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Chapter 1

Introduction

1.1 Statistical Methods as a Part of the
Research Process

1.1.1 Populations and Samples

The impetus for conducting research which utilizes statistical analyses is
the desire to better understand some population of interest. A population is
defined as the totality of any group of subjects sharing some characteristic(s).
The characteristics that such groups of subjects share can be generally defined
(e.g. nationality, ethnicity, gender) or specifically defined (e.g. low-income
patients under 40 years of age with type II diabetes). Researchers typically
study such populations because some feature of that group is unknown or
under question (e.g. what is the success rate of patients surviving a particular
treatment for a particular disease).

Though the research focus is on the population level, the use of an entire
population is impractical for many reasons, each of which can be summa-
rized in one word: resources. The resources needed to measure or examine
the members of a population include money for research materials (drugs,
laboratory space, recruitment, etc.) and the time needed to conduct the
study. If a population is too large, then a great deal of money is needed
to examine every subject within that population. Likewise, if members of
a population are spread over a large area (e.g. the contiguous U.S.), the
money and time required to reach them all will again be great. Importantly,
the resources available to conduct research are usually constrained by factors
external to the research. For instance, federal or industrial agencies spon-
soring such research only have so much funding to offer, so population-level
studies are usually out of the question. In other cases, such as in drug devel-
opment, it would be unwise to test new treatments on large populations of
subjects, especially when the risks of such treatments are severe or unknown.

R. Sabo and E. Boone, Statistical Research Methods: A Guide for
Non-Statisticians, DOI 10.1007/978-1-4614-8708-1 1,
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2 CHAPTER 1. INTRODUCTION

Due to constrained resources, studies focus on subgroups of populations,
which we refer to as samples. Samples are – by definition – smaller than the
populations from which they are drawn and are thus more manageable, both
from a resource-expenditure point of view as well as a conduct-of-research
point of view. In sampling from a population we hope to capture the char-
acteristics of the entire population in the smaller sample. For instance, if
57% of all undergraduate college students throughout the U.S. are female
(and 43% male), then we would hope that a smaller sample drawn from this
population would maintain a similar gender breakdown.

But therein lies one of the underlying facets of statistical theory and its
applications: how do we know that a sample resembles the population from
which it is drawn? The short answer is that we usually never know how closely
a sample represents its parent population, or – in other words – how “good”
the sample is. But we can take measures to help ensure that our samples
are of the highest possible quality, none more important than our sampling
technique. In order to obtain a sample, it must be taken from the population,
meaning that certain subjects – but not all – from the population must be
identified as also belonging to the sample. How these subjects are identified
is essential to sound statistical practice. If we “draw” certain subjects from
a population as opposed to others simply because it is easy for us to do so
(e.g. we take those closest to us; we take those willing to participate without
compensation; etc.), then we will have drawn what’s called a biased sample
(these particular examples is also called a convenience sample), meaning that
the reason we selected certain subjects has caused our sample to somehow
not reflect the parent population. Except in certain cases (clinical trials for
example), we try to avoid these convenience samples.

Collecting a simple random sample is the surest way we have of capturing
the important characteristics from a population. A simple random sample
is a process or quality more so than a noun, and it means that the process
used to identify subjects ensured that every subject (or most subjects) in
a population had an equal chance of being selected into the sample. The
phrase “equal chance” implies that we are probabilistically selecting patients
into the sample, and there are many ways of doing this (e.g. flipping a coin,
picking numbers randomly from a phone book) that we won’t get into. If we
know or if we can reasonably assume that this type of process was followed,
and provided the sample is itself not too small, then we can typically expect
our sample to be a microcosm of the population. If that is the case, then an
analysis of our sample should mimic an analysis of our population, and the
results we would get from both cases should be similar.

1.1.2 Parameters and Statistics

The populations in which we are interested often consist of many subjects
(consider the number of citizens in the United States, or the number of dia-
betes sufferers worldwide), each consisting of many individual characteristics.
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Naturally, a comprehensive understanding of all facets of the entire
population is typically unattainable – aside from the fact that the population
itself is usually unattainable. Thus, we focus on parameters that adequately
summarize certain mathematical characteristics of the population. These
parameters often take the form of proportions or means, and in most cases
reflect the characteristic we would expect to observe in a typical subject from
that population.

However, since we cannot collect populations, we must focus on the prop-
erties of the samples to which we have access. Any property of a sample that
we measure (such as proportion or mean) is called a statistic, and is thus
distinguished from its population counterpart, the parameter. As we will see
in subsequent chapters, we can use a few statistics to summarize our entire
sample (this is especially helpful if samples are large), and we can also use
them to test hypotheses about the population in question. For instance, if
we want to know something about a population parameter (say the success
rate for a certain type of experimental cancer treatment), then we can use
the sample statistic (say the success rate for 20 patients who underwent that
treatment) to provide information on that population parameter. The most
popular statistical method that turns a sample statistic into inference on
a population parameter is called hypothesis testing, which will be the main
focus of our foray into biostatistical methodology.

1.2 The Statistical Method

1.2.1 Research Question and Hypothesis Generation

A hypothesis test (note it’s “a hypothesis”, not “an hypothesis”; you’ve been
warned) is the process of using sample data to provide evidence toward some
statement about a population parameter. Such a statement originally occurs
in the form of a research question, where we boldly and unequivocally state
what we feel or think about some parameter. As statisticians and biostatis-
ticians (or the hopeful users of statistics), our first job is to translate this
research question into a parametric or symbolic form that lends itself to
being measured. For example, stating that you want to make cancer-victims
better doesn’t make good science, but saying you want to increase the median
survival time of cancer-victims by 10 months through a particular treatment
works well.

Once we have determined what population parameter we are interested in,
we need to then turn the research question into a set of testable hypotheses.
These competing hypotheses must be such that only one can be true at a
time. Given that we have defined such hypotheses, we can then use our
sample data to provide evidence for or against those hypotheses; naturally,
the hypothesis that the evidence more closely supports becomes the “winner”.
It is this process of using sample data to support a set of hypotheses about
a population parameter that we are referring to in hypothesis testing.
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1.2.2 Statistical Assumptions

In order to conduct a hypothesis test, several characteristics of our sample
must be in order for us to place any stock in the worth of such a test.
The characteristics we require of a sample are: that it is representative, that
the subjects within that sample are independently measured, and that our
sample is large enough for the planned statistical method to work correctly.

Representative Samples: A sample is representative of the population from
which it is drawn if the sample is somehow a microcosm of that population,
in that it maintains the important characteristics (e.g. gender or race propor-
tions, disease susceptibility) of the population even though it only contains
a fraction – often a small fraction – of its members. This is an important
characteristic, the utility of which is easily observed through the unfortunate
instance of an unrepresentative sample – if a sample is not representative of
the population from which it was drawn, then what good is it? The idea
is that if a sample is representative of a population, the numeric or mathe-
matic characteristics of that population will be present in the sample. This
attribute will ensure that statistical analysis of the sample would yield similar
results to a (hypothetical) statistical analysis of the population.

Independent Measurements: The concepts of dependence and indepen-
dence are somewhat difficult to explain without some basic foundation in
statistical language, so we will save some of this discussion for later. How-
ever, it should suffice to say that we would not want a sample where the
measurements or values we observe for some subjects are influenced by – or
depend upon – the measurements or values for other subjects. This may at
first seem like a weird phenomenon – in simple random samples this rarely
happens – but examples are easy to imagine. For instance, if we are con-
ducting a study where we are measuring the presence or absence of a certain
gene, and we unknowingly sampled measurements from members of the same
family, then the outcomes for those subjects within the same family will be
related due to genetic inheritability. This is bad because measurements that
are related – or dependent– make the sample measurements seem closer to-
gether than they actually may be in the grand population (this is called
variability and will be discussed later). Regardless, we would like our sample
measurements or values to be independent of one another, and if we responsi-
bly sample from the parent population (i.e. create a simple random sample),
then we can usually assume that this is the case.

Adequate Sample Size: Ask any statistician their biggest pet peeve, and
one of the most popular responses will be analyzing samples that are too
small. This happens for many reasons, such as small or esoteric populations,
limited resources, etc., but it happens most often due to poor planning. The
reason why this is a problem is that small samples can in no way represent the
population from which they were drawn, and thus any statistical methodology
dependent upon the sample’s representativeness will break down (i.e. not
work). Thus, we need our samples large enough to adequately reflect the
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populations from which they are drawn (if you ask a statistician, no sample
is large enough), yet manageable enough to be cost effective. For many of
the procedures we will discuss throughout this text we will have rules for
determining how large a sample we need. We will also focus – in Chapter 9 –
on performing a sample size or power analysis, which helps us determine the
sample size we need to collect before we conduct the study.

1.2.3 Statistical Method

We will follow a formal method for conducting statistical analyses that con-
sists of several parts: statement of the research question, determining what
method to use, assessing our statistical assumptions, summarizing the data,
performing the test, and interpreting the results. These parts are designed
for several reasons: so that we can be sure we are taking the correct steps
for the analysis, so that we can easily communicate our methods and results,
and so that our methods can be easily reproduced.

Statement of Research Question: Before we know what statistical pro-
cedure we’re going to use (the statistical method provides the answer we’re
looking for), we have to know what question we are asking. We do this by
taking our research question – which must be explicitly stated – and turning
it into a set of testable hypotheses. We will spend a lot of time doing this
throughout the text. At the end of the day, you cannot provide an answer if
you don’t know what the question is.

Determination of Statistical Method: Once we know our question, we can
figure out how best to answer it. The remaining chapters in this text are
arranged to provide different types of methods we can use to answer different
types of questions we could potentially face. We determine what statistical
method to use by looking at how measurements were observed, and the types
of measurements we can come across vary considerably.

Assess Statistical Assumptions: Once we’ve identified the type of mea-
surement we have, and what kind of statistical method we would like to use
to analyze those measurements, we need to determine whether or not it is
appropriate to use that method. In general, this is done by assessing whether
our sample is representative, whether our measurements are independent,
and whether we have a large enough sample, though on occasion there will
be other considerations.

Summarize the Data: Provided our assumptions are met, we can then
summarize the sample data with statistics that represent all of the important
details of that sample. We will focus a great deal on how to appropriately
summarize a sample, given the type of measurements we have and what
assumptions are met.

Perform the Test: Once our data are appropriately summarized, we can
then perform the statistical hypothesis test or use the desired statistical tech-
nique. Again, we will learn various methods throughout the semester, with
each chapter presenting a new class of methods.
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State the Result: Once we have conducted the statistical analysis, we will
need to make sense of our results. As mentioned earlier, we do this by stating
which hypothesis the evidence supports. Recall that though we are trying to
learn some characteristic about some population, that characteristic exists
or is true; we simply don’t know what it is. So when we state our result, we
can make one of two decisions: the evidence supports the first hypothesis, or
the evidence supports the second hypothesis. Since the conditions stated in
one of the two hypotheses we’ve created must be true, we can make two types
of mistakes called Type I and Type II errors. We will focus on errors of the
first type throughout this text, and we will cover errors of the second type in
Chapter 9. In practice, if we have set the table correctly by following sound
scientific methods in our data collection and sampling methodology, these
types of errors are of little concern and we can put a great deal of faith in
our statistical conclusions. Of course, the key aspect of any statistical result
lies in translating it into a meaningful statement that can be understood by
curious and critical readers.

1.3 Writing in the IMRaD Format

While we will spend a great deal of time performing statistical analyses, we
must also learn how to communicate these results to the scientific community.
We will spend a lot of time focusing on the “write-up” of our methods and
results. This is not because we don’t like you, or because we take peculiar
pleasure in torturing students, but rather because the results from statistical
analysis – regardless of how fancy or sophisticated – are useless unless they
can be understood by those not involved in the study. This is not only true of
statistical methods and results, but of science in general. If a scientific or sta-
tistical method is unclear, then readers of your research will not understand
what you have done and will ultimately reject your work via the following,
well-established assumption: “if I can’t understand what the author is saying,
then it must not be any good, for I am smarter than the author”.

A standard write-up that describes the key points of research that any
sophisticated reader would need to know to make an informed decision –
are the results from this research reliable enough for me to use or believe? –
would then be a necessity for translating and communicating our results. The
IMRaD style goes a long way toward providing such a standard format, and
has been accepted by virtually all credible scientific research journals (in a
strange irony, methodological research in statistics generally does not adhere
to IMRaD, though all of the pieces are still there).

The IMRaD format consists of four main parts: the Introduction, the
Methods section, reporting of Results, and a Discussion. Each part serves
its own purpose – briefly described below – and contains specific information
that matches up perfectly with the process we will follow for conducting
statistical analyses. Sophisticated readers become accustomed to this format
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and its placement of material, so much that they often skip to the parts they
are interested in to glean information quickly. We will spend a great deal
of effort understanding this method and its pieces, as well as practicing how
they apply to specific statistical methods.

Introduction: Here we provide details on the scientific problem in which we
are interested, and then describe the populations of interest. The treatment
or intervention specific to the current study is introduced, and the scientific
research question is un-categorically introduced (i.e. in the form from which
you will create your testable hypotheses).

Methods: In an actual publication, this is the section where you would
describe the setting of your sample, including such details as where and when
subjects were observed. A thorough description of what was measured and
the process under which those measurements were taken would then be pro-
vided. Any technological processes specific to the particular science and mea-
surements in question would be described here. Generally, a description of
the statistical methods used to analyze the sample measurements in light of
the research questions and hypotheses would be placed in the last sub-section
of the Methods Section (and often in small font to indicate its importance).
Here you will state how you summarized your data, how you analyzed the
data, and how you will make your decisions based on that analysis. You
must also specify any details that aid in that process, such as the statistical
software used for analysis.

Results: The details of the statistical analyses are presented here, start-
ing with a summary of the sample data (including any tabular or graphical
representations), continuing with the results from the analysis of the primary
research question, and ending with any secondary or sub-analyses not speci-
fied in the primary research question. An unequivocal answer to the primary
research question must be provided in this section.

Discussion: A brief summary of the results is provided at the beginning of
this section, where here the results are described in words (no statistics). The
scientific or clinical implications of these results are then expounded upon,
specifically with regards to how these results compare to those from previous
research studies. Any study limitations – there will always be something –
must be identified and described in this section, as should a justification as
to how they do or do not affect your results. This section often ends with a
prognostication of what these results mean for future research or what steps
need to be taken to continue this research.

1.4 The R Statistical Software Package

While some common statistical procedures are simple enough to compute by
hand, many are computationally intensive enough that we would not wish
to do so. Further, modern data sets can be so large that calculation by
hand is typically prohibited. Fortunately, there are many statistical software
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Figure 1.1: The initial screen in R showing the R Console.

packages available to perform these computations; some popular packages
are SPSS, SAS, Minitab, Stata, JMP, etc. In this text we will focus on
using the statistical package R, which is an open-source (read: free) software
program that is continually updated with new and improved packages by
its users. R can be downloaded at no cost from: cran.r-project.org. Once
on that page simply select your operating system (Windows, MacOS X or
Linux) and download the base package.

Once R is installed, you will have an extremely powerful piece of statistical
software at your fingertips. The main drawback to using R is that it is
a language, which means you will need to program the analyses yourself
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Figure 1.2: Screenshot of the R window with the R Console (left window)
and the New Script (right window) for Windows.

Figure 1.3: Screenshot of the R window with the R Console (left window)
and the New Script (right window) for Macs.

(as opposed to the point-and-click functionality of SPSS or JMP). While this
can be frustrating at first, the code is surprisingly simple (both to learn and
to use) and refreshingly short. Further, by programming your own code in
R, you will automatically save a record of your work, which is not easily
achieved using a point-and-click program. Throughout this text we will show
you how to conduct each of the analyses using the R statistical software.
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1.4.1 Getting Started

Once you have downloaded and installed R you can open the application,
which gives the screen shown in Figure 1.1 for both Windows and Mac users.
The R Console is where written program commands can be entered into R
and executed.

While you can type directly into the console, the experience will be
enhanced if you instead type commands into an R script, which can then be
submitted to the console. To open a blank script, simply go to the File menu
and select New Script. This will open the R text editor window in which you
may type your commands. Figure 1.2 shows the R program with the R Con-
sole (left window) and the R Editor (right window) in a Windows platform
(Figure 1.3 shows the R Editor for Macs). After entering your commands into
the R Editor, you can ask R to execute the commands by highlighting the
desired code, hitting the right-mouse button, and then selecting Run; once
you’re more proficient, you may use the following sequence of hot-buttons:
select-all (“control A”), then run (“control R”).

1.4.2 Loading Data

For the purposes of working with R, the data file you wish to import should
be in a Comma Separated Values (CSV) format, which is a compact format
for your data. To read in a CSV into a dataframe you use the following code:

Data1 <- read.csv(file.choose(), header = TRUE)

The statement above can be broken down into several pieces. The data file
will be read into a dataframe called Data1. The <- symbol is the assignment
operator which puts the data file into the dataframe named Data1. The
read.csv() function tells R that you wish to input a data file in CSV format.
The file.choose() statement tells R that you wish to find the file on your
computer using the windows environment. The header = TRUE statement
tells R that the first row in the data file are labels for the columns, i.e. the
first row is a header. If the first row does not contain column headings then
this statement should be set to FALSE.

Example: Suppose we wish to load the data file Chapter1data.csv. The
first thing to do is to download Chapter1data.csv to a location that you can
easily find on your computer. Use the code in Program 1 to load the data.
Remember to select the code, right mouse click and select "Run line or

Selection".

From the output in Program 1 we can see that R prints the commands
supplied (code) in the R Console. By simply including a line with only the
dataframe name, R will print the data frame to the console. Notice that the
Chapter1data dataframe has four columns (Subject, Weight, Height and
BP.Sys) and has seven rows.
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1.4.3 Working with Data

Once we have the data file imported into a dataframe we may want to work
with certain parts of the data. To access a specific column in the dataframe
we can use the following command format:

dataframe$column

For example in the Chapter1data dataframe we may want to work with
the Height measurements. To do this we would need to refer to the data as:

Chapter1data$Height

In addition to accessing a specific column we may wish to access spe-
cific rows of data. There are several ways to do this, though the easiest
is to specify the row you wish. In order to do this we need to understand
how R organizes data. In a typical dataframe we can access any item by
specifying the row and column of the item, which is done in R using the
data[row,column] notation, often called bracket notation. For example, if
in Chapter1data we wish to obtain the item in the third row and second
column we would use the following syntax:

Chapter1data[3,2]

Here, the order is important: the first item in the bracket specifies the row
while the second item specifies the column. If we leave one of these items
blank then we will get the entire row or column for the item left non-blank.
For example,

Program 1 Program to import the Chapter1data.csv file into R and display the results.

Code:

Chapter1data <- read.csv(file.choose(),header=TRUE)

Chapter1data

Output:

> Chapter1data <- read.csv(file.choose(), header=TRUE)

> Chapter1data

Subject Weight Height BP.Sys

1 1 117.9 65.9 124

2 2 137.5 69.0 129

3 3 147.1 65.8 127

4 4 146.4 61.5 129

5 5 125.4 62.3 123

6 6 139.8 65.2 124

7 7 143.9 55.5 117

>
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Chapter1data[3,]

will give us the entire third row of the dataset as no column was specified.
We could similarly obtain just the second column by writing

Chatper1data[,2].

Using the bracket notation can be cumbersome if you don’t know which
row or column number for what you want. You may wish to use some logic to
get the information you want. R can use the bracket notation in combination
with logic operators to make subsets of your data. The logic operators are
given in Table 1.1.

Table 1.1: Basic Logic Operators in R.

equal to ==

not equal to !=

less than <

greater than >

and &

or |

For example, suppose in the Chapter1data we want all the information
for subject 4. Then we can use the bracket notation and the logic operators
to obtain this information using the following syntax:

Chapter1data[ Chapter1data$Subject == 4, ]

Notice that inside the brackets we specified the column and dataframe that we
need to check. This syntax can seem redundant but is ultimately flexible for
adding more complicated logic arguments (or combinations thereof). We will
not cover all possibilities here. However as we progress through the text you
will see many of these logic arguments and data subsetting in use. Of course,
we will explain what we are doing when we use the syntax.

Proficiency in R is a valuable skill, as it can satisfy most statistical needs
and is freely available. What we have presented here is just enough to enable
you to get you started in R so that you can proceed through the remainder of
this book; additional concepts and programs will be provided in each chapter
as the needs arise. There are plenty of reference texts to consult should you
need additional assistance (e.g. see Ekstrom 2012).



Chapter 2

One-Sample Proportions

2.1 Introduction: Qualitative Data

The simplest types of measurements are qualitative in nature, meaning that
they are non-numeric – or at least numeric manipulation of them is mean-
ingless – and include names, labels and group membership. Examples of
qualitative data are ubiquitous, but are best exemplified by dichotomous
categorical data consisting of only two possible values, such as a patient’s
gender (male or female), diagnosis of a certain disease (positive or negative),
or the result from a health intervention (success or failure).

Dichotomous categorical data are typically described in terms of the pro-
portion (p) of some population with one of the two possible characteristics.
This value is defined as the total number of subjects in some population
exhibiting that specific characteristic divided by the number of total subjects
(N) in that population. For instance, if 105 out of 200 physicians in a given
hospital are female, then the proportion of these physicians who are female is
pf = 105/200 = 0.525. It should stand to reason that a proportion can only
take values between 0 and 1.0, as you cannot have fewer than zero subjects
with a given characteristic (reflecting p = 0/N = 0), just as you cannot have
more than the total number subjects with a given characteristic (reflecting
p = N/N = 1.0).

The Complement Rule: The outcomes for dichotomous data must also be
mutually exclusive, in the sense that any given subject may assume only one
of the two potential outcomes at one time. For instance, a subject cannot
simultaneously test positive and negative for a disease. In general we will
ignore instances where the outcomes are not mutually exclusive; in practice it
is best to avoid these scenarios all together. One benefit of this characteristic
is that we only need to know the proportion of one of the two outcomes to
know the proportion for both. Returning to our previous example, if there
are 105 female physicians, then there must be 200−105 = 95 male physicians,
meaning the proportion of male physicians is pm = 95/200 = 0.475. Note here
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that there are 105 + 95 = 200 physicians who are either male or female,
meaning that the proportion of physicians who are either male or female is
pe = 200/200 = 1.0. Further, note that pf + pm = 0.525 + 0.475 = 1.0 = pe.
This will always be the case for dichotomous categorical data. So if we know
that pf = 0.525, then we can use what is called the complement rule to find
pm = 1− pf = 1− 0.525 = 0.475.

As a final note on proportions, there is a one-to-one relationship between
proportions and percentages, meaning that for every proportion between 0
and 1.0, there is a corresponding percentage between 0 and 100%. This means
that we should be able to transform proportions into percentages – and per-
centages into proportions – with ease. Without getting into the mathematical
rationale, the algorithm is simple: to turn a proportion into a percentage,
move the decimal two places to the right and add a percent sign (%). For
example, if we have the proportion p = 0.525, we turn it into the percent-
age 52.5%. Likewise, if we have a percentage (say 47.5%), we turn it into a
proportion by moving the decimal two places to the left and removing the
percent sign (0.475).

2.2 Establishing Hypotheses

The key problem here is that we generally do not know the exact value
of a population proportion, and at times we might not even know the total
number of subjects comprising that population. This is problematic for those
who may want to base their decisions or actions on such a proportion. For
instance, in deciding between two different treatments to administer to a
patient, a physician might want to know the success rates – read: propor-
tions – of those two treatments before choosing between them. These pop-
ulation values are rarely known, but certainly the physician – or others in a
similar situation – must make a decision, so something else must be done.

Thus enters the statistical method and the formation of a hypothesis.
When a population proportion is unknown, we must formulate competing
and mutually exclusive hypotheses about that proportion, collect data repre-
sentative of the desired population, evaluate that data, and determine which
hypothesis the evidence supports. The first step in this process is to set up
competing hypotheses to test. There is generally some hypothesized value
(p0 – pronounced “p-naught”) in which we are interested; for instance, maybe
it is commonly accepted that the success-rate of a given treatment is 0.5
(treatment is successful for half of all patients and unsuccessful for the other
half). This value then becomes the central crux around which we form our
hypotheses.

As mentioned in Chapter 1, we will create two mutually exclusive hyp-
otheses, such that only one can be true at a time. We name these hypotheses
the null and alternative hypotheses, and we have a formal process for
determining which hypothesis gets which name (the naming procedure is
actually important). The null hypothesis (H0) is that hypothesis which states
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our parameter is equal to some value (p0), while the alternative hypothesis
(HA) indicates that the parameter is somehow different from p0. Depend-
ing upon our research question, there are three possible ways in which the
parameter – proportion in this case – can differ from p0: it can be less than
p0 (represented by the symbol <), it can be greater than p0 (represented by
the symbol >), or it can be not equal to p0 (represented by the symbol �=).
To choose between these three options we begin by translating our research
question into symbolic form, which will include one of the following options:
<, ≤, >, ≥, = or �=. As an example, suppose our research question is that
the proportion of subjects with adverse toxic reactions to a particular drug
is less than 0.3. In order to turn this into a symbolic statement, we must
identify the operative phrase “is less than”, which is stating that p < 0.3.

The second step is to find the functional opposite of the statement from
our research question. Based on the symbolic form from our research ques-
tion, we create the functional opposite by pairing the following symbols:
(< and ≥), (> and ≤) or ( = and �=). Note that each of these pairs comprise
all possibilities for a given situation (e.g. you are either strictly less than
some value or greater than or equal to some value; either greater than some
value or less than or equal to some value; either equal to some value or not
equal to some value). Returning to our example, the functional opposite of
the symbolic form of our research question (p < 0.3) is p ≥ 0.3.

The third step is to identify which of our two symbolic forms is the null
hypothesis and which is the alternative hypothesis, which is easier to do than
to explain. Of the two symbolic forms, the form with some equality (meaning
the =, ≤ or ≥ signs) becomes the null hypothesis, while the symbolic form
without any equality (meaning the �=, < or > signs) becomes the alternative
hypothesis. Further, regardless of the symbol in the statement that belongs
to the null hypothesis, we use the = sign. (We do this for practical reasons,
as we’re going to assume the null hypothesis is true, and doing so is much
easier if H0 contains only one value rather than a range of values. Keep
in mind, however, that this practical reason is not the same as theoretical
justification, which will be given elsewhere.) For our example, the statement
p ≥ 0.3 contains equality, while the statement p < 0.3 does not. So our alter-
native hypothesis becomes HA : p < 0.3, while the null hypothesis becomes
H0 : p = 0.3. This process can be followed for most research statements con-
cerning one population proportion, and Table 2.1 lists the possible hypotheses
as well as key words to help in guiding you to the appropriate pair.

2.3 Summarizing Categorical Data

(with R Code)

Sample Proportion: Given a set of hypotheses about a population proportion,
the next step is to collect evidence that will (hopefully) support one of the
two hypotheses. When we are interested in a population proportion, the
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Table 2.1: Possible Sets of Hypotheses for a Population Proportion Based
Upon Key Phrases in a Research Question.

Key Phrases
“less than” “greater than” “equal to”

“greater than or equal to” “less than or equal to” “not equal to”
Hypothesis “at least” “at most”

Null H0 : p = p0 H0 : p = p0 H0 : p = p0
Alternative HA : p < p0 HA : p > p0 HA : p �= p0

logical step would be to calculate a sample proportion from a representative
sample drawn from the population of interest. The sample proportion p̂
serves as an estimate of the population proportion, and is calculated in a
similar manner as its population analogue, being the number of subjects x
in a sample exhibiting a particular characteristic (often referred to as the
frequency) divided by the total number of subjects n in the sample (referred
to as the sample size). So if we have a random sample of 25 physicians,
13 of whom are female, then the proportion of female physicians in this
sample is p̂f = 13/25 = 0.52. Due to the dichotomous nature of this type of
measurement, we can use the complement rule to find the sample proportion
of male physicians (p̂m = 1− 0.52 = 0.48).

Rounding: Depending on the sample size, you will have different rules for
rounding proportions. For sample sizes greater than 100, round p̂ to at most
three decimal places (e.g. p̂ = 0.452). For sample sizes less than 100 but
greater than 20, round p̂ to two decimal places (e.g. p̂ = 0.45). For small
sample sizes less than ∼20, the ratio of frequency to sample size should be
reported as a fraction (x/n) (e.g. 5/11) and the sample proportion should
not be calculated (note that there is no universally agreed upon value for this
last rule, and 20 was selected for presentation).

2.4 Assessing Assumptions

If our random sample is adequately representative of the parent population
from which it is drawn, then our sample estimate p̂ should be close to the pop-
ulation value p. Unless we have clear evidence or information to the contrary,
we will assume: (i) that the sample used to calculate p̂ is representative, and
(ii) that the subjects in the sample from whom measurements were taken
are independent of one another. To determine if the sample is of sufficient
size, we need to check the following conditions: based on the condition set
forth in the null hypothesis H0, we need to expect there to be at least five
subjects taking either value of the categorical variable. This expectation is
determined by noting that if the proportion of subjects taking the first cate-
gory is p0 = 0.3 according to H0 (meaning the proportion taking the second
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category is q0 = 1 − p0 = 1 − 0.3 = 0.7) and if n = 30, then we would
expect there to be p0n = (0.3)(30) = 9 subjects in the first category, and
(1− p0)n = q0 n = (0.7)(30) = 21 subjects in the second category. So in this
case we would have adequate sample size. However, if H0 instead specified
that p0 = 0.1, then we would expect p0n = (0.1)(30) = 3 subjects in the first
category and q0n = (0.9)(30) = 27 subjects in the second. Since we expect
less than five subjects in the first category, we would not have adequate sam-
ple size to perform the desired hypothesis test. In cases of inadequate sample
size we would report that we cannot perform the desired test (meaning we
stop the entire process and either figure out how much more data we need
or perform a different test). Note that we use p0 to determine if we have
adequate sample size rather than p̂.

2.5 Hypothesis Test for Comparing
a Population Proportion

to a Hypothesized Value

At this point we have already translated our research question into testable
hypotheses, verified our assumptions, and summarized our data. It is now
time to combine the two pieces into a statistical test that will eventually
support either the null hypothesis or alternative hypothesis. Since we have a
sample proportion p̂ that should resemble the population proportion p upon
which we are trying to make inference, it makes sense to base our test around
the sample estimate. However, before we develop a formal test, we should
study further the behavior of p̂ in order to better understand from where
such a test might arise.

2.5.1 Behavior of the Sample Proportion

Consider a random and representative sample of 200 patients undergoing
treatment to alleviate side-effects from a rigorous drug regimen at a partic-
ular hospital, where 33 patients experienced reduced or no side-effects. For
this particular sample, we know that the sample proportion of patients who
experienced little or no side-effects was p̂ = 33/200 = 0.165. So one could
presume – based on the evidence from this sample – that between 16 and
17% of all patients would experience reduced side-effects when using this
treatment regimen. But is this a reasonable presumption? What if we had
collected a different sample of patients from this hospital (or from a different
hospital, for that matter)? Would the sample proportion change? If so, how
much would it change?
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While we cannot answer these questions based on our particular sample,
we can conduct studies that will allow us to see what we could expect to
find if we could repeatedly sample from a population with a known population
proportion. It is possible for us to conduct a simulation study, or a study
in which we repeatedly simulate sets of data that reflect known population
parameters (such as p0), where summary statistics (such as frequencies or
p̂) are calculated for each of those samples and then summarized themselves.
We can then determine the likelihood of the observed sample data (or sample
estimate) compared to the results from the simulation study (more on this
topic later).

Returning to our example of 200 hospital patients, maybe the historical
rate of patients with little or no side-effects is 10.0%, and we want to deter-
mine if this new treatment increases that rate. (Imagine a bag filled with a
large number – say many thousands – of chips, 10% of which are red and the
rest blue, and we draw out 200 of those chips and count the number of red
chips; this is not what we really do, but the idea is the same).

The results from a simulation study that generated 1,000 such samples are
provided below in Table 2.2, which shows the number of samples for which
we observed specific success counts (ranging from 5 to 36) out of 200. Note
that there are many more success frequencies in this study other than the
frequency observed in our sample (which was 33), which reflects the variabi-
lity we might observe if we were to repeatedly sample from this population.
Variability can mean many things, but here we are taking it to mean how
our sample proportion could change in value if we were to resample.

Note that a frequency of 20 occurs most often (∼12% of the time) and
represents the case when p̂ = 20/200 = 0.100, which is the value (p0) assumed
in this study. Also note that most of the simulated samples yielded frequen-
cies slightly below or slightly above 20 (e.g. 16–19, 21–24), while relatively
fewer studies yielded frequencies greatly below or greatly above 20 (e.g. 5–11,
29–36), which makes sense since 20 was the value we assumed was the true
population parameter. Based on the results from this simulation study, we
would then conclude that if p = 0.10 was indeed true, we would expect sample
proportions close to 0.10 rather than far away from it.

2.5.2 Decision Making

So how likely is our sample value of 33? Based on our simulated data, 33
occurred once out of 1,000 total simulations; specifically, 33 successes app-
eared at a rate of 1/1,000 = 0.001, which is not often. More generally, any
value greater than or equal to 33 (which includes 33, 34, 35 and 36) occurred
only 4 out of 1,000 times, or 4/1,000 = 0.004, which is still not often. In either
case, both the observed event (33) or any event at least as extreme as our
observed event (> 33) seems unlikely if the true population success rate is
p = 0.10.
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Table 2.2: Results From Simulation Study of Samples with 200 Dichotomous
Observations with a Known Success Rate of 0.10.

# of Successes Frequency Proportion # of Successes Frequency Proportion
out of 200 out of 200

5 1 0.001 21 75 0.075
6 0 0.000 22 78 0.078
7 1 0.001 23 71 0.071
8 0 0.000 24 54 0.054
9 2 0.002 25 33 0.033
10 8 0.008 26 25 0.025
11 9 0.009 27 27 0.027
12 20 0.020 28 11 0.011
13 25 0.025 29 8 0.008
14 35 0.035 30 11 0.011
15 48 0.048 31 4 0.004
16 65 0.065 32 4 0.004
17 69 0.069 33 1 0.001
18 99 0.099 34 1 0.001
19 94 0.094 35 1 0.001
20 119 0.119 36 1 0.001

This last statement brings us to the crux of statistical decision making:
based on our assumption of p = 0.10, the observed success rate p̂ = 0.165
does not seem likely (if we are to believe the simulation study, which we
should). So what do we conclude? There are two likely outcomes: (i) our
assumption of the population proportion was correct and our sample data
are wrong (or at best unlikely), or (ii) our sample data is more reflective of
the “truth” and our assumption was wrong.

Since our sample is the only information we have that reflects any property
of the population from which it was drawn, and since it was randomly selected
from and is representative of that population, we must base our conclusions
on what the data and its summaries tell us. This is one of the most important
ideas in this entire textbook: if the data do not support a given assumption,
then that assumption is most likely not true. On the other hand, if our data
did support our assumption, then we would conclude that the assumption is
likely to be true (or at least more likely than some alternative).

Returning to our example, since a frequency of 33 (or greater) did not
occur often in our simulation study, we would logically presume that we
are not likely to observe frequencies that high (or higher) in samples drawn
from a population with a success rate of 0.10. Thus, we conclude that,
based on our sample proportion of 0.165, the true population proportion of
patients experiencing reduced symptoms or side-effects under this treatment
is probably greater than 0.10.
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2.5.3 Standard Normal Distribution

While the previously conducted simulation study was helpful in discussing
the behavior of a sample proportion under some hypothesized value, it is
important to note that we do not usually conduct simulation studies every
time we want to conduct a hypothesis test (indeed, it is often difficult or
impractical to do so). Rather, statisticians from centuries past have success-
fully characterized the behavior of a sample proportion in such a manner that
the results we would like to obtain are readily available without the need for
sophisticated computing power.

Consider the histogram in Figure 2.1, which shows in graphical form the
results from our simulation study. In its entirety, this histogram represents
the distribution of sample proportions assuming p = 0.10. Based on this dis-
tribution, we see that it is largest in the middle (corresponding to likely values
based on our assumption of p = 0.10), and then slowly gets smaller as we move
away from 0.10 (in both directions), so that eventually we have infrequent
or non-occurring outcomes. These regions are called the tails and represent
values that are unlikely to occur if our assumption of p = 0.10 is true.

As mentioned earlier, we do not want to rely upon simulation studies or
the distributions they create, though we would like a distribution that resem-
bles that created by the simulation study. Thus, we use what is called the
standard normal distribution, whose properties are well known and easy to
use. A random variable Z has a standard normal distribution if the probabil-
ity that it is between two numbers a and b is given by the following integral
(given in Equation 2.1).

Figure 2.1: Histogram Summarizing Results from a Simulation Study of 1, 000
Samples of 200 Dichotomous Outcomes with an Assumed Success Rate of
p = 0.10.
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Figure 2.2: Standard Normal Curve.

P (a < Z < b) =

∫ b

a

1√
2π

e−z2/2dx (2.1)

The standard normal distribution is centered at zero with a variance of one
(we will formally define center and variance in later chapters). If the center
of the distribution is any value other than zero or if the variance is not one,
then we simply have a normal distribution. The standard normal distribu-
tion is graphically presented in Figure 2.2 below. Here we clearly see the
bulge centered at zero, the gradual decline as we move away from zero, and
the tails for unlikely large positive and large negative values far from the
center.

To show how the normal distribution works, we have reproduced the
histogram in Figure 2.3 and now overlaid a normal curve (like the one in Fig-
ure 2.2, but with a mean and variance matching those from the distribution
in Figure 2.1). Notice how well the simulated data and the theoretical nor-
mal curve align. This generally happens if our simulation study is conducted
adequately enough, and this result is actually supported by a statistical law
(known as the central limit theorem, which we will discuss later). Thus, if
our assumptions are met, we should feel comfortable using the normal distri-
bution to represent the distribution of our sample estimate.

2.6 Performing the Test and Decision Making

(with R Code)

2.6.1 Test Statistic

So while we can use the standard normal distribution to answer probabilistic
statements about our data and hypotheses about the population parameter,
a quick glance at Figure 2.1 will show you that the distribution of p̂ is not
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Figure 2.3: Histogram from Simulation Study with Overlaid Normal Curve.
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Figure 2.4: Histogram Summarizing Results from Simulation Study of 1,000
Samples of 200 Dichotomous Outcomes with Assumed Success Rate p = 0.10,
where sample proportions are centered at p0 = 0.10.

centered at zero. Since there is no other standard normal distribution for us
to use, we will need to manipulate our sample estimate p̂ so that it will have
a standard normal distribution.
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To do this, note that the distribution of p̂ in Figure 2.1 is centered near the
hypothesized value p0 = 0.10. Thus, to get this distribution centered at zero,
we can subtract the hypothesized value from our sample proportion: p̂− p0.
Figure 2.4 shows the (nonsensical) adjusted distribution of p̂ (nonsensical
since it contains negative proportions), which is centered at zero.

While the distribution is now centered correctly, it still requires a variance
of one. For reasons that are easy to mathematically justify, but are not easy
to explain, the variability of a sample proportion that was drawn from a

population with known proportion p is given by the standard error:
√

p(1−p)
n

(note that we use the population proportion and not the sample proportion).
Thus, to transform our sample proportion into a random variable that has a
standard normal distribution, we center at zero by subtracting p0 and scale
to a variance of one by dividing by the standard error to get Equation 2.2
below.

z =
p̂− p0√
p0(1−p0)

n

(2.2)

Since the statistic z – known as a test statistic – has a standard normal
distribution, we can use it to calculate probabilistic statements regarding our
hypotheses and ultimately answer our question as to which hypothesis (the
null or alternative) the data supports.

Returning to our example, recall that x = 33, n = 200, p̂ = 0.165, and
p0 = 0.10. Thus, our test statistics is

z =
0.165− 0.10√

0.10(1−0.10)
200

=
0.065

0.0212
= 3.064

which means that the sample proportion 0.165 is slightly more than three
standard deviations above the hypothesized population proportion 0.10 (stan-
dard deviation is another measure of variability, which we will define later).
Three standard deviations is a lot, and means that in view of our sample
data, the hypothesized value is unlikely. We can now use the test statistic z
to make a formal decision. Note that we report test statistics – of the form
z – to two decimal places, meaning we would report z = 3.06.

Unfortunately, R does not compute the test statistic just provided.
However, the R function prop.test() does provide an equivalent (though
cosmetically different) test for proportions, the syntax for which is as follows:

prop.test( x, n, p=p_0} )

The R code for our example is given in Program 2 below.
Notice that R provides a considerable amount of output (some of which

is not needed or has not yet been defined). The data: line states what R
is testing, which corresponds to the x, n and p0. The next line gives the
value of the test statistic X-squared = 9.3889 and states that p-value =
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Program 2 Program to conduct a hypothesis test on a single proportion.

Code:

prop.test(x=33, n=200, p=0.1, correct=FALSE)

Output:

1-sample proportions test without continuity correction

data: 33 out of 200, null probability 0.1

X-squared = 9.3889, df = 1, p-value = 0.0021

alternative hypothesis: true p is not equal to 0.1

95 percent confidence interval:

0.1199686 0.2226578

sample estimates:

p

0.165

0.003216; this will be defined below. Hopefully, you are aware that the
stated test statistic (9.3889) is different from the 3.064 we calculated by
hand. However, note

√
9.3889 = 3.064, which is the value we obtained. This

relationship will be explained further in the next Chapter.

2.7 Formal Decision Making

2.7.1 Critical Value Method

The most traditional method of making a decision in a hypothesis test is to
use critical values. A critical value is literally the boundary – in this case
from the standard normal distribution – between values of our test statistic
that seem likely and values that seem unlikely if we were to assume that the
null hypothesis was true. Identification of such a critical value (or values) is
helpful in the sense that we would only have to calculate our test statistic z
and compare it to the critical value to make our decision.

Finding the critical value depends upon our alternative hypothesis and
what is called the significance level. The significance level – denoted by the
Greek letter α – is formally defined as the probability that we reject the null
hypothesis (i.e. we don’t believe it is true) when the situation it describes is
actually true (i.e. rejecting H0 was a mistake). Informally, α represents the
lack of evidence we would need to observe in order for us doubt the veracity
of the null hypothesis. Generally, we set the significance level at α = 0.05,
meaning that we would need to observe a statistic (or a statistic of a more
extreme value) that we would expect to occur less than 5% of the time in
order for us to reject the null hypothesis in favor of the alternative.
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Given a specified significance level (and α = 0.05 is generally used), the
critical value then depends upon our alternative hypothesis. If the alternative
specified that the proportion is less than some specified value (HA : p < p0)
then we would expect small sample proportions (or negative values of our
tests statistic z) to be rare if we assume H0 : p = p0 is true, and thus our
critical value should be negative. For a similar reason, we have a positive
critical value if our alternative hypothesis is HA : p > p0. In cases of a two-
sided alternative hypothesis (or HA : p �= p0), we need two critical values,
since sample values much greater or much lower than our hypothesized value
would lead us to reject the null hypothesis. All possible cases and decisions
are presented in Table 2.3 for α = 0.05 and α = 0.01, which are the most
commonly used significance levels. Thus, rather than having to determine
critical values for each hypothesis test we wish to perform, we can consult
Table 2.3 to obtain: (i) the critical value specific to the desired significance
level and alternative hypothesis, and (ii) the criterion under which we would
select the null or alternative hypothesis.

Table 2.3: Critical Values and Rejection (Acceptance) Regions for Hypoth-
esis Test of a Proportion for Given Significance Levels (α) and Alternative
Hypotheses.

α = 0.05 α = 0.01

Alternative Critical Select Critical Select
Hypothesis Value Hypothesis Value Hypothesis

HA : p < p0 −1.645 H0 if z ≥ −1.645 −2.33 H0 if z ≥ −2.33

(Left-Tailed Test)

HA if z < −1.645 HA if z < −2.33

HA : p > p0 1.645 H0 if z ≤ 1.645 2.33 H0 if z ≤ 2.33

(Right-Tailed Test)

HA if z > 1.645 HA if z > 2.33

HA : p �= p0 −1.96, H0 if −2.575, H0 if

(Left-Tailed Test) 1.96 −1.96 ≤ z ≥ 1.96 2.575 −2.575 ≤ z ≥ 2.575

HA if z < −1.96 or HA if z < −2.575 or

z > 1.96 z > 2.575

In our example, say our original research statement was: the proportion
of subjects who experience reduced side-effects from this treatment is greater
than 0.10. This means our null hypothesis isH0 : p = 0.10 and our alternative
hypothesis is HA : p > 0.10, and thus our critical value is 1.645 (if we have
α = 0.05), meaning that we will reject H0 in favor of HA if the test statistic
is greater than 1.645, and we will not reject H0 if the test statistic is less
than or equal to 1.645. Earlier, we calculated our test statistic as z = 3.06,
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which falls in the rejection region, so we reject H0 in favor of HA. We will
discuss what this means and how we react later.

2.7.2 p-value Method

As an alternative to the critical value method, we can calculate what is called
a p-value, which is defined as the probability of observing a test statistic at
least as extreme as the one we actually observed, given that the null hypothe-
sis is true. This is a tricky definition that has three distinct pieces. First, we
must assume that the null hypothesis is true, otherwise we have no bearing
to gauge how likely or unlikely the observed data are. Second, the meaning
of at least as extreme depends upon the alternative hypothesis. If we have a
left-tailed test (i.e. HA : p < p0), then at least as extreme means less than
or equal to our observed test statistic. If we have a right-tailed test (i.e.
HA : p > p0), then at least as extreme means greater than or equal to our
observed test statistic. If we have a two-tailed test (i.e. HA : p �= p0), then
at least as extreme means both greater than or equal to the absolute value
of our observed test statistic (|z|) and less than or equal to the negative of
the absolute value of our observed test statistic (−|z|).

The third part is calculating the desired probability, which of course
depends upon our observed test statistic (z, which itself depends upon the
null hypothesis) and the meaning of “at least as extreme” (which is par-
ticularly dependent upon the alternative hypothesis). The standard normal
distribution is used to calculate p-values, and we generally rely upon statis-
tical software for their computation. Z-tables are used in many elementary
Statistics courses, but we will not consult them. P -values can be calculated
in Microsoft Excel, and are routinely provided by most statistical software
packages (including R; see Program 2 above).

Regardless of the method of computation, the probability being calculated
will be the same. If we have a left-tailed test, we calculate the probability
that a standard normal random variable Z is less than our observed test
statistic z given that the null hypothesis is true (or P (Z < z|H0)). If we have
a right-tailed test, we calculate the probability that Z is greater than z (or
P (Z > z|H0)). If we have a two-tailed test, then we calculate two-times the
probability that Z is greater than |z| (or 2P (Z > |z| |H0)), or we calculate
two-times the probability that Z is less than −|z| (or 2P (Z < −|z| |H0)).
Admittedly, these definitions are complicated, but the good news is that you
will not have to calculate them by hand.

To put the p-value into practice, we must compare it to the stated sig-
nificance level α. In order to reject the null hypothesis, we would need an
outcome (or something more extreme) that is less likely than our significance
level. Thus, we reject the null hypothesis if our p-value is less than the sig-
nificance level (p-value < α), and we fail to reject the null hypothesis when
our p-value is greater than or equal to the significance level (p-value ≥ α).
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For our example, our observed test statistic (z = 3.06) and the right-
tailed hypothesis test means that our p-value is 0.001092. This is less than the
significance level α = 0.05, so we reject the null hypothesis in favor of the alt-
ernative hypothesis. Note that you will make the same decision with the
p-value method as you will using the critical value method (meaning, if you
come to different conclusions, at least one of them is wrong). We also round
p-values to at most four decimal places, so we should report p-value = 0.0011.

2.7.3 Conclusion

Whether we used the critical value or p-value method, we report our results
in the same manner. First, we firmly declare whether we rejected or failed
to reject the null hypothesis, the former case in favor of the alternative.
We then state in words what this statistical decision means; as mentioned
earlier, statistical methods – such as hypothesis testing – are only useful if
we can phrase the results in ways that clinical or non-statistical researchers
can understand and interpret.

In our example, our test statistic fell in the rejection region (the p-value
was also smaller than the significance level), so we rejected the null hypoth-
esis (H0 : p = 0.10) in favor of the alternative (HA : p > 0.10). So we would
declare that the evidence suggests the success rate of this treatment at reduc-
ing side-effects is likely greater than 0.10. Notice that we did not claim that
the success rate is greater than 0.10. This is because we only have statistical
evidence, which is not the same as definitive proof.

The R software conducts the two-sided test (HA : p �= p0) by default,
though we can easily modify the code to conduct either of the one-sided
tests. By adding the alternative statement to the R function prop.test(),
R performs the test corresponding to the specified hypothesis. The specific
syntax of the alternative statement for each type of hypothesis test is given
below. Note that if you do not specify the alternative statement, R will
default to the "two.sided" case and will perform the two-sided test.

HA : p �= p0 :

prop.test( x, n, p=p0, alternative="two.sided", correct=FALSE)

HA : p > p0 :

prop.test( x, n, p=p0, alternative="greater", correct=FALSE)

HA : p < p0 :

prop.test( x, n, p=p0, alternative="less", correct=FALSE)

For the right-tailed hypothesis in our example (HA : p > 0.10) we would
use the following R code (prop.test(x=33, n=200 p=0.10, alternative =
”greater”, correct=FALSE),) to produce the correct right tailed test; note
that the p-value you get with this code (0.001092; try it yourself) matches
what we reported for the z-test results.
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2.7.4 Confidence Intervals

The sample proportion p̂ is dependent upon the sample we collect and the
particular subjects observed within that sample. In other words, p̂ may
change if we collect a different sample consisting of different subjects. This
is a source of variability that is not expressed if we focus solely upon the
current sample estimate. Thus, we often accompany each sample estimate
with a confidence interval that takes into account sampling variability.

A confidence interval is straight forward to calculate, though somewhat
tricky to define. What is definitive is what a confidence interval is not. A con-
fidence interval has a stated level of confidence (defined as the complement
of the stated significance level, or 1 − α). For instance, if our significance
level is 0.05, then our confidence level is 1− 0.05 = 0.95, and we would then
construct a 95% confidence interval. This level of confidence is often taken
as the quantification of our belief that the true population parameter resides
within the estimated confidence interval; this is false. Once calculated, a pop-
ulation parameter is either in a confidence interval or it is not. Rather, the
confidence level reflects our belief in the process of constructing confidence
intervals, so that we believe that 95% of our estimated confidence intervals
would contain the true population parameter, if we could repeatedly sample
from the same population. This is an important distinction that underlies
what classical statistical methods and inference can and cannot state (i.e.
we don’t know anything about the population parameter, only our sample
data).

To calculate a (1− α)% confidence interval (or CI) we need three things:
a point estimate, a measure of variability of that point estimate, and a prob-
abilistic measure that distinguishes between likely and unlikely values of our
point estimate. With these three pieces, our CI would take the form:

(Point Estimate ± Measure of Variability × Probabilistic Measure)

The ± sign indicates that by adding and subtracting the second part from
the first we will obtain the upper and lower bounds, respectively, of our
confidence interval. For a point estimate we use p̂; in our example, this
values is 0.165. As a measure of variability, we will use the square root of
p̂(1− p̂)/n, which is similar to the standard error used in hypothesis testing,
except here we use p̂ instead of p0 since we don’t necessarily want to use a
null hypothesis to summarize our data (e.g. sometimes we may only want the
CI and not the hypothesis test). Based on our sample data, this value would
be SE =

√
0.165(1− 0.165)/200 = 0.026. As a probabilistic measure, we

use the positive critical value from a two-tailed test for the given confidence
level. For instance, if we want 95% confidence, then we would have α = 0.05,
and a two-tailed test would yield critical values ±1.96, of which we take the
positive value 1.96. Putting these values from our example together, our 95%
confidence interval is

(0.165− 1.96× 0.026, 0.165+ 1.96× 0.026) = (0.114, 0.216)
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To interpret this interval, we would say “a 95% confidence interval of the
population proportion of subjects who experienced reduced side-effects with
this treatment is (0.114, 0.216)”. In general, we round the confidence interval
to the same degree of precision as our point estimate, in this case the sample
proportion. Note that some researchers use confidence intervals to conduct
hypothesis tests, where they estimate a confidence interval and determine
whether some hypothesized value is within the interval (if not, reject H0;
if so, fail to reject H0). While the confidence interval approach is similar in
many ways to hypothesis testing, they are not the same and may not produce
the same inference. For this and other reasons, we will use confidence intervals
only as a form of data summarization, and will not use them for inference. For
the record, we do not recommend or condone the use of confidence intervals
for making statistical decisions or inference, and strongly encourage you to
refrain from this practice.

Note that we could have used R to produce this confidence interval, but
it will not immediately be the same, since R calculates confidence intervals
using what is called the “continuity correction”. This adjustment and the
resulting type of interval is an equally valid but all together different type
of confidence interval than the method described above; note that what we
learned is by far the most commonly accepted form of calculating confidence
intervals for dichotomous data. Moving forward, you can choose to calculate
95% CIs on a proportion using the method outlined in this chapter (which
requires you to calculate the interval by hand), or you may use the two
methods provided by the R software. To get the 95% CI in R, we make use
of the prop.test() function with the following specifications (x=33, n=200,
p=0.1, alternative=”two.sided”), which produces a 95% CI of (0.118, 0.225).
Note that this method uses what’s called the continuity correction, which
we can turn off by specifying “correct=False” in the prop.test() function,
which gives a 95% CI of (0.120, 0.223). Both of these intervals are similar
to but not equal to the interval provided above (0.114, 0.216); ultimately, we
would have to create our own code in R (which is not too difficult) to obtain
the confidence interval we obtained by hand.

2.8 Contingency Methods (with R Code)

Occasionally we will experience the situation where we wish to compare the
proportion to some hypothesized value, but (at least) one of our expected
frequencies is less than 5, meaning we do not have a large enough sample size
to perform the z-test. In that case, we must instead use the Binomial Test,
which is a test that compares the proportion to a hypothesized standard and
is valid for any sample size. This test works for any sample size because it
is based on the concept of enumeration, or counting all possible outcomes
that could be observed within one group of categorical data. In this instance
enumerating all possible outcomes is not difficult, and can even be done by
hand when the sample sizes are small enough.
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For instance, imagine the case where someone gives you a cup and tells
you it is either filled with Pepsi or Coke (let’s say it is actually Pepsi). If you
were asked to taste the soda and guess which soda was in which cup, there are
only two possible outcomes: you guess correctly or incorrectly. This scenario
is numerically represented in Table 2.4. If we had no way to discern between
the unique tastes of Pepsi and Coke (i.e we were simply guessing), then we
would assume that either outcome (we guess correctly or incorrectly) would
have the same probability (0.5). Given this assumption (which is our null
hypothesis), we can calculate the p-value of having as many or more correct
guesses than what we observed. Based on the one-cup experiment (Table 2.4),
if we were to guess 0 correct, then the p-value = 1.0, because we are certain
of getting an outcome at least as extreme as the one we got (i.e. 0 or more
correct) the next time we do this experiment. If we guessed correctly, then
the p-value = 0.5, meaning there is an equal likelihood of getting a 1 or 0 the
next time we do this experiment (the “1” being at least as extreme). Both
p-values are much larger than 0.05, so even if we selected correctly, this is
not enough evidence for us to reject the null hypothesis.

Table 2.4: Enumeration of Outcomes from One-Cup Experiment (Y: Correct
Guess, N: Incorrect Guess).

Actual Soda in Cup
Pepsi # Correct Frequency Proportion p-value
N 0 1 0.5 0.5+0.5 = 1.0
Y 1 1 0.5 0.5

Now let’s assume that we have two cups, where the first is filled with
Pepsi and the other with Coke. Of course, we do not know which sodas are
actually in each cup, so we could guess that they are both filled with Pepsi,
they are both filled with Coke, or they are filled with one soda each (and
there are two ways in which this can happen: Pepsi in the first and Coke
in the second, or Coke in the first and Pepsi in the second). Thus there are
four ways in which we can guess, one resulting in no correct guesses, two
resulting in one correct guess (and one incorrect guess), and one resulting
in two correct guesses. These outcomes are summarized in Table 2.5. Since
the four outcomes are equally probable if we are only guessing (assuming the
null hypothesis is true), then each particular outcome has a 0.25 chance of
occurring. So in this case, even if we guess the contents of both cups correctly,
our p-value (0.25) would still not lead us to reject the null hypothesis.

If we have three cups (filled with Pepsi, Coke and Coke, respectively),
there are now eight possible ways in which we can guess, which lead to 0, 1,
2 or 3 correct guesses. The possibilities are listed in Table 2.6. Here we see
that even if we were to guess correctly the contents of each cup, the evidence
that we actually know what we are doing is still low (p-value = 0.125). So in
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Table 2.5: Enumeration of Outcomes from Two-Cup Experiment (Y: Correct,
N: Incorrect).

Actual Soda in Cups

Pepsi Coke # Correct Frequency Proportion p-value

N N 0 1 0.25 0.25 + 0.50 + 0.25 = 1.0

N Y 1 2 2× 0.25 = 0.50 0.50 + 0.25 = 0.75

Y N 1

Y Y 2 1 0.25 0.25

Table 2.6: Enumeration of Outcomes from Three-Cup Experiment
(Y: Correct, N: Incorrect).

Actual Soda in Cups

Pepsi Coke Coke # Correct Frequency Proportion p-value

N N N 0 1 0.125 1.0

N N Y 1 3 3× 0.125 = 0.375 0.375 + 0.375 + 0.125

N Y N 1 = 0.875

Y N N 1

N Y Y 2 3 3× 0.125 = 0.375 0.375 + 0.125 = 0.500

Y N Y 2

Y Y N 2

Y Y Y 3 1 0.125 0.125

this case guessing all of the cups correctly would still lead us to not reject
the null hypothesis.

While we will not enumerate the outcomes, Table 2.7 presents the out-
comes from both four-cup and five-cup experiments. Here there is still only
one way of getting them all correct, but the number of ways in which we
can get 0, 1, 2, 3 (or 4) correct answers is quite larger than previously seen.
Note that if we select all of the cups correctly in the five-cup experiment,
we get a p-value of 0.03125 (in the four-cup case, we still get a high p-value
for guessing all cups correctly: p-value = 0.0625). So in this case, the only
way we could convince someone that we know how to discern between the
tastes of Pepsi and Coke is if we guessed the contents of 5 cups correctly,
since there is a small likelihood that we could guess our way to 5 correct cups
if we didn’t know what we were doing.

In each of these cases, the number of correct guesses follows a binomial dis-
tribution, where the probability of a given number of correct guesses depends
upon both the probability of any given event and the number of different ways
in which that outcome can occur. Using this method, we can also calculate
the probability (in the form of a p-value) of observing 33 or more successes
out of 200 trials assuming the actual rate is 0.10. This value comes out to
0.002916, which is sufficiently small compared to our significance level of α =
0.05, and thus we reject the null hypothesis that the population success rate
is 0.10 in favor of the alternative that the population success rate is larger.
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Table 2.7: Outcomes from Four- and Five-Cup Experiments.
Four-Cups Five-Cups

# Correct Frequency Proportion p-value # Correct Frequency Proportion p-value

0 1 0.0625 1.0000 0 1 0.03125 1.00000

1 4 0.2500 0.9375 1 5 0.15625 0.96875

2 6 0.3750 0.6875 2 10 0.31250 0.81250

3 4 0.2500 0.3125 3 10 0.31250 0.50000

4 1 0.0625 0.0625 4 5 0.15625 0.18750

5 1 0.03125 0.03125

We use the binom.test() function to calculate the exact binomial test
in R. The general syntax is similar to the test on proportions using the
prop.test() function and is given by:

binom.test(x, n, p=p0, alternative = c("two.sided", "less",

"greater"), conf.level = 0.95)

where x is the number of successes, n is the number of trials, p0 is the
hypothesized value, alternative corresponds to which type of alternative
hypothesis you have (with options: "two.sided" "less" and "greater")

and "conf.level" is the desired confidence level (thus, the significance level
is one minus the confidence level). The statements x, n, and p0 are required
for a hypothesis test. The default values are 0.5 for p0, "two.sided" for
alternative, and 0.95 for conf.level. For the example where we have
33 successes in 200 trials we can calculate the exact p-value as given in
Program 3.

Note in Program 3 that the output is similar to that of prop.test(). Here
we see the exact p-value is given by 0.002916. Using the α = 0.05 significance
level we would conclude that it is likely that the population success rate is
greater than 0.10.

2.9 Communicating the Results

(IMRaD Write-Up)

The following write-up is an example of the material that we need to commu-
nicate if we had actually conducted the example study used for the majority
of concepts included in this section. This will form a template of the material
that you should include in the write-ups for actual data analyses, though you
must note that the specific material that we include in any given IMRaD
write-up will depend upon the types of statistical methods we use as well
as the specific research question at hand (which will itself call for additional
material than what is provided here).

Introduction: Treatments designed to treat certain diseases or conditions
often have adverse side-effects that can complicate a patient’s reaction to
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Program 3 Program to conduct an exact hypothesis test on a single proportion.

Code:

binom.test(x=33, n=200, p=0.1, alternative="greater")

Output:

Exact binomial test

data: 33 and 200

number of successes = 33, number of trials = 200, p-value =

0.002916

alternative hypothesis: true probability of success is

greater than 0.1

95 percent confidence interval:

0.1232791 1.0000000

sample estimates:

probability of success

0.165

the treatment, and can ultimately result in a worse disease or condition
prognosis. Clinicians and practitioners are then interested in treatments that
have minimal to no side-effects. It was of interest to determine whether the
proportion of patients undergoing a particular treatment who experienced
little to no adverse side-effects was greater than 0.10.

Methods: The frequency of subjects reporting reduced side-effects from
treatment out of 200 subjects is reported, and the proportion of subjects
reporting reduced side-effects is summarized with a sample proportion and
a 95% confidence interval. We test the null hypothesis of a 0.10 success rate
(H0 : p = 0.10) against a one-sided alternative hypothesis that the success
rate is greater than 0.10 (HA : p > 0.10) by using a chi-square-test with
significance level α = 0.05. We will reject the null hypothesis in favor of the
alternative hypothesis if the p-value is less than α; otherwise we will not re-
ject the null hypothesis. The R statistical software was used for all analyses.

Results: Assuming that the sample was representative and subjects were
independent, the sample was large enough to conduct the statistical analy-
sis. Out of a sample of 200 total patients, 33 reported reduced symptoms
(p̂ = 0.165, 95%CI : 0.120, 0.223). Using this data, a chi-square test yielded
a p-value of 0.0011, which is less than the stated significance level. Thus, we
reject the null hypothesis in favor of the alternative hypothesis.

Discussion: The sample data suggest that the proportion of patients
who reported reduced side-effects using this treatment is greater than 0.10.
Thus, clinicians and practitioners interested in treating patients with reduced
treatment-related side-effects may wish to consider this treatment.
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2.10 Process

1. State research question in form of testable hypothesis.

2. Determine whether assumptions are met.

(a) Representative sample.

(b) Independent measurements.

(c) Sample size: calculate expected frequencies

i. If np0 > 5 and n(1 − p0) > 5, then use z-test or chi-square
test (in R).

ii. If np0 < 5 or n(1− p0) < 5, then use binomial test.

3. Summarize data.

(a) If np0 > 5 and n(1− p0) > 5, then report: frequency, sample size,
sample proportion and CI.

(b) If np0 < 5 or n(1 − p0) < 5, then report: frequency and sample
size.

4. Calculate test statistic.

5. Compare test statistic to critical value or calculate p-value.

6. Make decision (reject H0 or fail to reject H0).

7. Summarize with IMRaD write-up.

2.11 Exercises

1. A researcher is interested in the proportion of active duty police offi-
cers who pass the standard end of training fitness test. They take a
random sample of 607 officers from a major metropolitan police force
and administer the fitness test to the officers. They find that 476 of
the officers were able to successfully pass the fitness test. Create 96%
confidence interval for the proportion of all active duty police officers
on the police force that can pass the fitness test.

2. Occupational health researchers are interested in the health effects of
sedentary occupations such as call center workers. Specifically they are
interested in lower back pain. They conduct a survey of 439 call center
workers and record whether or not the worker has back pain at the
end of their shift. The surveys show that 219 workers reported back
pain. In the general population there are reports that 25% of workers
have back pain. Conduct a hypothesis test to determine if call center
workers have a higher rate of back pain than the general population of
workers.
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3. In December 2012 Gallup Poll conducted a survey of 1,015 Americans
to determine if they had delayed seeking healthcare treatment due to
the associate costs. Of the participants, 325 reported delaying seeking
treatment due to costs. Create a 95% confidence interval for the pro-
portion of all Americans who have delayed seeking healthcare treatment
due to costs.

4. Norman et al. (2013) Consider the preference for walkability of neigh-
borhoods for obese men. They studied 240 obese men and asked them
their preference for walking behavior in neighborhoods. They found
that 63 responded as they walked for transportation. Create a 99%
confidence interval for the proportion of obese men who walk for trans-
portation.

5. Barrison et al. (2001) are interested in the reasons that proton pump
inhibitors were prescribed. Of the 182 gastroenterologists 122 of them
prescribed proton pump inhibitors to patients. Create a 98% confidence
interval for the proportion of all gastroenterologists who prescribe pro-
ton pump inhibitors.

6. Barrison et al. (2001) were interested in the proportion of physicians
who deemed that proton pump inhibitors (PPI) should be sold over
the counter. Of the 391 physicians surveyed 59 responded that PPIs
should be sold over the counter. Create a 92% confidence interval for
the proportion of physicians who think that PPIs should be sold over
the counter.

7. Keightley et al. (2011) are concerned with obese peoples self percep-
tions. They hypothesize that a majority of obese people can identify
their own body type. They conduct a study with 87 obese people and
find that 7 can correctly identify their body type. Conduct a hypothesis
test to determine whether or not their hypothesis is warranted.

8. Salerno et al. (2013) is interested in determining the current infection
rate of Chlamydia and Gonorrhea infections. They obtained a sample
of 508 high school students who consented to a urine test to screen for
the two diseases. Of the participants 46 tested positive for at least one
of the diseases. Create a 99% confidence interval for the proportion of
all high school students who have one of the two diseases.



Chapter 3

Two-Sample Proportions

In the last Chapter we focused on estimating and conducting a hypothesis
test on a proportion from a single group. In practice, we are often interested
in comparing proportions from two separate groups, and as such we would
perform a hypothesis test comparing the proportions from those two different
samples. The process for the two-sample case is similar to that for the one-
sample case, in that we will go through the same general steps, though the
details of those steps will be different. Further, there are additional statistical
techniques that we perform, depending upon the status of our assumptions.

3.1 Summarizing Categorical Data
with Contingency Tables (with R Code)

In this chapter we still focus on the case where our outcome measure – in
both samples – is dichotomous, meaning that those sample measures are
best represented by sample proportions. As always for dichotomous data, we
want to report the frequency, sample size and sample proportion for each of
our two groups; note that you want to calculate (but not report) the overall
sample proportion (i.e. pool the data from both groups) for reasons that will
become clear later.

For the two-sample case, the data summaries can be efficiently presented
in what is called a contingency table. In its simplest form, a 2 × 2 (read:
“two-by-two”) contingency table lists the frequencies of each outcome for
each treatment in tabular form, where the rows represent group membership
and the columns represent outcome membership. An example is presented in
Table 3.1 below. In this case, the two groups consist of n1 and n2 subjects,
respectively, for a total of n1 + n2 = n total subjects. Note that in the first
group, a of the n1 subjects take the outcome “Yes”, while b subjects take
the outcome “No”, and that a+ b = n1. Likewise, in the second group there
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are c “Yes” outcomes and d “No” outcomes, such that c+ d = n2. The total
number of subjects taking a particular outcome across group membership is
generally not of interest.

Table 3.1: Example 2× 2 Contingency Table.
Outcome

Group Yes No Group Sample Size
1 a b n1 = a+ b
2 c d n2 = c+ d

Total a+ c b+ d n = n1 + n2

In practice, we will expand upon the simple 2 × 2 contingency table to
also include the sample proportions and 95% CI confidence intervals for the
proportions in each group. Returning to the example used in Chapter 2,
where 33 out of 200 patients reported little or no side-effects associated with
a particular treatment, let us now assume that 8 of 100 patients on a control
treatment reported little or no side-effects. Thus, there is a 0.165 success
rate for the treatment group, and a 8/100 = 0.080 success rate in the control
group. To compare these two groups we look at the data summary presented
in the contingency table found in Table 3.2.

Table 3.2: Contingency Table for Symptom-Relief Example.
Proportion Reporting Little or

Outcome No Symptoms
Group Yes No Sample Size Observed 95% CI

Treatment 33 167 200 0.165 0.114, 0.216
Control 8 92 100 0.080 0.027, 0.133
Total 41 259 300

Note that the confidence intervals for the proportion of “Yes” outcomes in
each treatment group were calculated using the methods provided in Chap-
ter 2. We could have used R to produce confidence intervals, but – as men-
tioned in Chapter 2 – they are not going to be the same, since R calculates
these intervals using an alternative method. Using the prop.test() func-
tion in R, we obtain a (0.120, 0.223) 95% CI for the treatment group and a
(0.041, 0.150) 95% CI in the control group. Again, note that these intervals
are similar but not equal to the confidence intervals provided in Table 3.2.

Before continuing with the hypothesis testing process, we must take time
to discuss what can and cannot be compared in this table. Let us consider
the frequency of “Yes” outcomes in the two groups. One might be tempted
to conclude – since there are 33 “Yes” outcomes in the Treatment group
and only 8 “Yes” outcomes in the Control group – that the treatment works
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better than the control at reducing side-effects. However, this is not a fair
comparison since the sample sizes for the two groups are not equal. Rather,
we look to the sample proportions for comparisons between the two groups,
since the sample proportion adjusts the sample frequency by the sample size
to give an average response rate. In our example, we can see that the rate of
those reporting little or no side effects is higher (0.165) in the treatment group
than the corresponding rate (0.080) in the control group. This is indeed a
fair comparison to make, though we came to the same conclusion reached by
looking at the sample frequencies. So consider another example, where 20 out
of 200 subjects in the first group responded “Yes”, and 10 out of 100 subjects
in the second group responded “Yes”. Here, we would erroneously claim that
the first group has a higher rate of “Yes” respondents than the second group
(even though it actually does have more “Yes” responses: 20 compared to
10), since once we adjust for sample size, both sample proportions are 0.10.
In summary, do not compare frequencies, even if the sample sizes are the
same. Rather, look to the sample proportions and conduct a hypothesis test.

To create a contingency table in R, we need to organize the data in “ma-
trix” form. This is done by entering the number of successes and failures for
each group into the c() (see below). By also specifying the desired number
of rows and columns (using the nrow and ncol commands, we can create the
table using the matrix() function in the following coding.

Table1 <- matrix(c( 33, 8, 167, 92 ),

nrow=2, ncol=2)

This R code above creates our table, which we have named Table1. After the
matrix() statement we list values for the table using the c() function, and
then the numbers of rows and columns. Note that if the number of items in
the list (i.e. the c() function) do not match the specified number of elements
in the matrix (i.e. the product of the numbers of rows and columns), then R
will not produce the table. Of course, it is often a simple process to create a
contingency table using word processing software (e.g. Microsoft Word), and
we recommend doing so, as it encourages you to check your work.

3.2 Hypothesis Test for Comparing Two
Population Proportions

3.2.1 Generating Hypotheses About Two Proportions

Like we did in Chapter 2, we need to turn a research question into a set of
testable hypotheses (a null and alternative) that will allow for statistical ap-
plication. Unlike the last Chapter, we now have two proportions in which we
are interested, so hypotheses we wish to test must arise from a single state-
ment of both proportions. We now are concerned with population proportion
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p1 for group 1 and population proportion p2 for group 2, and to make mat-
ters simple we will take their difference p1 − p2. Focusing on the difference
between the two group proportions will allow us to phrase our research
statements in the same way as we had previously, and even use the same
symbols. For instance, if our research statement is that the proportion in
group 1 is larger than in group 2 (or p1 > p2), we get the following statement
by focusing on the difference (p1 − p2 > 0). Likewise, if our research state-
ment is that the group 1 proportion is smaller than the group 2 proportion
(or p1 < p2), then we get (p1 − p2 < 0) by focusing on the difference, and if
we state that the proportions are equal (or p1 = p2), we could equivalently
focus on (p1 − p2 = 0). This logic follows for statements that include ≤, ≥
or �=. The process for turning a research statement into a set of hypotheses
is similar to that covered in Chapter 2, and Table 3.3 contains the three
different null and alternative hypotheses that can arise from certain types of
research questions for comparing two proportions.

Table 3.3: Possible Sets of Hypotheses for Comparing Two Population
Proportions Based Upon Key Phrases in Research Question.

Key Phrases of p1 relative to p2
“less than” “greater than” “equal to”

“greater than “less than or “not equal to”
Hypothesis or equal to” “at least” equal to” “at most”

Null H0 : p1 − p2 = 0 H0 : p1 − p2 = 0 H0 : p1 − p2 = 0
Alternative HA : p1 − p2 < 0 HA : p1 − p2 > 0 HA : p1 − p2 �= 0

3.2.2 Statistical Assumptions

Before proceeding with the hypothesis test, we need to ascertain whether
the assumptions necessary to conduct that test are met. Since there are two
samples under consideration in this case, we need to be certain that both
samples are representative of the populations from which they are drawn.
In this textbook we generally assume that the samples we work with are
representative, though in practice this depends upon the sampling methods
used by the researchers who collected the data. The subjects within these
two samples (and between) also need to be independent of one another, in
the sense that the value one subject takes for a particular outcome cannot
depend upon the value that any other subject takes. We generally assume
that subjects (and thus the samples) are independent if we know that they
were collected randomly. In the two-sample case, it may also be necessary
for subjects to be allocated randomly into one of the two groups (such as in a
clinical trial with competing treatments), though this would not be necessary
if the groups are based on fixed concepts (such as gender or ethnicity).
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Determining adequate sample size is a little more complicated than it
was in the one-sample case. Again, we need to expect at least five subjects to
take both values of the dichotomous outcome, though now we need to expect
this for both groups of subjects, and we will again base our expectations
on the null hypothesis. Regardless of our research question and alternative
hypothesis, the null states that p1 and p2 are equal. Our best guess of what
the population proportion would look like if there was actually no difference
between the two groups is to pool the data from those two groups together
to form a grand proportion p̄ = (a + c)/(n1 + n2). If this value p̄ was truly
the population proportion, then we can determine what we would expect to
observe in each group by multiplying p̄ by the sample size in each group.
These resulting values are our expected frequencies of successes, and the exp-
ected frequencies of failures can be calculated by using the compliment rule
(i.e. subtracting) for each group.

The expected frequencies for our example are listed in Table 3.4. The
grand proportion obtained by pooling the outcomes from the treatment and
control groups is p̄ = 0.137, which – as one might expect – is somewhere
between the Treatment group proportion of 0.165 and the Control group
proportion of 0.080 (it is closer to 0.165 because the treatment group has
more subjects than the control group). Based on this grand proportion, we
see that the expected frequencies of “Yes” outcomes for both groups (27.3 and
13.7, respectively) are greater than 5, as are the expected frequencies of “No”
outcomes (172.7 and 86.3, respectively). Thus, we have adequate sample size
to conduct the hypothesis test. Note, however, that we would claim that we
do not have adequate sample size if any of our expected frequencies (for both
outcomes in either group) were less than 5. We will develop a more general
rule in Chapter 4.

Table 3.4: Observed and Expected Frequencies for Two-Sample Symptom
Relief Example.

Observed Expected
Group Yes No Sample Size Yes No

Treatment 33 167 200 27.3 172.7
Control 8 92 100 13.7 86.3
Total 41 259 300 p̄ = 41/300 = 0.137

If we do not wish to calculate these values by hand, we can ask R to do
the calculations for us. After entering the cell frequencies in matrix form (as
table1) in Program 4 below), we need to call the chisq.test() function,
which under normal circumstances produces results from the chi-square test
(more on this below). For our purposes, we name this function (here we chose
expval1), and then ask for the expected values using the expval1$expected
line; note here that the key is adding the function $expected to our named
output expval1. We then see that the resulting output matches what we
calculated by hand.
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3.3 Performing the Test and Decision Making

(with R Code)

Since our hypotheses are in terms of the difference p1−p2, our sample estimate
of that difference (p̂1 − p̂2) will be the focus of our test statistic. We also
need a statistic to measure the variability of our sample estimate under the
condition that the null hypothesis is true. Since we do not have specific
hypothesized values for p1 or p2, we again make use of the grand proportion
p̄ in the calculation of our standard error. In the case of comparing two
sample proportions, we use the following test statistic

z =
(p̂1 − p̂2)− (p1 − p2)√

p̄(1−p̄)
n1

+ p̄(1−p̄)
n2

=
p̂1 − p̂2√

p̄(1−p̄)
n1

+ p̄(1−p̄)
n2

. (3.1)

Program 4 Program to generate expected values for symptom relief example.

Code:

# Create the table

table1 <- matrix(c(33,8,167,92),nrow=5,ncol=2)

# Name and invoke the chi-square test

expval1<-chisq.test(table1)

# Ask for expected values

expval1$expected

Output:

[,1] [,2]

[1,] 27.33333 172.66667

[2,] 13.66667 86.33333

Note that under the null hypothesis the difference p1 − p2 is equal to zero.
Using the data from our current example, we get the following value for our
test statistic

z =
0.165− 0.080√

0.137(1−0.137)
200 + 0.137(1−0.137)

100

=
0.085

0.043
= 2.02, (3.2)

which implies that the difference in the sample proportions (0.085) is slightly
more than two standard deviations above the hypothesized difference of zero.
Whether or not two standard deviations is a lot is unclear at this point, so
we need to look at the critical value and p-value methods to make a more
informed comparison of these two proportions. As always, we round the test
statistic z to two decimal places.
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3.3.1 Critical Value Method

For reasons similar to those covered in the single-proportion case of Chapter 2,
the test statistic in the 2-sample case will also follow a standard normal
distribution if our assumptions are met (especially that of sample size). Note
that we could show that the test statistic has a standard normal distribution
by conducting another simulation study, but at this point it should suffice
to simply state that the result holds. This means that the critical values
used for choosing between our competing hypotheses are the same as they
were before and depend only upon our choice of significance level and the
direction of the inequality found in the alternative hypothesis. These values
are presented for the two-sample case in Table 3.5 below. Note that the
only differences from this table and Table 2.3 are the parameters found in
the alternative hypothesis; everything else, including our decision making
process, is the same.

Table 3.5: Critical Values and Rejection (Acceptance) Regions for Hypothesis
Test of Two Proportions for Given Significance Levels (α) and Alternative
Hypotheses.

α = 0.05 α = 0.01
Alternative Critical Select Critical Select
Hypothesis Value Hypothesis Value Hypothesis

HA : p1 − p2 < 0 −1.645 H0 if z ≥ −1.645 −2.33 H0 if z ≥ −2.33
(Left-Tailed Test)

HA if z < −1.645 HA if z < −2.33

HA : p1 − p2 > 0 1.645 H0 if z ≤ 1.645 2.33 H0 if z ≤ 2.33
(Right-Tailed Test)

HA if z > 1.645 HA if z > 2.33

HA : p1 − p2 �= 0 −1.96, H0 if −2.575, H0 if
(Left-Tailed Test) 1.96 −1.96 ≤ z ≥ 1.96 2.575 −2.575 ≤ z ≥ 2.575

HA if z < −1.96 or HA if z < −2.575 or
z > 1.96 z > 2.575

For our example, let’s say we had the following research statement: the
success rate for the treatment group is greater than the success rate for the
control group. Based on the phrasing of this statement (notably the words
“greater than”), our null and alternative hypotheses are H0 : p1−p2 = 0 and
HA : p1 − p2 > 0, and our critical value is 1.645. This means that we will
reject H0 if our test statistic is greater than 1.645, and we will fail to reject
H0 if our test statistic is less than or equal to 1.645. We have previously
seen that our test statistic is 2.02, which is greater than our critical value
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of 1.645, so we reject the null hypothesis in favor of the alternative. Thus,
the data suggest that the difference in success rates (p1 − p2) is greater than
zero, which is another way of saying that the data suggests that p1 is greater
than p2.

3.3.2 p-Value Method

Like the critical value method just covered, the p-value method is mostly
the same in both the one- and two-sample proportion cases. The calculation
of a p-value again depends upon the magnitude (numbers) and direction
(+ or − sign) of the test statistic, as well as the alternative hypothesis. If we
have a left-tailed test, we calculate the probability that a standard normal
random variable Z is less than our observed test statistic z given that the
null hypothesis is true (or P (Z < z|H0)). If we have a right-tailed test,
we calculate the probability that Z is greater than z (or P (Z > z|H0)).
If we have a two-tailed test, then we can either calculate the two-times
the probability that Z is less than −|z| (or 2P (Z < −|z| |H0, z < 0)), or
two-times the probability that Z is greater than |z| (or 2P (Z > |z||H0, z >
0)). As always, we reject the null hypothesis if the p-value is less than the
significance level, and we fail to reject the null hypothesis if the p-value
is greater than or equal to the significance level. Note that the p-value and
critical value methods will always give the same conclusion for the two-sample
proportion case.

Returning to our example, note that we have a right-tailed alternative
hypothesis HA : p1 − p2 > 0, so we calculate our p-value as the probability
of having a test-statistic greater than or equal to our observed test statistic,
assuming that the null hypothesis is true (equal proportions). Thus, our p-
value is 0.0217 (rounded to four decimal places), which is less than α = 0.05,
so we reject H0 in favor of HA, and conclude that the data suggests that
the success rate in the treatment group is larger than the success rate in the
control group. Using the prop.test() function in R – learned in Chapter 2 –
provides us with the p-value for this test (but unfortunately not the critical
value). Here we need to organize the information by the number of successes
and the sample size for each group. Since there are 33 successes in the
treatment group (out of n1 = 200)and 8 successes in the control group (out
of n2 = 100), we will create two “vectors” of this information using the
c() function, which in our example would be c(33, 8) for the successes and
c(200, 100) for the sample sizes. Program 5 shows the code and the resulting
output for our test.

We specified the appropriate right-tailed alternative hypothesis by inc-
luding the alternative="greater" command; we also could have selected
from "two.sided" or "less" which would have provided the two-tailed and
left-tailed tests, respectively. Here we wee that the p-value we obtained is
0.02167, which matches what we obtained by hand – once we round appro-
priately. However, notice that this test does not provide the observed test
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Program 5 Program to generate hypothesis test for comparing two proportions.

Code:

# Call prop.test()

prop.test(c( 33, 8 ), c( 200, 100 ), alternative="greater",

correct=FALSE)

Output:

2-sample test for equality of proportions with continuity

correction

data: c(33, 8) out of c(200, 100)

X-squared = 4.0823, df = 1, p-value = 0.02167

alternative hypothesis: greater

95 percent confidence interval:

0.02291086 1.00000000

sample estimates:

prop 1 prop 2

0.165 0.080

statistic for the z-test and instead provides a value called X-squared; we will
talk about the source of this value momentarily. Also notice in the first line
of the output it says “. . . without continuity correction”. The continuity cor-
rection is an alternative approach that adjusts the specified rates (successes
and failures) to better match the normal distribution.

3.3.3 Confidence Intervals

In an effort to further summarize our data, we can produce a confidence inter-
val on the observed difference between the two sample proportions (p̂1 − p̂2).
As explained in Chapter 2, the confidence interval combines our estimator
(in this case the difference in sample proportions) with a measure of the
variability of that estimator (the standard error) and a probabilistic measure
indicating reasonable likelihood (critical value). As in Chapter 2, the stan-
dard error takes the form of the denominator of the test statistic used for
hypothesis testing, where we now use the actual sample proportions rather
than a hypothesized value or the grand proportion, and takes the form

SE =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
. (3.3)

The probabilistic measure is the same as the critical value we would use for
a two-sided alternative hypothesis, and depends upon the significance level.
If α = 0.05, then we use 1.96; if α = 0.01, then we use 2.575.
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For our example, based on the observed sample proportions and sample
sizes, we get the following 95% confidence interval for the difference in sample
proportions

((p̂1 − p̂2)± 1.96 × SE) = ((0.165 − 0.08) ± 1.96 × 0.038) = (0.011, 0.159). (3.4)

So the 95% CI for the difference in success rates between the treatment and
control groups is (0.011, 0.159). While we use this CI for data summary pur-
poses – as we would with the 95% CIs for the treatment group (0.114, 0.216)
and the control group (0.027, 0.133) – note that it corroborates our result
from the hypothesis test since 0 is not contained within the interval. Again,
since our standard error expression is different for CIs than it is for hypoth-
esis testing, these results are not necessarily the same over all examples, and
as such we will not use confidence intervals to make inference on the two
population proportions. To calculate the confidence interval on the differ-
ence between two proportions in R, we again make use of the prop.test()

function. Being sure to specify the alternative="two.sided" option, Pro-
gram 6 shows the code and the resulting output for our test. Here we see
that Program 6 produces both the hypothesis test and the confidence interval
on the difference. In this case the 95% confidence interval is (0.01101623,
0.15898377), which we round to (0.011, 0.159) and exactly matches what we
obtained by hand. If we were to incorporate the continuity correction, we
would obtain (0.004, 0.166), which is slightly wider than our original confi-
dence interval.

Program 6 Program to generate a confidence interval for a difference in proportions.

Code:

# Call prop.test()

prop.test(c( 33, 8 ), c( 200, 100 ), alternative="two.sided",

correct=FALSE)

Output:

2-sample test for equality of proportions without continuity

correction

data: c(33, 8) out of c(200, 100)

X-squared = 4.0823, df = 1, p-value = 0.04333

alternative hypothesis: two.sided

95 percent confidence interval:

0.01101623 0.15898377

sample estimates:

prop 1 prop 2

0.165 0.080
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3.3.4 Chi-Square Test

If our assumptions are met (especially a large enough sample size), then we
can use an alternative method for conducting a two-tailed hypothesis test
(i.e. HA : p1 − p2 �= 0). This test is based upon the chi-square probability
distribution, and is actually a special case of the more general test we will
learn in Chapter 4. To conduct this test, we must revisit the contingency
table, where here we focus on the number of success and failures in both
groups. This revisited contingency table is found in Table 3.6. Here we note

Table 3.6: Contingency Table for Chi-Square Test.
Observed

Group Yes No Total
1 a b a+ b
2 c d c+ d

Total a+ c b+ d n = a+ b+ c+ d

that the marginal column and row totals (i.e. the sums we obtain by adding
all values down one column or across one row) are just as important as the
observed values, as noted in the following test statistic

χ2 =
n(ad− bc)2

(a+ c)(b + d)(a+ b)(c+ d)
. (3.5)

We will expect this test statistic to take small values if ad is close in value to
bc, which happens when the number of successes in Group 1 is close (relative
to sample size) to the number of successes in Group 2. If the relative numbers
of successes in the two groups are not close, then the test statistic χ2 will
take larger values.

From our example, we get

χ2 =
300((33)(92)− (167)(8))2

(41)(259)(200)(100)
= 4.08. (3.6)

Note that the square root of this value is our test statistic z from earlier
(i.e.

√
χ2 =

√
4.0823 = 2.02047 = z). This result will always hold for the

two-sample/two-outcome case, and implies that both the z-test and the chi-
square test will always give the same result. Note that this test statistic is
automatically produced in R (see Program 6 above).

We now need to determine how to make a decision for the chi-square test
based on the observed test statistic χ2. As stated earlier, this test statistic
will follow the chi-square probability distribution, which is a probability dis-
tribution for certain random variables that only take positive values. Since
we can view the chi-square test statistic as the square of the standard normal
test statistic z, we know that χ2 will always take positive values and the
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use of the chi-square probability distribution makes sense. However, because
of this relationship, we can only use the chi-square test when we have two-
sided alternative hypotheses, since the test would not be able to distinguish
between positive and negative test statistics for one-sided alternatives.

The chi-square distribution is parametrically dependent upon the so-called
degrees of freedom, which can be thought of as the number of independent
pieces of information we have available in our contingency table. To illus-
trate the concept of degrees of freedom, imagine we had a contingency table
(Figure 3.1) where we knew the marginal totals of the columns and rows, but
not the particular numbers within the table. Based on only the marginal col-
umn and row totals, we do not have enough information to fill in the rest of
the table. However, observe what happens when we fill in any one of the four
interior parts: the rest of the table must take certain values due to the com-
plement rule. So by knowing just one of those four pieces (along with the
marginal totals), we can figure out the remaining three. By no coincidence,
our chi-square test has 1 degree of freedom.

As mentioned earlier, the chi-square distribution is characterized solely by
the degrees of freedom, which take positive values (usually integers). Various
plots of this distribution for degrees of freedom 1 through 5 are provided in
Figure 3.2. For small degrees of freedom (less than 2), the curve is highest at
0 and slowly tapers off (indicating that values slightly above 0 are more likely

Figure 3.1: Illustration of Degrees of Freedom to Complete a Contingency
Table.
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Figure 3.2: Chi-Square Distribution Curves for Various Degrees of Freedom.

than larger values). For larger degrees of freedom (3 and above), the center
of the curve is removed from zero, implying that values under that center
are more likely than smaller or larger values (from that center). Of special
importance is noting what happens to the curve as the degrees of freedom in-
creases: as the degrees of freedom changes from 3 to 4 to 5, the central mound
of the curve (indicating the mode, or most likely value) is shifting to the right,
and the curve more closely resembles a symmetrical curve. In fact, for large
enough degrees of freedom (k), the chi-square curve is indistinguishable from
a normal curve with mean k− 2 and variance 2k.

For the chi-square test, we can obtain a critical value or use the p-value
method, though we will rely upon statistical software for the calculations.
When we have one-degree of freedom and significance level α = 0.05, the
critical value for a chi-square distribution is 3.841 (note that (1.96)2 = 3.841).
From our example, since our test statistic χ2

1 = 4.08 is greater than 3.84, we
reject the null hypothesis in favor of the alternative (the two proportions
are most likely not equal). To obtain the p-value, we would calculate the
probability that a chi-square random variable with 1 degree of freedom takes
a value greater than or equal to our test statistic. For our example, we get a
p-value = P (χ2 > 4.08) = 0.0433, which is less than our significance level, so
we again reject the null hypothesis in favor of the alternative. Note that for
the chi-square test we most often use the p-value method, and report the test
statistic, degrees off freedom and p-value in the following manner: χ2

1 = 4.08,
p-value = 0.0433.
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Note also that this is the same p-value we would get form a two-sample
z-test with a two-sided hypothesis, and it is also 2-times the p-value we would
obtain from a right-tailed z-test. Thus, if we wanted to turn the p-value from
a chi-square test into the p-value from either the left-tailed or right-tailed
z-test (but not both), we simply divide by 2. However it is not always clear
to which test (the left- or right-tailed z-test) this halved p-value will apply.
If we have a right-tailed alternative and our z-test statistic is positive, then
the chi-square p-value will be two-times the z-test p-value. Likewise, if we
have a left-tailed alternative and our z-test statistic is negative, then the
chi-square p-value will again be two-times the z-test p-value. However, if
we have a right-tailed alternative and a negative z-test statistic, or a left-
tailed alternative and a positive z-test statistic, then the two p-values do not
coincide.

In our previous use of the prop.test function (which earlier provided us
with the chi-square test statistic, degrees of freedom, and p-value), we can
also use the chisq.test() function to obtain the relevant information. Using
the same definitions used in creating the contingency table (i.e. table1), we
simply place table1 in the chisq.test() function, as shown in Program 7
below.

Program 7 Program to conduct a chi-square test on a contingency table.

Code:

# Create the table

table1 <- matrix(

c( 33, 8, 167, 92 ),

nrow=2,

ncol=2

)

# Run the test

chisq.test(table1,correct=FALSE)

Output:

Pearson’s Chi-squared test

data: table1

X-squared = 4.0823, df = 1, p-value = 0.04333

The output for the test conducted in Program 7 gives the basic infor-
mation for the chi-square test: the test statistics X-squared; the degrees of
freedom df associated with the test; and the p-value. Notice that the result
from the p-value method (reject H0 since 0.04333 < 0.05) matches what we
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observed earlier using the critical value method, and also indicates a significant
result. Note that – as was the case with the prop.test function – we need to
“turn off” the continuity correction by specifying the correct=FALSE option.
Had we failed to do so, R would have provided a slightly different result.

3.4 Contingency Methods (with R Code)

Occasionally we will experience the situation where we wish to compare the
proportions from two groups of subjects, but (at least) one of our expected
frequencies is less than 5, meaning we do not have a large enough sample
size to use either the z-test or the χ2-test. In that case, we must instead use
Fisher’s exact test, which is a test that compares the two proportions and
is valid for any sample size. Fisher’s exact test works for any sample size
because – like the binomial test from Chapter 2 – it is based on the concept
of counting all possible outcomes that could be observed between two groups
of categorical data. In this instance enumerating all possible outcomes is not
difficult, and can be done by hand when the sample sizes are small enough;
unlike in Chapter 2, we will not show how Fisher’s exact test works.

In practice, computer software will do these types of enumerations for
us. To calculate Fisher’s exact test in R we use the fisher.test() func-
tion by specifying the contingency table (e.g. table1 above). The output
for the two-tailed test is provided bellow in Output 8, where the two-tailed
hypothesis p-value is 0.049886, which we round to 0.0499. We could obtain
p-values for the left-tailed or right-tailed alternative hypotheses by speci-
fying alternative="less" or alternative="greater", which would have
provided p-value= 0.9887 for the left-tailed hypothesis and p-value=0.02945
for the right-tailed hypothesis. If we stick with our original right-tailed alt-
ernative hypothesis, since the p-value= 0.0295 is less than our significance
level α = 0.05, we reject the null hypothesis in favor of the alternative hy-
pothesis that the treatment success rate is most likely larger than the control
success rate. Note that since this method counts all possible outcomes, it
may take a considerable amount of time for enumeration when sample sizes
are large, and may require a computer with a sufficient amount of RAM in
order to complete all enumerations.

3.5 Odds Ratio (with R Code)

An alternative measure used to compare the relative success of some measure-
ment between two groups is the odds ratio. This measure – while ubiquitously
used in the health sciences – can be somewhat challenging to fully understand,
as it is based on the probabilistic concept of odds. Most of us use the idea
of odds qualitatively (e.g. the odds of a team winning a game are high), but
we may be less familiar with how to use them quantitatively. Probabilisti-
cally, the odds of some event are defined as the ratio of the frequency (a)
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Program 8 Program for Fisher’s Exact Test.

Code

fisher.test(table1, alternative="two.sided")

Output:

Fisher’s Exact Test for Count Data

data: table1

p-value=0.04986

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.9744107 5.9231475

sample estimates:

odds ratio

2.266913

with which some event did occur to the frequency (b) with which some event
did not occur, such that the odds are listed as a : b or a/b (read “a-to-b”).
For example, if we are to flip a coin and are interested in the likelihood of
having a “head” landing facing up, then there are two possible outcomes we
could observe (i.e. heads or tails). Of these, heads is the outcome where our
event occurs, and tails is the outcome where our event does not occur. Thus,
the odds for a “head” are 1:1 or 1/1 (read “1-to-1”). These are even odds,
meaning that a heads is equally likely to occur or not occur (we know this
because the numbers on either side of the colon “:” are equal). If the number
to the left of the colon is larger than the number to the right, then the event
is more likely to occur than to not occur, and if the number to the right of
the colon is larger than the number to the left, then the event is more likely
to not occur than to occur. Note that the odds for some event (a : b) are
directly tied to the probability of that event (a/(a+b)). In our coin example,
the 1:1 odds for a head translates into a 1/(1+1) = 1/2 probability of having
a head land up.

Turning to our example, the number of successes in the treatment group
was 33 (out of 200). Thus, the odds of success in the treatment group
are 33:167; the odds of success in the control group are 8:92. These odds
imply that a success is less probable than a failure in both groups. While
unfortunate, these values do not answer our question of whether the treat-
ment reduces symptoms compared to the control. This is where the odds
ratio becomes useful. Evaluating the fractions implied in each of the odds
(33/167 = 0.1976; 8/92 = 0.0870) and – as the name implies – taking their
ratio gives the odds ratio (OR = 0.1976/0.0870 = 2.27246), which we round
to at most two decimal places (OR = 2.27).
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Note that if the odds of success in each group were equal, the odds ratio
would be 1; conversely, an odds ratio of 1 implies that the odds of some event
are equal between two groups. If the odds ratio is less than one, than the
odds of the event are greater in the second group than in the first, and an
odds ratio greater than one implies that the odds of the event are greater in
the first group than in the second. For our example, OR = 2.27 implies that
the odds of reduced symptoms are greater in the treatment group than in
the control group. Specifically, we can state that the odds of having reduced
symptoms in the treatment group are 2.27 times the odds of having reduced
symptoms in the control group (try it: 2.27246 ∗ 0.0870 = 0.1976). Or for
those with more confidence in their quantitative skills, we could say that
the odds of reduced symptoms are 127% larger in the treatment group than
in the control group. To calculate this difference, turn the odds ratio into a
percentage by moving the decimal two places to the right, add a percent sign,
and then subtract 100%. For example, if the OR = 2.0, then 2.0 turns into
200%, and after subtracting 100% we are left with 100% (i.e. the odds in
the first group are 100% larger than the odds in the second group, or twice
as large). In our example, since the OR = 2.27, then 2.27 turns into 227%,
and after subtracting 100% gives us 127% (i.e. the odds in the treatment
group are 127% larger than the odds in the control group). This process
can also be used when an odds ratio is less than one to determine by what
percentage that the odds in one group are smaller than the odds in another
group.

There are several methods for generating the confidence interval of an
odds ratio, each of which is somewhat involved. We will thus report the
confidence interval without explaining its derivation. Recall that R provided
the odds ratio in the output for Fisher’s Exact Test in Program 8. This
value was listed as 2.266913, which – after rounding to 2.27 – we see is nearly
identical to what we calculated by hand. Rather than rely upon this output,
we will use the Oddsratio function, as shown in Program 9 below. In this
output we see the estimated odds ratio is 2.272455 (which we round to 2.27),
and the 95% confidence interval for the odds ratio is (1.007657, 5.124812)
(which we round to (1.01, 5.12). Note that this interval lies completely above
1, which implies that the odds of success in the treatment group are larger
than that in the control group. Note that we specify method="Wald" in the
oddsratio function to use the same method of calculating the odds ratio as
when done by hand, though others can be specified.

3.6 Communicating the Results (IMRaD

Write-Up)

The following is an example of the IMRaD write-up for our two-sample
example.

Introduction: Treatments designed to treat certain diseases or conditions
often have adverse side-effects that can complicate a patient’s reaction to



54 CHAPTER 3. TWO-SAMPLE PROPORTIONS

the treatment, and can ultimately affect the disease or condition prognosis.
Clinicians and practitioners are interested in treatments that have no or
minimal side-effects. It was of interest to determine whether the proportion
of patients reporting reduced side-effects from a particular treatment was
greater than the proportion of patients reporting reduced side-effects from a
control treatment.

Program 9 Program for Odds Ratio.

Code

oddsratio(table1, method="Wald", correction=FALSE)

Output:

Outcome

Predictor Disease1 Disease2 Total

Exposed1 33 167 200

Exposed2 8 92 100

Total 41 259 300

$measure

odds ratio with 95% C.I.

Predictor estimate lower upper

Exposed1 1.000000 NA NA

Exposed2 2.272455 1.007657 5.124812

Methods: The frequency of subjects reporting reduced side-effects as well
as the total sample size are reported for both the treatment (n = 200) and
control (n = 100) groups, and the proportions of subjects reporting reduced
side-effects in both groups are summarized with sample proportions and 95%
confidence intervals. The difference in sample proportions is also presented,
as is a 95% confidence interval on the difference between the two group
proportions. (If z-test is used:) We test the null hypothesis of no difference in
success rates (H0 : p1−p2 = 0) against a one-sided alternative hypothesis that
the difference in success rates is greater than 0 (HA : p1 − p2 > 0) by using a
two-sample z-test with significance level α = 0.05. (If chi-square test is used:)
We test the null hypothesis of no difference in success rates (H0 : p1−p2 = 0)
against a two-sided alternative hypothesis that the difference in success rates
differs from 0 (HA : p1 − p2 �= 0) by using a chi-square test with significance
level α = 0.05. We will reject the null hypothesis in favor of the alternative
hypothesis if the p-value is less than α; otherwise we will not reject the null
hypothesis. The R statistical software was used for all statistical analyses.
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Results: The data are summarized in Table 3.7 below. Assuming that the
two samples are representative and subjects are independent, the two samples
are large enough to conduct the statistical analysis. The observed success rate
in the treatment group (0.165, 95%CI : 0.114, 0.216) is significantly larger
than that in the control group (0.080, 95%CI : 0.027, 0.133), with an observed
difference of 0.085(95%CI : 0.011, 0.159). (If z-test is used:) The two-sample
z-test yielded p-value = 0.0217, so we thus reject the null hypothesis in favor
of the alternative hypothesis. (If chi-square test is used:) The chi-square test
(χ2

1 = 4.1, df = 1, p-value = 0.0433) yielded a small p-value, so we thus reject
the null hypothesis in favor of the alternative hypothesis

Table 3.7: Data Summary.
Outcome Proportion Reporting Little

or No Symptoms
Group Yes No Sample Size Observed 95% CI

Treatment 33 167 200 0.165 0.114, 0.216
Control 8 92 100 0.080 0.027, 0.133

Diff 0.085 0.011, 0.159

Discussion: The sample data suggest that the proportion of patients who
reported reduced side-effects using the treatment is greater than the propor-
tion who reported reduced side-effects using the control. Thus, clinicians and
practitioners interested in treating patients with reduced side-effects due to
the treatment may wish to consider this treatment.

3.7 Process

1. State research question in form of testable hypotheses.

2. Determine whether assumptions are met.

(a) Representative

(b) Independence

(c) Sample size: calculate grand proportion and expected frequencies

3. Summarize data with contingency table.

(a) If sample size is adequate: summarize groups with frequencies,
sample sizes, proportions and CIs, and report difference in sample
proportions and CI for difference.

(b) If sample size is inadequate: report frequencies and samples sizes
for each group.
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4. Perform Test.

(a) If sample size is adequate: calculate z-test or chi-square test
statistic.

(b) If sample size is inadequate: perform Fisher’s Exact test.

5. Compare test statistic to critical value or calculate p-value.

6. Make decision (reject H0 or fail to reject H0).

7. Summarize with IMRaD write-up.

3.8 Exercises

1. Police officer fitness is important for the ability for the police force
to complete its mission. A researcher is interested in determining if
differences exist between the fitness levels of female and male officers.
He collects a sample of 212 female officers and 316 male officers. For
each of the officers a fitness test is given and it is recorded whether or
not the officer passed the test. The results of the tests were as follows:
162 females passed the test and 222 males passed the test. Determine
if there is difference in the proportion who pass the fitness test across
gender.

2. In October 2012 Gallup Poll conducted a survey comparing rates of
exercise between Britons and Germans. The survey consisted of 7,786
Germans and 7,941 Britons aged 18 or older. The participants were
asked if they exercised at least 30min three times a week or more.
This showed that 4,288 Britons and 5,840 Germans reported that they
exercise at least 30min three or more times per week. Conduct a test
to determine if Germans exercise more than Britons.

3. Justesen et al. (2003) conducted a retrospective pharmacokinetic study
to determine the long-term efficacy in HIV patients of a combination of
indinavir and ritonavir. Of partial interest was the number of patients
who remained in the treatment regimen for the entire 120 weeks, as
per the study design. Compare the rate of patients who remained on
treatment for the entire duration between patients who had or who had
not previously experienced protease inhibitors. The data are provided
in the following table.

Previous protease Remained in Regimen 120 weeks
inhibitor experience Yes No

Yes 8 4
No 2 7
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4. In a study by Engs and Hanson (1988), college students were asked
whether they had ever driven an automobile after having consumed
alcoholic beverages. One goal of this study was to determine if the per-
centage of students responding “yes” had changed after a law (students
were originally assessed in 1983, and the law passed in 1987) raised the
minimum age permitting the purchase of alcohol. Using the data pro-
vided in the following table, compare the rates of students who stated
that they did not drive after consuming alcohol.

Drove after Year
drinking 1983 1987

Yes 1,250 991
No 1,387 1,666

5. Flynn and Allen (2004) are interested in the reporting deficiencies in
documentation from operating rooms. When a surgeon performs and
operation a comprehensive operative note should be generated to docu-
ment the procedure, give indication for why the procedure was needed
and to have a record for billing and reporting purposes. Certified pro-
fessional coders reviewed 550 operative notes from a multi-specialty
academic practice to determine the proportion of reporting deficiencies.
Of the 550 records reviewed 213 were dictated by a faculty member and
337 were dictated by residents. Faculty member reports contained 107
deficiencies and resident reports contained 201 deficiencies. Determine
if there is a difference in the proportion of operative note deficiencies
between faculty members and residents.

6. Salerno et al. (2013) is interested in determining the current infection
rate of Chlamydia and Gonorrhea infections. They obtained a sample
of 508 high school students (226 males and 282 females) who consented
to a urine test for the two diseases. Of the participants 14 males and
32 females tested positive at the screening for at least one of the dis-
eases. Based on this information can we say that the infection rate
differs across genders?



Chapter 4

Multi-category Data

4.1 Introduction: Types of Multi-categorical
Data

The discrete data we considered in the last two chapters were of the
dichotomous nature, where each subject could take one of only two values for
some measurement (Yes or No, Success or Failure, etc.). We now generalize
to the case where one or more of our variables under consideration has more
than two possible values. These types of polytomous or multi-category data
are more complicated than their dichotomous brethren, and as such must be
handled differently.

Before discussing the hypothesis testing process, we must first designate
between two different types of multi-category data: nominal and ordinal.
Ordinal data are a type of multi-category data where the various levels that
a subject can assume have a distinct and informative ordering. For instance,
the letter grade a student can receive in a course could be one of five distinct
grades (F, D, C, B and A). These grades are in fact categories (they most
certainly aren’t numbers), and the distinct values have a natural ordering
to them: a D is better or higher than an F, a C is better than both a D or
an F, a B is better than a F, D and C, and an A is better than all other
grades. This order to the categories exists without us having any subjects
to measure, and as such is a characteristic of the multi-category data itself.
There are many other examples of ordinal data that we will experience, such
as age groups (20–29, 30–39, 40+) and subject preference (dislike, indifferent,
like). In contrast, nominal data are a type of multi-category data where the
various levels that a subject can assume have no natural ordering, where
one particular ordering is just as informative as any other ordering. For
instance, patient ethnicity can generally assume one of several values (African
American, Caucasian, Hispanic, etc.), but there is no meaningful way to order
or rank them (AA-C-H is no more informative than H-AA-C or C-H-AA).

R. Sabo and E. Boone, Statistical Research Methods: A Guide for
Non-Statisticians, DOI 10.1007/978-1-4614-8708-1 4,
© Springer Science+Business Media New York 2013
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For nominal data, there is no information other than what is provided by
each subject (i.e. how we present the categories – we have to do it somehow –
means nothing).

While the distinction between nominal and ordinal data is important,
we will not focus too much more on their differences. In fact, the method
in which we analyze multi-category data (in this Chapter at least) is the
same regardless of whether that data are nominal or ordinal. Rather, we
will focus on the differences between two different cases of multi-category
measurements. In the first case we have one multi-category measurement
(which may be nominal or ordinal) and one clearly defined dichotomous out-
come (e.g. success or failure). This can be viewed as the generalization of
the two-sample proportion comparison case to the multi-sample proportion
comparison case, and as such the hypothesis for this case is called a test of
homogeneity of proportions. In the second case we have two multi-category
measurements (either may be nominal or ordinal), where we may not have a
clearly defined outcome. Since there may not be a natural set of proportions
suitable for comparison in this case, we instead test for associations between
such multi-category variables. The distinctions between testing for homo-
geneity and testing for association will affect how we summarize and report
our results, though the statistical methods used for hypothesis testing are
the same for both cases.

4.2 Summarizing Categorical Data (with

R Code)

When one of our categorical measurements is a dichotomous outcome and the
other is a multi-categorical measurement, we will be interested in comparing
the proportions for one of the two outcome levels across each level of the
multi-level variable. As such, our contingency table for summarizing data
in this instance should, along with reporting all cell frequencies and sample
sizes for each level of both categorical variables, present the proportion of
interest for each level of the descriptive categorical variable. For example,
Table 4.1 presents a contingency table of two categorical variables measuring
283 student grades from an undergraduate statistics course, along with an
indicator of whether or not those students got into the graduate program
of their choice. From the observed counts, we can see that the numbers of
students accepted to their preferred program increases with their undergrad-
uate statistics course grade, and the counts for not getting into their preferred
program generally decrease as the course grades increase.

Analyzing the trends across grades can be more appropriately accom-
plished by calculating proportions, but we must decide which proportions to
analyze. Note that R can provide us with three different proportions: column,
row and total percentages. Except in the rarest of circumstances, we will not
report the total percentages, which present the cell percentage with respect



4.2. SUMMARIZING CATEGORICAL DATA (WITH R CODE) 61

Table 4.1: Contingency Table of Student Grades in an Undergraduate
Statistics Course and Whether or Not the Student was Accepted to Graduate
Program of Choice.

Accepted to program of choice
Grade Yes No Total
A 52 7 59
B 48 13 61
C 41 35 76
D 11 33 44
F 4 39 43

Total 156 127 283

to the total across all cells. Column percentages present the cell percentage
with respect to the total within a particular column, while row percentages
present the cell percentage with respect to the total within a particular row.
Our choice between column and row percentages boils down to the placement
of the outcome variable. If our levels of the outcome variable are presented
as the columns of the contingency table, then we would want to compare the
success proportion/percentage (generically) for each level of the other multi-
category variable (or the rows of the contingency table), so we would select
row percentages. However, if the levels of the outcome variable are presented
as the rows of a contingency table, then we would want to compare the suc-
cess proportions across the levels of the other multi-category variable (in this
case the columns), so we would select column percentages. So as a general
rule, if we are comparing proportions for one outcome level across the rows of
a contingency table, then we select row percentages, and if we are comparing
proportions for one outcome level across the columns of a contingency table,
then we select column percentages.

Returning to our example, we see in Table 4.1 that the outcome lev-
els are presented as the columns. Since we are interested in comparing the
proportion of “Yes” outcomes across the various grade levels, we want to
present the row proportions (which are produced by selecting the row per-
centages). Specifically, we will present only the proportions for the value
“Yes”, since we will be comparing those proportions across the levels of the
Grade variable. The updated contingency table is presented in Table 4.2.
Note, we only have to compare the value of one level of the outcome across
the values of the other variable; since the outcome is here dichotomous, com-
paring the “Yes” proportions is the same as comparing the “No” proportions.
We can obtain the “Yes” proportions in R (as well as the “No”proportions)
using the prop.table function. After entering our frequencies in matrix form
table1<-matrix(c(52,48,41,11,4,7,13,35,33,39),nrow=5,ncol=2), we
get the row proportions for both outcomes by specifying prop.table

(table1,1), where the number “1” indicates “row percentages”; we would
specify prop.table(table1,2) if we had wanted column percentages.
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We also have data from a hospital survey of patient satisfaction of
treatment for their medical needs based on the severity of their condition.
Satisfaction is ordinally measured in three levels (Low, Medium and High),
while condition severity is also ordinally measured in three levels (Minimal,
Moderate and Severe). The data from this study are presented in Table 4.3.
Note that in this case that a clear pattern is difficult to immediately dis-
cern. Further, even though patient satisfaction can be thought of as a clear
outcome here (the level of satisfaction must be determined after treatment
of the condition was given), a comparison of proportions does not seem to
make sense, and if it did, it may not be clear as to which proportions we
should compare. Regardless, we need to look at some proportions so as not
to possibly be misled by the cell frequencies and differing sample sizes across
the different levels of both variables.

Table 4.2: Contingency Table (with Proportions of Interest) of Student
Grades in an Undergraduate Statistics Course and Whether or Not the Stu-
dent was Accepted to the Graduate Program of Choice.

Accepted to program of choice
Grade Yes No Total Proportion “Yes”
A 52 7 59 0.88
B 48 13 61 0.79
C 41 35 76 0.54
D 11 33 44 0.25
F 4 39 43 0.09

Total 156 127 283

Table 4.3: Contingency Table of Patient Satisfaction and Severity of Condi-
tion.

Patient satisfaction
Disease Severity Low Medium High Total

Minimal 7 3 18 28
Moderate 7 10 8 25
Severe 19 4 11 34
Total 33 17 37 87

Recalling that total proportions are non-sensical for most purposes, we
need to decide between reporting row or column proportions. If neither of
our two variables were outcomes, then we could choose either row or column
proportions, or whichever best exemplified any relationship between the two
variables (remember: you want to place your variables so that you would
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look at row proportions). Since the disease severity variable can be seen as
a grouping variable (since patient satisfaction can be seen as an outcome), it
makes more sense to report row proportions for this example, which are seen
in the complete Table 4.4 below. This enables us compare the distribution of
patient satisfaction counts for each level of disease severity. For instance, we
can see that the percentage of patients reporting “Low” satisfaction increases
with disease severity, while the percentage of patients reporting “High” sat-
isfaction decreases as disease severity increases. The percentage of patients
reporting “Medium” satisfaction is highest for moderately severe diseases.
Provided our frequencies are entered in matrix form (say table2) we can ob-
tain the percentages in R using the following code: prop.table(table2,1).

4.3 Establishing Hypotheses: Difference

Between Comparisons and Association

When we have two multi-category variables, we have to choose between test-
ing for homogeneity (equivalent proportions) and testing for association (sub-
jects taking combinations of values between the two variables in a non-random
manner). This choice can be determined by the research question, but is
often determined by the types of multi-category variables we have. Gener-
ally speaking, when we have a dichotomous outcome, or if we are explicitly
interested in comparing the proportion of one level of the multi-category out-
come across the levels of the other variable, then we will perform a test of
homogeneity. The null hypothesis for this test is that the proportions for one
specific level of the outcome (e.g. the proportion of “Yes” responses: pY )
are the same across all “A” levels of the other multi-category variable, or
H0 : pY 1 = pY 2 = . . . = pY A. The alternative is a little more complicated
than what we have seen previously. One would be tempted to state that
the alterative is that all of the pairwise proportion combinations differ, or

Table 4.4: Contingency Table of Patient Satisfaction and Severity of Condi-
tion with Counts and Row Percentages.

Patient satisfaction
Disease Severity Low Medium High Total

Minimal 7 3 18 28
25% 11% 64%

Moderate 7 10 8 25
28% 40% 32%

Severe 19 4 11 34
56% 12% 32%

Total 33 17 37 87
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HA : pY i �= pY j , for all i and j. However, this is only one way in which the
null hypothesis can be false. Recall that the null and alternative hypothe-
ses must be mutually exclusive: either one or the other must be true. Another
requirement is that the null and alternative hypotheses should together
account for all possible outcomes. Since the null accounts for only one sce-
nario (all proportions are equal), the alternative hypothesis must account for
all of the possibilities that could occur if H0 is not true. Another possibility
of a non-null outcome is if all pairs involving the first proportion pY 1 were
not the same, but all other pairings were the same. If we follow this type
of example to its extreme, we can achieve a catch-all phrase that reflects all
possibilities that are non-null if we state HA : pY i �= pY j , for at least one
combination i and j. Thus, if there was only one true difference between any
of the success proportions, then H0 would be violated and the alternative
hypothesis (HA) would apply. Likewise, if several or all of the proportions
were different, then H0 would be false and HA would be true. Only in the
event that all of the proportions were equal (or not significantly different)
would we believe that HA is unlikely and H0 was more likely.

When we have more than two values for our outcome, or if there is no
natural outcome between our two variables, we are likely to be interested
in the relationship between them and will test for association rather than
homogeneity. The null hypothesis for this test cannot be easily expressed
in symbolic notation, so we would state that under the null hypothesis the
two variables are not associated. If the null hypothesis was true and the
two multi-category variables are not associated, then the distribution of pro-
portions for one variable level across all values of the other variable would
approximate the proportion distributions for all other levels of the first vari-
able. Statistically, this will include cases when any differences in the various
proportions are too small to notice. The alternative hypothesis states that
there is a relationship between the two variables, but what that relationship
could be is not explicitly stated. While there are countless examples of what
this relationship could be, generally it means that the distribution of propor-
tions for specific values of one variable changes depending upon the level of
the other variable. An easily explained instance of this is with ordinal data,
when the proportions of subjects taking higher values of one variable increase
with as the level of the other variable increases. For an alternative hypothesis
that is mutually exclusive of the null, we simply state that there is a relation-
ship or association between the two variables. What that relationship could
be is described after viewing the results.

Returning to our running our examples, it should be clear in the case
of the graduate admissions example that we should perform a test of homo-
geneity, since we have a dichotomous outcome and we are explicitly inter-
ested in comparing success proportions across the various grade levels. For
this example, our null hypothesis of equal proportions is H0 : pY A = pY B =
pY C = pY D = pY F against the alternative HA : pY i �= pY j for at least one
pair of i �= j = A, B, C, D orF . In the patient satisfaction example, there
are too many levels for both variables for us to conduct a test of homogeneity,
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so we will instead test for association. Our null hypothesis in this instance
is that disease severity is unrelated to patient satisfaction with treatment,
while our alternative hypothesis is that the level of patient satisfaction dep-
ends upon disease severity.

4.4 Assessing Assumptions (with R Code)

As always, we require a representative sample and independent subjects,
which we will assume if our data were collected through random sampling.
Checking to see if we have the required sample size is complicated, but is
done by calculating expected frequencies, as was done in Chapter 3. This is
done by again calculating the overall or grand proportion p̄ for each level of
one of the variables. By essentially ignoring the levels of the other variable,
we are effectively calculating the proportions of subjects who take each level
of the specified variable if the other variable did not have an effect on it.
For the graduate admissions example, irrespective of grade, there are 156
students who were accepted into their graduate program of choice and 127
who were not, meaning that the grand proportion of students accepted into
their program of choice is p̄Y = 156/283 = 0.551, and the grand proportion of
students not accepted is p̄N = 0.449. Using these grand proportions and the
actual sample sizes for each level of the heretofore ignored grade variable, we
can calculate expected frequencies by multiplying the grand proportions by
those sample sizes. The expected frequencies are rounded to the first decimal
place, and are presented in Table 4.5 below. In this most general of cases
for categorical data, we are looking to see that at most 20% of the expected
frequencies are less than 5. So if there are 10 cells, no more than 2 of them
can be 5 or less. If there are 20 cells, no more than 4 of them can be 5 or
less. In cases were 20% of the total number of cells is not an integer (e.g. if
there are 8 cells, 20% of which is 1.6), then we round down, so that in this
case at most 1 cell can be 5 or less. In Table 4.5, we see that none of the
cells have expected frequencies lower than 5 (none are lower than 19.0), so
we have adequate sample size to perform this test.

Fortunately for us, these expected values can be generated in R. After
having placed our cell frequencies in matrix form (say table1 that we created
earlier), we must invoke the chiq.test(table1) function as if we wished to
conduct a chi-square test. However, as seen in Program 10 below, we must
label the test so that we can call it again later. In this case, we name the
test expval1<-chisq.test(table1) so that we can call it using the line
expval1$expected. This latter command produces the expected values in
Program 10, which we see matches the expected values we calculated by hand
in Table 4.5.

We can assess the sample size for the patient satisfaction example in
a similar way, though in this case we would have to calculate three grand
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Table 4.5: Expected Frequencies for Graduate Admissions Example
Accepted to program Grand Expected

of choice Proportions frequencies
Grade Yes No Total Yes No Yes No
A 52 7 59 0.551 0.449 32.5 26.5
B 48 13 61 0.551 0.449 33.6 27.4
C 41 35 76 0.551 0.449 41.9 34.1
D 11 33 44 0.551 0.449 24.3 19.7
F 4 39 43 0.551 0.449 23.7 19.3

Total 156 127 283 0.551 0.449

Program 10 Program to generate expected values for graduate admissions contingency
table.

Code:

# Create the table

table1 <- matrix(c(52, 48, 41, 11, 4,

7, 13, 35, 33, 39),

nrow=5,ncol=2)

# Name and invoke the chi-square test

expval1<-chisq.test(table1)

# Ask for expected values

expval1$expected

Output:

[,1] [,2]

[1,] 32.52297 26.47703

[2,] 33.62544 27.37456

[3,] 41.89399 34.10601

[4,] 24.25442 19.74558

[5,] 23.70318 19.29682

proportions either for each level of patient satisfaction (0.397, 0.195 and
0.425) or for each level of disease severity (0.322, 0.287 and 0.391). Proceeding
the same way as we did for the previous example, we get the expected counts
in Table 4.6 below. In this table, the total column proportions (for patient
satisfaction) were used to calculate the expected counts, which were found by
multiplying the three total proportions by the total sample size in each row.
In this case, note that the cell for “Moderate” disease severity and “Medium”
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patient satisfaction is less than 5. However, this is only one cell out of a total
of nine, which is less than 20% (1/9 = 0.11 < 0.20), so we have an adequate
sample size to perform the hypothesis test for this problem. These values can
be generated in R in the same manner as in the graduate admissions example
by first labeling the chi-square test (expval2<-chisq.test(table2)) and
then asking for the expected values (expval2$expected). You may verify
these values on your own.

4.5 Performing the Test and Decision Making
(with R Code)

Regardless of the type of hypothesis we have (either homogeneity or associ-
ation) the test statistic is the same. There is a closed form equation for this
test, but it is not as simple to use as the tests from Chapters 2 and 3. The
statistic takes the following form:

χ2 =
∑
i,j

(Oij − Eij)
2

Eij
(4.1)

Here Oij is the observed frequency for cell ij (the ith level of the row variable
and the jth level of the column variable), Eij is the expected frequency for cell
ij, and the summation (Σ) is over all cells. For each cell in the contingency
table, we take the difference between the observed and expected frequency,
square that difference, divide that squared-difference by the expected fre-
quency, and then sum those values across all cells. Since the differences are
squared, this test statistic cannot take negative values, and as such will follow
a chi-square distribution (assuming the null hypothesis of equal proportions
or no association is true).

Based on the observed and expected frequencies found in Table 4.5 for
the graduate admissions example, we get the differences found in the first
part of Table 4.7. Note that the differences for each row are mirror images
of each other (e.g. 19.5 and −19.5), which results from the null conditions
used in calculating the expected frequencies. Further, while the values for the
squared-differences in each row are the same, once we divide by the expected
cell frequencies the resulting values become unique. For this example, the
test statistic takes the value 92.36423, which we round to the first decimal
place as 92.4.

To obtain this test statistic in R, we use the matrix() function to enter
our cell frequencies (as previously mentioned). Program 11 shows how to code
the graduate admissions example in R and provides the corresponding output,
where we find the χ2 statistic (as well as the degrees of freedom and p-value),
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Table 4.6: Expected Frequencies for Patient Satisfaction Example.
Patient Grand Expected

satisfaction proportions frequencies
Severity Low Med High Total Low Med High Low Med High
Min 7 3 18 28 0.379 0.195 0.425 10.6 5.5 11.9
Mod 7 10 8 25 0.379 0.195 0.425 9.5 4.9 10.6
Severe 19 4 11 34 0.379 0.195 0.425 12.9 6.6 14.5
Total 33 17 37 87 0.379 0.195 0.425

Table 4.7: Process for Calculating Test Statistic for Graduate Admissions
Example.

(Observed−expected)2

Observed−expected (Observed−expected)2 /Expected
Grade Yes No Yes No Yes No
A 19.5 −19.5 380.3 380.3 11.7 14.3
B 14.4 −14.4 207.4 207.4 6.2 7.6
C −0.9 0.9 0.8 0.8 0.0 0.0
D −13.3 13.3 176.9 176.9 7.3 9.0
F −19.7 19.7 388.1 388.1 16.4 20.1

Sum = 92.36423

which matches the result we obtained earlier by hand. We should remember
to examine the degrees of freedom to ensure that the correct analysis was
performed.

The process for calculating the test statistic in the patient satisfaction
example is listed below in Table 4.8. Note that the symmetry in the observed
differences (the “mirror image” effect in the graduate admissions example)
is slightly more complicated in this case, but is ultimately meaningless and
disappears if we don’t round the values. After squaring the differences and
dividing by the expected cell counts, we get a test statistic of 16.89274, which
we round to 16.9. We can obtain these results in R using Program 11 with the
following matrix: matrix(c(7, 7, 19, 3, 10, 4, 18, 8, 11), nrow = 3, ncol = 3).

4.5.1 Critical Value Method

Large values of this test statistic indicate that the observed frequencies differ
from the expected frequencies for at least some cells. Since the expected
cell frequencies are calculated assuming the null hypothesis is true, these
large differences would indicate that the conditions of the null hypothesis are
not likely. Small values of the test statistic indicate that the observed cell
frequencies are close in value to the expected cell frequencies, which would
indicate that the conditions of the null hypothesis are more likely.
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Program 11 Program to conduct a chi-square test on a multi-category contingency
table.

Code:

# Create the table

table1 <- matrix(c(52, 48, 41, 11, 4,

7, 13, 35, 33, 39),

nrow=5,ncol=2)

# Run the test

chisq.test( table1 )

Output:

Pearson’s Chi-squared test

data: table1

X-squared = 92.3642, df = 4, p-value = 2.2e-16

Table 4.8: Process for Calculating Test Statistic for Patient Satisfaction
Example.

(Observed−expected)2

Observed−expected (Observed−expected)2 /Expected
Severity Low Med High Low Med High Low Med High
Min −3.6 −2.5 6.1 13.1 3.1 37.1 1.2 1.1 3.1
Mod −2.5 5.1 −2.6 6.2 26.2 6.9 0.7 5.4 0.7
Severe 6.1 −2.6 −3.5 37.3 7.0 12.0 2.9 1.1 0.8

Sum = 16.89274

To determine what differentiates a large value from a small value, we can
find a critical value from the chi-square distribution. To find the degrees of
freedom we can follow the same process we used in Chapter 3, which was to
determine the number of “free cells” in a contingency table in which we can
enter a given frequency before all of the other cells are known (assuming the
marginal row and column totals are known and fixed). Though this process
is more complicated for multi-category variables than it was for dichotomous
variables, there exists a mathematical expression for this number, which is
the product (a − 1)(b − 1), where a is the number of levels for the first
variable and b is the number of levels of the second variable. This value is
then the degrees of freedom we use to calculate the critical value, which is the
95th percentile (generally the 100× (1−α)th percentile) from the chi-square
distribution with the stated degrees of freedom.
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In the graduate admissions example, there are a = 5 grade levels and
b = 2 outcome levels, so that there are 4×1 = 4 degrees of freedom. Thus the
critical value from a chi-square distribution with 4 degrees of freedom is 9.488.
Since our test statistic is χ2 = 92.36 > 9.488, we reject the null hypothesis
in favor of the alternative and declare that the success proportions are not
homogeneous. For the patient satisfaction example, there are a = 3 disease
severity levels and b = 3 patient satisfaction levels, so there are 2 × 2 = 4
degrees of freedom. The critical value from the chi-square distribution with
4 degrees of freedom is 9.488 (the same as the previous example), and since
our test statistic χ2 = 16.9 > 9.488, we reject the null hypothesis in favor
of the alternative hypothesis and declare that disease severity and patient
satisfaction are related.

4.5.2 p-Value Method

Rather than find a critical value, we can calculate a p-value using the test
statistic and the stated significance level α. As always, if the p-value is less
than α, we reject the null hypothesis in favor of the alternative, and claim
that either (i) the proportions of interest are not likely homogeneous, or
(ii) the two variable are likely associated. If the p-value is greater than or
equal to α, then we fail to reject the null hypothesis.

For the graduate admissions example, the test statistic was 92.36 with 4
degrees of freedom, resulting in a p-value < 0.0001. Since this is less than
α = 0.05, we reject the null hypothesis in favor of the alternative and conclude
that the success proportions are not likely homogeneous. For the patient
satisfaction example, the test statistic is 16.89 and 4 degrees of freedom
yields a p-value of 0.0020. Since this is less than α = 0.05, we reject the null
hypothesis in favor of the alternative and conclude that the two measures are
likely related. Recall that R automatically presents the p-value when calling
the chisq.test() function.

4.5.3 Interpretation of Results

If the chi-square test yields a significant result, then we need to interpret how
the null hypothesis is violated. This can be done in several ways, but is best
done by observing the patterns in the contingency table. At times this can
be a simple process, especially when the number of levels for both variables
is small, but it often requires us to ask more of the contingency table than it
may at first appear to be worth. What we first need to observe is the “cell chi-
square” values, which are the values (Observed − Expected)2/Expected for
each cell that contribute to the test statistic. When these values are close to
zero, it means that the observed cell frequencies are close to the expected cell
frequencies and – more importantly for our purposes – the observed values
closely match what we would expect to observe if the null hypothesis was
true. However, when these values are greater than zero – generally larger
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than 2 – it means the observed cell frequencies are not close to the expected
cell frequencies, and the observed values differ somewhat from what we would
expect if the null hypothesis was true.

Once these large cell chi-squares have been identified, we need to deter-
mine how the cell frequencies as a whole differ from the null. Students are
often misled into thinking that the cells that have large chi-square values are
those that differ from the null hypothesis. This is a half truth: yes, the obs-
erved frequencies in those cells do differ from the expectation under the null
hypothesis, but it is the pattern of differences across all cells that is impor-
tant. So what we do at this point is compare the observed frequencies with
the expected frequencies in each cell, and try to derive any patterns of those
differences across all cells. While there are no general rules to follow (since
there are countless ways these differences can present themselves), we gener-
ally look for regions where the observed counts are all greater/less than the
expected counts, and columns or rows for which the differences change from
positive to negative over the values in the corresponding rows or columns.

For instance, let’s observe the cell chi-squares for the graduate admissions
example, which are presented in the last two columns of Table 4.7. Here we
note that all of the cell chi-squares are large except for those corresponding
to the C grade level. Comparing the observed and expected cell frequencies,
we see that the “Yes” frequencies are larger than expected for the A and
B grade levels and are lower than expected for the D and F grade levels,
while the “No” frequencies are lower than expected for the A and B grade
levels and are higher than expected for the D and F grade levels. However,
this is not the whole story. What we really see when we look across the
grade levels is that the observed “Yes” cell frequencies are decreasing with
respect to the observed cell frequencies as the grade level gets worse; likewise,
the observed “No” cell frequencies increase with respect to the expected fre-
quencies as the grade level gets worse. In this light, it is not so much that
the low cell chi-squares at the C grade level mean that those students get
accepted as expected, but rather, they are coincidentally the transition from
students that exceed expectations to those who do not meet expectations.
If we translate these results into proportions, we state that the proportion
of students admitted into the graduate program of their choice decreases as
those students’ grade level decreases.

We can ask R to calculate the cell chi-square values in a manner similar to
that used to calculate the expected cell frequencies. As seen in Program 12,
we must first label the chi-square test (here entitled cellchi1), and then
ask for the residuals from the test (done by the line cellchi1$residuals).
However, this last step will only provide the standardized differences between
the observed and expected frequencies (which leads to positive and negative
values), so we square them using the code cellchi1$residuals*

cellchi1$residuals. From the output given in Program 12, we see that
these values match what we had calculated by hand.

For the patient satisfaction example, the cell chi-square values are listed
in the last three columns of Table 4.8. According to these values, the high
cell chi-squares correspond to subjects with minimal disease severity and
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Program 12 Program to obtain cell chi-square values from chi-square test graduate
admissions example.

Code:

# Create the table

table1 <- matrix(c(52, 48, 41, 11, 4,

7, 13, 35, 33, 39),

nrow=5,ncol=2)

# Name and invoke the chi-square test

cellchi1<-chisq.test(table1)

# Ask for cell chi-square values

cellchi1$residuals*cellchi1$residuals

Output:

[,1] [,2]

[1,] 11.66421114 14.32769242

[2,] 6.14498772 7.54817390

[3,] 0.01907728 0.02343351

[4,] 7.24319901 8.89715784

[5,] 16.37819512 20.11809764

high satisfaction, moderate disease severity and medium satisfaction, and
severe disease severity and low satisfaction. Comparing the observed and
expected cell frequencies for these three cells, we see that there are more
patients than expected for minimal severity/high satisfaction, for moder-
ate severity/medium satisfaction, and for severe severity/low satisfaction.
The remaining cells – those with low cell chi-squares – would then more
closely resemble the conditions under the null hypothesis. Turning these
results into a meaningful pattern, we see that in general patients with severe
diseases report lower levels of satisfaction than do patients with minimal
or moderate diseases, while those patients with minimal or moderate dis-
eases tend to report higher levels of satisfaction than do patients with more
severe diseases. These values can also be generated in R by calling the
chi-square test (say cellchi2<-chisq.test(table2)) and then using the
cellchi2$residuals*cellchi2$residuals command.

4.6 Contingency Methods (with R Code)

In the event that more than 20% of the cells have expected frequencies less
than 5, one should not proceed with the hypothesis test. The chi-square test is
dependent upon adequate sample size, since the chi-square distribution is an
approximation of the actual distribution of the test statistic, an approximation
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which improves as sample size increases. As a remedial action, one might
consider combining entire rows or columns, provided that the resulting com-
binations are meaningful. Only as a last resort should deleting entire rows
or columns be considered an option. Note that in some cases there are exact
methods (akin to Fisher’s Exact test) that could be used regardless of the
sample size, but they are beyond the scope of this text.

4.7 Communicating the Results (IMRaD
Write-Up)

The following is an example of the IMRaD write-up for the graduate admis-
sions example.

Introduction: Educators are interested in metrics or predictors of per-
formance in graduate academic programs. Of particular interest is the per-
formance in an undergraduate statistics course, which is required for most
undergraduate majors and graduate programs. We test the hypothesis that
the proportion of students who are accepted into the graduate program of
their choice is the same across all grade levels those students achieved in an
undergraduate statistics course.

Methods: A total of 283 students participated in this study. We report
the frequency of students who stated whether or not they were accepted
into the graduate program of their choice (Yes or No) along with the total
number of students and the proportion stating “Yes” for each possible grade
level (A,B,C,D or F ) those students achieved in an undergraduate statistics
course. A test of homogeneity on the success proportions for each grade level
is conducted using a chi-square test with four degrees of freedom. The null
hypothesis is that the success proportions for each grade level are equal,
while the alternative hypothesis is that at least two of those proportions
differ. We will reject the null hypothesis if the resulting p-value is less than
the significance level α = 0.05, and we will fail to reject the null hypothesis
otherwise. The R statistical software was used for all statistical analyses.

Results: The data are summarized in Table 4.9 below for the 283 students
included in this study. Assuming that the data are representative and sub-
jects are independent, the sample size is large enough to conduct statistical
analysis since all expected cell frequencies are greater than 5. The test pro-
duced the following results (χ2

4 = 92.4, p-value < 0.0001), so we reject the
null hypothesis in favor of the alternative and claim that there is a significant
difference between at least two of the success proportions. By comparing the
observed with expected cell frequencies, we see that the observed “Yes” cell
frequencies are decreasing with respect to the observed cell frequencies as the
grade level gets worse, while the observed “No” cell frequencies increase with
respect to the expected frequencies as the grade level gets worse.
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Discussion: The proportion of students admitted to the graduate program
of their choice decreases as those students grade level decreases. Educators
and students alike can use undergraduate performance in a statistics course
as a part of the decision making process for admitting students into graduate
programs.

The following is an example of the IMRaD write-up for the patient satis-
faction example.

Table 4.9: Contingency Table of Student Grades in an Undergraduate Statis-
tics Course and Whether or Not the Student was Accepted to the Graduate
Program of Choice.

Accepted to program
of choice

Grade Yes No Total Proportion “Yes”
A 52 7 59 0.88
B 48 13 61 0.79
C 41 35 76 0.54
D 11 33 44 0.25
F 4 39 43 0.09

Total 156 127 283

Introduction: Clinicians, health provider administrators and supervisors
have a vested interest in ensuring patients are satisfied with the treatment
they receive. The level of patient satisfaction is likely tied to the alleviation
of symptoms or the “curing” of disease, both of which are highly correlated
with the severity of the patient’s disease. We test the hypothesis that the
severity of disease and patient satisfaction of the clinical experience with
treating that disease are related.

Methods: A total of 87 patients participated in this study. The frequency
and proportion of patient level of satisfaction with their treatment (low,
medium or high) as well as the total number of patients are reported for
each level of disease severity (minimal, moderate or severe). A test of associ-
ation between patient satisfaction and disease severity is conducted using a
chi-square test with four degrees of freedom. The null hypothesis is that there
is no relationship between patient satisfaction and disease severity, while the
alternative hypothesis is that there is a relationship between the two mea-
sures. We will reject the null hypothesis if the resulting p-value is less than
the significance level α = 0.05, and we will fail to reject the null hypothesis
otherwise. The R statistical software was used for all statistical analyses.

Results: The data are summarized in Table 4.10 below for the 87 patients
included in this study. Assuming that the data are representative and sub-
jects are independent, the sample size is large enough to conduct statistical
analysis as fewer than 20% of all cells have expected frequencies less than 5
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(1/9 = 11%). The test produced the following results (χ2
4 = 16.9, p-value

= 0.002), so we reject the null hypothesis in favor of the alternative and
claim that there is a relationship between patient satisfaction and disease
severity. Comparing the observed and expected cell frequencies, we see that
there are more patients than expected with minimal disease severity reporting
high satisfaction, more patients than expected with moderate disease severity
reporting medium satisfaction, and more patients than expected with severe
disease severity reporting low satisfaction.

Table 4.10: Contingency Table of Patient Satisfaction and Severity of
Condition.

Patient satisfaction
Disease Severity Low Medium High Total

Minimal 7 3 18 28
25% 11% 64%

Moderate 7 10 8 25
28% 40% 32%

Severe 19 4 11 34
56% 12% 32%

Total 33 17 37 87

Discussion: In general, patients with severe diseases report lower levels of
satisfaction than do patients with minimal or moderate diseases, while those
latter patients tend to report higher levels of satisfaction than do patients
with more severe diseases. Clinicians and health service administrators may
want to consider these patterns when choosing between treatment options.

4.8 Process

1. State research question in form of testable hypothesis.

2. Determine whether assumptions are met.

(a) Representative

(b) Independence

(c) Sample size: calculate grand proportions and expected frequencies

3. Summarize data with contingency table.

(a) Summarize groups with frequencies, sample sizes, and proportions.

4. Perform Test.

(a) If sample size is adequate: calculate chi-square test statistic.

(b) If sample size is inadequate: do not perform test; collapse rows/
columns.
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5. Compare test statistic to critical value or calculate p-value.

6. Make decision (reject H0 or fail to reject H0).

7. Summarize with IMRaD write-up.

4.9 Exercises

1. In a larger study examining the associations between subject beliefs of
body size and smoking, Boles and Johnson (2001) collected measure-
ments (raw counts found in following table) on subject’s perception
of their own body size (overweight, appropriate or underweight), as
well an indicator of whether or not the subject smoked (yes or no).
Determine whether the proportions of subjects who smoke are different
between the three weight status classifications.

Smoking status
Weight Status Yes No
Overweight 17 97
Appropriate 25 142
Underweight 96 86

2. Schottenfeld et al. (1982) conducted a study to compare the information
provided on a death certificate with the cause of death determined after
a formal autopsy. Three classifications were provided, which stated that
the initially determined cause of death was accurate, inaccurate or inc-
orrect. These assessments were made at two hospitals. Determine if
there is an association between the type death certificate classification
and the hospital from which the cause was determined.

Certificate status
Hospital Accurate Inaccurate Incorrect

1 157 18 54
2 268 44 34

3. A researcher is interested in the PCB concentrations in popular sport
fishing. To study this he has designed a study where he takes fish
from three habitat types: Pool, Run and Riffle. After the fish ist taken
it is recorded on whether or not the fish has an unacceptably high
level of PCB. They do this at different sites over different times and
obtain the following data where each cell is the number of fish in each
habitat/PCB category: Determine if there is an association with the
habitat and excessive PCB.
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Habitat
Excessive PCB Pool Run Riffle
Y 121 57 86
N 713 343 527

4. Suppose a researcher is interested in the lifestyle choices for obese and
non-obese people. Specifically which types of recreation activities they
prefer which were then classified as one of the following: Sedentary,
Outdoor, and Sports. A survey was conducted where participants were
asked various questions and one question regarded whether or not they
are obsese. Another question regarded which type of recreation activi-
ties they typically engage in and which one is the most frequent activity.
Below is a table of the data they obtained. It shows the self reported
obesity category as well as the most frequently engaged in recreation
activity.

Habitat
Obese Sedentary Outdoors Sport
Y 135 108 92
N 168 262 245

Determine if there is an association with the obesity status and recre-
ation activities.

5. Suppose a researcher is interested in the species distributions of fresh-
water fish across several river basins in New South Wales. The species
of interest are Gudgeon, Jollytail, Smelt, Bass and Other. The river
basins to be considered are the: Richmond, Manning, Hunter and Brogo
rivers. Using the data below determine if the data suggests there are
differences in species distributions across these river basins:

River basin
Species Richmond Manning Hunter Brogo
Gudgeon 38 54 33 50
Jollytail 91 100 92 94
Smelt 99 95 94 80
Bass 119 131 115 104
Other 125 114 102 115

6. Suppose a researcher is interested in if various antihistamines are
prescribed at similar rates across practice types. The antihistamines
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considered are: Loratadine, Cetirizine, Desloratadine, Levocetirizine,
Fexofenadine and other. The practice types of interest are: Pediatrics,
Internal Medicine and Family Medicine. The researchers took a survey
of various types of practices and had the practice head nurse give the
most prescribed/recommended antihistamine for the practice. Using
the data below determine if there are differences in prescription/rec-
ommentation rates of antihistamines by practice type.

7. A researcher is interested in the relative efficacy of penicillin and specti-
nomycin in the treatment of gonorrhea. Three treatments are looked at
(1) penicillin (2) spectinomycin (low dose), spectinomycin (high dose).
Three possible responses are recorded (1) positive smear, (2) nega-
tive smear, positive culture or (3) negative smear, negative culture.
Using the data below determine whether or not there is any relation-
ship between the type of treatment and the response.

Practice type
Antihistamine Pediatrics Internal Family
Loratadine 131 110 116
Cetirizine 68 44 57
Desloratadine 135 154 134
Levocetirizine 113 97 91
Fexofenadine 121 114 124
Other 35 39 23

Response
Smear Smear

Treatment +Smear +Culture −Culture
Penicillin 40 30 130
Spectinomycin L 10 20 70
Spectinomycin H 15 40 45



Chapter 5

Summarizing Continuous
Data

Chapters 2–4 dealt with categorical data, where the measurements were
qualitative in nature. Summarizing these data required frequencies, propor-
tions and contingency tables. In this chapter we begin our study of continuous
data, where the measurements we will deal with are quantitative in nature.
Since this type of data consists of actual numbers, we will be able to arith-
metically manipulate them (this isn’t as malicious as it sounds). However,
what type of manipulation we perform depends – of course – on the type of
question we’re attempting to answer, as well as the nature of the data itself.

An under-appreciated aspect of continuous data is that – by their very
nature – measurements are likely to be unique. While categorical measure-
ments can only take one of a few particular values, continuous measurements
can most often take one of countless values, and as such calculating statistics
like a proportion is not sensible. Rather, a summarization of continuous data
must capture two unique aspects of the measurements: values that represent
what a “typical” measurement look like, and a metric of how similar (or dis-
similar) the measurements are. The “typical” value – the types of which are
called measures of center – represents what value a typical or average subject
could take. Values that reflect the degree of similarity – the metrics of which
are called measures of variability – naturally represent how different we can
expect any two values to be. Capturing these characteristics is necessary
because we can use them to represent the data as a whole, especially in cases
with large numbers of subjects.

R. Sabo and E. Boone, Statistical Research Methods: A Guide for
Non-Statisticians, DOI 10.1007/978-1-4614-8708-1 5,
© Springer Science+Business Media New York 2013
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5.1 Representative Values (with R Code)

As previously mentioned, measures of center capture what a “typical” value
looks like for a given sample. For instance, if we were to sample one subject
from some population, the measure of center would be our best guess as to the
value of that subject’s continuous measurement. These measures are often
used to represent the sample from which they were calculated (most notably,
they aim to represent the population mean “μ”), and are generally involved
in the testing of hypotheses or the construction of confidence intervals. There
are several types of measures of centers, and which measure we use depends
upon characteristics of the particular sample under consideration.

5.1.1 Mean

Generally, when a researcher mentions the mean of sample, they are referring
to the arithmetic average of all the values. This is a bit awkward for statis-
ticians, since the term mean has a precise meaning that depends on integral
calculus and – depending upon the type of data – might refer to something
other than an average. Without getting too specific with regards to the
correct definition, we will begrudgingly refer to the mean in the commonly
used fashion as the average of all measurements in a data set. This is gen-
erally not a problem if our continuous data follow a normal distribution (see
below), and this happens often in practice. For a sample of n subjects taking
measurements xi, i = 1, . . . , n, the mean is calculated using the following
equation:

x̄ =

∑n
i=1 xi

n
. (5.1)

Simply put, we sum together the values for each subject and divide the
resulting sum by the number of subjects. Provided that there is a center to
some set of continuous measurements, the mean often has the best chance of
representing it (when compared to other measures of center). This is because
the mean includes information from every single piece of data that we have
(unlike some other measures), where each measurement contributes equally
to the final result.

One drawback of the mean is that it is not robust in the presence of
severe outliers. If there are a few values that are much larger (or smaller)
than most of the values in a sample, those values tend to “pull” the mean
in their direction. This results from the mean placing equal weight (1/n, in
fact) on each value.

5.1.2 Median

Percentiles are values within the data set (or are between values) that separate
a given percentage of the (ranked) data from the rest of the data. For ins-
tance, the 10th percentile is that value that separates the smallest 10% of all
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observations from the largest 90%. Likewise, the 47th separates the smallest
47% of all observations from the largest 53%. As we will see below with the
Empirical Rule, we can use percentiles to tell us some details about symmet-
rically distributed data sets.

The median is the most popular percentile, and is used as an alternative
measure of center to the mean. Passively defined, half of the values in a
sample are less than the median, while the other half of the values in a sample
are greater than the median. In other words, the median is the “middle-
most” value in the sample, designated as the 50th percentile. Calculating
the median is a two step process, the first step of which is for us to rank
the data from smallest to largest. The second step depends upon how many
subjects comprise the sample. If there is an odd number of subjects, then the
median is the middle-most value. The “middle-most value” is identified by
dividing the sample size (n) by 2 and rounding up to the next largest integer
(say k); the median is then the value from the kth subject in the ranked
data set. If there is an even number of subjects, then the median is the
average of the two middle-most values, where here the “middle-most value”
is identified as the average between the values in the n/2 and the (n/2) + 1
positions. For example, if we have the small sample 3, 7, 1, 9 and 8, we first
rank the data points in ascending order: 1, 3, 7, 8 and 9. Since there are
five values, we take as the median the middle-most value, which is the third
value (5/2 = 2.5 → 3), or 7. Alternatively, if we have the sample 3, 7, 1, 9,
8 and 2, we rank the data as 1, 2, 3, 7, 8 and 9, and take as the median the
average of the third (6/2 = 3) and fourth (6/2 + 1 = 4) values ((3 + 7)/2),
or 5.

5.1.3 Other Measures

The mean and median are the most commonly used measures of center in
research. On occasion, however, other methods are used. The mode is defined
as that value (or values) that occurs most frequently in a data set. The mode
can be ascribed to both continuous and categorical data sets, though the
definition of “most frequently” for continuous data is not entirely clear. For
continuous measurements, the idea of the mode is much more informative
than its actual estimate. The geometric mean is defined as the nth root of
the product of all values (provided they are all positive and non-zero), or
( n
√
x1x2 . . . xn). There are other measures, such as the harmonic mean, but

they are even more rarely used than either the mode or geometric mean.
Most summary statistics are easily obtainable in R using the summary

function. The summary function produces the mean and median of a sam-
ple (as well as other measures described below). Consider measurements
from 30 female participants in the Fels Longitudinal Study (FLS). The FLS
(Roche 1992) is a longitudinal study originated to study human growth and
development, particularly with regards to obesity, metabolic function and
cardiovascular health. In this particular sample, serum levels of cholesterol
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Table 5.1: Cholesterol Data from 30 Female Fels Longitudinal Study
Participants

261 160 259 223 169 127 221 190
224 228 229 294 204 177 199 212
186 207 192 241 162 249 206 210
200 213 185 171 189 159

were measured, which are given in Table 5.1. The summary function is used
on this data in Program 13, for which we also show the output for. Here
we see the mean of this sample is 204.9, indicating the arithmetic average of
these observations. We can also view percentiles, which includes the median,
which for these women is given as 205.0, which is nearly identical to the mean.
Note that there exist other functions for generating specific summary statis-
tics, such as the mean and median functions, though these are admittedly less
useful.

Program 13 Program to generate summary statistics for center of FLS data.

Input:

# Enter the data into a variable named FLS

FLS <- c(261, 160, 259, 223, 169, 127, 221, 190,

224, 228, 229, 294, 204, 177, 199, 212,

186, 207, 192, 241, 162, 249, 206, 210,

200, 213, 185, 171, 189, 159)

# Run the summary function on FLS

summary(FLS)

Output:

> summary(FLS)

Min. 1st Qu. Median Mean 3rd Qu. Max.

127.0 185.2 205.0 204.9 223.8 294.0

5.2 Measures of Variability (with R Code)

Measures of variability aim to measure to what degree measurements in a
given sample differ from one another. Measures that are small indicate the
data are fairly homogenous or similar in value (though not exactly the same),
while measures that are large indicate the data are fairly heterogeneous or
dissimilar in value. The magnitude of the measure of variability in and of
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itself is not a good or bad thing, meaning that a sample is not necessarily
good if it has a small degree of variability, and a sample is not necessarily
bad if it has a large degree of variability. Provided that the variability in a
sample is not caused by the method in which the data were collected (errors
in measurement, cheap or inefficient measurement devices, etc.), then the
variability is what it is, and we accept it as a characteristic of the data.
Unlike the case for measures of center, the most commonly used measures
of variability do not exactly attempt to capture the same things, which can
lead to confusion in practice.

5.2.1 Standard Deviation

The standard deviation is a purely algebraic characteristic of a sample (i.e.
the equation precedes its lay definition) that is best described as the difference
in value one would expect to observe between any two randomly selected
subjects. It is not the average difference in the sense that the mean of a
sample is the arithmetic average, but rather a typical or expected difference.
Mathematically, the standard deviation is defined as the square root of the
variance, and is expressed in the following equation

SD =

√∑n
i=1(xi − x̄)2

n− 1
(5.2)

where n is the sample size, xi is the ith value in the sample, and x̄ is the
sample mean. Procedurally, we first calculate the mean, then subtract the
mean from each observation, square those differences, sum the differences,
and then divide by n − 1. Note that n − 1 is used so that the sample stan-
dard deviation is an unbiased estimator of the population standard deviation
(as opposed to using n, which is why this is an expected value and not an
average). The standard deviation is often written as the lower-case letter
“s”, to differentiate it from the sample variance “s2”. The population vari-
ance is denoted using Greek lettering as “σ2”, while the population standard
deviation is denoted as “σ” (note the convention among statisticians to use
Greek letters for population values and Roman letters for the corresponding
sample value).

The value of the standard deviation has little absolute meaning, or at
least it is not often interpreted in a vacuum. The SD of a sample is often
reported without comment (you will not often see the SD described as large
or small). The main reason for this is that the magnitude of the SD must be
interpreted with respect to something, for instance the mean of the sample,
or the SD from another sample of similar measurements. Thus, the standard
deviation is a relative measurement, and while we will report it, its utility
will predominantly come through hypothesis testing.
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5.2.2 Range Measures

Whereas the variance and standard deviation attempt to described the vari-
ability between the data, range measures attempt to “bound” the data.
The range of a measure is indicated by the interval between the smallest
value (known as the minimum) and the largest value (known as the max-
imum). The range is found by simply identifying the smallest and largest
values in a sample, and once the range is identified, this is the interval within
which all values in a sample lie. This is a gross summary of the sample, and
does not provide much information on its variability. The interquartile range
(IQR) is another interval bounded by the 25th and 75th percentiles (also
known as the first and third quartiles; the median is the second). The IQR
requires a process for identification similar to that for median, where the data
must be ranked before the 25th and 75th percentiles can be identified. Since
25% of the data are less in value than the 25th percentile, and since 25% of
the data are greater in value than the 75th percentile, the IQR represents the
interval between which 50% of the sample values reside. Unlike the range,
the width of the IQR – with respect to the median – provides some indication
of the variability of the sample values, where clearly wider intervals indicate
greater variability, and smaller intervals indicate less variability.

In R, the sd function can be used to obtain the standard deviation, while
the summary function (introduced earlier) can be used to obtain the range
or interquartile range, as it produces percentiles such as the minimum, max-
imum, Q1, and Q3. As an example we return to the female cholesterol
values from the FLS study. Using the sd function, the standard deviation is
reported as 35.31958. What this value means is that for any two randomly
selected subjects from this sample, we would expect their cholesterol values
to differ by nearly 35 units (keep in mind that we would not state this in a
write-up), though whether this typical difference is large or small cannot be
determined without additional information. By looking at the output from
the summary function we can obtain the range and IQR. For the range we
take the Min. and Max., which we report as (127.0, 294.0), meaning that all
cholesterol values in this sample are between 127 and 294. For the IQR we
take the values associated with 1st Qu. and 3rd Qu., so that the IQR is
(185.2, 223.8), which means that 50% of the female subjects have cholesterol
values between 185 and 224 (note that in a write-up we just report the range
or IQR, and do not explain them). This output is shown in Program 14.

5.2.3 Empirical Rule

One interesting application of the standard deviation is through the empir-
ical rule, which gives us a broad idea of where particular data values are
situated with respect to the mean. This rule states that for data with a
nearly symmetrical distribution (see below): ∼0.67 (or 2/3) of all measure-
ments fall within one standard deviation of the mean (or within the interval
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Program 14 Program to generate summary statistics for variability of FLS
data.
Input:

# Enter the data into a variable named cpk1

FLS <- c(261, 160, 259, 223, 169, 127, 221, 190,

224, 228, 229, 294, 204, 177, 199, 212,

186, 207, 192, 241, 162, 249, 206, 210,

200, 213, 185, 171, 189, 159)

# Run the sd and summary functions on FLS

sd(FLS)

summary(FLS)

Output:

> sd(FLS)

35.31958

> summary(FLS)

Min. 1st Qu. Median Mean 3rd Qu. Max.

127.0 185.2 205.0 204.9 223.8 294.0

(ȳ−s, ȳ+s)); ∼95% of all measurements fall within two standard deviations
of the mean (ȳ− 2s, ȳ+2s); and ∼99% of all measurements fall within three
standard deviations of the mean (ȳ − 3s, ȳ + 3s). The empirical rule is a
special case of Chebychev’s theorem, which states that for distributions of
any shape, the proportion of subjects within k standard deviations of the
mean is at most 1 − 1/k2. Returning to the cholesterol example, this would
mean that ∼67% of the cholesterol levels for female FLS participants would
be between 204.9 − 35.31958 = 169.5804 and 204.9 + 35.31958 = 240.2196,
∼95% of the levels would be between 204.9− 2 × 35.31958 = 134.2608 and
204.9 + 2× 35.31958 = 275.5392, and ∼99% of the levels would be between
204.9− 3× 35.31958 = 98.94127 and 204.9 + 3× 35.31958 = 310.8587.

5.3 Assessing Normality (with R Code)

If you recall from Chapters 2 and 3, we made the assumption that our test
statistic z had a normal distribution. This assumption was checked by obs-
erving the expected cell frequencies in the contingency table, at least 80%
of which had to be greater than 5. This was an ad hoc assessment, since
we had only one sample, and thus only one test statistic, and we could not
really determine whether or not the test statistic was normally distributed.
Continuous data are another matter, where we now have the ability and tools
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to determine whether our sample is normally distributed. To be certain, we
can never state with certainty that a given sample is normally distributed,
but we can provide graphical evidence that will allow us to safely assume one
way or the other.

5.3.1 Histogram

One of the most powerful tools we have to visualize the distribution of a
sample of continuous measurements is the histogram, which is a bar chart
of frequencies, which in turn represent the number of subjects in the sample
that fall within a series of intervals. A histogram for the female cholesterol
values in the FLS database is provided in Figure 5.1. Here we see that the
bars correspond to a series of nine intervals, each 20 unites wide. The height
of each bar corresponds to the frequency of females within the sample that
take values within that interval. From Figure 5.1, we see that more women
have cholesterol levels between 180 and 200 than any other interval, and
this corroborates with our measures of center, which we know to be 204.9
according to the mean and 205 according to the median. This interval is also
known as the mode for this histogram, since it contains more subjects than
any other interval. In contrast, relatively fewer women have low cholesterol
between 120 and 140 or high cholesterol between 260 and 300.

Program 15 shows the R code to generate Figure 5.1 for Female Choles-
terol from FLS Database. To create the histogram we use the hist function

Figure 5.1: Histogram of Female Cholesterol from FLS Database.
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Program 15 Program to generate Figure 5.1 for Female Cholesterol from FLS Database.

Code:

### Read in the dataset

FLS <- c(261, 160, 259, 223, 169, 127, 221, 190,

224, 228, 229, 294, 204, 177, 199, 212,

186, 207, 192, 241, 162, 249, 206, 210,

200, 213, 185, 171, 189, 159)

### Create a histogram

hist(FLS,

xlab="Cholesterol",

main="Female Cholesterol"

)

Output:
Figure 5.1 is the output.

on our data set FLS. We use the xlab="Cholesterol" statement to label
the horizontal axes and the main="Female Cholesterol" statement to ti-
tle the plot. There are many other options that can be used to modify the
histogram, however we will not consider those here.

What we are really looking for in a histogram is its general shape. Nor-
mally or nearly normally distributed data have a symmetric distribution,
where the shape to one side of the mode is similar to the shape on the other
side of the mode. While the two sides do not need to be identical, they
should both slightly decrease at about the same pace as we move away from
the mode. The histogram in Figure 5.1 shows us a more or less symmetric
histogram, even though there are differences between the two sides (or the
tails, as they are commonly called). In all seriousness: try squinting your eyes
when viewing a histogram so that small and meaningless differences do not
capture your attention. If we superimpose a normal curve over the histogram
(see Figure 5.2), we can see that they match up fairly well. This indicates
that the female cholesterol levels are nearly normally distributed (at the very
least, whatever distribution those values do have is not too distinguishable
from normality).

Figure 5.3 presents a histogram for the triglyceride levels in male FLS
subjects. The distribution we see here is in stark contrast to that observed
in Figure 5.1, where now the mode decidedly occurs more toward one side of
the distribution (between 50 and 100) than the other. This is an example of a
skewed distribution, and in this case arises from the fact that triglycerides –
like many biomarkers – cannot take values less than zero (they are said to
be truncated at zero). Because of this truncation point, the data pile up
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close to this point, and the values can only extend openly in one direction.
This concept is called skewness, and since they extend to larger values here
(toward the 600), this is called right-tail skewness. If the “tail” of the data
were in the direction of smaller values (toward the 0), then this would be
called left-tail skewness. Skewed data like these offer an example of data that
are not normally distributed (recall that the most obvious characteristic of
normally distributed data is symmetry about the mode). The superimposed
normal curve in Figure 5.3 also shows how ill-fit the data are to the normal
distribution.

Program 16 shows the R code to create Figure 5.3 for the Male Triglyc-
erides from FLS Database. The first line reads the "Chp. 5 Male Trig.csv"

file using the read.csv and writes it into the tri1.m dataset. We again use
the hist function to create the base histogram similar to that in Program 15.
However we wish to plot a distribution over the histogram so we will need to
use the freq=FALSE statement to change the vertical axis scale to percentage
instead of frequency. Once we have the histogram we will want to put a nor-
mal distribution over it. To do this we need to collect some summary statistics
about the sample. We find the mean of our variable tri1.m\$BCtrigly using
the mean function. The data has some missing values and hence we need to
tell R what do to with these values. In this case we use the na.rm=TRUE state-
ment that will remove the missing values from the dataset. We also need to
find the standard deviation using the sd function, the minimum value us-
ing the min and the maximum value using the max function. We use the
na.rm=TRUE option on all of these functions to remove the missing values.
Once we have the summary statistics we need to create a set of values on
which to evaluate the normal distribution. The seq function helps us create
a sequence of values from the minimum (tri1.min) to the maximum value
(tri1.max) with increments of 0.1 (using the by=0.1 statement). We can
then evaluate the normal distribution at these points using the dnorm func-
tion which requires the values, x1, the mean, tri1.mean and the standard
deviation tri1.sd1. Now that we have the distribution evaluated at a set
of points we can overlay the line on the histogram using the lines function.
The lines function requires the evaluation points x1 and the distribution
points tri1.density. The same process can be used to overlay the normal
curve to the female cholesterol data in Figure 5.2.

5.3.2 Box Plot

Another graphical display for assessing normality is the box plot. This plot
is useful in that from it we can assess the general shape of the distribution,
and it also identifies the position of several descriptive statistics. The IQR is
indicated by the top and bottom of the box, with the top indicating the 75th
percentile and the bottom indicating the 25th percentile. The horizontal line
inside the box indicates the median. The dashed lines (called “whiskers”)
above and below the box extend to 1.5 times above and below the IQR,
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Figure 5.2: Histogram of Female Cholesterol from FLS Database with
Superimposed Normal Curve.
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respectively. Any remaining dots outside the extent of the dashed lines are
deemed outliers.

In the right-hand panel of Figure 5.4, we see the box plot corresponding
to the female cholesterol values in the FLS database (note this is actually
a larger sample of female FLS subjects than was used earlier). Note the
median line is close to the center of the box, which is what we would expect
in normally distributed data (recall that for symmetrically distributed data
the mean and median are equal). Further, the distance of the 25th and
75th percentiles from the median are about equal, as are the distances of the
dashed lines above and below the box. These are clues telling us that this
data are nearly symmetric. Note that there are a few outliers in the high
values of this plot, and while there are none in the lower values of the plot,
there are not enough of them – nor are they extreme enough – for us to be
alarmed.

In the left-hand panel of Figure 5.4, we see the box plot corresponding to
the male triglyceride values in the FLS database. Here we note the distance
from the median to the 75th percentile is larger than the distance from the
median to the 25th percentile, and the “whisker” above the box are further
away from the median than the “whisker” below the box. Further, there is at
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Figure 5.3: Histogram of Male Triglycerides from FLS Database with Normal
Curve Superimposed.
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least one extreme outlier taking a value near 600. All of these characteristics
indicate that this sample is most likely not normally distributed.

5.3.3 QQ Plot

The “quantile-quantile plot” – or “QQ plot” for short – is a fairly accurate
tool in assessing normality. To construct this plot, we rank the data in our
sample from smallest to largest, and match those values with the ordered
percentiles taken from the standard normal distribution (if there are 100
subjects in our sample, then we take 100 percentiles; if n = 257, then we take
257 percentiles, etc.). If the data are perfectly normally distributed, then
the plot of these matched values will form a 45◦ line. This perfect case is
indicated by the solid red lines in Figures 5.5 and 5.6. The closer the sample
is to normality, the closer the matched values – indicated by the circles – will
adhere to the red line. Since we would expect any sample to differ somewhat
from normality, the plot also provides the dashed red lines, which indicate the
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Program 16 Program to generate Figure 5.3 for Male Triglycerides from FLS Database.

Code:

### Read in the dataset

tri1.m <- read.csv("Chp. 5 Male Trig.csv")

### Create histogram with normal density

hist(tri1.m$BCtrigly,

freq=FALSE,

xlab="Triglycerides",

main="Male Triglycerides Levels")

### Find summary statistics to generate normal density

tri1.mean1 <- mean(tri1.m$BCtrigly, na.rm=TRUE)

tri1.sd1 <- sd(tri1.m$BCtrigly, na.rm=TRUE)

tri1.min <- min(tri1.m$BCtrigly, na.rm=TRUE)

tri1.max <- max(tri1.m$BCtrigly, na.rm=TRUE)

### Create a set of points to generate the density

x1 <- seq(tri1.min, tri1.max,

by=0.1

)

tri1.density1 <- dnorm(x1, tri1.mean1, tri1.sd1)

### Plot the density

lines(x1,tri1.density1)

Output:
Figure 5.3 is the output.

region of similarity within which a sample is more or less normally distributed.
Thus, if all of the matched pairs (circles) fall within these bounds, as mostly
seen in Figure 5.5 for the female cholesterol values, then we can assume that
the data are normally distributed. However, if the circles – or sizeable portion
of them – fall on or outside the boundaries, then it may be unsafe for us to
assume normality. This is the case in Figure 5.6, which shows the QQ plot
for male triglyceride values, where we see that in the lower tail of the plot
(small triglyceride values), the black dots fall above the permissible range
(indicating that there are more sample data in this region than we would
expect under normality), and in the center of the plot the black dots fall
slightly below the permissible range (indicating that there are fewer sample
data in this region than we would expect under normality). These violations
indicate that the triglyceride values are not normally distributed. A note of
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Figure 5.4: Side-by-side boxplots for Male Triglycerides and Female Choles-
terol from FLS Database.
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caution: analyzing a QQ plot is not an exact science, and the assessment of
normality is in some instances in the eye of the beholder. My advice is this: if
you’re uncertain whether a data set is normally distrusted, it probably isn’t.

Program 18 shows the R code to generate Figure 5.5 the QQ plot for Fem-
ale Cholesterol from FLS Database. To get a nice QQ-plot we will want to use
a contributed package named car. The first time we need to install the car

package using the following code: install.packages("car"), which down-
loads the car package and installs it in R. To use the package we need to add
a library statement to our R code. The line library(car) loads the func-
tions associated with the car package, which allows us to use the qqPlot()

function. As done before, we import the data using the read.csv function
similar to Program 17. We first specify the data (Chol1.f\$BCcholes) in
the qqPlot function, use the ylab="Cholesterol" statement to label the
vertical axes, and use the main="QQ-Plot of Female Cholesterol" to title
the plot.
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Program 17 Program to generate Figure 5.4 for Male Triglycerides and Female Choles-
terol from FLS Database

Code:

### Read in the dataset

tri1.m <- read.csv("Chp. 5 Male Trig.csv")

Chol1.f <- read.csv("Chp. 5 Female Chol.csv")

### Create a side-by-side boxplot

boxplot( tri1.m$BCtrigly, Chol1.f$BCcholes,

names=c("Male", "Female"),

main="Side-by-side Boxplot"

)

Output:
Figure 5.4 is the output.

Figure 5.5: QQ Plot for Female Cholesterol from FLS Database.
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Program 18 Program to generate Figure 5.5 the QQ Plot for Female Cholesterol from
FLS Database.

Code:

### Load the car package

library(car)

Chol1.f <- read.csv("Chp. 5 Female Chol.csv")

### Create the QQ Plot

qqPlot(Chol1.f$BCcholes,

ylab="Cholesterol",

main="QQ-Plot of Female Cholesterol")

Output:
Figure 5.5 is the output.

5.3.4 Outliers

In Figure 5.4 we noted that there were outliers in the male triglyceride sample.
Outliers are simply values that are somewhat removed from the center of the
data, and they are not bad in and of themselves (usually). We mostly use
them to inform us of the shape of our sample. In general, we would expect
the same amount of outliers above and below the center of our distribution
(in this case, the outliers would cancel each other out and have no effect on
the measure of center), though if they are few in number we can relax this
assumption. At times, one outlier or a small number of outliers will extend
greatly from the center of the distribution, so much that they can interfere
with our interpretation of the QQ plot. We do not remove these values, but
rather investigate to determine if there are any causes as to why they exist
(or at least why they are so extreme). If it turns out that an outlier was
erroneously entered into the database, we may correct or delete it, but under
no other circumstances can we delete or remove outliers in order to improve
the distribution of our data. There are remedial actions you can take to
“correct” for outliers, but we will not cover them here. Outliers have the
greatest affect on the mean and standard deviation, since outliers with large
enough values will “pull” these measures in their direction. Provided there
are “few” outliers, the median and inter-quartile range will be unaffected by
outliers, regardless of their magnitude. To see this characteristic for yourself
(in a silly example), calculate and compare the means and medians in one
data set (1, 3, 5) and another (1, 3, 1,000,000).
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5.4 Rounding and Reporting Conventions

5.4.1 Rounding

The mean is rounded to no more than one decimal place beyond the data
from which it is calculated. So if the data are measured in integers (e.g. the
cholesterol for patient number 1 is 265), then the mean of such data can be
expressed to the first decimal place (e.g. if the mean for female cholesterol is
given as 203.76974, we round to 203.8). The standard deviation is rounded
to no more than two decimal places beyond the level expressed in the data,
though it is sometimes reported to the same degree of accuracy as the mean.
So based on the female cholesterol levels, the standard deviation is most
appropriately rounded to the second decimal place (meaning 37.985963 is
rounded to 37.99). Note that unlike categorical data, the extent to which we
round our data summaries is not directly dependent upon the sample size.

Figure 5.6: QQ Plot for Male Triglycerides from FLS Database.
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The median is generally rounded to the same decimal place expressed in
the data, though the median can be expressed to additional decimal places
if it is calculated as the average of two or more values. The same guidelines
are followed for the range and inter-quartile ranges, which generally reflect
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observed values and not estimates. So based on the female cholesterol levels,
the median is 204, the range is (116, 315), and the inter-quartile range is
(117, 223).

5.4.2 Reporting Based on Distribution

In cases of either normally or non-normally distributed data, we always re-
port the sample size. When data are normally or (at least) symmetrically
distributed, we report the mean and standard deviation to describe the cen-
ter and variability in our data. The reason for this is that under the optimal
case of normally distributed data, the mean is the most accurate measure
of center while the standard deviation is the most accurate measure of vari-
ability. More technically, the mean and standard deviation are components
of the test statistics used for hypothesis testing; since they are going to be
used, they might as well be reported. However, when data are non-normal
the mean does not accurately measure the center of the sample; likewise, the
standard deviation will not accurately measure the variation in the sample.
In cases of non-normally distributed data, we report the median as the mea-
sure of center and the interquartile range as the measure of variability. These
measures are more robust to departures from normality than are the mean
and standard deviation, and will suffice for all but the most severely skewed
samples. Further, since the data in this case are skewed, these percentiles
provide more information as to how the data are skewed. Note that we would
prefer to report the mode, which indicates the most likely value in the sam-
ple directly under the “hump” of the distribution, but there are currently no
suitable estimators of the mode.

In extreme cases, we may observe that the sample median and either
(or both) of the components of the IQR are the same value, meaning that
more than half of the data take the same value. We would still report the
median and IQR, but we also state in words how much of the data take the
same value, and we would clearly not even consider calculating the mean
or standard deviation. In such cases we may want to consider alternative
approaches – and consult a statistician – before continuing.

5.4.3 Standard Error

In many research papers, normally distributed data are summarized with the
mean and standard error (or SE). This is a mistake, whether the authors of
such studies realize it or not. The standard error is formally defined as the
standard deviation divided by the square root of the sample size (s/

√
n), and

represents the variability we would expect to observe in the mean if we could
repeatedly sample from the same population, taking the mean each time.
Since it is a property of the mean, it does not describe any characteristic
of the observed sample (remember, we will only collect one), and since the
SE is always smaller than SD, it will always underestimate the variability
in a sample (since n is always greater than 1). For example, in the female
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cholesterol measurements in the FLS database, the standard deviation is
reported as 37.99, while the standard error is reported as 3.08. If we report
the SE, one could mistakenly presume that subjects typically differ by around
3 units, which is much less than the 38 indicated by the standard deviation,
and readers may think the variability is much less than it actually is. The
SE actually indicates in this case our belief that if we were to repeatedly
resample the cholesterol levels for groups of 152 women, the means of those
groups would typically differ by about 3 units. This is not a property of
our sample, but is actually a property of our sampling method. Further, the
standard error will decrease as our sample size increases. This means that we
can make the SE arbitrarily small by observing more subjects, whereas the
standard deviation is relatively more stable and unrelated to the sample size.
The bottom line is that if you are describing a sample, you report measures
that capture characteristics of the sample, such as the mean and standard
deviation.

5.5 Exercises

1. Lansford et al. (2010) is interested in the number of sexual partners for
adolesents between age 16 and 22. They collected a sample of 526 people
in this age group and asked them the number of partners they have
engaged in which they have engaged in sexual activities. The following
sample is consistent with their data: Completely summarize the above
data using both numeric and visual summary tools.

2 7 3 1 2 0
0 1 3 2 0 1
0 4 3 0 6 7
1 2 1 8 1 3
0 2 6 1 6 0

2. Rossi et al. (2009) is interested in the waiting times for knee replacement
surgery. They took a survey of 161 patients and calculated the days
from the initial visit to surgery. The following sample is consistent with
their data. Completely summarize the above data using both numeric
and visual summary tools.

53 67 69 68 53
64 72 63 73 69
64 77 65 54 52
63 66 61 70 57
66 72 75 72 77

3. Winer-Muriam et al. (2002) is interested in determining the theoretical
radiation/energy absorbed by a pregnant woman during different ges-
tational periods. Information was gathered from eight patients during



98 CHAPTER 5. SUMMARIZING CONTINUOUS DATA

the first trimester. The data collected is the theoretical dose/energy
absorption to a set of points in each patient. Completely summarize
the below data using both numeric and visual summary tools.

9.5 3.3 5.7 4.1
13.6 4.6 20.2 20

4. The Glasgow Coma Scale is (GCS) is used to measure the severity of
a brain injury. The scale ranges from 3 to 15, with 3 indicating com-
pletely unconscious state (no response to any stimuli) to 15 indicating
completely conscious state (normal response to all stimuli). There is
some evidence that a patients initial GCS score may be correlated with
recovery prognosis. Brain injury researchers generally report mean GCS
scores of their patients. Kreutzer et al. (2009) give the data below for
GCS scores for patients in their study. Completely describe the data
using both numeric and appropriate visual summary tools.

3 15 7 3 8 3 3
3 3 6 9 3 13 12
4 3 15 3 15 3 15
3 14 8 6 15 3 6
7 4 5 7 7 3 3

14 15 15 3 3 3 3
15 4 13 3 10 15 3
15 8 14 15 13 12 2
7 12 10 3 12 15 15
5 9 3 6 4 15 12
5 9 3 15 3 10 10

5. We can consider example from Green et al. (2005) who is interested
in estimating the amount of diethylhexyl phthalate (DEHP) that leach
from IV tubing and bags into intravenous medications. Suppose they
take 25 standard IV bags and standard tubing of length 1m and put
distilled water in the bag and let it sit for 8 h and then drain the bag
through the tube into a container. From each of the containers they
measure the DEHP in ng/mL and suppose they obtain the following
data:
Completely describe the data using both numerical and visual tools.

53.0 40.4 39.1 39.6 52.9
32.8 51.7 42.9 55.0 43.8
51.1 44.2 38.3 44.3 47.7
43.7 44.2 40.0 60.1 42.9
27.0 50.8 37.0 47.5 69.6
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6. Yoshinaga et al. (2004) are interested in the amount of radiation people
working in a x-ray lab receive. In general, the typical person in the
USA receives on average 3.6mSv (milli Sievert) of radiation per year.
Specifically they wish to know if x-ray labs technicians receive more
than 0.01mSv per day. They take a sample of 15 workers and places
a device on each technician that records the amount of radiation they
receive. Suppose this is the data they collected. Completely describe
the data using both numerical and visual tools.

0.0023 0.0072 0.0054 0.0092 0.0114
0.0013 0.0017 0.0047 0.0069 0.0078
0.0082 0.0087 0.0044 0.0056 0.0087

7. As part of a study on an implantable medication system for insulin
delivery, Saudek et al. (1989) measured the percentage above ideal body
weight in eighteen patients (found below). Completely describe the data
using both numerical and visual tools.

107 119 99 114 120 104 88 114 124
116 101 121 152 100 125 114 95 117



Chapter 6

One-Sample Means

In Chapter 5 we were introduced to continuous data, and in this Chapter
we take our first steps into the realm of inference by focusing on hypothesis
testing and estimating confidence intervals for one-sample continuous data.
In many ways, the material we introduce here will resemble the material cov-
ered in Chapter 2, where we focused on the case of a one-sample proportion.
While the specific details will clearly be different, most of the steps we take
will be the same in both cases. For instance, in both cases we will summa-
rize our data, generate hypotheses, evaluate the veracity of our assumptions,
perform the statistical test, and make inference from the output of that test.
Most importantly, since we are only dealing with one sample, we must again
pay close attention to the hypothesized value upon which we base our test.
Before we get to such a test, we must examine the behavior of the sample
mean, much as we did for the sample proportion in Chapter 2.

6.1 Behavior of the Sample Mean

The sample mean, as described in Chapter 5, is the arithmetic sum of the val-
ues in a particular sample. For normally distributed sample data, the sample
mean is the most consistent measure of the center of that data, due mainly to
the fact that of all measures, only the mean captures data from every subject
and thus includes the most information. For this reason – and others – we
will use the mean as the basis for hypothesis testing, much as we centered the
hypothesis testing process for categorical data around the sample proportion.
What we then need is a way to determine how the sample mean behaves in
practice, particularly with respect to its distribution.

The easiest way for us to accomplish this is to conduct a simulation
study, in many ways similar to what we did for the sample proportion in
Chapter 2. Rather than simulate values from a known distribution, here we
will sample values directly from the larger sample of participants from the
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Fels Longitudinal Study (FLS) used in Chapter 5. For instance, we had 152
non-missing female subjects who provided cholesterol values, whose values in
aggregate were taken to be normally distributed. If we treat this sample as the
population, we can take sub-samples of various sizes from this larger group,
and by taking the means of these samples and repeating the process many
times, we can obtain a large sample of sample means. This is the so-called
sampling distribution of the mean, and we can analyze its characteristics just
as we would any other sample by calculating means and standard deviations
and also constructing histograms.

As a formal process, we will generate 1,000 random samples from the
parent sample, with each sample of a specific size (n). For each of those
samples, we will calculate the sample mean and standard deviation, and
we will then take the average of those means and standard deviations over
the 1,000 samples. We would like to see that the mean of the means is close to
the “population” mean from the parent sample (μ = 203.8) and also that the
mean of the standard deviations is close to the population standard deviation
from the parent sample (σ = 37.86). Note that the equation for a population
standard deviation is different from that for the sample standard deviation,
and thus the value used here is different from that presented in Chapter 5
(s = 37.99). In addition, we will find the standard deviation of the sample
means, and also look at histograms for certain sample sizes.

The results from this simulation study are found in Table 6.1. Here we
see for small samples (n = 9), the average mean and average standard dev-
iations are reasonably close to the “population” values. This means that
even for small samples of normally distributed data, the sample mean does
a fairly good job of describing the center of the sample and the sample stan-
dard deviation does a good job of describing the variation of the sample.
As the sample size increases from 9 to 100, we see that the means of both
the sampling distribution of means and the sampling distribution of standard
deviations continue to stay to close to the respective population values.

However, while the mean of the means gives a good indication of the
accuracy of the sample mean, the mean of standard deviations does not
tell us anything about the accuracy of those means. In fact, the mean of
the standard deviations tells us only that regardless of the sample size, the
variability observed in the data is nearly the same, which we would expect.
To analyze the variability of the sample mean, we must take the standard
deviation of the 1,000 sample means, the so-called standard error of the mean.
We see that this value (12.33) is lower than the average standard deviation
(36.46) for small samples (n = 9), and gets smaller as the sample size inc-
reases. There is good reason for this, as the standard deviation measures the
variability among the sample values, whereas the standard error measures
the variability in the sample means. While the particular values in each
of these samples vary in a manner reflected in the variability of the parent
sample, the sample means vary to a lesser extent since they are capturing
the center of the data set by averaging all values in those particular samples.
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Table 6.1: Results from simulation studies for FLS Data. 1. Results based on
1,000 samples of size (n) from (A) the Female Cholesterol sample with mean
μ = 203.8 and standard deviation σ = 37.86., and (B) the Male Triglyceride
sample with mean μ = 154.08 and standard deviation σ = 93.07.

A. Female Cholesterol B. Male Triglycerides
n x̄ SD SEx̄ σ/

√
n x̄ SD SEx̄ σ/

√
n

9 204.38 36.46 12.33 12.62 154.07 86.51 31.43 31.02
16 204.31 37.09 9.50 9.47 153.93 88.86 23.07 23.27
25 203.87 37.20 7.82 7.57 153.58 90.05 18.55 18.61
36 204.07 37.46 6.54 6.31 153.29 90.47 15.31 15.51
49 204.11 37.59 5.52 5.41 153.49 91.14 13.19 13.30
64 204.15 37.67 4.86 4.73 153.59 91.87 11.51 11.63
81 204.14 37.65 4.20 4.21 153.52 92.00 10.50 10.34
100 204.11 37.68 3.88 3.79 153.67 92.29 9.14 9.31
1,000 204.20 37.85 1.20 1.20 153.66 92.81 2.94 2.94

Further, as the number of values (i.e. sample size) increases, the information
going into the sample mean increases, making its measure of center that much
more accurate, and thus making its variability decrease. (As an aside, this
is the reason that statisticians always tell their collaborators that they need
large samples: the larger the sample size, the more precise the sample mean,
the better the test.) Note also that the relationship between the standard
error and the sample standard deviation is predictable, as seen by comparing
the last two columns in the first part of Table 6.1. For each sample size, these
values are nearly identical, which means that the standard deviation of the
sample mean is equal to the standard deviation of the sample divided by the
square root of n.

While the sample mean is centered around the population mean, and its
variability is accurately measured by the standard error, we still do not know
the distribution of the sample means. Histograms of the 1,000 sample means
are found in Figure 6.1 for sample sizes n = 10, 20, 50 and 100. We see
that even for small samples, the histograms closely approximate the super-
imposed normal curves. In one way we might have expected this, since data
that are sampled from a normal population will most likely follow a normal
distribution themselves.

Table 6.1 also presents the results from a simulation study based upon
the male triglyceride data from the FLS study. Even though the values in
this sample were distinctly non-normal, we can see that the average of the
sample means for each sample size is close to the population value. The ave-
rage standard deviations are somewhat lower than the population value for
small sample sizes, but that difference decreases as the sample size increases.
As was the case in the female cholesterol data, the standard error of the
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Figure 6.1: Histograms of 1,000 sample means of size n = 10, 20, 50 and
100 from the Female Cholesterol sample with mean μ = 203.8 and standard
deviation σ = 37.86.

n=10

x

D
en

si
ty

180 200 220 240

0.
00

0
0.

01
0

0.
02

0
0.

03
0

n=20

x

D
en

si
ty

180 200 220 240
0.

00
0.

02
0.

04

n=50

x

D
en

si
ty

180 200 220 240

0.
00

0.
02

0.
04

0.
06

0.
08

n=100

x

D
en

si
ty

180 200 220 240

0.
00

0.
05

0.
10

0.
15

mean decreases as the sample size increases and in all cases is close in value
to that predicted from the population standard deviation. However, com-
paring the standard errors of the mean between the female cholesterol and
male triglyceride studies shows that the mean for the triglyceride study has
more variability, which is expected since the sample exhibits more variation.
Histograms of the triglyceride means are found in Figure 6.2 for sample sizes
10, 20, 50 and 100. Here we see that, while not perfectly symmetrical, the
sample means have an approximate normal distribution even for small sam-
ple sizes. Most importantly, the approximation to the normal distribution
improves as the sample size increases.

The results from these two simulation studies represent two important
characteristics of the sample mean. The first is that if the underlying pop-
ulation values are normally distributed, then samples obtained from that
population are likely be normally distributed, and most importantly, the
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Figure 6.2: Histograms of 1,000 sample means of size n = 10, 20, 50 and
100 from the Male Triglycerides sample with mean μ = 154.08 and standard
deviation σ = 93.07.
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means of those samples are also likely to be normally distributed. The second
characteristic is that even if the underlying population and samples are not
normally distributed, the resulting sample means are likely to be normally
distributed if the sample size is large enough. These results form the core of
what is known as the Central Limit Theorem (CLT), which states – for our
purposes – that for large enough sample sizes, the sample mean will be nor-
mally distributed, regardless of the underlying probability distribution. The
implication of this result – the reason it is the central limit theorem – is that
we can use the sample mean for inference in most cases, even if our sample
is distinctly non-normal. In practice, we will implement the CLT using the
following three rules:

1. If sample values are normally distributed, then the population from
which they were drawn is likely to be normally distributed, and thus
the resulting sample mean x̄ will be normally distributed.
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2. If the sample size n is greater than or equal to 30, then the sample mean
x̄ is normally distributed regardless of the distribution of the underlying
sample data.

3. If the sample values are not normally distributed and the sample size
is less than 30, then the central limit theorem does not apply and the
sample mean does not necessarily have a normal distribution.

Note: it is important to distinguish between the distribution of the data,
which may or may not be known, and the distribution of x̄, which is described
by the central limit theorem. We will make use of the CLT in making our
decisions about which test we should use (see below).

6.2 Establishing Hypotheses

In the one-sample case for continuous data we were are predominantly con-
cerned with the population mean μ. Since we do not know the value of this
parameter, we will use our sample data – most notably the sample mean x̄
– to construct and perform a hypothesis test on that population mean. Nat-
urally, this requires us to assume some value for μ, which will arise from the
research question we are interested in answering, and we ascribe this value
the symbol μ0. In some cases, we will have a zero-valued population mean
(where μ0 = 0), but we will often have a specific, non-zero value in mind.

Regardless of the assumed value of the population mean, we need to
take this value in its context of the research question and form a set of
hypotheses (H0 andHA). Though the parameter involved here (μ) is different
from the parameter in Chapter 2 (p), the process of constructing null and
alternative hypotheses is the same. We first translate the research question
into a symbolic statement involving one of six possible symbols (<,>,≤,≥,=
and �=). We then construct the symbolic statement that must be true if the
original statement is false, recalling that the symbols (<,≥), (>,≤) and
(=, �=) are always paired with one another. We define the statement that
contains some equality (≤,≥ or =) as the null hypothesis (H0, being sure
to change ≤ or ≥ to =), and we define the statement that does not contain
equality (<,> or �=) as the alternative hypothesis (HA). Table 6.2 below
presents the possible pairs of null and alternative hypotheses we could create
for a population mean μ with hypothesized value μ0, based upon certain key
words from the research question.

The dataset “Female Chol Sample” contains cholesterol measurements
from a subsample of 20 females from the larger FLS database. It was of
interest to determine whether the average female had cholesterol levels greater
than 200. Turning this research question into a symbolic statement, we isolate
the phrase “greater than”, which means that our null hypothesis becomes
H0 : μ = 200, while the alternative hypothesis becomes HA :> 200.
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Table 6.2: Possible Sets of Hypotheses for a Population Mean Based Upon
Key Phrases from a Research Question.

Key Phrases
“less than”, “greater than “greater than”, “less than “equal to”, “not

Hypothesis or equal to”, “at least” or equal to”, “at most” equal to”

Null H0 : µ = µ0 H0 : µ = µ0 H0 : µ = µ0

Alternative HA : µ < µ0 HA : µ > µ0 HA : µ �= µ0

6.3 Assessing Assumptions (with R Code)

Before performing any test, we must determine whether the assumptions
required for such a test are met. In any event, our sample must be repre-
sentative of the population from which it’s drawn, and the subjects must be
independent of one another. The best way to determine the veracity of these
statements is to note whether or not the measurements were collected in a
simple random sample (i.e. were subjects randomly sampled from the popu-
lation). If we know this to be true, then we can proceed, otherwise we would
either have to assume the sample was randomly collected (for our purposes)
or not proceed with the test (in real life).

The determination of adequate sample size is based upon our assessment
of the Central Limit Theorem (for those interested, we statisticians capitalize
this theorem because it’s that important). Recall that if our sample size is
greater than 30, then the CLT holds and our sample mean will be normally
distributed, and we will thus know the distribution of our test statistic based
upon that mean (what we “know” about the test statistic will be discussed
below). Thus, regardless of the distribution of the data (normal, skewed,
angry!), if our sample size is greater than or equal to 30, we can assume we
have enough data. If we have fewer than 30 subjects, then one of two things
will happen. In the first case, the sample data may still be close to normally
distributed (as ascertained via histogram, box plot, or QQ plot). In this
case, the CLT still holds, our sample mean is still normally distributed, and
we can assume we have a large enough sample size. In the second case, when
the sample data are not normally distributed, the CLT will not hold and
we are unsure if the sample mean is normally distributed (it still could be,
but we can’t be certain). Because of this uncertainty, we cannot use the
parametric test (the so-called “t-test” that we will cover shortly) which relies
upon the assumption of normality for the sample mean. Instead, in this case
we will conduct a non-parametric test that is robust (i.e. is not adversely
affected) to both small sample sizes and non-normally distributed data.

Based on the subsample from the FLS database, we first note that there
are only 20 females who provided cholesterol values, which is less than the 30
required by the CLT. However, based upon the QQ plot shown in Figure 6.3,
which was generated using the qqplot() function described in Chapter 5,
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we can see that the cholesterol measurements appear normally distributed.
Thus, we can conclude that the sample mean for this data set will be normally
distributed as well.

6.4 Summarizing Data (with R Code)

For summarizing continuous data we will combine the conventions outlined in
Chapter 5 with our assessment of the Central Limit Theorem (CLT). If the
CLT holds (i.e. either our sample size is large OR there is evidence that
the sample data are normally distributed, or both), then we will summarize
our sample with the sample mean and standard deviation (not the standard
error), along with a 95% confidence interval of the population mean (we
will cover this later). However, if the CLT does not hold (i.e. the sample
size is small AND there is evidence that the sample data are not normally
distributed), then we will summarize our sample with the sample median and
interquartile range; in this case you would not estimate a 95% confidence
interval of the mean. Based on our assessment of the cholesterol subsample,
we earlier concluded that the CLT holds. Thus, we summarize (using the
summary and sd functions) the female cholesterol values with the mean and
standard deviation, which for these data are x̄ = 203.7 and SD = 39.03 (recall
your rounding specifications). We will calculate the confidence interval later.

Figure 6.3: QQ Plot for Female Cholesterol Subsample from FSL Database.
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6.5 Performing the Test and Decision Making

(with R Code)

As with most test statistics, we will take our summary measure of center (in
this case the sample mean x̄), subtract from it our hypothesized center of
the data (μ0), and divide that difference by the measure of variability for the
population mean. If we (somehow) knew the population standard deviation
was (say σ), then we know the standard error the of the mean will be σ/

√
n,

and our test statistic would become

z =
x̄− μ0

σ/
√
n
. (6.1)

The test statistic z would have a standard normal distribution, and we would
be able to use that distribution to find critical values and p-values for the
hypothesis test.

However, we do not (and will not) know the “true” population standard
deviation σ. Intuitively, if we don’t know the population mean – which is
in the equation to calculate standard deviation – there is no way for us to
know the population standard deviation. Since we don’t know the population
standard deviation, we replace it with the sample standard deviation s, the
value we think will most closely resemble the population value. This yields
the following test statistic

t =
x̄− μ0

s/
√
n
. (6.2)

Note that the equation for test statistic t has the same general shape as
that for test statistic z (Equation 6.1), with the only difference being the
replacement of σ with s. However, while these test statistics have similar
equations, their distributions are not the same. Notably, if we think of x̄ as a
random variable – since it consists of n random variables – with a probability
distribution, which we know to be normal under the CLT, then s must also be
a random variable with a probability distribution of its own (the distribution
of s2 is actually proportional to a chi-square distribution). Since t is a ratio of
two random variables, it actually has more variability than what is provided
by the standard normal distribution attributed to z.

The distribution that most closely approximates the variability observed
in test statistic t is called the Student’s t-distribution (or t-distribution, for
short). This distribution is so-entitled, not because of its preponderant use
by students in statistical courses, but because its creator published under
the pseudonym “Student”. Wiliam Gosset derived the probability distribu-
tion while he worked for Guinness Brewery – the adult-beverage arm of the
company who publishes the world-record books. At the time his employer
would not allow him to publish under his actual name; hence the pseudonym.
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Figure 6.4: Probability Curves for Student’s t-Distribution for Various
Sample Sizes.

Compared to the standard normal distribution, the t-distribution is also cen-
tered at zero, but has a shorter “hump” in the center and thicker “tails” at
both edges. This latter characteristic reflects the added variability in the test
statistic due to it consisting of two random variables. Unlike the standard
normal distribution, the shape of the t-distribution is dependent upon the
observed sample size. Specifically, the relationship is through the degrees of
freedom of the distribution, which in this case is n− 1. Note that this is the
same value as the denominator of the standard deviation, which is actually
the reason why the t-distribution has n − 1 degrees of freedom. As shown
in Figure 6.4, the center of the t-distribution increases as the sample size
(through the df) increases, while the tails get smaller. If we increase the
sample size enough, there is practically no distinction between the t- and
standard normal distributions, which is plotted as the case df = ∞.

Repeating the simulation example we conducted earlier for the female
cholesterol data, for each of the simulated samples of size n we can also
calculate the test statistic t, which will be based upon the mean, standard
deviation and size for each sample. Part A of Table 6.3 shows the results
from the Female Cholesterol parent sample for various sample sizes. Note
that the test statistic was calculated in each case by using the “population”
mean of 203.8. For each sample size we can see that the average test statistic
value is close to zero, and as the sample size increases the standard error of
the test statistic more closely approximates one. In fact the standard errors
closely match with those produced by an actual t-distribution (SEt).

Part B of Table 6.3 shows similar results for the Male Triglyceride exam-
ple. While the average test statistics are a bit more removed from zero and
the standard errors of the test statistic are a little larger than they were in
the Female Cholesterol case, they are still quite close to zero and one, respec-
tively, especially as the sample size increases. These two results show us that
for adequately large sample sizes, the t-distribution is a good approximation
of the distribution for test statistic t.
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Table 6.3: Results from simulation studies for FLS Data. 1. Results based
on 1,000 samples of size (n) from (A) the Female Cholesterol sample, and
(B) the Male Triglyceride sample.

(A) Female Cholesterol (B) Male Triglycerides
n t SEz SEt t SEz SEt

9 −0.02 1.14 1.15 −0.38 1.39 1.15
16 0.00 1.07 1.07 −0.24 1.20 1.07
25 −0.05 1.09 1.04 −0.22 1.15 1.04
36 0.00 1.09 1.03 −0.20 1.08 1.03
49 0.02 1.05 1.02 −0.18 1.07 1.02
64 0.04 1.04 1.02 −0.15 1.04 1.02
81 0.05 1.01 1.01 −0.16 1.03 1.01
100 0.06 1.00 1.01 −0.13 1.02 1.01

For the female cholesterol example, we have reported that the mean is
203.7, the standard deviation is 39.03, and the sample size is 20. Further,
our null hypothesized value is stated as μ0 = 200. Thus, the test statistic for
this problem is

t =
x̄− μ0

s/
√
n

=
203.65− 200

39.027/
√
20

= 0.418. (6.3)

While the t- and standard normal distributions are different, the interpreta-
tion of the test statistics are the same. In this case, the observed t = 0.42
implies that there is little evidence that the mean female cholesterol level is
larger than 200.

Program 19 shows the R code to conduct the hypothesis test above con-
cerning mean Female Cholesterol levels. We first need to read in the data
using the read.csv and write it into the Chol1.f dataset. To conduct the
t-test we use the t.test function in R. The first item in the t.test function
is the data we want to test against, in this case Chol1.f\$BCcholes. We also
need to specify the assumed mean from the null hypothesis, which is mu=200.
We must also state the alternative hypothesis using the alternative state-
ment, where here we specify "greater" in order to test H0 : μ > 200.

The output from Program 19 provides the information we need for mak-
ing inferences about the mean Female Cholesterol level, including the test
statistic t=0.4182, the degrees of freedom, df=19 and the p-value=0.3402.
The output also informs us that we are conducting a One Sample t-test,
the name of the data we are using data: Chol1.f\$BCcholes and the alt-
ernative hypothesis. We can use this output to verify if R has analyzed the
data correctly. The output also creates a confidence interval, which we will
not use in this Chapter; we will return to the confidence intervals later.
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Program 19 Program to generate hypothesis test for testing the mean Female Choles-
terol level is greater than 200: H0 : μ ≤ 200 versus Ha : μ > 200.

Code:

# Read in the data

Chol1.f <- read.csv("Chp 6 Female Chol Sample.csv")

### Generate a test

t.test( Chol1.f$BCcholes,

mu = 200,

alternative = "greater"

)

Output:

One Sample t-test

data: Chol1.f$BCcholes

t = 0.4183, df = 19, p-value = 0.3402

alternative hypothesis: true mean is greater than 200

95 percent confidence interval:

188.5605 Inf

sample estimates:

mean of x

203.65

6.5.1 Critical Value Method

Since the shape of the t-distribution is dependent upon the observed sample
size, the critical value needed for hypothesis testing will also be sample size-
dependent. The critical values for various sample sizes and significance levels
are provided in Table 6.4. For small sample sizes, we can see that the critical
values are larger than what would be used for the z-test based on the standard
normal distribution (shown in the last row of Table 6.4). This makes sense,
as for small samples we would expect the sample mean and standard error to
differ more (on average) from the population values they are estimating than
we would expect for larger samples sizes. As sample size (and thus degrees
of freedom) increases, we can see that the critical values converge toward the
critical value from the standard normal distribution, just as the shape of the
t-distribution converges to standard normal for larger sample sizes. Note that
if we are conducting a one-sided test, we would place all of our significance
in that one tail, so we would use the stated α in Table 6.4. However, if we
used a two-tailed test, we would divide the stated significance level in half
and locate the critical value under that halved critical value. For example, if
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our significance level was α = 0.05, but we had a two tailed test with n = 30,
then we would look under α = 0.025 and select 2.045 (and −2.045) as our
critical value(s).

Table 6.4: Critical Values from the t-Distribution for given Sample Size (n)
and Significance Level (α).

α = 0.01 α = 0.025 α = 0.05
n Critical Value Critical Value Critical Value
5 3.747 2.776 2.132
10 2.821 2.232 1.833
15 2.624 2.145 1.761
20 2.539 2.093 1.729
25 2.492 2.064 1.711
30 2.462 2.045 1.699
50 2.405 2.010 1.677
100 2.366 1.984 1.660
∞ 2.326 1.960 1.645

6.5.2 p-Value Method

Calculating p-values using the t-distribution is complicated and cannot be
done with much fidelity through a table such as Table 6.4. We thus rely
upon statistical software to calculate p-values. As always, we compare the
correct p-value (the one appropriate for our set of hypotheses) to the stated
significance level: if p-value < α, then we reject the null hypothesis in favor
of the alternative; otherwise we fail to reject the null hypothesis. For our
example with the right-tailed alternative, the correct p-value is 0.3402, which
is not smaller than the significance level α = 0.05, so we fail to reject the null
hypothesis that the mean female cholesterol level is equal to 200.

Our interpretation depends upon our decision. If we reject the null hyp-
othesis, then we conclude that the population mean is most likely less than,
greater than, or different from the hypothesized value. Alternatively, if we
fail to reject the null hypothesis, then we state that there is no evidence
to suggest that the population mean is somehow different from the hypoth-
esized value. Remember that hypothesis tests make statements about the
population parameters, not the sample statistics.

For either the critical value method or p-value method, we report the
degrees of freedom and observed test statistic. We must then also report
either the critical value or p-value (dependent upon which method we use)
and whether we reject or fail to reject the null hypothesis. Note that due to
the simplicity in reporting the results we generally prefer to report the results
of the p-value method rather than those from the critical value method.
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6.5.3 Confidence Intervals

As an additional aspect to the data summary, we generally provide a con-
fidence interval of the population mean. This interval simultaneously pro-
vides an indication of both the center and variation in the data, since the
interval is centered at the sample mean, and the width of the interval is
dependent (mostly) upon the standard deviation. For one-sample continu-
ous data – much like the case for one-sample proportions – the confidence
interval consists of three things: a point estimate, a measure of variability,
and a probabilistic measure. As the point estimate of the center of the data
we will take the sample mean (x̄), and as the measure of variability of the
data we will take the sample standard error of the mean (s/

√
n). Since we

used the t-distribution for hypothesis testing, we will again make use of that
distribution for our probability measure. This measure will be dependent
upon the sample size n through the degrees of freedom (n− 1), but the sig-
nificance level we will use must be split into two pieces, one for each tail of
the confidence interval. So if we want a 95% confidence interval, we will use
α/2 = 0.05/2 = 0.025. Likewise, if we want a 99% confidence interval, we
will use α/2 = 0.01/2 = 0.005. Together, we use the degrees of freedom and
significance level to find the critical value tn−1,1−α/2. Putting the three com-
ponents together, the general formula for a (1− α)100% confidence interval
of the mean is

(x̄− tn−1,1−α/2s/
√
n, x̄+ tn−1,1−α/2s/

√
n). (6.4)

Returning to the cholesterol example, recall that our sample n = 20 females
had a mean cholesterol level of 203.65 and a standard deviation of 39.027.
When n = 20 (df = 19) and with 95% confidence (α = 0.05), the critical
value from the t-distribution is 2.093. Thus, the 95% confidence interval for
the mean cholesterol level in females is

(203.65− (2.093)(39.027/
√
20), 203.65 + (2.093)(39.027/

√
20))

(185.38, 221.92)

As always, we round the 95% CI to the same degree of specification as the
mean, so we report (185.4, 221.9).

Program 20 shows the R code to generate a 95% confidence interval for
the mean cholesterol levels in females. To generate the confidence interval we
again use the t.test function, but here we omit the mu= and alterantive=

functions, and rather specify our desired confidence level using the conf.level
statement. Here we wish to have a 95% confidence interval so we need
to specify conf.level=0.95 since conf.level must always be between 0
and 1. The t.test function provided in Program 20 gives as lower and upper
confidence limits 185.3850 and 221.9150, respectively, which matches what
we calculated by hand. Notice from the output in Program 20 that t.test
produces much additional information (e.g. t, df, and the p-value) that we
do not need. Since we are here only interested in estimating the confidence
interval, this information should be ignored.
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Program 20 Program to generate a 95% confidence interval for the mean Female
Cholesterol level.

Code:

# Read in the data

Chol1.f <- read.csv("Chp 6 Female Chol Sample.csv")

### Generate the confidence intervals

t.test( Chol1.f$BCcholes,

conf.level=0.95

)

Output:

One Sample t-test

data: Chol1.f$BCcholes

t = 23.3366, df = 19, p-value = 1.895e-15

alternative hypothesis: true mean is not equal to 0

99 percent confidence interval:

185.3850 221.9150

sample estimates:

mean of x

203.65

6.6 Contingency Methods (with R Code)

In the event that the Central Limit Theorem does not apply (sample size too
small and data not normally distributed) we cannot use the t-test method.
This is because if the CLT doesn’t hold, we have no idea if the mean has a
normal distribution and whether our test statistic t will have a t-distribution.
In this case, we can use an alternative method which does not require the
CLT to hold: the Wilcoxon Signed-Rank test (or simply, the Sign test).

Unlike the t-test, the Wilcoxon test actually tests hypotheses about the
median, rather than the mean. The underlying concept is this: if the median
is truly μ0 (or close to μ0), then half of the observed values should be less
than μ0 and half of the observed values should be greater than μ0. If μ0

differs somewhat from the true median, then the percentage of observations
above and below the hypothesized median μ0 will both differ from 50%. Of
course, the greater the degree of these discrepancies, the more evidence there
is of a difference between the hypothesized median μ0 and the actual median.

While the calculations for the Wilcoxon test are not that complicated –
they’re actually kind of fun – we will not cover them. Instead, we will rely
upon R to calculate the p-value for us (note that there is no meaningful test
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statistic or degrees of freedom for this test). Thus, all we report is the p-value
for our relevant hypothesis, which is formed in the same manner as for the
t-test, expect we replace the hypothesized mean with a hypothesized median
(we usually assume these would be the same value). In R, you obtain the
Wilcoxon Signed-Rank test by using the wilcox.test function.

Using a different example, we have a small sample of blood creatine phos-
phokinase (CPK) from 11 cross-country relay participants 12 h into a 24h
relay race (Zuliani et al. 1983). The data are listed below in Program 21.
Since the sample size is small (n=11), and since the data are not necessarily
normally distributed (see for yourself), we could arguably use the nonpara-
metric test. We use the wilcox.test function to perform the test, specifying
also the null-hypothesized value (here we specify mu=300) and the alternative
hypothesis (here we ask for a two-sided test). The p-value we obtain (0.0283)
is less than our significance level, which means we reject the null hypothesis.
While we should not have conducted a t-test, it is interesting to note that for
this example we would have obtained the following results: t = 2.10, df = 10,
p-value=0.06246. So if we had erroneously performed the t-test, we would
not have found a significant result.

Furthermore, note that the wilcox.test produced two warning messages,
informing us that it could not compute an exact p-value; instead it produced
an approximate p-value. This does not invalidate our results, but rather
informs us that the stated p-value is an approximation. The only time we
should be worried about using an approximate p-value is when the p-value
is near our significance level α. For example, if we chose our significance
level to be α = 0.01 and our approximate p-value is 0.0098 then we should
be careful about how strong of a statement we wish to make about rejecting
H0. Since the p-value is approximate we are unsure if the exact p-value is
actually greater than α = 0.01 or possibly less than α = 0.01.

6.7 Communicating the Results

The following is an example of the IMRaD write-up for the cholesterol
example.

Introduction: Increased levels of cholesterol are an important co-morbidity
to obesity, and are thought to be a strong predictor of cardiovascular disease.
Using data from a large-scale epidemiological study, researchers tested the
hypothesis that female cholesterol levels were greater than 200.

Methods: Cholesterol levels were obtained from 20 female participants
in the Fels Longitudinal Study. These cholesterol levels were checked for
normality using QQ plots, and were summarized with means, standard dev-
iations and 95% confidence intervals. The alternative hypothesis that the
mean cholesterol level was greater than 200 was assessed using a one-sample
t-test against a null hypothesis that the mean cholesterol level was equal to
200. We will reject the null hypothesis if the resulting p-value is less than
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Program 21 Program to generate a Wilcoxon Signed Rank hypothesis test for testing
the center of the CPK distribution is different from 300: H0 : μ = 300 versus Ha : μ �= 300.

Code:

# Read in the data

cpk <- c(200, 300, 520, 490, 440, 380,

1040, 1340, 260, 365, 400)

### Generate a test

wilcox.test(cpk,

mu = 300,

alternative = "two.sided"

)

Output:

Wilcoxon signed rank test with continuity correction

data: cpk

V = 49.5, p-value = 0.02831

alternative hypothesis: true location is greater than 300

Warning message:

1: In wilcox.test.default(cpk, mu = 300, alternative = "two

.sided") : cannot compute exact p-value with ties

2: In wilcox.test.default(cpk, mu = 300, alternative = "two.

sided") : cannot compute exact p-value with zeroes

the stated significance level, and we will fail to reject otherwise. All data
summaries and tests were performed using the R statistical software, and all
tests were conducted using a significance level of α = 0.05.

Results: The sample is assumed representative, subjects are assumed ind-
ependent, and inspection of the QQ plot shows evidence of normality, so that
we can conclude a large enough sample size. The mean cholesterol level of the
20 female study participants was 203.7 (SD = 39.03, 95%CI : 185.4, 221.9).
The results from the one-sample t-test are t19 = 0.42, p-value = 0.3402. Since
p-value = 0.3402 > 0.05, we fail to reject the null hypothesis that the mean
cholesterol level in females is equal to 200.

Discussion: This study found little evidence that females exhibit high
levels of cholesterol. Since sustained elevated cholesterol levels can be an
early indicator of cardiovascular degeneration, this is good news for females.
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6.8 Process

1. State research question in form of testable hypotheses.

2. Determine whether assumptions are met.

(a) Representative

(b) Independence

(c) Sample size: check distribution of data and sample size.

3. Summarize data.

(a) If sample size OR normality is adequate: summarize with sample
size, mean, standard deviation and 95% CI.

(b) If sample size AND normality are inadequate: summarize with
sample size, median and IQR.

4. Perform Test.

(a) If sample size is greater than 30 OR data are normally distributed,
then use t-test.

(b) If sample size is less than 30 AND data are not normally dis-
tributed, then use Wilcoxon signed-rank test.

5. Compare test statistic to critical value or calculate p-value.

6. Make decision (reject H0 or fail to reject H0).

7. Summarize with IMRaD write-up.

6.9 Exercises

1. We can consider example from Green et al. (2005) who is interested
in estimating the amount of diethylhexyl phthalate (DEHP) that leach
from IV tubing and bags into intravenous medications. Suppose they
take 25 standard IV bags and standard tubing of length 1m and put
distilled water in the bag and let it sit for 8 h and then drain the bag
through the tube into a container. From each of the containers they
measure the DEHP in ng/mL and suppose they obtain the following
data:

53.0 40.4 39.1 39.6 52.9
32.8 51.7 42.9 55.0 43.8
51.1 44.2 38.3 44.3 47.7
43.7 44.2 40.0 60.1 42.9
27.0 50.8 37.0 47.5 69.6



6.9. EXERCISES 119

The researchers want a 98% confidence interval for the mean DEHP
level that leaches from the IV bag and tubing.

2. Yoshinaga et al. (2004) are interested in the amount of radiation people
working in a x-ray lab recieve. In general, the typical person in the
USA receives on average 3.6mSv (milli Sievert) of radiation per year.
Specifically they wish to know if x-ray labs technicians receive more
than 0.01mSv per day. They take a sample of 15 workers and places
a device on each technician that records the amount of radiation they
receive. Suppose this is the data they collected. Answer their question.

0.0023 0.0072 0.0054 0.0092 0.0114
0.0013 0.0017 0.0047 0.0069 0.0078
0.0082 0.0087 0.0044 0.0056 0.0087

3. As part of a study on an implantable medication system for insulin
delivery, Saudek et al. (1989) measured the percentage above ideal body
weight in 18 patients (found below). Test the hypothesis that the mean
percentage above ideal body weight is less than 100.

107 119 99 114 120 104 88 114 124
116 101 121 152 100 125 114 95 117

4. In there study on the effects of milk conception on hypervitaminosis of
vitamin D, Jacobus et al. (1992) also collected measurements on serum
creatinine. Estimate a 95% confidence interval for the mean creatinine
level (in micromols/liter) using the data provided below. Perform the
hypothesis test that the mean or median creatinine level is less than
115mm/l, which is the largest value in the established normal range
for creatinine.

159, 44, 80, 309, 80, 186, 433, 380

5. The Glasgow Coma Scale is (GCS) is used to measure the severity of
a brain injury. The scale ranges from 3 to 15, with 3 indicating com-
pletely unconscious state (no response to any stimuli) to 15 indicating
completely conscious state (normal response to all stimuli). There is
some evidence that a patients initial GCS score may be correlated with
recovery prognosis. Brain injury researchers generally report mean GCS
scores of their patients. Kreutzer et al. (2009) give the data below for
GCS scores for patients in their study. Create a 99% confidence interval
for the mean GCS for brain injury patients.
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3 15 7 3 8 3 3
3 3 6 9 3 13 12
4 3 15 3 15 3 15
3 14 8 6 15 3 6
7 4 5 7 7 3 3

14 15 15 3 3 3 3
15 4 13 3 10 15 3
15 8 14 15 13 12 2
7 12 10 3 12 15 15
5 9 3 6 4 15 12
5 9 3 15 3 10 10

6. Lansford et al. (2010) is interested in the number of sexual partners for
adolesents between age 16 and 22. They collected a sample of 526 people
in this age group and asked them the number of partners they have
engaged in which they have engaged in sexual activities. The following
sample is consistent with their data: Create a 95% confidence interval
for the mean number of sexual partners for all adolesents between 16
and 22.

2 7 3 1 2 0
0 1 3 2 0 1
0 4 3 0 6 7
1 2 1 8 1 3
0 2 6 1 6 0

7. Rossi et al. (2009) is interested in the waiting times for knee replacement
surgery. They took a survey of 161 patients and calculated the days
from the initial visit to surgery. The following sample is consistent with
their data.Create a 97% confidence interval for the mean waiting time
for all knee replacement surgeries.

53 67 69 68 53
64 72 63 73 69
64 77 65 54 52
63 66 61 70 57
66 72 75 72 77



Chapter 7

Two-Sample Means

7.1 Introduction: Independent Groups
or Paired Measurements

Building off the methods for the one-sample case covered in Chapter 6, it is
natural to extend those ideas to cases where there are two samples. However,
we run into the fact that there are two different cases where we are interested
in comparing the means from two samples. The first is the case where we
have two distinct groups of subjects, meaning that any subject providing a
measurement in one group is prohibited from providing a measurement in
the other group. These samples are then assumed to be independent of one
another, in much the same way observations between different subjects are
generally thought to be independent. This case will resemble the process
covered in Chapter 6 in some ways, though the details will differ. The second
case is where the two samples consist of exactly the same subjects, meaning
that the same subjects were measured twice (sequentially or simultaneously).
These samples are then assumed to be dependent, meaning that we have every
reason to believe that the values taken by particular subjects in one sample
are going to be related to the measurements from those same subjects in
the second sample (i.e. the values the measurements take depend on one
another). This case will also resemble the process for one-sample means, but
in different ways and for different reasons than the first case. Though both
cases involve two samples, they are handled in entirely different manners,
and as such they will be covered separately in this Chapter.

R. Sabo and E. Boone, Statistical Research Methods: A Guide for
Non-Statisticians, DOI 10.1007/978-1-4614-8708-1 7,
© Springer Science+Business Media New York 2013
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7.2 Independent Groups

7.2.1 Establishing Hypotheses: Independent Groups

In the event that we have two independent samples of subjects, we are gen-
erally interested in comparing the means from those two samples. Examples
occur often in practice, such as making comparisons between male and female
subjects, or determining if there is an increased response of some biomarker
at one dose level as compared to another. Thus, any hypothesis will involve
direct comparisons of one population mean (μ1) to another (μ2). For ins-
tance, if we believe – before hand – that the mean of one group is larger than
the mean of the other group, then we would write μ1 > μ2. As was explained
in the two-sample proportion case in Chapter 3, it will be easier for us to
work with the difference μ1 − μ2 > 0 and have us consider μ1 − μ2 as the
parameter of interest. Once we focus on the difference between two popula-
tion means, setting up the null and alternative hypotheses follows much in
the same manner as we have previously established: translate the research
question into a symbolic statement, find that statement’s logical complement,
and then assign one as the null hypothesis and the other as the alternative
hypothesis. Table 7.1 shows the possible sets of null and alternatives that we
could use.

Table 7.1: Possible Sets of Hypotheses for a Difference in Two Independent
Population Means Based Upon Key Phrases in the Research Question.

Key Phrases of µ1 relative to µ2

“less than”, “greater than “greater than”, “less than “equal to”, “not
Hypothesis or equal to”, “at least” or equal to”, “at most” equal to”

Null H0 : µ1 − µ2 = 0 H0 : µ1 − µ2 = 0 H0 : µ1 − µ2 = 0
Alternative HA : µ1 − µ2 < 0 HA : µ1 − µ2 > 0 HA : µ1 − µ2 �= 0

As an example, a clinical trial was conducted to determine whether a
certain treatment reduced blood pressure in hypertensive male adults. Par-
ticipants in this trial were randomized into two groups: those randomized to
the treatment group received the active treatment, while those randomized
to the placebo group received a non-active placebo. The clinicians adminis-
tering this study hypothesized that end-of-trial mean systolic blood pressure
(SBP) for subjects in the treatment group would be lower than the mean SBP
in the placebo group. If we let μT represent the treatment group population
mean and μP represent the placebo group population mean, the symbolic
representation of the research hypothesis is μT < μP , or μT − μP < 0. The
opposite of this statement is μT − μP ≥ 0, so we assign the first statement
as the alternative hypothesis HA : μT − μP < 0, and we assign the second
statement (with only an equal sign) as the null hypothesis H0 : μT −μP = 0.
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7.2.2 Assessing Assumptions (with R Code)

As always, we must start with an assessment of the independence of subjects
(all subjects irrespective of group membership) and the samples’ represen-
tativeness of the population from which they were drawn. Since there are
two groups here, one could make the argument that the values from subjects
within the same group are closer together in value than are values from sub-
jects between groups. However, this is not what we mean or require here for
independence. All we need to know is that the measurement provided by one
subject was not or could not be influenced by the measurement of any other
subjects (regardless of group membership). The representativeness of the
two samples is best determined by the randomization process for allocating
subjects: if the study adequately randomized subjects, we can assume the
samples are representative.

Since we have two samples, the determination of adequate sample size is
somewhat more challenging than it was in Chapter 6. To be safe, one must
ascertain that the Central Limit Theorem applies to both samples. Thus,
for each sample, we first look at the shape of the data via histograms, box
plots or QQ plots. If both samples appear normally distributed, then we can
assume we have enough data. Otherwise, we must check to see if we have at
least 30 observations in any sample that is not normally distributed. If the
CLT applies to both samples (either through distribution or sample size; note
that we could have a case where we have one small sample that is normal and
one large, non-normal sample), then we can continue on to the parametric
t-test (described below). However, if the CLT does not apply to one or both
of the samples, then we cannot use the parametric t-test and must instead
use non-parametric methods.

Aside from the three usual assumptions, the two independent samples
case requires us to check a fourth assumption, that being equal variances
between to the two samples. There are several ways to do this, ranging from
the subjective to the objective. Subjectively, you can simply look at the stan-
dard deviations and determine whether they are close together (e.g. 4.52 and
4.54) or far apart (e.g. 4.52 and 25.67). In some cases this visual inspection
will be sufficient, but it won’t work for others (e.g. 4.52 and 7.12). This
is an informal method, so we may need to rely upon a formal hypothesis
test, of which 4 are commonly reported: “Levene’s Test”, “Bartlett’s Test”,
the “F Test”, and the “Brown-Forsythe Test”. In R, we can invoke these
tests using the levene.test, bartlett.test, and var.test functions. For
our purposes, we will use the var.test function, which provides the results
for the “F Test”, where large p-values (greater than 0.05) indicate roughly
similar variances, while small p-values (less than 0.05) indicate different vari-
ances. The decision to visually inspect the data or perform a formal test
is not a formalized process, but when in doubt, you can always assume the
variances are unequal (it’s better to mistakenly assume the variances are une-
qual when they actually are, then to mistakenly assume that they are equal
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when they aren’t). We will explain the repercussions of unequal variances
with regards to summarizing data, the test statistic and confidence intervals
below.

The data from the blood pressure clinical trial are presented in Table 7.2.
The sample sizes in each group (Treatment: 15; Placebo: 14) are too small for
us to automatically invoke the CLT, so we will rely upon histograms and QQ
plots to assess normality. From an inspection of the QQ plots (Figure 7.1)
we can assume that the two samples are normally distributed. Thus, the
CLT applies and we can use the parametric test. The standard deviation for
the Treatment group in this example is 4.35, while the standard deviation
for the Placebo group is 7.47. A quick comparison shows that the Placebo
SD is almost twice as large as the Treatment SD, while, the F test (obtained
using the var.test() command with data sets listed in Program 23 below)
yields a p-value = 0.05452. While we technically wouldn’t reject this null
hypothesis of equal variances based on the p-value, it is close to 0.05. This
might be the type of case where either hypothesis (equal or unequal variances)
is debatable. For our purposes, we will “believe the test” and assume that
the variances are equal (though you do not have to if you “believe your eyes
and not the test”).

Table 7.2: Systolic Blood Pressure Measurements from Subjects Enrolled in
a Placebo-Controlled Clinical Trial.

Treatment Group Placebo Group
121 112 114 137 130 115
129 121 117 128 133 129
118 122 124 132 130 137
118 120 123 124 115 139
124 116 122 133 123

7.2.3 Summarizing Data (with R Code)

If the CLT applies to both of our samples, then we will summarize both sam-
ples with their respective sample size, mean, standard deviation and 95%
confidence interval (see below). In addition, we will also summarize the differ-
ence between the sample means with the observed difference (e.g. x̄1 − x̄2),
the standard error of that difference, and a 95% confidence interval. The
standard error we report for the difference will depend upon our assessment
of the assumption of equal variances. If we have assumed equal variances,
then we will use the following measure for the standard error of the difference
in means

(Pooled)s =

√
s2p

(
1

n1
+

1

n2

)
(7.1)
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Figure 7.1: QQ Plots for Systolic Blood Pressure Clinical Trial Data based
on Group Status
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where s2p called the pooled estimator

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
. (7.2)

The estimator sp effectively adds the variability between the two samples
and approximates the overall standard deviation. On the other hand, if we
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have assumed unequal variances, then we use the following measure for the
standard error of the difference in means

(Unpooled)s =

√
s21
n1

+
s22
n2

. (7.3)

It should be clear to see that the unpooled estimator is just a weighted sum of
the two sample variances (weighted inversely by sample size). If we assume
equal variances, we will report the difference in sample means, the pooled
standard error based on sp, and a 95% confidence interval on the difference
also calculated using the pooled standard error (see below). If we assume
unequal variances, we will report the difference in sample means, the unp-
ooled standard error, and a 95% confidence interval on the difference also
calculated using the unpooled standard error estimate (see below). Note
here that if the sample sizes for each group are equal, then the two standard
error estimates will be the same as well. If the CLT does not apply to either
sample, then we will summarize each sample with the sample size, median
and interquartile range, and we will not report the difference in either the
means or medians.

The summary data for each group in the blood pressure clinical trial
example are provided in Table 7.3. Based on our assessment of the data, we
assumed that the variances are equal, so we report the pooled standard error
for the difference (though not the treatment means). We see that the obs-
erved difference between sample means is the same for both the equal- and
unequal-variance cases (as we would expect), while the standard errors for
that difference are similar but not equivalent, indicating that there is some
(small) difference in the group standard deviations. We will discuss the confi-
dence intervals later in this chapter. In R, we may obtain the sample-specific
data summaries using the summary, sd, and t.test functions discussed in
Chapter 6. For the differences and standard errors in both the equal and
unequal variance cases, we need to calculate the values “manually” (i.e. by
coding equations directly in R to get the desired numbers), as shown in

Table 7.3: Summary Data for Systolic Blood Pressure Measurements Based
on Group Status.

Group n Mean SD 95% CI
Treatment 15 120.1 4.35 (117.7, 122.5)
Placebo 14 128.9 7.47 (124.6, 133.2)

Mean SE 95%CI
Difference (T-P, Equal-Var.) – −8.9 2.25 (−13.5, −4.2)

Difference (T-P, Unequal-Var.) – −8.9 2.29 (−13.6, −4.1)
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Program 22. Even for those of us who are somewhat tepid in their comput-
ing skills, calculating this information (including Equations 7.1, 7.2, and 7.3)
is rather simple: the difference in sample means is obtained by the diff equa-
tion; the pooled standard error (for the equal variance case) is obtained by
the sep equation; and the unpooled standard error (for the unequal variance
case) is obtained by the seu equation. We will discuss using R to calculate
the confidence intervals on the differences below.

Program 22 Program to calculate difference in two sample means and both pooled and
unpooled standard errors.

Code:

[!h]

# Input the data

treatment1 <- c( 121, 112, 114, 129, 121,

117, 118, 122, 124, 118,

120, 123, 124, 116, 122)

placebo1 <- c ( 137, 130, 115, 128, 133,

129, 132, 130, 137, 124,

115, 139, 133, 123)

diff<-mean(treatment1)-mean(placebo1)

nt<-15

np<-14

sdt<-sd(treatment1)

sdp<-sd(placebo1)

sp<-((nt-1)*sdt*sdt+(np-1)*sdp*sdp)/(nt+np-2)

sep<-sqrt(sp*(1/nt+1/np))

seu<-sqrt(sdt*sdt/nt+sdp*sdp/np)

diff

sep

seu

Output:

diff

-8.861905

sep

2.250064

seu

2.290133
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7.2.4 Performing the Test and Decision Making (with
R Code)

For both parametric cases (i.e. the CLT applies and we have either equal or
unequal variances), the test statistic we use will be based on the t-distribution,
much like the case described in Chapter 6. In this Chapter our point esti-
mate of the population difference μ1−μ2 will be the observed mean difference
x̄1 − x̄2. We generally assume that the population difference is zero-valued,
so that x̄1 − x̄2 is the numerator of our test statistic. In the case where we
have assumed equal variances, the test statistic is

t =
(x̄1 − x̄2)− (μ1 − μ2)

sp

√
1
n1

+ 1
n2

. (7.4)

In the case of where we have assumed unequal variances, the test statistic is

t =
(x̄1 − x̄2)− (μ1 − μ2)√

s21
n1

+
s22
n2

. (7.5)

For both the equal and unequal variance cases, the test statistics are similar
(they differ only in the standard errors in their denominators), though their
distributions are not the same. For the record, they both have t-distributions,
but they each have different degrees of freedom. The equal variance test
statistic has n1 + n2 − 2 degrees of freedom, while the unequal variance test
has ν degrees of freedom. The symbol ν (pronounced “nu”) comes from
what is called the “Saitterthwaite approximation”, which is used because the
actual expression for the degrees of freedom is difficult to derive, and has the
following equation.

ν =

(
s21
n1

+
s22
n2

)2

s41
n2
1(n1−1)

+
s42

n2
2(n2−1)

. (7.6)

While complicated, R will determine the value of ν so that it won’t have to
be calculated by hand. This value often is reported as a decimal (no more
than one decimal place (e.g. 34.2)), though you may report it as an integer.
In any event, you must round ν down, as you cannot report greater degrees
of freedom than you actually have.

Program 23 shows the R code and output for performing the equal-
variance, two-sample t-test for comparing the systolic blood pressure means
between the treatment and placebo groups. For this test we see that the
observed test statistic is −3.93851 (which we would report as −3.94), while
the reported degrees of freedom are 27. To obtain the unequal variance test
statistic, we need to change the setting for the var.equal function to FALSE.
This would provide an observed test statistic of −3.8696 (which we report as
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−3.87), while the reported degrees of freedom are 20.619 (which we report
as 20.6). Note that in both of these case, specifying the value for the null
hypothesis (mu=0) and alternative hypothesis (alternative="less") are the
same as they were in Chapter 6.

Program 23 Program to conduct an equal-variance, two-sample t-test on Systolic Blood
Pressure Measurements P.

Code:

# Input the data

treatment1 <- c( 121, 112, 114, 129, 121,

117, 118, 122, 124, 118,

120, 123, 124, 116, 122)

placebo1 <- c ( 137, 130, 115, 128, 133,

129, 132, 130, 137, 124,

115, 139, 133, 123)

# Call t.test()

t.test(treatment1, placebo1, mu=0, alternative="less",

var.equal=TRUE)

Output:

Two Sample t-test

data: treatment1 and placebo1

t = -3.9385, df = 27, p-value = 0.0002603

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -5.029398

sample estimates:

mean of x mean of y

120.0667 128.9286

Critical Value Method

Since the test statistics for the equal- and unequal-variances cases have dif-
ferent t-distributions, it comes as no surprise that the critical values we
obtain from those distributions will not be the same. If we assume equal
variances, then we will draw our critical value from a t-distribution with
n1+n2−2 degrees of freedom. If we have a two-tailed alternative hypothesis
(HA : μ1 − μ2 �= 0), we will take the (1 − α/2)100th percentile from the
t-distribution, or tn1+n2−2,1−α/2, and take the positive and negative values
of this percentile to obtain our two critical values. If we have a right-tailed
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alternative hypothesis (HA : μ1 −μ2 > 0), we will take the (1−α)100th per-
centile from the t-distribution, or tn1+n2−2,1−α, and for a left-tailed test we
simply take the negative of the critical value from the right-tailed test (since
the t-distribution is symmetric), or −tn1+n2−2,1−α. For the unequal-variance
t-test, the critical values are obtained in the same way, except we use ν deg-
rees of freedom to obtain the relevant percentiles form the t-distribution.
Since R does not automatically or immediately present the critical value, we
will not cover this method.

p-Value Method

In the equal-variance case, we will use the observed test statistic to obtain our
p-value from a t-distribution with n1 + n2 − 2 degrees of freedom. Likewise,
in the unequal-variance case, we will obtain a p-value from a t-distribution
with ν degrees of freedom. In either case we reject the null hypothesis if the
p-value is less than the stated significance level α. Using our blood pressure
example – and assuming equal variances – and recalling that our alternative
hypothesis is that the treatment group has lower mean than the placebo group
(HA : μT − μP < 0), our left-tailed test means we have p-value = 0.0003,
which we can obtain in R by using t.test function with the var.equal=TRUE
specification. A similar set p-values are produced for the unequal-variance
t-test, and selecting the appropriate value based on our alternative hypothesis
we get p-value = 0.0005, which we can obtain in R by using t.test function
with the var.equal=FALSE specification

Interpretation

For the equal-variance independent-sample t-test, our p-value (0.0003) was
less than the significance level (α = 0.05). This means that the statistical
evidence suggests that mean systolic blood pressure for subjects on the active
treatment is lower than the mean systolic blood pressure for subjects on the
placebo. In other words, the evidence seemingly suggests that the active
treatment lowers blood pressure compared to the control, however, we have to
be careful with this kind of statement (were the SBP measurements already
lower in the treatment group, or higher in the placebo group, before the
treatment was administered?). Keeping the comments strictly on the means
and less on how the drug works would be an advisable approach here.

Interestingly, if we conservatively assume that the two variances are une-
qual when they actually differ to some trivial extent, the critical values and
p-values we get from the two methods will be close (when the two variances
are close in value the unequal-variance test usually provides a slightly larger
critical value and p-value than the equal-variance test). In fact, if the two
variances are exactly equal, then the test statistics we obtain from both meth-
ods will be equal as well. Recall that the standard errors (and thus the test
statistics) will be identical if the sample sizes are equal. These facts lend
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credence to the rule that we should choose the unequal-variance test if we
are unsure about the equality of the variances: even if we erroneously assume
that the variances are unequal when they actually are equal, the tests will
perform similarly (with only a modest loss in the ability to find a significant
result). Note that this was the case in our blood pressure example, where the
standard errors for the differences were similar (equal-var.: 2.25; unequal-var.:
2.29), as were the test statistics (equal-var.: −3.94; unequal-var.: −3.87) and
p-values (equal-var.: 0.0003; unequal-var.: 0.0005).

Confidence Intervals

Along with the confidence intervals on the population means for each of
the two groups, we must also provide a confidence interval on the difference
between the two means. Naturally, the observed mean difference x̄1 − x̄2 is
used as the point estimate for this interval, but the measure of variability and
the probabilistic measure (as you might expect) depend upon our assumption
of equal variances. If we have assumed that the two variances are equal,
then we use the same standard error for the difference that was used for the
equal-variance two-sample t-test, and the probability measure is taken from
a t-distribution with n1 + n2 − 2 degrees of freedom (tn1+n2−2,1−α/2). Then
the (1 − α)100% confidence interval for the difference between the means
from two independent samples with equal variances is
(
(x̄1−x̄2)−tn1+n2−2,1−α/2sp

√
1

n1
+

1

n2
, (x̄1−x̄2)+tn1+n2−2,1−α/2sp

√
1

n1
+

1

n2

)
(7.7)

where sp is part of the pooled estimate of the standard error described previ-
ously. If we have assumed that the two variances are unequal, the we use the
same standard error for the difference that was used for the unequal-variance
two-sample t-test, and the probability measure is taken from a t-distribution
with ν degrees of freedom (recall that ν was defined earlier). Then the
(1 − α)100% confidence interval for the difference between the means from
two independent samples with equal variances is⎛
⎝(x̄1 − x̄2)− tν,1−α/2

√
s21
n1

+
s22
n2

, (x̄1 − x̄2) + tν,1−α/2

√
s21
n1

+
s22
n2

⎞
⎠ . (7.8)

Fortunately, R will calculate these intervals for us using the t.test function
with the alternative="two.sided" optionality included. For the equal-
variance confidence interval using the pooled standard error, we specify the
var.equal=TRUE option, while for the unequal-variance confidence interval
using the unpooled standard error, we specify the var.equal=FALSE option.
Program 24 shows the R-code for creating a 95% confidence interval for the
Systolic blood pressure example in the equal-variance case. Notice that the
reported 95% confidence interval on the difference (−13.478654, −4.245156)
is the same as what we calculated by hand and reported in Table 7.3.
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Program 24 Program to create a 95% confidence interval on the difference for the
Systolic blood pressure example.

Code:

# Input the data

treatment1 <- c( 121, 112, 114, 129, 121,

117, 118, 122, 124, 118,

120, 123, 124, 116, 122)

placebo1 <- c ( 137, 130, 115, 128, 133,

129, 132, 130, 137, 124, 115,

139, 133, 123 )

# Call t.test()

t.test(treatment1, placebo1, alternative="two.sided",

conf.level=0.95, var.equal=TRUE)

Output:

Two Sample t-test

data: treatment1 and placebo1

t = -3.9385, df = 27, p-value = 0.0005206

alternative hypothesis: true difference in means is not equal

to 0

95 percent confidence interval:

-13.478654 -4.245156

sample estimates:

mean of x mean of y

120.0667 128.9286

7.2.5 Contingency Methods (with R Code)

In the event that the Central Limit Theorem does not apply – due to a
small sample size and non-normal data in at least one of the two groups
of subjects – and we cannot use the parametric t-test, we have one non-
parametric alternative: the Wilcoxon Rank-Sum test (also known as the
Mann-Whitney U test; for many reasons, non-parametric statistical methods
usually have several names). This test is similar to the Wilcoxon Signed-
Rank test from Chapter 6, and in fact similarly begins with us ranking the
data irrespective of group membership from 1 to n (1 being the smallest; n
being the largest). Once ranked, we then sum the ranks separately for each
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group. If there is no difference between the “centers” of the two groups (i.e.
if there is no mean or distributional difference) then we would expect the sum
of the ranks to be nearly equal. However, if there is a difference between the
“centers” of the two groups, then we would expect the summed ranks to differ
(if the center of the first group is lower or less in value than the center of the
second group, then we would expect the sum of the first group ranks to be
lower than the summed ranks for the second group, and vice versa). So like
the t-test, we can start from the assumption that the two distributions have
the same center – as measured by the median – and determine if the observed
data back that claim. In the two-sample case, the Wilcoxon Rank-Sum test
will have one degree of freedom, and along with that we report the resulting
p-value (note that we do not report the test statistic and degrees of freedom).

For our blood pressure data, let’s momentarily assume that the CLT did
not apply. Then we would have summarized the blood pressure in the Treat-
ment group with a median of 121 and an inter-quartile range of (117, 123),
and we summarize the Placebo group with a median of 130 and IQR of (123.8,
134). Using the wilcox.test function in R (Program 25) to obtain the res-
ults of the Wilcoxon Rank-Sum test, we see that our p-value is 0.0008529.
This value is smaller than the significance level α = 0.05, so we reject the
null hypothesis of equal population medians, and declare that the evidence
suggests the medians of the Treatment and Placebo groups are not the same
(particularly, the Placebo group median is larger than the Treatment group
median).

We should note that the output also had a warning message telling us
that the p-value calculated is an approximate p-value as and exact p-value
can not be calculated when the dataset has ties in it (i.e. two data values
have the same numeric value). As was the case in Chapter 6, we should only
be concerned with this particular message when the resulting p-value is near
our significance level α, as in that case we are not sure whether the actual
p-value is above or below the significance level.

7.2.6 Communicating the Results

The following is an example of the IMRaD write-up for the independent
sample blood pressure example.

Introduction: Hypertension is associated with many adverse health condi-
tions, including cardiovascular disease. Clinicians and health-service providers
are interested in treatments that reduce high levels of blood pressure and im-
prove cardiac and pulmonary health. In a randomized, placebo-controlled
clinical trial, researchers aimed to determine whether a new treatment res-
ulted in lower systolic blood pressure than a placebo.

Methods: Systolic blood pressure was measured (mm/Hg) from 15 sub-
jects given a new treatment for reducing blood pressure, as well as 14 subjects
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Program 25 Program to conduct two sample Wilcoxon Rank-Sum test on population
locations for Systolic Blood Pressure Measurements.

Code:

# Input the data

treatment1 <- c( 121, 112, 114, 129, 121,

117, 118, 122, 124, 118, 120,

123, 124, 116, 122 )

placebo1 <- c ( 137, 130, 115, 128, 133,

129, 132, 130, 137, 124, 115,

139, 133, 123)

# Call t.test()

wilcox.test(treatment1, placebo1, mu=0, alternative="less")

Output:

Wilcoxon rank sum test with continuity correction

data: treatment1 and placebo1

W = 36.5, p-value = 0.0008529

alternative hypothesis: true location shift is less than 0

Warning message:

In wilcox.test.default(treatment1, placebo1, mu = 0,

alternative = "less") :

cannot compute exact p-value with ties

administered a placebo. Subjects were randomly allocated into the two treat-
ments. The systolic blood pressure measurements were summarized for each
group with means, standard deviations and 95% confidence intervals, while
the observed difference between the two sample means, its standard error
and 95% confidence interval are also reported. Data were checked for nor-
mality with QQ plots, and the equality of variances between the two groups
was assessed using the Brown-Forsythe test. We will test the null hypothesis
that the Treatment and Placebo group means are equal (against a one-sided
alternative hypothesis HA : μT − μP < 0) with either the equal-variance
or unequal-variance independent two-sample t-test. We will reject the null
hypothesis in favor of the alternative if the observed p-value is less than the
significance level of (α = 0.05), otherwise we will fail to reject the null hyp-
othesis. All calculations and analyses were conducted using the R statistical
software.
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Results: We assume that the data are representative and subjects are
independently measured. The data are summarized in Table 7.4 below, where
we see that the Treatment group mean is 8.9mm/Hg lower than that observed
for the Placebo group. Note that while the sample sizes are relatively small,
the data values in both groups are reasonably normally distributed based
on inspection of the QQ plots. Further, the p-value for the Brown-Forsythe
test is 0.1550, so we can assume that the variances in both groups are equal.
The results from the equal-variance t-test (t27 = −3.94, p-value = 0.0003)
indicate that there is a significant difference between the Treatment and
Placebo group means.

Table 7.4: Summary Data for Systolic Blood Pressure Measurements Based
on Group Status.

Group n Mean SD 95% CI
Treatment 15 120.1 4.35 (117.7, 122.5)
Placebo 14 128.9 7.47 (124.6, 133.2)

Mean SE 95%CI
Difference (T-P) – −8.9 2.25 (−13.5, −4.2)

Discussion: Based on our observed data, the mean SBP for the Treatment
group was significantly lower than the mean SBP for the Placebo group.
Provided the SBP values were comparable between the two groups at the
beginning of the study, it would appear that this treatment is successful at
reducing systolic blood pressure.

7.2.7 Process for Two-Sample t-Test

1. State research question in form of testable hypotheses.

2. Determine whether assumptions are met.

(a) Representative

(b) Independence

(c) Sample size: check distribution of data and sample size for each
group.

(d) Determine whether variances are equal.
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3. Summarize data.

(a) If sample size OR normality is adequate in BOTH groups: sum-
marize groups with sample sizes, means, standard deviations and
95% CIs, and summarize the difference with the observed differ-
ence, standard error and 95% CI.

(b) If sample size AND normality are inadequate in EITHER group:
summarize groups with sample sizes, medians and IQRs.

4. Perform Test.

(a) If variances are equal and CLT applies, then use equal-variance
independent two-sample t-test.

(b) If variances are unequal andCLT applies, then use unequal-variance
independent two-sample t-test (Welch test).

(c) If CLT does not apply, then use Wilcoxon rank-sum test.

5. Compare test statistic to critical value or calculate p-value.

6. Make decision (reject H0 or fail to reject H0).

7. Summarize with IMRaD write-up.

7.3 Paired Measurements

Now that we have covered the one-sample case (Chapter 6) and the two inde-
pendent sample case (first part of this chapter), covering the two dependent-
sample case will be relatively simple (and short). We basically conduct the
test in this case as if it were a one-sample test, and report the results as if it
were a two-sample test. Because of this, there is nothing new to report; we
need only learn how to proceed.

7.3.1 Establishing Hypotheses: Independent Groups

The dependent sample case is so called because we have repeated or multiple
measurements on each subject in the sample. One of the most common
circumstances where this is the case is when we have a trial where subjects
are measured at baseline and then again after the treatment has concluded.
The paired measurements for each subject are said to be dependent (i.e. in
addition to whatever effect a treatment may have, a patient’s measurement
at the end of the trial depends upon what the patient’s measurement was at
the beginning of the trial). The relationship between these measures may
not be strong (or exist at all), but we need to proceed as if it was.

In cases like this we would be interested in (e.g.) the change in mean from
baseline to end-of-trial. The simplest and most commonly accepted way of
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going about this is to focus on the difference between the pre- and post-
treatment values for each subject, rather than focusing on the overall means
from both points. This difference then gives us one value for each subject,
and allows us to use the methods outlined in Chapter 6. If we assume that
the null case is where there is no change from pre- to post-treatment (or
d = 0), then we can arrange our null and alternative hypotheses as listed in
Table 7.5 below.

Table 7.5: Possible Sets of Hypotheses for a Difference in Two Dependent
Population Means Based Upon Key Phrases in the Research Question.

Key Phrases of µ1 relative to µ2

“less than”, “greater than “greater than”, “less than “equal to”, “not
Hypothesis or equal to”, “at least” or equal to”, “at most” equal to”

Null H0 : d = 0 H0 : d = 0 H0 : d = 0
Alternative HA : d < 0 HA : d > 0 HA : d �= 0

Recalling the blood pressure example from earlier in this chapter, the res-
earchers had also taken systolic blood pressure measurements of the subjects
before the treatment was administered (the pre- and post-treatment SBP
values are provided in Table 7.6). For the treatment group, we hypothesize
that the active Treatment would reduce SBP, or the mean post-treatment
would be lower than the mean pre-treatment. If we consider the difference as
d = μPre−μPost, we would assume that the mean change (d) from baseline to
the end of the study would be positive, so our alternative hypothesis becomes
HA : d > 0.

7.3.2 Assessing Assumptions (with R Code)

The statistical assumptions we require are the same as those for the one-
sample case in Chapter 6, applied here to the observed differences. Impor-
tantly, we must check the observed differences for our assessment of the CLT:
if there are greater than 30 observed differences or if the observed differences
appear normally distributed, then we can use the parametric one-sample t-
test (which in this unique instance we call a paired t-test); if neither of those
conditions hold then we can use the non-parametric Wilcoxon signed rank
test. For our blood pressure example, there are only 14 subjects who provide
both the pre- and post-treatment SBP measurements (subject eight does not
have a pre-treatment measurement). From those 14 subjects, we get the QQ
plot shown in Figure 7.2 below, which was obtained using the qqplot func-
tion in R. To use this function on the differences, we created a new variable
diff=pre1-post1 for the data specified below in Program 26. Even though
the 14 subjects are less than the preferred 30, the quantiles in the QQ plot
indicate that the data appear nearly normally distributed. Thus, the CLT
holds and we may use the parametric t-test.
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Table 7.6: Pre- and Post-Treatment Systolic Blood Pressure Measurements
from Subjects Enrolled in a Placebo-Controlled Clinical Trial (Measurements
only provided for Treatment Group).

Patient SBP (Pre-Trt) SBP (Post-TRT) Difference
1 123 121 2
2 134 129 5
3 128 118 10
4 125 118 7
5 130 124 6
6 132 112 20
7 139 121 18
8 . 122 .
9 139 120 19
10 119 116 3
11 135 114 21
12 140 117 23
13 146 124 22
14 135 123 12
15 130 122 8

Figure 7.2: QQ Plot for Difference in Pre- and Post-Treatment Systolic Blood
Pressure in Clinical Trial Example.
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Program 26 Program to conduct a paired two sample test on means for Systolic Blood
Pressure Measurements for H0 : μd/le0 versus Ha : μd > 0.

Code:

# Input the data

pre1 <- c( 123, 134, 128, 125, 130,

132, 139, NA, 139, 119,

135, 140, 146, 135, 130)

post1 <- c ( 121, 129, 118, 118, 124,

112, 121, 122, 120, 116,

114, 117, 124, 123, 122)

# Call t.test()

t.test(pre1, post1, mu=0, alternative="greater", paired=TRUE)

#Alternative (and Equivalent) Approach

Diff<-post1-pre1

#t.test(diff, mu=0, alternative="greater")

Output:

Paired t-test

data: pre1 and post1

t = 6.1624, df = 13, p-value = 1.709e-05

alternative hypothesis: true difference in means is greater

than 0

95 percent confidence interval:

8.958683 Inf

sample estimates:

mean of the differences

12.57143

7.3.3 Summarizing Data (with R Code)

Since we technically have two samples, we must summarize the data as we
did in the two independent samples case. If the CLT holds, the data for each
repeated measure as well as the difference between those measurements must
be summarized with a sample size, mean, standard deviation, and a 95%
confidence interval. Note that we report the SD of the difference here (and not
the SE) because we are summarizing the observed differences, not the mean
difference. Of course, if the CLT does not hold, then we will summarize the
two samples and the differences with sample sizes, medians and inter-quartile
ranges. Please note that cases of repeated measures often involve missing
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data for some subjects at one time point or another. Care must be taken in
these cases, and the number of missing data must be reported, as differences
cannot be calculated for subjects missing one or both measurements.

Since we’ve decided that the CLT holds (see Figure 7.2), we can summa-
rize the data with means, standard deviations and confidence intervals, as
shown in Table 7.7, which were obtained using the summary and sd functions
for the means and standard deviations of each measure, and the t.test func-
tion for the confidence intervals, which as always are obtained by specifying
the alternative="two.sided" command. Note that we have also indicated
that there is a missing observation. There are a couple things worth noting.
The first point is that the average difference is not the same as the difference
between the two reported means (which is 12.4). This is not a problem to
worry about, and is due to the missing observation in the baseline measure-
ments. If we excluded that patient, the mean difference and the difference
between the pre- and post-treatment means would match. Second, we sub-
tracted the post-treatment measurements from the pre-treatment measures,
and since the follow-up measures are smaller than at baseline, the reported
mean difference is positive. You must be careful not to report this as an
increase (since that’s not what happened). If we had subtracted the baseline
measures from the follow-up measures, then the differences and their aver-
age would be negative (though the same magnitude). Recall our research
question, which states that we are expecting a decrease in SBP from baseline
to follow-up. If we had taken the difference the other way (i.e. subtracted
Pre-Treatment SBP from Post-Treatment SBP), then the difference would
be −12.6 (and the CI would be −17.0 to −8.2; note the change in sign). This
may be a better way of understanding the change in time, but we would have
had to alter our alternative hypothesis to correspond.

Table 7.7: Summary Data for Systolic Blood Pressure Measurements Based
on Group Status.

Group n Mean SD 95% CI
Pre-Treatment 14 132.5 7.34 (128.3, 136.7)
Post-Treatment 15 120.1 4.35 (117.7, 122.5)

Difference 14 12.6 7.63 (8.2, 17.0)
(Post - Pre)

Pre Post
Missing Data 1 0

7.3.4 Performing the Test and Decision Making
(with R Code)

When the CLT holds, the one-sample t-test explained in Chapter 6 can be
used. Here we use the mean difference (d̄) as the basis of our test statistic,
from which we subtract the hypothesized value d (which is usually zero), and
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divide by the standard error of the mean difference (which is calculated from
the standard deviation of the differences, sd), and we obtain the following
test statistic

t =
d̄− d

sd/
√
n
. (7.9)

This test statistic will have a t-distribution with n − 1 degrees of freedom.
From our blood pressure example, the test statistic comes out to 6.16 with
13 degrees of freedom.

We are free to choose between the critical value method and the p-value
method, both of which are described in Chapter 6. However, since the t-
distribution is based on the observed degrees of freedom (here based on n−1,
where n is the number of differences and not necessarily the sample size since
there may be missing data), we have a preference to use the p-value method.
Based on a test statistic of 6.16 and 13 degrees of freedom, and since our
alternative hypothesis (HA : d > 0) is right-tailed, our test yields a p-value
<0.0001 (see below). Since this value is less than the reported significance
level of α = 0.05, we reject the null hypothesis and conclude that the mean
difference is significantly larger than zero. Note that we report the observed
test statistic, degrees of freedom and p-value, and we round the test statistic
to two decimal places. As always, we must translate the statistical results
into statements that convey in words the meaning inherent in those results.
In the dependent sample case, our analysis is centered around the observed
differences, but we should interpret the results in terms of the two groups or
time periods. For our example, the significant mean difference implies that
the treatment reduced SBP levels from baseline to follow-up. In other words,
the treatment seems to work at reducing SBP.

Program 26 provides the R code to conduct the paired t-test on the Sys-
tolic blood pressure measurements for pre and post treatments. Note that we
can approach the problem in two ways: we can ask the t.test function to per-
form the paired t-test on the original variables pre1 and post1 by specifying
the paried=TRUE command, or we may use the t.test function on the differ-
ences themselves (here using the generated variable diff). Both approaches
lead to identical results, which are seen in Program 26. Recall that to get the
95% confidence interval on the difference, we must run the t.test function
again, this time specifying the alternative="two.sided" command. Recall
also that the reported difference and confidence interval depend upon the
order in which we include the variables, or upon the order in which we take
their difference.

7.3.5 Communicating the Results

The following is an example of the IMRaD write-up for the dependent-sample
blood pressure example.
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Introduction: Hypertension is associated with many adverse health condi-
tions, including cardiovascular disease. Clinicians and health-service providers
are interested in treatments that reduce high levels of blood pressure and im-
prove cardiac and pulmonary health. In a randomized, placebo-controlled
clinical trial, researchers aimed to determine whether a new treatment red-
uced systolic blood pressure from baseline levels.

Methods: Systolic blood pressure was measured (mm/Hg) from 15 sub-
jects both before and after they were given a new treatment for reducing
blood pressure. Subjects were randomly allocated into the active treatment.
Both pre- and post-treatment systolic blood pressure measurements, as well
as the observed difference from pre- to post-treatment, were summarized with
means, standard deviations and 95% confidence intervals. The observed dif-
ferences were checked for normality with QQ plots, and we will test the null
hypothesis that the pre- and post-treatment SBP levels are equal (against a
one-sided alternative hypothesis HA : d > 0) with a paired t-test. We will
reject the null hypothesis in favor of the alternative if the observed p-value is
less than the significance level of (α = 0.05), otherwise we will fail to reject
the null hypothesis. All calculations and analyses were conducted using the
R statistical software.

Results: We assume that the data are representative and independently
measured. The QQ plot showed no departure from normality for the observed
differences. The data are summarized in Table 7.8 below, where we see that
there was one missing pre-treatment measurement, reducing our effective
sample size to 14. The mean reduction in SBP from pre- to post-treatment
was 12.6, which is significantly different from zero (t13 = 6.16, p-value <
0.0001), leading us to reject the null hypothesis in favor of the alternative.

Table 7.8: Summary Data for Systolic Blood Pressure Measurements Based
on Group Status.

Group n Mean SD 95% CI
Pre-Treatment 14 132.5 7.34 (128.3, 136.7)
Post-Treatment 15 120.1 4.35 (117.7, 122.5)

Difference 14 12.6 7.63 (8.2, 17.0)
(Post - Pre)

Pre Post
Missing Data 1 0

Discussion: Since the mean reduction from pre- to post-treatment was
significantly different from zero, we conclude that the evidence suggests that
the active treatment succeeded in reducing systolic blood pressure from base-
line measurements. Family practitioners interested in reducing the blood
pressure of their patients may be interested in this treatment.
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7.3.6 Process for Paired t-Test

1. State research question in form of testable hypotheses.

2. Determine whether assumptions are met.

(a) Representative

(b) Independence

(c) Sample size: check distribution of observed differences and sample
size.

3. Summarize data.

(a) If sample size OR normality is adequate: summarize with sample
sizes, means, standard deviations and 95% CIs for both samples
and difference.

(b) If sample size AND normality are inadequate: summarize with
sample sizes, medians and IQRs.

4. Perform Test.

(a) If sample size is greater than 30 OR data are normally distributed,
then use paired t-test on differences.

(b) If sample size is less than 30 AND data are not normally dis-
tributed, then use Wilcoxon signed-rank test on differences.

5. Compare test statistic to critical value or calculate p-value.

6. Make decision (reject H0 or fail to reject H0).

7. Summarize with IMRaD write-up.

7.3.7 Exercises

1. Wrona (1979) compared serum phenylalanine levels in patients with
low and high exposures to that chemical. Using the data listed below,
determine if there is a difference in the average phenylalanine levels
between the two groups.

Group Serum Phenylalanine (mg/dl)
Low Exposure 5.1, 9.5, 6.8, 5.5, 6.8, 9.2, 6.7, 8.9, 7.6, 4.2, 9.6,

6.2, 8.5, 4.8, 9.2, 5.7, 7.7, 9.6, 7.5, 8.9, 5.6
High Exposure 11.8, 13.5, 13.6, 11.4, 12.8, 11.5, 12.3, 13.2, 10.3,

11.2, 11.3, 15.3, 10.9, 15.3, 10.2, 13.0, 13.8, 11.0
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2. Burch et al. (1989) performed a study on the effectiveness of shunts in
helping infants with neonatal respiratory failure. Measurements of left
ventricular dimension (LVD) are provided below. Determine if there
was a significant increase in after treatment (extracorporeal membrane
oxygenation, ECMO).

Before After Before After
Subject ECMO ECMO Subject ECMO ECMO

1 1.6 1.6 9 1.6 1.4
2 2.0 2.0 10 1.7 1.5
3 1.2 1.2 11 1.0 1.3
4 1.6 1.6 12 1.5 1.8
5 1.6 1.5 13 1.5 1.8
6 1.7 1.6 14 1.4 1.8
7 1.6 1.5 15 1.5 2.0
8 1.6 1.7

3. In a case-control study, Walker et al. (1987) compared diphtheria-
tetanus-pertussis immunization rates between children who did and did
not die from sudden infant death syndrome. The age (in days) at death
are listed below for male and female enfants. Determine if there is a
difference in age at fatality between sexes.

Sex Age at Death (days)

Females 160, 102, 117, 60, 87, 87, 56, 277, 60, 78, 134, 53
Males 167, 78, 133, 52, 80, 77, 115, 175, 84, 114, 81, 58, 59, 103, 134, 46, 175

4. Cotinine is often used as a measure of exposure to tobacco smoke.
Di Giusto and Eckhard (1986) looked at the use of measuring saliva
cotinine, as opposed to serum, as is typically done. Within the following
seven subjects, compare the mean cotinine levels from 2 to 12 h, and
from 2 to 24 h.

Subject
Time 1 2 3 4 5 6 7

2 Hours 80 83 80 87 45 37 126
12 Hours 73 58 67 93 33 18 147
24 Hours 24 27 49 59 0 11 43

5. Winer-Muriam et al. (2002) is interested in determining the theoret-
ical radiation/energy absorbed by a pregnant woman during different
gestational periods. Information was gathered from eight patients dur-
ing the first trimester and nine patients during the second trimester.
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The data collected is the theoretical dose/energy absorption to a set of
points in each patient. Compare the mean dosage/energy absorptions
between trimesters.

First 9.5 3.3 5.7 4.1
13.6 4.6 20.2 20

Second 19.7 17.2 25.5 7.9
24.7 76.7 23.5 30.4
13.7

6. Austin et al. (2006) is interested in the foraging behavior of gray seals
by gender. In their study they follow gray seals and record the number
of successful foraging trips per day. Over the course of a few days the
average foraging success per day was recorded. Using the data below
determine if there is a difference in foraging success across genders.

Males 2.9 1.6 2.8 2.7 0 2.7 1.1 0.9 1.3 2 2.2
Females 1 1.2 0.3 0.5 0 1.3 0.3 1.1



Chapter 8

Analysis of Variance

In this chapter we cover the case where we wish to compare the means from
several groups, where “several” is defined as more than two. The method
we use in this case is called an Analysis of Variance (ANOVA), which is
a well-known and widely-used statistical procedure. While this method is
somewhat more complicated and involved than methods we’ve covered earlier,
the process for using ANOVA modeling follows many of the same steps and
rules used for the independent two-sample t-test covered in Chapter 7. In fact,
when we have only two samples or groups, the use of ANOVA modeling
produces the same results as the t-test for both the equal variance, non-equal
variance and non-parametric cases. The main difference between the methods
extends from the necessity to compare multiple means, meaning we will have
additional steps and procedures in the multi-group case that we did not have
in the two-sample case.

8.1 Establishing Hypotheses

Let us begin with a motivating example concerning student performance on
an examination prior to graduation from medical school. The medical stu-
dents participating in this study were randomized into one of four groups that
implemented different approaches in providing supplemental material to aid
students on their examination: students in the first group received supple-
mental material in printed form only; the second group received supplemental
material through a hands-on practicum; students in the third group received
neither the printed material nor participated in the practicum; the fourth
group received both the printed material and participated in the practicum.
For our purposes, we will ignore students in the fourth group who received
both forms of supplemental learning. The point of this study was to deter-
mine what form – if any – of supplemental learning activities lead to the best
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performance on the examination (note that this examination was for educa-
tional purposes only, and results were not reported to any external party).

In this case, the null hypothesis would be that the means from each group
are equal. This is similar to the homogeneity of proportions hypothesis
covered in Chapter 4. If the null hypothesis is that several group means
are identical, then the alternative hypothesis is that at least two of those
means differ from each other. We could get technical and think of many
ways in which the null hypothesis could be contradicted, but the “at least
one difference” statement is general enough to capture all other possibilities
of non-nullity. In this case, since these hypothesis are so general, we usually
state them in words rather than symbolically, and it is sometimes useful to
use the context of the question for this phrasing. For our example, we could
state that we wish to test the null hypothesis that the mean test scores were
the same for each of the different approaches, against the alternative that at
least one of the approaches lead to different test scores as compared to the
other approaches.

8.2 Assessing Assumptions (with R Code)

Knowledge that subjects were selected at random into the study will help
ensure that the sample is representative of the overall population and sub-
jects are independent of one another, while knowledge that subjects were
randomized into the different groups will ensure that the groups are repre-
sentative and independent of one another. As for sample size, the inference
we will eventually make is based around the sample means from the various
groups (though ANOVA uses them differently than how they were used in
the t-test), and as such, the Central Limit Theorem should apply for each
sample. If the observed sample size in each group is greater than 30, then the
CLT applies and we can assume that the sample size is large enough. If the
sample size in some (or all) of the groups is less than 30, but the distributions
of the data in those samples are more or less normal, then the CLT applies
and we can again assume that the sample size is large enough. In either of
these cases where the CLT applies we can use ANOVA modeling. However, if
some (or all) of the groups have fewer than 30 subjects and those groups have
non-normal distributions, then the CLT does not apply and we will have to
use the non-parametric alternative to the ANOVA model.

As was the case with the independent two-sample t-test, we need to worry
about the variances between the different groups in cases where the CLT
applies. If the standard deviations are similar (based on visual inspection),
or if an equality-of-variance test produces a large p-value (>0.05), then we can
assume that the variances are equal and we use the equal-variance ANOVA
model. If the standard deviations are visually different, or if an equality-of-
variance test yields a small p-value (<0.05), then we assume that the variances
are unequal and we use the unequal-variance ANOVA model. Of course, if
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the CLT does not apply and we are forced to use non-parametric methods,
we are not concerned about the equality of variances.

The raw test scores from the medical student examination example are
found in Table 8.1 below. There are only 10 subjects in each group, so we
must rely upon the distributions of the data in these samples to make our
assessments. The QQ plots are provided in Figure 8.1. Here we see that
two of the QQ plots (for the “none” and “practicum” groups, respectively)
are more or less normal, though the QQ plot for the “paper” group shows a
departure from normality. Thus, there may not be adequate sample size to
conduct an ANOVA model (or at least there isn’t enough data to overcome
the non-normality in the data), and we might want to consider using the non-
parametric test (discussed later); however, for the sake of argument we will
assume the CLT applies so we can use the ANOVA. The observed standard
deviations are 3.65 for the None group, 3.67 for the Paper-only group, and
7.47 for the Practicum-only group, while the p-value from Bartlett’s test is
0.0427. It thus appears that we cannot assume that the variances are equal.
Note that we used Bartlett’s test here because it is applicable for cases where
we have more than two groups. We can use this option for the data set-
up provided in Program 27 by using the bartlett.test(Score1~Treat1)

command.

Table 8.1: Data for Medical Student Test Scores (Out of 100) Based on
Supplemental Material Delivery Method.

No Paper or Practicum Paper Only Practicum Only
77 88 99
82 91 94
79 95 96
78 87 93
80 84 81
81 84 79
84 87 83
87 85 93
84 84 88
75 84 100

8.3 Summarizing Data (with R Code)

For cases in which the CLT applies, we report sample sizes, means, stan-
dard deviations and 95% confidence intervals for each group in our study.
For both cases where we have assumed equal or unequal variances between
groups, we should summarize the data in the same manner, since we need to
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Figure 8.1: Side-by-Side Boxplot (a) and QQ Plots (b,c,d) for Medical Stu-
dent Test Scores (Out of 100) Based on Supplemental Material Delivery
Method.

describe the variability inherent in the data and not based on our assump-
tions. We should refrain from getting our summary statistics (especially the
confidence intervals) from the output obtained from performing the ANOVA,
which provides summaries based on our assumptions of equal- or unequal-
variances. Naturally, if the CLT does not apply, then we summarize each
group with its sample size, median and interquartile range.

The data from the medical school example are summarized by group acc-
ording to each of the possible scenarios in Table 8.2. Recall from Chapter 7
that we can summarize these data in R using the summary, sd and t.test

functions, where the last provides us with confidence intervals by speci-
fying alterantive="two.sided" and using either the var.equal=TRUE or
var.equal=FALSE commands.
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Program 27 Program to conduct an ANOVA test for Equal-Variance Case of Medical
Student Test Scores Example.

Code:

# Input the data

None1 <- c( 77, 82, 79, 78, 80, 81, 84, 87, 84, 75 )

NOlabel1 <- rep("NoPaper", 10)

PaperOnly1 <- c ( 88, 91, 95, 87, 84, 84, 87, 85, 84, 84 )

PaperOlabel1 <- rep("PaperOnly", 10)

PracticumOnly1 <- c( 99, 94, 96, 93, 81, 79, 83, 93, 88, 100 )

PracOlabel1 <- rep("PracticumOnly", 10)

# Organize the data appropriately.

Treat1 <- c(NOlabel1, PaperOlabel1, PracOlabel1)

Score1 <- c(None1, PaperOnly1, PracticumOnly1)

data1 <- data.frame(Treatment = Treat1, Score = Score1)

# Call aov

Score.aov <- aov( Score ~ Treatment, data=data1)

summary(Score.aov)

Output:

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 2 500.5 250.23 9.088 0.00096 ***

Residuals 27 743.4 27.53

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table 8.2: Summaries for Medical Student Test Scores (Out of 100) Based on
Supplemental Material Delivery Method for Three Cases: Variances Assumed
Equal, Variances Assumed Unequal, Central Limit Theorem Doesn’t Apply.

CLT: Equal or Unequal
Variances No CLT

Group n Mean SD 95% CI Median IQR
None 10 80.7 3.65 78.1, 83.3 80.5 77.8, 84.0
Paper 10 86.9 3.67 84.3, 89.5 86.0 84.0, 88.9

Practicum 10 90.6 7.47 85.3, 95.9 93.0 82.5, 96.8
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8.4 Performing the Test and Decision Making

(with R Code)

Recall that the test statistic in Chapter 7 for comparing two means involved
the observed difference between the sample means. Indeed, an inspection
of Table 8.2 will show that the Paper-group mean is 6.2 units larger than
the None-group mean, while the Practicum-group mean is 9.9 units larger
than the None-group mean and 3.7 units larger than the Paper-group mean.
While these differences may or may not be large, we need a formal method
for assessing the significance of these differences. In the multi-group case,
we actually don’t make the direct comparisons of those means, but instead
construct a ratio of variance estimators (hence, the name analysis of vari-
ance). Starting with the equal-variance case, note that the variance for each
group is calculated as Σn

i=1(xij − x̄j)
2/(n−1), where the xij are the observed

values (i = 1, . . . , n) and x̄j is the sample mean in the jth group (keep in mind
that in this case n is the group sample size, not the total). If we momentarily
ignore the degrees of freedom and add these variance terms together across
the groups Σa

j=1Σ
n
i=1(xij − x̄j)

2, where a is the number of groups (a = 3 in
our example), we get the so-called sum-of-squares error (SSE). If we divide
the SSE by an − a (the total sample size minus the number of groups), we
get the so-called mean square error (MSE), which measures the variability
within the groups.

We can find the variance of the group means by first calculating
Σa

j=1(x̄j − x̄)2, where x̄ is the overall mean irrespective of group member-
ship. This measure is known as the sum-of-squares model or sum-of-squares
regression (SSR). If we divide this measure by the number of groups minus
one (or a− 1), we get MSR, which measures the variability between groups.

Consider the null case where there are no mean differences between the
groups. If the means between the groups are not different (and the variances
are assumed equal), then we would expect the variability of the data within
the particular groups (as measured by MSE) to be similar to the variability
between the groups (as measured by MSR). In this case we would expect the
ratio F = MSR/MSE to be close to 1; this is statistically true because under
H0, both MSE and MSR are unbiased estimators of the population variance
σ2. When the null is not true and there are some mean differences, then
the variability between groups is larger than the variability within groups,
and the ratio F = MSR/MSE will take values larger than 1. The lager the
test statistic F , the more evidence is available for us to not believe the null
hypothesis is true.

The test statistic F is a ratio of two variance-like measures, neither of
which can take negative values. If we assume (under the null hypothesis)
that (i) MSR is proportional to a chi-square distribution with a−1 degrees of
freedom, and (ii) MSE is proportional a chi-square distribution with an− a
degrees of freedom, then their ratio will have a F -distribution with a − 1
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numerator degrees of freedom and an − a denominator degrees of freedom
(note that unlike every other distribution we’ve previously discussed, the F -
distribution has two separate degrees of freedom). We will not use the critical
value method for the F test statistic, and will solely rely upon p-values for
inference. If the F -test yields a p-value smaller than the stated significance
level, we reject the null hypothesis and claim that at least two of the group
means are different; otherwise we fail to reject the null hypothesis and state
that the evidence suggests the means are not different.

In the case of unequal variances, the test statistic is similar to that used
for the equal variance case – in that it is a ratio of between-group variabil-
ity to within-group variability – but it is complicated and we will avoid its
characterization at all costs. The test statistic for the unequal variance case
also follows a F -distribution with a−1 numerator degrees of freedom like the
equal-variance case, while the denominator degrees of freedom relies upon
the degree of heterogeneity between the sample variances (and the equation
is complicated).

The sum of squares for the equal-variance case of the medical student
example are provided in Table 8.3 below. Note that the degrees of freedom
for the group (a−1 = 3−1 = 2) and error (an−a = 3×10−3 = 30−3 = 27)
are easily calculated. The ratio of mean squares (MSR/MSE = 250.2/27.5)
takes the value 9.1, which is larger than what we would expect (1) if the
group means were equal. The reported p-value (0.0010) is less than the
nominal α = 0.05, so we reject the null hypothesis that mean student scores
are similar between the test preparation methods. We report the results –
including both degrees of freedom, the value of the test statistic, and the
p-value – as F2,27 = 9.1, p-value = 0.0010. If we had assumed unequal
variances, we would get similar results (F2,17.0 = 10.5, p-value = 0.0011).
Note that in this case the denominator degrees of freedom (17.0) is less than
that for the equal-variance case (27) due to some heterogeneity in the sample
variances.

Table 8.3: Sum of Squares for Equal-Variance Case of Medical Student Test
Scores Example.

Source DF Sum of Squares Mean Square F Ratio p-value
Group 2 500.4667 250.2 9.1 0.0010
Error 27 743.4000 27.5
Total 29 1243.8667

In order to use R to provide the ANOVA results, we first have to organize
our data correctly. In Program 27 we have entered the group specific test
scores into the variables None1, PaperOnly1 and PracticumOnly1. We then
create a “group” indicator, or “factor”, which we will later use to assign each
test score to the appropriate group (paper only, practicum only, or none).



154 CHAPTER 8. ANALYSIS OF VARIANCE

To do this we will use the rep function, which creates a vector where the same
value is repeated a specified number of times (in this case, 10). We suggest
selecting the first argument – which will become the group label – wisely, as
that will be how we identify and distinguish between the particular groups.
We must next organize the data properly, which is done in the Treat1 and
Score1 commands, where we stack the group labels and test scores into single
variables, which we then place into a single data set (or data.frame) named
data1. Note that we have here renamed the group and outcome variables
using the Treatment=Treat1 and Score=Score1 commands.

Once we have finished organizing the data, we can then perform the anal-
ysis of variance using the aov function. In Program 27 we label this function
Score.aov, as we need to use the summary function to obtain the results.
The aov function requires the first item to be a formula with the outcome
or dependent variable (Score in our case), followed by the group or factor
variable (Treatment in our case), while we separate the two with a tilde "~".
The next item after the comma is the name of the data frame that contains
the variables in the formula (we named this dataframe is data1). Again, the
summary function produces the ANOVA table we obtained earlier. The only
item that differs is that R does not produce the “Total” row at the bottom
of the table, which we can obtain through simple addition. The R output
also includes “significance codes” which can help us determine which results
are statistically significant. If we simply look at the p-value given in the
Pr(>F) column we can determine the same information as that provided by
the significance codes.

In order to obtain the unequal variance ANOVA results, we can use the
oneway.test() function. Here we again specify the relationship between
the outcome and group factor with the Score~Treatment option, and then
specify the data set by stating data=data1. You may verify on your own
that you obtain the same inferential material (test statistic, numerator and
denominator degrees of freedom, and p-value) as was listed above.

8.4.1 Post-hoc Multiple Comparisons (with R Code)

If we have rejected either the equal-variance F -test, the unequal-variance F -
test, or the non-parametric test (introduced later), then we must move on to
the second part of the ANOVA model: the multiple comparisons. Though
the F -test has told us that at least one difference between the various group
means exists, it has not identified which groups are different (unless there
are only two groups). Thus, we now need to inspect the various pairings of
group means to discover – hopefully, sometimes it doesn’t happen – the sig-
nificant differences. We could naively follow the methods for the independent
two-sample case covered in Chapter 7, where each group mean is compared
to every other group mean independently. This is logistically prohibitive, es-
pecially if the number of groups is large. The observed differences, standard
errors, 95% confidence intervals and p-values from the equal-variance t-tests
are provided in Table 8.4.
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Table 8.4: Mean Comparisons using (Unadjusted) Independent t-Tests for
Medical Student Test Scores Example.

Comparison Difference SE 95% p-value
Practicum - None 9.9 2.35 5.1, 14.7 0.0002
Paper - None 6.2 2.35 1.4, 11.0 0.0135

Practicum - Paper 3.7 2.35 −1.1, 8.5 0.1265

Program 28 shows the R code to conduct the unadjusted pairwise t-test
based multiple comparison procedure for the medical student test scores. We
use the data as formatted in Program27, and now apply the pairwise.t.test
function. The first item we include in this function is the dataset (in this
case Score1), while the second item we include is the indicator of the group
labels (in this case Treat1). Notice that we did not use the data1 dataset as
this function requires exactly one column of data to be the inputs. The last
item we specify is the p.adjust.method option, which specifies what type
of adjustment should be applied to the p-values. Since we do not presently
want the p-values adjusted, we specify "none". Later in this Chapter we will
discuss methods that will allow us to adjust the p-values.

The output of Program 28 is a table of p-values. The entries on the left-
hand side of this table correspond to p-values for the comparisons between the

Program 28 Program to conduct unadjusted pairwise t-test based posthoc analysis of
Equal-Variance Case of Medical Student Test Scores Example.

Code:

# Use data1 defined above.

pairwise.t.test(Score1, Treat1, p.adjust.method = "none")

Output:

Pairwise comparisons using t tests with pooled SD

data: Score1 and Treat1

None PaperOnly

PaperOnly 0.01354 -

PracticumOnly 0.00025 0.12650

P value adjustment method: none
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None group versus both the PaperOnly group (top value) and PracticumOnly

group (bottom value). Similarly the entry in the bottom right of the table
is the p-value for the difference in means between the PaperOnly group and
PracticumOnly groups. Now we hope you see what it is good practice to give
useful names to the groups. The p-values given in the output match those
found in Table 8.4.

Based on the results in Table 8.4 form the – naive, mind you! – inde-
pendent t-tests, we would – naively!! – declare that both the Practicum and
Paper groups had larger means than the no-supplementary material group,
and that the Practicum and Paper group means were not significantly differ-
ent. However, another problem exists that we have not yet encountered. The
significance level we have used in each chapter was applied to only one test; if
there truly wasn’t a difference, our error rate is fixed around the one decision
we have to make. However, if we are making multiple choices or performing
several tests (as we did in Table 8.4), then the probability that we make a
mistake of claiming a difference when there truly isn’t a difference is depen-
dent upon the number of decisions or tests we have to consider. This can be
seen by first noting that we would like to keep the overall error rate constant
at 0.05, while at the same time acknowledging that the number of tests we
are considering is also fixed due to the experimental design (i.e. number of
groups). For instance, if we have three groups (A, B and C), then there are
three different comparisons that can be made (see Table 8.5 below), whereas
if there are four groups, then there are six non-redundant comparisons to
make. Note the large number of comparisons (10) required for 5 groups (the
number is 15 for 6 groups, 21 for 7 groups, and continues to increase from
there). This is why most researchers try to keep the number of groups under
consideration to a minimum (four or fewer is optimal).

Recall from Chapter 1 our discussion of Type I error. If the null hypothesis
is true and there is no difference, we would expect to make a mistake – i.e.
reject the null hypothesis – 5% of the time if our stated significance level
is 0.05. If we attach a 0.05 significance level to each test or comparison we
make, it remains true that the Type I error rates for each of those tests will
be close to 5%. However, since we are performing multiple tests and making

Table 8.5: Number and Types of Multiple Comparisons used in ANOVA
modeling based upon Number of Groups (A, B, C, D, etc.).

Number of Number of
Groups Groups Comparisons

2 1 A–B
3 3 A–B, A–C, B–C
4 6 A–B, A–C, A–D, B–C, B–D, C–D
5 10 A–B, A–C, A–D, A–E, B–C, B–D,

B–E, C–D, C–E, D–E
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multiple decisions, and since some of those tests involve the same groups used
for other tests, the overall Type I error rate of mistakenly rejecting a true
null difference will be larger than 5%. We thus need to take measures to
minimize our error rate.

Fortunately, there exist methods that will lower the overall Type I error
rate for us. The first is the so-called Bonferroni Correction, where we divide
the significance level (α) by the number of comparisons (k) and use the re-
sulting value (α/k) as the significance level for each comparison. Thus, in our
example, the Bonferroni-adjusted significance level is 0.05/3 = 0.0167, mean-
ing we reject the null hypothesis of no difference for any specific comparison
(as shown in Table 8.4) if the p-value is less than 0.0167. Since the first two
p-values (0.0002 and 0.0135) are less than that value, we reject those com-
parisons, but not the third (p-value=0.1265). If we had four comparisons to
make, the Bonferroni-adjusted significance level would be 0.05/4 = 0.0125;
if five comparisons then 0.05/5 = 0.0100, and so on. Note that this method
can be used without changing the code or output provided by R; in this case
we must note that any confidence intervals on the difference we report are
unadjusted.

While the Bonferonni method of adjustment is simple to implement, it
is a conservative approach that – in making it more difficult to declare a
difference significant – will increase the probability of making a Type II error
(failing to reject a null hypothesis when there really is a difference). Thus,
another method is preferred that more adequately manages the trade-off be-
tween Type I and Type II errors (see Chapter 9 for more details). One such
method of adjustment is called the Tukey-Kramer method (often referred to
as the Tukey HSD method, or simply as the Tukey test), and is already in-
corporated into the R software (by specifying the TukeyHSD function). This
method is based upon the studentized range rather than the t-distribution,
and is in general complicated to conduct hand. The Tukey-adjusted results
provided in Table 8.6. Note that compared to the CIs from the unadjusted
case (Table 8.4), the Tukey-adjusted CIs are wider and the p-values are larger,
reflecting the decrease in significance used for each comparison. Note also
that the observed differences and standard errors are the same in both cases,
as only the significance level and the probabilistic measure used in the latter
case changes. The Tukey-adjusted p-values are each compared to the overall
significance level of 0.05, so we declare the first two differences significantly
different from zero, while we fail to declare the third comparison different
from zero.

Program 29 shows how to conduct the Tukey Honestly Significant Dif-
ference multiple comparison procedure in R for the medical student data as
entered and formatted in Program 27. Here we use the TukeyHSD function,
which requires the output from the aov function. Notice that the output from
the TukeyHSD function is different from that of the pairwise.t.test, in that
here the TukeyHSD function gives a table that lists the pairwise comparisons,
the difference between group means (diff), the lower (lwr) and upper (upr)
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Table 8.6: Mean Comparisons using Tukey-Adjusted Independent t-Tests for
Medical Student Test Scores Example.

Comparison Difference SE Adjusted CI p-value
Practicum - None 9.9 2.35 4.1, 15.7 0.0007
Paper - None 6.2 2.35 0.4, 12.0 0.0350

Practicum - Paper 3.7 2.35 −2.1, 9.5 0.2727

Program 29 Program to conduct Tukey’s Honestly Significant Difference (HSD)
posthoc analysis of Equal-Variance Case of Medical Student Test Scores Example.

Code:

# Use data1 defined above.

Score.aov <- aov( Score ~ Treatment, data=data1)

TukeyHSD(Score.aov)

Output:

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Score ~ Treatment, data = data1)

$Treatment

diff lwr upr p adj

PaperOnly-None 6.2 0.3817271 12.018273 0.0350147

PracticumOnly-None 9.9 4.0817271 15.718273 0.0007025

PracticumOnly-PaperOnly 3.7 -2.1182729 9.518273 0.2727302

bounds for the adjusted confidence intervals on the differences, as well as the
adjusted p-values (p adj). Most importantly, note that the output matches
the results presented in Table 8.6.

The previous two adjustments were made under the assumption of equal
variances, but what if we were to assume unequal variances? Basically, we
must ask R to perform a series of Bonferroni-adjusted, two-sample unequal-
variance t-tests for each comparison that we wish to make (yet another rea-
son to keep the number of groups small). After we have summarized the
data in each group and performed our overall test of homogeneity amongst
the means, we proceed with the following two-step process. First, we use
the pairwise.t.test function with the pool.sd=FALSE and p.adj="bonf"
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options to get the bonferonni-adjusted p-values without assuming equal vari-
ances. Then for each pair of groups, perform a two-sample, unequal-variance
t-test to get the observed difference, SE, adjusted CI and p-value using the
t.test function with the alternative="two.sided" option specified

and the conf.level function set so that it equals one-minus the bonferroni-
adjusted significance level. Note that here we most certainly do not want to
specify var.equal=TRUE. The results for this approach are found in Table 8.7.
Note that while the differences are the same as those found in Table 8.6, the
SEs have changed (and are now larger for the two Practicum comparisons),
and the adjusted CIs are now wider and the p-values are not larger (reflecting
the greater variability due to slightly unequal variances). However, for these
data the Bonferroni adjustment in the unequal-variance case does not change
our interpretation of the results. We can calculate the SEs manually as was
done in Chapter 7.

Table 8.7: Mean Comparisons using Bonferroni-Adjusted Independent,
Unequal-Variance t-Tests for Medical Student Test Scores Example.

Comparison Difference SE Adjusted CI p-value
Practicum - None 9.9 2.63 2.7, 17.1 0.0023
Paper - None 6.2 1.64 1.9, 10.5 0.0013

Practicum - Paper 3.7 2.63 −3.5, 10.9 0.1830

With regards to interpreting the results from an ANOVA model, we will
run into one of several cases. The first is that the F -test from the over-
all ANOVA model yields a large p-value, which indicates that there are no
significant mean differences. In this case, we do not make any multiple com-
parisons, since there are no significant differences to find, and simple report
the results from the F -test.

If the F -test is significant, then we use the Tukey method to make mul-
tiple comparisons (Tukey is preferred to Bonferroni for one-factor ANOVA).
We report the observed differences from those comparisons (as well as the
SEs, adjusted CIs, and p-values), and comment upon the direction of those
differences. From our medical school example, the significant differences of
both the Practicum group scores and the Paper group scores over the None
group scores imply that using some form of supplementary material lead to
increased test scores over those students who didn’t use any supplementary
material. The non-significant difference between the Practicum and Paper
groups imply that the type of supplementary material made no difference, or
that the difference of increased scores in the Practicum over the Paper group
was not significant.

Of course, the situation may arise where there is a significant F -test but
none of the multiple comparisons lead to a significant difference. This doesn’t
happen often, but when it does happen we are obligated to report what the
tests tell us. In this case, as well as in the case of an insignificant F -test, do
not force explanations that don’t exist by interpreting the differences; they
were not found significant, so they must be left alone.
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8.5 Contingency Methods (with R Code)

If the assumptions comprising the CLT are not met, then we cannot use
the parametric ANOVA model (either equal- or unequal-variance), and must
instead use non-parametric methods (here we use the Kruskal-Wallis test).
The output for the Medical School example yields test statistic of 11.6945
with 2 degrees of freedom and a small p-value (0.0029). We would report
this information as χ2

2 = 11.7, p-value = 0.0029, and this p-value would
lead us to reject the null hypothesis of equal treatment group medians.
Formal comparisons of the medians is rare, and anecdotal comparisons of
those medians – without attaching a level of significance or confidence to
such statements – will usually suffice, though they can be done using a sim-
ilar approach as reported for the unequal-variance case above. Basically, we
must ask R to perform a series of Bonferroni-adjusted, two-sample Wilcoxon
tests for each comparison that we wish to make (yet another reason to keep
the number of groups small). After we have summarized the data in each
group, we set the significance level to account for the Bonferroni adjustment
perform a series of two-sample Wilcoxon tests for each pair of groups to get
the corresponding p-values.

Program 30 shows the R code to create the Kruskal-Wallis test for the
medical student test score example. We will again use the dataset as struc-
tured in Program 27. Here we see that the kruskal.test function is sim-
ilar to the aov function, where the first item links the outcome with the
group variable (Score~Treatment) and the second item specifies the dataset
(data1). We do not need to define this function to a variable as the sum-
mary is directly provided. Note that the provided output matches what we
reported above.

Program 30 Program to conduct an Kruskal-Wallis test for the Medical Student Test
Scores Example.

Code:

# Call kruskal.test

kruskal.test( Score ~ Treatment, data=data1)

Output:

Kruskal-Wallis rank sum test

data: Score by Treatment

Kruskal-Wallis chi-squared = 11.6945, df = 2, p-value = 0.002888



8.6. COMMUNICATING THE RESULTS 161

8.6 Communicating the Results

The following is an example of the IMRaD write-up for the medical school
example. While we have assumed that the CLT applies, the actual evidence
suggests we should not.

Introduction: Medical school administrators and educators are often in
search of methods that will enhance and improve the educational experience
they offer their students. One such method has been to provide supplemen-
tary material before tests, such as through providing pre-fabricated lecture
notes, or offering a hands-on student practicum. Administrators at a par-
ticular medical school aimed to determine the usefulness of such methods of
providing supplementary material in use for test preparation to determine
whether providing supplementary material lead to increased test scores.

Methods: Volunteer students were randomized into one of three groups
before taking a non-binding examination. A Practicum group consisted of
students who reviewed test information through a hands-on learning expe-
rience; a Paper group consisted of students who were offered study guides
in printed form; and a control group consisted of students who neither par-
took in the practicum nor received the printed material. Ten students were
randomized into each group, for a total of 30 students. The distributions of
test scores for each group were analyzed using QQ plots, and the variances
from each group are compared using the Bartlett’s test. The test scores for
each group are summarized with sample sizes, means, standard deviations
and 95% confidence intervals. A one-factor, unequal-variance analysis of
variance (ANOVA) is used to test the null hypothesis that the three group
means are equal (against the alternative hypothesis that at least two of the
means differ) at the 0.05 significance level. If the resulting p-value from the
ANOVA model is less than 0.05, then we will reject the null hypothesis, and
multiple comparisons between the group-level means will be made using the
Bonferroni method, and observed differences, standard errors, adjusted con-
fidence intervals and adjusted p-values will be reported; we will otherwise fail
to reject the null hypothesis. All data summaries and analyses are conducted
using R statistical software.

Results: The test scores for each group are summarized in Table 8.8,
and the data are assumed independent and representative. The QQ plots
(not reported) showed the data were reasonably normally distributed, and
Bartlett’s test yielded a small p-value (0.0427), justifying the unequal variance
ANOVA model. The results from the overall ANOVA model (F2,17.0 =
10.5, p-value = 0.0011) indicate that group membership has an effect on
mean tests scores. Using the Bonferroni adjustment method, both the
Practicum group (9.9) and Paper group (6.2) had increased mean test scores
over the None group, though the Practicum and Paper group mean test scores
were not significantly different.

Discussion: Providing supplementary material to medical students lead
to significantly improved test scores over those students who did not receive
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Table 8.8: Summaries for Medical Student Test Scores (Out of 100) Based
on Supplemental Material Delivery Method.
Group n Mean SD 95% CI
None 10 80.7 3.65 78.1, 83.3
Paper 10 86.9 3.67 84.3, 89.5

Practicum 10 90.6 7.47 85.3, 95.9
Adjusted using Bonferroni

Comparison Difference SE CI p-value
Practicum - None 9.9 2.63 2.7, 17.1 0.0023
Paper - None 6.2 1.64 1.9, 10.5 0.0013

Practicum - Paper 3.7 2.63 −3.5, 10.9 0.1830

either form of supplemental material. However, the form of supplementary
material (either practicum- or paper-based) did not matter much in the test
score improvement. Medical school administrators may wish to provide sup-
plementary material for students prior to testing.

8.7 Process

1. State research question in form of testable hypotheses.

2. Determine whether assumptions are met.

(a) Representative

(b) Independence

(c) Sample size: check distribution of data and sample size for each
group.

(d) Equal Variances.

3. Summarize data.

(a) If sample size/normality is adequate for each group: summarize
each group with sample size, mean, standard deviation and
95% CI.

(b) If sample size/normality is inadequate for AT LEAST one group:
summarize each group with sample size, median and IQR.

4. Perform Test.

(a) If variances are equal and CLT applies for each group: use equal-
variance ANOVA.

(b) If variances are not equal and CLT applies for each group: use
unequal-variance ANOVA.
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(c) If sample size is less than 30 AND data are not normally dis-
tributed for any of the groups: use Kruskal-Wallis test.

5. Check main effect.

(a) If main effect is significant, perform multiple comparisons.

(b) If main effect is not significant, stop the test.

6. Summarize with IMRaD write-up.

8.8 Exercises

1. Wang et al. (2002) studied the effect of age on the mechanical integrity
of the collagen network in bone tissue. In their study, the femurs from
30 human cadavers were obtained from young (19–49years), middle
aged (50–69years) and elderly (>70 years) donors. Determine if there
are differences in the force required to break the bones between the
groups.

Young Middle Age Elderly
193.6 125.4 59.0
137.5 126.5 87.2
122.0 115.9 84.4
145.4 98.8 78.1
117.0 94.3 51.9
105.4 99.9 57.1
99.9 83.3 54.7
74.0 72.8 78.6
74.4 83.5 53.7
112.8 96.0

2. Low platelet counts (a condition known as thrombocytopaenia) are of-
ten observed in infants with necrotizing enterocolitis (otherwise known
as gangrene). Ragazzi et al. (2003) – as part of a study aimed to det-
ermine of neutrophil count was correlated with the extent of
disease – provided log (base 10) platelet counts for infantile subjects
based on their gangrenous categorization: no presence of gangrene (0);
focal gangrene (1); multifocal gangrene (2); or panintestinal gangrene
(3). Determine if there were any differences in log platelet counts based
on gangrene categorization.
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0 1 2 3
1.97 2.33 2.23 1.38 2.18 1.87 2.16 1.36 1.77 1.75
0.85 2.6 2.51 1.86 2.53 1.9 2.17 2.48 1.68 1.86
1.79 1.88 2.38 2.26 1.98 2.43 2.12 1.4 1.46 1.26
2.3 2.33 2.31 1.99 1.93 1.32 2.27 1.75 1.53 2.36
1.71 2.48 2.08 1.32 2.42 2.06 2.37 2.67 1.36
2.66 2.15 2.49 2.11 0.79 1.04 1.75 2.37 1.65
2.49 1.41 2.21 2.54 1.38 1.99 2.57 1.46 2.12
2.37 2.03 2.45 2.06 1.52 1.51 1.91 1.73
1.81 2.59 1.96 2.41 1.99 1.08 1.91
2.51 2.23 2.29 2.23 2.52 2.36 1.57
2.38 1.61 2.54 2 1.93 1.58 2.27
2.58 1.86 2.23 2.74 2.29 1.83 1
2.58 2.33 2.78 2 1.75 2.55 1.81
2.84 2.34 2.36 2.51 2.16 1.8 2.27
2.55 1.38 1.89 2.08 1.81 2.44 2.43
1.9 2.52 2.26 2.45 2.46 2.81 1.74
2.28 2.35 1.79 2.6 1.66 2.17 1.6
2.33 2.63 1.87 1.83 2.51 2.72 2.08
1.77 2.03 2.51 2.47 1.76 2.44 2.34
1.83 1.08 2.29 1.92 1.72 1.98 1.89
1.67 2.4 2.38 2.51 2.57 1.57 1.75
2.67 1.77 1.79 2.3 2.05 1.69
1.8 2.48 2.17 0.7 2.3 2.49

3. The Health Effects Institute Research Report (Number 25) by Allred
et al. (1989) focused on the effect of carbon monoxide exposure in males
with coronary artery disease. As a part of this study, forced expiratory
volume (FEV) as measured in patients from three sites (seen below).
Determine if there were any differences in FEV between the three sites.

Johns Hopkins Rancho Los Amigos St. Louis
3.23 1.98 3.22 2.87 2.79 2.81
3.47 2.57 2.88 2.61 3.22 3.17
1.86 2.08 1.71 3.39 2.25 2.23
2.47 2.47 2.89 3.17 2.98 2.19
3.01 2.47 3.77 2.47 4.06
1.69 2.74 3.29 2.77 1.98
2.10 2.88 3.39 2.95 2.81
2.81 2.63 3.86 3.56 2.85
3.28 2.53 2.64 2.88 2.43
3.36 2.71 2.63 3.20
2.61 2.71 3.38 3.53
2.91 3.41 3.07
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4. Jay et al. (2009) are interested in determining how doctors of different
specialties impact on their obese patients losing weight. They consid-
ered doctors from the specialties of Internal Medicine, Pediatrics and
Psychiatry. They recorded the percentage of patients who lost weight
by practice. Below is a sample representative of the data they collected.

Determine if differences exist across specialties and if they do exist
determine which specialties differ.

IM 8.9 15.7 11.1 12.4 18.6
12.0 11.9 8.8 18.2 11.7
12.6 25.1 21.5 11.1 9.1

Ped 9.6 3.3 7.4 7.1 3.7
6.7 1.7 4.0 5.1 9.7
10.5 5.8 6.5 8.7 6.9
9.0 7.2

Psy 18.8 23.3 12.9 21.6 11.9
17.4 24.8 16.3 18.9 13.0
12.1 13.8 9.4 19.0 22.9
17.6 11.6 17.7

5. A researcher is interested in the effects of Benedryl on reaction time.
It has been hypothesized that Benedryl slows down people’s reaction
time. To study this she randomly assigns people to either a control
or a specified dosage. In this case “1” is the recommended dosage on
the package. She gives administers the Benedryl and waits 30min and
records the Before and After reaction time for a specific reaction test.
She can only administer the reaction test once before adminstering the
drug and once after administering the drug as subjects learn the test.
Determine if Benedryl slows reaction time and determine which dosages
produce a statistically significant reduction in reaction time using the
data below.

Treatment
Control 0.5 1 1.5 2 2.5
−0.46 −2.03 2.04 2.31 2.52 7.50
−1.09 −0.36 4.56 1.57 1.63 5.62
4.45 −1.97 0.33 5.82 1.60 3.05
1.67 −0.84 2.40 3.09 7.74 5.34
0.45 2.71 2.64 2.61 6.79 6.43

−3.41 −2.53 3.34 1.01 9.01 3.87
1.16 1.73 0.61 3.66 3.69 5.14



Chapter 9

Power

We have previously discussed the concepts of Type I and Type II errors, but
we have not much considered their relevance to study design and statistical
analysis. In practice, controlling either the type II error rate or the power –
holding all other components fixed – will determine the sample size needed
to find a significant result. Thus, the phrases “sample size determination”
and “power analysis” are used interchangeably. Power determination is an
active research area in the statistical sciences, mostly due to the complicated
problems now at the vanguard of data analytics. Many of the more com-
plicated problems require advanced statistical computing or simulations for
sample size determination, and so these are naturally beyond the scope of this
course. Fortunately, many of the commonly used statistical techniques – such
as those covered in Chapters 2, 3, 6–8 – either have closed-form sample size
equations, or the sample size determination is available through statistical
software (such as R). We will focus mostly on the use of power in designing
studies (i.e. answering the awful question “how much data do I need?” that
statisticians typically dread) for both categorical and continuous outcomes
in one- and two-group cases, as well as the multi-group case for continuous
data. Following this we will briefly touch on the post-hoc power analysis,
which is the statistical equivalent to conducting an autopsy (i.e. finding out
why your study died). Of course, we will first need to more concretely define
statistical power and its components.

9.1 Making Mistakes with Statistical Tests

As mentioned earlier, statisticians can make only two mistakes (all others
must have been made by someone else): we can falsely reject a true null hy-
pothesis (type I error), or we can falsely fail to reject the null hypothesis when
the alternative hypothesis is true (type II error). Which of these mistakes we
make is dependent upon the “true state of the world”, which in our parlance
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means that either the null hypothesis (H0) is true (and the alternative (HA)
false), or the alternative hypothesis is true (and the null hypothesis is false).
Recall that since we create H0 and HA to be mutually exclusive, only one
of them can be true at one time. Though we cannot know for certain which
hypothesis is “true”, we do not need to “know” the truth for testing purposes.
Based on our statistical evidence, we will make one of two decisions: reject
H0 in favor of the alternative, or fail to reject H0. Thus – given the truth –
we will either make the correct decision or we will make a mistake (or an
error). The consequences of our decisions are shown in Table 9.1. If the null
hypothesis is true (no difference) and we reject the null and claim that there
is a difference, then we have made the wrong decision (a type I error). Note
that the probability of making this mistake – if the null hypothesis is true –
is α, or the stated significance level. We generally aim to make this mistake
no more than 5% of the time (α = 0.05) when the null hypothesis is true.
Conversely, if the alternative hypothesis is true – there is a difference – and
we fail to reject the null hypothesis (we didn’t find the difference), then we
have again made the wrong decision (a type II error). Note that the prob-
ability of this mistake (if the alternative hypothesis is true) is β, which we
generally take to be 10% (β = 0.1) or 20% (β = 0.2). Finally, note that the
probabilities of the two options in each column sum to 1, reflecting the fact
that only one hypothesis can be true at one time.

Table 9.1: Types of Errors and Their Probabilities in Hypothesis Testing
Based on True Hypothesis.

True State
Decision H0 is True HA is True
Reject H0 Type I Error Correct

α 1− β

Fail to Reject H0 Correct Type II Error
1− α β

α+ 1− α = 1 β + 1− β = 1

It is the converse of the type II error rate (β) that we refer to as power,
which means that power is the probability (1 − β) that we find a difference
when that difference actually exists. The higher the power, the more likely we
are to reject the null hypothesis when we should, while the lower the power,
the less likely we are to reject the null hypothesis when we should. It would
be nice if we could simply pick the power that we want and state that we are
80 or 90% likely to find a significant difference, but unfortunately power does
not work like that. Power is actually comprised of four different pieces: the
stated significance level, the expected variability in the response, the desired
effect size, and sample size. These four components are inter-related and
each affects power in different ways.
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9.2 Determinants of Sample Size

Significance level: As mentioned elsewhere, the type I error rate α is typically
set at a standard value (such as 0.05), so there is not much we can do to
affect power through α. However, it is important to note that power (1− β)
and significance level (α) are proportionally related, which means that the
type I and type II error rates are inversely related. This means that if we
want to make it easier to declare differences significant by rejecting the null
hypothesis (increasing the power or decreasing our Type II error rate), we
can do so by increasing the significance level – and thereby increasing our
type I error rate – if we hold everything else constant. Likewise, if we want to
decrease the likelihood of incorrectly rejecting the null hypothesis (decreasing
the type I error rate and α), we make it more difficult to declare differences
significant (and thus increase our type II error rate and decrease our power).
Rather than mess with this relationship, we often fix α at 0.05 and change
everything else (for that matter, we also generally fix 1− β = 0.8 or 0.9 and
only change the remaining power components).

Variability: The variability in the response plays a very straightforward
role in power. Recall that every test statistic we considered in Chapters 2, 3, 6
and 7 was of the same general form

Test Statistic =
(observed statistic)− (hypothesized value)

standard error of observed statistic
. (9.1)

Since the standard error of the observed statistic (either the sample pro-
portion or sample mean) is in the denominator of the test statistic, it is
inversely related to our ability to reject or fail to reject the null hypothesis.
Large amounts of variability (and thus large standard errors) will decrease
the value of the test statistic, increase the associated p-value, and thus make
it more difficult to reject the null hypothesis for actual differences (i.e. power
will be lower). Low variability, on the other hand, will increase the value of
the test statistic, decrease the associated p-value, and thus make it easier to
reject the null hypothesis for actual differences (i.e. power will increase). In
more practical terms, lower variability means that the observed statistic is
more accurately estimating the population parameter, and any actual differ-
ence between the observed data and the hypothesized value is more likely to
be found. In summary, larger variability lowers power, while smaller vari-
ability increases power. In practice, the variability is not known (if it were,
there’s not much point in conducting the study), so it must be taken from
previous or related studies, clinical experience, or if all else fails it must be
guesstimated.

Effect size: The effect size is the smallest difference between the observed
statistic and the hypothesized value that we wish to declare significant; this is
effectively the numerator of the test statistic. The phrase “smallest observed
difference” is often interpreted as the clinically meaningful difference, or the
difference below which – if observed – a clinician or scientist would not be
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interested (e.g. a physician would not prescribe a cancer treatment that was
found to increase life-expectancy by 5min, but they may prescribe a treat-
ment that increases life-expectancy by 5 years). Effect size is proportionally
related to power (large differences are easier to catch), and while this may
at first appear counter-intuitive, there is a sound reason for this relationship.
Large effect sizes lead to large test statistics, which lead us to reject the null
hypothesis more often, and thus increase power. Small effect sizes lead to
small test statistics, which prohibit us from rejecting the null hypothesis,
and thus decrease power. This might actually seem like a good thing: if
small effect sizes are not clinically meaningful, and they lead to lower power,
then let’s always have large effect sizes with the corresponding higher power
(and be done with it!). However, in practice we rarely have large effect sizes,
since most of the treatments we deal with don’t work (if they did we’d all
be famous). Rather, the effect sizes we commonly observe are small, and we
are constantly in a “tug-of-war” between designing a study with a reasonable
sample size that also maintains an effect size that is still clinically meaning-
ful. The effect size is often the most difficult aspect of the power analysis,
especially when there are no previous studies or clinical experience for us to
draw upon.

Sample size: Sample size is also straight-forwardly related to power. If the
sample size increases, the standard error of the observed statistic decreases,
the test statistic increases, the p-value decreases, it becomes easier to reject
the null hypothesis, and thus power increases. Likewise, smaller sample sizes
lead to larger standard errors, which lead to smaller test statistics, which lead
to larger p-values, which cause us to reject the null hypothesis less frequently,
which reduces power. This is why statisticians usually answer the question
“how much data do I need?” with “as much as possible”, because more so
than anything else, sample size is the most easily controllable aspect of a
study. You can’t change the inherent variability in the data (assuming that
your methods are scientifically sound), and you can’t (or shouldn’t) change
what is clinically meaningful, so all that is left is sample size. Note that in
the context of power, sample size refers to the number of subjects needed to
find a significant difference when one exists, and is not necessarily focused
on whether or not our sample size assumption is met (e.g. the “rule of 5” for
categorical data, or n > 30 for continuous data).

9.3 Categorical Outcomes

9.3.1 One-Sample Case

Naturally, when we do a power analysis, we are trying to find the sample
size (n) that yields a particular level of power, given a fixed type I error rate
(α), measure of variability (based on p0) and effect size (δ). The way we do
that is to set the desired power level and – if an equation exists – enter the
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remaining pieces and solve for n. Recall in the one-sample proportion case
(Chapter 2) that our test statistic

z =
p̂− p0√
p0(1−p0)

n

(9.2)

was based upon the standard normal distribution. The type I error rate is
fixed at α = 0.05, and for a one-sided test the critical value we would use is
zα = 1.645 (for a two-sided test we would use 1.96). The null value for the
proportion is p0, which means that the expected variability in the response
is p0(1 − p0), which takes its value based on whatever null value we assign.
If we want 80% power, then 1 − β = 0.8, and the 80th percentile from the
standard normal distribution is zβ = 0.8416 (if we wanted 90% power, the
90th percentile is 1.2816). Without deriving its source, other than to say it
closely resembles the test statistic, the sample size formula in the one-sample
proportion case is

n =
(zα + zβ)

2p0(1− p0)

δ2
. (9.3)

Thus, if we assume that p0 = 0.2 and we want to find a δ = 0.10-level
difference, then we enter the relevant values into the equation and calculate
to get

n =
(1.645 + 0.8416)2(0.2)(1− 0.2)

(0.1)2
= 98.92 ≈ 99.

Note that we round these values to the next highest integer. This value (n =
99) is interpreted as the sample size required to detect a 0.1 difference over a
hypothesized value of 0.2 with significance level 0.05 with 80% power. Note
that if we wanted 90% power, we would need 137.02 ≈ 138 subjects, showing
that, all things being equal, increased power requires additional subjects (138
vs. 99). If we wanted 80% power for a two-sided test, then we would need
n = 125.58 ≈ 126 subjects. If we wanted 80% power to detect a difference
of 0.2, then we would need 24.73 ≈ 25 subjects, which shows how a large
difference doesn’t require as many subjects (25 vs. 99). Interestingly, if we
change the null hypothesized value from 0.2 to 0.5 and require 80% power
to detect a 0.1 difference, we would require 154.56 ≈ 155 subjects, which is
more than we needed when p0 = 0.2 (n = 99). The implication here is that
categorical responses are more variable when the hypothesized value is closer
to 0.5 than they are when the hypothesized value is closer to 0 or 1 (see for
yourself by calculating p(1− p) for various values of p).

9.3.2 Two-Sample Case (with R Code)

For the two-group case we do not have a closed-form sample size formula,
but we can nevertheless use sophisticated algorithms to calculate the required
sample size. Thus, we will rely upon R to do these calculations, with the only
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added wrinkle that we now have two proportions instead of one. Recall from
Chapter 3 that we are generally interested in testing the null hypothesis
that the two proportions are equal, so we simply choose them so that they
are desired distance δ apart. For instance, if we want to find a 0.1-level
increase between proportion 1 and 2, where one of them is 0.2, we can set
p1 = 0.3 and p2 = 0.2. Further, let’s assume that this is a two-sided test (so
that α = 0.025) and that we want 80% power. To determine the required
sample size for these specifications, we can use the power.prop.test function
in R (see Program 31 below). Quite simply, we can specify the assumed
proportions for each group (p1=0.2 and p2=0.3), the desired power level
(power=0.8), and the stated significance level (sig.level=0.025; note if we
wanted a one-way test we would have used sig.level=0.05). With these
commands, R tells us that we need n = 355.1383 ≈ 356 subjects in each
group to detect a difference of 0.1 with 80% power. Thus, our total required
sample size is 2n = 2 × 356 = 712, which is a lot, and underscores the
fact that categorical data often require large sample sizes to find reasonably
small differences between proportions. If we could relax our assumptions and
require a 0.15 increase, so that our proportions are 0.35 and 0.2, then the
required sample size reduces to n = 167.1463 ≈ 168 per group (for a total of
336), which is a substantial reduction.

Program 31 Program to determine the sample size needed for a two sample test on
proportions where p1 = 0.2, p2 = 0.3, power= 0.8 and significance level α = 0.025.

Code:

# Use power.prop.test

power.prop.test(p1=0.2, p2=0.3, power=0.8, sig.level=0.025)

Output:

Two-sample comparison of proportions power calculation

n = 355.1383

p1 = 0.2

p2 = 0.3

sig.level = 0.025

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group
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9.4 Continuous Outcomes

9.4.1 One-Sample Case (with R Code)

For continuous outcomes, we again fix the type I error rate (α), assume some
value for the variability (σ), and select the desired effect size (δ). For a desired
level of power 1−β, we obtain the required sample size for comparing a single
sample mean to a hypothesized value though the following equation

n =
(zα + zβ)

2σ2

δ2
. (9.4)

Interestingly, we still use the standard normal distribution to get the two
probabilistic measures, rather than the student’s t-distribution that is used
in the hypothesis test (there is no good reason for this; even though the per-
centiles from the t-distribution are dependent upon sample size, such prob-
lems haven’t stopped statisticians in the past).

So assuming some σ (say 2) from a previous study, and given some clin-
ically meaningful δ (say 1), we can calculate the required sample size for a
one-sided test as

n =
(1.645 + 0.8416)2(2)2

(1)2
= 24.73 ≈ 25.

Thus, given these characteristics, we would need 25 subjects to achieve 80%
power to find a difference of 1. To achieve 90% power, we would need n =
34.26 ≈ 35 subjects, showing that greater power requires more subjects. Of
course, if the variability inherent in the population increases (to 4), we would
need n = 98.92 ≈ 99 subjects to achieve 80% power, and if we wanted
to find a smaller difference (say 0.3), then we would need n = 274.78 ≈
275 subjects. We can use R to calculate sample size for us as well using
the power.t.test function. As shown in Program 32 below, we need to
specify the desired effect size (delta=1), the assumed standard deviation
(sd=2), the desired power and significance levels, the number of samples
under consideration (here type="one.sample"), and the type of alternative
hypothesis (alternative="one-sided"). For our original case, R tells us
that we need n = 26.13751 ≈ 27 subjects, which is slightly more than we
calculated by hand (this is due to R using a slightly altered formula).

9.4.2 Two-Sample Case (with R Code)

Various equations exist for the two-group case of comparing two means, so we
will rely solely upon R for sample size calculations. If we assume a common
variance σ2 between the two groups (as well as equal sample sizes), then in
R we can again use the power.t.test function. For instance, say we want
to detect a difference of 1 with 80% power, assuming a 5% significance level,
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Program 32 Program to determine the sample size needed for a one sample test on a
mean where δ = 1, σ = 2, power= 0.8 and significance level α = 0.05.

Code:

# Use power.t.test to determine sample size

power.t.test(delta=1, sd=2, type="one.sample",

power=0.8, sig.level=0.05,

alternative="one.sided")

Output:

One-sample t test power calculation

n = 26.13751

delta = 1

sd = 2

sig.level = 0.05

power = 0.8

alternative = one.sided

a (common) standard deviation of 4, and using a two-sided test. The result-
ing R coding is shown in Program 33, where here we are careful to specify
type="two.sample" and alternative="two.sided". With these specifica-
tions, R tells us we required n = 252.1281 ≈ 253 subjects per group – for a
total of 506 subjects – to detect the desired difference given our assumptions.

9.4.3 Multi-sample Case (with R Code)

If we have several group means that we wish to compare using an analy-
sis of variance, we can again use R for the sample size analysis using the
power.anova.test function (as shown in Program 34). This function has
different specifications than the power.t.test function, which requires us to
perform some steps manually. You may recall that the ANOVA model ac-
tually uses the ratio of two variance-like estimators: the estimated variance
between the sample means (the MSR); and the estimated variance within the
samples (the MSE). In order to obtain a value of MSR, we have to assume
(i.e. prespecify) values of our group means that give the desired difference
we want to find, and calculate their variance. For instance, we could have
three groups, and we would expect that means for two of the groups are equal
(with means near 5) while the mean for the third group is 2 units higher (or
7). Then the standard deviation of these means (as shown in Program 34) is
calculated using the sd function on the vector of assumed group means (m).
The square of our assumed (common) standard deviation for the observations
will serve as our estimate of MSE, so if we again assume a standard deviation
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Program 33 Program to determine the sample size needed for a two sided two sample
test on a difference in means where δ = 1, σ = 4, power= 0.8 and significance level
α = 0.05.

Code:

# Use power.t.test to determine sample size

power.t.test(delta=1, sd=4, type="two.sample",

power=0.8, sig.level=0.05,

alternative="two.sided")

Output:

Two-sample t test power calculation

n = 252.1281

delta = 1

sd = 4

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

of 4, then we will use as MSE the variance of 16. These values are specified in
the power.anova.test function with the options between.var=var.m and
within.var=16, respectively for the MSR and MSE. If we want to detect the
2-unit difference with 80% power and a 5% significance level, then R tells us
we will need n = 58.81829 ≈ 59 subjects per group, or 177 total. Of course,
this number will change based on our assumptions.

9.5 Post-hoc Power Analysis

When we perform a hypothesis test – say for comparing two group means –
one of two things happens: either we reject the null hypothesis and we re-
port a significant difference (yeah!), or we fail to reject the null hypothesis
and state that there is no evidence of a difference (so sad). If we reject
the null hypothesis, one thing that may not be evident – probably due to
your excitement from finding a significant result – is that by necessity you
had enough power to declare the observed difference significant. By the
same logic, if you did not reject the null hypothesis then you clearly did
not have enough power to declare the observed difference significant. Some-
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Program 34 Program to determine the sample size needed in a one-factor ANOVA.

Code:

# Use power.anova.test

m<-c(5,5,7)

var.m<-sd(m)*sd(m)

power.anova.test(groups=3, between.var=var.m,

within.var=16, power=0.80, sig.level=0.05)

Output:

Balanced one-way analysis of variance power calculation

groups = 3

n = 58.81829

between.var = 1.333333

within.var = 16

sig.level = 0.05

power = 0.8

NOTE: n is number in each group

times this is no worry, because the observed difference is smaller than what we
would deem clinically meaningful, so our non-significant difference is truly not
significant.

However, there may be other occasions where, in our power analysis, we
over-estimated the difference we would expect to observe, or we underesti-
mated the variability in the response. In these types of cases we clearly had
an under-powered experiment. For example, say we had the test scores of
two groups of students on a graduate program entrance examination, where
students are placed into two groups based on whether or not they had taken
the prerequisite course (these data are found in Table 9.2). The mean test
score for students who have met the prerequisites is 90.0 (SD = 3.68), which
is 4.1 units higher than the mean test score for students who have not met
the prerequisites (mean = 85.9, SD = 5.93). If we assume equal variances,
the resulting t-test for comparing these means gives the following results:
t18 = 1.86, p-value = 0.0798, meaning that there is not enough evidence to
declare the means different between the two groups.

Maybe there really is no difference in the performance on this examination
based on previous course load, or maybe ten prospective students in each
group is not enough to find such a difference. If the latter case is true (or
if we expect it to be true), we can use R to find the sample size that would
declare the observed difference significant, given that everything else stays
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Table 9.2: Test Scores on a Graduate Program Entrance Examination based
on Prerequisite Status.

Prerequisite Not Met Prerequisite Met
80 86 91 87
88 91 94 90
83 96 98 88
81 92 91 87
85 77 87 87

the same. Thus, we could see how far off we were to having an adequately
powered study. This is done in R using the power.t.test function. Based
on the observed information significance level (α, equal to 0.050 in this case),
standard deviation (σ, equal to 4.937948), effect size (δ, equal to 2.05, which
is the observed difference divided by 2), and the “Total” sample size (here
equal to 20), we are informed that we need 24.84753 subjects in each group
to have enough power to declare the difference significant. We can calculate
these results for various sample sizes, as shown in Table 9.3. Thus, it appears
that our naive study was too small and thus doomed to fail.

To calculate the post-hoc power in R we can again use the power.t.test
function. However instead of entering in the power we will enter the ob-
served sample size; the power.t.test function is smart enough to know that
we want power if the sample size is provided. Program 35 shows the R code to

Table 9.3: Power for Various Sample Sizes in Graduate Program Entrance
Examination Example.

α σ δ Number Power
0.0500 4.937948 2.05 20 0.4199
0.0500 4.937948 2.05 22 0.4577
0.0500 4.937948 2.05 24 0.4940
0.0500 4.937948 2.05 26 0.5287
0.0500 4.937948 2.05 28 0.5617
0.0500 4.937948 2.05 30 0.5931
0.0500 4.937948 2.05 32 0.6228
0.0500 4.937948 2.05 34 0.6509
0.0500 4.937948 2.05 36 0.6773
0.0500 4.937948 2.05 38 0.7021
0.0500 4.937948 2.05 40 0.7254
0.0500 4.937948 2.05 42 0.7471
0.0500 4.937948 2.05 44 0.7674
0.0500 4.937948 2.05 46 0.7863
0.0500 4.937948 2.05 48 0.8039
0.0500 4.937948 2.05 50 0.8203
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Program 35 Program to determine the post-hoc power for a two sided two sample
test on a difference in means where δ = 4.1, σ = 4.937948, n= 10 and significance level
α = 0.05.

Code:

# Use power.t.test to determine power

power.t.test(delta=4.1, sd=4.937948, type="two.sample",

n=10, sig.level=0.05,

alternative="two.sided")

Output:

Two-sample t test power calculation

n = 10

delta = 4.1

sd = 4.937948

sig.level = 0.05

power = 0.4197928

alternative = two.sided

NOTE: n is number in *each* group

conduct the post-hoc power calculation for this scenario based upon our ob-
served information, including the mean difference (delta=4.1), the observed
pooled standard deviation (sd=4.937948), and the sample size in each group
(n=10). Be sure to note that when using the R function delta does not
need to be divided by 2. We must also specify the type="two.sample" and
"two.sided" commands in order to specify the correct alternative hypothe-
sis, as well as the appropriate significance level (sig.level=0.05). We could
then repeat this process for each subsequent sample size in order to reproduce
the results found in Table 9.3.

We can also use R to find the smallest difference that would be declared
significant given the present significance level, variability and sample size.
This again is done using the power.t.test function in R, where here we
start from some small effect size (say 2) and continue to some larger effect
size (say 3.5), increasing each time by some fixed value (say 0.1). Proceeding
as was done in Program 35, we get the powers listed in Table 9.4. From this
power analysis, we can see that we would need an effect size of at least 3.3 (or
a difference of 3.3 × 2 = 6.6) to obtain 80% power with 20 subjects. Much
like was the case where we looked at sample size, we can see that this study
was vastly underpowered.
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Table 9.4: Power for Effect Sizes in Graduate Program Entrance Examination
Example.

α σ δ Number Power
0.0500 4.937948 2 20 0.4033
0.0500 4.937948 2.1 20 0.4367
0.0500 4.937948 2.2 20 0.4705
0.0500 4.937948 2.3 20 0.5046
0.0500 4.937948 2.4 20 0.5387
0.0500 4.937948 2.5 20 0.5724
0.0500 4.937948 2.6 20 0.6057
0.0500 4.937948 2.7 20 0.6382
0.0500 4.937948 2.8 20 0.6697
0.0500 4.937948 2.9 20 0.7000
0.0500 4.937948 3 20 0.7290
0.0500 4.937948 3.1 20 0.7566
0.0500 4.937948 3.2 20 0.7825
0.0500 4.937948 3.3 20 0.8068
0.0500 4.937948 3.4 20 0.8293
0.0500 4.937948 3.5 20 0.8501

9.6 Exercises

1. A researcher is planning a study to determine if the yearly flu vaccina-
tion rates are different among insured and uninsured Americans who
are between the ages of 60 to 65. An meaningful difference to find is
5% or more. She hypothesizes that the rates will be lower for uninsured
Americans. Assuming that 80% of insured Americans get vaccinated,
how large of a sample size is needed for the test to have a power of 90%
with a significance level of α = 0.03?

2. Hall et al. (2012) are interested in the hosptitalizations for Congestive
Heart Failure (CHF) in the United States. A hospital system looks
at their report and they wish to know if there is a difference in their
system for hospitalization rates for CHF between males and females.
The report shows that in 2000 that 42% of CHF hospitalizations were
male and 58% were females. Based on this information determine the
total sample size needed for a test with 85% power and a significance
level of α = 0.01.

3. We again the consider example from Green et al. (2005) who is inter-
ested in estimating the amount of diethylhexyl phthalate (DEHP) that
leach from IV tubing and bags into intravenous medications. Suppose
they take 25 standard IV bags and standard tubing of length 1 meter
and put distilled water in the bag and let it sit for 8 h and then drain
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the bag through the tube into a container. From each of the contain-
ers they measure the DEHP in ng/mL and suppose they obtain the
following data:

53.0, 40.4, 39.1, 39.6, 52.9,

32.8, 51.7, 42.9, 55.0, 43.8,

51.1, 44.2, 38.3, 44.3, 47.7,

43.7, 44.2, 40.0, 60.1, 42.9,

27.0, 50.8, 37.0, 47.5, 69.6

Determine the power of the test for the following hypothesis test H0 :
μ ≤ 50 versus Haμ > 50 based on the sample data.



Chapter 10

Association and Regression

10.1 Introduction

10.1.1 Association Between Measurements

One of the assumptions we have required for nearly every test we’ve conducted
thus far is that of independent subject measurements. The “independence” in
question implies that subjects are measured without influencing each other.
In Chapter 4 we discussed the association between two categorical measure-
ments in the same subject, where the values subjects took for one measurement
were somehow related to the values they took on another measurement.
These two cases highlight the differences between the types of dependen-
cies that can arise: dependencies between subjects (which is generally bad),
and dependencies within subjects (which is – while not bad – hard to call
good). Provided that we have randomly selected subjects from the par-
ent population (or at least randomized those conveniently available subjects
we have into groups, as the case arises), we can assume that any between-
subject dependence will be kept to a minimum; in other words, subjects will
be assumed independent. But when we take multiple measurements on each
subject, we have to at least entertain the possibility that those measurements
will be related (whether we want them to be or not is beside the point). Un-
like the case in Chapter 7 – where we had repeated measurements of the same
thing – here we focus on cases where we take measurements of two different
characteristics – like in Chapter 4, except now with continuous measurements.
For instance: systolic and diastolic blood pressures (SBP and DBP) are of-
ten measured simultaneously within the same subject; lipid panels generally
produce several measurements, including triglycerides (TG) and high-density
lipoprotein cholesterol (HDL).

When we have such multiple measures, we generally want to see if there is
a relationship between those values. For instance, we might be interested in
knowing whether subjects with high SBP also have high DBP, and conversely

R. Sabo and E. Boone, Statistical Research Methods: A Guide for
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whether subjects with low SBP also have low DBP. Alternatively, we may
wonder whether subjects with high TG have low HDL, or if subjects with low
TG have high HDL (note that high TG and low HDL are considered bad).
These examples both exhibit what is called association between the two mea-
surements, where an association – in its most general form – means that there
is some kind of relationship between the ways in which the two measurements
take values within the same subjects. The stronger this relationship (or the
more clear it is to the beholder), the more associated the two measurements
are said to be. If there was no discernable relationship, then we would say
that two measurements are unrelated (take, for instance, measurements of
blood pressure and the color of the sphygmomanometer used to measure it).

10.1.2 Scatter Plots (with R Code)

One of the best ways of observing whether any association exists is to cre-
ate a scatter plot of the two measurements. A scatter plot is a simple plot
where the values of one measure are plotted on one axis, while the values
of the other measure are plotted on the other axis. Thus, each point in the
plot represents the two measurements for a given subject. Several scatter
plots are shown in Figure 10.1, where the different plots show varying levels
of association. The first plot shows an instance where these is no association
between the two variables (creatively entitled “x” and “y”). This scatter plot
represents statistical “white noise” in that the points are scattered about the
plot window with no pattern, much like an old television receiving no signal.
In the last (6th) of these plots, we see that the plotted points form a mostly
straight line. This represents the case where the variables exhibit very strong
association. In addition, this is what we call positive association, since large
values of one measure (x) are paired with large values of the other measure
(y), and likewise small values of x are paired with small values of y; this is
noted by the gradual increase in y as the values for x increases. Conversely,
Figure 10.2 shows us what is called negative association, where large values
of x are paired with small values of y, and large values of y are paired with
small values of x. Note that even though the association is “negative” it
is still strong. In general, the “strength” of an association is indicated by
how discernable the pattern is, or how fine a line is formed by the plotted
measurements. Returning to Figure 10.1, we can see that the pattern in each
successive plot more closely resembles a straight line, so we can tell that the
associations are increasing with each successive plot. We can generate these
scatter plots in R by using the plot function.

Program 36 shows the R code to create a scatterplot for the Blood
Pressure data. We first enter the data into R using the read.csv func-
tion to read in the Chp 10 BP Ex.dat data file. The first row in this data
file gives the column names and hence we need to specify header=TRUE. To
create a scatter plot we use the plot function, where the first item is the
column in the dataframe (BP1) that corresponds to the variable along the
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Figure 10.1: Scatter Plots Showing Increasing Association.
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Figure 10.2: Scatter Plot Showing Negative Association.

Program 36 Program to generate a scatterplot of Systolic Blood Pressure versus
Diastolic Blood Pressure.

Code:

# Read in the data.

BP1 <- read.csv("Chp 10 BP Ex.dat", header=TRUE)

# Create a scatter plot of SBP versus DBP

plot(BP1$DBP, BP1$SBP,

xlab="DBP",

ylab="SBP",

main="Systolic versus Diastolic Blood Pressure")

Output:
Found in Figure 10.3.

horizontal axis (BP1\$DBP) which is the column for Diastolic Blood Pressure,
and the second item is the column corresponding to the variable on the verti-
cal axis (BP1\$SBP) which is the Systolic Blood Pressure. The other options
in the function are similar to those in other plotting functions in R. Here
xlab=‘‘DBP’’ labels the horizontal axis as DBP. Similarly, ylab=‘‘SBP’’
labels the vertical axis as SBP. And as usual the main statement creates a
title for the plot. The resulting scatter plot can be found in Figure 10.3.

While scatter plots are an excellent tool for seeing whether association
is present, it is a somewhat subjective tool for assessing the strength of the
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Figure 10.3: Scatter plot of Systolic Blood Pressure versus Diastolic Blood
Pressure

association (though some information on strength can be ascertained). Rather
than rely upon these plots, there exist several statistical methods for produc-
ing a numerical measure or estimate of the association between two measures.
The simplest type of measure is the correlation coefficient, which produces
a value between −1 and 1 that represents the strength of the association
between two measurements. Correlations close to 1 represent strong and
positive association, correlations close to −1 represent strong and negative
association, and correlations close to 0 represent no association. Naturally,
positive correlations between 0 and 1 represent varying degrees of positive
association, while correlations between −1 and 0 represent varying degrees
of negative association. A more sophisticated approach is to perform a sim-
ple linear regression between the two measurements. A regression aims to
estimate the line formed from plotting two measurements in a scatter plot
(like that from Figure 10.3). The estimates we obtain from a regression indi-
cate the functional relationship (or lack thereof) between two measurements,
but they do not indicate the strength, while a correlation coefficient indicates
the strength of association between two measurements but not the functional
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relationship. Thus, what approach we use depends upon the type of question
we ask. If we are only interested in the strength of association between two
measurements, then we will estimate a correlation coefficient, whereas if we
want to know the relationship between two measurements, we will perform a
regression analysis.

As briefly mentioned in the previous paragraph, a regression estimates
the line formed by the plotting together of two measurements. This implies
that regression analyses – and correlation estimates, for that matter – are
only applicable when the relationship between two measurements is linear,
or the relationship approximately forms a straight line. Thus, if the relation-
ship between two measurements is anything other than a straight line (see
Figure 10.4 for examples), then the methods outlined in this chapter do not
apply.
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Figure 10.4: Example Scatter Plots of Non-Linear Association.

10.2 Correlation Coefficients

10.2.1 Establishing Hypotheses

When we wish to measure the strength of a linear association between two
continuous measurements, we are still in effect performing a hypothesis test.
The null case – by default – is that there is no association between the two
measurements. This can be symbolically represented by letting ρ stand for
the association, so that we get H0 : ρ = 0. The alternative hypothesis must
then be that the association is somehow other than zero, or H0 : ρ �= 0.
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10.2.2 Assessing Assumptions (with R Code)

As always, we need our sample to be representative of the population from
which it was drawn, and we need the subjects to be independently mea-
sured (though we could expect the measurements to be dependently measured
within subjects). As stated earlier, we need the relationship between the two
measures – if it exists – to be linear. Additionally, we need the variability of
one measure to be more or less constant throughout the values of the other
measure, and vice versa. This condition is difficult to explain in words, but
it easy to see when it occurs, as shown in Figure 10.5. This is what is known
as heteroskedasticity, or where the variability in one measure is not constant
throughout the range of the other variable, as shown by the increasing spread
of the variable on the vertical axis as the variable on the horizontal axis gets
larger in value. While the relationship remains linear in this case, the extra
variance will not be captured by the correlation coefficient (or the regression
in the latter part of this chapter). Lastly, we need sufficient sample size. Un-
fortunately, there is no commonly agreed upon requisite sample size needed
to estimate association with correlation coefficient. A good rule of thumb is
that samples consisting of fewer than 20 subjects should use non-parametric
correlation coefficients, which will be shown later. Further, if either of the
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Figure 10.5: Example of Heteroskedasticity.
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measurements have skewed or otherwise non-normal distributions, the non-
parametric correlation coefficient should be used.

10.2.3 Summarizing Data

Quite simply, if we are estimated a correlation coefficient, then we must also
summarize the two variables in question. If we have a large enough sample
and our assumptions are met (linear relationship, constant variance, etc.),
then we summarize the two measurements with sample sizes, means, stan-
dard deviations, and 95% confidence intervals. If our sample size is small or
if our assumptions are not met (or if the data are markedly not symmetrically
distributed), then we summarize the measurements with sample sizes, medi-
ans and interquartile ranges. In either case, we note the number of missing
observations for each variable.

10.2.4 Estimating Correlation, Performing the Test,
and Decision Making (with R Code)

Provided we have a large enough sample (and all of our other assumptions
are met), we may estimate the association between two measurements X and
Y with Pearson’s linear correlation coefficient, given by

ρ̂ =
Σn

i=1XiYi − nX̄Ȳ

(n− 1)sXsY
. (10.1)

For this estimator we essentially need six things, the sample means and
standard deviations for each measure, the sample size, and the sum of the
subject-specific products of both measures. This measure takes values be-
tween −1 and 1 with the same interpretation as given above. The distribu-
tion for ρ̂ is complicated, and its test is more complicated still, so we will rely
upon the resulting p-value for inference. Naturally, we should also provide
a 95% confidence interval along with the estimated correlation coefficient –
rounded to at most two decimal places – in addition to the corresponding
p-value. This information can be obtained in R using the cor.test function
and is illustrated in Program 37 below.

As an example of the process, we will again consider data from the Fels
Longitudinal Study (FLS) database, where we have measured both systolic
and diastolic blood pressure (SBP and DBP) in 155 male subjects. The data
summaries and histograms for both measures are provided in Figure 10.6,
which shows that the two measures are reasonably normal distributed for us
to continue. A scatter plot of the SBP and DBP measurements was provided
earlier in Figure 10.3. We can see that the “scatter” in this plot is more or
less linear and that the association seems positive (we’re looking for more of
a “football” shape than an actual line, though it is nice to see the latter).

The estimated coefficient provided by R in this case is 0.632937, which we
report as r = 0.63. Note that the associated p-value is <0.0001, which is less
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Program 37 Program to conduct a hypothesis test on a correlation coefficient ρ, with
H0 : ρ = 0 versus H0 : ρ �= 0.

Code:

# Read in the BP1 dataset .

BP1 <- read.csv( "Chp 10 BP Ex.dat", header=TRUE )

# Run cor.test for DBP versus SBP

cor.test( BP1$DBP, BP1$SBP ,

alternative="two.sided")

Output:

Pearson’s product-moment correlation

data: BP1$DBP and BP1$SBP

t = 10.1123, df = 153, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5279701 0.7188565

sample estimates:

cor

0.6329367

than the nominal 0.05 significance level, so we reject the null hypothesis that
SBP and DBP have zero correlation. Since r = 0.63 is between 0 and 1, we
state that SBP and DBP are significantly and positively associated. Since the
value is not necessarily close to 1, it would be a stretch to claim that this is
strong correlation, though we certainly wouldn’t call it weak. Accept for cases
of extremely large or small positive correlations (with significant p-values),
we generally don’t qualify the association as strong or weak, respectively.

Program 37 shows the R code to conduct the analysis above. After
reading-in the dataset, we can use the cor.test function, which requires two
columns of data: BP1\$DBP and BP1\$SBP, which stand for DBP and SBP,
respectively. The cor.test functions has many options similar to those of
t.test. We can also use the conf.level statement to create confidence in-
tervals with various confidence levels. The output from this function gives
the t value, the degrees of freedom (df), and the p-value is given in scientific
notation. You will have to translate the scientific notation of the reported
p-value (p-value<2.2e-16) to conclude that the p-value< 0.0001. These re-
sults match what we calculated by hand. We also see the 95% CI on the
correlation is 0.527 and 0.718.
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10.2.5 Contingency Methods (with R Code)

If we did not have a large sample, if one or both of our measurements were
not normally distributed, or if the relationship between them was not linear,
then we are not allowed to estimate the strength of the linear association
using Pearson’s correlation coefficient. Instead, we use Spearman’s rank cor-
relation coefficient (sometimes called Spearman’s ρ), which uses the same
equation as Pearson’s metric, except we replace the observed measures with
their ranks. The ranks, rather than the measures they are ranks of, will have
less skewed distributions, and this process is relatively robust to small sample
sizes (still, it pays to be reasonable. If you have three subjects, you shouldn’t
be measuring associations).

Returning to our example, you can calculate Spearman’s rank correla-
tion coefficient in R, using the cor.test function with method="spearman",
which in this case provides an estimate of 0.6540, which we round to 0.65
(note that this is close to the Pearson value of 0.63). The small correspond-
ing p-value (<0.0001) indicates that we again reject the null hypothesis of
zero correlation, and conclude that SBP and DBP are significantly and posi-
tively associated. Program 38 shows the code to add the method="spearman"
option in the cor.test function. Notice in the output that no confidence
intervals are provided when Spearman’s ρ is used and also notice that a
Warning message was generated. This warning is telling us that their are
“ties” in the dataset and hence the p-value is an approximate p-value. This
doesn’t pose a problem unless the generated p-value is close to our significance
level α, which in this case is not a problem.

10.2.6 Communicating the Results (with IMRaD
Write-Up)

The following is an example of the IMRaD write-up for the Blood Pressure
example.

Introduction: It is well known that systolic and diastolic blood pressure
measurements (SBP and DBP, respectively) are related in the same patients.
An observational study was conducted to test for the strength of association
between the two measures.

Methods: A sample of 155 paired SBP and DBP measurements was ob-
tained from the Fels Longitudinal Study. Subjects were randomly recruited
to participate in the study, and subjects are assumed to be independent.
The SBP and DBP measurements are summarized with sample sizes, means,
standard deviations and 95% confidence intervals, and a scatter plot is used
to check for a linear relationship between SBP and DBP. The strength in
association between SBP and DBP was measured using Pearson’s linear cor-
relation coefficient provided the two measurements were normally distributed,
and was measured using Spearman’s rank correlation coefficient otherwise.
We reject the null hypothesis that SBP and DBP are not associated in fa-
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Program 38 Program to conduct a hypothesis test on a correlation coefficient ρ, with
H0 : ρ = 0 versus H0 : ρ �= 0 using Spearman’s ρ.

Code:

# Run cor.test for DBP versus SBP

cor.test( BP1$DBP, BP1$SBP ,

alternative="two.sided",

method="spearman")

Output:

Spearman’s rank correlation rho

data: BP1$DBP and BP1$SBP

S = 214720, p-value < 2.2e-16

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.6540233

Warning message:

In cor.test.default(BP1$DBP, BP1$SBP, alternative =

"two.sided",: Cannot compute exact p-values with ties

vor of the alternative that they are associated if the p-value is less than the
significance level of α = 0.05, and we will fail to reject the null hypothesis
otherwise. The R statistical software was used for all data summaries and
analyses.

Results: The sample is assumed representative and subjects are assumed
independent. The SBP and DBP measurements are summarized in
Figure 10.6, and the two measures were normally distributed. There were also
no missing measurements. A scatter plot of the two measures indicates a pos-
itive linear association (Figure 10.7). The estimated correlation is r = 0.63,
which is significantly different from zero (p-value < 0.0001).

Discussion: There is a significant positive association between DBP and
SBP in the same subjects. Thus, both measures should be used as biomarkers
for hypertension and its effects.

10.2.7 Process for Estimating Correlation

1. State research question in form of testable hypotheses.

2. Determine whether assumptions are met.

(a) Representative
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Figure 10.6: Histograms and Summaries for FLS Blood Pressure Example.
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Figure 10.7: Scatter Plot of SBP and DBP for FLS Blood Pressure Example.
The estimated Pearson correlation coefficient for this data is r = 0.63.
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(b) Independence

(c) Sample size: check distribution of data and sample size for each
group.

(d) Linearity of Relationship.

(e) Heteroskedasticity

3. Summarize data.

(a) If sample size/normality is adequate for each measurement: sum-
marize with sample size, mean, standard deviation, 95% CI and
# of missing observations.

(b) If sample size/normality is inadequate for each measurement: sum-
marize with sample size, median, IQR, and # of missing observa-
tions.

4. Estimate Correlation.

(a) If assumptions met: use Pearson Linear Correlation Coefficient.

(b) If assumptions not met: use Spearman’s Rank Correlation
Coefficient.

5. Report estimated correlation coefficient, CI (only if using Pearson’s
estimator) and p-value.

6. Summarize with IMRaD write-up.

10.3 Simple Linear Regression

If we would like to know more than just the strength of the association,
then we can conduct a regression analysis, which aims to measure what the
association is between two measures. A simple linear regression effectively
consists of measuring the linear relationship between two measurements (two
is the simplest case for which we can do this, hence the term “simple”), and
does so by literally estimating a line between the paired values of the two
measures. Recall – from High School, of all places – that the equation of
a line is Y = mX + b, where m is the slope of the line (how much does Y
change for a one-unit change in X), b is the y-intercept (the value of Y when
X is equal to zero), and Y and X are two particular paired values on the line.
The utility in such an equation comes in the sense that if we know the values
of m and b, then we know the value of Y corresponding to any value of X just
by placing that value of X into the equation (and we thus could replace all
pairs of X and Y with our equation for the line). For instance, if m = 10 and
b = 100, and we let X = 0.74, then we know Y = 10 × 0.74 + 100 = 107.4.
We could do this for every value of X , obtaining the corresponding value of
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Figure 10.8: Example of a line from the Straight Line Formula found in
Equation 10.2.

Y in turn, and if we were to plot these points, they would form a straight
line (shown in Figure 10.8 for these choices of m and b).

Since we are limiting ourselves to cases where the relationship between
the two measures is linear, a simple linear regression analysis will aim to
estimate the slope and intercept of that line. Formally, we will estimate the
following regression line

Yi = β0 + β1Xi, i = 1, . . . , n, (10.2)

where β0 is the y-intercept and β1 is the slope between the Xi and the Yi.
In this set-up, the intercept β0 is merely a place-holder, or a mathematical
necessity (i.e. it is what it is because it’s used to make the equation work),
and as such is usually of no interest to us. Thus, all of our inference will be
on the slope β1, which represents how the variable X and Y are associated.
We interpret the slope as the change in Y for a one-unit change in X . If
β1 is positive, then Y will increase with X (they are positively associated);
if β1 is negative, then Y will decrease as X increases (they are negatively
associated), and if β1 is close to zero then there is little or no association
between Y and X .
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10.3.1 Establishing Hypotheses

The null hypothesis for a simple linear regression is similar to that for cor-
relation, in that we assume there is no relationship between the two mea-
surements. We can state that in words, or we can symbolically write it as
H0 : β1 = 0 (though we will estimate β0, we don’t care about it and thus
won’t test it). The alternative hypothesis will then be that there is a relation-
ship between the two measures, or H0 : β1 �= 0. In general, we use two-sided
hypothesis because (i) it’s easier to test for, and (ii) we typically care about
any association in either direction (positive or negative).

10.3.2 Assessing Assumptions (with R Code)

A simple linear regression requires similar assumptions to those needed for
calculating Pearson’s correlation coefficient, though there are some differ-
ences. We of course need a representative sample and independently mea-
sured subjects, as well as a large-enough sample size (n > 20 usually suffices
for a simple linear regression), and the relationship between Y and X needs
to be linear. However, we do not necessarily require Y or X to be normally
distributed. Instead we need the “residuals” from the regression to be nor-
mally distributed, where the estimated residuals are defined as the difference
between the observed values of Y and the predicted values of Y given by the
simple linear regression model (we will cover residuals and predicted values
a little later). While there are non-parametric regression models, we will
not cover them (as they are generally either too simple or too complicated),
mostly due to the fact that you generally will be able to do the regression.

10.3.3 Summarizing Data

Data are summarized in the same manner as was done for the estimating
correlations: we provide the sample size, mean, standard deviation, 95%
confidence interval, and number of missing observations for each variable.
Of course, the measurements should be summarized appropriately (medi-
ans and interquartile ranges) if the values are not normally distributed. In
some cases – when the assumptions of the regression model are not met (e.g.
linearity) – we will take transformations of the original measurements. This
could consist of taking logarithms or roots of our measurements, or any other
number of functions that statisticians commonly use. Though we will not get
into them here, note that you should be summarizing the data on both the
original and transformed scales.

10.3.4 Estimating the Regression, Performing the Test,
and Decision Making (with R Code)

Provided that our assumptions are met, we will then estimate the slope and
intercept of the regression line. The derivation of these equations is one of the
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most fundamental aspects of statistical application, and can be accomplished
through the process called ordinary least squares (OLS). While we won’t show
how it’s done, the OLS estimators are such that they minimize the sum of the
squared residuals, which is another way of saying that the OLS estimators
fit the best possible straight line between Y and X . The OLS estimator for
the slope is

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1 xiyi − nx̄ȳ

(n− 1)s2x
. (10.3)

Notice the similarities between this equation and that for the Pearson corre-
lation coefficient (they are practically the same except for the denominator).

Unlike ρ̂, β̂1 does not gauge the strength of the association between X and Y ,
it only shows how they are related (more on this later). In fact, β̂1 can take
any positive or negative value and is not restricted to take values between -1
and 1. To estimate the y-intercept, we use

β̂0 = ȳ − β̂1x̄. (10.4)

Implicit in this estimator is that the slope β̂1 must be estimated first.
In R, we can fit a regression line between the SBP and DBP measurements

from the FLS database by using the lm function (as shown in Program 40
below). Note in Figure 10.9 that the scatter plot now has the regression line
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Figure 10.9: R Plot for Simple Linear Regression in Blood Pressure
Example 10.9.



10.3. SIMPLE LINEAR REGRESSION 197

superimposed over the data, which increases toward the right-hand side of
the plot (indicating positive association). For the components of the equation
for the regression line, we see that the estimated slope is 0.9691219 (which
we round to 0.97), while the estimated intercept is 47.827896 (which we
round to 47.83). In Program 40 we also see the output presented by R,
which provides the standard errors, test statistics (based on a t-distribution
with n− 1 degree of freedom), and the resulting p-values. For our example,
we would report that the slope between DBP and SBP was positive and
significant (β̂1 = 0.97, SE = 0.096, t1 = 10.11, p-value < 0.0001), meaning
that a 1mmHg increase in DBP leads to an expected 0.97mmHg increase in
SBP (note that the word expected is necessary because the regression is an
estimate of the association and is not exact or true in the conventional sense).
We need to report the estimates, standard errors, test statistics and p-values
for both estimates somewhere (usually in a table), but we also typically report
the information for the slope in text.

Program 40 shows the R code to obtain a simple linear regression for the
Systolic and Diastolic Blood Pressure data. We use the lm function, which
stands for “linear model”. The function is similar to the aov function in that
it requires a formula as the first item, which in this case is SBP~DBP. The sec-
ond item is the dataset we are working with which is BP1. We write the output
of this function into the variable BP.lm1 so that we can use the summary func-
tion. The summary function, which produces the regression estimators and hy-
pothesis tests and organizes the output in a useful manner. The information
we are typically looking for is found in the Coefficients section. It provides
the Estimate (the estimated intercept and slope coefficients) the
Std.Error of those estimates, the corresponding t value for the hypothesis
test, and the p-value denoted with Pr(>|t|). Recall that these p-values are
for two sided alternative hypotheses. The output from Program 40 contains
more information than we have covered thus far. The Residuals section
gives the five-number summary of the residuals from the regression (these
are described below). At the bottom of the output there are other in-
formation that may be useful, such as the Residual standard error the
Multiple R-squared the Adjusted R-squared and the F-Statistics ma-
terial (which will be covered later).

10.3.5 Establishing the Worth of the Regression

Once we have fit the regression, it is important for us to check to see how well
fit the regression line is to the data. This also brings us back to checking to
see whether our residuals are normally distributed. We can use the estimated
regression line to calculate predicted values for our response, where predicted
values are the values given by the regression equation if we substitute a
value of X (DBP in our example) into the equation and calculate. If there
was strong association between X and Y , then the straight line relationship
between them would be fairly clear as well, meaning that the predicted values
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of Y obtained through the equation should be close to the observed values of
Y from the original data set. If we have already fitted the regression using
the lm function then we can easily obtain the fitted values. Program 41
shows the code to obtain the fitted values for the Blood Pressure example.
The output in Program 41 shows the predicted values along with the original
Blood Pressure data. In this case we wish to compare the response variable
SBP versus the predicted SBP or in the output SBP versus BP.lm1\$fitted.
We note that while some of these values are close to what we observed, others
are not that accurate. For example, consider the observation in row 4 in the
output. The actual SBP value is 155 in contrast to the fitted value of 111.79.
Here the fitted value and actual value differ quite a lot.

The major benefit from calculating these predicted values is that we can
estimate the residuals (mentioned earlier), which are the differences of the
observed values from those predicted by the regression line (or the predicted
values). If the regression model was fit in R using the lm function then
the residuals are already calculated. Program 41 shows how to obtain the
residuals for the Blood Pressure example. To obtain the residuals we can
simply use the BP.lm1\$residual statement. If our regression fit perfectly
(i.e. the scatter plot showed a perfect straight line relationship between X
and Y ), then the residuals would all be close to zero. Clearly, as seen in the
Residual plot in Figure 10.10a, the residuals are not all close to zero (though
some are). This is okay, as the magnitude of the residuals is of a secondary
concern. We are more interested in the distribution of the residuals, which
we can viewed by observing a histogram or QQ plot of the residuals found
in Figure 10.10b–c. We look for any abnormal or clear patterns (you’ll know
it when you see it), which are an indication of non-fit or heteroskedasticity.
For our blood pressure example, we see in Figure 10.10 that we have more or
less white noise with some outliers (recall that outliers are not bad in and of
themselves). The perfect residual plot looks somewhat like a side profile of an
American football: a thick spread in the center that gradually diminishes as
X increases and decreases from that center. As with assessing normality of
sample data, we will grant some leeway for minor departures from symmetry
or slight skewness.

As an interesting exercise, watch what happens if we calculate the vari-
ances of the observed, predicted, and residual SBP values. Since we’ve had
R place the original data, predicted and residual values into a new data
set named BP1.data.fit.resid, we can calculate the means and standard
deviations using the mean and sd functions respectively. These calculations
are found in Table 10.1. Note that the mean of the predicted values is equal
to the observed mean, while the residual mean is zero (it will always be, even
for a bad model). If we square the standard deviations, we get the variances
also provided in Table 10.1. However, when we add the variances of the pre-
dicted and residual SBP measurements together, the resulting sum is exactly
equal to the variance of the observed SBP measurements. This is not a coinci-
dence, and results from the OLS method used to estimate the regression line.
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Figure 10.10: Residual plot (a) Histogram (b) and QQplot (c) for the resid-
uals from the SBP vs DBP regression model.

These values are referred to as the “sum of squares” (in fact, they are derived
from the same source as the sums of squares from the ANOVA modeling we
studied in Chapter 8). The observed variance is the total sum of squares,
the predicted variance is the model-based sum of squares, and the residual
variance is the residual sum of squares. Naturally, we want the residual sum
of squares (or residual variance) to be as small as possible relative to the
total sum of squares (or observed variance). In this case, the ratio of resid-
ual variance is 140.20/233.90 = 0.60, meaning 60% of the total variation in
the observed SBP measurements is not explained by the regression equation.
Conversely, the ratio of predicted variance is 93.70/233.90 = 0.40, meaning
40% of the total variation in the observed SBP measurements is explained
by the regression equation.
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Table 10.1: Variability in Observed, Predicted and Residual SBP for FLS
Blood Pressure Example.

Observed Predicted Residual
Mean 123.83 123.83 0.00
SD 15.293725 9.6799607 11.840456

Variance 233.8980 93.7016 140.1964
Sum=233.8980

Whether the observed ratio of predicted to total variance is good or bad
is at best a subjective decision, and so we have a formal test that is provided
by R. In practice, we call the ratio of predicted variance to total variance
the coefficient of determination, or R2 for short. If we look at the output
in Program 40, we see the results for an F -test. The p-value listed in this
part actually corresponds to a test that the R2 value equals zero. Since the p-
value is less than 0.05, we would reject the null hypothesis that the R2 (or the
predicted variance) is 0. We would report this as F1,153 = 102.3, p-value <
0.0001 (where the degrees of freedom are taken from the “Model” and “Error”
lines, respectively). Note that in the simple linear regression case this test is
the same as the t-test for the regression slope, but you still need to report
them both somewhere in your write-up. This is because these tests will no
longer be identical once we add other covariates to the regression model (the
so-called multiple regression model).

Note that the square root of R2 is
√
0.400609 = 0.6329, and recall that the

Pearson correlation coefficient between SBP and DBP was r = 0.6329. This
is no coincidence, and is the reason why the predicted to total variance ratio is
called “r-squared”. This also lends itself to describing the difference between
a correlation coefficient and regression slope: the correlation measures the
strength of an association between two measurements, while the regression
slope measures the relationship between those measurements. The size of a
regression slope does not tell us how strong the relationship is; that is given
by the R2, which is simply the square of the correlation.

Note also (last time, we promise), that R2 has an additional interpretation
as the square of the correlation between the observed and predicted response.
If we use R to create the predicted values (shown earlier), and then take
the correlation between those predicted SBP values with the observed SBP
values, we obtain r = 0.6329. The square of this value is r2 = (0.63292)2 =
0.4006, which is equivalent to the R2 from the model. In addition, this implies
that the correlation between the observed and predicted SBP values is the
same as the correlation between the observed SBP and DBP values. While
seemingly miraculous, this is due to the fact that the predicted SBP values
have a one-to-one relationship with the observed DBP values, and is not too
much of a surprise upon reflection.

In previous chapters we have provided confidence bounds for our esti-
mates, and we can do a similar thing for our regression line as well. The
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problem comes down to what we want these bounds to be for, or what we
want them to do. If we are interested in the average relationship between
our two measurements, then we will estimate what are called confidence in-
tervals. These are obtained in R by using the predict.lm function, and are
presented for the blood pressure example in Figure 10.11. These bounds are
basically a 95% confidence interval on the predicted response that we would
expect on average for any given DBP level. On the other hand, if we are
interested in the relationship between the two measurements for a particular
subject, then we will estimate what are called prediction intervals. These are
obtained in R by using the predict.lm function, and are presented for the
blood pressure example in Figure 10.11b. These bounds are basically a 95%
confidence interval on the predicted response that we would expect for a par-
ticular person or subject. Note that the prediction bounds are wider than the
confidence bounds, which reflects that the confidence bounds are for an aver-
age response over n subjects, while the prediction bounds are for the response
of a particular subject. Our choice between these two intervals depends upon
for whom we want to summarize: the average or particular response.
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Figure 10.11: Confidence (a) and Prediction (b) Bands of the Regression Line
in the Blood Pressure Example.

If we want to provide a “predicted value” of the response (Y) from a
particular value of X (usually the mean of X), then the predict.lm function
in R will give us the value in which we are interested. Returning the blood
pressure example, say that we wanted to determine the predicted SBP value –
according to the regression line – for the average DBP value, and also find
the prediction interval for that particular predicted value. Program 39 shows
how to obtain predictions from a regression model. The first step is to create
a new data.frame that contains the new X value to be predicted. In this case
we create a new data.frame called new1 which contains a variable DBP which
is assigned the value 78.4. Note the name of the variable in the new data
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Program 39 Program to conduct a simple linear regression for Systolic Blood Pressure
versus Diastolic Blood Pressure.

Code:

# For a specific value of DBP

new1 <- data.frame( DBP = 78.4 )

predict.lm( BP.lm1, new1, interval="prediction")

# Generate a new set of values to at which to evaluate the

regression

newdata1 <- data.frame( DBP = seq(52, 115, by=0.1) )

# Generate confidence intervals at the new values

BP.CL <- predict.lm( BP.lm1, newdata1, interval="confidence" )

# Generate prediction intervals at the new values

BP.Pred <- predict.lm( BP.lm1, newdata1, interval="prediction")

# Plot the data

plot( BP1$DBP, BP1$SBP )

# Add a regression line

abline( BP.lm1 )

# Add the confidence bounds

matlines( newdata1$DBP, BP.CL[ ,c("lwr","upr")], lty=2, col=

"black")

# Add the prediction bounds

matlines( newdata1$DBP, BP.Pred[ ,c("lwr","upr")], lty=3, col=

"black")

Output:

fit lwr upr

1 123.807 100.2633 147.3508

See Figure 10.11 for plots.

frame must be the same variable name as that in the original dataset; if these
names do not match then the predict.lm function will not work correctly.
The next step is to call the predict.lm function and put the regression
model, BP.lm1 as the first item, the new dataframe, new1 and what type of
interval we want generated. In this case we are looking for a prediction
interval and hence we set interval="prediction". From the output we see
that for the mean DBP value of 78.4, the predicted value of SBP is 123.7
(after rounding), with a 95% prediction interval of (100.0, 147.0).

Program 39 also shows how to create scatter plots with the regression
line as well as confidence bands and prediction bands. Whenever we use
the predict.lm function we will need to have a data.frame of values that
contains the values of X that we wish to predict Y. Here we create newdata1
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Program 40 Program to conduct a simple linear regression for Systolic Blood Pressure
versus Diastolic Blood Pressure.

Code:

# Run lm for SBP versus DBP

BP.lm1 <- lm( SBP ~ DBP, data=BP1)

summary( BP.lm1 )

# Code for Creating Scatter Plot with Regression Line

plot(SBP~DBP)

abline(lm(SBP~DBP))

Output:

Call:

lm(formula = SBP ~ DBP, data = BP1)

Residuals:

Min 1Q Median 3Q Max

-20.234 -8.389 -2.389 7.019 43.210

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 47.82790 7.57570 6.313 2.81e-09 ***

DBP 0.96912 0.09584 10.112 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 11.88 on 153 degrees of freedom

Multiple R-squared: 0.4006,Adjusted R-squared: 0.3967

F-statistic: 102.3 on 1 and 153 DF, p-value: < 2.2e-16

as a data.frame that contains the variable DBP as a sequence of values from
52 to 115 at increments of 0.1, which is coded in R as seq(52, 115, by=0.1).
In order to create a scatter plot with confidence or prediction bands we will
need to create one dataset that contains the confidence band values and one
dataset that contains the prediction band values. In this case we use the
predict.lm function to create the BP.CL dataset which contains the confi-
dence band values, since the interval="confidence" option was used. The
BP.Pred dataset is created similarly, except the interval="prediction" op-
tion is used. To plot these we first start with a base scatterplot given by the
plot function. We add the regression line to the plot using the abline func-
tion, which can accept the fitted regression object, BP.lm1, and overlays the
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Program 41 Program obtain diagnostic quantities for the Systolic Blood Pressure
versus Diastolic Blood Pressure regression model. This requires that Program 40 be run
first.

Code:

# Obtain useful quantities for model diagnostics

BP1.fit <- BP.lm1$fitted #Fitted values

BP1.resid <- BP.lm1$residuals #Residuals

#Combine it all together

BP1.data.fit.resid <- cbind(DBP=BP1$DBP,

SBP=BP1$SBP,

BP1.fit,

BP1.resid)

BP1.data.fit.resid #Print out the information

A portion of the output:

DBP SBP BP1.fit BP1.resid

1 89.0 128 134.07974 -6.0797409

2 72.5 135 118.08923 16.9107697

3 78.0 139 123.41940 15.5805995

4 66.0 155 111.78994 43.2100617

5 71.0 129 116.63555 12.3644524

6 77.0 126 122.45028 3.5497213

7 78.0 132 123.41940 8.5805995

8 73.0 121 118.57379 2.4262087

9 87.0 135 132.14150 2.8585028

10 78.0 121 123.41940 -2.4194005

regression line on to the existing plot. To add the confidence and prediction
bands we will use the matlines function, which allow us to overlay many dif-
ferent lines simultaneously on an existing plot. To add the confidence bands
we first need to give the values at which the bands are generated from, which
in this case this is newdata1\$DBP. The second item is the dataset with the
confidence or prediction bands in it (either BP.CL or BP.Pred, respectively).
Since we want all the rows and only the columns "lwr" and "upr"we will sub-
set the dataset using the bracket notation. Hence BP.CL[ c("lwr", "upr")]
will subset the dataset this way. Next we need to specify the line type, lty
(of which there are many). In this case we will use lty=2 and lty=3 for
confidence and prediction bands, respectively. Finally we specify the color
of the lines using the col="black" statement. The output of these can be
found in Figure 10.11.
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10.3.6 Communicating the Results (with IMRaD
Write-Up)

The following is an example of the IMRaD write-up for the Blood Pressure
example.

Introduction: It is well known that systolic and diastolic blood pressure
measurements (SBP and DBP, respectively) are related in the same patients.
An observational study was conducted to determine the association between
the two measures.

Methods: A sample of 155 paired SBP and DBP measurements was ob-
tained from the Fels Longitudinal Study. Subjects were randomly recruited
to participate in the study, and subjects are assumed to be independent.
The SBP and DBP measurements are summarized with sample sizes, means,
standard deviations and 95% confidence intervals, and a scatter plot is used
to check for a linear relationship between SBP and DBP. The association
between SBP and DBP was estimated using a simple linear regression line.
The residuals were checked for normality using a QQ-plot. The predicted
SBP at the mean level of DBP and corresponding 95% prediction interval
are presented. The null hypothesis that the slope between SBP and DBP is
zero is rejected in favor of the alternative that the slope is non-zero if the
resulting p-value was less than the significance level of α = 0.05, otherwise
we fail to reject the null hypothesis. The R statistical software was used for
all data summaries and analyses.

Results: The sample is assumed representative and subjects are assumed
independent. The SBP and DBP measurements are summarized in Ta-
ble 10.2. The estimated intercept and slope of the regression line are reported
in Table 10.3 and shown graphically in Figure 10.11b (with 95% prediction
intervals), with the displayed scatter plot showing a linear relationship. The
regression fit reasonably well with R2 = 40.0% of the total variability in
SBP explained (F1,153 = 102.3, p-value < 0.0001), and the estimated resid-
uals were normally distributed based on the QQ-plot. The slope (0.97) is
positive and significantly different from zero (p-value < 0.0001), meaning
that a 1-unit increase in DBP leads to an expected 0.97mmHg increase in
SBP. For the mean DBP value of 78.4, the predicted value of SBP is 123.7
(95%PI : 100.0, 147.0) (Figure 10.11(b)).

Table 10.2: Data Summary for SBP and DBP for FLS Blood Pressure
Example.

n Mean SD 95% CI
SBP 155 123.8 15.29 121.4, 126.3
DBP 155 78.4 9.99 76.8, 80.0

Discussion: There is a significant positive association between DBP and
SBP in the same subjects. Thus, both measures should be used as biomarkers
for hypertension and its effects.
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Table 10.3: Regression Results between SBP and DBP for FLS Blood
Pressure Example.

Estimate SE Test Statistics p-value
Intercept 47.8 7.58 6.31 <0.0001
Slope 0.97 0.10 10.11 < 0.0001

10.3.7 Process for Simple Linear Regression

1. State research question in form of testable hypotheses.

2. Determine whether assumptions are met.

(a) Representative

(b) Independence

(c) Sample size: check distribution of data and sample size for each
group.

(d) Linearity of Relationship.

(e) Heteroskedasticity

3. Summarize data.

(a) If sample size/normality is adequate for each measurement: sum-
marize with sample size, mean, standard deviation, 95% CI and
# of missing observations.

(b) If sample size/normality is inadequate for each measurement: sum-
marize with sample size, median, IQR, and # of missing observa-
tions.

4. Perform Regression.

5. Check Regression Diagnostics.

(a) Check for Normality of Residuals: if not reasonably normal, dis-
regard the output.

(b) Test R2 using F -test: if not significant, then do not proceed.

(c) If appropriate, test slope using t-test.

6. Report Test Results.

(a) Report F -test results and R2.

(b) Report estimated regression coefficients, standard errors, CIs and
p-values.

7. Summarize with IMRaD write-up.
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10.4 Exercises

1. Jestoi et al. (2009) are interested in how much Furan (a potential
carcinogen) is in different commercially available baby food. The re-
searcher is interested if there is a relationship between the about of
protein found in the food as a predictor of the level of Furan found.
Below is the data from their experiment:

Protein Furan Protein Furan Protein Furan
0.7 29.9 1.1 4.7 2.2 54.6
0.4 14.1 0.5 22.6 3.0 30.3
0.5 14.1 1.0 39.4 3.0 12.8
0.2 8.1 0.5 22.9 4.0 38.6
0.6 8.6 0.8 33.5 3.2 90.3
2.5 74.8 0.7 5.5 1.1 37.0
3.9 45.6 1.0 9.4 0.6 73.4

2. In the study by Jacobus et al. (1992) mentioned in the exercises of
Chapter 6, the authors collected measurements of both calcium and
albumen (among others) on eight patients (data listed below). Estimate
the correlation between these measurements, and determine whether
the association is significant.

Patient
Measure 1 2 3 4 5 6 7 8
Calcium 2.92 3.84 2.37 2.99 2.67 3.17 3.74 3.44
Albumen 43 42 42 40 42 38 34 42

3. A study by Weeks and Fox (1983) examined fatality rates from mining
accidents before and after the passage of the Federal Coal Mine Health
and Safety Act of 1969. The total number of fatalities per year from
1959 to 1982 are listed in the table below. Determine whether the
number of fatalities has decreased over time.

Year Fatalities Year Fatalities
1959 227 1971 148
1960 267 1972 127
1961 260 1973 104
1962 245 1974 95
1963 230 1975 111
1964 202 1976 109
1965 232 1977 91
1966 197 1978 76
1967 178 1979 114
1968 275 1980 99
1969 155 1981 121
1970 219 1982 81
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4. Bache et al. (1972) are interested in the amount of PCB in lake trout for
fish of different ages from Cayuga Lake, NY. The PCB measurements
are in parts per million (ppm) and age is years. Determine whether
or not the amount of PCBs increase with the age of the fish. Be sure
to comment on the appropriatness of a line and any deficiencies in
assumptions.

Age PCB Age PCB
1 0.6 6 3.4
1 1.6 6 9.7
1 0.5 6 8.6
1 1.2 7 4.0
2 2.0 7 5.5
2 1.3 7 10.5
2 2.5 8 17.5
3 2.2 8 13.4
3 2.4 8 4.5
3 1.2 9 30.4
4 3.5 11 12.4
4 4.1 12 13.4
4 5.1 12 26.2
5 5.7 12 7.4

5. A forestry researcher is interested in the height of Loblolly pine trees.
Measure the height of these trees can be a perilous endeavor. Hence, he
would like to be able to measure the diameter of the tree at breast height
(DBH) in inches and generate an estimate of the height in feet. Use the
data below to fit a regression model and evaluate the appropriateness
of the model.

DBH Height DBH Height
6.4 15.0 4.5 3.4
10.3 19.7 7.3 9.7
6.4 15.6 9.4 8.6
6.6 16.0 6.9 4.0
9.2 18.0 7.1 5.5
6.0 15.1 6.6 10.5
7.3 16.1 5.7 17.5
6.7 15.9 13.3 13.4
8.2 16.5 8.2 4.5
6.9 15.8 9.0 30.4
5.3 15.0 6.5 12.4
5.8 16.5 7.4 13.4
5.5 15.1 5.2 26.2
6.1 15.8 7.1 7.4
7.4 16.2 7.8 16.8
7.1 16.3 10.5 19.6
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6. Cloquet et al. (2005) is interested in the dispersion of lead (Pb) in
the air near an industrial French city. Lichens’ have the ability to ab-
sorb atmospheric pollutants which allows them to be used as biological
monitors of air pollution. The authors record the distance to the center
of the industrial center of the city in (km) where they take sample of
lichens. They then analyze the lichens for the concentration of Pb in
(µg/g). Using their data determine if Pb concentration decreases as
you move away from the industrial center of the city.

Pb km Pb km Pb km Pb km
6 15.5 5 12 3 11.75 6 10.25
5 7.25 5 4.25 7 3.5 3 15
8 12 6 9 5 9 7 8
11 6 7 4.75 34 3.3 19 3.3
26 3.3 22 2.75 7 2.5 16 1.5
36 1.5 26 1.5 14 1.7 11 1.7
13 1.7 18 11 9 5.5 72 1.5
49 1.5 49 1.5 61 1.5 8 2.6
25 4.25 12 4.25 19 4.25 11 6.25
6 12.75 31 10.75 29 10.75 10 5

7. Choi et al. (2009) is interested in genotyping the Human Papillomavirus.
Specifically they are interested in the melting temperature in (◦C) of
each genetic sequence and the percent Genetic Content (GC%) of the
resulting sample. Using the data below determine if higher genetic
content leads to a higher melting temperature.

GC% Temp GC% Temp GC% Temp GC% Temp
38 68 38 69 41 67 51 71
52 74 44 78 38 73 37 71
46 72 47 72 41 68 53 67
33 71 29 72 36 69 41 71
71 74 53 69 27 67 57 71
46 65 37 71 35 74 31 69
53 78 31 71 33 68 38 70
37 69 40 63 41 70 40 68
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