI components in comparison to ANOVA

Components parallel to ANOVA Formula Range

Intra-group IG ¼Pn
i¼1 siGi 0 � IG � Gu

Between-groups-Pyatt BGp ¼ GBP 0 � BGp � Gu

Additional information

Overlapping effect on intra-group IGO ¼Pn
i¼1 siGiðOi � 1Þ

Overlapping effect on between-

groups

BGO ¼ GB � GBP � BGp � IGO� IG � BGO � 0

Source: Frick et al. (2006), p. 439, Table 3

Reprinted with permission from SAGE Journals
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measure), while in ANOVA the commonly used way is to decompose the variance

(i.e., an absolute measure). This distinction does not interfere with the comparison

below.

(a) Components Which Are Identical in Nature to ANOVA

For a given overall inequality, Gu:

Intra-Group component (IG). A weighted average of groups’ Ginis. It reaches the

lower limit if all intra-group Ginis are equal to zero. It reaches the upper limit if the

distributions of all groups are identical (identical in nature to MSE in ANOVA).

Between-Groups component, based on Pyatt (BGP). It reaches the upper limit if all

groups are concentrated at their means. It reaches the lower limit, zero, if the means

of all groups are equal (identical in nature to MSB in ANOVA). It measures

between-groups inequality, assuming a perfect stratification.

(b) Additional Components

The two additional components are related to the overlapping among the groups.

The effect of overlapping on the intra-group component (IGO). This term “revises”

the contribution of each subpopulation to the intra-group variability, provided

that the inequality in the group (as measured by the group’s Gini) is greater than

zero. If the subpopulation and the overall population are equally distributed, then

there is no revision to its contribution (Oi ¼ 1). However, if a subpopulation forms

a strata in the population (Oi < 1), then its contribution to the intra-group compo-

nent is reduced, while its contribution to the between-groups component is

increased. On the other hand, if the scatter of the ranks of the group’s members is

larger than that of the population (Oi > 1), the contribution of the group to the

intra-group component is increased, while its contribution to the between-groups

component is decreased.

The effect of overlapping on the between-groups component (BGO). The effect of
overlapping on the between-groups component occurs only if the expected values

of the subpopulations are not all equal. It is always non-positive, because the

overlapping reduces the ability to distinguish between the groups. It reaches the

upper limit (zero) if the ranges occupied by the different groups do not overlap.

Note, however, that the combined effect of the between-groups inequality and the

impact of overlapping on it can be negative if the means of the groups are

negatively correlated with the means of the ranks of the members of the

subpopulations. This possibility occurs if, for example, the population is composed

of two groups, with one group composed of a majority of poor people and a few

very rich people, while the second group is composed of the middle class. In this

case the expected income of the first group is high (because of the few rich) while its
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expected rank (that is, the mean of the ranks of its members) is low (because of the

majority of poor people), causing the correlation to be negative.

Finally, an alternative and technical interpretation of equation (4.27) is as

follows: the first term represents the variability of the variate within each group,

the second term represents the variability of the ranks in each group in the overall

population, the third term represents the variability of the expected values among

groups, while the fourth term represents the variability of the expected ranks.

Having explained the individual components of the decomposition, we now

discuss the meaning of their convergence to zero.

We can interpret the convergence to zero as follows:

(a) GBP ¼ 0 implies that all the mean values are equal.

(b) GBP > 0 and GB ¼ 0 imply that the mean ranks of the subpopulations in the

overall population are equal.

(c)
Pn
i¼1

siGiðOi � 1Þ ¼ 0 implies that it is most likely that each subpopulation fully

overlaps with the entire population.

Clearly, we are using terms that are connected. However each parameter adds

insight and there is no redundancy or double counting because the sum of all of

them adds up to the overall Gini, and one can produce examples where one term is

equal to zero and the others are not. The advantage of ANOGI over ANOVA is that

the decomposition of the Gini coefficient adds a new parameter to the existing inter

and intra terms, namely, the overlapping index. Hence, not only are the equivalents

of the first and second moments examined, but the extent of subpopulations

intertwining is also considered.

4.3 The Decomposition of Gini Covariance

Similar to the decomposition of the GMD into the contributions of different groups,

one can also decompose the Gini covariance into the contributions of different groups.

This decomposition is especially useful when one wants to see the contributions of

different groups to the Gini correlation and the Gini regression coefficients. The

concepts are general and can be applied to Pearson’s correlation coefficient and the

OLS regression coefficient. Therefore we start with a general claim about the decom-

position of a covariance. For simplicity, we treat the distribution as discrete.

Assume that the observations of (X, Y) are partitioned into M disjoint groups,

denoted by m ¼ 1, . . ., M.

Claim

cov(X,Y) ¼
XM

m¼1
pmcovm(X,Y)þ covBðXm;YmÞ ; (4.28)

where pm ¼ nm/n is the relative size of group m, Xm and Ym are the vectors of the

group means, and
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covBðXm;YmÞ ¼
XM
m¼1

pmðXm � X::ÞðYm � Y::Þ; (4.29)

where X:: is the overall mean. Equation (4.29) holds in the population and in the

sample analogues. Although trivial, a proof (in the sample) is added because we

will be repeating its use in several ways.

Proof of the claim Let (Xmj, Ymj), m ¼ 1, . . ., M, j ¼ 1, . . ., nm be the n

observations ðn ¼ PM
m¼1

nmÞ; then

n*cov(X,Y) ¼
XM
m¼1

Xnm
j¼1

ðXmj � X::ÞðYmj � Y::Þ

¼
XM
m¼1

Xnm
j¼1

ðXmj � Xm: þ Xm: � �X::ÞYmj

¼
XM
m¼1

Xnm
j¼1

ðXmj � Xm:ÞYmjþ
XM
m¼1

Xnm
j¼1

ðXm: � X::ÞYmj

¼
XM
m¼1

nmcovm(X,Y)þ n � covBðXm;YmÞ:

Using the claim, it is easy to see how the regression coefficient can be

decomposed.

4.3.1 Decomposing the OLS Regression Coefficient

The OLS regression coefficient is defined by

bOLS ¼ cov(Y,X)

cov(X,X)
: (4.30)

Using the decomposition above, it can be presented as

bOLS ¼ cov(Y,X)

cov(X,X)
¼ 1

cov(X,X)

XM
m¼1

pm s2mb
OLS
m þ s2Bb

OLS
B

( )
;

where s2 stands for the variance of the explanatory variable. That is, the regression
coefficient is a weighted average of the intra- and between-groups regression

coefficients, with the share of the variance of the explanatory variable in the

group ðpm s2
m

s2
X

) used as the weighting scheme.

The decomposition of the Gini regression coefficient is more complicated as is

shown below.
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4.3.2 Decomposing the Gini Regression Coefficient

The Gini regression coefficient is defined by

bN ¼ cov(Y,F(X))

cov(X,F(X))
: (4.31)

Our starting point is the decomposition of the numerator:

cov(Y,F(X)) ¼
XM
m¼1

pmcovm(Y,F
u
m(X))þ covBðY:;F

u
:(X)); (4.32)

where FumðXÞ is the vector of ranks of the members of group m (in the overall

distribution), Y: is the vector of group means, and F
u
: is the vector of average ranks

of members of the groups in the overall distribution.

Using (4.32) we get

cov(Y,Fu(X)) ¼
XM
m¼1

pm
covm(X,F

u
m(X))

covm(X,Fm(X))
covm(X,Fm(X))

covm(Y,F
u
m(X))

covm(X,F
u
m(X))

þ covBðY:;F
u
:(X))

;

where Fu indicates the cumulative distribution in the overall distribution, while Fm
is the cumulative distribution of group m.

We now interpret the terms:

bNum ¼ covm(Y,F
u(X))

covm(X,F
u(X))

(4.33)

is the regression coefficient of group m when the X0s are ranked in the overall

distribution, which is different from the regression coefficient of group m, would it

be handled separately.

Om ¼ covm(X,F
u(X))

covm(X,Fm(X))

is the overlapping of group m with the overall population. Let

Sm ¼ pm
covm(X,Fm(X))

cov(X,Fu(X))

be the share of the GMD of group m in the overall GMD.
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Using the notation above and replicating the exercise with respect to the

between-groups component, we get

bN ¼ cov(Y,F(X))

cov(X,F(X))
¼
XM
m¼1

SmOmb
Nu
m þ SBb

Nu
B ; (4.34)

where SB ¼ cov(X:;F
u

: (X))
cov(X,F(X))

is the share of between-groups Gini in the overall Gini,

whilebNuB is the between-groups regression coefficient. In the case where the groups

do not overlap, that is when the range of X is divided into nonoverlapping segments,

the decomposition of the Gini regression coefficient will be identical to the decom-

position of the OLS regression coefficient. To see that, write the left term on the

right side of (4.34) as

XM
m¼1

SmOmb
Nu
m ¼

XM
m¼1

Smb
Nu
m þ

XM
m¼1

SmðOm � 1ÞbNum ; (4.35)

and note that in the case with no overlapping the ranks of a group within the overall

distribution are the same as within the group itself (up to a constant), and hence the

value of Om is 1 and the second term in (4.35) vanishes. Since there is no

overlapping, the average ranking of group’s members in the overall population

will be identical to the ranking of the average of X. Hence, the decompositions of

the Gini and OLS regression coefficients are identical in structure.

4.4 Summary

Two types of decompositions are introduced in this chapter: the decomposition of

the GMD of a linear combination of random variables and the decomposition of a

Gini coefficient (and GMD) of a population into the contributions of the

subpopulations. The decomposition properties of the GMD and the Gini coefficient

are a vivid proof to the claim that the Gini reveals more. The decomposition of the

GMD of a linear combination of random variables reveals whether the individual

variables and the linear combination of them are exchangeable up to a linear

transformation or not. The decomposition of the Gini coefficient of an overall

population to the contributions of several subpopulations reveals the degree of

stratification among the subpopulations. Whether these new parameters contribute

to our understanding and to the analysis of the data or not depends on the subject

matter. One cannot claim that they are always useful or always redundant.

It depends on the application in mind. It is clear, though, that using the Gini instead

of the variance complicates the analysis. Note that even when the distributions are

well behaved in the sense of being exchangeable up to linear transformations (so

that the decompositions of the GMD and the variance are identical in structure) the
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use of the GMD still adds information (unless the distribution is multivariate

normal). It doubles the number of models used in economics because for every

variance-based model there is a Gini-based model. It is important to know whether

the two methods give the same numerical results or not, and when they do not, one

should investigate the reason that causes the different outcomes.

Appendix 4.1

Claim

E(jYi � YjjÞ ¼ 2fcovi[Y,Fj(Y)]þ covj[Y,Fi(Y)]þ miðFji � 0:5Þ þ mjðFij � 0.5)g,
ðA4:1Þ

where

Fji ¼
ð
Fj(t)dFi(t) ðA4:2Þ

is the expected rank of observations of group i had they been ranked according to

the ranking of group j.

Proof (Yitzhaki, 1994a)

E(jYi � YjjÞ ¼
ð1

0

ð1

0

jy1 � y2jdF1ðy1)dF2ðy2Þ

¼
ð1

0

ðy2
0

ðy2 � y1)dF1ðy1)dF2ðy2Þþ
ð1

0

ð1

y2

ðy1 � y2)dF1ðy1)dF2ðy2Þ

¼
ð1

0

ðy2
0

y2dF1ðy1)dF2ðy2Þ �
ð1

0

ðy2
0

y1dF1ðy1)dF2ðy2Þ

þ
ð1

0

ð1

y2

y1dF1ðy1)dF2ðy2Þ �
ð1

0

y2ð1� F1ðy2))dF2ðy2Þ

¼ 2

ð1

0

y2F1ðy2)dF2ðy2Þ � m2�
ð1

0

ðy2
0

y1dF1ðy1)dF2ðy2Þ

þ
ð1

0

ð1

y2

y1dF1ðy1)dF2ðy2Þ : ðA4:3Þ
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The covariance between Y2 and F1(Y2) is given by

cov(Y2;F1ðY2ÞÞ ¼
ð1

0

y2F1ðy2)dF2ðy2Þ � F12 m2: ðA4:4Þ

Therefore using (A4.4) we can write the first two terms of (A4.3) as

2

ð1

0

y2F1ðy2)dF2ðy2Þ � m2 ¼ 2cov(Y2;F1ðY2ÞÞ þ 2F12 m2 � m2

¼ 2cov(Y2;F1ðY2ÞÞ þ 2 m2ðF12 � 0:5Þ :

The third and the fourth terms in (A4.33) can be presented in a similar way. That

is, using

m1 �
ðy2
0

y1dF1ðy1Þ ¼
ð1

y2

y1dF1ðy1Þ

and integration by parts with

u ¼
ðy2
0

y1dF1ðy1Þ; u0 ¼ y2dF1ðy2Þ

v0 ¼ dF2ðy2Þ and v ¼ F2ðy2Þ;

we get

�
ð1

0

ð1

y2

y1dF1ðy1)dF2ðy2Þ þ
ð1

0

ð1

y2

y1dF1ðy1)dF2ðy2Þ ¼ m1 � 2

ð1

0

ðy2
0

y1dF1ðy1)dF2ðy2Þ

¼ m1 � 2F2ðy2Þ
ðy2
0

y1dF1ðy1Þj10 þ 2

ð1

0

y2F2ðy2)dF1ðy2Þ ¼ 2

ð1

0

y2F2ðy2)dF1ðy2Þ � m1

¼ 2cov(Y1;F2ðY1ÞÞ � m1 þ 2F21 m1 ¼ 2cov(Y1;F2ðY1ÞÞ þ 2 m1½F12 � 0:5� :
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Chapter 5

The Lorenz Curve and the Concentration Curve

Introduction

The Lorenz and the concentration curves play important roles in the areas of

GMD and the related measures such as Gini covariance, Gini correlation, Gini

regression, and more. In this chapter we introduce the curves, discuss their

properties, and show their connections to the Gini world. In addition, in order

to be able to analyze the parallel concepts that are common in the variance world

we investigate the equivalents of the Lorenz and the concentration curves that

are relevant to the variance and the covariance, respectively. Those parallel

curves share some properties among themselves. Therefore one can deduct

from the concentration curve about some properties of the covariance and not

only about the Gini covariance. In addition we present the relationships between

the concepts of second-degree stochastic dominance and welfare dominance on

one hand and the concentration and Lorenz curves on the other hand. These

relationships enable the Gini methodology to serve as an analytical tool for

statistical analyses and to be compatible with economic theory, a property that

holds for the variance as well, but only for specific distributions.

Our approach in this chapter deviates from the main body of the literature on

Lorenz curves. Historically, Lorenz (1905) presented the Lorenz curve as based on

the relationship between the cumulative distribution of the variable (the horizontal

axis) and the cumulative value of the percentage of the variate (the vertical axis).
We have no qualm with this presentation which is useful in the area of income

distribution. However our main use of the curve is to investigate the properties of the

GMD and to carry out statistical analyses. For these purposes it is useful to use

the variate values rather than to normalize the Lorenz curve by dividing the cumula-

tive value of the variate by its mean because by looking at the percentages it implies

that we actually investigate the properties of the variance from the properties of the

coefficient of variation. Therefore we start with the simplest curve, the Absolute

Lorenz Curve (ALC) which is different from the Lorenz curve in the quantity that is

accumulated along the vertical axis: in the ALC it is the cumulative value of the

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_5,
# Springer Science+Business Media New York 2013
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variate itself while in the Lorenz curve it is the cumulative percentage value of the

variate. The properties of the Lorenz curve can be derived later from the properties

of the ALC in a way which is similar to the derivation of the properties of the

coefficient of variation from the properties of the variance.

The structure of the chapter is as follows: In Sect. 5.1 we introduce the ALC.

Section 5.2 is devoted to the Lorenz curve of the coefficient of variation. Next, in

Sect. 5.3 the absolute concentration curve (ACC) is introduced. Section 5.4 deals

with the relationship between the ALC and second-degree stochastic dominance.

The connection between the ACC and marginal conditional stochastic dominance is

discussed in Sect. 5.5. Section 5.6 deals with the use of the ACC to check for the

monotonicity of the correlations and the regression coefficients. Section 5.7

concludes.

5.1 The Absolute Lorenz Curve1

There are several possible definitions of the ALC. We follow Gastwirth’s (1971,

1972) definition which is based on the inverse of the cumulative distribution.

Let F(X(p)) ¼ p and X pð Þ ¼ F�1(p)ðX pð Þ is the pth quantile of F. In Gastwirth’s

definition p is plotted on the horizontal axis while the vertical axis represents the

cumulative value of the variate,
Ð p
�1 X(t)dt . The familiar Lorenz curve (LC) is

derived from the ALC by dividing the cumulative value of the variate by its mean.

The vertical axis is then (1/m),
Ð p
�1 X(t)dt.

The ALC was called the “Generalized Lorenz Curve (GLC)” by Shorrocks

(1983). However, we find the term “absolute” to be more informative because it

distinguishes between the absolute curve and the relative one. Therefore it will be

used throughout the book.

Note that

1. The ALC passes through (0, 0) and (1, m). The Lorenz curve passes through (0, 0)
and (1, 1).

2. The derivative of the curve at p is X(p); hence the curve is increasing (decreas-

ing) when X(p) is positive (negative).

Lambert (2001) gives an excellent description of the properties of ALC. Hart

(1975) presents inequality indices in terms of the distributions of first moments,

which are related to the ALC.

Figure 5.1 presents a typical ALC, the curve OAB. Before proceeding with the

relationship between the ALC and the GMD some geometrical properties of the

curve are worth mentioning. The slope of the line connecting the two extremes of

the curve (line OEGB in Fig. 5.1) is m. We refer to this line as the Line of Equality

1 This section is based on Yitzhaki and Olkin (1988).
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(LOE) because when all the observations are equal the ALC coincides with this

line. (When dealing with financial applications we will refer to it as the Line of Safe

Asset (LSA).) There are two additional important elements in Fig. 5.1. The first

element is the line DFAC which is tangent to the curve at A, where the cumulative

distribution is equal to p. Its slope is q ¼ X(p), where q is the pth quantile of the

distribution of X. The second element is the vertical segment EF, which passes

through p ¼ 1/2.

We now turn to the connection between the ALC and the GMD. For any constant

q, the expected absolute deviation E{jX � qj} of X from q can be divided into two

components: a lower absolute deviation LAD(q) and an upper absolute deviation

HAD(q). Formally,

LAD qð Þ ¼
ðq

�1
q� xð ÞdF xð Þ ¼ E q� Xð ÞI X<qð Þ½ � ¼ F qð ÞE q� Xð ÞjX<qf g;

HAD qð Þ ¼
ð1

q

x� qð ÞdF xð Þ ¼ E X� qð ÞI X>qð Þ½ � ¼ 1� F qð Þð ÞE X� qð ÞjX>qf g;

where I() is the indicator function.

Fig. 5.1 The absolute Lorenz curve. Source: This figure is identical to Fig. 2.1
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Clearly,

E jX� qjf g ¼ LAD qð Þ þ HAD qð Þ: (5.1)

Let q be a random variable identically distributed as X and independent of it. For

convenience, let us replace (X, q) by (X1, X2), where X1 and X2 are i.i.d. Then,

Eq LAD qð Þf g ¼ Eq EX q� Xð Þ I X < qð Þ½ �f g ¼ EX2 EX1 X2 � X1ð Þ I X1<X2ð Þ½ �f g
¼ E X2 � X1j j I X1<X2ð Þf g ¼ 0:5 E jX2 � X1jf g:

Therefore,

D ¼ E jX1 � X2jf g ¼ 2Eq LAD qð Þf g:

Similarly,

D ¼ E jX1 � X2jf g ¼ 2Eq HAD qð Þf g:

Hence, by (2.1) and (2.15), we get the following connections:

D ¼ E jX1 � X2jf g ¼ 2Eq LAD qð Þf g ¼ 2Eq HAD qð Þf g ¼ 4 cov X; F Xð Þð Þ: (5.2)

Let q be the tangent of the angle at D, as shown in Fig. 5.1. The following

geometrical results can be obtained from Fig. 5.1 and the previous definitions.

(a) The slope of DC is q (q ¼ X(p) is the inverse of the cumulative distribution at p).

Proof: Trivial. DC is the tangent to ALC at p. X(p) is the derivative of the ALC

at p.

(b) The segment OD (i.e., its length) is equal to LAD(q) and is a nondecreasing

function of q.

Proof: Using the figure it can be seen that

AP ¼
ðp

�1
XðtÞdt ¼

Xp
i¼1

X(i)I(X(i)<X(p)):

Also, from the geometrical presentation it follows that q is given by

APþOD
p ¼ q which implies that ðAPþ ODÞ ¼ pq ¼ pX pð Þ ¼ Pp

i¼1

X(i):

Using both equations we get (recall that q ¼ X(p))

OD ¼ 1

n

Xp
i¼1

(X(p)� X(i))I(X(i)<X(p)) ¼ 1

n

Xp
i¼1

jX(i)� qjI(X(i)<q) ¼ LAD(q):
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(c) The segment BC is equal to HAD(q) and is a nonincreasing function of q.

Proof: The proof is similar to the proof of (b).

Properties (b) and (c) imply that ðODþ BCÞ ¼ E jX� qjf g:
(d) The segment EF which connects the LOE ðOEBÞ and DAC and passes through

p ¼ 1/2 is equal to EF ¼ 0:5 E jX� X 0:5ð Þjf g , which is one-half of the

expected absolute deviation from the median.

Proof: The segment EF is in the middle of the trapezoid OBCD; therefore it is

equal to one-half of the sum of the two bases. By (b) and (c) above, plus (5.1),

we get EF ¼ 0:5E jX� X 0:5ð Þjf g:
(e) Summation of the segments mentioned above over the entire range of p yields

several presentations of the GMD.

(e.1) The area between the LOE and the ALC is equal to cov[X, F(X)]. That is,

the summation of all segments GA is equal to cov[X, F(X)].

Proof: The area between the LOE and ALC is equal to

ð1

�1

ðq

�1
ð m� xÞ dF xð ÞdF qð Þ¼

ð1

�1
F qð Þðq� mÞdF qð Þ ¼ cov X; F Xð Þ½ �;

which is obtained by integration by parts with u¼Ð q�1 ðm� xÞdF xð Þ and
dv ¼ dF(q).

(e.2) Summation of all segments OD , that is Eq{LAD(q)}, is equal to

2cov[X, F(X)].

Proof: To obtain this result first note that

Eq LAD qð Þf g ¼
ð1

�1

ðq

�1
q� xð ÞdF xð ÞdF qð Þ

¼
ð1

�1
q F qð ÞdF qð Þ �

ð1

�1

ðq

�1
xdF xð Þ dF qð Þ:

Using integration by parts in the second integral with u ¼ Ðq
�1

x dF xð Þand
dv ¼ dF(q) yields

Ð1
�1

Ð q
�1 x dF(x) dF(q) ¼ �[1�F(q)]

Ð q
�1 x dF(x)

j1�1 þ Ð1
�1 q[1�F(q)] dF(q) ¼Ð1

�1 q[1�F(q)] dF(q). Hence Eq{LAD(q)}

¼Ð1�1 q F qð Þ dF qð Þ�Ð1�1 q 1� F qð Þ½ � dF qð Þ¼ 2
Ð1
�1 q ½F qð Þ�1=2� dF qð Þ

¼ 2cov X; F Xð Þ½ � ¼ 1=2 D; as was shown in (5.2).
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(e.3) Summationof all segmentsBCover the entire range of q yieldsEq LAD qð Þf g
¼ Eq HAD qð Þf g ¼ 2 cov X; F Xð Þ½ � ¼ 0:5� D, as was shown in (5.2).
Proof: The proof is similar to the proof of (e.2).

(e.4) The sum of all segments EF, that is summation of E{jX � qj}, over all q
equals 2cov[X, F(X)], which means one-half of GMD.

Proof: Using (b) and (c) and (5.2)

ð
EFðqÞdq ¼

ð
0:5ðODðqÞ þ BCðqÞÞdq ¼

ð
0.5(LAD(q)þ HAD(q))dq

¼ 2cov(X,F(X)):

5.2 The Lorenz Curve of the Coefficient of Variation

The aim of this section is to demonstrate that knowledge of the similarity between

the GMD and the variance enables us to find additional graphical connections. For

example, one of the advantages of the Gini coefficient mentioned in the literature is

its graphical representation based on the Lorenz curve (see Sect. 3.3). It turns out

that one can imitate the derivation of the Gini coefficient in order to write the

coefficient of variation as the area defined by a (transformation of the) Lorenz curve

and the (transformed) 45� line (Yitzhaki, 1998).
As explained earlier, the Gini coefficient is twice the area defined between p and

LC(p), where LC(p) is the Lorenz curve at p. It turns out that the coefficient of

variation can be defined by a curve which is equivalent to the Lorenz curve (to be

denoted by LCV) as we show next.

Proposition 5.1 The square of the coefficient of variation is the area defined
between Y ¼ F(X) and Y ¼ LC[F(X)] where LC[F(X)] is the Lorenz curve defined
as a function of X. Namely,

LC(F(X)) ¼ LCV(X) ¼ 1

m

ðX

�1
tf(t)dt; (5.3)

where LCV is the Lorenz curve which corresponds to the variance (that is, instead
of being a function of p ¼ F(X), it is now a function of X).

Proposition 5.1 implies that if one takes the Lorenz curve and applies a mono-

tonic transformation to the horizontal axis (i.e., portraying the curve as a function of

X rather than of p), then the square of the coefficient of variation has a geometrical

representation that resembles the one for the Gini coefficient.

Proof To simplify the proof, assume that the range of the random variable is

bounded in [a, b]. Note that {F(X) � LCV(X)}/m is the vertical difference between

the 45o line and the Lorenz curve, as a function of X. We need to show that
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CVð Þ2 ¼ s2

m2
¼ 1

m

ðb

a

[F(x)� LCV(x)]dx: (5.4)

To prove (5.4), use integration by parts with u ¼ F(x) � LCV(x) and dv ¼ dx:

ðb

a

[F(x)� LCV(x)]dx ¼ ½F(x)� LCV(x)] x j
b

a

�
ðb

a

x f(x)� xf(x)

m

�
dx

�

¼ 1

m

ðb

a

[x� m]xf(x)dx ¼ s2=m:

By dividing both sides by m the proof is complete.

The square of the coefficient of variation can thus be presented in a manner that

resembles the representation of the Gini coefficient. However the graphical repre-

sentation of the Gini coefficient has an advantage. The summation of the area for

the Gini is limited to the range of [0, 1], whereas the summation of the area for the

coefficient of variation extends over the range of the random variable. Hence for

variables with infinite range, the geometrical interpretation of the coefficient of

variation is problematic. Another difference between the two geometrical

presentations is that while the Gini relies on an LOE, which is a straight line, the

coefficient of variation relies on the cumulative distribution which is harder to

visualize. This difference gives us intuitive rules to distinguish between results that

are shared by the Gini methodology and the variance, and those that are limited to

the Gini: all properties that are based on intersections of curves hold for both

approaches. All properties that are based on convexity/concavity properties hold

only for the Gini.

5.3 The Absolute Concentration Curve

We now move to the concentration curve. The ACC which is the extension of the

ALC into the two-variable case was used sporadically as a descriptive tool. The

idea behind it is similar to the idea behind the ALC, except that the horizontal axis

and the vertical axis now represent two different variables. Because of this

difference, some of the properties of the ALC (such as the convexity property)

disappear while others remain. On top of its connection with the Gini correlation,

as discussed in Blitz and Brittain (1964) and in Chap. 3, the ACC has two

additional properties that make it an important analytical tool. The first property

is that it enables the researcher to form necessary and sufficient conditions for
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Marginal Conditional Stochastic Dominance (MCSD, see Chap. 17) and for

welfare dominance (see Chap. 14). The second property is that it enables the

researcher to investigate the monotonicity of the regression coefficient and of

the Gini correlation (Chap. 20). This property of the ACC is useful whenever the

association between two variables might change along the range of the distribu-

tion of the explanatory variable. However, in order to be able to examine those

features it is important not to assume a specific underlying distribution because

almost all simple and easy-to-handle distributions tend to have simple

relationships among the variables, and therefore impose a specific type of curva-

ture on the curve that describes the relationship between them. For example, the

sign of the correlations between two normal, lognormal, or uniform random

variables can be either positive or negative. The correlation coefficient cannot

change its sign along the distributions of the variables.

The concentration curve (CC) is mainly used in the field of income distributions

to portray the impact of taxes on income distributions (Kakwani, 1977, 1980;

Lambert, 2001; Suits, 1977; Yitzhaki & Semrod 1991).2 Normally, the horizontal

axis would portray the poorest p percent of the population while the vertical axis

would present the share of total expenditure on a consumption item spent by the

poorest p percent. The ACC differs from the concentration curve by presenting

the cumulative consumption (rather than the cumulative share of consumption)

of the poorest p percent on the vertical axis. The definitions below follow the

terminology in Yitzhaki and Olkin (1988, 1991).

Let mX and mY denote the means of X and Y, respectively, and let fYjX denote

the conditional density function of Y given X. The conditional expectation is

g(x) ¼ mY.X � E{YjX ¼ x}. It is assumed that all densities are continuous and

differentiable, and all second moments exist.

Definition 5.1 The ACC of Y with respect to X, ACCY.X(p), is implicitly defined

by the relationship

ACCY:X(p) ¼
ðXðpÞ

�1
g(t)dFX(t); (5.5)

where X(p) is defined by

F X pð Þð Þ ¼ p ¼
ðXðpÞ

�1
dFX(t): (5.6)

In words, X(p) is the pth percentile of the distribution of X. The special case

ACCX.X(p) is referred to as the ALC (see Sect. 5.1).

2 See also Iyengar (1960) who uses it for estimating income elasticities.

82 5 The Lorenz Curve and the Concentration Curve

http://dx.doi.org/10.1007/978-1-4614-4720-7_17
http://dx.doi.org/10.1007/978-1-4614-4720-7_14
http://dx.doi.org/10.1007/978-1-4614-4720-7_20


Definition 5.2 The Line of Independence (LOI) is the line connecting (0, 0) with

(1, mY). Let LOIY.X(p) ¼ mY p denote the LOI of Y with respect to X. Note that the

LOI is also a concentration curve of a special case—the case of independent

variables. (LOI is the equivalent of LOE in ALC).

Figure 5.2 presents hypothetical ACC and LOI curves. The solid curve is the

ACC of Y with respect to X and the dashed line is LOI.

Note that while the ALC is always convex, the ACC is not. To apply the concentra-

tion curve to variance-based parameters, it is convenient to redefine the concentration

curve and the LOI as functions of the variate, X, rather than its cumulative distribution

function. In this case, we denote the ACC by ACCV and define it as

ACCVY:X(x) ¼
ðx
�1

g(t)dFX(t); (5.7)

where g(x) ¼ mY.X � E{YjX ¼ x}. The LOI simply changes to LOIY.X (x) ¼
mYFX(x). Note, however, that it is no longer a straight line. In terms of Fig. 5.2,

the only difference between (5.5) and (5.7) is that the horizontal axis has changed

from p ¼ FX(X(p)) to X. The curvature is changed, but every point of intersection

in the (ACC, F(X)) plane would have a parallel point in the (ACCV, X) plane.

However convexity/concavity properties may differ.

The ACC has the following properties (proofs of the nontrivial claims are given

below). The theorems are scattered in Yitzhaki and Olkin (1991) and in Yitzhaki

(1990, 1996, 1998):

(a) The ACC passes through the points (0, 0) and (1, mY).
(b) The derivative of the ACCwith respect to p is g(x(p)) ¼ E{Y|X ¼ x(p)}. Conse-

quently, ACCY.X(p) is increasing if and only if g(x(p)) ¼ E{YjX ¼x(p)} > 0

(hereafter we will write g(x) instead of g(x(p))).

(c) The ACC is convex (concave, straight line) if and only if ∂g(x)/∂x > 0 (∂g(x)/
∂x < 0, ∂g(x)/∂x ¼ 0).

ACCX.X(p) is always convex.

Proof The first derivative of the ACCwith respect to p is g(x(p)) ¼ E{YjX ¼ x(p)}.

The second derivative is
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@2ACCY:X(p)

@p2
¼ @g

@X(pÞ
@X(pÞ
@p

¼ @g

@X

1

f(X)
:

Because f(X) > 0, the sign of the second derivative is determined by the sign

of @g
@X .

(d) If Y and X are independent then ACC coincides with the LOI.

(e) e.1. The area between the LOI and the ACC is equal to cov(Y, FX(X)). That is,

cov(Y, FX(X)) ¼
ð1

0

f mY p� ACCY:X(p)g dp: (5.8)

e.2. The area between the shifted LOI and the shifted ACC is equal to

cov(Y, X). That is,

cov(Y,X)¼
ð1

�1
mY FX (t)�

ðx

�1
g(t) fX (t)

8<
:

9=
;dtdx¼

ð1

�1
f mY FX (t)�ACCVY:X(t)g dt:

(5.9)

Note that ACCVY.X(x) is the transformed ACC, while mYFX(x) is the

transformed LOI. The variance of X is the area between the (transformed) LOI

and the (transformed) ACC, denoted by ACCVX.X (Yitzhaki, 1998).The proofs

of properties (e.1) and (e.2) are almost identical to the proofs dealing with

similar properties in the case of ALC. They can be found in Yitzhaki and

Olkin (1988).

(f) The ACC is above the LOI for all p if and only if cov(Y, T(X)) < 0 for all

continuous differentiable monotonically increasing functions T(X). (The ACC

is below the LOI if and only if the covariance is positive.)

Proof A point on LOI has coordinates (p, p mY). The condition that ACC is above

the LOI for all p is

ACCY:X(p)� p mY � 0 for all p: (5.10)

Equivalently, it is

ðXðpÞ

�1
(g(x)� mY)dF(x) � 0 for all p: (5.11)

Note that

ð1

XðpÞ

(g(x)� mY)dF(x) ¼
ð1

�1
g(x)dF(x)�

ðXðpÞ

�1
g(x)dF(x)� mYð1� p)

¼ mY � mYð1� p)� ACCY:X(p) ¼ mYp� ACCY:X(p):
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Therefore condition (5.10) can be written as

ð1

XðpÞ

(g(x)� mY)dF(x) � 0 for all p: (5.12)

We now turn to the proof of property (f).

1. Sufficiency. We need to prove that if ACCY:X(p)� mYp>0 for all p then

cov(Y, T(X)) < 0 for all T(X) for which T0(X) > 0. Consider first

cov(Y,X) ¼
ð1

�1

ð1

�1
x(y� mY)f(x,y)dydx ¼

ð1

�1
x

ð1

�1
(y� mY)f(yjx)dy

2
4

3
5dF(x)

¼
ð1

�1
x[g(x)� mY]dF(x):

For any point X(p),

cov Y;Xð Þ ¼
ðXðpÞ

�1
x[g(x)� mY�dFðxÞþ

ð1

XðpÞ

x[g(x)� mY]dF(x): (5.13)

Because 0<
ÐXðpÞ

�1
[g(x)� mY]dF(x) for all p we have that

cov(Y,X) � X(p)

ðXðpÞ

�1
[g(x)� mY�dF(x)þ

ð1

XðpÞ

x[g(x)� mY]dF(x)

� X(p)

ðXðpÞ

�1
[g(x)� mY]dF(x)þ X(pÞ

ð1

XðpÞ

[g(x)� mY]dF(x)

¼ X(pÞ[ACCY:X(p)� mYp]þ X(pÞ½ mYp� ACCY:X(p)] ¼ 0:

Hence we have proved that

ACCY:X(p)� mYp>0 for all p implies that cov(Y, X) � 0.

The changes from X to T(X) with T0(X) > 0 and from X(p) to T(X(p)) do not

alter the proof.

2. Necessity. We need to prove that if cov(Y, T(X)) < 0 for all T(X) for which

T0(X) > 0 then ACC is above the LOI for all p. We do that by proving that if the

ACC intersects the LOI then there exist two nondecreasing continuous
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transformations T1(X) and T2(X) for which T1
0(X) and T2

0(X) are nonnegative,

such that cov(Y, T1(X)) > 0 and cov(Y, T2(X)) < 0. Assume for simplicity that

ACC and LOI intersect exactly once. That is,

ACCY.X(p) � mY p > 0 for p < p*

ACCY.X(p) � mY p ¼ 0 for p ¼ p*

ACCY.X(p) � mY p < 0 for p > p*

Let X* ¼ X(p*) and let a and b be constants with a � 0. Define

T1(x) ¼ X	 x � X	

axþ ð1� a)X	 x � X	

�

T2(x) ¼ axþ b x � X	

aX	 þ b x � X	

�

then

cov(Y,T1(X)) ¼
ð1

�1
T1(x)[g(x)� mY]dF(x)

¼
ðX	

�1
T1(x)[g(x)� mY]dF(x)þ

ð1

X	

T1(x)[g(x)� mY]dF(x)

¼ X	[ACCY:Xðp	Þ � mYp
	� þ

ð1

X	

T1(x)[g(x)� mY]dF(x)

¼ X	[ACCY:Xðp	Þ � mYp
	� þ

ð1

X	

[a xþ a X	][g(x)� mY]dF(x),

(5.14)

where �a ¼ 1� a. The first term above is equal to zero because p* is the point of

intersection. Therefore we obtain that

cov(Y,T1(X)) ¼ a

ð1

x	

x[g(x)� mY]dF(x)þ aX	½ mYp	 � ACCY:Xðp	Þ�: (5.15)

The second term is equal to zero, and we get

cov(Y,T1(X)) ¼ a

ð1

X	

x[g(x)� mY]dF(x) � aX	
ð1

X	

[g(x)� mY]dF(x) ¼ 0: (5.16)
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Similarly,

cov(Y,T2(X)) ¼
ðX	

�1
T2(x)[g(x)� mY]dF(x)þ

ð1

X	

T2(x)[g(x)� mY]dF(x)

¼ a

ðX	

�1
x[g(x)� mY]dF(x)þ b

ðX	

�1
[g(x)� mY]dF(x)

þ aX	½ mYp	 � ACCY:Xðp	Þ�

¼ a

ðX	

�1
x[g(x)� mY]dF(x) � aX	[ACCY:Xðp	Þ � mYp

	� ¼ 0

using the fact that p* is the intersection point.

This property is a modification of Grether (1974). It implies that whenever

the ACC intersects the LOI one can divide the data into two sections, condi-

tional on the values of X. In one section cov(Y, X) < 0 and in the other section

cov(Y, X) > 0. By applying a monotonic transformation to X the investigator

can change the magnitudes of the covariances in these sections, thereby affect-

ing the sign of the overall covariance (and even changing its sign!). Yitzhaki

(1990) derives the conditions under which it is possible to change the sign of an

OLS regression coefficient by applying a monotonic transformation to one of

the variables. This issue will be discussed in Chap. 19. Note, however, that if the

ACCY.X and the LOIY.X intersect, it does not necessarily imply that ACCX.Y and

LOIX.Y intersect. The ACC in Fig. 5.2 intersects the LOI at C.

(g) If Y and X follow a bivariate normal distribution with r 6¼ 0 then ACCY.X and

LOIY.X do not intersect. Thus, a monotonic transformation cannot change the

sign of the covariance. This issue will be further developed in Chap. 7 when

dealing with the simple regression coefficient.

Additional properties of ACC are presented in Yitzhaki and Olkin (1988).

Additional curves that are based on the concentration curve and will be useful for

the analyses of the components of the regression coefficient will be presented in

Chap. 7.

5.4 The Absolute Lorenz Curve and Second-Degree

Stochastic Dominance

Economic theory requires the knowledge or, alternatively, requires imposing

assumptions concerning the utility function of the decision-maker. Because the

utility function is not directly observed, this requirement imposes a serious obstacle

for meaningful economic analysis. Stochastic Dominance (SD) rules intend to
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provide results that can be applied to classes of utility functions, and therefore

reduce the need to know the exact utility function. This is the basic advantage of

using stochastic dominance. On the other hand, rules and conclusions that are

relevant for a large set of possible utility functions may suffer from being too

restrictive empirically so that they are not so relevant in practice. The aim of this

section is to present the contributions of the ACC and the Gini in forming necessary

and sufficient conditions for stochastic dominance and in performing statistical

analyses compatible with stochastic dominance. The literature on stochastic domi-

nance (also referred to as Majorization) is huge and we do not survey it in this

section. The interested reader is referred to Levy (2006) for a survey of stochastic

dominance in finance and to Marshall and Olkin (1979) for a survey in statistics and

related fields. To be able to connect between stochastic dominance and concentra-

tion curves we start with the presentation of the basic definitions of stochastic

dominance and then we will apply the SD conditions using concentration curves.

Consider a decision-maker who decides according to his or her expected utility.

The utility functions are classified according to the assumptions imposed on their

derivatives.

Definition 5.3 The utility function u belongs to U1 whereU1 ¼ fuju0 � 0and u is a

nondecreasing concave utility function}.

Definition 5.4 The utility function u belongs to U2 where U2 ¼ fuju0 � 0 and

u00 � 0 and u is a nondecreasing concave utility function}.

Definition 5.5 Given two distributions F1 ¼ F(Y1) and F2 ¼ F(Y2) we say that F1
First-degree dominates F2 (FSD) if E{U(Y1)} � E{U(Y2)} for all ue U1.

Definition 5.6 Given two distributions F1 and F2 we say that F1 Second-degree

dominates F2 (SSD) if E{U(Y1)} � E{U(Y2)} for all ue U2.

One can continue adding assumptions on the class of utility functions but we

stop here because the Gini is relevant to the SSD criterion only.

We now turn to the propositions that enable one to identify FSD and SSD.

We will concentrate on those that relate SSD rules to the ALC and Gini.

Proposition 5.2 Distribution F(Y1) FSD dominates F(Y2) if F(Y1) � F(Y2) every-
where with at least one strong inequality. If on the other hand F(Y1) and F(Y2)
intersect, then one can find uA(Y)eU1 and uB(Y)eU1 so that both

E{UA(Y1)} � E{UA(Y2)} and E{UB(Y1)} � E{UB(Y2)} hold.

Proof Levy (2006). First-degree stochastic dominance is unrelated to the Gini.

However, a basic assumption in economics is that the marginal utility of income

declines with income, hence it is natural to impose an assumption of concavity on

the utility function. This leads to the connection between stochastic dominance and

the ALC. Historically, the Lorenz curve was used as a descriptive measure till

Atkinson (1970) turned it into an analytical tool that is useful in detecting SSD.

Shorrocks (1983) extended Atkinson’s result to cover all distributions, and not

necessarily equal-mean distributions. Proposition 5.3 presents the connection

between SSD and the ALC.
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Proposition 5.3 The distribution of Y1 SSD dominates the distribution of Y2 if
ALC(Y1) � ALC(Y2) everywhere with at least one strong inequality. If on the
other hand ALC(Y1) and ALC(Y2) intersect, then one can find uA(Y)eU2 and uB(Y)e
U2 so that both E{UA(Y1)} � E{UA(Y2)} and E{U

B(Y1)} � E{UB(Y2)} hold.

Proof See Shorrocks (1983).

Once the relationship between the ALC and SSD has been established the GMD can

be used in order to form necessary conditions for SSD (Yitzhaki 1982a) as given in

the next proposition.

Proposition 5.4 The following are necessary conditions for F(Y1) to SSD F(Y2):

m1 � m2; (5.17)

m1 � 2 cov Y1; F Y1ð Þð Þ � m2 � 2 cov Y2; F Y2ð Þð Þ: (5.18)

Note that (5.18) can be expressed as

m1 � 0:5 DY1
� m2 � 0:5 DY2

:

Proof The proof of (5.17) is trivial because an expected utility maximizer with a

linear utility function would prefer m1 over m2.

The proof of (5.18) is simple when using geometric considerations. If F(Y1) SSD

F(Y2), then according to proposition 5.3 ALC(Y1) � ALC(Y2). It follows that the

area below ALC(Y1) is larger than the area below ALC(Y2). The area below

the LOI is m/2, while the area between the LOI and the ALC is cov(Y, F(Y)).

Hence, the area below the ALC is m/2 � cov(Y, F(Y)).

The next two propositions are not used in the analysis performed in this book.

They are given here (without proofs) for the completeness. Details can be found in

Yitzhaki (1982a, 1983, 1999).

Proposition 5.5 Provided that the cumulative distributions intersect exactly once,
(5.17) and (5.18) are necessary and sufficient conditions for F(Y1) to SSD F(Y2).

It is interesting to note that if the utility function is increasing and convex
(that is, if u0 � 0, and u00 � 0) then one gets the following result:

Proposition 5.6 Conditions (5.17) and (5.19) (below) are necessary conditions for
the distribution of Y1 to SSD the distribution of Y2:

m1 þ 2 cov Y1; F Y1ð Þð Þ � m2 þ 2 cov Y2; F Y2ð Þð Þ: (5.19)

Proposition 5.4 is the key factor for the advantage of using the GMD over the

variance from the point of view of the economist. The use of the variance to reflect

risk or inequality is valid only if one restricts the distributions to be normal or

restricts the utility function to be quadratic. Proposition 5.4 indicates that although

the GMD is not compatible with any utility function (Newberry, 1970), it still can
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be used to form necessary conditions for SSD. Therefore a researcher who uses the

GMD can perform statistical analysis without being ridiculed for violating eco-

nomic theory. The following example illustrates this point: assume that one has to

choose between two possible lotteries. Lottery A gives one dollar with probability

p, and 2 dollars with probability (1 � p). Lottery B gives ten dollars with probabil-

ity p, and a million dollars with probability (1 � p). Needless to say that any

rational person would prefer lottery B over lottery A. Note, however, that lottery

A presents a lower mean than lottery B but it also presents a lower variability, which

implies that anyone who relies on the mean and the variance (or the Gini) is not

capable of deciding which lottery is preferred. Clearly, no one would be deceived

by this example. However, when choosing a portfolio with more than three assets,

our guess is that most people would not be able to avoid such a trap. Proposition 5.4

enables us to discard lottery A as a candidate for being preferred by someone.

5.5 The ACC and Marginal Conditional Stochastic Dominance

The aim of this section is to extend the ideas that connect the SSD to the ALC into

the area of multiple variables. When dealing with multiple variables it is worth to

distinguish between two cases, according to the problem we are dealing with:

(a) Single output/multi-inputs

(b) Multi-outputs/multi-inputs

The single output/multi-inputs case covers almost all problems in economic

theory. It holds whenever one can achieve the same target by alternative sets of

inputs, or whenever trade is possible between targets. The multi-outputs/multi-

inputs is seldom analyzed in economic theory.

To be concrete let us present several examples. A consumer who maximizes the

utility function is a classical case of a single output/multi-inputs. Also, whenever one

acts under a budget constraint, we are dealingwith a single output/multi-inputs. On the

other hand, analyzing the impact of health and income on the consumer, assuming that

no amount of income can substitute for health, is a multi-outputs/multi-inputs case.

The distinction between the two problems is sometimes not easy. For example, assume

that an individual is participating in gambles in the commodity space. Assume also

that at one point in time the outcomes of the gambles are revealed. Then, if trade is

allowed following the announcement of the final results then we are dealing with a

single output/multi-inputs case. If trade is not allowed following the announcement of

the state of nature then we are dealing with multi-outputs/multi-inputs case.

In this bookwe are dealing only with single output/multi-inputs cases.We refer the

reader interested inmultiple outputs to Taguchi (1981, 1987). For our purpose wewill

assume that Y, the output (target), is composed of a linear combination of variables, X.

That is

Y ¼ b1X1 þ 
 
 
 þ bnXn; (5.20)
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which can be viewed as a budget constraint where the bs represent the prices, or as
the return on a portfolio with the bs representing the shares of the appropriate

components of the portfolio.3 Note that

ALC Yð Þ ¼
Xn
i¼1

biACCXi:Y: (5.21)

Therefore, provided that Xj is not affected by a change in bi (i, j ¼ 1,. . .,n;
i 6¼ j), we get

@ALC(Y)

@bi
¼ ACCXi:Y: (5.22)

Next we define the concept MCSD (Mayshar & Yitzhaki, 1995, 1996; Shalit &

Yitzhaki, 1994).

MCSD is intended to extend the concept of handling SSD criterion in an environ-

ment of multi-inputs. To be empirically relevant we have to impose two major

constraints on the concept. The rationale behind those constraints will be postponed

till we present the concepts.

The first constraint is that we restrict the concept to be applicable only for

marginal changes. This means that we are not dealing with SSD in general, but

only of a small change (marginal change). The second constraint is a consequence

of the first one. Because we are dealing with a small change, we need a starting

point from which the change is measured, hence the use of the term conditional,

because the analysis is relevant to a small change from the original position.

Let dbk be the marginal change in bk. Assume that there is a constraint on (5.20)

that the change in b has to comply with, as is in the case of having a budget constraint:

C b1; . . . ; bnð Þ ¼ 0;

so that

ckdbk þcjdbj¼ 0; (5.23)

where ck is the derivative of (5.20) with respect to bk. This implies that the change

in bk is restricted by the constraint in (5.23). That is, we consider substituting an

infinitesimal portion of Xj by Xk:

dEfUðYÞg ¼ EfU0ðYÞdYg ¼E fU0ðYÞðXkdbkþXj dbj)g, (5.24)

3One of the Xs can be a constant.
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where E{·} is the expectation over all X0s. Inserting (5.23) and assuming that dbk is
positive yield

dEf U(Y)g
dbk

= Ef U’(Y ) (Xk � XjÞg: (5.25)

Definition of MCSD: Given the set {b} we say that Xk MCS dominates Xj if
dEU(Y)
dbk

� 0 for all increasing concave utility functions defined on Y.

Proposition 5.7 Given the set {b}, Xk MCS dominates Xj if and only if

ACCXk:Y(p) � ACCXj:Y(p) for all p, 0 � p � 1;

with at least one strong inequality. If on the other hand the ACCs intersect, then one
can find two legitimate utility functions that will reverse the rankings of the X0s.

Proof

Sufficiency. We have to prove that Y þ dY SSD dominates Y. According to

proposition 5.3 we have to prove that ALC(Y þ dY) is not lower than ALC(Y)

everywhere. Using (5.21) and (5.22) that present the derivatives of the ALC with

respect to changes in the bs and imposing the constraint complete the proof.

Necessity. Assume that the ACCs intersect. Then the ALCs of Y þ dY and Y

intersect. We again refer to (5.23) to complete the proof.

Proposition 5.7 is analogous to proposition (5.3), but dominance is conditional

on a given Y; hence it is marginal. The explanation to this restriction is that in

almost all economic models it is assumed that the optimal point is an interior one.

If we do not restrict MCSD to the margin, then variable k would replace variable j

entirely, leading to a corner solution. This point will be stressed and elaborated

upon when we deal with applications of MCSD in the areas of income distributions

and finance (Chaps. 14 and 17).

The MCSD concept can be applied with more than two variables. In this case one

substitutes the two inputs by two linear combinations of variables: the dominating

and the dominated. The optimal combination in each group is found by numerical

optimization. Illustrations of the applications appear in Yitzhaki and Mayshar

(2002) and Shalit and Yitzhaki (2003). Illustrations are discussed in Chap. 14 in

the area of tax reforms, and in Chap. 17 in the area of finance.

5.6 The ACC and the Monotonicity of the Correlations

and the Regression Slopes

An additional use of the concentration curve and curves that are derived from it is

to study the effects of certain actions taken by the investigator on the signs of the

correlation or the regression coefficients. The actions that can be analyzed by

the concentration curves are the following:
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1. Throwing extreme observations.

2. Throwing irrelevant observations and using a subgroup of the population—e.g.,

bounds on observations that participate in the regression.

3. Substituting a continuous variable by a discrete one by dividing the range into

nonoverlapping intervals (called bins). The data entries are taken to be either the

mid-points or the averages of the intervals.

4. Applying a monotonic nondecreasing transformation to one or more variables.

Note that (3) can be viewed as a special case of (4).

While throwing observations sounds suspicious, using a transformation seems

natural and is being used in practice quite often.

Our main goal is to analyze the effect of a transformation on the sign of the

estimator of the regression coefficient. The reason for stressing sign change is that it

may reverse the conclusion reached. Instead of positive (negative) effect it may turn

the effect into a negative (positive) one.

The suggested tool is graphical. To be able to geometrically see the monotonic-

ity of the slope of a regression curve in a Gini or an OLS regression setting we

suggest to plot a curve that is based on the vertical differences between the LOI and

the ACC. We refer to this curve as the LMA curve and define it below.

Let g(x) ¼ E{YjX ¼ x} be the conditional expectation of Y given X. We will

refer to it as the regression curve. We remind the reader the two basic definitions:

Definition of ACC: The ACC of Y with respect to X denoted by ACCY.X(p) is

ACCY:X(p) ¼
ðXðpÞ
�1

g(t)dFX(t); where X(p) is implicitly defined by p =
ÐXðpÞ
�1 dFX (t) :

A special case of the ACC curve is the ALC—ACCY.Y(p).

For simplicity of exposition, we write ACC instead of ACCY.X(p).

Definition of LOI: Connect the points (0, 0) and (1, mY) by a straight line; Yitzhaki
and Olkin (1991) call this line the LOI. (If Y and X are independent, then the ACC

curve coincides with the LOI.) Because we are interested in “deviations from

independence” we will be interested in a curve which is the LOI minus the ACC.

Note that the LOI is also an ACC curve.

Definition of LMA: LMAY.X(p) ¼ mYp � ACCY.X(p) is defined as the LOI minus
the ACC of Y with respect to X.

The properties of ACC and LMA are as follows (proofs are omitted because they

can be easily derived by the properties of ACC curves which are given in

Sect. 5.3):

(a) The ACC passes through the points (0, 0) and (1, mY).
Property (a) enables us to define a variation of the ACC that will make the analysis

of the regression curve easier. The LMA starts at (0, 0) and ends at (1, 0).

(b) The derivative of the LMAwith respect to F (at X(p)) is mY � EY(YjX ¼ X(p)).
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This follows directly from the definition of the LOI and ACC. As a consequence

the LMAY.X(p) is increasing (decreasing, constant) if and only if mY �
g(X(p)) > (<, ¼) 0.

(c) The LMA is concave at F (convex, straight line) if and only if ∂g(X(p))/
∂X(p) > (<, ¼) 0.

(d) If X and Y are independent then ACCY.X(p) is a straight line which coincides

with the LOI, and the LMA curve coincides with the horizontal axis.

Properties (c) and (d) enable the user to identify sections with constant,

increasing, and decreasing slopes of the regression curve: linearity of LMA

implies a flat regression curve, concavity of LMA means an increasing regres-

sion curve, while convexity means a decreasing curve.

(e) The area between the LMA and the horizontal axis is equal to cov(Y, FX(X))

(Yitzhaki, 1990). Note that if the curve intersects the horizontal axis then the

sign of cov(Y, FX(X)) depends on the magnitudes of the areas above and below

the horizontal axis.

(f) The LMA is above the horizontal axis for all F if and only if cov(Y, T(X)) > 0

for any continuous differentiable monotonically increasing functions T(X).

The advantage of using the LMA (instead of the ACC) is that it is easy to detect

what will happen to cov(Y, F(X)) (and hence to the sign of the regression coeffi-

cient) if sections of observations of X are omitted from the regression, as will be

illustrated later.

For the purpose of analyzing the effect on the OLS regression coefficient

one needs a modified LMA curve for which the area beneath it will be equal to

cov(Y, X). It turns out that a simple transformation can make the curve applicable to

OLS: if one substitutes the horizontal axis to be X instead of FX, then the

area between the new curve and the horizontal axis will be equal to cov(Y, X) (see

Sect. 5.2 or Yitzhaki (1998)). However, the nature of the curve changes and further

research is needed to study its properties. For our purposes it is sufficient that

property (f) holds in the transformed curve so that if the sign of the covariance in

Gini regression cannot be changed by truncating the distribution of the explanatory

variable at the point of the intersection with the horizontal axis then it is impossible

to change the sign of the regression coefficient in OLS regression by a monotonic

transformation of the explanatory variable. That is, one can change the sign of a

regression coefficient in a Gini regression by truncating the distribution at the point

of intersection with the horizontal axis if and only if there is a monotonic transfor-

mation that can change the sign of the regression coefficient in an OLS regression.

In the rest of this section we limit the discussion to the Gini regression and

correlation coefficients. In Chap. 19 we will list the properties that also apply to the

OLS regression.

The (semi-parametric) Gini regression coefficient is a ratio of two covariances:

bNY:X ¼ cov(Y, F(X))

cov(X, F(X))
:
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The denominator is always positive; hence the sign of the regression coefficient

is determined by the numerator. A monotonic transformation of the explanatory

variable, X, does not affect F(X). Therefore, unlike the OLS, a monotonic transfor-

mation of X cannot change the sign of the Gini regression coefficient. However, it

may change its magnitude. By property (e) of the LMA curve one can see whether

there are sections with different signs. Whenever there are sections with different

signs, one can change the sign of the Gini regression coefficient by truncating the

distribution of X.

To ease the analysis of the effect on a regression coefficient, we normalize the

LMA curve by dividing it by cov(X, F(X)). We call the curve NLMA (Normalized

Line Minus ACC). The important (for us) property of this curve is that the area

between the curve and the horizontal axis is equal to the Gini regression coefficient.

Because the analysis is relatively simple, we will do it by an illustration.

5.7 An Illustration: Labor Force Participation

by Gender and Age4

Figure 5.3 presents the Normalized Line (of independence) Minus the ACCwhich is

the LMA divided by cov(X, F(X)). As discussed above, the total area enclosed by

the curve and the horizontal axis is equal to the Gini regression coefficient. The

horizontal axis depicts the cumulative distribution according to age, while the

vertical axis depicts the difference between the cumulative value of participation

in the labor force if participation is independent of age (i.e., LOI) and the actual

cumulative value of participation, divided by one-fourth of the GMD of age. The

data are taken from Income Survey, 2005, conducted by the Israeli Central Bureau of

Statistics.

Figure 5.3 is based on 12,685 observations for women and 11,213 for men. The

curve enables us to detect regions with positive or negative slopes according to

whether the curve is concave or convex, and according to whether the regression

coefficient of each section is contributing positively or negatively to the overall

regression coefficient. If the curve is above (below) the horizontal axis then this

range has a positive (negative) contribution to the regression coefficient. In addition

a concave (convex) section implies that if we take this section alone we will find a

positive (negative) regression coefficient.

Let us concentrate first on the NLMA curve for men.

The curve is below the horizontal line; hence the regression coefficient is

negative. Moreover, the curve does not intersect the horizontal axis; therefore

there is no monotonic transformation of age that can change the sign of the OLS

regression coefficient. However, throwing 70% of the observations with high age

4 This section is based on Yitzhaki and Golan (2010).
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from the regression, that is, restricting the group investigated to those below 37, will

cause the Gini and OLS regression coefficients to be positive and this holds for any

monotonic transformation of age. The reason is that the curve is above the straight

line that connects the two extreme points. (Omitting 70% of the observations will

turn the line connecting the two extreme points to be the horizontal axis for the

relevant graph and the NLMA lies above it, as can be seen in Fig. 5.3).

Substituting a continuous variable by a discrete one with the data entries taken to

be either mid-points or averages of the relevant intervals will not be effective in

changing the sign of the regression coefficient, because it is equivalent to creating a

new LMA curve composed of straight lines. The straight lines connecting the points

form the new LMA curve that represents the between-groups regression coefficient.

As can be seen it yields the same sign of the regression coefficient, which, in this

case, will continue to be negative. (Note, however, that the denominator of the

between-groups regression coefficient is different than the one used to normalize

the original curve; hence, one cannot learn about the magnitude of the between-

groups regression coefficient.)

Applying a monotonic nondecreasing transformation to the explanatory variable

is not capable of changing the sign of the OLS regression coefficient because the

curve does not cross the horizontal axis. However, omitting 50% of the obser-

vations with high ages and applying a monotonic transformation to age that will

shrink the distance between the remaining high ages while increasing the

differences between low ages (such as the log transformation) may change the

OLS regression coefficient to a positive one.

Turning to women we can see that there is a tiny section at low ages with a

positive regression coefficient. However, one needs an extreme transformation to

change the sign of the regression coefficient to a positive one. Restricting the age
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to be lower than 52 will make the regression coefficient positive and it will remain so

for all possible monotonic transformations of age. Note, however, that one can omit

observations for ages that are higher than 52 and still get a regression coefficient that

is positive, but a monotonic transformation of age can change its sign.

To complete the illustration, Table 5.1 presents the regression coefficients in

each section.

As can be seen in Fig. 5.3 and Table 5.1 the overall Gini and OLS regression

coefficients are negative, while the curve is concave formales for the lower 30%of the

observations (up to age 37) and for females for the 65% of the observations with

smallest ages (up to age 52). As a result in these sections the regression coefficients of

bothOLSandGini regressions are positive.On the other hand, in the second section the

curves are convex; hence the regression coefficients in this section are negative. Note,

however, that the curves do not cross the horizontal axis, implying that the

contributions of the two sections are adding up to the overall regression coefficients

(and not canceling each other). Also note that for the Gini regression we can evaluate,

by adding and subtracting positive and negative areas, how many additional obser-

vations of the “wrong” sign we can add without changing the sign of the regression

coefficient. We note that the regression coefficients obtained by the two methods are

similar. However, using the Gini method and the figures which are derived from the

Gini enables the user to make the partition into sections as shown above.

5.8 Summary

The aim of this chapter was to present another advantage of the Gini over the

variance method: the relationship with concentration curves. One advantage of

using Lorenz and concentration curves is that the curves allow the researcher to

learn more about the structure of the relationship between the variables by visual

tools. Most of the models used in econometrics are based on structured connections

among variables, based on underlying assumptions. As an example, notice the

assumption of the linearity of models. The use of curves enables one to check

graphically whether the relationship is monotonic over the entire range of the

explanatory variable. If it is, then the assumption of linearity is not violated in a

crucial way. Although the researcher assumes linearity, the estimators offered by

the OLS and Gini methods can still be derived, because they can be described as

Table 5.1 Regression

coefficients of participation

on age in different sections

GINI OLS

Females Males Females Males

Section I 0.0008 0.008 0.0007 0.008

Section II �0.034 �0.015 �0.034 �0.016

All �0.009 �0.009 �0.010 �0.010

Source: Yitzhaki and Golan (2010)
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weighted averages of properties of the data (i.e., slopes between adjacent

observations). Those averages may mask the fact that not all the data speak in the

same way. To inspect or to calm such fears, the concentration curves enable one to

see the contribution of each section of the explanatory variable to the parameter that

is inspected. This way we can see “beyond the model.” An alternate way to look at

the differences between parameters and concentration curves is that while the

parameters supply us with necessary conditions, the curves supply us with neces-

sary and sufficient conditions.
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Chapter 6

The Extended Gini Family of Measures

Introduction

The GMD has many alternative presentations. Some of these alternative presentations

can be extended into families of variability measures and the GMD can be viewed as

one member of such a family. The fact that there are several alternative presentations

implies that one can present the GMD and the Gini coefficient as belonging to several

alternative families. These families differ in the properties they have.We do not intend

to survey the properties of all possible families. We choose to concentrate on one

family that is useful in several fields of applications.Wewill refer to it as the extended

Gini family. However, the reader should keep in mind that for different fields of

applications one may want to have alternative extensions.

The extended Gini family (hereafter EG) is a family of variability and inequality

measures that depends on one parameter, the extended Gini parameter. The inves-

tigator can choose a member of the family by assigning a value to the parameter.

One advantage of having a family lies in the fact that one can perform a sensitivity

analysis and evaluate the robustness of the conclusions by changing the EG

parameter. That is, by changing the metric of the variability measure (as will be

discussed later). The selection of the parameter can be interpreted in several ways,

depending on the area of application and on the objective of the research. The EG

family is mainly used in the areas of finance and income distributions. In the area of

finance the parameter represents the degree of risk aversion, while in the area of

income distribution the parameter represents the social attitude of the investigator.

In econometrics, the use of different parameters can be viewed simply as a

sensitivity test, without any interpretation that relates it to a concept in economic

theory. Several surveys can be found in the econometric literature, each covering a

specific application. A survey on hedging theory in finance can be found in Lien and

Tse (2002), while Wodon and Yitzhaki (2002b) survey some applications in the

areas of tax reforms and income distributions. The use in the stock market is

discussed in Gregory-Allen and Shalit (1999) and in Shalit and Yitzhaki (2002),

while the use in econometrics will be covered in Chap. 19.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_6,
# Springer Science+Business Media New York 2013
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The basic definitions of the members of the EG family used in this book

are based on the covariance. In order to simplify the presentation we will use

cov(X,F(X)) as the Gini, ignoring the constant (4) that is needed to adjust the

definition to the GMD. Even with this simplification, the fact that the extended Gini

is being used in different areas resulted in two alternative definitions. Let

Dðy;XÞ ¼ � ycovðX; 1� F Xð Þ½ �y�1Þ; y> 0; y 6¼ 1: (6.1)

Then the two definitions refer to y ¼ n and y ¼ nþ 1, where n is the extended
Gini parameter. More explicitly, the first definition is

Dðn;XÞ ¼ �ncovðX; 1� F Xð Þ½ �n�1Þ; n> 0; n 6¼ 1: (6.1a)

This definition is mainly used in the areas of income distribution and finance,

due to the need to adjust the definition to the theory of stochastic dominance. The

second definition is

Dðn;XÞ ¼ �ðnþ 1Þ cov X; 1� F Xð Þ½ �nð Þ; n> �1ð Þ; n 6¼ 0: (6.1b)

Definition (6.1b) is mainly used in the area of econometrics, in which case the

term (n + 1) cancels because the parameters are expressed as ratios. The motivation

for the different definitions is the need for a simple representation, relevant to the

specific application. In this chapter we will use definition (6.1a). In chapters that

deal with regression we will use definition (6.1b).

Definition (6.1a) can easily be used in order to define the relative extended Gini

(also called the extended Gini coefficient). This is simply done by dividing Dðn;XÞ
by the mean of X, provided that the mean is positive. The relative extended Gini is

given by

G( n,X) ¼ �ncovðX; ½1� FðXÞ�n�1Þ
m

n> 0: (6.2)

Similar to the Gini coefficient, the range of the extended Gini coefficient for

nonnegative distributions is between zero (egalitarian) and one (one member

receives all). The only difference is in the weighting scheme that is applied to the

vertical distance between the egalitarian line and the Lorenz curve. This weighting

scheme will be investigated in Chap. 18, while detailed derivation can be found in

Yitzhaki (1996).

The parameter n which is determined by the investigator is restricted in most

applications, especially in finance and income distribution, to be greater than 1,

because the basic assumption is that we are interested in a risk-averse investor.

However, in the area of econometrics, especially when one deals with sensitivity
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analysis, the range n < 1 is also used. The implications of the choices of n are as

follows. In the range n > 1:

1. If n ! 1 then the variability index represents the attitude of someone who does

not care about variability, i.e., the index tends to zero regardless of the variability

of the distribution.

2. On the other extreme, n ! 1 represents variability as viewed by a max–min

investigator (i.e., someone who cares only about the lowest portion of the

distribution).

3. The case where n ¼ 2 represents the GMD (up to a constant. GMD is defined as

4cov(X,F(X)), while D(2,X) ¼ 2cov(X,F(X)) by (6.1a)). Note that as opposed to

the other members of the family D(2,XÞ is linear in F(X). Given that n > 1, the

members of the family are always nonnegative, and a mean-preserving spread

will always increase their values.

In the range n 2 ½0; 1� the values of the members are always negative and ifn ! 0

then the index represents variability as viewed by a Max–Max investigator.

As was mentioned above, in almost all the applications in finance and income

distribution n is restricted to be greater than 1 because one is interested in an attitude
of a risk averse or inequality-averse behavior. Moreover, allowing for n < 1

complicates the interpretations of alternative definitions of the EG. For this reason

we will restrict the parameter to be n > 1, and only when we use it in econometric

applications and with the covariance definition as in (6.1a) we will allow for n < 1.

The previous chapters have demonstrated several alternative ways of presenting

the GMD. Therefore it is only natural that there are several approaches for

extending the GMD into a family of indices. Each approach has its own rationale,

depending on the field in which it is used.

We suggest several introductions for this chapter. Each introduction leads to a

different definition of the EG, allowing the reader to choose the one suitable for

her/him.

In what follows we introduce the different definitions and prove that they are

equivalent to the formal one of (6.1a), for n > 1.

The first introduction is based on the dual approach to moments. This approach is

useful in the areas of statistics and econometrics. The second introduction is based

on the income inequality approach, which is useful in the areas of income distribu-

tion and welfare economics, and the third introduction is based on the dual approach

to risk. This approach is useful for modeling in the area of decisions under risk.

The structure of the chapter is as follows: the first section is devoted to the three

introductions. We then proceed with alternative definitions (Sect. 6.2), while the

properties and the metric used in the EG family are described in Sect. 6.3. Alterna-

tive presentations of the extended Gini covariances and correlations are detailed in

Sect. 6.4. The decomposition of the extended Gini is presented in Sect. 6.5 and the

relationship between the extended Gini and stochastic dominance is discussed in

Sect. 6.6. Section 6.7 concludes.
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6.1 The Three Introductions

6.1.1 The “Dual Approach to Moments” Introduction

One of the basic concepts in statistics is the use of the moments of the distribution in

order to characterize it. Moments are classified into general moments and central

moments. A general moment is the expected value of a power function of the

variate. That is, the nth degree general moment is the expected value of the variable

after it is raised to the nth power. The nth degree central moment is based on raising

the deviations of the variate from its first general moment to the nth power.

Formally, a general moment of degree n is

m(X,n) ¼ E(XnÞ ¼
ð
xnf(x)dx ¼

ð
xndF(x); (6.3)

which can be presented for nonnegative variables as

m(X,n) ¼ n

ð1

0

xn�1ð1� F(x))dx:

The central moment of degree n is

mc(X,n) ¼ EfðX� E(X)Þng ¼
ð
(x� E(X))nf(x)dx

¼
ð
(x� E(X))ndF(x): (6.4)

For example, the variance is the central moment of degree 2, or alternatively, the

second general moment minus the square of the first general moment.

It can be seen from the second part of (6.3) that the nth general moment is a

combination of a power function applied to the variate and a linear function of the

cumulative distribution. A natural alternative approach, although more compli-

cated, is to apply a power function to the cumulative distribution and to integrate

over X. This will be referred to as the dual approach to moments. Here two

possibilities come to mind.

Let X be a bounded random variable, defined in [a, 1) and define1

1While writing this book we have encountered an approach that enables to remove the restriction

a > �1, but this approach seems to complicate the presentation. The interested mathematically

oriented reader is referred to González-Abril, Valesco Morente, Gavilán Ruiz, and Sánchez-Reyes

Fernández (2010). In the classification used in this book it can be referred as the Lorenz version of

the coefficient of variation.
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mgðn,X) ¼
ð1

a

½1� Fn(x)]dxþ a, n> 0; (6.5)

and

megðn,X) ¼
ð1

a

½1� F(x)]
n
dxþ a, n> 0: (6.6)

In what follows, the integration is over [a, 1) unless specified otherwise.

Proposition 6.1

Dðn;XÞ ¼ m�megðn ; X)

Proof
megðn,X) ¼

ð1

a

½1� F(x)]
n
dxþ a:

Integration by parts, with ½1� F(X)]n ¼ u and dx ¼ dv implies

ð1

a

½1� F(x)]
n
dxþ a ¼ x[1� F(x)�nj1a þ n

ð1

a

x[1� F(x)�n�1
f(x)dxþ a

¼ �aþ nEðX½1� F(X)�n�1Þ þ a

¼ n cov(X,[1� F(X)�n�1Þ þ m
n

� �

¼ ncovðX; ½1� F(X)�n�1Þ þ m ¼ m� Dðn;XÞ:

Therefore Dðn;XÞ ¼ m�megðn,X).
The advantage of the dual approach to moments over the regular mode lies in the

fact that the power function is applied to a term that is bounded between zero and

one, 0 � F() � 1 as opposed to the variate itself, which is not necessarily bounded.

The following well-known facts will be used later.

Fact 1 The cumulative distribution function (cdf) of max(X1,. . .,X n) is F
n(x).

Fact 2 The cdf of min(X1,. . .,X n) is ½1� ½1� F(x)]n�.

Fact 3 E Xð Þ ¼ aþ Ð1
a

½1� F(x)]dx:

Note that E(X) ¼ mg(1,X) ¼ meg(1,X).

For completeness, we note that generally (for unbounded X),

E Xð Þ ¼
ð1

0

½1� F(x)� F(� x)]dx:
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Using these facts, we get that

mgðn;XÞ ¼ E½maxðX1; . . . ;XnÞ� (6.7)

and

megðn;XÞ ¼ E½minðX1; . . . ;XnÞ�: (6.8)

This approach leads to an alternative definition of the EG, given that n is

restricted to be an integer.

Proposition 6.2 Let X be distributed in [a,1), then the extended Gini of (6.1a) can
be expressed as

Dð n;XÞ ¼ m� EfminðX1;:::;Xn)g

¼
ð1

a

f½1� F(x)]� ½1� F(x)]
ng dx; (6.9)

where m ¼ E(X).

Proof Starting with definition (6.1a),

Dðn;XÞ ¼ �ncovðX; ½1� F(X)�n�1Þ
¼ �nEðX½1� F(X)�n�1Þ þ nEðXÞEð½1� F(X)�n�1Þ:

Using integration by parts we get

E(X[1� F(X)�n�1Þ ¼
ð1

a

x[1� F(x)�n�1
f(x)dx ¼ a

n
þ 1

n

ð1

a

½1� F(x)]
n
dx

and

E([1� F(X)�n�1Þ ¼ 1

n
:

Combining the two parts together we get that

Dðn;XÞ ¼ m�
ð
½1� F(x)]

n
dx� a ¼ m� E(min(X1;:::;XnÞÞ

¼
ð
ð½1� F(x)]� ½1� F(x)]n)dx:
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A related measure which is a combination of the two power functions (6.5) and

(6.6) was suggested by González-Abril et al. (2010):

msgðn,X) ¼ mgðn,X)�megðn,X): (6.10)

Unlike mg of (6.5) and meg of (6.6) which are (generally) asymmetric with

respect to the underlying distribution of X (i.e., mg(n, X) 6¼ mg(n, �X) and

meg(n, X) 6¼ meg(n,�X)), msg of (6.10) is symmetric with respect to the underlying

distribution as shown in the following proposition.

Proposition 6.3 msg(n, X) ¼ msg(n, �X)

Proof We use (6.7) and (6.8) to get

mgðn;� X) ¼ E[max(� X1;:::; � XnÞ� ¼ �E[min(X1;:::;XnÞ�

and

megðn;� X) ¼ E[min(� X1;:::;� XnÞ� ¼ �E[max(X1;:::;XnÞ�:

Combining these two equations and (6.10) we get that

msgðn;� X) ¼ msgðn,X):

Equation (6.10) can be further generalized by using different extended Gini

parameters for mg and meg, but this generalization will not be discussed here.

However, it is worth noting that mg, meg, and msg with n ¼ 2 are closely related to

GMD as will be shown in the next three propositions.

Proposition 6.4 Let X be distributed in [a, 1), then msgð2;XÞ ¼ GMD.

Proof

msg(2,X) ¼
ð
f½1� F2(x)]� ½1� F(x)]

2g dx ¼ 2

ð
F(x)[1� F(x)]dx ¼ GMD:

(6.11)

The last equality above results from presentation (2.9) of the GMD. Recall that

GMD can be expressed as the expected value of {max(X1,X2) � min(X1,X2)} (see

(2.6)), which is simply msg(2,X) (by (6.7), (6.8), and (6.10)).

In what follows we list some more relationships between the measures.

Proposition 6.5 Let X be distributed in [a, 1), then

megð2;XÞ ¼ m� 0:5 � GMD: (6.12)

Proof See proposition 6.1.

Proposition 6.6 Let X be distributed in [a, 1), then

mgð2;XÞ ¼ mþ 0:5 � GMD: (6.13)
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Proof

mgð2;XÞ ¼
ð
ð1� F2(x))dxþ a ¼

ð
ð1� F(x))(1þ F(x))dxþ a

¼
ð
ð1� F(x))dxþ

ð
F(x)(1� F(x))dxþ a ¼ mþ 0:5*GMD:

Alternatively,

mgð2;XÞ ¼ msg(2,X)þmegð2;XÞ ¼ GMDþ m� 0:5 � GMD

¼ mþ 0:5 � GMD:

One of the uses of the EG that is related to this introduction is in the area of

characterization of distributions. Aaberge (2000) looks at the Lorenz curve as a

cumulative distribution. For this purpose it is required that the distribution is

defined for nonnegative random variables only. Kleiber and Kotz (2002) use

presentation (6.6), but they also restrict the distribution to be for nonnegative

random variables. They show that any distribution F, having a finite first moment,

can be characterized by its sequence of absolute extended Gini indices and (up to a

constant) by its sequence of relative extended Gini indices (extended Gini

coefficients). Using proposition 6.1 this means that the distribution is characterized

(for nonnegative variables) by the sequence of meg’s, i.e., by

megðn,X) ¼
ð1

0

½1� F(x)]
n
dx,

because Dðn;XÞ ¼ m�megðn; X).
Our interest is in applications of the extendedGini in economics. Therefore wewill

not deal with characterizations of distributions by the different variants of the EG. In

order not to spread the discussion to too many branches we will concentrate on

applications of (6.6) which are useful for analyzing expectations of

concave functions. These uses are predominant in welfare economics and finance.

An additional important advantage of relying on (6.6), which is asymmetric, is that in

some of the applications in econometrics we will be interested in testing symmetry

between distributions (referred to as exchangeability). For this purpose, using a

symmetric measure is not useful because it means that symmetry is imposed on the

measure.

6.1.2 The “Income Inequality Approach” Introduction

In a path-breaking paper Atkinson (1970) proved several results concerning the

ranking of income distributions according to expected values of all increasing

concave social welfare functions. (The term increasing concave social welfare
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function implies that the social evaluation of the marginal utility of income is

positive and declining, so that the society is egalitarian.) One of the important

results is that for distributions with equal means all social welfare functions show

the same order of average social welfares (that is, the same ordering of inequality) if

and only if the appropriate Lorenz curves do not intersect. If, on the other hand, the

Lorenz curves intersect then it is always possible to find two alternative social

welfare functions which rank average social welfares differently (to be discussed in

Chap. 14). This finding by Atkinson has opened the way for using the Lorenz curve

as a basic tool in applications of the concept of second-degree stochastic dominance

in welfare economics. This tool allows the analyses of the effect of tax reforms and

decision under risk to be applied to a wide group of welfare functions, freeing the

analysis from the need to specify the welfare function exactly. In addition, Atkinson

suggested a new index of inequality. Atkinson’s index depends on one parameter, e,
referred to as the degree of inequality aversion. The parameter indicates the social

evaluation of the marginal utility of income, which means the social attitude of the

researcher. Atkinson’s result should be viewed as revolutionary. It is the first time

that someone actually proves that it is impossible to measure inequality without

specifying explicitly or implicitly, through an inequality measure, a social welfare

function. As a result, inequality measurement ceases to be viewed as “scientific” or

objective and it returns to be in the domain of political economy. In some sense the

implication of Atkinson’s findings is that one has to state her social preference first

in order to be able, in most relevant cases, to evaluate which society is better off.

Some of the applications of the EG can be interpreted as following Atkinson’s

spirit. The social attitude of the investigator is represented by the choice of the EG

parameter.

The facts that the area between the 45� line and the Lorenz curve is one half of the
Gini coefficient and that all EG coefficients can also be presented as weighted

summations of the areas enclosed between the 45� line and the Lorenz curve

(Yitzhaki, 1983, and below) naturally imply that one can use some extension of

the Gini coefficient to imitate Atkinson’s index. Atkinson’s index initiated research

in the area that led to several definitions of extensions of the Gini coefficient which

depend on one parameter (see Chakravarty, 1988, 1990: Donaldson & Weymark,

1980, 1983; Kakwani, 1980; Yitzhaki, 1983). Because there are different approaches

of spelling the Gini, it took some time to investigate the differences and similarities

among the different approaches. Shorrocks (1983) extended Atkinson’s result to

distributions with unequal means. The relationship between the extended Gini and

social welfare function will be presented in Chap. 13. Because the social welfare

function is assumed to be a concave function, the interest of economists in the field

was only in equations of the type suggested in (6.6).

6.1.3 The “Dual Approach to Risk” Introduction

Expected utility theory is the main paradigm that is used in the analyses of

decisions under risk. In some sense it is an extension of the consumer theory

which assumes that a rational consumer maximizes her utility function subject to a
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budget constraint. Faced by a risky environment, it is assumed that the agent

maximizes her expected utility. Under certainty, the utility function needs to be an

ordinal representation of the preferences, which means that any monotonic increas-

ing transformation of the utility function can also serve as a utility function,

representing the same preferences.

This extension does not come without a price in terms of the requirement from

the theoretical model and the ability to deduce firm conclusions from the model.

In consumer theory, one can divide the effect of a change in a price on the demand

into two effects: the substitution effect and the income effect. The substitution

effect has a negative sign, while the income effect can be either positive or negative,

depending on the assumed utility function. This is a weakness of the theory because

if as a result of the modeling effort everything is possible, then the theory is not very

helpful in shaping our opinion.

Expected utility is a linear combination of utilities at different levels of income

with probabilities serving as the weighting coefficients. This means that the use of

expected utility instead of just utility requires assumptions on the behavior of the

marginal utility of income. In other words, the assumptions concerning the mar-

ginal utility of income determine the behavior under risk.

The determination of behavior under risk by the marginal utility of income does

not allow for the possibility that individuals have different attitudes toward risk but

still have the same attitude toward income. For example, it may be that some

individuals suffer more from being under uncertainty than others, although the

utility from income is the same. To bring a concrete example imagine the state of

mind of a criminal who is tired of running away from the police. It does not

necessarily mean that his attitude toward income or freedom has changed. It may

be that his abilities to be in a state of running away and to be in a state of alert have

changed. Another example is the occupational choice between being an employee

or a self-employed. It need not be that a self-employed person has a higher

preference toward income. It may be a result of being less stressed from exposure

to risk. Note that the verbal term is “risk bearing,” which indicates the suffering

from having to deal with the uncertainty. This suffering is not determined only

by the attitude toward income, although the motivation to bear the risk may

be influenced by the will to get a reward in terms of income. For this purpose,

one may want to disassociate risk bearing from the marginal utility of income

because they may represent different attributes.

To sum up—there are two caveats in expected utility theory: the need to specify

the marginal utility of income and the need to disassociate the marginal utility of

income from being the only factor that determines behavior under risk.

The literature offers several ways for moving forward:

(a) Assuming specific utility functions. Usually this is done implicitly by using a

measure of variability as a measure of risk. For example the use of the mean and

variance to describe behavior under risk.

(b) Deriving results that hold for a subset of all utility functions. This literature

appears under the titles of stochastic dominance or welfare dominance.

108 6 The Extended Gini Family of Measures



(c) Defining “dual utility functions” that enable the user to disengage decision

under risk from the marginal utility of income (Yaari, 1987, 1988).

The advantage of the extended Gini over other measures of variability is twofold.

First, it is a decomposable measure of variability that resembles the variance.

Therefore it can be used for statistical analyses which resemble the analysis that

relies on the variance. Second, it can be used in order to provide specific utility

functions that fall under (a), (b), or (c). Because in the above-mentioned areas the

typical utility function is concave, the relevant presentation of the EG for this

approach is (6.6). For example, both under Yaari’s dual approach and under the

expected utility theory, a key parameter is the certainty equivalent. This parameter

describes the value under certainty which is equivalent (from the point of view of the

expected utility maximizer) to the value attributed to the uncertain distribution of

outcomes. In this sense, the use of the EG enables one to set the risk aversion

parameter of the investor as the parameter that determines the way variability (that

is, riskiness) is defined, and then to proceed with the statistical analysis.

Using a specific n in (6.6) enables the user to define the certainty equivalent of

the distribution. Hence, any decision that is based on (6.6) will not contradict

Yaari’s dual theory. On the other hand, one can perform statistical analyses,

construct portfolios, and analyze policies in a manner that is similar to the

variance-based statistical theory. In other words, Atkinson (1970) has demonstrated

that in certain cases in order to evaluate variability or inequality one needs to state

her preference and only then one can carry out the statistical analysis. We show in

the empirical applications that the EG approach is an approach that enables the user

to test whether the data obey those restrictions. However, as will be shown later, if,

for example, the data come from the multivariate normal distribution, or if the

regression curve obeys the linearity rules as assumed, then the choice of the EG

parameter does not matter and the EG approach is redundant. The procedure will be

as follows: we use the EG parameter as a parameter defining the views of the

investigator. We then perform the statistical analyses for several choices of the EG

parameter, that is, for several such views, and if the conclusions reached do not

change dramatically then we can conclude that one does not have to specify her

views in advance. If, on the other hand, the conclusions change then the researchers

must agree on their views before reaching any conclusion.

6.2 The Alternative Definitions

Having described three different introductions, we now turn to the main objective

of this chapter, namely to replicate the alternative presentations of the GMD, Gini

correlation, etc. for the EG in order to use them in the chapters that deal with the

applications. We concentrate only on a few alternative definitions which are

relevant for the applications. Before doing that we remind the reader that we deal
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with one specific type of extended Gini, the one that is useful for dealing with

concave functions—that is, the one that is derived from (6.6):

megðn, X) ¼
ð1

a

½1� F(x)]
n
dxþ a ¼ mþ n cov(x,[1� F(x)�n�1Þ; n> 0:

That is, Dðn;XÞ ¼ m�megðn, X) (see proposition 6.1).

We start with the basic definition of the extended Gini (see (6.1a) above).

Presentation 6.2.1 The basic definition of extended Gini with extended Gini

parameter n is

Dðn;XÞ ¼ �n cov(X,[1� F(X)�n�1Þ n> 0; n 6¼ 1:

This is an extension of (2.15) (up to a constant) which stated that

D ¼ 4 E X F Xð Þ � E F Xð Þ½ �ð Þf g ¼ 4cov X; F Xð Þ½ �:

There is a major difference between the members of the family with n < 1 and

those with n> 1. While the former represent an attitude as represented by convex

functions, the latter represent concave functions.

Presentation 6.2.2 The following presentation holds only when n is an integer. Let
X1;:::;Xn be n i.i.d. random variables. Then the extended Gini can be presented as

Dðn;XÞ ¼ m� E[Min(X1;:::;XnÞ�: (6.14)

This is an extension of (2.5) which stated that

D 2;Xð Þ ¼ 0.5*GMD ¼ m� E Min X1;X2ð Þ½ �; to all integers n ¼ 3; . . . ; n:

The equivalence between presentations (6.2.1) and (6.2.2) was proved in the

previous section (presentation 6.2).

Presentation 6.2.3 The extended Gini is a weighted average of the distances

between the line of equality (LOE) and the absolute Lorenz curve (ALC) (see

Chap. 2 for the definitions of LOE and ALC).

Specifically,

Dðn;XÞ ¼ nðn� 1Þ
ð1

0

ð1� p)
n�2ðm p� ALC(p))dp; (6.15)

where ALC(p) ¼ ÐxðpÞ
�1

xdF(x) and p ¼ ÐxðpÞ
�1

dF(x) ¼ F(x(p)).

Claim Presentation (6.2.3) is equivalent to presentation (6.2.1).
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Proof Using integration by parts, with

u ¼ mp� ALC pð Þ; du ¼ m� x pð Þð Þdp; dv ¼ ðn� 1Þ 1� pð Þn�2
dp;

n ¼ � 1� pð Þn�1

we get that the right-hand side of (6.15) is

� nð1� pÞn�1ðmp� ALC(p)) j10 þ n
ð1

0

ð1� p)
n�1ðm� x(p))dp:

The first term is equal to zero. The second term can be handled by a change of

variable technique with p ¼ F(x(p)). Using it we get

� n
ð
fðx� m)(1� F(x)Þn�1g f(x)dx ¼ �ncovðX; ð1� F(X)Þn�1Þ:

In the last step we used the fact that cov(X,Y) ¼ E[(X � mX)Y].

6.3 The Properties of the Extended Gini Family

The properties of the members of the EG family are similar to the properties of the

GMD except for two major issues. To save space and proofs, we will concentrate on

the differences between the EG and the GMD.

The first difference is concerned with an asymmetric property with regard to the

underlying distribution as stated in the following claim.

Claim

(a) Dð2;XÞ ¼ D(2,� XÞ for all F.
(b) In general

Dðn;XÞ 6¼ Dðn;� XÞ for n 6¼ 2: (6.16)

(c) Equality between the two sides of (6.16) holds for symmetric distributions.

Proof

(a) F�Xð � x) ¼ P(� X � �x) ¼ P(X � x) ¼ 1� FX(x). Therefore,

D(2,� XÞ ¼ �2covð � X,[1� F�Xð � X)]) ¼ 2cov(X,F(X))

¼ �2cov(X,[1� F(X)]) ¼ D(2,X):
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(b) We show this by an example. Let F(X) ¼ X2, for X uniformly distributed in

[0,1] and let n ¼ 3. Then

D(3,X) ¼ �3cov(X,[1� F(X)�2Þ ¼ �3E(X[1� F(X)�2Þ þ 3� 2

3
� 1

3

Now, E(X[1� F(X)�2Þ ¼ Ð1
0

x(1� x2Þ22xdx ¼ 16

105

So D(3,X) ¼ �3� 16

105
þ 2

3
¼ 22

105
:

On the other hand,

Dð3;� X) ¼ �3cov(� X,[1� F�Xð � X)�2Þ ¼ 3cov(X,F2X(X))

¼ 3cov(X,F2(X))� 3E(X)E(F2(X)) ¼ 3cov(X,F2(X))� 2

3
:

E(XF2(X)) ¼ 2
5
, so we get that

Dð3;� X) ¼ 3� 2

5
� 2

3
¼ 8

15
6¼ 22

105
:

(c) Dðn;XÞ ¼ �nE½ðX� m)(1� F(X)Þn�1�
and

Dðn;� X) ¼ nE½ðX� m)(1� F�Xð � X)Þn�1�:

We need to show that when F is symmetric, then Dðn;XÞ ¼ Dðn;� X): Let X
be symmetrically distributed in [m � a, m + a]. Using the fact that F�Xð � X)

¼ 1� FX(X) we need to show that E[(X� m)(FX(X)Þn�1� þ E[(X � m)(1� FX

(X)Þn�1� ¼ 0:

E[(X � m)(Fn�1
X (X))]þ E[(X� m)(1� FX(X)Þn�1�

¼
ðmþa

m�a

[(x� m)[Fn�1
X (x)þ ð1� FX(x)Þn�1�fX(x)dx:

Using the change-of-variable technique with y ¼ (x � m) we get for

Y ¼ (X � m)

¼
ða

�a

y[Fn�1
Y (y)þ ð1� FY(y))

n�1�fY(y)dy:
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We now use the change-of-variable technique on the first term, with y ¼ (�t)

to get, for Y ¼ (�T)

ða

�a

yFn�1
Y (y)fY(y)dy ¼ �

ð�a

a

ð� t)Fn�1
�T ð � t)f�Tð � t)dt ¼ �

ða

�a

t(1� FT(t)Þn�1
fT(t)dt:

We now use the symmetry of Y about zero: Y¼d ð � Y)¼T(where ¼d means

“equal in distribution”), which completes the proof.

The other property in which the members of the EG family are different from the

GMD is the possibility to be decomposed according to population subgroups.

While the GMD of a union of several subpopulations can be decomposed into

the individual contributions of the subpopulations (plus some additional terms),

such a decomposability of the EG is not available to the best of our knowledge.

An intuitive explanation of the difficulty is because one applies a power function to

the cumulative distribution function. Therefore the additive property of the union of

several subpopulations’ cumulative distributions as a function of the individuals’

distributions is lost. Future research may shed some light with respect to the

question of whether an additional parameter of interest may be hiding behind

the decomposition of the EG with respect to subpopulations.

The metric of the extended Gini. We have shown in Chap. 2 that the metric used

to derive the variance is the Euclidean metric, while the metric of the GMD is the

“city block.” The metric that leads to the EG can be referred to as “hilly city block”

or alternatively, the “condensed city block.” Similar to the GMD case, one is

allowed to move east–west or south–north. But while under the GMD one can

substitute a centimeter of south–north by a centimeter of east–west along the equal-

GMD curve, under the EG, the slope of the equal-EG curve is still a constant, but its

magnitude depends on n. The bigger the value of n, the bigger the slope of the line
representing the equal-EG curve. We now give a geometrical interpretation

(Fig. 6.1) similar to the presentation given in Chap. 2 (Fig. 2.2).

The minimum number of observations needed to plot equal-EG curves is three.

In order to simplify the presentation it is assumed that all observations are positive.

We denote them by 0 < x1 < x2 < x3. To be able to present the equal-EG curve,

we rely on the fact that the EGs are not sensitive to the addition of a constant.

Therefore we can define d1 ¼ x2 � x1 and d2 ¼ x3 – x2.

It is easy to see that an equal-EG curve will be a linear function of the form:

C ¼ c1 nð Þd1 þ c2 nð Þd2; (6.17)

where C determines the level of the curve (i.e., the value of the EG)), while c1(n) and
c2(n) are constants determined by the selection of n. Hence, the equal-EG curves are

all linear with the slope determined by n. Having d1 on the horizontal axis and d2 on
the vertical axis, the larger the value of n the larger the absolute value of the

(negative) slope. For this reason we refer to the metric as “hilly city block” metric.
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6.4 Alternative Presentations of the Extended Gini

Covariances and Correlations

Let X and Y be two random variables having continuous marginal distribution

functions F and G, respectively, and a joint distribution function H(X,Y). Using the

covariance presentation of the EG (6.1a), the definitions of the EG equivalents of

covariances and correlations follow immediately

DCðn;X;YÞ ¼ �n cov(X,[1� G(Y)�n�1Þ; (6.18)

and

DCðn;Y;XÞ ¼ �n cov(Y,[1� F(X)�n�1Þ:

Two additional presentations of the EG covariance will be used in this chapter.

We present them below.

Presentation 6.4.1

DCðn;X;YÞ ¼ nðn� 1Þ
ðð

(H(x,y) � F(x)G(y))(1� G(y)Þn�2
dG(y)dx: (6.19)

This presentation is equivalent to the basic definition (6.18). The proof can be

found in Appendix 6.1.

The second presentation that will be used, which is similar to the definition of the

extended Gini by the ALC, is based on the absolute concentration curve.

Presentation 6.4.2 Let g(x) ¼ mY.X ¼ E{Y│X¼x}. Then

2δ

1

Euclidean (variance)

A

1
B

D

C

1δ

city block (EG): 3=υ

city block (GMD): 2=υ

city block (EG): = 0.5υ

Fig. 6.1 Equal GMD, EG,

and variance curves. Source:

Yitzhaki and Schechtman

(2005), Fig. 1, p. 408.

Reprinted with permission

by Metron International
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cov(Y,� ½1� F(X)]n�1Þ ¼ ðn� 1Þ
ð1

0

ð1� p)
n�2ð mYp� ACCY:X(p))dp; (6.20)

where

ACCY:X(p) ¼
ðxðpÞ

�1
g(x)dF(x) and p ¼

ðxðpÞ

�1
dF(x): (6.21)

The proof is similar to the proof of the equivalence between presentations 6.2.1

and 6.2.3 above with the main modification: ALC should be replaced by ACC.

Having defined the EG covariances we now move to define the extended Gini

correlations. The extended Gini correlations are defined as

G( n, X,Y) ¼ covðX; ½1� GðYÞ�n�1Þ
cov(X,[1� F(X)�n�1Þ ;

Gðn;Y;XÞ ¼ covðY; ½1� FðXÞ�n�1Þ
cov(Y,[1� G(Y)�n�1Þ :

(6.22)

An alternative definition using (6.19) is

G( n, X,Y) ¼ ðn� 1Þ Ð Ð ðHðx; yÞ � FðxÞGðyÞÞð1� GðyÞÞn�2
dGðyÞdx

cov(X,� ½1� F(X)]
n�1Þ : (6.23)

Next we list the main properties of the family of correlation coefficients. Proofs

which are similar to the ones for the special case n ¼ 2 and are discussed in Chap. 3

will not be repeated here.

The main properties of G( n, X, Y) are

1. Let F and G be the cumulative distribution functions of X and Y, respectively.

Then, for every joint distribution function H(X,Y) and for every n, G( n, X,Y)
� 1 for all (X,Y). (Note: it is not bounded in [�1,1]).

2. If Y is a monotone increasing function of X, then G( n, X,Y) ¼ 1 for all n.
3. If X and Y are independent, then G( n, X,YÞ ¼ G( n, Y, X) ¼ 0 for all n.
4. Gðn;X;YÞ is invariant under all strictly monotonic increasing transformations

of Y.

5. Let (X,Y) have a bivariate normal distribution with correlation coefficient r,
then G( n, X,YÞ ¼ G( n, Y,X) ¼ r for all n.

6. Invariance under exchangeability. Let (X,Y) be exchangeable up to a linear

transformation, then G( n, X,Y) ¼ G( n, Y,X) for all n.
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By exchangeability it is meant that there exist a, b, c, and d (a > 0; c > 0) such

that (X,Y) and (aY + b, cX + d) are identically distributed. Intuitively, “exchange-

ability” means that there exists a linear transformation that makes the shapes of the

joint distributions identical. In particular, it is meant that the shapes of the marginal

and conditional distributions are identical (see Chap. 3 for more details).

The proofs of properties 2, 3, 4, and 5 are very similar to the proofs of the

equivalent properties of the Gini correlations given in Chap. 3 and will not be

repeated here. The proofs of 1 and 6 are given below.

Proof of property 1 The EG correlation coefficient is defined as

Gðn;X;YÞ ¼ covðX;� ½1� GðYÞ�n�1Þ
cov(X,� ½1� F(X)]

n�1Þ :

The proof is based on the following claim.

Claim Given the marginal distribution functions of X and Y, and assuming that the

densities exist and are positive everywhere, cov(X,Y) is maximal when E{Y│X¼x}

is an increasing function of X.

Proof of the claim (See Sect. 3.3)

We now turn to the proof of property 1.

We need to show that

cov(X,� ½1� GY(Y)]
n�1Þ � cov(X,� ½1� FX(X)]

n�1Þ:
Note that GY(Y) has a uniform distribution over [0,1] (that is, it is a U(0,1)

random variable), hence U ¼ 1 � GY(Y) is also U(0,1), and

E(Un�1Þ ¼
ð1

0

un�1du ¼ 1

n
:

Therefore,

E[1� FX(X)�n�1 ¼ E[1� GY(Y)�n�1 ¼ 1

n
:

Note that X and � ½1� FX(X)]
n�1 are nondecreasing functions of X. By the claim,

cov(X,� ½1� GY(Y)]
n�1) achieves its maximal value when � ½1� GY(Y)]

n�1 is an

increasing function of X. Now, � ½1� GY(Y)]
n�1 is nondecreasing if and only if

GY(Y) is a nondecreasing function of X, which implies FX(X) ¼ GY(Y).

This means that the maximum is achieved at cov(X,� ½1� FX(X)]
n�1Þ, which

completes the proof.
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We note that while in the case n ¼ 2 (that is, the Gini correlation coefficient) the

lower bound is (�1) and the proof is similar to the one for the upper bound, in

the case of the extended Gini correlation this is not the case, as is shown below by

an example.

Proof of property 6 Under exchangeability, H(X,Y) ¼ H(Y,X). The proof is

similar to the proof for the GMD (see Chap. 3), except that each F is replaced by

-ð1� F(X))n�1 and E(F(X)) ¼ 0.5 is replaced by E(� ½1� F(X)]n�1Þ ¼ � 1

n
:

Additional properties

1. An alternative sufficient condition for the equality of the extended Gini correla-

tion coefficients (namely G( n, X,Y) = G( n, Y,X)) is that ACCX,Y(p) ¼
ACC

Y,X
(p) for all p, where ACCX,Y(p) is the absolute concentration curve as

defined in Chap. 5 and in (6.21). Using (6.21), the proof is immediate. We call

distributions for which ACCX,Y(p) ¼ ACCY,X(p) for all p “well-behaved”

distributions.

2. It is interesting to note that for the special case n ¼ 2 , if E{Y│X¼x} is a

monotonic decreasing function of X, then G( n, X,Y) ¼ �1 (the lower bound

for the special case), but this does not hold for the general case, as the following

example shows

Let Y ¼ �X. For this case, G( n, X,Y) ¼ �1 implies that

cov(X,[F(X)�n�1Þ ¼ �cov(X,� ½1� F(X)]n�1Þ:
For n ¼ 2 the condition holds.

For n ¼ 3the condition translates intowhether or notcov(X,F(X))¼ cov(X,F2(X));
which is generally not true. For example, choose F(x) ¼ x2, for 0��� 1.

Then cov(X, F(X)) ¼ 1/15, but cov(X, F2(X)) ¼ 4/63. The lower bound for the

general case is discussed below.

The family of correlation measures Gðn;X;YÞ differs from the classical correla-

tion (Pearson) r in three major properties.

(a) Gðn;X;YÞ ¼ 1 whenever Y is an increasing function of X, not necessarily

linear. (This property holds for the Spearman coefficient as well).

(b) Let F and G be cumulative distribution functions of X and Y, respectively.

Then, there exists a joint distribution function H(X,Y) such that for every n,
Gðn;X;YÞ ¼ 1. The fact that the upper bound of 1 can always be achieved is

helpful as a benchmark. See the discussion on the proper bounds of Pearson,

Spearman, and Gini correlation coefficients by, for example, Schechtman and

Yitzhaki (1999). The proof can be found in Schechtman and Yitzhaki (2003)

and in Appendix 6.3.

(c) The lower bound of G( n, X,Y) is given by

Gðn;X;YÞ �
Ð
FðxÞðFn�1ðxÞ � 1ÞdxÐ ðð1� F(x))(1� ð1� F(x))

n�1
)dx

; (6.24)
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and is achieved when Y ¼ �X. Two special cases are worthmentioning: the case

where X comes from a symmetric distribution and the case with n ¼ 2. In these

two cases, the lower bound is�1, same as for the classical correlation coefficient.

However, in general the lower bound depends on the cumulative distribution—

themore concave it is, the lower it can get. The proof can be found in Schechtman

and Yitzhaki (2003) and in Appendix 6.3. An intuitive explanation of property (c)

will be given following the decomposition of the EG of a sum of random variables

(end of Sect. 6.5).

The lower bound can be expressed, for the case where n is an integer, as

�Dðn;� XÞ
Dðn;XÞ ¼ m� E½maxðX1;:::;XnÞ�

m� E[min(X1;:::;XnÞ� :

We illustrate this lower bound for X exponentially distributed, with a scale

parameter of unity. Kleiber and Kotz (2002) show that Dðn;XÞ ¼ 1� 1
n : It can be

shown that

E[max(X1;:::;XnÞ� ¼
Xn

k¼1

ð � 1Þkþ1 n
k

� �
1

k
:

Therefore, the lower bound for n ¼ 3 is
1�11

6

1�1
3

¼ � 5
4
:The lower bound for n ¼ 4 is

�13/9, smaller than the bound for n ¼ 3because the cumulative distribution is more

concave.

6.5 The Decomposition of the Extended Gini

Let (Y1,Y2) have a continuous bivariate distribution. In what follows we show that if

Y0 is a linear combination of Y1 and Y2, then the extended Gini coefficient of Y0 can

be decomposed in a way which is similar to the decomposition of the coefficient of

variation, plus an additional termwhich reflects the asymmetry of the EG correlation

coefficient. Note the change in notation. We use (Y1,Y2) rather than (X,Y) because

the decomposition can easily be extended so that Y0 is a linear combination of Y1,

Y2,. . .,Yk.

Let Y0 ¼ aY1 þ bY2, where a and b are given constants. Then

(a) G2
0 � ½aD10G1 þ bD20G2�G0 ¼ a2G2

1 þ b2G2
2 þ a bG1G2ðGðn;Y1;Y2Þ

þ Gðn;Y2;Y1ÞÞ; (6.25)

where Gi i ¼ 0,1,2 are the extended Gini coefficients and

Gðn;Yi;YjÞ ¼ covðYi; ½1� FjðYÞ�n�1Þ
cov(Yi; ½1� Fi(Y)�n�1Þ
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for i,j ¼ 0,1,2 are the extendedGini correlations,D0i ¼ Gðn;Y0;YiÞ � Gðn;Yi;Y0Þ
for i ¼ 1,2 are the differences between the extended Gini correlations.

(b) Provided that D0i ¼ 0 for i ¼ 1,2 and that the two EG correlations between Y1

and Y2 are equal the following decomposition holds:

G2
0 ¼ a2G2

1 þ b2G2
2 þ 2 a bG1G2G; (6.26)

where G ¼ Gðn;Y1;Y2Þ ¼ Gðn;Y2;Y1Þ are the extended Gini correlation coeffic-

ients between Y1 and Y2 (and between Y2 and Y1).

The structure of (6.26) is identical to the decomposition of the variance, withG2
i

substituting for the variance and G substituting for Pearson’s correlation. Note that

by a proper choice of a and b, (6.25) and (6.26) can be applied both to absolute

measures like the EG and to relative measures such as the extended Gini coefficient.

The proof of the decomposition is given by Schechtman and Yitzhaki (2003) and

in Appendix 6.4.

Clearly, property (b) of the claim is a special case of property (a). However,

because of its similarity to the variance decomposition, the practical importance of

case (b) is much greater than that of the general case because it implies that ANY

variance-based model can be replicated, using the extended Gini as a substitute for

the variance as a measure of dispersion. It is worthwhile to mention that (6.26) is

easier to work with than (6.25). The question is, however, how restrictive the

assumptions Dij ¼ 0 really are. Schechtman and Yitzhaki (1987) showed that a

sufficient condition for Dij ¼ 0 is that the variables are exchangeable up to a linear

transformation. However, this is only one possible sufficient condition. Clearly, this

sufficient condition does not exhaust all possibilities. The equality of the two ACCs

between Yi and Yj is another sufficient condition. Further research is needed to find

the necessary and sufficient conditions for Dij ¼ 0 if possible. Note also that under

bivariate normality Dij ¼ 0.

While equation (6.26) enables one to imitate variance-based models, (6.25)

opens new possibilities. It is worth stressing that each violation of the condition

Dij ¼ 0 is reflected in a specific term in the decomposition (6.25). Therefore one

can identify the random variables whose distributions are not “well behaved” and

attach a quantitative value to the violation.

We conclude this section by using the decomposition to give an intuitive

explanation to why the lower bound of the EG correlation may be smaller than

(�1). Let us start decomposing the identity Y ¼ X+(�X) ¼ 0. ClearlyDðn;YÞ ¼ 0

by construction.

Also DXY ¼ D�XY ¼ 0. Hence

0 ¼ D2ðn;XÞ þ D2ðn;� X)þ Dðn;XÞ Dðn;� X) G ðn,X,� X)

þ Dðn; X) Dðn;� X) Gðn;� X,XÞ:

Denote C = G ðn,X,� X) + G ðn;� X,X) then we can rewrite the equation as
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0 ¼ D2ðn,X)þ D2ðn;� X)þ C Dðn,X)Dðn;� X):

We now show that C < �2, implying that at least one of G ðn,X,� X) and

G ðn;� X,X) is smaller than (�1). Assuming Dðn;XÞ 6¼ Dðn;� X) , which may

occur whenever a distribution is not symmetric around its mean then

D2ðn,X)þ D2ðn;� X)> 2 Dðn;XÞDðn;� X) and we get that

0>2Dðn;XÞDðn;�X) + CDðn;XÞDðn;�X). Therefore 0 > 2 + C and C < �2.

6.6 Stochastic Dominance and the Extended Gini

In this section we show that a necessary condition for second-degree stochastic

dominance (SSD) is that the mean minus the EG of the dominating distribution is

not lower than the mean minus the EG of the dominated distribution for all n.
However, even if this condition holds for all n it does not form a sufficient condition

for dominance. In addition, we note that a comparison of the mean minus the EG as

defined in (6.6) is equivalent to a special case of Yaari’s (1987, 1988) decision

functions. Therefore if distribution A dominates distribution B by at least one EG

parameter according to (6.6) then distribution A cannot be dominated by distribu-

tion B according to Yaari’s criteria. Therefore, each EG can be used to construct a

necessary condition for dominance both according to expected utility theory and

according to Yaari’s dual theory.

We start with a definition of SSD.

Let X, Y be two continuous random variables with cumulative distributions FX( )

and FY( ), respectively. It is assumed that the expected values of the distributions

are bounded (mX < 1; mY < 1). Let U be the class of increasing concave

functions and let V be the class of increasing convex functions. We say that X

dominates (by SSD) Y for concave (convex) functions if

E u Xð Þf g � E u Yð Þf g for all u 2 U: (6.27)

E v Xð Þf g � E v Yð Þf g for all v 2 V: (6.28)

The intuition behind the necessary condition is straightforward using simple

geometry. It is based on the following three facts.

1. A necessary and sufficient condition for SSD is that the absolute Lorenz curve

(ALC) of the dominating distribution lies above (not lower than) the ALC of the

dominated distribution.

2. The area below the line of equality (LOE) is equal to the mean of the distribution

multiplied by a constant.

3. The extended Gini is a weighted average of the distances between the LOE and

the ALC (see Chap. 2 for the definitions of LOE and ALC and presentation 6.2.3

in Sect. 6.2).

120 6 The Extended Gini Family of Measures

http://dx.doi.org/10.1007/978-1-4614-4720-7_2


Using these facts, the weighted area below the ALC is equal to the mean

multiplied by a constant minus the value of the EG. A necessary condition for

one curve to be above the other is that the area below the curve is bigger for the

dominating curve (i.e., for the dominating distribution). In order not to bombard

the reader with redundant proofs, we will state the propositions in this section

without proofs.

Proposition 6.7

Inequality (6.27) holds iff
�1

ðz
FY tð Þ � FX tð Þ½ �dt � 0 for all z:

Inequality (6.28) holds iff
z

ð1
FY tð Þ � FX tð Þ½ �dt � 0 for all z:

A proof of the first part of the proposition (for concave functions) can be found in

Hanoch and Levy (1969) and in Rothschild and Stiglitz (1970) and the proof of the

second part (for convex functions) can be found in Spencer and Fisher (1992).

Yitzhaki (1983, 1999) gives more convenient proofs using the Lorenz curve and

Gini.

Conditions (6.27) and (6.28) are related to each other by

�1

ðz
FY tð Þ � FX tð Þ½ �dtþ

z

ð1
FY tð Þ � FX tð Þ½ �dt ¼ mX � mY: (6.29)

It is easy to see that if mX ¼ mY then

�1

ðz
FY tð Þ � FX tð Þ½ �dt � 0 for all z iff

z

ð1
FY tð Þ � FX tð Þ½ �dt � 0 for all z;

and we may conclude that for distributions with equal means the rules are symmet-

ric in the sense that “X dominates Y for concave (convex) functions” is equivalent

to “Y dominates X for convex (concave) functions.” However, if mX 6¼ mY, this
symmetry need not hold. That is, X may dominate Y for concave functions, without

Y dominating X for convex functions. To formally prove the asymmetry note that

mX � mY is a necessary condition for dominance in both cases. Hence, if mX > mY
then X may dominate Y for concave or convex functions, while Y cannot dominate

X for both types of functions.

Further insight into the origin of the asymmetry can be gained by presenting the

necessary and sufficient conditions in terms of ALCs. The ALC is defined by

ALC pð Þ¼
�1

ðz
t f tð Þdt; (6.30)

where z ¼ F�1(p) and f( ) is the density function.

Proposition 6.8 states the necessary and sufficient conditions for second-order

dominance of concave functions in terms of ALCs.
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Proposition 6.8

ALCX pð Þ � ALCY pð Þ for all 0 � p � 1 iff
�1

ðz
FY tð Þ � FX tð Þ½ �dt � 0 for all z:

For the proof see Lambert (2001), Shorrocks (1983), and Yitzhaki and Olkin

(1991).

To construct necessary and sufficient conditions for dominance of convex

functions in terms of ALCs it is convenient to define the ALC in terms of h ¼ 1 � p.

Under this formulation the observations are sorted in descending (instead of

ascending) order. Then, the absolute (descending-order) Lorenz curve portrays

the cumulative value of the largest h percent of the population (the appropriate

ALC is above the diagonal). In this case, the absolute (descending-order) Lorenz

curve, DALC, is a mirror image of the conventional ALC

DALC hð Þ ¼
z

ð1
tf tð Þdt where z ¼ z hð Þ ¼ H�1 hð Þ ¼ F�1 1� hð Þ: (6.31)

Proposition 6.9 states the necessary and sufficient conditions for second-order

dominance of convex functions.

Proposition 6.9

DALCX hð Þ � DALCY hð Þ for all h; 0 � h

� 1 iff
z

ð1
FY tð Þ � FX tð Þ½ � dt � 0 for all z: (6.32)

Proof See Appendix 6.2. (The proof is based on Yitzhaki, 1999).

The necessary and sufficient conditions for second-order dominance for convex

functions are stated in terms of descending-order ALCs, while those for con-

cave functions are stated in terms of ascending-order ALCs. Both state that domi-

nance means that one curve cannot intersect the other. Hence, the only difference

between the conditions for concave and convex functions is the definition of the

ALC. This difference also shows up in forming necessary conditions. A necessary

condition for dominance is that the area below the dominating curve cannot be

smaller than the area below the dominated curve. As shown by Yitzhaki (1982a,

1982b, 1982c) this means that mX � mY and mX(1 � GX) � mY(1 � GY) (G is the

Gini coefficient or EG coefficient) are necessary conditions for dominance of X

over Y for concave functions.2

By exactly the same method one can show that mX � mY and mX(1 + GX) �
mY(1 + GY) are necessary conditions for dominance of X over Y for convex

2 To see the intuition note that mX � mY is the value of the ALC at the upper right-hand corner, while

mX(1 � GX) � mY(1 � GY) implies that the area below the ALC for X is bigger than that for Y.
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functions. Note that these conditions do not form necessary conditions for first-

degree stochastic dominance (FSD). FSD allows dominance by partially convex

and partially concave functions.

Our final point is that fulfilling all necessary conditions for SSD by using all

members of the EG family does not provide a sufficient condition for dominance.

This is proved by supplying a counter example (Yitzhaki, 1983) as follows.

Let F1(Y) be the following distribution:

F1(y) ¼
0 for y<0:49

0:99 for 0:49 � y<0:49þ c

1 for y � 0:49þ c

0
@

1
A;

where c > 1 is a given constant. Let F2(y) be the uniform distribution on [0,1].

Then for F1(y), a ¼ 0.49, where a is the lower bound of Y, and

megðn;XÞ ¼
ð1

a

½1� F1(y)]
n
dyþ a ¼

ð0:49þc

0:49

ð1� 0:99Þndyþ 0:49 ¼ð0:01Þncþ 0:49

while for F2(y), a ¼ 0 and

megðn,Y) ¼
ð1

0

½1� F2(y)]
n
dy ¼ 1

1þ n
:

meg for F1 is greater than meg for F2 for all n � 1, although F1 does not SSD

dominate F2. (Note that
Ð 0:99
0

½F1(y)�F2(y)]dy ¼ 0:005).
Going back to Yaari’s theory, an inspection of (6.6) reveals that the meg is a

special case of Yaari’s decision functions in the areas of risk and income distribution.

Hence, dominance by one EG implies dominance by one possible Yaari’s decision

function.

6.7 Summary

The GMD can be extended in several alternative ways into families of variability

and inequality measures that share most of its properties. We have chosen only one

such family—a covariance-based extension that is intended to represent expected

values according to concave functions. This extension shares many properties with

the GMD, except for two: it is asymmetric with respect to the distribution and it

does not decompose with respect to population subgroups.

The motivation for such an extension varies according to the area of application:

in finance andwelfare economics it is intended to adjust the modeling and estimation
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procedure to the theoretical requirements in each area, while in the area of econo-

metrics the primary motive is sensitivity analysis and investigating the linearity of

the model. Each extension to a family implies that some of the properties of the

GMD are lost while others are added. For example, one could extend the Gini in a

way in which the symmetric property is not lost. But then the adjustment to finance

and social welfare analysis is lost. Our extension kept the adjustments to welfare

economics and finance and also kept the decomposition properties of a linear

combination of random variables. However, the property of neatly decomposing

the GMDof a population that is composed of several subpopulations is lost when one

moves to the extended Gini. Further research is needed to determine whether this

property is lost forever or maybe a new meaningful decomposition will be devel-

oped, which will enable the family to reveal another property of the data in the same

way that ANOGI reveals more than ANOVA.

Appendix 6.1

Presentation 6.4.1

DC( n, X,Y) ¼ �n cov(X,[1� G(Y)�n�1Þ
¼ nðn� 1Þ

ð ð
f H(x,y)� F(x)G(y))g (1� G(y)Þn�2

dG(y)dx:

Proof of presentation 6.4.1 Let (X1,Y1) and (X2,Y2) be i.i.d. random variables.

As shown by Kruskal (1958),

2cov(X,Y) ¼ E[(X1 � X2ÞðY1 � Y2Þ�

¼ Ef
ð ð

[I(u,X1Þ � I(u,X2)][I(t,Y1Þ � I(t,Y2)]dudtg;

where

I(u,X) ¼
�
1 if u � X
0 otherwise

�
:

There are two types of components in the integral:

(a) I(u,X1)I(t,Y1), where X1 and Y1 are dependent, and

(b) I(u,X1)I(t,Y2), where X1 and Y2 are independent.

Replacing Y by ð1� G Yð ÞÞðn�1Þ
we get
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For (a)

E[I(u,X1)I(t,(1� G(Y1ÞÞðn�1Þ� ¼ P[u � X1,t � ð1� G(Y1ÞÞðn�1Þ�
¼ p(u � X1,G(Y1Þ � 1� t1=ðn�1ÞÞ ¼ P(u � X1;Y1 � G�1ð1� t1=ðn�1ÞÞÞ
¼ P(Y1 � G�1ð1� t1=ðn�1ÞÞÞ � P(Y1 � G�1ð1� t1=ðn�1ÞÞ;X1 � u)

¼ 1� t1=ðn�1Þ � H(u,G�1ð1� t1=ðn�1ÞÞÞ:

For (b)

E[I(u,X1)I(t,(1� G(Y2ÞÞn�1Þ� ¼ P(u � X1)P(t � ð1� G(Y2ÞÞn�1Þ
¼ P(u � X1)P(G(Y2Þ � 1� t1=ðn�1ÞÞ ¼ ð1� F(u))(1� t1=ðn�1ÞÞ
¼ 1� F(u)� t1=ðn�1Þ þ F(u)t1=ðn�1Þ:

Combining the pieces and substituting into the integrals, we get

2cov(X,(1� G(Y)Þn�1Þ ¼ 2

ð1

0

ð1

0

f½1� t1=ðn�1Þ � H(u,G�1ð1� t1=ðn�1ÞÞÞ�

� ½1� F(u)� t1=ðn�1Þ þ F(u)t1=ðn�1Þ]g dudt ¼ 2

ð1

0

ð1

0

[F(u)� H(u,G�1ð1� t1=ðn�1ÞÞÞ

� F(u)t1=ðn�1Þ]dudt:

Substituting t1=ðn�1Þ ¼ 1� G(y) and dt ¼ �ðn� 1Þð1� G(y)Þn�2
dG(y); we get

�2

ð1

0

ð0

1
[F(u)� H(u,y)� F(u)(1� G(y))](1� G(y)Þn�2ðn� 1)dudG(y)

¼ �2( n� 1Þ
ð1

0

ð1

0

(H(u,y)� F(u)G(y))(1� G(y)Þn�2
dudG(y)

and thus,

� covðX; ð1� G(Y)Þn�1Þ
¼ ðn� 1Þ

ð ð
[H(u,y) � F(u)G(y)](1� G(y)Þn�2

dudG(yÞ:
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Appendix 6.2

Proposition 6.9

DALCX hð Þ � DALCY hð Þ for all h; 0 � h � 1 iff
z

ð1
FY tð Þ � FX tð Þ½ � dt � 0

for all z:

Proof

(a) Sufficiency: We have to prove that if the integral is nonnegative for all z, then

DALCX hð Þ � DALCY hð Þ for all h; 0 � h � 1:

Using integration by parts one can write

z

ð1
1� F tð Þ½ �dt ¼ �H zð Þzþ

z

ð1
tf tð Þdt ¼ DALC hð Þ � zH zð Þ;

where H(z) ¼ 1 � F(z) ¼ h. Equivalently, z ¼ z(h) ¼ F�1(1 � h).

Therefore

z

ð1
FY tð Þ � FX tð Þ½ �dt ¼ DALCX h1ð Þ � zh1 � DALCY h2ð Þ þ zh2; (A6.1)

where h1 ¼ HX(z) and h2 ¼ HY(z) and DALCX(h1) denotes the absolute

(decreasing) Lorenz curve of X, evaluated at h1 ¼ HX(z).

Two additional properties of the absolute Lorenz curves (increasing and decreas-

ing) are required in order to complete the proof

@ALC(p)/@p P¼FðzÞ ¼ z ; @DALC(h)
�� =@h h¼H zð Þ

�� ¼ z:

@2ALC pð Þ=@p2 p¼F zð Þ
�� � 0 ; @2DALC hð Þ=@h2 h¼H zð Þ

�� � 0:

Using these properties (A6.1) can be written as

ð1

z

½FYðtÞ � FXðtÞ� dt ¼ DALCXðh1Þ � h1@ðDALCXÞ=@h h¼h1j

þ h2@ðDALCYÞ=@h h¼h2j � DALCYðh2Þ; (A6.2)

where h1 ¼ HX(z) and h2 ¼ HY(z). That is, the integral on the left hand side of

(A6.2) is equal to the difference between the two absolute (decreasing) Lorenz
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curves evaluated at equal-slope points plus a term which is based on the

derivatives of the curves. Figure 6.2 portrays the term of equation (A6.2). Let

OC be the curve DALCX and let OD be the curve DALCY. The curves are

concave because the figure plots the absolute (descending) Lorenz curves, that

is, h1 represents a percentage of the highest observations and h1C is the cumula-

tive value of the variate of those observations. The points C and D have the same

slopes. Hence the first term represents OA, while the second term is OB.

Because at the points D and C the derivatives of the curves are equal (and equal

to z) we may write (A6.2) as

z

ð1
FY tð Þ � FX tð Þ½ �dt ¼ DALCX h1ð Þ þ @ DALCYð Þ=@hjh¼h2 h2 � h1½ � � DALCY h2ð Þ:

(A6.3)

Note that DALCY(h2) + ∂(DALCY)/∂h │h¼h2[h1�h2] is the first-order approxi-

mation of DALCY(h1), approximated from h2. Because DALCY is concave,

DALCY(h1) is smaller than its first-order approximation. Therefore,

0�
z

ð1
FY tð Þ � FX tð Þ½ �dt � DALCX h1ð Þ � DALCY h1ð Þ: (A6.4)

The fact that the relationship holds for all z implies that it also holds for all h.

(b) Necessity:

We have to prove that if DALCX(h) � DALCY(h) for all h then

z

ð1
FY tð Þ � FX tð Þ½ �dt � 0 for all z:

Using (A6.3) it is sufficient to prove that if DALCX(h) � DALCY(h) for all

h then

Fig. 6.2 Generalized

(absolute) Lorenz curve.

Source: Yitzhaki (1999),

Fig. 19.1, p. 363. Reprinted

with permission by Physica

Verlag Heidelberg
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DALCX h1ð Þ þ @ DALCXð Þ=@h h2 � h1½ � � DALCY h2ð Þ � 0

for all z where h1 ¼ HX(z) and h2 ¼ HY(z). Since DALC() is concave

DALCX h1ð Þ þ f@ DALCXð Þ=@hg h2 � h1½ � � DALCX h2ð Þ;

hence

DALCX h1ð Þ þ @ DALCXð Þ=@hjh2 h2 � h1½ � � DALCY h2ð Þ
� DALCX h2ð Þ � DALCY h2ð Þ � 0:

Appendix 6.3

Property (b) Let F and G be the cumulative distribution functions of X and Y,

respectively.

Then there exists a joint distribution function H(X,Y) such that for every n,

G n;X;Yð Þ ¼ 1:

Proof of property (b) (taken from Schechtman and Yitzhaki (2003)) Fréchet (1951)

has shown that there exist bivariate distributions H0(x,y) and H1(x,y) with

marginals (F,G) such that for ANY bivariate distribution H(x,y) with the same

marginals,

H0 x; yð Þ � H x; yð Þ � H1 x; yð Þ;

where H0(x,y) ¼ max{F(x)+G(y)�1,0} and H1(x,y) ¼ min{F(x),G(y)} are the

Frechet minimal and Frechet maximal distributions, respectively (De Veaux, 1976).

Using Frechet’s results we obtain the upper bound as follows (all integrals are

from �1 to 1 unless stated otherwise):

�cov(X,(1�G(Y)Þn�1Þ¼ ðn�1Þ
ð ð

(H(x,y)�F(x)G(y))ð1�G(y))n�2dG(y)dx

¼ðn�1Þ
ð ð

H(x,y)(1�G(y)Þn�2
dG(y)dx�ðn�1Þ

ð ð
F(x)G(y)(1�G(y)Þn�2

dG(y)dx:

Using Frechet minimal distribution and using integration by parts, we get that

the first integral on the right-hand side can be bounded as follows
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ð ð
H(x,y)(1� G(y)Þn�2

dG(y)dx �
ð ð

min(F(x), G(y))(1� G(y)Þn�2
dxdG(y)

¼
ð ðG�1ðFðxÞÞ

�1
G(y)(1� G(y)Þn�2

dxdG(y)þ
ð ð1

G�1ðFðxÞÞ
F(x)(1� G(y)Þn�2

dxdG(y)

¼ 1

ðn� 1Þ
ð
F(x)(1� F(x)Þn�1

d(x)þ 1

ðn� 1Þ
ð
�G(y)(1� G(y))n�1jG�1ðFðxÞÞ

�1

þ 1

ðn� 1Þ
ð ðG�1ðFðxÞÞ

�1
ð1� G(y))

n�1
dG(y)

¼ 1

ðn� 1Þ
ð ðG�1ðFðxÞÞ

�1
ð1� G(y))

n�1
d(G(y))

¼ 1

nðn� 1Þ
ð
ð1� ð1� F(x))

n
)dx:

The second integral, again by integration by parts, can be expressed as

ð ð
F(x)G(y)(1� G(y)Þn�2

dG(y)dx ¼
ð
FðxÞf

ð
1

ðn� 1Þ ð1� G(y))
n�1

dG(y)g dx

¼ 1

nðn� 1Þ
ð
F(x)dx:

Combining the two parts and multiplying by ðn� 1Þ we get

� cov(X,(1� G(Y)Þn�1Þ � 1

n

ð
fð1� F(x))� ð1� F(x))

ng dx:

Similar arguments show that

� cov(X,(1� F(X)Þn�1Þ ¼ 1

n

ð
fð1� F(x))� ð1� F(x))

ng dx,

Because in this case H(x,y) ¼ min(F(x),G(y)). Therefore by choosing H(x,y) to

be Frechet minimal distribution, the upper bound of 1 is achieved.

Property (c) The lower bound of G( n, X,Y) is given by

G( n, X,Y) �
Ð
FðxÞðFn�1ðxÞ � 1ÞdxÐ ðð1� F(x))(1� ð1� F(x))

n�1
)dx

;
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and is achieved when Y ¼ (�X).

Proof of property (c) (taken from Schechtman and Yitzhaki (2003))

Using Fréchet (1951) results and integrating by parts we get

ð ð
H(x,y)(1� G(y)Þn�2

dG(y)dx �
ð ð

max(F(x)þ G(y)� 1; 0Þð1� G(y)Þn�2
dG(y)dx

¼
ð ð1

G�1ð1�FðxÞÞ
F(x)(1� G(y)Þn�2

dG(y)dxþ
ð ð1

G�1ð1�FðxÞÞ
G(y)(1� G(y)Þn�2

dG(y)dx

�
ð ð1

G�1ð1�FðxÞÞ
ð1� G(y))

n�2
dG(y)dx

¼
Ð
FðxÞFn�1ðxÞdx

ðn� 1Þ þ
Ð ð1� FðxÞÞFn�1ðxÞdx

ðn� 1Þ

þ
Ð �ð1� GðyÞÞnj1G�1ð1�FðxÞÞdx

nðn� 1Þ �
Ð
Fn�1ðxÞdx
ðn� 1Þ ¼ FnðxÞ

nðn� 1Þ :

Combining the pieces together, we get

� cov(X,(1� G(Y)Þn�1Þ ¼ ðn� 1Þ
ð ð

(H(x,y) � F(x)G(y))(1� G(y)Þn�2
dG(y)dx

�
Ð
FnðxÞdx

n
�
Ð
FðxÞdx
n

¼ 1

n

ð
ðFn(x)� F(x))dx:

Therefore we get that

Gðn;X;YÞ �
Ð
FðxÞðFn�1ðxÞ � 1ÞdxÐ ðð1� F(x))(1� ð1� F(x))

n�1
)dx

:

Appendix 6.4

The decomposition

Let Y0 ¼ aY1 þ bY2, where a and b are given constants. Then

(a) G2
0 � ½aD10G1 þ bD20G2�G0 ¼ a2G2

1 þ b2G2
2

þ a bG1G2ðGðn;Y1;Y2Þ þ Gðn;Y2;Y1ÞÞ;

where Gi i ¼ 0,1,2 are the extended Gini coefficients and

Gðn;Yi;YjÞ ¼ covðYi; ½1� FjðYÞ�n�1Þ
cov(Yi; ½1� Fi(Y)�n�1Þ

for i, j ¼ 0,1,2 are the extendedGini correlations,Di0 ¼Gðn;Y0;YiÞ�Gðn;Yi;Y0Þ
for i ¼ 1,2 are the differences between the extended Gini correlations.
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(b) Provided that Di0 ¼ 0 for i ¼ 1,2 and that the two EG correlations between Y1

and Y2 are equal the following decomposition holds:

G2
0 ¼ a2G2

1 þ b2G2
2 þ 2 a bG1G2G;

where G ¼ Gðn;Y1;Y2Þ ¼ Gðn;Y2;Y1Þ are the extended Gini correlation

coefficients between Y1 and Y2 (and between Y2 and Y1).

Proof of the decomposition (taken from Schechtman and Yitzhaki (2003)).

Proof of (a) Using the properties of the covariance we can write

G0 ¼ �ncovðaY1 þ bY2; ½1� F0(Y)�n�1Þ
¼ �nðacovðY1; ½1� F0(Y)�n�1Þ þ bcov(Y2; ½1� F0(Y)�n�1Þ
¼ a G( n, Y1;Y0ÞG1 þ b G( n, Y2;Y0ÞG2:

Define now the identityGðn;Yi;Y0Þ ¼ Di0 þ Gðn;Y0;YiÞ for i ¼ 1,2, where Di0 is

the difference between the two Gini correlations. Using the identity we get

G0 ¼ aðGðn;Y0;Y1Þ þ D10ÞG1 þ b( G( n, Y0;Y2Þ þ D20ÞG2:

Rearranging the terms, we see that

G0 � aD10G1 � bD20G2 ¼ a G( n, Y0;Y1ÞG1 þ b G( n, Y0;Y2ÞG2:

Using the properties of the covariance we now get that

Gðn;Y0;Y1Þ ¼ covðY0; ½1� F1ðYÞ�n�1Þ
cov(Y0; ½1� F0(Y)�n�1Þ

¼ acovðY1; ½1� F1ðYÞ�n�1Þ þ bcovðY2; ½1� F1ðYÞ�n�1Þ
cov(Y0; ½1� F0(Y)�n�1Þ

¼ aG1 þ bG2Gðn;Y2;Y1Þ
G0

:

Writing Gðn;Y0;Y2Þ in a similar manner we get

G2
0 � ½aD10G1 þ bD20G2�G0 ¼ aG1ðaG1 þ bG2Gðn;Y2;Y1ÞÞ
þ bG2ðaGðn;Y1;Y2ÞG1 þ bG2Þ

¼ a2G2
1 þ b2G2

2 þ a bG1G2ðGðn;Y1;Y2Þ þ Gðn;Y2;Y1ÞÞ:
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Note that one can substitute Di0 by the difference in correlations and get

G2
0 � ½aðGðn;Y1;Y0Þ � Gðn;Y0;Y1ÞÞG1 þ b( G( n, Y2;Y0Þ � Gðn;Y0;Y2ÞÞG2�G0

¼ a2G2
1 þ b2G2

2 þ a bG1G2ðGðn;Y1;Y2Þ þ Gðn;Y2;Y1ÞÞ:

Proof of (b) Assuming equality of the two Gini correlation coefficients between Y0

and Y1 sets D10 ¼ 0. A similar assumption with respect to Y0 and Y2 sets D20 ¼ 0.

The assumption of G ¼ Gðn; Y1; Y2Þ ¼ Gðn; Y2; Y1Þ completes the proof of part (b).
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Chapter 7

Gini Simple Regressions

Introduction

The basic building block in regression is the covariance between the dependent

variable and the explanatory variable(s). There are two regression methods that can

be interpreted as based on Gini’s Mean Difference (GMD). The first method is

based on the fact that one can present the Gini-covariance between the dependent

variable and the explanatory variable as a weighted sum of slopes of the regression

curve (a semi-parametric approach). The second method is based on the minimiza-

tion of the GMD of the residuals. The semi-parametric approach is similar in its

structure to the Ordinary Least Squares (OLS) method. That is, the regression

coefficient in the OLS has an equivalent term in the Gini semi-parametric regres-

sion. The equivalent term is constructed by substituting the covariance and the

variance in the OLS regression by the Gini-covariance (hereafter co-Gini) and the

Gini, respectively. However, unlike the OLS, the Gini regression coefficient and its

estimator are not derived by solving a minimization problem. Therefore they do not

have optimality properties and cannot be described as “the best,” at least not with

respect to a simple target function. On the other hand, the second method, the

minimization of the GMD of the residuals implies optimality but it has its

drawbacks. Like Mean Absolute Deviation (MAD) and quantile regressions, the

regression coefficient does not have an explicit presentation and can be calculated

only numerically. The combination of the two methods of Gini regression enables

the user to investigate the appropriateness of the assumptions that lie behind the

OLS and Gini regressions (e.g., the linearity of the relationship) and therefore

can improve the quality of the conclusions that are derived from them. Moreover,

when dealing with a multiple regression one can combine the semi-parametric

regression method with the OLS regression method. That is, several explanatory

variables can be treated as in the OLS, while others are treated using the Gini method.

This flexibility enables one to evaluate the effect of the choice of a regression method

on the estimated coefficients in a gradual way by substituting the methodology of the

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_7,
# Springer Science+Business Media New York 2013
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estimation for each explanatory variable in a stepwise way rather than in an “all or

nothing” way. This issue will be discussed in Chap. 8.

This chapter concentrates on the alternative presentations of the regression

coefficient in a simple regression framework and on the interaction between

them. The structure of the chapter is the following: Sect. 7.1 introduces alternative

presentations using the semi-parametric approach. The minimization approach is

described in Sect. 7.2. The two approaches are combined in Sect. 7.3. In Sect. 7.4

we introduce goodness of fit measures, while a test for normality is discussed in

Sect. 7.5. In Sect. 7.6 we discuss the instrumental variable method, both for OLS

and for Gini regressions. The extended Gini regression is detailed in Sects. 7.7 and

7.8 concludes.

7.1 Alternative Presentations: The Semi-Parametric Approach

The semi-parametric approach is based on the fact that the regression coefficient

can be presented as a weighted sum of slopes of the regression curve, as will be

shown below. The Gini-based parameter and estimator resemble the OLS in the

sense that all the expressions used have parallels in OLS regression. We note that

both the OLS and Gini semi-parametric regression methods do not require the

specification of a functional form of the model. They can be used whenever the

investigator is interested in estimating average slopes or arc-elasticities without

requiring a formal model, resembling the method suggested by Härdle and Stoker

(1989) and Rilstone (1991). Gini parameters and estimators that are derived

according to this approach will be denoted by the subscript N. We refer to this

method as semi-parametric because it does not rely on the linearity assumption nor

on any distributional assumptions. It is worth noting that the OLS regression

coefficient shares these properties. That is, it can be presented as a weighted sum

of the slopes of the regression curve. The only difference between the OLS and the

Gini regression coefficients lies in the weights attached to the slopes.

Formally, let (Y, X) be a bivariate random variable that follows a continuous

distribution with finite first and second moments. At this stage we do not impose

additional assumptions. In particular, we do not assume that X is fixed nor that there

is a linear relationship between the two variables.

The objective: the investigator is interested in constructing a linear predictor of

Y that is based on X. The theoretical linear predictor is denoted by

Ŷ ¼ aþ bX (7.1)

where at this stage a and b are arbitrary constants imposed by the investigator. We

define the residual as

e ¼ Y� Ŷ � Y� a� bX: (7.2)
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Note that (7.2) is an identity and that the residuals are not assumed to have

properties of their own at this stage. All their properties are derived from the

properties of (Y, X). Using the properties of the covariance one gets

cov Y;Xð Þ � covðaþ bX þ e;XÞ � b cov X;Xð Þ þ cov e;Xð Þ: (7.3)

We now add an assumption. Imposing the orthogonality restriction cov(e, X) ¼ 0

changes (7.3) from an identity to an equation that can be solved to give the following

formula

b ¼ cov(Y,X)

cov(X,X)
: (7.4)

b of (7.4) is equivalent in its structure to bOLS which is obtained from the normal

equations, one of which is cov(e, X) ¼ 0.

In OLS the constraint that cov(e, X) ¼ 0 is derived from the minimization of the

variance of the error term. We now turn to the Gini world. Starting with (7.4) and

replacing each term by the equivalent term from the Gini method, cov(Y, F(X))

and cov(X,F(X)) replace cov(Y,X) and cov(X, X) yielding the equivalent parameter

for the Gini semi-parametric regression:

bN ¼ cov(Y,F(X))

cov(X,F(X))
: (7.5)

Note that by using the properties of the covariance we get

cov eN; F Xð Þð Þ ¼ 0; (7.6)

where eN is the residual of the semi-parametric Gini regression. Equation (7.6) is

the equivalent of the normal equation in OLS regression. (An alternative way to

derive (7.5) is to start from the equivalent of (7.3) and impose (7.6) which is an

orthogonality condition in the Gini world).

Once the slope of the linear predictor (7.1) is determined, one can use an additional

constraint to determine a. If one wishes that the regression line will pass through the
means of the variables then a will be determined as a solution to (7.7):

mY ¼ aþ bN mX: (7.7)

However, one can use other criteria to determine a such as minimizing the sum

of the absolute deviations of the residuals from a constant in which case a causes the
regression line to pass through the median, or any quantile of the residual distribu-

tion, as in quantile regression (with some modifications). The important point here

is that one can separate between the criterion that is used to determine the slope and

the criterion used to determine the constant term, which is determined as a location

parameter.
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7.1.1 The Ordinary Least Squares Regression Coefficient1

The purpose of this section is to interpret the OLS regression coefficient as a

weighted average of the slopes of the regression curve. This interpretation is useful

because it stresses the fact that the regression coefficient in the linear predictor (7.1)

does not depend on the underlying distribution of the dependent variable and that

the linearity assumption in the regression model plays no role in the derivation of

the coefficient.

Let (Y, X) be a bivariate random variable with a density function f(y, x). Let fX,

FX, mX, and sX
2 denote the density, the cumulative distribution, the expected value,

and the variance of X, respectively. Assume that the first and the second moments

exist. Let g(x) ¼ E{YjX ¼ x} be the regression curve, where g0(x) is the slope of
the regression curve defined as

g0ðxÞ ¼ @EfYjX ¼ xg
@x

: (7.8)

Proposition 7.1 Let Ŷ ¼ aþ bX denote a linear predictor of Y given X. Then bOLS
can be expressed as a weighted average of the slopes of the regression curve:

bOLS ¼
ð
w xð Þg0 xð Þdx; (7.9)

where w(x) > 0 denotes the weight at x and
R
w(x)dx ¼ 1. The weights are

wðxÞ ¼ 1

s2X
½ mX FX (x)� ALCV(x)] =

FX (x)

s2X
ðmX � EfXjX� xg); (7.10)

where

ALCV(x) ¼
ðx

�1
t fX (t) dt = FXðxÞEfXjX� xg: (7.11)

ALCV(x) is the absolute Lorenz curve as a function of X, while [mX Fx (X)] is

the transformed line of independence (LOI) (see Chap. 5). Hence the term in the

squared brackets in (7.10) is actually the vertical difference and the (transformed)

absolute Lorenz curve at x.

1 This section is based on Yitzhaki (1996).
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Proof (Yitzhaki, 1996). Note that bOLS ¼ cov(Y, X)/cov(X, X). The numerator

can be expressed as

cov Y;Xð Þ¼ EXEY Y� mYð Þ X� mXð Þ½ � ¼ EXEY X� mXð ÞY½ �
¼ EX½ðX� mXÞE YjX ¼ xð Þ�
¼
ð
x� mXð Þg xð ÞfX xð Þdx;

(7.12)

where g(x) ¼ E{Y|X ¼ x} is the conditional expectation.

Using integration by parts, with v0 xð Þ ¼ x� mXð ÞfX xð Þdx; v xð Þ ¼ Ðx
�1

t� mXð Þ
fX tð Þdt; u xð Þ ¼ g xð Þ; and u0 xð Þdx ¼ g0 xð Þdx we get

cov Y;Xð Þ¼
ðx

�1
ðt� mXÞfX tð Þdt

8<
:

9=
;g xð Þj1�1þ

ð1

�1

ðx

�1
ðmX� tÞfX tð Þdt

2
4

3
5 g0 xð Þdx:

(7.13)

Given that the second moments exist, the first term equals zero.

Hence, (7.13) can be written as

cov Y;Xð Þ ¼
ð1
�1

½ mXF(x)� ALCVðxÞ�g0ðxÞdx: (7.14)

Therefore

bOLS ¼
cov(Y,X)

cov(X,X)
¼ 1

s2X

ð1
�1

mXFX xð Þ � ALCV xð Þ½ � g0 xð Þdx ¼
ð
wðxÞg0ðxÞdx:

To show that the sum of the weights equals one we apply the same procedure to

the denominator of the OLS regression coefficient with g0(x) � 1. That is,

s2X ¼ cov X;Xð Þ ¼
ð1

�1
½ mXFX xð Þ � ALCV xð Þ�dx (7.15)

and we get
Ð
w xð Þdx ¼ 1

s2
X

Ð ½ mXFX(x)� ALCV(x)]dx ¼ 1.

In order to illustrate the effect of the distribution of the explanatory variable on

the weighting scheme we consider three specific examples: the uniform, the normal,

and the lognormal distributions. The first two examples illustrate interesting cases;

the third can represent the distribution of income.

(a) The uniform distribution. Let X have a uniform distribution on [a, b]. Applying

(7.10), the weight attached to the slope at x is

w(x) ¼ 6(b� x)(x� a)

(b� a)3
: (7.16)
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This weighting scheme, which represents a case where the observations of X

are equally spaced, is symmetric around the median, and the closer the obser-

vation is to the median the larger the weight it gets. An interesting feature of

this weighting scheme is that its shape remains unchanged regardless of

whether it is viewed as a function of X or FX, implying that the weighting

schemes of the OLS and Gini regressions are identical (to be seen later). That

is, provided that the distribution of the explanatory variable is uniform

(or equidistant) then the OLS and Gini regressions yield the same regression

coefficient, regardless of the shape of the regression curve. We note in passing

that the EG regression can be used to examine the curvature of the regression

curve (see Sect. 7.7).

(b) The normal distribution. Let X have a standard normal distribution. By (7.10)

wðxÞ ¼ � 1ffiffiffiffiffiffi
2p

p
ðx

�1
t e� t2 =2 dt ¼ 1ffiffiffiffiffiffi

2p
p e� x2 =2 : (7.17)

The weight for this case is equal to the value of the density of the standard

normal distribution at x. Hence, each percentile of the population receives an

equal weight. This result offers an intuitive explanation to the weighting

scheme of the OLS. It is adjusted to the case where the explanatory variable

has a normal distribution, which explains its efficiency in this case. Shalit

(2010) uses this property in order to suggest a test for normality.

(c) The lognormal distribution. Let X have a lognormal distribution with

parameters m and s2 (that is, ln(X) is normally distributed with mean m and

variance s2). The mean of X is mX ¼ emþ
1
2
s2 and the variance of X is s2X ¼

ðes2 � 1Þe2mþs2. It is convenient to rewrite the right-hand side of (7.10) as

wðxÞ ¼ mx
s2x

½ Fx (x)� F1 (x)] =
Fx (x )

s2x
½ mx �E(XjX� x)] (7.18)

where F1 xð Þ ¼ 1=mXð Þ Ðx
0

tdFX tð Þ is the first moment cumulative distribution of

X.2 The first moment distribution is also lognormal, with parameters m + s2 and
s2 (Aitchison & Brown, 1963).

Hence, the weight at x is the difference between two cumulative lognormal

distributions. Using the usual transformation we can write the weight as

wðxÞ ¼ mX
s2X

F
ln(x)� m

s

� �
� F

ln(x)� m� s2

s

� �� �
; (7.19)

where F( ) is the standard normal cumulative distribution. This term can be

evaluated numerically.

2 Note that F1 is the Lorenz in terms of X. It is defined as LCV (x) in Sect. (5.3). It is called first

moment distribution by Hart (1975).
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Table 7.1 presents the weighting scheme w(x) when X has a lognormal distribu-

tion for different values of the parameters m and s. It turns out that the weighting
scheme is not sensitive to m (note the small differences between columns 4 and 5),

but it is sensitive to changes in s.
For ease of reference Table 7.1 also presents the Gini coefficient corresponding

to each value of s. As seen in column 4, when the Gini coefficient is 0.4 (a typical

value for before-tax income), the expected weight of the top decile is around 45%;

and for the highest quintile it is over 60%. If wealth were used as an explanatory

variable, a Gini coefficient of 0.55 could be considered typical. In this case, the

weight of the top decile may well exceed 60%. Calculations for other distributions

(the Pareto and the exponential) show that the share of the top decile is never less

than 28%.

As shown above, the OLS regression coefficient can be presented as a weighted

average of slopes. There are two possible presentations of the weighting scheme.

The first presentation is as a function of the explanatory variable, namely w(x)

(as seen above), and the second one presents the weight as a function of FX, the

cumulative distribution of the explanatory variable. The second presentation is

useful whenever one is interested in the shares of the weights assigned to portions

of the population. The transformation from one presentation to the other can be

done by letting FX (x) ¼ p, 0 � p � 1, and defining a weighting scheme v pð Þ ¼
w½F�1

X pð Þ� , where F�1
X is the inverse of the cumulative distribution. (FX(x) is a

monotonic increasing differentiable function).

Proposition 7.1 can be replicated for a discrete distribution. We present it

because it adds some intuition to the interpretation. The proof is similar in nature

to the proof of proposition 7.1 and is given in Appendix 7.1.

Table 7.1 The OLS weighting schemes for a lognormal distribution

Parameters

m 0. 0. 0. 0. 7.0 0. 0. 0.

s 0.45 0.6 0.7 0.75 0.75 0.8 1.0 1.2

Gini coef. 0.25 0.33 0.38 0.4 0.4 0.43 0.52 0.60

Column no. (1) (2) (3) (4) (5) (6) (7) (8)

Decile

1 2.5 2.1 1.0 0.8 0.8 0.7 0.3 0.1

2 3.9 3.4 1.9 1.6 1.6 1.4 0.7 0.3

3 5.0 4.5 2.8 2.4 2.5 2.1 1.1 0.5

4 6.0 5.5 3.7 3.3 3.3 2.9 1.7 0.9

5 7.1 6.6 4.8 4.3 4.4 3.9 2.4 1.3

6 8.8 8.3 6.5 6.0 6.0 5.5 3.6 2.1

7 10.2 9.9 8.3 7.8 7.9 7.3 5.2 3.3

8 12.6 12.5 11.4 11.0 11.1 10.5 8.2 5.7

9 16.1 16.4 16.9 16.7 17.0 16.5 14.4 11.2

10 27.9 30.4 42.8 46.0 45.3 49.3 62.6 74.7

Source: Yitzhaki (1996), Table 2, p. 481

Reprinted with permission by Physica Verlag Heidelberg
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Proposition 7.10 The OLS regression coefficient for a discrete distribution of X is a
weighted sum of slopes defined by adjacent observations. That is,

bOLS ¼
Xn�1

i¼1
wibi (7.20a)

where wi > 0, Swi ¼ 1, bi ¼ Dyi/Dxi, Dxi ¼ xi+1 � xi and where the observations
are arranged in increasing order of X. The weights are given by

wi ¼

Pn�1

j¼i

iðn� jÞD xj þ
Pi�1

j¼1

jðn� iÞD xj

 !
D xi

Pn�1

k¼1

Pn�1

j¼k

kðn� jÞD xj þ
Pk�1

j¼1

jðn� kÞD xj

 !
D xk

; (7.21a)

(where
P0
j¼1

jðn� 1ÞD xj is defined to be zero).

The estimator follows the same structure.

It proves convenient to represent the weights by the ALCV. In this case the ith

weight can be expressed as

wi ¼ i

n

ð�xn � �xiÞDxi
ŝ2x

; (7.21b)

where �xi is the mean of the i smallest observations of X, while ŝ2x is the estimate of

the variance of X. Note that the weight is the vertical distance between LOI and the

absolute Lorenz curve multiplied by the appropriate Dx and divided by the whole

area between the shifted LOI and the shifted absolute Lorenz curve (which is

represented by the variance in the denominator).

The two types of components in (7.20a) are the slopes bi and the weights wi.

The slopes are determined by the data and the weighting scheme wi depends on

the distribution of the explanatory variable X alone, similar to the continuous case.

Therefore one can interpret the differences between the OLS and the Gini estimators

as originating from the weighting schemes employed. Under the present scheme, the

contribution of each observation to the estimate is decomposed into (1) the effect of

the weighting scheme at the observation and (2) the slope defined by the observation

and the one that precedes it. Adding up the weights of several observations yields the

contribution of a region of the explanatory variable to the estimate.

Equation (7.21a) reveals that the weight wi depends both on the rank of the

observation (through i) and on its distance from the adjacent observation as defined

by the difference in the explanatory variable (through Dxi ). Similar to the

continuous case, the weight increases as the observation gets closer to the median

and as the distance between observations increases. To control for the latter effect,

consider the case where the observations of the explanatory variable are equally

spaced, that is, Dxi ¼ c for all i. In this case the weights in (7.21a) can be simplified

and written as

w ið Þ ¼ K i n� ið Þ; where K ¼ 6= n n� 1ð Þ nþ 1ð Þ½ �:
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It is easy to see that the weighting scheme is symmetric around the median, and

the closer the observation gets to the median, the larger its weight becomes (i.e., the

weighting scheme describes a parabola with a maximum at i ¼ n/2). We illustrate

the weighting scheme by an empirical example. Table 7.2 presents results for the

Israeli Survey of Family Expenditures, 1979/80, taken from Yitzhaki (1996).

The regression model uses expenditure as the dependent variable and the

explanatory variable is the income. The original sample used is the Israeli Survey
of Family Expenditures 1979/80. To insure conservative estimates, one has to

decrease the variance of income. Therefore only observations of households with

two members are used, a group that includes the largest number of observations

(531) among households of different sizes. (Other groups with different family

sizes have similar patterns of weighting schemes.) Column (1) presents the

weighting scheme according to deciles assuming that the distribution of the explan-

atory variable is uniform. As can be seen, the top decile receives less than 3% of the

weight. However, if Dxi varies along the distribution, then the larger Dxi gets, the
larger the weight attached to the respective slope. To see the effect of the variability

of Dxi on the OLS weighting scheme, column (2) in Table 7.2 presents the empirical

weighting scheme.

As can be seen, the OLS estimator assigns around 60% of the weight to the top

decile; over three-quarters of the total weight accrues to the top three deciles. To see

the implication of this empirical weighting scheme on the estimator consider the

Table 7.2 OLS weighting schemes of adjacent slopes according to income decilesa

Empirical weights

Income decile Equidistant weightsb (1) Whole sample (2) Truncated samplec (3)

1 (lowest) 0.028 0.005 0.014

2 0.76 0.013 0.036

3 0.112 0.024 0.058

4 0.136 0.032 0.091

5 0.148 0.037 0.093

6 0.148 0.050 0.113

7 0.136 0.072 0.150

8 0.112 0.080 0.169

9 0.076 0.099 0.168

10 0.028 0.588 0.109

All 1.0 1.0 1.0

Source: Yitzhaki (1996), Table 1, p. 480

Reprinted with permission by the American Statistical Association

Source: Tabulation from the Israeli Survey of Family Expenditures, 1979/80, households with two

members only (531 observations)
a Income is defined as before-tax income, including imputed rent on own housing
b The weighting scheme for a sample with observations with equal distance
c Only 500 observations: the 31 highest observations were deleted from the sample
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following hypothetical case: suppose that one estimates a linear Engel curve which

presents the consumption of a commodity as a function of income. The model is

misspecified because in the population, instead of the relationship being linear over

the entire range it is composed of two linear sections. The marginal propensity to

spend (i.e., the slope of the regression curve) is a constant +0.1 for the poorest 90%

of the population and �0.1 for the top decile. In this case, the OLS estimate of

the marginal propensity to spend will be (�0.0176). That is, the commodity will be

considered as an inferior commodity, although for 90% of the population the

marginal propensity to spend is positive. (Had the observations been equally

spaced, the OLS estimate would have been 0.094.)

The same weighting scheme percolates down to other statistics calculated from

the regression, to misspecification tests and to other tests based on the distribution

of the error term. This is so because any misspecification test that will be based on

the OLS will rely on the same weighting scheme, so that there is no guarantee that

low-income groups are not ignored. Testing for undue influence may therefore be

helpful. Note that the influence of an observation takes two forms: its weight and

the deviation of its slope from the average slope. If only observations with low

weights deviate from the average slope, the influence of each observation may be

small, either because of its low weight or because of the small deviation of its slope

from the average slope.

To sum up: it was shown that for the OLS method the weighting scheme is affected

by (1) the cumulative distribution function of the explanatory variable (represented

by the rank of each observation in the sample) and (2) the distance (in terms of the

explanatory variable) between each observation and the adjacent one. This differ-

ence is raised to the power two (see (7.21a)), which exacerbates its effect. (The use

of a quadratic difference can be traced to the variance.)

In the next section we show that the Gini regression coefficient can also be

presented as a weighted average of (the same) slopes. The only difference between

the two coefficients lies in the weights attached to the slopes.

7.1.2 The Gini Semi-Parametric Regression Coefficient

In this section we replicate the methodology of Sect. 7.1.1 and show that the Gini

regression coefficient can also be presented as a weighted sum of slopes (same

slopes as in the OLS) of the regression curve. The only difference between the

presentations lies in the weighting scheme. In what follows we use the properties of

the GMD and the Lorenz curve.

The GMD semi-parametric regression coefficient was defined in (7.5) as

bN ¼ cov(Y,FX(X))

cov(X,FX(X))
: (7.22)
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Proposition 7.2 The Gini semi-parametric regression coefficient is a weighted
sum of the slopes of the regression curve. That is,

bN ¼
ð
v(x) g0 (x)dx, (7.23)

with v(x) > 0 and
R
v(x)dx ¼ 1, where

v(x) =
½1� FX (x)] FX (x )Ð1

�1
½1� FX (t)] FX (t)dt

: (7.24)

Proof We start with the numerator of (7.22a).

cov Y;FX Xð Þf g ¼ EXEYfðY� mYÞ FX Xð Þ � 1=2ð Þg
¼ EX FX Xð Þ � 1=2ð Þg Xð Þf g ¼

ð
FX xð Þ � 1=2ð Þg xð ÞfX xð Þdx:

Using integration by parts with u ¼ g(x) and

v0 ¼ FX xð Þ � 1=2½ �fX xð Þdx; v ¼ �1=2 1� FX xð Þ � 1� FX xð Þ½ �2
� �

yields

2cov Y; FX Xð Þð Þ ¼ � 1� FX xð Þ½ � � 1� FX xð Þ½ �2
� �

g xð Þj1�1

þ
ð
1� FX xð Þ½ �FX xð Þ g0 xð Þdx:

For a bounded g(x), the first term is equal to zero. Hence

2cov Y; FX Xð Þð Þ ¼
ð
1� FX xð Þð ÞFX xð Þg0 xð Þdx:

Applying the same procedure to the denominator with g0(x) � 1 completes the

proof of proposition 7.2.

Proposition 7.2 can be replicated for a discrete distribution. We present it

because it adds some intuition to the interpretation. The proof is similar in nature

to the proof of 7.2 and will be omitted.

Proposition 7.20 The Gini regression coefficient for a discrete distribution of X is a
weighted sum of slopes defined by adjacent observations. That is,

bN ¼
Xn�1

i¼1
vibi (7.25)

where vi > 0, Svi ¼ 1, bi ¼ Dyi/Dxi, Dxi ¼ xi+1 � xi and where the observations
are arranged in an increasing order according to X. The weights are given by

vi ¼ (n� i)i DxiPn�1

k¼1

[(n� k)k] Dxk

: (7.26)
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The estimator follows the same structure.

Let us now discuss the intuition that lies behind the weighting schemes.

The weighting schemes depend on two factors. The first factor is the rank of the

observation—the maximum weight is attached to the median observation of the

explanatory variable, and then the weight declines symmetrically as the observation

gets farther away from the median. This property is shared both by the OLS

weighting scheme (7.15) and by the GMD weighting scheme (7.24). The other

factor affecting the weight is the distance between adjacent observations which is

embodied inDx. The difference between the OLS and Gini methods is in the weight

attached toDx. While the weight in Gini regression is based onDx itself, the weight
in OLS is based on ðDx)2 . This difference explains the fact that OLS is more

sensitive to outliers than the GMD regression coefficient.

Two special cases are of interest. The first case is when X comes from a normal

distribution. As shown earlier, in the OLS method the weights given to all the

percentiles are the same (see (7.17)). That is, the decline in the weight as a result of

the fact that the observation gets farther from the median is compensated by the

increase inDx between adjacent observations, which gets larger as the observations
are getting farther from the median. As a result, the weight is left unchanged and all

observations get the same weights. The second case is when X comes from a

uniform distribution. In this case the shape of the weighting scheme remains

unchanged regardless of whether it is viewed as a function of X or FX, implying

that the weighting schemes of the OLS and Gini regressions are identical (see (7.16)

above). Note that in this case the two methods yield the same regression coefficients

regardless of the shape of the regression curve. Propositions 7.1 and 7.2 demon-

strate that the linearity assumption of the regression curve plays no role in both

methods, because both in OLS and in Gini regressions the regression coefficient is

actually a weighted average of slopes defined between adjacent observations. When

X has a uniform distribution the two methods yield the same coefficient no matter

what the shape of the regression curve is.

The presentation of the regression coefficient as a weighted average of slopes

enables the user to perform a sensitivity analysis and learn about the influence of

specific observations on the estimators. In this sense it is similar to the idea of the

influence curve (Belsley, Kuh, &Welsch, 1980; Hampel, 1974), according to which

one derives the effect of dropping an observation from the sample on the estimates.

The presentation of the estimator as a weighted average of slopes divides the

contribution of each observation to the estimate into two components: (1) the effect

of the weighting scheme which depends only on the distribution of the explanatory

variable and the regression method and (2) the slope defined by the observation and

the one adjacent to it. An observation may be influential because the weight

attached to it is large (Dx is relatively large), or due to having an extreme slope,

or both. Adding up the weights of several adjacent observations yields the contri-

bution of a region of the explanatory variable to the estimate. This issue will be

discussed in the next section, while applications will be presented in Chap. 20 when

we analyze the effects of regions of the explanatory variable on the regression

coefficient.
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Olkin and Yitzhaki (1992) show that the GMD estimator is closely related to

Sievers’s (1978, 1983) robust estimator of the regression coefficient and to Scholz’s

(1978) weighted median regression estimator. In addition, Scholz, Sievers, and

Olkin and Yitzhaki showed that the sampling distributions of those estimators of the

regression coefficients converge to the normal distribution, and suggested

estimators for the variances of the estimators. The properties of the GMD-based

estimators are similar to those of the weighted average derivative estimator (Härdle

& Stoker, 1989; Powell, Stock, & Stoker, 1989). Because both are weighted

averages of slopes, they are not derived by optimization and do not require the

assumption that the regression curve is linear. Both estimators are based on

U-statistics, and hence, for large samples the distributions of the estimators con-

verge to the normal distribution (for details, see Chap. 9 on estimation and Chap. 10

on the asymptotic distribution). The main difference between all these approaches

lies in the motivation for the weighting scheme. In Sievers (1978) and Olkin

and Yitzhaki (1992) the motivation is robust estimation. An alternative view that

will be elaborated on in Chaps. 15 and 16 is the need to adjust the weighting scheme

to the social attitude toward inequality or to the risk aversion of the decision maker

(Chap. 17).

Finally, the parameters associated with the GMD (the equivalents of the variance

and covariance) can also be presented as areas enclosed between the line of

independence (LOI) and the absolute concentration curve (ACC) (Yitzhaki, 1998,

2003; Yitzhaki & Olkin, 1991; Yitzhaki & Schechtman, 2004). The properties of

the ACC curves enable one to check the monotonicity of the regression curve and to

visually observe whether omitting observations that are located in a given section of

the range of the explanatory variable could change the sign of the regression

coefficient. To avoid repetition this presentation is only shown for the instrumental

variable estimator (see Sect. 7.6.2). The adaptation to the simple regression coeffi-

cient is immediate. See Chap. 20.

7.1.3 A Presentation Based on the Decomposition
to Subpopulations

The use of the properties of the covariance enables us to decompose the Gini and

the OLS regression coefficients into the contributions of any grouping of

observations (not necessarily adjacent observations).

We start with the decomposition of the Gini regression coefficient. Let Y; Xð Þ
¼ ðY0; X0Þ be a bivariate random variable representing the overall population

(distribution) and let (Ym, Xm) (m¼1,. . .,M) be M bivariate random variables

representing M disjoint subpopulations (distributions). Let bm be the regression

coefficient of subgroup m, and let ð�Y:; �X:Þ be the vector of groups’ averages, that is,
a vector of length M with the elements ð�Y1;�X1Þ; ð�Y2;�X2Þ;:::; ð�YM; �XMÞ. We define
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F:0(X) to be the vector of the averages of the ranks of the members of the groups in

the overall population (according to X). That is—the observations are ranked within

the entire population (with respect to X) and then the average rank per group is

taken. For example, the ith element of the vector is F:i0 which is the average of the

ranks of the members of group i when they are ranked within the entire distribution

of X (i.e., within the distribution of X0).

Claim The Gini semi-parametric regression coefficient of the overall population,

bN, can be decomposed as follows

bN ¼
XM

m¼1
wm bm þ wB

covBðY:;F:o(X))

covBðX:;F:o(X))
; (7.27)

where wm ¼ pmOmDm

D0
is the contribution of the mth group to the overall GMD of X,

namely D0 (Om;Pm and Dm are defined below), and where

wB ¼ covBðX:;Fo(X))

cov(X,F(X))
; (7.28)

where X ¼ Xo and F ¼ Fo. The first term of the right-hand side of (7.27) can be

interpreted as the intra (within)-group component, while the second term is the inter

(between)-groups component. bm is a kind of a Gini regression coefficient to be

defined later.

Proof The decomposition of the Gini covariance is based on cov(Y,Fo(X)) ¼PM
m¼1 pmcovm(Y,Fo(X))þ covBðY:;F:o(X)),

where Fo(X) is the overall cumulative distribution of the explanatory variable and

pm is the share of subgroup m in the population (see Chap. 4 for details). The next

step is dividing and multiplying by the same factors. That is,

cov(Y,Fo(X)) ¼
XM

m¼1
pm

covm(Y,Fo(X))

covm(X,Fo(X))

covm(X,Fo(X))

covm(X,Fm(X))
covm(X,Fm(X))

þ covBðY:; �F:o(X)) ¼

¼
XM

m¼1
pm

covm(Y,Fo(X))

covm(X,Fo(X))
OmDm þ covBðX:;F:o(X))

covBðY:;F:o(X))

covBðX:;F:o(X))
;

where Om ¼ covm(X,Fo(X))
covm(X,Fm(X))

is the overlapping between group m and the overall

population, Dm ¼ covm(X,Fm(X)) is (a quarter of ) the Gini mean difference of Xm,

and bm ¼ covm(Y,F0(X))
covm(X,F0(X))

is a kind of Gini regression coefficient denoted by bm.

The reason we use the term “kind of” is because the covariance is taken over
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subgroup m, while Fo(X) refers to the cumulative distribution of the entire

population.

Using the above notation we get

bN ¼
XM

m¼1
wm bm þ wB

covBðY:;F:o(X))

covBðX:;F:o(X))
;

where wm ¼ pmOm Dm

D0

is the contribution of the group to the overall variability,

D0 ¼ cov X; F Xð Þð Þ is (one-fourth of) GMD of X0 and wB ¼ covBðX: ;F:o(X))
cov(X,F(X))

.

The proof for the OLS regression coefficient follows similar lines. The final

equation is given in (7.29).

bOLS ¼
XM

m¼1
vm bOLSm þ vB bOLSB ; (7.29)

where vm ¼ pm s2
m

s2
o

, vB ¼ s2
B

s2
o
,

and s2B is the variance of the vector of the sample means.

Equation (7.29) and its equivalent for the Gini (7.27) offer a connection

between the Wald estimator which is actually the between-groups regression

coefficient (Pakes, 1982; Wald, 1940) and the overall regression coefficient. In

addition, they offer the possibility to evaluate the effect of binning (Wainer,

Gessaroli, & Verdi, 2006) on the regression coefficient. Binning is the process

of substituting a group of observations by its average. As can be seen from (7.26)

its implication is the omission of the intra-group component from the regression

coefficient.

It is easy to see that if the grouping is according to nonintersecting sections of X,

then the decomposition of the Gini regression coefficient is identical in its structure

to the decomposition of the OLS regression coefficient. On the other hand, when-

ever there is overlapping between the groups according to X, then the share of

between-groups co-Gini can be totally different from the share of the between-

groups (ordinary) covariance. As shown in Chaps. 4 and 22, the higher the

overlapping is, the lower is the share of the between-groups component in the

Gini of the overall distribution, while the share of the between-groups in the

variance decomposition remains unaffected. (Frick, Goebel, Schechtman, Wagner,

& Yitzhaki, 2006 showed it for the decomposition of the Gini, while here we

decompose the co-Gini. The extension is straight forward).

There are various reasons for grouping of observations. One possibility is that

the grouping is intended to reduce the variability in order to achieve a higher

portion of explained variability. Another possibility is that the grouping results in

omitting some negating effects that happen to occur in the subgroup. The decom-

position proposed here enables the reader to see which effect has led to the result: is

it the innocent need to make the results more robust or is it caused by an overzeal-

ous investigator who wants to prove his point.
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7.1.4 A Presentation Based on Concentration Curves

A special case of decomposition which is applicable only for nonoverlapping

groups can be presented graphically. It is based on an alternative, a bit compli-

cated but useful presentation of the semi-parametric Gini regression coefficient as

related to areas enclosed by concentration curves. This approach was initiated by

Taguchi (1981, 1987). It is based on the tools developed by Blitz and Brittain

(1964) for presenting the Gini correlation as based on areas enclosed by absolute

concentration curves (ACC). Actually, Taguchi was the first one to apply Gini

regression in a multiple regression framework. However his presentation is based

on relative concentration curves and the details are in a book written in Japanese.

As far as we know this presentation did not get the publicity which we believe it

deserves.

In order to make the presentation user-friendly we derive two additional curves

that are based on the ACCs. The objectives of this section are twofold. First we

present the semi-parametric Gini regression coefficient as the area between two

curves. Second, we use the graphical presentation to suggest a way that enables

the investigator to check whether the relationship between the dependent variable

and the explanatory variable is monotonic over the entire range of the explanatory

variable or not. Specifically, assume that we truncate the distribution of the

explanatory variable from above or below. Would the sign of the Gini regression

coefficient (and the OLS) stay the same? The use of ACC enables us to see

whether the sign of the truncated distribution changes, whether a monotonic

transformation of the explanatory variable can change the sign of the OLS

regression coefficient, and whether a monotonic transformation of the dependent

variable can change the sign of the OLS regression coefficient. Being able to

change the sign of the coefficient (and the conclusions that follow) by a legitimate

transformation makes the conclusions drawn from the data questionable. An

advantage of the Gini semi-parametric regression coefficient is that a monotonic

transformation of the explanatory variable cannot change its sign. It can only

change its magnitude.

Concentration curves play an important role in performing sensitivity analysis in

the regression. Therefore we repeat their properties here (without proofs). Readers

who are interested in the proofs can find them in Chap. 5.

We start by introducing two additional curves: the LMA and the NLMA curves.

The LMA curve represents the area between the line of independence (or:

equality, denoted by LOI) and the ACC and is formally defined below. The

NLMA curve is simply a normalized version of LMA, after dividing it by GMD.

These two curves are needed when one is interested in the co-Ginis and in Gini

correlations or in cases when one is interested in a regression coefficient. In these

cases it is convenient to make some adjustments to the ACC to make the properties

of the covariance easier to follow and visualize.

Formally, let g(x) ¼ E{Y|X ¼ x} be the conditional expectation of Y given X

and recall that p ¼ F(X(p)). We will refer to g(x) as the regression curve.
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Definition of LMA LMA is defined as the LOI minus the ACC of Y with respect

to X. Formally, LMAYoX(p) ¼ mY p � ACCYoX(p). The properties of LMA are the

following:

(a) The LMA starts at (0,0) and ends at (1,0).

(b) The derivative of the LMA with respect to p (at x(p)) is mY � E (Y|X ¼ x(p)).

This follows directly from the definition of the LOI and the ACC. As a

consequence, the LMAYoX(p) is increasing (decreasing, constant) if and only

if mY � g(x(p))) > (<, ¼) 0.

(c) The LMA is concave at p (convex, straight line) if and only if ∂g(x(p))/∂x(p)
> (<,¼) 0.

(d) If X and Y are independent then ACCYoX(p) is a straight line which coincides

with the LOI implying that the LMA curve coincides with the horizontal axis.

Properties (c) and (d) enable the user to identify sections with constant,

increasing and decreasing slopes of the regression curve. Linearity of LMA

implies that its derivative (wrt p) which is equal to mY � E (Y|X ¼ x(p)) (by

(b)) is constant (say equals to c). That means that the regression curve is

constant (flat) at mY � c, and the slope of the regression curve is zero. An

increasing (decreasing) LMA implies that g(x) is below (above) its mean value,

concavity (convexity) of LMA means an increasing (decreasing) slope.

(e) The area between the LMA and the horizontal axis is equal to cov(Y, FX(X))

(Yitzhaki, 1990). Note that if the curve intersects the horizontal axis then the

sign of cov(Y, FX(X)) depends on the magnitudes of the areas above and below

the horizontal axis (and these areas add up to cov(Y, FX(X))).

(f) The LMA is above the horizontal axis for all p if and only if cov(Y, T(X)) > 0

for all continuous differentiable monotonically increasing functions T(X).

(g) The LMA enables us to see whether deleting observations from the population

will affect the sign of cov(Y,F(X)). To see that, note that for a given value xu,

deleting all the observations with X > xu will result in truncating the curve at

F(Xu) and connecting the point (0,0) with the point at the end of the new curve.

The same will happen with truncation from below and truncations from both

above and below. We can evaluate the sign of cov(Y,F(X)) of the truncated

distribution by simply looking at the curvature of LMA in the sections that were

not deleted.

The advantage of using the LMA (instead of the ACC) is that it is easy to detect

what will happen to cov(Y,F(X)) (and hence to the sign of the regression curve) if

sections of observations of X are omitted from the regression, as will be illustrated

in Chap. 19).

For the purpose of analyzing the effect of a monotonic transformation (or

truncation) on the sign of the OLS regression coefficient, one needs a modified

LMA curve for which the area beneath it will be equal to cov(Y,X) (rather than to

cov(Y,F(X))). A simple transformation can make the curve applicable to OLS: if

one substitutes the horizontal axis to be X instead of FX in the ACC curve, then the

area between the new curve and the horizontal axis will be equal to cov(Y,X)
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(Yitzhaki, 1998). However, the properties of the curve change and further research

is needed to study them.

A necessary and sufficient condition for the ability to change the sign of the OLS

regression coefficient by applying a monotonic transformation to the explanatory

variable is that the LOI and the ACC curves intersect. The explanation is that an

intersection means that the overall covariance is composed of negative and positive

intra-group covariances, while the between-groups component is equal to zero. An

intersection will continue to hold even if we change the LOI and ACC to those that

are relevant for cov(Y,X). By applying a monotonic increasing transformation T(X)

we can shrink or expand the negative and positive covariances as we please. For

example, if the overall covariance is negative and one wants to change it to be

positive, then by choosing T(X) with a derivative greater than one in the sections of

X with a positive covariance, and smaller than one in the sections of X with a

negative one we will be able to change the sign of cov(Y,T(X)) from a negative to a

positive sign. Note that if the LOI does not intersect the ACC, then it is impossible

to decompose the covariance into negative and positive components with a zero

between-groups component. Therefore, the sign of cov(Y,X) cannot be changed by

a monotonic transformation applied to X. In the case of the Gini regression

coefficient, it is simpler to see why a monotonic transformation on X will not

change the sign: the relevant covariance is cov(Y, F(X)) which is not sensitive to a

monotonic increasing transformation of X. Hence a monotonic transformation of X

cannot change the sign of the Gini regression coefficient. However, it can change its

magnitude. Therefore, we may conclude that the Gini regression coefficient is less

sensitive than the OLS with respect to monotonic transformations applied to the

explanatory variable.

To enable graphical illustration of the components of the Gini regression coeffi-

cient, the LMA curve is normalized by dividing it by cov(X, F(X)). The normalized

curve is denoted by NLMA. As a result, the total area that is enclosed between the

NLMA curve and the horizontal axis is equal to the value of the Gini regression

coefficient. The areas above the horizontal axis represent positive contributions,

while negative contributions are represented by the areas below it.

To illustrate the usefulness of the NLMA curve consider the curve in Fig. 7.1,

then

(a) The vertical axis is the value of LOI minus the ACC (divided by cov(X,F(X)).

The total area between the curve and the horizontal axis is bN ¼ cov(Y,F(X))/

cov(X,F(X)) which is the Gini regression coefficient. As a result we can

immediately see that the area OAB is positive, contributing towards a positive

value to the Gini regression coefficient, while the area DCB is negative, hence it

is reducing the value of the coefficient. The total area which is the value of the

Gini regression coefficient is positive, because the positive contribution is

larger than the negative one.

(b) The same sections (in terms of the transformed values on the horizontal axis)

are contributing toward the OLS regression coefficient. However, the
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magnitudes (but not the signs) may be different. Therefore, the overall sums of

the areas may differ resulting in different signs of OLS and Gini regressions.

(c) The slope of the curve is equal to [mY � E(Y|X ¼ x(p))]/cov(X,F(X)) and the

concavity (convexity) of the curve is determined by the sign of the local

regression coefficient, that is, Sign
@E[YjX¼x(p)]

@x(p)

	 

¼ �Sign @2NLMA

@2p

n o
.

For example, the curve is concave between zero and B implying that the local

regression coefficient is positive, and the opposite occurs between B and D.

(d) By truncating the range of the explanatory variable from below or above (i.e.,

along the horizontal axis), connecting the extreme points of the truncated curve

by a line we can evaluate the area between the curve and the new line and learn

about the sign of the regression coefficient in the truncated distribution. For

example, truncating the distribution of X from below at A causes cov(Y,F(X))

of the truncated distribution to be negative. (The positive contribution to the

area will be smaller than the negative one.)

(e) Consider the point B where the curve intersects with the horizontal axis, as

illustrated in Fig. 7.1. Then we can read the following information from the

curve:(e.1) The overall Gini regression coefficient is positive (because the area

above the horizontal axis is larger than the one below it).(e.2) One can divide

the data into two groups according to the value of X at the point B. Both groups

have equal mean values of the Y variable (because the deviation from the mean

value of Y is zero for both groups).The OLS and Gini regression coefficients for

the group of Xs below B (above B) is positive (negative) and it will have the

same sign for all monotonic transformations applied to X.

(f) Draw two lines tangent to the curve: one that starts at 0 (0F) and the other starts

at 1 (ED) and both are tangents to the curve as illustrated by the lines 0F and ED

in Fig. 7.2. Then one can truncate the distribution from above to get a new

distribution limited to 0H or truncate it from below to get a truncated distribu-

tion on GD. The LMA of the former (truncated) distribution is above the (new)

horizontal line, while the latter is below it. Then, by property (f) of the LMA

curve all monotonic transformations of X will result in positive Gini and OLS

regression coefficients on the section 0H and negative Gini and OLS regression

coefficients along GD.

C

P=F(x)

NLMA (Y|X) 

0

A

B D
1

Fig. 7.1 The NLMA curve
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Figure 7.3 demonstrates the connection between the decomposition according to

the LMA curve (Sect. 7.1.4) and the decomposition of the covariance (Sect. 7.1.3).

Assume now that we arbitrarily divide the observations of X into three nonoverlap-

ping groups: 0H, HG, and GD as shown in Fig. 7.3. Then the Gini and OLS

regression coefficients can be decomposed into three intra-group components and

one between-groups component. Out of the three intra-group components the one on

section 0H is positive and will remain positive for all monotonic transformations of

X (the curve lies above the line connecting the extreme points), while those on HG

and GD are negative (the curves are below the lines connecting the extreme points).

The between-groups component is based on the line segments connecting 0E, EF,

and FD. It can be either negative or positive. Clearly, monotonic transformations can

change the sign of the regression coefficient both in OLS and in Gini regressions.

To sum up: the semi-parametric Gini regression coefficient can be presented as the

area between two curves. The graphical presentations enable the investigator to

check whether the relationship between the dependent variable and the explanatory

variable is monotonic over the entire range of the explanatory variable or not. It can

help the user answer questions such as if I truncate the distribution of the explana-

tory variable from above or below, would the sign of the Gini regression coefficient

(and the OLS) stay the same? The use of ACC enables us to see whether the sign of

the truncated distribution changes, and whether a monotonic transformation of the

explanatory variable can change the sign of the OLS regression coefficient.3

F(x)

NLMA (Y|X) 

0

A

B

C

D

1

F

E

G
H

Fig. 7.2 The NLMA curve

P=F(x)

NLMA (Y|X) 

0

A

B

C

D
1

E

F

H

GK

Fig. 7.3 The NLMA curve

3 To see if a monotonic transformation of the dependent variable can change the sign of the OLS

regression coefficient, one can simply plot the ACC of X with respect to Y.
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One of the commonly used assumptions in regression is that the model is linear

over the entire range of the explanatory variable. This assumption cannot be tested

as part of the regression method used (unless there are repeated observations at least

at one level of the explanatory variable or by using two different methodologies)

because by construction the error term is orthogonal to the explanatory variable.

The use of the concentration curve enables the user to visually see whether the

assumption of the linearity of the regression holds for the entire range or maybe

large sections of the data violate the linearity assumption or even the monotonicity.

Properties (c) and (d) of the LMA enable the user to identify sections with constant,

increasing and decreasing slopes of the regression curve: linearity of LMA implies

that the slope of the regression curve is zero, concavity of LMA means a positive

slope, while convexity means a negative slope. In this sense the uses of the GMD

and its Lorenz presentation enable the user to examine the linearity assumption on

one hand, or alternatively, to give up on the linearity assumption and to derive the

weighting scheme of the slopes from economic theory. In the latter case the

interpretation of the Gini regression coefficient would be a weighted average of

slopes, weighted according to economic theory. This alternative approach is

demonstrated in Chaps. 15 and 18 which are dealing with applications in welfare

economics and finance. In addition, this alternative interpretation indicates that the

usual assumption that there exists a linear relationship should not be taken for

granted. In some cases, mainly in welfare economics and finance, it is not needed,

as will be shown in Chaps. 15 and 18 where economic theory requires only a

weighted average of slopes, weighted by the marginal utility of income. In other

cases the linearity assumption is simply not supported by the data. In these cases—

the linear regression model can still be interpreted as a linear approximation to the

true regression curve (Chap. 21). Note, however, that in those cases the linear

regression model is not useful for prediction. We discuss the validity of the linearity

assumption further in Sect. 7.3.

7.1.5 Similarities and Differences Between OLS and Gini
Semi-Parametric Regression Coefficients

The properties of the OLS and the Gini regression coefficients were discussed in

detail in the previous sections. In this section we summarize the main similarities

and differences between the two. We focus on four issues: the presentations as

weighted averages of slopes, the use of curves to view the contributions of the

sections of the explanatory variable to the regression coefficient, the decomposition

of a slope to the contributions of subgroups, and the relationship between direct and

reverse regressions.

1. Weighted averages of slopes. Similarity: both can be expressed as weighted

averages of (the same) slopes. Because the slopes between adjacent observations

are determined by the data, the choice of the regression method is actually a
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choice of the weighting scheme. The weighting scheme (for both) is affected by

properties of the distribution of the explanatory variable: (a) the rank of each

observation and (b) the difference between each observation and the adjacent

one. Both methods do not actually rely on the linearity assumption of the

regression curve and, as such, can be viewed as linear approximations of the

regression curve.

Difference: the difference lies in the weighting scheme. While in the Gini

method the distance between adjacent observations is taken as is, it is squared

under the OLS regime.

2. The use of curves. Similarity: both can be expressed as areas between two

curves. Difference: the difference is in the curves used. As we have shown

above, the weighting schemes of the Gini regressions are based on the absolute

Lorenz curve, while for OLS the equivalent of the Lorenz curve for the variance

is used. However, it is easier to draw conclusions from the curves in the case of

Gini than in the OLS.

3. Decomposition by subgroups. Similarity: both can be decomposed into the

contributions of subgroups. Difference: Gini takes into account the overlapping

while OLS does not. It was shown that if the grouping is according to noninter-

secting sections of X, then the decomposition of the GMD is identical in

structure to the decomposition of the variance. On the other hand, whenever

there is overlapping between the groups according to X, then the share of the

between-groups Gini can be totally different from the share of the between-

groups variance. It can be easily shown (Frick et al., 2006) that the higher the

overlapping the lower the share of the between-groups component in the overall

Gini is, while the share of the between-groups component in the variance

decomposition remains unaffected.

4. The relationship between direct and reverse regression (Goldberger, 1984).

Goldberger introduced the reverse regression in the area of discrimination.

Instead of asking whether, given identical characteristics, men earn more than

women, he asks whether, given the same salaries, women are more qualified than

men. Similarity: The similarity occurs when we look at the multiplication

between the direct and reverse regression coefficients. Note that

bOLSYX bOLSXY ¼ r2; (7.30)

bNYX bNXY ¼ GXY GYX: (7.31)

(Proofs are immediate hence they are not presented here.)

However, although formally similar, the Gini correlations can have different

signs, and so can the direct and indirect regression coefficients. Difference: the

dissimilarities occur when we look at the ratio of the two:

bOLSYX

bOLSXY

¼ s2Y
s2X

; (7.32)
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bNYX
bNXY

¼ GYX

GXY

D2
Y

D2
X

: (7.33)

That is, the ratio in the Gini regression depends on the levels of the Gini

correlations as well as on their signs.

The message that should be kept in mind is that although seemingly similar, one

has to be careful in translating the intuition from OLS into Gini. To see that, note

that under the Gini regime one can get different signs between the direct and reverse

regressions, leading to more complicated interpretations of the results. This is

another demonstration of the argument that “the Gini reveals more.”

7.2 The Minimization Approach

The minimization approach is based on minimization of the GMD of the residuals.

In order to be able to optimize one has to specify the model and the target function,

which means in this case to assume that the model is linear. The approach is similar

to least absolute deviation (LAD) regressions (Bassett & Koenker, 1978) or

quantile regression (Koenker & Bassett, 1978). Here, instead of minimizing the

sum of absolute deviations of the residuals, or the weighted sum of the absolute

deviations from a quantile of the residuals, the GMD of the residuals (which is the

mean of the absolute differences between all pairs of residuals) is minimized.

Parameters and estimators derived following the minimization approach will be

denoted by the subscript M. (This kind of regression has been developed by

Jurečková (1969, 1971); Jaeckel (1972); McKean and Hettmansperger (1978);

and Hettmansperger (1984)). Hettmansperger refers to the method as R-regression

because the sum of the products of the ranks of the residuals and the residuals

themselves is minimized. Because our main target is to imitate the OLS with the

Gini, the properties of the R-regression approach will not be repeated here.4 An

application in economics can be found by Chaudhury and Ng (1992). For our

argument, only the orthogonality condition is needed. Note, however, that R-

regression requires the specification of a model.

Consider the following model:

Y � aþ bXþ e: (7.34)

Note that we do not impose any assumptions on e.

4 It is worth emphasizing that the connection between R-regression and GMD was not recognized

in the literature mentioned above. Many of the properties of those regressions can be traced to the

properties of GMD. Bowie and Bradfield (1998) compare the robustness of several alternative

estimation methods in the simple regression case and find the minimization of the GMD among the

most robust methods.
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Proposition 7.3 The bwhich minimizes the GMD of the residuals forms the normal
equation of the type cov(X, F(e)) ¼ 0.

Proof Denote the ordered residuals by e1 � e2 � :::� en. Then

Ge ¼
X
i;j

jðyj � yiÞ � b(xj � xiÞj ¼ 2
X
i<j

½ðyj � yiÞ � b(xj � xiÞ�; (7.35)

from which we get that

@Ge

@ b
¼ �2

X
i<j

ðxj � xiÞ ¼ 4
Xn
i¼1

xi i� nþ 1

2

� �
¼ 4cov(X,

Re

n
Þ (7.36)

whereRe is the rank of e (hence Re
n is the empirical cumulative distribution function

of e). Recall that the residuals are ordered. Hence the rank of ei is i. At the

minimum, the derivative (if it exists) is equal to zero. The proof that

� 2
X
i<j

ðxj � xiÞ ¼ 4
Xn
i¼1

xi i� nþ 1

2

� �

can be found in Appendix 7.2. (See Olkin and Yitzhaki (1992) for details).

In the sample, (7.36), which is the derivative of (7.35) with respect to b, is a step
function because (7.35) is piecewise linear. Hence, it may happen that the solution

for b is determined up to a range.

In addition, we point out that

1. The Gini estimator derived under the minimization approach is similar to the

minimization of the average of all possible quantile-regression target functions

(Koenker & Bassett, 1978). Hence, one can view it as an extension of quantile

regressions (see (2.3) in the alternative presentations of the GMD). Similar to those

regressions, the estimator cannot be explicitly expressedand it is derivednumerically.

2. The orthogonality condition for the minimization of the GMD of the residuals is

a co-Gini between the residuals and the explanatory variable. As such, we can

visualize it using an ACC or an LMA curve. This graphical presentation will be

useful in order to examine the linearity of the regression curve. If the regression

curve is linear, we should expect the ACC of X with respect to e to oscillate

randomly along the horizontal axis, as we discuss in the next section. In Chap. 20

we apply the concept of the orthogonality condition to check for the linearity of

the regression curve. However, we do not actually estimate this regression,

because it is a deviation from the main target of the book.

7.3 The Combination of the Two Gini Approaches

The classical regression model is based on two underlying assumptions. The first

assumption is that the relationship between Y and X is linear. The second assump-

tion is that the residual is independent of the explanatory variable. The fact that the
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GMD has two covariances that are defined between each pair of variables can be

useful in order to examine whether the implicit assumptions assumed in the

classical regression hold in the data. To see that, note that the two regressions

produce two normal equations.

The two normal equations are

covðeN; F Xð ÞÞ ¼ 0 and covð X; Fð eMÞÞ ¼ 0; (7.37)

where eN and eM are the residuals from the semi-parametric and the minimization

regression methods, respectively. If the specification of the model is correct so that

the residual is independent of the explanatory variable, then we should expect that

in addition to (7.37) we will get

covð eM; F Xð ÞÞ ¼ 0 and covð X; Fð eNÞÞ ¼ 0: (7.38)

That is, the normal equation of each regression method should hold when

applying it to the alternative set of residuals. Note that while the equations in

(7.37) are produced by the regression method and hence cannot be challenged,

the equations in (7.38) can be tested to see whether they hold or not.

A possible specification test for the model is whether the two Gini regressions

lead to statistically similar residuals, and as a result, to the same regression coeffi-

cient (to be detailed below).

We note that we could do the same exercise by comparing the OLS and the Gini

regression coefficients. That is, if the specification of the model is correct then we

should expect the OLS and the Gini residuals to be identical, except for a random

variation. To see that, recall that both the Gini semi-parametric and OLS regression

coefficients can be expressed as weighted sums of slopes between adjacent

observations. If the relationship between Y and X is linear along the entire range

of the explanatory variable then the slopes between adjacent observations are all

equal to one constant. Therefore the two weighting schemes will give the same

(constant) slope. Hence the residuals in the sample will be the same (up to random

variation). We remind the reader that the OLS and Gini semi-parametric regressions

will be identical for any regression curve when the explanatory variable is uni-

formly distributed (as was shown in Sect. 7.1.1).

The advantage of using the two Gini regression methods is that we are using the

same methodology and the same definition of distance. This last advantage will be

more apparent in the next chapter, when we deal with multiple regressions. In order

to check whether the two methods give similar residuals, we do not need to estimate

the two regressions. It is sufficient to use just one regression.

The recommended steps to follow are

1. Estimate the semi-parametric regression—by construction one gets

cov (eN, F(X)) ¼ 0.

2. Test whether cov (X, F(eN)) ¼ 0. If the covariance is significantly different from

zero, then the specification test fails. Note that having cov (X, F(eN)) ¼ 0 is a
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necessary condition but not a sufficient one. Only if the vectors eN and eM are

identical we can claim that we have a necessary and sufficient condition.

Alternatively, one can reverse the order. That is, one can apply the minimization

approach to theGMD regression and derive the residuals. Then one can checkwhether

the normal equation of the semi-parametric Gini regression holds. Needless to say that

because we are dealing with aggregated results, it may happen that the results of the

two alternative procedures contradict each other. That is, one test results in failing to

reject the null hypothesis and the other rejects it. Our preference is to use the former

method because the first stage does not require the specification of a model.

The intuition behind the above-mentioned procedure is as follows. If the popu-

lation exhibits a linear model with a residual that is independent of the explanatory

variable, then the normal equations of the OLS and the two Gini regressions all

yield approximately the same vector of residuals.

Note that if the vector of the residuals in the population forms a linear relation-

ship with the explanatory variable then the three methods mentioned above will not

be able to estimate the true regression coefficient correctly. Formally if the model in

the population is

Y ¼ aþ bXþ e

and e ¼ a1 + b1X + e1 with e1 and X being independent, then the model becomes

Y ¼ aþ bXþ a1 þ b1Xþ e1 ¼ ( aþ a1Þ þ ( bþ b1)Xþ e1;

and all the methods will estimate ( bþ b1Þ rather than b. In other words, whenever
X is connected to Y through a linear relationship, and e is connected to X through a

linear relationship, one cannot distinguish between the direct connection between X

and Y and the indirect connection through e. In order to correctly estimate b an IV

method is needed.

Further insight can be gained by looking at the NLMA curve of the residual (see

Sect. 7.1.4 above for the definition of the NLMA curve). Consider the case of the

semi-parametric regression. Assume that we have derived the vector eN. Then, by
construction cov(eN, F(X)) ¼ 0. Assuming that X and the residual are statistically

independent implies that the theoretical NLMA curve of X with respect to e should
coincide with the horizontal axis. Therefore we should expect the NLMA curve to

oscillate randomly around the horizontal axis. The curve offers a visual inspection

and as we show later one can also develop a statistical test.

7.4 Goodness of Fit of the Regression Model

The objective of this section is to discuss measures of goodness of fit for the Gini

regression method.
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Let the linear predictor of the regression curve be Ŷ ¼ aþ bX and define the

residual by e ¼ Y� Ŷ.

In OLS the commonly used measure of the goodness of fit is R2 which measures

the proportion of variability in the data that is explained by the model. That is

R2 ¼ SSR

SSTO
¼ 1� SSE

SSTO
; (7.39)

where SSR, SSE, and SSTO are the model sum of squares, the error sum of squares,

and the total sum of squares, respectively. It is based on the partitioning of the

total sum of squares into two components: a sum of squares due to the model fitted

and an error sum of squares. We now turn to Gini regression and use the decompo-

sition of a Gini of a linear combination of random variables (see Chap. 4 for

details).

Let Y ¼ Ŷþ e.

We start with a simple decomposition as follows

DY ¼ cov Ŷþ e; FðYÞ� � ¼ cov Ŷ;FðYÞ� �þ covðe;FðYÞÞ ¼

¼ covðŶ; FðYÞÞ
DŶ

DŶ þ cov(e,F(Y))

De

De ¼ GŶY DŶ þ GeY De:

Using the decomposition of the square of the GMD of a linear combination of

random variables (4.6) we can write

D2
Y ¼ ðDYŶ DŶ þ DYe DeÞ DY þ D2

Ŷ
þ D2

e þ DŶ DeðGŶe þ GeŶÞ;

where DY denotes the GMD of Y, GŶe is the Gini correlation between Ŷ and e, and

DYŶ ¼ ð GYŶ � GŶYÞ, i.e., it is the difference between the two Gini correlations of
Y and Ŷ.

In the Gini regression, one of the Gini correlations between Ŷ and e is zero by

construction and the other one is zero if the specification of the model is correct.

Hence, if the two correlations between e and Ŷ are zero then we get

D2
Y ¼ ðDYŶ DŶ þ DYe DeÞ DY þ D2

Ŷ
þ D2

e : (7.40)

Furthermore, if the two Gini correlations between Y andŶare equal ðGYŶ ¼ GŶYÞ
and the same holds for the two Gini correlations between Y and e then we get

D2
Y ¼ D2

Ŷ
þ D2

e ; (7.41)

which is identical in structure to the OLS decomposition of the total sum of squares.

In general the two additional terms in the GMD decomposition (7.40) can be

negative or positive. If the distribution of ðŶ; eÞ is bivariate normal, then their

sum, Y, is normally distributed, implying that Y, Ŷ, and e are exchangeable up to a

linear transformation. In this case both Ds in (7.40) are equal to zero and we are left

with the same elements as in the OLS. However if Ŷ and e have different
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distributions, then the distribution of Y will be different than the distributions of Ŷ

and e, and the smaller of the two additional terms will indicate the distribution that

is closer in shape to the distribution of Y. Further research is needed to get a better

explanation of the role of the additional elements.

Starting with the simplest case in which the specification of the model is correct,

the two Gini correlations between Y and Ŷ are equal ð G
Y
^
Y
¼ G^

YY
Þ and the same

holds for the two Gini correlations between Y and e, and we get (7.41) which is

similar in structure to the partitioning of the total sum of squares (see (7.39)).

Therefore a natural way to define an R2—equivalent is by

GR2 ¼ D2
Ŷ

D2
Y

¼ 1� D2
e

D2
Y

: (7.42)

(Olkin & Yitzhaki, 1992). However as can be seen from the more general

decomposition of D2
Y, GR

2 is not parallel to R2.

If the specification of the model is correct, then following the decomposition of

(7.40), we get

GR2 ¼ D2
Ŷ

D2
Y

¼ 1� D2
e

D2
Y

�
D

Y
^
Y
D^
Y
þ D

Ye
D
e

DY

: (7.43)

Note that the third term on the right-hand side can be either positive or negative,

implying that the measure of goodness of fit for this case can be larger or smaller

than the measure obtained under the assumptions that led to (7.41). Further research

is needed to see if (7.43) can add additional insight.

Additional measures of the quality of the fit of the model to the data in the Gini

regression are the Gini correlations between the dependent variable and the predic-

tor. Formally

G
Y
^
Y
¼ cov(Y,F(

^
Y))

cov(Y,F(Y))
and G^

YY
¼ cov(

^
Y; FðYÞÞ

cov(
^
Y; Fð^YÞÞ

; (7.44)

where Ŷ is the predicted variable. In other words, we substitute the R2 of OLS by

three measures: the one in (7.43) and the two in (7.44). Note, however, that in the

OLS, the parallels to these three measures are numerically equal.

To sum up: in the general case one can use several goodness of fit indicators such

as the two correlation coefficients between the fitted and observed values, and/or

one minus the (square of the) ratio of the GMD of the residuals divided by the GMD

of the dependent variable. In OLS these three measures are identical. Further

research is needed to evaluate the practical contributions of the different measures

of fit offered by the Gini.
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7.5 A Test of Normality

One of the underlying assumptions in the OLS regression is the normality of the

residuals. The aim of this section is to describe a test for normality that can be

offered by the Gini methodology. This is an omnibus test for normality. It is

appropriate for detecting deviations from normality due to either the skewness or

the kurtosis. The following test statistic was suggested by D’Agostino (1971) and

the literature based on it.

Let X1;:::;Xn represent a random sample of size n and let Xð1Þ;:::;XðnÞ represent
the ordered observations. The test statistic D for testing that the sample comes from

a normal distribution is

D ¼ T

n2S
(7.45)

where

T ¼
Xn
i¼1

i� nþ 1

2

	 

XðiÞ; and S2 ¼

Pn
i¼1

ðXi � XÞ2

n
:

As will be shown in Chap. 9, T is a function of the estimator of the GMD. More

precisely,

T ¼ n(n� 1ÞD̂X , where DX ¼ E(jX1�X2j) = 4cov(X,F(X)) ¼ GMD and D̂X

¼ U( DXÞ is the U-statistic for estimating the GMD. (For details see (9.4)). Hence

one can write D’Agostino test statistic as

D ¼ n� 1

n

� �
D̂X

S
:

If the sample is drawn from a normal distribution the expected value of D and its

asymptotic standard deviation (asd) are, respectively,

E(D) ¼ (n�1Þ
2

ffiffiffiffiffiffiffiffiffiffi
2n p

p G(n
2
� 1

2
Þ

G( n
2
Þ , or approximately (2

ffiffiffiffiffi
p

p Þ�1 ¼ 0:282, and

asd(D) ¼ 0:03ffiffiffi
n

p :

An approximate standardized variable, possessing asymptotically mean zero and

variance unity, is

Z ¼ D� ð2 ffiffiffiffiffi
p

p Þ�1

asd(D)
:
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If the sample is drawn from a non-normal distribution the expected value of Z

tends to differ from zero. The direction of the difference depends on the alternative

distribution. Simulation suggests that if the alternative distribution has greater than

normal kurtosis, then Z tends to be on the average less than zero, while if the

kurtosis is less than the normal kurtosis then Z tends to be greater than zero.

D’Agostino provides a table of percentile points for small sample sizes

(D’Agostino, 1972) as well as for moderate to large sample sizes (D’Agostino,

1971).

The D’Agostino’s test is actually based on the ratio of the GMD to the standard

deviation. Shalit (2010) suggests an alternative test of normality that is based on the

shape of the ALC. Under the normal distribution, each percentile of the distribution

contributes an equal share to the variance (see Sect. 7.1.1). Shalit’s test (2010) is

based on checking whether the contributions of all percentiles of the data are equal

by looking at the sum of squares of the deviations of the contributions from

equality. Sufficiently large sum of squares will lead to a rejection of the normality

hypothesis. It seems that the difference between D’Agostino and Shalit is the

following: both are based on the difference between the GMD and the standard

deviation; but while D’Agostino calculates summary statistics first and then

performs the test using the summary statistics, Shalit aggregates the deviation of

each observation from its value under the equality assumption and then performs

the test. Intuitively, Shalit’s approach is likely to have more power because it is

based on the deviation of each individual observation from its expected value under

normality.

7.6 The Instrumental Variable Method

The method of instrumental variables (IV) is widely used to estimate parameters

when (some of) the regressors are endogenous. Its popularity has increased as a

result of its applicability to the evaluation of the impact of social programs (Angrist,

1990, and others). Recent investigations of its properties include, among others,

Bound, Jaeger, and Baker (1995), Heckman and Smith (1995), Angrist, Imbens, and

Rubin (1996), and Angrist and Evans (1998), who pointed out its main advantages

and drawbacks.

At this point the method is fiercely debated—see, for example, Heckman (1992,

1997, 1999, 2000, 2001), Angrist and Imbens (1999), and Deaton (2009). In some

sense the debate is philosophical. It is concerned with issues such as whether it is

reasonable to view a variable as exogenous or not, whether one is allowed to view

statistical correlation as representing causal relationship or not, and other issues

such as how to reach evidence-based conclusions.

The use of the Gini method or other methods as alternatives to OLS cannot

contribute to the philosophical debates that determine the approach of the

researcher. Almost any concern that is raised with respect to the OLS regression

can be raised with respect to the Gini (or any other) regression as well. Therefore we

162 7 Gini Simple Regressions



will not deal with those issues in this section. However because in general “the Gini

reveals more” and this property carries through to regression, the use of the Gini

method can shed light on some of the issues that are hotly debated. This is done by

allowing the user to test whether some of the implicit assumptions made in order to

reach the conclusion hold in the data. In other words, the use of the Gini methodol-

ogy enables one to see whether the conclusion reached suffers from deficiencies

that originate from some of the hidden assumptions of the OLS. To be specific, we

rely heavily on the ability of the Gini methodology to find out whether the

relationships between the variables are monotonic over the entire range or not,

and whether the IV and the residual are correlated or not. Non-monotonic relation-

ship between the IV and the explanatory variable it replaces means that one can

get almost any result by using an IV method. Our method of investigation is a

“bottom line” approach. We try to reveal how the estimators are constructed and by

this way check whether the implicit assumptions hold or not. We show through the

“bottom line” approach that while the OLS is based on the decomposition of the

variance, the IV method is based on the decomposition properties of the covariance.

We start by presenting the properties of the OLS-IV and later present its parallel

concept under the Gini and EG methods.

7.6.1 The OLS Instrumental Variable Method

We start this section with a short technical reminder of the instrumental variables

(IV) methodology. The usual scenario concerning the use of IV is to assume the

following model:

Y � aþ bXþ e: (7.46)

Note that we present (7.46) as an identity because at this stage we have not

assumed anything about the properties of e except that it is a slack variable intended
to close the identity. The next step is to assume that X and e are correlated so that

the OLS estimator is biased, and the direction of the bias depends on the sign of the

correlation. To see this note that

cov(Y,X)

cov(X,X)
¼ bþ covðe;XÞ

cov(X,X)
:

To correct for the bias, a variable Z that is correlated with X but uncorrelated

with e is chosen to replace X, and a decomposition of cov(Y,Z) is performed instead

of the decomposition of cov(Y,X).

That is,

cov Y;Zð Þ � bcov X;Zð Þ þ cov e;Zð Þ: (7.47)
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Because cov (e, Z) is assumed to be equal to zero (a constraint imposed on the

data in the estimation process, which changes (7.47) from an identity to an equation

intended to derive b), the OLS-IV population’s parameter, bOIV, is defined as

bOIV ¼ cov(Y, Z)

cov(X, Z)
¼ bY;Z

bX;Z
: (7.48)

Proposition 7.4 is the equivalent of proposition (7.1) for an IV regime.

Proposition 7.4 Given the model in (7.46), the OLS-IV parameter defined in (7.48)
is a weighted sum of slopes of the regression curve g0(x). That is,

bOIV ¼
ð
wZ xð Þg0 xð Þdx; (7.49)

where the weights wZ(x) ¼ w(x,z) represent the contribution of each segment dx to
the covariance cov(X, Z). Thus,

R
wZ(x)dx ¼ 1, and

wZ(x) ¼ 1

cov(Z, X)
½ mZFX(x)� ACCVZX(x)], (7.50)

where ACCV is the shifted ACC (see proposition 7.1 for an equivalent derivation).

Proof The proof is given by Yitzhaki and Schechtman (2004).

Note that while in proposition 7.1, for the OLS regime, the weights are all

positive (because they are based on the Lorenz curve and represent contributions

to the variance), in the OLS-IV regime (proposition 7.4) the weights can be both

positive and negative (because they are based on ACC and represent contributions

to the covariance). Therefore from here on, the terms “weighted average” and

“weighted sum” are used for both cases.

The presentation for a discrete distribution (and in the sample) is given in

proposition 7.40.

Proposition 7.40 The OLS-IV estimator of the slope of the regression coefficient b
is a weighted sum of slopes defined by adjacent observations of X. That is,

bOIV¼
Xn�1

i¼1

wIV
i bi where

Xn�1

i¼1

wIV
i ¼ 1; (7.51)

wIV
i ¼

Pn�1

j¼i

i(n� j) Dzjþ
Pi�1

j¼1

j(n� i ) Dzj

 !
Dxi

Pn�1

k¼1

Pn�1

j¼k

k(n� j) Dzjþ
Pk�1

j¼1

j(n� k) Dzj

 !
Dxk

(7.52)

and bi are the slopes defined between adjacent observations of X.
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The proof is identical to the proof of proposition 7.4. Note, however, that the

denominator is equal to cov(Z, X) and that the weight is therefore the contribution

of each section Dxi to cov(Z, X). Note also that the weights are not restricted to be

positive here.

As in the case of proposition 7.1, the weights can be expressed in terms of the

vertical distance between the LOI and the ACC. That is,

wIV
i ¼ i

n

ð�zn � �ziÞ Dxi
cov(z, x)

(7.53)

where �ziis the average of the i smallest observations of Z.

As seen above, the OLS-IV estimator of the slope of the regression coefficient b
is a weighted sum of slopes defined by adjacent observations of X. Note, however,

that for OLS-IV to be a weighted sum of the true impact of X on Y (i.e., of b in

(7.46)), it must be assumed that Z and e are independent. In some sense the

difference between OLS and OLS-IV is relatively minor: both are based on the

same slopes, the original slopes defined between Y and X. The only difference is

that the weights in OLS are derived from the absolute Lorenz curve for the variance

of the explanatory variable X, while the weights of the OLS-IV are based on the

ACC of Z with respect to X. However this is a nontrivial difference. The nature of

the weighting scheme has been drastically changed: the weights in the OLS are all

nonnegative, while the weighting scheme for the OLS-IV is based on the ACC,

which in theory can be negative. To see the implications of this difference consider

a perfect line between Y and X, so that the slope is a constant. If more than 50% of

the weights defined by using Z are positive then the OLS-IV will give a positive

slope, while if a lion’s share of the weights are negative, then the estimated slope

will be negative. Moreover, generally if in the range with negative slopes we also

have negative weights, then the contribution to the slope is positive although the

slopes are negative. Therefore it is crucial to assure that the weights are all positive

because otherwise strange things can happen.

To sum up: both OLS and OLS-IV estimators are weighted sums of bi and both

weighting schemesare basedon thevertical distances betweenLOI andACC.Theonly

difference between the schemes is in theACCused—theOLSweighting scheme relies

on the shifted absolute Lorenz curve of X, which describes the contribution of each

segment of X to the variance of X, while the weights in the OLS-IV estimators are

based on the shifted ACC of Z with respect to X, which describes the contribution of

each segment of X to cov(X, Z). Weights that are based on the variance are nonnega-

tive, while those based on the covariance can be both positive and negative. An

estimator with positive weights can have totally different properties from an estimator

with a combination of positive and negative weights. In the former case, the estimator

is a convex combination of slopes while in the latter case it is not. To see the

implications, note that in the former case the estimate is bounded by Min(b1,. . .,
bn–1) and Max(b1, . . ., bn–1), where bi are the slopes defined between adjacent

observations of X, whereas in the latter case the estimate is not bounded and can fall

outside the range of the observed slopes. (See the example in Sect. 7.6.4).
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In addition, negative weights can cancel out positive weights, thereby in effect

reducing the effective size of the sample. Imagine a case in which 98% of the slopes

are equal to b1 and only 2% are equal to b2. Assuming also that the sum of the

weights of the b1 slopes equals to zero, we get that the OLS-IV method estimates the

slope to be equal to b2, although 98% of the observations form a perfect line with b1
slope. Because of the opposite signs of the weights, the estimate is actually deter-

mined by the remaining two percent of the sample. The point that even large samples

may be insufficient for the OLS-IV method has been raised by Bound et al. (1995).

It is important to note that the weighting scheme is composed of weights with both

signs if and only if LOIZ.X andACCZ.X intersect. Property (f) of theACC indicates that

this condition is identical to the condition of whether there exists a monotonic

transformation of X that can change the sign of bX.Z, the regression coefficient in the

first-stage regressionor not. If theACCand theLOI intersect, one can split the data into

two sets, composed of all observations below (or above) the intersection. Then, the

values of cov(X,Z) in the two sets will have opposite signs. A monotonic transforma-

tion can change the magnitudes of the two covariances and therefore can change the

sign of the regression coefficient between X and Z. This implies that an additional

property is required from a good instrument: it should have monotonic relationship

with the explanatory variable. The test of this property is based on whether the

concentration curve and the LOI intersect or not (seeChap. 11 for tests of intersection).

A failure of the instrument to have only positive weights implies that one can change

the sign of the OLS-IV estimator by applying a monotonic transformation.

One possible reason for an instrument Z to have a low correlation with X is

sampling variability; i.e., the random deviation of the estimate from the population

parameter. Ignoring sampling variability, there can be two additional reasons for an

instrument Z to have a low correlation with X. One possibility is that although the

population’s concentration curve of Z with respect to X is located on one side of the

LOI, it is close to it. Thismeans that although the expected values of all theweights in

the weighting scheme of the slopes of the regression of Z with respect to X are

positive, they tend to be close to zero. Hence the correlation between the two

variables is weak. Another possibility for low correlation between Z and X is when

the concentration curve of Zwith respect to X (or Xwith respect to Z) intersects with

the LOI, although there can be sectionswhere it is far away from the LOI. Thismeans

that the conditional correlation, conditional on the segment of X we are looking at,

changes signs. In this case there are segments of the range of X where the correlation

is positive and large and, at the same time, there are other segments where the

correlation is negative and large. This case will be reflected by having positive and

negative weights. The former type of an instrument should be preferred to the latter

because by increasing the sample, the weakness of the former disappears, while the

latter will continue to be a weak instrument even for large samples.5 In other words, a

5One of the properties of the ACC (property (g) in Sect. 5.3) says that provided that X and Z are

drawn from a bivariate normal distribution then the ACC and LOI in the population do not

intersect. This is a sufficient condition for the weights to converge to positive values in large

samples.
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weak correlation between the instrument and the explanatory variable can cause the

weighting scheme to be with mixed signs. However, if the appropriate concentration

curve in the population does not intersect with LOI, then a sufficiently large sample

can mitigate the impact of a weak correlation as is the case discussed by Bound et al.

(1995) and Staiger and Stock (1997). We note that the weakness of the instrument

that we stress in this chapter is caused by the non-monotonic relationship between the

instrument and the explanatory variable. If the concentration curve in the population

intersects with LOI, then this weakness holds in the population and therefore will not

disappear even if we rely on the entire population. It implies that the investigator can

force the data to deliver the sign of the coefficient he wishes to get. The non-

monotonic relationship is identified by the properties of the ACC of Z with respect

to X (see Chap. 11).6

Because both OLS and OLS-IV estimators are weighted sums of the same

slopes, the difference between them can be expressed explicitly. This procedure

enables us to trace the sources of the difference between the two estimates.

Equation (7.54) details the effect of applying an instrumental variable on the

weighting scheme

bOIV � bOLS ¼ 1

bZ:X

Xn�1

i¼1

ð�zn � �ziÞ
ð�xn � �xiÞ � bZ:X

� �
wibi; (7.54)

where bZ.X is the OLS estimator of the slope of the regression of Z on X, xi and zi
are the averages of the i smallest observations of X and Z, respectively, and wi are

the OLS weights of (7.21a). The weight attached to bi depends on wi and on

the difference shown in the brackets. The first term in the brackets is the difference

between the LOI and the ACC of Z with respect to X divided by the difference

between the LOI and ALC of X. If this ratio at i is larger (smaller) than the slope of

the regression of Z on X, the weight attached to bi is proportionally increased

(decreased).

More specifically, the impact of using IV on the estimate is channeled in three

possible ways. Consider the case where bOIV < bOLS and recall that the weights, wi,

are all positive and add up to one. The difference between the estimates is

determined by the terms inside the brackets and the sign and magnitude of wibi
that accompany them. The change in the estimate can be caused by (a) a decline in

the terms in the brackets accompanied by a large wibi and an increase in the terms in

the bracket accompanied by a small wibi, (b) a decrease in the terms in the brackets

of both small and large wibi, or (c) an increase in both. (Cases (b) and (c) are

possible because some terms in the brackets are positive while others are negative.

The decrease/increase is in terms of absolute value). Note that (a) represents a good

instrument while (b) and (c) represent bad ones. Therefore the decomposition of the

6Note that some types of non-monotonicity can be tolerated. For example, if the ACC is concave

in some sections and convex in others but does not cross the LOI, then the conditional correlation

over those segments can be negative or positive, but the weighting scheme does not change its

sign.
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sources of the change in the estimate enables one to test whether the identifying

assumptions, i.e., the assumptions used to construct the model, are supported by the

data or not. For example, one possible reason for using an IV is that economic

theory leads us to suspect that X is positively correlated with the residual, and

therefore the OLS estimate is biased upward. Let us divide the set of slopes {bi} into

two groups: the above-average (bad) group and the below-average (good) group.

We refer to the sets as good and bad because chances are that high values of slopes

will be more contaminated than low values of slopes due to the positive spurious

correlations. If so, one can test whether the decline in the estimate due to the use of

an IV is caused by a decline in the weights of bad slopes or by an increase in the

weights of good slopes. Increasing the weights of good slopes together with a

decline of the weights of bad slopes (case (a) above) should indicate consistency

with the economic model, while diminishing (case (b)) or increasing (case (c)) the

weights of both good and bad slopes should be viewed as data manipulation and/or

a search for spurious correlation. Note that the sum of the weights equals one.

Therefore if all the weights are positive, an increase in the weights of one group

implies a decrease in the weights of the other. Therefore an instrument that

produces only positive weights will never be found as spurious, so that the

suggested test is actually a test on the properties of the ACC. Finally, note that

the OLS weighting scheme continues to serve under the OLS-IV regime. Hence, the

OLS-IV estimator is sensitive to extreme observations, just like the OLS.

Additional implications of the differences between the weighting schemes are

discussed after we introduce the Gini IV estimator.

7.6.2 The Gini Instrumental Variable Method

This section replicates Sect. 7.6.1 with an IV method that is based on the GMD. As

mentioned in the earlier section, substitution of one technique by another does not

eliminate all the theoretical arguments against or in favor of an IV method, but the

additional tools that the GMDmethod provides reduce the ability of investigators to

manipulate the results (purposely or by pure ignorance).

The aim of this section is to present the parameter of the Gini-IV method as a

weighted sum of slopes defined by adjacent observations in a way that is similar to

the OLS-IV estimate. Note that the four estimates: OLS, Gini, OLS-IV, and Gini-IV

are based on weighted sums of (the same) slopes. The weighting schemes are based

on the vertical distances between an LOI and an ACC. The differences lie in the

choices of the ACCs used. The ACCs used for OLS are based on the cumulative

value of the variate, while the ACCs used in the GMD approach are based on the

cumulative value of the cumulative distribution of the variate. As a result, the GMD

estimators are more robust with respect to outliers than the OLS estimators because

the weighting scheme is a function of Dx (rather than of (Dx)2). As will be seen

below, the Gini-IV is based on the ACC of the cumulative distribution of the

instrumental variable, which means that the Gini-IV is more robust than OLS-IV
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because Gini-IV, unlike OLS-IV, is not sensitive to monotonic transformations of

the instrument. Alternatively, one can use Gini-IV to check how robust OLS-IV

estimators are to a small perturbation in the weighting scheme.

The Gini semi-parametric regression coefficient in a simple regression frame-

work is defined as

bN ¼ COV ( Y,FX (X))

COV (X, FX (X))
:

Note that in the OLS framework, it is actually an IV with the cumulative

distribution serving as an instrument. However, a good instrumental variable should

be independent of Y|X, which is not the case here. The instrumental variable

population’s parameter in the Gini regression framework can be defined in a way

that resembles the OLS-IV definition as follows

bGIV ¼ COV(Y, F(Z))

COV(X, F(Z))
¼ bN;Y:Z

bN;X:Z
: (7.55)

Its derivation is identical to the derivation of an IV estimator under the OLS

framework. That is, starting from a decomposition of cov(Y, F(Z)) one derives

(7.55). Comparison of (7.48) and (7.55) reveals that the difference between OLS-IV

and Gini-IV regression coefficients is that the Gini-IV relies solely on the ranks of

the instrumental variable, while OLS-IV relies on the variate itself. Like the OLS

and OLS-IV estimators, the GMD and Gini-IV regression coefficients are weighted

averages (sums) of slopes between adjacent observations. The only difference is in

the weighting scheme. Formally, in the GMD framework, the weights in the

population are

vZ(X) ¼ v(Z,X) ¼ 1

cov(X, F(Z))
½0:5FX(x)� ACCVFZðZÞ:X(x)]: (7.56)

Note that because we are dealing with a concentration curve and not with a

Lorenz curve, it may intersect the LOI and therefore produce negative weights.

In the sample, or in a discrete distribution, the weight of observation xi is

vIVi ¼ pDxi
n cov(x, rzÞ

nþ 1

2
� �r z

i

� �
; (7.57)

where �r zi is the average rank of the i observations of Z that correspond to the i

smallest observations of X (i.e., rank concomitants) and p is i/n. The derivations of

the above formulas are variations of a proof in Yitzhaki and Schechtman (2004).

The statements above show that Gini-IV is identical in structure to OLS-IV,

where the instrumental variable is replaced by its cumulative distribution. There-

fore in the Gini-IV framework an investigator cannot affect the estimate by using a
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monotonic transformation of the instrumental variable. As for other properties, it is

easy to see that the weights in Gini-IV and OLS-IV have the same signs, so there is

no difference between the two with respect to transformations of X. Therefore the

same condition that identifies a spurious instrument under OLS will do so under the

GMD framework. However, because Gini-IV weights are based on Dx, while OLS
weights are based on (Dx)2, we expect the former to be more robust.

When summarizing the intuitive idea that leads to the Gini-IV, it is worth to

recall Angrist and Evans’ explanation for the IV method: “The IV method attributes

any effect of Zi on Yi to the effect of Zi on Xi.” (Angrist & Evans, 1998, p. 458). The

Gini regression can be interpreted as attributing any effect of the rank of Zi on Yi to

the effect of the rank of Zi on Xi. In the Gini-IV, the IV method is used twice so that

the final result is to attribute any effect of change in the rank of Zi on Yi to the effect

of a change in the rank of Zi on Xi. This property reduces the sensitivity to Z. The

double use of the IV method when using Gini-IV explains the title of Yitzhaki and

Schechtman’s paper (2004).

7.6.3 The Similarities and Differences Between OLS and Gini
Instrumental Variable Methods

Having described the two IV approaches, we now list the major similarities and

differences between the OLS-IV and the Gini-IV estimators.

(a) A monotonic transformation of Z does not affect the Gini-IV estimate, unlike

the case of OLS-IV estimates, where a monotonic transformation of Z does

have an effect and may even change its sign. In this sense, the Gini-IV method

reduces the possibility of data manipulation. However, as a result of this

property, one cannot use two IVs that are monotonic transformations of each

other (having Spearman’s correlation coefficient of one) because the ranks will

be identical which will result in multi-colinearity. This deficiency can be

mitigated by using the extended Gini with different EG parameters attached

to different explanatory variables. This issue will be discussed in Chap. 8 where

the Gini multiple regression is presented.

(b) The Gini-IV attaches less weight to extreme observations than does OLS-IV.

Therefore it is more robust to outliers than OLS-IV.

(c) Both the OLS-IV and the Gini-IV can be written explicitly and they rely on the

same terminology.

(d) The Gini-IV can be used as a sensitivity test for OLS-IV. Presumably a minor

change such as slightly altering the metric of variability should not drastically

affect the estimates.

(e) It is well known that one can either estimate the IV directly, as is done above, or

use a two-stage least squares procedure. In a Gini framework, those two

methods are not equivalent and can yield different estimators. This difference

will be discussed when dealing with IV in a multiple regression framework (see

Chap. 8).
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Before we proceed with an example let us remind the reader that a good IV is one

that is highly correlated with the explanatory variable and uncorrelated with the

residual. The artificial example below is based on four artificial observations and it

does not represent a good IV.

7.6.4 An Example: The Danger in Using IV

The aim of the following example is to illustrate the conditions under which the IV

method fails to produce a reasonable estimate of the slope. The artificial data set is

composed of four observations and three variables, X, Y, and Z, which represent the

explanatory, dependent, and instrumental variables, respectively. Table 7.3

presents the data together with the cumulative distributions of X and Z.

The variance–covariance matrix is given in Table 7.4.

As shown, the covariance between X and Z is positive and equals 0.25, and the

correlation coefficient is equal to 0.06. (This is a poor IV, intended only for illustration.)

Table 7.5 presents the weighting schemes according to the different methods and

the slopes between adjacent observations.

Table 7.3 The data

X Y Z FX FZ

1 0 9 0.25 1

2 �1 0 0.5 0.25

3 0 8 0.75 0.75

4 1 7 1 0.5

Source: Yitzhaki and Schechtman (2004), p. 303

Reprinted with permission by Metron International Journal of Statistics

Table 7.4 The variance–covariance matrix

X Y Z FX FZ

X 1.25 0.5 0.25 1.25 �0.5

Y 0.5 1.75 0.5 0.25

Z 12.5

Table 7.5 Weighting schemes and slopes

I wOLS vG wOIV vGIV bi

1 0.3 0.3 �3 0.75 �1

2 0.4 0.4 3 0 1

3 0.3 0.3 1 0.25 1

Source of Tables 7.3–7.5: Yitzhaki and Schechtman (2004), pp. 303, 304,

called Table 1, 2, 3

Reprinted with permission by Metron International Journal of Statistics
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As can be seen from the first column of Table 7.3, the distance between adjacent

observations of X equals 1, which causes the OLS and Gini estimators of the slope

of the regression curve to be equal (because the weights are equal). Thus, bOLS ¼
bG ¼ 0.4. On the other hand, the IV estimates differ bOIV ¼ 7, while bGIV ¼ �0.5.

As seen in the last column of Table 7.5, the slopes are either 1 or �1, which

means that the OLS-IV estimator is far above the maximum slope observed in the

data. This result is explained by the large (in absolute value) negative weight

attached by OLS-IV to the negative slope between the first and second observations,

which translates into a positive contribution to the estimated slope.

Applying monotonic transformations to Z would leave the Gini-IV estimates

unaffected, but may affect the OLS-IV estimate through a change in its weighting

scheme and may even change its sign. The effect of applying a transformation to Z

on the estimate depends on its effect on the absolute values of the negative and

positive weights. Whether a transformation reduces or increases the absolute value

of the weight depends on whether its derivative in the relevant range is larger or

smaller than one. This fact that a monotonic transformation of the instrument can

change the sign of the regression coefficient is illustrated in our example: one can

view the use of F(Z) in Gini-IV as using a monotonic transformation of Z. This

means that Gini-IV is the OLS-IV of the monotonic transformation, so that bOIV
¼ 7 while bGIV ¼ bOIV(of F(z)) ¼ �0.5.

The advantage of the Gini method over the OLS is in providing the investigator a

way to check through the use of the concentration curve whether the conditions for

safe conclusions (i.e., nonintersection of the LOI and the ACC) hold. Note, how-

ever, that this test is not capable to resolve the debate concerning the issue of

whether the IV used is an exogenous variable or an endogenous one.

7.7 The Extended Gini Simple Regression

Because the GMD is a member of the EG family, one can replicate almost all the

previous parts of this chapter with the extended Gini. All one has to do is substitute

F(X) by –[1 � F(X)]n�1 or F[(X)]n�1 or a combination of the two, depending on

whether one is interested in applications that fit concave, convex, or symmetric

weighting schemes. The only part that cannot be replicated is the decomposition by

population subgroups because the EG, unlike the GMD, is not additive over

overlapping subpopulations.

For example, (7.22) turns out to be

bNðnÞ ¼
cov ( Y, [1� Fx(X)�n�1Þ
cov(X, [1� Fx(X)�n�1Þ ; (7.22a)

while proposition 7.2 will be
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Proposition 7.20 The extended Gini semi-parametric regression coefficients are
weighted sums of the slopes of the regression curve. That is,

bN ðnÞ ¼
ð
w (x,nÞ g ’(x )dx,

with w(x,n) > 0 and
R
w(x, n)dx ¼ 1, where

wðx; nÞ ¼ ½1� Fx ðxÞ� � ½1� Fx ðxÞ�nÐ1
�1

f½1� Fx ðtÞ� �½1� Fx ðtÞ �ngdt
:

Proof The proof is given by Yitzhaki (1996, proposition 3, p. 483).

Proposition 7.20 gives an interesting interpretation to the roles of the different

components in determining the regression coefficient. The basic components, based

on the raw data, are the slopes and the associated distribution of the explanatory

variable. The methodology used determines the weights given to different sections of

the distribution of the explanatory variable by choosing the extended Gini parameter,

n. In determining the method used the investigator is actually choosing a weighting

scheme to apply to the data. The effect of the choice of the weighting scheme depends

on the distribution of the explanatory variable and on the slopes along the regression

curve. In some sense, one can replicate the entire chapter substituting the GMD by the

EG. If the regression model is well-behaved, i.e., if the model in the population is

linear, then for large samples, there should not be any major difference in the

estimates. On the other hand, if the relationship between the variables is not linear,

then by stressing different sections of the explanatory variable the sign and the

magnitude of the estimate can change. In Chap. 8 we present the mixed regression,

with some explanatory variables treated by GMD and others by EG or OLS.

7.8 Summary

Two regression methods can be described as based on the GMD. One is based on

describing the GMD as a covariance between the dependent variable and the rank of

the explanatory variable, while the other is based on minimization of the GMD of

the residuals. One advantage of the fact that there are two alternative methods is that

one gets two sets of “normal equations.” This fact is used in order to evaluate the

specification (linearity) of the model and check the underlying assumptions.

Because we are interested in mimicking the OLS, we have concentrated on the

regression that is based on the covariance presentation of the Gini. There are several

similarities and differences between the OLS and the Gini regression. We focus on

four issues: the presentations as weighted averages (sums) of slopes, the use of

curves, the decomposition of a slope to the contributions of subgroups, and the

relationship between direct and reverse regressions.
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More specifically, relying on the covariance-based regression, it is shown that

the regression coefficients in OLS, OLS-IV, Gini, and Gini-IV regressions can all

be expressed as weighted averages (sums in the case of an IV) of slopes of the

regression curve. The difference between the methods is in the weighting schemes.

The weights in the case of the OLS and Gini regressions are based on the properties

of the absolute Lorenz curve of the explanatory variable, while the weights in the

case of IV, under both methods, are based on the properties of the ACC of the

instrument with respect to the explanatory variable. The absolute Lorenz curve

cannot intersect the LOI, which means that under OLS and Gini regressions all

weights are positive. On the other hand, the ACC can intersect the LOI, causing the

weights of the IV regression, under both methods, to be with both negative and

positive signs. This means that a monotonic transformation of the instrument can

change the sign of the regression coefficient. In such cases the estimators may be

inconsistent.

One recommendation is to plot the concentration curve (or LMA curve) of the

instrument with respect to the explanatory variable in order to see whether a sign

change in the weighting scheme can occur. This recommendation is a bit compli-

cated to apply in a multiple regression framework (as will be discussed in Chap. 8),

and more work in the extension to multiple regression is still needed.

An implication of the analysis presented in this chapter is that one can interpret

switching from one method to the other as a decision to change the weighting

scheme applied to the slopes of the regression curve. Switching from a weighting

scheme with positive weights to a weighting scheme with both negative and

positive weights should be reported because it changes the properties of the

estimation procedure.

A new direction for further research is the comparison of the efficiencies of the

different methods and the relative advantages of each. The convergence theorems

of Davydov and Egorov (2000a, 2000b) seem to be a promising direction in the

investigation of the properties of the concentration curves, i.e., the weighting

schemes of the different types of regressions.

Finally, the entire chapter can be replicated using the EG instead of the GMD.

Appendix 7.1

Proposition 7.10 The OLS regression coefficient for a discrete distribution of X is a
weighted sum of slopes defined by adjacent observations. That is,

bOLS ¼
Xn�1

i¼1
wibi (7.20a)

where wi > 0, Swi ¼ 1, bi ¼ Dyi/Dxi, Dxi ¼ xi+1 � xi and where the observations
are arranged in an increasing order according to X. The weights are given by
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wi ¼

Pn�1

j¼i
iðn� jÞD xj þ

Pi�1

j¼1

jðn� iÞD xj

 !
D xi

Pn�1

k¼1

Pn�1

j¼k

kðn� jÞD xj þ
Pk�1

j¼1

jðn� kÞD xj

 !
D xk

; (7.21a)

(where
P0
j¼1

jðn� 1ÞD xj is defined to be zero).

Proof of proposition 7.10 The OLS regression coefficient is

bOLS ¼ cov Y;Xð Þ=cov X;Xð Þ:

For our purposes it is convenient to express the numerator and the denominator

in an alternative way. The numerator can be rewritten as

cov Y;Xð Þ ¼ 1=2E1E2 Y1 � Y2ð Þ X1 � X2ð Þð Þ;

where (Yj, Xj) (j ¼ 1, 2) are i.i.d. variables, and E denotes expectation. Ignoring

multiplicative constants (which cancel out when both the numerator and the

denominator are considered), the application of this formula to a discrete distribu-

tion (and in the sample when dealing with estimation) leads to

covðy; xÞ ¼ S
n

i¼1

Xn
j¼1

ðxi � xjÞðyi � yjÞ ¼ 2 S
n

i¼1

Xi�1

j¼1

ðxi � xjÞðyi � yjÞ;

and by substituting yi � yj ¼
Pt�1

k¼s

bk D xk and xi � xj ¼
Pt�1

p¼s
D xp for i > j, where

s ¼ min(i, j) and

t ¼ max(i, j), we get

covðy; xÞ ¼
Xn
i¼1

Xn
j¼i

Xt�1

k¼s

Xt�1

p¼s

bk D xk D xp :

After some tedious algebra we get

covðy; xÞ ¼ S
n�1

i¼1

Xn�1

j¼i

iðn� jÞD xj þ
Xi�1

j¼1

jðn� iÞD xj

 !
D xi bi : (A7.1)

Applying the same procedure to the denominator we get

covðx; xÞ ¼ S
n�1

i¼1

Xn�1

j¼i

iðn� jÞD xj þ
Xi�1

j¼1

jðn� iÞD xj

 !
D xi : (A7.2)

Dividing (A7.1) by (A7.2) yields (7.20a) and (7.21a).
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Appendix 7.2

Claim

�
X
i<j

ðxj � xiÞ ¼ 2
Xn
i¼1

xi i� nþ 1

2

� �
:

ProofX
i<j

ðxj � xiÞ ¼
Xn�1

i¼1

(n� i)xi �
Xn
j¼2

(j� 1Þxj ¼
Xn�1

i¼1

nxi �
Xn�1

i¼1

ixi �
Xn
j¼2

jxj þ
Xn
j¼2

xj

¼ nx1 þ n
Xn�1

i¼2

xi þ
Xn�1

j¼2

xj þ xn � x1 �
Xn�1

i¼2

ixi �
Xn�1

j¼2

jxj � nxn

¼ (n� 1Þx1 � (n� 1Þxn þ (nþ 1Þ
Xn�1

i¼2

xi � 2
Xn�1

i¼2

ixi

¼ (n� 1Þðx1 � xnÞþ
Xn�1

i¼2

[(nþ 1Þxi � 2ixi� ¼ 2
Xn
i¼1

xi
nþ 1

2
� i

� �
:
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Chapter 8

Multiple Regressions

Introduction

The purpose of the simple regression is to study the relationship between one

explanatory variable and one dependent variable. The purpose of a multiple regres-

sion (the term was first used by Pearson and Lee (1908)) is to learn about the

relationships between several explanatory variables and a dependent variable. The

extension of the model from one explanatory variable into several explanatory

variables introduces several complications. For example, in a multiple regression

setting one has to consider the effects of the relationships among the explanatory

variables on the estimates. On the other hand, an advantage is that one can mix the

regression methodologies used (i.e., apply different regression methodologies to

different explanatory variables). In this chapter we will be mainly interested in

methods of multiple regressions that are based on the simple regression coefficients.

By “based on” we mean not only that the multiple regression coefficients are

derived by the same principle that is used to derive the simple regression

coefficients but also that the simple regression coefficients are used as the building

blocks of the multiple regression coefficients. As such, one can learn about their

properties from the properties of the simple coefficients. In particular, we have

shown in Chap. 7 that the Ordinary Least Squares (OLS) and semi-parametric Gini

regression estimators can be interpreted as the slopes of the linear approximations

to a regression curve, because they are based on weighted averages of slopes

defined between adjacent observations. In other words, the linearity assumption

on the regression curve is not used in the estimation stage. This property continues

to hold in our extension into the multiple regression case. However, we do intro-

duce some kind of a linearity requirement. The linearity requirement differs from

the linearity assumption on the model because it is imposed on the set of equations

that are used to derive the multiple regression coefficients, as will be seen below.

Within the class of multiple regressions we will refer to a regression method as a

“covariance-based” method if the set of normal equations (e.g., the first-order

conditions of the optimization) can be written as a set of linear equations, where

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_8,
# Springer Science+Business Media New York 2013
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the unknown parameters (to be estimated) are the regression coefficients (or

covariances) between the pairs of random variables. This family includes OLS

regressions, Instrumental Variable Least Squares (OLS-IV), Gini regressions,

Instrumental Variable Gini regression (Gini-IV), and the Extended Gini (EG)

family of regressions (Schechtman, Yitzhaki & Artsev, 2008). Those regression

methods share several properties that can be traced to the properties of the covariance

and of the linearity of the normal equations, hence the advantage of incorporating

them into one family.

One important shared property is a geometric property, already known for OLS,

which we will heavily rely on in this chapter. DeLaubenfels (2006) who reviews the

victory of the OLS over alternative methods such as the Least Absolute Deviation

(LAD) which preceded it points out that “Geometry—specifically an inner product

being used to produce angles and orthogonality—is offered as the reason for least

squares becoming preferable.” (p. 315).

It is important to stress two fundamental issues in the definition of the

covariance-based regressions: the linearity of the set of equations and the fact

that the simple regression coefficients are serving as constants (to be shown

later). Those two issues determine the properties that distinguish these regressions

from other regressions. The linearity requirement implies that the multiple regres-

sion coefficients have explicit representations, unlike other regression methods

such as quantile regression, Mean Absolute Deviation regressions (MAD), and

the regression that is based on the minimization of the Gini of the residuals. The

fact that the multiple regression coefficients are based on the simple ones implies

that the properties that we have listed in the previous chapter on simple regression

coefficients carry through to the multiple regression framework, although it is done

in a more complicated way than in the simple regression due to the possible

interaction of each explanatory variable with other explanatory variables. A third

property can be traced to the above two requirements: one can derive the estimates

without using an optimization procedure. (In the OLS one can derive the estimators

through an optimization, but one can also derive them without relying on

optimization.)

The aim of this chapter is to develop the properties of GMD and EG multiple

regressions coefficients. However, instead of concentrating on the properties of

those regressions alone, we develop the properties of a wider family that includes

OLS as a member. In this sense we follow and further develop the argument by

DeLaubenfels (2006, p. 315) who argues “. . .definitions and fundamental results in

the general linear model, analysis of variance, conditional probability, indepen-

dence, sufficiency, and time series can be unified and clarified as deriving from the

inner product.” The advantage of looking at the entire family is that this approach

enables the user to mix different regression methods such as OLS and Gini

regressions in one analysis. We note that we do not detail the estimation procedures

and the calculations of the variances of the estimators in this chapter. This will be

done in Chaps. 9 and 10.

Also, we do not repeat the concepts that are applicable both in the simple and

multiple regressions such as the equivalents of R2.
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The structure of the chapter is the following: in Sect. 8.1 we show that the

regression coefficients in a covariance-based multiple regression are derived by

solving a system of linear equations with the simple regression coefficients serving

as constants and describe the restrictions and properties imposed on GMD or EG

regressions. Section 8.2 offers an alternative interpretation of Gini regression as a

linear approximation of a general regression curve, Sect. 8.3 deals with combining

the minimization and the semi-parametric approaches, Sect. 8.4 compares between

OLS-IV and Gini-IV regressions, Sect. 8.5 discusses the effects of commonly used

practices in the multiple regression framework, and Sect. 8.6 concludes.

8.1 Multiple Regression Coefficients as Composed

of Simple Regression Coefficients

The aim of this section is to show that the multiple regression coefficients in

covariance-based regressions are derived by solving a set of linear equations that

are composed of simple regression coefficients. As in the previous chapter, the

presentation is restricted to population parameters. The estimators and the inference

about them will be presented in Chaps. 9 and 10, respectively. However, it is worth

to keep in mind that except for corrections for degrees of freedom, all estimators are

sample’s analogues of the population parameters.

Let (Y, X1, . . ., XK) be continuous random variables that follow a multivariate

distribution with finite second moments. For every choice of constants a,
b1, . . ., bK define the random variable e by the following identity:

Y � aþ b1X1 þ � � � þ bKXK þ e: (8.1)

At this stage, a, b1, . . ., bK are arbitrary constants (b1, . . ., bK will later stand for

the multiple regression coefficients, while a will be a location parameter). The

random variable e is defined as a slack variable, intended to fulfill identity (8.1).

The symbol � is used to indicate that at this stage there are no assumptions

imposed on e and all its properties are determined by the properties of the distribu-

tion of (Y, X1, . . ., XK). Equation (8.1) is a tautology, which means that no

assumptions have been imposed.

Let T1, . . ., TK be K random variables. The covariances between Y and these

variables define a set of identities as follows:

cov Y;T1ð Þ � b1cov X1;T1ð Þ þ � � � þ bKcov XK;T1ð Þ þ covðe;T1Þ (8.2)

cov Y;Tkð Þ � b1cov X1;Tkð Þ þ � � � þ bKcov XK;Tkð Þ þ covðe;TkÞ

cov Y;TKð Þ � b1cov X1;TKð Þ þ � � � þ bKcov XK;TKð Þ þ covðe;TKÞ:
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Dividing each line by the appropriate covariance, subject to the assumption that

cov(Xk, Tk) 6¼ 0, (k ¼ 1, . . ., K) we get:

b01 � b11þ � � � þ bK bK1 þ be1 (8.3)

b0k � b1 b1k þ � � � þ bk1þ � � � þ bK bKk þ bek

b0K � b1 b1K þ � � � þ bK1þ beK

where the index 0 indicates the dependent variable, bej ¼ cov( e ;TjÞ
cov(Xj;TjÞ

;

bkj ¼ cov(Xk;TjÞ
cov(Xj;TjÞ

are the regression coefficients in the simple regressions of Xk

on Tj, k,j ¼ 1, . . ., K, and b0j ¼ cov(Y,TjÞ
cov(Xj;TjÞ

:

Two special cases are the OLS (iff Tj ¼ Xj) and the Gini (iff Tj ¼ F(Xj)).

Provided that the rank of the matrix of the coefficients composed of the bkj’s is K
we get the following “solution” of the identities in (8.3):

b1

bK

0
BB@

1
CCA �

1 b21 bK1

b1K b2K 1

0
BB@

1
CCA
�1 b01 � be1

b0K � beK

0
BB@

1
CCA � A�1½b0 � be� (8.4)

whereA�1 is a K � Kmatrix, while the b’s are K � 1 vectors. The set of identities

(8.4) is the basic structure of the identities that hold in an arbitrary linear model.

So far no assumption has actually been imposed, except that cov(Xk, Tk) 6¼ 0,

k ¼ 1, . . ., K, and that the rank of the matrix A is equal to K.

We now impose a set of restrictions (assumptions, in politically correct terms).

We impose them on the data in the sample (without imposing any restriction in the

population). The restrictions hold in the sample by construction, and therefore

cannot be verified nor tested without additional information.

The set of restrictions to be imposed, referred to as “orthogonality conditions,” is

given by

bek ¼ 0; for k ¼ 1; . . . ;K: (8.5)

Note that for convenience we keep the notation although these are sample

values. One possible interpretation of (8.5) can be that it represents first-order

conditions for an optimization with respect to a target function. This is the case

for a specific choice of the variables Tk. For example, if Tk ¼ Xk then we are in the

OLS regression case. Alternatively, one can follow DeLaubenfels’ (2006) geomet-

ric interpretation that the inner products of the vectors of explanatory variables and

the residual are zero. That is, the explanatory vectors are orthogonal to the residual.

In both cases it should be remembered that those conditions are imposed on the

data and there is no a priori reason to believe that they exist in the population.
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(Some implications of these conditions in the population can be tested, as was

shown in Chap. 7.) The consequence of imposing the orthogonality conditions is

that (8.4) now turns from an identity to a solution of a set of linear equations, so that

bk(k ¼ 1, . . ., K) cease to be arbitrary constants but become the solutions of a set

of linear equations.

Formally, using the restrictions (8.5), the identities of (8.4) turn into (8.6):

b1

bK

0
BB@

1
CCA ¼

1 b21 bK1

b1K 1

0
BB@

1
CCA

�1 b01

b0K

0
BB@

1
CCA ¼ A�1b0: (8.6)

The structure given in (8.6) is general, and it corresponds to all members of

the covariance-based regressions, depending on the choice of Tk, k ¼ 1, . . ., K.
Special cases include:

(a) Tk ¼ Xk for all k, k ¼ 1, . . ., K. Then it is easy to see that (8.6) represents

the OLS.

(b) Tk ¼ F(Xk) for all k, k ¼ 1, . . ., K. Then (8.6) represents the semi-parametric

Gini regression.

(c) Tk ¼ �½1� F(XkÞ�nk for all k, k ¼ 1, . . ., K, and nk are given parameters

supplied by the researcher. Then (8.6) represents the structure of the extended

Gini regression.

(d) Tk ¼ Zk for some k, k ¼ 1, . . ., K. Then (8.6) represents the structure of an

OLS-IV regression.

(e) Tk ¼ F(Zk) for some k, k ¼ 1, . . ., K. Then (8.6) represents the structure of a

Gini-IV regression.

Several additional properties of (8.6) are worth mentioning.

By choosing Tk one is choosing a transformation to be applied to the data, which

is actually a choice of the variability measure used (variance in OLS (a), Gini or

extended Gini in the regressions defined in (b) and (c), respectively, covariances

between the variables and the variable Z (or a function of it) in the cases of

instrumental variables, i.e., (d) and (e)). As a result, this choice determines the

metric used (Euclidean in the case of OLS, city block in the case of Gini) and the

“orthogonality conditions” applied. In the case of OLS the orthogonality conditions

are cov(Xk, e) ¼ 0 for all k, under the Gini regression they are cov(F(Xk), e) ¼ 0

for all k, etc. As we have shown in the simple regression case, the choice of the

variability measure is actually a choice of the weighting scheme to be applied to the

slopes defined between adjacent observations of the explanatory variables. This is

an important point that seems to be forgotten: the basic building blocks in the

regression are the slopes defined between adjacent observations. Hence the differ-

ence between the alternative methods in the covariance-based family is in the

weighting schemes used in constructing the weighted average of the slopes defined

between pairs of adjacent observations.
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Having realized that, it is clear that each of the K equations in (8.4) can be

defined with different Tk so that one can have mixed regression methods: some

equations can be defined as based on GMD, others on OLS, etc. The advantage of a

mixed method is that it enables the user to check the robustness of each imposed
linear normal equation with respect to different regression methodologies, so that

only the conditional regression curves for which the linear approximations are not

seriously affected by the choice of the methodology will be considered as linear

regressions.

An additional important advantage of the mixed regression method is that one

does not switch from one regression method to the other in an “all or nothing” way.

That is, one can change the methodology of regression for each explanatory

variable without changing the methodology with respect to other explanatory

variables. This enables the user to distinguish between linear and nonlinear

equations. On the other hand, the mixed regression is a bit complicated because

the order in which one moves from one method to the other may affect the

conclusions.

One disadvantage of the mixed approach is that the target function for which the

orthogonality conditions play the role of first-order conditions for optimization is

generally not a clear or easy to understand target function. For example, one cannot

describe the mixed regression estimators as Best Linear Unbiased Estimators

(BLUE). To belittle this argument we remind the reader that the difference between

the GMD and the variance is mainly caused by the metric chosen to measure

distance. Because it is generally not clear which metric is better suited for the

social science and the choice of the metric clearly affects the conclusion as to which

estimator is a better one, we believe that the jury has not decided yet which one is a

better methodology.

It is most likely that there is no one best method. Rather, each subject matter has

its own best method. Note that the above list of possible choices of Tk does not

cover all possibilities. For example, Tk ¼ F(XkÞnk is an alternative choice of a

regression that has not been investigated yet. Our guess is that it will be similar in its

properties to the EG regression, except that by increasing nk one increases the

weight attached to slopes that are located at higher values of X (rather than to the

lower values of X, which is what EG does). Also, as we have shown in the EG

regression, one can apply a symmetric version of Tk , namely, Tk ¼ 1
2
f F(XkÞnk

þ½1� F(XkÞ�nkg . It is easy to see that even this extension does not cover all

possibilities because one can use different powers in the constructions of the

different Tk’s.

Another point to bear in mind is that would weminimize the GMD of the residuals,

as is the case in R-regression (Hettmansperger, 1984; Olkin & Yitzhaki, 1992)1, then

the orthogonality conditions would be cov(Xk, F(e)) ¼ 0, k ¼ 1, . . ., K. Hence, one
may think that this regression also belongs to the family of covariance-based

1Not to be confused with rank regressions in Fortin and Lemieux (1998) and Juhn, Murphy, and

Pierce (1993) where the rank of the variable is used in OLS regression.
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regressions. But because the residual which is defined by (8.1) is represented by its

cumulative distribution, the orthogonality conditions do not form a set of linear

equations. Hence, R-regression does not belong to the covariance-based family.

However, if one is ready to give up on the linearity requirement then the structure of

themultiple regression that is presented in (8.4) can cover other regressionmethods. In

that case we would have to solve a set of nonlinear equations. As a result, we will not

have an explicit solution to the unknown regression coefficients. A similar case occurs

if one considers minimizing the EG of the residual, which will result in a set of

covariances that are equal to zero, namely, cov(Xk, [1 � F(e)]n) ¼ 0, k ¼ 1, . . ., K,2

and similar to the case of theGMD, it will provide a set of nonlinear equations. This set

of regressions resembles quantile regressions (Koenker & Bassett, 1978; Koenker &

Hallock, 2001) because by increasing n one can stress the lower portion of the

distribution of e.3 Because the normal equations are not linear we will not discuss

them further in this book.

A special case is when the explanatory variables are independent. If the explan-

atory variables are statistically independent, then the matrix A in (8.6) is a diagonal

matrix and the estimate of each bk will be identical to the estimate one gets in the

simple (i.e., one explanatory variable) regression of Xk on Y, based on the same

orthogonality conditions. However, in general, because of the correlations among

the explanatory variables, a change in one orthogonality condition may affect all

bk’s. This is an important property of the mixed regression suggested above because

one can create regression methods that enable the investigator to move gradually

from one pure regression technique to another. This way one can uncover the

effects of the correlations among the explanatory variables on the regression

coefficients. For example, one can move from OLS to the Gini regression in a

step-wise way by changing one Tk at a time in a given order. Unless the explanatory

variables are statistically independent, the changes in the estimates will be path

dependent because the order in which the explanatory variables are selected can

affect the estimated regression coefficients. The effect of changing the regression

methodology with respect to one explanatory variable on the sign of the regression

coefficient of another explanatory variable will be demonstrated in Chap. 19.

The last property is the following: if the model in the population is truly linear

and the residuals are independent of the explanatory variables, as assumed in the

classical model of regression, then the regression methodology used will not affect

the expected values of the estimators. However it may affect the efficiency of the

estimation procedure. Using the term “efficiency” to evaluate the performance of an

2Note that when minimizing the EG of the error term there is only one n: the one applied to

the residual.
3A critical point that distinguishes between the two approaches of the extended Gini regression is

the variable to which the weighting scheme is applied: in EG regressions that belong to the

covariance based family the application of the weighting scheme is to the explanatory variables,

while in the EG minimization, the application is to the residuals. Under the quantile regression

regime the application of the weighting scheme is also to the residuals. See Ben Hur, Frantskevich,

Schechtman, and Yitzhaki (2010).
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estimator may be a bit problematic because the choice of the best estimator may be

affected by the variability measure used to measure efficiency. For example, using

the GMD (or the square of it) as a measure of variability may bias the selection

procedure of the best regression toward a GMD-based regression, while using the

variance may cause the OLS to be the most efficient. However, because for large

samples the distributions of the estimators tend to converge toward the normal

distribution, it seems that defining efficiency in terms of the variance is justified, at

least in large samples.

The methodology described above has one restriction. In order to have a

solution, the matrix A in (8.6) must be of rank K. This may create a problem in

the GMD or the EG regressions whenever one uses several monotonic

transformations of a variable as explanatory variables in the regression model.

The reason is because monotonic transformations do not change the rankings of

the observations; therefore, the columns representing the cumulative distributions

of the explanatory variables will be identical, resulting in multicollinearity. In order

to overcome this problem one can either use a different nk for each explanatory

variable or, alternatively, impose a given structure on the relationship between the

explanatory variables. For example, assume that we want to include bothX andX2 in

the Gini regression model. That is, the estimated model is

Ŷ ¼ aþ bXþ cX2

where b and c are the regression coefficients that were obtained by OLS for X and

X2, respectively.

Then, in the Gini regression we define a new explanatory variable, X1 , as

X1 ¼ Xþ c
b
X2 (where b and c are taken from the OLS regression) and run

the model

Ŷ ¼ a0 þ dX1:

So we have

Ŷ ¼ a0 þ dX1 ¼ a0 þ d Xþ c

b
X2

� �
¼ a0 þ dXþ dc

b
X2:

Now, if b ¼ d then the meanings of the coefficients are the same as in OLS.

However if they are different then the coefficients for both X and X2 will change.

Alternatively one can use a mixture of methods in the same regression model—

do OLS on some variables and do Gini regression on the others. Those issues will

be elaborated on in Chap. 21 which presents applications of the suggested

methodology.

Having solved for the regression coefficients we move to determine the constant

term, a. This term can be selected according to several criteria, depending on
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through where one wants the linear approximation to the regression curve to pass.

In order to see that define the residual without subtracting a constant. That is, let

e0 ¼ Y� b1X1 � � � � � bKXK ¼ eþ a: (8.7)

Then

MinaEfðe0 � aÞ2g (8.8)

yields a constant term that will cause the regression line to pass through the

expected values of the random variables, while

MinaEfje0 � ajg (8.9)

yields a constant term that will cause the regression line to pass through the medians

of the variables. In short, one can use one criterion for selecting the slopes and

another one in order to select the constant, and there is no a priori reason not to

separate those criteria.

8.2 Gini Regression as a Linear Approximation

of the Regression Curve

The semi-parametric Gini regression belongs to the covariance-based family of

regressions which can be interpreted as having a linear structure imposed on the

data. In this section we develop an additional interpretation as a linear approxima-
tion of the regression curve. This interpretation will make it easier to compare and

to incorporate the Gini and EG regressions into regressions other than the OLS. In

order to save space and repetitions we present the linear approximation approach

only for the EG regressions. The Gini regression is a special case.

Let (Y, X1, . . ., XK) be a (K þ 1)-variate random variable with expected values

(mY, m1, . . ., mK) and a finite variance–covariance matrix S. Let g(x) ¼ E{Y|X1 ¼
x1, . . ., XK ¼ xK} be the regression curve. The residual at (Yi, X1i, X2i, . . ., XKi) is

defined as the deviation of Yi from the linear approximation

aþ b1X1i þ b2X2i þ � � � þ bKXKi;

i:e:;

ei ¼ Yi � a� b1X1i � � � � � bKXKi:

Again, no assumptions are imposed on the residual, and the regression curve

need not be a linear function of the explanatory variables.

An investigator is interested in estimating a linear approximation of the regres-

sion curve. Consider a first-order Taylor expansion around zero of the regression

curve. By construction, the expansion is linear.
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The slopes of the linear approximation can be written as:

dy
dx1

dy
dxi

dy
dxK

0
BBBB@

1
CCCCA ¼

@g
@x1

þ @g
@x2

dx2

dx1

þ � � � þ @g
@xK

dxK

dx1

� � � � � � � � � � � �
@g
@x1

dx1

dxi

þ � � � � � � þ @g
@xK

dxK

dxi

@g
@x1

dx1

dxK

þ @g
@x2

dx2

dxK

þ � � � þ @g
@xK

0
BBBBB@

1
CCCCCA

(8.10)

Using the simple regression coefficients developed in Chap. 7 to represent the

simple slopes in the Taylor expansion presented in (8.10), we now replace
dxj

dxk

by

bjkð nkÞ ,4 and
dy
dxk

by b0kð nkÞ; where the subscript 0 refers to the dependent

variable and k ¼ 1, . . ., K indicate the explanatory variables. Note that if g(x)

was truly linear then
dxj

dxk

would be exactly equal to bjkð nkÞ (regardless of the

value ofnk) and
dy
dxk

would be exactly equal to b0kð nkÞ. Having done that, we define
b1, . . ., bK by

b01ð n1Þ
� � �

b0iðniÞ
b0Kð nKÞ

0
BBBBB@

1
CCCCCA

¼

b1þ � � � þ bK bK1ð n1Þ
� � � � � � � � � � � �

b1 b1ið niÞþ � � � � � � þ bK bKið niÞ
b1 b1Kð nKÞþ � � � þ bK

0
BBBBB@

1
CCCCCA

¼

1 b21ð n1Þ � � � bK1ð n1Þ

b1Kð nKÞ b2Kð nKÞ � � � 1

0
BBBBB@

1
CCCCCA

b1

bK

0
BBB@

1
CCCA (8.11)

The rationale is that bi (the solution to the set of equations given by (8.11))

seems to be a reasonable estimate of
@g
@xi

: Using (8.11) one can solve for the

estimators of the partial derivatives
@g
@xk

:

b1
�
�
bK

0
BB@

1
CCA ¼

1 b21ð n1Þ � � � bK1ð n1Þ
� � � �
� � � �

b1Kð nKÞ b2Kð nKÞ � � � 1

0
BB@

1
CCA

�1 b01ðn1Þ
�
�

b0KðnKÞ

0
BB@

1
CCA: (8.12)

4The term bjkð nkÞ is intended to allow a different treatment for each explanatory variable,

according to nk, the parameter of the extended Gini. See Schechtman et al. (2008).

186 8 Multiple Regressions

http://dx.doi.org/10.1007/978-1-4614-4720-7_7


Note that in (8.12), the vector on the right-hand side depends on all the ni’s. Also,
the denominator of row k (k ¼ 1, . . ., K) in the matrix (before inverting it) is

D(nk;XkÞ ¼ �ðnk þ 1ÞcovðXk; 1� Fk Xð Þ½ �nkÞ;

i.e., the denominator in each row is the extended Gini of the respective variable.

We refer to the parameters bi as implied partial derivatives because we do not

argue that they represent the derivatives at a given point, but if one accepts the

notion of a linear approximation and accepts simple regression coefficients as

representing weighted averages differentials then for consistency it seems reason-

able to accept the implied partial derivatives as representing the partial regression

coefficients.

If (8.10) represents slopes of a truly linear model, then all the coefficients (i.e.,

for all values of ni) at the right-hand side of (8.12) are constants, and the left-hand

side must represent the partial derivative of the regression curve (by construction).

On the other hand, if the regression curve is not linear, then by changing ni, one can
trace the change in @g/@xk , other things being equal, by changing the weighting

scheme attached to the slopes of variable k. Note that by other things being equal it

is meant that all rows except row k in the matrix of the regression coefficients in

(8.10) remain unaffected, and all elements in the vector of the simple regression

coefficients of the dependent variable on the explanatory variables except element k

do not change. This is a unique property of the EG, which is due to the fact that

there are two covariances and two correlations between each pair of random

variables. Therefore, bijð njÞ can be changed without affecting bjið niÞ . (To see

this, note that each line is normalized separately.)

Because we are allowed to multiply each row by a constant (in our case the

constant is the extended Gini of the explanatory variable), the matrix can be

presented in a way which is similar to the variance–covariance matrix in OLS,

with Gini’s and co-Gini’s replacing the variances and covariances, respectively.

Similar to the simple regression case, the multiple regression procedure

generates equivalents to the OLS’s normal equations although it is not based on

an optimization procedure. By defining the residual and substituting for the multiple

regression coefficients, it can be shown that

covðe; ½1� Fk(X)�nkÞ ¼ 0 for k = 1, . . . , K: (8.13)

Similar to the GMD regression case, one can use the other EG covariance

(between X and (a function of) e) to see whether it is also equal to zero. This is

an additional informal test for the specification of the model (see Chap. 7).

However, we do not pursue this line of research in this book.

To sum up: the usual interpretation of the estimates of regression coefficients is

that they are derived by applying an optimization to a target function (minimum

sum of squared errors, maximum likelihood) subject to a constraint that the true

regression model is linear. In this section we added another interpretation: the

regression coefficients in a multiple regression framework can be interpreted as
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being the coefficients of a linear approximation of an unknown regression curve.

Those alternative interpretations enable the user to produce mixed regressions. That

is, some of the normal equations can be borrowed from the OLS while others can be

borrowed from the Gini method. In covariance-based regressions we characterize

the solution as based on solving linear equations with covariances serving as the

parameters in the linear equations. However if one is ready to give up the linearity

of the equations to be solved, and as a result he is ready to lose the ability to get

explicit solutions, then one can substitute first-order conditions for optimization

by other criteria such as MAD or quantile regressions in some (or all) of the

equations solved in (8.10). We will not analyze the implications of such regressions

in this book.

8.3 Combining the Two Regression Approaches:

The Multiple Regression Case

We have shown in Chap. 7 that the minimization of the GMD of the residuals in the

simple regression case leads to R-regression. This methodology was already

presented in Hettmansperger (1984) and others in a multiple regression framework

and the derivation is similar to the one for the simple regression case, except that the

optimization is carried out for K variables. From our point of view the major

drawback of this methodology is that (similar to MAD and quantile regressions)

there are no explicit expressions for the regression coefficients. This property

impairs the ability to have an intuitive explanation of the results of the optimization

because one cannot see how the estimators are composed. In addition it makes it

hard to analyze the effects of the interconnections between the explanatory

variables on the regression coefficients or even to see the roles that different

variables play because it is an “all or nothing” approach. Technical optimization

without an intuition is a bit dangerous because one has to trust the results of a

computer program. However, having presented the multiple regression coefficients

as composed of simple regression coefficients enables us to combine the two Gini

regression methodologies, the semi-parametric (no model is assumed) and the

minimization (a linear model is assumed) regressions, in order to check whether

the two Gini regressions yield the same regression coefficients.

In order to do that, the first step is to use the semi-parametric Gini regression of

(8.6), case (b). As a result of applying the method on the data one gets the semi-

parametric regression coefficients and a vector of residuals eN that satisfies (8.5).

Let us concentrate on the numerator of (8.5) and denote it by

cov eN; F Xkð Þð Þ � 0 k ¼ 1; . . . ;Kð Þ: (8.14)

The K equations in (8.14) are written as identities because they are imposed on

the data. We can now use the first-order conditions of the minimization approach in
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order to construct a specification test for the linear multiple regression model. The

first-order conditions of the minimization approach are identical to (8.15) below

except that the residual that is being used is different than the one that comes from

the semi-parametric approach. That is, the first-order conditions for the minimiza-

tion approach are covðXk; FðeMÞÞ ¼ 0; k ¼ 1; . . . ;Kwhere the vector eM denotes

the residuals arising from the minimization approach. We now insert eN into these

first-order conditions and test whether the covariances are equal to zero. That is,

cov Xk; F eNð Þð Þ¼? 0; k ¼ 1; . . . ;K: (8.15)

If all the covariances in (8.15) are equal to zero, then the residual of the

covariance-based GMD regression satisfies the orthogonality conditions for the

minimization of the GMD of the residual. This means that the regression

coefficients that were derived for the semi-parametric GMD regression can also

serve as the solution of the minimization of the GMD of the residuals. If, on the

other hand, the covariance between an explanatory variable Xj and the (distribution

function of the) residual in (8.15) is different from zero for any explanatory variable

Xj, this means that the residual and Xj cannot be considered statistically indepen-

dent and the two Gini regressions produce different coefficients. In this case we

may say that the linear specification of the model failed the built-in specification

test offered by the GMD for the variable Xj. Note that this test can be performed for

each explanatory variable separately.

The same relationships that were shown in (8.14) and (8.15) hold in the case of

the EG as well. In this case the equivalent of (8.14) is (8.16) (below) while the

equivalent of (8.15) is (8.17). The explanation for this similarity is that the EG

method, just like the GMD method, has two covariances defined between each pair

of variables, and a proper specification implies independence between the residuals

and each of the explanatory variables.

cov eN; 1� F Xkð Þ½ �nkð Þ � 0; k ¼ 1; . . . ;K (8.16)

cov Xk; 1� F eNð Þ½ �nkð Þ¼? 0; k ¼ 1; . . . ;K: (8.17)

However we will not investigate this topic in this book and will restrict ourselves

to the GMD only.

8.4 OLS and Gini Instrumental Variables

There are many conceptual issues that are debated in the literature concerning the

use of instrumental variables (IV) in order to interpret a statistical relationship as a

causal relationship. We do not intend to participate in those debates because the use

of the GMD methodology does not affect the validity or invalidity of any
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conceptual argument that was raised in the debate which relied on the OLS. The

advantage of using the GMD in the case of IV is that one can get more information

about the relationship in the data, such as whether the relationships between the

dependent variable and the explanatory variables and between the explanatory

variables themselves are monotonic or not. One can learn about the robustness of

the estimates with respect to monotonic transformations or other actions taken by

the investigator and more issues concerning the handling of the data. Those issues

can be helpful in the debates about the interpretations in specific cases, but have

nothing to contribute to the guiding principles such as whether a natural experiment

is really exogenous or not, or in issues concerning the identification strategy.

The objective of this section is to present the OLS-IV and Gini-IV in the multiple

regression setting and to point out the major practical differences between them.

Those differences enable the user to get additional information that may shed some

light about the conceptual differences.

From our point of view the difference between OLS (OLS-IV) and Gini (Gini-

IV) is caused by the different measures of variability: the variance (covariance) in

the first case and the Gini (co-Gini) in the second.

This difference is concerned with whether one can use a two-stage regression in

order to derive the IV parameter or not.

It is well known, and it is demonstrated below, that one can derive the OLS-IV

estimators (or coefficients) using two alternative ways: a direct application of an IV

or by using two-stage least squares. This convenient way does not hold for the Gini-

IV. That is, under the Gini methodology the two methods can result in totally

different estimators.

We proceed as follows: we first present the equivalence of the two procedures in

the OLS setting. Then we show that when using the Gini method the equivalence

does not hold in general.

8.4.1 Two-Stage Least Squares and Instrumental Variables

We start with the basic presentation. Let Z be the matrix of instrumental variables

correlated with X but not with e. One can construct an IV estimator that will be a

consistent estimator for b:

b̂IV ¼ ðX0PZX)�1X0PZY (8.18)

where Pz, the projection matrix of Z, is defined by

PZ ¼ ZðZ0ZÞ�1
Z0: (8.19)

Note that combing the two equations gives:
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b̂IV ¼ ðX0ZðZ0ZÞ�1
Z0XÞ�1

X0ZðZ0ZÞ�1
Z0Y: (8.20)

The two-stage least squares is an instrumental variable estimation technique

for estimating the regression coefficient. In the first stage one fits the model X ¼
Zp þ r, estimates p just to obtain the predicted value of X, namely, X̂ (because there

is no interest in p itself). In the second stage one runs a regression of Y on X̂ and

estimates the regression coefficient of interest from this regression.

Proposition 8.1 In an OLS setting the direct way of estimating the regression
coefficient in an IV regression is identical to the two-stage estimation procedure.

Proof The direct estimate is bOLSD ¼ ðZ0XÞ�1
Z0Y: (8.21)

The two-stage procedure is the following: in the first stage one assumes that

X ¼ Zp þ r. Then the predicted value of X is

X̂ ¼ Zp̂ ¼ ZðZ0ZÞ�1
Z0X: (8.22)

In the second stage one uses OLS to regress Y on X̂ to get b̂
OLS

IV�2

b̂
OLS

IV�2 ¼ ðX̂0X̂Þ�1ðX̂0YÞ ¼ ððX̂0X̂Þ�1
X0ZðZ0ZÞ�1

Z0Y: (8.23)

Using basic matrix operations we get that

ðX̂0X̂Þ�1 ¼ ðX0ZðZ0ZÞ�1Z0ZðZ0ZÞ�1Z0XÞ�1 ¼ ðX0ZðZ0ZÞ�1Z0XÞ�1: (8.24)

Inserting (8.24) into (8.23) proves the equivalence of the two methods.

b̂
OLS

IV�2 ¼ ðX̂0X̂Þ�1ðX̂0YÞ ¼ ððX̂0X̂Þ�1
X0ZðZ0ZÞ�1

Z0Y

¼ ðX0ZðZ0ZÞ�1
Z0XÞ�1

X0ZðZ0ZÞ�1
Z0Y

¼ ðZ0XÞ�1ðZ0ZÞðX0ZÞ�1
X0ZðZ0ZÞ�1

Z0Y ¼ (Z’X)�1Z0Y

8.4.2 Two-Stage and IV in Gini Regressions

Unfortunately the convenient way of using two-stage Gini as an equivalent way

to identify the Gini-IV estimators is not applicable, as is stated in Proposition 8.2.

We differentiate here between the direct way of using a Gini-IV, which is based on

(8.6), (e), and the indirect way, which is based on two-stage Gini regression: in the
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first stage one estimates an IV, while in the second stage the IV participates in a

Gini regression.

Proposition 8.2 In a Gini setting the direct way of estimating an IV is in general
NOT identical to the two-stage estimation procedure.

Proof The regression coefficients in a Gini-IV regression are:

bGD ¼ ðF 0
ZX)

�1FZ
0 Y

where FZ is the matrix of cumulative distribution functions of the instrumental

variables.

Performing two-stage estimation procedure means the following:

The first stage is

X̂ ¼ Z(F0zZÞ�1
F0zX

while the second stage

b̂
G

IV�2 ¼ ðF0
X̂
X̂Þ�1

F0
X̂
Y ¼ ððF0

X̂
Z)(F0zZÞ�1

F0zX)
�1F0

X̂
Y ¼ ðF0zX)�1F0zZ(F

0
X̂

0
Z)�1F0

X̂
Y:

However, the matrix F in the direct way is F of Z, while two of the F’s in the two-

stage procedure are F’s of X̂. Therefore, unless the ranks of all instruments and the

original explanatory variable are identical, we should expect different results.

The explanation to this result is that the cumulative distribution is not in general

a linear transformation of the variate, and therefore, it is as if one uses a nonlinear

transformation and expects the linear relationship to hold.

8.5 Effects of Commonly Used Practices

We have demonstrated in (8.6) and (8.12) that the regression coefficients in OLS

and in the semi-parametric Gini regressions are derived by solving linear equations

with the simple regression coefficients between all pairs of variables being the

parameters of the equations. The decompositions of the simple regression

coefficients (Chap. 7) and the NLMA curves (Chap. 5) enable one to check the

sensitivity of the estimated regression coefficients to some actions that are com-

monly taken by the researcher (see an application in Chap. 19). However we do not

have a general formula for performing sensitivity analyses and our discussion in

this section will be based on classification of the most frequently performed actions

and their potential effects on the results.
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As in the simple regression case, the sensitivity analysis we are interested in is

focused on the following actions:

(a) Throwing extreme observations (a.k.a. outliers).

(b) Throwing irrelevant observations and using a subgroup of the population—e.g.,

imposing bounds on observations that participate in the regression.

(c) Substituting a continuous variable by a discrete one with the data entries taken

to be either mid-points or averages. (Binning according to Wainer, Gessaroli,

and Verdi (2006)).

(d) Applying a monotonic non-decreasing transformation to one or more variables.

We have pointed out two complementary methods for sensitivity analysis. One

method is based on using the concentration and NLMA curves (Chap. 5), while the

other is based on the decomposition of simple regression coefficients (Chap. 7). The

approach based on concentration curves fully describes the contributions of differ-

ent segments of the distribution of the explanatory variable to the regression

coefficient but it can only handle actions that affect one explanatory variable at a

time. On the other hand the approach that is based on the decomposition of the

simple regression coefficients can handle actions that affect several explanatory

variables simultaneously, because one can simultaneously decompose all simple

regression coefficients. However, it is limited to the sections chosen by the investi-

gator. Hopefully, future research will lead to computer software that will enable

more complicated analyses. Because most of the analyses described in this section

are actually based on the analysis carried out in the simple regression case (see

Chap. 7), we will only focus on the differences between the multiple regression and

the simple regression cases.

Note that under cases (a) and (b) above, omitting an observation or several

observations means that the coefficients of all the variables which participate in

the regression are affected, while under cases (c) and (d) only some specific

coefficients are affected. Also, case (c) can be viewed as a special case of (d). In

this section we are mainly interested in the effect of a transformation on the sign of

the estimator. The reason for stressing sign change is that it may reverse the

conclusion reached. Instead of positive (negative) effect it may turn the effect into

a negative (positive) one.

For convenience we replicate (8.6).

b1

bK

0
BB@

1
CCA �

1 b21 bK1

b1K 1

0
BB@

1
CCA

�1 b01

b0K

0
BB@

1
CCA � A�1b0: (8.6)

It is easy to see that throwing extreme or irrelevant observations affects all the

coefficients, and therefore it will be the hardest to analyze. With respect to the other

two actions, it is worthwhile to distinguish between actions taken with respect to

the dependent variable and the ones taken with respect to the explanatory variables.
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An action taken on the dependent variable will not affect the matrix A and only the

vector b0 will be affected. In this case, substituting a continuous variable by a

discrete variable can be analyzed by decomposing each element in the vector b0 to
the effect of intra- and inter-group coefficients, with the groups being defined as

the sections of the variable that were aggregated. The effect of binning will be the

elimination of the intra-group component from the equation and being left with

the inter-groups component. The effect of applying a monotonic increasing trans-

formation is more complicated to analyze. It is our intuition that it is worth to check

the regression coefficients that are based on non-monotonic relationship because

then one can turn a positive (negative) component into a negative (positive) one.

The effect of an action taken with respect to an explanatory variable is more

complicated to analyze than the effect of an action taken with respect to the

dependent variable because in this case both a column and a row are affected in

(8.6), the former with a transformation applied to the dependent variable in a simple

regression, while the latter with a transformation on the explanatory variable. Again

the effect of binning can be seen by decomposing each component into the omitted

and non-omitted parts, but the ability to guess the effect on the inverted matrix is

pretty limited. A similar case occurs when dealing with a monotonic transformation

of the variable. Note, however, that because of the non-symmetrical relationship in

the Gini regression the type of concentration curves analyzed to discover non-

monotonicity with respect to variables arranged in a row are different than the

ACCs analyzed when analyzing the effect of a transformation on the regression

coefficient in a column. Because of the complications in dealing with a multiple

regression, we will restrict the analysis in the empirical section to the case of two

explanatory variables, which is as if one analyzes the effect of a transformation of

one variable, with the rest of the model being kept untouched. However, appropri-

ate software is needed in order to enable handling multiple regression with more

than two explanatory variables.

8.6 Summary

In this chapter we have introduced the covariance-based family of regressions,

which is characterized by having linear normal equations that are composed of

covariances between the variables. The fact that OLS, Gini, and extended Gini

methods belong to one family enables the user to stress the similarities and

differences among the various members and to combine OLS, Gini, and extended

Gini methods in the same regression. The advantage of using the family is that it

enables the researcher and the reader to see whether (and how) the estimated

regression coefficients are sensitive to the decisions made by the researcher such

as the regression method used, the actions of omitting observations, transforming a

continuous variable into a binary (or grouped) one, and the use of monotonic

transformations.
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The major advantage of using the extended Gini regression is its ability to stress

different regions along the range of each explanatory variable without applying

monotonic transformations to the data. The result is that all the properties that the

original data possess, such as an aggregation property, are kept intact.

Because the parameters in the multiple regression case are based on simple

regression parameters, all the properties which were mentioned when describing the

simple regression coefficients can be applied to the multiple regression framework.

For example, the decomposition of the regression coefficient into intra- and inter-

group components with the weights being derived from the variability measures of

the explanatory variable can be applied into a multiple regression framework by

substituting the simple regression coefficient by its components.

Additional advantages of those regressions are that: (a) the investigator does not

have to impose a linear model on the population, but rather to produce linear

approximations to the regression curves. If the linear approximation is not good

enough then those deviations will percolate to the properties of the resultant

residuals. (b) One can mix methods of regression in order to check the sensitivity

of the estimates to the regression methodology used. This is illustrated in Chap. 21.

A disadvantage of the suggested methodology is that it is inaccurate to describe the

estimates as best or optimal, because they are results of mixed methodologies.
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Chapter 9

Inference on Gini-Based Parameters: Estimation

Introduction

The population parameters based on Gini were introduced in previous chapters.

One of the objectives in practice is to estimate them from a given data set. This is

the main objective of this chapter. When dealing with estimation, several issues

come in mind. Is the data based on individual observations or are they grouped? Is

the sampling procedure based on equal probability or is it a stratified one? Are the

variables of interest coming from a continuous or a discrete distribution? The

estimation procedures depend on the answers to the above questions. In addition,

the Gini-based parameters have various presentations which lead to different

estimators, each one being the natural estimator of a specific definition.

The estimation technique used throughout this chapter is mainly based on

U-statistics theory (Hoeffding, 1948). The theory related to U-statistics allows a

single theoretical framework to be used in nonparametric statistics to prove results

for a wide range of test-statistics and estimators relating to the asymptotic normality

and to the variance (in finite samples) of such quantities. In addition the theory has

applications to estimators which are not themselves U-statistics, but functions of

(dependent) U-statistics, which is the case when the correlation and the overlapping

index are estimated. It turns out that most of the estimators of the Gini parameters

obtained in this chapter are the sample’s representations of the parameters. We start

with a short review of the method.

Let P be a family of probability measures on an arbitrary measurable space. The

problems treated here are nonparametric, which means that P will be taken to be a

large family of distributions subject only to mild restrictions such as continuity or

existence of moments. Let y(P) denote a real-valued function defined for P ∈ P.
We say that y(P) is an estimable parameter within P if for some integer m there

exists an unbiased estimator of y(P) based on m i.i.d. random variables distributed

according to P; that is, if there exists a real-valued measurable function h

(X1, . . ., Xm) such that

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_9,
# Springer Science+Business Media New York 2013
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EP½hðX1; . . . ;XmÞ� ¼ yðPÞ for all P 2 P (9.1)

where X1, . . ., Xm are i.i.d. random variables having a distribution P. The function

h(X1, . . ., Xm) is called the kernel and the smallest integer m with this property is

called the degree of the kernel. The function h may be assumed to be a symmetric

function of its arguments without loss of generality because if h is an unbiased

estimator of y(P), then the average of h applied to all permutations of the variables

is still unbiased and is, in addition, symmetric.

For a real-valued measurable function h(X1, . . ., Xm) and for a sample

x1, . . ., xn, of size n � m from a distribution P, a U-statistic with kernel h is

defined as

Un ¼ Un(h) ¼ 1

n

m

� � X
Cm;n

h(xi1 ; . . . ;ximÞ (9.2)

where the summation is over the set Cm,n of all
n
m

� �
combinations of m integers

i1<i2< � � �<im chosen from (1, 2, . . ., n).
If y(P) ¼ EP[h(X1, . . ., Xm)] exists for all P ∈ P, then an obvious property of

the U-statistic, Un is that it is an unbiased estimate of y(P). Moreover it has the

optimality property of being consistent and being a best unbiased estimate of y(P) if
P is large enough. The asymptotic distributions of a U-statistic and of functions of

(dependent) U-statistics will be discussed in Chap. 10, the subject of which is

testing. The U-statistic discussed above is a one-sample U-statistic. The natural

extension to a k-sample U-statistic is called the generalized U-statistic. A k-sample

U-statistic will be based on a kernel function of the k samples, with degrees

(r1, . . ., rk), where ri is the degree with respect to the ith sample. Details can be

found in Randles and Wolfe (1979).

The structure of the chapter is as follows: Sect. 9.1 deals with estimators based

on individual observations coming for a continuous distribution while Sect. 9.2

provides the estimators for the discrete case. In Sect. 9.3 we discuss the case of

individual data, weighted, and Sect. 9.4 is devoted to grouped data. Section 9.5

concludes.

9.1 Estimators Based on Individual Observations:

The Continuous Case

9.1.1 The Gini Mean Difference and the Gini Coefficient

We start with the basic parameter, the Gini mean difference (GMD). A close

relative of the GMD is the Gini coefficient. The GMD is an absolute measure

while the Gini coefficient is a relative one. The GMD is mainly used in the areas of
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finance and econometrics, while the Gini coefficient is mainly used in the areas of

income distribution and public policy evaluations. We will give estimates for both

versions. We start with the GMD. Let X1, . . ., Xn be independent and identically

distributed random variables from a distribution with cdf F(x) having a finite mean.

The GMD is defined as

DX ¼ E jX1 � X2jð Þ ¼ 4COV X; F Xð Þð Þ

where X1 and X2 are two independent draws from a continuous distribution F with a

finite mean. There are several estimators for DX, each corresponds to a different

way of spelling Gini.

Following the U-statistics theory, the most natural one is to define a symmetric

kernel of degree 2 as h(X1, X2) ¼ |X1 � X2|, as detailed in the following

proposition:

Proposition 9.1 Let (X1, X2) be a random sample of size 2 from a continuous
distribution function with a finite first moment. Let h(X1, X2) ¼ jX1 � X2j. Then
h(X1, X2) is a symmetric kernel of degree 2 for

DX ¼ E jX1 � X2jð Þ ¼ 4COV X; F Xð Þð Þ

and the U-statistic is given by

UðDXÞ ¼ 1

n

2

� � X
i<j

jxi � xjj: (9.3)

Proof E(h(X1;X2ÞÞ ¼ E(jX1 � X2jÞ ¼ DX (as shown in Chap. 2 (2.1), henceUðDXÞ
is a U-statistic for DX. That is, it is a consistent and unbiased estimator of DX (see

Randles & Wolfe, 1979; Schechtman & Yitzhaki, 1987).

Several additional ways to estimate the GMD were suggested in the literature.

The first is as a linear combination of order statistics

UðDXÞ ¼ 1

4
n

2

� � Xn
i¼1

(2i� 1� n)xðiÞ ¼ 1

4
n

2

� � Xn
i¼1

ixðiÞ � n(nþ 1Þ
2

�x

¼ 1

8
n

2

� � Xn�1

i¼1

i(n� i)ðxðiþ1Þ � xðiÞÞ (9.4)

where x(i) is the ith order statistic of x1, . . ., xn (see Kendall & Stuart, 1969;

Yitzhaki & Olkin, 1988 for details). The advantage of a presentation based on a

linear combination of order statistics is that one can use the available literature on
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order statistics in order to establish the properties of the estimator (see David, 1981;

Stigler, 1974).

A natural way to estimate the Gini coefficient, which is defined as G ¼ DX

2 m , is
simply by dividing each of the above-mentioned estimators by the natural estimator

of 2m, namely, by 2�x. One suggestion along this idea is given by

Ĝ ¼ 1

n(n� 1Þ�x
Xn�1

i¼1

i(n� i)(xðiþ1Þ � xðiÞÞ

(see Gastwirth, Modarres, & Bura, 2005).

An alternative estimator of the Gini coefficient is based on the following

definition:

G ¼ 2

m

ð1

0

xF(x)dF(x)� 1:

Using this presentation, a natural way to estimate G is by the plug-in estimator Ĝn

Ĝn ¼ 2

X

ð1

0

xFn(x)dFn(x)� 1:

Standard arguments show that Ĝn is a consistent estimate of G under weak

regularity conditions (such as the existence of the second moment).

The third direction of estimation is based on the covariance presentation of the

GMD (Lerman & Yitzhaki, 1984). From the covariance formula it becomes simple

to calculate the Gini from individual observations. First, obtain the rank (Ri) for

each observation xi. Next, calculate the sample covariance between Ri/n (which

represents the empirical distribution function) and xi. Note that unlike standard

approaches for calculating the Gini, this method does not require grouping of

individual data to economize on computations. In addition, the estimator can be

computed by using any standard statistical software.

Finally, the GMD and Gini coefficient can be estimated from the Lorenz curve.

Given a Lorenz curve LC(p), the standard way of estimating the Gini coefficient is

to approximate the area by choosing k percentiles 0 ¼ p0<p1< � � �<pk<pkþ1 ¼ 1

and computing the area of the polygon with vertices (0, 0), (p1, LC(p1)), . . .,
(pk, LC(pk)), and (1, 1). That is, the points are connected by straight lines. This

issue will be further discussed below. This procedure obviously leads to an under-

estimate of the Gini coefficient because the straight line connecting the adjacent

points always lies above the convex curve LC(p).

Several bounds exist for the GMD. Generally, if F is supported on a finite interval

[a, b] and has mean m, then 0 � GMD � 2( m�a)(b� m)
(b�a) . For “open-ended” intervals
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of the form [a, 1) the bound is GMD � 2( m� a). If F has a finite second moment

(denoted by s2) then GMD � 4
ffiffi
3

p
3

s. If F has a unique median, the bound becomes

tighter: GMD � 2
ffiffi
3

p
3

s (Cerone & Dragomir 2006).

If F is concave, supported on [a, b], then 2
3
( m� a)�GMD�

2( m�a)
(b�a) (b� m)� 1

3
( m� a)

� �
; and if F is convex on [a, b], the bounds are

2(b� m)
3(b�a) �

GMD� 2(b� m)
3(b�a) [4( m� a)� (b� a)]: (Cerone, 2008; Gastwirth, 1972).

A comprehensive review on bounding and approximating the GMD can be

found in Cerone (2008).

Whenever the sample size is small there are two problems that arise, even if the

underlying distribution is continuous:

(a) A downward bias in the estimation of the GMD and the Gini coefficient.

(b) An incompatibility between the estimates that are derived by using different

formulas of the Gini.

We start with the intuitive explanation of the cause and the size of the bias and a

suggestion how to fix it.

Let us start with the calculation of the Gini coefficient through the Lorenz curve.

For simplicity assume that all observations are positive and that the sample is of

size n. Then we have n linear segments connecting (0, 0) to (1, 1). Maximum

inequality in the sample occurs if (n � 1) observations have zero income and one

observation is positive. It is easy to see that the maximum value of the Gini

coefficient is (n � 1)/n. This value is lower than the upper bound for the population

which is equal to one. To correct for this finite population bias one can multiply the

estimate of the Gini coefficient by the finite population correction factor n/(n � 1).

An alternative way of interpreting the finite population correction factor is to

define the estimate of the Gini coefficient as representing the area between the

diagonal and the Lorenz curve, divided by the maximum possible inequality.

Because the maximum possible inequality is equal to (n � 1)/n we get the same

result as before.

A third interpretation is that the finite sample correction factor is similar to

correcting for the degrees of freedom. The bias due to a small sample also occurs in

estimating the variance. The correction in the variance world is through the use of

degrees of freedom. Using the degrees of freedom correction (i.e., dividing by

(n � 1)) solves the small sample bias.

It is worth pointing out that the formula of decomposition of the Gini coefficient

(ANOGI, see Sect. 4.2) enables us to evaluate the magnitude of the bias caused by

the use of a small sample. Applying the formula for the decomposition of the Gini

coefficient of the entire population into the contributions of the subgroups and

taking into account that each group, which is actually an observation, occupies a

section of size 1/n along the horizontal axis and that the groups (sections) do not

overlap, the connection between the Gini coefficient in the population and its

estimate is:
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G ¼ Ĝþ
Xn

i¼1
pisiGi

where G is the Gini coefficient in the population, Ĝ is the estimator based on the

Lorenz curve (and represents the between-groups Gini), while pi ¼ 1/n, si, and Gi

are the share of each observation (i.e., section) in the population, its share in the

total income, and the Gini of the ith section, respectively. Assuming a specific

distribution enables one to estimate the bias. However, in this book we do not

assume specific distributions.

We now turn to the incompatibility between the estimates that are derived using

different formulas of the Gini.

The covariance formula of the Gini coefficient is based on the cumulative

distribution function. In the sample the cumulative distribution is represented by

the empirical cumulative distribution function, which is written as a step function.

An alternative definition of the Gini is through the Lorenz curve. In the sample, the

empirical Lorenz curve is connected by linear segments. This implies an implicit

assumption of a continuous distribution function, because the horizontal axis

represents the cumulative distribution. This discrepancy between the approaches

does not create a wedge between the formulae in the case of an equal probability

sampling method because adding (or subtracting) a constant from a variable in the

covariance formula does not change the value of the estimate. However it does

create a wedge between the formulas when the sample is not based on an equal

probability sampling method or when dealing with the extended Gini (see

Chotikapanich & Griffiths, 2001; Lerman & Yitzhaki, 1989; Schechtman &

Yitzhaki, 2008).1 Section 9.3 is devoted to this issue.

9.1.2 The Gini Covariance and Correlation

Let (X, Y) have a continuous bivariate distribution function with marginal cdfs F

and G, respectively. There are two Gini covariances (co-Gini’s) between any pair of

variables: Gcov(X, Y) ¼ cov(X, G(Y)) and Gcov(Y, X) ¼ cov(Y, F(X)) depend-

ing on which variable is taken in its variate value and which one is ranked. Using

the U-statistic method, the kernel is given in the next proposition which is a

generalization of Proposition 9.1.

Proposition 9.2 Let (X1, Y1) and (X2, Y2) be a random sample of size 2 from a
continuous bivariate distribution function with finite first moments. Let

1 Gini (1914, reprinted 2005) was well aware of this problem. The way he corrected it was by

presenting both the diagonal and the Lorenz curve as step functions. However, because the

convexity/concavity of the Lorenz curve carries important information concerning the properties

of the random variables it seems that this approach is not very useful because of the properties we

are interested in.
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h X1;Y1ð Þ; X2;Y2ð Þð Þ ¼ X1 � X2ð ÞIðY1>Y2Þ þ X2 � X1ð ÞIðY2>Y1Þ where Ia>b is
defined as

Ia>b ¼ 1 if a>b

0 otherwise

�
:

Then h((X1, Y1),(X2, Y2)) is a symmetric kernel of degree (2, 2) for
DX;Y ¼ 4cov X;G Yð Þð Þ ¼ 4Gcov X;Yð Þ . (A degree (2, 2) means that one needs
two independent Xs and two independent Ys in order to find an unbiased estimator).

Proof We need to show that Efh((X1;Y1Þ; ðX2;Y2))g ¼ DX;Y In what follows the

domain of the integration is ð�1;1Þ unless stated differently

E(h(X1;Y1Þ; ðX2;Y2ÞÞ ¼ E[(X1 � X2ÞIðY1>Y2Þ þ ðX2 � X1ÞIðY2>Y1Þ� ¼ð ð ð ð1

y2

ðx1 � x2)f(x1;y1)f(x2;y2)dy1dx1dy2dx2

þ
ð ð ð ðy2

�1
ðx2 � x1)f(x1;y1)f(x2;y2)dy1dx1dy2dx2

¼ 2

ð ð
x1f(x1;y1)G(y1)dy1dx1 � 2

ð ð
x1f(x1;y1Þð1� G(y1))dy1dx1

¼ 2[E(XG(Y)) � E(X(1� G(Y)))] ¼ 4E(XG(Y))� 4� 1

2
� E(X)

¼ 4cov(X,G(Y)) ¼ DX;Y:

Using the kernel above, the U-statistic

UðDX;YÞ ¼ 1

n

2

� � X
i<j

X
h((xi;yiÞ; ðxj;yjÞÞ

¼ 1

n

2

� � X
i<j

X
½ðxi � xjÞIðyi>yjÞ þ ðxj � xiÞIðyj>yiÞ� (9.5)

is a U-statistic for the parameter 4cov(X, G(Y)) and hence an unbiased and

consistent estimator.

An alternative definition, based on a linear combination of concomitants of order

statistics, is given by

UðDX;YÞ ¼ 1

4
n

2

� � Xn
i¼1

(2i� 1� n)xyðiÞ
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where xyðiÞ is the x that belongs to yðiÞ, the ith order statistic of y1, . . ., yn.
Having estimated both cov(X, F(X)) and cov(X, G(Y)), it is natural to use the

two estimators in order to obtain an estimator for the Gini correlation between X

and Y.

The Gini correlation between X and Y is defined as

GX;Y ¼ covðX;GðYÞÞ
cov(X,F(X))

:

See Chap. 3 (3.4) for details. (Recall that this is one of the two correlation

coefficients between X and Y).

Hence an estimator of GX;Y, based on a ratio of two dependent U-statistics is

ĜX;Y ¼ U(DX;YÞ
UðDXÞ , as stated in the next proposition.

Proposition 9.3 Let UðDxÞ and UðDX;YÞ , as given in (9.3) and (9.5), be the

U-statistics for 4cov(X, F(X)) and 4 cov(X, G(Y)), respectively. Then ĜX;Y ¼
U(DX;YÞ
UðDXÞ is a consistent estimator of GX;Y.

Proof

ĜX;Y ¼ U(DX;YÞ
UðDXÞ ¼ U(DX;YÞ

4cov(X,G(Y))

covðX;GðYÞÞ
cov(X,F(X))

4cov(X,F(X))

UðDXÞ :

BecauseUðDxÞðUðDX;YÞÞ is a U-statistic for 4 cov(X, F(X)) (4 cov(X, G(Y))), we
get thatUðDxÞðUðDX;YÞÞconverges in probability to 4 cov(X, F(X)) (4 cov(X, G(Y)))
and therefore both

U(DX;YÞ
4cov(X,G(Y))

and
4cov(X,F(X))

UðDXÞ converge in probability to 1,

i.e., ĜX;Y converges in probability to GX;Y:
It is worth pointing out that the Gini correlation and the Gini regression coeffi-

cient suffer from the small sample bias. However, they suffer less than the Gini

coefficient. The reason is because they are expressed as ratios and both the

numerator and the denominator are biased downward. For additional explanation

see Wodon and Yitzhaki (2003b).

9.1.3 The Overlapping Index

The overlapping index between two populations denoted by i and j having cumula-

tive distribution functions Fi and Fj, respectively, was defined in Chap. 4 and is

given there, below (4.19), as

Oji ¼ covi(Y,Fj(Y))

covi(Y,Fi(Y))
(9.6)

where by covi it is meant that the covariance is calculated under the cumulative

distribution Fi. The intuitive meaning of the numerator is the covariance between
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an observation from population i with its rank, had it been ranked within the

distribution of population j. Note that (9.6) can be expressed as a function of four

parameters as follows:

Oji ¼ covi(Y,Fj(Y))

covi(Y,Fi(Y))
¼ Ei(YFj(Y))� Ei(Y)EiðFj(Y))

covi(Y,Fi(Y))
¼ y1 � y2 y3

y4

where

y1 ¼ Ei(YFj(Y)); y2 ¼ Ei(Y); y3 ¼ EiðFj(Y)) and y4 ¼ covi(Y,Fi(Y)):

Note that the overlapping index is actually similar in structure to a Gini correla-

tion, except that the cumulative distribution in the numerator does not lie between

zero and one, but takes the value of the cumulative distribution of the other variable.

We apply the U-statistic technique. Two types of U-statistics will be involved.

The U-statistics for y1 and y3 are two-sample U-statistics (i.e., generalized

U-statistics) while the U-statistics for y2 and y4 are one-sample U-statistics. It is

easy to see that the U-statistic for y2 is simply the sample mean coming from

population i. For y4, which is the Gini for distribution i, the U-statistic is given in

(9.3). We now find U-statistics for y1 and y3. For simplicity of notation let X have

distribution Fi and let Y have distribution Fj.

Proposition 9.4 The kernel of degree (1, 1) for estimating y1is given by

h(X,Y) ¼ X if Y � X

0 otherwise

� �
:

Proof

Ex;y(X,Y) ¼ EX½EY(h(X,Y)jX ¼ x)] ¼ EX[XFY(X)� ¼ y1:

We use the kernel to define a U-statistic as follows:

U1 ¼ Uðx1; . . . ;xnx ;y1; . . . ;ynyÞ ¼
1

nxny

XX
h(xi;yjÞ

¼ 1

nxny

XX
xiI(yj � xiÞ ¼ 1

nxny

X
xið#y0s � xiÞ:

We now turn to the last parameter, y3.

Proposition 9.5 The kernel of degree (1, 1) for estimating y3 is given by

h(X,Y) ¼ 1 if Y � X

0 otherwise

�
:
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The proof is trivial and the resulting U-statistic is

U3 ¼ 1

nxny

X
ð#y0s � xiÞ:

Combining these results, the estimator of Oji is given by

U ¼ U1 � U2U3

U4

:

We note that each of the four U-statistics is a consistent estimator of the

corresponding parameter. Therefore by applying Slutzky’s theorem (see, for exam-

ple, Randles & Wolfe, 1979) we get that U is a consistent estimator for the

overlapping parameter.

9.1.4 The Extended Gini, Extended Gini Covariance,
and Extended Gini Correlation

The extended Gini (EG) was introduced in Chap. 6. It is defined as

Dðn;XÞ ¼ �ðnþ 1Þ covðX; 1� F Xð Þ½ �nÞ: (9.7)

Similarly, the extended Gini covariance between Y and X is given by

Dðn;Y;XÞ ¼ �ðnþ 1Þ covðY; 1� F Xð Þ½ �nÞ: (9.8)

We proceed by finding a kernel and defining a U-statistic for the extended Gini

covariance, and then we obtain the estimate of the EG of X as a special case with

X ¼ Y.

Proposition 9.6 Let (X1, Y1), . . ., (Xn+1, Yn+1) be a random sample of size (n + 1)
from a continuous bivariate distribution FX,Y with finite second moments. Let

h((X1;Y1Þ;:::; ðXnþ1;Ynþ1ÞÞ ¼ Ynþ1 � YXð1Þ ; (9.9)

where �Ynþ1 is the average of Y1, . . ., Yn+1 and YXð1Þ is the Y that belongs to X(1), the
minimum of X1, . . ., Xn+1. Then h((X1, Y1), . . ., (Xn+1, Yn+1)) is a symmetric kernel
of degree n + 1 for the parameterDðn;Y;XÞ of (9.8). That is, h((X1, Y1), . . ., (Xn+1,
Yn+1)) is an unbiased estimator of the parameter Dðn;Y;XÞbased on n+1 bivariate
observations.
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Proof The parameter Dðn;Y;XÞ of (9.8) can be expressed as follows:

Dðn; Y;XÞ ¼ �ðnþ 1Þ COV Y; 1� F Xð Þ½ �nð Þ
¼ ðnþ 1ÞE Yf gE 1� F Xð Þ½ �nf g � ðnþ 1Þ E Y 1� F Xð Þ½ �nf g
¼ mY � ðnþ 1Þ E Y 1� F Xð Þ½ �nf g:

Therefore we only need to show that E{YX(1)} ¼ (n + 1)E{Y[1 � F(X)]n}.

Claim E YX 1ð ÞjXð1Þ ¼ x
	 
 ¼ E YjX ¼ xf g:

The proof of the claim is restricted to the discrete case for simplicity.

Proof of the claim

E YX 1ð ÞjXð1Þ ¼ x
	 
¼ Xnþ1

i¼1

yiP YX 1ð Þ ¼ yijXð1Þ ¼ x
� �

¼
Xnþ1

j¼1

Xnþ1

i¼1

yiP YX 1ð Þ ¼ yijXð1Þ ¼ x;Xj ¼ Xð1Þ
� �

P Xj ¼ Xð1Þ
 �

¼
Xnþ1

j¼1

Xnþ1

i¼1

yiP Yj ¼ yijXj ¼ x
 �

1=ðnþ 1Þ

¼
Xnþ1

j¼1

E YjjXj ¼ x
 �

1=ðnþ 1Þ ¼ E YjX ¼ xð Þ:

Using the claim,

E YX 1ð Þ

n o
¼ EX 1ð Þ EðYX 1ð Þ jXð1Þ ¼ x

n o
¼ Ð

E YX 1ð Þ jXð1Þ ¼ x
� �

fX 1ð Þ xð Þdx
¼ ðnþ 1Þ Ð E YX 1ð Þ jXð1Þ ¼ x

� �
1� F xð Þ½ �nf xð Þdx

¼ ðnþ 1Þ Ð E YjX ¼ xð Þ 1� F xð Þ½ �nf xð Þdx
¼ ðnþ 1Þ ÐÐ yf yjxð Þ 1� F xð Þ½ �nf xð Þdydx
¼ ðnþ 1Þ ÐÐ y 1� F xð Þ½ �nf x; yð Þdydx ¼ ðnþ 1ÞE Y 1� F Xð Þ½ �nf g:

The symmetry of h((X1, Y1), . . ., (Xn+1, Yn+1)) is obvious.

Let hððX1;Y1Þ; . . . ; ðXnþ1;Ynþ1ÞÞ ¼ �Ynþ1 � YXð1Þ, as in (9.9) and let

UðDðn;X;YÞÞ ¼ 1

n

vþ 1

� � X
i1 <

X
���<

X
inþ1

h(( xi1 ; yi1 Þ; . . . ; ð xinþ1
; yinþ1

ÞÞ

¼ 1

n

nþ 1

� � X
i1 <���< inþ1

. . .
X

Pnþ1

j¼1

yij

nþ 1
� yminð xi1 ;...; xinþ1

Þ

0
BBB@

1
CCCA;
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where (i1, . . ., in+1) is a permutation of (n + 1) indices chosen from (1, . . ., n).
ThenUðD ðn, Y, X)) is a U-statistic for the parameterDðn;Y;XÞ and is therefore an
unbiased and consistent estimator of Dðn;Y;XÞ . Using combinatorial arguments

UðD ðn,Y, X)) can be simplified and written as a linear combination of con-

comitants of the order statistics as follows:

UðDðn;Y;XÞÞ ¼ 1

n

nþ 1

� � Xn
i¼1

1

nþ 1

n� 1

n

� �
� n� i

n

� �� �
yxðiÞ : (9.10)

(Note that if n > (n � i) then
n - i

n

� �
¼ 0).

A special case with X ¼ Y gives the U-statistic for estimating the EG,

UðDðn,X)) = 1

n

nþ 1

� � Xn
i¼1

1

nþ 1

n� 1

n

� �
� n� i

n

� �� �
xi : (9.11)

9.1.5 Gini Regression and Extended Gini Regression Parameters

We start the presentation with Gini simple and multiple regression coefficients and

then move to the extended Gini regressions. Let (X, Y) have a continuous bivariate

distribution function with final second moments and denote the marginal cdfs by F

and G, respectively. In the simple GMD regression the investigator is interested

in constructing a linear predictor of Y that is based on X. The linear predictor is

(see (7.1)):

Ŷ ¼ aþ bX:

where (a, b) are the intercept and the slope of the linear predictor, respectively.

The Gini simple regression coefficient (i.e., the slope) was defined in Chap. 7

(see (7.5)) by

b ¼ bN ¼ covðY; FðXÞÞ
cov(X,F(X))

: (9.12)

The superscript N will be ignored when it is not confusing. Using the U-statistic

method, it is easy to see that b can be estimated by

b̂ ¼ U(DY;XÞ
UðDXÞ
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where

UðDY;XÞ ¼ 1

n

2

� � X
i<j

X
h((yi;xiÞ; ðyj;xjÞÞ

¼ 1

n

2

� � X
i<j

X
½ðyi � yjÞIðxi>xjÞ þ ðyj � yiÞIðxj>xiÞ�

(see (9.5) for details), and UðDxÞ is the U-statistic for estimating the Gini of X

(see Sect. 9.1.1).

Because the GMD is a member of the extended Gini (EG) family, one can

replicate the previous part of this section with the extended Gini. All one has to do is

substitute F(X) by �[1 � F(X)]n or F(X)n or a combination of the two, depending

on whether one is interested in applications that fit concave, convex, or symmetric

weighting schemes.

For example, similar to the definition in (9.12) the EG regression coefficient is

defined by

bN ðnÞ ¼ covðY; ½1� Fx (X) �
n�1Þ

cov(X, [1� Fx (X) �n�1Þ:

The natural estimator is based on the ratio of two U-statistics. The U-statistic for

bNðnÞ is then given by

b̂NðnÞ ¼
U( D ðn,Y,X))
UðD ðn;XÞÞ

where UðDðn, Y,X)Þ and UðD ðn, X)) are given in (9.10) and (9.11), respectively.

9.1.6 Lorenz Curve and Concentration Curves

There are several definitions of the absolute Lorenz curve (ALC). We follow

Gastwirth’s (1971, 1972) definition (see Sect. 2.1), which is based on the inverse

of the cumulative distribution X(p): p is plotted on the horizontal axis while the

vertical axis represents the cumulative value of the variate,
Ðp

�1
X(t)dt.

The empirical ALC is generated from the data in the following way: given a set

of n ordered numbers x1 � x2 � � � � � xn, the empirical ALC is defined at the points

i
n , i ¼ 0, . . ., n by ALC(0) ¼ 0 and ALC i

n

� �
¼ si where si ¼ ðx1 þ � � � þ xiÞ=n.
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The empirical ALC, ALC(p), is then defined for all p in the interval (0, 1) by linear

interpolation. That is, the points are connected by linear segments.

The familiar Lorenz curve (LC) is derived from the ALC by dividing the cumula-

tive value of the variate by its mean. The vertical axis is then 1
m

Ðp
�1

X(t)dt: The

Lorenz curve is estimated in a similar way to that of the ALC, where the only

difference is that now LC i
n

� �
¼ si

sn . The absolute concentration curve (ACC) is

similar to the ALC, with one difference: the vertical axis represents the cumulative

value of Y, while the horizontal axis represents the cumulative distribution of X.

Therefore plotting an empirical absolute concentration curve is identical to plotting

the ALC except that each point on the vertical axis represents the cumulative value of

Y, arranged according to a non-decreasing value of X, divided by n. Again, the points

are connected by linear segments.

9.2 Estimators Based on Individual Observations:

The Discrete Case

As elaborated in Chap. 5 and in Sect. 9.1, there is a critical difference between the

definitions of the cumulative distribution function and the one which is used in

the Lorenz curve in the case of discrete distributions. While the cumulative

distribution is portrayed as a step function so that it is discontinuous in F, the points

of the Lorenz curve are connected by linear segments that “make” the distribution

function a continuous one. On top of that there is a problem of a small sample bias

that was elaborated upon earlier in this chapter. Ignoring the small sample bias, the

use of the different formulas of the Gini in the case of equal probability sampling

does not cause any difference between the alternative definitions. However, the

different formulas result in different estimates of the GMD, the Gini coefficient, and

the Gini correlations whenever the sampling is based on an unequal probability

sampling.

The intuitive explanation to the discrepancy between the different formulations

of the Gini is the following: connecting the points of the Lorenz curve by straight

lines and calculating areas enclosed between the Lorenz and the diagonals is as if

one uses the mid-point of the cumulative distribution. On the other hand, using the

covariance formula of the Gini uses the cumulative distribution (represented by a

step function), which is as if one uses the extreme left point of the distribution in

each step. In an equal probability sampling scheme it is as if one adds a constant

(which is equal to 1/(2n)) to each value of the cumulative distribution. Because

adding a constant to a variable does not change the value of the covariance, no bias

is caused by this discrepancy. On the other hand, when the sample is not an equal

probability sample, or if the observations are grouped with a different proportion of
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the population in at least one group, then there is a discrepancy between the two

methods of calculations.

The covariance method of estimation has several advantages over the one based

on the Lorenz: it can be calculated by any standard statistical software, and it allows

for a convenient decomposition of the Gini coefficient of a sum of variables (or

populations). Lerman and Yitzhaki (1989) suggested a correction to the covariance

formula of the Gini coefficient so that it yields the same estimate as the one that is

based on the Lorenz curve. They suggested substituting the cumulative distribution

in the covariance formula by the mid-point of the cumulative distribution in each

section. The description of their suggestion is detailed in Sect. 9.3.1. However, this

correction is not applicable for the extended Gini because it is not a linear function

of the cumulative distribution. The correction required for the EG is dealt with in

Sect. 9.3.2.

9.3 Individual Data, Weighted

In general, the weighting schemes in samples produced by official statistical offices

can be the results of three alternative processes:

1. Weights that are derived from an unequal probability sampling.

2. Grouping of the original observations aimed to maintain confidentiality of

respondents.

3. Adjustment of the data to fit the given marginal demographic distributions in

order to correct for nonresponse.

It is not always clear which process has actually led to the use of the chosen

weights. Moreover, the process that led to the weighting scheme is not always

documented. The first process can be a result of two alternative cases: (a) prior

knowledge by the producer of the data about differences in the subpopulations with

respect to the variance in the population. (b) Differences in the cost of getting the

data so that although the variance in the population is assumed to be given, the cost

of interviewing causes the division of the data into different strata. The second

process can be a result of tax or statistical authorities intending to protect the

confidentiality of the population. The third process can be a result of the tendency

of official statistical agencies to reduce the bias caused by differential nonresponse

and to decrease the variance in the sample by adjusting the demographic properties

of the sample to the properties of the population.

We do not cover the issues of handling heteroscedasticity and aggregation in this

book. Note that aggregation can also be considered as related to heteroscedasticity

because by aggregating observations one creates differences in the variance. We

assume that the handling of heteroscedasticity in our context is not different than in

a regular case.
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9.3.1 Estimating the Gini Coefficient from Weighted Data

As mentioned above (Sect. 9.2), in the case of unequal weights there is a difference

between the estimators obtained from the Lorenz and the ACCs and those which are

obtained from the covariance formulas. The discrepancy between the two is due to

the fact that while in the Lorenz curve approach one uses the mid-point of the

cumulative distribution, in using the covariance formula of the Gini one uses

the cumulative distribution represented by a step function, which is as if one uses

the extreme left point in each step. The suggested solution (Lerman & Yitzhaki,

1989) is to estimate the cumulative distribution function by a quantity that will

reflect the “mid-point” idea and use this estimate in the covariance-based formula.

Formally, the correction of the covariance method to get the Lorenz-based

estimate is the following:

Let wi, yi, i ¼ 1, . . ., n be the weights and incomes in a sample of n observations,

respectively. Assume that
Pn

i¼1 wi ¼ 1, and order the observations so that the yi are

in a non-decreasing order (j < k implies yj < yk). The Gini coefficient of Y is

G ¼ 2cov(Y, F(Y))/ m:

The suggested estimator of Fi ¼ F(yi) is

F̂i ¼ F̂ðyiÞ ¼
Pi�1

j¼0

wj þ wi=2, where w0 ¼ 0.

Note that F̂ is not a cumulative distribution function.

The formula for the covariance-based estimator of the Gini coefficient in a

weighted sample is

Ĝ ¼
Xn

i¼1
wiðyi � yÞF̂i;

which results in the same estimate as the one obtained by the Lorenz curve (Lerman

& Yitzhaki, 1989).

Similar corrections have to be performed for the Gini covariance and correlation

in order to adjust the covariance formula to yield the definitions of the same

parameters obtained by the ACCs. Further research is needed to select the preferred

estimation method. We note that the proposed covariance-based estimator, when

extended to the extended Gini case, is not equal to the estimator obtained by the

Lorenz curve approach. Furthermore, the covariance-based estimator is more

biased and has a larger MSE (Chotikapanich & Griffiths, 2001). This issue is

dealt with in the next section.

9.3.2 Estimating the Extended Gini Coefficient
from Weighted Data

As mentioned above, when dealing with the estimation of the extended Gini and the

parameters that are related to it (extended Gini correlation, extended Gini regression
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coefficient) in the case of unequal weights there is a difference between the estimator

obtained from the Lorenz curve and the one obtained from the covariance-based

formula. The discrepancy between the two is caused by the different definitions used

for the cumulative distribution function. Unfortunately the solution suggested in

Sect. 9.3.1 cannot be applied in the extended Gini. Furthermore, according to

Chotikapanich and Griffiths (2001) the covariance-based estimator obtained this

way is more biased and has a larger MSE. However, if one replaces the cdf by a

proper function, the two estimates will produce algebraically identical estimators.

Formally, let X be a random variable and let F(x) and m (>0) be the cumulative

distribution function and the mean of X, respectively, and let wi, xi, i ¼ 1, . . ., n, be
the weights and incomes in a sample of n observations, respectively. Assume thatPn

i¼1 wi ¼ 1.

The extended Gini coefficient can be expressed as

G ¼ nðn� 1Þ
ð1

0

ð1� p)
ðn�2Þ

(p� LC(p))dp; (9.13)

where n > 1 is the extended Gini parameter and LC(p) is the Lorenz curve defined by

LC(p) ¼ 1

m

ðp

0

F�1(t)dt; (9.14)

with 0 < p < 1. (See (6.15) for the definition of the absolute extended Gini.)

Alternatively,

G ¼ � n
m
cov(X,[1� F(X)�ðn�1ÞÞ: (9.15)

As mentioned above, when F is represented by a step function the two definitions

yield different estimators. Using (9.14) and integration by parts, (9.13) can be

written as

G ¼ 1� n
m

ð1

0

F�1(t)(1� tÞðn�1Þ
dt;

which in the continuous case becomes � n
m cov(X,(1� F(X)Þðn�1ÞÞ: (Chotikapanich

& Griffiths, 2001; Schechtman & Yitzhaki, 2008).

In the discrete case Chotikapanich and Griffiths (2001) show that the extended

Gini coefficient, based on the Lorenz curve, is given by

Ĝ ¼ 1þ
Xn
i¼1

’i

wi

� �
½ð1� piÞn � ð1� pi�1Þn�; (9.16)
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where pi ¼ w1 þ � � � þ wi and ’i ¼ wixiPn
j¼1

wjxj

¼ wixi

m .

Schechtman and Yitzhaki (2008) show that (9.16) can be written as

Ĝ ¼ � n
m
cov(X,(1� F�(X)Þðn�1ÞÞ;

where F* is implicitly defined by

ð1� F�i Þðn�1Þ ¼ ð1� w1 � � � � � wði�1ÞÞn � ð1� w1 � � � � � wiÞn
nwi

: (9.17)

We note in passing that there is a relationship between F and F*, as we describe

next. From (9.17) one can get

nð1� F�i Þðn�1Þ
wi ¼ ð1� w1 � � � � � wði�1ÞÞn � ð1� w1 � � � � � wiÞn

¼ ð1� Fði�1ÞÞn � ð1� FiÞn:

Therefore

m ^
G ¼ �ncov X; ð1� F�(X)Þðn�1Þ

� �
¼ �n

Xn
i¼1

wiðxi � �xÞð1� F�ðxiÞÞðn�1Þ

¼ n(cov(X,(1� FiÞnÞ � cov(X,(1� Fði�1ÞÞnÞÞ:

It is worth noting that those differences occur because the EG, unlike the Gini, is

not a linear function of the cumulative distribution.

9.4 Estimators Based on Grouped Data

The method of interpolation between the points of the Lorenz curve by straight lines

is a commonly used technique. However other options exist in the literature for

the case of grouped data. Gastwirth and Glauberman (1976) suggest the use of

Hermite interpolation which provides a cubic polynomial in each interval, with

some modifications at the first and the last intervals. They assess the accuracy of

the piecewise Hermite interpolator by comparing it to known Lorenz curves.

By “known Lorenz curves” it is meant that the Lorenz curves can be theoretically

calculated. The two examples are the Lorenz curves for the Pareto case ða ¼ 2Þ,
LC(p) ¼ 1� ð1� p)0:5 and for the exponential case, LC(p) ¼ p + (1 � p)ln(1� p).

They find that the method works well in all intervals except for the extrapola-

tion beyond the range of the given data (the last interval). The reason is
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(Gastwirth & Glauberman, 1976) that the Lorenz curve near 1 depends on the

distribution of income within the largest income class and when the data is

grouped, only the average of this group is given. Gastwirth and Glauberman

(1976) state necessary conditions to guarantee that the Hermite interpolator will

possess the desired properties: convexity and being strictly increasing at the end

points. These conditions are beyond the scope of this book.

The Gini coefficient derived from this interpolator is given by

Ĝ ¼ 1� 2
Xk
i¼1

DiLCi
0 þ Di

2 LCi
0

2
þ Di

3 a2

3
� a3

12
Di
4

� �

where LC0 is the derivative of LC,Di ¼ piþ1 � pi and a2 and a3 are functions of LC,

LC0 and D.
Many authors demonstrated that there is a need to find lower and upper bounds to

the Gini rather than a point estimator, because the estimator of the Gini coefficient

is sensitive to the specification of the underlying Lorenz curve (see, for example,

Cowell, 1991; Fuller, 1979; Gastwirth, 1972; Giorgi & Pallini, 1987; Mehran,

1975; Murray, 1978; Ogwang, 2003; Ogwang & Rao, 1996; Ryu & Slottje, 1999;

Silber, 1990). These bounds were obtained regardless of the functional form of the

underlying distribution of income—the approach was nonparametric. The basic

assumptions were: in each income bracket, all units receive the average income of

that income bracket for the lower bound and the maximum inequality in each

bracket for the upper bound. The papers differ in their assumptions about the

available information on the income brackets.

Most of the bounds are similar and take the following geometric approach: for

the lower bound they draw a piecewise linear Lorenz curve by connecting the

observed points by line segments and take the lower bound to be one minus twice

the area below it. For the upper bound they construct tangents to the Lorenz curve at

the observed points and use one minus twice the area below these tangents as the

upper bound. The disadvantage of this approach is that it requires information on

the limits of the income brackets and group mean incomes or the overall mean

income. Silber (1990) derived the coordinates of the points of intersection of the

tangents to the Lorenz curve at the observed points without using information on

the limits of the income brackets, the groups’ mean incomes, or the overall mean

income. His points of intersection are based purely on population shares and

income shares, without information on income brackets. A modified way to find

the coordinates of the points of intersection of the tangents to the Lorenz curve at

the observed points, assuming that there is information on the limits of the income

brackets and full or sparse information on mean incomes, is suggested by Ogwang

and Wang (2004). Their suggestion is equivalent to Gastwirth’s, Fuller’s and

Ogwang’s, but much simpler to implement empirically. The formulae are given

in Ogwang and Wang (2004).
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9.5 Summary

In this chapter we deal with estimating the parameters that are based on the Gini

measure. Most of the parameters can be estimated by U-statistics or functions of

(dependent) U-statistic as we have shown. There are two advantages to this fact.

First, we use common language, which makes it easier to follow, and second, it

turns out that estimates that are U-statistics or functions of U-statistics have a

desirable asymptotic theory. We divide the discussion to cases where the data

come as individual observations or as grouped data, data with equal or unequal

sampling probabilities (weighted vs. unweighted data), and discrete vs. continuous

distributions. Each of the above-mentioned cases is treated separately. However,

our preferred correction is to use a correction for degrees of freedom, in the same

way that those problems are dealt within the classical case of the variance world.
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Chapter 10

Inference on Gini-Based Parameters: Testing

Introduction

Chapter 9 dealt with the estimation of the parameters based on the Gini. In this

chapter we introduce methods of testing for the parameters that are based on the

Gini. Most of the estimators that were derived in Chap. 9 are based on U-statistics

or functions of (dependent) U-statistics. The advantage is that we can use known

facts about the limiting distributions of U-statistics and of functions of them in

order to obtain statistical tests. In what follows we concentrate on the asymptotic

normality but do not give explicit formulas for the variances. Instead we suggest

estimating the variances using the jackknife method (to be explained below).

Therefore, the explicit variances which sometimes have complicated expressions

are not needed for the applications.

Using the notation and the definitions of Chap. 9, let h(X1, . . ., Xm) be a kernel

of degree m for y, based on a sample x1, . . ., xn, of size n � m from a distribution F,

and let the U-statistic with kernel h be defined as

Un ¼ Un(h) ¼ 1

n

m

� � X
Cm;n

h(xi1 ; . . . ;ximÞ;

where the summation is over the set Cm,n of all
n
m

� �
combinations of m integers

i1<i2< � � �<im chosen from (1, 2, . . ., n).
The following results are used throughout the chapter. They are taken from

Hoeffding (1948), Arvesen (1969), Randles and Wolfe (1979), Serfling (1980), Lee

(1990), and Lehmann (1999).

Theorem 10.1 The limiting distribution of a one-sample U-statistic.

Let X1, . . ., Xn be independent random variables having a distribution function
F with finite second moment. The U-statistic for the parameter y, with a symmetric
kernel h(X1, . . ., Xm) of degree m, is an unbiased estimator for y and the

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_10,
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distribution of
ffiffiffi
n

p
(U� y) tends to a normal distribution as n ! 1 under the

condition that E(h2ðX1; . . . ;XmÞÞ exists.
Theorem 10.2 The asymptotic distribution of a two-sample (generalized) U-statistic.

Let U(X1, . . ., Xn; Y1, . . ., Ym) be a two-sample U-statistic for the parameter y,
with a symmetric kernel h(X1, . . ., Xr1;Y1, . . ., Yr2) of degree (r1, r2). Let

N ¼ n + m. If lim n
N ¼ l and limm

N ¼ 1� l with 0<l<1, and if Eðh2ðX1; . . . ;

Xr1;Y1; . . . ; Yr2ÞÞ<1, then
ffiffiffiffi
N

p
(U� y) has a limiting normal distribution.

Theorem 10.2 can be easily extended to the case of k independent samples.

Theorem 10.3 The asymptotic joint distribution of several (dependent)
generalized U-statistics.

Let U1; . . . ;Ut be k-sample (k > 1) U-statistics, with Ua corresponding to a
parameter ya and a symmetric kernel ha of degree ðrðaÞ1 ; . . . ; r

ðaÞ
k Þ, for a ¼ 1, . . ., t.

Under the assumptions similar to those of Theorem 10.2, the joint limiting distribution
of

ffiffiffiffi
N

p ðU1 � y1Þ; . . . ;
ffiffiffiffi
N

p ðUt � ytÞ, with N ¼ n1 þ � � � þ nk is t-variate normal.

Theorem 10.4 The asymptotic distribution of a function of several (dependent)
U-statistics.

Let (U0) ¼ U1, . . ., Ut be t U-statistics based on a sample x1, . . ., xn of size n,
with Ui corresponding to yi (with kernel hi), i ¼ 1, . . ., t. If the function g(y) ¼
g(y1, . . ., yt) does not involve n and is continuous together with its partial
derivatives in some neighborhood of the point yð Þ ¼ ð y) ¼ ð y1; . . . ; ytÞ and if

E(h2i ðX1; . . . ;Xmi
ÞÞ exist for all i then the distribution of

ffiffiffi
n

p
(g(U’)� g( y)) tends

to the normal distribution as n ! 1.
Theorem 10.4 can be easily extended to several generalized U-statistics.

Given that the limiting distributions of the estimators are normal (under some

regularity conditions), the remaining issue is to find their asymptotic variances. The

references mentioned above provide the needed formulations for the variances (and

for the variance–covariance matrices for the multivariate normal case). These

expressions involve relatively complicated functions of the parameters, and

hence, they are hard to estimate and to use in practice. An alternative method for

estimating the variances is the jackknife method. The jackknife method is a

computer intensive method, first introduced by Quenouille (1949), which is used

in statistical inference in order to estimate the bias and the variance of an estimator.

The basic idea of the jackknife method is as follows: given a sample of size n and an

estimator Tn, the jackknife method creates a series of n estimators T�i, i ¼ 1, . . .,
n, where T�i is the estimator Tn computed from a sample of size (n � 1), after

deleting the ith observation from the original sample. The bias and the variance are

computed from these n estimators. The disadvantage of the jackknife method is that

when the data set is large, the jackknife is very computer intensive. Yitzhaki (1991)

suggests an efficient algorithm for estimating the variances of estimators of the

Gini-based parameters for the one sample case using jackknife. The advantage of
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his method is that one needs to go over the data only twice (whereas in the ordinary

jackknife one has to do so n times, deleting one observation at a time).

We now give a brief description of the algorithm. The algorithm is based on

the fact that the Gini parameters are composed of variations of two parameters: the

mean and cov(X, F(Y)). It was shown in Chap. 9 that cov(X, F(Y)) can be estimated

by a U-statistic. One of the presentations of the estimator (not shown in Chap. 9 but

can be easily derived) is

U ¼ 1

n(n� 1Þ
X

i(xyðiÞ � �xÞ

wherexyðiÞ is the value of the x that corresponds to the ith order statistic of y1; . . . ; yn.
Generally, the jackknife estimator of the variance of an estimator U(n, k) is

given by

VJ ¼ (n� 1Þ
n

Xn
k¼1

[U(n,k) � U(n,:Þ�2

where U(n, k) is the estimator based on a sample of size n after deleting the kth

observation, and U(n,.) is the average of the U(n, k)’s. Denote the estimator based

on all observations by U(n, 0). Assume that the data is ordered in an increasing

order of Y. The first run on the data calculates U(n, 0),
Pn
i¼1

xyðiÞ , and �xðn; 0Þ. The
second run calculates U(n, k) from U(n, 0) and calculates summary statistics

accumulated till the kth observation so that all estimators can be calculated. The

derivation of �xðn; kÞ is trivial:

�xðn; kÞ ¼ 1

n� 1
½n�xðn; 0Þ � xyðkÞ �:

The derivation of U(n, k) is detailed in Yitzhaki (1991).

Some of the Gini parameters involve two independent samples (for example, the

overlapping index). The jackknifing for a two-sample problem is discussed in

Arvesen (1969). The suggestion is to compute two pseudo values: One by leaving

one x out (and keeping all the ys) and the other by reversing the roles of x and y.

Then the n + m pseudo values are averaged (by taking their sum and dividing by

n + m) in order to obtain the jackknife estimate of the parameter. The jackknife

variance is obtained by simply adding two sums of squares (each divided by

n(n � 1), where n is the respective sample size): the squared deviation of pseudo

values based on eliminating one x at a time around their mean, and the same for the

ys. Furthermore, provided that the function of the U-statistics has bounded second

partial derivatives in the neighborhood of the parameter of interest, the variance of

the jackknife estimator converges in probability to the asymptotic variance, and the

limiting distribution of the function of several U-statistics, properly standardized, is

approximately normal. Using the above results, one can estimate the parameter
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(point and interval estimation) and perform tests using the limiting normal distri-

bution in the obvious way.

An alternative option to estimate the variance is by the bootstrap method. The

bootstrap method is a computer intensive method for obtaining a variance of an

estimator. The procedure is the following: given a sample x1, . . ., xn of size n and

an estimator Tn, draw B bootstrap samples of size n with replacement from

x1, . . ., xn, calculate the estimator for each one of them and obtain B values of

the estimator, denoted by T1*, . . ., TB*. Now, these values are used in order to

estimate the variance of the original estimator Tn. Namely, the sample variance of

T1*, . . ., TB* is used as the bootstrap variance estimator of the variance of the

original statistic Tn.

We choose to use the jackknife method over the bootstrap in our applications

sections because in the current technology of computing one can replicate the

jackknife, while replicating the bootstrap results requires knowing the algorithm

for the random number generator and knowing the seed used, so in practice it is

impossible to replicate the results. Therefore, one cannot verify the estimates.

Generally the two methods provide similar results.

As was mentioned above, our approach is to estimate the Gini-related parameters

by U-statistics or functions of several (dependent) U-statistics. Therefore, the

inference procedures for them are similar in nature. In what follows we describe

the procedures for several types of parameters: (1) A single parameter, based on one

univariate distribution. (2) A single parameter based on one bivariate distribution.

(3) The difference between two parameters, based on one bivariate distribution.

(4) A single parameter based on two univariate distributions. (5) The difference

between two parameters based on two univariate distributions.

The extensions of these procedures to inferences on other parameters (for

example, testing on the extended Gini multiple regression coefficient) are straight-

forward. The structure of the chapter is as follows: In Sect. 10.1 we discuss one

sample problems related to univariate or bivariate distributions: tests for GMD, the

Gini coefficient, the extended Gini, the Gini correlation, the Gini regression coeffi-

cient, and a test for the equality of two Gini correlations. In Sect. 10.2 we discuss

two-sample problems: inference on the overlapping index and the comparison of

two Gini coefficients. Section 10.3 concludes.

10.1 The One Sample Problem

10.1.1 Inference on the GMD and the Gini Coefficient

The GMD has several presentations, each one resulting in its natural point estimator.

This fact implies that there are different approaches to drawing inference. In this

section we use the point estimator for the Gini Mean Difference (GMD), based on a

U-statistic. The estimate is given in Chap. 9 ((9.3) and (9.4)) by
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U(DXÞ ¼ 1

n

2

� � X
i<j

X
jxi � xjj ¼ 1

4
n

2

� � Xn
i¼1

(2i� 1� n)xðiÞ

where xðiÞ is the ith order statistic of x1; . . . ; xn. The variance of U under the normal

distribution is given by

var(U(DXÞÞ ¼ s2

p
n p

3
þ 2� ffiffiffi

3
p � 4

� �þ 6� 4� ffiffiffi
3

p þ p
3

� �� �
n(n� 1Þ

where s2 is the variance of X (Budescu, 1980). However, one use of GMD is when

the sample comes from a distribution with tails heavier than the normal. Therefore,

the preferred procedures should be applicable under a large class of distributions,

including the normal, and should be essentially “distribution-free,” or at least

asymptotically distribution free. In order to draw inference on the population

GMD we take advantage of the fact that its estimator is a U-statistic of degree 2.

Hence, we can use U-statistics theory (Theorem 10.1 above) to develop hypotheses

tests and interval estimation based on the asymptotic normality of U. The main

issue is to find the variance of U. Arvesen (1969) has shown that one can obtain

consistent estimators of the standard error of U-statistics by jackknifing. Following

this suggestion, let U(DXÞ�k be the estimator U(DXÞ based on (n � 1) observations

only (after deleting the kth observation). It can be written as

U(DXÞ�k ¼
n

n� 2

	 

U(DXÞ �

2
Pn
j¼1

jxk � xjj

(n� 1)(n� 2Þ :

The sample variance of U(DXÞ�1; . . . ,U(DXÞ�n is given by

S2(U) ¼ 4

(n� 2Þ2

Pn
k¼1

ðPn
j¼1

jxk � xjjÞ2

(n� 1Þ � n(n� 1ÞU2ðDXÞ

2
664

3
775:

Finally, a 100ð1� a)% symmetric confidence interval for DX, for large n, is

given by

U(DXÞ � tðn�1Þ;a
2

S(UXÞffiffiffi
n

p � DX � U(DXÞ þ tðn�1Þ;a
2

S(UXÞffiffiffi
n

p
� �

where tðn�1Þ;a
2
is the upper a

2
value from a t-distribution with (n � 1)df (Budescu,

1980). The confidence interval can serve for hypotheses tests in the ordinary way.

Note that the parameter DX is nonnegative. Therefore, if the lower bound of the

interval comes out negative it can be replaced by 0. Another option is to use

the efficient jackknife algorithm that was mentioned in the introduction above.
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The Gini coefficient can be estimated by a ratio of two dependent U-statistics as

Ĝ ¼ U(DXÞ
2�x

where �x is the average of x1, . . ., xn. Therefore, by Theorem 10.4 the asymptotic

distribution of Ĝ is normal, under some regularity conditions. Hence, inference can

be based on the standard normal critical values.

A different approach is to base inference on the following estimator of the Gini

coefficient:

Ĝn ¼ 2

�x

ð1

0

xFn(x)dFn(x)� 1 (10.1)

as given Sect. 9.1.1. In what follows it is shown that
ffiffiffi
n

p ðĜn � G) is asymptotically

normal under regularity conditions, and a relatively simple way to compute its

asymptotic variance is obtained (see Davidson, 2009). Let

I ¼
ð1

0

xF(x)dF(x) and Î ¼
ð1

0

xFn(x)dFn(x):

Then
ffiffiffi
n

p ðĜn�G)¼ ffiffiffi
n

p 2̂I

�x
�2I

m

� �
¼ 2

m�x
m

ffiffiffi
n

p
( Î�I)�I

ffiffiffi
n

p ð�x� m)
� �

:Because bothffiffiffi
n

p ð�x� m) and
ffiffiffi
n

p ð^I�I) are of order 1 in probability,m�xcan be replaced in the above
equation (to a leading order) by m2.

Note that
ffiffiffi
n

p ð�x� m) ¼ 1ffiffiffi
n

p
Pn
i¼1

ðxi � m) , which is an asymptotically normal

random variable. The second term,
ffiffiffi
n

p ð Î� I) , is also asymptotically normal

(the proof is beyond the scope of the book and can be found in Davidson, 2009).ffiffiffi
n

p ð Î� I) can be expressed as

1ffiffiffi
n

p
Xn
i¼1

ðxiF(xiÞ �m(xiÞ � (2I� m))

where m(x) ¼ Ðx
0

tdF(t).

Combining these pieces together,

ffiffiffi
n

p ðĜn � G) � 1ffiffiffi
n

p 2

m

Xn
i¼1

½ � 1

m
ðxi � m)þ xiF(xiÞ �m(xiÞ � (2I� m)]:

This presentation is (approximately) a sum of normalized i.i.d. random

variables, each having mean zero. Therefore, the asymptotic normality is obtained.
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Using the fact that G ¼ 2I
m� 1, the theoretical asymptotic variance of

ffiffiffi
n

p ðĜn

�G) is

1

nm2
Xn
i¼1

var(� (Gþ 1Þxi þ 2ðxiF(xiÞ �m(xiÞÞ:

Let Ti ¼ �(Gþ 1ÞxðiÞ þ 2ðxðiÞF(xðiÞÞ �m(xðiÞÞÞ where x(i) is the ith order

statistic of x1, . . ., xn. Then

T̂i ¼ �ðĜn þ 1ÞxðiÞ þ 2i� 1

n
xðiÞ � 2

n

Xn
i¼1

xðiÞ (10.2)

and the mean and variance of the distribution of Ti are estimated by T̂ ¼ 1
n
P

T̂i

and 1
n
P ðT̂i � T̂Þ2, respectively. Before inference can be carried out, it is

recommended to correct for the bias in Ĝn . It turns out that E(Ĝn � G) � �G
n ,

and hence, a bias-corrected estimator (still biased, but of a smaller order) of G is

~G ¼ nĜn

(n�1Þ .

We now summarize the steps needed in order to draw inference on the Gini

coefficient (Davidson, 2009).

1. Calculate the sample mean.

2. Sort the sample in increasing order. Obtain xð1Þ � � � � � xðnÞ.

3. Form two series of random variables wi ¼ (2i�1)xðiÞ
2n

and vi ¼ 1
n
P

xðiÞ . Then
Î ¼ w, the mean of the wi.

4. Compute the bias-corrected estimator of the Gini coefficient ~G ¼ n
(n�1Þ�

2
^
I

ðX�1Þ

� �
.

5. Form the series T̂i ¼ �ð~Gþ 1ÞxðiÞ þ 2ðwi � viÞ and compute
�̂
T. The estimated

variance of ~G is the sum of the squared deviations of T̂i from their mean, divided

by ðnxÞ2.
The above discussion is applicable in general. However, when the underlying

distribution is known to be exponential or Pareto, the sampling distribution of the

estimator of the Gini coefficient can be obtained theoretically. The exact distribu-

tion of the estimator of the Gini coefficient in the case of the exponential underlying
distribution has a cumbersome presentation. However, for practical use, the normal

approximation of the distribution can be used and it is accurate even for n � 10.

The asymptotic distribution of the Gini coefficient under a Pareto law with para-

meter l is normal with mean (2l � 1) and variance 4l(l � 1)/[n(l � 2)(2l � 1)2

(3l � 2)] (Gail & Gastwirth, 1978; Gastwirth, Modarres, & Bura, 2005;

Moothathu, 1985. See also Giorgi & Madarajah, 2010 for various Gini indices for

various parametric distributions).

For completeness we note that the variance of the Gini coefficient can be

obtained by applying the U-statistic theory. Several researchers take this route

10.1 The One Sample Problem 223



(Bishop, Formby & Zheng, 1997; Xu, 2007, among others). A somewhat controver-

sial approach is taken by Giles (2004, 2006) and Ogwang (2000, 2004, 2006). They

provide a method of estimating the Gini coefficient by an OLS regression and show

how to use the regression in order to simplify the computation of the jackknife

standard deviation of the estimator of the Gini coefficient. A similar method of

estimation is suggested by Deltas (2003). This approach is criticized by Modarres

and Gastwirth (2006) who show that the standard deviations obtained are inaccurate.

Inference can be based on confidence intervals. This line of research was taken

by Gastwirth et al. (2005) who carry out a simulation study on evaluating the

usefulness of the percentile bootstrap in forming confidence intervals for the Gini

coefficient (G) and the coefficient of dispersion (CD) for small samples.

Formally, given a random sample y1, . . ., yn from an unknown distribution

function F, the interval estimates of G and CD are computed using the bootstrap

percentile technique. The procedure is the following: first one calculates B values of

G (or CD) from B bootstrap resamples from the data. Denote the B values by, say,

Ĝ
	
1; . . . ; Ĝ

	
B . Next, order these B values from smallest to largest. The bootstrap

percentile confidence interval of size (1 � a)100% is (Ĝ
	
a=2 , Ĝ

	
ð1�a=2Þ ) where Ĝ

	
p

is the [pB]th order statistic of the bootstrap distribution of the Ĝ
	

or (CD).

For example, if B ¼ 1,000 and p ¼ 0.025 then Ĝ
	
a=2 ¼ Ĝ

	
0:025 is the

1,000 � 0.025 ¼ 25th order statistic of the G	
i ’s. Gastwirth et al. (2005) construct

confidence intervals for the Gini coefficient and the coefficient of dispersion when

the underlying random variable is positive with a parent distribution that is right-

skewed. The exponential, Pareto and lognormal distributions are used for data

generation in a Monte Carlo study. The sampling distribution of G depends on

the underlying distribution of the observations. The sampling distribution of G on

data from the exponential distribution has been studied by Gail and Gastwirth

(1978) and Giorgi (1990) and converges rapidly to its asymptotic normal approxi-

mation. However, the result is not true in general.

How well do the bootstrap estimates of the G and the CD perform in terms of

coverage probabilities? These coverage probabilities are estimated by the fraction

of the percentile bootstrap confidence intervals in 1,000 Monte Carlo simulations

that contain the true parameter G or CD. It is shown that with moderate sample

sizes, the 95% coverage for the G using the percentile bootstrap procedure is

somewhat below the nominal value. This is more pronounced for the Pareto and

the log normal distributions. The coverage improves with increasing sample size.

In the case of the lognormal distribution the confidence intervals do not provide

adequate coverages even in samples of size 500. This result is due to the “heavy-

tailed” nature of the underlying data (Gastwirth et al. 2005).

10.1.2 Inference on Gini Correlation and Gini Regression

The point estimators of the co-Gini and of the Gini correlation coefficient are given

in Chap. 9. The Gini correlation can be estimated by the ratio of two dependent

U-statistics, one of which is the U-statistic for the co-Gini. Therefore, we only
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discuss inference on the Gini correlation. The test for the co-Gini can be obtained

from the discussion below. Let U(DXÞ ¼ 1

4
n

2

� � Pn
i¼1

(2i� 1� n)xðiÞ be the point

estimator of 4 cov(X, F(X)), and let

U(DX;YÞ ¼ 1

n

2

� � X
i<j

X
½ðxi � xjÞIðyi>yjÞ þ ðxj � xiÞIðyj>yiÞ�

¼ 1

4
n

2

� � Xn
i¼1

(2i� 1� n)xyðiÞ

where I is the indicator function and xyðiÞ is the x that belongs to yðiÞ , (usually,
referred to as the concomitant) the ith order statistic of y1, . . ., yn, be the U-statistic
for estimating 4 cov(X, G(Y)).

Then the Gini correlation coefficient between X and Y, defined as

GX;Y ¼ cov(X,G(Y))

cov(X,F(X))

is estimated by ĜX;Y ¼ UðDX;YÞ
UðDXÞ :

The limiting distribution of
ffiffiffi
n

p ð̂GX;Y � GX;YÞ is normal by Theorem 10.4

above. Schechtman and Yitzhaki (1987) provide an estimate for the variance of

ĜX;Y which is based on five dependent U-statistics. However, as stated above, a

more practical approach is to use the jackknife method in order to estimate the

variance of ĜX;Y.

Likewise, the Gini simple regression coefficient, which is defined (Chap. 3 (3.7))

as b ¼ cov(Y,F(X))
cov(X,F(X))

is estimated by b̂ ¼ UðDY;XÞ
UðDXÞ , which is a ratio of U-statistics.

Hence, inference can be made, based on Theorem 10.4.

10.1.3 Testing for the Symmetry of the Gini Correlation

Due to the asymmetrical nature of GX;Y there are two Gini correlations between

each pair of random variables, depending on which variable is taken in its variate

values and which one is ranked. The two Gini correlations are generally not equal.

We have shown earlier (Chap. 4) that the question of whether the decomposition of

GMD of a linear combination of random variables follows the same structure as the

decomposition of the variance depends on whether the Gini correlation coefficients,
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especially between each of the individual variables and the linear combination of

them, are equal.

In this section we describe a test for the equality of the two Gini correlations

between X and Y (Schechtman, Yitzhaki, & Artsev, 2007). The hypothesis of

interest is

H0 : GX;Y ¼ GY;X, vs. the alternative

H1 : GX;Y 6¼ GY;X:

The test is based on the estimator of d ¼ GX;Y � GY;X. The point estimator of

each of the two correlation coefficients GX;Y and GY;X is given in Chap. 9 (9.5). It is

based on a ratio of the two relevant dependent U-statistics. For example,

ĜX;Y ¼ U(DX;YÞ
U(DXÞ

whereUðDXÞ andU(DX;YÞ are the U-statistics for the parameters 4 cov(X, F(X)) and

4cov(X, G(Y)), respectively.

A similar derivation gives an estimator of GY;X . Finally, we can express the

estimator of d ¼ GX;Y � GY;X as a function of four dependent U-statistics as

follows:

d̂ ¼ ĜX;Y �ĜY;X ¼ U(DX;YÞ
U(DXÞ � U(DY;XÞ

U(DYÞ :

By Theorem 10.4 above (Hoeffding, 1948), it is known that a function of several

dependent U-statistics has a limiting normal distribution after appropriate normali-

zation. Hoeffding (1948) provides a way to calculate the variance as well. However,

the formulas are complicated. We suggest estimating the variance using the jack-

knife method.

The test statistic for testing H0: d ¼ 0 is based on

Z ¼ d̂ffiffiffiffiffiffiffiffiffi
V̂ð̂dÞ

q ;

and the rejection region is the standard one, namely: reject H0 in favor of H1 if

│Z│ � Za/2 where Za/2 is the upper a/2th percentile of the standard normal

distribution.

Another way to test for the equality of the two Gini correlations is by using the

fact that a sufficient condition for the equality of the two Gini correlations is that X

and Y are exchangeable (see property 7 in Sect. 3.4 and the proof that follows).

Tests for bivariate exchangeability were suggested by Modarres (2008).
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As mentioned above, one of the uses of the test of equality of two Gini

correlations is to check whether the decomposition of the GMD of a linear combi-

nation of random variables follows the same structure as the decomposition of the

variance. It is shown in Chap. 4 that the answer depends on whether the Gini

correlation coefficients, especially between each of the individual variables and the

linear combination of them, are symmetric. That is, the hypotheses of interest are

simultaneous hypotheses. For simplicity, we formalize the hypotheses for the case

of two variables X1 and X2. Let Y ¼ b0 + b1X1 + b2X2. The following identities

hold (proposition 4.2 of Chap. 4):

(a)
D2
Y � ½ b1D1YD1 þ b2D2YD2�DY

¼ b21D
2
1 þ b22D

2
2 þ b1b2D1D2ðG12þ G21Þ

(10.3)

where DiY ¼ GiY � GYi, i ¼ 1, 2 and Gij ¼ GXiXj
.

(b) Provided that DiY ¼ 0, for i ¼ 1, 2, and G12 ¼ G21 ¼ G, then:

D2
Y ¼ b1

2D1
2 þ b2

2D2
2 þ 2 b1b2D1D2G: (10.4)

Note that (10.4) is identical in structure to the decomposition of the variance.

Therefore, we are interested to test

(a) DiY ¼ GiY � GYi ¼ 0; i ¼ 1; 2
(b) G12 ¼ G21 ¼ G:

In General, the testing procedure involves three steps. The first step is a test for

the equality of each pair of correlations. Given n variables, (a) involves n

hypotheses - between each X variable and Y, while (b) involves n(n � 1)/2

hypotheses—between each pair of X variables (for our special case n ¼ 2).

The second step is to test two intersection hypotheses. For (a) the hypothesis isTn
i¼1

ðDiY ¼ 0Þ. For (b) the hypothesis is Tn
i;j¼1

ðDij ¼ 0Þ. Finally, the third step is the

simultaneous test for the last two intersection hypotheses.

The first step, the test of symmetry for each individual pair of variables was

described above. The second step, a test for the intersection hypothesis uses the

outcomes of the first step, namely the p-values, as inputs. Following Simes (1986),

let pð1Þ<pð2Þ< � � �<pðnÞ be the ordered p-values for the first intersection hypothesis,
involving n comparisons.

Define

adj - p - value ¼ min
npðjÞ
j

� �
:
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Reject H0 if the level of significance exceeds the adj-p-value. The same procedure

is repeated for the second intersection hypothesis, with n replaced by n(n � 1)/2.

Because the second step involves two simultaneous (intersection) hypotheses, the

third step is to use the Bonferroni correction, that is: replace the levels used in step

2 by a/2 per comparison, to keep the overall level at (approximately) a.
It is worth mentioning that there is an additional use of the test for equality of

two Gini correlations between Y and X, as described in (10.3) and (10.4). It is

related to a check when (that is, for what value of n) the distribution of a sequence

of averages of i.i.d. random variables convergences to the normal distribution.

Details are given in Chap. 23.

10.1.4 The Extended Gini and the Extended Gini
Regression Coefficients

Additional parameters related to the GMD are the extended Gini (EG) and its

variants: the EG coefficient, the EG covariance, the EG correlation and the EG

regression coefficients, as detailed in Chaps. 6–8. We start with the extended Gini

and the extended Gini covariance. There are several alternative presentations of EG

and each one results in its natural estimator. We start with the following

presentations: Dðn;XÞ¼� nCOVðX; 1�F Xð Þ½ �n�1Þ and Dðn;Y;XÞ¼� nCOVðY;
1�F Xð Þ½ �n�1Þ for EG and EG covariance, respectively.

These parameters are estimated by the following U-statistics (as shown in Chap. 9)

UðDðn;XÞÞ ¼ 1

n

n

� � Xn
i¼1

1

n
n� 1

n� 1

� �
� n� i

n� 1

� �� �
xi (10.5)

and

UðDðn;Y;XÞÞ ¼ 1

n

n

� � Xn
i¼1

1

n
n� 1

n� 1

� �
� n� i

n� 1

� �� �
yxðiÞ ; (10.6)

respectively. Hence, by Theorem 10.1, inference is based on the approximate

normal distribution, after proper standardization.

However, it turns out that the convergence to normality is not uniform. Giorgi,

Palmitesta, and Provasi (2006) develop inference on a variant of the extended Gini

coefficient and conclude that the convergence depends on the sampling distribution
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of the variable (usually the variable is the income) and on their extended Gini

parameter d.1

The form of their EG index is

IF;d ¼ 2

ð1

0

(t� LCF(t))
ddt

0
@

1
A

1
d

where LCF(t) ¼ 1
m
Ð1
0

F�1(s)ds is the Lorenz curve.

A Monte Carlo study is conducted to evaluate the convergence, where the

distribution of the income is taken to be the generalized Beta of the second kind

(GB2) (details can be found in Giorgi et al., 2006). This distribution is flexible and

includes cases with a wide variety of shapes. Special or limiting cases include the

lognormal, Weibull, gamma and loglogistic distributions. It is shown that the larger

the value of d the better the approximation of the normal distribution. In addition,

the nominal confidence levels for small to moderate sample sizes (smaller than 100)

are not achieved when the normal approximation is applied.

An alternative method for obtaining confidence intervals for the EG is described

in Giorgi et al. (2006) for a given distribution F. It is based on the bootstrap method.

The bootstrap method is presented here for completeness, as it is a general method-

ology, although the version of the EG index used below is not discussed in the book.

The estimate of the EG index of Giorgi et al. (2006) is given by

In;d ¼ 2
Pn
i¼1

i
n� LCn

i
n

	 
	 
d� �1
d

where LCn(t) ¼ 1
�X

Ðt
0

F�1
n (s)ds with 0 � t � 1

and its variance sF; d for a general F distribution (having a finite second moment) is

derived explicitly (Zitikis, 2003). The variance is complex (and depends on F and d)
but can be estimated from the data (by sn;d) in the natural way, by estimating F by

the empirical distribution. The bootstrap method is used here both to estimate the

variance and to find the confidence interval. It was described in general in the

introduction above. Let the B bootstrap values, denoted by T	1
n;d; . . . ,T

	B
n;d , be T	b

n;d

¼ ffiffiffi
n

p I	n;d�In;d
s	

n;d
, b ¼ 1, . . ., B, where I	n;d and s	n;d are the bootstrap versions of In;d

and sn;d, respectively. Then a ð1� a)100% bootstrap-t confidence interval for IF;d

is In;d � C
1�a

2

n;d
sn;dffiffiffi
n

p ; In;d � C
a
2

n;d
sn;dffiffiffi
n

p
	 


where the bootstrap quantile estimates of T	
n;d

are given by Ca
n;d such that

PB
b¼1

I(T	b
n;d � Ca

n;dÞ ¼ a and I is the indicator function.

1We do not cover this version of the extended Gini here because it is not linear in the variable, nor

is it linear in the distribution function; hence, it is not relevant to our discussion. We describe it

here for completeness.
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We note that inference about the EG correlation and regression coefficients is

straightforward. As shown in Chap. 9, the EG correlation between X and Y, which

is given by

x(X,Y, n) ¼ � ncov(X,(1� FY(Y)Þn�1Þ
� ncov(X,(1� FX(X)Þn�1Þ

can be estimated by a ratio of two (dependent) U-statistics—the U-statistic defined

in (10.6) divided by the U-statistic defined in (10.5). Therefore, inference can be

drawn as detailed in Theorem 10.4. Inference about an EG regression coefficient

can be drawn in a similar way.

10.2 The Two Sample Problem

10.2.1 The Overlapping Index

The overlapping index between two distributions denoted by i and j having cumu-

lative distribution functions Fi and Fj, respectively, was defined in Chap. 4 and is

given there, below (4.19), as

Oji ¼ covi(Y,Fj(Y))
covi(Y,Fi(Y))

. It is estimated (see Chap. 9) by a function of four dependent

U-statistics as follows: Ôji ¼ U1�U2U3

U4
where U2 and U4 are the sample mean and

the estimator of GMD, respectively, and

U1 ¼ U(X1; . . . ;Xnx ;Y1; . . . ;YnyÞ ¼
1

nxny

XX
h(xi;yjÞ

¼ 1

nxny

XX
xiI(yj � xiÞ ¼ 1

nxny

X
xi(# y’s � xiÞ

U3 ¼ 1

nxny

X
(# y’s � xiÞ:

By Theorem 10.4, the limiting distribution of Ôji is normal. Therefore, inference

about the overlapping index Oji will be based on OL ¼
^
Oji�Ojiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(

^
Oji

q
Þ

where the

variance is estimated by the jackknife method as mentioned above. Schechtman

(2005) reported on a simulation study to assess the convergence to normality. Three

cases were considered: (a) X and Y are equally distributed, in which case the

theoretical value of the overlapping index is equal to 1. (b) Y is contained in X,

near its mean (relatively large overlapping index), and (c) X and Y occupy different
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ranges on the X-axis with relatively small intersection (relatively small overlapping

index). Two underlying distributions were used: the normal (symmetric) and the

lognormal (asymmetric). The theoretic value of the overlapping index was calcu-

lated (in the case of lognormal distribution MAPLE software was used). The

reported figures were (among others) the average length of a 95% confidence

interval based on the normal cutoff points and the percent coverage (should

be 95%). The findings were that as long as the overlapping was substantial the

coverage rate was within two standard errors of the theoretical one (of 95%) even

for samples of size 50. When the overlapping index was small, the coverage was

lower and a bigger sample size was needed (n ¼ 150) and when the overlapping

index was around 1.5, n ¼ 100 was found to be good enough.

A natural extension of the above inference is the comparison of two independent

overlapping indices. For example, the comparison between the overlapping index

of men and women in the Israeli and the American labor markets. The inference is

based on the difference between their point estimators. This difference is based on

eight dependent U-statistics. Using Theorem 10.4 and the jackknife method for

variance estimation, inference can be drawn on the difference between two inde-

pendent overlapping measures.

10.2.2 Comparing Two GMDs and Two Gini Coefficients

The hypothesis of equality of two independent GMDs can be tested in a way which

is similar to the test for one GMD parameter. The test statistic is based on the

difference between the two point estimators (namely the difference between two

independent U-statistics). By Theorem 10.2 above, the limiting distribution of the

difference is normal. Again, the main issue is to find the asymptotic variance of the

difference. The simplest way is to use the fact that

VarfU(D1Þ � U(D2)g ¼ Var(U(D1ÞÞ þ Var(U(D2ÞÞ

where Var(U(DiÞÞ is the variance of U(DiÞ, and estimate the individual variances as

in Sect. 10.2.1 above. Budescu (1980) suggests using a two-sample jackknife

procedure, following Arvesen (1969). This procedure suggests to compute the

statistic and then jackknife it by successively deleting observations from the first

sample and then from the second sample. The detailed calculations can be found in

Budescu (1980).

A test for the equality of two independent Gini coefficients can be based on

Z ¼ Ĝ1 � Ĝ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2G1

þ ŝ2G2

q
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where Ĝ1 and Ĝ2 are the point estimates of G1 and G2 as in (10.1), and the

asymptotic variances are estimated as in Sect. 10.1.1 above. Inference is drawn

based on the asymptotic standard normal distribution of Z. If the two samples are

correlated then the covariance between the two estimates should be taken into

account. In order to do that, two series should be formed: T̂1i and T̂2i, i ¼ 1, . . ., n,
as in (10.2). Then, after ordering the two series in the same way, the covariance

between Ĝ1 and Ĝ2 is estimated by

côv(Ĝ1;Ĝ2Þ ¼ 1

n2�x1�x2

X
ðT̂1i � �̂

T1ÞðT̂2i � �̂
T2Þ;

where n is the size of each sample (Davidson, 2009). The denominator of Z is

adjusted to the dependence by subtracting twice the estimated covariance under the

square root sign. See also Davidson and Duclos (1997, 2000) for related

applications.

10.3 Summary

The objective of the chapter was to introduce methods of inference for the

parameters that are based on the Gini. There are several alternative ways of

estimation and inference in the literature. We chose to use a common technique,

based on U-statistics theory. One advantage of using a unified method is the ease of

adjustment to other parameters not covered here. In addition, we can use known

facts about the limiting distributions of U-statistics and of functions of them in

order to obtain statistical tests.

Because all of our estimators are based on (functions of) U-statistics, the limiting

distributions are normal. However, the asymptotic variances are usually hard to

write explicitly. Therefore, we recommend using the jackknife method instead.
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Chapter 11

Inference on Lorenz and on Concentration

Curves

Introduction

In a pathbreaking paper, Atkinson (1970) proved several results concerning the

ranking of income distributions according to expected values of all concave social

welfare functions. One of the important results is that for distributions with equal

means, all social welfare functions show the same order of average social welfares

(i.e., the same ordering of inequality) if and only if the appropriate Lorenz curves do

not intersect. If, on the other hand, the Lorenz curves intersect then it is possible to

find two alternative social welfare functions which rank average social welfares

differently (to be discussed in Chaps. 13 and 14). This finding by Atkinson has

opened the way for using the Lorenz curve as a basic tool in the application of the

concept of second-degree stochastic dominance (SSD, to be defined below). This

tool allows the analyses of the effects of tax reforms and decision under risk to be

applied to a wide group of utility functions, freeing the analysis from the need to

specify the utility function. Shorrocks (1983) proved that X dominates Y according

to SSD if and only if the absolute Lorenz curve ALC of X is not lower than the ALC

of Y. This result enables to extend the possible applications to distributions with

different expected values. There are three possible outcomes when comparing two

absolute (and relative) Lorenz curves: Lorenz dominance, equivalence, and cross-

ing. Bishop, Chakravarty, and Thistle (1989) extend the works by Gail and

Gastwirth (1978), Beach and Davidson (1983), and Gastwirth and Gail (1985)

who deal with relative Lorenz curves and suggest a pair-wise multiple comparisons

method of sample absolute (generalized) Lorenz ordinates to test for differences.

Lorenz and absolute concentration curves are used as descriptive devices for

more than a century. Following Atkinson (1970) and Shorrocks (1983) they also

became tools for identifying second-degree stochastic dominance. Recent

developments use those tools for identifying monotonic relationship among

variables and the possibility of changing the sign of a regression coefficient by

monotonic transformations. Statistical inference may turn these descriptive tools

into analytical tools.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_11,
# Springer Science+Business Media New York 2013
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The objective of this chapter is to introduce tools for formal statistical inference.

However, we must apologize up front that the statistical theory is not well devel-

oped and further research is needed in order to establish a well accepted theory.

A fundamental result is derived by Goldie (1977) who developed convergence

theorems concerning the Lorenz curve. Those theorems were followed by Beach

and Davidson (1983) and Beach and Richmond (1985).

The possible tests can be classified into two classes: tests that are based on

violation (or fulfillment) of necessary conditions only, and those that are based

on necessary and sufficient conditions. The tests that are based on necessary

conditions are well established because they are based on testing whether a set of

parameters fulfills (or violates) a specific condition that is based on parameters

of the distribution. Those tests are actually covered in Chap. 10. However, it is

clear that they cannot substitute for those that are based on necessary and sufficient

conditions, which are required whenever the question posed is whether two curves

intersect. Further research is needed in order to see whether one can improve upon

those tests.

We introduce a test on the ordinates of the Lorenz curve and provide two tests for

the intersection of concentration curves. The first test is for a necessary condition

for second order stochastic dominance (SSD). The test is based on a specific

parameter—the area below the Lorenz or the concentration curve. The second

test is for necessary and sufficient conditions for SSD which are equivalent to the

necessary and sufficient conditions for the intersection of two absolute concentra-

tion curves (ACC).

The structure of the chapter is the following: in Sect. 11.1 we deal with inference

on Lorenz curves. Section 11.2 is devoted to necessary conditions for second order

stochastic dominance, while in Sect. 11.3 tests for intersection of two ACCs are

detailed. Section 11.4 concludes.

11.1 Inference on the Ordinates of the Lorenz Curves

As mentioned in Bishop, Formby, and Smith (1991) simple comparison of Lorenz

ordinates may indicate crossings of the curves, which in fact are not statistically

significant. It is important to take the level of dispersion of incomes into account.

The objective of this section is to derive the asymptotic joint variance–covariance

matrix for Lorenz curve ordinates, to provide consistent estimates for them and to

derive the asymptotic distribution of the Lorenz curve ordinates. Inference

procedures follow.

Let Y be a random variable with a cdf F(y), assumed to be continuous and

second order differentiable. Let the set of K ordinates be denoted by

Fiji ¼ 1;:::, Kf g, corresponding to the abscissa points piji ¼ 1;:::, Kf g. For exam-

ple, in the case of deciles, K ¼ 9 and pi ¼ i
10
, i ¼ 1, . . ., 9. The ordinates on the

Lorenz curve are Fðxp1Þ<Fðxp2Þ< � � �<FðxpKÞ where the population income

quantile xpi is defined by F(xpiÞ ¼ pi, and
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FðxpiÞ ¼
1

m

ðxpi
0

udF(u) ¼ F(xpiÞ
m

ðxpi

0

udF(u)

F(xpiÞ
¼ pi

gi
m

(11. 1)

with gi ¼ E(YjY � xpiÞbeing the conditional mean of income less than or equalxpi.
Let yð1Þ<yð2Þ< � � �<yðnÞ be the ordered sample of size n. Then the sample

quantile x̂r is simply the rth order statistic, where r ¼ [np], and [np] means the

greatest integer less than or equal to np. Under some regularity conditions (i.e., F

strictly monotonic and differentiable for any finite set {p1, . . ., pK}), the x̂pi0 s have
an asymptotic multivariate normal distribution (Beach & Davidson, 1983; Wilks,

1962). More precisely, let x̂ ¼ ðx̂p1; :::; x̂pKÞ be the vector of the K sample quantiles,

then
ffiffiffi
n

p ðx̂� xÞ converges to a K-variate normal distribution with mean zero and

covariance matrix L where

L ¼

p1ð1�p1Þ
f 2
1

: : : p1ð1�pKÞ
f1fK

: : : : :
: : : : :
: : : : :

p1ð1�pKÞ
f1fK

: : : pKð1�pKÞ
f 2
K

0
BBBBB@

1
CCCCCA

and fi, i ¼ 1, . . ., K are the density functions (assumed to be positive).

In order to draw inference on the population ordinates, several more steps are

needed. First, the unknown parameters have to be estimated. The sample estimates

of the Lorenz curve ordinates are

F̂i ¼

Pri
j¼1

yðiÞ

Pn
j¼1

yðjÞ
_¼pi

ĝi
�y

where ri ¼ [npi] and

ĝi ¼

Pri
j¼1

yðjÞ

ri
:

The second step is to obtain the sampling distribution of the vector of sample

ordinates F̂ ¼ ðF̂1; :::; F̂KÞ. It has been shown that
ffiffiffi
n

p ðF̂� FÞ has an asymptotic

K-variate normal distribution with mean zero and a covariance matrix which can be

calculated, but has a complex form (Beach & Davidson, 1983). It is important to

note that the covariance matrix does not require knowledge of the underlying

distribution from which the data was drawn, but only of the proportions pi, of the

unconditional mean and variance, of the income quantiles xpi, and of the conditional
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means and variances. All these quantities can be estimated consistently from the

sample. Hence, the inference is distribution free. To sum up, the procedure involves

three steps. First, sort the raw data set and determine the sample quantiles. Second,

compute the conditional and unconditional means and variances from the sorted

data. Last, compute the sample Lorenz curve variances and covariance and calcu-

late the test statistics from them as follows: to test H0: F ¼ F0 where F0 ¼ ( F0
1;:

::, F0
KÞ is an hypothesized Lorenz curve, one can use an asymptotic chi-square test

statisticC1 ¼ nðF̂� F0)0V̂
�1

L ðF̂� F0Þwith K degrees of freedom, where V̂
�1

L is the

inverse of the sample variance–covariance matrix.

To compare two independent Lorenz curves F1 and F2 from two independent

samples of sizes n1 and n2, respectively, that is, to test H0:F1 ¼ F2 one can use the

statistic

C2 ¼ ðF̂1 � F̂2Þ0 V̂L1

n1
þ V̂L2

n2

� ��1

ðF̂1 � F̂2Þ

which is asymptotically chi-square distributed with K degrees of freedom, where

V̂Li, i ¼ 1, 2 are the sample variances based on the two samples.

Once the null hypothesis that the two curves are the same is rejected one may be

interested to know which particular differences in the ordinates are significantly

different from zero. The natural way to proceed is by performing multiple

comparisons. These methods are beyond the scope of this book and can be found

in Beach and Richmond (1985).

The inference about the absolute Lorenz curve is derived as follows.

Using similar notation, let ’ðxpiÞ ¼
Ðxpi
0

udF(u), then the ordinates of the absolute

Lorenz curve are given by’ðxp1Þ � � � � � ’ðxpKÞ. The estimate of the pith ordinate is

’̂ðxpiÞ ¼
Pri
j¼1

yðjÞ

n where ri ¼ [npi]. It can be shown that ’̂ðxpiÞ can be approximated by

’̂ðxpi)�
1

n

Xn
j¼1

ðyj � xpi)I(yj � xpiÞ þ xpipi: (11.2)

Using the presentation in (11.2) it is easy to see that the asymptotic distribution

of ’̂ ¼ ð’̂p1;:::;’̂pKÞ is K-variate normal. The covariance matrix of size K � K is

given by A ¼ [ak,j], k, j ¼ 1, . . ., K, where for k � j

ak; j ¼ 1

n

ðxk
0

(x� xk)(x� xj)dF(x)�
ðxk
0

(x� xk)dF(x)
ðxj

0

(x� xj)dF(x)

8><
>:

9>=
>;

(Zheng, 1996, 2002).
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The procedures described above are increasingly implemented in empirical

studies. The underlying assumption is that the data come from a simple random

sample. Unfortunately, most economics data do not come from simple random

samples. They come from stratified, cluster or multistage samples. Therefore, the

theory described above will tend to yield biased estimators, which will imply

inaccurate inference. However, at least in the area of income distributions, there

are several alternative reasons for attaching weights to observations, such as

reducing bias due to nonresponse and different probabilities of sampling. There-

fore, an analysis of the causes for the different weights is called for because

different causes may require different treatments of the data. This issue, which is

general, is beyond the scope of this book.

The estimates and the variance–covariance matrices for testing Lorenz and

absolute Lorenz curves when the samples are not simple random samples appear

in the literature (Zheng, 2002). It turns out that each sampling method results in its

own way of estimating the Lorenz curve and the variance covariance matrix.

11.2 Necessary Conditions for Second Order

Stochastic Dominance

The formal definition of Second order Stochastic Dominance (SSD) is as follows.

Let U denote the utility function and let X and Y be two random variables having

cdf’s F and G, respectively.

We say that F dominates G in the SSD meaning if

EF U Xð Þð Þ � EG U Yð Þð Þ: (11.3)

for all U for which U0 > 0 and U00 < 0, where U0 and U00 are the first and second

derivatives, respectively, with a strict inequality for at least one U. Condition (11.3)

holds if and only if

ðz

�1
ðFX(t)� GY(t))dt � 0 for all z; and (11.4)

ðz

�1
FX(t)� GY(t))dt<0 for some z: (11.5)

This is the most common way of defining the conditions for second degree

stochastic dominance. For a survey on stochastic dominance the reader is referred

to Levy (1992, 2006).

An alternative and equivalent way of presenting (11.4) is through the ALC.
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That is (11.3) holds if

ALC Xð Þ � ALC Yð Þ (11.6)

everywhere and the inequality strictly holds at some points.

In this book we naturally deal with statistical inference that is based on the ALC.

We note in passing that other approaches exist as well. For example, Schmid and

Trede (1996) develop nonparametric inference for second order stochastic dominance

of two randomvariables when their distribution functions are unknown and have to be

inferred from observed realizations. They establish two methods to take the sampling

error into account. The first one is based on the asymptotic normality of the point

estimators, while the second one relies on resampling techniques. Both methods are

used to develop statistical tests for second order stochastic dominance. They show

that tests based on resampling techniques aremore useful in practical applications and

recommend the application of the permutation principle for the determination of the

critical values of the test statistics. They further show that these tests can also be used

for testing for first order stochastic dominance. Kaur, Rao, and Singh (1994) and Xu,

Fisher, and Wilson (1995) present large sample tests which are based on the asymp-

totic distributions of various test criteria. A different approach was taken by

McFadden (1989) and Klecan, McFadden, and McFadden (1991) who suggested

tests based on the bootstrap principle, which are applicable even for small samples.

In this section we focus on inference that is based on necessary conditions. It is

based on the following logic: condition (11.6) implies that the ALC of X is not

lower than the ALC of Y everywhere. This means that the area below the ALC of X

is greater than the area below the ALC of Y. In other words, the necessary condition

can be translated to a condition on one parameter—the area below the ALC.

The area below the ALC can be written as the area below the LOI, which is the

area of a triangle and is equal to m/2, minus the area enclosed between the LOI and

the Lorenz curve, which is cov(X, F(X)).

This condition can be translated into the condition y < 0, where

y ¼ mY � mX � 2 cov Y;G Yð Þð Þ þ 2 cov X; F Xð Þð Þ: (11.7)

Then if X stochastically dominates Y in the second order meaning then y < 0

(Yitzhaki 1982a, 1983). It is convenient to add another condition which is: mX � mY
which means that the last point (from the right) of the ALC of X is not lower than

the equivalent point of Y.

Following the same logic, one can add additional necessary conditions by

requiring that specific points on the Lorenz of X will not be lower than those of

the Lorenz curve of Y, and/or to base the additional conditions on the EG.

For example we may require that

mX � mY and:

mX � ncov(X,� ½1� F(X)]n�1Þ
� mY � ncov(Y,� ½1� G(Y)]n�1Þ: (11.8)
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for several values of n. However, a counterexample (Yitzhaki, 1983) can be

constructed to show that even if distribution X fulfills (11.8) for all possible values of

n, it need not provide a sufficient condition for SSD.1 On the other hand, the advantage
of relying on necessary conditions only is that the inference is relatively simple.

Next we introduce a test for the necessary conditions for SSD. Let F and G be

two absolutely continuous distribution functions having finite second moments.

Formally we are interested to test

H0: F ¼ G

H1: F stochastically dominates G in the second order meaning.

An alternative formulation, based on y, is

H0 : y ¼ 0

H1 : y< 0:

Let

dF;GðxÞ ¼
ðx

�1
ðFðtÞ � GðtÞÞdt

and

DF;G ¼ 0:5

ð1

�1
dF;G(x)dG(x)þ

ð1

�1
dF;G(y)dF(y)

2
4

3
5:

Based on the definitions above we can reformulate H0 and H1 as follows:

H0 : DF;G ¼ 0

H1 : DF;G < 0

(see Eubank, Schechtman, & Yitzhaki, 1993). Let x1, . . ., xn and y1, . . ., ym be

two independent random samples of sizes n and m, from distribution functions F

and G respectively. The test is based on D̂n;m, the sample version of DF;G. Let

1 The explanation to the counterexample is that in each condition (11.8) relies on a constant n.
Therefore, a small crossing of curves can be hidden by a large deviation elsewhere.
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dn:m(x) ¼
ðx

�1
ðFn(t)� Gm(t))dt and

D̂n;m ¼ 1

2

ð1

�1
dn;m(x)dGm(x)þ

ð1

�1
dn;m(y)dFn(y)

2
4

3
5

then D̂n;m estimates DF;G and inference can naturally be based on D̂n;m.

Next, we show that D̂n;m can be presented as

D̂n;m ¼ 1

2
�Y� �Xþ 1

2
n

2

� � X
i<j

jxi � xjj� 1

2
m

2

� � X
i<j

jyi � yjj

2
664

3
775: (11.9)

Using presentation (11.9) it is easy to see that D̂n;m is an unbiased estimator of

0.5 y of (11.7). The connection to the alternative formulation of the hypotheses is

based on y.

Claim 1 Let x1, . . ., xn and y1, . . ., ym be two independent random samples of

sizes n and m from distribution functions F and G, respectively. Then

D̂n;m ¼ 1

2

1

n

Xn
i¼1

Wi � 1

m

Xm
j¼1

Tj

" #

þ 1

2

ð1

�1
Fn(x)(1� Fn(x))dx�

ð1

�1
Gm(y)(1� Gm(y))dy

2
4

3
5

where

Wi ¼
ð1

xi

(t� xi)dGm(t) and Tj ¼
ð1

yj

(t� yj)dFn(t):

The proof of claim 1 is technical and is detailed in Eubank et al. (1993).

Claim 2 Let x1, . . ., xn and y1, . . ., ym be two independent random samples of

sizes n and m from distribution functions F and G respectively. Then

D̂n;m ¼ 1

2
�Y� �Xþ 1

2
n

2

� � X
i<j

jxi � xjj� 1

2
m

2

� � X
i<j

jyi � yjj

2
664

3
775:
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Proof of claim 2 We start by proving that

1

n

Xn
i¼1

Wi ¼
ð1

�1
ð1� Gm(t))Fn(t)dt: (11.10)

To see that, let xð1Þ<xð2Þ< � � �<xðnÞ be the ordered x’s, and let I[a,b] be the

indicator function of [a, b]. Then

ð1

�1
ð1� Gm(t))Fn(t)dt ¼ 1

n

Xn
i¼1

ð1

�1
ð1� Gm(t))I½xðiÞ;1�(t)dt ¼1

n

Xn
i¼1

ð1

xi

ð1� Gm(t))dt

and integrating by parts gives

¼ 1

n

Xn
i¼1

�xið1� GmðxiÞÞ þ
ð1

xi

tdGm(t)

0
@

1
A ¼ 1

n

Xn
i¼1

ð1

xi

(t� xi)dGm(t) ¼ 1

n

Xn
i¼1

Wi:

Notice that
Ð1

�1
Gm(y)(1� Gm(y))dy is one half of GMD of Y (see (2.9)), which

can also be written as 1

2
m
2

� � P
i<j

jyi � yjj. Therefore, we only need to show that

1
n
Pn
i¼1

Wi � 1
m
Pm
j¼1

Tj ¼ �X� �Y:

We have (by (11.10))

1

n

Xn
i¼1

Wi ¼
ð1

�1
ð1� Gm(t))Fn(t)dt ¼ 1

m

Xm
j¼1

ðyi
�1

Fn(t)dt:

Integrating by parts gives

1

m

Xm
j¼1

yjFnðyjÞ �
ðyj

�1
tdFn(t)

2
4

3
5 ¼ 1

m

Xm
j¼1

ðyj

�1
ðyj � t)dFn(t):

Thus,
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1

n

Xn
i¼1

Wi� 1

m

Xm
j¼1

Tj ¼ 1

m

Xm
j¼1

 ðyj
�1

ðyj� t)dFn(t)�
ð1

yj

(t�yj)dFn(t)

!

¼ 1

m

Xm
j¼1

ðyj

�1
yjdFn(t)�

ðyj

�1
tdFn(t)�

ð1

yj

tdFn(t)þ
ð1

yj

yjdFn(t)

0
B@

1
CA

¼ 1

m

Xm
j¼1

yj�
ð1

�1
tdFn(t)

0
@

1
A¼ �Y� �X:

The final step is deriving the asymptotic distribution of D̂n;m . D̂n;m

can be expressed as a two-sample U-statistic with kernel of degree (2, 2):

h(x1, x2;y1, y2) ¼ g(y1, y2) � g(x1, x2)

where

g t1; t2ð Þ ¼ ðt1 þ t2 � jt1 � t2jÞ
2

:

Therefore, under some regularity conditions the limiting distribution of D̂n;m ,

after proper standardization is asymptotically normal (Eubank et al., 1993) and

inference can be based on cutoffs from the normal distribution.

11.3 Testing for Intersection of Two ACCs

As was mentioned above, a necessary and sufficient condition for X to dominate Y

according to SSD is that the absolute Lorenz curve of X will not be lower than the

ALC of Y. If the ALCs intersect then there exist two legitimate utility functions that

will rank X and Y in reverse order. Formally, ALC(X) � ALC(Y) if and only if X

dominates Y in the SSD meaning (Shorrocks, 1983; Yitzhaki & Olkin, 1988, 1991).

In a portfolio context or in welfare economics we are also interested in Marginal

Conditional Stochastic Dominance (MCSD), which is an extension of the stochastic

dominance rules to multivariate data. In those cases the rules that apply to the ALC

are substituted by the ACC curves.

The objective of this section is to introduce a test for the intersection of two

absolute concentration curves (ACCs). The ALC is a subclass of all ACCs and hence

the test is applicable to ALC as well. We consider statistical tests concerning various

relationships between two ACCs. In particular, we consider tests for determining if

the two ACCs coincide, if one is above another in a specified order, or if they do not

intersect without specifying which one is above/below the other.

The procedures presented in this section can easily be adapted for testing

analogous hypotheses about two arbitrary curves for which empirical estimators
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can be constructed and weak convergence of the appropriately normalized

differences between the empirical and the theoretical curves established. In this

sense, it can be put into a broad context of testing for stochastic dominance and

monotonic relationship in econometrics and actuarial science.

Let (X, Y, Z) be three random variables coming from a continuous cumulative

distribution functions F, G, and H, respectively. We are interested in testing

hypotheses about various relationships between the two ACCs corresponding to

the pairs (Y, X) and (Z, X ). The ACC was introduced in Chap. 5 and is briefly given

below.

Let mX and mY denote the means of X and Y respectively, and let fYjX denote

the conditional density function of Y given X. The conditional expectation is

g(x) ¼ mY.X 	 E{YjX ¼ x}. It is assumed that all densities are continuous and

differentiable, and all second moments exist. The absolute concentration curve
(ACC) of Y with respect to X, ACCY.X(p), is implicitly defined by the relationship

ACCY:X(p) ¼
ðXp

�1
g(t)dFX(t)

where Xp is defined by p ¼ ÐXðpÞ
�1

dFX(t):

In words, X(p) is the pth percentile of the distribution of X. The special case

ACCX.X(p) is referred to as the absolute Lorenz curve (ALC) (see Chap. 5).
An alternative way to present ACC is in terms of the quantile function. Let F�1

denote the quantile function of F, defined on [0, 1] by the equation F�1(t) ¼
inffxjF(x) � tg , with F�1ð0Þ ¼ �1 by definition. Then the two ACCs are defined

on [0, 1] by A(t) ¼ E[YIX�F�1 ðtÞ� and B(t) ¼ E[ZIX�F�1 ðtÞ� where IX�F�1ðtÞ is equal 1
if X � F�1(t) and 0 otherwise.

The objective is to test whether two curves coincide i.e., A ¼ B or if there is

dominance in a particular direction, say, A � B . More generally, it might be of

interest to test whether there is dominance in any direction, without specifying the

direction explicitly. Note that rejecting the latter (two-sided) null hypothesis means

accepting the claim that the ACCs A and B intersect. By their nature, such

hypotheses are complex, because they involve comparisons of A(t) and B(t) over

the values t 2 ½0; 1�. It is therefore natural to aim at reformulating the hypotheses in

a simpler way, using a single parameter t such that the null hypothesis would

become t ¼ 0 and the alternative t > 0. The construction of t naturally depends on
the hypotheses considered, and it may not be unique. With the help of one

parameter s hð Þ ¼ sup
0�t�1

h(t) , it is possible to identify four mutually exclusive

cases, written as (i)–(iv) in Table 11.1, that are used for constructing the aforemen-

tioned parameter t, depending on the hypotheses of interest.

For example, suppose that we are interested in testing the hypotheses

H01: A(t) ¼ B(t)8t 2 ½0; 1�
H11: 9t 2 [0,1]s.t.A(t) 6¼ B(t):
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Define the parameter t1 ¼ s(A�B)Vs(B�A) where xVy denotes the maximum

between x and y. Then the hypotheses above can be translated into

H01 : t1 ¼ 0

H11 : t1 > 0:

The idea behind this translation is that under H01, both s(A � B) and s(B � A)

are equal to 0, while under H11 at least one of s(A � B) and s(B � A) is positive,

and hence the maximum is positive. Following the same logic, the test for one-sided

dominance is formally stated as:

H02 : A(t) � B(t)8t 2 ½0; 1�

H12 : 9t0 2 [0,1]s.t.A(t0Þ>B(t0Þ

is based on t2 ¼ s(A� B) which leads to the following reformulation of the

hypotheses:

H02 : t2 ¼ 0

H12 : t2>0:

Lastly, the hypotheses

H03: either A(t) � B(t)8t 2 ½0; 1� or A(t) � B(t)8t 2 ½0; 1�
H13: 9t1;t2 2 [0,1]s.t.A(t1Þ<B(t1Þ and A(t2Þ>B(t2Þ

are tested based on t3 ¼ s(A� B) ^ s(B� A) where x ^ y is the minimum

between x and y, and translated to

H03 : t3 ¼ 0

H13 : t3>0:

The last hypotheses test whether the two curves intersect or not.

Table 11.1 Analyzing hypotheses with the help of s(h)

Case S(A � B) S(B � A)

(i) A(t) ¼ B(t)8t 2 ½0; 1� ¼0 ¼0

(ii) A(t) � B(t)8t 2 ½0; 1� and 9t1:A(t1Þ<B(t1Þ ¼0 >0

(iii) A(t) � B(t)8t 2 ½0; 1� and 9t2:A(t2Þ>B(t2Þ >0 ¼0

(iv) 9t1;t2 2 [0,1]:A(t1Þ<B(t1Þ and A(t2Þ>B(t2Þ >0 >0

Source: Schechtman, Shelef, Yitzhaki, and Zitikis (2008a), Table 1, p. 1048

Reprinted with permission by Cambridge University Press
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Once the hypotheses are formulated in terms of the parameters, one needs to

estimate them empirically. The idea in Schechtman, Soffer, and Yitzhaki (2008) is

to construct two empirical ACCs and then estimate t1;t2 and t3 from those curves.

The final step is to construct tests based on the estimated parameters. The interested

reader is referred to Schechtman et al. (2008) for details.

11.4 Summary

Graphical tools become increasingly popular. Lorenz curve, concentration curves

and plots that are derived from them such as LMA are mostly used as descriptive

tools.

They can be used to check for second degree stochastic dominance, for

identifying monotonic relationship among variables and the possibility of changing

the sign of a regression coefficient by monotonic transformations and more.

In this chapter we offer several formal tests that are related to those curves: a test

on the ordinates of the Lorenz curve, a test on necessary conditions for SSD (which

turns out to be a test on a parameter—the area below the ALC curve—rather than a

test on the entire curve, and a test for the intersection of two ACCs).

A lot of research is still needed in the area of formal testing. For example, as far

as we know there are no tests for intersection of LMA curves and no tests for the

concavity or the convexity of such curves. Therefore, at this stage most of the use of

the curves is for visual evaluation only.
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Applications



Chapter 12

Introduction to Applications

The main properties of the Gini mean difference (GMD) and the extended Gini

(EG) were presented in the first part of the book. We have concentrated on those

properties that enable the user to replicate almost everything that can be done when

relying on the variance. In some sense we can claim that (almost) every analysis

that is performed when using the variance can be done with the GMD, and

sometimes with the EG as well. This means more than doubling the number of

possible models that can be used because every variance-based model can be

replicated by a Gini-based model. This fact raises the question whether it is worth

to pursue this direction of research or not and what are the pros and cons of using

the Gini methodology. We note that generally speaking when the underlying

distribution is multivariate normal then there is nothing to be gained from using

the GMD method. The reason is simple: when the underlying distribution is

multivariate normal then the estimates of the means, the variances, and the

correlations (by Pearson) are sufficient statistics for describing the data, and

therefore nothing is gained by using an alternative system for describing the data

on one hand, while a loss of efficiency follows because the parameters of the normal

distribution are estimated in a circumvent way. However, as pointed out by Huber

(1981) and Gorard (2005) even a small deviation from the ideal world of the normal

distribution can lead to an advantage of using other measures of variability.

The applications part of the book intends to illustrate the use of the Gini

methodology in various areas of economic and statistics research and to emphasize

its advantages. Generally speaking, almost all the issues illustrated in the empirical

chapters can be and have been analyzed by alternative methods. This should not

surprise the reader because we are imitating what was done by other methods. The

difference (and advantage) is that we are offering a unified method that can

encompass what is done by several alternative methods. The problem with using

different methodologies for answering different research questions is that the

investigator may unintentionally contradict himself.

To illustrate this argument, let us present an example. Assume that in analyzing

the robustness of a regression coefficient an econometrician finds that a specific

observation influences the estimates. To increase robustness the econometrician

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_12,
# Springer Science+Business Media New York 2013
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may omit this observation from the regression. But it may turn out that this

observation is the most important observation from the point of view of the financial

economist, e.g., representing an extreme crisis in a financial market. The use of the

extended Gini, which includes a risk aversion parameter in the estimation process,

enables to introduce the financial economist’s point of view into the estimation

process. (See an illustration of this point in Chap. 18.) In other words, the use of the

EG enables one to impose economic considerations on the statistical analysis.

There is a major problem in the presentation and in the applications of those

ideas. Although the basic theory is identical for all the areas of applications in the

sense that the basic ideas and the mathematical models are the same, there are

major differences between the questions asked in the various fields of research,

between the empirical data that exist, and even in the terminologies used. Because

there is no point in replicating the proof of each proposition using a different

terminology, we presented the proofs in the first part of the book (the first eight

chapters) while in the applications part we will present the propositions in each

field using the terminology used in the specific field. We will refer the interested

reader to the relevant chapters for the general theory and proofs. The reason for

this kind of presentation is that in some cases there is a huge difference between

the skills and the expertise that are needed to apply the methodology and the skills

required to follow the proofs.

We start our applications part with Chap. 13 which describes the role of the Gini

in representing Runciman’s (1966) theory of relative deprivation. This theory was

developed as a sociological theory. The theory of relative deprivation was developed

without a reference to the Gini. This gives some credibility that the contribution of

the Gini in this case can be characterized as supplying a genuine need. The Gini

enables one to interpret it as an economic theory in the sense that it is based on

accepted economic paradigms. It presents an alternative to the Bergson’s type social

welfare function approach which dominated the area of formation of theoretical

policy recommendations by economists, especially in public economics, welfare,

poverty, and income distributions. This application of the Gini does not fall into the

category of an empirical application yet, but it may resolve some of the paradoxes

we observe in social behavior and it suggests some policy recommendations that are

totally different from those recommended by the current social welfare approach to

policy recommendations.

Following are some of the advantages of using the Gini:

(a) Unlike the variance, the Gini enables the user to form necessary conditions for

stochastic dominance, so that an investigator who uses it can safely summarize

the expected utility or social welfare with the mean and the Gini of the distribu-

tion, without violating the basic principles of expected utility theory or Yaari’s

(1987, 1988) dual theory, or Runciman’s relative deprivation theory. On the

other hand, it serves as a measure of variability, just like the variance. This

advantage plays an important role in constructing portfolios that on one hand

belong to the efficient set of the second-order stochastic dominance efficient set,

and at the same time enables the user to form a complete order of portfolios.
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In other words, it enables the user to have an efficient set of portfolios so that no

one can find a portfolio in the efficient set that violates economic theory. This

point is illustrated in Chaps. 17 and 18.

The same point, based on different terminology and illustrated under totally

different circumstances, is replicated in Chaps. 14 and 16 in the areas of welfare

economics, tax reforms, and income distribution.

It is also replicated in regression analysis. To see that, assume that the

research area is public economics or finance which are characterized by a

theory that requests an asymmetric attitude to the variability of income due to

the declining marginal utility of income. The researcher runs a linear regression

with respect to income but she is unaware of the fact that the data do not support

a linear relationship with respect to income. That is, we focus on areas in which

the researcher does not care about the linearity of the model because all she is

interested in is getting a weighted average of slopes of the regression curve,

weighted by the marginal utility of income. The extended Gini methodology of

regression enables the user to impose her risk aversion or social welfare attitude

on the regression. This way economic theory is imposed on the statistical

analysis so that there is no contradiction between the econometrician and the

economist in the case where the linearity of the model with respect to income

does not hold. (In the case of linearity, the weighting scheme is irrelevant.) This

point is the subject of Chaps. 19 and 20.

(b) The relationship between the Gini and the Lorenz curve which can be used to

form sufficient conditions for second-order stochastic dominance enables the

user of the methodology to perform the investigation in a step-wise manner.

First one searches for large deviations from an optimal policy. That is, deviation

from stochastic dominance efficiency. Then, if no such deviation is found, one

uses necessary conditions only, i.e., uses the Gini. This way of research implies

imposing assumptions in a step-wise manner. The more assumptions imposed

the less robust the conclusions derived are. This issue is covered in Chaps. 14

and 15 in the area of tax reforms, in Chaps. 17 and 18 in finance, and in Chap.

20 for regression analysis.

(c) The decomposition of the Gini offers more parameters than the decomposition

of the variance. Those additional parameters offer additional aspects of

analyzing the data. Chapter 15 uses this property in the area of income distri-

bution, Chap. 18 uses it in the area of finance, Chaps. 19–21 use it in regression

analysis while Chap. 22 replicates ANOVA. Chapter 23, dealing with further

research, points out several additional uses of these parameters.

To summarize, the structure of the empirical part is the following: In Chap. 13

we demonstrate the role of the Gini coefficient in two major competing theories that

dominate the theoretical considerations in the area of income distribution, namely:

the social welfare function approach and the theory of relative deprivation. In Chap.

14 we illustrate the use of the concentration curves and the Gini methodology in the

areas of taxation and progressivity of public expenditure. Chapter 15 deals with the

usefulness of several decompositions of the Gini and the extended Gini in analyzing
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government policies by non-marginal analyses, while in Chap. 16 the marginal

analysis is illustrated. The applications in finance are the topics of Chaps. 17 and 18.

These applications are relevant whenever one is interested in decision making

under risk. Chapters 19–21 are devoted to applications of the Gini regression, in

Chap. 19 we apply the simple Gini and extended Gini regressions, in Chap. 20 the

multiple regression is applied, and in Chap. 21 we apply the mixed OLS, Gini, and

extended Gini regressions. Chapter 22 deals with one application of the GMD and

the Gini coefficient in statistics—an application that replicates the commonly used

ANOVA and is denoted by ANOGI (ANalysis Of GIni). The last chapter (Chap. 23)

concludes and lists several topics for further research.
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Chapter 13

Social Welfare, Relative Deprivation,

and the Gini Coefficient

Introduction

The aim of this chapter is to elaborate on the role of the Gini coefficient in two

major competing theories that dominate the theoretical considerations in the area of

income distribution. The major theory that dominates the economic thinking with

respect to the role of the government in the area of income distribution is the

Bergson’s (1938) social welfare function approach (hereafter SWF). The other

theory that is gaining acceptability among economists is the theory of relative

deprivation (hereafter RD).

The SWF approach is the corner stone in normative public finance and optimal

taxation. In this area the Gini plays an interesting role. Although one cannot

construct a specific SWF which is based on the Gini coefficient (Lambert, 1985;

Newberry, 1970; Sheshinski, 1972), one can use the Gini coefficient to form

necessary conditions for “welfare dominance.” That is, by using the Gini one can

form necessary conditions for detecting improvements in all possible increasing

concave SWFs. The combination of the absolute Lorenz curve (ALC) and the Gini

enables the researcher to separate the decisions that should be taken by the society

into two types: those that can be agreeable by all users of the concave SWF without

any additional information and those which require knowing (or assuming) the

exact social views of the decision-maker. The former is referred to as “welfare

dominance,” which means finding the decisions that are agreeable by everyone who

agrees that the social evaluation of the marginal utility of income is positive and

declining. Those decisions can be found by using the ALC.

However whenever additional specification of the social evaluation of themarginal

utility of income is required in order to reach a decision, then the use of the Gini is

called for. The advantage of using the criterion of welfare dominance through

sufficient and necessary conditions is in allowing the user to introduce the normative

assumptions in a sequential order. The more assumptions needed, the closer we are to

the fine-tuning of the policy. In this chapter we consider mainly the necessary

conditions. The necessary and sufficient conditions can be formed by using the ALCs.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
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The second theory is the theory of relative deprivation (RD)whichwas developed

as a sociological theory (Runciman, 1966; Stouffer, Suchmam, DeVinney, Star, &

Williams, 1949). Unlike the social welfare approach which is intended to construct a

decision function for the society this theory is intended to explain the feelings of the

members of the society. The Gini coefficient can be used in order to define a special

quantitative measure of relative deprivation (Yitzhaki, 1979, 1982a, 1982b, 1982c).

In addition the Gini coefficient enables us to reinterpret RD theory as an economic

theory which is competing with the SWF approach. The recent use of the theory is

mainly in explaining paradoxes that cannot be explained by the SWF approach. For

example, this theory can be used to explain the rationale behind a decision of a

deputy director in a large and successful company to start his own company while

suffering a reduction in his salary, or the phenomenon of “returnmigration” which is

the decision of a migrant who was financially successful in his new country to return

to his homeland, while suffering an income loss (Stark & Yitzhaki, 1988).

An additional advantage of the Gini is that it is a statistical measure of variability

that is compatible with the SWF and RD theories. Therefore by using it one can

perform statistical analyses without violating the principles advocated by those

theories (Yitzhaki, 1996).

We start this chapter with a simplistic example of an economy. The example

illustrates the difference between the approaches and clarifies the three stages that

play roles: allocation of resources by the agents, the equilibrium process, and the

satisfaction from the income distribution. In addition the example will help in

showing the roles of the Gini coefficient in both theories. Consider the decathlon,

an athletic 2-day event with ten different disciplines (100 m sprint, long jump, shot

put, high jump, and 400 m run in that order on the first day and 110 m hurdle, discus,

pole vaults, javelin, and 1,500 m run on the second day). A scoring table is used to

award points for the performance in each discipline, and the winner is the athlete

with the highest total score after completing the ten disciplines. To draw the analogy

with a market economy, the ten disciplines can be considered as commodities and

the scoring system can be considered as their prices. The utility function of each

athlete may be defined over the physical units of achievements in each field.

The first stage in constructing the analogy can be referred to as the microeconomic

problem: each athlete allocates his/her practicing time in order to maximize his/her

utility subject to a time constraint and to the scoring structure (prices). A proper

solution (in a competitive environment) is to allocate time so that for each athlete the

marginal cost of achieving an additional point is the same for the various disciplines.1

The allocation of time and effort may also be interpreted as if each athlete were

maximizing his/her points (income) subject to the time constraint. The overall score

that an athlete has achieved can be viewed as if we have defined the indirect utility

function as a function of income and prices.

1 A monopolistic behavior implies that an athlete takes into account that his achievements may

affect the scoring system. Note, however, that the arguments raised continue to hold under

monopolistic behavior.
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The second stage is the general equilibrium process which determines the prices.

To reach an “equilibrium,” the scoring structure is adjusted by a committee to avoid

the possibility that any one discipline overshadows all others (in our analogy, this is

akin to the demand and supply mechanisms in markets).

The result of applying the prices (scores) to individual achievements in each

field in order to obtain the total score of the individual athlete is that we end up with

points of equal value from the point of view of production (given the pricing

system, each point requires an equal marginal cost or effort to be produced).

The two stages described above generate the distributions of scores, or in an

economic context, the distribution of income in a simplistic model, with one factor

of production (labor) and no capital accumulation.

We now turn to the third stage, which is the roles of the two theories in

explaining the satisfaction from the income distribution. The SWF approach is

mainly concerned with the kinds of actions that are needed in order to improve the

SWF, defined over the utilities (or indirect utilities) of the athletes. The relative

deprivation approach is concerned with hypothesizing about the satisfaction in the

society of the individual athletes.

The two theories are related in the sense that the SWF is a drill down approach,

starting from the society and from the society it sets the welfares of the individuals,

while the relative deprivation approach starts from the individual and its intention is

to describe the distribution of the satisfactions in the society. The question of what

to do with the distribution of the satisfactions of the individuals and how to improve

them is not tackled by the RD theory.

The decathlon example will be used when we describe the roles of the Gini

coefficient in representing the two theories. Because both theories are concerned

with the society we will assume that the setting of the microeconomic problem is

the same: in a market economy, each member of the society is faced with an income

constraint and with given prices. It is assumed that the member of the society

maximizes a well-behaved utility function defined over a commodity space subject

to a given budget constraint. Formally:

Maxxh
1
;:::;xhn

Uh(x
h
1;:::,x

h
nÞ

s: t: yh ¼
Xn

i¼1
pix

h
i

(13.1)

where h ¼ 1,. . .,H represent the H members of the society, xhi , i ¼ 1,. . .,n is the

quantity of commodity i consumed by the h-th member, pi, i ¼ 1,. . .,n are the given
prices of the commodities, and yh is the given income of the h-th member.2

Solving for the first-order conditions for (13.1) we can derive the indirect utility

function, Vh (y, p1,. . .,pn), which defines the utility function of the h-th member of

the society as a function of the parameters of the problem. Formally

2One can complicate the presentation by introducing public goods, leisure, monopolistic behavior,

etc. Introducing those issues will complicate the presentation without adding relevant content.
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where the properties of the indirect utility function that are relevant to us are:

@Vh

@y
¼ Vh

y > 0 (13.3)

that is, the marginal utility of income is positive, and

@Vh

@pi
¼ �Vh

y x
h
i<0 (13.4)

that is, the effect of an increase in the price of commodity i on the indirect utility of

the h-th member is negative.

The structure of the chapter is the following: Sect. 13.1 surveys the main issues

in the development of the SWF approach. Section 13.2 describes the theory of

deprivation, while Sect. 13.3 dwells on the relativity of the concept, and Sect. 13.4

concludes and offers some suggestions for further research.

13.1 The SWF Approach

The Bergson-type SWF approach includes efficiency considerations together with

normative and ethical issues. It can be applied regardless of whether markets exist

or do not exist. However, because we are interested only in the role of the Gini

coefficient we will limit ourselves to the case of existence of market economy and

ignore detailed efficiency considerations that are mainly relevant to taxation

policy. We will touch upon detailed efficiency considerations only when we

deal with policy issues, for completeness. Efficiency considerations are defined

by the Pareto criterion. Atkinson and Stiglitz (1980) define Pareto-efficiency in

the following way:

“A Pareto-efficient allocation is one where no Pareto-improving move can be

made.” (p. 337, footnote 2). A Pareto-improving move is defined as a move which

improves the utility of at least one member of the society without deteriorating the

utility of any member of the society.

Although complicated and abstract, the Pareto-improving principle is the only

principle mentioned in this chapter that is actually applied in practice. It is applied

whenever decisions are implemented as long as no one objects to them.

The Pareto-improving principle is the concept that divides the social decisions

into efficiency considerations and income distribution issues. It implies that

increasing the welfare of a member of the society is desirable if it is not hurting

other members of the society. If we allow envy then it is clear that every allocation
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is Pareto efficient. Therefore envy is ignored in efficiency considerations. It is

important to mention that our RD theory is not based on assuming envy (Podder,

1996). It is based on extending the principle of declining marginal utility to the area

of the satisfaction of the individual from his status in his reference group. In the

social context this principle can be better described as the increasing marginal

utility from scarcity.

The SWF is the normative decision guide for the society. It should include all the

elements that are relevant for the proper decision-making process. Assuming amarket

economy for which (a) each member of the society has a well-behaved utility

function3 and (b) all individuals face the same prices, we can define the SWF as a

function of the indirect utility functions of the members of the society. Formally,

W V1 y1
� �

; . . . ;VH yH
� �

; p1; . . . ; pn
� �

: (13.5)

is the SWF. Applying the Pareto principle we can assume

@W

@yh
¼ @W

@Vh

@Vh

@yh
> 0 for h ¼ 1; . . . ;H: (13.6)

Equation (13.6) says that the social evaluation of the marginal utility of income is

positive for all individuals. For reasons of egalitarianism and/or ability of the function

to have a maximum it is also assumed that the social evaluation of the marginal utility

of income is declining. Formally, it is assumed that

@2W

@ðyhÞ2 < 0: (13.7)

Additional assumptions on the SWF are the anonymity axiom and the additivity

of the SWF. We will make these assumptions, although they are not required for the

analysis that concerns the applications of the Gini coefficient.

Adding those assumptions and assuming a continuous distribution function of

income, we have the following SWF:

W(y1;:::;yHÞ ¼
ð
w(y)f(y)dy; (13.8)

with w0ðyÞ ¼ @W
@y ¼ @W

@V
@V
@y > 0 being the social evaluation of the marginal utility

of income, while w
00
(y) ¼ @2W

@y2 < 0, which means that the social evaluation of the

marginal utility of income is positive and declining with income.

3A well-behaved utility function is defined only over the commodity owned and consumed by the

individual, the marginal utilities are positive and declining, and for every set of prices, there is one

optimal allocation of commodities that maximizes it.
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It should be mentioned that the assumptions leading to the SWF are very strong

and some of the empirical analyses that are performed using the Gini coefficient in

the empirical section on statistical analysis of income distribution are redundant,

would one accept all the assumptions concerning the SWF. To bring one example,

the issue of horizontal inequity in taxation is redundant if one accepts (13.8)

because (13.8) implies that all those with identical y have the same SWFs while

in the empirical sections one must take into account households with additional

different characteristics. (Lambert & Yitzhaki, 1995).

13.1.1 Welfare Dominance: The Role of the Gini Coefficient

We are now in a position to introduce the connection with the Gini coefficient. Our

starting point is the concept of welfare dominance (Yitzhaki & Semrod, 1991),

which is the application of the concept of stochastic dominance to welfare

economics.

Welfare dominance accepts (13.8) as the normative social decision rule but

avoids the assumption of a specific SWF. (Note that if we will be ready to assume

a specific SWF in (13.8) then this section will be redundant). The concept of welfare

dominance is weaker than the Pareto-improving criterion because it allows the

acceptance of a policy recommendation even if some members of the society object

to it, provided that other individuals benefit from it. The researcher is trying to reach

a conclusion on a set of SWFs. The sets of permissible functions are defined by the

signs of the agreeable properties of the social evaluation of the marginal utility of

income. The largest set of functions is the one that only requires that w0 > 0. The

second largest set, which is a subset of the first one, requires w0 > 0, w00 < 0, and

so on. We will limit ourselves to first- and second-degree welfare dominance rules.

The set of functions {w(y): w0 � 0} is the set of non-decreasing SWF, which

means that all we are ready to assume is that the social evaluation of the marginal

utility of income is non-decreasing. The set of functions {w(y): w0 � 0; w00 � 0} is

the set of permissible SWF that is restricted to functions with the social evaluation

of the marginal utility of income being non-negative and non-increasing.

Proposition 13.1 Let y1 and y2 be two continuous income distributions defined
over [a,b]. Then E{w(y1)} � E {w(y2)} for all functions w in {w(y): w0 � 0} iff

F2 yð Þ� F1 yð Þ for all y, (13.9)

where Fi is the cumulative distribution function of yi.

Proof See Chap. 5, Sect. 5.4.

Proposition 13.1 implies that if the cumulative distributions intersect, then one

can find two legitimate SWFs which belong to {w(y): w0 � 0} that will rank

the distributions in a contradicting order of expected social welfare. This means
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that the ranking of SWF provided by Proposition 13.1 is incomplete, because the

ranking is restricted to non-intersecting cumulative distributions.

It is worth pointing out that Pareto improvement is a stricter requirement than

first-order welfare dominance because while Pareto improvement requires that no

individual is worse off, welfare dominance allows for making a person worse off

provided that another person is better off. Because of the anonymity requirement, it

may happen that the rich becomes poor and the poor becomes rich, provided that the

income added to the poor is greater than the income taken from the rich.

Proposition 13.2 Let y1 and y2 be two continuous income distributions defined
over [a,b]. Then E{w(y1)} � E {w(y2)} for all functions w in {w(y): w0 � 0 and
w00 � 0} iff

ALC1 pð Þ�ALC2 pð Þ for all p, (13.10)

where ALCi is the absolute Lorenz curve of yi.

Proof See Chap. 5, Sect. 5.4.

Proposition 13.2 implies that if the ALCs intersect then one can find two

legitimate SWFs in {w(y): w0 � 0 and w00 � 0} that will rank the expected

SWFs in a contradicting order.

Definition 13.1 The efficient set of distributions according to a given rule is

defined as those distributions that are not dominated by any other distribution

according to that rule.

A useful property of the efficient set is that the more general the rule that is used

to derive it, the larger the efficient set is. Following this property, we note that the

Pareto-improving efficient set includes as a subset the first degree welfare domi-

nance efficient set, which includes the second-degree welfare dominance efficient

set, etc.

However, unless the set of distributions is constrained, the welfare dominance

rules cannot produce a complete ordering of distributions.

Proposition 13.3 The following are necessary conditions for second-degree wel-
fare dominance:

(a) m1 � m2 (13.11)

and

(b) m1 � D1( n Þ� m2 � D2( n Þ for all n

where mi and DiðnÞ are the mean and the extended Gini coefficient (with extended
Gini parameter n) of Yi, respectively.

Proof The proof is immediate if we recall that m1 � D1ðnÞ is the area between the
ALC and the horizontal axis. See Chap. 5.
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The usefulness of Proposition 13.3 is the following: because welfare dominance

rules produce only an incomplete ordering of distributions, they are not capable of

producing decision rules that can be applied in all cases. Actually, they are unable

to rank distributions unless an extreme deviation from optimality occurs. The

advantage of forming efficient sets according to necessary conditions is that they

enable producing a complete ordering of distributions with the created efficient set

being a subset of the efficient set of the welfare dominance (WD) rule.

For example, consider the following two-necessary-conditions efficient set: “the

mean and the mean minus the GMD” rule (conditions (a) and (b) of Proposition

13.3). That is, a distribution Y1 belongs to the efficient set if there is no other

distribution, Y2, such that: m2 � m1 and m2 � D2 � m1 � D1. Each condition by

itself forms a complete ordering, and all distributions that belong to the efficient set

formed by the two conditions belong to the efficient set of second-degree welfare

dominance as well. The distributions that belong to the efficient set have either high

average income or their inequality is not “too high” relative to other distributions in

the set. The advantage of using the necessary condition for WD is that it enables the

researcher to reduce the size of the efficient set, and it cannot be shown that by using

it one violates all possible SWFs.

It should be noted that even if all the conditions in (13.11) are met, it does not

necessarily mean that distribution 2 does not belong to the second-degree welfare

dominance set, because not all possible legitimate SWFs are included in (13.11). (A

counter example is provided in Chap. 6.) In other words, fulfilling the infinite

number of necessary conditions in (13.11) does not form a sufficient condition for

second-degree welfare dominance.

An interesting property of the Gini coefficient is given in proposition 13.4.

Proposition 13.4 There exists no additive utility function which ranks income
distributions in the same order as the Gini coefficient.

Proof See Newberry (1970).

On the other hand, the Gini and the extended Gini are special cases of Yaari’s

decision rule (1987, 1988).

To see this, note that Yaari’s decision rule is

YD ¼
ð
C(1� F(x))dx (13.12)

where C is a decreasing function. Substituting C(1 � F(X)) by [1 � F(X)]u we

get a special case of Yaari’s decision function to be m � D(u) (see Chap. 6).

Therefore we can claim that the “mean minus the EG” rules also form necessary

conditions for Yaari’s dominance rules. We will not elaborate upon Yaari’s

decision rule here. All we say is that the “mean minus the EG” forms a special

case to Yaari’s index, similar to the relationship between Atkinson’s (1970)

family of SWFs and a general SWF.
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To sum up: the necessary conditions according to Proposition 13.3 are necessary

condition for second-degree welfare dominance and Yaari’s theory. We will return

to this topic in Chap. 14 when we add marginal analysis to welfare dominance rules.

13.2 The Theory of Deprivation

The purpose of the next two sections is to interpret the sociological theory that is

referred to as “relative deprivation” (hereafter RD) as an economic theory that is

competing with the SWF approach. Our objective is to illustrate the role of the Gini

in quantifying deprivation. In doing so it is useful to separate the “relative” concept

from the “deprivation” concept. However, because most of the literature deals with

RD theory we will separate the two concepts at a later stage.

A major difference between the RD and SWF approaches is that deprivation is a

theory about satisfaction while SWF is a normative intended to find the appropriate

decision. Relative deprivation is an early version of what economists refer today as

the “happiness literature” (Van Praag & Ferrer-i-Carbonell, 2008) and some of this

literature uses the concept of deprivation. It is not intended to be a normative

decision function, and there is no requirement for consistency with optimization.

However, it can serve as a decision function, because in a democratic country we

expect the SWF to be based on and to take into account the utilities (satisfaction) of

the members of the society.

The original conceptualization of the theory appears in the famous three-volume

research monograph The American Soldier: Adjustment During Army Life (Stouffer
et al., 1949). The theory has been applied to several fields in order to model social

behavior. Crosby (1979) presents an excellent review of the early stages of the

theory. However, as pointed out by Merton and Kitt (1950), the concept of relative

deprivation is not formally defined in The American Soldier. Therefore it is not

surprising that Crosby (1979) counts four versions of the theory and that in general

there is no agreement on what the exact meaning of the term “relative deprivation”

is. By now one can count at least a dozen versions, and there is no advantage in

describing them here.

A major advantage of the RD theory from our point of view is that it gives

rational explanations to what at first sight might be viewed as a paradox or irrational

behavior. For example, how come there is more deprivation concerning promotion

among pilots than among the military police personnel, although promotions at the

military police is a rare event while among pilots it is abundant? Is it possible that

the closer the society is to egalitarian distribution the higher the feelings of

deprivation? We will show several applications of the theory at a later stage.

What make the RD theory richer than the classical economic theory are the

dimensions it deals with. RD theory is based on three dimensions: income, power,

and prestige, and within those dimensions it is based on different reference groups.

Traditional economists tend to focus on income only. Prestige, if not ignored at all,

is usually considered as another dimension that can be translated into forgone
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income, while power is mainly considered in game theory. Reference groups are

ignored. Whenever RD is used as a theory of revolution, it is based on the conflict

between power and income or prestige. However we will follow traditional eco-

nomics and concentrate on income only. The reason is because in order to show the

relationship with economic theory, power and prestige are not needed.

Runciman (1966) described the theory in words, but it can be interpreted as

posing exact axioms that enable one to describe the theory as an extension of

traditional economic theory into social collective feelings. His book is intended to

explain a paradox: why is there a higher feeling of deprivation whenever inequality

is relatively low? That is, he wanted to explain the difference between an objective

measurement of inequality and subjective feelings.

Runciman defines the conditions for an individual to feel relatively deprived:

“We can roughly say that a person is relatively deprived of X when (1) he does not

have X, (2) he sees some other person or persons (possibly including himself

at some previous or future time) as having X whether or not that is or will be in

fact the case, and (3) he sees it as feasible that he should have X.” (Runciman,

1966, p. 10).

Runciman rightly suggests that people compare themselves with some reference

group within the society rather than with the whole society. The reference group

forms the base for the yardstick they use. Because individuals may have several

reference groups and different individuals may have different reference groups, we

argue that the reference group is responsible for the “relative” part in the RD

concept. The concept of relativity will be discussed in the next section. At this

stage we will assume that the whole society is the sole reference group for all

members of the society so that we are left with deprivation theory. The deprivation

theory is based on (1) and (3). However, it is possible to argue that (3) refers to the

power dimension, which we ignore.

We shall consider income as the object of deprivation. Even when restricting

ourselves to income, there are still numerous versions of the theory of relative

deprivation and it is not the purpose of this chapter to review them. We will follow

only one version of the theory, the one presented by Runciman (1966) and its

quantification as presented in Yitzhaki (1979, 1982b).

Runciman’s (1966) theory is based on three dimensions: deprivation, power, and

status (prestige). With respect to deprivation, Runciman distinguishes between

deprivation of an individual due to the position of his group (hereafter, between-

group deprivation, in Runciman’s term, “relatively deprived because of group’s

position in the society,” p. 33), and relatively deprived because of his own position

in his reference group (to be called “within-group” deprivation).

Runciman mentioned power in his theory, but he did not analyze its

implications. It seems that the main reason for that is that power is used in analyzing

social conflicts while Runciman was not interested in that part of the theory. One

possible explanation for this approach is that social unrest did not seem a very

important factor at that period in Britain. Runciman also mentioned status as a

dimension relevant to RD theory. Because we are interested in presenting RD as an

economic theory we do not take status into considerations.
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Yitzhaki (1979) quantified the RD theory while Yitzhaki (1982b) dealt with

the implications of the existence of reference groups. However, mathematical

difficulties prevented Yitzhaki from having a better analysis of the latter. Mean-

while, Frick, Goebel, Schechtman, Wagner, and Yitzhaki (2006) managed to offer

a decomposition of the Gini coefficient according to population subgroups.

The decomposition enables the analysis of the effects of reference groups on

deprivation. The rest of this section will set the ground for deprivation theory,

with the whole society serving as one reference group, while the effect of different

reference groups for different individuals, which is responsible for the relativity of

the concept, will be dealt with only in the next section.4

In order to interpret the theory we have to analyze the stages that lead to social

welfare and to analyze the roles they are playing. The description of the

considerations leading to the theory is based on three stages (recall the three stages

in the decathlon example): the microeconomic problem, the general equilibrium

reached through market activity, and the effect of the resultant income distribution

on deprivation.

(a) The microeconomic problem: Consider an individual who maximizes her utility

function subject to a given budget constraint. That is:

Max U x1; . . . ; xnð Þ (13.13)

s:t: Sipixi ¼ y:

As a result of this optimization we can write the indirect utility function as:

V y; p1; . . . ; pnð Þ: (13.14)

The indirect utility function states that the utility of the individual is a

function of her income and the prices that she faces.

Would we label the indifference curves (i.e., equal utility curves) as indif-

ference of deprivation curves, then the consumer problem could have been

defined as minimizing deprivation subject to the same income and prices

constraint. Formally, let D(x1,. . .,xn) ¼ B � U(x1,. . .,xn) be the deprivation

function, where B is the non-reachable Bliss point. Then

Min D x1; . . . ; xnð Þ (13.15)

s:t:Sipixi ¼ y:

4 Hopkins (2008) surveys the different approaches toward relativity and the implications of the

connection between happiness and inequality. Note, however, that the relativity in Runciman’s

approach arises because deprivation depends on the reference group, and reference groups among

individuals may differ. Would we use the same reference group for the whole population then

deprivation ceases to be relative.
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results in an identical solution to the (13.13) problem. Hence, the only differ-

ence between Runciman’s deprivation and the utility function is that the utility

function is defined over what the individual has, while deprivation is defined

over what one does not have. Because the same basket of commodities defines

what the individual has or does not have, the two theories seem to be

representing the same idea. The only difference is whether one considers the

glass as half empty or half full.

(b) The general equilibrium: We now move into the general equilibrium stage

which describes the role of markets and the resultant national income.5 At this

stage prices and incomes are simultaneously determined. Because it is assumed

that p1,. . .,pn are equal for all individuals, the only differences among

individuals are the utility functions and incomes. This gives the following

meaning to prices: prices enable the society to create units of equal production

value. In other words, the n-dimensional commodity space is converted into

units of equal purchasing power value. Each unit of income represents a basket

of commodities with equal purchasing power. It is important to note that the

prices and the income distribution are determined simultaneously. This obser-

vation is important because the size of the cake and its distribution are simulta-

neously determined. It implies that the term “real income” is meaningless at the

national level unless a set of equilibrium prices is attached to it (Yitzhaki,

1982b).

(c) Distributional values: the effect of the income distribution on deprivation.

Till nowwe applied only standard economic theorywithout referring to deprivation

or welfare economics.We now turn to the only assumption needed to apply deprivation

theory.

A critical assumption: In evaluating the units of equal purchasing power

(i.e., units of income) that she possesses, an individual applies the law of declining

marginal utility. That is, the distributional value of a unit of income y (i.e., the unit

defined between [y, y + dy]) depends on the scarcity of that unit in the population.

Scarcity is the excess demand over supply. To attest that this assumption is based on

Runciman’s approach note the following: “The more people a man sees promoted

when he is not promoted himself, the more people he may compare himself with

in a situation where the comparison will make him feel relatively deprived” (1966,

p. 19). Note that our addition to Runciman’s theory is by applying Runciman’s X to

each unit of income, and determining that the value attached to X is the proportion

of individuals who have X.

Inwhat followswewill use two types of values: production value and distributional

value. Production value is the value of the inputs required to produce a dollar value

of commodities. The distributional value is the value attached by the individual

(or society) to a unit consumed of a product, the production value of which is one

5 Sen (1976b) describes the assumptions that lead to national income comparisons.
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dollar. Each unit of income represents a different basket of commodities available for

consumption.

Let y and F(y) represent the income and the cumulative distribution of income,

respectively. Each dollar of income represents a different bundle of commodities

and its distributional value is determined by its scarcity. The cumulative distribu-

tion F(y) represents the scarcity of the y-th unit in the population while 1 � F(y)

represents its abundance. 1 – F(y) ¼ P(Y > y) is the share of individuals who do

have the y-th unit of income (which represents a bundle of commodities consumed

by someone with y units of income). We will refer to 1 � F(y) as the distributional

value of the y-th unit. The individual can be deprived of the y-th unit (if he does not

have it), or satisfied with having the y-th unit if he has it. Note that the distributional

value is determined independently of whether the individual has or does not have

that unit.6

The total value of the units an individual with income y is deprived of is

d(y) ¼
ð1

y

ð1� F(t))dt; (13.16)

while the total value of the units of y the individual has is:

s(y) ¼
ðy

0

½1� F(t)]dt: (13.17)

The sum of (13.16) and (13.17) is equal (by definition) to m, the mean income in

the society (assuming that income is non-negative). It is shown in Yitzhaki (1979)

that the average deprivation in the society, which is the average of (13.16) over all

individuals, is

D ¼ mG; (13.18)

where G is the Gini coefficient. The total satisfaction in the society is

S ¼ m 1� Gð Þ: (13.19)

The proof is based on (2.13).

To give a concrete example, imagine the market for stamps. Consider a group of

collectors, each one of them is interested in maximizing the value of his collection.

The price of each type of stamps is determined in a market that takes into account

6 See Chakravarty and Mukherjee (1999), Bossert and D’Ambrosio (2006), Bossert, D’Ambrosio,

and Peragine (2007), and D’Ambrosio and Frick (2007) for different views. Deaton (2001) uses the

theory to explain differential mortality.
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tastes and scarcity of stamps. The result of the market activity is a set of prices and a

distribution of the values of stamp collections. Real income can be defined in terms

of a specific stamp with each unit of income representing a bundle of stamps of

equal exchange value. The distributional value attached to each unit of real income

depends on the scarcity of that unit. According to deprivation theory each collector

feels deprived of units that he does not have and feels satisfied with each unit he

possesses. The units of income he is deprived of are those units that would have

enabled him to have a larger stamp collection.

An additional example is the decathlon, where athletes compete in several fields.

The microeconomic problem: Given prices, which in this case means the

conversion of seconds or meters in each field into scoring points, we can present

the athlete’s problem as maximizing his utility over the achievements in different

fields subject to time constraint and to given prices (points per unit). That is, each

athlete allocates his practicing time in a way that will ensure that the marginal cost

of time in terms of scores is equal across fields. This problem can be translated into

an indirect utility presentation so that the utility of the athlete is a function of his

total score and prices. Note that in order to obtain the RD theory there is no need to

assume envy or altruism. The externality is imposed on the social evaluation of the

marginal utility of income, and individuals evaluate what they have and what they

don’t have by the same criterion, its scarcity. In this sense, one can view RD as an

extension of the economic assumption of declining marginal utility to the feelings

of the individuals in the society.7

Finally, everything in this section could have been developed using the extended

Gini coefficient. Therefore, all EGs can represent RD theory. The difference

between using Gini and using EG is that in using Gini we assume a linear relation-

ship between distributional price and scarcity, while in using the EG the relationship

is not linear.

13.3 Relative Deprivation

13.3.1 Concepts of Relativity

The term “relative” is used in economics in several different contradicting ways.

When we say “relative price” we actually mean “real” price, which is the price of a

good in terms of another good. In other cases the interpretation of “relative” is that

the units are normalized, as in the case of a relative measure of inequality where we

normalize the units of income by the mean income. A third use of the term

“relative” occurs when we use the rank of an individual according to some property.

7 Hey and Lambert (1980) consider a different interpretation. The individual compares his income

to the income of each individual in the society. As far as we can see this is a crucial difference in

interpreting the implication of the theory.
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A fourth type of “relative” occurs when one changes the reference group. Our first

step is to show that the last two interpretations of “relativity” occur in relative

deprivation theory.

Proposition 13.5 The individual’s satisfaction function is “relative” in the sense
that it is an increasing function of the rank of the individual in the society.

Proof The satisfaction of an individual with income y is:

s(y) ¼
ðy

0

ð1� F(t))dt (13.20)

which is the same as the total value of the units of y that the individual has (see

13.17). Using integration by parts, with v0 ¼ dt and u ¼ (1 � F(t)), we get

s(y) ¼ y[1� F(y)]þ
ðy

0

t f(t)dt:

Using the notation p ¼ F(yp), i.e., p is the rank of the individual with income yp
in the society we get

s(ypÞ ¼ yp½1� F(ypÞ� þ
ðyp

0

t f(t)dt ¼ ð1� p)
@ALC(p)

@p
þ ALC(p) (13.21)

where ALC is the absolute Lorenz curve. (Note that geometrically, s(yp) is a linear

approximation of the value of ALC(1) evaluated at p).

By looking at the derivative of s(yp) with respect to p we find:

@s(ypÞ
@p

¼ ð1� p)
@2ALC(p)

@p2
� ALC 0ðpÞ þ ALC 0ðpÞ ¼ ð1� p)

@2ALC(p)

@p2
� 0:

(13.22)

The last inequality is based on the convexity of the ALC.

Hence we can argue that deprivation theory is “relative” in the sense that social

evaluation of the utility of the individual is an increasing function of the absolute

level of the income of the individual (which is equal to the derivative of ALC) and

an increasing function of his rank in the society (13.21). This is known by every

sports fan who uses the term “Numero Uno” to convey the message that his team is

the best. Equation (13.22) states that the social evaluation of the marginal utility of

income declines with the rank of the individual in the society. We now turn to the

fourth use of “relative.”
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13.3.2 Relative Deprivation

In the discussion above the society was viewed as one reference group. As we have

demonstrated the deprivation/satisfaction theory differs from the Bergson-type

SWF only in one point: the way the social evaluation of the marginal utility of

income is determined. While in Bergson-type SWF the social evaluation of the

marginal utility of income is determined without reference to incomes of other

persons, in the deprivation/satisfaction theory the social evaluation of the marginal

utility of income is a function of the income distribution. Specifically, it is deter-

mined by the law of diminishing marginal utility applied to each unit of income.

Note that deprivation theory does not have an element of envy or altruism. The way

an individual determines the distributional value of the dollars he has is identical to

the way a stamp collector and the market determine its value—as an inverse

function of its scarcity.

We turn now to the relativity dimension of the concept. According to Runciman,

the individual determines the distributional value of a dollar with reference to a

reference group. The reference group may be composed of the whole society or any

subgroup of members of the society.

In a general framework, reference groups should be determined endogenously by

the individuals. In a dynamic model, especially when the society is changing and the

individual changes his position, we should expect movement from one reference

group to another. Even if we ignore the time dimension, we still face complications

that arise from the individual having several reference groups, and the reference

groups being open rather than closed. By closed groups we mean that if individual

A belongs to the reference group of B, then B also belongs to the reference group ofA.

The fact that the individual is influenced by subpopulations is well recognized by

Runciman. This is the basis of the relativity of the concept of deprivation. The idea

of relativity is not unfamiliar to economists. Ben-Porath (1980) has coined the

F-connection as the natural base of reference groups: Families, Friends, and Firms.

Ethnic origin, common language, common religion, neighborhoods, and nationalities

are also the bases of group identity. However technical difficulties prevent the analysis

of a complicated division of the society into reference groups.8

An additional point worth mentioning is Runciman’s attitude toward the role of

reference groups. Pedersen (2004, p. 39) uses the following quote to describe

Runciman’s theory:

Most people lives are governed more by the resentment of narrow inequalities, the

cultivation of modest ambitions and the preservation of small differentials than by attitudes

to public policy or the social structure as such (Runciman, 1966, p. 285).

In this respect, the reference group in Runciman’s approach seems to be the

group that causes the feelings of deprivation rather than the group with which an

8 The classification of a society into classes is the corner stone of the Marxist theory but it is rarely

done in the measurement of inequality. For a recent example see Wolff and Zacharias (2007b).
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individual identifies himself. This is different than the polarization approach, where

the group is the group one identifies himself with. (On polarization, see Duclus,

Esteban, and Ray (2004); Esteban and Ray (1994, 1999, 2001, 2005).) It hints that

the reference group for comparisons and the group with which one identifies

himself may be different. In this sense it seems that Zhang and Kanbur’s (2001)

reasoning for the alternative polarization index they suggest agrees with Runciman.

Note the following: “The three polarization measures discussed so far aim to

capture the ‘clustering’ along the income dimension into high and low income

groups. However, debates on polarizations are often conducted in the framework of

recognized and accepted non-income grouping. In the U.S., for example, clustering

of black and white income levels is of as much concern as ‘the disappearing middle

class.’ In China, as discussed in the introduction, geographical clustering of income

is a major policy concern.” (Zhang & Kanbur, 2001, p. 93).

Dividing the society into reference groups, especially if one allows individuals

to belong to several reference groups and also allows the reference groups to be

open makes the analysis complicated and not tractable. Therefore we limit the

analysis to closed reference groups, that is if A is in the reference group of B then B

is in the reference of A. We also assume that each member of the society belongs to

one and only one reference group. This is similar to dividing sports leagues

according to ability or regions, while assuming that each team restricts its reference

group to its own league.

13.3.3 The Effect of Reference Groups on Deprivation

This section relies on the decomposition of the Gini coefficient with respect to

population subgroups in order to analyze the effects of different structures of

subgroups on the average deprivation in the society (the reader is referred to

Chap. 4 for more details).9 Let Yi, Fi(y), fi(y), mi, and pi represent the income, the

cumulative distribution, the density function, the expected value, and the share of

subpopulation i in the overall population, respectively. Let si ¼ pimi/mu denote the
share of group i in the overall income. The overall population is composed of the

union of the subpopulations. That is:Yu ¼ Y1
S
Y2

S
. . .

S
Yn, where Yu is the union

of subpopulations Yi, i ¼ 1,. . ., n.
Note that

Fu(y) ¼
X
i

piFi(y): (13.23)

9 The decomposition is applied to the Gini coefficient only. Although the extended Gini can also

represent deprivation and other theories (Ebert & Moyes, 2000; Moyes, 2007), it is not decompos-

able in the same way as the Gini.
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That is, the cumulative distribution of the overall population is the weighted

average of the cumulative distributions of the subpopulations, weighted by the

relative sizes of the subpopulations.

Following (13.18) deprivation is modeled as D ¼ m G where m is the mean

income while G is the Gini coefficient. Assuming that the society is composed of n

subgroups, then by using (4.27) we get:

Du ¼ muGu ¼
Xn
i¼1

pi miGi þ
Xn
i¼1

pi miGiðOi � 1Þ þ muGbp þ muðGb � GbpÞ:

(13.24)

In order to be able to illustrate the implications of (13.24) let us distinguish

between intra- and inter-group deprivations and the role played by stratification.

Intra-group deprivation (within-group)—the first two components in the right-hand

side of the equation, i.e.,
Pn

i¼1 pi miGi (denoted by IG) and
Pn

i¼1 pi miGiðOi � 1Þ, are
the intra-group components of deprivation. Note that in the first term the contribution

of each group to the overall deprivation is a function of its size, average income, and

inequality among its members. IG is a weighted average of the intra-group Gini

coefficients. The second term will be discused below, under “stratification”.

Between-groups Gini: The last two components of (13.24) represent the between-

groups Gini. muGbp is the between-groups Gini (BG) as defined by Pyatt (1976). It

is calculated as if all members of the group received the same income which is equal

to the mean income of the group. This term is the “closest” to the polarization index

and the main difference is that while BG is homogeneous of degree zero in the share

of the population in each group, the polarization index is not.

The second term, muðGb � GbpÞ, is related to the overlapping between the groups
and is explained next.

Stratification: Stratification, which is the inverse of overlapping, has two effects.

The first one is the effect on the “within” component and the other is the effect on

the “between” component. Assuming that the society is completely stratified, both

terms of stratification vanish and the Gini (hence the deprivation) decomposes

neatly into purely intra- and inter-group components. Existence of non-

stratification, i.e., overlapping between distributions reduces the between-groups

component because muðGb � GbpÞ is always nonpositive. The other effect is on the

intra-group deprivation. It is equal to
Pn
i¼1

pi miGiðOi � 1Þ, and its components can be

positive, zero, or negative depending on the overlappings between the distributions.

However, because large values of overlapping tend to be associated with large

values of Gini the overall term tends to be positive. An alternative way to see it is

that because the overall and Pyatt’s BG are given, and muðGb � GbpÞ is negative,

by definition the sum of all overlapping terms is positive. Hence, overlapping

increases the intra-group deprivation component and decreases the inter-group

component.
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By now we are ready to explore the effects of different structures of reference

groups on relative deprivation.

Runciman’s approach: Consider first the case where individuals’ deprivations arise
only from the intra-group component. We can analyze the implications of different

scenarios depending on stratification.

Runciman (1966) mentions between-groups deprivation, but seems to stress the

role of intra-group deprivation. That is, it is assumed that deprivation arises from

comparisons within the reference group of the individual. This is the easiest to

handle with clear-cut results. We divide the discussion to two cases: a case with

perfect stratification and a case with an imperfect one.

Consider a perfect stratificaton: the society is divided into “leagues” with the

aspirations of members of each “league” limited to that league. In this case, it is

easy to see that deprivation is low even if inequality is high (because between-

groups inequality is ignored). Also, the larger the number of groups, the larger

the BG term, the lower the relative deprivation, even if inequality and mean income

are kept constant. In the extreme case where the number of groups approaches the

number of members in the society, high inequality can prevail with zero depriva-

tion. This case is analyzed in detail in Yitzhaki (1982b). As far as we can see, this

classification, if accepted by the members of the society, can allow extreme

inequalities to exist without deprivation. Therefore we should expect the upper

class in the society to convince others to restrict their aspirations to their reference

groups. Examples of such behavior include the separation in the army to soldiers

and officers, with officers eating in a separate dining room, the tendency to have

ranks at work and the existence of different ranks in universities. In an extreme and

unacceptable case, this theory can supply the rationale for an Apartheid policy. If a

policy designer can convince each group to stick to its own folks, so no cross-group

comparison is done—society can tolerate large inequalities with low level of

deprivation.

The extreme case of stratification can be described by the following lines:

The rich man in his castle

The poor man at his gate

God made them, high or lowly,

And ordered their estate.10

If, on the other hand, stratification is not perfect, then it is possible that depriva-

tion in one group can be higher than deprivation in the society. To see this, consider

the case where the poor and the rich form one group, while the middle class forms

another group. Then the mixed group of the rich and poor may have higher intra-

group inequality than the inequality in the overall society, leading to higher

deprivation in this group.

10 Nineteenth Century hymn (Mrs. C. F. Alexander) brought to our attention by Susanne Freund.

13.3 Relative Deprivation 271



Another interpretation of the same case to be considered is when individuals’

deprivations arise only from the intra-groupcomponents, but stratification is not perfect.

The overlapping component means that although there are no between-group

deprivations, members of each group can see members of other groups and mingle

with them. As a result it is possible that deprivation in one group is greater than

deprivation in the whole society and in extreme cases the sum of the deprivations in

all subgroups may be greater than the deprivation in a society that is not divided into

reference groups.11 In this case the “revolution” may start among the richest class. In

somesense, deprivation arises not froman increase in inequality but from the collapseof

the reference group. For example, assume that in the past women used to compare

themselves to other women only. As a result of a greater participation in the labor force,

however, the reference group ofwomenwas extended to includemen.Deprivation then

increased without a change in gender inequality and moreover, it may increase even if

inequality between men and women declines (Gurin, 1985). Clearly, mass-media,

television, and globalization tend to widen the reference groups of individuals and

therefore can increase deprivation even if inequality does not increase. Our conclusion

is that if we accept Runciman’s view that group identity is less important than the

feelings of the individual with respect to his own reference group, then between-group

componentwhich is interpreted inYitzhaki (2010) as representing polarization does not

play a role. Luttmer (2005) presents the neighbors as a reference group, which supports

Runciman’s approach.

The alternative view that seems to be stressed in polarization is that group

identity is the main determinant of deprivation. Therefore the appropriate element

to concentrate on is between-group inequality. In this case the relevant measure for

polarization is the BG component because it represents the deprivation between

reference groups.

13.4 Summary

We have shown that the Gini can be used to form necessary conditions for

dominance according to the social welfare approach, Yaari’s approach, and the

relative deprivation approach. We also showed the role of reference groups in RD

theory. Sufficient and necessary conditions can be formed using the ALC. The next

chapter deals with using those rules to get necessary and sufficient conditions for

improvement according to those theories that can be useful for policy analysis.

Further research is needed in order to fully implement the relative notion in the

relative deprivation approach (Layard, 1980, 2006). According to Runciman, the list

of factors that lead to social deprivation includes status, power, and income.

11 To see that note that Gb can be negative while the two terms involving Gbp in (13.24) cancel each

other. Gb can be negative if one group includes poor people and a small number of extremely rich

people so that the covariance between average rank and average income among groups is negative.
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The factors that lead to social clashes and unrest are deprivation and power. We have

analyzed the implications of between-group inequality, a concept that resembles

polarization in a relative deprivation context and found that it does not lead to an

increase in deprivation. However, we did not analyze differences in power, and it may

well be that introducing power as a function of the group size increases the power in a

nonlinear way. If this is the case, then polarization should be associated with power

rather than deprivation or inequality in economic well-being. Esteban and Ray (1999)

associate polarization with ethnic conflict. Montalvo and Reynal-Querol (2003, 2005)

associate polarization with ethnic and religeous conflicts which is in line with the

suggestion advocated in this chapter. Another topic that is missing from this chapter is

the endogeneous formation of reference groups. In this chapter we have assumed that

reference groups are given. Future research is needed to make the formation of

reference groups an endogenous decision made by the individuals. Alesina and La

Ferrara (2005) survey some of the approaches, Shayo (2007) presents an additional

quantitative aspect, while Benabou (2000) seems to suggest the possibility of multiple

equilibria.

An additional area that calls for additional research is the effect of economic

growth on polarization and deprivation. A first step in this direction is offered in

Wodon and Yitzhaki (2009) who argue that economic growth may lead to higher

well-being but also to higher deprivation because it increases the spectrum of

commodities that the individual feels she is deprived of.

Those areas are beyond pure economic theory that views the rational individual

as a decision-making unit whose connection with the surrounding is mainly through

the market. They are beyond the scope of this book.
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Chapter 14

Policy Analysis

Introduction

The objective of this chapter is to introduce the use of the concentration curves and

the Gini methodology in the areas of taxation and progressivity of public

expenditures. Most of the literature in these areas considers the case of a represen-

tative individual, which means that issues of income distributions are ignored and

the only issue that is considered is efficiency. For the Gini methodology and

concentration curves to be useful we extend the model to include issues of income

distributions as discussed by Diamond (1975) and Atkinson and Stiglitz (1980). We

start with a crude characterization of optimal (mostly indirect) taxation which

includes the issue of redistribution in addition to efficiency considerations. In a

typical model the investigator assumes a social welfare function (SWF) and

optimizes it subject to the behaviors of the individuals and to the instruments that

are used by the government. Using those ingredients she gets the first-order

conditions for optimization so that the relationships among the instruments in an

optimal setting are determined (see, as a background, Atkinson &Stiglitz, 1980, pp.

386–393). Note that by assuming the existence of an SWF, the issues of horizontal

equity and of comparisons of utilities of households with different structures are

skipped because the mere existence of an SWF implies that one knows how to rank

individuals according to economic well-being.1

1Mayshar and Yitzhaki (1996) extend the approach so that “economic well-being” can be affected

by two parameters—ability and needs. Then, the investigator should be able to agree that given

ability, the higher the needs the lower the well-being of the household, and given needs, the higher

the ability the higher is its well-being. This kind of extension is useful for handling family size

(needs increase with the number of children but one does not want to commit himself to a specific

magnitude) or rural–urban distinctions (e.g., rural populations need less income to achieve a

certain level of well-being than urban populations (Ravallion, 1993, p. 31)). There are some

technical requirements for this extension to hold. This and other types of extensions are beyond the

scope of this book.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_14,
# Springer Science+Business Media New York 2013
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There are two major weaknesses in such an approach as a general approach for

policy analysis: (1) the policy’s recommendation depends on the assumed SWF,

which depends on the social approach of the investigator. This means that two

investigators who assume different SWFs may reach different recommendations

with no easy way to compare the recommendations. (2) One has to know exactly the

reaction of the individuals to the changes in the policy instruments that the

government uses. Moreover, almost in all real-life situations some or all of the

first-order conditions are violated. This complicates the problem even more because

as pointed out by Corlett and Hague (1953), counting the number of violations is

not meaningful because one violation can neutralize the other. As a result we do not

have a good way to know how far we are from the optimum without assuming some

debatable assumptions. The case of a known SWF is not covered in this book and

the interested reader is referred to Lambert and Yitzhaki (1995).

In this chapter we start without imposing the social views on the problem to be

solved in advance. Instead, we introduce the assumptions in a gradual way. If the

deviation from an optimum is relatively large then wemay be exempted from having

to fully specify the SWF. Given the results from the data and our ambition we will

add more assumptions on the shape and properties of the SWF. This gradual

imposition of assumptions is useful because it allows one to evaluate the robustness

and limitations of our conclusions. The larger the number and the scope of assump-

tions imposed, the less robust our conclusions are. We refer to this approach as

“welfare dominance,” which is actually an adaptation of the stochastic dominance

literature into the area of taxation and public expenditure. (Welfare dominance was

introduced in Chap. 13).

The main difference between the application of the welfare dominance approach

in the area of public policy and the applications in other fields such as finance or

econometrics is that in the area of public policy one has to take into account the

reactions of the individuals to the changes in policy instruments, while in other

areas this complication is not dealt with. The reason for this difference is that the

nature of the problem changes from a direct application of the methodology into a

Stackelberg game. In a democratic society, and to avoid the unrealistic assumption

of lump-sum taxes, the government has to take into account the reactions of the

taxpayers as utility maximizers. That is, the government can affect the prices

by imposing taxes and subsidies, it can change the incomes of individuals by

distributing allowances and it also has to take into account the adjustments that

the individuals would make, given the changes in prices and incomes imposed by

the government. The extensive literature on “excess burden” or “deadweight loss”

is actually dealing with the effects of the changes in the reactions of the individuals

to the changes in policy instruments by the government. Hence, in this field there is

no point in applying the suggested methodology of welfare dominance without

considering the reaction of the individuals. Therefore a significant part of the

chapter will be devoted to issues that do not involve the Gini or the concentration

curves but deal with excess burden.

There is an additional major restriction that is imposed on the analysis in this

chapter. The analysis is restricted to be a marginal analysis. That is, instead of
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defining the conditions for optimum we only search for the direction that we should

move with our instruments in order to improve the SWF. We do not define the

magnitude of the change that will lead to the optimum. The limitation imposed by

this restriction is that it does not allow us a full analysis of the optimal conditions

and the steps needed to be taken in order to bring us to the optimum. On the other

hand, it has several advantages: we do not assume that the government optimizes a

specific target function, nor that the reaction of each taxpayer to the change in the

government policy is known. Also, our analysis is relevant even when the economy

is not in an optimum, and the most important thing—it does not require assumptions

on the behaviors of the individuals. In essence, we are looking for a gradual reform

that saves a lot of assumptions and simplifies the presentation. Obviously there is a

price tag that goes with this approach: it gives less guidance to the optimal solution.

We will show that this kind of approach enables us to derive more operational

results with fewer assumptions.

The structure of this chapter is as follows: in Sect. 14.1 we introduce the concept

of marginal analysis. Section 14.2 is devoted to the description of the economic

model. In Sect. 14.3 we elaborate on distributional characteristics, namely the Gini

income elasticity (GIE). An empirical illustration of the Dalton-improving (DI)

reforms is given in Sect. 14.4. Section 14.5 concludes.

14.1 Marginal Analysis

Marginal analysis is defined as studying the effect of a small change in a policy

instrument on the SWF or on several SWFs or other targets. By a small change we

actually mean the derivative of the function of interest with respect to a change in

the policy instrument. Hence, we can learn from it about the direction to take, but it

does not specify the magnitudes of the steps needed in order to reach an optimum.

Also, if the function is not a well-behaved function, i.e., may have more than one

optimum, then we do not know whether the direction we selected is leading to the

global optimum or to a local one. All we know (and care about) is that the chosen

direction leads to an increase in the value of the SWF.

An alternative presentation of the marginal analysis is the restriction of the

search to the direction of the desired tax reform (i.e., which taxes or subsidies to

increase (decrease) and in what proportions) but not to the actual changes in the tax

rates and government’s expenditures. The assumption of a marginal tax reform is

not required from a conceptual point of view; all concepts described in this chapter

are applicable to non-marginal reforms as well. However, this assumption reduces

the data required enormously. Unlike the analysis of non-marginal reforms that rely

on fictitious or “cooked” data (because they require assumptions on unobserved

data), the analysis of a marginal reform mostly relies on observed data.

The validity of a marginal analysis as an approximation to real-life reforms

depends on the nature of the reform. From a technical point of view, a marginal
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analysis is applicable whenever first-order approximations are not leading to gross

errors, but this is a technical (and not so useful) answer. The important point is that the

ranking of households according to economic well-being is not seriously affected by

the reform. A useful rule of thumb is that if the reform does not change incomes

by more than 10% then a marginal analysis is reasonable. However if one intends to

make the poor rich and the rich poor, then marginal analysis is not an appropriate

method.

We now turn to the adjustments of the proposition concerning welfare dominance

to the area of policy analysis.

14.1.1 Setting the Problem: Dalton and Gini
Improvement Reforms

Similar to an optimal taxation problem, it is assumed that there is a SWF repres-

enting the decision-maker’s preference, and it is based on individuals’ indirect

utility functions. That is, there exists an SWF with

W v1 y1
� �

; . . . ; vH yH
� �

; q1; . . . ; qm
� �

; (14.1)

where vh and yh, h ¼ 1,. . ., H, are the indirect utility function and the exogenous

income of the hth individual, respectively, and qi , i ¼ 1,. . .,m, are the prices that

the individuals face.

It is assumed that the social evaluation of the marginal utility of income is

positive, that is,

bh(y) ¼ @W

@yh
¼ @W

@vh
@vh

@yh
> 0 (14.2)

for all h and that

if yh ¼ yk then bh ¼ bk h; k ¼ 1; . . . ;Hð Þ: (14.3)

Equation (14.2) implies that an increase in the income of any member of the

society increases the social welfare W, which is the Pareto principle, while (14.3)

implies that two individuals with the same income have the same social evaluation

of the marginal utility of income. This assumption allows us to ignore horizontal

equity issues. Combining (14.2) with (14.3) means that we can omit the index

h from b. Additional assumptions on the SWF will be imposed later.

We now describe the effect of a reform on the individual taxpayer. Consider an

individual (or a household) with a well-behaved utility function uh( ), unknown to

us, and an observed allocation of his budget according to yh ¼Pi qix
h
i , where qi

is the price of the ith commodity the individuals face, xhi is the quantity of
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commodity i consumed by individual h, and yh is his given income. Assume that the

vector of producers’ prices, p, is given and that ti ¼ qi � pi is the tax on commodity

i, i ¼ 1,. . ., m. Then, the effect of a marginal tax reform on the individual, i.e., the

marginal benefit (MB), is2

MBh ¼ �
X

i
xhi dqi þ dyh; (14.4)

which is the first-order approximation of the effect of the reform on household h,
evaluated in monetary terms.

The effect of the reform on the SWF is the weighted sum of the effects on the

individuals, weighted by the social evaluation of the marginal utility of income of

the individuals

dW ¼
XH

h¼1
bh(y)MBh: (14.5)

Having defined the marginal benefit to individual h (h ¼ 1,. . ., H) and to the

society, we can classify the different criteria for evaluating the reform. The first

criterion does not require the assumption of an SWF, while the others are based on

it. The reforms are defined and listed in descending order of difficulty in finding

them in practice.

Definition 14.1 Pareto improving (PI) reform: A reform will be called a Pareto

improving reform if MBh � 0 for all h, h ¼ 1,. . ., H.
Pareto improving reforms are mainly of a theoretical value because as far as we

know they were not found in practice. Weaker concepts of reforms require the

assumption on the SWF.

Definition 14.2 First-order welfare dominance (FWD) reform: A reform will be

called an FWD reform if dW > 0 for all bh > 0, h ¼ 1,. . ., H.

Definition 14.3 Dalton-Improving (DI) reform (second-degree stochastic domi-

nance reform). A reform will be called a DI reform if dW > 0 for all bh > 0,

h ¼ 1,. . ., H, provided that if yj > yk then bk(y) � bj (y).
The assumption behind the definition of a DI reform is that the social evaluation

of the marginal utility of income declines with an increase in income. Hence, if

there are no additional constraints on the government, the optimal solution will be

an egalitarian society. As far as we know, the DI reform is the only reform that may

be relevant for practical purposes. It can be found in cases of extreme deviations

2One can derive this relationship under two alternative sets of assumptions: (a) the household is a

utility maximizer and by Roy’s identity@vhðÞ=@ti ¼ � lhxhi , where v is the indirect utility function
andl is the marginal utility of income. The marginal benefit is the income equivalent of the change

caused by the reform, or (b) no optimization is carried out by the household and we are only

interested in a Slutsky’s compensation to the household.
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from optimality, when the government totally ignores issues of income distributions

or follows other considerations. In this section we will concentrate on this type of

reform, while in Chap. 15 we will impose additional assumptions on the SWF.

14.1.2 Characterization of a Dalton-Improvement Reform

A DI reform can be viewed as consisting of the allocation of manna from heaven

(due to a reduction in deadweight efficiency loss (i.e., excess burden) and transfers

from rich households to poor ones). It is referred to as a DI because Hugh Dalton, a

British economist, was the first to suggest that a transfer from a rich person to a poor

one increases social welfare (Dalton, 1920; Mayshar & Yitzhaki, 1995). A DI

reform is weaker than Pareto Improvement, which asserts that society benefits if

the income of at least one member increases, provided that incomes of all other

members do not decrease. It is also weaker than the first-order welfare dominance

reform, which allows reducing the real income of an individual, provided that

someone will get an income which is at least as high as that income. The DI reform

allows for a decrease of the income of an individual, provided that the incomes of

one or more poorer individuals increase by at least the same amount. A DI reform

would be considered as an improvement of the existing tax system by everyone who

accepts Dalton criterion. Bibi and Duclos (2007) and Duclos, Makdissi, and Wodon

(2005, 2008) apply the DI reform to truncated distributions to deal with a reform

concerned with poverty only.

A DI reform is actually an application of the second-degree stochastic domi-

nance approach into the area of tax reforms. The Dalton criterion views any transfer

from rich to poor as welfare increasing. To apply it we do the following steps: first

we arrange the households from poorest to richest in ascending order. Then we

consider the poorest (first) household. Under the Dalton criterion it must be that

MB1 � 0, otherwise it means that the poorest household did not get his share in the

manna, nor a transfer from a richer individual. That is, if MB1 < 0, then it is the

poorest household that gives a transfer to others—in violation of the Dalton

criterion.

Consider now the next to the poorest household. The restriction on the marginal

benefit to the second household is MB1 þMB2 � 0: To see this note that if such a

condition is violated then one can repeat the above argument with the poor being

defined as the first and second households combined. So ifMB1 þMB2<0, then the

poor did not get their share in the manna and gave a transfer to the rich in the

society. Note that MB2 can be negative, in which case we can interpret the reform as

a transfer from the second-to-the-poorest to the poorest household, in accordance

with Dalton.3

3 This distinguishes Pareto improving reform from DI reform. Under Pareto improving reform all

MBh, h ¼ 1,..,H must be nonnegative.
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By the same reasoning, it can be shown that a DI reform requires that

Xk

h¼1
MBh � 0; for all k; k ¼ 1; :::;H: (14.6)

An additional interpretation of condition (14.6) is the following: consider a

social planner who wants to decrease the poverty gap but does not know who is

poor. To be on the safe side, it is best to follow the strategy to reduce poverty gaps

for any possible poverty line. It is easy to see that condition (14.6) provides the

necessary and sufficient conditions for such a strategy.

A simple change in condition (14.6) will allow us to adapt the DI reform to other

social planners concerned about poverty. If the social planner is ready to commit

herself to an upper bound to the poverty line, then all she has to do is restrict

condition (14.6) to the first P < H conditions, cover only households that are

potentially poor, and aggregate the rest into one group.

To summarize: a tax reform which conforms with Dalton’s principle has to fulfill

the H conditions described in (14.6).

14.2 A Description of the Economic Model4

The economic model used in our empirical illustration relies on the following

characteristics and assumptions:

(a) A fundamental requirement.

In order to search for a DI reform one has to be able to arrange the population in

an increasing order of economic well-being. Without such an agreed-upon

order it is simply impossible to determine who is “rich” and who is “poor,”

which is a necessary condition for determining whether a transfer increases

(decreases) the social welfare. Our empirical illustration uses expenditure per

capita as the indicator of economic well-being. Note, however, that expenditure

per capita is only used to rank households. Hence, any monotonic transforma-

tion of expenditure per capita can be used without affecting the findings.

(b) The tax is shifted to the consumer.

Actually, this is an additional “data saving” assumption. There is nothing in the

method that prevents the user from introducing tax shifting into the calculations.

However, one needs a general equilibriummodel to find the distributional effect

of the portion of the tax absorbed by firms, households (the suppliers of factors

of production), and the rest of the economy. Assuming that all production

functions are homogeneous of degree one and that there is a perfect competition

is equivalent to the assumption that taxes are borne by consumers.

Most computational general equilibrium models (CGE models) utilize the

above mentioned assumptions.

4 This section is based on Yitzhaki and Lewis (1996).
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(c) Revenue neutrality

It is easier to analyze revenue-neutral reforms because one can ignore the issue

of the optimal size of government activity. However, this is another “assump-

tion of convenience” and can be discarded provided that one has the appropriate

data. By appropriate data we mean the information about the “willingness to

pay” for the public goods for each household in the economy. An example of

incorporating government expenditures into the reform is given by Slemrod and

Yitzhaki (2001).

(d) Externalities are ignored

This is yet another simplifying assumption, intended to get rid of the need to

explore the magnitudes and effects of externalities. The reason that we do not

deal with it is that it is not related to the main topic of this book. It is related to the

issue of “marginal efficiency cost of funds,” discussed later (in Section 14.2.2).

One way of including externalities can be found by Lundin (2001). As far as we

can see it should not be difficult to incorporate such considerations into the

calculations, provided that one can get hold of the appropriate data, or alterna-

tively, that one is ready to make the necessary assumptions with regard to the

effect of the externalities. If the externalities affect a public good (e.g., pollution

and health hazards) then one should know the willingness to pay.

14.2.1 The Required Data and the Distributional Characteristics

Similar to any other economic problem, one has to define the target function and the

constraints. The target function is defined in (14.6) while the constraint is that the

reform is revenue neutral. The search for a DI reform requires two kinds of data for

each tax parameter (referred to later as an instrument, because it may represent a tax

rate, an exemption or any parameter of the tax function) involved in the reform. The

first parameter reflects the effect on the target function. It will be referred to as the

distributional characteristic of the instrument, a term coined by Feldstein (1972)

(see below). The second parameter reflects the impact on the revenue constraint and

will be referred to as the marginal efficiency cost of public funds (hereafter MECF).

MECF reflects the cost to the society of revenue raised by changing the tax

instrument.

Assume that individuals are ordered in a descending order of the social evalua-

tion of the marginal utility of income. Inserting (14.4) into the left hand side of

(14.6) we get

Xk

h¼1
MBh ¼

Xk

h¼1
�
X

i
xhi dqi þ dyh

h i
; k ¼ 1; . . . ;H: (14.7)

By changing the order of the summation and dividing and multiplying by

Xi ¼
PH

h¼1 x
h
i , which is the “quantity demanded” of tax base (commodity in

indirect taxes) i, we get
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Xk

h¼1
MBh ¼ �

X
i
Xidqi

Xk

h¼1
(xhi =XiÞ

n o
þ
Xk

h¼1
dyh; k ¼ 1; . . . ;H:

(14.8)

The term in the curly brackets is the cumulative share of commodity i (tax base

of instrument i) consumed (held) by the k poorest individuals. This term reflects the

distributional characteristics of the tax instrument. It is portrayed by the relative

concentration curve of the commodity. The data required for constructing concen-

tration curves can be found in any survey of households’ expenditures. The data set

used in this chapter is the National Social Economic Survey in Indonesia (Central

Bureau of Statistics of Indonesia, 1990). Because we will be dealing with indirect

tax reforms, dyh ¼ 0 for all households.

14.2.2 Marginal Efficiency Cost of Funds

An important consideration in any tax reform is the expected change in tax revenue.

This section is devoted to the derivation of revenue estimates. It will be shown that

hidden in those estimates is the estimate of the marginal deadweight loss, which can

be recovered.

The government tax revenue is

R(t,q,y) ¼
X
i

tiXi(pþ t,y), (14.9)

where y is a vector of incomes, the consumer prices are q ¼ p þ t, t is a vector of

specific taxes, and Xi q; yð Þ ¼ Xi ¼
PH

h¼1 x
h
i is the demand for commodity i.

Revenue neutrality requires

dR ¼
X

i
MRidti ¼ 0; (14.10)

where MRi ¼ @R @ ti= is the change in overall tax revenue as a result of a small

change in the tax rate on commodity i. It turns out to be convenient to work with

dollars of revenues rather than with tax parameters which may differ in their units.

The change in tax revenue (denoted by di) that results from a change in the tax rate

on commodity i, dti, is then

di ¼ MRidti: (14.11)

The marginal tax reform, dt, could also be characterized by the vector of tax

receipts, d and the change in tax revenue would then be dR ¼Pi di:
Inserting (14.11) into (14.8) while taking into account that dti ¼ dqi and dy

h ¼ 0

for all h we get
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Xk

h¼1
MBh ¼ �

X
i
½Xi MRi�= di

(Xk

h¼1
xhi Xi

)
� 0; for k ¼ 1; ::;H

,

(14.12)

subject to
P

i di ¼ 0:
The term in the square brackets is the Marginal Efficiency Cost of public Funds.

It answers the following question: what are the costs to the society of increasing the

tax revenue by a dollar through a change in the ith instrument?5

To see that, let us concentrate on the last inequality in (14.12), the one with

k ¼ H. Then we get

XH

h¼1
MBh ¼ �

X
i

½Xi MRi= � di � 0 subject to
X

i
di ¼ 0: (14.13)

A neutral tax reform, involving only two taxes will benefit the society if

XH

h¼1
MBh ¼ �f½X1 MR1= � d1 � ½X2 MR2= � d1g ¼ fMECF2 �MECF1gd1 � 0:

(14.14)

It can easily be seen that MECF2 > (<) MECF1 requires that d1 > ð<Þ0 for the
reform to have an efficiency gain.

To estimate the MECFs one has to have either a tax calculator that can evaluate,

for each tax instrument, two parameters:

(a) The marginal change in revenue, MRi.

(b) The tax base Xi, which is the expected change in tax revenue if no other

change occurs.

In many practical estimations Xi is also used as an estimate of MRi. The

interpretation in those cases is that all MECFs are assumed to be equal, or that it

is assumed that the tax is a lump-sum tax.

It should be emphasized that the MECF concept is different from the MCF

concept used in many models of optimal taxation. The MCF is based on (14.5)

which is the sum of the marginal benefits being weighted by the social evaluation of

the marginal utility of income. The advantage of the MECF over the MCF is that it

separates efficiency considerations from the distributional characteristics. Therefore

it can be used for any target function that has no element of social welfare.

For example, consider a government that will be interested in maximizing its

probability of staying in power. Then the MECF continues to serve as an efficiency

criterion while the social evaluation of the marginal utility of income will be

substituted by the marginal propensity to vote for the government.

5 An instrument is a parameter that the government can change.
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For our empirical illustration we rely on a CGE model for Indonesia, written by

Jeffrey Lewis (1993). This model is capable of estimating the MECFs needed for our

illustration. However, as far as we can see, any CGE model with appropriate

classifications is sufficient for providing estimates of MECF. Readers who are inter-

ested in this model are referred to Lewis (1993) or to Yitzhaki and Lewis (1996).

Having described the problem to be solved in the terminology used in public

finance, let us describe it in the terminology of Lorenz and concentration curves.

A search for DI reform implies a search for a second-degree stochastic dominance.

That is, we search for a feasible distribution of real incomes which has an absolute

Lorenz curve (ALC) that is not lower than the existing Lorenz curve. To do that

we concentrate on the derivative of the Lorenz curve which describes the cumulative

value of the MBs. This curve is actually represented by (14.6). However, the

government can change the MBs curves through the taxes. Hence we have to look

at the derivative of ALC with respect to the tax instrument. This derivative leads us

to the absolute concentration curve (ACC) of each tax base with respect to income.

This is reflected in the curly brackets in (14.8), or in other words, by the income

elasticity of the tax base. The role of the MECF is the following: when

the government reduces the tax on one tax base by a dollar and increases the tax

on another tax base by a dollar (to keep the tax revenue intact) it may end up

increasing or decreasing the incomes of the taxpayers because of the changes it

creates in the deadweight loss. This is reflected by having shifted the appropriate

ACCs. To sum up: we are searching for a weighted combination of shifted ACCs that

will result in a nonnegative cumulative MBs curve. This is shown in Sect. 14.4.

14.2.3 The Characterization of the Solution

The problem to be solved is the one defined in (14.12): Find di(i ¼ 1;:::, n) such that

Xk

h¼1
MBh ¼ �

X
i
½Xi MRi= � di

(Xk

h¼1
xhi Xi=

)
� 0 for all k; k ¼ 1; :::;H

subject to
P

i di ¼ 0:
Because the trivial solution di ¼ 0 for all i satisfies the constraints, one commodity

should be chosen as a numeraire with its d being equal to one or minus one. Also, it

can be shown that any convex combination of two solutions of (14.12) is also a

feasible solution. Therefore, if one finds two DI tax reforms, one with a positive

change in the tax rate j, and the other with a negative change, then one can find a DI
reform with no change in tax rate j. In this case we may conclude that instrument j is
not essential for a DI reform.

In order to search for solutions, a numerical optimization algorithm should be

used to solve the following problem
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Mind
X

k
fMax½ � CMBkðdÞ ,0]g 2 � 0; s.t:

X
i
di ¼ 0; d1 6¼ 0; (14.15)

where CMBk ¼Pk
h¼1 MBh , that is, the cumulative marginal benefits from the

poorest k households. A feasible marginal tax reform, d , will be considered a

“solution” if the value of the objective function in (14.15) is zero. The algorithm

used for the search is described by Yitzhaki (1982c), but any algorithm for

numerical optimization can be used. Because the numerical algorithm cannot be

interpreted easily, we have to present the necessary conditions for welfare domi-

nance before moving to describe the results of the application of the model.

14.3 More on Distributional Characteristics:

The Gini Income Elasticity

In many practical cases the search for a welfare dominance reform will fail to find a

dominating reform. In those cases we may have to add more structure on the SWF.

Another reason for imposing more assumptions is that in many cases one is only

interested in the progressivity or regressivity of taxation, and not in calculating the

MECFs of taxes which is much more complicated and requires more data than

evaluating the distributional characteristics. The way forward that is also conve-

nient to use in order to find an improvement in the SWF is to use necessary

conditions for welfare dominance instead of using necessary and sufficient condi-

tions as was done so far. Because we are dealing with the SWF and we are

interested in the distributional characteristics, we will ignore the MECFs in this

section. Note, however, that by doing this we ignore the efficiency considerations of

the tax reform.

The distributional characteristic of a tax instrument is described by the relative

concentration curve of the tax base with respect to economic well-being, which is

represented by the inverse of the social evaluation of the marginal utility of income.

To be concrete, we will deal with an indirect tax imposed on commodity j. The
concentration curve of commodity j depicts the cumulative share of aggregate

expenditures on that commodity against the rank order of households, arranged

in a decreasing order of the social evaluation of the marginal utility of income (i.e.,

in an increasing order of economic well-being). The area enclosed between the

concentration curve of commodity j and the diagonal is equal to cov (Xj, F(Y))/mj.
The numerator is the (Gini) covariance (co-Gini) between the consumption of the

commodity and income. Having connected the tax reform to the co-Gini we can

move forward in the presentation in the following two alternative ways.

(a) Define a specific SWF of the type:

W ¼ m ð1� G), (14.16)
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where m is the mean income and G is the Gini coefficient. Equation (14.16) can

be used to derive both a necessary condition for DI reform and a legitimate SWF

representing the theory of relative deprivation or Yaari’s dual theory. In this

case one can derive the first-order conditions of optimal taxation or marginal tax

reforms.

(b) Realize that because we have ignored the efficiency consideration, a neutral tax

reform will not affect the mean income so that we end up analyzing the effect of

the tax reform on the inequality in real income. That is, we measure the

progressivity of the tax system by the impact on the Gini coefficient of real

income and evaluate the impact of the reform through its impact on the Gini

coefficient. This approach is developed by Lerman and Yitzhaki (1985, 1994),

Stark, Taylor, and Yitzhaki (1986), Wodon and Yitzhaki (2002b), and Yitzhaki

(1994b). In this case one can derive the concepts needed directly from the Gini

methodology. To avoid redundant replications, we will develop the appropriate

parameters, relying on both approaches.

The difference in MECF between two taxes affects the mean income. Because

we assumed that all MECFs are equal, or alternatively, that taxes are lump-sum

taxes, we can ignore the mean income in (14.16) and restrict our attention to the

effect of changing a tax rate (or any parameter in the tax function) on inequality.

Let y ¼ (y1,. . .,yH) be the vector of incomes. Then the effect of a change in a tax

on a commodity i on the Gini coefficient of real income is

dGy

dti
¼ @Gy

@qi

dqi
dti

: (14.17)

Because it is assumed that for each individual all income is spent, then

yh ¼Pn
j¼1 qjx

h
j , where xhj is the consumption of the jth commodity by the hth

individual and n is the number of commodities. We get

Gy ¼ 2cov(y,F(y))

my
¼ 2

my

XH

h¼1
cov(yh, F(y)) ¼ 2

my

XH

h¼1
cov

 Xn

j¼1
qjx

h
j ; FðyÞ

!

¼ 2

m

Xn

j¼1
qjcov

 XH

h¼1
xhj ; FðyÞ

!
¼ 2

my

Xn

j¼1
qjcov(Xj, F(y));

(14.18)

whereXj is the consumption of the jth commodity. An equivalent presentation is to use

Xj as representing the expenditures on the jth commodity. For simplicity, let us assume

that the income distribution is discrete, the tax is an advalorem tax (i.e., qi ¼ pi
(1 + ti)), and using my ¼

Pn
j¼1 qj mj, where my denotes the average income while mj

is the average value of commodity j, we get

dGy

dti
¼ siGy

cov(xi, F(y))

cov(y, F(y))

my
mi

� 1

� �
; (14.19)
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where si ¼ mi/my is the share of expenditure on commodity i in the budget.6

The square brackets in (14.19) can be interpreted in the following way.

Definition 14.4 The “Gini income elasticity” (GIE) of a tax base (commodity) is

�i ¼
cov(xi, F(y)) my
cov(y, F(y)) mi

¼ bNxi;y
my
mi

; (14.20)

where bNXi;y
is the semi-parametric Gini regression coefficient of Xi on Y.

The properties of the GIE are the following.

(a) It is composed of the Gini regression coefficient of the consumption of commodity

i on income, divided by the share of the commodity in the overall consumption.

Interpreting the regression coefficient as the marginal propensity to spend on

commodity i then the right hand side of (14.20) can be interpreted as the marginal

propensity to spend with respect to income divided by the average propensity to

spend. Hence, by definition it represents the income elasticity of the Engel curve

of consumption as a function of income. The titleGini is added because the overall

marginal propensity to consume is a weighted average of the marginal

propensities to consume between adjacent observations of income, weighted by

theweighting schemeof theGini regression (seeChap. 7). The explanation for this

approach can be found in optimal tax theory (seeDiamond 1975). There aremajor

differences between Diamond’s general approach and the application presented

here: (a) While Diamond’s marginal utility of income is a general one, here it is

derived implicitly from the regression methodology used in estimating the Engel

curve. Using Gini regression implies the use of the marginal utility implied by the

Gini. (b) Diamond (1975) derives the optimal tax ratewhilewe are concernedwith

the effect of a small change in the tax rate. For application of this theory one only

needs the covariance between the consumption of the commodity and the social

evaluation of the marginal utility of income. To apply the economic model one

does not need to specify the curvature of the Engel curve of the commodity. All

that is needed for the economicmodel is a weighted average of slopes of the Engel

curve (themarginal propensity to spend) between adjacent observations, weighted

by the social evaluation of themarginal utility of income.We have used the double

role of the GMD, both as a measure of variability and as a component in the

SWF to get a nonparametric estimate of the marginal propensity to spend.

Equation (14.20) represents an income elasticity because we divided the marginal

propensity to spend by the average propensity to spend. Hence, the term GIE.

(b) It also represents the elasticity of the Gini coefficient in real income for an equal

amount of tax revenue collected through the ith instrument. To see this note that

the revenue change, measured in terms of average income and ignoring second-

order effects is

6 For the derivation of (14.19) see Lerman and Yitzhaki (1985) or Stark, Taylor, and Yitzhaki

(1986).
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dR ¼ 1

my

@
Pn

j¼1 tj mj
@ti

dti ¼ mi
my

dti ¼ sidti: (14.21)

By using (14.19) we get

dGy

Gydti

dR

dti
¼ ð�i � 1Þ

�
: (14.22)

The left hand side represents the percentage change in the Gini coefficient in real

income, divided by a percentage change in tax revenue through a change in the ith

instrument, which is the elasticity of the Gini with respect to a change in tax

revenue. The right hand side is the GIE minus one.

Equation (14.22) enables us to introduce the following definitions of progressiv-

ity/regressivity of a tax system.

(a) If Zi > 1, that is, if the GIE of a tax instrument is greater than one then

increasing the tax will be progressive while reducing it will be regressive.

(b) If Zi ¼ 1 then the tax instrument will be neutral.

(c) If 0 < Zi < 1 then increasing the tax will be regressive while decreasing it will

be progressive.

(d) If Zi < 0 then the tax base is an inferior good.

In all the above definitions progressivity or regressivity are determined

according to whether the Gini coefficient in real income decreases or increases as

a result of an increase (decrease) in the tax. The properties of (14.22) quantify the

simple logic of tax progressivity. The greater the income elasticity of the tax base,

the greater the progressivity of the tax. There are two qualifications to this simple

relationship: (a) It is defined on the margin. (b) The way progressivity is measured

should be identical to the estimates of income elasticities along the Engel curve of

the tax base that are aggregated into one coefficient.

To sum-up: the GIE determines whether a change in the tax on the commodity

increases or decreases the Gini coefficient of income inequality. (Lerman and

Yitzhaki 1994). By comparing the (Gini) income elasticities among themselves

and to one, the impact of a tax on the Gini coefficient of economic well-being can be

evaluated.

The above discussion holds for the extended Gini as well. That is, using the same

methodology, one can define the extended GIE and replicate the section with

respect to the EG. As for elasticity, it obeys all the rules that are relevant to income

elasticities. Note, however, that the use of an OLS linear regression to estimate the

income elasticity of a tax base for the purpose of measuring progressivity of

taxation may contradict the assumption of a declining social evaluation of the

marginal utility of income. To avoid such a contradiction one has to use regression

methods based on variability measures that can form necessary conditions for

welfare dominance.
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The EG income elasticity is also useful when studying the curvature of the Engel

curve of the tax base. That is,

Let Zi(n) be the EG income elasticity with an extended Gini parameter n. Then

(a) If Zi(n) is an increasing function of n then the Engel curve of the tax base is a

concave function. (To see this, note that the larger n the higher the weight

attached to the slope of the curve at lower incomes).

(b) If Zi(n) is a decreasing function of n then the Engel curve of the tax base is a

convex function.

(c) If Zi(n) is a constant regardless of the value of n then the Engel curve of the tax
base is linear.

Hence, one can use Zi(n) to conclude about the curvature of the Engel curve of

the tax base.

To find a DI reform without having to estimate efficiency gains we can look at

the GIEs of the tax bases for several EGs (that is, for different choices of n) to find

necessary conditions for DI reforms.

14.4 An Empirical Illustration of DI Reforms

The empirical illustration of how to find a DI reform is based on Yitzhaki and Lewis

(1996) who search for a DI reform in Indonesia’s energy sector. The reason for

choosing this reform is that it results in a reform that contradicts the conventional

wisdom which relied only on efficiency considerations and was advocated by the

World Bank.

14.4.1 Distributional Characteristics of Commodities
in Indonesia

The data used came from the Indonesian sample of Family Expenditure 1990.

Expenditure per capita is used as a proxy for economic well-being of the household

and the individual is considered as the relevant unit, by assigning a weight

according to the number of individuals in the household. In order to simplify the

calculations, the population is divided into 94 cells, each with 500 households

(except for the last cell which consisted of 79 households).

Figure 14.1 presents the concentration curves of these commodities together

with the Lorenz curve for expenditure per capita. The lowest curve is the concen-

tration curve of gasoline, indicating that the (Gini) income elasticity of gasoline is

the highest and it is larger than one. Above it is the concentration curve of

electricity which is also below the Lorenz curve, which means that the income

elasticity of electricity is, on average, larger than one and lower than the income

elasticity of gasoline. The concentration curve of kerosene is below the diagonal
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and above the Lorenz curve, which means that the income elasticity is bounded

between zero and one.

Table 14.1 presents the (Gini) income elasticities, which are also the ratios of the

areas between the 45� line and the concentration curves to the area between the 45�

line and the Lorenz curve. As can be seen the income elasticity of kerosene is 0.59

indicating that kerosene is a necessity while electricity has an income elasticity of

1.61 and for gasoline it is 2.30. As shown in Chaps. 9 and 10 these estimates are

consistent estimates of the appropriate population parameters and their asymptotic

distributions converge to the normal under regularity conditions. As one can gather

from the standard errors, the income elasticities of these commodities differ signifi-

cantly from one another.

The last two columns of Table 14.1 report the income elasticity of regular rolled

cigarettes. They are included in order to demonstrate some of the properties of the

analysis. The fourth column shows the income elasticity of the quantity sold of

regular rolled cigarettes while the fifth column reports the income elasticity of

expenditure on this commodity. The difference between the two (0.56–0.26) ¼ 0.3

indicates that the income elasticity of the price paid is 0.3.7

14.4.2 The Marginal Efficiency Costs of Funds

As explained in Sect. 14.2.2 the MECF requires the use of a tax calculator. The tax

calculator should be able to provide estimates of the changes in overall tax revenue
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Fig. 14.1 Concentration curves of energy producing items. Source: Yitzhaki and Lewis (1996),

Fig. 2, p. 551. Reprinted with permission by Oxford Journals

7 To see this note that E ¼ PQ, where P is price and Q is quantity. Let Y be income then DE �
PDQþ QDP. Hence DE
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E
Y � DQ
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Y
Q þ DP
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Y
P:
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under two alternative assumptions: (a) under the assumption of behavioral response

to the change in the tax parameter and (b) under the assumption of no behavioral

response. The MECF is calculated as the ratio in tax revenues collected under the

alternative assumptions. The MECFs were calculated using a CGE model of the

Indonesian economy. A major problem that arises when using two separate sources

of data is mismatching of classifications and levels of aggregation. On the one hand

the survey of family expenditure does not allow the distinction between imported

and locally produced goods, while the CGE model was primarily designed to deal

with trade issues. Also, the CGE model includes only one food sector while the

level of disaggregation in the survey distinguishes between different types of

cigarettes. The search for DI reforms was confined to three commodities with

equal levels of aggregation in both data sources: electricity, kerosene, and gasoline.

14.4.3 Simple Dalton-Improving Reforms

Let us start the search for DI reforms by a riddle which demonstrates an important

property: is it possible to have a revenue-neutral DI reform which is based on the

change in the taxation of one commodity?

As the reader may have gathered the question would not be raised if the answer

was negative. Consider the following case: a specific subsidy (that is a subsidy to the

quantity consumed) and an ad-valorem tax are simultaneously imposed on the same

commodity. The rates are defined in such a way that the reform is neutral ðdQuant:
¼ � dExpend:Þ. Because one can expect the marginal costs of funds of those two taxes

to be equal, the way to find such a tax reform is by plotting the difference between

the concentration curve of the quantity consumed and the concentration curve of the

expenditure on that commodity. The vertical difference between the concentration

curves is the cumulative marginal benefit from the reform. If the curve of the

differences is nonnegative then a revenue-neutral, one-commodity tax reform is

found. Figure 14.2 presents the difference between the concentration curve (cumulative

marginal benefit) of quantity and the one of expenditure of regular rolled cigarettes,

Table 14.1 Gini income elasticities of commoditiesa

Commodity Kerosene Electricity Gasoline Q-cig.b V-cig.c

Income elasticity 0.59 1.61 2.30 0.26 0.56

Standard error (0.07) (0.05) (0.14) (0.09) (0.07)

Source: Yitzhaki and Lewis (1996), Table 1, p. 551

Reprinted with permission by Oxford Journals
a“Income elasticity” is calculated with respect to expenditure per capita. The population includes

all Indonesian households grouped into 94 groups, each one with 500 observations except for the

last one. Households are ordered according to expenditure per capita. Jackknife standard errors are

reported in parentheses
bQ-cig. is the income elasticity of quantity of regular rolled cigarettes
cV-cig. is the income elasticity of expenditure on regular rolled cigarettes
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showing that a DI reform of this kind exists. The difference-in-concentration curve

(DCC) reports the cumulativemarginal benefits to the population. As can be seen from

Fig. 14.2 the cumulative gain is positive, which means that a DI reform exists. The

bottom 70% of the population may gain up to eight cents for each dollar of tax paid by

the top 30% of the population. The intention in presenting this example is to demon-

strate the importance of separating the tax instrument from the commodity. The same

commodity may have different tax bases depending on the nature of the change in the

tax function. A good example is motor vehicles—several countries impose taxes on

different properties such as quantity (a constant amount per vehicle), weight, engine’s

size and, of course, the value of the motor vehicle. Those taxes may have significant

differences in their distributional characteristics, a property that can be exploited to

increase the variety of tax instruments.

14.4.4 Dalton-Improving Reforms

In order to search for DI reforms which involve more than one commodity, the

MECFs of the commodities are required. The CGE model was not constructed to

search for DI reforms. Therefore only three commodities (electricity, gasoline, and

kerosene) could be easily matched in the CGE model and in the survey of family

expenditure.

Table 14.2 reports the MECFs and other relevant parameters. The first column

reports the tax base, the second—the marginal revenue of a change of a 5% in the

tax rate (e.g., the tax on kerosene was changed from �0.48 to �0.43; electricity

from 0.0 to 0.05). The third column, which is derived as a ratio of the first two

parameters, is the marginal cost of raising a dollar of revenue. The fourth column

reports the effective tax rate on the commodity.

A comparison between Tables 14.1 and 14.2 reveals that the ranking of MECFs

is equal to the ranking of the (Gini) income elasticities. This means that the
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structure of taxation of those commodities is reasonable in the sense that the higher

the share of the tax paid by the poor the lower is the marginal excess burden. Hence,

one has to reach the conclusion that the Indonesian tax system does take into

account distributional considerations. We are allowed to reach this conclusion

because would the government care only about efficiency, then the optimal policy

would be to change the tax rates so that all MECFs are equal.

Figure 14.3 presents the distributional burden of a marginal dollar of taxes

raised from those commodities. The distributional burden is the concentration

curve of the commodity with respect to economic well-being multiplied by the

MECF of the commodity. Let us consider gasoline. The cost to society, at the

margin, of raising a dollar of revenue from the gasoline tax is 2.7 dollars (the

curve reaches 2.7). The burden on the poorest 50% of the population is twelve

cents and the rest is borne by the upper half of the population. On the other hand, a

dollar of revenue raised through kerosene costs the society only 1.08 dollars but

the lower 50% of the population pay 40 cents. An efficiency-guided economist will

Table 14.2 Parameters for MECF calculationsa

Xb MR MECF Tax rate

Kerosene 62.2 57.4 1.08 �0.48

Electricity 83.5 73.4 1.13 0.0

Gasoline 104.7 38.7 2.70 0.3

Source: Yitzhaki and Lewis (1996), Table 2, p. 553

Reprinted with permission by Oxford Journals
aFrom a CGE model for Indonesia. See Yitzhaki and Lewis (1996)
bX, the tax base, is measured in billions of 1985 Indonesian Rupiah
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recommend reduction of the subsidy to kerosene and a decrease of the tax on

gasoline, which would save the society more than a dollar and a half for each dollar

of reduction in subsidy to kerosene. On the other hand, the economist who cares

about distribution will point out that the burden of those taxes is not shared in a fair

way. Most of the burden of kerosene is borne by the poor, so that a transfer of a

dollar of taxation from gasoline to kerosene can be viewed as manna from heaven

to the rich accompanied by a transfer from the poor to the rich. This is another way

of saying that the Indonesian taxes seem reasonable. Although efficiency

considerations call for reducing the gap in tax rates, distributional concerns point

in the other direction. Note that all curves intersect, which means that it is

impossible to find a DI neutral tax reform that involves only two commodities.

On the other hand, intersection of the concentration curves point to the possibility

of finding two SWFs, both conforming with Dalton criterion, so that one will

justify raising the tax on one commodity and decreasing the tax on the other, while

the second shows the opposite.

Economists are not equipped nor entitled to handle issues of fairness. In order to

reach specific conclusions the social planner has to be more specific with regard to

her social preference. All we can say is that the Indonesian taxation of those

commodities takes into account distributional concerns.

Having failed to find a DI reform that is based on two commodities, we have to

search for three-commodity reforms. In this case, one has only one free tax to

determine. (One change in a tax on a commodity is used as a numeraire and its value

is either 1 or �1. Another change in a tax rate is determined by the budget

constraint). Because only one variable is free, and the DI efficient set of reforms

is a cone (Mayshar & Yitzhaki, 1995, 1996) one can deduce that if a given set of DI

reforms is not empty, it forms a closed section on an interval.

The results of applying the optimization algorithm are reported in Table 14.3. It

is found that DI revenue-neutral reforms have the following structure: an increase

of the tax on electricity and a decrease of the taxes (subsidies) on kerosene and

gasoline. Table 14.3 presents the two extreme reforms, referred to as reforms D

(distribution) and E (efficiency). Reform D can be described as follows: for each

dollar of reduction in tax on kerosene it reduces the tax on gasoline by 3.5 cents and

increases the tax on electricity by 1.035 dollars. The other extreme reform is reform

E, which raises the tax on electricity by 3.26 dollars and reduces the tax on gasoline

by 2.26 dollars. Any convex combination of those reforms is a DI revenue-neutral

reform as well.

Table 14.3 Dalton-

improving reforms
Kerosene Electricity Gasoline

Reform D �1.0 1.035 �0.035

Reform E �1.0 3.26 �2.26

Source: Yitzhaki and Lewis (1996), Table 3, p. 555

Reprinted with permission by Oxford Journals
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Figure 14.4 presents the cumulative gain resulting from those reforms. As can be

seen, reform D does not result in efficiency gain to the society,8 but it results in a

gain to low income groups. On the other hand, reform E results in an efficiency gain

of 3.5 dollars for every dollar reduction of tax on kerosene, but the gain is limited to

high income groups.

Having found a set of DI reforms allows us to consider the appropriate reform by

adding other considerations. The nature and type of considerations can vary from

one country to another. Let us state a few possible considerations.

(a) One may argue that DI reforms should not discriminate between regions or

ethnic groups. The way to incorporate such a consideration is to impose a

restriction that reforms will be DI for each region.

(b) The set of DI reforms was derived under the assumption that expenditure per

capita represents the ranking of economic well-being. Most economists will

probably agree that family size can affect economic well-being, but there may

be a disagreement about its quantitative effect. The same argument can be

raised with respect to a rural/urban distinction. Mayshar and Yitzhaki (1996)

show how to incorporate these kinds of considerations.

(c) An additional consideration is popular support. To satisfy both the economist

and the politician one can search for DI reforms that maximize the number

of beneficiaries from the reform. The major problem in incorporating such

a constraint is that unlike the search for DI reform that can be done with

tabulated data, searching for majority requires the whole sample to be exam-

ined. Needless to say that it is a negligible constraint for modern computers.

(d) Another issue that is being ignored is how to incorporate externalities. It can be

shown that externalities affect only the MECF. They do not affect the concen-

tration curve. As such it is not covered in this book. The interested reader is

referred to Lundin (2001).
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8 To see the amount of efficiency gain, add up the MECFs multiplied by the revenue changes:

1.0 � 1.083 � 1.035 � 1.083 + 0.035 � 2.70 ¼ 0.008.
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14.4.5 Sensitivity Analysis

Most of the analyses in this chapter were carried out without any parameterization.

No assumptions were imposed on the curvature of the Engel curves of the

commodities, and the assumptions concerning the SWF are pretty mild. The only

parameters that are results of a heavy modeling effort are the MECFs. However,

revenue estimates are routinely performed by almost all treasury departments and

there is no way to avoid them when dealing with tax reforms. Because revenue

estimates are based on intuition, complex modeling, and art, there is no point in

performing statistical testing, especially if the number of parameters is large.

One way to investigate the robustness of our conclusions is to arbitrarily change

the MECFs and check what happens to the set of DI reforms. Because the results are

only sensitive to ratios of MECFs, a multiplicative bias in all estimates should not

affect the conclusions. Also, it is clear that if the MECF of kerosene is reduced and

those of electricity and gasoline are increased there will be no qualitative change in

the conclusions.

The most suspicious MECF is that of gasoline (2.7). That is, a dollar of tax

collected costs the society 2.7 dollars. Hence, we can arbitrarily reduce it to see if

there is a qualitative change in our conclusions. Such calculations showed that

small changes in this MECF did not change the results qualitatively and even a

reduction of 40% to 1.62 produced a DI reform: Kerosene �1.0, gasoline �1.67,

electricity þ2.66 and the overall efficiency gain was 0.75 dollar.

The next step was to reduce and increase MECF of electricity by 10%. No

qualitative changes occurred. An explanation for the robustness of the results can

be found in Figs. 14.1 and 14.2. Figure 14.1 shows that if the MECFs are equal

then there can be three types of DI reforms: (a) reduce the tax on kerosene and

increase the tax on electricity, (b) reduce the tax on kerosene and increase it on

gasoline, or (c) reduce the tax on electricity and increase it on gasoline. Hence, if

the MECF of electricity is lower than the MECF of kerosene, the DI reform will

consist of subsidizing kerosene and taxing electricity. Therefore the conclusion

that one should subsidize kerosene will be unaffected even if the MECFs of

electricity and gasoline are lowered to the level of the MECF of kerosene. On

the other hand, it is worth reducing the tax on gasoline because of its high MECF.

This result will not be affected if the MECF of gasoline continues to be higher

than the MECF of electricity.

14.4.6 Non-neutral Reforms

In order to analyze non-neutral reforms one has to know the willingness to pay for

the public goods produced by the government. Because some of the DI reforms

resulted in efficiency gain, the question arises as to whether it is possible to split

the gain between the public and the government, subject to the extreme and
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(un)realistic assumption that the government wastes its share. To search for such a

reform one has to change the revenue constraint (14.10) so that dR� c, where c is a
constant larger than zero.

Table 14.4 reports the results concerning four reforms. The first and second

reforms D.5 and E.5 are the extreme DI reforms, subject to the constraint that the

reform has to raise 50 cents on every dollar of subsidy to kerosene. Similar to the

reforms reported in Table 14.3, reform D.5 increases the income of the poor, while

reform E.5 is mainly concerned with efficiency gain. Comparison of Table 14.3

with Table 14.4 reveals that the set of DI reforms that raise revenue by 50 cents is

encompassed by the set of DI reforms that are revenue neutral. The range of

changes in electricity taxation has declined from [1.035, 3.26] to [1.91, 2.88],

which may indicate that the distributional oriented reforms are more sensitive to

revenue neutrality than efficiency concerned reforms.

Being able to raise revenue and at the same time to satisfy the Dalton criterion,

one is tempted to ask howmuch more revenue can be extracted. The last two lines of

Table 14.4 report the results of such an investigation. When the revenue required

was raised to 70 cents, one could still find DI reforms. Reform R.70S reports the

changes in taxes that are required. On the other hand, an attempt to raise 75 cents

failed to find a DI reform. ReformR.75F is the best found (although not a DI reform).

Figure 14.5 presents the cumulative gains to the public (ignoring additional revenue)

Table 14.4 Non-neutral

reforms
Reform number Revenue Kerosene Electricity Gasoline

D.5 0.50 �1.0 1.91 �0.41

E.5 0.50 �1.0 2.88 �1.38

R.70S 0.70 �1.0 2.38 �0.68

R.75F 0.75 �1.0 2.56 �0.81

Source: Yitzhaki and Lewis (1996), Table 4, p. 558

Reprinted with permission by Oxford Journals
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of reforms R.70S and R.75F. As can be seen, reform R.70S continues to generate a

cumulative gain of 35 cents, mainly for the top three deciles and some gain of 5 cents

for the bottom two deciles and the same magnitude of loss to the middle class.

ReformR.75F generates 75 cents but it fails to bring forth a DI reform. The second to

the sixth deciles are hurt (the cumulative gain curve is declining), while the rich are

still making 30 cents gain.

14.5 Summary

The DI reform is a tax reform that is based on the Dalton principle which says that a

transfer from a rich person to a poor one is desirable, without having to state how

much the government is ready to pay for the implementation of the principle. To

place the DI reform in the context of welfare dominance, it is the application of

second-degree welfare dominance in the field of tax reforms and optimal taxation.

When applied to Indonesia, it is found that the structure of energy taxes in Indonesia

is reasonable, but that the country could benefit from a further subsidy to kerosene

accompanied by a tax on electricity and a reduction of the tax on gasoline. These

conclusions are robust to changes in the parameters representing the Indonesian

economy. By taking into account distributional concerns, it can be shown that the

rules for optimal taxation that take into account only efficiency considerations may

lead to wrong conclusions.

The application of the methodology is a bit cumbersome and requires data on the

MECF of each tax. This may present a difficulty in implementation of the method-

ology. However, if one is concerned with distributional issues only, then one can

use the GIE in order to find out the progressivity/regressivity of different taxes. The

extended Gini can be used to check for the sensitivity of the estimates to different

assumptions concerning the effect of the social evaluation of the marginal utility of

income on the progressivity of taxes and transfers.

An important conclusion is that for the purpose of analyzing tax reforms there is

no need to assume a functional form of the Engel curve because all that is needed is

a weighted average of the marginal propensities to spend, weighted by the social

evaluation of the marginal utility of income. To prevent contradictions between

economic theory and statistical estimation it is worth to avoid using variability

measures that are not compatible with welfare dominance.

It is worth pointing out that the literature offers some extensions: Duclos and

Makdissi (2004) and Duclos, Makdissi, and Wodon (2005) apply the methodology

to poverty-dominant reforms. Makdissi and Mussard (2008) apply the methodology

to Yaari’s-type SWFs.

Finally, identifying models that ignore distributional considerations is relatively

easy. Any model that includes a representative individual is a model that ignores

distributional concerns.
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Chapter 15

Policy Analysis Using the Decomposition

of the Gini by Non-marginal Analysis

Introduction

The objective of this chapter is to demonstrate the usefulness of several

decompositions of the Gini (and the EG) in order to analyze the strengths and the

weaknesses of various policies. We concentrate on distributional issues. The other

component of the problem of tax reform—the estimation of the marginal cost of

taxation—is identical to the description given in Chap. 14 hence it will not be

repeated here.

There is one major advantage to using decompositions in the area of income

distribution. Many of the variables that are used in this area are highly correlated

with income. Therefore there is always the danger of double or even triple counting,

which implies an exaggeration of the effect of a specific variable. For example, low

income tends to be correlated with low level of education, low level of health, high

level of unemployment, low quality of housing, etc. The advantage of using the

decomposition of the variability of the income is the elimination of the possibility

of double counting of the effects of the variables which compose it. The reason is

because each part of the variability that occurs in the dependent variable (income) is

accounted for and attributed to one and only one variable (or to the interaction

between them, via the correlations). By increasing the effect of one variable, the

effect of another variable has to decline. It is true that one can still attribute the

effects of variables that do not participate in the decomposition to those that

participate, but this deficiency is relevant to all methods of analysis. In this chapter

we distinguish between three types of decompositions: (a) according to income

sources, (b) according to population subgroups, and (c) decomposition over time.

Decomposition according to sources can be divided into two groups: marginal and

non-marginal. Technically the marginal decomposition is based on a decomposition

according to the variables (one-stage decomposition), while the non-marginal

decomposition is based on decompositions according to the variables and their

ranks in the population (two-stage decomposition). We refer to the one-stage

decomposition as a marginal one because it is useful for analyzing marginal

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_15,
# Springer Science+Business Media New York 2013
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changes only. If one wants to analyze structural changes then one has to refer to the

non-marginal (two stage) decomposition, as will be done in this chapter.

We start this chapter with an application that requires non-marginal decomposi-

tion according to income sources. It analyzes the following problem: in most

countries the government affects the income distribution directly by using both

direct taxation and direct transfers (e.g., child benefits, allowances for the elderly,

etc.). Usually the taxes and the transfers are run by different agencies. It is obvious

that some individuals are getting transfers from one branch of the government while

paying taxes to the other. We argue that if the government is giving money to one

pocket of the individual while taking (some of) it from another pocket then this is a

non-coordinated policy. We refer to such a policy as non-coordinated in order not to

confuse it with an inefficient policy, a term that usually refers to excess burden. It is

clear that a non-coordinated policy is also an inefficient one. It is also clear that

some degree of non-coordination is reasonable whenever there are different criteria

governing the applications of the policy. Because we do not have an objective way

to define the “appropriate” level of non-coordination we compare the performances

of two countries: Ireland and Israel. This way we avoid the need to define the

optimal degree of non-coordination. Next we use the same data set for the decom-

position by subpopulations, and lastly we illustrate the decomposition over time.

The structure of the chapter is as follows. Sect. 15.1 deals with the performances of

Ireland and Israel via the decomposition by sources. Section 15.2 uses the same data

set in order to perform decomposition according to population subgroups. Section 15.3

uses the samemethodology as in Sect. 15.1, except that in this section the decomposi-

tion is done over time. The demonstrations do not exhaust all possibilities of analysis,

but they are intended to demonstrate different types of possible uses of the

decompositions to analyze and evaluate policies. Section 15.4 concludes.

15.1 Decomposition by Sources: Analyzing the Coordination

Between Direct Benefits and Taxation1

Our interest in this section is to illustrate the application of the non-marginal

decomposition of the Gini in order to evaluate the degree of coordination between

the direct taxation and transfers of the government. Because there is no “natural”

value that represents a good coordination, we compare the performances of two

administrations: Ireland and Israel.

Disposable (net) income can be presented as the sum of random variables (non-

governmental income, government transfers, and direct taxes). Therefore we can

decompose the Gini of net income in a way that resembles the decomposition of the

coefficient of variation, plus some additional terms which reflect the deviations of the

1 This section is based on Carty, Roshal, and Yitzhaki (2009).
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underlying distributions from being “exchangeable up to a linear transformation.”2

This enables us to estimate the Gini correlations between different types of income

sources and to learn how those correlations affect transition from one income defini-

tion to another. In dealing with the transition from “before-tax” to “after-tax” income,

most of the literature perform “before” and “after” comparisons. For example,

Burkhauser, Frick, and Schwarze (1997) compare economicwell-being and inequality

between the USA and Germany using Theil and Gini indices of inequality. However

they perform the comparison for before- and after-tax incomes without decomposing

the inequality measure into the contribution of each of the sources. Wolff (1996)

compares wealth inequality over time between eight industrialized countries. Wolff

and Zacharias (2007a) analyze the changes in the inequality before and after the

addition of fiscal components such as taxes and transfers. However they perform a

different decomposition and concentrate on wealth rather than on income inequality.

Aaberge et al. (2002) compare income inequality and income mobility between

Scandinavian countries and the USA. Slemrod (1992) performs the decomposition

in order to analyze the change over time in the redistributive effect of tax policy in the

USA. Lazaridis (2000) analyzes households expenditures in Greece, Keeney (2000)

performs it for farm incomes in Ireland, while Berri et al. (2010) apply the decompo-

sition to the transportation sector in three European countries.

Several recent papers focus on empirical evidence on factor or subpopulation

decompositions of the coefficient of variation for explaining trends over time in

income inequality in one or several countries. Jenkins (1995) used the decomposi-

tion of the mean logarithmic deviation and the coefficient of variation across

factors’ components and population subgroups (household type, age of household

head, etc.) in the UK. Jäntti (1997) conducted a cross-country study of factor

decomposition of the coefficient of variation using the Luxembourg Income Studies

(LIS) data for five countries—Canada, the Netherlands, Sweden, UK, and USA.

Breen et al. (2008) extended the work of Jäntti to eight countries, using a double

decomposition of the squared coefficient of variation, where the decomposition by

age groups is nested within the source decomposition (referred to as factor decom-

position). Nolan and Maitre (2000) compare the inequality in Ireland between 1987

and 1997 using income deciles and decompose it by income sources. Before we

proceed to the decomposition itself, a brief description of the data is called for.

15.1.1 The Basic Data of Ireland and Israel

Both countries have exhibited a high rate of economic growth for about two decades,

until the financial crisis in 2008. In Ireland this was due to low corporate taxation and

to EU membership. The EU membership enlarged the external market and brought

2 In a less technical language, exchangeability up to a linear transformation means that the joint

distributions of the two variables are symmetric with respect to each other.
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in EU aid which increased investments in education, increased participation in the

labor market and introduced a policy of restraint in government spending. Israel on

the other hand has benefited from large waves of Jewish immigration, many of

whom are highly educated, from the introduction of market-oriented structural

reforms and from the increase in foreign investment due to the peace process

which started in the 1990s.

The total GDP (PPP, by theWorld Bank) for both countries is very close—171,862

billion dollars for Ireland (ranked 51) and 169,847 for Israel (ranked 52). However,

Ireland has one of the highest GDP per capita (nearly $43,000 PPP) and is ranked 9 by

the IMF (2006), while Israel is ranked 33 in theGDP per capita list (IMF, 2006), with a

GDP per capita that is almost half that of Ireland’s (nearly $26,000 PPP). Ireland has

experienced unprecedented rapid economic growth (of nearly 142% in 16 years3),

which started in the 1990s, during which it was transformed from a mainly agrarian

andmanufacturing-based country to one of thewealthiest in Europe, on the basis of hi-

tech and international trade.

The Israeli GDP has grown by 100% from 1990 to 2006. Like Ireland’s, Israel’s

economy has moved from being mainly agrarian and traditional manufacturing-

based into being based mostly on hi-tech, pharmaceutical, and chemical industries,

with a high percentage of the GDP being spent on research and development in

these areas.

The demographic structure of the two countries is barely comparable. Table 15.1

presents the basic comparison of household composition between Ireland and

Israel. The average household size in Israel (3.3) is larger than in Ireland (2.8),

indicating that there are many more persons living in large households in Israel:

nearly 45% of the persons in Israel live in households consisting of five persons and

more, compared to only 30% in Ireland. Large households (of six persons or more)

comprise only 5% of the households in Ireland but 12% in Israel.4

On the other hand, nearly half of the households in Ireland comprise one or two

persons (50% of households and 27% of persons), whereas in Israel such

households make up 42% of the total (20% of persons).

Although in 2006 the percentage of elderly (aged 65+) in both countries was

similar (11% in Ireland and 9.6% in Israel), the percentage of children aged less

than 15 was much lower in Ireland—20.4% in comparison to 28.3% in Israel.5

This basic comparison suggests that one of the major differences in the demo-

graphic structure of the two countries is that the Israeli household includes more

children, which implies lower percentage of working-age persons (Table 15.2).

Households with children comprise 40.2% of Ireland’s households (58.2% persons),

3 117% from 1995 to 2006, adding it up to 25% from 1990 to 1995, according to Tables 4 at http://

www.cso.ie/releasespublications/documents/economy/2006/nie2006tables1995-2006excel.xls

and http://www.cso.ie/releasespublications/documents/economy/HistoricalNIETables1970-1995exc

ludingFISIM1.xls.
4 Source: QNHS (Ireland) and HES (Israel).
5 Source: Statistical Yearbook of each country.
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and 46% of Israel’s (66.7% persons). As a consequence, we should expect that

inequality comparisons between the two countries will be sensitive to the scale of

adult-equivalent income used (Coulter, Cowell, & Jenkins, 1992; Cowell, 1984).

Table 15.1 Distribution of households and persons living in households by household sizea

Ireland Israel

Sample size (households) 5,836 6,259

Sample size (persons) 14,634 20,743

Households in population

(thousands)

1,494 2,027

Persons in population

(thousands)

4,253 6,733

Children (under 15) 20.4% 28.3%

Children (under 18) 26.6% 33.0%

Elderly (65 and above) 11.0% 9.6%

Average household size 2.8 3.3

Average size of large

households (6þ)

6.5 7.0

Maximum household size 12 25

Population distribution

by household size % of households % of persons % of households % of persons

1 21.9% 7.7% 18.4% 5.5%

2 27.9% 19.6% 23.4% 14.1%

3 17.2% 18.1% 16.2% 14.6%

4 17.7% 24.8% 16.9% 20.4%

5 10.3% 18.1% 12.8% 19.3%

6þ 5.1% 11.8% 12.3% 26.1%

100.0% 100.0% 100.0% 100.0%

Source: Carty, Roshal, and Yitzhaki (2009)
aFigures in the table are calculated using the data from the QNHS (Ireland) and HES (Israel) and

may differ slightly from the demographic figures published in the Statistical Yearbooks

Table 15.2 Distribution of households with and without children (aged <18)

Ireland Israel

% of households % of persons % of households % of persons

1 adult, no children 21.9% 7.7% 18.4% 5.5%

2 adults, no children 25.0% 17.5% 22.0% 13.2%

3+ adults, no children 12.9% 16.6% 13.4% 14.5%

Adults only 59.8% 41.8% 53.8% 33.3%

1 adult with children 6.2% 6.2% 3.0% 2.6%

2 adults with 1–3 children 21.9% 29.3% 24.4% 29.1%

2 adults with 4þ children 1.5% 3.4% 6.1% 12.5%

Others with children 10.5% 19.3% 12.8% 22.5%

Households with children 40.2% 58.2% 46.2% 66.7%

Total 100.0% 100.0% 100.0% 100.0%

Source: Carty, Roshal, and Yitzhaki (2009)
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The decomposition of the Gini coefficient according to the contributions of each

household’s size to the overall inequality enables us to assess the inequality in each

group and to differentiate it from the contribution of different distributions of

household’s size.

15.1.2 The Impact of Equivalence Scales

The determinants of economic well-being include income and household size.

Returns to scale in consumption and different needs of the household members

suggest the use of an adult-equivalent scale that enables the comparison of the

economic well-being of households with different needs and structures.

In order to calculate equalized income, one divides the household income by the

number of equivalent adults (De Vos & Zaidi, 1997; Friedman, 1951; OECD,

2006). The households are then weighted by the number of equivalent adults.6

Thus, if we compare two households with the same income, the larger one has the

lower equalized income, but higherweight in the population, because it represents a
larger number of persons. Higher equivalence scale lowers large households’

income per equivalent adult while attributing a larger weight in the population to

large households.

Ireland’s national equivalence scale attributes a weight of one to the household

head (first adult), 0.66 to each subsequent adult (aged 14+), and 0.33 to each child

aged less than 14. The equalized household size is the sum of these weights.

Israel’s national equivalence scale does not make a distinction between adults

or children, and considers only the total number of persons in the family. Thus, in

Israel, given the same household size, the equalized size of households with or

without children is the same, whereas in Ireland the higher weight is attached to

the household containing a higher proportion of adults. Hence, the Israel’s scale

gives much more weight than the Ireland’s one to families with children. Accord-

ingly, considering that adults are likely to be those who bring money to the family,

higher-income households are more likely to be attributed a higher weight by the

Irish scale.

Table 15.3 compares the equivalence scales of Ireland and Israel and a scale

calculated as the square root of the household size (used by Nolan & Smeeding,

2005). In order to compare the Ireland’s and Israel’s scales, in Table 15.4 we

normalize Israel’s scale to 1 by dividing it by 1.25. In most cases, especially for

large households, this scale is the lowest of the three. The Ireland’s scale is the

highest, especially when considering households without children.

6 Some researchers tend to use equalized income but to weight unequalized persons. This causes

internal contradiction leading to ambiguous results (see Ebert 1997, 1999). Throughout this

chapter we weight households by their number of equalized persons only.
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The question we would like to address now is—what is the estimated impact of

the use of different equivalence scales on the Gini coefficient? Table 15.4 presents

the various Gini coefficients calculated by the three definitions of equivalence

scales for Ireland and Israel. When the whole household’s income is taken into

Table 15.3 Equivalence scales of Ireland and Israel

Household composition

Persons in

household

# of

adults

# of

children

Normalized

Israeli scalea
CSO—

Ireland

Square root of

household size

1 Adult 1 1 0 1.00 1.00 1.00

1 Adult þ 1 child 2 1 1 1.60 1.33 1.41

2 Adults 2 2 0 1.60 1.66 1.41

1 Adult þ 2 children 3 1 2 2.12 1.66 1.73

2 Adults þ 1 child 3 2 1 2.12 1.99 1.73

3 Adults 3 3 0 2.12 2.32 1.73

1 Adult þ 3 children 4 1 3 2.56 1.99 2.00

2 Adults þ 2 children 4 2 2 2.56 2.32 2.00

4 Adults 4 4 0 2.56 2.98 2.00

2 Adults þ 3 children 5 2 3 3.00 2.65 2.24

3 Adults þ 2 children 5 3 2 3.00 2.98 2.24

5 Adults 5 5 0 3.00 3.64 2.24

2 Adults þ 4 children 6 2 4 3.40 2.98 2.45

6 Adults 6 6 0 3.40 4.30 2.45

2 Adults þ 5 children 7 2 5 3.80 3.31 2.65

2 Adults þ 6 children 8 2 6 4.16 3.64 2.83

Source: Carty, Roshal, and Yitzhaki (2009)
aOriginal Israeli scale divided by 1.25

Table 15.4 Gini coefficient, using different equivalence scales

Income Ireland Israel Difference

Economic, nongovernmental

Total household income 0.5643 0.5324 �5.65%

Equalized by Ireland’s scale 0.5092 0.5117 0.49%

Equalized by Israel’s scale 0.5166 0.5145 �0.41%

Equalized by square root 0.5218 0.5105 �2.18%

Net disposable income

Total household income 0.3962 0.3934 �0.71%

Equalized by Ireland’s scale 0.3256a 0.3752 15.23%

Equalized by Israel’s scale 0.3339 0.3796b 13.69%

Equalized by square root 0.3391 0.3704 9.21%

Difference between own-scale Gini for equalized net income 16.58%

Source: Carty, Roshal, and Yitzhaki (2009)
aOfficially published inequality index for Ireland is 0.324. This difference is due to a slightly

different calculation procedure
bHere should stand the officially published inequality index for Israel, which is 0.390. However,

the official Gini is calculated using the different (Income) survey instead of HES. We use HES

throughout the chapter, as it provides more household characteristic indicators
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account, there is higher inequality in economic incomes in Ireland than in Israel.

Inequalities between households in the two countries are similar for net dispos-

able incomes. However, the move to equalized income yields a striking change.

The differences between the two countries in inequality for net incomes range

from 9.2% to 15.2%. The impact of the equivalence scales on the two countries is

completely different; whereas in Ireland the Ireland’s scale produces the lowest

inequality and the square root produces the highest, in Israel the order is reversed.

For the purpose of comparability, in the rest of this section only Ireland’s

national scale is used.

15.1.3 Decomposition of the Gini According to Income Sources

Almost all countries use two types of instruments to improve the income distribu-

tion: the income tax handles the distribution at the upper end of the distribution,

while demo-grants and other allowances are intended to deal with horizontal equity

and the lower end of the distribution. In most countries those two branches of the

government are under different governmental ministries. A key question in deter-

mining the effectiveness of the government in handling the redistribution in a

coordinated way is whether those two branches of the government are coordinated

or not. By coordination it is meant that if one branch of the government is on the

giving side to the family, the other branch of the government should not be on the

taking side. Such coordination is not needed in the level of abstractions of Mirrlees

(1971) and in almost all optimal taxation models because in those models there is no

cost attached to transferring resources between the individual and the government.

However in a more realistic model we should expect transaction costs and also that

the Marginal Efficiency of the Cost of Funds (MECF) of government transfers are

higher than the MECF of tax reductions because tax reductions are based on giving

up on collecting funds from the individual, while transfers (sometimes referred to as

benefits) use funds that were already collected (Slemrod & Yitzhaki, 2002). Reduc-

ing such back and forth transfers saves administrative cost and reduces the excess

burden of taxation.

Usually, the rules for providing benefits by the government can be different than

the rules of taxation. The reason may be that having one rule that governs all

government branches is too complicated to administer. Also, it is not clear from a

normative point of view whether those rules should be identical or not. These two

issues are beyond the scope of this book. The important point for us is to agree that

coordination between allowances and taxation should be maximized, but it is also

reasonable to expect some degree of non-coordination. Both countries publish the

Gini coefficient of net (i.e., after tax and benefits) income as the measure of

inequality. For our purpose, which is presenting the methodology, we ignore

other technical differences that affect the measurement of inequality such as

differences in the accounting period. In addition, the simple comparison does not

provide details regarding the factors that affect the final result, namely—the choices
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of the income definition and weighting schemes. Technical issues such as the period

over which the income is measured are also important to be taken into account.7

To compare the governmental policies, the Gini coefficient of after-tax income is

decomposed into the contributions of three different sources:

Net income ¼ economic income� taxesþ allowances: (15.1)

The data source for Ireland is the EU-SILC, the voluntary Survey on Income and

Living Conditions of different types of households. All persons aged 16 and above

are required to participate. Information is collected continuously throughout the

year, with up to 130 households surveyed each week to give a total sample of

5,000–6,000 households in each year. In 2006 the achieved sample size was 5,836

households and 14,634 individuals. The income reference period for EU-SILC is

the 12 months prior to date of interview.

The data source for Israel is the Household Expenditure Survey (HES). The

survey aims to obtain data on the components of households budgets, as well as

additional data that characterize various aspects of the living standards of the

households. Information is obtained throughout the year on the 3-month income

of the household members aged 15 and above. In 2006 the sample size of the HES

was 6,259 households and 20,743 individuals.

15.1.4 Estimates of the Gini Coefficient

In 2006 the Gini coefficients that were officially published by national institutions

(based on the total equalized disposable income) were 0.3248 for Ireland and 0.3909

for Israel, nearly 20% higher. These coefficients were calculated using equalized

disposable income and based upon national equivalence scales. As mentioned

above different equivalence scales result in different measures of inequality and

poverty. Disposable income includes nongovernmental income (from work, busi-

ness, etc.) plus government transfers minus taxes (shares of each component are

indicated in Table 15.5). Therefore the tax and benefits schemes of each country

might affect the inequality even further. Table 15.5 demonstrates the difference

7 The Irish accounting period is a year, while the Israeli one is 3 months. Finkel, Artsev, and

Yitzhaki (2006) find that the Gini coefficient calculated from a 3-month accounting period was by

nearly 4% higher than the index based on a 12-month period. Other estimates are provided by

Creedy (1979, 1991), Burkhauser and Poupore (1997), and Gibson, Huang, and Rozelle (2001).
8 Ireland, Central Statistics Office, EU Survey on Income and Living Conditions (EU-SILC 2006),

Table 1. (http://www.cso.ie/releasespublications/documents/eu_silc/current/eusilc.pdf).
9 Israel, Central Bureau of Statistics, Press Release 13 August 2007. (http://www.cbs.gov.il/

hodaot2007n/15_07_150e.pdf). As mentioned above, this figure is based on the Income Survey,

which we do not use here. The same calculation based on the Household Expenditure Survey

would yield the Gini coefficient ¼ 0.380.
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between Ireland and Israel in the Gini coefficients, calculated by using the same

(Ireland’s) equivalence scale, by economic (or nongovernmental) income, economic

income excluding transfers and excluding taxes; gross income defined as economic

income plus government transfers; and finally, the disposable (net) income.

The table shows that when measured by nongovernmental, before-tax income

only and equalized by the same scale, both countries have similar levels of

inequality. The Irish tax and benefit system collects higher taxes and distributes

more benefits than the Israeli tax and benefit system, while the net collections to

the governments’ coffers are equal. Although it collects less than the Irish one, the

tax system in Israel reduces the inequality slightly more than in Ireland, but

government benefit programs are much more effective in reducing inequality in

Ireland.

Overall, the difference between the two countries in the Gini coefficient when

calculated using the same equivalence scale is less dramatic than the original: 13%

compared to 16.5% using national scales.

Figure 15.1 shows the distribution of households by equalized nongovernmental

incomes for both countries. Mean income of each country is set to 1 and all other

incomes are in reference to the mean. The medians for both countries are around

70% of the mean. However, there is a significant proportion of households with zero

income, very high—nearly 23% in Ireland and 16% in Israel. In Israel, on the other

hand, there are more households with lower than average incomes than in Ireland,

and also more households with very high incomes, twice the country’s average.

Figure 15.2, presenting the disposable income distributions, shows how govern-

mental benefits and taxes manage to “correct” the initial distributions. The median

of each distribution has moved to be located slightly over 80% of the mean, and in

Ireland most of the households are located around it. In Israel there is a large portion

of households with an income lower than 40% of the mean income. The gaps in the

two distributions lie in the low income regions.

Table 15.5 Gini coefficient of inequality equalized by Ireland’s scalea

Ireland Israel

Share (out

of net income) Gini Change

Share (out

of net income) Gini Change

Nongovernmental

(economic) income

107% 0.5092 107% 0.5117

Economic income � taxes �26% 0.4827 �5% �23% 0.4760 �7%

Gross (economic þ
government

transfers)

20% 0.3782 �26% 16% 0.4224 �17%

Net (economic þ
transfers – taxes)

100% 0.3256 �36% 100% 0.3752 �27%

Source: Carty, Roshal, and Yitzhaki (2009)
aIn Ireland the accounting period is 12 months, in Israel—3 months. As noted earlier, this adds

nearly 4% to the Gini in Israel
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Comparing the tax-welfare regimes of the two countries, it can be noted that in

Ireland the extent of the income tax is higher than in Israel (20% of the net income

in Ireland as opposed to 16% in Israel), but the amount of welfare transfers is higher

as well (26% of the net income in Ireland and 23% in Israel). In relation to the Gross

Domestic Product, social welfare expenditure sums up to 7.8% of the GDP in

Ireland and 7% in Israel.

Fig. 15.1 The distribution of nongovernmental (equalized) income between households, Ireland

and Israel, 2006. (Mean income of each country ¼ 1. Ireland’s equivalence scale is used for both

countries)

Fig. 15.2 The distribution of disposable (equalized) income between households, Ireland and

Israel, 2006. (Mean income of each country ¼ 1. Ireland’s equivalence scale is used for both

countries). Source: Carty, Roshal, and Yitzhaki (2009)
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15.1.5 A Full Decomposition of Gini by Income Sources:
Empirical Findings

Tables 15.6 and 15.7 present the components of the decomposition for Ireland and

Israel, as described in Sect. 15.1.4. Net disposable income is presented as the sum of

three components: economic nongovernmental income, government transfers, and

taxes (mostly negative values).

The first line presents the Gini for each one of the variables. The Gini calculated

on the net disposable income is 0.3256 for Ireland and 0.3752 for Israel, the lowest

of the components. The second line presents the jackknife standard errors.

The third line presents the share of each of the components in the disposable

income. The share of economic income is larger than 1, as it is usually higher than

the disposable income. The share of taxes, however, is negative, balancing the

difference. Government transfers comprise nearly 20% of the net income in Ireland

and only 16% in Israel. The fourth line is the proportion of the population which

receives any (even negative) part of the given component. For example, in Israel,

almost 100% of the population pay taxes (or receive transfers), compared to only

78% of the population in Ireland. Government transfers reach almost the same

proportion of the population with Ireland’s figure being slightly higher, and non-

governmental income is received by a higher proportion of the population in Israel

(90%) than in Ireland (87%).

Table 15.6 The components of Gini of equalized disposable (net) income: economic income,

government transfers, and taxes—Ireland

Gini indices of inequality (Gi) and income shares (ai)

Economic Transfers Taxes Sum ¼ net income

Gini coefficient 0.5092 0.5412 0.6404 0.3256

St. error 0.0085 0.0065 0.0083 0.0096

Income share 1.066 0.196 �0.262 1.000

Proportion of nonzero 0.872 0.853 0.782 1.000

Gini of nonzero 0.4372 0.4625 0.5388 0.3255

Gini correlations matrix (Gij)

i/j Economic Transfers Taxes Sum ¼ net income

Economic �0.6368 �0.9070 0.9489

Transfers �0.7161 0.6998 �0.4221

Taxes �0.9427 0.6385 �0.8632

Sum ¼ net income 0.9484 �0.4402 �0.7814

Jackknife standard errors for the difference between Gij and Gji

i/j Economic Transfers Taxes Sum ¼ net income

Economic 0.0164 0.0054 0.0021

Transfers 0.0216 0.0212

Taxes 0.0148

GO GO
2 GOSaiDiOGi ai

2Gi
2 SSaiajGiGjGij

Net 0.3256 0.1060 �0.0037 0.3340 �0.2224

Source: Carty, Roshal, and Yitzhaki (2009)

Ireland, households weighted by household weight � equivalent adult: 2006
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The fifth line is the Gini coefficient calculated over those who have the given

component in their income.

The second part of each table presents the Gini correlation coefficients between

each pair of components, followed by the statistical tests for the differences between

each pair of coefficients. The coefficients have the expected signs—for example, the

higher the economic income is, the higher are the governmental transfers, but here the

progressivity of Ireland’s governmental transfers is noticeable—in Ireland the correla-

tions are much stronger (in absolute values) than in Israel, indicating that the transfers

are given to a really poorer population, and taxes are paid by the richer ones.

Another result derived from this part is that there are differences between each two

correlation coefficients, meaning that the joint distributions are not exchangeable. This

implies that the marginal distributions of the net income components change in a

nonspecificway, which is, again, not surprising given the progressive type of taxation.

However, in Ireland the differences between the correlation coefficients of the net

incomewith economic incomeandgovernment transfers are not significant. In Israel the

insignificant difference is only between economic income and government transfers.

The third part of the tables presents the decomposition of the Gini according to

(4.10). The term that distinguishes the structure of the decomposition of Gini from the

one in the decomposition of the coefficient of variation, namely G0

PT
t¼1

at Dt0Gt ,

Table 15.7 The components of Gini of equalized disposable (net) income: economic income,

government transfers, taxes—Israel

Gini indices of inequality (Gi) and income shares (ai)

Economic Transfers Taxes Sum ¼ net income

Gini index 0.5117 0.6214 0.6760 0.3752

St. error 0.0057 0.0053 0.0053 0.0052

Income share 1.068 0.158 �0.226 1.000

Proportion of nonzero 0.898 0.836 1.000 1.000

Gini of nonzero 0.4560 0.5472 0.6759 0.3752

Gini correlations matrix (Gij)

i/j Economic Transfers Taxes Sum ¼ net income

Economic �0.4410 �0.9323 0.9528

Transfers �0.4569 0.4209 �0.0655

Taxes �0.9651 0.4821 �0.9095

Sum ¼ net income 0.9435 �0.2181 �0.8404

Jackknife standard errors for the difference between Gij and Gji

i/j Economic Transfers Taxes Sum ¼ net income

Economic 0.0146 0.0044 0.0020

Transfers 0.0205 0.0166

Taxes 0.0075

GO GO
2 GOSaiDiOGi ai

2Gi
2 SSaiajGiGjGij

Net income 0.3752 0.1408 0.0036 0.3316 �0.1930

Source: Carty, Roshal, and Yitzhaki (2009)

Israel, households weighted by household weight � equivalent adult: 2006
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subtracts 0.0037 of the (square of the) Gini in Ireland and adds 0.0036 to the (square of

the) Gini in Israel. However the magnitude of this element does not seem to be

important. For any reasonable purpose of comparison, we can simply ignore this

component.

Schechtman and Yitzhaki (1999) have pointed out that the properties of the Gini

correlation are a mixture of the properties of Spearman’s and Pearson’s correlation

coefficients. Tables 15.8 and 15.9 present the Spearman and Pearson correlation

coefficients. As can be seen, the Gini correlations are almost identical in magnitude

to the appropriate Spearman correlation coefficients, but may sharply differ from the

Pearson correlation coefficients. For example, while in Ireland the Spearman corre-

lation coefficient between net income and government transfers is around �0.4,

Pearson coefficient is �0.17. The difference between Spearman and Pearson

coefficients reaches 0.33 in Ireland and 0.26 in Israel (between nongovernmental

income and government transfers, in both countries). The reason is that while

Pearson’s correlation coefficient measures a linear relationship, Spearman’s coeffi-

cient measures a general monotonic trend, not necessarily linear.

In conclusion, there are two major differences between Ireland and Israel: Ireland

collects more tax revenue and also redistributes more than Israel, and the Gini

correlation between (minus) taxes and transfers is higher in Ireland than in Israel.

Comparisons of the Gini correlations reveal that on average the correlation in Ireland

is higher by roughly 17%. Comparison of the contribution of the correlation term in

reducing the square of the Gini as reported in Tables 15.6 and 15.7 reveals a 0.03

difference between the two countries (�0.22 vs. �0.19), which translates into a

higher percentage points in the reduction of the Gini inequality coefficient.

Hence, we can conclude that the Gini correlation between taxes and welfare is the

major contributor to the better effectiveness of the Irish system.

Table 15.8 Pearson and Spearman correlation coefficients, net income, Ireland (Pearson in the

lower left triangle, Spearman in the upper right triangle)

i/j Economic Transfers Taxes Sum ¼ net income

Economic 1 �0.7180 �0.8834 0.8906

Transfers �0.3890 1 0.6403 �0.4301

Taxes �0.7960 0.3395 1 �0.7590

Sum ¼ net income 0.9445 �0.1698 �0.5947 1

Table 15.9 Pearson and Spearman correlation coefficients, net income, Israel (Pearson in the

lower left triangle, Spearman in the upper right triangle)

i/j Economic Transfers Taxes Sum ¼ net income

Economic 1 �0.5077 �0.9165 0.9296

Transfers �0.2356 1 0.4527 �0.2423

Taxes �0.8777 0.1883 1 �0.8374

Sum ¼ net income 0.9477 �0.0072 �0.7265 1

Source: Carty, Roshal, and Yitzhaki (2009)
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We view this correlation as a quantitative measure of the tax-welfare churn
(Saunders, 2005; Whiteford, 2006, and the references therein). To see this note the

following: In a Mirrlees’s optimal income tax framework (1971), taxpayers both

pay taxes and receive transfers from the government. In a well-coordinated system

we should expect the tax to increase and the transfers to decline with income. In this

ideal tax system the correlation between the (minus) taxes and transfers should be

equal to one. The Gini correlation describes the effect on the target function

(reducing inequality) and is well-suited to measure correlation when the relation-

ship is nonlinear. Hence, by decomposing the Gini we are also able to offer an

empirical measure of the effectiveness of the tax-welfare churn.10

15.2 Decomposition by Population Subgroups

The decomposition of the inequality measure with respect to the contributions of

different subgroups leads to slightly different questions—the effects of the demo-

graphic structures on governmental policies.

In this section we compare the demographic structures of inequality and the

income compositions between two countries: Ireland and Israel. The choice of these

two countries is not coincidental: our aim was to compare countries which are as

close in their demographic and economic parameters as we can find. Of all the

European countries, Ireland is the most similar to Israel by the combination of the

following factors: size, economic development in the recent two decades, and

demographics that is highly influenced by religion. In comparison to the OECD

countries, Ireland has a rather high overall level of inequality, though below Israel

(and the USA). There is also high percentage of large families, which is the

distinguishing factor of the Israeli society.

15.2.1 Background

By choosing an inequality measure one is actually choosing a social welfare

function to represent the society.11 The official statistics of both countries include

reporting the Gini coefficient of after-tax income. Because countries could have

chosen to publish alternative measures of inequality and they did not do so, we

assume that the revealed preference and consequently the data available for public

debates concerning policy evaluations should be measured by the effect of the

policy on the Gini coefficient. By decomposing the Gini coefficient to the

contributions of taxes and welfare we are able to differentiate between the effect

of taxes and the effect of allowances. The correlation between those effects enables

10We are indebted to Joel Slemrod for pointing out this issue.
11 See Chap. 13.
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us to find out the level of coordination between separate organs of the government.

This issue is referred to in public debates as the tax-welfare churn (Saunders, 2005;
Whiteford, 2006, and the references therein). In our investigation, it turned out that

the major factor affecting the performance of governmental policy is the tax-

welfare churn. We note that there may be other factors that we have ignored.

However, although we do not deal with mobility here, the technique presented

can be formulated in terms of mobility as well (see, e.g., Yitzhaki & Wodon, 2004;

Beenstock, 2004; Beenstock & Felsenstein, 2007).

In addition, our aim is to evaluate the effect of the demographic structure on

inequality. The demographic structure is given and even identical policies can

result in different performances if the demographic structures are different. There-

fore in evaluating policy performance one has to take into account the demographic

structure. The methodology we use is the decomposition of the Gini coefficient by

population subgroups. Beblo and Knaus (2001) apply the decomposition of the

Theil index of inequality to evaluate the country’s contribution to the overall

inequality in the 11 countries of the European Monetary Union. The decomposition

of the Gini coefficient (based on demographic subgroups) allows to evaluate the

contribution of each subgroup to the inequality in the entire population and thus to

determine the extent to which the demographic structure of each country affects its

Gini coefficient. Achdut (1996) performed similar analysis for Israel for the years

1979 and 1993. However the method she used does not allow one to find the

coordination between tax and welfare systems, or the effect of the demographic

structure, which are the major issues in this chapter.

Differences in the demographic structure are important factors in any analysis

because it is well-known that income levels correlate with certain demographic

characteristics such as age, education level, marital status, family size, the fraction of

rural population, the number of immigrants and their levels of education, and so on.

The composition of demographic groups differs in every country due to different

historical, cultural, and religious characteristics. Can these demographic differences

then explain differences in the inequality as measured by the Gini coefficient?

It may happen, for example, that in a certain demographic subgroup the inequal-

ity is consistently higher than in the rest of the population. In the group of single

people, for example, one finds students at the very beginning of their professional

life, people who are at the top of their career, as well as divorcees and widowers. If a

country exhibits a higher ratio of such a group, could this contribute to a higher

inequality measure? Or consider a situation where there might be a high inequality

between groups. For example, if there are special government benefits for large

families, who therefore enjoy higher incomes, these benefits can increase the

income gap between these families and the others.

15.2.2 Empirical Findings

Following the methodology presented in Chap. 4, we now move to the decomposi-

tion of the inequality in the two countries by population subgroups.
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First we divided the population into subgroups based on household size, where

households of six persons or more are grouped together. Table 15.10 summarizes

the results of the decomposition by household size for Ireland and Israel, using

nongovernmental equalized income.

Column (II) presents the number of observations in each group, column (III) is the

proportion of the specific category in the whole country’s population of equivalent

adults, column (IV) is the mean income of the group (in national currency), column

(V) is the same mean, but calculated in relation to the mean income of a two-persons

household. This is themean income that can be compared between the two countries.

Column (VI) requires more explanation. It presents the mean rank of the incomes

of the group members in the overall income. Each individual is given a rank in the

income distribution, from 0 to 1, so that the average rank of the entire population

within itself is always 0.5. Theoretically, the average rank of the group of relatively

poor people would be lower than 0.5 because their incomes lie at the left end of the

range of the entire income distribution. Therefore, if for any group the mean rank of

its members is lower than 0.5 we conclude that they are relatively poor.

Column (VII) is the group’s income share in the total income, the total incomebeing

set to 1. The group-specific Gini is listed in column (VIII), with the overall Gini

indicated in the last line, and the overlapping index with the whole population is

presented in column (IX) (seeChap. 4 for the definition of the overlapping coefficient).

The contribution of each group to the overall Gini is the product of columns

(VII), (VIII), and (IX) and it is listed in column (X).

Finally, the within- and between-groups Ginis are calculated and presented

below the table, as well as the overall Gini. The within-group Gini is the sum of

column (X), the between-groups Gini, Pyatt’s between-groups Gini, and the overall

Gini are calculated separately.

As expected when using only direct, nongovernmental incomes the inequality is

very high (nearly 0.51), and this is true for the two countries. There are, however,

subpopulations that are more equal than others.

Looking at column (VIII) in both countries, the lowest inequality is among

medium-sized (3–4) households. Their mean incomes are the highest. Singles is

the least equal group (i.e., they have the highest Gini coefficient). They also possess

the lowest (or second-to-the-lowest) income in terms of mean (column (IV)) and

distributional rank (column (VI)). When comparing between the countries, in

Ireland larger households are more equal than in Israel. Also, in Israel large families

are, on average, much poorer than in Ireland: their mean income (per equalized

person) is half of the income in two-persons households and their rank is also the

lowest. This is not surprising, taking into account that these large households are

actually much larger in Israel, implying that there are fewer earners per household.

In Ireland the poorest group is the group of singles.

Age differences also play a significant role in explaining inequality. Households

of singles, for example, may exhibit higher inequality if there is a high percentage

of younger persons (students or people at the beginning of their careers) and

pensioners, i.e., concentration at the ends of the age distribution. Table 15.11

shows the distribution of the households of singles by age. It can be seen that in

Israel nearly 14% of those living alone are under the age of 30, compared to only
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8% in Ireland. Also, there are more pensioners (above the age of 65) in Israel living

in single households than in Ireland (44.7% and 40.0%, respectively).

The overlapping index in column (IX) tells us whether one or more of the groups

form distinctive strata. If this index equals the proportion of the group (column (III),

then this group forms a perfect stratum. The lower the index, the less the group’s

distribution overlaps with that of the whole population. There are no distinctive

groups in either one of the countries. However, medium-sized households have their

distinctive place in the overall distribution. The distributions of the 2- and 3-person

households mimic the distribution function of the whole country’s population.

Singles in Ireland, being the least equal group, have the highest overlapping

index, meaning they are divided into two separate strata and are present in both the

highest and the lowest ends of the income distribution of the entire population. This

result is less noticeable for Israel.

The between-groups inequality is very low and contributes very little to the

overall inequality—4% in Ireland and 7% in Israel. The relatively high Pyatt’s

between-groups component shows that the overlapping has reduced the between-

groups component. Pyatt (1976) calculates inequality between groups as if all

members in a group had the same income.

According to the last column, the highest contribution (23% in Israel and 30% in

Ireland) to the overall inequality in both countries is that of the 2-person

households. This is due to the high income share of this group, the high inequality

and the high overlapping component altogether.

Table 15.12 presents the average rank of members of one group in terms of the

other (that is, had they been ranked within the ranking of the other group).

The diagonal presents each group in its own ranking, which is 0.5 by definition.

The ranking, unlike mean income, is not sensitive to extreme values. An average

ranking above 0.5 means that on average, households in a given group have higher

ranks in the other group’s distribution than in their own, implying they are richer.

For example, 4-person household, which is relatively poor in its own group, will

be considered rich in terms of singles. Again, one can see that large households are

the poorest in terms of other household groups in both countries (although they

are richer than singles in Ireland), but they are much poorer in Israel.

Table 15.11 Distribution of

the households of singles by

age (2006)a

Age range Ireland (%) Israel (%)

24 or younger 2.5 5.5

25–29 5.7 8.6

30–34 7.4 7.8

35–39 5.1 5.9

40–44 5.6 4.3

45–49 6.2 3.3

50–54 9.4 4.7

55–59 8.6 8.0

60–64 9.5 7.2

65þ 40.0 44.7

Total 326,500 372,532

Source: Carty, Roshal, and Yitzhaki (2009)
aCalculations based on EU-SILC (Ireland) and HES (Israel)
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Table 15.13 presents the overlapping matrix between household groups. The rows

represent the groups whose distributions are used as the base distributions. For

example, when 4-person households are used as the base, singles in both countries

form a stratum (0.538 and 0.721 for Ireland and Israel, respectively). The interpreta-

tion of the two overlapping indices is that there are relatively more large households

in the distribution of singles (i.e. poor) than there are singles in the distribution of large

households (1.387 vs. 0.601 in Ireland and 1.168 vs. 0.768 in Israel).

We now turn to the analysis of the net disposable income (Table 15.14). Comparing

the two countries, we see that in each subgroup the inequality is lower in Ireland than

Table 15.12 Average rank of one household size in terms of another, nongovernmental income

Household size 1 2 3 4 5 6þ
Ireland

1 0.5 0.389 0.314 0.286 0.309 0.368

2 0.611 0.5 0.414 0.384 0.416 0.502

3 0.686 0.586 0.5 0.474 0.517 0.628

4 0.714 0.616 0.526 0.5 0.547 0.669

5 0.691 0.584 0.483 0.453 0.5 0.629

6þ 0.632 0.498 0.372 0.331 0.371 0.5

Israel

1 0.5 0.411 0.353 0.356 0.375 0.521

2 0.589 0.5 0.442 0.445 0.469 0.636

3 0.647 0.558 0.5 0.503 0.532 0.723

4 0.644 0.555 0.497 0.5 0.529 0.719

5 0.625 0.531 0.468 0.471 0.5 0.700

6þ 0.479 0.364 0.277 0.281 0.300 0.5

Source: Carty, Roshal, and Yitzhaki (2009)

Table 15.13 Overlapping between household sizes, nongovernmental income

Household size 1 2 3 4 5 6þ
Ireland

1 1.0 1.167 1.291 1.348 1.380 1.387

2 0.806 1.0 1.170 1.239 1.248 1.180

3 0.636 0.815 1.0 1.071 1.080 0.991

4 0.538 0.718 0.925 1.0 1.005 0.886

5 0.535 0.709 0.902 0.976 1.0 0.928

6þ 0.601 0.800 0.965 1.034 1.050 1.0

Israel

1 1.0 1.105 1.209 1.214 1.237 1.168

2 0.868 1.0 1.126 1.131 1.136 0.951

3 0.723 0.860 1.0 1.005 1.014 0.756

4 0.721 0.855 0.996 1.0 1.014 0.778

5 0.718 0.846 0.977 0.981 1.0 0.795

6þ 0.768 0.865 0.970 0.968 1.004 1.0

Source: Carty, Roshal, and Yitzhaki (2009)
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in Israel. Interestingly the between-groups component in Israel contributes more

than in Ireland.

Most of the results based on the nongovernmental income still hold: the singles

have the highest inequality, although in Israel they improved their situation signifi-

cantly. Two-person households are now the richest group in terms of mean income.

It is interesting to note their position relative to the 4-persons group: in terms of

nongovernmental income, the 4-person households were the richest group in

Ireland by mean income and by mean rank, and the second richest group in Israel.

In Ireland there is also a change in the relative positions of singles versus large

households: while the relative position of singles has improved, it has worsened for

the large households. No meaningful improvement has occurred in the relative

position of large households in Israel.

In Israel 3-person households have the highest mean rank, the lowest Gini—and

the lowest overlapping index, making them the most distinctive stratum. In Ireland,

these are the 4-person households which stand out of the whole distribution.

Table 15.15 allows us to see the improvement in the position (mean rank) of

households when passing from nongovernmental to net disposable income. This is

not surprising, although one would not expect the change in the relative rank

between several groups of households. Those who had the higher rank are expected

to preserve their relative position. However, the position of singles in Ireland has

improved much more significantly than expected. In relation to large (6+)

households, by nongovernmental income they had a mean rank of 0.368. Now

they are even richer than the large households, with the mean rank of 0.517. Two-

person households have also improved their position “on the account” of larger

families, with mean rank of 0.625 (compared to 0.502) by nongovernmental

income. Lerman and Yitzhaki (1995) showed how the impacts of policies are not

only in narrowing gaps between people at different income levels. In fact, these

policies also affect the positions of people, moving some who are initially at low

incomes to pass those at higher incomes.

Table 15.15 Average rank

of one household size in terms

of another, disposable income

Household size 1 2 3 4 5 6þ
Ireland

1 0.5 0.398 0.374 0.375 0.396 0.517

2 0.602 0.5 0.463 0.461 0.499 0.625

3 0.626 0.537 0.5 0.495 0.547 0.671

4 0.625 0.539 0.505 0.5 0.552 0.675

5 0.604 0.501 0.453 0.448 0.5 0.640

6þ 0.483 0.375 0.329 0.325 0.360 0.5

Israel

1 0.5 0.433 0.421 0.449 0.494 0.694

2 0.567 0.5 0.493 0.520 0.567 0.755

3 0.579 0.507 0.5 0.528 0.579 0.776

4 0.551 0.480 0.472 0.5 0.550 0.748

5 0.506 0.433 0.421 0.450 0.5 0.710

6þ 0.306 0.245 0.224 0.252 0.290 0.5
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In Israel the change in relative ranking has occurred when comparing households

of 2 with households of 4 and 5 persons. In comparison to these households, couples

are now richer than 4- and 5-person households, while in terms of nongovernmental

income they were relatively poorer.

Analysis of the overlapping indices (Table 15.16) shows how closer household’s

distribution functions are now to the whole population—all the numbers are closer

to 1 than in Table 15.12.

In conclusion: by decomposing the Gini coefficient of inequality by household

size we find that (1) for market income the level of inequality is similar for both

countries. However small households (1–3 persons) have higher inequality in

Ireland than in Israel and larger households have lower inequality in Israel; (2) For

net disposable income, the inequality in Israel is higher than in Ireland by 15%, and

in each household group the inequality is also higher in Israel than in Ireland, which

means that governmental tax and benefit programs are more progressive in Ireland;

(3) Correcting for the household composition differences, we find that for net

disposable income, the inequality in Ireland increases by 0.5%, but in Israel it is

reduced by 2%. This means that our conclusions with respect to progressivity cannot

be attributed to the differences in demographic structure.

15.3 Decomposition Over Time: Non-marginal Analysis:

Mobility, Inequality, and Horizontal Equity12

When discussing issues related to social welfare, sociologists have concentrated

their attention on mobility as a factor determining inequality of opportunity. In

contrast, economists have focused on inequality in income or consumption, often

(although not always) without specific reference to mobility. Formally, if we

Table 15.16 Overlapping

between household sizes,

disposable income

Household size 1 2 3 4 5 6þ
Ireland

1 1.0 1.137 1.181 1.179 1.235 1.079

2 0.833 1.0 1.081 1.084 1.094 0.892

3 0.794 0.921 1.0 1.008 1.018 0.854

4 0.805 0.921 0.994 1.0 1.027 0.879

5 0.759 0.873 0.948 0.948 1.0 0.886

6þ 0.948 1.050 1.080 1.078 1.112 1.0

Israel

1 1.0 1.047 1.129 1.099 1.084 0.798

2 0.930 1.0 1.076 1.041 1.003 0.677

3 0.850 0.913 1.0 0.968 0.941 0.634

4 0.896 0.939 1.027 1.0 0.989 0.722

5 0.909 0.938 1.021 0.998 1.0 0.772

6þ 0.973 0.930 0.964 0.965 1.012 1.0

Source: Carty, Roshal, and Yitzhaki (2009)

12 This section is based on Yitzhaki and Wodon (2004).
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consider a bivariate distribution representing initial and final distributions, an

inequality index is a summary statistic defined over each marginal distribution,

i.e., the initial and the final distributions. In contrast, a mobility index describes the

transition process between these two distributions. Some economists (e.g.,

Shorrocks, 1978a; Atkinson, 1983; Dardanoni, 1993; see also Atkinson & Bourgui-

gnon, 1992, for a review of empirical studies of earnings mobility) have approached

mobility indices as complements to the tools used by statisticians and sociologists

(e.g., Prais, 1955; Bartholomew, 1982; see also Bibby, 1975, for a review of the

sociological literature). But in most cases these mobility indices have been devel-

oped using properties of transition matrices, independently of the concepts of

inequality and equity.

In this section we define and discuss the properties of the Gini index of

mobility—which together with the Gini coefficient of inequality provides an overall

consistent framework for the analysis of mobility, inequality, and horizontal equity.

In so doing we follow up on a few papers devoted to the relationships between the

three concepts. For example, Shorrocks (1978b) shows how income mobility

reduces inequality over time. King (1983) develops an index of inequality which

can be decomposed into two components: one is related to mobility and the other is

related to horizontal equity.

To motivate and illustrate the relationship between mobility and inequality,

consider the system of job rotation in the early days of the Kibbutz. Members of

the Kibbutz rotate jobs. Hence, although at each given period of time there is no

equality among members, inequality vanishes over time. Inequality is observed

only because snap-shots are used to describe an otherwise lengthy process. Another

example of the impact of the period of measurement on inequality is the distribution

of income over the life cycle. If one is interested in life-time inequality, then yearly

inequality is inappropriate. Although individuals may have exactly the same pattern

of income flow over the life cycle, one will observe inequality simply because the

time period used for measurement is too short. A third type of transition over time is

associated with uncertainty. If the distribution of income is affected by random

shocks, the resulting process can be analyzed formally in the same way as job

rotation, except that in the case of job rotation the transition is known in advance to

the individuals, while in the case of uncertainty it is not.13 In all these cases, a

mobility index can help in predicting the appropriate level of inequality over a

period of time from a series of snap-shots at any given point in time.

Mobility is also related to horizontal equity. Usually transition processes take

time, but we may also think of instantaneous transition processes with no time

dimension attached to them. This applies to changes in incomes due to a reform in

taxation. Traditionally the changes in individual rankings before and after taxes

13 This type of problems may also occur when incomes are registered on a cash flow base rather

than on an accrual basis. Different sources of income such as capital gains, farm income, and other

types of capital income, which are registered according to realization, may have different accu-

mulation and distribution patterns over time. Relying on snap-shots of the distribution may

exaggerate the impact of those incomes on inequality in the long run.
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have been analyzed through the concept of horizontal equity. The main principle of

horizontal equity in tax reforms is defined by Feldstein (1976, p. 95) as “if two
individuals would have the same utility level if the tax remained unchanged, they
should also have the same utility level if the tax is changed.” The implication of

Feldstein’s definition of horizontal equality (and to the best of our knowledge of all

measures of horizontal equity) is that rank switching, i.e., the change in the rankings

of individuals between the initial (before the reform) and final (after the reform)

distributions is an undesired property. The violation of this norm is the target of

horizontal inequity measurement. Measures of horizontal equity are discussed

among others by Atkinson (1979) and Plotnick (1981). But clearly the same rank

switching is also the target of mobility measurement, except that mobility is viewed

as a desired property to have. The information needed for calculating an index of

horizontal equity is identical to that needed for calculating an index of mobility. As

will be shown, the Gini mobility index is equivalent to the Atkinson–Plotnick

measure of horizontal inequity.

The Gini mobility and inequality indices enable the identification of three

separate factors at work when there is a change between two income distributions:

growth, inequality, and mobility. Growth is interpreted as a constant percentage

increase in all incomes. A change in inequality occurs if one distribution deviates

from the other by more than a multiplication by a constant. Mobility occurs when

individuals change positions along the distribution.14 Note that growth may occur

without affecting inequality and mobility, a change in inequality may occur without

affecting growth and mobility, and mobility may occur without affecting growth

and inequality. Clearly, we could use alternative measures to capture inequality or

mobility. The advantage of using an overall consistent framework is to insure that

concepts are not mixed up in the process of measurement.

Another advantage of using the overall framework of the Gini is that mobility is

not defined as an independent concept. Therefore there is no need to derive a

separate axiomatic justification for it. Any set of axioms that supports the Gini

such as those proposed by Ebert and Moyes (2000) can also be used to support the

mobility index. We will return to this argument in Sect. 15.3.2.

The Gini index of mobility has one additional property which is useful for

discussing inequality. Consider the case of having two criteria for ranking the

population, such as income and wealth. Each criterion enables the evaluation of a

marginal distribution by a measure of inequality. Changing the criterion changes

the observed level of inequality. What can be said if one is interested in a composite

measure of inequality taking both criteria into account? A possible solution is to

create a scale which will weigh the two criteria and then compute the measure of

inequality as a weighted average of the two criteria. But in many circumstances

there is no a priori agreed upon weighting scheme and one has to search for an

appropriate weighting scheme. To evaluate whether this is a serious problem, we

14 For an alternative and interesting view, see Fields and Ok (1996, 1999) who present an

axiomatic characterization to absolute changes in incomes.
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state the conditions that enable us to predict the level of inequality when using a

weighted average of two criteria without assuming specific weights. That is, given

the range of the weighting scheme, the Gini mobility index can also be useful in

describing the change in ranking when one moves from using one criterion to the

other. The upshot from the above discussion is that many issues that involve

transitions from one distribution to another can be represented by the same index.

This is illustrated using panel data from rural Mexico.

The structure of the discussion is as follow: In the first section (Sect. 15.3.1) we

introduce the concept of the Gini index of mobility in both its symmetric and

asymmetric forms. We discuss the relationship with transition matrices and illus-

trate it on a panel data on income, land owned, land cultivated, and cash transfers to

rural farmers from a survey conducted by the World Bank in collaboration with the

Secretaria de Reforma Agraria of Mexico. Next, in Sect. 15.3.2 we discuss the issue

of predicting inequality for a linear combination of variables. Then we illustrate the

use of the Gini mobility index for predicting composite measures of inequality

when the analyst is not able or not willing to specify the weights to be attributed to

each factor in the composite measure of welfare. This is done by using information

on rural Mexican households for income and wealth as measured by land

ownership.

The empirical analysis in this section is devoted to the inequality of a combina-

tion of two variables: one depending on income and wealth, and the other

depending on income at two points in time. Section 15.3.3 shows the equivalence

between the Gini index of mobility and the Atkinson–Plotnick measure of horizon-

tal equity, with an application to the impact on inequality and horizontal equity of a

Mexican cash transfer program for farmers. More specifically, we show the impact

of Procampo, the program of cash transfers to farmers, on income inequality in rural

Mexico, and on horizontal equity.

15.3.1 The Gini Index of Mobility

15.3.1.1 Definitions and Properties

The most convenient way to define the Gini index of mobility is by using continu-

ous distributions. However because we want to analyze the relationship between the

index and the literature on mobility, which relies on transition matrices, we will

move back and forth from continuous to discrete variables to allow for matrix

notation.

Let (Z1, Z2) denote a bivariate income distribution in states 1 (initial) and

2 (final), respectively. It is assumed that first and second moments exist. Define

Yj ¼ Zj/mZj as the income in terms of mean income. Then (Y1,Y2) have a bivariate

distribution with m1 ¼ m2 ¼ 1. A mobility index should describe the association

between observations in distributions 1 and 2. We distinguish between symmetric

and asymmetric indices of mobility. An index S12 defined over distributions 1 and
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2 is symmetric if it satisfies S12 ¼ S21 for any two distributions. The advantage of

this property is that the index does not suffer from the index number problem that is

typical to directional movement from one state to the other. The disadvantage of a

symmetric index is that it requires more information than an asymmetric one

because one needs to have all the components of the two distributions in order to

estimate it. The Gini symmetric index of mobility is defined as

S12 ¼ COV[(Y1 � Y2Þ; ðF1(Y)� F2(Y))]

COV(Y1;F1(Y))þ COV(Y2;F2(Y))
; (15.2)

where Fj(Y) is the (marginal) cumulative distribution of Yj.

By collecting terms, (15.2) can be written in a more convenient way as

S12 ¼ G1ð1� G12Þ þ G2ð1� G21Þ
G1 þ G2

; (15.3)

where Gij is the Gini correlation coefficient between Yi and Yj. (Recall that Y1 and

Y2 are normalized so that m1 ¼ m2 ¼ 1).

The intuition behind (15.2) and (15.3) is straight forward: the Gini index of

mobility is based on the association between the change in the incomes between

two periods and the change in the rankings of the same incomes over the same

periods. The higher the association, i.e., the more the change in income is also

associated with a change in the position of the household in the population, the

higher the mobility.15

One can also define the (directional) asymmetric mobility index Mjs ¼ (1 �
Gjs), where j is the initial state and s is the final state. Then the symmetric index of

(15.3) is a weighted average of the two asymmetric indices

S12 ¼ w1M12 þ w2M21; (15.4)

where wi ¼ Gi/(G1 + G2), i ¼ 1,2 is the share of the inequality of distribution (or

period) i in the sum of the inequalities in the two distributions (or periods).

The properties of the Gini mobility index (15.3) (and (15.4)) can be derived from

the properties of the Gini coefficient and the Gini correlations.

(a) S12 � 0. This property is based on the bounds on the Gini correlations:

1 � Gjs � �1.16

15 Fields and Ok (1999) refer to this type of mobility measures as correlation-based mobility

index. An example of such an index is Hart’s index discussed by Shorrocks (1993).
16 An important property of the Gini correlation is that the bounds are identical for all marginal

distributions. This property does not hold for the Pearson correlation coefficient (Schechtman &

Yitzhaki, 1999). This means that one minus Pearson’s correlation coefficient cannot serve as an

index of mobility because a change in the shape of one of the marginal distributions, that does not

affect the transition process of the ranks, may change the value of the correlation.
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(b) The range of the Gini mobility index is between 0 and 2.

(b.1) MinimumMobility: S12 ¼ 0 if both Gini correlations are equal to one. This

is the extreme case of nomobility. Although the marginal distributions may

change, the rankings of the individuals do not. If the transition process has

not changed the ranking of the units, then the mobility index equals zero.

This corresponds to the immobility axiom by Shorrocks (1978a, 1978b).

Note, however, that inequality can change between the initial and the final

distributions. Examples of such cases are abundant: the application of a

pure income tax so that the ranking of before-tax income is identical to the

ranking of after-tax income17 or, alternatively, the effect of a tax reform

that does not change the ranking of after-tax income. Another example is

economic growth that affects all units by a monotonic increase of their

incomes, as can be the case when the returns to schooling are changing

(that is, distances between adjacent incomes increase or decrease), but the

order (the education endowments) is not reversed. Still another example is

a macroeconomic shock that affects all individuals without causing

changes in ranks. Note that although inequality can change even if there

is no change in the rankings, inequality cannot change between the two

distributions if there is no change in incomes.

(b.2) Midpoint: If Y1 and Y2 are statistically independent then S12 ¼ S21 ¼
M12 ¼ M21 ¼ 1. Because in most cases of mobility the correlation

between the initial and final marginal distributions tends to be positive,

some investigators (e.g., Prais (1955) and his followers) defined indepen-

dence as the extreme case of mobility. Shorrocks (1978a, 1978b) on the

other hand prefers to define property (b.3) as the extreme case. This

distinction is not relevant for our purposes.

(b.3) Maximum mobility: The maximal value is 2. It occurs when G12 ¼ G21 ¼
�1, implying that S12 ¼ S21 ¼ M12 ¼ M21 ¼ 2. Maximum mobility

occurs if there is a total reversal in the ranks. That is, the richest in

distribution 1 is the poorest in distribution 2, the second richest in distri-

bution 1 becomes the second poorest in distribution 2, etc. In this case the

final distribution is derived from the initial distribution by a declining

monotonic transformation. Note that in this casemobility is independent of

whether the overall inequality increases or decreases between the initial

and final distributions.18

(c) Higher mobility: this property corresponds to an increase in the Gini mobility

indices. That is, the lower the Gini correlations between the initial and the final

distributions, the higher the mobility.

17 See Feldstein (1976). See also the measures of progression in the income tax (Lambert 2001,

Chap. 6).
18 One could divide the symmetric and asymmetric Gini indices of mobility by two in order to keep

the indices between zero and one.
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In this section we have derived the mobility index as based on the Gini

correlations. Because some of the mobility indices are based on transition matrices,

we will also base the Gini mobility index on transition matrices.

15.3.1.2 The Relationship with Transition Matrices

The traditional way to study mobility is by analyzing transition and turnover

matrices.19 The main interest in this literature is occupational mobility, while the

interest in the present section is in the impact of mobility on inequality. This

difference in interest calls for slightly different approaches.20 For convenience

and without loss of generality, we divide the initial and the final populations into

equiproportional groups, so that the difference between a transition and a turnover

matrix is a multiplication by a constant. In this section we show that provided that

one is interested in the impact on the Gini coefficient of inequality, the components

of the Gini indices of mobility Gjs and Gsj are sufficient statistics for the information

contained in turnover and transition matrices. This means that transition matrices

do not add information over the informational content of the mobility indices. To

show the relationships between the Gini indices of mobility and transition matrices,

it is convenient to rely on discrete distributions.21 Let Yjk (j ¼ 1,2; k ¼ 1,..,K) be

the normalized income (so that the mean income equals to one) and let Fjk be its

normalized rank (the value of the empirical distribution, a number between zero

and 1) of observation k in state j. In addition let Yj and Fj be K � 1 vectors of the

normalized incomes and their ranks in state j, respectively. Without loss of gener-

ality we assume that the observations Fjk are arranged in an increasing order of the

ranking of the first period. That is, F1 is the only vector whose elements must be

arranged in a nondecreasing order. Because we are dealing with normalized

incomes with unit means, the Gini coefficient of distribution j can be written as

Gj ¼ 2 Y0
jFj � 1; (15.5)

19 A turnover matrix is a matrix the elements of which add up to one. A transition matrix is a matrix

of which the elements in the rows add up to one. Usually transition matrices represent the

conditional probabilities, while the elements of a turnover matrix represent the joint probability

distribution of the two variables.
20 The mobility index that is the closest to the one suggested in this chapter is Bartholomew’s

(1982) index of mobility which is based on the expected value of the absolute difference in the

values attached to categories in the initial and final distributions. However, Bartholomew’s index

is sensitive to the initial and final marginal distributions, and therefore may give a misleading

picture of the transition process. For example, assume that everyone in the society is promoted by

one category. Bartholomew’s index would indicate transition although there is no change in the

ranking of the members. On the other hand, the Gini mobility index is not affected by linear

transformations of the marginal distributions. See Boudon (1973, pp. 51–54) for a discussion of the

properties of Bartholomew’s index.
21 Note, however, the important contribution by Geweke, Marshall, and Zarkin (1986) who

analyze mobility indices in a continuous time framework.
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where Y0
j is the transpose of the vector Yj. Using the same procedure, the Gini

correlation Gjs is

Gjs ¼ Y0
jFs � 0:5

� �
Y0

jFj � 0:5
� �

:
.

(15.6)

Let Tjs represent the transition matrix of size K � K from period j to period s.

Because we are interested in an inequality index, aggregation of observations into

groups may cause the loss of intra-group inequality. Therefore the size of the matrix

has to be the size of the sample (K). In the sample, the transition matrix will be a

permutation of the identity matrix and it can take any shape that transition matrices

are allowed to have.22 Let tn,m be an element in the transition matrix Tjs. Then

tn,m ¼ 1 if the observation with rank n in state j moved to rankm in state s. Otherwise

tn,m ¼ 0. It is easy to see that for the vector of ranks we have F0
s ¼ F0

j Tjs, and

F0
j ¼ F0

s T
0
sj where j and s represent the initial and final distributions, respectively,

and T’sj is the transpose of Tjs (because Tjs is a permutation of the identity matrix, its

inverse is identical to its transpose). The Gini correlation coefficient Gjs is defined as

a function of the transition matrix as follows

Gjs ¼ Y0
jFs � 0:5

� �
= Y0

jFj � 0:5
� �

¼ Y0
jFjTjs � 0:5

� �
= Y0

jFj � 0:5
� �

: (15.7)

The Gini correlation Gsj is obtained in a similar way, and the Gini symmetric

mobility index which includes both Gjs and Gsj relies both on the transition matrix

and its transpose. Furthermore, assume that a population goes through two consec-

utive transitional processes, described by the transition matrices T1 and T2. Then,

the accumulated transition process over the two periods is A ¼ T1T2. In order to

compute the Gini indices of mobility over the two periods one can proceed as

before, using the matrix A as representing the overall transition process. An

extension to more than two periods can be done in a similar way. This implies

that one can study convergence and ergodic properties by using a series of Gini

indices of mobility instead of the more complicated series of underlying transition

matrices. The convergence of transition matrices to a given matrix will lead to the

convergence of the Gini mobility index to a given constant. Although we will not

22 The transition matrix is a special case of a doubly stochastic matrix, where each column and

each row add up to one, as discussed by Marshall and Olkin (1979, Chap. 2), although each

element should be multiplied by a constant. A similar situation arises when the variable is a binary

variable: although the probability is a continuous variable, the realization of the variable in the

sample is either one or zero. Traditionally transition matrices have been applied to discrete

distributions, due to grouping. The fact that we are not dealing with groups is not due to an

inability to handle groups. Rather, we define the transition matrix without grouping in order to

avoid the loss of intra-group differences in ranks and thereby inequality, which may be relevant for

calculating the inequality index. Note that since the mobility index is a sufficient statistic for the

informational content of the transition matrix for our purpose, there is no need to construct the

transition matrix and therefore its size is irrelevant in practice.
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work with transition matrices in what follows, it is worth to briefly describe the

special cases of the Gini mobility indices in terms of the transition matrices.

(a) Minimum mobility (S12 ¼ 0) occurs if the transition matrix is the identity

matrix. Hereafter the I matrix.

(b) Maximum mobility (S12 ¼ 2) occurs if the transition matrix is composed of

ones in the diagonal which is opposite to the main diagonal and zeros else-

where. Hereafter the M matrix.

(c) Midpoint (S12 ¼ 1) occurs if the transition matrix is composed of identical

rows and columns and each entry equals 1/K. (Note that this case can only be

described for the population, with probabilities as the elements of the matrix. In

the sample, the entries are either zero or one.)

(d) Higher mobility: the lower the Gini correlation, i.e., the lower the value of

(15.7), the higher the value of the mobility index of the transition process.

Clearly the value of (15.7) is determined by the entries in the transition matrix,

so that (15.7) provides a ranking of transition matrices according to mobility.

Higher mobility implies lower absolute values for the Gini correlations and

higher absolute values for the Gini indices of mobility.

If one has information on the Gini coefficient of one marginal distribution, then the

Gini correlations represent the only informational content of themobilitymatrix that is

relevant for predicting the Gini coefficient of the other distribution. This does not

imply, however, that having information on incomes and ranks in the first period, as

well as information on the changes in ranks from the transition matrix as summarized

byGini indices ofmobility will be sufficient to predict inequality in the second period.

To predict inequality in the second period, it would be necessary to know the incomes

in the second period. But the Gini correlations remain sufficient statistics of the

transition matrix with respect to the information that is available in the transition

matrix for analyzing the Gini coefficient of income inequality in the second period.

15.3.1.3 An Empirical Illustration

The illustration of using the Gini mobility indices (asymmetric and symmetric) is

based on a panel data on income, land owned, land cultivated, and cash transfers to

rural farmers from a survey conducted by the World Bank in collaboration with the

Secretaria de Reforma Agraria of Mexico.23 The survey was carried out in 1994 and

1997 in rural areas, in the so-called ejido sector. Until recently Mexico’s ejido

sector was functioning under a system of communal property whereby land could

not be alienated, rented, or mortgaged, and usufructuary rights were contingent on

23Using the framework proposed in this section, Beenstock (2002a, 2002b) analyzes intergenera-

tional mobility in Israel; Fisher and Johnson (2006) apply the methodology using consumption

data from the USA, Wodon (2001) applies the methodology to mobility and risk during the

business cycle in Argentina and Mexico, and Wodon and Yitzhaki (2003a) look at wage inequality

over time in Mexico.
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occupation and cultivation of the land. A land titling reform was initiated in 1992 as

part of the broader liberalization of Mexico’s rural economy, enabling ejidatarios

(those living in the ejidos) to own their land on an individual basis. Moreover, in

line with the North American Free Trade Agreement requirements, government

support programs for agricultural inputs (subsidies) and outputs (guaranteed prices)

were terminated. To enable farmers to adjust, the government created as of 1994 a

temporary cash transfer program named Procampo, whereby eligible farmers

receive a fixed sum of money per hectare cultivated for up to 15 years (see Cord

and Wodon (2001) for details).

The subset of the survey data that will be used in order to illustrate the properties

of the Gini indices of mobility consists of information on per capita incomes (1994

and 1997), per capita land owned (1994 and 1997), per capita land cultivated (1994

and 1997), and per capita transfers from Procampo (1997 only; in 1994 the

households did not yet receive the transfers). Summary statistics for all the

variables of interest are given in Table 15.17. The mean quarterly per capita income

is slightly higher in 1997 than in 1994 (in constant terms). The lack of growth in

income between the 2 years is in large part due to Mexico’s devaluation in

December 1994 and subsequent economic downturn in 1995. There are a few

households for which per capita incomes are negative due to the possibility of

losses in any given quarter for some farmers (the cost of farm inputs may be larger

than the revenues from the sales of outputs). These negative values do not represent

any problem for the analysis, provided it is recalled that the Gini coefficient of

inequality can then be greater than one when the variable of interest has negative

values (one such case will appear in the empirical analysis). On average,

households own and cultivate two hectares of land per person. The standard

deviation of the distribution of land is larger in 1997 than in 1994, as well as the

maximum value of the land owned or cultivated. Finally, in 1997 Procampo

payments amount on a per capita basis to 332.5 pesos per person on average,

which is about 18.9% of average per capita income.

Table 15.17 Summary statistics for net income, Procampo transfer (1997 only) land owned and

land cultivated for years 1994 and 1997

Variable (PC ¼ per capita) Mean Std. dev. Min Max

Year 1994

PC net income, pesos 1,537.32 4,089.88 �731.08 71,661.95

PC land owned, hectares 1.97 3.25 0.00 65.00

PC land cultivated, hectares 1.85 3.19 0.03 65.00

Year 1997

PC net income, pesos 1,770.30 4,202.08 �1,257.07 51,207.98

PC Procampo transfer, pesos 332.51 522.93 0.00 7,878.00

PC land owned, hectares 2.20 5.44 0.00 188.75

PC land cultivated, hectares 2.02 5.74 0.00 201.00

Source: Yitzhaki and Wodon (2004), p. 188. The sample is restricted to households for which all

variables are available (1027 observations)

Reprinted with permission by Emerald
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Table 15.18 provides the Gini coefficients of inequality for per capita income, land

owned, and landcultivated in bothyears, aswell as the variousGini indices ofmobility.

Because there are some negative values, the Gini coefficients of inequality for per

capita income are fairly high, at 0.818 in 1994 and 0.830 in 1997. The corresponding

measures for land owned and cultivated are somewhat lower but high as well.

They range from 0.567 for land owned in 1994 to 0.628 for land cultivated in 1997.

Inequality is higher in 1997 than in 1994 for both income and land (whether owned or

cultivated).

There is also substantive mobility between the 2 years both in terms of income

and in terms of land. The highest level of mobility is observed in land cultivated,

perhaps in part because of the impact of land reform. Now that farmers can own their

land, it is easier for them to give it for cultivation to others without loosing their

property. There is also a relatively high level of mobility in land owned, indicating

that there are sales going on, also in part as a result of the land titling reform.

Mobility is somewhat lower for per capita income, but nevertheless substantial given

that only 3 years separate the two periods. The mobility in per capita income may be

due in part to the fact that households having a bad quarter may have negative values

in one year but not in the other. The two asymmetric indices of mobility are fairly

close to each other in all cases, which is an indication that there is likely to be

exchangeability between the distributions. The relatively high level of mobility hints

that yearly observations suffer from high volatility and that extending the time span

of measurement can reduce the measured inequality significantly.

15.3.2 Predicting Inequality of a Linear Combination
of Variables

15.3.2.1 Definitions and Properties

One useful property of the Gini indices of mobility is that the indices help in

estimating composite measures of inequality whereby the analyst is interested in

the inequality of a weighted sum of attributes. Let Y(a) ¼ aY1 þ (1 � a)Y2 with

Table 15.18 Gini indices of inequality and mobility (symmetric and asymmetric)

Income Land owned Land cultivated

Gini coefficient of inequality, 1994 0.818 0.567 0.576

Gini coefficient of inequality, 1997 0.830 0.603 0.628

Asymmetric index of mobility, 1994–1997 0.261 0.297 0.335

Asymmetric index of mobility, 1997–1994 0.267 0.312 0.330

Symmetric index of mobility 0.264 0.305 0.333

Source: Yitzhaki and Wodon (2004), p. 189. The sample is restricted to households for which all

variables are available (1,027 observations)

Reprinted with permission by Emerald
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0 � a �1. If a is known, then the Gini coefficient (or GMD) for Y(a) can be

directly calculated. However, if Y1 and Y2 represent two different attributes such

as land ownership and income, or if they represent incomes at two different points

in time, then one might prefer not to be forced to assume a particular value for a,
but to evaluate the sensitivity of the inequality of the linear combination to

hypothetical reasonable ranges of a. In this case, the Gini of Y(a) is bounded

as follows

Max½0; aG1G12 þ ð1� aÞG2G21� � GYðaÞ � aG1 þ ð1� aÞG2: (15.8)

In a typical case, (15.8) would provide a meaningful range for predicting

composite inequality. The upper bound of Y(a) is achieved under perfect Gini

correlations between Y1 and Y2 whereby the ranks in the distributions are the

same. That is, Y1 and Y2 are monotonically related. The lower bound takes into

account the Gini correlations between the two variables. The larger the Gini

correlations between Y1 and Y2 (assuming they are positive, as will be the case in

the empirical illustration), the higher the lower bound, and the shorter the interval of

possible values for GY(a).

It should be emphasized that the asymmetric mobility index is measuring the

change in the ranks between the base period and the final period with income in the

base period as the weighting scheme. Because the non-weighted average change in

ranks is zero by definition, the deviation of the index from zero is caused by the

correlation between the changes in ranks and the levels of the incomes in the base

period. For any given household, an increase (decrease) in rank typically takes place

together with an increase (decrease) in income. The asymmetric mobility index does

not take this simultaneous change in incomes into account because it takes only the

baseline incomes into account. Hence, the index (slightly) underestimates mobility

for observations whose ranks increase, and it (slightly) overestimates the impact for

observations whose ranks decrease. This is again the index number problem, and

the lower bound in (15.8) is constructed by taking this property into account

(see Appendix 15.1 for the proof). This property is also responsible for the fact

that the two asymmetric mobility indices of the Gini need not have the same sign

(i.e., the signs of the asymmetric mobility indices may depend on the choice of the

base period).

Equation (15.8) enables the evaluation of the inequality of a weighted average

of variables when one is unwilling to quantify the relative importance of the two

variables in the overall distribution. However, if one is ready to state the role of

each variable exactly, then one can fully determine the impact of each variable on

the overall inequality by decomposing the Gini of a linear combination of

variables.

Equation (4.6) can be used to clarify the argument that having defined mobility

in a Gini framework implies that one can use the axiomatic justification of the

Gini to serve as the axiomatic characterization of mobility. To see this, assume

that one adopts Ebert and Moyes’ (2000) set of axioms to justify the use of the
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Gini index to measure inequality in each period and to measure inequality in

lifetime income, which is represented by Y0. Mobility is then an index that

connects yearly inequality to lifetime inequality. Therefore, the only axiomatic

adjustment needed is that one accepts the present value of lifetime income as an

indicator of welfare.

15.3.2.2 An Empirical Illustration

Assume that both income and wealth determine the well-being of an individual in

the society, but the relative weights of the two factors can only be approximated.

The joint distribution of income and wealth is known. Then one may want to

evaluate the inequality of a combined index of these two variables without having

to exactly specify the weight attached to each factor. In the case of rural Mexico, we

can take the amount of land owned per capita as a proxy for wealth. Using the

values in Table 15.18, and considering different values for a, one gets the results in
the first part of Table 15.19. The lower and upper bounds were computed using

(15.8). It can be seen that in the case of income and land ownership, the lower and

upper bounds provide a relatively wide interval because the Gini correlation

between per capita income and per capita land ownership is not very high.

An index of well-being which would take into account both income and land

would thus result in a substantial reduction in the measured level of inequality.

Table 15.19 Intervals for composite inequality measures

Income and land ownership in 1997 Income in 1994 and 1997

Gini correlation

for income and land

Gini correlation

for land and income

Gini correlation

for income 1994

and 1997

Gini correlation

for income 1997

and 1994

Gsj 0.491 0.381 0.739 0.733

a Lower bound

estimate

Upper bound

estimate

Lower bound

estimate

Upper bound

estimate

0.0 0.408 0.830 0.608 0.830

0.1 0.390 0.807 0.608 0.829

0.2 0.372 0.785 0.607 0.828

0.3 0.355 0.762 0.607 0.826

0.4 0.337 0.739 0.607 0.825

0.5 0.319 0.716 0.606 0.824

0.6 0.301 0.694 0.606 0.823

0.7 0.283 0.671 0.606 0.822

0.8 0.266 0.648 0.605 0.820

0.9 0.248 0.625 0.605 0.819

1.0 0.230 0.603 0.605 0.818

Source: Yitzhaki and Wodon (2004) p. 192

Reprinted with permission by Emerald
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Another application relates to inequality over time. If one wants to take into

account two or more periods for computing the Gini coefficient of inequality, one

can do so without specifying the weights (in this case the discount rate) for the two

periods provided that one has computed the Gini asymmetric indices of mobility.

The results of the calculations obtained for various values of a with the per capita

incomes of the two periods are given in the second part of Table 15.19. The

predicted interval is smaller due to the relatively large Gini correlations of income

and land for the 2 years. Still, given the results in Table 15.19, it can be seen that

income inequality could decrease by a maximum of 25% if two time periods were

taken into account for estimating the indicator of economic well-being instead of

one time period only.

Table 15.20 and Fig. 15.3 provide the midpoint interval estimates for the

composite Gini index taking into account incomes in both 1994 and 1997 as well

as the predicted values under the assumption of exchangeability. The estimates

under the exchangeability assumption perform very well and better than the

midpoints for all values of a, so that the assumption can probably be used in a

number of empirical studies.

15.3.3 Mobility and Horizontal Equity

15.3.3.1 Definitions and Properties

As pointed out by King (1983) measures of mobility can be applied to horizontal

inequity as well. In our case, it turns out that the Atkinson–Plotnick index of

Table 15.20 Predictive power of the exchangeability assumption for composite income Gini

a

Midpoint

estimate from

the interval in

(15.8) [1]

Variance-likea

estimate from a full

decomposition

equation [2]

Actual value

of the

composite

Gini index [3]

Difference

between actual

and midpoint

[3]–[1]

Difference

between actual

and variance-like

[3]–[2]

0.0 0.719 0.830 0.830 0.111 0.000

0.1 0.718 0.809 0.816 0.098 0.007

0.2 0.717 0.792 0.805 0.088 0.013

0.3 0.717 0.780 0.796 0.079 0.016

0.4 0.716 0.771 0.790 0.074 0.019

0.5 0.715 0.768 0.786 0.071 0.018

0.6 0.714 0.769 0.783 0.069 0.014

0.7 0.714 0.774 0.784 0.070 0.010

0.8 0.713 0.785 0.789 0.076 0.004

0.9 0.712 0.799 0.799 0.087 0.000

1.0 0.711 0.818 0.818 0.107 0.000

Reprinted with permission by Emerald
aBy variance-like from a full decomposition we mean constructing Y(a) under the exchangeability

assumption.

Source: Yitzhaki and Wodon (2004), p. 192
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horizontal inequity is a special case of the asymmetric Gini mobility index. That is,

it can be shown that

AP ¼ 1=2ð Þð1� GbaÞ; (15.9)

where AP indicates the Atkinson–Plotnick (Atkinson (1979) and Plotnick (1981))

index of horizontal inequity, while b and a represent “before” and “after” reform

distributions.24 As shown by Lerman and Yitzhaki (1995), the other Gini correla-

tion coefficient (i.e., Gab) is also a key parameter in another index of horizontal

inequity proposed by Kakwani (1984). It was mentioned earlier that the asymmetric

mobility index may underestimate mobility when ranks increase and overestimate

mobility when ranks decrease because of the index number problem. Given the

similarity between the concepts of mobility and inequity, the index number prob-

lem also appears in indices of horizontal inequality. If one wants to impose

symmetry on an index of inequity, it will be appropriate to use the symmetric

version of the Gini mobility index.
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Fig. 15.3 Composite Gini: income in 1994 and 1997. Source: Yitzhaki andWodon (2004), p. 193.

Reprinted with permission by Emerald

24 Silber (1995) developed an index of the intensity of change in ranking, which is equal to twice

the Plotnick index. Using (15.9) it means that it is also equal to the Gini mobility index.
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15.3.3.2 An Empirical Application

Table 15.21 provides the results of the impact of Procampo, the program of cash

transfers to farmers, on income inequality in rural Mexico, and on horizontal equity.

Without Procampo, the Gini coefficient of inequality is 1.02 in 1997 (recall that

with negative income values the Gini coefficient can be greater than one). With

Procampo, the Gini coefficient of inequality is reduced to 0.830. The Gini

correlations between the incomes with and without Procampo are very high, so

that the mobility indices are small, at 0.023 and 0.035 depending on which

distribution is taken as the base. The index of horizontal equity of Atkinson–-

Plotnick, which is half of the asymmetric mobility index when using the incomes

without Procampo as the base is small at 0.011, implying that Procampo results in

fairly limited reranking in the population, in part because so many farmers benefit

from the program in proportion to the land they cultivate (which is itself positively

correlated with per capita income).

15.4 Summary

In this chapter we have presented several different interpretations and indices that

exist in the literature which can be traced to parameters that determine the decom-

position of the Gini coefficient of a linear combination of variables. Among those

indices are indices of mobility and horizontal inequity. When dealing with mobility,

we have shown that the Gini correlation can be presented as a summary statistic for

transition matrices, provided that one is interested in changes in the Gini coefficient.

Implicitly we have argued that mobility and horizontal inequity can be viewed as

representing the same formal process, except that mobility implies a positive

attitude, while horizontal inequity implies a negative one. It is in the eyes of the

beholder (or in the subject matter) to determine whether the attitude toward an

increase in the index should be positive or negative. Another (well-known)

Table 15.21 Impact of Procampo cash transfers on income inequality and horizontal equity

Inequality

Per capita income Gini index with Procampo 0.830

Per capita income Gini index without Procampo 1.002

Mobility

Asymmetric index between PC income with and without Procampo 0.023

Asymmetric index between PC income without and with Procampo 0.035

Symmetric index of mobility 0.030

Horizontal equity

Atkinson–Plotnick measure of horizontal inequity 0.011

Source: Yitzhaki and Wodon (2004), p. 195

Reprinted with permission by Emerald
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conclusion from the discussion in this chapter is that marginal distributions (snap-

shots or distributions that are based on one attribute) tend to exaggerate overall

inequality. Hence, if the interest is in some kind of convex combination of the

marginal distributions, we should expect the inequality of the combination to be

lower than the inequality observed from the marginal distributions. In other words,

following on the work of Shorrocks (1978a, 1978b), Atkinson (1983), King (1983),

and Atkinson and Bourguignon (1992), it turns out that analyzing mobility can be

interpreted as adding a dynamic and/or additional dimension to inequality analysis.

In the framework of this chapter, the links between mobility, inequality, and

horizontal equity have been made explicit for the special case of the widely used

Gini coefficient.

The empirical applications, based on data from Ireland, Israel, and Mexico, have

shown the wide applicability of the index. In the first application we compared

Israel and Ireland using three types of decompositions: (a) according to income

sources, (b) according to population subgroups, and (c) decomposition over time. In

the second application we have measured the extent of inequality and income

mobility in the ejido sector of rural Mexico between the 2 years 1994 and 1997;

the impact of cash transfers programs on inequality and mobility, with a discussion

of horizontal inequality; and how the tools presented can be applied to generate

bounds for composite indices of inequality when the weights of the various

components of the measure of welfare (such as income and land ownership) are

not known.

Appendix 15.1

Proof of (15.8)

The proof consists of finding upper and lower bound for GY(a). The upper bound is

GYðaÞ ¼ 2COV½aY1 þ ð1� aÞY2; FðYð aÞÞ�
¼ 2 aCOV½Y1; FðYð aÞÞ� þ 2ð1� aÞCOV½Y2; FðYðaÞÞ�
� 2aCOV Y1; F Y1ð Þ½ � þ 2ð1� aÞCOV Y2; F Y2ð Þ½ � ¼ aG1 þ ð1� aÞG2:

Recall that Y1 and Y2 are normalized with m1 ¼ m2 ¼ 1. The derivation of the

upper bound is based on Cauchy-Shwartz inequality, which can be utilized to show

that for all Yj and Yk, COV[Yj, F(Yk)] � COV[Yj, F(Yj)].

The lower bound is obtained from

GYðaÞ ¼ 2COV½aY1 þ ð1� aÞY2; FðYðaÞÞ�
¼ 2aCOV½Y1; FðYðaÞÞ� þ 2ð1� aÞCOV½Y2; FðYðaÞÞ�
� Max½0; 2aCOV½ Y1; F Y2ð Þð � þ 2ð1� aÞCOV Y2; F Y1ð Þ½ �
¼ Max½0; aG1G12 þ ð1� aÞG2G21�:
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Chapter 16

Incorporating Poverty in Policy Analysis:

The Marginal Analysis Case

Introduction

The main purpose of this chapter is to expose the reader to additional tools that can

be helpful in analyzing the distributional impact of a governmental policy. Assum-

ing that one accepts the Gini coefficient of after-tax income as representing the

social attitude toward the income distribution then one can summarize the effects of

actions taken by the government by the Gini income elasticity (GIE). Decomposing

the GIE by the contributions of the different sections of the income distribution

enables one to both use the Gini as representing the social attitude and at the same

time target the policy to sections of the distribution. The decomposition of the GIE

presented is actually identical to the decomposition of the Gini regression coeffi-

cient applied to the Gini coefficient. The main message is that analyzing the effect

of public policy by concentrating only on the poor population is not an appropriate

approach because it violates the Pareto principle of efficiency and therefore leads

governments and researchers to adopt and recommend policies that contradict the

verbal declarations of the targets of the policies. On the other hand, by using a

decomposition approach of the Gini coefficient or of the EG coefficient, the policy

is consistent with the Pareto principle of efficiency and is based on additional useful

information that is thrown away when dealing with traditional poverty analysis. An

additional type of decomposition is needed whenever one is interested in targeting.

We call a policy a targeted one whenever the policy instrument affects only a

portion of the population. In this case we will want to decompose the effect of the

policy to the contributions of two instruments: the choice of the subpopulation

affected (i.e., targeting) and the effect on the subpopulation affected. The issue of

targeting is not covered in this book. We refer the interested reader to Wodon and

Yitzhaki (2002a, 2002b).

The structure of the chapter is as follows: Sect. 16.1 deals with analyzing the

distributional impacts of programs intended to reduce poverty. Next, in Sect. 16.2

we present the arguments for constructing the poverty line. Section 16.3 shows the

decomposition of the Gini coefficient, one component ofwhich is Sen’s poverty index.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_16,
# Springer Science+Business Media New York 2013
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Section 16.4 decomposes other instruments based on the Gini (e.g., the GIE).

Section 16.5 presents an empirical illustration, while Sect. 16.6 illustrates the

evaluations of policies with the methodology. Section 16.7 concludes.

16.1 Analyzing the Distributional Impact of Programs

Intended to Reduce Poverty1

The past four decades have witnessed a drastic change in the field of income

distribution. There were shifts in interest and research effort from income distribu-

tion issues to poverty issues. One result of this change is the use of poverty indices

rather than inequality indices, although the new poverty indices are rather reminis-

cent of the familiar inequality indices.2 The main argument in this section is that

there is little to be gained from investigating the properties of poverty measures.

Because by definition the cumulative distributions of the incomes of the poor and

the rich do not overlap, one can decompose any income inequality index into:

(a) Inequality within the group of the poor

(b) Inequality within the nonpoor (the “rich”), and

(c) Between-groups inequality.

The between-groups inequality can be further decomposed into three

components: (i) a poverty-gap, (ii) an affluence gap3, and (iii) a poverty-affluence-

lines gap.

These decompositions give all the information supplied by the poverty measure

and provide additional information that is useful in the analysis of poverty. The

secondary decomposition of the between-groups component enables one to pin-

point the share of the poor in the population, the poverty gap and the inequality

among the poor from which all the components of a poverty measure can be

identified. Alternatively, one can use the secondary decomposition in order to

decompose the inequality index into a poverty index [components (a) and (c.i)],

an affluence index which is a mirror image of the poverty index [components (b)

and (c.ii)] and between poverty line–affluence line inequality [component (c.iii)].

To save space, only the former decomposition will be developed in this section.

1 This section is based on Yitzhaki (2002).
2 Lest the above be construed as our original observation, note that Amartya Sen’s 1976 path-

breaking paper states that his poverty index “is essentially a translation of the Gini coefficient from

the measurement of inequality to that of poverty” (Sen, 1976a, p. 226). See also Sen (1986).
3 The affluence gap is a mirror index of the poverty gap; it reflects the difference between the mean

income of the rich and the affluence line. The affluence line is defined as the residual with which

the rich would be left if all the poor had been on the poverty line.
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Truncating the distribution at the poverty line is often liable to limit one’s ability

to analyze the implications of a poverty-alleviating policy. Whenever it is impossi-

ble to use means-testing (i.e., testing the ability to pay), one must rely on indirect

instruments—taxes and subsidies, or on direct governmental expenditures, where

the targeting of the policy to the poor may be limited. In those cases the effective-

ness of the policy instrument may depend on the differential (between poor and

rich) incidence of the policy. Hence, comparison of the incidence among the poor

with the incidence among the rich is essential for policy evaluation.

The approach to poverty measurement in this section adopts the viewpoint of a

national policy-oriented economist. It is assumed that the interest in poverty mea-

surement originates from the need for a yardstick with which to evaluate alternative

poverty alleviation programs. Clearly, if the interest in poverty measurement

originates from a different point of view (say, an interest in international comparisons

of poverty) some of the arguments presented in this section may not apply.

The aim of this section is twofold. The first is to illustrate the decompositions of

the Gini coefficient and Sen’s poverty index (Sen, 1976a). The second aim is to

apply the decomposition to statistics that characterize the distributional impact of

a change in policy on income inequality. Instead of using simulations to evaluate

the incidence of a policy change, one may evaluate the impact of the policy change

on the inequality (and poverty) indices directly. It turns out that the most important

summary statistic in the decomposition of the Gini according to income

sources is the (Gini) income elasticity (Garner, 1993; Karoly, 1994; Lerman,

1999; Millimet & Slottje, 2002; Yitzhaki, 1994b). It enables the evaluation of the

effect of a small change in a tax or subsidy or a small change in governmental

expenditures (e.g., on education, on the elderly) on the Gini coefficient of inequality

of income. The decomposition of the Gini enables the investigator to also evaluate

the impact of a tax change on the Gini coefficient among the poor, on the Gini

coefficient among the rich, and on the between-groups Gini. The advantage of

summarizing the performance of the policy by parameters rather than by running

simulations is that the former can offer statistical tests on the parameters that can

help in evaluating the significance of the results.

One seemingly weakness of the between-groups elasticity is that it is based on only

two observations—the share of the “commodity”4 in poor people’s incomes versus its

share in the income of the rich. Because it is based on two observations, it is insensitive

to the index of inequality used. That is, this elasticity determines the effect of a change

of a tax or subsidy on between-groups inequality regardless of the inequality index

used for the analysis. As we will show, the direction of the general incidence or that

of the incidence among the poor can sometimes be opposite to the direction of the

between-groups incidence, which means that a policy can be progressive for the poor

but regressive for the overall population. The decomposition may enrich the analysis

4 The appropriate interpretation of the term “commodity” in this chapter should be a tax base.

The use of the term “commodity” enables us to borrow the terminology of Engel curves and

consumption functions.
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of the distributional impact of tax and benefit reforms. Moreover, application of the

decomposition to data from Romania indicates that “caring more about the poor”

should be modeled as attaching higher weight to the between-groups inequality.

16.2 The Usefulness of a Poverty Line

A well-defined poverty line is the cornerstone of poverty measurement. A classic

definition of the poverty line is “. . . the cutoff living standard level below which a

person is classified as poor” (Poverty Reduction Handbook, World Bank, 1991,

p. 13; italics in the original). Anyone on or below the poverty line is defined as poor

and is covered by the poverty index. The rest of the population is ignored.

In assessing the need for an official poverty line5 it is useful to distinguish

between political, administrative and social-welfare-measurement points of

view.6 Declaring an official poverty line and preparing a yearly report on the status

of the poor may have political implications (Haveman, 1987, 1993; Sen, 1979,

1983). However, these implications are not relevant to the subject of this chapter

because the decomposition of an inequality measure can be carried out with or

without an official poverty line. Obviously, any administration needs a poverty line

(or a cut-off point)—it lets welfare departments define their constituencies, it

reduces arbitrary decisions, and it enables welfare departments to evaluate the

success or failure of their programs. It is not at all clear, however, whether all

welfare programs should necessarily employ the same cut-off point. Having a

single cut-off point (i.e., an official poverty line) might be useful if cash transfers

were deemed a satisfactory solution to the poverty problem and if the poor were

easily identifiable. But if society is differentially sensitive to different dimensions

of inequality, and/or if markets are incomplete, and/or if not all people are rational

(or even share the same tastes), then a case could be made in favor of different cut-

off levels for different programs or different groups.

In fact, both theory and practice suggest precisely such a differentiation. Tobin

(1970) argues that society may be more sensitive to inequality in some areas (health

and children) than in others, which can be handled by cash transfers. Society will

probably be less tolerant to inequality in the opportunities open to “naive”

individuals (e.g., children’s education) than to “self-inflicted” poverty (e.g., as a

result of gambling or drinking). This means that the poverty line, which can be

interpreted as the income below which an individual is entitled to get help, may

differ depending on the issue at hand. In practice, the US National School Lunch

5Atkinson (1993) discusses the merits of having an official poverty line. Fisher (1992) describes

the development of the official poverty line in the USA. Haveman (1987) evaluates the impact of

social science research on the development of the poverty line.
6 Ravallion (1994a, 1994b) deals with the co-movement of inequality and poverty indices. He finds

that in many cases inequality and poverty rankings are similar.
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Program and the School Breakfast Program provide free meals to families with

incomes under 130% of the official poverty line (according to Atkinson (1993) who

provides additional examples). Another example is the Earned Income Tax Credit

(EITC) scheme, designed to increase the incentive to work among poor families:

beneficiaries of this program are entitled to have an income of up to 170% of the

poverty line.

Even if a poverty line is a necessary administrative device and an effective

political tool, it does not necessarily follow that it serves any useful purpose from a

social welfare function point of view.7 There are several arguments against

classifying persons as either poor or rich.

(a) The theoretical justification of the poverty line can be found in the Focus axiom
(Sen 1976a) that a poverty index should meet. Poverty measures that obey the

Focus axiom concentrate on incidence among the poor and ignore the rich.

Concentrating on the poor is a good strategy for welfare departments, because

they are required to evaluate the relative neediness of the individuals they deal

with. In practice, however, since the adoption of poverty alleviation as the

official target of international institutes, poverty measures have increasingly

served to evaluate policies that affect the population as a whole, rich and poor.

Focusing on poverty alleviation need not necessarily imply ignoring the rich;

rather, it implies that one is unconcerned with redistribution among the rich.

But this argument should be modeled as implying a positive constant social

evaluation of the marginal utility of income among the rich, not that the rich

should be ignored. Ignoring the rich violates Pareto’s principle of economic

efficiency and hence may lead to Pareto-inefficient policies. To see this,

consider two alternative poverty alleviation policies with identical effects on

the poor but different effects on the rich. Concentrating exclusively on the poor

may lead the policy maker to the conclusion that the programs are equivalent,

leading to the choice of an inefficient program.

(b) Because there is no substantive difference between someone who is just an

epsilon above the poverty line and someone who is just an epsilon below it, it

would appear that a continuous function would describe the impact of poverty

alleviation better than a discontinuous one. To see the kind of problems that

may arise as a result of discontinuity at the poverty line, consider an economist

who advises a government on how to reduce the number of poor people, subject

to a revenue constraint. The economist—by design or otherwise—will naturally

be inclined to recommend helping those who are close to the poverty line (from

below) and ignoring (or possibly taxing) those who are even worse off, because

such an “optimal” policy yields the largest decrease in the target function

subject to given resources. Note that anyone who evaluates policies according

7Atkinson distinguishes between a poverty line that serves a criterion for benefit eligibility, and a

definition for purely statistical purposes. If the purpose is purely statistical, “then a certain amount

of rough justice may be acceptable” (1993, p. 24).

16.2 The Usefulness of a Poverty Line 347



to their effectiveness may fall into this trap of applying an inappropriate

(implicit) social welfare function.8

(c) Because it is the rich who pay for alleviating poverty, one cannot close the

model without taking them into account. Closing the system requires a model

that includes the whole economy.9

(d) Most countries do not rely exclusively on means-tested programs (instruments

directed solely at the poor) for poverty alleviation. Instead, they use fiscal

instruments directed at the entire population. The interest of the analyst in

analyzing the effect of a general fiscal instrument should also be focused on

differential incidence, which requires comparison of the incidence between the

poor and rich. Truncating the distribution at the poverty line inhibits such

analysis.

There are two viable substitutes for poverty indices.10 One is to use inequality

indices that can stress the lower portion of the income distribution; these include

Atkinson’s index of inequality (Atkinson, 1970) and the extended Gini coefficient

(Chap. 6). The main property of these indices is that by changing a parameter one

can increase the sensitivity of the index to transfers at the lower end of the income

distribution. Such inequality indices can be useful measures of poverty without

having to cope with the drawbacks entailed in truncating the income distribution.

However, this alternative is not useful for someone who wishes to single out the

poor as a distinct group.

The other substitute for poverty indices is to decompose an index of income

inequality by poor, nonpoor (rich), and poor-versus-rich inequality (which we will

refer to as “between-group” inequality). If inequality among the rich is not a

consideration, one can simply ignore that component. This approach has several

advantages.

(a) It provides more information than using poverty indices alone because it

enables the investigator to also look at differential incidence. No piece of

information is lost in the process of decomposition.

8 This type of problems arises whenever there is a discontinuity in the implied social evaluation of

the marginal utility of income at the poverty line. Some indices of poverty, e.g., Foster, Greer, and

Thorbecke (1984) are normalized to have a zero implied marginal utility of income and hence do

not suffer from this shortcoming. See Pyatt (1987) for a discussion and solution of this problem.
9 See Chand and Parthasarathi (1995) for an example of incorporating a poverty measure in a

national framework. Because average national income is included in the target function, the

implied social welfare function possesses constant marginal utility above the poverty line.
10 A third possibility is to use a Welfare Dominance approach with a large range of possible

poverty lines as in Atkinson (1987) and Foster and Shorrocks (1988). Unlike the approach based

on using a poverty index, this approach does not offer a complete ordering of possibilities and

hence can sometimes be of a limited practical value (see Lambert (2001)). Also, it does not

overcome the problem caused by ignoring the population above the poverty line. In any case, the

same methodology suggested in this section can be applied to the stochastic dominance approach

as well (Mayshar and Yitzhaki, 1995).
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(b) Poverty lines are arbitrary in the sense that one can rarely determine poverty

with precision, and one has to allow for inadvertent changes over time. When

the poverty line is not adjusted correctly, having information about the rich

enables the investigator to determine whether a change in the incidence of

poverty was caused by an inadvertent shift in the poverty line or by a change in

the income distribution. This issue will be elaborated upon later.

Finally, it is worth mentioning that the role played by the poverty line is different

under the two approaches. Under the poverty measurement approach, whether an

observation is above or below the poverty line is crucial. Under the decomposition

approach the only thing that is determined by the poverty line is the classification of

the observation into poor or nonpoor. An error in misclassification does not affect

the overall inequality. Therefore the analysis is less sensitive to the poverty line.

The next section illustrates the decomposition approach and illustrates the

drawbacks in omitting the rich from the analysis.

16.3 The Decompositions of the Gini Coefficient

and Sen’s Poverty Index

This section shows how the Gini coefficient can be decomposed into three

components: Sen’s poverty index, an affluence index (a mirror image of the poverty

index), and an index of the between-groups (poverty line–affluence line gap)

inequality. The following notation is used: mi, i ¼ {p, r, o}, is the mean income

of group i, where {p, r, o} are the poor, the rich, and the overall population,

respectively, Z is the poverty line, and Pi,i ¼ {p, r} is the proportion of group i in

the population. The decomposition is first carried out geometrically, and then

algebraically. Because the geometrical proof is based on Lorenz curves, which

may represent hypothetical distributions, the geometrical proof can be applied to

any index of inequality.

Figure 16.1 portrays a typical Lorenz curve, OHGIB. The percentage of the poor

in the society is determined by finding the point on the Lorenz curve where the

slope is equal to Z/mo. In Fig. 16.1 the percentage of the poor in the population is

denoted by OE. That is, OE ¼ Pp. The slope of the (dashed) line OJG is mp/mo; the
slope of OKF is Z/mo, and the slope of ODB is 1. The area of the triangle OFG is

the poverty gap and the area enclosed by OHGJ is the inequality within the poor.

Ignoring the normalization of Sen’s index,11 the area between the Lorenz curve and

OKF is Sen’s index of poverty.

One can also define an index of inequality within the rich that is a mirror image of

Sen’s poverty index (call it a Sen-like affluencemeasure). Define the line FMB as the

11One can always divide and multiply by the normalization factor to get the exact index weighted

by the normalization factor.
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“affluence line.” Similar to the poverty index and ignoring the normalization, the

affluence index is the area FMBIG. The affluence index is composed of the area

FMBLG, which is the “affluence gap” and the area GIBL which is the inequality

within the rich. The remaining area (the triangle OFB) is between poverty–affluence

lines inequality, where all the poor are assumed to have the same income—exactly

the poverty-line level—and likewise all the rich have the same income [“affluent

income,” defined by the poverty line as: Zr ¼ (mo � PpZ)/Pr, where Zr is the

affluence line]. Thus, the affluent income line is actually derived from the poverty

line.12

This same procedure can be used to decompose the Gini coefficient into the sum

of Sen’s poverty index (the area between the OKF line and the Lorenz curve), Sen’s

affluence index (the area between FMB and the Lorenz curve) and the between

poverty line–affluence line inequality (the triangle OFB).

An alternative decomposition of the Gini coefficient stresses the difference

between the traditional intra- and inter-group inequalities. That is, the area OHGJ

is the inequality within the poor, GIBL is the inequality within the rich, while the

triangle OGB is the between-groups component.

The difference between the above two decompositions is the way that the

poverty gap (the triangle OFG) is treated. Using Sen’s index the poverty gap is
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Fig. 16.1 Gini coefficient and Sen’s index. Source: Yitzhaki, 2002, p. 67. Reprinted with permis-

sion by Elsevier

12 It should be pointed out that if the poverty line is not equal to the mean income, then not all the

rich will be above the affluence line.
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used as a component of the poverty index while under the group decomposition it is

viewed as a component of between-group inequality. In this chapter we will rely on

the intra- and inter-groups decomposition.

It is important to stress that the exact same decomposition can be carried out with

any index of inequality. The intuitive explanation to this argument is that the

division of the society to poor and rich implies no overlapping, and therefore

the Gini and the variance decompose in an identical way. To see this, note that

each curve (or line) in Fig. 16.1 represents an income distribution, so that one can

repeat the same decomposition using the same grouping. Specifically, note that

exactly the same figure would serve in order to decompose Atkinson’s (1970) index

into its components: the Foster, Greer, and Thorbecke (1984) index, the FGT

“affluence index,” and the between poverty–affluence lines inequality.

We contend that there is a lot to be gained from presenting the whole decomposi-

tion. For example, assume that we observe an increase in the proportion of poor in

the society. The increase in poverty however can be caused by a deterioration in the

status of the poor, or alternatively, by an inappropriate adjustment of the poverty line

in response to relative price changes. Assume that the poverty line has inadvertently

increased. The percentage of poor people will rise and inequality within them will

increase and the poverty gap and between-groups inequality will increase.13 The

natural conclusion would be that there is an increase in poverty. But looking at the

rest of the distribution can change the conclusion. Assume that one also observes an

increase in Sen’s affluence index. Because an increase in the poverty line cannot

cause Sen’s affluence index to increase, one can safely conclude that there has been a

deterioration in the overall income distribution and in the status of the poor. If, on the

other hand, one observes a decrease in Sen’s affluence index, a decrease which can

result from an upward movement of the poverty line, then one should suspect that an

inadvertent increase in the poverty line is the cause of the deterioration of the poverty

index. In other words, if both Sen’s poverty index and Sen’s affluence index increase

it is clear that inequality has increased; but if Sen’s affluence index declines, the

between-groups inequality declines, while the Sen’s poverty increases, it may

indicate an undue upward slide of the poverty line. The obvious lesson is that

truncating the distribution may be a bad policy even if one is interested only in

poverty. This is an important observation because in many cases the poverty line is

close to the mode of the distribution, making the poor and rich populations sensitive

to the exact position of it.

The next section repeats the decomposition using the covariance formula of the

Gini coefficient. This decomposition allows the derivation of policy implications

regarding the components of the Gini coefficient.

13 To see this, note that the slope of the Lorenz curve at the poverty line is less than one; hence, any

movement of the poverty line to the right increases the triangle representing between-groups

inequality. The intuitive explanation of why raising the poverty line increases the gap between the

rich and the poor is that transforming the poorest among the rich into the richest among the poor

increases the average income of the rich by more than it increases the average income of the poor.
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16.4 Decompositions

16.4.1 Decomposition of the Gini Coefficient

The decomposition of Gini to poor/rich is a special case of using ANOGI, where

there is no overlapping between the groups (i.e., perfect stratification). This decom-

position is elaborated upon in Chap. 4. Therefore we do not replicate the proof but

we do change the notation.

Assume that the society is divided into two administrative groups: (1) the poor,

whose income is y � Z (Z is the poverty line), and (2) the rich, whose income is

y > Z. Then, applying the decomposition by population subgroups ((4.27), with

Oi ¼ 1 for all i, and GB ¼ GBP) we get

Go ¼ PpSpGp þ PrSrGr þ GB; (16.1)

where Gi denotes the Gini coefficient of yi, the income of subgroup i, for i ¼
{p, r, o}for the poor, the rich, and the overall population, respectively, Pi is the share

of subgroup i in the population, Si ¼ Pi mi /mo is subgroup i’s share in total income,

and mi denotes the mean income of subgroup i. (When needed, Syi and Sxi will

denote the shares of the income (y) and the commodity (x), respectively).

GB is the between-groups inequality. Because the distributions of the poor and

the rich do not overlap, the Pyatt’s (1976) and the Yitzhaki and Lerman’s (1991)

between-groups Ginis are equal. Note that Sr ¼ 1 � Sp and Pr ¼ 1 � Pp. Also, it is

easy to show that14

GB ¼ Pp � Sp; (16.2)

which means that the between-groups inequality is equal to the share of the poor in

the population minus their share in income.15 GB is an increasing (decreasing)

function of the poverty line, depending on whether Z < (>) mo. Hence, for all
practical purposes GB is an increasing function of the poverty line. This result should

be treated with caution because an increase of inequality within the poor and an

14 The between-groups component is equal to twice the difference between the area of the triangle

OBA and the area enclosed by OGBA. By presenting the areas in terms of Sp and Pp one gets

(16.2).
15 To get the components of Sen’s poverty index, the between-groups inequality triangle

(multiplied by 2) should be further decomposed into the following triangles

(a) Poverty gap ¼ area OFG ¼ Pp � Pp (Z � mp)/mo;
(b) Affluence gap ¼ area FBG ¼ Pr � Pp (Z � mp)/mo;
(c) Between-lines inequality ¼ area OFB ¼ Pp � PpZ/mo.

This will complete the decomposition into all components in Sen’s poverty index.
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increase in between-groups inequality may simply be the result of (unintentionally)

raising the poverty line.

Sen’s poverty index includes three components: the proportion of the poor, Pp,

the poverty gap Z � mp, and the inequality among the poor, Gp.

In the notation used in this chapter, Sen’s index is

SENp ¼ Pp
Z� mP

Z
þ mP

Z
Gp

� �
¼ mo
Pp Z

Pp Pp
Z� mP
mo

þ Pp Sp Gp

� �
; (16.3)

where the first component on the right is the normalization factor, and the factors in

the square brackets are the poverty gap (the area of a triangle) and the within-poor

Gini. By using (16.1), (16.3), and footnote 14 it is easy to see the decomposition

(16.1). Note, however, that because changing the poverty line affects several

components simultaneously, one has to exercise caution when deriving the impact

of such a change on the components of the inequality.

Finally, as will be seen later, the impact of a policy measure on inequality is a

function of its effect on each component, weighted by the component’s share in

income inequality. We define the weight of each component in the inequality as

wp ¼ Pp Sp Gp

Go
; wr ¼ Pr Sr Gr

Go
; wB ¼ GB

Go
; (16.4)

where wi is the weight of the component for group i in the Gini coefficient (i ¼ p,r)

and wB is the weight of the between-groups component.

From (16.4) it clearly follows that

1 ¼ wp þ wr þ wB: (16.5)

A typical example of the weights is as follows: let Pp ¼ 0.3 and Sp ¼ 0.05, then

GB ¼ 0.25 and an overall Gini of less than 0.5 implies that wB > 0.5. If Gp < Go

we get wp < 0.015. Clearly, the lion’s share of the weight is given to the between-

groups inequality in this case. Therefore one may be interested in the between-

groups component to shed more light on the distribution among the poor.

16.4.2 The Decomposition of the (Gini) Income Elasticity

Descriptive inequality indices are not sufficient for policy analysis. For an evaluation

of a policy one needs a way to evaluate the effect of the change in a policy parameter

on inequality and poverty. One way to do that is to simulate the effects of different

policies. Another approachwould be to evaluate the derivative of the inequality index

with respect to the policy instrument so that rough-and-ready evaluation can be

performed. This approach was suggested by Lerman and Yitzhaki (1985, 1994) and
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Yitzhaki (1994b), who developed a technique for answering the following question:

let dtx be the change (in percentage terms) in a tax on “commodity” x. That is, the

consumer price of x changes from Px to Px (1 + dtx), where Px is the original price,

which may or may not include a tax component. How will the change affect the Gini

coefficient of income inequality?

In this section we are interested in decomposing the GIE (14.21) into the effects

on the poor and on the rich in the society (see Chap. 14 for several alternative

interpretations of the GIE). Rewriting (14.22), the effect of a change in the price of

x on the Gini coefficient in the overall population is

@ Go =@tx
Go

¼ Sxyo ð �xyo �1Þ; (16.6)

where ∂tx is a small change in the tax on x, Sxyo ¼ mxo/myo is the average propensity
to spend on x in the overall population, and Zxyo is the (Gini) income elasticity of

commodity x.

As shown in Chap. 14, the direction of the effect of a change in the tax on x

depends on one parameter—the (Gini) income elasticity of x. If the GIE equals (is

greater than or is lower than) one, then the Gini coefficient will not be affected

(decrease, increase).

The components of the (Gini) income elasticity are

Zxy ¼
cov [x, F(y)]

cov [y, F(y)]
� my
mx

¼ bxy

Sxy
; (16.7)

where bxy is the (Gini) regression coefficient of the Engel curve, x is the dependent

variable, and y is the explanatory variable. For consumption expenditures, the term

bxy is “the marginal propensity to spend on x,” but it is also the (Gini) simple

regression coefficient of consumption of commodity X on income.

It is convenient to decompose the components of the GIE in two steps. First we

decompose the numerator—the Gini regression coefficient (the marginal propensity

to spend)—and then we apply this decomposition to get the decomposition of the

GIE. As shown in Chap. 7, when there are two nonoverlapping groups the Gini

regression coefficient decomposes neatly into three components—the between-

groups regression coefficient and two intra-group regression coefficients. Formally

bxyo ¼ wpbxyp þ wrbxyr þ wb bxyb; (16.8)

where the wi , i ¼ {p,r,b} are the shares of the components in the Gini inequality in

income, while bxyb, bxyp, and bxyr are between-groups and intra-group regression

coefficients of x on y, respectively. The immediate implication of (16.8) is that

the overall (Gini) marginal propensity to spend is a weighted average of intra- and

inter-groups propensities to spend. Note that bxyp, bxyr, and bxyb do not necessarily

have the same sign and hence the sign of bxyo can be opposite to the signs of bxyr
and bxyp.
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Having decomposed the numerator, the decomposition of the overall income

elasticity is straightforward. Using the definition of income elasticity in (16.7), we get

Zxyo ¼
wp Sxyp

Sxyo
Zxyp þ

wr Sxyr

Sxyo
Zxyr þwb Zxyb; (16.9)

where Zxyp, Zxyr, and Zxyb are intra-group and between-groups elasticities and Sxyp
is the share of x held by the poor. Equation (16.9) presents the overall GIE as a

weighted sum of intra- and inter-groups elasticities. Note that each income elastic-

ity has the same implication on the appropriate Gini inequality component as the

overall elasticity: for example, if Zxyp > 1, then an increase in the tax on x

decreases income inequality within the poor.

Although the decomposition is restricted to elasticities, one may argue that other

components of a poverty measure are also of interest. It is argued that the entire

effect on all components can be evaluated. The empirical illustration, however, is

restricted to decomposing the Gini income elasticities.

Finally, it is worth mentioning that when the interest is in economic welfare then

one may also be interested in evaluating the impact of the change in the tax on x on

absolute changes in the level of well-being. In this case it is recommended to

decompose my (1 � Gy), where my is mean income and Gy is the Gini’s inequality

measure. Because the decomposition of the mean is trivial it is easy to apply the

decomposition of this chapter to this alternative setting.

16.5 An Empirical Illustration

16.5.1 The Data and the Main Findings

The data source used to illustrate the decomposition is the Family Expenditure

Survey of Romania for 1993 (which includes 8,999 observations). The survey

suffers from several limitations such as (a) the unemployed are underrepresented,

(b) the inflation rate during the sample period was around 300%, rendering the

nominal data meaningless. Therefore consumption had to be constructed from

quantities and real prices (see Rashid (1995) for a detailed analysis of the construc-

tion of the data). Such limitations are common in many developing countries. The

estimators of the Gini income elasticities are robust because they rely on ranks

rather than on variate values, which gives them a relative advantage in handling

contaminated data.

Economic well-being is represented by expenditures (i.e., consumption) per

capita. This variable was chosen as a proxy for permanent income, which is an

indicator of economic well-being. Household size is taken into account by using

consumption per capita and weighting each household by its size.
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Table 16.1 presents the decomposition of the Gini coefficient of expenditure per

capita. The poverty line used is 20,087 lei per capita per month. The first line

presents the proportion of individuals who are poor (20%) and nonpoor. The second

line presents the mean expenditure per capita in each group, with the average

expenditure of the rich being 210% higher than the average expenditure of the

poor. The third line presents the Gini coefficients. The overall Gini is 0.225—

typical to East European countries. Inequality among the poor is only 0.11, which is

lower than inequality among the rich. Between-groups inequality is 0.09, which is

42% of the overall Gini.16 The last line reports the wi, the weight of each component

in the Gini. The weight attached to inequality within the poor is less than 1% of the

total weight, which means that the contribution of the inequality within the poor to

the overall inequality is meager. However, this does not mean that the poor have

no impact on the overall inequality. Their impact is expressed in the weight

attached to the between-groups inequality, which is 42% of the total.

Having described the weight of each component we move on to analyze the

effect of government policy on each component of inequality. The parameter that

reflects this effect is the (Gini) income elasticity, which enables us to answer the

following question: assume that the price of a “commodity” is increased by a small

percentage point, what will the impact on the Gini index of inequality (i.e., on

economic well-being) be? If the (Gini) income elasticity equals (is greater than, less

than) one, the tax will not affect (decrease, increase) inequality. In general, the

higher the elasticity, the more progressive the tax will be. (The usual rules that

apply to the elasticity of a sum of commodities apply to the GIE as well). The

decomposition of the income elasticity of “commodities” into poor, rich, and

between-groups components enables us to see the effect of the tax on inequality

among the poor, the rich, and between the groups.

Table 16.2 presents the decompositions of the Gini income elasticities for

selected commodities in Romania, where income is defined as expenditures per

capita. For completeness, Table 16.3 presents the average propensity to spend in

each group, that is the Sxyi (i ¼ p,r,o). The first line in Table 16.2 presents the (Gini)

Table 16.1 Components of the Gini coefficient of expenditure per capita: Romania, 1993

All Poor Rich Between

P-proportion of the population 28,766 0.20 0.80

Mean expenditure per capita (Lei per month) 30,189 16,031 33,726

Gini coefficient 0.22507 0.10637 0.18048 0.09373

Weight in overall Gini 1.0 0.010 0.573 0.416

Source: Table 1, Yitzhaki, 2002, p. 73
Reprinted with permission by Elsevier

16 The poverty gap and the secondary decomposition can be computed using the data reported in the

table. For example, the poverty gap in terms of average income is 0.2(20,087 � 16,031) �
30,189 ¼ 0.0269.
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income elasticity of family size. The overall income elasticity is �0.52, which

means that had we given a lump-sum subsidy to each person in the household, then

the overall inequality would have declined. Assuming that the subsidy accounts for

1% of the expenditures, the overall Gini of the expenditures would have declined by

0.52%. Income elasticity among both the poor and the rich equals �0.48, while the

between-groups elasticity is –0.67. Hence, a per capita subsidy will have the

greatest effect on between-groups inequality.

We first apply the methodology to taxation of income sources. The second line in

Table 16.2 presents the income elasticity of wage income. An across-the-board

increase in wage income will mildly increase overall inequality (1.05), but will

Table 16.2 Gini income elasticities: Romania, 1993

All Poor Rich Between

Family size �0.52

(0.01)

�0.48

(0.05)

�0.48

(0.01)

�0.67

Wage income 1.05

(0.02)

1.89

(0.12)

0.91

(0.03)

1.21

Agriculture income 1.08

(0.03)

0.45

(0.16)

1.16

(0.05)

0.99

Pension income 1.19

(0.07)

1.61

(0.43)

1.05

(0.10)

1.34

Child allowance �0.70

(0.03)

0.34

(0.15)

�0.92

(0.04)

�0.64

Unemployment benefits �0.67

(0.09)

0.42

(0.39)

�0.80

(0.12)

�0.72

Social assistance 0.60

(0.14)

0.67

(0.76)

0.61

(0.19)

0.62

Tobacco 1.01

(0.03)

1.56

(0.16)

0.99

(0.05)

1.02

Petrol 1.84

(0.05)

2.78

(0.55)

1.76

(0.07)

1.78

Wood + coal + oil 1.31

(0.07)

0.52

(0.37)

1.49

(0.09)

1.06

Electricity 0.70

(0.04)

1.72

(0.28)

0.46

(0.05)

1.01

Gas 0.68

(0.03)

1.90

(0.23)

0.43

(0.05)

0.98

Transportation 1.01

(0.03)

1.58

(0.16)

1.00

(0.03)

1.18

Wage tax 1.13

(0.02)

1.90

(0.12)

0.86

(0.04)

1.26

Farmers-incidence 0.60

(0.01)

0.46

(0.06)

0.58

(0.02)

0.62

Farmers per capita-incidence 0.03

(0.006)

�0.01

(0.01)

0.02

(0.008)

0.04

Jackknife standard errors appear in parentheses

Source: Yitzhaki, 2002, Table 2, p. 74
Reprinted with permission by Elsevier
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have a large regressive impact on inequality among the poor (1.89), will decrease

inequality among the rich (0.91), and will increase the between-groups

inequality (1.21).

Agricultural income presents almost the opposite example. An increase in

agricultural income mildly increases overall inequality (1.05), decreases inequality

among the poor (0.45), increases inequality among the rich (1.16) and does not

affect between-groups inequality (0.99). An increase in pension income increases

all components of inequality. However, the large standard error among the poor

indicates that this result is not robust.

The next group of items is intended to evaluate the effect of changes in public

expenditures: an across-the-board increase in child allowances decreases all

components of inequality with the smallest effect on inequality among the poor.

Unemployment benefits display a similar pattern: although an increase in social

assistance reduces inequality, it is clearly an ineffective program.

The next group of commodities represents classical commodities for indirect

taxation. An increase in the price of tobacco will not affect overall inequality (1.01),

between-groups inequality (1.02), and inequality among the rich (0.99), and will

reduce inequality among the poor (1.56), making it an incidence-neutral ideal target

for taxation. An increase in the price of petrol decreases all components of inequal-

ity, while an increase in taxes on electricity and gas is regressive for the population

as a whole and progressive among the poor. Taxing wood-coal and oil will be

progressive for the overall population but regressive among the poor. However, the

standard errors indicate that this result is not robust. Transportation is progressive in

all components.

Table 16.3 Income shares: Romania, 1993a

All Poor Rich

Wage income 0.73 0.59 0.74

Agricultural income 0.55 0.56 0.55

Pension income 0.04 0.03 0.04

Child allowance 0.018 0.044 0.015

Unemployment compensation 0.01 0.03 0.01

Social assistance 0.01 0.01 0.01

Tobacco 0.023 0.022 0.023

Petrol 0.013 0.004 0.014

Wood + coal + oil 0.01 0.01 0.01

Electricity 0.01 0.01 0.01

Gas 0.02 0.02 0.02

Transportation 0.02 0.02 0.02

Wage tax 0.16 0.12 0.16

Income 1.54 1.44 1.55
aEntries present the shares of the item in the expenditures of the relevant group. For example,

income is 154% of expenditures, while wage tax is 16%

Source: Yitzhaki (2002), Table 3, p. 75
Reprinted with permission by Elsevier
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The next item to check is the effect of a change in the wage tax. This turns to be a

bit surprising. An across-the-board increase in wage tax will decrease overall

(1.13), among the poor (1.9) and between-groups (1.26) inequalities, but will

increase inequality among the rich (0.86). This result is consistent with the earlier

finding that an increase in wages will decrease inequality among the rich.

The last two lines illustrate how to incorporate poverty incidence into inequality

analysis. Farmers (anyone with income from agriculture) are assigned a dummy

variable of one while the rest of the population gets a zero. A head tax on farmers is

imposed and the (Gini) income elasticity is calculated. The results are reported in

the line “Farmers-incidence.” As can be seen, subsidizing farmers is more effective

than subsidizing agricultural income as far as reducing between-groups inequality

and overall inequality are concerned, but it is not more effective in reducing

inequality among the poor.

The last line in Table 16.2 reports the effect of subsidizing each member of a

household of farmers. As expected, this policy is more effective than handing an

equal amount to each farmer. Surprisingly it is much less effective, in all

components, than an allowance to family size which is given to all households

(see the first line). The conclusion is that the incidence of poverty among farmers is

lower than the incidence in the population as a whole.

The different applications of the (Gini) income elasticities in Table 16.2 to

direct, indirect, and hypothetical taxes enable the user to compare the effectiveness

of various policy measures in a quantitative and unified manner.

16.5.2 Sensitivity Analysis

The main theme of this chapter is that the (Gini) income elasticity contains all the

needed information for analyzing the distributional impact of taxes, subsidies, and

other government programs on different groups in the population. But this elasticity

depends on an implicit and specific welfare function, which is embodied in the Gini

coefficient. The question we seek to answer is: how sensitive are the policy

conclusions to the reliance on the Gini coefficient?

As shown in Chap. 6, the Gini coefficient is one member of a family of extended

Gini coefficients. This family of inequality measures can be written as

GðnÞ ¼ nðn� 1Þ
ð1

0

ð1� F Þðn�2Þ ½F� LCðFÞ�dF; (16.10)

where n is a parameter that is determined by the investigator and LC(F) is the

Lorenz curve. If n equals 2, we get the regular Gini coefficient. The higher n gets,
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the greater the emphasis on the lower portion of the Lorenz curve. In the extreme

case, when n approaches infinity, the index represents someone who only cares for

the very poorest of the poor.

The extended Gini can also be decomposed into three components: inequality

within the poor, inequality within the rich, and between-groups inequality. To see

this, let us define LCB(F) as the between-groups Lorenz curve, which is composed

of linear segments where all the poor receive the poverty-line income and all the

rich receive the affluent-line income (lines OG and GB in Fig. 16.1).

By adding and subtracting LCB(F) we get

GðnÞ ¼ nðn� 1Þ
ð1

0

ð1� F Þn�2 ½F� LCB ðFÞ� þ ½LCB ðFÞ � LCðFÞ�½ �dF; (16.11)

where the first term is the contribution of the between-groups component, while the

second term can be decomposed into the contribution of the inequality among the

poor and inequality among the rich.

One can repeat the question regarding the impact of a change in the price of a

commodity on inequality among the poor, inequality among the rich, and between-

groups inequality, and then derive the extended Gini income elasticities. Note,

however, that the between-groups (Gini) elasticity is based on two observations and

is therefore not affected by the index of inequality that is used in the analysis.

Hence, an important factor that determines the sensitivity of the (Gini) income

elasticities is the weight attached to the between-groups Gini component.

Table 16.4 presents the weight attached to the between-groups component for

various values of the parameter of the extended Gini coefficient. It is based on the

between-groups component of the extended Gini, which is equal to

GðnÞ ¼ Pp � Sp

Pp
½1� ð1� Pp Þn�1�: (16.12a)

The second line in the table shows that the weight attached to the between-

groups component increases until n reaches 8 and then declines. When n equals 14,
the weight is equal to the weight when n ¼ 4. Thus, for all practical purposes one

Table 16.4 Weights attached to the between-groups component

Extended Gini parameter

2 4 6 8 10 12 14

Share of between-groups 0.42 0.62 0.70 0.76 0.73 0.68 0.62

Between-groups Gini 0.094 0.249 0.327 0.358 0.363 0.353 0.334

Overall Gini 0.225 0.367 0.431 0.470 0.497 0.518 0.535

Source: Table 4, Yitzhaki (2002), p. 78
Reprinted with permission by Elsevier
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can clearly view the between-groups elasticities as the relevant elasticities for a

poverty-oriented planner. We are unable to supply such rules of thumb for inequal-

ity among the poor and among the rich; one has to calculate them.

An empirical conclusion that can be drawn from Table 16.4 is that for reasonable

values of n the term “caring more about the poor” is translated into attributing the

lion’s share of the weight to between-groups elasticity. To see this, note that

ignoring the Gini coefficient which is analyzed in the previous section, in all

cases reported the share of between-groups inequality is above 60%. This means

that for a poverty-alleviating national policy the most important question to ask is

how much is transferred to the poor and this issue should be given more weight than

the question of allocation among the poor. It is not clear how general this result is.

Also, because the weight attached to inequality among the poor increases, one has

to check the income elasticity among the poor too: if it differs substantially from

other elasticities, it might affect the overall elasticity as well.

The sensitivity of the (Gini) income elasticity to the level of the poverty line

depends on the curvature of the Engel curve. If the Engel curve is linear, it is easy to

show that the between-groups elasticity is equal to overall elasticity and that

elasticity among the poor is greater than elasticity among the rich. One can view

the difference between the overall and between-groups elasticities as an indicator of

deviation from linearity. If the Engel curve is linear, an increase in the poverty line

decreases the income elasticities among the poor and the rich without affecting

between-groups elasticity.

16.6 Policy Analysis

From a policy-oriented economist’s viewpoint, the major purpose of calculating a

poverty or inequality index is to enable the evaluation of distributional implications

of reforms in government policies. Because reforms are usually composed of

changes in several parameters it is important to be able to evaluate the implications

of a comprehensive policy change. The GIEs obey the basic rules governing

elasticities and they can therefore be used to evaluate the impact of several changes

in parameters. This section illustrates the decomposition of the (Gini) income

elasticity to evaluate the effect of a reform on inequality among the poor, inequality

among the rich, and between-groups inequality.

Before proceeding with the illustration, it is only fair to point out that if one is

interested in simplifying policy analysis, income elasticities, and indices of inequal-

ity are not a good starting point. All inequality measures in use are relative, in

the sense that incomes are normalized by mean income. Policy analysis can be

conducted more conveniently with a social welfare function that is absolute in

nature. If one is interested in analyzing tax policy using a Gini coefficient, it is
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convenient to define a social welfare function of the type my (1 � Gy), where my
is the mean real income and Gy is the Gini coefficient.

17

To illustrate, consider first the following policy reform: (a) The price of petrol

is raised by 10% (of the existing consumer price), while the price of tobacco is

increased by 5%. Then a first-order approximation to the decline in real income

(in terms of average expenditures) is (0.05sT + 0.1sP), where T and P represent

Tobacco and Petrol, respectively. The combined effect on the Gini coefficient is

(see Yitzhaki (1994a, 1994b))

dGy

dR1

¼Gy

ST ð ZT �1Þ0:05þ SP ðZP � 1Þ0:1
ST 0:05þ SP 0:1

; (16.12b)

where R1 is a one dollar tax revenue collected by the proposed reform. Equation

(16.12b) is a weighted average of the derivatives of the Gini coefficient with respect

to the taxes imposed, multiplied by the changes in taxes. The denominator

normalizes the effect to give the effect of “one dollar of combined taxes.” Since

Gy is predetermined, it is ignored. The impact of this reform on the different

components of inequality can be found by using the appropriate shares and

elasticities from Tables 16.2 and 16.3.

The first line in Table 16.5 reports the changes in real income (expressed as

percentages of consumption expenditure for each group); the second line presents

the income elasticities of (a dollar of) taxes of this reform minus one (to make it

easy to see whether the reform is progressive or not). As expected, all income

groups are expected to suffer from such a reform, but since all elasticities are

greater than one, all Ginis of consumption are expected to decline, with the biggest

change being in inequality among the poor.

Consider now an alternative reform [reform (b)] in which in addition to the

changes suggested in reform (a), the government also intends to decrease child

benefits across the board by 4%. While reform (a) is clearly progressive, reform (b)

includes a regressive element (reducing child benefits), and the final result is not

clear, a priori. The third line in Table 16.5 presents the first-order approximation to

changes in real income (the Slutsky compensation) in terms of the average income

of each group. As can be seen from the fourth line, reform (b) is mildly regressive in

the sense that overall inequality, between-groups inequality, and inequality among

the rich slightly increase while inequality among the poor slightly declines.

17 This form was first suggested by Sen (1973). Yitzhaki (1982a) shows that it may be interpreted

as representing the theory of Relative Deprivation (Runciman, 1966). Yitzhaki (1982b) shows that

it forms necessary conditions for second-degree stochastic dominance, which means that for two

income distributions z and y, if the mean social welfare for z is greater than the mean social welfare

for y for any concave social welfare function, then mz (1 – Gz) > my (1 – Gy) holds. Kakwani

(1995) shows that one can decompose the “income elasticity” derived from this function into an

income effect and an inequality effect and that the inequality effect can be interpreted as a

progressivity index.
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Incorporating other changes can be done in a similar fashion. For example,

Millimet, Slottje, Yitzhaki, and Zandvakili (2003) analyze the distributional impact

of investment in schooling. This kind of extension is beyond the scope of this book.

16.7 Summary

This chapter deals with tools that can be helpful in analyzing the impact of public

policies. The tools are based on decompositions of inequality indices. The two main

arguments of this chapter are as follows.

(a) Poverty indices are redundant in the sense that their contents can be derived by

a decomposition according to subgroups of the appropriate index of inequality;

and

(b) The main interest of policy-oriented economists when calculating indices of

inequality is to find out how changes in economic policy affect their values.

By claiming that poverty indices are redundant we do not imply that the poverty

line is redundant too. Having a poverty line and an institute which reports every year

the status of the poor may have political implications. The analysis of the political

implications is beyond the scope of this book.18 The poverty line can be used in the

decomposition of the inequality measure. The sensitivity of the inequality measure

Table 16.5 The effect of tax reforms on real income and inequality

Effect on

All Poor Between Rich

Reform (a)

Change in real incomea �0.245 �0.15 �0.255

(Gini) income elasticity minus 1 0.45 0.88 0.42 0.41

Reform (b)

Change in real incomea �0.317 �0.326 �0.315

(Gini) income elasticity minus 1 �0.038 0.051 �0.045 �0.032
aPercent of mean income

Source: Table 5, Yitzhaki (2002), p. 79
Reprinted with permission by Elsevier

18 The following anecdote shows how difficult would it be to evaluate the political impact. Every

year, in November, the National Insurance Institute (NII) of Israel publishes the official number of

poor people in Israel. Because of population growth, this number tends to increase every year. This

event marks the beginning of about a 3-week ritual with television shows interviewing poor

people, parliamentary debates, and newspaper articles criticizing the government for its failure

to eliminate poverty. In 1999, the NII was late in publishing its report. However, a resourceful

politician published a number, and the well-oiled political machinery started to roll without the

official report. News about the hardship of the poor were reported on television, the prime

minister’s office blamed his predecessor, etc. It took about a week to realize that the real number

has not been published yet.
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to the choice of the poverty line tends to be lower than the sensitivity of the

appropriate poverty measure, and this may reduce the white noise. The arguments

are illustrated by decomposing the Gini coefficient into Sen’s poverty index, a Sen-

like affluence index, and between-groups inequality.

To be effective, one should not concentrate only on measurement issues, but on

pointing out which policy instruments can be effective for poverty alleviation. The

discussion in this chapter points out the usefulness of the GIE, which is a summary

statistic describing the distribution of potential tax and subsidy bases among

income groups. The (Gini) income elasticity contains all the needed information

for describing the impact of economic policies on poverty and inequality, provided

that one uses the Gini coefficient as the measure of inequality.

An interesting empirical finding for Romania is that for reasonable values of

inequality aversion “caring more about the poor” should be modeled as attaching

the lion’s share of the weight to between-groups inequality. This means that the

dominant consideration in any poverty alleviation program should be devoted to

how much is transferred to the poor. The way by which the subsidies are allocated

among the poor plays a secondary role.
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Chapter 17

Introduction to Applications of the GMD

and the Lorenz Curve in Finance

Introduction

The purpose of this part of the book is to expose the reader to applications of the

Gini methodology in financial theory. Those applications are relevant whenever

one is interested in decision making under risk or in reducing the incompatibility

between financial theory and econometric applications. Risky situations are

characterized by having to make decisions without knowing what the exact out-

come is going to be. This definition covers almost every decision a person makes.

When dealing with decisions under risk it is important to distinguish between

two possible structures.

(a) Trade can take place after the realization of the random variables.

(b) No trade is possible after the realization.

The major difference between the two cases is that if (a) holds then all decisions

under risky situation can be treated as dealing with one dimension, namely wealth

or income as a proxy for wealth. That is, although there may be many dimensions to

be taken into account, as is the case in portfolio theory, the risk aversion one has to

deal with is relevant to one variable only. In finance the usual assumption is that

trade is possible—a fact that simplifies the analysis. If, on the other hand no trade is

possible after the realization then a multivariate (in the sense of multidimensional)

analysis is required.

Most of the early arguments in economic theory were developed under the

assumptions of full information and certainty. For example, the basic concept of

efficiency is defined under the condition of certainty. The typical extension of

economic theory to cover risky situations is to assume a probability distribution

on the possible outcomes, which either reflects objective or subjective probabilities,

and to aggregate the results in one way or another as is the case under expected

utility theory.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_17,
# Springer Science+Business Media New York 2013
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This aggregation brings to some formal similarities between models

representing the main considerations in welfare economics and finance. The first

similar factor is the aggregation. In both cases there is some kind of aggregation: in

welfare economics it is an aggregation over individuals, while in finance it is an

aggregation over the states of nature. The second similarity is that in both areas the

aggregations are performed by using increasing concave functions. In welfare

economics it is the social welfare function, while in finance it is the utility function.

These two points of similarity explain why we should expect that models that are

used in finance will share some of the characteristics of the models that were

developed in the areas of social welfare and income distribution. An additional

similarity which is the most distinguished characteristic from our point of view is

the asymmetric approach to the data. In the area of income distribution this

asymmetry is caused by the assumption of the declining marginal utility of income.

In the area of finance it is caused by the assumption of risk aversion that can also be

traced, in the expected utility model, to the declining marginal utility of income.

These similarities between the fields enable us to apply almost the same formal

models in the two fields. To attest that, note Atkinson’s (1970) path-breaking paper

in which he borrowed the concept of stochastic dominance that was developed in

finance (Hanoch & Levy, 1969; Rothschild & Stiglitz, 1970) into the area of income

distribution. Another example is Yaari (1987, 1988) who applied the same formal

approach to the two fields using, of course, different arguments. Atkinson’s

contributions can be traced to two issues that concern this book.

(a) Atkinson has shown that the second-degree stochastic dominance (SSD) rules

can be presented by using Lorenz curves. This observation led to the develop-

ment of the Marginal Conditional Stochastic Dominance (MCSD) rules which

can be viewed as the extensions of the rules from the univariate into the

multivariate dimensions, or alternatively, from the variability measures to the

covariability measures. This, in turn, leads the user to search for variability

measures that can be used to construct necessary conditions for stochastic

dominance. The GMD and the EG are measures with this property, as was

shown in Chaps. 2–6.

(b) Atkinson has shown that if the Lorenz curves of two distributions (with equal

means) intersect then it is possible to find two legitimate social welfare

functions that will rank them in reversed orders. This implies that stochastic

dominance rules cannot offer a complete ordering of outcomes. Incomplete

order of outcomes is problematic and it is restricted in its applications because it

leaves the user without a recommendation in many real-life cases. This property

suggests the use of the Gini because it can complement the order into a

complete ordering without violating the stochastic dominance rules, as was

shown in Chap. 5.

In addition to the similarities there is one major difference that makes financial

theory more complicated than welfare theory. Most models in finance include

elements of additive and multiplicative relationships. To see this, consider the return

on a portfolio. The transfer of funds from one asset to the other is additive, while the
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returns of different periods of time are multiplicative. This complication creates

difficulties in the estimation of the expected return on a portfolio. This problem is

exacerbated when we have to deal with the correlations between asset’s returns over

time because the Pearson’s correlation coefficient measures linear relationships, and

applying multiplicative models can turn a strong correlation into a weak one or even

into no correlation whenever the product in based on a large number of periods

(Embrechts, Lindskog, & McNeil, 2003; Levy, Guttman, & Tkatch, 2001; Levy &

Schwarz, 1997).

Many of the models in finance are best described as time-series models and

require tools for time-series analyses. The role of the GMD in time-series analyses

has not been fully developed yet (see Chap. 23), but the first steps towards this

direction can be found by Serfling (2010) and Shelef and Schechtman (2011).

Several properties of the Gini suggest that it may play an important role in

analyzing time series and financial data. The relevant properties are (1) The GMD

of a linear combination can be decomposed into the contributions of the individual

components and the (Gini) correlations among them (the decomposition of the

variance is a special case of this decomposition). (2) The GMD is based on L1

metric therefore it shares all the asymptotic properties that the variance has

(because the variance is based on L2 metric). There are additional reasons for

using the GMD in finance. Two of them are relevant in the area of welfare

economics as well: (a) the GMD is compatible with the expected utility theory

and with Yaari’s dual theory and (b) it reveals more. An additional and crucial

reason is because it helps overcome some of the econometric problems of using

additive and multiplicative models in finance.

The reasons mentioned above are of a totally different nature. The first reason—

compatibility with the expected utility theory and with Yaari’s dual theory—is the

following: Atkinson’s proof that if two Lorenz curves intersect then it is impossible

to determine whether inequality (or risk) has increased or declined created a wedge

between the economic and statistical theories. The traditional way in econometrics

is that the economist writes a model in a general form, identifying the major

variables and the relationships among them and then comes the econometrician,

who can be the same person wearing a different hat, and specifies the exact

relationships among the variables by imposing assumptions that enable her to

estimate the parameters and to test the validity and robustness of the conclusions.

But Atkinson’s findings imply that one’s social views concerning the income

distribution (or risk aversion) may determine the direction of the findings. Hence

it is natural to impose the social views on the statistical analysis, which is actually

the idea behind the extended Gini family of variability measures. In finance it

implies that the risk aversion of the decision maker should be taken into account

when estimating the model. This point needs a clarification. We do not argue that

the classical way of analysis described above suffers from an internal inconsistency.

However, we do argue that if some of the assumptions imposed on the data by the

econometrician do not hold in the data then they may contradict the assumptions or

the logic of the economist. To see this, note that expected utility theory defines the

beta of an asset as a weighted average of the slopes of the security characteristic
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curve, weighted by the marginal utility of income. The higher the risk aversion the

greater the decline of the marginal utility of income is. This implies that the higher

the risk aversion the more weight should the estimation procedure attach to states of

nature that result in low return on the portfolio. As long as the relationship between

the return on an asset and the return on the portfolio (income in our example) is

linear, the method of estimation of the beta need not take into consideration the risk

aversion of the decision maker, because the slope of the regression curve is a

constant. A problem arises when the linearity assumption is violated by the data.

As shown in Chap. 7 the OLS attaches large weights to extreme observations, and it

is not sensitive as to whether the extreme observations are at the lower end of the

curve or at the upper end. As a result a wedge is created between the issues stressed

by economic theory and the estimation procedure. While the risk-averse investor

cares about the lower section of the curve, the estimation procedure is symmetric

around the mean. If the linearity assumption is violated by the data, then it is

possible that the econometrician (when using OLS) may estimate the regression

curve by imposing large weights on the segments of the curves that the economist

cares the least about. As a result the estimation procedure may supply the wrong

ranking of assets. To solve this discrepancy, economic theory should be selected

first and then imposed on the estimation procedure. Using the GMD or the EG

regressions enables introducing the risk aversion into the estimation process.

The second reason for preferring the use of the Gini is that it reveals more.

It enables the user to see whether the imposition of a symmetric correlation between

variables holds in the data or not. Also, as we showed in Chap. 4 the decomposition

of the Gini of a linear combination of random variables enables the user to see

whether the combination belongs to the same family of distributions as the

distributions of the individual variables and whether it converges to the normal

distribution (this will be discussed in Chap. 23).

The additional reason for preferring the use of the Gini is that portfolio theory

may involve combinations of multiplicative and additive models, a case in which

the Pearson’s correlation coefficient fails.

The rest of this chapter deals with the demonstration of the above-mentioned

reasons, while Chap. 18 demonstrates the imitation of portfolio theory using mean-

Gini, deals with the construction of Mean-extended Gini portfolios and introduces

investors with different risk aversions and their effects on the betas.

The structure of the chapter is the following: Sect. 17.1 deals with the role of

variability in calculating the rate of return. In Sect. 17.2 we restrict the discussion to

additive processes and apply stochastic dominance to the portfolio selection problem.

Section 17.3 develops the necessary and sufficient conditions for stochastic domi-

nance in a portfolio context, while Sect. 17.4 shows how the concepts based on the

Gini are related to the classical beta that is used in finance and Sect. 17.5 concludes.

It should be stressed that there is an additional well-developed application of the

GMD in finance which is related to hedging. See among others Cheung, Sherman,

Kwan, and YIP (1990) and Lien and Tse (2002) and the literature surveyed there.

Applications of the concept of MCSD, intended to improve indices used in Finance
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can be found by Clark, Jokung, and Kassimatis (2011) and Clark and Kassimatis

(2012). We do not cover this area of research because we restrict our discussion to

basic issues. In principle, we could analyze almost every area in finance that uses

the variance by replacing the variance with the square of the GMD.

17.1 The Role of Variability in Calculating the Rate of Return

It is well accepted that variability is associated with risk. The question we intend to

ask in this section is whether it is also associated with return. This problem is

important because if variability is also associated with an increase in the return then

it may be that risk-averse investors do seek variability.

Let us start with several examples. In the first example consider an investor who

is faced with a portfolio which is divided equally between two assets, one delivers a

constant return of 10% for a period and the other delivers (�10) %. The investor

has to hold the portfolio for two periods. The question is what is the rate of return on

the portfolio? This is an example of a combination of additive and multiplicative

models: additive because the portfolio consists of the sum of two assets and

multiplicative because after two periods the rates are raised to the second power.

The answer is that the rate of return after two periods is given by 0.5 � (1.1)2 +

0.5 � (0.9)2 � 1 � 0.01 > 0. Would we multiply the periodic rates of return by 2,

that is the periodic rates of return would be 20% and (�20) % for the first and second

assets, respectively, the rate of return after two periods will be higher: 0.5 � (1.2)2 +

0.5 � (0.8)2 � 1 ¼ 0.04. That is, the more diverse the rates of return are, the higher

the portfolio’s two period rate of return will be.

In the second example assume a continuous time framework. Given an invest-

ment for one period, assume that the instantaneous rate of return is normally

distributed with parameters (m, s2), and it is uncorrelated over time. It can be

shown that for this case the value of investment is lognormally distributed hence the

expected value of a dollar invested in this project at the end of the period is equal to

emþ0:5s2 , which means an expected growth rate of m + 0.5s2. This implies that

the higher the variance is, the higher the expected return will be. In other words, the

variability plays a positive role in the expected value of return.

The explanation to both examples is the following: when dealingwith compounded

interest, the base for calculating the return in the second (and above) period changes

and therefore the mean of the periodical rate of return is not the only contributor

to the overall rate of return on the investment; the variance plays a role as well.

To grasp the magnitude of the influence of the variability on the rate of return note

Yitzhaki (1987) who found that the rate of return of the rich on investments in the

stock markets is twice the rate of return of the poor. Almost all of the difference

comes from the component of 0.5s2 which was small among the poor but it is

roughly equal to m among the rich. Hence running regressions on rates of return may

yield biased results if the variances of the rates of returns (i.e., of the different groups

of investors) are different.
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One way to estimate a rate of return on a portfolio is to evaluate its value at the

end of the period, and only then to estimate the rate of return by comparing

the value at the end with the value at the beginning of the period. However, this

method is not free of problems. Because the Gini cannot contribute to the discussion

we do not elaborate on the subject and refer the interested reader to Yitzhaki (1987).

The contribution of the Gini method is related to another aspect of the combina-

tion of multiplicative and additive models, namely the effects on the correlation

coefficient. Several authors have pointed out the inadequacy of the Pearson corre-

lation coefficient in representing the association in such cases.

Let us start with the example of a normally distributed rate of return. The value

of the asset is distributed according to the lognormal distribution. Consider two

portfolios of equal values for which the distributions of the instantaneous rates of

return are identical and jointly follow the bivariate standard normal distribution

with r ¼ �1. In theory, the two portfolios create a safe asset with constant return.

However, because the distributions of the values of the portfolios are lognormal

then according to De Veaux (1976) the correlation between two lognormal random

variables cannot be lower than (�0.368). Therefore, there is a contradiction

between the two approaches.

In order to further illustrate the problem with Pearson correlation in case of

multiplicative models, consider the following example: Let X be a uniformly

distributed variable on (0,1). Obviously corr(X,X) ¼ 1. Apply a transformation

Z ¼ Xa to one of the variables. Then the Spearman and the two Gini correlations

between X and Z are all equal to one. The Pearson correlation coefficient depends

on a.

r(Z,X) ¼ 0.5a

(aþ 1)(aþ 2Þ ½ð1=12Þ var(Z)]0:5

where

Var Zð Þ ¼ 1

ð2aþ 1Þ �
1

ð1þ aÞ2 ¼
ð1þ aÞ2 � ð2aþ 1Þ
ð2aþ 1Þðaþ 1Þ2 ¼ a2

(2aþ 1)(aþ 1Þ2 :

Plugging Var(Z) in the presentation of r(Z,X) we get

r(Z,X) ¼ (2aþ 1Þ0:5
(aþ 2Þ ½ð1=3Þ �0:5 ¼

[3(2aþ 1Þ�0:5
(aþ 2Þ :

The Pearson correlation coefficient reaches its maximal value of 1 at a ¼ 1.

Table 17.1 presents the rate of decline as a gets further from 1.

Table 17.1 Pearson correlation coefficient between X and Xa for a choice of values of a

a 0.1 0.5 0.7 0.9 1.1 2 5 10

Pearson 0.9035 0.980 0.994 0.999 0.999 0.968 0.821 0.661
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Would we apply different transformations to the two variables, so that Z1 ¼ Xa

and Z2 ¼ Xb then the rate of convergence of the Pearson correlation coefficient to

zero will behave according to the following equation

r(Z1;Z2Þ ¼ (aþ 1)(bþ 1Þ � (aþ bþ 1Þ
(aþ bþ 1)(aþ 1)(bþ 1)[var(Z1)var(Z2Þ�0:5

¼ [(2aþ 1)(2bþ 1Þ�0:5
(aþ bþ 1Þ

which converges faster to zero as a goes to infinity as long as b > 1.

Another example of the difficulties that arise when using Pearson correlation

coefficient in a multiplicative model is given by Levy and Schwarz (1997). They

refer to time series data and claim that when the sequences of observations are

based on partial sums, the correlation coefficient will be independent of the

differencing interval (that is, 1-day, 1-week, etc.) but in the multiplicative model,

the more periods one takes into account the lower the Pearson correlation coeffi-

cient will be, except for the case where the periodical correlation is one. More

precisely, let (S1,T1),(S2,T2),. . . be a sequence of independent, identically

distributed pairs of variables and let Xk ¼ S1 � S2 � . . . � Sk and Yk ¼ T1 � T2

� . . . � Tk. Levy and Schwarz show that the Pearson correlation between Xn and

Yn tends to zero as n approaches infinity except when Y ¼ kX for some positive k

(in which case the correlation is 1 for all n).

The proof of Levy and Schwarz (1997) is complicated and will not be given here.

We note that preliminary work shows that the Spearman and Gini correlations are

less vulnerable to this kind of criticism. However, further research is needed in

order to be able to resolve this issue. We comment on this issue in Chap. 23.

An additional criticism of using the Pearson correlation coefficient in finance

comes from advocates of modeling dependence between random variables with

Copulas (Embrechts, Lindskog, &McNeil, 2003; Embrechts, McNeil, & Straumann,

2002) who prefer Kendall’s tau or Spearman correlation coefficient. They present

an example with two lognormally distributed variables with parameters (0, 1) and

(0, s2), respectively, and argue that if s tends to infinity, then Pearson’s correlation

coefficient between them, r, converges to zero. The conclusion they reach is “Hence,
the linear correlation coefficient can be almost zero, even if X andY are comonotonic

or countermonotonic” (2001, example 3.2, p. 15).

Additional support for a copula dependence in finance is offered by Dennenberg

and Leufer (2008). In the abstract they argue that “it is argued that the dual volatility

and dependence parameters are better suited than the classical parameters for

applications in finance and insurance.” They even define Gini covariance and

“Gini copula correlation” but theirs are different than the Gini correlations used

in this book. As far as we know it is not clear whether the Gini covariance defined

by Dennenberg and Leufer (2008) can be used to decompose the Gini of a linear

combination of random variables, which is an important property to have.

To sum up: we mentioned several problems in applying the Pearson correlation and

even the expected rate of return in cases where multiplicative and additive

operations are involved. It is clear to us that we only touched the top of the iceberg.
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17.2 Stochastic Dominance, Lorenz Curves, and Gini

for the Additive Model1

In this section and in the rest of our discussion about the role of the GMD in finance

we will return to the main stream in finance which is based on an additive model.

That is, we assume an investor who is an expected utility maximizer. The investor is

interested in maximizing the expected one-period utility or the discounted value,

using a risk-free rate of discount of several periods. In short, we ignore the multipli-

cative nature of compounded return.

Our interest is to apply the tools offered by the Gini methodology to portfolio

theory.

The essence of portfolio optimization is to find a combination of safe and risky

assets that maximizes the expected utility (or another function) of the investor.

Because the utility function is not known, this target is substituted by maximizing

the expected return while keeping the risk at a bearable minimum. This is the

rationale behind the mean-risk models and in particular the mean-variance (MV)

model which was originally derived as a special case of expected utility (EU)

maximization. Although the conditions for which MV is analytically consistent

with EU seldom hold in practice,2 MV is widely accepted as the theory that makes

sense from a practitioner’s point of view because it captures two attributes:

maximizing expected returns and minimizing risk.

One trade-off for its intuitive attractiveness is the dependence of mean variance

on a specific measure of risk. A more general approach that relies on expected

utility theory without fully specifying a utility function is stochastic dominance that

is expressed in terms of probability distributions rather than the usual parameters of

risk and return which are used in MV. Second degree stochastic dominance (SSD)

rules apply a general form of expected utility theory assuming risk-averse expected

utility maximizers. The outcomes thus apply to a wider group of investors.

Unfortunately generalizing the theory complicates the rules to the point that they

seem intractable to most practitioners (see, for example, Thistle, 1993). Moreover,

when the rules are applied to a portfolio of assets, which is the most relevant case

for an investor, they cannot be reasonably explained and one must rely on faith in

them and on the algorithm producing the optimal portfolios.

The aim of this section is to express SSD rules in terms of the traditional concepts

used in portfolio theory. In other words, we will interpret SSD rules in terms of

expected return and systematic risk (beta) so that portfolio managers can better grasp

the rules. We do this by using absolute Lorenz curves in place of the typical

cumulative distribution functions. This lets us express SSD conditions in terms of

return and risk, and reconcile them with the capital asset pricing model (CAPM).

1 This section is based on Shalit and Yitzhaki (2010).
2 For example, multivariate normal probability distributions of returns or quadratic utility

functions.
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Using the EG will enable us to extend the CAPM to include investors with different

attitudes toward risk.

Besides adjusting SSD rules to fit the problems of interest to portfolio managers,

we extend SSD to MCSD rules. These rules state the conditions under which all

risk-averse investors holding a specific portfolio will prefer to increase the share of

one asset over the share of another. MCSD is a less demanding concept than SSD

because it considers only marginal changes of holding risky assets in a given

portfolio.3

It is worth noting that as far as we can see, stochastic dominance cannot bring,

without additional assumptions, further results beyond the restriction to marginal

analysis. To see this, note that an interior optimal portfolio and non-marginal

dominance cannot coexist because if they both exist, then one asset dominates the

portfolio and therefore we will end up with a corner solution.

17.2.1 Expected Utility, Stochastic Dominance,
and Mean-Gini Rules

To achieve portfolio efficiency under expected utility maximization we must use

utility functions and know the probability distributions of returns of all assets.

To alleviate the need for specific utility functions in constructing optimal portfolios

we propose using the rules of stochastic dominance, which are expressed in terms of

cumulative probability distributions. If we confine the discussion to the class of all

risk-averse expected utility maximizers, an appropriate mechanism would be SSD

theory that states the necessary and sufficient conditions under which a portfolio is

preferred to another by all risk-averse expected utility maximizers.

SSD conditions were developed independently by Hanoch and Levy (1969),

Hadar and Russell (1969), and Rothschild and Stiglitz (1970). SSD rules are

typically obtained by comparing the areas under the cumulative distributions of

portfolio returns and are defined as follows (see Levy, 1992, 2006): consider two

risky portfolios A and B with cumulative distributions FA and GB, respectively.

Definition For all risk-averse investors with nondecreasing concave utility

functions U with U0 � 0 and U00 � 0, SSD states that A dominates B if EFUðAÞ
� EGUðBÞ, where EF and EG are the expectations using FA and GB, respectively.

Proposition A necessary and sufficient condition. SSD rules state that A dominates
B if and only if

Ð z
�1 ½GBðxÞ � FAðxÞ�dx � 0 for all z which belong to the range of

returns on A and B.

3 Yitzhaki and Mayshar (2002) showed that the assumption of continuity in the portfolio space

implies that if there is no portfolio that dominates a given portfolio under MCSD, then there will be

no other portfolio (among all of portfolios, not just marginal ones) that dominates the given

portfolio.
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Proof Hanoch and Levy (1969). See Chap. 5.

Definition The SSD efficient set is defined as the set of all the portfolios which are

not dominated by other portfolios according to SSD rules.

The above-mentioned necessary and sufficient conditions are based on the areas

under the respective cumulative probability distributions. The rules say that for all

returns the area under the cumulative distribution for the preferred portfolio is

always smaller than the area under the cumulative distribution for the dominated

portfolio.

SSD rules are not easy to interpret especially by capital market practitioners who

are used to evaluate risk and return (see Best, Hodges, & Yoder, 2006). This is

further enhanced when constructing portfolios of risky and safe assets, because it

is difficult to evaluate cumulative distributions of portfolios whose compositions

are changing constantly. Therefore linear programming and numerical optimization

methods are commonly used to build efficient SSD portfolios, most of them relying

on discrete distributions (see, e.g., Chow, Riley, & Formby, 1992; Dentcheva &

Ruszczyński, 2006; Ogryczak & Ruszczyński, 2002; Post, 2003; Ruszczyński &

Vanderbei, 2003). As these techniques are based on numerical optimization methods,

it is virtually impossible to check and interpret the results intuitively in terms that are

used by the practitioners.

Financial economists and practitioners are used to visualize the analysis as done

in the classroom. Hence, we suggest an easier way: presenting SSD conditions by

means of absolute Lorenz curves, following the formulations given by Shorrocks

(1983) and Yitzhaki and Olkin (1991).4 These curves enable us to see the contribu-

tion of every asset to the expected return and the risk of the portfolio.

The Lorenz curve expresses the cumulative expected return on the portfolio as a

function of the cumulative probability distribution of the return on the portfolio.

Given a portfolio with a cumulative distribution F(x), the absolute Lorenz curve

(the Lorenz) is defined as

ALC(p) ¼
ðxp

�1
x f(x)dx for�1 � xp<1 where xp is defined by p ¼

ðxp

�1
f(x)dx

(17.1)

and f() is the density function of the return on the portfolio. The properties of the

absolute Lorenz curves and the relationship with the GMD are listed and proved in

Chap. 5.

We can now use the Lorenz to compare portfolios. According to SSD rules,

portfolio A dominates portfolio B if and only if

ALCA(p) � ALCB(p) for all 0 � p � 1: (17.2)

4 Shorrocks (1983) calls these curves generalized Lorenz curves.
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The rationale for using absolute Lorenz curves to describe the properties of risky

portfolios can be seen in Fig. 17.1. The Lorenz of a portfolio enables us to represent
the expected return and the risk of the portfolio geometrically. As returns of a risky

portfolio are ranked in increasing order, the shape of the Lorenz is convex with the

lowest returns being at the left. In addition, the returns represent the slopes of the

Lorenz. The curve starts at (0, 0) and ends at (1, m), where m is the expected return

on the portfolio.

A safe asset with the same expected return m will have a linear Lorenz that starts
at (0, 0) and ends at (1, m). In Fig. 17.1 the Lorenz of this asset is drawn as the

straight dotted line which we label “the line of safe asset” (LSA). It is represented

by the expected return multiplied by the probability p, where p is defined in (17.1).

That is, LSA(p) ¼ mp. We note that LSA coincides with the line of independence

(LOI) as detailed in Chap. 5.

We can express the risk of a portfolio as a function of the vertical difference

between LSA (that yields the same expected return) and its Lorenz. Indeed, for
every probability p, investing in the portfolio provides a cumulative expected return

expressed by the Lorenz, while investing in the riskless asset yields the same

cumulative mean as given by the LSA.

Therefore, the farther the LSA from the Lorenz is, the greater the risk assumed

by the portfolio. One possible measure of risk is the Gini’s mean difference (GMD)

of the portfolio which is obtained from the distances between the LSA and the

Lorenz. Equation (17.3) shows that the area between the LSA and the Lorenz is

equal to one-fourth of GMD

ð1
0

½m p�ALC(p)]dp ¼ cov(r,F(r)) ¼ 1

4
Dr ¼ 1

2
D�
r ; (17.3)

where m p is the LSA(p), ALC(p) is the Absolute Lorenz curve (hereafter, the

Lorenz) and D�
r is half the GMD of the portfolio. Other measures of risk such as the

extended Gini and even the variance can be obtained as functional of the vertical

difference between the LSA and the ALC. (See Chap. 5).

μΑ

Line of Safe Asset 

D

pα
F

Lorenz A

0

P*E(rA|rA≤r(pα))

1

Fig. 17.1 SSD and absolute

Lorenz curves. Source:

Shalit and Yitzhaki (2010),

Fig. 1, p. 434
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We can gain additional insight from Fig. 17.1. The horizontal axis depicts the

probabilities ranked from those generating the lowest portfolio returns and yielding

the highest marginal utility to those generating the highest returns with the lowest

marginal utility. Thus, the (equal) probabilities on the horizontal axis are ranked

according to declining marginal utility. Because utility is defined over wealth,

ranking probabilities with respect to portfolio returns yields the same result as if

the rankings were according to declining marginal utility for each investor. All

investors concur with this ranking because it is based only on portfolio returns, and

their portfolio is assumed to be their only risky wealth.

While investors who hold the same portfolio and the same set of probabilities

with respect to states of nature may not exhibit the same marginal utility from

portfolio returns, they all agree upon the ranking of the marginal utilities of these

returns. Hence, ranking with respect to portfolio returns is the only information we

need in order to rank portfolios with respect to marginal utilities. The vertical axis

in Fig. 17.1 shows the cumulative portfolio returns up to a specific state of nature,

where states of nature are ordered according to the returns associated with their

occurrences. The vertical difference between the LSA and the Lorenz of the

portfolio represents the returns that, multiplied by the marginal utility, make up

the expected utility. In other words, the loss in expected utility due to riskiness is the

sum (integral) of the marginal utility multiplied by the distance between the LSA

and the Lorenz. Different investors have different marginal utilities, so the loss due

to riskiness differs among investors.

The connection between SSD and the nonintersection of Lorenz curves can be

explained as follows. If one chooses to use a linear utility function, a necessary

condition for the portfolio to be preferred by all expected utility maximizers is that

it is preferred by the risk-neutral investor whose marginal utility is a constant. In

this case one needs to look only at the last point on the Lorenz, which equals the

portfolio’s expected return.

Another necessary condition is that the area below the Lorenz of the dominating

portfolio will be greater than the area below the Lorenz of the dominated portfolio.

This area is one-half the expected returns minus one-fourth of the GMD. This is the

logic behind the mean-Gini (MG) necessary conditions for SSD (Chap. 5) which are

expressed as

mA � mB
mA � D�

A � mB � D�
B:

(17.4)

These conditions state that if portfolio A is SSD preferred to portfolio B, then the
mean and the risk-adjusted mean return of A cannot be less than the mean and the

risk-adjusted mean return of B when risk is measured by the Gini of the portfolio.5

5 Yitzhaki (1982a) also shows that the mean-Gini conditions for SSD are sufficient whenever the

cumulative probability distributions intersect at most once.
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Conditions (17.4) are stated in terms of the GMD. They hold for all EG variability

measures relevant for the risk-averse investor as well. Note, however, that one can

define an infinite number of necessary conditions by requesting that the dominating

portfolio will have a higher Lorenz than the dominated one at any given p.

17.2.2 Absolute Concentration Curves and Marginal
Conditional Stochastic Dominance

So far we described the necessary conditions for SSD in terms of risk-adjusted mean

returns, treating each portfolio with a given composition of assets. The next step is to

apply SSD to the appropriate composition of assets in the portfolio. The core of

portfolio theory is the idea that diversification of asset holdings reduces an investor’s

exposure to risk. SSD in a portfolio must be applied in an environment where

investors can change the choice of assets. For this purpose we rely on absolute

concentration curves (ACCs). Because SSD rules are much more complex in a

portfolio context than in applications to individual assets, one must recognize their

limitations as noted by Shalit and Yitzhaki (1994) and formulate a simpler question.

Rather than defining rules for dominance, one might ask whether a given portfo-

lio A belongs to the SSD efficient set. The inquiry to belong to an SSD efficient set

proceeds in several consecutive conditions:

(a) Is it possible to find an alternative portfolio B in the neighborhood of A that

differs from A by changing the shares of only two assets and SSD dominates

portfolio A?
(b) If it is impossible to find such a portfolio, is it possible to find an alternative

portfolio B in the neighborhood of A that differs from A by more than two assets

and SSD dominates A?
(c) Finally, provided that we have failed to find portfolios that dominate A

according to (a) and (b), is it possible to find an alternative portfolio B that

SSD dominates A?

A portfolio that is not dominated by another portfolio according to these

conditions belongs to the SSD efficient set. We address each question (i.e., condi-

tion) separately.

The first question is answered using the concept of MCSD as defined by Yitzhaki

and Olkin (1991) and Shalit and Yitzhaki (1994). MCSD states the conditions under

which all risk-averse investors holding a given portfolio Awill prefer to increase the

share of one asset over another. MCSD is more confining than SSD because it

considers only marginal changes in holding risky assets in a given portfolio and

restricts the change to involve two assets only.

To make MCSD operational, we develop the concept of ACC as follow.

Consider a portfolio of n risky assets a
Pn

i¼1 ai ¼ 1
��� �

} whose return ra is defined
by ra ¼

Pn
i¼1 ai ri , where ri is the return on asset i, i ¼ 1,. . .,n, and let fa be the

density function of the portfolio. LetmiðtÞ ¼ Eðri ra ¼ tj Þbe the conditional expected
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return on asset i, given the portfolio return t. The ACC of asset i with respect to

portfolio {a} is defined as the cumulative conditional expected returns on asset i as a
function of the portfolio’s cumulative distribution p ¼ Fa(ra,p)

ACCi(p) ¼
ðra;p
�1

mi(t)fa(t)dt for�1 � ra;p � 1 (17.5)

where r/,p is the pth quantile of the return distribution F/ defined as

p ¼
ðra;p
�1

fa(t)dt ¼ Faðra;pÞ:

When not confusing, the subscript p will be omitted.

Similarly, from (17.1), the Lorenz of portfolio {a} is

ALCa(p) ¼
ðra;p

�1
tfa(t)dt for�1 � ra;p � 1: (17.6)

Following the definition of the portfolio, its Lorenz can be written as the

weighted sum of the assets’ ACCs held in the portfolio and can be expressed as

ALCa(p) ¼
Xn
i¼1

aiACCi(p) for 0 � p � 1: (17.7)

Figure 17.2 depicts the ACC of asset i. The horizontal axis represents the cumula-

tive distribution of the portfolio’s return and the vertical axismeasures the cumulative

expected return of asset i. The ACC of asset i, which is an asset that does not need to
be included in the portfolio, relates the cumulative expected return on that asset to the

cumulative probability distribution of the portfolio. The ACC of asset i is the solid
curve. The dashed straight line is the LSA that connects the origin (0, 0) with the point

(1, mi), where mi is the unconditional expected return of asset i. The LSA represents an

asset whose returns are independent of the performance of the portfolio and that has

the same unconditional expected return as asset i.6

We now state the main theorem to determine MCSD using ACCs.

MCSD Theorem (Shalit & Yitzhaki, 1994): Given portfolio {a}, asset k dominates
asset j for all concave utility functions if and only if

ACCa
kðpÞ � ACCa

j ðpÞ for all 0 � p � 1; (17.8)

with at least one strong inequality.

6 LSA coincides with the Yitzhaki and Olkin (1991) line of independence (LOI). Samuelson

(1967) shows that independent assets that are not included in the portfolio would be added to it

if they have the same expected returns.
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A proof is given in Chap. 5. Here an intuitive proof is given.

Intuitive proof Equation (17.7) provides a very simple proof for the theorem.

Given the share of each asset in the portfolio, the ACC of asset j is the derivative

of the Lorenz of the portfolio with respect to asset j. To increase the share of one

asset on behalf of another in order for the new portfolio to SSD-dominate the given

portfolio, the derivative of the Lorenz of the portfolio with respect to the dominating

asset has to be greater than the derivative of the dominated asset everywhere.

To derive the necessary conditions for MSCD and relate them to the fundamen-

tal ideas in finance, we describe the basic properties of the ACC.

(1) The ACC of asset i passes through the points (0, 0) and (1, mi).
(2) The derivative of the ACC of asset i with respect to p is mi(t) ¼ Ei(ri|ra,p ¼ t).

Consequently, the ACC increases if and only if mi(t) > 0.

(3) The ACC is convex, straight, or concave if and only if @miðtÞ=@t
>
¼
<

8<
:

9=
;0:

(4) When the returns ra and ri are independent the ACCi [pa] coincides with the

LSA (where pa is the cumulative distribution of the portfolio).

(5) The area between the LSA and the ACC of asset i is equal to cov[ri, Fa (ra,p)],

the covariance of the return on asset i and the cumulative probability distribu-

tion of portfolio {a}. The area below the ACC is the area of the lower triangle

minus that area between the LSA and the ACC, namely,

ð1
0

ACCi(p)dFa ¼ 1

2
ðmi � 2cov(ri;Faðra;pÞÞ ¼ 1

2
ðmi � bGi D�

aÞ;

where bGi ¼ 2cov(ri;Faðra;pÞÞ
D�

a
is the Gini regression coefficient of asset i on the

portfolio {a} and D�
a ¼ 2cov(ra;Faðra;pÞÞ is one-half of the GMD of the portfolio.

Note that the beta is the well-known beta that is used in the CAPM except that it is

based on the GMD rather than on the variance.

μι

LSA with μk

Fα

ACCi

0
1

ACCk

μκ
LSA with μi

Fig. 17.2 Absolute

concentration curves. Source:

Shalit and Yitzhaki (2010),

Fig. 2, p. 437
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These properties allow one to state the necessary conditions for MCSD, namely,

that if asset j dominates asset k conditional of holding portfolio {a} then

mj � mk

mj � bGj D�
a � mk � bGk D�

a:
(17.9)

The first condition implies that the dominating asset has a higher expected return

than the dominated asset, regardless of the risk involved. The second necessary

condition is more meaningful, as it states that a preferred asset has a higher risk-

adjusted expected return than the risk-adjusted expected return of the less favored

asset. Indeed bGj expresses the systematic risk in the mean-Gini model

(MG-CAPM)7. Hence mj � bGj D�
a is the risk-adjusted expected return, which is

defined as the mean minus the beta calculated in Gini terms while the multiplication

by D�
aquantifies the risk.

From the second necessary condition one can obtain

mj � mk
D�
a

� bGj � bGk ; (17.10)

that is, when a security dominates another by MCSD, the difference between the

two securities’ expected returns per unit of portfolio risk must be greater than the

difference in their systematic risks defined in terms of MG–CAPM.

Using the mean and the risk-adjusted mean return, this result allows for a

complete ordering of investment alternatives. MCSD criteria using ACCs establish

only a partial ordering. A complete ordering is an advantage when no dominance

can be assessed by using ACCs, but a decision maker nevertheless wants to rank

investment alternatives. In that case, the mean-Gini necessary conditions for MCSD

provide an investment ranking that does not necessarily satisfy the sufficient

conditions.

The above discussion has shown the criteria for finding a portfolio that will

dominate the given portfolio by changing two assets at a time. It was based on the

fact that the MCSD theorem is restricted to substituting one asset by another.

We now extend the method to several assets. The extension can be done in a

relatively simple manner: instead of looking at two assets, we look at two linear

combinations of assets.

The question asked is:

Is it possible to find an alternative portfolio B in the neighborhood of A, that SSD
dominates A and differs from it in more than two assets?

According to (17.7), a combination of ACCs of several assets defines a new ACC

that is a linear combination of the individual ACCs. Hence, to address MCSD

involving more than two assets one needs to search for a linear combination of

7Whenever the CAPM is mentioned, it is interpreted as the reference portfolio held by the investor

and not necessarily the market portfolio.
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assets whose ACC is not below the ACC of the linear combination of other assets.

This can be solved numerically as in Shalit and Yitzhaki (2003), and then the

optimal ACC can be delineated.

Till now the search was restricted for a portfolio that SSD dominates a given

portfolio in the neighborhood of the given portfolio. The next question to be asked is:

Is it possible to find an alternative portfolio B that SSD dominates A?
Yitzhaki and Mayshar (2002) have shown that if a portfolio is not MCSD-

dominated by another portfolio it is also not SSD-dominated by any other portfolio.

To understand the intuition that leads to this conclusion, let us consider two

portfolios A and B, where B SSD-dominates A. In that case, for all risk-averse

utility functions:

E½UðBÞ� � E½UðAÞ�: (17.11)

To prove the argument it must be shown that if (17.11) holds, there is also a

portfolio in the neighborhood of A that SSD dominates A. First note that:

lE½UðBÞ� þ ð1� lÞE½UðAÞ� � E½UðAÞ� for1 � l � 0: (17.12)

Because U is concave, we know that:

EfU½ð1� lÞAþ lB�g � lE½UðBÞ� þ ð1� lÞE½UðAÞ�: (17.13)

Combining (17.12) and (17.13) we get:

EfU½ð1� lÞAþ lB�g � E½UðAÞ� for 1 � l � 0: (17.14)

We now apply (17.14) for l ! 0 and l > 0, by which we find a portfolio in the

neighborhood of A that SSD-dominates A. Therefore, it is impossible to have a

portfolio that SSD dominates A without also having a portfolio in the neighborhood

of A that SSD dominates A. Thus, we may conclude that if A is not MCSD-

dominated then A is not SSD-dominated. Zhang (2009) presents an example in

which it is shown that in a portfolio with more than two risky assets, even if a

portfolio passes all pairwise MCSD dominances for assets, it still may be inefficient

because it can be dominated by a portfolio that differs from the original portfolio by

more than two assets. This means that numerical optimization must be involved

when dealing with efficiency in portfolios.

17.3 Risk Aversion, Extended Gini, and MCSD

The extended Gini enables one to introduce the degree of risk aversion by adding

one parameter into the calculation of the measure of dispersion. Indeed, with the

parameter n, which represents risk aversion, the extended Gini variability measure

characterizes risk-averse investors ranging from risk-neutral (n ¼ 1) to highly
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risk-averse max–min individuals (n ¼ 1). Other necessary conditions for MCSD

that are specific to risk-averse agents can then be derived using the mean and

systematic risk (now measured using the extended Gini). The MCSD-dominating

asset has to have a higher risk-adjusted expected return than the dominated asset for

every risk-averse investor. The risk-adjusted expected return is based on using

the mean-extended Gini CAPM. For each asset and risk aversion coefficient, the

extended Gini beta is calculated and used to adjust the expected return for risk.

The extended Gini specifies increasing risk aversion by stressing the lower

segments of the distribution of portfolio returns. Similar to the GMD, which is

defined as the vertical difference between the LSA and the Lorenz of the portfolio,
the extended Gini is the weighted vertical difference between the LSA and the

Lorenz. Using the parameter n to adjust the area definition, we define the extended

Gini for asset X as:

Dðn;X Þ ¼ nðn� 1Þ
ð1
0

ð1� p)
n�2

(pmX � ALCX(p))dp (17.15)

where ALCX(p) ¼
Ð xp
�1 xfx(x)dx is the Lorenz, Xp is indirectly determined by

p ¼ Ð xp
�1 fxðxÞdx, nðn� 1Þð1� pÞn�2

is the weight associated with each portion

of the area, and pmX is LSA(p). The parameter n (>0) is being established by

the researchers.8

There are some special cases of interest for the extended Gini:

For n ¼ 2 (17.15) becomes one-half of GMD.

For n ! 1 the extended Gini reflects the attitude of a max–min decision maker

who wants to express risk in terms of only the worst outcome.

For n ! 1 (17.15) converges to zero, representing a risk-neutral investor who

does not use any measure of dispersion to evaluate risk.

For 0 < n < 1 the extended Gini is negative and models a risk-loving investor.

For ease of presentation and because we are dealing with risk-averse investors, we

assume that n > 1, although many of the results reported can be applied without

modification to risk-loving investors. While in stochastic dominance the relevant

definition of extended Gini is through the concentration curve, in financial analysis

the covariance formula for the extended Gini is more convenient, because it enables

imitating the variance based models:

Dðn, X) ¼ �ncovðX; ½1� F(X)�n�1Þ: (17.16)

The equivalence of the two definitions is derived in Chap. 6.

The weighted area under the Lorenz curve is equal to:

m� ncov(r,[1� F(r)�n�1Þ: (17.17)

8 See Aaberge (2000) and Kleiber and Kotz (2002) on additional connections between the Lorenz

curve and the extended Gini. Graves and Ringuest (2009) offer a tutorial for stochastic dominance.
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We refer to (17.17) as RAR(n)—the risk-adjusted expected return of an asset

using the extended Gini D(n,X). As shown in Chap. 6 (6.6), (17.17) is also a special
case of Yaari’s (1987) dual utility function.

One can introduce risk aversion differentiation into the SSD andMCSD necessary

conditions and make them specific to various investors. A necessary condition for

SSD is that the RAR(n) of the dominating portfolio will be at least as high as the

RAR(n) of the dominated portfolio. Hence, the conditions for the portfolios shown in

(17.4) become:

mA � mB
mA � DAðn ,X) � mB � DBðn ,X): (17.18)

The necessary conditions for MCSD developed in (17.9) can be replicated with

the extended Gini as follows:

If asset j MCSD dominates asset k conditional on holding portfolio {a} then

mj � mk
and mj � bjðnÞ Daðn;XÞ � mk � bkðnÞ Daðn; X) : (17.19)

Note that this time bj (n) is defined in terms of the extended Gini as follows:

bjðnÞ ¼
cov(rj; ½1� Faðra�n�1Þ
cov(ra; ½1� FaðraÞ�n�1Þ ; (17.20)

and Da(n,X) is the extended Gini as shown in (17.16).

Interpretation of (17.19) remains the same as of (17.9), except that the necessary

conditions depend on the investor’s specific coefficient of risk aversion (that is, on

the choice of n). This is the main point: if asset j dominates asset k according to

MCSD, then it must be that the risk-adjusted expected return of j is higher than the

risk-adjusted expected return of k, where risk is measured by extended Gini betas,

for any choice of risk aversion parameter n. In other words, if asset j MCSD

dominates asset k for a given portfolio a, there is no extended Gini beta for k
such that for any possible n the RAR(n) of k will be greater than the RAR(n) of j.
These conditions, however, are merely necessary and not sufficient, because the

family of extended-Gini utility functions does not cover all possible risk-averse

utility functions. For example, they do not include a change in the parameter of risk

aversion n on a given point along the distribution of returns.

The above discussion introduces the extended Gini to express the necessary

conditions for SSD and MCSD. One issue is left unresolved: how do we choose the

risk aversion parameter n? Hence, the question to be asked is really how one can

choose a utility function that represents a specific investor. By gathering informa-

tion on the investor’s decision making under risk, presumably one can estimate the

parameter n specifically for a particular investor, but this is a question for further

research. See for example, Shalit and Yitzhaki (1989) where one estimates the risk

aversion of the market using the market portfolio over time.
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17.4 Beta and Capital Market Equilibrium

Stochastic dominance was developed in order to construct portfolios for specific

investors’ classes. As such, it ignores the notion of capital market equilibrium.9

On the other hand, the concept of beta emerged as the equilibrium price of non-

diversifiable risk carried by an asset in a competitive financial market situation.

The beta is the regression coefficient of the return on the asset on the returns of the

portfolio (the market if everyone holds the market portfolio). In this section we

comment briefly on the connection between the beta and MCSD.

Consider first a financial market of risky assets where all returns follow a

multivariate normal distribution. The agents in this market may have different

levels of risk aversion. In this case investors will hold an identical portfolio of

risky assets, i.e., the “market portfolio,” and the only difference between them will

come about in the allocations of their wealths between the risky portfolio and the

risk-free asset. In this theoretical textbook case, the settings for deriving SD and

beta will be identical.

As we have shown in (17.9) a necessary condition for MCSD of asset j over asset

k is that if asset j dominates asset k conditional on holding portfolio {a} then

mj � mk

mj � bGj D
�
a � mk � bGk D�

a:

Note that the first condition is not affected by the risk aversion of the investor.

The second condition says that the risk adjusted expected return on asset j is greater

than the risk adjusted expected return on k. But this condition has to hold for all EG

and actually for all concave utility functions. Therefore we may conclude that

stochastic dominance rules do not invalidate the concept of beta. They only demand

that we define the concept for each utility function. We will analyze the implications

of assuming investors with different risk aversions in Chap. 18.

17.5 Summary

The objective of this chapter is to introduce the terminology and the theoretical

results that are needed for the applications of the Gini methodology in financial

theory. Those applications are relevant whenever one is interested in decision

making under risk, or in reducing the incompatibility between financial theory

and econometric applications. There are several reasons for using the Gini in

finance: (a) it is compatible with the expected utility theory and with Yaari’s dual

theory (b) it reveals more and (c) it helps overcome some of the econometric

problems in finance.

9 This topic is dealt in Chap. 18.
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The main tools are based on the stochastic dominance rules. It is shown how to

use these rules in classifying efficient portfolios. Stochastic dominance rules can be

derived by curves or numerical optimization. For an economist and a practitioner

who are used to think in terms of risk and return, a major weakness of the models

based on numerical optimization is their inability to express the results intuitively.

The remedy is to characterize the rules geometrically by using absolute Lorenz

curves (ALC) for SSD and absolute concentration curves (ACC) for MCSD. One

can then interpret the rules in terms of risk-adjusted mean returns depending on

different measures of risk aversion. The curves enable the user to see the contribu-

tion of every asset to the expected return and the risk of the portfolio. For example if

we denote the ALC of a safe asset (having expected return m) by LSA (that is,

LSA(p) ¼ m p) then one can express the risk of a portfolio as a function of the

vertical difference between LSA (that yields the same expected return) and its

ALC: the farther the LSA from the ALC is, the greater the risk assumed by the

portfolio. One possible measure of risk is the GMD of the portfolio which is

obtained from the distances between the LSA and the ALC: the area between the

LSA and ALC is equal to one—fourth of GMD. Chapter 18 will be devoted to the

applications of the concepts derived in this chapter to construct optimal portfolios.

How does systematic risk explain stochastic dominance efficiency? Beta, which

is used by practitioners in finance, measures systematic risk as the covariance

between asset return and market return.10 The concept is rooted in mean-variance

theory as it prices security risk in capital market equilibrium. The measure depends

mainly on the validity of MV and its compatibility with maximizing expected

utility when returns are multivariate normally distributed or when the investor’s

utility function is quadratic. The presence of fat tails and skewness in financial data

precludes normality of returns, and quadraticity of preferences leads to unwarranted

results. Hence, alternative measures of systematic risk are called for. For example

one can look at the covariance between asset return and marginal utility to express

undiversifiable risk correctly. Hence systematic risk depends upon the choice of the

risk measure chosen by the investors. In the case of Gini’s mean difference and

the extended Gini, the resulting betas are the mean-extended Gini betas used in the

necessary conditions for stochastic dominance. Gregory-Allen and Shalit (1999)

have shown that the mean extended Gini (MEG) betas, which depend upon the

investor’s degree of risk aversion, subside to the standard MV betas only when

returns are normally distributed. As it is seldom the case that normality holds, we

advocate MEG betas to be used for stochastic dominance.

10 In general the term market’s return should be interpreted as the portfolio’s return. See Shalit and

Yitzhaki (2009) concerning CAPM with heterogeneous risk-averse investors.
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Chapter 18

The Mean-Gini Portfolio and the Pricing

of Capital Assets

Introduction

Since its development by Markowitz (1952, 1970), the mean-variance (MV) model

for portfolio selection has become the standard tool by which risky financial assets

are allocated. MV has gained a prominent place in finance because of its conceptual

simplicity and ease of computation. Many authors, however, have challenged the

model’s assumptions, primarily the normality of the probability distributions of the

assets’ returns or the quadraticity of the preferences. MV validity has been

reasserted by Levy and Markowitz (1979) and by Kroll, Levy, and Markowitz

(1984), who showed that MV faithfully approximates expected utility.

The challenge to the validity of MV has led researchers to seek alternative

solutions to efficient portfolio selection, resulting in approaches such as the three-

moments, lower partial moments, semi-variance, value-at-risk, stochastic dominance

and mean-Gini (MG) models, to name only a few. Still, no other model has managed

to attain the popularity of MV by practitioners so far, owing to the lack of intuitive

reasoning and to the complex computations required by the alternative models.

The MG analysis provides a consistent alternative to MV modeling whenever

investment returns are not normally distributed or when the investor’s utility is not

quadratic (and therefore MV is not applicable). The MG approach in finance is

superior to the MV approach because by supplying necessary conditions for

stochastic dominance MG efficient set is a subset of an SSD efficient set. That is,

every portfolio in the efficient set could be derived by a maximization of an

expected utility function.

The mean-extended Gini (MEG) offers a simple way to include risk aversion in

the construction of an efficient portfolio by providing a family of variability

measures that depend on one parameter. (See Chap. 6 for details). By varying the

EG parameter the investigator modifies the risk aversion and offers an efficient

This chapter is based on Shalit and Yitzhaki (2005, 2010).

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_18,
# Springer Science+Business Media New York 2013
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frontier that suits the risk preference of the investor. The efficient frontier can then

supply the price attached to a unit of risk, given a level of risk aversion.

The objective of the first part of this chapter is twofold. First, we present the MG

and MEG portfolio models as workable alternatives to MV. We compute the

MG and the MEG efficient frontiers numerically and compare the results to

the MV frontier. Second, we derive the MG efficient frontier analytically in a

way that is similar to the derivation of the MV efficient frontier so it can be used

in practice as easily as MV (under some assumptions to be detailed later). Gener-

ally, deriving MG portfolios is complex mainly because of the additional informa-

tion which the Gini infers on properties of the distributions. If one is ready to forgo

this additional information, finding and interpreting MG portfolios can be as simple

as constructing and analyzing MV portfolios. In the second part of the chapter we

deal with financial market equilibrium, where investors differ in their risk aversion.

In particular, we prove that the result of the MV-Capital Asset Pricing Model

(CAPM), namely that all investors hold the same market portfolio is caused by

the assumption that all investors have the same risk aversion. Once this assumption

is removed then each type of risk-averse investors holds the same risky portfolio,

but it may be that no one holds the market portfolio. In some sense it turns out that

characterizing the equilibrium in the capital market is not different than characte-

rizing the equilibrium in the markets for commodities.

The uses of the MV and the MEGmodels follow two similar steps but they differ

by the order of actions. In the MEG procedure one first chooses a utility function,

(i.e., a parameter representing risk aversion) and then the utility function determines

the measure of variability that represents the risk and the appropriate correlation

coefficients. In the MV procedure one first chooses the variance as the measure of

risk. Hence, one is actually selecting a specific utility function (i.e., quadratic) which

imposes a specific type of risk aversion. This difference composes the base of our

criticism of theMVmodel. The advantage of theMEG approach is that it enables the

estimation of both the CAPM and the risk aversion of the market, while the MV

approach imposes the risk aversion and given that, estimates the CAPM.

The structure of the chapter is the following: the first part (Sects. 18.1 and 18.2)

deals with the construction of the MG and the MEG portfolios, while the second

part (Sects. 18.3 and 18.4) deals with financial market equilibrium, where investors

differ in their risk aversion. Section 18.5 concludes.

18.1 The Mean and Mean-Extended Gini Efficient Frontiers

In the MG model investors use the portfolio’s Gini Mean Difference (GMD) as the

measure of risk to be minimized, subject to a given mean return. The most

convenient presentation of the GMD to be used is the covariance presentation:

D� ¼ 0:5D ¼ 2cov[r,F(r)] (18.1)
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where r is the return, D is the GMD, and F(r) is the cumulative distribution function

(cdf) of the return.(See Chap. 2 for the various presentations of the GMD).

The advantage of the Gini over the variance as a measure of risk is rooted in the

necessary and sufficient conditions for second-degree stochastic dominance (SSD)

in the following way: consider two portfolios (1 and 2) yielding returns r1 and r2,
with means m1 and m2, and Ginis D1 and D2. Then m1 � m2 and m1 – D*1 � m2 –D*2
are necessary conditions whereby no risk-averse expected utility maximizer will

prefer portfolio 2 to portfolio 1. If one restricts the distributions of the portfolios to

the family of cumulative distributions that intersect at most once, these conditions

are also sufficient. Because MV is not compatible with expected utility theory, MG

ranks risky alternatives consistently even whenever MV might fail (Shalit &

Yitzhaki, 1984).

The implication of this result is that the efficient set of MG is included in the

efficient set of risk-averse investors, so that every efficient MG portfolio maximizes

the expected value of a utility function. This result does not hold for the MV

efficient set. To see this, consider the choice between two portfolios. The first

portfolio offers a return between zero and one dollar, and the second offers returns

between one million and two million dollars. Both portfolios are included in the

efficient MV set because the first offers a lower variance and the second offers a

higher expected return. Thus, if one relies only on the mean and the variance, one

may end up choosing the portfolio that every expected utility risk-averse investor

would reject. The necessary conditions for stochastic dominance prevent MG users

from making this mistake. We now move to constructing MG portfolios.

Consider a portfolio p whose returns rp are obtained by rp ¼
Pn

i¼1 airi, where ai
and ri are the share and the return to asset i, respectively. Then, the (half of the)

GMD of the portfolio is:

D�
p ¼ 2cov(rp; FpÞ ¼ 2

X
aicovðri; FpÞ: (18.2)

We can now obtain the MG-efficient frontier by solving the following optimiza-

tion problem:

Min D�
p

s.t: mp ¼
X

aimi

1 ¼
X

ai

ai � 0 i ¼ 1;:::, n

(18.3)

where the last set of inequalities is optional, and is applicable when short sales are

not allowed. Problem (18.3), although similar in structure to the MV optimization

problem, is much more complicated than the MV problem because the cumulative

distribution of the portfolio is not a simple function of the distribution functions of

the returns of the individual assets.
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MG analysis can be extended to include the investor’s preference toward risk.

This is done by introducing the extended Gini as a measure of risk. The extended

Gini attaches higher weights to the lower portions of the probability distribution of

the return of the portfolio. This implies that higher risk aversion attributes more

weight to the lower payoff realizations than will lower risk aversion.

The extended Gini is defined much like the definition in (18.1):

Dðn; rÞ ¼ �n covfr; ½1� FðrÞ�n�1g; (18.4)

where n is a parameter determining the relative weight attributed to various portions

of the probability distribution. The parameter n ranges from 1 to infinity, with

n ! 1 implying variability as viewed by a risk-neutral investor. For n ¼ 2 we

obtain the standard Gini risk aversion and for n ! 1 we allow for the max–min

investor who wants to avoid the worst possible outcome.

The utility function that is implied by using the extended Gini can be viewed as a

special case of the utility functions suggested by Yaari’s (1987) dual theory of risk

aversion that distinguishes the notion of declining marginal utility of income from

behavior under risk. In the case where n is a positive integer, the link of n to risk

aversion can be shown as follows: the extended Gini equals the mean return minus

the expected least outcome from n independent random draws from the return

distribution:

Dðn ,r) ¼ m� E[Min(r1;:::;rnÞ�: (18.5)

(See Chap. 6 for this and other ways to express the extended Gini). Equation

(18.5) can then be used to develop additional necessary conditions for stochastic

dominance. In particular, comparing risk adjusted return m – D(n,r) of a risky

portfolio with the return on a safe portfolio enables one to view m – D(n,r) as the
certainty equivalent of the portfolio’s return. With a higher n one assigns higher

odds to obtaining bad outcomes. Hence, the certainty equivalent of the portfolio is

lowered. This, in turn, raises the risk premium required by the investor.

This interpretation of certainty equivalence relates risk aversion to the

discounting of probabilities of good outcomes, which does not originate from

assuming declining marginal utility of income as is the case in expected utility

theory. Rather, the higher the risk aversion, the more the investor tends to amplify

the probability of bad events and to discount the probability of good events.

In applications the empirical cumulative distribution function is used as an

estimator of the cumulative distribution. It is obtained by ranking the returns

of the portfolio in increasing order and dividing the rank of each observation by

the number of observations. Because a ranking procedure is invoked each time the

portfolio’s GMD (or extended Gini) is calculated, nonlinear programming

techniques should be used with caution.1

1When applied to empirical data, the problem is one of a piece-wise linear optimization. See

Okunev (1991) and Okunev and Dillon (1988) for a linear programming solution.
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There are several numerical methods to solve the MG portfolio selection.

As far as we know the simplest and best way is offered by Cheung, Kwan, and

Miu (2007). They use Excel Solver Macro to choose the optimal portfolio. This

program can be easily adjusted to solve the MEG portfolio optimization, with

and without short sales.

18.2 Analytic Derivation of the Mean-Gini Frontier

As mentioned above, under certain conditions the MG-efficient portfolios can be

derived analytically in a manner similar to the derivation of MV portfolios. In this

section it is shown that if one is ready to impose restrictions on the underlying asset

distributions then one can derive the MG portfolios using the same technique that

solves the MV constrained minimization problem. To see the parallel between the

MG and the MV derivations, only the differences between the two dispersion

measures have to be explored because all the other components of the optimization

problems are identical.

The Gini and the variance derive their properties from the covariance. The

variance is calculated as the covariance of the return with itself, while the GMD

is the covariance of the return with its cdf. We note that GMD’s reliance on the

return and its cumulative distribution complicates its use, but this relationship does

enable the GMD to extract more information about the underlying distribution.

The main concern in portfolio analysis is that the Gini is associated with two

Gini correlation coefficients between each pair of returns, while the variance is

related to one correlation coefficient (the Pearson’s correlation coefficient). The

two Gini correlation coefficients between ri and rj, are given by

Gij ¼ cov[ri;FjðrjÞ�
cov½ri;FiðriÞ� Gji ¼ cov[rj;FiðriÞ�

cov½rj;FjðrjÞ� : (18.6)

Both correlation coefficients are needed in order to decompose the portfolio’s

GMD into the contributions of individual assets. (See proposition 18.1 below for

the decomposition and Chaps. 3 and 4 for the properties of the Gini correlations).

For our purpose it is important to note that the two correlation coefficients are not

necessarily equal. They are equal if the distributions of ri and rj are exchangeable up
to a linear transformation. Intuitively, exchangeability up to a linear transformation

requires as a necessary but not a sufficient condition that the shapes of the marginal

distributions of assets are equal up to a linear transformation. A disparity in the two

correlations means different shapes of the two marginal distributions (of asset

returns).

The correlation coefficients allow us to decompose the portfolio’s Gini as

follows:

Proposition 18.1 Let rp ¼
Pn
i¼1

airi. Then
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D2
p � Dp

Xn

i¼1
aiDipDi ¼

Xn

i¼1

Xn

j¼1
aiajDiDjðGij þ GjiÞ (18.7)

where Dip ¼ Gip � Gpi (i ¼ 1, . . ., n) is the difference between the two Gini
correlations defined by the return of the portfolio and the return of asset i.

Proof See Chap. 4.

Assuming exchangeability up to a linear transformation between the distribution

of each asset and the portfolio implies that Dip equals 0 for all i. Hence, exchange-

ability among the portfolio and the assets leads to:

D2
p ¼

Xn

i¼1
a2i D

2
i þ

Xn
i¼1

Xn
j 6¼i

ai ajDiDj Gij: (18.8)

Note that the decomposition of the variance of a linear combination of random

variables is a special case of the above decomposition where each (square of) Gini

in (18.8) is replaced by the variance and each Gini correlation is replaced by the

Pearson correlation coefficient. Because the rest of the optimization problem (18.3)

is identical to the MV optimization problem, one can adapt the textbook derivation

of MV and apply it to MG (see, for example, Huang and Litzenberger (1988, p. 63)

and Merton (1972)).2 By substituting the GMD by the EG we can replicate the

models an infinite number of times. That is, for each EG risk aversion parameter we

produce the appropriate optimal portfolio.

Ignoring sampling variability, the MG, MEG, and MV solutions will be identical

if the underlying distributions are multivariate normal. However, even if the

distribution of only one asset diverges from normality, the solutions of the MG,

MEG, and MV will differ.

The numerical optimization algorithm offered by Cheung, Kwan, and Miu

(2007) which uses Excel Solver Macro to choose the optimal MG portfolio solves

the portfolio optimization problem quickly, with and without short sales and with

and without the exchangeability assumption. Also, this program can be easily

adjusted to solve the MEG portfolio optimization, with and without short sales.

18.3 Capital Market Equilibrium with Two Types of Investors3

Having established that one can replicate MV portfolio with MEG portfolios, we

turn now to see the implication of this development on the classical results in

finance, namely the Capital Asset Pricing Model (CAPM) and the beta.

2 To be precise, for each covariance in the MV framework we substitute a Gini correlation

multiplied by the appropriate Gini.
3 This section is based on Shalit and Yitzhaki (2009).
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The CAPM that has dominated finance since the 1960s is a two-parameter model

that is convenient and appealing to most investors, practitioners, and financial

theoreticians, as it is simple and can present the choice between return and risk in

a transparent way. While the contingent markets approach of Arrow and Debreu

(1954) provides a theoretical alternative to capital market equilibrium with hetero-

geneous investors, most financial practitioners prefer to characterize the distribu-

tion of risky assets by two summary statistics: one for the mean return, and one for

risk. The most popular measure for the latter is the variance.

In the standard two-parameter approach (such as when using an MV utility

function) heterogeneity among investors devolves with risk aversion as in the

trade-off between risk and mean return and not through the individual’s perception

of the distribution of asset returns. In fact, heterogeneous MV investors view risky

assets homogeneously, as the probability distributions are the same for all investors

and the correlations are identical as well.

Capital market equilibrium is reached under the CAPM mutual fund separation

theorem which asserts that investors hold a selection of risky assets known as the

market portfolio which is composed of all risky assets and identical for all investors.

As the price of risk increases, investors hold a greater proportion of the risk-free

assets and reduce their holdings in the mutual fund of risky assets whose proportions

remain unchanged.

Review of actual investors’ positions reveals considerable challenge to the

market portfolio single equilibrium. Canner, Mankiw, and Weil (1997) are a

notable example. They note that popular advice on asset allocation among cash,

bonds, and stocks contradicts CAPM and MV financial theory.

Some of the results obtained by the CAPM are due to the assumption of

identical investors with respect to the way risk is defined. Once we allow

different attitudes toward risk then the main result that all investors hold the

market portfolio is not supported by the model. For equilibrium we have to

assume that investors hold the same expectation concerning the future distribu-

tion of returns.4 Otherwise, they will simply trade and therefore we are not in

equilibrium. Our aim in this section is to show that there is capital market

competitive equilibrium in a two-parameter model with a market portfolio but

that heterogeneous investors who differ in risk aversion will not have to hold it.

Only when investors define risk exactly in the same way can they hold the market

portfolio of risky assets.

Using the MEG we challenge the existence of the mutual fund separation

theorem which claims that in equilibrium all investors should hold the same market

portfolio, even under heterogeneity. In fact, if investors are heterogeneous in the

sense that they perceive the risk of uncertain returns differently, it is shown in Shalit

and Yitzhaki (2010) that at equilibrium no one should necessarily hold the market

4Actually, it is possible to have an equilibrium under different expectations. As will be seen later,

the adjustment needed is that given the different expectations, the marginal rates of substitution

between two assets are the same between all assets and all investors.
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portfolio of risky assets. The market will clear, in the sense that one set of prices

(as expressed by mean returns) will be revealed, but the proportions of risky assets

held by investors will be quite different.

Following the first section of this chapter, we assume that the heterogeneous

investors are MV or MEG investors. The prime question is how we model capital

market equilibrium with such heterogeneous participants. We set up the problem in

MEG terms and provide a solution using a simple Edgeworth box. Although the

discussion is characterized in geometric terms, the results are compelling. Capital

market equilibrium with heterogeneous investors reveals that each will hold a

different efficient portfolio of risky assets but no investor has to hold the market

portfolio. MV implies homogeneity as investors perceive risk similarly. Hence, the

only possible equilibrium solution is that each participant holds the same portfolio

as the market portfolio.5

In a world of identical expectations of the distributions of asset returns, the MEG

approach enables us to differentiate between two separate problems:

1. How is risk perceived and measured?

2. How much is one ready to pay to reduce exposure to risk?

The first question is answered by the type of variability measure that risk-averse

investors use to capture risk. This measure quantifies and qualifies risk.

The second question as to what price investors are ready to pay to reduce risk

exposure is answered by setting one risk price in the market so that the marginal rate

of substitution between risk and expected return will be the same for all assets.

For homogeneous investors the marginal rates of substitution are equal when

investors hold the same portfolio. Heterogeneous investors, on the other hand,

perceive andmeasure risk differently, even though the return distribution is expected

to stay the same. In this case the marginal rates of substitution for different investors

and different assets can be equal to the price that is set by in the market only if the

investors hold different portfolios. Our argument is that adding the assumption of

heterogeneous risk-averse investors leads to a presentation of the CAPM as similar

to the presentation of the equilibrium in commodities market: at equilibrium all

marginal rates of substitutions are equal.

The structure of the arguments is as follows: first we present the investor’s

problem using expected utility maximization, and discuss stochastic dominance and

the two-parameter MG approach. We then elaborate on the MEG ordering

functions. Using an Edgeworth box, we solve the capital market equilibrium-first

for homogeneous investors and then for heterogeneous investors-and explain the

main results.

5 Under a MV framework, both Harris (1980) and Nielsen (1990) use the Edgeworth box to model

capital market equilibrium, the first by analyzing the trade-off between risk and return, and the

second by characterizing allocation risk.

394 18 The Mean-Gini Portfolio and the Pricing of Capital Assets



18.3.1 The Two-Parameter Investment Model

We set the basis for establishing the ranking function in a standard two-period

portfolio choice model. Facing n risky assets with random returns ri for i ¼ 1, . . ., n
and initial wealth w0 the investor chooses a portfolio X, that is: the shares{ai} of the

assets {ri}, i ¼ 1,. . .,n, respectively, such that
Pn
i¼1

ai ¼ 1 and the choice maximizes

the expected utility of the final wealth:

Max E[U(w)]

subject to w ¼ w0

�
1þ

Xn
i¼1

airi

�
and

Xn
i¼1

ai ¼ 1:
(18.9)

We assume initially that optimal choice of assets generates a distribution of

feasible portfolios which solve problem (18.9) (and also that short sales are

allowed). Once feasible portfolios are created, one can compare them by consider-

ing increasing and concave utility functions that are known only to the investors.

For two portfolios X and Ywhose cumulative distributions are given by F andG, the
notion of maximum expected utility states that X dominates Y (second degree

stochastic dominance) if and only if:

EFU(X) � EGU(Y): (18.10)

Because we do not know the utility function, we apply the laws of second-degree

stochastic dominance (SSD) in order to determine the set of efficient portfolios. As

Hadar and Russell (1969), Hanoch and Levy (1969), and Rothschild and Stiglitz

(1970) propose, SSD expresses the conditions under which all risk-averse investors

prefer one portfolio over another. SSD states that X dominates Y if and only if:

ðz
�1

[G(t)� F(t)]dt � 0 for all z 2 ð�1; 1Þ: (18.11)

(See Chap. 5). Various methods have been used to apply the conditions expressed

by (18.11). One way to use SSD is to compare the areas under the cumulative

distributions of portfolio returns. Alternatively, one can compare the absolute

Lorenz curves, which are the cumulative expected returns on the portfolio, following

Shorrocks (1983) and Shalit and Yitzhaki (1994). In essence, for all risk-averse

investors to prefer one portfolio of assets over another, the Lorenz curve of the

dominating portfolio must lie not lower than the Lorenz curve of the dominated one.

We note that neither approach provides practical results in large portfolios

because both involve infinite numbers of pair-wise comparisons of portfolios.

SSD also provides researchers with a partial ordering, forcing the imposition of

additional restrictions on the investor’s preferences.
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Another way to resolve differences between the Expected utility-stochastic

dominance approach and a two-parameter approach is to restrict the distribution

of returns to two-parameter probability distributions, usually the mean and the

variance. Meyer (1987), for example, restricts the distribution to a family that

differs only by location and scale parameters. Levy (1989) extends Meyer’s results

to show the distributional restrictions that guarantee the equivalence of SSD and

MV efficient sets. See also Wong and Au (2004).

The essence of our approach is to select the parameters from a set of parameters

that form the necessary conditions for SSD rules. We thus ensure that the complete

ordering of portfolios produced by the two-parameter approach does not contradict

the partial ordering produced by SSD rules. In other words, the efficient set

generated by the two-parameter approach is guaranteed not to include SSD

dominated portfolios.

Unfortunately, MV cannot be considered as a potential model. Indeed, MV is

compatible with EU and SSD in limited instances and so the MV-efficient set

includes SSD-dominated portfolios.6 However, our two-parameter analysis can

include the MV as a way of incorporating risk.

We construct the ranking function as follows. Let mX (mY) and DX (DY) be the

mean and the GMD of portfolio X (portfolio Y) then:

mX � mY and mX � D�
X � mY � D�

Y (18.12)

are necessary conditions for portfolio X to SSD-dominate portfolio Y. The first

inequality in (18.12) compares the mean returns of the two portfolios. The second

inequality in (18.12) compares the risk-adjusted mean returns of the two portfolios,

where the portfolio’s GMD represents the risk for the investor.

The advantage of using the set (m, m � D*) over the set (m, D*) as parameters in

the ranking function is that these two parameters are defined as “good” while (m,D*)

is a combination of “good” and “bad.” This allows us to borrow without adjustment

many microeconomic theory results. To generate results that are compatible with

the financial models, however, we use (m , D*) as well. Both presentations include

the same parameters, and we will use them interchangeably.

18.3.2 The Mean-Extended Gini Ordering Function

We define the ranking function V (m, m – D*), where m is themean andD* is one-half
of the Gini’s mean difference of the risky prospects. We extend the function to

6 To illustrate this issue, assume that X is uniformly distributed between [0, 1] while Y is uniformly

distributed between [1,000, 2,000]. Clearly, all investors prefer Y over X, but both of them are

included in the efficient MV set. Consequently, relying on MV to analyze portfolios may produce

efficient portfolios that are inconsistent with expected utility theory.
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depend on the EG so that the ranking function is V(m, m – D (n)), where D (n) is the
EG defined as,

DðnÞ ¼ m� a�
ð b

a

½1� F(w)]
n
dw (18.13)

and n ∈ (1,1 ) reflects the investor’s aversion toward risk. (See proposition 6.1 for

details).

For a risk-neutral investor n ¼ 1 and the extended Gini is zero. For n ¼ 2, (half

of) the standard GMD is obtained.

For n ! 1, the Gini represents risk as viewed by a max–min investor (see

Chap. 6 on discussions about the extended Gini).

We relate SSD to the MG model by using the function d(n) defined as dðnÞ ¼ m
�DðnÞ ¼ aþ Ð b

a
½1� F(w)]

n
dw, that is: themeanminus the extendedGini. This value

can be interpreted as the certainty equivalent of the distribution valued by the type n
investor, which can also be interpreted as the risk-adjusted mean return.

The construction of an ordering function that ranks distributions with respect to

SSD is based on Proposition 18.2.

Proposition 18.2 Conditions dX (1) � dY (1) and dX (n) � dY (n) for all n ∈
(1, 1) are necessary for X to dominate Y according to SSD.

Proof See Chap. 6 and Yitzhaki (1982a, 1983).

Some properties of d(n) (and of the extended Gini) that are needed to pursue our
arguments are:

(i) d (n) ¼ m – D(n) may be interpreted as the risk-adjusted mean return (or the

certainty equivalent).

(ii)
@ d( n)

@ n � 0. That is, d(n) is a non increasing function of n. This property
implies that the higher the risk aversion the lower the certainty equivalent of

the portfolio.

(iii) The values of d(n) for specific choices of n are:

d(0) ¼ b

d(1) ¼ m because D (1) ¼ 0.

d (2) ¼ m – D*, where D* is (one-half of) the Gini’s mean difference.

lim
n!1 dðnÞ ¼ a. This property implies that in the extreme risk aversion case,

the lower bound of the distribution is the certainty equivalent of the portfolio.

(iv) If w ¼ c, where c is a constant (i.e., the risk-free asset), then:
d (n) ¼ c for all n > 0 because D(n) ¼ 0.

(v) If wi ¼ c0 wj + c1, where c0 > 0 and c1 are given constants, then:

di (n) ¼ c0 dj (n) + c1 because Di (n) ¼ c0 Dj (n) and mi ¼ c0mj þ c1.

(vi) If w3 ¼ c0 w1 + c1 w2, where c0 > 0 and c1 > 0 are given constants and if

the correlation coefficient between w1 and w2 is –1 � r12 < 1, then:

D3 (n) < c0 D1 (n) + c1 D2 (n).
Properties (iv)–(vi) are similar to the properties of the standard deviation.
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(vii) For a portfolio w ¼ Pn
i¼1

airi, where the ai are given constants,

DwðnÞ ¼ � n
Xn
i¼1

aicovfri; ½1� F(w)�n�1g

where F(w) is the cumulative distribution of w. For the case of the Gini,

n ¼ 2, we get:

Dwð2Þ ¼ Dw ¼ 2
Xn
i¼1

aicov½ri ; F(w)]:

(viii) Assume that n’s are integers such as n ¼ 1, 2, 3,. . ., then dw (n) ¼ E [min

(w1,. . ., wn)]. That is, dw(n) is the expected minimum of n independent draws
from the distribution F(w). This property is useful when estimating the

extended Gini, as it relates the Gini to the rank-order statistics.

(ix) With property (viii) and assuming a normal distribution, dw(n) ¼ m � C(n)s
where C(n) is a constant that depends on n and s is the standard deviation.

(For n ¼ 2, C(n) ¼ 1/√p).
(x) The extended Gini of a sum of random variables can be decomposed similarly

to the way the variance is decomposed. (See Schechtman & Yitzhaki, 2003).

To sum up, one can view d(n) as the certainty equivalent of a distribution with

mean m where D(n) represents the risk premium. When n ! 1, it means that using

d(n) to evaluate the portfolio is identical to the evaluation of the max–min investor.

When n ¼ 1 investors evaluate assets as if they were risk-neutral. In the extreme

case of risk lovers (defined by n < 1), n ! 0 investors are interested only in

the maximum value of a distribution as defined by max–max investors. Given the

properties of d(n) one can construct the two-parameter ranking function V.

Proposition 18.3 The function V[d (n1), d (n2)] with n1 � 1, n2 > 1 and with
@V/@ d(n1Þ>0 , @V/@ d(n2Þ>0 ranks risky alternatives with respect to SSD
criteria.

Proof Assume that F(w) stochastically dominates G(w) according to SSD.

Thus, following Proposition 18.2, dF (n1) � dG (n1) and dF (n2) > dG (n2); hence,
V [dF (n1), dF (n2)] > V [dG(n1), dG (n2)].

The term d (n) is a special case of Yaari’s (1987) dual utility function, so the

function V[d (n1), d (n2)] also ranks portfolios with respect to Yaari’s utility

function. To use V(,) following the MV model, we restrict the discussion to

n1 ¼ 1 and n2 > 1, so that V can be written as

H½m; m� DðnÞ� ¼ V½d ð1Þ ; dðnÞ� for n> 1: (18.14)

The function H enables one to use m and D to represent mean return and risk,

respectively. H ranks distributions as follows: if two distributions have the same
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certainty equivalent, the one with the higher mean return is preferred. If the two

distributions have the same mean return, the one with the higher certainty equiva-

lent is preferred.

We move the investor’s problem represented by (18.9) into the space (m, D) and
now solve the problem with the function H. Instead of using a utility function,

investors minimize the portfolio’s GMD subject to a given mean return. From

property (vii), the Gini Dw of the portfolio is:

Dw ¼ 2
Xn
i¼1

aicov ½ri ; F(w)]: (18.15)

In addition to the n risky securities, investors are allowed to borrow or save a

risk-free asset whose rate is rf. Hence, investors choose the portfolio {ai} that

minimizes Dw subject to a mean return:

mw ¼ rf þ
Xn
i¼1

ai mi � rfð Þ: (18.16)

Alternatively, investors can choose a portfolio that maximizes H [mw, mw –

Dw (n)].
The necessary conditions for a maximum are given by:

ðH1 þ H2Þ ðmi � rfÞ � H2 dDw/d ai ¼ 0 i ¼ 1; :::, n: (18.17)

where Hk is the partial derivative of H with respect to its k-th argument, k ¼ 1,2.

Because the Gini (and EG) is homogeneous of degree one in a, Euler theorem
states that:

Dw ¼
Xn
i¼1

ai @Dw=@ ai: (18.18)

Hence, adding the necessary conditions (18.17) after they are multiplied by their

respective ai leads simply to:

ðH1 þ H2Þ
H2

ðmw � rfÞ ¼ Dw

or

ðmw � rfÞ
Dw

¼ H2

H1 þ H2

: (18.19)

The solution shows the optimal portfolio as the one whose slope equals the slope

of the function H [mw, mw – Dw (n)] in the space [m , D(n)].
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Figure 18.1 shows that the solution on point w* is unique because of the

convexity and non-satiation (i.e., no maximum without constraints. No nirvana).

The slope of the indifference curves is given by:

d m
d D H¼constantj ¼ H2

H1 þ H2

> 0: (18.20)

By the maximization of H the second order conditions guarantee that:

� 2 H12 H1 H2 þ H22 H1
2 þ H11 H2

2 < 0: (18.21)

where Hkj are the second derivatives of H with respect to the k, j arguments, k,

j ¼ 1,. . .,n.
Hence, convexity is obtained by:

d2 m

d D2 Hj ¼ 1

ðH1 þ H2Þ3
ð2H12 H1 H2 � H22 H1

2 � H11 H2
2Þ > 0: (18.22)

From the properties of d (n), H1 is the marginal utility produced by increasing

the portfolio’s mean return, while the certainty equivalent is held constant. Simi-

larly, H2 is the marginal utility of increasing the certainty equivalent, given a

constant mean return. In other words, H2 expresses the marginal utility of reducing

risk along the same mean return. Hence, H1 + H2 is the marginal utility of

increasing the portfolio without incurring risk, because adding a constant to the

portfolio increases m and d (n) by the same amount, as seen from property (v)

above.

rf

μ
Mean

ΔGini

w*

Δw

μw

H(µ,Δ)

Fig. 18.1 Optimal Portfolio

in (m, D) Space. Source: Shalit
and Yitzhaki (2009), p. 762,

Fig. 1
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18.4 Equilibrium

To demonstrate the existence of a competitive equilibrium in a capital market with

heterogeneous investors, the basic Edgeworth box is used. This concept allows

characterizing the equilibrium for an exchange economy of heterogeneous agents

who have different amounts of risky assets and different preferences toward risk.

The geometric representation of the Edgeworth box requires three components:

(1) two types of agents, each with a utility function characterized by convex

indifference curves; (2) an initial distribution of assets to be traded; (3) a willing-

ness to trade in order to improve one’s utility by bilateral bargaining that leads to

efficient allocation and eventually to market equilibrium. For the Edgeworth box

to represent a competitive market, it is assumed that there are numerous investors

for each type of investors.

We adapt the standard Edgeworth box model and consider three assets, two risky

ones and one safe. The box consists only of the risky assets that form the box axes.

The risk-free rate rf is treated as a residual investment which determines the budget

constraint. Instead of a utility function we use the special case of Yaari’s, (i.e., Gini)

function obtained when investors minimize the extended Gini of a portfolio, Dw(n),

subject to the given mean return mw ¼ rf þ
Pn
i¼1

ai mi � rfð Þ . The resulting iso-risk

indifference curves are functions of only the risky assets that appear in the box.

Investors choose {ai} such that
Pn
i¼1

ai ¼ 1 (all non negative unless short selling is

allowed) to maximize � DwðnÞ ¼ �Pn
i¼1

aicovfri;� n½1� F(w)�n�1g subject to mw

¼ rf þ
Pn
i¼1

ai mi � rfð Þ.
The first-order conditions of that optimization are:

@DjðnÞ
@ ai

¼ ljðmi � rfÞ for all i ¼ 1; . . . ; n (18.23)

where lj is the Lagrangean multiplier associated with investor j‘s mean return

constraint and DjðnÞ is his extended Gini . As the Gini is homogeneous of degree

one, by Euler theorem:

DjðnÞ ¼ lj
Xn
i¼1

aiðmi � rfÞ: (18.24)

The term 1 lj
�

as the price of investor j is:

mjw � rf

Dj
wðnÞ

¼ 1

lj
; (18.25)
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which is also the slope of the tangent in Fig. 18.1. Hence, the first-order conditions

for investor j become:

mi � rf ¼ mjw � rf

Dj
wðnÞ

@Dj
wðnÞ

@ ai
for all i ¼ 1; . . . ; n: (18.26)

Under homogeneity, investors have the same attitudes toward risk and the same

price of risk, which can be expressed using the market portfolio M as
mM�rf
DMðnÞ ¼ 1

l .

Recall also that:

@Dj
wðnÞ

@ ai
¼ �n covfri; ½1� FjwðrwÞ�n�1g :

Therefore

mi ¼ rf � ðmM � rf) n covfri; ½1� FMðrMÞ�n�1g=DMðnÞ:

Or equivalently

mi ¼ rf þ ðmM � rfÞ biMðnÞ (18.27)

where biMðnÞ is the extended Gini regression coefficient of the rate of risky asset i

on the market portfolio M. This is the standard MEG CAPM when all investors

have the same type of risk aversion characterized by n. The equation prices the

mean return into the systematic risk using an identical measure of risk for all risky

assets and all investors.

Under heterogeneity, groups of investors have different n and therefore each type
has a different definition of risk. However, relative prices are equal among

investors. For each investor j, the first order conditions for risky asset i with respect
to risky asset k are obtained as:

@Dj
wðnÞ

@ ai
@Dj

wðnÞ
@ ak

¼ mi � rf

mk � rf
for all i, k ¼ 1; :::, n: (18.28)

Between investors, the equilibrium conditions amount to:

mi � rf ¼ 1

lj

@Dj
wðnjÞ
@ai

¼ 1

ll

@Dl
wðnlÞ
@ ai

; (18.29)

for all j, l investors and all i assets.
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Assuming differentiability, the last conditions (18.29) can be expressed as:

mi � rf ¼ � 1

lj
njcovfri; ½1� FjwðrwÞ�nj�1g ¼ � 1

ll
nlcovfri; ½1� FlwðrwÞ�nl�1g :

The equilibrium conditions can now be written as:

covfri; ½1� FjwðrwÞ�nj�1g
covfrk; ½1� FjwðrwÞ�nj�1g ¼ covfri; ½1� FlwðrwÞ�nl�1g

covfrk; ½1� FlwðrwÞ�nl�1g ¼ mi � rf

mk � rf
(18.30)

for all j, l investors and all i, k risky assets. That is, the marginal rates of

substitutions between two assets are equal to the relative prices (returns). Note

that this condition is not different from the equilibrium in the market for tomatoes

and cucumbers.

Second-order conditions are guaranteed by the quasi-convexity of the Gini

function (this follows from the properties that are listed below proposition 18.2).

In the space defined by the risky assets {ai}, conditions (18.28) indicate that the

slopes of the indifference curves of the Gini function are equal to the respective

ratios of excess asset mean returns. This is a standard solution that occurs when

investors choose a portfolio that maximizes H [mw, mw – Dw (n)].The results are

expressed in the indifference curves drawn in the space (m, D) shown in Fig. 18.1.

As the Gini is quasi-convex and homogeneous of degree one with respect to

portfolio weights of the risky assets{ai}, the indifference curves are equally spaced
convex isoquants as shown in Fig. 18.2 for two risky assets and one risk-free asset.7

Because of the homogeneity of a given Gini function, the slopes of the isoquants are

constant along rays through the origin.

Asset
α2

Asset α1O

µ2 − rf
µ1 − rfdα1

dα2 =≡
∂α1

∂Δ
∂α2

∂Δ

Fig. 18.2 Optimal Gini

Indifference Curves in Asset

Space. Source: Shalit and

Yitzhaki (2009), Fig. 2, p. 763

7Only the shares allocated to risky assets are shown on the axes. The share of the risk-free asset

determines the location of the “budget constraint”; the farther it is from the origin, the lower the

share of risk-free asset in total wealth is.
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Because we can define an explicit Gini function for a specific n, conditions
(18.28) construct a distinct linear expansion path that is the locus of Gini-

minimization portfolios. As wealth allocated to risky assets increases, the portfolio’s

mean return increases together with the Gini of the portfolio which moves to a new

isoquant. This is obtained by increasing the shares of the two risky assets and

reducing the share of the risk-free asset. Indeed, the wealth shown in the Edgeworth

box is only the wealth allocated to the risky assets after deducting the share of wealth

held in the risk-free asset. As long as asset mean returns are constant, the expansion

path is a straight line through the origin. The slope of the expansion path defines the

ratio of risky assets held by the investor. As the slope depends upon the Gini

function, the ratio of risky assets varies with the perception of risk as expressed by n.
It is worth mentioning that Fig. 18.2 applies also to MV investors who use the

variance as a measure of risk. In this case the isoquants represent the variance of

the portfolio of risky assets. Hence, we can include MV investors as a special group

in the capital market.

We first examine homogeneous investors which have identical perceptions of

risk.8 We claim that homogeneity of risk perception leads investors to hold identical

portfolios of risky assets.9 If, furthermore, portfolios are duplicated under the

assumption of constant returns to scale, investors will exhibit identical ratios of

risky assets. In classical financial market theory, the “market portfolio” represents

the shares held by all investors. This is basically the ratio of all risky securities.

Thus, all investors hold the identical market portfolio.

The basic CAPM result is demonstrated in Fig. 18.3 using the Edgeworth box.

Here we consider a market with only two risky assets that total a1 and a2. We have

two types of investors (A and B) who are homogeneous in the sense that they have

identical perceptions of risk, but differ in their initial endowments of risky assets

such that aA1 þ aB1 ¼ a
1
and aA2 þ aB2 ¼ a

2
. This initial endowment is shown by

point I. As with the standard Edgeworth box geometry, the origin of preferences of

type A investors is OA and the one of type B investors is OB.

The equal Gini indifference curves, which are identical for A and B, show that

the two types of investors would benefit by trading among those in the same

categories until they reach the Pareto efficient allocation E. At the initial endow-

ment I, the initial mean return ratios are different for the type A and type B

investors, and do not allow for trading. Thus, mean returns change until the same

price ratio is tangent to the two Gini indifference curves as shown at point E. This

point is the competitive equilibrium located on the diagonal as the expansion paths

of the two types of investors are identical.

The market portfolio is the slope of the diagonal a
1
= a

2
which represents the

same ratio of risky assets held by each type of investors. At the equilibrium E,

8Although investors are homogeneous in the way they perceive risk, they can be heterogeneous in

the way they price risk, as reflected by the risk-free-to-market portfolio ratios.
9 Homogeneity of risk perception implies that all MG investors have the same n, or that all

investors are MV investors. See property ix of d.
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the price ratio as expressed by the unique slope of the tangent is the ratio of mean

returns:

@D
@ a2
@D
@ a1

¼ da2
da1

¼ m2 � rf

m1 � rf
:

For MV investors the indifference curves (like those for the Gini in Fig. 18.2) are

derived from the variance of a portfolio of risky assets whose covariance matrix is

unique and identical for all. Hence, the MV isoquants are the same for type A and

type B MV investors; their shape depends on the covariance between a1 and a2 .
Hence, for MV investors, the only equilibrium solution is located on the diagonal of

the box, implying that they hold the same market portfolio of risky assets.

The Edgeworth box in Fig. 18.3 reflects the capital market equilibrium in the

case of MV or for homogeneous MG investors. Our first result summarizes this

equilibrium.

Result 1 At equilibrium, homogeneous investors, either extended Gini or MV

homogeneous investors, hold the market portfolio of risky assets as expressed by

the slope of the diagonal of the Edgeworth box.

The problem of equilibrium is different with heterogeneous investors.10 Hetero-

geneity results from the way distributions are taken into account, implying a

different quantification of the risk measure. Hence, we consider two types of

investors: Type A and type B investors, with different values of n: The two types,

each with a different endowment are shown in the Edgeworth box in Fig. 18.4.

OA

I

OB

E

_
1α

_
2α

A
1α

A
2α

B
2α

B
1α

Fig. 18.3 Capital Market

Equilibrium with

Homogeneous Investors.

Source: Shalit and Yitzhaki

(2009), Fig. 3, p. 764

10 If returns are multivariate normal, heterogeneity is reduced to homogeneity and the standard

MV result is obtained.
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Because the types have different aversions toward risk, their indifference

extended Gini curves are not the same and they produce different expansion

paths. From the initial endowment allocation at point I investors trade to improve

their positions and move to new indifference extended Gini curves. The higher the

equal extended Gini curve, the higher the portfolio’s mean return. Hence, investors

choose to trade, resulting in changes of the price ratio of mean returns. Extended

Gini measures are minimized until investors reach the Pareto-efficient competitive

equilibrium at point E where equal Gini curves are tangent to each other with slopes

equal to the mean return ratio as shown by line p � p. To state this formally:

d a2
d a1

����
A

¼ d a2
d a1

����
B

¼ m2 � rf

m1 � rf
:

This price ratio defines a unique equilibrium. Because the equal extended Gini

curves are not identical, the optimal expansion paths for type A and type B investors

are different. Therefore, the ratio of risky asset optimal portfolio held by each type

of investors is different, and no investor will hold the “market portfolio” that is

represented by the slope of the diagonal of the Edgeworth box. In other words, the

equilibrium is expressed as:

a1
a2

����
A

6¼ a1
a2

����
B

6¼ a1
a2

This leads us to the second result:

Result 2 Unless risky asset returns are all multivariate-normal, at equilibrium

heterogeneous extended Gini investors hold different portfolios of risky assets

and no one has to hold the market portfolio as expressed by the slope of the

diagonal of the Edgeworth box.

The contract curve is the locus of all undominated equilibria following various

initial endowments. Income distribution comes about in the relative size of the

investors’ initial endowments. From welfare economics analysis we draw the next

two results:

I

E

p

p
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_
1α

_
2α

A
1α

A
2α B
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B
1α

Fig. 18.4 Capital Market

Equilibrium with

Heterogeneous Investors.

Source: Shalit and Yitzhaki

(2009), Fig. 4, p. 764
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Result 3 As the extended Gini is homogeneous of degree one in asset shares, the

contract curve is either identical to the diagonal of the Edgeworth box or lies on one

side of the diagonal.11

This result implies that once a type of investor tends to invest relatively more in

one asset, he will continue to do so under all market circumstances. (This fact

applies to all types of investors). Thus it is possible to identify and relate types of

assets with classes of investors.

Result 4 Expected returns on assets depend directly upon the income distribution

across types of investors.

In some sense this result moves us back to traditional microeconomic theory that

asserts the significance of income distribution when consumers have different

tastes. Yet, this result clearly contradicts the CAPM, which claims that asset returns

are determined solely as a function of the demand of a representative investor.

Result 5 Heterogeneous investors who have the same n will hold an identical

portfolio of risky assets.

The MEG model has been shown to be richer than the mean variance in that it

enables the researcher to construct an infinite number of “capital asset pricing

models” for n homogeneous markets. It is shown in Shalit and Yitzhaki (1984,

1989) that if investors have the same degree of risk aversion, one can estimate

capital asset pricing model betas for every n and then, using the holding of the

market portfolio, find the n that fits the data best. The heterogeneous model with

many n differs considerably from these results as conditions (18.28) establish

specific equilibrium relations between asset returns and risk as viewed by all

investors in the market.

18.5 Summary

The MEG approach is used to characterize the equilibrium in a capital market with

heterogeneous risk-averse investors as a two-parameter model. As it is compatible

with maximizing expected utility, MEG provides necessary and sometimes suffi-

cient conditions for stochastic dominance theory. Standard capital market equilib-

rium assumes homogeneous investors with identical perceptions of risky assets.

In these models, heterogeneity comes about with the different trade-offs between

the risk-free asset and a portfolio of risky assets.

In the MEG model it is demonstrated how homogeneity of risk preferences leads

to the mutual fund-portfolio separation results that all investors hold the same

market portfolio ratio of risky assets. This is the standard MV result. When there

11 This result is derived from the homogeneity property of the isoquants. The contract curve cannot

cross the diagonal, as it can only be the diagonal itself or lie on one side of it.
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are different perceptions about risk, a more general capital market equilibrium

emerges.

Heterogeneous investors do not hold the same portfolio of risky assets. Further-

more, no investor must hold the “market portfolio” in order for capital markets to be

in equilibrium. Asset prices are characterized by their mean returns and the various

perceptions of risk. Each group of investors with its unique attitude toward risk

defines its positions according to the specific extended Gini (i.e., their specific n).
Although the model is simple it can be constructed only if one recognizes that by

using a variability measure, both the risk aversion of the investor and her utility

function are determined. Economists have used the Edgeworth box for some time to

depict competitive interactions in competitive markets, welfare economics, and

international trade, and to show Walras general equilibrium. The box is so well

established in microeconomics that it is quite surprising it has not been used before

to solve the basic issues of capital market equilibrium.

It seems that there is only one explanation. Financial economics has been

captivated by the MV paradigm that is very simple and very intuitive to use. But

the MV is an appropriate model only if we restrict ourselves to multivariate normal

distributions or quadratic utility functions. If those requirements are violated then

the model is not compatible with expected utility theory, nor with Yaari’s dual

approach. The MG and the MEG models share the simplicity of the MV and are

compatible with the leading theories of behavior under risk. Using the Edgeworth

box it is possible to show that the assumption of identical risk-averse investors

allows only the diagonal as the contract curve, leading to the identical “market

portfolio” solution.
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Chapter 19

Applications of Gini Methodology

in Regression Analysis

Introduction

Ordinary least squares (OLS) regression is based on the fact that the variance of a

linear combination of random variables can be decomposed into the contributions

of the individual variables and to the contributions of the correlations among them.

The fact that one can imitate this decomposition (under certain conditions) when

decomposing the GMD of a linear combination of random variables enables one to

take any OLS-based econometric textbook and replicate each chapter using the

GMD instead of the variance. Practically, this means doubling the number of

models because every OLS econometric model can be replicated by the GMD,

resulting in different estimates of the parameters. Moreover, we present via

examples (Chap. 21) that the estimates can differ in sign. This means that two

investigators who use the same variables, the same model, and the same data may

come up with contradicting results concerning the effect of one variable on the

other. The only difference between the two researchers lies in the measure of

variability they use—the GMD or the variance. Needless to say that in many

cases of policy decisions the debate is on the magnitude of a parameter, which is

much more vulnerable than the sign and not on the sign itself. And to make life even

more complicated any regression model that is estimated by the GMD can be

replicated with the EG. This means moving from doubling the number of possible

estimates to an infinite number of estimates.

The simple OLS and Gini regression coefficients can be interpreted as weighted

averages of slopes between adjacent observations of the explanatory variable. The

difference between the two methods lies in the variability measure used, which is

reflected in the weights. Both the OLS and the Gini regression coefficients can be

viewed as nonparametric estimates of the “weighted average” slope of the curve.

These slopes can serve as the slopes of the linear approximation to an unknown

regression curve. If the curve is not monotonic or even only nonlinear then one

should expect non-robustness of the estimates.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_19,
# Springer Science+Business Media New York 2013
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Generally the Gini methodology offers additional parameters on top of the ones

offered by the variance-based methodology. For example, in decomposing the Gini

of a linear combination of random variables there are two correlation coefficients

between each pair of variables and these coefficients are not necessarily equal.

These can be used to check for robustness of the econometric “evidence.” In some

sense, this means using the additional parameters in order to reveal the implicit and

hidden assumptions behind the OLS and other methodologies in order to find out

whether those assumptions are driving the results, as will be shown in the rest of this

chapter.

The complete implementation of the Gini methodology will take years to

develop and requires many research teams. At this point it is simply impossible

to cover all the fields that will benefit from adopting it. Hence, our empirical

application is restricted to just a few topics. We list other areas of applications

that can benefit from using this old-new technique in Chap. 23.

We concentrate on the ability of the Gini regression to uncover some of the

implicit and whimsical assumptions of the regression (Leamer, 1983). We believe

that at this point this is the best use of the existing theory.

Among the assumptions that lie behind the OLS regression we concentrate on two

assumptions: (1) the model is linear and (2) the correlation coefficient between

explanatory variables is symmetric. We note in passing that the second assumption

is somewhat disturbing because the regression method itself is based on a structure

which is asymmetric. To attest that, note the asymmetry between the dependent and

the explanatory variables. The extreme violation of the linearity assumption is

non-monotonic relationship between the variables. Therefore, we illustrate the meth-

odology of finding non-monotonic relationship.

The existence of two correlation coefficients between two variables enables us to

test for the linearity of the model. Usually each optimization results in an orthogo-

nality condition which in the OLS is referred to as the normal equation. The

orthogonality conditions in OLS and Gini regression imply that the appropriate

covariance between the residuals and the explanatory variable is set to zero. Testing

whether the other covariance is also equal to zero provides a specification test for

the model. (Note that this is only possible under the Gini regime where there are two

covariances between each pair of variables.) This can be done for each explanatory

variable so we may be able to conclude that the model is well specified for certain

variables but not for the others.

Another useful tool is the mixed OLS and Gini regression. By “mixed” we mean

that some variables are treated by one method, while others are treated by another

method. The reason that it is useful is because as far as we know this is the only

regression method that enables us to move from one regression methodology to the

other in a stepwise way. It enables the investigator to move from one regression to

the other gradually so that the variable or variables that are causing the non-

robustness of the sign of the regression coefficient will be detected.

It is worth remembering that those issues do not cover all properties of the Gini

methodology. Chapter 23 is devoted to possible extensions.
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The richness of possibilities of extensions and replications forces us to restrict

our empirical illustration to a few topics. At the end of this part we will list several

immediate applications, without going into them.

The structure of this part of the book is as follows: Chap. 19 presents and

illustrates the properties of the Gini methodology in the simple regression case,

Chap. 20 presents the multiple Gini regression, while Chap. 21 presents the mixed

OLS–EG regression.

The structure of Chap. 19 is the following: Sect. 19.1 presents simulated results

to illustrate the ability of the simple EG regression to trace the curvature of a curve,

Sect. 19.2 illustrates the use of the LMA curve to trace the curvature of the

regression curve. In Sect. 19.3 we illustrate the decomposition of the regression

coefficient into the contributions of different sections, while Sect. 19.4 illustrates all

the above issues using an example from the labor market. In Sect. 19.5 we point out

the impacts of common data manipulations on the estimates, while Sect. 19.6

concludes.

19.1 Tracing the Curvature by Simple EG Regression:

Simulated Results1

In this section we illustrate the fact that the EG regression estimates a weighted

average of slopes. The larger the value of n is, the more weight is attached to the

lower levels of the explanatory variable.

In order to clarify the point we use a simple illustration of a nonlinear regression

curve with a single explanatory variable, where we can obtain the analytical

expression for the curvature and thus we can illustrate the one-to-one relation

between the curvature and the EG regression coefficient as n varies.

The model we use is the following: let X be uniformly distributed on [0,1] and

let Y ¼ X � X2. The regression curve is bell-shaped, symmetric around 0.5. The

regression coefficient is the “average” slope of the curve. The derivative of the curve

at x is a function of x (i.e., it is the slope at x), and it is given byY0
x ¼ 1 � 2x. Its range

is [�1, 1] and it is uniformly distributed on [�1,1].

The formal presentation of the extended Gini regression coefficient is2

1 This section is based on Ben Hur et al. (2010).
2 The reader who is interested only in the application presented in this section may question the

wisdom of using (1 � F(x))n instead of Fn(x). The reason for this cumbersome definition is that it

enables us to define monotonic increasing concave functions that are similar to utility functions

required in finance or inequality measurement (see Shalit and Yitzhaki, 2002; Wodon and

Yitzhaki, 2002b; Yaari, 1987; Yitzhaki, 1983). However, as pointed out in Chap. 6 one can

think of other forms for the extended Gini.

19.1 Tracing the Curvature by Simple EG Regression: Simulated Results 411

http://dx.doi.org/10.1007/978-1-4614-4720-7_19
http://dx.doi.org/10.1007/978-1-4614-4720-7_20
http://dx.doi.org/10.1007/978-1-4614-4720-7_21
http://dx.doi.org/10.1007/978-1-4614-4720-7_19
http://dx.doi.org/10.1007/978-1-4614-4720-7_6


bðnÞ ¼ cov(Y,� ½1� F(X)]
nÞ

cov(X,� ½1� F(X)]
nÞ :

We now calculate b(n) for the example above.

Cov X2;� 1� F Xð Þ½ �n� � ¼ ðnþ 2Þðnþ 3Þ � 6

3ðnþ 1Þðnþ 2Þðnþ 3Þ :

Similarly,

Cov X;� 1� F Xð Þ½ �nð Þ ¼ n
2ðnþ 1Þðnþ 2Þ :

Combining the two results, we get that the regression coefficient is

bðnÞ ¼ cov(Y, � ½1� F(X)]
nÞ

cov(X, � ½1� F(X)]
nÞ ¼ 1� 2[( nþ 2)( nþ 3Þ � 6�

3 n ( nþ 3Þ : (19.1)

Figure 19.1 shows the relationship between the EG regression coefficient, which

is the average slope (the average of the marginal propensities) on the Y-axis, and n
on the X-axis.

The term “marginal” means the derivative. For example, marginal propensity to

consume (derivative of consumption with respect to income), marginal product of

labor, marginal utility (derivative of utility with respect to income), etc.
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Fig. 19.1 The extended Gini regression coefficient of the regression curve Y ¼ X � X2 as a

function of n. Source: Ben Hur et al. (2010), Fig. 1, p. 37. Reprinted with permission by MILI

Publications
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It can be seen that for n ¼ 1, (i.e., for the GMD) the average slope is zero. It is

monotonically decreasing with n and as expected it is positive for n > 1 and

negative for n < 1. Note, however, that because it is a weighted average of all

slopes, even if one pursues n to its extreme values it will not reach the extreme

values of the slopes (minus and plus 1).3 We note that the X-axis in the plot seems to

be reversed (from large values of n to small values). The reason for this is because

large values of n correspond to emphasizing small values of X. This enables to see

(from the figure) the change in the slope of the curve with respect to a change in X,

the explanatory variable.

To sum up: we have shown the ability of the simple EG regression coefficient to

follow the curvature of a regression curve by changing the weights given to

different percentiles of the explanatory variable (via ð1� F(X))n ). Ben Hur,

Frantskevich, Schechtman, and Yitzhaki (2010) argue that this property is unique

to the EG, because other methods such as quantile regression change the weighting

scheme along the distribution of the residuals which is the conditional distribution

of the dependent variable. Note, however, that would we minimize the EG of the

residuals, which is the other regression that is based on the EG (which is not

investigated in this book), then we would have an EG version of regression that

imitates quantile regression.

19.2 Tracing the Curvature of a Simple Regression

Curve by the LMA Curve

The use of the EG to trace the curvature of a regression curve relies on aggregating

slopes by a predetermined set of weights which are functions of the cumulative

distribution of the explanatory variable. As such, we always end up with one

parameter. Therefore it is possible that we might miss ranges in which there is a

minor change in the curvature of the curve.

For this purpose we suggest to use the LMA curve which is derived from the

connection between the co-Gini and the ACC (to be defined below). The derivation

of the curve and its properties are detailed in Chaps. 5 and 8. Here we only sketch

the properties needed for the applications. The LMA curve is useful whenever one

is interested in a gross evaluation of the effects of the following actions.

1. Omitting a group of observations.

2. Omitting irrelevant observations and using only a subgroupof the population—e.g.,

imposing bounds on observations that participate in the regression.

3 See Yitzhaki (1983, Table 1, p. 623) for an investigation of the properties of the weighting

scheme.
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3. Substituting a continuous variable by a discrete one (given in intervals) with the

data entries taken to be either midpoints or averages. Referred to as binning

(Wainer, Gessaroli, & Verdi, 2006).

4. Applying a monotonic nondecreasing transformation to the explanatory

variable.

While omitting observations sounds suspicious, using a transformation seems

natural and is being used in practice quite often. Binning can be considered as a

classical method since it was used by Ernst Engel to find “Engel’s law” which states

that the poorer a family is, the larger the budget share on necessities (Chai &

Moneta, 2010). Binning is also used in nonparametric statistics in order to over-

come the need to specify a functional form for the regression curve (Chai &

Moneta, 2010; DiNardo & Tobias, 2001).

Note that (1) and (2) are formally identical. The difference lies in the reasoning

for the omission. Also, (3) can be viewed as a special case of (4).

Our main focus is on the effects of the above-mentioned commonly used

practices on the sign of the regression coefficient. The reason for stressing sign

change is that it may reverse the conclusion reached. Instead of positive (negative)

effect it may turn the effect into a negative (positive) one.

19.2.1 Definitions and Notation

In the regression context there are two potential uses for concentration curves. The

first use is to learn about the curvature of the simple regression curve and the second

use is to learn about the weighting scheme. (see Heckman, Urzua, and Vytlacil

(2006a, b) and Heckman (2010) for the derivations of weighting schemes for many

different econometric models).

Let g(x) ¼ E{Y|X ¼ x} be the conditional expectation of Y given X. We will

refer to it as the regression curve. We start with three definitions.

Definition of ACC: The absolute concentration curve (ACC) of Y with respect to

X denoted by AYoX(p) is

AY�X(p) ¼
Ð xp
�1 g(t) dFX(t), where xp is implicitly defined by p =

Ð xp
�1 dFX ðtÞ:

For simplicity of exposition, we write ACC instead of AYoX(p) for the absolute

concentration curve.

Definition of LOI: Connect the points (0,0) and (1,mY) by a straight line LOI ¼ mY p.

Yitzhaki and Olkin (1991) call this line the line of independence (LOI).
The LOI can be interpreted as an absolute concentration curve plotted between

two independent variables. That is, if Y and X are independent, then the ACC curve

coincides with the LOI.
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Because we are interested in “deviations from independence” we will be inter-

ested in a curve which is the LOI minus the ACC.

Definition of LMA: LMA is defined as the LOI minus the absolute concentration
curve of Ywith respect to X. Formally, LMAYoX(p) ¼ LOI�ACC ¼ mY p � AYoX(p).

The properties of ACC and LMA, relevant for this section, are as follows.

(a) The ACC passes through the points (0, 0) and (1, mY). Property (a) enables us to
define a variation of the ACC (the LMA) that will make the analysis of the

regression curve easier.

(b) The derivative of the LMA with respect to p (at xp) is mY � EY(Y|X ¼ xp).

This follows directly from the definitions of the LOI and ACC. As a conse-

quence the LMAYoX(p) is increasing (decreasing, constant) if and only if

mY � g(xp) > (<, ¼) 0.

(c) The LMA is concave at p (convex, straight line) if and only if dg(xp)/dp ¼
[dg(xp)/dxp][dxp/dp] > (<, ¼) 0 (which is equivalent to dg(xp)/dxp >
(<,¼) 0 because dxp/dp > 0).

(d) If X and Y are independent then ACC is a straight line which coincides with the

LOI, and the LMA curve coincides with the horizontal axis. Properties (c) and

(d) enable the user to identify sections with constant, increasing, and decreasing

slopes of the regression curve: linearity of LMA implies a horizontal regression

curve, concavity of LMA means an increasing regression curve, while convex-

ity means a decreasing regression curve.

(e) The area between the LMA and the horizontal axis is equal to cov(Y, FX(X))

(Chap. 5). Note that if the curve intersects the horizontal axis then the sign of

cov(Y, FX(X)) depends on the magnitudes of the areas above and below the

horizontal axis.

(f) The LMA is above the horizontal axis for all F if and only if cov(Y, T(X)) > 0

for all continuous differentiable monotonically increasing functions T(X).

The advantage of using the LMA (instead of the ACC) is that it is easy to detect

what will happen to cov(Y,F(X)) (and hence to the sign of the Gini regression

coefficient) if sections of observations of X are omitted from the regression, as will

be illustrated later.

For the purpose of analyzing the effect on the OLS regression coefficient one

needs a modified LMA curve for which the area beneath it will be equal to cov(Y,X).

It is shown in Yitzhaki (1998) that a simple transformation can make the curve

applicable to OLS: if one substitutes the horizontal axis to be X instead of FX, then

the area between the new curve and the horizontal axis will be equal to cov(Y,X).

However, the nature of the curve changes and further research is needed to study its

properties. For our purposes it is sufficient that property (f) holds in the transformed

curve, hence one can change the sign of a regression coefficient in an OLS regression

if and only if the LMA curve intersects the horizontal axis. Note, however, that

because F(X) ¼ F(T(X)), it is impossible to change the sign of a Gini regression by a

monotonic transformation of X.
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19.2.2 The Simple Gini Regression Coefficient
and the Concentration Curve

The Gini regression coefficient is a ratio of two covariances (Chap. 7):

bGY:X ¼ cov(Y, F(X))

cov(X, F(X))
:

It resembles Durbin’s (1954) estimator. The denominator is always positive

hence the sign of the regression coefficient is determined by the numerator. By

property (d) of the LMA curve one can see whether there are sections with different

signs along the regression curve. To ease the analysis of the contribution of

different sections of the curve to the regression coefficient, we normalize the

LMA curve by dividing it by cov(X, F(X)). We call the curve NLMA (normalized

LOI minus ACC). The additional property of this curve is that the area between the

curve and the horizontal axis is equal to the Gini regression coefficient.

Because the analysis is relatively simple, we will list the steps for practical use

and then illustrate by two examples from the labor market. The steps are the

following.

(a) Plot the data using NLMA.

(b) Is the relationship monotonic over the entire range? Look for convex and

concave parts (properties (c) and (d) above). If the curve is not entirely convex

or concave, then one may be able to change the sign of the regression coeffi-

cient by omitting “redundant” observations.

(c) Does the curve intersect the horizontal axis? If not—there is no monotonic

transformation that can change the sign of the OLS regression coefficient. If

yes, one can find a transformation that will change the sign of the OLS

regression coefficient. (Property (e) above).

19.3 The Decomposition Approach

The discussion below is based on the decomposition of regression coefficients. The

regression coefficients we are dealing with are the OLS and Gini regression

coefficients. Let (Y,X) be a bivariate random variable.

The least squares regression coefficient is given by

bOLSY:X ¼ cov(Y, X)

cov(X, X)

and the Gini regression coefficient is given by
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bGY:X ¼ cov(Y, F(X))

cov(X, F(X))
;

where F(X) is the cumulative distribution function of X.

Assume that the observations are partitioned into M disjoint groups, denoted by

m ¼ 1,. . ., M and let pm ¼ nm/n be the relative size of group m.

As shown in Chap. 7 the OLS regression coefficient can be decomposed as

follows

bOLS ¼
XM

m¼1
wm bm þwB bB; (19.2a)

where

wm ¼ pm
covm(X,X)
cov(X, X)

; b
m

¼ covm(Y, X)
covm(X, X)

;wB ¼ covB(Xm;Xm)
cov(X,X)

; b
B
¼ covðYm;XmÞ

covðYm;XmÞ
andXm andYmdenote the vectors of groupmeans. If the groups do not overlap, i.e., the

ranges of the groups’ explanatory variables do not overlap, then (19.2a) is applicable

to the Gini regression as well, after adjusting the weights and the regression

coefficients to the Gini counterparts. The adjustment in cases of overlapping is

described next. We start with the decomposition of the Gini covariance, which is

given by

cov(Y,Fo(X)) ¼
XM
m¼1

pmcovm(Y,Fo(X))þ covBðYm;Fo(X)),

where Fo(X) is the overall cumulative distribution of the explanatory variable, �Ym is

the vector of group means, and �F0(X)is the vector of the means of the ranks of

groups. The next step is dividing and multiplying by the same factors. That is,

cov(Y,Fo(X)) ¼
XM

m¼1
pm

covm(Y,Fo(X))

covm(X,Fo(X))

covm(X,Fo(X))

covm(X,Fm(X))
covm(X,Fm(X))þ covBðYm;Fo(X))

¼
XM

m¼1
pm

covm(Y,Fo(X))

covm(X,Fo(X))
OmGm þ covBðXm;Fo(X))

covBðYm;Fo(X))

covBðXm;Fo(X))
;

where Om ¼ covm(X, Fo(X))
covm(X, Fm(X))

is the overlapping between group m and the overall

population, Gm ¼ covm(X,Fm(X)) is (one-fourth of) the Gini mean difference of

Xm, while bm ¼ covm(Y, F0(X))
covm(X, F0(X))

is a kind of Gini regression coefficient.

Using the above notation we get

bG ¼
XM

m¼1
wm bm þ wB

covBðYm;Fo(X))

covBðXm;Fo(X))
; (19.2b)
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where wm ¼ pmOmGm

G
is the contribution of group m to the overall variability,

G ¼ cov(X,F(X)) is (one-fourth of) the Gini’s mean difference of X and wB ¼
covBðXm;Fo(X))
cov(X,F(X))

.

19.4 An Illustration: Labor Force Participation

by Gender and Age4

Figure 19.2 presents the normalized line (of independence) minus the absolute

concentration curve (NLMA) which is the LMA divided by cov(X, F(X)). As

discussed above, the total area enclosed by the curve and the horizontal axis is

equal to the Gini regression coefficient. The horizontal axis depicts the cumulative

distribution according to age, while the vertical axis depicts the difference between

the cumulative value of participation in the labor force would participation be

independent of age (i.e., LOI) and the actual cumulative value of participation,

divided by the Gini of the age distribution. The data are taken from Income Survey,

2005, conducted by the Israeli Central Bureau of Statistics. Similar results were

obtained for the years 2003 and 2004.

Figure 19.2 is based on 12,685 observations for women and 11,213 for men. The

Y-axis is the NLMA, while the X-axis is the cumulative distribution of age (which

can be translated into the corresponding age. For example F(x) ¼ 0.3 for males
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Fig. 19.2 NLMA curve for participation in the labor market versus age according to gender.

(For individuals working 30 h and more. Cumulative distribution of age is depicted on the

horizontal axis.) Source: Yitzhaki and Golan (2010)

4 The section is based on Yitzhaki and Golan (2010) and discussed in Chap. 5.
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corresponds to age ¼ 37). The curve enables us to detect regions with positive or

negative slopes according to whether the curve is concave or convex, and according

to whether the regression coefficient of each section is contributing positively or

negatively to the overall regression coefficient. If the curve is above (below) the

horizontal axis then this range has a positive (negative) contribution to the regres-

sion coefficient. In addition a concave (convex) section implies that would we take

this section alone we will find a positive (negative) regression coefficient.

Table 19.1 presents the regression coefficients in each section.

As can be seen from Fig. 19.2 and Table 19.1 both overall regression coefficients

(Gini and OLS) are negative. The curves are composed of two parts—concave and

convex. It is concave for males for the lower 30% of the observations (up to age 37)

and for females for the 55% of the observations with smallest ages (up to age 45).

As a result in these sections the regression coefficients of both OLS and Gini

regressions are positive. On the other hand, in the second section the curves are

convex hence the regression coefficients in this section are negative. Note, how-

ever, that the curves do not cross the horizontal axis, implying that the contributions

of the two sections are adding up to the overall regression coefficients and one

cannot use a transformation to change the (negative) signs of the regression

coefficients. However, note that for the Gini regression we can evaluate, by adding

and subtracting positive and negative areas, how many additional observations of

the “wrong” sign we can add without changing the sign of the regression coeffi-

cient. We note that the regression coefficients obtained by the two methods are

similar. However, using the Gini method and the figures which are derived from the

Gini enable the user to make the partition into sections as shown above. To sum up:

in this example one cannot use a monotonic transformation in order to change the

sign of the regression coefficient, but throwing/adding observations may cause it to

happen.

Figure 19.3 presents the NLMAof the regressions ofmonthly hours of work on age

for men and women who work 30 hours or more per week. The curve for men can be

divided into two regions: for the 45% of observationswith younger ages (up to age 39)

the regression coefficient is positive and every monotonic transformation of it will

yield a positive coefficient, while for the 55% with older ages (ages from 39 up to 70)

the regression coefficient for every monotonic transformation of it is negative.

Table 19.2 confirms this result. Because the curve intersects the horizontal axis at

Table 19.1 Regression coefficients of participation on age in the different sections by gender

Section

GINI OLS

Men Women Men Women

Weight Beta Weight Beta Weight Beta Weight Beta

I 0.032 0.015 0.178 0.001 0.026 0.015 0.158 0.001

II 0.316 �0.016 0.090 �0.023 0.349 �0.017 0.112 �0.024

Between 0.651 �0.006 0.732 �0.008 0.624 �0.006 0.729 �0.008

Overall 1.000 �0.009 1.000 �0.008 1.000 �0.010 1.000 �0.009

Source: Yitzhaki and Golan (2010)
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this point, the Gini (and OLS) between-groups regression coefficient is zero5 (it is

close to zero due to the fact that the empirical distribution is discrete). A monotonic

transformation that extends (shrinks) the range of ages at low values of age relative to

high values of age will change the overall regression coefficient to be positive

(negative) (e.g., using log(age) will increase the value of the regression coefficient,

while using exp(age) will decrease it to be negative). The case of women is more

interesting. Here we can divide the age into three age groups: up to 40, 40 to 46,

and over 46. In each of those groups the regression coefficient is negative, but the

overall coefficient is positive. Table 19.2 confirms this result. Note that the graph
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Fig. 19.3 NLMA curve for monthly hours of work and age by gender. (For individuals working

30 h and more. Reprinted with permission by Elsevier). Source: Yitzhaki and Golan (2010) and

Yitzhaki and Schechtman (2012)

Table 19.2 Regression coefficients of working hours on age in the different sections by gender

Section

GINI OLS

Men Women Men Women

Weight Beta Weight Beta Weight Beta Weight Beta

I 0.070 1.4731 0.097 �0.153 0.057 1.522 0.085 �0.166

II 0.206 �0.4515 0.007 �0.294 0.245 �0.439 0.007 �0.302

III – – 0.049 �0.568 – – 0.066 �0.526

Between 0.724 �0.0009 0.848 0.246 0.698 �0.001 0.841 0.2480

Overall 1.000 0.0095 1.000 0.165 1.000 �0.022 1.000 0.158

Source: Yitzhaki and Golan (2010) and Economics Letters, Yitzhaki and Schechtman (2012)

Reprinted with permission by Elsevier

5 At the point of intersection with the horizontal line, the averages of the dependent variable for the

above intersection and below intersection groups are equal. Thus the between-group regression

coefficient is equal to zero.
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intersects the horizontal axis only at the very end (right side). As can be seen from the

graph and the table, the between-groups component is positive, leading to an overall

positive regression coefficient. However a monotonic transformation of age may

affect the sign of the regression coefficient. Finally, note that for women the OLS

and Gini regressions result in an overall positive effect of age onworking hours, while

for men the sign depends on the regression method used (the difference may be

statistically insignificant).

19.5 Data Manipulations

The following data manipulations can be handled by tools from the OLS and Gini

methodologies and will be discussed below.

1. Omitting a group of observations.

2. Omitting irrelevant observations and using only a subgroupof the population—e.g.,

imposing bounds on observations that participate in the regression.

3. Substituting a continuous variable by a discrete one (given in intervals) with the

data entries taken to be either midpoints or averages. Referred to as binning

(Wainer, Gessaroli, & Verdi 2006).

4. Applying a monotonic nondecreasing transformation to the explanatory

variable.

19.5.1 Omitting a Group of Observations

We start with the first two actions (actually the second one can be viewed as a

special case of the first one)—omitting a group of observations. The decompo-

sitions of the OLS and Gini regression coefficients (19.2a) and (19.2b) allow us to

investigate the effects of different groups of observations and of different actions on

the regression coefficients in the simple regression framework.6

Generally, omitting a group of observations will affect the weighted sum of

slopes (one slope will be missing and the remaining weights will be adjusted) and

the between-groups component.

The effect on the weighting scheme depends on the variability measure used

(variance in OLS or Gini in Gini regression), while the effect on the regression

coefficient is determined by the slopes in the data as well as by the regression

method (i.e., the variability measure) used. We discuss the effect on the OLS

6Applying a monotonic transformation requires a different approach and will be dealt with later.
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regression coefficient via (19.2a). The discussion for the Gini case (via (19.2b)) is

similar with one difference—the slopes and the weights are based on the Gini

terminology.

In order to illustrate we simplify the problem and have only two groups of

observations: the omitted group (denoted by O) and the remaining group (denoted

by R). In this simplified case, (19.2a) becomes

b ¼ wRbR þ wObO þ wBbB: (19.3)

Omitting the group eliminates the second and third terms on the right hand

side of (19.3) and set wR ¼ 1, so for this case the effect of the omission is that we

set b ¼ bR . The case of omitting one extreme observation can be handled as a

special case of (19.3) by forming two groups: a group with only one observation and

a group containing all other observations. In this case the middle term in (19.3) is

zero (there is no slope with one observation) and (19.3) includes only two terms,

because the between-groups component now disappears. By reporting the result of

the decomposition proposed in (19.3) before and after the omission of a group of

observations the reader can be better informed about the effect of the omitted group

on the regression coefficient: is it the between-groups component or is it the intra-

omitted group regression coefficient. The case of omitting just one extreme obser-

vation is a bit different: in this case the second term in (19.3) is zero anyway (there

is no intra-omitted group coefficient), and the decomposition before elimination

includes two terms—the first and the last. Note that the justification for omitting a

group can be supported either by the wish to increase the robustness of the findings,

or because the underlying economic model assumes a different behavior below or

above a threshold.

The decomposition proposed here can be helpful because it enables the reader to

see which effect has led to the result: is it the innocent need to make the results more

robust or is it caused by an overzealous investigator who wants to prove his point.

19.5.2 Substituting a Continuous Variable by a Discrete One

This action is referred to by Wainer et al. (2006) as binning. Some econometricians

tend to transform a continuous variable into a discrete one (binning) or even a

binary one, indicating participating or nonparticipating in a program. See, among

others, Chai and Moneta (2010) and the survey by Angrist and Krueger (1999)

concerning random assignment. In this case, all intra-group components are omitted

from (19.2a) and we are left with the between-groups component. If the sign of the

between-groups component is different from the sign of the overall regression

coefficient then this action causes a sign change. The same procedure can be

applied to an instrumental variable (IV) estimator. In that case, it can totally change

the direction in which one variable influences the other (Heckman, Stixrud, &

Urzwa, 2006; Heckman & Urzua, 2009; Heckman, Urzua, & Vytlacil, 2006a,
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2006b; Yitzhaki & Schechtman, 2004), which makes the effect on the sign of the

regression coefficient even more difficult to analyze.

For example, consider the case of grouping of observations as in the case of

Wald estimator. To overcome an error-in-variable problem the investigator uses

only group averages (with or without omitting some observations). As can be seen

from (19.2a) the Wald estimator is actually using the between-groups regression

coefficient (Pakes, 1982; Wald, 1940) instead of the overall regression coefficient.

One possibility is that the grouping is intended to reduce the variability in order to

achieve a higher portion of explained variability.7 Another possibility is that the

grouping results in omitting some negating effects that happen to occur in the

subgroup. Reporting the components of (19.2a) enables the reader to see which

explanation is more reasonable.

19.5.3 The Effect of Transformations

Transformations can be applied to the dependent variable or to the explanatory

variable. Concerning transformation of the dependent variable, it is easy to see that

if there is a transformation of the dependent variable that can change the sign of the

Gini regression coefficient, then there will also be one that can change the sign of

the OLS regression coefficient. However, it need not be the same transformation.

The explanation is the following: a transformation can change the sign of the Gini

regression coefficient if the LMA intersects the horizontal axis. Note that the LMA

that is relevant to Gini regression has the cumulative distribution F(X) on the

horizontal axis, while in the case of the OLS we substitute F(X) by X on the

horizontal axis. This horizontal movement does not affect the existence of an

intersection.

In order to examine whether a transformation of the explanatory variable can

change the sign of the OLS regression coefficient, all we have to do is to plot the

LMA curve while switching the roles of the variables. However, note that the signs

of the Gini and reverse Gini regressions need not be equal (Goldberger, 1984) so

that the same procedure is not always applicable for the Gini regression.

19.6 Summary

Both OLS and Gini simple regression coefficients can be expressed as weighted

averages of slopes. The weights assigned to the slopes are different. In some cases

this difference may result in different signs of the coefficients. This fact is trouble-

some as it might affect (i.e., reverse) the conclusions drawn from the analyses.

7 For a recent illustration, see Angrist and Pischke (2009, p. 129).
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In addition both Gini and OLS coefficients can be decomposed into intra- and

inter-groups components. This property may enable the user to affect the sign of the

regression coefficient by manipulating the data by actions such as omitting a group

of observations, grouping or applying a transformation. As was shown in earlier

chapters, the Gini methodology reveals more and at the same time is harder to

manipulate. It enables the user to uncover some of the implicit assumptions of the

regression as well as the effects of some manipulations.

Among those assumptions that lie behind the OLS regression are the assumption

that the model is linear and that the correlation coefficients between explanatory

variables are symmetric. The extreme violation of the linearity assumption is

having non-monotonic relationship between the variables.

In this chapter we illustrate (via a simulated example) a way one can use the EG

regression in order to trace the curvature of a regression curve.

We note that the use of the EG to trace the curvature of a regression curve relies

on aggregating slopes by a predetermined set of weights which are functions of the

cumulative distribution of the explanatory variable. Therefore the outcome is one

parameter, which may imply that we miss ranges with a change in the curvature of

the curve.

For this purpose we introduce and illustrate the use of the LMA curve which is

derived from the connection between the co-Gini and the ACC. The LMA curve is

useful whenever one is interested in evaluating the effects of several common

manipulations and the data such as omitting a group of observations, imposing

bounds on observations that participate in the regression, binning and applying a

monotonic nondecreasing transformation to the explanatory variable.

Our main focus is on the effects of the above-mentioned commonly used

practices on the sign of the regression coefficient. The reason for stressing sign

change is that it may reverse the conclusion reached. Instead of positive (negative)

effect it may turn the effect into a negative (positive) one.

The application of the recommended method is simple and includes three steps:

Plot the NLMA, look for convex and concave parts, and check whether the curve

interests the horizontal axis or not. Based on the three steps one can learn whether

there exists a sign change along the regression curve and whether one can find a

monotonic transformation that can reverse the sign or not.

We illustrate the techniques using data taken from Income Survey, 2005,

conducted by the Israeli Central Bureau of Statistics. The data consists of 12,685

observations for women and 11,213 for men and the variables of interest are

participation and hours worked by age and gender.
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Chapter 20

Gini’s Multiple Regressions: Two Approaches

and Their Interaction

Introduction

Our target in this chapter is to illustrate one of the major advantages of the GMD

regressions: they offer a complete framework for checking and dealing with some of

the assumptions imposed on the data in a multiple regression problem. There are two

approaches that are related to the Gini—the semi-parametric approach and the

minimization approach. The interaction between the two gives tools for assessing

the adequacy of the model. In addition, there are two tools that enable the researcher

to investigate the curvature of the regression curve: the extended Gini regression and

the NLMA curve. The basic idea is the following: there is an unknown regression

curve that relates the dependent variable Y and (all or some out of) a set of

explanatory variables X1,. . .,Xn. The shape of the curve is not known. The curve is

approximated by a linear model (which is then estimated from the data). However,

each approach mentioned above leads to a (possibly different) linear model. The

interaction between the two approaches can help to decide whether the original

curve is linear (in each individual explanatory variable) or not. The suggested stages

are the following: first one estimates the regression coefficients according to the

semi-parametric approach without specifying a linear model. This means that at this

stage the researcher decides only on the set of explanatory variables to be included in

the regression model but not on the functional form.1 Then one uses the residuals

from the fitted curve and tests whether they fulfill the necessary conditions for the

minimization approach (which were obtained assuming linearity) for each explana-

tory variable separately. If for any given explanatory variable the above conditions

are fulfilled; that is, if the hypothesis that the two regression coefficients are equal is

not rejected, then one concludes that the regression curve is linear in this variable.

Otherwise it is not (see Chap. 7 for details or below for a brief review). This property

is especially important in regressions with several explanatory variables. It enables

the investigator to find a set of variables that allows linear predictions without having

1 To be accurate, the investigator has also to decide whether the model is multiplicative or additive.

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_20,
# Springer Science+Business Media New York 2013
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to commit to the linearity of the model as a whole. Provided that the linearity

hypothesis is not rejected for all explanatory variables one can examine the

properties of the residuals such as their distribution, whether it is symmetric around

the regression line or not, the serial correlation between them, etc., using the

methodologies that will keep the analysis under the Gini framework.2 Although

each stage could be performed by alternative methods, we are not aware of any

methodology that can offer a complete set of tests that is governed by a unified

framework and therefore offers a method to test the assumptions behind the regres-

sion with an internal consistency. We note in passing that the suggested test for

linearity does not require replications of observations, as is the case in the common

tests for linearity.

Some of the stages can also be performed with the EG regression and some can be

illustrated visually by the LMA and concentration curves. The LMA curve and the

decomposition of the regression coefficient are useful whenever we are dealing with

a simple regression case. We note that the same ideas and methodology can be used,

without any adjustment, in the multiple regression case. However, its use in practice

is much more complicated. The regression coefficient in the multiple regression

setting is a function of the simple regression coefficients (as will be shown in

Chap. 21). Therefore one needs to take into account combinations of multiple

effects. That is, an action taken with respect to one variable may affect, through

the effects on the covariances with other explanatory variables, several (or all) of the

explanatory variables.

At this stage the application of those methodologies in a multiple regression

context is cumbersome and therefore will not be pursued in this book. However, we

do show some examples in specific simple cases.

The structure of the chapter is as follows: Sect. 20.1 is devoted to a brief review

of Gini’s multiple regressions. Section 20.2 concentrates on the relationship

between the two types of regression methods, while Sect. 20.3 relies on the

properties developed in Sect. 20.2 to assess the linearity of the model.

Section 20.4 introduces the LMA curve and shows the connection between the

Gini regression coefficient and the curve, while Sect. 20.5 illustrates the methodol-

ogy for the case of two explanatory variables. Section 20.6 applies the methodology

to assess the linearity of consumption as a function of income and family size.

Section 20.7 concludes and offers a direction for further research.

20.1 Gini’s Multiple Regressions3

The aim of this section is to briefly review the results for Gini’s multiple

regressions. The full derivation can be found in Chaps. 7 and 8.

2 See, for example, Frick et al. (2006) who developed ANOGI—the Gini equivalent of ANOVA,

and Shalit (2010) for a test for normality.
3 This section is based on Schechtman, Yitzhaki, and Pudalov (2011).
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20.1.1 The Semi-Parametric Approach

Let (Y, X1,. . .,XK) be a (K þ 1)-variate random variable with expected values (mY,
m1,. . ., mK), respectively, and a finite variance–covariance matrix S. Assume that we

have a general regression curve defined by

gðx1; . . . ; xKÞ ¼ EfYjX1 ¼ x1; . . . ;XK ¼ xKg:
The investigator is interested in estimating a linear approximation of the regres-

sion curve. That is, she needs to estimate a set of slopes (the constant term will be

determined later) which are conditional slopes: the slope of Y on Xi is conditional

on the other Xs in the model.

The steps taken are as follows. First, the linear approximation is defined. Then,

the parameters (conditional slopes) are interpreted as the solutions of a set of linear

equations which involve the (known) simple regression slopes, and the last step is

the estimation procedure, based on the data.

The resulting vector of regression coefficients, bN, is given by

bN ¼ E V0Xð Þ½ ��1
E V0Yð Þ; (20.1)

wherebN ¼ {bN1,. . .,bNK} is a (K � 1) columnvector of the (conditional) regression

coefficients, V is an (n � K) matrix of the cumulative distributions of X1,. . ., XK

(in deviations from their expected values), Y is an (n � 1) vector of the dependent

variable, andX is an (n � K)matrix of the deviations of the explanatory variables from

their expected values. The elements of E(V0Y) and E(V0X) are COV(Y, F(XkÞÞ and
COV(Xj, F(XkÞÞ, respectively. It is assumed that the rank ofV0XequalsK, the number

of explanatory variables. This implies a restriction on the choice of the explanatory

variables that does not exist in OLS: no explanatory variable can be a monotonic

transformation of another explanatory variable because if it does it will imply identical

rows in the matrix V’X (which depends on Xi via Fi(X)). The details of the derivation

are given by Schechtman, Yitzhaki and Artsev (2008).4

The natural estimators of the regression coefficients are based on replacing the

cumulative distributions by the empirical distributions (which are calculated

using ranks):

bN ¼ v0x½ ��1
v0yð Þ; (20.2)

where v is a matrix with elements ½n�1(r(xikÞÞ � 1=2� , and r(xik) is the rank of xik
among x1k,. . .,xnk. Schechtman, Yitzhaki and Artsev (2008) prove that bN is a

consistent estimator of bN and its limiting distribution is normal under regularity

conditions.

Once the Gini regression coefficients are estimated, the constant term can be

estimated by minimizing a function of the residuals. The exact function used

4 If one is interested in overcoming the restriction, then one should use EG regression. See Chap. 21.
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determines whether the regression passes through the mean, the median, or any

other quantile. The multiple regression procedure, although it is not based on an

optimization procedure, generates equivalents to the OLS’s normal equations.

This property plays an important role in this chapter, as will be shown in the next

section. By defining the residual term and substituting for the multiple regression

coefficients, it can be shown that

COVðe; Fk(X)) ¼ 0 for k ¼ 1; . . . ;K; (20.3)

as stated in the following Lemma.

Lemma 20.1 Define the vector e ¼ Y � X bN. Then, E(V’e) ¼ 0, where 0 is a
vector of zeros.

This property holds in the sample as v’e ¼ 0, where e ¼ y � x bN.

Finally, because each variance and covariance in OLS regression is substituted

in Gini regression by GMD and co-Gini, respectively, it is easy to verify that other

concepts used in the OLS such as partial correlation coefficients can be translated

into the Gini regression. Among those concepts is R2 of the regression, which can

be considered as a measure to assess the share of the (square of the) GMD of the

dependent variable which is explained by the model. That is, the R2 for the Gini

semi-parametric regression is defined (Olkin and Yitzhaki, 1992) as one minus the

square of the GMD of the residual term divided by the square of the GMD of the

dependent variable:5

GR2 ¼ 1� cov e; r eð Þð Þ=cov y; r yð Þð Þ½ �2: (20.4)

However, because the decomposition of the GMD of a linear combination into the

contributions of the different components ismore complicated than the decomposition

of the variance, the properties of GR2 differ from the properties of the equivalent term,

R2 in OLS. For example, as will be seen in the next section, GR2 will obtain its

maximal value under the Gini minimization approach. Therefore, the GR2 in the semi-

parametric version would always be not greater than the GR2 in the minimization

approach. Equality holds when the model is linear in all the explanatory variables.

Additional measures of the quality of the fit of the model to the data in the GMD

regression are the Gini correlations between the dependent variable and the

predicted variable. Formally,

GYŶ ¼ cov(Y, F(ŶÞÞ
cov(Y, F(Y))

and GŶY ¼ covðŶ; FðYÞÞ
covðŶ, FðŶÞÞ ; (20.5)

where Ŷ is the predicted variable. As a result of the differences between the

properties of the decomposition of the variance and those of the decomposition of

5 In the empirical application we use GR* ¼ 1 � cov(e,r(e))/cov(y,r(y)).

428 20 Gini’s Multiple Regressions: Two Approaches and Their Interaction



the GMD, we substitute the R2 of OLS by three measures: the one in (20.4) and the

two in (20.5). Note, however, that in the OLS, the parallels to these three measures

are numerically equal.

20.1.2 The Minimization Approach

This approach, which is based on minimization of the GMD of the residuals, has

already been developed in the literature and it is referred to as R-regression

(Jurečková (1969, 1971); Jaeckel (1972); McKean and Hettmansperger (1978);

Hettmansperger (1984)). Therefore its properties will not be repeated here.6 For

our argument, only the orthogonality condition (also known as the normal

equations) is needed. Note that this method requires the specification of a model.

Consider the following model:

Y ¼ XbM þ e; (20.6)

with the usual assumptions on e, that is, the e’s are independent and have mean zero

and a constant variance, and the additional assumption that Xi and ej are indepen-
dent for all i,j. (Note that this assumption follows automatically if the Xi

0s are

considered deterministic.) The estimated equation is

y ¼ xbM þ eM; (20.7)

where bM is the estimator of the slope b using the minimization of GMD of the

residual term eM. Using the covariance presentation of GMD and imposing the

restriction that the mean of the residuals is zero enables us to show that minimizing

GMD of the residuals is equivalent to minimizing

Xn

i¼1
r(e MiÞ eMi; (20.8)

where r eMi
ð Þ is the vector of ranks of the residuals eMi. Because the semi-parametric

approach for the Gini regression is used to estimate the regression coefficients, the

only property required for our suggested approach for testing linearity is that

minimizing the GMD of the residual term yields an orthogonality condition

which is the equivalent of the OLS normal equation and is given by

x0rM ¼ 0; (20.9)

6 It is worth emphasizing that the connection between R-regression and GMD was not recognized

in the literature mentioned above. Many of the properties of those regressions can be traced to the

properties of GMD. Bowie and Bradfield (1998) compare the robustness of several alternative

estimation methods in the simple regression case and find the minimization of the GMD of the

residuals among the most robust methods.
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where rM is the vector of the ranks of eM, rescaled and shifted to have a zero mean.7

(The ith element of x0rM is cov(xi,rM)). Equation (20.9) says that the sample

covariance between the rank of the residuals and the variate value of the explana-

tory variable is set to zero as a result of the minimization of GMD of the residuals.

20.2 The Relationship Between the Two Approaches

As seen in the previous section, each approach yields a set of estimators, a set of

residuals, and a set of “normal equations.” The aim of this section is to identify the

conditions under which the two estimators actually estimate the same parameters in

the population and to give necessary and sufficient conditions under which the two

estimators are algebraically identical. Recall that bM, the estimator obtained by the

minimization of GMD of the residuals, estimates the vector of slopes b under the

linearity assumption. On the other hand no model was required in order to derive

bN, which is based on weighted averages of slopes (see Chap. 7 for details).

Therefore in general the two approaches may yield different estimators. However,

when the model is linear the vector of (true) slopes of the regression curve under the

semi-parametric approach, bN, is equal to the vector of slopes which was obtained

under the linear assumption, bM. The reason is because when the model is linear,

the slopes are all equal along the regression curve and the weighted average of them

is that same constant, therefore bN ¼ bM ¼ b.
Hence, both bN and bM estimate the same vector of slopes, namely b, and the

first-order conditions of both methods should hold with the same set of residuals.

(The last fact will be our basic tool for assessing the linearity of the model, as will

be discussed in the next section). To see that, let

Y ¼ X bþ e; (20.10)

Then, by (20.1)

bN ¼ E V0Xð Þ½ ��1
E V0Yð Þ ¼ bþ E V0Xð Þ½ ��1

EðV0 eÞ: (20.11)

The fact that bN ¼ b implies that E {V0e} ¼ 0, which is the first-order condition

for the semi-parametric approach (Lemma (20.1)).

By substituting y ¼ xbM þ eM into (20.2) the following relationship holds

between bN and bM in the sample:

bN ¼ bM þ v0xð Þ�1
v0eM: (20.12)

7 Because (20.8), the GMD of the residuals, is a piecewise linear function, its partial derivative

with respect to bM may not exist because the derivative is a step function. In this case the solutions

bM to (20.9) form a segment on the real line and bM is determined up to a range. The larger the

sample the lower the probability that such an event occurs.
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The following proposition gives necessary and sufficient conditions for bN to be

algebraically equal to bM in the sample.

Proposition 20.1 Let (yi, x1i,. . ., xKi), i ¼ 1,. . .,n be a sample of size n from a
continuous multivariate distribution with finite second moments. Then

(a) v0eM ¼ 0 iff bM ¼ bN.

(b) x0rN ¼ 0 iff bM ¼ bN, where rN is the vector of ranks of eN.

Proof See Chap. 8.

The second term in (20.12) is equal to the semi-parametric estimator of a regression

coefficient in which the dependent variable is the vector of the residuals of the

minimization approach. Therefore one can view (20.12) as running the regression in

two steps: in the first step the minimization approach is applied to the data. Then, the

semi-parametric approach is applied to the residuals obtained by the minimization

approach. If the regression curve is linear in an explanatory variable, then using the

minimization approach’s residuals as the dependent variable and running a regression

with respect to the explanatory variable, using the semi-parametric approach, will

yield a regression coefficient that is equal to zero. If, on the other hand, the regression

is not linear in one of the explanatory variables, then the second-step regression

coefficient for this explanatory variable will deviate from zero, and other coefficients

may be affected as well due to possible correlations among the explanatory variables.

We note that the order can be changed: one can run the semi-parametric regression

first, and then use the residuals to test whether the first-order conditions of the

minimization approach are fulfilled using the set of residuals of the semi-parametric

approach. This order is suggested in the next section.

20.3 Assessing the Goodness of Fit of the Linear Model

In what follows, we treat each explanatory variable Xk separately. For simplicity,

Fk(Xk) will be denoted by F(Xk). When the model is linear with respect to an

explanatory variable Xk, the semi-parametric approach and the Gini minimization

approach estimate the same parameter bk. Lemma 20.1 and the assumptions of the

linear model in the minimization approach imply that COV(e, F(Xk)) and COV(Xk,

F(e)) are equal to zero for each Xk. That is, if the specification of the model is correct

then the following relationships hold in the population:

COVðe; F Xkð ÞÞ ¼ 0 ¼ COVðXk; Fð eÞÞ k ¼ 1; . . . ;Kð Þ: (20.13)

The left-hand side of (20.13) is the population version of the “normal equation”

obtained by the semi-parametric approach, while the right-hand side is the popula-

tion version of the “normal equation” obtained by the minimization. The proposed

method will take advantage of the fact that two covariances are involved, which is

special to the Gini regression approach.
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In estimating a Gini regression coefficient, one sample covariance is set to zero
by construction, according to the approach taken, but the other sample covariance

can be used for the test. For example, by running the semi-parametric regression,

the sample covariance of the left-hand side of (20.13) is set to zero by construction

(with eN as the residuals). Hence, one can test for linearity by testing (against a

broad alternative) whether COV(Xk, F(e)) ¼ 0, using eN. Note that this last covari-

ance is set to equal zero under the minimization approach when using eM as the

residuals. Alternatively, one can run R-regression and reverse the procedure, as was

mentioned at the end of the previous section. Starting with a semi-parametric

regression to construct a linearity test has several advantages.

(1) The semi-parametric regression does not require specification of the model.

(2) Unlike the minimization approach, there is no problem of nonuniqueness of the

estimated regression coefficient.

(3) The estimators of the semi-parametric approach can be written explicitly using

OLS—like terminology.

(4) The point estimators of the semi-parametric approach can be calculated easily

using the instrumental variable approach therefore standard regression software

can be used.8

For these reasons the following procedure is suggested for assessing the linearity

in Xk.

Step 1: Use the semi-parametric approach to estimate the Gini regression

coefficients. Obtain the residuals eN and the normal equation cov(eN,rk) ¼ 0,

where rk is the vector of ranks of Xk.

Step 2: Use eN to test H0: COV(Xk, F(e)) ¼ 0. H0 states that the normal equation of

the minimization approach holds for the residuals of the semi-parametric approach.

If H0 is rejected, then one can conclude that the model is not linear in Xk. Recall that

in the sample cov(xk, r(eM)) ¼ 0 by construction (where r(eM) is the rank of the

residuals according to the minimization approach).

A test of H0 will be based on a U-statistic. Its consistency and asymptotic

distribution under H0 are given by Schechtman and Yitzhaki (1987). (For the

general approach for testing see Chap. 10). Because (20.13) holds for each Xk

separately, one can use the proposed test for each explanatory variable separately.

However, if one wishes to test for linearity of several X’s simultaneously, then one

should run the regression twice—once for the full model and then for the reduced

model (excluding the nonrelevant X’s) and compare the Gini’s of the residuals of

the two models. The significance of the difference can be formally evaluated using

the methods developed in Chap. 10. If one is interested in the model as a whole,

8 The semi-parametric estimators can be viewed as OLS instrumental variable (IV) estimators,

with the rank of each variable being used as an IV. However, note that the assumptions that are

assumed here are entirely different (see Yitzhaki and Schechtman (2004)). Therefore the inference

cannot be drawn from there.
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then one would replace Xk by Y
_

in (20.13). That is, one would use Y
_

from the

semi-parametric approach and test whether COV(Y
_

, F(e)) ¼ 0, where Y
_

is the

predicted value of Y. This test examines whether the same set of residuals and

predicted values can serve as solutions to both methods.

Finally, it is worth mentioning that other assumptions imposed on the regression

can be tested by using the GMD. For example, D’Agostino’s (1971, 1972) test for

normality of the residuals is based on the statistic cov(eN,r(eN))/nS (where S is the

sample standard deviation of the residuals and n is the sample size), whose

numerator is the GMD of the residuals (see Chap. 7).

20.4 The LMA Curve

The Gini can be visually presented by using a Lorenz curve. The Gini coefficient is

the area between the line of equality (i.e., the diagonal) and the Lorenz curve.

Similar to the presentation of Gini by a Lorenz curve, one can also visually present

the co-Gini (as well as the Gini correlation and the Gini regression coefficient) by

using a curve, to be defined below.

Moreover, this curve is useful to identify sections of local regression coefficients

with different signs if they exist, and/or detect whether a monotonic nondecreasing

transformation of the dependent variable can change the sign of the Gini (or OLS)

regression coefficients.

The curve is based on two curves: the line of independence (LOI) and the absolute

concentration curve (ACC). The vertical difference between the two curves, which

we call the LMA curve, is then normalized by dividing it by cov(X,F(X)). The

resulting curve is denoted by NLMA and the area between it and the horizontal axis

is equal to the Gini regression coefficient (see details in Chaps. 7 or 19).

In general the shape of the curve is as shown in Fig. 20.1

The relevant properties of the NLMA curve are

(a) Thecurve starts at (0,0) andends at (1,0). It can takeany shapedependingon thedata.

(b) The area between the curve and the horizontal axis is equal to the Gini

regression coefficient. In the curve plotted in Fig. 20.1, the section OAB is

contributing toward a positive value to the Gini regression coefficient, while

BCD contributes toward a negative value.

(c) The same sections (in terms of the transformed values on the horizontal axis)

are contributing toward the OLS regression coefficient. However, the

magnitudes (but not the signs) may be different. Therefore, the overall sums

of the areas may differ resulting in different signs of OLS and Gini regressions.

(d) If the curve changes from convex (concave) to concave (convex) then it is

possible to change the sign of Gini and OLS regression coefficients by truncat-

ing the distribution of the explanatory variable.

(e) If the curve intersects the horizontal axis then there exist monotonic nonde-

creasing transformations of X that can change the sign of the OLS regression

coefficient.
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20.5 An Illustration: The Two Explanatory Variables Case

In order to be able to illustrate the properties of the Gini multiple regression in

details and to investigate the roles of the different components, it is convenient to

restrict ourselves to the two explanatory variables case. The objective of this section

is to express the multiple regression coefficients in the two explanatory variables

case as explicit functions of the simple regression coefficients so that it will be clear

how each simple regression coefficient affects the multiple regression coefficients.

A detailed derivation of the general case is given in Chap. 8. Here we only give a

brief review.

Restricting (20.1) to two explanatory variables, the matrix a ¼ r’x (which is the

equivalent of x’x in OLS) is given by

a =
cov( x1 ; r1 Þ cov( x2 ; r1 Þ
cov( x1 ; r2 Þ cov( x2 ; r2 Þ

� �
;

where ri is the vector of ranks of the explanatory variable Xi. Note that the matrix a

is not necessarily symmetric. Dividing each row by the GMD of the diagonal

element and solving the linear equations, we get an explicit presentation which is

identical in structure to the OLS presentation. In order to show the similarity of bN
to OLS regression, let us rewrite (20.2) as follows

bN01:2
bN02:1

� �
¼ 1

1� G12 G21

1 �bN21
�bN12 1

� �
bN01
bN02

� �
;

where G12G21 is the symmetric version of the Gini correlation, bNij (i ¼ 0,1,2;

j ¼ 1,2) indicates the simple Gini regression coefficient of variable i on j, with

0 denoting the dependent variable. The regression coefficients in the multiple

regression are bN0i.j (i,j ¼ 1,2). See Chap. 8 for details.

To make the analysis simpler, note that

bN12bN21 ¼ cov(x1;r2Þ
cov(x2;r2Þ

cov(x2;r1Þ
cov(x1;r1Þ ¼

cov(x1;r2Þ
cov(x1;r1Þ

cov(x2;r1Þ
cov(x2;r2Þ ¼ G12G21:

Using the above equation we rewrite the coefficients in the multiple regression

case as functions of the simple regression coefficients as follows

bN01:2
bN02:1

� �
¼ 1

1� bN12 bN21

bN01 � bN02 bN21
bN02 � bN01 bN12

� �
:

Note that the denominator is always nonnegative because

bN12bN21 ¼ G12 G21 � 1:

Therefore, the sign of bN0i.j is determined by the sign of (bN0i –bN0j bNji).
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20.6 An Application: Assessing the Linearity of Consumption

as a Function of Income and Family Size

In the previous section we expressed the multiple regression coefficients in the two

explanatory variables case as explicit functions of the simple regression coefficients

so that it will be clear how each simple regression coefficient affects the multiple

regression coefficients. We now discuss the logical inconsistency between mea-

surement and policy instruments used in order to deal with the effect of family size

on economic well-being and in the next section we present the empirical analysis

intended to shed some light on this internal inconsistency.

20.6.1 The Problem to be Solved

In this section we present an example to illustrate the properties of the Gini

regressions, the specification tests, and the visual inspection of whether the

association between random variables is monotonic over the entire range of the

explanatory variable or not. In this example there is an incompatibility between

the measurement of performance of a policy intended to improve the income

distribution and the policy instruments that the government uses. An empirical

examination can help to decide which way is the “right” way. The issue is the

following: when the problem of interest is to measure inequality in economic

well-being, differences in family sizes are commonly taken into account by

looking at income per capita or some kind of an equivalence scale. Almost all

equivalence scales in use are based on dividing the income by a number which is a

function of the family size. When viewing consumption per adult equivalent as

representing economic well-being we should expect consumption expenditures to

be related to income and family size in a multiplicative relationship. On the other

hand, most of the policy instruments in use in the income tax and benefits systems

are based on an adjustment of the tax to family size by giving a tax relief which is

based on decreasing the tax (or increasing the benefits) by an amount which is

only a function of the family size. We argue that those instruments represent an

additive relationship between consumption and family size. It should be empha-

sized that we are not dealing with the normative issue of how the tax system

should treat families of different sizes. The normative issue needs further

research. All we deal with is the issue—are the way in which performance of

tax systems in the area of reducing inequality is measured and the policy

instruments used compatible? In the rest of this section we present the distinction

between a multiplicative relationship and an additive one in a formal way.

The first step in the measurement of inequality in economic well-being is to rank

households according to economic well-being. One way of doing that is to use a

multiplicative scale so that the ability to consume is defined as

20.6 An Application: Assessing the Linearity of Consumption as a Function. . . 435



e Y;Nð Þ ¼ E
Y

a(N)

� �
; (20.14)

where Y is the net income of the household, N is the family size, a(N) is the adult

equivalent scale, and e(Y,N) is the equalized income that represents economic well-

being. For example, the European Union is using the scale of a(N) ¼ N0.5 as its

official scale. Feldstein’s (1976) principle of horizontal equity is that “If two
individuals would be equally well off (have the same utility) in the absence of
taxation, they should also be equally well off if there is a tax” (Italic at source, 1976,

p. 83). Our interpretation of the principle is that the ranking of families according to

before-tax economic well-being should be identical to the ranking of families

according to after-tax economic well-being. Would we want the tax and benefit

function to keep Feldstein’s principle of horizontal equity, the structure of the tax

and benefit function should have been

T N;Yð Þ ¼ a(N) t
Y

a(N)

� �
; (20.15)

where T(N,Y) is the total tax minus the benefits that the family receives and t( ) is

the tax function defined over adult equivalent income.9,10 On the other hand, when

looking at tax and benefit systems, it turns out that most countries rely on an

additive scale. This is the case whenever child allowances or exemptions are used

to handle family size. In the case of exemptions, the structure of the tax function is

T N;Yð Þ ¼ T Y� EX Nð Þð Þ: (20.16)

That is, to adjust the tax to family size, the amount of EX(N) is deducted from

before-tax income, for all families of size N, as it is, for example, in the USA. In the

case of tax-exempt allowances, the tax function is

T N;Yð Þ ¼ T Yð Þ � AL Nð Þ; (20.17)

where AL is the allowance, as is the case in Israel and Britain. In both cases (20.16)

and (20.17) it is as if the state recognizes a given amount that should be added to the

income to keep horizontal equity intact.

We argue that (20.14) on one hand and (20.16) and (20.17) on the other hand are

incompatible because they violate Feldstein’s principle of horizontal equity. To

shed some empirical light on this issue it is worth to check whether the Engel curve,

which relates consumption to income and family size, is additive or multiplicative.

9 In some applications the model used is T N;Yð Þ ¼ Nt
� Y
a(N)

�
, so that each member of the

household is counted as one (see Ebert (2005, 2010) and Ben-Porath’s comment by Bruno and

Habib (1976)).
10 The French tax system resembles this structure.
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This means that we view consumption as representing economic well-being and

household’s size as representing needs. Assume that the appropriate specification of

the Engel curve is linear. That is,

Ĉ ¼ aþ bY þ gN, (20.18)

where a, b, and g are either chosen by the policy maker or estimated from the data.

Then it is reasonable to argue that the effect of an additional family member on

consumption is to increase consumption by a constant and then the appropriate tax

adjustment should be of the exemption or allowance type. If, on the other hand, the

appropriate specification of the Engel curve is multiplicative, that is, of the type

ln ðĈÞ ¼ aþ bln Yð Þ þ gln Nð Þ (20.19)

then the effect of an additional family member on consumption is to increase

consumption by a given percentage, which can be viewed as supporting a tax

function of the multiplicative type as in (20.15). Our empirical research question

is to decide which of the two alternatives is supported by the data and represents the

appropriate specification of the Engel curve.

20.6.2 Empirical Findings

The alternative models discussed above were applied using Israeli Survey of

households’ Expenditures, 2008. (For a description of the sample see Central Bureau

of Statistics (2009), S.P. 1363). The data consists of 5,971 observations. Each

observation includes a weight which represents its weight in the population. Con-

sumption includes the depreciation and value of forgone interest on capital invested

in housing and vehicles. Income is after-tax overall income, which includes money

income plus in-kind income minus income tax and social security taxes.

The structure of the empirical illustration is the following: we first present the

simple regression coefficients that are the basic components of the multiple regres-

sion coefficients and only later we present the multiple regression coefficients. In

our presentation, our main interest is to find out whether the relationships between

the variables are monotonic. By “monotonic” it is meant that the sign of the

regression coefficient does not change over the entire range of the explanatory

variable. The final stage is to see which model fits the data better: the additive or the

multiplicative?

We start with the relationship between the dependent variable and the explana-

tory variables.

Table 20.1 presents the simple regression coefficients between consumption

expenditures and after-tax (net) income using linear andmultiplicative specifications.

For comparison we also present the OLS estimates.
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The left-hand part of Table 20.1 presents the OLS simple regression coefficients

of the additive and multiplicative specifications (20.18) and (20.19). The right-hand

part presents the semi-parametric Gini regression equivalents. Because we are only

interested in the components of the multiple regression the standard errors for the

constant term are not estimated. As can be seen from Table 20.1, the marginal

propensity to spend, that is, the simple regression coefficient, is smaller for the OLS

than for the Gini in both specifications. This is a result of a combination of two

factors: the Gini regression tends to give lower weights to extreme observations, and

themarginal propensity to spend tends to decline with income. The constant terms of

the Gini regressions are estimated in two ways depending on whether the regression

passes through the median of the dependent variable or through the mean. The

median constant is lower than themean constant, especially for the linear regression.

This indicates that the residuals tend to be larger for high income groups. It should be

mentioned that the standard errors of the Gini and OLS regression coefficients are

not comparable because for the Gini it is assumed that the explanatory variable is a

random variable, while under regular OLS software it is assumed that only the

residual term is random. Also note that the measures of goodness of fit are not

automatically comparable. In order to make them comparable one should look at R

for OLS, rather than at R2. Figure 20.2 presents the LMA of consumption versus

income (Line of Independence Minus Absolute Concentration Curve). The curve is

concave and smooth and does not intersect the horizontal axis, implying that the

relationship between consumption and income is monotonically increasing and

there is no monotonic transformation of income that can change the sign of the

OLS regression coefficient. Also the curve is increasing till about the 60th percen-

tile, indicating that the consumption is lower than the average consumption, and then

declines, indicating that consumption in above average consumption.

Table 20.2 is similar to Table 20.1, except that this time the regression is with

respect to family size. Here, the results are a bit different from those in Table 20.1.

Table 20.1 Simple OLS and Gini regression coefficients—consumption as a function of incomea

Model

OLS Gini

a b R2
a

(mean)

a

(median) b R(y,ŷ) R(ŷ,y) GR

Linear 4,756 0.533 (0.000) 0.514 3,505 2,641 0.621 (0.011) 0.792 0.803 0.346

Multipli-

cative

4.216 0.538 (0.000) 0.489 2.735 2.707 0.698 (0.014) 0.811 0.791 0.372

aStandard errors in parentheses.

In Gini regression the standard errors were calculated using Jackknife fast method. [In using the

jackknife method in a regression context there are two options: when dropping an observation

from the sample, should one re-estimate the whole model again or is it permissible to drop an

observation and to evaluate the effect on the regression coefficient. The former approach seems to

be the appropriate one but it is time consuming and the difference between the two methods seems

negligible. By fast method it is meant that the model was not re-estimated.]

Standard errors of the OLS are rounded to three decimal points

Source: Schechtman, Yitzhaki, and Pudalov (2011), Table 6.1, p. 86

Reprinted with permission by Metron International Journal of Statistics
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Fig. 20.2 LMA curve of consumption as a function of income. Source: Schechtman, Yitzhaki,

and Pudalov (2011), Fig. 1, p. 85. Reprinted with permission by Metron International Journal of

Statistics
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P=F(x)

ACC{µy-E[Y/X]}
cov(X,F(x))
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B D

1

Fig. 20.1 The NLMA curve

Table 20.2 Simple OLS and Gini regressions—consumption as a function of household’s sizea

Model

OLS Gini

a b R2
a

(mean)

A

(median) b R(y,ŷ) R(ŷ,y) GR

Linear 8,191 1,251 (2.686) 0.093 7,195 5,674 1,551.6 (59.47) 0.399 0.399 0.056

Multipli-

cative

8.73 0.486 (0.001) 0.217 8.742 8.766 0.474 (0.015) 0.459 0.463 0.110

Source: Schechtman, Yitzhaki, and Pudalov (2011), Table 6.2, p. 86

Reprinted with permission by Metron International Journal of Statistics
aStandard errors in parentheses. In Gini regression standard errors were calculated using Jackknife

fast method
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Under the linear specification, having an additional person increases consumption

by 1,552 NIS (New Israeli Shekel) according to the Gini regression, while under

OLS the amount is smaller and is equal to 1,251 NIS. On the other hand, under the

multiplicative specification, the OLS estimates of the percentage increase in con-

sumption due to an increase in the household size is 0.49 which is lower than the

Gini (0.47).

Figure 20.3 offers an insight to the results. Unlike the curve in Fig. 20.2 which is

concave and smooth, Fig. 20.3 changes from a concave to a convex curve. This

means that while the overall regression coefficient is positive (as seen in

Table 20.2), it is positive among small households, but it is negative among the

largest households as is illustrated next: using the Gini linear specification and

estimating the regression coefficient for households of size 4 and above, which

include 42% of the observations, we get b ¼ �173.5, while restricting the regres-

sion to households of size 5 and larger, which amount to about 25% of the

observations, we get an even smaller slope, b ¼ �827.3. It is important to note

that on the vertical axis we plotted overall consumption of the household, so that the

decline in consumption with household size is of total consumption and not per-

capita consumption.

Note, however, that the curve does not cross the horizontal axis, which implies

that no monotonic transformation of household’s size can change the sign of the

regression coefficient. The explanation to this result lies in an additional decompo-

sition that one can perform, which decomposes the regression coefficient into two

components: a within-component (intra) and a between-components (inter) (see

Chaps. 7 or 19). Assume that one divides the range of the explanatory variable into

two sections. One section is composed of the sixty percent of the smallest

households, while the other section is composed of the remaining 40% of the

largest households. Then the overall regression coefficient can be expressed as a
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Fig. 20.3 LMA curve of consumption as a function of household’s size. Source: Schechtman,

Yitzhaki, and Pudalov (2011), Fig. 6.2, p. 86. Reprinted with permission by Metron International
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weighted sum of intra- and intersection regression coefficients weighted by the

appropriate measure of variability used (variance of X for OLS; GMD of X for

GMD regression). The between-groups component is reflected by the triangle

which starts at the origin reaches the curve at the end of the first section and ends

up on the horizontal axis at one. The intra-group components are reflected by the

areas enclosed between the curve and the edges of the triangle. In our example

(Fig. 20.3) the between-groups component contributes to the overall regression

coefficient more than the intra-group components. Therefore it determines its sign.

However, it should be clear that no linear model can explain such a pattern.

We now turn to describe the simple regression coefficients between the explan-

atory variables. Table 20.3 presents the last elements needed for the multiple

regression coefficients.

It is worth mentioning that in OLS the ratio between a regression coefficient and

the regression coefficient in a reversed regression is equal to the ratio of the

variances. (i.e., in OLS byx/bxy ¼ Var(y)/Var(x)). In the Gini regression no such

relationship has to hold. Moreover, at least in theory they can even have different

signs! Figs. 20.4 and 20.5 present the LMA curves for the additive model.

Figure 20.4 which portrays net income as a function of the size of the household

indicates that while for small households the conditional expected value of income

is increasing, this sign of the regression coefficient changes to a negative one among

45% of the largest households. Moreover, there is a small range (between 90th and

95th percentiles of household’s size) in which the curve is below the horizontal

axis, which means that a monotonic transformation that shrinks all the rest of the

range of household’s size will yield a negative regression coefficient in the OLS.

Also, there is a transformation of income that can change both OLS and Gini

regression coefficients. Obviously this will not be an acceptable treatment of the

Table 20.3 The simple regression coefficients between the explanatory variablesa

Model

OLS Gini

a b R2
a

(mean)

a

(median) b R(y,ŷ) R(ŷ,y) GR

(a) Household’s size as a function of income

Linear 2.713 0.000042

(0.000)

0.055 2.393 1.96 0.000065

(0.000)

0.321 0.343 0.031

Multip. �1.583 0.28

(0.000)

0.144 �2.113 �2.087 0.3366

(0.0117)

0.404 0.411 0.062

(b) Income as a function of household’s size

Linear 9,961.86 1,285.38

(3.687)

0.055 8,584 6,406 1,709

(82.4)

0.343 0.321 0.026

Multip. 8.781 0.514

(0.001)

0.144 8.802 8.863 0.4938

(0.024)

0.411 0.404 0.080

aStandard errors in parentheses.

In Gini regression standard errors were calculated using Jackknife fast method. See explanation to

Table 20.1 and Yitzhaki (1991)

Source: as above, Table 6.3 p. 88
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data. Figure 20.5, on the other hand, which presents household size as a function of

income, is a concave and smooth curve.

As far as we can see, no simple model can explain such results. One possible

explanation is that there are two models of behavior: the fertility in one group

follows the regular pattern of bringing children to the world subject to having the

ability to support them, while the fertility in the other group is not related to income.

Our conclusion is that no simple model can explain such a curve.
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Figure 20.6 is added in order to explain the difference between the additive and

the multiplicative models: because the horizontal axis portrays the cumulative

distribution, it is the same as the horizontal axis of Fig. 20.4. Hence the only

difference between the additive and the multiplicative models is that the latter

shrinks the inconvenient deviations that existed in the additive model. As a result, in

the latter model there is no monotonic transformation that can change the sign of the

regression coefficient. However, the negative relationship in income as a function

of the household’s size for large households continues to hold. This is an indication

that we should expect a better fit of the multiplicative model than the additive one.

Having described the components of the multiple regression coefficients,

we now move to present the results of the multiple regressions. Table 20.4 presents

the results.

Comparison of the regression coefficients between the OLS and the Gini in the

additive and multiplicative models indicates that the marginal propensity to spend is

larger under theGini than underOLS regression,with themultiplicativemodel showing

larger differences. On the other hand, both specifications indicate that the effect of an

additional member in the household is larger under OLS than under the Gini method.

The difference between the estimates of the simple regression coefficient and the

parallel estimates in the multiple regression case indicates the effect of the association

between the explanatory variables. The estimates are given in Table 20.5.

Would the explanatory variables be statistically independent, then there should

have been no difference between the two. However, when the explanatory variables

are correlated and the relationship is not linear then the effect of the correlation may

be different under OLS and Gini regressions. The fact that the two methods yield

regression coefficients that are different calls for further inspection of the way that

the models fit the data. The range of the income variable is of a totally different

magnitude than that of the household’s size. This explains why the differences in
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magnitude of the coefficients of income are smaller than the differences in the range

of the coefficients for household’s size.

Figure 20.7 presents the LMA curve of the residuals as a function of net income.

By construction, the area between the curve and the horizontal axis is equal to zero

(recall that cov(eN, F(X)) ¼ 0). A perfect fit of the model to the data will result in a

curve which oscillates randomly around the horizontal axis. As can be seen, this is

unlikely the case. For the lower 55% of observations of income (approximately)

there is a positive (Gini and Pearson) correlation between the residuals and income,

while the highest 45% of the observations on income reveal a negative correlation.

Note that by construction, the area enclosed between the curve and the horizontal

axis equals to zero.

To check thequality of the specification Fig. 20.8 presents theLMAcurveof income

as a function of the residuals. Results show that Fig. 20.8 is almost a mirror image of

Fig. 20.7. For small values of residuals the correlation is negative, while for large values

of residuals the correlation is positive. Overall, cov(x,r(eN)) ¼ �505.44. To test

whether the specification of the model is correct we estimated the (simple) Gini

regression coefficient of income on the residuals and found that the regression

Table 20.5 The regression coefficients for the simple and multiple regression modelsa

Model

OLS Gini

Income Size Income Size

Simple Multiple Simple Multiple Simple Multiple Simple Multiple

Linear 0.533

(0.000)

0.508

(0.000)

1,251

(2.686)

598.6

(1.981)

0.621

(0.011)

0.585

(0.011)

1,551.6

(59.47)

556.4

(41.01)

Multip. 0.538

(0.000)

0.47

(0.000)

0.486

(0.001)

0.245

(0.001)

0.698

(0.014)

0.645

(0.013)

0.474

(0.015)

0.156

(0.012)
aStandard errors in parentheses.

In Gini regression standard errors were calculated using Jackknife slow method.

Source: same as above
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Fig. 20.7 LMA of residuals as a function of income: linear specification. Source: same as above,

Fig. 6.6, p. 91
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coefficient bx,r(e) ¼ �0.194, ŝb ¼ 0:042, and because the estimator of the regression

coefficient is approximately normally distributed, it turns out that the value of the test

statistic is Z ¼ �4.609 and the linearity of themodelwith respect to income is rejected.

We now inspect the quality of the specification of the model with respect to

household’s size. Figure 20.9 presents the LMA curve of the residuals as a function

of household’s size. Again, we remind the reader that the area enclosed between the

curve and the horizontal axis is zero by construction. Similar to the case of income,

there is a positive correlation between the residuals at low levels of household’s size

and negative correlation for large household’s size. However, for about 25% of the

observations of middle size households the curve is horizontal and close to the

horizontal axis, indicating a good fit of the model to the observations.

Figure 20.10 presents the LMA curve of household’s size as a function of the

residuals. Again we get a mirror image of Fig. 20.9 although the quality of the

“mirror” is worse than the one we got when we dealt with income. For small values

of residuals we got a negative correlation between household’s size and residuals,

while for large values of residuals we got a positive correlation. To test for the

quality of the linear specification we ran a (Gini simple) regression of household’s

size on the residuals. The estimated Gini regression coefficient is �0.0000247, its

standard error is estimated to be 4.5197E�11, so that the test statistic indicates that

the linear specification is rejected.11
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Fig. 20.8 LMA of income as a function of the residuals. Source: same as above. Figure 6.7 p. 91

11 There are two problems with these results. The first problem is that household’s size is a discrete

variable. In this case there is a mismatch between the LMA curve and the definition of cumulative

distribution, because the empirical cumulative distribution is defined as a step function, while in an

LMA (and Lorenz) curve one connects different points of the curve by straight lines, which implies

continuity (see Chap. 5). The other problem is the issue of rounding errors because of small

numbers involved. Therefore one should be careful in interpreting this result. Further research is

required to resolve this issue.
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We now turn to inspect the multiplicative specification.

Figure 20.11 presents the LMA curve of the residuals as a function of ln(net

income). Note that because the horizontal axis portrays the cumulative distribution

of ln(net income) and the cumulative distribution of net income is not affected by

monotonic increasing transformation, the horizontal axes in Figs. 20.11 and 20.7

are identical. The difference is only in the vertical axes. Comparisons of the two

figures reveal that while in Fig. 20.7 low levels of income are associated with

negative correlation with the residuals, the multiplicative specification has changed

the sign and the order of correlations. Except for the lowest 20% of observations of

income the curve seems flat indicating a low level of correlation between the
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Fig. 20.9 LMA curve—linear specification: household’s size
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Fig. 20.10 LMA of household size as a function of residuals: linear specification. Source: same as

above. Figure 6.7 p. 91
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residuals and income. Figure 20.12 presents the LMA curve of ln(net income)

with respect to residuals. For low levels of residuals the correlation is positive,

while for high levels of residuals the correlation is negative. The estimated

cov(x,r(e)) ¼ �0.00803, the regression coefficient of the simple (Gini) regression

of ln(income) as a function of the residuals is bx,r(e) ¼ �0.0365, the estimated

standard error is ŝb ¼ 0:047, the test statistic is Z ¼ �0.772, so that we fail to

reject the hypothesis that the model is linear with respect to income.12
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Fig. 20.11 Multiplicative specification: residuals as a function of ln(net income) Source: same as

above, Fig. 6.10 p. 94
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Fig. 20.12 LMA curve of ln(net income) as a function of the residuals. Source: same as above,

Fig. 6.11 p. 94

12 Standard errors were calculated using Jackknife fast method.
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We turn now to the specification of the multiplicative model with respect to

household’s size. Figure 20.13 presents the LMA curve of the residuals as a

function of the household’s size. As can be seen, for low levels of household’s

size the correlation is negative, for middle-sized households it is positive and for

large ones households it is again negative. Note that by construction, the overall

area between the curve and the horizontal axis is equal to zero.

One can observe that the (Gini) correlation between household’s size and the

residuals is positive for small households and slightly negative for large ones

(Fig. 20.14). The Gini covariance is cov(x,r(e)) ¼ 0.01644, the (Gini simple)

regression coefficient is bx,r(e) ¼ 0.0748, its standard error is ŝb ¼ 0:026, so that

the test statistics is Z ¼ 2.907. This means that although we have rejected the
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Fig. 20.13 Multiplicative specification: household’s size. Source: same as above, Fig. 6.12 p. 95
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Fig. 20.14 LMA curve of household’s size with respect to residuals. Source: same as above.
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specification with respect to family size in the multiplicative model as well, the

multiplicative model fits the data better than the additive one.

To conclude the empirical examination, we have found the multiplicative model

to fit the data better than the additive one. If one has to choose between (20.8) and

(20.9) then (20.9) is supported by the data better than (20.8).

20.7 Summary

In this chapter we have illustrated the use of the Gini multiple regression. Similar to

the simple regression case, the Gini multiple regression offers two types of

regressions. The first is a semi-parametric regression, which is an imitation of the

OLS regression, and similar to it, the estimator can be explicitly written. The

advantages are that no model has to be specified, and it is less sensitive to outliers

than the OLS regression (because it is based on ranks). The other regression is based

on minimization of the Gini of the residuals.

The combination of the twomethods offers a built-in specification test. It is based

on the fact that the Gini method has two covariances between each pair of random

variables. In estimating a regressionmodel one covariance between the residuals and

each explanatory variable is set to zero, so that the other covariance can be used as a

test for the specification of the model. One can start by estimating a linear approxi-

mation to the regression curve, and if one wants to use it for prediction, then the

prediction will be restricted to the variables in which the model is linear.

The connection between the Gini parameters and concentration curves enables

one to verify the monotonicity of the regression curve. The importance of verifying

the monotonicity is stressed by Heckman, Urzua, and Vytlacil (2006a) in the

context of an instrumental variable. In a Gini regression framework, monotonicity

is not an assumption imposed on the data. It is a property that says that the

regression coefficients on each section of the data have identical signs. It is up to

the judgment of the reader to decide whether this requirement is violated and to

what extent. The monotonicity can be graphically observed—if the LMA intersects

the horizontal axis then the monotonicity is violated. We illustrate the methodology

described above using data on consumption, income, and household’s size from the

Israeli households’ expenditure survey. Schechtman, Shelef et al. (2008) suggest

several statistical tests that will enable the user to formally test for the intersection

of absolute concentration curves.

The basic OLS regression has many refinements. The similarity between the

OLS and the semi-parametric Gini regression gives the hope that many of the

refinements of the OLS can be developed for the Gini regression as well. A first step

in this direction is offered by Yitzhaki and Schechtman (2004), where the instru-

mental variable approach is developed in a GMD framework. An additional tool is

the decomposition of the Gini of a population by subpopulations (ANOGI) (Frick

et al. 2006) which enables the user to imitate the decomposition of the variance

(ANOVA) and to get an additional property—the stratification in a distribution.
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ANOGI is the tool that enables the decomposition of the Gini regression coefficient

into the contributions of different sections of the explanatory variable, as discussed

by Yitzhaki and Schechtman (2012). Dividing the residuals into positive and

negative groups and applying ANOGI enables the user to get further insights

about the distribution of the negative and positive residuals along the range of the

explanatory variable. Further research is needed to fully utilize the properties of

the Gini in regression analysis.
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Chapter 21

Mixed OLS, Gini, and Extended Gini

Regressions

Introduction

The purpose of this chapter is to illustrate the use of the mixed regression technique.

The meaning of mixed regression is that some of the explanatory variables are

treated according to one regression method, while the others are treated according

to another method. We extend this definition and include EG regressions for which

different EG parameters may be attached to the different explanatory variables.

Like any inbreeding the mixed regression does not have “pure” properties. There-

fore the purpose for using it needs to be explained and justified.

We discuss two types of mixtures: mixing OLS and Gini regressions and mixing

Gini and EG regressions. Mixing Gini and OLS is useful whenever estimating a

model with OLS yields estimates that are different from the estimates obtained by

the Gini method. Sometimes the estimates may even have different signs. In this

case, we can move from one method to the other by switching one variable at a time

to find the variable(s) that are responsible for the deviations of the estimates. For

example, we can start by treating all the variables by OLS and then start treating

them (adding one at a time) by Gini regression.

Mixed Gini and EG regression is mainly intended to trace the curvature of a

conditional regression curve. That is, given a model that was estimated by the Gini

regression (i.e., n ¼ 1), we can trace the curvature of the regression curve with

respect to each explanatory variable by changing its EG parameter and checking

whether the conditional regression curve (given the model and its estimation

methodology) is concave, linear, or convex.

Mixing Gini and EG regression may also be motivated by economic theory.

Whenever economic theory calls for asymmetric treatment of one variable as is the

case in welfare economics, and in finance the mixed Gini and EG regression is the

preferred method because OLS and Gini treat the variables in a symmetric way. The

Gini belongs to the EG family, therefore it is more convenient to mix it with EG

than mixing OLS and EG. In welfare economics, theory calls for imposing the

“social evaluation of the marginal utility of income” on the data, while in finance

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_21,
# Springer Science+Business Media New York 2013
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the same role is played by risk aversion. In those cases we may want to apply the EG

regression to the income or wealth, while other explanatory variables can be

handled by OLS or Gini.

It is worth noting that it is possible to develop a mixed regression method for

other techniques such as quantile or Mean Absolute Deviation regressions. How-

ever, we will not discuss these issues in details, but only point out how to do them.

The structure of the chapter is as follows: Sect. 21.1 presents the methodology of

mixed regression. In Sect. 21.2 we illustrate the use of mixed OLS and Gini

regression and in Sect. 21.3 we illustrate the use of mixed Gini and EG regression.

Section 21.4 concludes.

21.1 Mixing Gini, Extended Gini, and OLS

in the Same Regression

In this section we present a new regression technique which is based on mixing

ordinary least squares (OLS) and Gini or Gini and EG regressions. The basic idea is

the following: it is shown in Chap. 7 that the regression coefficients in a simple OLS

and in Gini and EG regressions can be interpreted as weighted averages of slopes

defined between adjacent observations of the explanatory variable. The implication

of this observation is that the OLS and Gini estimators of the regression coefficients

do not rely on the linearity assumption of the regression curve. Schechtman,

Yitzhaki, and Artsev (2008) used the concept of a linear approximation to a

regression curve, that is, estimating a linear approximation to the model without

assuming that the model is truly linear. The aim of this section is to briefly present

the basic derivation of estimators within the framework of mixed OLS, Gini and EG

regressions. We refer to those regressions as covariance-based regressions because

the estimators of the regression coefficients in a multiple regression framework are

derived by solving a set of linear equations that are composed of simple regression

coefficients that play the role of the parameters in those equations (see Chap. 8 for a

detailed discussion). The presentation is restricted to population parameters. All

estimators are sample’s analogues of the population parameters.

Let (Y, X1,. . .,XK) be continuous random variables that follow a multivariate

distribution with finite second moments. For every choice of constants, a, b1, . . .,bK
define the random variable e by the following identity

Y � aþ b1X1 þ . . .þ bKXK þ e: (21.1)

At this stage, a, b1,. . ., bK are arbitrary constants (b1,. . .,bK will later stand for

the multiple regression coefficients, while a will be a location parameter). The

random variable e is defined as a slack variable, intended to fulfill identity (21.1).

The symbol � is used to indicate that at this stage there are no assumptions

imposed on e and all its properties are determined by the properties of the
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distribution of (Y, X1,. . ., XK). Identity (21.1) is a tautology, which means that no

assumption has been imposed on the regression curve.

Let T1,. . .,TK be K random variables. The covariances between Y and these

variables define a set of identities as follows

cov Y;T1ð Þ � b1cov X1;T1ð Þ þ . . .þ bKcov XK;T1

� �þ covð e;T1Þ

cov Y;Tkð Þ � b1cov X1;Tkð Þ þ . . .þ bKcov XK;Tk

� �þ covð e;TkÞ

cov Y;TKð Þ � b1cov X1;TKð Þ þ . . .þ bKcov XK;TK

� �þ cov e;TKð Þ: (21.2)

Dividing each line by the appropriate covariance, subject to the assumption that

cov(Xk,Tk) 6¼ 0, (k ¼ 1,. . .,K) we get

b01 � b11þ . . .þ bKbK1 þ be1:

b0k � b1b1k þ . . .þ bKbKk þ bek:

b0K � b1b1K þ . . .þ bK1þ beK; (21.3)

where the index 0 indicates the dependent variable,

bej ¼ cov(e;TjÞ
cov(Xj;TjÞ and bkj ¼

cov(Xk;TjÞ
cov(Xj;TjÞ are the general formulae for the regression

coefficients in the simple regressions of Xk on Tj, k,j ¼ 1,. . .,K. Two special cases

are the OLS (iff Tj ¼ Xj), and the Gini (iff Tj ¼ F(Xj)). Provided that the rank of

the matrix of the coefficients composed of the bkj’s is K we get the following

“solution” of the identities in (21.3)

b1

bK

0
BB@

1
CCA �

1 b21 bK1

b1K b2K 1

0
BB@

1
CCA

�1 b01 � be1

b0K � beK

0
BB@

1
CCA � A�1½b0 � be� (21.4)

where A�1 is a K�K matrix and the b’s are K�1 vectors. The set of identities

(21.4) is the basic structure of the identities that hold in an arbitrary model.

So far no assumption has actually been imposed, except that cov(Xk,Tk) 6¼ 0,

k ¼ 1,. . .,K, and that the rank of the matrix A is equal to K.

We now impose a set of restrictions. We impose them on the data in the sample.

The restrictions hold in the sample by construction, and therefore cannot be verified

nor tested without additional information.

The set of restrictions to be imposed, referred to as “orthogonality conditions” is

given by

bek ¼ 0; for k ¼ 1; . . . ;K: (21.5)
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One possible interpretation of (21.5) can be that it represents first-order

conditions for an optimization with respect to a target function. This is the case

for a specific choice of the variables Tk. For example, if Tk ¼ Xk then we are in the

OLS regression case. Alternatively, one can follow DeLaubenfels’ (2006) geomet-

ric interpretation that the inner products of the vectors of explanatory variables and

the residual are zero. That is, the explanatory vectors are orthogonal to the residual.

In both cases it should be remembered that those conditions are imposed on the data
and there is no a priori reason to believe that they exist in the population.

The consequence of imposing the orthogonality conditions is that (21.4) now turns

from an identity to a solution of a set of linear equations, so that bk (k ¼ 1,. . .,K)
cease to be arbitrary constants but become the solutions of a set of linear

equations.

Formally, using the restriction (21.5), the identities of (21.4) turn into (21.6)

b1

bK

0
BB@

1
CCA ¼

1 b21 bK1

b1K 1

0
BB@

1
CCA

�1 b01

b0K

0
BB@

1
CCA ¼ A�1b0: (21.6)

The structure given in (21.6) is general, and it corresponds to all members of the

covariance-based regressions, depending on the choice of Tk, k ¼ 1,. . ., K. Special
cases include

(a) Tk ¼ Xk for all k, k ¼ 1,. . ., K. Then it is easy to see that (21.6) represents the

OLS.

(b) Tk ¼ F(Xk) for all k, k ¼ 1,. . ., K. Then (21.6) represents the semi-parametric

Gini regression.

(c) Tk ¼ �½1� F(XkÞ�nk for all k, k ¼ 1,. . ., K, and nk are given parameters

supplied by the researcher. Then (21.6) represents the structure of the extended

Gini regression.

(d) Tk ¼ Zk for some k, k ¼ 1,. . ., K. Then (21.6) represents the structure of an

OLS-IV regression.

(e) Tk ¼ F(Zk) for some k, k ¼ 1,. . ., K. Then (21.6) represents the structure of a

Gini-IV regression.

Several additional properties of (21.6) are worth mentioning.

By choosing Tk one is choosing the weighting scheme used in the regression,

which is actually a choice of the variability measure used (variance in OLS (a), Gini

or extended Gini in the regressions defined in (b) and (c), respectively). As a result,

this choice determines the metric used (Euclidean in the case of OLS, city block in

the case of Gini) and the “orthogonality conditions” applied. In the case of OLS the

orthogonality conditions are cov(Xk, e) ¼ 0, under the Gini regression they are

cov(F(Xk),e) ¼ 0, etc.

Each of the K equations in (21.4) can be defined with a different Tk so that one

can have mixed regression methods: some equations can be defined as based on
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GMD, others on OLS, etc. The advantage of a mixed method is that it enables the

user to check the robustness of each imposed linear normal equation with respect to

different regression methodologies, so that only the linear approximation of the

regression curve that is not seriously affected by the choice of the methodology will

be leading to a robust conclusion with respect to its sign and magnitude.

It is interesting to note that we could substitute one or several of the equations in

(21.5) by orthogonality conditions (i.e., first-order conditions for optimization)

taken from other regression techniques. However, in such a case one could not

have linear orthogonal conditions. In this case, one would need to solve the first-

order conditions numerically.

Having derived the regression coefficients, we turn to the constant term, a. To
see whether the residuals are symmetrically distributed around the regression line,

one can set the constant term so that the regression line passes either through the

means or through the medians of the observations. Comparisons between the two

estimates yield a quantitative evaluation on the quality of the fit of the regression

line. To do that define a residual term, e0, as

e0i ¼ yi �
X

bjxji: (21.7)

Then if one wants the regression line to pass through the mean then one solves

for a as

a ¼ Efe0g: (21.8)

On the other hand, if one wants the line to pass through the median, then one has

to set a as the solution for

Min Efje0 � ajg:
a

(21.9)

The estimators are sample’s values of the population parameters, corrected for

the degrees of freedom. Standard errors are calculated using the Jackknife method.

Having estimated the coefficients we turn to the quality of the fit of the linear

approximation of the regression curve. Under OLS regime, the R2 can be

interpreted as indicating a measure of correlation between the fitted and the reali-

zation of the dependent variable, or, equivalently, as one minus the ratio of the

variance of the residuals to the variance of the dependent variable. The Gini mean

difference (hereafter Gini) method has two correlation coefficients between each

two random variables, and the regression methodology used in this chapter does not

minimize the Gini of the residuals (Olkin & Yitzhaki, 1992). Therefore, we

substitute the R2 by three indicators: the (Gini) correlations between the fitted and

the realizations of the dependent variable, and one minus the ratio of the Gini of the

residuals to the Gini of the dependent variable.
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Formally

Ĝyy ¼
covðy;FðŷÞÞ
covðy; FðyÞÞ and Gyŷ ¼ covðŷ;FðyÞÞ

covðŷ; FðŷÞÞ ; (21.10)

where ŷ is the linear approximation, while F() represents the cumulative distribu-

tion. The coefficient that is based on the ratio of the Ginis is

GR ¼ 1� cov(e,F(e))

cov(y,F(y))
: (21.11)

These concepts were introduced in Chap. 20. However, it is important to note

that the Gini and the OLS are based on different metrics, and further research is

needed in order to make the concepts of the quality of the fit comparable.

21.2 An Illustration of Mixed OLS and Gini Regression1

The purpose of this section is to illustrate the mixed OLS and Gini regression by

investigating patterns of nonresponse in the social survey which is conducted by the

Israeli Central Bureau of Statistics. The survey is conducted each year since 2002,

and it covers the entire year. The sample is drawn from the population registrar.

That is, the population registrar is the sampling framework. This is done several

months prior to the interviewing stage, which is conducted by a face to face

interview, using Computer Assisted Personal Interviews (CAPI).

The major statistical problem with nonresponse is that if the nonresponse is not

random, then it may cause the estimates to be systematically biased. Other issues

are concerned with increasing costs and frustration on behalf of interviewers.

Social surveys, which concentrate on subjective feelings, may seem more

intrusive than surveys that are concerned with solid facts that seem objective and

known not only to the interviewed.

In general, there are two ways of investigating patterns of nonresponse. One way

is to analyze the characteristics of those who do not respond. We will refer to this

method as the direct way of investigation. The alternative way is to rely on the

process that is conducted by Statistical Bureaus in order to decrease random

perturbations of the estimates and to correct for biases caused by nonresponse.

This process is based of creating a weighting scheme attached to each observation

so that each demographic group in the population is represented according to its

weight in the population. By investigating the weighting scheme one can learn

about nonresponse, because the bigger the weight attached to an observation, the

less its characteristic is represented in the sample. We will refer to this way of

1 This section is based on Golan and Yitzhaki (2010).
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investigation as the indirect way, because one investigates nonresponse from the

characteristics of those who responded.

Both methods are not perfect and each one has its own drawbacks. The direct

way may suffer from errors in the sampling framework and in the classification of

the reasons for nonresponse. For example, the population registrar includes

individuals that may be outside the country. In the indirect way, there is no

distinction between failing to contact a person that does not respond because he

avoids any connection with the interviewer or because the person is outside the

country for a long period of time and therefore should not be interviewed. The

major advantage of the indirect way is that the sample size of the respondents is

bigger than the sample size of the non-respondents, and it may include additional

variables. Also, it is conducted after the interviewing stage is completed, so that it

overcomes the lag in updating the population registrar. In this book we only present

the indirect way of investigating patterns of nonresponse.

The Social Survey is conducted by the Israeli Central Bureau of Statistics

(hereafter ICBS) since 2002. It comprises of a basic questionnaire that is

administered every year, and an additional topic to be conducted in a sporadic

way. The Statistical Ordinance makes the response to the questionnaire mandatory.

However, no person was ever prosecuted if he or she refused to participate.2

Because non-respondents make a small portion of the sample and the data on

non-respondents is limited, the indirect way of using the sample to evaluate patterns

of nonresponse is used.

The sample is drawn from the population registrar about 6 months prior to the

year in which the survey is conducted. The population registrar includes the entire

population of Israel. However, according to rough estimates about 10% of the

population in the registrar do not live in the country. Based on other official records

such as social security records, the population registrar is improved by the ICBS

prior to the sampling but it is clear that the sampling framework is contaminated by

records of individuals who do not belong to the target population of the survey.

Hence, relying on the sampling framework may produce biased estimates of

nonresponse. The population registrar includes demographic data only. For the

purpose of this investigation, an additional variable is added to the registrar:

the earned income reported to the tax authorities. The earned income added is the

earned income of the individual and it does not include income from capital nor

government transfers from the National Insurance Institute.

Table 21.1 describes the field reports accumulated over the period 2004–2008.

Overall, about 22% of the individuals that were selected for the sample were not

interviewed. However, one has to differentiate between those who were not supposed

to be interviewed because of errors in the framework or administrative reasons and

those that refused to be interviewed or the interview was not conducted because of

other reasons. As can be seen from the table, the failure to interview is higher among

2Romanov and Nir (2010) present an excellent review of the considerations in handling nonre-

sponse in the ICBS.
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the immigrants, the elderly, the nonworking population, and slightly higher among

males and the young. Comparison with tax data enabled us to estimate the participa-

tion rates and average earned income according to the labor market type of employ-

ment. It can be seen that employees and self-employed are represented more among

the participants than among the nonparticipants. However, the patterns are different:

among the employees the participants have a higher average income, while among the

self-employed we observe an opposite pattern. In general, it seems that the major

difference between respondents and non-respondents is in participation in the labor

market. It should be pointed out that the sample is a stratified sample, with higher

probability of being drawn into the sample if the individual belongs to a group with a

higher nonresponse rate. However, taking into account the stratification of the sample

did not change the estimates of the regressions.

21.2.1 The Indirect Way of Analyzing Nonresponse

The indirect way of analyzing the effect of nonresponse is to use the sample of the

respondents and the weighting scheme in order to analyze the effect of nonre-

sponse. The advantages of this method over the direct way are the following: the

weighting scheme is based on an updated framework. That is, while the sample is

drawn about 6 months prior to the interviewing stage, the weights are derived after

the interviewing stage is completed, and therefore the framework used is an updated

one. The second advantage is that one can use both the variables in the framework

and the responses of the respondents in the analysis. The third advantage is the

Table 21.1 The characteristics of respondents and non-respondents—2004–2008

Respondents Non-respondents

Total Obs. 29,774 8,187

78.4% 21.6%

Gender Males 48.4% 52.0%

Females 51.6% 48.0%

Age 20–24 11.9% 13.0%

25–44 41.7% 39.7%

45–64 30.2% 22.6%

65+ 16.2% 24.7%

Average 45.1 47.9

Population group Jews 81.9% 81.1%

Others 18.1% 18.9%

Immigrants 1990þ 14.2% 17.2%

% Employees 56.4% 35.2%

Average earned income (New Shekels, monthly) 7,290 5,953

% Self-employed 7.2% 3.6%

Average earned income (New Shekels, monthly) 5,623 5,857

% Not working 36.4% 61.2%

Source: Golan and Yitzhaki (2010)
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possibility of separating the contributions of different attributes. The disadvantage

of the method is that we cannot classify nonresponse according to reasons and

hence we cannot separate refusals from administrative errors. We start with simple

tabulations and later we use multiple regression methods.

The simplest way to see the effect of nonresponse is to compare the means or the

distributions of the variables using non-weighted versus weighted observations.

This way we can learn about the quantitative effect of the weighting scheme on the

expected value of a variable of interest.

Table 21.2 presents the average of satisfaction from life, weighted and non-

weighted. Satisfaction is classified into four discrete categories: (1) very satisfied,

(2) satisfied, (3) not so satisfied, and (4) not satisfied at all. As a result, the lower the

value, the higher the satisfaction is. As can be seen, in most cases using the weights

does not change the average in a noticeable way, implying that non-respondents

tend to be, on average, equally satisfied with life as the respondents.

21.2.2 Empirical Results

In this analysis the dependent variable is the weight assigned to each observation

which is derived in order to adjust the sample to the marginal distributions of key

Table 21.2 Average

satisfaction according to

ethnic groupa

Weighted Sample Ratio

All

2004 1.9426 1.9372 1.003

2005 1.9525 1.9522 1.001

2006 1.9225 1.9324 0.995

2007 1.8819 1.8867 0.997

All years 1.9251 1.9272 0.999

Jewish

2004 1.8949 1.8957 1.000

2005 1.9083 1.9120 0.998

2006 1.8781 1.8938 0.992

2007 1.8388 1.8488 0.995

All years 1.8804 1.8878 0.996

Non-Jewish

2004 2.1344 2.1354 1.000

2005 2.1273 2.1226 1.002

2006 2.0984 2.0949 1.002

2007 2.0530 2.0379 1.007

All years 2.1023 2.0965 1.003

Source: same as above
a The average satisfaction is based on individuals that belong to

the same category who did respond
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demographic properties of the population. The weights are produced by imposing

several hundreds of linear constraints on the sample so that key demographic

properties of the population are preserved.

The higher the weight assigned the higher the degree of nonparticipation in the

survey. Nonparticipation can occur because the respondent was not located, he/she

was not at home, or he/she refused to participate. For the issue of whether the

sample is representative or not it does not matter what the reason for failing to

participate was.

The explanatory variables include age, ethnic group, gender, household size,

education level, and income. Some of the explanatory variables are categorical

variables (education, gender, and ethnic group). The common practice is to repre-

sent a variable which has k possible categories by (k � 1) dummy variables (each

one is binary). Note that for binary variables it does not matter whether one uses

OLS or Gini regression.3

Two alternative ways to represent income are used in the regression. One is

based on an administrative source and it is the before-tax earned income of the

individual. This income is referred to as earned income. Note that it does not

include income of other members of the household nor income from capital or

transfers from the government. On the other hand, it includes the income of those

who refused to answer the question about income. Earned income is measured in

relative terms, that is, each income is divided by the average income in the sample

for that year.

The other income used is the income reported by the individual in the survey

about before-tax income of the whole household. The respondent was asked to

choose among ten different ranges of income of the household. Then, the mid-range

income was divided by the number of persons in the household and the results were

grouped into three new discrete categories: (1) up to 2,000 NIS per person, (2)

between 2,001 and 4,000 NIS per person, and (3) above 4,000 NIS per person. For

our purpose we multiplied the income per capita by the number of persons in the

household. This income is referred to as Household Income (HI). The difference

between the two representations of income is stressed because it turned out that the

way income is represented in the sample is crucial to the conclusions.

Table 21.3 presents the estimates of the mixed OLS and Gini regressions using

the earned income: on the left-hand side are the OLS estimates, while on the

extreme right-hand side are the estimates of the Gini regression. Columns 1–8

present the estimates of the mixed regressions, with the letter O representing an

OLS weighting scheme, while G represents the Gini weighting scheme.

The basic regression is for the largest group which is composed of Jewish

women with above secondary school education but without a B.A. degree.

Comparisons of the OLS regression coefficients with column (1) and the Gini

regression with column (8) reveal that whenever the explanatory variable is binary

3A binary variable includes only two possibilities therefore it does not matter whether city-block

or Euclidean metrics are used.
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it does not matter which regression method is used for that variable, as long as the

continuous variables remain treated by the same regression method. Therefore the

difference between the estimates produced by the two methods should be attributed

to the three nonbinary variables: age, household’s size, and earned income.

The regression coefficient of age is negative, indicating that for a linear approxi-

mation, the higher the age the lower the weight (i.e., the higher the response rate).

However, the magnitude of its impact is about 20% higher under OLS regime than

under Gini, which is a hint that it may be caused by extreme observations, either the

young or the elderly. It seems that we can attribute roughly half of the difference to

the direct impact of applying the Gini weighting scheme to age, and another half of

the difference should be attributed to the covariance with earnings.4 Comparison

with Table 21.1 indicates that the relationship between nonresponse and age is not

monotonic therefore any sign can be reasonable.

The impact of household size is positive which means that the larger the

household’s size the lower the participation. This finding negates the finding by

Schechtman, Yitzhaki, and Artsev (2008) that the larger the household, the larger

the participation rate. The latter was found in the Household’s Incomes and

Expenditures survey (hereafter HIES) and will be discussed in the next section.

One possible explanation is that in the social survey the interviewer has to locate the

individual, while in the Household’s survey, the participation is of the household.

The larger the household size, the higher the probability of establishing a contact

with the household.

The impact of earned income on participation seems to be the most important

factor in the regression. When the OLS weighting scheme is applied to this variable

the estimate is around (�5), while when applying the Gini methodology the

estimate is around (�26). This indicates that the higher the income the higher the

participation. This also seems to be in agreement with the findings in the direct

method reported in Table 21.1. It may also be the result of the tendency for higher

nonparticipation among the ultra-religious, who also tend to have lower income.

Also the effect of the correlations with the dependent and with other explanatory

variables on the estimate of the coefficient of this variable is negligible. This finding

is similar to the one found in Schechtman, Yitzhaki, and Artsev (2008) concerning

participation in the HIES.

The rest of the variables are binary hence the estimates are not directly affected

by the methodology applied to them, but they are affected by the covariation with

other explanatory variables, especially of earned income.

The role of education on the participation rate seems to differ between the

methodologies. According to OLS, the higher the degree held the higher the response

rate, but in some cases that are closer to the base group the differences are not

significant. On the other hand, under the Gini regime for earnings we get that high

levels of education, holding a B.A. degree or M.A. degree worsen the response rate.

4 Note that it is not meaningful to compare the standard errors of the Gini and OLS estimates

because they are not statistically independent.
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However, for low levels of education (elementary school) bothmethods agree that low

level of education reduces the participation rate.

Being a male improves participation relative to the reference group in a nonsig-

nificant way under OLS but reduces it significantly under Gini.

Being non-Jewish reduces participation rate under both methods. Again, this

result is the opposite of the conclusion reached by Schechtman, Yitzhaki, and

Artsev (2008) that participation rate of non-Jews is significantly higher than the

participation rate of Jews. However, this result confirms (Feskens et al. 2007) that

nonresponse may be more severe among minorities and excluded groups.

The constant term was estimated in two ways: one way is the usual way of

imposing the restriction that the regression line passes through the means (21.8),

and the other is to force the regression line to pass through the medians, as is the

case in least absolute deviation (LAD) regression (21.9). In both methods the mean

constant term is higher than the median constant term, indicating that the distribu-

tion of the residuals is skewed, having a larger tail of positive errors than negative

ones. Moreover, the OLS constant term is higher than the Gini’s counterpart, which

is another indication that the distribution of the residuals is skewed, because the

OLS is more sensitive to extreme observations than the Gini regression.

The quality of the fit of the regressions seems similar: while R2 ¼ 0.06,

Gŷy � Gyŷ ¼ 0:29� 0:25 � 0:07: However, the interpretation of comparison

between concepts that are based on different metrics is not clear. All that one can

say is that it seems that there is no significant gain in the explanatory power of the

regressions when moving from one regime to the other.

A key variable for determining our conclusions is the treatment of the earned

income variable. Hence, it is worth to dwell a bit on this variable.

Table 21.4 replicates Table 21.3 with one major difference. Instead of using the

earned income that was taken from the administrative file, the income of the

household reported in the survey is used. This difference is causing the following

changes. (a) There are 4,093 observations with a missing response on income in the

survey. Naturally, those observations did not participate in the regression. (b)The

income reported in the survey includes all sources of income, in particular transfers

from the government. (c)The income in the survey is a result of two stages of

grouping, an issue that was discussed earlier. Comparison of the OLS column in

Table 21.4 with the Gini column reveals that all the signs of the coefficients agree in

the two columns. Therefore there is no qualitative difference between the results

reported according to the methodologies, and even the magnitudes of the

coefficients do not seem to deviate much from each other. It is interesting to note

that the quality of the fit did not change.

Having found that the way income is included and the methodology of the

regression may affect the conclusions with respect to participation of different

groups deserves further investigation. This is the main advantage of the mixed

regression over other methods because one can move from one method to the other

in a gradual way. This is illustrated in Sect. 21.2.3.
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21.2.3 A Search for an Explanation

We have seen in the last section that if one uses earned income from administrative

sources then the signs of the regression coefficients of some explanatory variables

obtained by the two methods may disagree, while if one uses the income reported in

the survey then the two methods produce similar estimates. There are three major

differences between the two incomes: the earned income variable includes 4,093

additional observations, of those with missing data on income in the survey; the

earned income variable includes actual earned income while the income in the

survey was grouped into rough categories. On the other hand the income variable in

the survey includes income from all sources and not only earned income. In this

section we investigate the effects of the differences between the variables.

It turns out that the density function of earned income is more skewed than that

of the household’s income reported in the survey. The grouping of observations

makes it less asymmetric so that it is almost like a truncated normal. One possible

conclusion is that decreasing the asymmetry of the distribution of income reduces

the difference between the estimates derived by the two methodologies.

Next we checked whether three very extreme observations of earned income

caused the difference between the estimates of the two methods. We omitted the

three extreme observations of earned income. As can be seen from Table 21.5, the

difference in the effect of earned income is still very big while the effects of having

a B.A. degree are still with negating signs, although the differences between the

estimates produced by the two methods were somewhat reduced. Other variables

(such as having M.A. degree or being a Jewish male) show differences as well.

Table 21.6 replicates Table 21.5with onemajor difference: all observationswith no

earned income were omitted from the regression. This means that nonparticipants in

the labormarket were omitted. A comparison of the two columns indicates that there is

no disagreement with respect to the signs of the regression coefficients, although one

can observe quantitatively large differences between some estimates. The impact of

earned income is different:�3 in theOLS,�10 in theGini. The effect of aB.A. degree

is�6 and significant under the OLS,�0.07 and insignificant under the Gini.

Based on the comparison between Tables 21.5 and 21.6, it seems that the

difference between the results produced by the two methodologies is affected by

whether one includes observations of individuals with no earned income in the

regression or not. If one omits those observations, then the two methods produce

similar results. The major change that occurs is that the effect of education turned to

be insignificant. An alternative way of getting similar results by both methods is by

using the income definition as reported in the survey.

21.2.4 Summary of the Example

The advantage of using a mixed OLS and Gini regression is in avoiding conclusions

that are due to the use of one methodology only. Using different methodologies can
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sometimes result in contradicting signs of the regression coefficients even if the

model is identical. This phenomenon is bothersome because it means that changing

the regression methodology used can reverse the conclusions. A higher reliance on

mixed regression, so that only conclusions that are supported by both estimation

techniques are considered meaningful will reduce the number of findings by

omitting the conclusions that have a limited support. As a result it will contribute

to the trust in empirical results. Unlike other regression techniques the mixed

regression enables the identification of the variables that may cause the change in

sign of the regression coefficients. In the illustration presented in this section it was

possible to relate the cause for the change in sign to whether one includes

participants and nonparticipants in the labor market in the sample. Our guess is

that this result is due to the nonlinearity of the regression curve with respect to

earned income when both participants and nonparticipants in the labor market are

included in the regression. However, we cannot exclude other possible explanations

such as grouping of the income variable. The advantage of the mixed regression

methodology is that it enables us to identify the variable or the action that can

change the sign of the regression coefficients and as a result can reverse the

conclusions. Further research is needed to find out whether this fragility of the

regression-based research is limited to extreme cases.

Table 21.5 Multiple

regressions: three extreme

observations were omitted

Regression coefficient OLS Gini

Age �1.23 �1.07

(0.07) (0.10)

Household size 11.59 16.28

(0.58) (0.64)

Earned income �8.32 �27.38

(0.61) (0.85)

Elementary/middle school or other

certification

20.17 7.81

(3.60) (3.80)

Secondary school without matriculation �1.27 �7.97

(3.37) (3.29)

Secondary school with matriculation 10.01 5.52

(3.41) (3.59)

BA degree �13.63 0.70

(3.40) (3.33)

MA + degree 0.98 21.17

(3.94) (3.82)

Jewish male 3.92 17.66

(2.26) (2.14)

Non-Jewish male 20.43 19.81

(4.89) (6.68)

Non-Jewish female 32.60 21.46

(5.13) (7.72)

a (mean) 614.58 604.29

a (median) 596.37 587.87

R² ¼ 0.07; Gŷу ¼ 0.22; Gуŷ ¼ 0.21; GR ¼ 0.01

Number of observations: 23,933

Source: same as above
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21.3 An Illustration of Mixed Gini and EG Regression5

This section presents an illustration of a mixed Gini and EG regression. The idea is

similar to the mixed OLS and Gini regression, but the motivation and the purpose of

its use are different. While the OLS and Gini mixed regression is mainly motivated

by the popularity of the OLS, the mixed Gini and EG regression can be motivated

by all or some of the alternative motives listed below.

(a) Adjustment according to economic theory. In several fields such as income

distribution and welfare economics, the economic theory may call for asym-

metric treatment of the data (see Chaps. 14 and 17). In those cases, where the

investigator is asked to present her social attitude or risk aversion and to

impose them on the data, and the income (or wealth) is introduced as an

explanatory variable, then the EG regression is called for. Alternatively, one

Table 21.6 Multiple

regressions without

observations with zero

earned income

Regression coefficient OLS Gini

Age �1.39 �1.18

(0.10) (0.10)

Household size 7.96 9.87

(0.66) (0.72)

Earned income �2.93 �10.42

(0.62) (1.03)

Elementary/middle school or other

certification

�1.16 �6.35

(4.70) (4.85)

Secondary school without matriculation �5.77 �8.92

(3.77) (3.75)

Secondary school with matriculation 8.22 6.82

(3.77) (3.95)

BA degree �6.22 �0.07

(3.72) (3.63)

MA + degree 1.54 11.38

(4.29) (4.36)

Jewish male 14.04 21.53

(2.56) (2.57)

Non-Jewish male 25.10 25.27

(5.30) (7.03)

Non-Jewish female �49.47 �52.89

(8.07) (12.01)

A (mean) 606.74 598.87

A (median) 593.05 585.37

R² ¼ 0.04; Gŷу ¼ 0.17; Gуŷ ¼ 0.17; GR ¼ 0.01

Number of observations: 15,135 (8,798 observations were

omitted)

Source: same as above

5 This section is based on Schechtman, Yitzhaki, and Artsev (2008).
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may want to use the EG to check whether the estimated coefficients are

sensitive to the social or risk aversion considerations.

(b) Tracing the curvature of the conditional regression curve. The motive in this

case is to trace the curvature of the regression curve with respect to one

explanatory variable, conditional on the other explanatory variables in the

model. If this is the case, then the motive is to improve the model so that it fits

the data better. In some sense this is similar to applying a monotonic transfor-

mation to one of the explanatory variables, with one major and important

difference. Because the data are not touched, the data continues to keep all the

original properties. For example, if the sum of the expenditures is equal to the

total expenditure then using the log transformation may violate the constraint

that the sum of the expenditures on the item is equal to total expenditures

(known as the adding up property), while using the EG will keep this property

intact.

The methodology is illustrated by investigating the tendency not to respond to

questionnaires on finances of the household in official surveys. The common

wisdom with respect to this issue is that either or both rich and poor people tend

to respond less than ordinary people. Because we have no firm priors with respect to

the kind of relationship we expect to see, the need for a nonparametric method that

can analyze the data arises.

The methodology is identical to the one presented in Sects. 21.1 and 21.2

except that each cumulative distribution F() is substituted by –[1 � F()]n, where

n 2 (�1,1) is chosen by the investigator. If n ¼ 1 then the investigator measures

variability according to Gini’s mean difference, implying a symmetric weighting

scheme around the median. If n ! 0, the investigator does not care about

variability; the range �1 � n < 0 reflects giving higher weights to the upper part

of the distribution of the explanatory variable, while n ! �1 implies an investiga-

tor whose attitude to variability follows the max–max strategy, that is, caring about

variability around the highest part of the distribution only. It is worth noting that

when �1 � n < 0, the index of variability is negative. In the extreme case

(n ! 1) the investigator cares only about the lowest part of the cumulative

distribution, as if he is guided by the max–min criterion.6

6 See Donaldson and Weymark (1983), Yitzhaki (1983), and Chakravarty (1988, Chap. 3,

pp. 82–102) for descriptions of the properties of the extended Gini index. Garner (1993), Lerman

and Yitzhaki (1994), andWodon and Yitzhaki (2002) are examples of its decomposition and use in

welfare economics; see Araar and Duclos (2003) for a possible extension; see Davidson and

Duclos (1997) for statistical inference, and Millimet and Slottje (2002) for an application in

environmental economics. Note that in the above-mentioned literature, the parameter is restricted

to n > 0. Schechtman and Yitzhaki (1987, 1999, 2003) define and investigate the properties of the

equivalents of the covariance and the correlation based on the EG. Yitzhaki and Schechtman

(2005) offer a survey of the properties of the EG family and in particular they show the metric that

leads to the EG. The decomposition of the extended Gini of a sum of random variables into the

contributions of the extended Gini’s of the individual random variables and the (equivalents of)

correlations among them can also be found there. Serfling and Xiao (2007) define and investigate

the properties of multivariate L-moments which include the EG measures as a special case.
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21.3.1 Non-reporting in a Household Finances Survey

The framework from which the sample of Household Finances survey in Israel is

drawn is the file of dwellings used for local tax payments in Israel. Refusal to

respond is illegal, but so far nobody was prosecuted or even threatened to be

prosecuted for noncooperating with the interviewer. Naturally, the survey suffers

from refusals or administrative errors that affect the coverage of the target popula-

tion. If non-responding is correlated with income, then the estimates of the mean

income and the index of income inequality may be biased.

The purpose of this section is to describe non-responding as a function of several

demographic variables (which can be used later in designing the sample) and one

major variable, income. In general, the experience concerning nonresponse is that the

propensity not to respond is a U-shaped function with respect to income. A plausible

explanation can be that the rich tend not to participate, while the poor and the young

are harder to be found at home. A study by Mistiaen and Ravallion (2003) presents a

model in which compliance can either decrease or increase with income and also be of

an inverted U-shape. Moreover, adding other arguments such as the ability to find the

members of the households at home, finding the address, viewing participation as a

democratic value, etc., can lead to almost all kinds of patterns. Mistiaen and Ravallion

(2003) find that the nonresponse problem cannot be ignored and that there is a highly

negative significant income effect on compliance. Deaton (2005) raises the plausible

conjecture that richer households are less likely to participate in surveys, in order to

explain the gap between growth estimates based on households’ surveys and those that

are based on national accounts. Comprehensive studies dealing with almost all aspects

of nonresponse are detailed inGroves andCouper (1998) andGroves et al. (2002). The

main conclusion from the existing literature is that nonresponse is a serious issue that

may bias the estimates, but there is not enough knowledge to justify the assumptions

needed for running OLS or other parametric regressions.

To overcome biases that are caused by the sample being a nonrepresentative one

and to reduce standard errors, many statistical agencies adjust the distribution of the

sample to fit known marginal distributions of current demographic estimates that

are based on the census. The outcome of this adjustment is a weighting scheme: a

weight is attached to each observation. A necessary condition to be able to perform

such an adjustment is having a detailed census data. Also, there are other reasons for

using those procedures, among them is to ensure that different samples, performed

by different units of the agency, report the same demographic structure so that

official statistics will not be blamed by the media for publishing contradicting

estimates. This may explain why the adjustment to given margins is performed

mainly by producers of official statistics. For a survey of the different

methodologies used to construct weighting schemes see the survey by Kalton and

Flores-Cervantes (2003). A detailed description of the method used in Israel is

offered by Kantorowitz (2002). For the purpose of this section it is sufficient to say

that the above-mentioned procedures change the weight of each observation so that

they add up to given marginal demographic and geographic distributions.
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The sample we are dealing with is a sample of dwellings. It is a stratified sample

according to geographical areas and types of dwellings, but the probability of each

dwelling to be included in the sample is the same. This implies that the expected

value of the weight of each observation is equal to the ratio of the overall population

to the sample size. When nonresponse occurs in a certain group, it will be under-

represented in the sample, so that the weight that will be assigned to those who

responded in that group will be higher than its expected value in case of equal

tendency to respond.

The weighting scheme of the sample is produced by an algorithm for calibration,

with several hundreds of constraints imposed, and is intended to make the sample

representative (Kantorowitz, 2002). In particular, a constraint is imposed on the

maximal weight assigned to each observation, so that standard errors do not

increase unnecessarily. The constraints ensure that the reported age structure,

geographic distributions, and household sizes will add up to given margins of the

distributions of the population.

It is important to note that the income is not involved at all in the derivation of

the weights. Hence there is no built-in correlation (i.e., spurious correlation)

between the weight of each observation and its income. (For additional information

on the sample and the way the weighting scheme was created, see http://www.cbs.

gov.il/publications/expenditure_survey04/pdf/e_intro.pdf, p. XXIII.) Based on the

discussion above, the idea behind the illustration is to build a regression model

where the dependent variable is the weight given to each observation and the

explanatory variables are income, household size, and ethnic grouping (to be

detailed below).

21.3.2 The Data

The data consist of the observations of the surveys for the years 1997–2001.

Table 21.7 presents the weights according to years and ethnic groups, where the

groups are defined as the majority (which includes the Jewish population, except

the ultra-religious group), the Arab population and the ultra-religious group.

Because the groups differ in household size, which may affect the probability of

finding someone at home, Table 21.8 presents the average weights according to

household size. It can be seen that for the majority, household of size 1 has the

highest weight and the rest are similar (year 2001 is different). This may be a result

of small households not being at home while the elderly, although being at home, do

not have the patience to complete the questionnaire. (For Arabs there is no obvious

pattern. Nothing can be said about the ultra-religious Jews because the sample sizes

are quite small.)

To summarize: the dependent variable is the weight assigned to each observation

by a calibration procedure, intended to represent the entire population. The sample

is a stratified sample, but the probability of each dwelling and each person living in

a dwelling to be included in the sample is equal. Hence, if the propensity not to be
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included in the sample is equal, either because of nonresponse or errors on behalf of

the agency, the expected weight assigned to each observation should be equal. It

may differ between years if the ratio of the population to the sample size changes

between years. The weight is treated as an indicator of nonresponse. Having

described the dependent variable, we now move to describe the results concerning

the regression coefficients.

21.3.3 Empirical Results

There are two types of explanatory variables in the regression: numerical and

categorical. The two numerical variables are income and household size. The

categorical variable is ethnic group. It results in several binary variables. For a

binary variable all EG regression coefficients are identical because only one slope is

defined between two points. Therefore we start with the EG regression coefficient

of income.

Table 21.9 presents the regression coefficients when regressing weight on

household income for different values of n. The higher the parameter n, the
more the regression stresses the slopes of the regression curve at the lower end

of the income distribution. As can be seen, the regression coefficients are nega-

tive, which means that the higher the income—the lower the weight assigned to

the observations, implying that nonresponse declines with increase in income.

Table 21.7 Descriptive statistics of household weights by ethnic grouping

Year Ethnic group N

Weight

Average Max Min Std. Dev

Majority 4,942 283 1,196 20 166

1997 Arabs 529 267 1,051 19 199

Ultra-religious Jews 90 398 1,127 45 245

Majority 5,068 286 1,196 18 169

1998 Arabs 606 256 1,049 24 176

Ultra-religious Jews 98 321 766 26 166

Majority 5,114 291 1,134 13 154

1999 Arabs 597 269 1,129 14 169

Ultra-religious Jews 105 292 639 20 115

Majority 5,146 301 1,195 22 170

2000 Arabs 629 260 959 43 142

Ultra-religious Jews 89 310 1,017 33 148

Majority 5,049 314 1,185 18 152

2001 Arabs 662 285 1,902 31 171

Ultra-religious Jews 76 341 834 104 145

Source: HES 1997–2001, excluding the observations of East Jerusalem in 1997–1999

Source: Schechtman, Yitzhaki, and Artsev (2008), Table 1, p. 338

Reprinted with permission by Taylor & Francis
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For example, a value of (�0.0022) (obtained for n ¼ 2) means that a unit increase

in income will decrease the average of the dependent variable (weight) by 0.0022.

The average weight is the ratio of the population to the sample size. Therefore, the

value of (�0.0022) divided by the average weight gives the percentage rate of the

increase in response rate with a unit increase in income. Even when high-income

groups are stressed (n ¼ �0.5) we still have a significant negative regression

coefficient. The interpretation of this finding is that we have a monotonic rela-

tionship between nonresponse and income. We note that the pattern shown above

repeats for the years 1997–2000 (not shown here).

Table 21.8 Means of household weights by ethnic grouping and household size

Year Ethnic group

Household size

1 2 3 4 5+

Majority Mean 325 278 278 276 266

N 840 1,199 807 910 1,186

1997 Arabs Mean 288 246 255 236 281

N 12 48 54 102 313

Ultra-religious Jews Mean 273 363 294 315 488

N 2 18 16 13 41

Majority Mean 330 280 290 276 268

N 869 1,281 788 964 1,166

1998 Arabs Mean 316 338 241 252 247

N 13 49 70 98 376

Ultra-religious Jews Mean 235 247 385 329 325

N 3 12 13 12 58

Majority Mean 333 291 276 297 266

N 892 1,258 878 919 1,167

1999 Arabs Mean 230 248 321 302 256

N 15 49 64 93 376

Ultra-religious Jews Mean 176 293 291 333 288

N 3 20 11 12 59

Majority Mean 351 291 310 280 282

N 875 1,296 867 965 1,143

2000 Arabs Mean 323 223 272 381 237

N 17 58 64 78 412

Ultra-religious Jews Mean 239 327 254 336 301

N 3 21 1 13 51

Majority Mean 363 294 326 291 308

N 886 1,325 838 949 1,051

2001 Arabs Mean 521 261 290 304 271

N 20 64 74 116 388

Ultra-religious Jews Mean 393 346 483 366 319

N 3 16 4 8 45

Source: HES 1997–2001, excluding the observations of East Jerusalem in 1997–1999

Source: same as above, p. 339
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The rest of Table 21.9 presents the two alternative estimates of the constant term.

One presents the constant term when the regression line passes through the median,

while the other through the mean. It is interesting to note that the difference

between the two is around 28 with a(mean) being higher than a(median) regardless

of the value of n. This is an indication that the error term tends to be asymmetric.

The fact that the difference between the constant terms seems to be independent of

the slopes requires more research.

Table 21.10 presents the simple regression coefficients of weight on household

size. As in the regression on income, the larger the family size the higher the value

of the regression coefficient (in absolute value), and in all cases the signs of the

regression coefficients are negative. This means that nonresponse is higher among

small households. Note that as before, the constant term of the regression passing

through the mean is larger than the constant term of the regression passing through

the median, but again, the difference between the two constants is around 28.

Tables 21.11 and 21.12 present the multiple regression coefficients with gross

income, household size, and dummy variables for being a member of a minority

group (Arabs, ultra-religious Jews) as the explanatory variables. In Table 21.11, the

extended Gini regression method is used with a choice of values for n. For

completeness we analyzed the data using OLS regression as well.

The OLS method is used in Table 21.12 for the entire sample and then for each

quartile (by income) separately.

Table 21.9 Regression

coefficients of household

weight on gross income

per household, by extended

Gini parameter (n)

Coefficient

n for gross income

3 2 1 �0.5

b �0.0025a �0.0022a �0.0017a �0.0007a

SE(b) 0.0003 0.0003 0.0002 0.0001

a (mean) 348.3 342.8 335.7 321.0

a (median) 320.7 314.9 307.8 293.2

Source: HES 2001. Units of income—New Israeli Shekel per

month

Source: same as above, Table 3, p. 339
aIndicates a value significantly different than 0 (at a ¼ 0.05)

Table 21.10 Regression

coefficients of household

weight on household size,

by extended Gini

parameter (n)

Coefficient

n for household size

3.0 2.0 1.0 �0.5

B �12.2a �10.6a �8.5a �3.5a

SE(b) 1.4 1.3 1.1 1.2

a (mean) 354.1 347.5 339.3 321.4

a (median) 326.7 320.0 311.1 293.2

Source: HES 2001. As above, Table 4, p. 339
aIndicates a value significantly different than 0 (at a ¼ 0.05)
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(a) The extended Gini regression. The parameter n is set to 1 (symmetric around the

median) for household size and minority groups (represented by dummy

variables), and it varies for income only. As can be seen, the regression

coefficients of weight on income decline in absolute value as n declines (i.e.,

stressing higher incomes) by up to 0.001, so that the patterns detected in the

simple regression continue to hold. However, the sign of the regression

Table 21.11 Gini multiple regression coefficients of household weight (0) on gross income per

household (1), household size (2), and ethnic grouping dummy variables (3, 4) (a), by extended

Gini parameter (n)

Coefficient

n for gross income:

3.0 2.0 1.0 �0.5

b01 �0.0026b �0.0021b �0.0016b �0.0006b

(0.000) (0.000) (0.000) (0.000)

b02 �1.41 �2.54 �3.95b �6.32b

(1.44) (1.39) (1.35) (1.31)

b03 �40.8b �36.0b �30.1b �20.1b

(8.1) (8.0) (7.9) (7.8)

b04 18. 8 23.3 28.9 38.3b

(17.4) (17.2) (17.1) (16.9)

a (mean) 357.9 354.6 350.5 343.6

a (median) 330.2 326.6 322.6 316.1

Source: HES 2001. Units of income—New Israeli Shekel per month

Source: Same as above, Table 5a, p. 340
a The dummy variable no. 3 has the following values: 1 ¼ “Arab”, 0 ¼ “Other”; The dummy

variable no. 4 has the following values: 1 ¼ “Ultra-religious Jew,” 0 ¼ “Other”
b Indicates a value significantly different than 0 (a ¼ 0.05)

Table 21.12 OLS multiple regression coefficients of household weight (0) on gross income per

household (1), household size (2), and ethnic grouping dummy variables (3, 4) (a)

Coefficient

OLS:

Entire population First quartile Second quartile Third quartile Forth quartile

b01 �0.0008b �0.0094b �0.00447 �0.0003 �0.0006b

(0.0001) (0.003) (0.0033) (0.0016) (0.0002)

b02 �4.384b �11.10b �1.55 3.868b �1.48

(1.154) (3.56) (2.275) (1.928) (2.31)

b03 �25.039b 16.856 �48.36b �53.164b �47.4b

(6.83) (14.972) (12.05) (12.73) (20.68)

b04 33.128 78.977b �4.01 0.793 46.2

(17.92) (37.895) (31.17) (30.4) (56.2)

a (mean) 340.615 404.02 363.2 290.2 322.4

Source: HES 2001. Units of income—New Israeli Shekel per month

Source: same as above, Table 5b, p. 340
a The dummy variable no. 3 has the following values: 1 ¼ “Arab”, 0 ¼ “Other”; The dummy

variable no. 4 has the following values: 1 ¼ “Ultra-religious Jew,” 0 ¼ “Other”
b Indicates a value significantly different than 0 (a ¼ 0.05)
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coefficients of household size remains the same (negative), indicating that

larger households respond in greater proportion to the questionnaires. Because

the only difference between the regressions is the change in the parameter of

income, the decline in absolute value of the coefficient of household size should

be attributed to a change in the pattern of association between income and

household size. The higher the stress on high-income groups, the lower is the

absolute value of the effect of household size on nonresponse. Also, the

magnitude of the regression coefficient of household size has changed from

(–8.5) in the simple regression case to (–4.0), which may be an indicator of the

magnitude of association between income and household size. Given income

and household size, Arabs tend to respond in higher proportion than the

majority group, but the more we stress high income, the lower the effect (this

may be due to small sample size of the Arab population in the upper range of

incomes). One possible interpretation is that the higher the income, the lower

the difference in response rates between the majority group and Arabs. On the

other hand, the effect of stressing high-income range on ultra-religious Jews is

the opposite. The more high incomes are stressed, the lower the response rate is.

Because it is a group with a low response rate on average and seems to be

motivated by an ideology, it is reasonable to conclude that the difference in

response rate between this group and the rest of the population increases with

income. However, the high standard errors show that only when high income is

stressed, the dummy variable for ultra-religious Jews is significant. As before,

the difference between the constant terms is approximately 28. The main

conclusion of the empirical application is that nonresponse to the survey of

household’s expenditures in Israel is a decreasing convex function of income,

and almost reaches a plateau when high-income groups are stressed. Nonre-

sponse tends to be negatively related to household size. The nonresponse rate

differs among ethnic groups: the Arab population shows below average nonre-

sponse rate, while the ultra-religious Jewish group has above average nonre-

sponse rate. This result holds even when the response rate is adjusted for

income and household size.

(b) The OLS regression. In order to see the difference between Gini and OLS

regressions, the estimation is replicated using the OLS. The OLS was used for

the entire sample (n ¼ 5,787), and then for each quartile separately

(n ¼ 1,446–1,448). The quartiles are Q1 ¼ 25th percentile ¼ 6,599 New

Israeli Shekels (NIS) per month, Q2 ¼ median ¼ 10,927 NIS, and Q3 ¼ 75th

percentile ¼ 18,534 NIS. Note, however, that under the OLS, only one-fourth

of the observations participate in the regression of each quartile, while in the

Gini regression, all observations participate in the regressions. The pattern

found in the Gini regression appears, in part, when using OLS. The regression

coefficients of weight on income are all negative, but only two are significantly

different than zero—the coefficients for the first and fourth quartiles. However,

moving from the first quartile to the third, there seems to be a trend of decrease

in absolute value. Concerning the effect of demographic characteristics, in the

OLS the magnitude and the effect of the demographic characteristics change
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between quarters, while under the Gini they are forced to be the same. Looking

carefully at the slopes of income (in absolute values), there is a slight indication

of a U-shape pattern—going down from 0.0094 to 0.00447 and 0.0003, and

then up to 0.0006.

21.4 Summary

In this chapter we have illustrated the use of the mixed OLS, Gini, and EG

regressions. It is hard to justify the mixed regression on theoretical grounds because

it does not have “optimal” properties of a reasonable target function, but on the

other hand it seems very useful in investigating violations of the assumptions

imposed on the data by the different methods. As far as we can see, the main

purpose of the mixed OLS and Gini regression is to enable explaining the difference

between the results produced by the different methods, while the Gini and EG

mixed regression is mainly intended to impose considerations of economic theory

on the regression or to investigate the curvature of the (conditional) regression

curve.

Whenever it is not motivated by economic theory, the EG regression is a

descriptive tool, enabling the researcher to improve the model by tracing the

curvature of the (conditional) regression curve.

Although descriptive in nature, it can be turned into a standard analytical

regression technique. By selecting the same weighting scheme for all explanatory

variables, one can have the structure of the OLS with one simple modification: each

variance is substituted by an extended Gini, and each covariance is substituted by

the appropriate extended Gini covariance. The only difference is that the method

offers an infinite number of alternative regression coefficients. Clearly, the method

enables the investigator to verify whether the results are sensitive to the specific

index of variability (weighting scheme) used.

Turning to our illustration of nonresponse, we have found that in the survey of

household expenditure in Israel, nonresponse decreases with income, decreases

with household size, and differs among ethnic groups. The Arab population tends

to respond more than the majority, while the ultra-religious Jewish population tends

to respond less than the majority group. These results are in contrast with Deaton’s

(2005) conjecture that high income groups tend to respond less to surveys. How-

ever, one should be aware that nonresponse is a survey-specific not to mention the

possibility of a country-specific phenomenon.

As far as we can see, the presentation in this chapter covers only the top of the

iceberg. In some sense the method offers an infinite number of estimation

techniques based on the choices of the EG parameter n. Adaptation to different

fields will probably take years to accomplish.

Further research is needed to compare the EG regression approach vs. the

decomposition approach of a regression coefficient. As shown by Yitzhaki (2002)

and in Chap. 7 if one divides the range of an explanatory variable into two sections,
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then the EG regression coefficient (and OLS) can be presented as a weighted

average of the two within-section regression coefficients and a between-sections

regression coefficient. The weights are the relative contributions of each section to

the intra- and inter-group Ginis (variance in OLS, EG in EG regression) of the

explanatory variable. This decomposition can be easily expanded to an arbitrary

number of sections. Further research is needed to apply this additional decomposi-

tion to get a piecewise linear approximation to the regression curve that is based on

a between-sections component and within-section components of the approxima-

tion. The piecewise linear approximation will allow the estimate of the partial

derivative to vary over sections of the explanatory variables.

Additional research is needed to compare the Gini IV method vs. OLS IV

method. Both belong to the covariance-based family.
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Chapter 22

An Application in Statistics: ANOGI

Introduction

This chapter deals with applications of the GMD and the Gini coefficient in

statistics. It presents an application which replicates the ANalysis Of VAriance

(ANOVA) and is referred to as ANalysis Of GIni (ANOGI).

The relationship between ANOGI and ANOVA resembles the relationship

between the decomposition of the variance of a linear combination of random

variables and its Gini analogue. In both cases the decomposition of Gini includes

more parameters than the decomposition of the variance, and if certain properties

hold in the underlying distributions then the decomposition of the Gini includes the

decomposition of the variance as a special case (while replacing the Gini

components by the respective variance counterparts). For this reason we refer to

the Gini as revealing more. Whether those additional parameters are useful or not

depends on the questions asked and the underlying distributions.

The idea behind ANOVA and ANOGI is to decompose the measure of

variability (total variance in the ANOVA case and the Gini coefficient (or GMD)

of the entire population in the ANOGI case) into “inter-groups” and “intra-groups”

sources of variabilities. ANOVA and ANOGI are identical in structure if the

distributions of the different subgroups do not overlap. That is, if each subgroup

occupies a given range along the variable of interest and no member of the rest of

the population is located in this range. However, if there is an overlapping between

the subgroups then the Gini coefficient’s (and the GMD) decomposition includes

additional set of parameters that are referred to as the overlapping indices. In

general the higher the overlapping the more of the variability is attributed to the

intra-group component and the less to the inter-group component.

The inverse of overlapping is referred to as stratification (no overlapping means

a perfect stratification). In some sense, we can claim that ANOGI also offers a

quantitative measure of the quality of a classification. More specifically, if one

compares two classifications then the ANOGI can provide a quantitative way to

decide which way of classification separates the subgroups better. The empirical

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_22,
# Springer Science+Business Media New York 2013
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illustration that follows is based on applying the methodology to examine the

success of the “melting pot” policy in Israel. The structure of the chapter is as

follows: Sect. 22.1 offers a brief review of the methodology. The empirical illus-

tration is detailed in Sect. 22.2, and Sect. 22.3 concludes.

22.1 A Brief Review of the Methodology

ANOGI—ANalysis Of GIni is based on decomposing the Gini coefficient of

economic well-being according to population subgroups in a way which is similar

to ANOVA—ANalysis Of VAriance (see Chap. 4 for a full description of the

methodology and the derivation and the properties of the parameters. The

estimators are presented in Chap. 9).1 In this section we give a very brief review

of the decomposition of the Gini coefficient of the entire population and explain

how the decomposition enables us to answer the research question.

The Gini coefficient is the most popular measure of inequality. Naturally, one

would wish to decompose the Gini of a population into the contributions of the

subpopulations. It turns out that the Gini is not additively decomposable by

population subgroups. As a result, many economists argue that it is not meaningful

to decompose it (Cowell, 1980; Shorrocks, 1984). However, as shown in several

papers (Frick et al., 2006; Lambert & Aronson, 1993; Lambert & Decoster, 2005;

Milanovic & Yitzhaki, 2002; Yitzhaki 1994a, 1994b; Yitzhaki & Lerman, 1991) the

decomposition of the Gini reveals more information about the distribution than the

decomposition of alternative measures of inequality. In particular, it enables one to

evaluate the quality of the classification by subgroups (Heller & Yitzhaki, 2006), a

property that will be dealt with in depth following the description of the properties

of the decomposition. As demonstrated by Frick et al. (2006), the Gini decomposi-

tion according to population subgroups offers a method which is on one hand

similar to ANOVA, but on the other hand is superior to it because it can indicate

the degree to which the population is stratified.

Let the population income distribution Yu be composed of the income

distributions Yi, i ¼ 1,. . .,n, of the n subpopulations. The Gini coefficient of the

entire population, denoted by Gu, can be decomposed into three components: a

1An alternative methodology for analyzing the melting pot policy is to compare the earnings of

second generation of immigrants with the earnings of first generation (or the earnings of the

natives) while controlling for other effects (Borjas (2006) and the references therein). However,

this methodology requires longitudinal data and other characteristics of the population, while the

methodology presented here can be applied to cross-sections. The price paid for the use of our

methodology is that we end up with descriptive statistics, while regression-based methodologies

offer a detailed analysis and the possibility to find causal relationship. For a regression-type

analysis of discrimination and second generation analysis of the Israeli labor market see, among

others, Semyonov and Cohen (1990) and Cohen and Haberfeld (1998).
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“within” component (intra), a “between” component (inter), and a component that

is a function of the amount of overlapping among the subpopulations.

The decomposition is best understood in comparison to ANOVA, as shown in

Table 22.1.

Let

Yu ¼ Y1
[

Y2
[

. . .
[

Yn;

where Yu is the income of the entire population and Yi is the income of subpopulation

i (i ¼ 1,. . .,n).
The Gini coefficient of the entire population, denoted by Gu, can be presented as

Gu ¼
Xn
i¼1

siGiOi þ Gb

¼
Xn
i¼1

siGi þ
Xn
i¼1

siGiðOi � 1Þ þ Gbp þ ðGb � GbpÞ; (22.1)

where si denotes the share of group i in the overall income, Oi is the overlapping

index of subpopulation i with the entire population (explained below), Gb

measures the between-groups inequality and Gbp is Pyatt’s between-groups Gini

(Pyatt, 1976).

The overlapping coefficient was introduced by Yitzhaki and Lerman (1991) and

modified by Yitzhaki (1994a, 1994b). Intuitively, it measures to what extent one

group is overlapped by the other. The extreme lower bound occurs when there is a

complete stratification, i.e., when each group occupies a given range and the ranges

do not intersect (no overlapping, perfect stratification). In this case the overlapping

index between any two subgroups equals zero. The extreme upper bound for the

overlapping of group A by group B occurs when group A is concentrated inside the

range of B, around the mean of group B, with no member of group B lying inside

the range of group A. In this case, group B cannot be considered as a group because

the members of group A separate the members of B that are below the average of B

Table 22.1 Comparing ANOGI and ANOVA

Components parallel to ANOVA Formula Range

Intra-group IG ¼Pn
i¼1 siGi 0� IG�Gu

Between-groups-Pyatt BGp ¼ Gbp 0�BGp �Gu

Additional information provided by ANOGI

Overlapping effect on intra-group IGO ¼Pn
i¼1 siGiðOi � 1Þ

Overlapping effect on between-

groups

BGO ¼ Gb � Gbp � BGp � IGO� IG�BGO� 0

Source: Frick et al. (2006), p. 439, Table 3

Reprinted with permission by SAGE
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from those that are above it. In this case the overlapping index of B by A is zero

because no member of B lies inside the range of A, while the overlapping index of B

in A is greater than one, its value depends on the distributions involved and is

bounded by 2. Obviously, most cases are in between these two extremes. The

measure is based on ranking the members of one group according to the ranking

of the other. Its values range from 0 to 2, where 1 means that the distributions of the

two groups are similar.

The overlapping coefficient can tell us how much the distributions are

intertwined, or, in other words, tell us about the degree of assimilation. Details

can be found in Chap. 4.

Formally, overlapping of the overall population by subpopulation i is defined as

Oi ¼ Oui ¼ covi(Y,Fu(Y))

covi(Y,Fi(Y))
: (22.2)

The denominator is (one-fourth of) the Gini’s mean difference of group i, while

the numerator is the covariance between the same observations and their rankings in

the overall distribution.

The other components of (22.1) that require an interpretation are Gb and Gbp. Gb

is based on the covariance between the mean value of each subgroup and the

average rank of its members in the overall distribution (this is not a Gini coeffi-

cient). On the other hand, Gbp is based on the covariance between the mean value of

each subgroup and the ranking of the mean value in the distribution of mean values

(this is a Gini coefficient). By construction Gb � Gbp. The role of the overlapping

in (22.1) can be seen from the second and fourth terms on the right side of the

equation. The terms Gu, Gi (i ¼ 1,. . .,n), and Gbp are not affected by the degree of

overlapping. Therefore the higher the degree of overlapping between the subgroups

the higher the second term on the right-hand side of (22.1) (intra-group component)

and the lower the fourth term (between-groups component). The decomposition is

best understood in comparison to ANOVA, as shown in Table 22.1.

As can be seen from Table 22.1, ANOGI offers an additional parameter to

ANOVA—the parameter of overlapping, which can be interpreted as the inverse of

stratification. The amount of overlapping affects both the intra- and the inter-group

terms. Other parameters being equal, the higher the overlapping (i.e., the larger Oi is),

the higher the intra-group component and the lower the between-groups component.

A further look at two parameters: Oi and Gb that are involved in the decomposi-

tion enable one to elaborate on which groups are contributing to the quality of the

decomposition. Note that Oi as a weighted average of Oji, where Oji is the degree by

which members of group j are included in the range of group i and pj is the share of

subpopulation j in the entire population

Oi ¼
Xn

j¼1
pjOji; (22.3)

484 22 An Application in Statistics: ANOGI

http://dx.doi.org/10.1007/978-1-4614-4720-7_4


where

Oji ¼ covi(Y,Fj(Y))

covi(Y,Fi(Y))
:

The numerator of Oji involves the covariance between an income of a member in

group i with its rank, had it been ranked within the incomes of the members of

group j. The other parameter, Gb, involves the covariance between the mean income

of each group and the mean ranking of its members in the overall population.

Note that

m0 ¼
Xn

i¼1
pi mi (22.4)

0:5 ¼
Xn

i¼1
pi�Fi: (22.5)

Fi is the average rank of the members of group i in the population. mi and Fi are the

two components that represent group i in the between-groups component. In a

perfectly stratified society, the ranking of mi and Fi are identical and all Oi and Oji

are equal to zero. If they are not, we get an indication about the groups that

deteriorate the quality of the stratification.

The interpretation of the decomposition used in this chapter follows the one

presented by Heller and Yitzhaki (2006) which deals with classification of snails,

and the one presented by Frick and Goebel (2008) on the decomposition of well-

being in Germany according to regions.

Assume we are given two alternative ways of classifications of the same entire

population, into several subgroups. For example, the two alternative classifications

can be classification according to gender or classification according to whether one

is black or not. The variable we are interested in is income. Denote those ways of

classification into subgroups by A, B,. . . The question we want to answer is which

way of grouping is more stratified. Perfect stratification is defined as having the

incomes of members of each subgroup confined to a given range, and no member of

the other subgroups be located in this range. To see the meaning of perfect

stratification consider the property “being black.” If all blacks are poor2 (rich)

and all the poor are black (white) then we will say that we have a perfect stratifica-

tion, and the quality of the classification (i.e., grouping) is perfect. The more whites

(blacks) are poor (rich)—the lower the quality of the stratification. Consider now

two classifications: one according to gender and the other according to being black

or not. We will say that gender is a better classifier of the society if the inequality

within women and within men is lower than the inequality within blacks and within

2 By poor (rich) it is meant that the income is below (above) a certain level.
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others (i.e. within a group the individuals are similar to each other) and the

overlapping between women and men is lower than the overlapping between blacks

and others (i.e., different from the other group). In other words, we will define one

classification as better than the other if the members of each subgroup are similar to

each other (low intra-group inequality) and different from members of other

subgroups (low overlapping, high between-groups inequality). As can be seen,

the higher the overlapping the lower the between-groups inequality and the higher

the intra-group component. It is argued that given several classifications into

subgroups of the same entire population, the grouping with the lowest overlapping

(highest stratification) will be defined as the best grouping.3

22.2 An Illustration of ANOGI: The Melting Pot Policy4

Societies with large immigration tend to be sensitive to the assimilation of the

immigrants into the society. Instead of a fragmented society, divided by ethnic rifts,

the preference is for a society where origin ceases to be an identifying characteristic.

To describe the meaning of the ideal melting pot, we can’t find a better

description than the one presented by Zangwill (1914, p. 33), as quoted by

Hirschman (1983, p. 397).

“America is God’s Crucible, the Great Melting Pot where all races of Europe are

melting and re-forming! Here you stand, good folk, think I, when I see them at Ellis

Island, here you stand in your fifty groups, your fifty languages, and histories, and

your fifty blood hatreds and rivalries. But you won’t be long like that, brothers, for

these are the fires of God you’ve come to—these are fires of God. A fig for your

feuds and vendettas! Germans and Frenchmen, Irishmen and Englishmen, Jews and

Russians—into the Crucible with you all! God is making the American.”

Social integration includes many dimensions: cultural, language, common his-

tory, equal opportunities, to list a few. Also, it is not agreed by all that the melting

pot policy, which destroys the diversity of cultural heritage, is really something that

a society should aim for.5 What seems to be noncontroversial is that society should

not be stratified by ethnic grouping when restricting the attention to economic well-

being. Unlike other dimensions of the melting pot policy—integration of ethnic

groups into the society along the dimension of economic well-being is relatively

3An additional concept that is used extensively in the literature is polarization (see, e.g., Duclos,

Esteban and Ray (2003) and the references there). However, further research is needed to establish

the relationship between stratification and polarization.
4 This section is based on Yitzhaki and Schechtman (2009).
5 Glazer (1993) considers the decline in the positive attitude toward assimilation as an ideal for

migrants in the USA.
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easy to quantify and to agree upon.6 It seems that it is agreed by all that a successful

melting pot policy should abolish stratification of economic well-being according to

ethnic groups.

The aim of this section is to apply ANOGI to compare two ways of classification

and to see which one stratifies the society better according to ethnic groups. By

comparing the change in the index of stratification over time we can evaluate the

success of a melting pot policy according to this economic dimension. In other

words—it enables us to see whether the background of origin plays an important

role in stratification of a society according to ethnic groups and by tracing it over

time we can learn about the achievements of a melting pot policy.

Israel is one example of a country where the melting pot policy was an officially

declared policy (Lissak, 1999). We apply ANOGI to Israeli data in order to examine

its success. Specifically we compare the stratification index (the inverse of

overlapping) under two alternative definitions of ethnic groups. According to one

definition—definition W (wide)—second generation Israelis, i.e., those who were

born in Israel are defined as one group (regardless of their father’s origin), while

according to the other classification—definition N (narrow)—second generation

Israelis are classified according to the ethnic group of the father.7 A successful

melting pot policy should have resulted in classification W revealing a more

stratified society than classification N. The intuitive explanation of this kind of

conclusion is that a successful melting pot policy should have resulted in a

formation of a “new” group—second generation Israelis where (original) ethnic

differences do not show up. On the other hand, if stratification is higher when one

uses the N definition, i.e., when the second generation Israelis are classified

according to the original (i.e. father’s) ethnic group—then we conclude that the

melting pot policy failed to create a new generation for which the (original) ethnic

grouping ceases to be a stratifying variable. There are several reasons to suspect that

definition W will be a better classifier than definition N, and they are detailed in

Sect. 22.2.1.

It is worth emphasizing that the purpose of the application is descriptive. We are

not trying to find out what causes success or failure of the melting pot policy nor

whether there are other variables that may distinguish between the groups better

than economic well-being. Therefore we do not use regression methods that can

relate the difference in economic well-being to other attributes. Instead, we intro-

duce a relatively new descriptive measure, the overlapping measure.

6 Among the other aspects of assimilation that are not dealt within this chapter it is worth

mentioning the acquisition of native language skills. See among others Chisweek (1978, 1998,

1999); Beenstock (1996) and the literature therein. Easterly and Levine (1997) relate ethnic

diversity as impediment to growth.
7 The classification of the ethnic group by the origin of the father is dictated by the available data.
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22.2.1 Definitions

The variable of interest for classification is economic well-being, which is defined

as after-tax income per equivalent adult, according to the official scale used in

Israel.8 To avoid the effect of different fertility rates we limit our population to

adults only—age 30 and above. That is, although the sample is a sample

of dwellings, our observations are adults of age 30+. We start by dividing the

population according to the following distinctive groups that compose the entire

population in Israel.

1. Jews born in Europe or America

2. Jews born in Asia or Africa

3. Jews born in Israel

4. Immigrants—those who migrated to Israel less than 10 years prior to the survey

5. Others—non-Jewish population.

To examine the success of the melting pot policy we compare two alternative

definitions of the group “Jews born in Israel.” By definition W (wide) “Jews born in

Israel” are defined as those who were born in Israel, regardless of the father’s origin.

By the alternative definition N (narrow) “Jews born in Israel” are only those whose

father was also born in Israel.9 Otherwise those people are classified according to

their father’s origin. That is, the difference between the two alternative definitions

is how the group of “Jews born in Israel but the father was born abroad” is

classified. According to definition N this group is classified according to the place

of birth of the father, while under definition W this group is classified as Israeli

born. We apply this distinction only to those who were in the country for at least

10 years prior to the survey and are Jewish. We do not ignore the rest of the

population. They are grouped as “immigrants” (those who migrated to Israel less

than 10 years before the survey) and “others” (the non-Jewish population).

The main point is that the definitions of those groups remain intact between the

two alternative definitions.10

The comparison between the qualities of the decompositions one gets under

definitions N and W is used to examine the success of the melting pot policy. If

classification W shows higher stratification (lower overlapping) we will conclude

that the melting pot policy was successful in creating a new group—those who were

born in Israel are “similar within themselves and different from the other groups,”

where “other groups” include their parents. On the other hand, if classification N

8The equivalence scale used for comparison of economic well-being of households of different

sizes is one-person: 1.25, two: 2.0, three: 2.65, four: 3.2, five: 3.75, six: 4.25, seven: 4.75, eight: 5.2

and 0.4 for each additional person. For additional explanations see Statistical Abstract of Israel,

2004, No. 55, p. 46.
9 Data limitations do not allow us to refer to the place of birth of the mother.
10 Note, however, the difference between “others” and “immigrants.” Immigrants in an early

survey may be defined as foreign born in a later period.
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shows higher stratification, we conclude that the melting pot policy was not

successful because the off-springs of the immigrants are similar to their parents,

Naturally, we would expect that the broader definition of Israelis (definition W)

will create a separate group because

(a) They are expected to be younger and therefore they should be different from

their parents.

(b) Although they are of mixed origins, they were raised in Israel. That is, they

were educated in Israel so they should be different from their parents.

(c) Definition N suffers from misclassification and therefore the groups tend to be

blurred over time because of mixed marriages of the parents of Israeli borns and

because we are classifying the groups according to the place of birth of the

father.

Therefore we would expect that the overlapping index for grouping N will be

larger than the overlapping index for grouping W.

22.2.2 Data Description

The data consist of three Household expenditure surveys conducted in the years

1979/1980, 1992, and 2002 in Israel by the Central Bureau of Statistics and they are

described in the publications of those surveys. There are several differences among

the surveys that are important for the analysis carried out in this section.

(a) Coverage of the population: The survey in 1979/1980 includes only settlements

with over 10,000 individuals, while the survey of 2002 includes settlements

with population over 2,000. Because a large part of the Arab population live in

rural areas, and because the population in many settlements has increased over

time, the share of the Arab population that is covered has increased in a way that

makes the comparison over the years seriously biased. Hence, we included the

Arab population for completeness but one has to be careful in reaching

conclusions because of sample selection bias.

(b) The accounting period has changed over time. In 1979/1980 the accounting

period is 12 months. That is, the income reported is the income earned in the

12 months prior to the visit of the surveyors. However, in 1992 and 2002 the

accounting period is composed of 3 months. The shorter the accounting period,

the higher the inequality. Finkel, Artsev, and Yitzhaki (2006) estimated the

bias to be of a magnitude of about 20% in the Gini of after-tax income of

equivalent adult.

Having these limitations in mind—we can concentrate on the decomposition of

the Gini according to ethnic groups.

To avoid the influence of different fertility rates, only adults of age 30 and above

are considered in the analysis.
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22.2.3 Results

We analyze the data for the two alternative definitions in parallel. We present two

tables of decompositions.

Table 22.2 presents the decomposition of the Gini coefficient of adult-equivalent

after-tax income among prime-age Israelis according to ethnic groups. In the rows

denoted by N, Israeli is defined as a person whose father was also born in Israel.

Israeli born whose father was born abroad is defined as belonging to the original

group (of the father). In the rows denoted by W, Israeli is defined as a person who

was born in Israel. It can be seen that in both definitions, inequality has increased

significantly between 1992 and 2002 from 0.321 to 0.365.

As can be seen, the Gini’s between groups (GB as well as GBP) are bigger in

definition N for the years 1992 and 2002. This means that when we classify second

generation Israelis as belonging to the country of origin (of the father), we get a

better stratified society. This conclusion is also supported by the overlapping term

(column 2), where it is smaller by definition N than by definition W.

Table 22.3 presents the contributions of the components to the intra-ethnic group

inequality, for different years. The ethnic groups used for definition N are as

follows.

Eu-Am ¼ born Europe-America, or born in Israel and father born in Europe-

America

As-Af ¼ born Asia-Africa, or born in Israel and father born in Asia-Africa

Israel ¼ born in Israel and father born in Israel (or father’s origin is unknown)

Immig ¼ new immigrants, less than 10 years in Israel (migrated after 1970, 1982,

1992 accordingly).

Others ¼ Non-Jewish or unknown origin.

Table 22.2 The decomposition of the Gini coefficient of income among ages 30–65 according to

ethnic groupsa

Year Definition Overall Gini (1) S*G*O (2) GB (3) GBP (4) GB/GBP (5)

1979/1980 N 0.318 0.256 0.062 0.125 0.496

S. Error (0.007) (0.007) (0.010)

W 0.318 0.257 0.061 0.1230 0.495

S. Error (0.007) (0.007) (0.010)

1992/1993 N 0.321 0.256 0.065 0.138 0.471

S. Error (0.003) (0.003) (0.004)

W 0.321 0.270 0.051 0.120 0.427

S. Error (0.003) (0.003) (0.004)

2002 N 0.365 0.293 0.072 0.151 0.477

S. Error (0.004) (0.003) (0.004)

W 0.365 0.305 0.060 0.122 0.495

S. Error (0.004) (0.003) (0.004)
aDefinition N—Israeli born defined according to father’s origin. Definition W—Israeli born

defined as a separate group. Source: Yitzhaki and Schechtman (2009), Table 1, p. 143
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The ethnic groups used for definition W are as follows.

Eu-Am ¼ born Europe-America

As-Af ¼ born Asia-Africa

Israel ¼ born in Israel

Immig ¼ new immigrants, less than 10 years in Israel (migrated after 1970, 1982,

1992 accordingly)

Others ¼ Non Jewish or unknown origin

As can be seen, the share of the Israelis is much bigger for definition W. (And

obviously, the shares of Eu/Am and As/Af are declining). The overlapping index of

the Israeli group is smaller in 1979 and gets larger and closer to 1 in 1992 and 2002.

The two definitions show similar trends in the overlapping index. However, the

overlapping of Israelis by definition N is bigger than by definitionW in 1992, and the

gap is much smaller in 2002. Also, the Gini coefficient of Israelis in 2002 is smaller

by definitionW than by definition N. (The twoGinis are similar in 1992.) The sum of

the products SGO for Israelis is smaller for definition N than for definitionW for the

3 years under study. This means that the intra-group inequality and overlapping

between groups explain a greater portion of inequality leading us to conclude that

definition N provides a more distinctive grouping of the society than definition W.

The decomposition of the Gini of the entire population by ANOGI provides

additional information, given by the ranking of each group in terms of the others

and by the overlapping of each group by the others. These measures are not reported

here because they do not contribute to our discussion. However we report them, for

completeness, in Appendix 22.1. In addition, we have performed ANOVA on the

two different groupings. The results strengthen the conclusions of this chapter that

definition N is a better stratifier and are reported in Appendix 22.2.

22.3 Summary

The objective of the chapter was to introduce an application of the decomposition of

the Gini coefficient, called ANOGI and to illustrate its use. The purpose of the study

was to evaluate the success of the melting pot policy in Israel. We concentrated on

one aspect only—the melting pot in terms of economic well-being. We introduced a

relatively new tool—the decomposition of the Gini coefficient of the entire popula-

tion into the contributions of the individual Ginis of subpopulations (intra-group

component), the between-groups inequality (inter-group component), and addi-

tional terms, defined as overlapping indices. The basic idea was to divide the entire

population into subpopulations in two different ways (called here N and W), and

check which one will stratify the population better. The conclusion from this study

is that based on the between-groups Gini’s, definition N stratifies better. That is, we

can say that the melting pot did not succeed. The persons born in Israel are more

similar to their parents than to each other.
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Appendix 22.1

Tables 22.4 (N) and 22.5 (W) present the ranking of each group in terms of the other

for the 3 years, for the two alternative definitions of the Israeli group.

Each entry in the tables presents the average rank of the members of the group

indicated in the row, had they been ranked according to the ranking of the group

indicated in the column. Looking at Table 22.4 (N) we see that the average rank of

Jews born in Asia/Africa, had they been ranked according to Jews from Europe/

America is 0.26 in 1979, 0.31 in 1992, and 0.37 in 2002. This is an indication that

over time the relative status of Jews from Asia/Africa has improved. Looking at the

column of Israeli born, the ranking in terms of Europe/America has slightly declined

from 0.43 in 1979 to 0.42 in 1992, but has increased to 0.47 in 2002. On the other

hand, the average ranking of the Arab population in terms of European/American

born has increased from 0.12 in 1979 to 0.15 in 1992 but declined later (in 2002) to

0.13.11

Tables 22.6 (N) and 22.7 (W) present the overlapping index (and standard error)

of each group in terms of the other for the 3 years, for the two alternative definitions

Table 22.4 (N): The ranking

of each group in terms of the

other, for the 3 years

Eu/Am As/Af Israel Immig Other

1979/1980

Eu/Am 0.5 0.74 0.57 0.58 0.88

As/Af 0.26 0.5 0.30 0.34 0.73

Israel 0.43 0.70 0.5 0.51 0.87

Immig 0.42 0.66 0.49 0.5 0.82

Other 0.12 0.27 0.13 0.18 0.5

1992/1993

Eu/Am 0.5 0.69 0.58 0.80 0.85

As/Af 0.31 0.5 0.40 0.65 0.72

Israel 0.42 0.60 0.5 0.73 0.78

Immig 0.20 0.35 0.27 0.5 0.59

Other 0.15 0.28 0.22 0.41 0.5

2002

Eu/Am 0.5 0.63 0.53 0.72 0.87

As/Af 0.37 0.5 0.40 0.59 0.79

Israel 0.47 0.60 0.5 0.68 0.83

Immig 0.28 0.41 0.32 0.5 0.75

Other 0.13 0.21 0.17 0.25 0.5

Source: Yitzhaki and Schechtman, 2009, Table 3, p. 146

11 The disclaimer that the coverage of this population has changed over time, which may bias the

results should be added.
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of the Israeli group. Each column represents the reference group (represented by

the index j in the decomposition of Oji), while the row represents i. Multiplying

the elements of each row by the share in the population of the group and summing

up yields the overlapping of the group with the entire population. That is, each

row represents the overlapping of the group with other groups (and with itself.

The overlapping of a group with itself is 1). The first line says that Europe/

America is a stratified group with respect to Asia/Africa (0.79), but it is less of

a group when the reference group is Israeli born. It is definitely a group with

respect to the “Others” group. In 1979 the group “Others” included several rich

people so that it became a non-group with respect to all other groups.12 However,

in 1992 the “Others” became a distinct group relative to all others except

immigrants, while in 2002 they were left behind by almost all other groups.

Over time the groups Asia/Africa and Europe/America became less distinct

from each other with the overlapping indices increasing from (0.79; 0.85) in

1979 to (0.92; 0.94) in 2002.

Table 22.5 (W): The ranking

of each group in terms of the

other, for the 3 years

Eu/Am As/Af Israel Immig Other

1979/1980

Eu/Am 0.5 0.73 0.50 0.57 0.86

As/Af 0.27 0.5 0.25 0.33 0.72

Israel 0.50 0.75 0.5 0.57 0.89

Immig 0.43 0.67 0.43 0.5 0.82

Others 0.14 0.28 0.11 0.18 0.5

1992/1993

Eu/Am 0.5 0.66 0.56 0.77 0.83

As/Af 0.34 0.5 0.40 0.65 0.72

Israel 0.44 0.60 0.5 0.73 0.79

Immig 0.23 0.35 0.27 0.5 0.59

Others 0.17 0.28 0.21 0.41 0.5

2002

Eu/Am 0.5 0.59 0.52 0.69 0.85

As/Af 0.41 0.5 0.43 0.59 0.79

Israel 0.48 0.57 0.5 0.67 0.83

Immig 0.31 0.41 0.33 0.5 0.75

Others 0.15 0.21 0.17 0.25 0.5

Source: Yitzhaki and Schechtman, 2009, Table 4, p. 147

12We do not have a good explanation to this result. It may be caused by the members of the

Christian-Arab population who were with relatively high income and emigrated from

the country.
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Appendix 22.2: ANOVA

In addition to the decomposition of Gini, a decomposition of the variance was

obtained by ANOVA. Note that there are only two components: between (intra) and

within (inter). The results are given in Table 22.8. We note that the question asked

by ANOVA is different—it is meant to compare the means of the subpopulations.

As can be seen from the last column (the F ratio), the between MS is (relatively)

larger for definition N for the 3 years under study, strengthening our conclusion that

definition N is a better stratifier.

Table 22.6 (N): The

overlapping index (and SE)

of one group in terms of

the other

Eu/Am As/Af Israel Immig Others

1979/1980

Eu/Am 1 0.79 1.06 0.95 0.43

0.02 0.03 0.03 0.02

As/Af 0.85 1 0.97 0.87 0.75

0.03 0.04 0.03 0.03

Israel 0.88 0.84 1 0.85 0.48

0.04 0.05 0.02 0.02

Immig 1.00 0.99 1.14 1 0.66

0.02 0.03 0.01 0.03

Others 1.17 1.19 1.20 1.15 1

0.28 0.09 0.18 0.16

1992/1993

Eu/Am 1 0.86 0.92 0.65 0.54

0.02 0.01 0.01 0.01

As/Af 0.94 1 0.94 0.87 0.75

0.02 0.02 0.01 0.02

Israel 1.05 0.99 1 0.81 0.70

0.02 0.02 0.02 0.02

Immig 0.82 1.02 0.88 1 0.91

0.01 0.03 0.02 0.01

Others 0.69 0.96 0.78 1.05 1

0.03 0.02 0.02 0.01

2002

Eu/Am 1 0.92 0.95 0.82 0.47

0.01 0.01 0.01 0.01

As/Af 0.94 1 0.93 1.01 0.68

0.01 0.01 0.01 0.02

Israel 1.04 0.98 1 0.91 0.59

0.01 0.01 0.01 0.02

Immig 0.86 0.94 0.84 1 0.66

0.03 0.02 0.03 0.01

Others 0.57 0.78 0.59 0.98 1

0.02 0.02 0.01 0.01

Source: Yitzhaki and Schechtman, 2009, Table 5, p. 148
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Table 22.7 (W): The

overlapping index (and SE)

of one group in terms of the

other

Eu/Am As/Af Israel Immig Others

1979/1980

Eu/Am 1 0.82 1.11 0.99 0.47

0.02 0.02 0.02 0.02

As/Af 0.82 1 0.90 0.86 0.77

0.03 0.03 0.03 0.03

Israel 0.88 0.72 1 0.87 0.37

0.02 0.02 0.02 0.03

Immig 0.97 0.98 1.11 1 0.66

0.02 0.03 0.02 0.03

Others 1.17 1.19 1.19 1.15 1

0.27 0.09 0.20 0.16

1992/1993

Eu/Am 1 0.91 0.99 0.72 0.60

0.01 0.01 0.02 0.01

As/Af 0.96 1 1.00 0.88 0.77

0.02 0.01 0.01 0.01

Israel 1.00 0.94 1 0.76 0.64

0.01 0.01 0.01 0.02

Immig 0.84 1.00 0.92 1 0.91

0.03 0.02 0.03 0.01

Others 0.72 0.95 0.82 1.05 1

0.02 0.02 0.03 0.01

2002

Eu/Am 1 0.95 0.98 0.88 0.52

0.01 0.01 0.01 0.01

As/Af 0.99 1 0.99 1.03 0.71

0.01 0.01 0.01 0.02

Israel 1.02 0.97 1 0.92 0.57

0.01 0.01 0.01 0.02

Immig 0.89 0.91 0.89 1 0.66

0.03 0.02 0.03 0.01

Others 0.64 0.77 0.65 0.98 1

0.02 0.02 0.02 0.01

Source: Yitzhaki and Schechtman, 2009, Table 6, p. 149
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Table 22.8 ANOVA for definitions N and W

SS-within

(df) SS-between (df) Total (df) MS-within MS-between

F ¼ MSB/

MSW

N-1979 337,543

(2,868)

40,524

(4)

378,067

(2,872)

118 10,131 86

W-1979 338,961

(2,868)

39,106

(4)

378,067

(2,872)

118 9,776 83

N-1992 916,094

(7,039)

171,763

(4)

1,087,857

(7,043)

130 42,941 330

W-1992 957,762

(7,039)

130,095

(4)

1,087,857

(7,043)

136 32,524 239

N-2002 7,897,294

(8,149)

1,074,649

(4)

8,971,943

(8,153)

969 268,662 277

W-2002 8,132,176

(8,149)

839,767

(4)

8,971,943

(8,153)

998 209,942 210

Source: Yitzhaki and Schechtman, 2009, Table 7, p. 150
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Chapter 23

Suggestions for Further Research

Introduction

Throughout the book we have stressed several properties that distinguish between

the GMD and the variance, claiming that those properties give an advantage to

using the GMD over the variance, in cases where the assumption of normality is not

supported by the data. Among those properties are the following:

(a) The GMD enables one to impose economic theory on the statistical analysis.

This property is relevant whenever economic theory calls for asymmetric

treatment of the distribution.

(b) Decompositions: the decomposition of the GMD includes additional parameters.

This property is relevant whenever: (1) stratification and quality of classification

into groups play a role in the application or (2) one is dealing with a random

variable which is composed of a linear combination of random variables.

(c) The Gini methodology enables one to see whether the association between

variables is monotonic. This property enables one to identify cases where it is

impossible to get conclusive evidence from the data concerning the association

between random variables and as a result one has to restrict the analysis to

regimes of the variables in order to assign a sign to the association.

(d) The GMD has two regression coefficients associated with it. This property is

useful in cases that one wants to test for the linearity assumption, and as we

argue later, it is also useful in time-series analysis.

(e) The GMD can be used simultaneously with the variance, a property that enables

one to replicate the statistical analysis performed with the variance with the

GMD in a stepwise manner so that one is able to find out which variable(s) is

responsible for the non-robustness of the OLS model.

Those properties have some advantage in some fields more than in others.

For example, property (a) is relevant in the areas of income distribution and

finance because economic theory assumes an increasing concave utility function.

The variance, on the other hand, is a convex function. This difference may cause

S. Yitzhaki and E. Schechtman, The Gini Methodology: A Primer on a Statistical
Methodology, Springer Series in Statistics 272, DOI 10.1007/978-1-4614-4720-7_23,
# Springer Science+Business Media New York 2013
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conflict between the two approaches. As a result, to get compatibility, there is a

need for imposing strong assumptions in order to eliminate the contradiction. The

use of the GMD overcomes this problem. However, the implementation of the

GMD comes with a price tag because it complicates the analysis. As a result it may

be that it is not justified to use it to estimate production functions.

Properties (b) to (d) belong to the “Gini reveals more” argument and as such they

are relevant for all areas in which the convenient world of normality does not hold.

In this book we have concentrated on imitating the analysis performed by the

variance. In this chapter we point out additional fields that may benefit from

using the additional properties of the Gini methodology. Note, however, that our

discussion in this chapter does not have the maturity of the rest of the book.

Section 23.1 suggests using the GMD for testing claims for convergence to the

multivariate normal distribution. This section utilizes property (b.2) and is relevant

for all procedures that rely on the central limit theorem. Section 23.2 suggests the

use of the GMD methodology in the area of education. Our belief in the contribu-

tion of using the GMD in this area is based on the fact that ability is a latent variable

while exams can be interpreted as applying monotonic nondecreasing

transformations intended to reveal the latent ability. Another property of the

GMD that is relevant in this area is the ability to identify a monotonic relationship,

a property that is helpful in determining the classification of abilities into areas of

ability. This issue is also discussed in Sect. 23.2. Section 23.3 comments on the use

of the GMD in time-series analysis and diffusion processes. The advantage of the

GMD in the former application is in having two regression coefficients associated

with it that are not related to each other by a functional form as is the case in the

OLS. Hence, we are able to check whether moving forward in time results in the

same conclusions as moving backward in time. Also, the GMD may be useful in

interpreting and estimating diffusion processes. Section 23.4 comments on an issue

that troubles everyone who suggests a new methodology: is there an alternative

methodology that outperforms the suggested one. In the case of the GMD the

competition comes from other indices based on the L1 metric. Section 23.5

comments on the need for software that can handle the method suggested in this

book in a unified way.

The list above does not cover all possible areas that can benefit from

implementing the GMD as the measure of variability. It only covers areas with

low hanging fruits. Among the areas that we did not cover it is worth to mention the

use of the Gini in classification and regression trees (Montanari &Monari, 2005 and

the references cited there).

23.1 Convergence to the Normal Distribution

The central limit theorem says that by averaging a sufficient number of random

variables, the distribution of the average converges to the normal distribution. This

theorem is the base for many methodologies, including the well known
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nonparametric methods such as the bootstrap or the jackknife methods. The main

question left is how to define the “sufficient number.” An alternative way of

presenting the same argument is how many moments of the distribution should

we compare in order to claim “sufficiency” or convergence to the normal. Should

we just rely on the mean and variance? Each additional required moment is going to

increase the required sample size.

Here, one can use the properties of the GMD decomposition in order to find out

what is the reasonable size of the sample. The basic idea is the following: a

necessarycondition for the approximation to the normal distribution to be reason-

able is that the distribution of the average of averages of observations will be of the

same family. This kind of a test can rely on the decomposition of the GMD of a

linear combination of random variables.

To see this assume that we have a sequence of averages of i.i.d. random variables

and the question asked is the following: is the size of the sample used to create the

averages sufficient in order to claim convergence to the normal distribution?

LetX1,. . .,Xm be a randomsample from anunknown distributionF ,wherem ¼ kn

is large. Denote the average of the sample by Xm and let X1
n ;:::;Xk

n be k averages of

samples of k randomly selected disjoint subgroups of observations (each of size n).We

use the decomposition of the Gini of Xm into the contributions of the individual

averages and the following two facts: (1) Form large enough the sampling distribution

of Xm belongs to the same family as the distributions of Xn , and (2) a necessary

condition for two random variables to be exchangeable up to a linear transformation is

the symmetry of the Gini correlation between them. Using these two facts, let

Xm ¼ n

m
X

1

n þ
n

m
X

2

n þ :::þ n

m
X

k

n:

We now replicate the process so that we have a large number of observations of

ðxm;x1n;:::;xknÞ . If averaging of n observations is sufficient in order to get that the

sampling distribution of the averages is approximately normal, then one should

expect that the twoGini correlations betweenXm and each individual average will be

equal. Note that because the X
k

n are drawn from independent samples, our interest is

in the terms D in (4.6) because they indicate whether Xm and X
k

n belong to the same

family of distributions. Since we know that the distribution of Xm converges to the

normal it is sufficient to verify that the distributions converge to the same family.

To sum up: applying the test on equality of two Gini correlations enables us to

determine whether n is a sufficient number of observations to claim normality of the

distribution of the average of size n.

23.2 The Use of the Gini Method in the Area of Education

The area of education seems as an area that can benefit from using the Gini

methodology because of the following properties that characterize the field:
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(a) Ability, whether general ability exists or not, is a latent variable that can be

discovered by asking questions and observing whether the examinee answered

them correctly.

(b) The usual way to evaluate ability is by confronting the examinees with a set of

questions and counting the number of questions that each examinee was able to

answer correctly.

(c) It is not easy to observe which property (ies) of the examinees enable them to

correctly answer the questions.

Those properties give an advantage to the GMD over alternative methods

because the Gini “reveals more.”

To see the possible contribution of the GMD we first argue that the robustness of

ranking of groups according to average success in exams is related to first degree

stochastic dominance. Then, we argue that whether a question belongs to the

subject matter of the exam can be handled by examining the monotonicity of the

relationship between the score in answering a question and the score in the exam.

23.2.1 Ranking Groups According to Average Success

To see the implications of those properties consider the following: assume that we

can classify abilities to uni-dimensional abilities, and the distribution of the uni-

dimensional abilities in the population is a continuous variable with an unknown

density function f(a). The questionnaire is composed of n questions, with

difficulties di (i ¼ 1,. . .,n). To simplify the arguments, assume that the probability

to correctly answer a question is p(a � d), where d is the difficulty of the question.

Note that both a and d are unobservable. The probability of successfully answering

a question is

p a� dð Þ with p0ðÞ>0: (23.1)

The probability of success p is increasing in a and decreasing in d.1 The expected

score (and the probability of success) in a test with n questions, administered to an

examinee with ability a, is:

Sða; dÞ ¼ 1

n

Xn
i¼1

pða; diÞ; (23.2)

1 This assumption is known as the “monotonicity assumption.” Additional assumptions that could

be imposed on (23.1) below are local independence and local homogeneity (see Ellis &

Wollenberg, 1993), but these additions are not relevant to our main argument.
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(d is a vector whose components are di, i ¼ 1,. . .,n). Equation (23.2) states that a

subject’s expected score is the average of the expected value of n binomial random

variables. However, these random variables are not statistically independent—they

are all affected by a, the subject’s ability and d the difficulty distribution of the

questions in the questionnaire. As we are interested mainly in the expected value of

S(a, d), we ignore any random factors that might affect the results.

Finally, we assume that there exist xmax and xmin such that:2

p a� dð Þ ¼ 0 for a� d� xmin and p a� dð Þ ¼ 1 for a� d� xmax: (23.3)

Assumption (23.3) means that one can always compose a question that no one

will ever answer correctly, and another that will always be answered correctly. This

assumption eliminates the possibility of the probability of success being a constant

that is independent of the task’s difficulty.

Following are several results: (Yitzhaki & Eisenstaedt, 2003).

Proposition 23.1 Individuals’ ranking within a group cannot be altered by changing
the difficulty distribution of the questions in the questionnaire.

Proof Consider two individuals who have abilities a1 > a2. One has to prove that

S(a1, d) � S(a2, d) for all d. According to (23.2),

S(a1,d)� S(a2,d) ¼ 1

n

X
[p(a1 � diÞ � p(a2 � diÞ� � 0:

The non-negativity of the terms in the square brackets is caused by p0( ) � 0.

We now move to evaluate ranking of groups, like schools, classes, ethnic groups

etc. Groups’ ranking, being more complex, needs an example. Take two groups of

equal size, “blues” and “greens,” where a1
b � a2

b � . . . � am
b and a1

g � a2
g �

. . . � am
g denote blues’ and greens’ abilities, respectively. Denote by

Fb ðaÞ ¼ 1
m

P
Iðabi Þ the cumulative distribution function, where I(X) equals 1 if X

is true and zero otherwise. Assume that the ranking of the groups is determined by

the difference in average scores achieved in the test, as follows:

DR ¼
Xm
j¼1

½Sðabj ; dÞ � Sðagj ; dÞ�: (23.4)

Can the sign of DR be changed by manipulating d?

Proposition 23.2 Assuming that (23.4) is used to rank groups, and that (23.2) and
(23.3) hold, then a necessary and sufficient condition for the impossibility of
changing the sign of DR by manipulating d is that Fb(a) and Fg(a) do not intersect.

2 These are assumptions of convenience; the conclusions reached here are not affected by allowing

a “guessing parameter” to affect the item response function (see Lord, 1980, p. 12).
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If on the other hand, the cumulative distributions intersect, then one can always find
two exams that will rank the groups differently.

Proof Begin with a test in which all questions are equally difficult, d1 ¼ d2 ¼ . . .
¼ dn ¼ dc. In this case, it suffices to prove the proposition with a test composed of

one question.

Suppose the distributions intersect only once, at a3. That is, Fg(a) > Fb(a) for

a � a3 and Fg(a) < Fb(a) for a > a3. If so, one can choose dc such that a3 – dc <
xmax. Now, all the subjects whose a � xmax þ dc will score a hit with probability

one, and since 1 – Fg(xmin þ dc) < 1 – Fb(xmin þ dc) there will be fewer greens

than blues among them. As for the rest, since Fg(a) > Fb(a), the blue with the poorest

ability has better chances of scoring a hit than does the green with the poorest ability,

the blue second in rank is more likely to score a hit than is the green second in rank,

and so on. Blues will therefore perform better than greens in this test.

To change the groups’ ranking it suffices to choose dc such that a3 – dc < xmin.

Now, only 1 – Fg(xmin þ dc) > 1 – Fb(xmin þ dc) will score a hit. We now scan

from best to worst: the best green has a higher probability of scoring a hit than the

best blue, the second-best green has a better chance than the second-best blue, and

so on. This proves that if the distributions of two groups intersect, one can switch

the rankings of average success. If the distributions do not intersect, then for any dc
chosen by the investigator, if the lowest ranking member of one group has a higher

(lower) chance of scoring a hit than does the lowest ranking member of the other

group, then the same can be said of the rest of the population.

The condition of nonintersecting distributions is identical to the condition that

the groups can be stochastically ordered (Lehmann, 1955; Spencer, 1983a, 1983b),

or, to use the term used in economics, that the distributions can be ranked according

to First Degree Stochastic Dominance Criterion (FSD).

The proof of Proposition 23.2 relies on three assumptions: (1) That the groups are

equal in size, (2) that the test consists of one question, and (3) that the distributions

intersect only once. The proposition can be extendedwhile relaxing these assumptions.

An important property of Proposition 23.2, which will come into play later, is

that whether or not the distributions intersect does not depend on d. This is so

because the subject’s ranking is not sensitive to the test’s difficulty distribution (see

proof of Proposition 23.1). Since the relevant cumulative distributions are based

only on individuals’ abilities, changing the difficulty distribution cannot change the

order in which the cumulative distributions are ranked. However, for a test to reveal

more than gross clumping of performance levels, it is important that the empirical

cumulative distributions be strictly increasing; a test that is too easy or too difficult

may obscure finer degrees of differentiation in the subjects’ abilities.

Note that the conditions for Proposition 23.2 are quite common. If the unob-

served ability distributions are assumed to be normal, then it is sufficient for the

variance of two groups to differ to cause an intersection of the ability distributions.

This means that assuming normal distribution of abilities means that the examiner

can cause rank reversal of average scores of groups simply by changing the

difficulty distribution of the questions in the exam.
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It should be pointed out that the use of the scores of exams in a regression should

also be subject to the question of whether a monotonic transformation of the scores

can change the sign of the regression coefficient. This is so because manipulating

the average may also affect any aggregated number. Further discussion and

illustrations based on empirical distributions can be found in Schechtman, Soffer,

and Yitzhaki (2008) and Yitzhaki and Schechtman (2012).

23.2.2 A Gini Item Characteristic Curve3

Item Response Theory (hereafter IRT) has been developed between the fifties and

the seventies of the last century. It became the main stream theory in the field of

education with the publication of the book by Lord and Novick (1968). Since then

there have been different versions and extensions of the theory. However, the basic

framework remains the same. It imposes a given structure on the data, that is a given

distribution of abilities among the examinees and a given structure of the relation-

ship between the probability of success in answering a question and ability. This

structure is imposed over the entire range of abilities. For an excellent review of the

recent main developments in the literature see Lee, Wollack, and Douglas (2009).

The GMD enables to estimate a nonparametric version for IRT. The basic idea is

to offer a nonparametric method for estimating the basic curve in the IRT model,

the Item Characteristic Curve (ICC), which relates the probability of success in

answering a question to the ability of the examinees and the difficulty of the

questions. In this sense one can classify the Gini methodology as belonging to the

literature presented by Sijtsma and Molenaar (1987), Ramsay (1995) and Bolt

(2001). The advantage of the nonparametric version based on the GMD is that

there is no assumption of monotonicity imposed on the data and it enables the

decomposition of the estimate of the overall regression coefficient between the

success in answering a question and ability in different ranges of ability, so that one

can observe the contribution of different levels of ability to the overall regression

coefficient. This decomposition enables one to see whether the relationship

between the probability in answering a given question and the ability demonstrated

in the exam is monotonic, that is whether the contribution of each section of ability

to the regression coefficient is with the same sign. Would one find large ranges of

abilities with negating contributions then it is an indication that either the question

is not related to the subject matter of the exam although the overall relationship is

positive and statistically significant, or that the “ability” cannot be viewed based on

a single property. In other words, the conclusions derived from the nonparametric

method are not based on averages or summary statistics, but on differentiating

among different levels of abilities so that one can see how the average relationship

is composed of and whether there are regions of abilities that do not behave

3 This section is based on Yitzhaki, Itzhaki and Pudalov, (2011).
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according to the overall structure. An additional advantage of the suggested method

over alternative nonparametric approaches is that it does not require arbitrary

window selection for smoothing the curve that can blur the graph and hide some

non-monotonic sections. The method enables a better scrutiny of the characteristics

of the question and its relationship with the particular ability the exam is intended

to evaluate.

In particular the method enables one to check whether a question belongs to the

subject matter (to be called “ability”) of the exam or not. The basic idea is that if a

question belongs to the subject matter of the exam then the scores on this question

form a monotonic nondecreasing relationship with the scores of the exam (after

excluding this question). Otherwise, it implies that the question does not belong to

the subject matter of the exam or that the exam is not testing a single type of ability.

We expect a good exam to include only questions for which the scores form a

monotonic relationship with the grades in the exam. For an application of this

methodology see Yitzhaki, Itzhaki, and Pudalov (2011). However, the paper deals

with one dimensional ability. This idea can serve as a tool for classifying questions

according to different abilities (exams). For simplicity assume that there are two

exams. One can look for monotonic relationships between each question in one

exam and the score on its own exam and the score of the other exam, and classify

the question to the exam with which it has a monotonic relationship. A question that

does not form a monotonic relationship with any exam is a question that is

redundant and should be discarded, unless one declares that there are several

abilities that are needed for success in the exam. Hopefully, this way will enable

an improved classification of abilities. A possible direction of further research is

extending the methodology to multivariate abilities by using multiple Gini regres-

sion techniques. A different direction of further research is needed to implement

other properties of the Gini methodology into the IRT model. In particular,

decomposing the success in answering a given question into the contributions of

traits and background of the examinees via the Gini multiple regression

(Schechtman, Yitzhaki, & Pudalov, 2011). Another direction to follow is the use

of the GMD in classification (Calò, 2006). In other words, a promising direction of

research is extending the Gini IRT model to multiple regression case.

23.3 The Use of the Gini Methodology in Time-Series

There are two major differences between time-series analysis and cross section

regression: in time-series the observations are dependent, while in most cross-

section analyses the basic assumption is that observations are randomly selected.

Having a sample which is not i.i.d. opens the way to trends in the change of the

distributions over time so that stationarity of the distribution over time cannot be

taken for granted. However, assuming that the correlation between observations is

less than one then it can be shown that weak forms of the central limit theorem hold

for the sample (Serfling, 1968, 1980). Since the GMD is bounded from above by a
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linear function of the standard deviation it is clear that any proposition about

convergence that holds for the variance also holds for the GMD. Hence, the basic

requirement for application of the GMD to time-series is already proved.

The other difference between time series analysis and cross section is that

economic theory is mainly relevant for the latter. For example, we have more

confidence in the shape of the distribution of income than in the shape of mobility,

which can be viewed as representing the changes in the income distribution.

The potential contribution of the GMD to this field seems to be based on the

additional parameters of the Gini regression. Among those parameters are: (a) The

GMD has two covariances defined between two variables. In the case of time series

this property translates into four possible regression coefficients. To see this,

assume that we have the series, x(1),. . ., x(t),. . .,x(T). Also assume that one is

interested in the relationship between x(t) and x(t�1). Then one can define four

Gini regression coefficients, two semi-parametric and two based on minimization of

the GMD of the residuals. The semi-parametric ones are:

bFN ¼ cov(x(t), F(x(t � 1ÞÞ
cov(x(t� 1),F(x(t� 1ÞÞ (23.5)

And

bBN ¼ cov(x(t� 1Þ; F(x(t))
cov(x(t),F(x(t))

: (23.6)

For a sufficiently large sample, the difference between the denominators of

(23.5) and (23.6) should be negligible because the difference is in changing only

one observation. But there is no reason to expect the difference between the

numerators to also be negligible because sometimes “what you see from here is

not what you see from there.” Only if the distribution of (x(t),x(t � 1)) is exchange-

able up to a linear transformation, we should expect bFN ¼ bBN.
One implication of a stationary series is that moving forward in time does not

result in an estimate that is different from the one obtained when moving backward

in time.4 Hence, a test of whether bFN ¼ bBN can be used to test whether the time-

series is stationary. This test augments the test on whether the residual and the

explanatory variables are uncorrelated as explained in Chap. 8. Preliminary work in

this direction can be found in Serfling (2010) and Shelef and Schechtman (2011).

An additional application of the GMD is in estimating diffusion processes. It can

be found in Trajtenberg and Yitzhaki (1989). The application is based on (2.1)

which can be rewritten as:

4 See, for example, Wodon and Yitzhaki (2006) for a critique of the b convergence concept used in

macro-economics in order to prove convergence in the growth rates of countries. Wodon and

Yitzhaki found that this concept may lead both to convergence when moving forward and

backward in time, which leads to a contradiction. See also O’Neill and Van Kerm (2008).
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D ¼ Efjt2 � t1jg ¼ 2

ð1

�1

ð1

t1

ðt2 � t1Þf(t2)f(t1)dt2dt1;

which can be interpreted as the expected time difference between any two

adoptions over the whole diffusion process. Chandra and Singpurwalla (1981)

also relate the adoption rate (or the hazard rate) to the Gini and the Lorenz curve.

23.4 The Relationship Between the GMD and Absolute

Mean Deviation5

The main argument in this book is that the GMD is a better measure of variability

than the variance whenever the normal distribution cannot be assumed. The only

difference between the GMD and the variance is in the metric used: the GMD relies

on city block metric (a.k.a. L1), while the variance is based on the Euclidean metric.

Therefore, one may suspect that other measures based on the city block metric are

better than the GMD. The other measures include the Mean Absolute Deviation

(MAD) and the Least Absolute Deviation (LAD).

The MAD is a measure of variability that is recommended because of its

robustness. It is based on dividing the distribution of a random variable into two

groups: above and below the mean and estimating the absolute deviations of the

observations from the mean. Gorard (2005) presents an excellent review of the

history of 90 years of debates on the properties of MAD versus the standard

deviation, reaching the conclusion that MAD should be preferred over the standard

deviation whenever the distribution differs from the normal. His conclusions, based

on Barnett and Lewis (1978) and Huber (1981), are based on the argument that even

a small deviation from the normal distribution should lead one to prefer the MAD

over the standard deviation. A generalization of MAD can be referred to as QUAD,

which is the absolute difference from a quantile of the distribution. An interesting

and popular member of this family is the LAD, which turns out to be the absolute

deviation from the median. The LAD, MAD, and QUAD are popular measures that

are used in regression analysis (Bassett & Koenker, 1978; Koenker & Bassett, 1978,

1982; Koenker, 2005), in portfolio analysis (Konno & Yamazaki, 1991; Simaan,

1997) and in science. The references mentioned above present a small sample of

the literature.

The aim of this section is to argue that MAD, QUAD, and LAD are actually

special cases of the between-groups component of ANOGI. The difference between

the different measures is in the definition of the range of the groups. Alternatively,

one can view them as the GMD applied to specific distributions, the distributions of

the between-groups component. As such they are actually conveying the same

5 This section is based on Yitzhaki and Lambert (2011).
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information as the between-groups component in ANOGI for a specific case:

whenever the overall population is divided into two groups with no overlapping

between members of the groups.

The proof of the argument is based on the following:

The expected absolute deviation from any quantile, q, is:

E jX� qjf g ¼
ðq

�1
(q� x)dF(x)þ

ð1

q

(x� q)dF(x): (23.7)

The left term on the right hand side is the low absolute deviation: it is equal to:

ðq

�1
(q� x)dF(x) ¼ p q� m LC(p):

The right hand term on the right side of (23.7) is equal to:

ð1

q

(x� q)dF(x) ¼ m ½1� LC(p)]� q[1� p]:

Inserting them into (23.7) we get:

E jX� qjf g ¼ 2p qþ m� q� 2 m LC(p): (23.8)

Figure 23.1 presents a typical LC. On the horizontal axis, p, is the value of the

cumulative distribution. The vertical axis represents the cumulative value of the

variable, divided by the mean. The curve starts at (0, 0) and ends up at (1, 1). Its

derivative with respect to p is equal to q* ¼ q/m, which is the inverse of the

cumulative distribution divided by the expected value. The second derivative is

1/f(q) which is positive. The curve is convex because the second derivative is always

positive.

The following proposition states the relationship between the absolute deviation

from a given quantile and Gini.

Proposition Let q separate the two groups. Then the absolute deviation from a
quantile is a function of the between-groups Gini.

Proof It turned out to be convenient to prove the connection between the Gini

coefficient and the absolute deviation from a quantile of the distribution by geometric

arguments. Themain property of the Lorenz curve used is its convexity. An additional

simplifying assumption is that the expected value of the distribution, m is positive.

Figure 23.1 presents a Lorenz curve. The curve is 0JBKC. The section 0J is added in

order to draw attention that the curve can also be defined for variables that include

negative values. The line ABD is the line tangent to the curve at p, and its slope is q*.
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The left hand term in (23.7) is represented by0A, while the right hand term isCD.

The absolute deviation from q (23.7) is 0Aþ CD.

The Gini coefficient is equal to twice the area enclosed by 0JBKCGF. The

between-group Gini is equal to twice the triangle defined by 0HBICGF. By

Pythagoras theorem the length of the section OC is equal to
ffiffiffi
2

p
, while GB ¼ ffiffiffi

2
p

FB. Therefore, the between-group Gini is a function of GB. On the other hand, the

left and right terms in (23.7) are also functions of �GB. To see this note that:

0A ¼ GBþ (q*� 1)p

CD ¼ GB� (q*� 1Þð1� p)

So that:

E jX� qjf g ¼ 2GBþ (q*� 1)(2p� 1Þ: (23.9a)

q* is a given constant while p ¼ F(q) is a function of the constant. Hence, the

absolute deviation from q is a constant plus GB. But the between-group Gini is also

a function of GB so that both are determined by the same argument.

It is easy to see that we can omit the restriction m > 0. In this case, one has to use

the Absolute Lorenz curve and follow the same line of the proof. We now deal with

two special interesting cases: the MAD and the LAD.

1
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C

F

G

I K

D

J

H

Cumulative distribution

LCFig. 23.1 The Lorenz curve.

Source: Yitzhaki and Olkin

(1988), Fig. 1
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(a) The relationship between MAD and Gini:

The MAD is the absolute deviation from the mean. In this case, the slope of

ABD line is equal to 1. Hence, 0A ¼ GB ¼ CD. Therefore, the relationship

between the between-groups Gini and MAD is relatively simple.

(b) The relationship between LAD and Gini:

The Least Absolute deviation is the deviation from the median.

Equating the derivative of (23.7) with respect to q to zero we get:

@EfjX� qjg
@q

¼ 2pþ 2qp’(q)� 1� 2qp’(q) ¼ 2p� 1 ¼ 0

where p ¼ F(q). As is well known the minimum absolute deviation is from the

median.

Then, (23.7) becomes:

E jX� qjf g ¼ 2GB: (23.9b)

Having established that MAD and LAD and the absolute deviation from a

quantile are equivalent to between-groups GMD implies that any property that

the GMD possesses is also possessed by those measures. Alternatively, we can

interpret them as the GMD for specific distributions, the distributions of the

between-groups component. Therefore, we should expect future research to find

out all the properties surveyed in this book applied and proved for those measures of

variability. Moreover, since one limits the range of distributions to distributions of

binary variables it may be that additional properties will be found. On the other

hand, using only the between-groups GMD means that all the intra-group

variability is ignored. As far as we can see users of MAD, LAD, and QUAD should

justify dropping out this information, especially since by decomposing the GMD,

one can find out what is lost by dropping the intra-groups variability. This brings us

back to the debate raised by Grunfeld and Griliches (1960) whether aggregation

prior to estimation is good? Alternatively, this brings us back as to whether Wainer,

Gessaroli, and Verdi (2006) concept of binning is useful. In some sense the

argument to prefer the MAD over the GMD is parallel to an argument suggesting

the use of the between-groups variance over the variance as a way of increasing the

robustness of the estimates. We are not aware of anyone suggesting the above

argument. This topic is beyond the scope of this book.

23.5 A Comment on Required Software

A necessary condition for implementing a methodology is having a user-friendly

software. The empirical part of this book is based on non user-friendly softwares

that were developed specifically for one application. Examples of such softwares
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are DAD (Duclos, Araar, & Fortin, 2001; Duclos & Araar, 2006) for analyzing

income distribution and poverty and Cheung et al. (2007) for portfolio construction.

They are not useful for wide-spread use of the methodology. One reason for this

unfortunate situation was the quick development in finding alternative formulas for

the Gini, so that in many cases one has to abandon one formula for another

approach. Following this book, we believe that the time is ripe for constructing a

unified type of software that enables one to use all existing components of the OLS

and Gini methodology in one package.

However, we believe that such a methodology will enables the zealous

researcher who wants to prove his point almost anything that he wants to prove.

To avoid such a situation it is worth to define standards of analysis of data so that

only good quality research is published.

Following are several rules that should be investigated and agreed upon before

the ground will be ripe for writing such software:

(a) The role of transformations: monotonic transformations of variables may affect

the association between random variables through the change in the distribution

of the variable. The OLS applies the transformations to the variables them-

selves, while the Gini methodology applies the transformations to the weighting

schemes. The advantage of applying transformations only to the weighting

schemes is that all properties of the data are kept untouched. For example, if

the adding-up property is observed in the original data, it is automatically

imposed on the estimation procedure in the Gini methodology. As an example,

consider the estimation of a time-series of an aggregate variable and the

components of the aggregate, as is the case in many cases where disaggregated

time series are estimated. Since both methodologies are nonparametric in

nature, we believe that almost all transformations should be banned, except a

few that should be justified by the researcher.

(b) As a substitute to the flexibility offered by the use of transformations, one may

consider extending the decompositions of the simple regression coefficients

into the multiple regression framework. This procedure may be useful when-

ever the association between variables changes its sign, as may happen between

the age and other variables. This procedure will allow “global” behavior of the

regression curve to differ from the “sectional” behavior.

(c) However, a transformation that should be allowed is the decision of whether the

model should be additive in the variables or additive in the logarithms of the

variables. This is actually a decision of whether one uses an additive or

multiplicative model. However, it should be kept in mind that in certain areas

of applications the role of the estimated parameters can be reversed depending

on whether one applies a multiplicative or an additive model. To see this let us

present the following decision problem: you are given two investment

opportunities. Assume that time is contiuous and one has to hold the investment

for the whole period. The rate of return, ri, is normally distributed with (mi, si),

i ¼ 1,2. In an additive model, the expected return on the investment is mi and
risk is represented by si. In a multiplicative model the expected value of the rate
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of return on the investment ismiþ0.5 s2i while the risk is represented by s2i . As a
result one may prefer the investment with the higher variance because it yields a

higher return. Yitzhaki (1987) used this difference in order to show that the rate

of return of the rich on investments in the stock market is twice the rate of return

of the poor. Hence, stochastic dominance rules for multiplicative models should

be developed.

(d) As shown is Sect. 2.4 there are disagreements between the definitions of the

GMD based on the covariance formula and those that are based on the ALC.

This difference is accentuated when it is applied to relations between random

variables such as Gini correlation or ANOGI. A decision on which way to

follow is required.

(e) We suspect that there is a connection between the decomposition of the Gini of

a linear combination of variables and ANOGI as hinted in Rao (1969). How-

ever, we did not find it yet. To see a possible connection define the linear

combination of variables as:

Y ¼
Xn
i¼1

I(i) bixi;

where I(i) is the indicator function. Then the linear combination can be first

decomposed according to ANOGI (using I(i)), and then decompose as a linear

combination of random variables. Clearly, a combined version of decomposi-

tion will change the way decomposition is performed. Another possible direc-

tion is the one suggested in Cowell and Fiorio (2011).

23.6 Summary

In this chapter we have demonstrated the possible contributions of the GMD in

different areas of research. It is clear to us that we have not exhausted all the areas

that can benefit from using the properties of the GMD, nor that we have covered all

the properties of the GMD. We believe that the GMD is a superior but unfortunate

measure of variability that was ignored by the main stream of the literature. Its use

may contribute to a better coordination between economic theory and econometric

theory, and to improve the quality of statistical analysis of economic data. However,

as far as we can see to fully use its properties several decades of research are needed.

We hope that this book will convince other researchers to follow the Gini way.
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